
On Energy Conservation in Data Centers
Extended Abstract

Susanne Albers
∗

Technical University of Munich

85748 Garching, Germany

albers@in.tum.de

ABSTRACT
We formulate and study an optimization problem that arises in

the energy management of data centers and, more generally, mul-

tiprocessor environments. Data centers host a large number of

heterogeneous servers. Each server has an active state and several

standby/sleep states with individual power consumption rates. �e

demand for computing capacity varies over time. Idle servers may

be transitioned to low-power modes so as to rightsize the pool of

active servers. �e goal is to �nd a state transition schedule for

the servers that minimizes the total energy consumed. On a small

scale the same problem arises in multi-core architectures with het-

erogeneous processors on a chip. One has to determine active and

idle periods for the cores so as to guarantee a certain service and

minimize the consumed energy.

For this power/capacity management problem, we develop two

main results. We use the terminology of the data center se�ing.

First, we investigate the scenario that each server has two states,

i.e. an active state and a sleep state. We show that an optimal

solution, minimizing energy consumption, can be computed in

polynomial time by a combinatorial algorithm. �e algorithm re-

sorts to a single-commodity min-cost �ow computation. Second,

we study the general scenario that each server has an active state

and multiple standby/sleep states. We devise a τ -approximation al-

gorithm that relies on a two-commodity min-cost �ow computation.

Here τ is the number of di�erent server types. A data center has a

large collection of machines but only a relatively small number of

di�erent server architectures. Moreover, in the optimization one

can assign servers with comparable energy consumption to the

same class. Technically, both of our algorithms involve non-trivial

�ow modi�cation procedures. In particular, given a fractional two-

commodity �ow, our algorithm executes advanced rounding and

�ow packing routines.

KEYWORDS
Heterogeneous machines; e�cient algorithms; approximation algo-

rithms; minimum-cost �ow.

∗
Work supported by the European Research Council, Grant Agreement No. 691672.

SPAA ’17, July 24–26, 2017, Washington, DC, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-4593-4/17/07.

DOI: h�p://dx.doi.org/10.1145/3087556.3087560

1 INTRODUCTION
We de�ne and investigate an optimization problem with the objec-

tive of energy conservation in multiprocessor environments. We

focus on two particularly timely se�ings.

Data centers. Energy management is a key issue in data center

operations [7]. Electricity costs are a dominant and rapidly growing

expense in such centers; about 30-50% of their budget is invested

into energy. Data centers use about 1.5% of the total electricity

worldwide [12]. �is corresponds to the energy consumption of

more than 90 million households [8]. Surprisingly, the servers of a

data center are only utilized 20–40% of the time on average [3, 6].

When idle and in active mode, they consume about half of their

peak power. Hence a fruitful approach for energy conservation

and capacity management is to transition idle servers into standby

and sleep states. Servers have a number of low-power states [1].

However state transitions, and in particular power-up operations,

incur energy/cost. �erefore, dynamically matching the varying

demand for computing capacity with the number of active servers

is a challenging problem.

Multi-core architectures. Multi-core processors are architec-

tures with multiple, o�en heterogeneous processing units on a

single die. Originally, heterogeneous platforms contained several

processor types, i.e. CPUs and GPUs. Modern platforms are also

equipped with identical CPUs that have di�erent micro-architec-

tures leading to various levels of energy consumption [13]. To

exploit such platforms e�ective power management strategies are

needed. �e optimization problem is identical to that described in

the last paragraph, except that we have a small number of process-

ing units here.

In Section 2 we formally de�ne an optimization problem Dy-
namic Power Management (DPM) that captures the above scenarios.

In short, there are m heterogeneous servers (processors). Each

server has several states with associated power consumption rates.

State transitions incur energy. �e planning horizon contains times

t1 < t2 < . . . < tn at which the demand changes. During interval

[tk , tk+1
) at least dk servers must be active and available for utiliza-

tion, 1 ≤ k ≤ n − 1. �e goal is to �nd a state transition schedule

for the servers minimizing the total energy consumption.

Previous Work. Irani et al. [4] and Augustine et al. [14] study

power-down strategies for a single device that is equipped with an

active state and several low-power states. �e goal is to minimize

the energy consumed in an idle period. Our problem DPM is a

generalization with multiple, parallel devices and time-dependent

demand. �e two articles [4, 14] develop online algorithms that

achieve optimal competitive ratios. Dynamic power management

for a single device with two states is equivalent to the ski-rental

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

35

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs International 4.0 License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

SPAA ’17, , July 24–26, 2017, Washington, DC, USA S. Albers

problem, a famous rent-or-buy problem [15, 16, 19, 21]. No general-

ization with several required resources has been examined. Azar et

al. [5] study a capital investment problem where machines for man-

ufacturing a product may be purchased over time. �e machines

di�er in the capital and production costs.

Khuller et al. [17] and Li and Khuller [18] introduce machine

activation problems that are also motivated by energy conservation

in data centers. In [17] the authors assume that there is an activation

cost budget, and jobs have to be scheduled on the selected, activated

machines so as to minimize the makespan. �ey present algorithms

that simultaneously approximate the budget and the makespan. �e

second paper [18] considers a generalization where the activation

cost of a machine is a non-decreasing function of the load.

In the more applied computer science literature power manage-

ment strategies and the value of sleep states have been studied

extensively. �e papers mostly focus on experimental evaluations.

Articles that also present analytic results include [9–11, 22]. Ghandi

et al. [10] model a server farm with setup costs as an M/M/m queu-

ing system. Lin et al. [22] study a dynamic rightsizing of data

centers with homogeneous servers having one sleep state. �e

operating cost of a server is a convex function of the workload.

Our Contribution. We present an algorithmic study of an im-

portant capacity management problem in data centers. Our problem

DPM dynamically rightsizes the pool of servers with the objective

to minimize the energy consumed. Compared to previous work

the new, essential aspects are that we consider (a) a time hori-

zon with varying demand for computing capacity and (b) power-

heterogeneous servers. In fact, with homogeneous servers the

problem is easy to solve. In DPM the demand for computing ca-

pacity is speci�ed by the number of servers needed at any time.

In data centers it is common practice that a number of required

servers is determined as a function of the current total workload,

ignoring speci�c jobs. DPM focuses on energy conservation instead

of individual job placement.

We investigate DPM as an o�ine problem, i.e. the varying com-

puting demands are known in advance. From an algorithmic point

of view it is important to explore the tractability and approximabil-

ity of the problem. �e o�ine se�ing is also relevant in practice.

Data centers usually analyze past workload traces to identify long-

term pa�erns. �e �ndings are used to specify demands in future

time windows.

In Section 3 we study DPM in the scenario that each server

has two states, an active state and one sleep state. �is is a basic

se�ing that, in a �rst step, abstracts away the full spectrum of

low-power modes. Most of the more applied literature on power

management strategies assumes the existence of a single sleep

state. We show that DPM can be solved in polynomial time by

a combinatorial algorithm. We devise an algorithm that resorts

to a single-commodity minimum-cost �ow computation. In the

corresponding network there is a component for each server. Such

a component contains an upper path and a lower path, representing

the server’s active state and sleep state, respectively. Unfortunately,

an arbitrary minimum-cost �ow does not correspond to a feasible

schedule. Our algorithm modi�es �ow so that an optimal schedule

can be derived.

In Section 4 we investigate DPM in the general scenario that each

server has multiple sleep states. We extend our approach based

on �ow computations. We develop a second algorithm that works

with a more complex network in which each component has several

lower paths, representing the various low-power states of a server.

Furthermore, we need a second commodity to ensure that comput-

ing demands are met. With only a single commodity, �ow units

could switch between lower paths at no cost, and infeasible sched-

ules would result. Given a fractional two-commodity minimum-cost

�ow, our algorithm executes advanced �ow rounding and packing

procedures. First, by repeatedly traversing components, the algo-

rithm modi�es �ow so it becomes integral on the upper paths. �en

�ow on the lower paths is packed. �e �nal integral �ow allows

the constructing of a schedule for DPM. Our algorithm achieves an

approximation factor of τ , where τ is the number of server types in

the problem instance. �e servers can be partitioned into τ classes

such that, within each class, the servers are identical. Of course, the

servers of a class are independent and not synchronized. In prac-

tice, a data center has a large collection of machines but a relatively

small number of di�erent server architectures. Furthermore, in

the optimization, machines with comparable energy consumption

characteristics can be assigned to the same server class.

We note that our algorithms can handle the problem extension

that the power consumption rates are time-dependent. �is can

model e.g. scenarios in which servers are temporarily unavailable

due to maintenance or because they are reserved for other tasks.

Due to space constraints the proofs of lemmas and propositions

are presented in the full version of this paper.

2 PRELIMINARIES
2.1 Problem De�nition
We de�ne the optimization problem Dynamic Power Management
(DPM). A problem instance I = (S,D) is speci�ed by a set of

servers and varying computing demands over a time horizon. Let

S = {S1, . . . , Sm } be a set of heterogeneous servers. Each server Si ,
1 ≤ i ≤ m, has an active state as well as one or several standby/sleep

states. �e states of Si are denoted by si,0, . . . , si,σi . Here si,0 is

the active state and si,1, . . . , si,σi are the low-power states. �e

modes have individual power consumption rates. Let ri, j be the

power consumption rate of si, j , i.e. ri, j energy units are consumed

per time unit while Si resides in si, j . �e states are numbered in

order of decreasing rates such that ri,0 > . . . > ri,σi ≥ 0. A server

can transition between its states. Let ∆i, j, j′ be the non-negative

energy needed to move Si from state si, j to state si, j′ , for any

pair 1 ≤ j, j ′ ≤ σi . �e transition energies satisfy the triangle

inequality, i.e. the energy to move directly from si, j to si, j′ is upper

bounded by that of visiting an intermediate state si,k . Formally,

∆i, j, j′ ≤ ∆i, j,k + ∆i,k, j′ , for any j, j ′,k .

Over a time horizon the computing demands are given by a

demand pro�le D = (T ,D). Tuple T = (t1, . . . , tn) contains the

points in time when the computing demands change. �ere holds

t1 < t2 < . . . < tn so that the time horizon is [t1, tn). Tuple

D = (d1, . . . ,dn−1) speci�es the demands. More precisely, dk ∈ N0

servers are required for computing during interval [tk , tk+1
), for

any 1 ≤ k ≤ n− 1. �us at least dk servers must reside in the active

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

36

On Energy Conservation in Data Centers SPAA ’17, , July 24–26, 2017, Washington, DC, USA

state during [tk , tk+1
). We have dk ≤ m, for any 1 ≤ k ≤ n − 1, so

that the requirements can be met.

Given I = (S,D), a schedule Σ speci�es, for each Si and any

t ∈ [t1, tn), in which state server Si resides at time t . Schedule Σ is

feasible if during any interval [tk , tk+1
) at least dk servers are in

the active state, 1 ≤ k ≤ n− 1. �e energy E(Σ) incurred by Σ is the

total energy consumed by all the m servers. Whenever server Si ,
1 ≤ i ≤ m, resides in state si, j it consumes energy at a rate of ri, j .
Whenever the server transitions from state si, j to state si, j′ , the

incurred energy is ∆i, j, j′ . �e goal is to �nd an optimal schedule,
i.e. a feasible schedule Σ that minimizes E(Σ). We assume that

initially, immediately before t1, and at time tn all servers reside in

the deepest sleep state, i.e. Si is in si,σi , 1 ≤ i ≤ m. Our algorithms

and results can be adapted easily if each server initially/�nally takes

arbitrary desired states.

2.2 Properties of Optimal Schedules
Given a problem instance I, we characterize optimal schedules.

Proposition 2.1 implies that there exists an optimal schedule in

which a server never changes state while being in low-power mode.

Of course the low-power states may vary for the various intervals

in which a server is not active. Proposition 2.2 states that there

exists an optimal schedule executing state transitions only when

the computing demands change. A server powers up if it transitions

from a low-power state to the active state. A server powers down if

it moves from the active state to a low-power state.

Proposition 2.1. �ere exists an optimal schedule with the fol-
lowing property. Suppose that Si powers down at time t and next
powers up at time t ′. �en between t and t ′ Si resides in a single state
si, j , where j > 0. At time t Si transitions directly from si,0 to si, j . At
time t ′ it moves directly from si, j to si,0.

Proposition 2.2. �ere exists an optimal schedule that satis�es
the property of Proposition 2.1 and performs state transitions only at
the times of T .

We �nally argue that w.l.o.g. the power-down energies ∆i,0, j
are equal to 0, 1 ≤ i ≤ m and 1 ≤ j ≤ σi . We will always focus

on optimal schedules with the property given in Proposition 2.1.

At times t1 and tn every server is in its deepest sleep state. �e

�rst time server Si moves to the active state, the least energy is

consumed if it transitions directly from si,σi to si,0. �e last time Si
powers down, the best option is to move directly from si,0 to si,σi .
Hence, every server Si performs the same number of transitions

from si,0 to si, j as from si, j to si,0, for any 1 ≤ j ≤ σi . For any

server Si , only energies ∆i,0, j and ∆i, j,0, 1 ≤ j ≤ σi , are relevant.

�erefore, if∆i,0, j > 0, we can add this energy to∆i, j,0, i.e.∆′i, j,0 :=

∆i,0, j + ∆i, j,0 and ∆′i,0, j := 0.

3 SERVERS WITH TWO STATES
We study the variant of DPM in which each server Si has exactly

two states, an active state si,0 and a sleep state si,1, 1 ≤ i ≤ m.

Theorem 3.1. Let I be an instance of DPM in which each server
has exactly two states. An optimal schedule for I can be computed in
polynomial time by a combinatorial algorithm that uses a minimum-
cost �ow computation.

In the remainder of this section we prove �eorem 3.1. We �rst

show that we may assume w.l.o.g. that the power consumption

rates in the sleep states are equal to 0. More speci�cally, for any

problem instance I, an optimal schedule can be derived from an

optimal solution to a modi�ed instance I ′ in which the power

consumption rates in the sleep states are indeed 0. Formally, given

I = (S,D), de�ne an instance I ′ = (S′,D). Set S′ consists of

servers S ′
1
, . . . , S ′m , where each server S ′i has again an active state

and a sleep state. For any S ′i , let r ′i,0 = ri,0 − ri,1 and r ′i,1 = 0, i.e.

the rates are reduced by ri,1. All other problem parameters of I ′,
namely the state transition energies and the demand pro�le, are

identical to those of I. �e next proposition states that an optimal

schedule for I translates to an optimal schedule for I ′ and vice

versa. Only the consumed energy di�ers by

∑m
i=1

ri,1(tn − t1).

Proposition 3.2. Any schedule Σ for I that is executed for I ′
consumes an energy of E(Σ) −∑m

i=1
ri,1(tn − t1). Any schedule Σ′ for

I ′ that is executed forI consumes an energy of E(Σ′)+∑m
i=1

ri,1(tn−
t1).

In the following let I = (S,D) be a problem instance in which

the power consumption rates in the servers’ sleep states are 0. To

simplify notation let ri := ri,0 be the power consumption rate of

Si in the active state, 1 ≤ i ≤ m. Moreover, let ∆i := ∆i,1,0 be the

energy needed to transition Si from the sleep state to the active state.

We develop an algorithm A1 that computes an optimal schedule.

Based on Proposition 2.2, we focus on schedules that perform state

transitions only at the times ofT . Given I = (S,D),A1 constructs

a network N(I). Any feasible schedule Σ for I translates to a

feasible �ow of cost E(Σ) in N(I). Any feasible �ow of cost C in

N(I) can be converted so that it corresponds to a feasible schedule

consuming energy C . �e conversion requires some work but can

be performed in a polynomial number of steps.

3.1 Construction of the Network
Consider any problem instance I = (S,D).

Network components. Network N(I) contains a component
Ci , for each server Si , 1 ≤ i ≤ m. Such a component Ci , which

is depicted in Figure 1, consists of an upper path and a lower path.

�e upper path represents the active state of Si ; the lower path

models the server’s sleep state. �e computing demands change at

the times t1 < . . . < tn inT . For any tk , 1 ≤ k ≤ n, there is a vertex

ui,k on the upper path. Vertices ui,k and ui,k+1
are connected by

a directed edge (ui,k ,ui,k+1
) of cost ri (tk+1

− tk), 1 ≤ k ≤ n − 1.

�is cost is equal to the energy consumed if Si is in the active state

during [tk , tk+1
). Similarly, for any tk , 1 ≤ k ≤ n, there is a vertex

li,k on the lower path. In order to ensure that at least dk servers are

in the active state during [tk , tk+1
), if k < n, we need two auxiliary

vertices lai,k and lbi,k . �ese vertices are again connected by directed

edges. �ere is an edge (li,k , lai,k), followed by two edges (lai,k , l
b
i,k)

and (lbi,k , li,k+1
), for any k with 1 ≤ k ≤ n − 1. �e cost of each of

these edges is 0 because the energy consumption in the sleep state

is 0.

�e lower and the upper path are connected by additional edges

that model state transitions. Recall that all servers are in the sleep

state at times t1 and tn . For any k with 1 ≤ k ≤ n − 1, there is a

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

37

SPAA ’17, , July 24–26, 2017, Washington, DC, USA S. Albers

· · · · · ·

· · ·· · ·

0 0 0 0 0∆i ∆i ∆i ∆i∆i

ri (t2 − t1) ri (tk+1 − tk) ri (tn − tn−1)
ui,1 ui,2 ui,n−1 ui,nui,k ui,k+1

li,1 lai,1 lbi,1 li,2 li,k li,k+1 li,n−1
li,nlbi,n−1

lai,n−1
lbi,klai,k

0 0 0 0 0 0 0 0 0

Figure 1: �e componentCi for server Si

· · · · · ·

· · ·· · ·

· · · · · ·

· · ·· · ·

· · · · · ·

· · ·· · ·

a0

b0

C1

a1 b1 bk an−1 bn−1

· ··
···

···
···

Ci

Cm

ak

Figure 2: �e networkN(I)

directed edge (li,k ,ui,k) of cost ∆i , representing a power-up opera-

tion of Si at time tk . For any k with 1 < k ≤ n, there is a directed

edge (ui,k , li,k) of cost 0, modeling a power-down operation of Si
at time tk . �e capacity of each edge of Ci is equal to 1.

�e entire network. In N(I) components C1, . . . ,Cm are

aligned in parallel and connected to a source a0 and a sink b0.

�e general structure of N(I) is depicted in Figure 2. �ere is a

directed edge from a0 to li,1 in Ci , for any 1 ≤ i ≤ m. Furthermore,

there is a directed edge from li,n to b0, for any 1 ≤ i ≤ m. Each

of these edges has a cost of 0 and a capacity of 1. Vertex a0 has a

supply ofm, and b0 has a demand ofm. Hencem units of �ow must

be shipped through C1, . . . ,Cm . Since all edges have a capacity

of 1, one unit of �ow must be routed through each Ci , 1 ≤ i ≤ m.

Whenever the unit traverses the upper path, Si is in the active state.

Whenever the unit traverses the lower path, Si is in the sleep state.

In order to ensure that at least dk servers are in the active state

during [tk , tk+1
), 1 ≤ k ≤ n − 1, we introduce additional sources

and sinks. Network N(I) has a source ak and a sink bk with

supply/demand dk , for any 1 ≤ k ≤ n − 1. �ere is a directed

edge from ak to lai,k on the lower path of each Ci , 1 ≤ i ≤ m.

Furthermore, there is a directed edge from each lbi,k tobk , 1 ≤ i ≤ m.

�e cost and capacity of each of these edges is equal to 0 and 1,

respectively. Since dk �ow units have to be shipped from ak to bk ,

there must exist at least dk components Ci in which the �ow unit

from a0 to b0 traverses the upper path from ui,k to ui,k+1
. Hence

the corresponding servers are in the active state during [tk , tk+1
).

�e encoding length of N(I) is polynomial in that of I.

Lemma 3.3. Any feasible schedule Σ in which state transitions are
performed only at the times of T corresponds to a feasible �ow of cost
E(Σ) in N(I).

3.2 Analysis of Flows
We analyze feasible �ows in N(I). �e goal is to show that any

feasible �ow f can be converted into one that corresponds to a

feasible schedule Σ for I; the energy consumed by Σ will be equal

to the cost of f . �e conversion is not immediate. A feasible �ow

might not be well-behaved, i.e. �ow shipped out of a source ak is

not necessarily routed to bk , 0 ≤ k ≤ n − 1. It may happen that

�ow leaving ak is routed to a sink bk ′ , where k ′ > k , or to b0.

In N(I) all edge capacities and supplies/demands are integer

values. Hence in N(I) there exists a minimum-cost �ow that is

integral. A �ow f is called integral if the �ow f (e) along any edge e
takes an integer value. Moreover, there exist polynomial time com-

binatorial algorithms that compute an integral minimum-cost �ow,

given a network with integer edge capacities and supplies/demands,

see [2].

We will always work with a �ow f inN(I) that is integral. Such

a �ow translates into a state transition schedule for the servers if,

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

38

On Energy Conservation in Data Centers SPAA ’17, , July 24–26, 2017, Washington, DC, USA

. . .

. . .

. . .

.

. . .

. . .

. . .

ui,k ui,k+1
ui,k′+1

lai,k lbi,k

laj,k lbj,k

ak bk

Ci

Cj

ak′ bk′

laj,k′ lbj,k′

lai,k′ lbi,k′

ui,k′

Figure 3: A �ow that is not consistent in [tk+1, tk+2).

for eachCi and each k , one �ow unit traverses either the upper path

from ui,k to ui,k+1
or the lower path from li,k to li,k+1

. Formally

we call an integral �ow consistent in [tk , tk+1
), where 1 ≤ k ≤ n− 1,

if f (ui,k ,ui,k+1
) + f (li,k , lai,k) = 1 holds for all i = 1, . . . ,m. In

this de�nition we only consider �ow from li,k to lai,k . �is will be

su�cient for our purposes. An integral �ow is called consistent
if it is consistent in all intervals [tk , tk+1

), 1 ≤ k ≤ n − 1. In

the following we will prove that any feasible integral �ow can be

converted into one that is consistent. �e next lemma identi�es

properties of feasible �ow. Part b) characterizes the shipment of

�ow that is not consistent and will allow us to generate �ow that

satis�es consistency.

Lemma 3.4. Let f be any feasible integral �ow in N(I).
a) f is consistent in [t1, t2).
b) Suppose that f is consistent in [t1, t2), . . . , [tk , tk+1

) but
not in [tk+1

, tk+2
). �en there exist components Ci and

Cj such that f (ui,k+1
,ui,k+2

) + f (li,k+1
, lai,k+1

) = 2 and
f (uj,k+1

,uj,k+2
) + f (lj,k+1

, laj,k+1
) = 0, cf. Figure 3. In Ci

there holds f (ui,k ,ui,k+1
) = 1. One �ow unit is shipped

from source ak to lai,k and is further routed to li,k+1
. In Cj

there holds f (lj,k , laj,k) = 1. �is unit is routed via lbj,k to
sink bk .

3.3 Making a Flow Consistent
Let f be a feasible integral �ow in N(I). We describe how algo-

rithm A1 modi�es f so that the resulting �ow is consistent. By

Lemma 3.4a), f is consistent in [t1, t2). Suppose that f is consistent

in [t1, t2), . . . , [tk , tk+1
) but not in [tk+1

, tk+2
). A1 modi�es the

�ow so that it ful�lls consistency in [t1, t2), . . . , [tk+1
, tk+2

). �e

modi�cations are performed sequentially for all further intervals.

Modifying �ow: By assumption, f is consistent in

[t1, t2), . . . , [tk , tk+1
) but not in [tk+1

, tk+2
). Hence there must exist

componentsCi andCj with the properties speci�ed in Lemma 3.4b),

see again Figure 3. In Ci a total of two �ow units leave ui,k+1
and

li,k+1
along the upper and lower paths, respectively. On the upper

path one �ow unit traverses the edge from ui,k and ui,k+1
. On the

lower path one unit is injected from ak . �is unit reaches lai,k and

continues via lbi,k to li,k+1
. In Cj no �ow leaves uj,k+1

or lj,k+1
. A

�ow unit is shipped from lj,k to laj,k and this unit is routed to sink

bk via lbj,k .

While there exist components Ci and Cj as speci�ed above, A1

works as follows. It determines the smallest integer k ′, with k ′ > k ,

such that a �ow unit is routed fromCi to sink bk ′ , i.e. f (lbi,k ′ ,bk ′) =
1. Such an integer must exist since otherwise a total of two �ow

units must reach the end of Ci at ui,n and li,n . �ese two �ow

units cannot feasibly be routed to b0 along the unit-capacity edge

(li,n ,b0). Let Pi (k,k ′) be the path from lbi,k to lbi,k ′ that uses only

edges of the lower path of Ci . All edges of Pi (k,k ′) carry one unit

of �ow. Similarly, let Pj (k,k ′) be the path from lbj,k to lbj,k ′ that uses

only edges of the lower path of Cj . In the �ow modi�cation there

are two cases depending on whether or not Pj (k,k ′) carries �ow.

Flow modi�cation, type 1: Suppose that Pj (k,k ′) does not

ship any �ow, see Figure 3. Loosely speaking, A1 replaces �ow

along Pi (k,k ′) by �ow on Pj (k,k ′). Formally, the modi�ed �ow

is as follows. In Ci the �ow unit entering lbi,k is routed to bk , i.e.

f ′(lbi,k ,bk) = 1. In Cj algorithm A1 removes the �ow unit leaving

lbj,k , i.e. f ′(lbj,k ,bk) = 0. For all edges e of Pi (k,k ′), the algorithm

sets f ′(e) = 0. For all edges e of Pj (k,k ′), it sets f ′(e) = 1. Finally it

removes the �ow unit leaving lbi,k ′ , i.e. f ′(lbi,k ′ ,bk ′) = 0, and routes

one unit from lbj,k ′ to bk ′ , i.e. f ′(lbj,k ′ ,bk ′) = 1. For all the other

edges not considered here, the �ow remains unchanged. Obviously,

a�er these modi�cations, the amount of �ow routed into bk and

bk ′ has not change. �e �ow conservation law is observed at all

vertices of Pi (k,k ′) and Pj (k,k ′). Hence the new �ow is feasible.

Furthermore, the cost of the �ow has not changed because the �ow

update only a�ects edges of cost 0. Note that f ′(li,k+1
, lai,k+1

) = 0

and f ′(lj,k+1
, laj,k+1

) = 1. Hence restricted to Ci and Cj the new

�ow is consistent in [tk+1
, tk+2

).
Flowmodi�cation, type 2: Assume that some edge of Pj (k,k ′)

carries �ow. �en this �ow must enterCj from some source among

ak+1
, . . . ,ak ′ . A1 determines the smallest integer k∗, with k∗ > k ,

such that f (ak∗ , laj,k∗) = 1. �ere holds k∗ ≤ k ′. In component

Ci the corresponding edge (ak∗ , lai,k∗) does not ship �ow because

all edges of Pi (k,k ′) carry one unit of �ow and no further unit

can be injected from ak∗ . Let Pi (k,k∗) be the path from lbi,k to

lai,k∗ that uses only edges of the lower path of Ci . Analogously, let

Pj (k,k∗) be the path from lbj,k to laj,k∗ that uses only edges of the

lower path ofCj . A1 replaces �ow on Pi (k,k∗) by �ow on Pj (k,k∗).
More speci�cally, the �ow unit routed into li,k is shipped to bk ,

i.e. f ′(lbi,k ,bk) = 1. �e �ow unit on edge (lbj,k ,bk) is removed.

For all edges e of Pi (k,k∗), A1 sets f ′(e) = 0. For all edges e
of Pj (k,k∗), it sets f ′(e) = 1. Finally, it sets f ′(ak∗ , lai,k∗) = 1

and f ′(ak∗ , laj,k∗) = 0. �e new �ow is feasible, and during the

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

39

SPAA ’17, , July 24–26, 2017, Washington, DC, USA S. Albers

modi�cation the cost has not changed. Restricted to Ci and Cj the

new �ow is consistent in [tk+1
, tk+2

) because f ′(li,k+1
, lai,k+1

) = 0

and f ′(lj,k+1
, laj,k+1

) = 1.

�e above �ow modi�cations do not change �ow in components

other than Ci and Cj . By repeating the �ow update operations

for other pairs of network components violating consistency, A1

obtains a �ow that is consistent in [t1, t2), . . . , [tk+1
, tk+2

). �e

total number of steps to perform the modi�cations is polynomial

in N(I). �e next lemma summarizes the result.

Lemma 3.5. Let f be a feasible integral �ow of cost C in N(I).
�en f can be transformed into a feasible integral �ow that is consis-
tent and has cost C . �e transformation takes polynomial time.

3.4 Establishing the �eorem
�e next lemma states that a feasible consistent �ow properly ships

�ow from sources to sinks.

Lemma 3.6. In any feasible integral �ow f that is consistent, all
�ow leaving ak is routed to bk , 1 ≤ k ≤ n − 1.

We �nish the proof of �eorem 3.1. Given problem instance I,

A1 constructs N(I) and computes an integral minimum-cost �ow

f ∗ using a combinatorial algorithm. Executing the �ow modi�ca-

tions described above, the algorithm obtains an integral minimum-

cost �ow f that is consistent. Lemma 3.6 implies that in f all �ow

units leaving a0 are transferred to b0. By the edge capacity con-

straints, one unit of �ow is transferred through each Ci , 1 ≤ i ≤ m.

A1 derives a schedule Σ for I by keeping track of these �ow

units inC1, . . . ,Cm . Consider componentCi , 1 ≤ i ≤ m. While the

�ow unit traverses the upper path, server Si is in the active state.

While the �ow unit traverses the lower path, Si is in the sleep state.

If the �ow traverses an edge (li,k ,ui,k), Si powers up at time tk . If

the �ow traverses (ui,k , li,k), the server powers down at time tk .

�e energy consumed by Si is exactly equal to the cost incurred by

the �ow unit traversing Ci . Hence the energy consumed by Σ is

equal to the cost of f , and this is equal to the cost of f ∗.
It remains to verify that Σ is feasible. By Lemma 3.6, in f all �ow

units leaving ak are shipped to bk , 1 ≤ k ≤ n − 1. Consider any

�xed k , 1 ≤ k ≤ n−1. �ere must exist dk componentsCi such that

a �ow unit is routed from ak to lai,k and further on to lbi,k and bk .

Since f is consistent in [tk , tk+1
), there holds f (ui,k ,ui,k+1

) = 1.

If f (li,k , lai,k) = 1, then two units of �ow would leave lai,k , violat-

ing the capacity of the outgoing edge. �us in [tk , tk+1
) at least

dk servers are in the active state. Optimality of Σ follows from

Proposition 2.2 and Lemma 3.3.

4 SERVERS WITH MULTIPLE STATES
We develop an approximation algorithm for DPM in the general

se�ing that each server may have an arbitrary number of states.

Let I = (S,D) be an input with τ server types, i.e. each server

of S belongs to one of τ classes, where τ ∈ N. Formally, S is

partitioned into S1, . . . ,Sτ . Within each server type/class Si , 1 ≤
i ≤ τ , all servers are identical. Every server of Si has σi + 1 states

si,0, . . . , si,σi with power consumption rates ri,0 > . . . > ri,σi .
Here si,0 is again the active state; the other states are low-power

modes. �e energy needed to transition from si, j to si,0 is denoted

by ∆i, j , 1 ≤ j ≤ σi . �e state transition energy from the active state

to any lower-power state is 0. �e servers ofSi are independent and

not synchronized. Over the time horizon each server may reside in

individual states and perform state transitions independent of the

other servers. Letmi be the number of servers in Si . �ere holds∑τ
i=1

mi =m.

Theorem 4.1. Let I be an instance of DPM with τ server types. A
schedule whose energy consumption is at most τ times the minimum
one for I can be computed in polynomial time based on a min-cost
two-commodity �ow computation.

In the remainder of this section we develop an algorithm A2

that, given I = (S,D), constructs a feasible schedule a�aining a

τ -approximation on the consumed energy. �is establishes �eo-

rem 4.1. By Proposition 2.2 we restrict ourselves to schedules with

the following two properties. While a server is in low-power mode,

it uses a single state. State transitions are performed only at the

times of T .

Algorithm A2 constructs a network N(I). Compared to the

construction in Section 3, the main di�erences are as follows. Each

network component will represent a class of servers so that the

encoding length of N(I) is polynomial in that of I. A component

has a collection of lower paths corresponding to the various low-

power modes of the servers. We need a second commodity to ensure

that computing demands are met. �is will allow us to reduce the

number of auxiliary vertices on the lower paths.

Given N(I), A2 computes a minimum-cost �ow f ∗. Since the

network has two commodities, f ∗ is not integral but fractional in

general. In a sequence of rounding and packing operations A2

transforms f ∗ into an integral one that guides the construction

a feasible schedule for I. �e cost of the integral �ow and the

constructed schedule will be at most τ times that of f ∗.

4.1 Construction of the Network
We describe N(I), given I = (S,D).

Network components withmultiple paths. For every server

type i , the network contains a component Ci , 1 ≤ i ≤ τ . �e

component represents all the mi servers of Si . Exactly mi �ow

units will be routed through Ci , modeling the individual states and

actions of the servers. Component Ci consists of an upper path
and σi lower paths. �e general structure is depicted in Figure 4.

We search for an optimal schedule in which state transitions are

performed only at times t1 < . . . < tn in T , cf. Proposition 2.2. In

Ci the upper path corresponds to the active state of the servers

of Si . For any tk , 1 ≤ k ≤ n, there is a vertex ui,k on the upper

path. Vertices ui,k and ui,k+1
are connected by a directed edge

(ui,k ,ui,k+1
) of cost ri,0(tk+1

− tk), 1 ≤ k ≤ n − 1. �e cost is

equal to energy consumed by one server of Si if it resides in the

active state during [tk , tk+1
). �e capacity of (ui,k ,ui,k+1

) and in

fact of all edges of Ci is equal to mi , re�ecting that Ci represents

mi servers in Si .
�e σi lower paths correspond to the σi low-power states. Con-

sider any j with 1 ≤ j ≤ σi . On lower path j there is a vertex li, j,k
and an auxiliary vertex lai, j,k , for any 1 ≤ k ≤ n−1. Moreover, there

is a �nal vertex li, j,n . �e auxiliary vertices will help to ensure that

a total of at least dk �ow units traverse the edges (ui,k ,ui,k+1
) on

the upper paths, considering all the components Ci , 1 ≤ i ≤ τ . We

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

40

On Energy Conservation in Data Centers SPAA ’17, , July 24–26, 2017, Washington, DC, USA

ri,0(tk+1
− tk)

lai,1,kli,1,k

ui,k

ri,σi (tk+1
− tk)

li,σi ,k

ri,1(tk+1
− tk)

lai,σi ,k

ui,k+1

li,σi ,n−1li,σi ,k+1

∆i,σi

li,1,k+1

···

ri,0(t2 − t1)ui,1

ri,1(t2 − t1)

li,1,1 lai,1,1

li,σi ,2

···

ui,2

li,1,2

li,σi ,1

ui,n−1 ri,0(tn − tn−1)

ri,σi (tn − tn−1)

ri,1(tn − tn−1)

ui,n

li,1,n−1
lai,1,n−1

lai,σi ,n−1

···
∆i,σi ∆i,σi · · ·

li,σi ,n
· · ·

· · ·

· · ·· · ·

· · ·
∆i,1 ∆i,1

ri,σi (t2 − t1)

li,1,n

lai,σi ,1

Figure 4: �e componentCi for server type i. Unlabeled edges connecting two vertices have cost 0.

do not need a second auxiliary vertex lbi, j,k because we work with

two commodities. On lower path j the vertices are connected as

follows. For any k , where 1 ≤ k ≤ n − 1, there is a directed edge

(li, j,k , lai, j,k) of cost ri, j (tk+1
− tk), representing the energy con-

sumed by a server if it is in state si, j during [tk , tk+1
). Furthermore

there is an edge (lai, j,k , li, j,k+1
) of cost 0.

�e upper path is connected to the lower paths by additional

edges that model state transitions. We assume that at times t1 and

tn all servers of Si are in the deepest low-power state si,σi . �us

there is a directed edge (li,σi ,1,ui,1) of cost ∆i,σi modeling possible

power-up operations of servers at time t1. Furthermore there is

a directed edge (ui,n , li,σi ,n) of cost 0 representing power-down

operations at time tn . For any 1 < k < n and any 1 ≤ j ≤ σi ,
there is a directed edge (ui,k , li, j,k) of cost 0 and a directed edge

(li, j,k ,ui,k) of cost ∆i, j . Since we consider schedules speci�ed in

Proposition 2.1, there are no state transitions among low-power

states; thus there are no edges between the lower paths. (We remark

that on lower path j, 1 ≤ j < σi , we could remove the �rst and the

last vertex but it is not important.) Note again that the capacity of

each edge of Ci ismi .

�e network with two commodities. In N(I) components

C1, . . . ,Cτ are aligned in parallel and connected to vertices a0 and

b0. �e general composition is similar to that depicted in Figure 2;

an accurate �gure is given in the full paper. Vertices a0 and b0

inject and absorb �ow of commodity 1. Speci�cally, a0 has a supply

ofm and b0 has a demand ofm of commodity 1. �e connections

are as follows. At times t1 and tn the servers are in the deepest

low-power mode. Hence, for any 1 ≤ i ≤ τ , there exist directed

edges (a0, li,σi ,1) and (li,σi ,n ,b0). Each of these edges has a cost

of 0 and a capacity ofmi so thatmi �ow units can be routed from

a0 to b0 via Ci .
NetworkN(I) contains further sources and sinks that inject and

absorb �ow of commodity 2. �is second commodity will ensure

that the computing demands are met. Consider any k with 1 ≤ k ≤
n − 1. �ere is a source ak and a sink bk with a supply/demand of

Dk =
∑τ
i=1

mi (σi − 1) + dk of commodity 2. Vertices ak and bk are

connected to all lower paths in the components. For any i and j
with 1 ≤ i ≤ τ and 1 ≤ j ≤ σi , there is a directed edge (ak , lai, j,k)
into the auxiliary vertex on lower path j in Ci . Moreover, there is a

directed edge (li, j,k+1
,bk) from the following vertex on the lower

path into bk . Each of these edges has a cost of 0 and a capacity

of mi . Lemma 4.2 below states that in any feasible �ow, for any

1 ≤ k ≤ n − 1, at least dk units will be shipped along the edges

(ui,k ,ui,k+1
) on the upper paths of the components C1, . . . ,Cτ .

So far we have speci�ed the total capacity of any edge in N(I).
It remains to specify edge capacity constraints for the two com-

modities. Consider any 1 ≤ i ≤ τ . For any edge of Ci , the ca-

pacity of commodity 1 is mi . �e same holds true for the edges

(a0, li,σi ,1) and (li,σi ,n ,b0). On all the edges leaving ak or entering

bk , 1 ≤ k ≤ n − 1, the capacity of commodity 1 is equal to 0. Hence

�ow of commodity 1 must not traverse these edges. In the network

components commodity 2 may only traverse the edges from the

auxiliary vertices to the subsequent vertices on the lower paths.

Hence commodity 2 has a capacity constraint of mi on each of the

edges (ak , lai, j,k), (l
a
i, j,k , li, j,k+1

) and (li, j,k+1
,bk), where 1 ≤ i ≤ τ ,

1 ≤ j ≤ σi and 1 ≤ k ≤ n − 1. For all the other edges inN(I), com-

modity 2 has a capacity of 0. Hence all �ow from ak , 1 ≤ k ≤ n − 1,

must be shipped to bk via edges (lai, j,k , li, j,k+1
). �e encoding

length of N(I) is polynomial in that of I because the mi identical

servers of Si are modeled by a single component Ci , 1 ≤ i ≤ τ .

Lemma 4.2, as mentioned above, identi�es an important property

of feasible �ow. Lemma 4.3 states that every optimal schedule with

the properties of Proposition 2.2 translates to a feasible �ow with

the same energy/cost.

Lemma 4.2. InN(I) there exists a feasible �ow. Any feasible �ow
f satis�es

∑τ
i=1

f (ui,k ,ui,k+1
) ≥ dk , for 1 ≤ k ≤ n − 1.

Lemma 4.3. Let Σ be an optimal schedule as speci�ed in Proposi-
tion 2.2. �en Σ corresponds to a feasible �ow of cost E(Σ) in N(I).

4.2 Algorithm Outline & Flow Properties
GivenN(I), algorithmA2 computes a feasible minimum-cost �ow

f ∗. By Lemma 4.3 the cost of f ∗, denoted by cost(f ∗), is a lower

bound on the energy consumed by an optimal schedule for I. Since

f ∗ involves two commodities, it is fractional in general. In particu-

lar, it may be fractional on the upper paths of the components. On

the corresponding edges the �ow has to be raised, for su�ciently

many components, so that a feasible schedule for I can be derived

later. A2 modi�es f ∗ in three main steps. �e resulting �ow will

be integral. (1) First A2 scales f ∗ by a factor of τ . (2) �en A2

modi�es the scaled �ow so that it becomes integral on the upper

paths of the components. Speci�cally, on edge (ui,k ,ui,k+1
) ex-

actly di,k = min{mi , bτ f ∗(ui,k ,ui,k+1
)c} units of �ow are routed,

where 1 ≤ i ≤ τ and 1 ≤ k ≤ n − 1. Lemma 4.4 below states that∑τ
i=1

di,k ≥ dk , for any 1 ≤ k ≤ n − 1. �is property will later

admit the construction of a feasible schedule in which the comput-

ing demands of I are met. (3) Given the �ow of Step 2, A2 packs

fractional �ows on the lower paths of the components C1, . . . ,Cτ .

Using the integral �ow obtained in Step 3, A2 constructs a feasible

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

41

SPAA ’17, , July 24–26, 2017, Washington, DC, USA S. Albers

schedule for I whose energy consumption is upper bounded by the

cost of that �ow. Once f ∗ has been scaled in Step 1, the subsequent

�ow modi�cations of Steps 2 and 3 never increase cost. �us the

energy consumed by the schedule is at most τ cost(f ∗).
Lemma 4.4. For k = 1, . . . ,n − 1,

∑τ
i=1

di,k ≥ dk .

Given Lemma 4.4, a natural idea for �nding an integral solu-

tion is to use a �ow computation: Determine a single-commodity

minimum-cost �ow that shipsmi �ow units through componentCi
and, importantly, exactly di,k units along edge (ui,k ,ui,k+1

), where

1 ≤ i ≤ τ and 1 ≤ k ≤ n − 1. However, one has to prove that the

cost of such a �ow is upper bounded by τ cost(f ∗). Such a proof

involves arguments and �ow modi�cations contained in Steps 1

and 2 of A2. �erefore we describe them explicitly as algorithmic

steps. Step 3 could indeed be replaced by a min-cost �ow com-

putation. However, we instead devise a faster O(n2
∑τ
i=1

σi) time

routine for constructing an integral �ow along the lower paths of

the components.

In the following, when describing �ow modi�cations, we will

always focus on one particular network component. All �ow up-

dates will be performed independently for the components. Hence

in the corresponding exposition, we consider an arbitrary but �xed

component C = Ci , 1 ≤ i ≤ τ . �is allows us to simplify notation

and omit the index i . On the upper path the vertices are u1, . . . ,un .

Component C has σ = σi lower paths. On lower path j, 1 ≤ j ≤ σ ,

the vertices are lj,k and laj,k , for k = 1, . . . ,n − 1, followed by the

�nal vertex lj,n . Letmc =mi be the number of servers in class Si
represented by C = Ci .

Nested structure of �ows. We show that in each network

componentC �ow f ∗ has a crucial property, i.e. it exhibits a nested

structure. Let Pj (k,k ′) be the path from uk to uk ′ along lower path

j, where 1 ≤ j ≤ σ and 1 < k < k ′ < n. More speci�cally, the

path consists of (uk , lj,k), followed by the path from lj,k to lj,k ′ on

lower path j, followed by (lj,k ′ ,uk ′). For k = 1 and 1 < k ′ < n,

we de�ne Pσ (1,k ′) as the path consisting of the edges from lσ ,1 to

lσ ,k ′ on lower path σ , followed by the edge (lσ ,k ′ ,uk ′). For k ′ = n
and 1 < k < n, path Pσ (k,n) consists of edge (uk , lσ ,k), followed by

the edges from lσ ,k to lσ ,n on lower path σ . Finally P(k,k ′) is the

path connecting uk and uk ′ on the upper path of the component,

for any 1 ≤ k < k ′ ≤ n. In the sequel, unless otherwise stated, �ow

always refers to commodity 1. Consider any path P . We say that P
routes �ow if, for any edge of P , the �ow is strictly positive.

�e following property of a �ow will be important. A �ow f in

component C is nested if it satis�es the following condition. Let

Pi (k1,k2) and Pj (k3,k4) be two paths such that both route �ow and

i < j . �en one of the relations (a–c) holds: (a) k2 < k3; (b) k4 < k1;

or (c) k3 ≤ k1 < k2 ≤ k4. Intuitively, the endpoints of the two paths

do not alternate. Both endpoints of Pi (k1,k2) occur either before,

a�er or in between those of Pj (k3,k4).
Lemma 4.5. In each component C �ow f ∗ is nested.

Loop-freeness. Given f ∗, A2 slightly modi�es it so that it

becomes loop-free in each C . A �ow is loop-free in C if there exists

no vertexuk such that edges (li,k ,uk) and (uk , lj,k) both route �ow,

where 1 ≤ i, j ≤ σ . Suppose that there exists such a vertex uk .

Since f ∗ is nested, i = j must hold. Hence A2 can simply remove

min{ f ∗(li,k ,uk), f ∗(uk , li,k)} units of �ow from both (li,k ,uk) and

(uk , li,k). By performing these updates one obtains a loop-free �ow

f ∗ that is nested.

4.3 Constructing an Integral Flow
We describe the three main �ow modi�cation steps.

4.3.1 Step 1: Flow scaling. Let f ∗ be the minimum-cost, loop-

free �ow. Algorithm A2 multiplies f ∗ by a factor of τ on all edges

of the network. At the same time it multiplies all edge capacities

and supplies/demands by τ . �en it deletes the �ow of commodity 2

and the supplies/demands at ak and bk , 1 ≤ k ≤ n−1. �e resulting

�ow f 1
of commodity 1 is feasible. Additionally, in each component

it is nested and loop-free. �ere holds cost(f 1) ≤ τ cost(f ∗).
In Steps 2 and 3 �ow f 1

is modi�ed. As indicated above, the mod-

i�cation are executed independently for the components. �erefore,

in the description of Steps 2 and 3 we concentrate on one compo-

nent C that ships τmc units of �ow. �e �ow modi�cations never

increase the cost. At all times the �ow remains nested and loop-free.

4.3.2 Step 2: Rounding flow on the upper path. Given f 1
, A2

rounds it so that the �ow becomes integral on the upper path

of C . Along edge (uk ,uk+1
) the amount of �ow will be min{mc ,

bτ f ∗(uk ,uk+1
)c}. Recall that mc is the number of servers in the

class represented by C . We �rst describe how to reduce f 1
so that

on any edge (uk ,uk+1
) the �ow is bτ f ∗(uk ,uk+1

)c. A2 makes four

passes over C . First, in Step 2.1, it rounds valleys with low �ow.

�en, in Steps 2.2 and 2.3, it modi�es �ow on edge sequences with

increasing and decreasing �ow, respectively. Finally, in Step 2.4, it

takes care of �ow peaks. Given this �ow, we further reduce it so

that the �ow on any edge of the upper path does not exceed mc .

At any time, for a current �ow f , we say that the �ow increases
at uk if k = 1 and f (u1,u2) > 0 or if 1 < k < n and f (uk−1

,uk) <
f (uk ,uk+1

). Similarly, the �ow decreases at uk if 1 < k < n and

f (uk−1
,uk) > f (uk ,uk+1

) of if k = n and f (un−1,un) > 0. Initially

in Step 2, let f = f 1
.

Step 2.1: Valleys. A valley is a path P(k,k ′), 1 < k < k ′ < n,

on the upper path ofC such that the �ow decreases at uk , increases

at uk ′ and is constant for all the edges of P(k,k ′). Formally, the

last condition indicates that f (e) = f (uk ,uk+1
), for all edges e of

P(k,k ′). A2 scansC . Whenever it encounters a valley P(k,k ′) with

a non-integral amount of �ow, it invokes the following procedure

that reduces the �ow to b f (uk ,uk+1
)c.

Flow update procedure: For the given valley P(k,k ′), the �ow

decreases at uk . �e procedure determines the smallest j such that

�ow is routed fromuk to lj,k and shipped on lower path j . In the full

paper we prove that Pj (k,k ′) routes �ow. Hence, as Pj (k,k ′) routes

�ow, in the unscaled minimum-cost �ow f ∗ path Pj (k,k ′) also ships

�ow. Routing the �ow on the upper path would have been a feasible

option as well. �is implies that the total edge cost of Pj (k,k ′) is

upper bounded by that of P(k,k ′). �e procedure updates the �ow

as follows. It remove δ = f (uk ,uk+1
) − b f (uk ,uk+1

)c units of �ow

from P(k,k ′) and instead routes them along Pj (k,k ′). �is does not

increase the cost. �e resulting �ow inC remains nested. Modifying

all valleys takes O(nσ) time.

Step 2.2: Flow increases. In a second pass over C algorithm

A2 identi�es vertices uk at which the �ow increases. If f (uk ,uk+1
)

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

42

On Energy Conservation in Data Centers SPAA ’17, , July 24–26, 2017, Washington, DC, USA

is not integral, it is reduced to b f (uk ,uk+1
)c. Starting at u1 or at a

vertex representing the end of a valley, A2 performs a sequence of

vertex inspections and possible �ow updates. �e sequence ends at

a vertex at which the �ow decreases. �e algorithm then searches

for the end of the next valley and continues.

Formally, let uk ′ be a vertex such that k ′ = 1 or uk ′ is the last

vertex of a valley. When located at uk ′ ,A2 determines the smallest

k ′′ with k ′′ > k ′ such that the �ow decreases at uk ′′ . �e algorithm

inspects the vertices uk , k ′ ≤ k < k ′′ − 1, in order of increasing

index. If f (uk ,uk+1
) is not integral, the procedure described in the

next paragraph is invoked, which reduces the �ow to b f (uk ,uk+1
)c.

When the procedure is executed at uk , there holds uk = u1 or

the �ow f (uk−1
,uk) on the preceding edge is integral. �e la�er

condition holds true because ifuk = uk ′ is the last vertex of a valley,

then the �ow along the incoming edge has been made integral in

Step 2.1. A2 considers vertices in order of increasing index, starting

at uk ′ . When uk , k ′ < k < k ′′ − 1, is inspected, the �ow on the

edges between uk ′ and uk is already integral.

uk uk+1

· · ·· · ·

· · ·

· · ·· · ·

· · ·lower path j

Figure 5: A �ow increase at uk .

Flow update procedure: �e procedure updates �ow at a vertex

uk where the �ow increases and f (uk ,uk+1
) is not integral. Let

again δ = f (uk ,uk+1
) − b f (uk ,uk+1

)c. Either k = 1 or the �ow on

(uk−1
,uk) is integral. Hence at least δ units of �ow are shipped

from lower paths into uk . While δ > 0, the procedure executes the

following steps. Let j be the largest integer such that the �ow from

lj,k touk is positive. Figure 5 depicts the general �ow con�guration.

Let δj = f (lj,k ,uk) and δ ′ = min{δ ,δj }. �e procedure reduces

�ow on (lj,k ,uk) and (uk ,uk+1
) by δ units. Instead it ships δ units

of �ow from lj,k to uk+1
along lower path j, i.e. via laj,k and lj,k+1

.

�en δ is reduced by δ ′. �e �ow update decreases the cost of the

�ow by (r0−r j)(tk+1
−tk) > 0. Here r0 and r j are the cost coe�cients

along the upper path and lower path j , respectively. More precisely,

edge (uk ,uk+1
) has a cost of r0(tk+1

−tk) and (lj,k , laj,k) has a cost of

r j (tk+1
−tk). �e modi�ed �ow remains nested; detailed arguments

are given in the full paper. �e running time of one execution of

the procedure is O(σ). �e running time of the entire pass over C
is O(nσ).

Step 2.3: Flow decreases. �e �ow modi�cations are symmet-

ric to those described in Step 2.2. AlgorithmA2 makes another pass

overC , this time from right to le� starting at un . It searches for ver-

tices uk at which the �ow decreases. If the �ow f (uk−1
,uk) on the

incoming edge is not integral, then it is reduced to b f (uk−1
,uk)c.

A detailed description is provided in the full version of the paper.

Step 2.4: Peaks. A peak is an edge (uk ,uk+1
) such that the �ow

increases at uk and decreases at uk+1
, see also Figure 6. A�er A2

has executed Steps 2.1–2.3, the only edges on the upper path with

a non-integral amount of �ow are peaks. Algorithm A2 traverses

C . For each peak (uk ,uk+1
) with a non-integral amount of �ow, it

invokes the following routine.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
uk1

uk2
uk uk+1

lower path j1

lower path j2

Figure 6: A �ow peak on (uk ,uk+1).

Flowupdate procedure: Again δ = f (uk ,uk+1
)−b f (uk ,uk+1

)c.
Let j1 be the largest integer such that f (lj1,k ,uk) > 0, i.e. �ow is

routed from lower path j1 to uk . Let j2 be the largest integer such

that f (uk+1
, lj2,k+1

) > 0. �ere are two basic cases.

If j1 = j2, then let δ1 = f (lj1,k ,uk) and δ2 = f (uk+1
, lj2,k+1

).
Furthermore, let δ ′ = min{δ ,δ1,δ2}. �e procedure removes δ ′

units of �ow from the path connecting lj1,k and lj1,k+1
along the

upper path. Speci�cally, it removes δ ′ �ow units from the edges

(lj1,k ,uk), (uk ,uk+1
) and (uk+1

, lj1,k+1
). Instead it sends δ ′ units of

�ow from lj1,k to lj1,k+1
via laj1,k

on lower path j1. �e reduction

in the cost of the �ow is δ (r0 − r j1)(tk+1
− tk) + δ∆j1 > 0. Here ∆j

is the cost of (lj,k ,uk), for any 1 ≤ j ≤ σ and 1 ≤ k < n − 1.

If j1 , j2, then let k1 be the largest integer such that Pj1 (k1,k)
routes �ow. Let δ1 be the largest value such that every edge of

Pj1 (k1,k) routes at least δ1 units of �ow. Similarly, let k2 be the

smallest integer such that Pj2 (k + 1,k2) routes �ow. Let δ2 be

the largest value such that every edge of Pj2 (k + 1,k2) routes at

least δ2 units of �ow. Figure 6 shows the case that j1 < j2. Let

δ ′ = min{δ ,δ1,δ2}. �e procedure removes δ ′ units of �ow from

Pj1 (k1,k), edge (uk ,uk+1
) and Pj2 (k + 1,k2). If j1 < j2, it instead

sends these δ ′ units on path Pj2 (k1,k2). If j1 > j2, it routes the δ ′

units along Pj1 (k1,k2). �us, in any case the deeper low-power state

is used. It is not hard to verify that the cost of the �ow decreases.

In any case δ is reduced by δ ′. In the full paper we prove that

the new �ow is nested. One call of the procedure takes O(n2σ); the

rounding of all peaks can be accomplished in O(n3σ) time.

Step 2.5: Flow reduction tomc . It remains to reduce the �ow

to mc on edges (uk ,uk+1
) where the �ow a�er Steps 2.1–2.4 is

higher. �is can be done using the procedures that handle �ow

increases and peaks. Details are given in the full paper.

4.3.3 Step 3: Packing flow on the lower paths. Given the �ow

f 2
constructed in Step 2, A2 packs �ow on the lower paths of the

considered component C so that the �nal �ow becomes integral.

During the modi�cation the �ow on the upper path of C does not

change. Moreover, the cost of the �ow will not increase.

Auxiliary edges. In order to separate �ow that has already

been made integral from the original one, we need auxiliary edges.

For every edge e in C , except for those in the upper path, we add

an auxiliary edge e ′. More precisely, for every link e = (v,w) not

contained on the upper path, there is the original edge and a new

auxiliary edge.

Initially, the �ow f 2
is routed on the upper path and the original

edges of the lower paths. In a series of rounds A2 removes �ow

from the original edges, packs it and adds it to the auxiliary edges.

On the auxiliary edges, the �ow is always integral. �e process

ends when there is no �ow on the original edges. �en the original

edges are removed so that, for each edge, there is only one copy.

We observe that since f 2
is integral on the upper path and loop-

free, only integral amounts of �ow enter/leave the upper path

from/to the lower paths. �is invariant will be maintained at all

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

43

SPAA ’17, , July 24–26, 2017, Washington, DC, USA S. Albers

times during the �ow transformation. For every edge, the total �ow

on the original and auxiliary copy will always be at most τmc .

Matching pairs. �e �ow packing procedure works with with

the notion of a matching pair . Such a pair consists of two vertices

uk and uk ′ , 1 < k < k ′ < n, with the following properties: (a) Flow

is routed from uk to the lower paths on original edges (uk , lj,k),
1 ≤ j ≤ σ ; (b) �ow is routed into uk ′ from lower paths on original

edges (lj,k ′ ,uk ′), 1 ≤ j ≤ σ ; (c) there exists no vertex uk ′′ with k <
k ′′ < k ′ that satis�es (a) or (b). While there exists a matching pair

A2 executes the following �ow packing routine. Unless otherwise

stated, f (e) refers to the current �ow on the original copy of e .

Packing procedure. Let uk and uk ′ be the given matching

pair. Let δk be the total amount of �ow routed from uk to lower

paths on original edges (uk , lj,k), 1 ≤ j ≤ σ . Similarly, let δk ′ be

the total amount of �ow shipped into uk ′ from lower paths along

original edges (lj,k ′ ,uk ′), 1 ≤ j ≤ σ . Both δk and δk ′ are integral.

If δk ≤ δk ′ , then let J be the set of integers j with 1 ≤ j ≤ σ such

that f (uk , lj,k) > 0. De�ne δj = f (uk , lj,k), for any j ∈ J . �ere

holds

∑
j ∈J δj = δk . If δk > δk ′ , then let J be the set of integers j

with 1 ≤ j ≤ σ such that f (lj,k ′ ,uk ′) > 0. De�ne δj = f (lj,k ′ ,uk ′),
for any j ∈ J . �ere holds

∑
j ∈J δj = δk ′ . In any case, for j ∈ J ,

consider the path Pj (k,k ′). In the full paper we formally prove that

Pj (k,k ′) routes δj �ow units, for any j ∈ J .
�e procedure for packing �ow determines the integer j ′ ∈ J

such that the total edge cost of Pj′(k,k ′) is minimal among Pj (k,k ′)
with j ∈ J . �en, for every j ∈ J , it removes δj units of �ow

from the original edges of Pj (k,k ′). Finally, it routes min{δk ,δk ′}
units of �ow on the new edges of Pj′(k,k ′). �e new �ow remains

nested because an already existing routing path with positive �ow

is selected. �e cost does not increase, due to the choice of j ′.
Every time the procedure is invoked for a matching pair uk and

uk ′ , the �ow leaving uk or entering uk ′ on original edges drops to 0.

�us all executions of the procedure take O(n2σ) time. When there

exists no matching pair anymore, the remaining �ow on original

edges along paths Pσ (1,k ′) and Pσ (k,n) can be transferred without

modi�cation to the auxiliary edges.

4.4 Construction of the Schedule
Let f 3

denote the �ow obtained in Step 3.

Lemma 4.6. Flow f 3 corresponds to a schedule Σ with τmi servers
of type i , 1 ≤ i ≤ τ . In [tk , tk+1

) exactly di,k = min{mi ,

bτ f ∗(ui,k ,ui,k+1
)c} servers of type i are in the active state, 1 ≤ i ≤ τ

and 1 ≤ k ≤ n − 1. �e energy consumed by the servers of type i is
equal the cost of f 3 in Ci , 1 ≤ i ≤ τ .

Lemma 4.7. Let Σi be a schedule for τmi servers of type i in which
exactly di,k servers are in the active state during [tk , tk+1

), where
di,k ≤ mi and 1 ≤ k ≤ n − 1. �en there exists a schedule Σ′i formi
servers of type i in which the servers numbered 1 to di,k are in the
active state during [tk , tk+1

). �e energy consumed by Σ′i is upper
bounded by that of Σi .

Given the integral �ow f 3
, algorithm A2 constructs a feasible

schedule Σ∗ for I. For each server type Si , 1 ≤ i ≤ τ , A2 builds

an optimal schedule Σ∗i such that di,k of the mi servers in Si are

in the active state during [tk , tk+1
), 1 ≤ k ≤ n − 1. �ese schedules

Σ∗
1
, . . . , Σ∗τ are then combined to form Σ∗. Consider any i with

1 ≤ i ≤ τ . In a �rst step, by Lemma 4.7, Σ∗i just speci�es that the

servers numbered 1 to di,k are in the active state during [tk , tk+1
),

for any 1 ≤ k ≤ n − 1. �en, while a server is not required to be

active according to the speci�cation, A2 selects an optimal state.

Suppose that at time tk the number of required servers decreases,

i.e. di,k−1
> di,k . AlgorithmA2 determines states for di,k−1

−di,k
servers that may power down. �is is done as follows. Initially, µ :=

di,k . While µ < di,k−1
,A2 �nds the next time tk ′ such that di,k ′ ≥

µ + 1, i.e. at least µ + 1 servers are active. It chooses an optimal state

to be assumed by servers numbered µ + 1, . . . ,min{di,k−1
,di,k ′}

at time tk . �is is the state si, j∗ with j∗ = arg min
1≤j≤σi {ri, j (tk ′ −

tk) + ∆i, j }. �en µ := min{di,k−1
,di,k ′}.

By Lemmas 4.6 and 4.7, the energy consumed by Σ∗i is upper

bounded by the cost incurred by f 3
in component Ci . �us the en-

ergy consumed by the combined schedule Σ∗ is at most cost(f 3) ≤
τ cost(f ∗). Schedule Σ∗ is feasible because, by Lemma 4.4,∑τ
i=1

di,k ≥ dk . �e proof of �eorem 4.1 is complete.

REFERENCES
[1] �e Advanced Con�guration and Power Interface. �e latest speci�cation 6.1

(January 2016) is available e.g. at UEFI.org.

[2] R.J. Ahuja, T.L. Magnanti and J.B. Orlin. Network Flows. Prentice Hall, 1993.

[3] M. Armbrust, A. Fox, R. Gri�th, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A.

Pa�erson, A. Rabkin, I. Stoica and M. Zaharia. Above the clouds: A Berkeley view

of cloud computing. Technical Report No. UCB/EECS-2009-28. EECS Department,

University of California, Berkeley, 2009.

[4] J. Augustine, S. Irani and C. Swamy. Optimal power-down strategies. SIAM J.
Comput., 37(5):1499–1516, 2008.

[5] Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi and A. Rosén. On capital

investment. Algorithmica, 25(1):22–36, 1999.

[6] L.A. Barroso and U. Hölzle. �e case for energy-proportional computing. IEEE
Computer , 40(12):33–37, 2007.

[7] M. Dayarathna, Y. Wen and R. Fan. Data center energy consumption modeling:

A survey. IEEE Communications Surveys and Tutorials, 18(1):732–794, 2016.

[8] G. Fe�weis and E. Zimmermann. ICT energy consumption – trends and chal-

lenges. Proc. 11th International Symp. on Wireless Personal Multimedia Communi-
cations, 2008.

[9] A. Gandhi and M. Harchol-Balter. How data center size impacts the e�ectiveness

of dynamic power management. 49th Annual Allerton Conference, 1164–1169,

2011.

[10] A. Gandhi, M. Harchol-Balter and I.J.B.F. Adan. Server farms with setup costs.

Perform. Eval., 67(11):1123–1138, 2010.

[11] Z.J. Haas and S. Gu. On power management policies for data centers. Proc. IEEE
Int. Conf. on Data Science and Data Intensive Systems (DSDIS), 404–411, 2015.

[12] W. van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet and P. De-

meester. Trends in worldwide ICT electricity consumption from 2007 to 2012.

Computer Communications, 50:64–76, 2014.

[13] Heterogeneous computing. https://en.wikipedia.org/wiki/
Heterogeneous computing

[14] S. Irani, S.K. Shukla and R.K. Gupta. Online strategies for dynamic power man-

agement in systems with multiple power-saving states. ACM Trans. Embedded
Comput. Syst., 2(3):325–346, 2003.

[15] A.R. Karlin, C. Kenyon and D. Randall. Dynamic TCP acknowledgment and other

stories about e/(e-1). Algorithmica, 36(3):209–224, 2003.

[16] A.R. Karlin, M.S. Manasse, L. Rudolph and D.D. Sleator. Competitive snoopy

caching. Algorithmica 3:77–119, 1988.

[17] S. Khuller, J. Li and B. Saha. Energy e�cient scheduling via partial shutdown.

Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms, 1360–1372, 2010.

[18] J. Li and S. Khuller. Generalized machine activation problems. Proc. 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms, 80–94, 2011.

[19] A. Levi and B. Pa�-Shamir. Non-additive two-option ski rental. �eor. Comput.
Sci., 584:42–52, 2015.

[20] M. Lin, A. Wierman, L.L.H. Andrew and E. �ereska. Dynamic right-sizing for

power-proportional data centers. IEEE/ACM Trans. Netw., 21(5):1378–1391, 2013.

[21] Z. Lotker, B. Pa�-Shamir and D. Rawitz. Rent, lease, or buy: Randomized algo-

rithms for multislope ski rental. SIAM J. Discrete Math. 26(2):718–736, 2012.

[22] K. Wang, M. Lin, F. Ciucu, A. Wierman and C. Lin. Characterizing the impact

of the workload on the value of dynamic resizing in data centers. Proc. IEEE
INFOCOM , 515–519, 2013.

SESSION 1 SPAA’17, July 24-26, 2017, Washington, DC, USA

44

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Properties of Optimal Schedules

	3 Servers with Two States
	3.1 Construction of the Network
	3.2 Analysis of Flows
	3.3 Making a Flow Consistent
	3.4 Establishing the Theorem

	4 Servers with Multiple States
	4.1 Construction of the Network
	4.2 Algorithm Outline & Flow Properties
	4.3 Constructing an Integral Flow
	4.4 Construction of the Schedule

	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 9.55, 723.39 Width 597.47 Height 33.87 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 9.5526 723.395 597.4712 33.8683

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 10
 9
 10

 1

 HistoryList_V1
 qi2base

