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Abstract

Technically, the operation of smart energy systems (SES) is based on various energy management
systems (EMS) that pertain different spatial and temporal scales. Despite their technical variety,
the responsibilities of EMS are similar. They monitor and control available equipment for power
production, consumption or storage to achieve a stable, reliable, sustainable and economic supply
of energy. Nowadays, with the penetration of renewable energies accompanied with increasing
investments in storage systems, electric vehicles, and systems for heat, such as heat pumps, and
combined heat and power units, EMS greatly rise in importance due to their pure number and
their impact on our power supply system. The integration of EMS into the overall power supply
system becomes inevitable. Integration is a question related to the system architecture. The
focus on EMS with similar functionality and their local interdependence lead to the question,
whether EMS of buildings should be interconnected with EMS local quarters, which again can be
interconnected with EMS of districts, of cities and so on. A hierarchic, more generic system of
EMS would appear. The idea is not new, it has already been discussed by Moslehi and Kumar
(2010); Grijalva and Tariq (2011); Benz et al. (2015); Howell et al. (2017) and others. However,
so far, all discussions introduce such interconnections only as high-level descriptions. They lack
concrete specifications of the system’s interfaces, the system’s behaviour and their relation to
mathematical models for control and optimizations that are available for coordination. Therefore,
it is still an open architectural question, how to conceptualize the desired hierarchic composition.
To demonstrate the usefulness of the architecture it is also necessary to study the effects of such
interconnections to the power supply system.

This thesis addresses those open questions and provides several contributions by combining
approaches from power system research with software engineering. The essential basis for power
system operation is given by mathematical models for optimization and control. The required data
for the interconnections and therefore for the specifications of interfaces are implicitly available
within those models. We show methodologically how to use them and how they can be composed
and decomposed for hierarchical systems, as expected with our architecture. The specification of
the generic architecture for a hierarchic EMS composition relies on sound architecture design
patterns. We present a constructive approach starting with requirements, the selection of suitable
architectural design patterns to meet those and their combination to develop the architecture. The
approach is complemented with a technical framework to test such generic architectures in SES
context. Finally, we apply the developed solution in two complementary SES case studies to
demonstrate the feasibility, the coordination possibilities and the expected impact in terms of
power system improvement related to CO2 emissions and economic costs.
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1 ∣ Introduction
Today, more then ever, we know that we are confronted with an ecological crisis. An ecological
crisis that can only be solved, if we reverse the emission of greenhouse gases as much and as
quickly as possible. The transition of our energy supply system towards a more sustainable
network of power system components is of paramount importance for the required solution. This
includes more renewable energy production of different types that are synchronized with the
energy demand, storage and flexibilities. Managing and controlling this variety of components
and systems is essential for a reliable and stable power system operation. This coordination
involves Information and Communication Technologies (ICT) in power systems throughout the
different locations and system scales and often denoted as smart energy systems (SES). The work
on SES architectures for coordination and balancing is the topic of this thesis.

This chapter starts with the motivation for the topic in Section 1.1. Afterwards, Section 1.2
presents a number of open problems in this field. Section 1.3 discusses the research objectives of
our work and describes the contributions in a brief summary. Finally, Section 1.4 gives an outline
of this thesis and presents the previously published material.

1.1 Motivation
An increasing share of renewable energy production is essential to achieve a power system that is
more sustainable and independent of fossil fuels. Renewable energy sources convert the power
from naturally available conditions and are therefore inherently fluctuating and decentralised.
Due to the volatility and an increased uncertainty, a larger share of renewable energies demands
for more control capabilities to balance the power supply and demand at every single point of
time. The necessity is inevitable, as demonstrated by a significant energy curtailment increase in
both aspects, frequency and volume, during the last years due to an increasing share of renewable
energies (Schermeyer, 2018).

Today, renewable energy sources are complemented with technologies such as storage compo-
nents, charging stations for electric vehicles and devices for heating and cooling such as combined
heat and power (CHP) units or heat pumps. Their integration leads to energy management systems
(EMS). These are software systems for management and automation of energy equipment. They
range from simple monitoring and control systems for single devices, to rule-based automation
systems that adapt for instance the charging and discharging rate of storages based on current
production and demand, up to integrated complex systems that combine the heating, cooling,
electricity and mobility domain using sets of automation rules or even model based control to op-
timize the internal energy usage. EMS are able to change the behaviour of local components with
respect to power consumption and production by adapting the schedules for storage, production
or demand (if available). Hence, they offer additional options to make the system more flexible
reducing the necessity for energy curtailment. Because the majority of the recent renewable
energy sources, storages, charging stations are installed at the distribution network or even at the
building level, the control capabilities shift from large systems at the top voltage levels, to smaller
systems at lower voltage levels. This challenges the current concepts for centrally organized
power systems, as decision making for control moves towards lower system levels.
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1 Introduction

To increase the share of renewable energy sources and reduce energy curtailment EMS should
be coordinated. It means that they have to be connected to some kind of coordination system
that monitors them and sends coordination signals to guide their behaviour. Coordination of
EMS (i.e. interactive control systems) combines two areas of research. First, the coordination of
power systems is essentially based on mathematical models, which model the system to derive
schedules for operation and use flexibilities when deviations are observed. Second, in order to
perform calculations based on such models, a coordination system requires to collect data from
and send data to the connected EMS. This an integration effort, which particularly asks for the
right system interfaces and system behaviour of the local EMS and coordination systems.

Further, our energy supply system is hierarchical with respect to the organization and responsi-
bilities of the network operators and the technical infrastructure with its hierarchical voltage levels.
It is therefore an open question if the coordination of EMS (and also their integration) should
be hierarchic as well. The idea is that several EMS are combined into one group, for instance
a group for one particular area. The coordination system of that area coordinates the available
EMS to improve for instance costs or carbon emissions. In addition, the coordination system
aggregates the control capabilities and offers them as flexibilities to the next hierarchical level.
In consequence, the coordination system represents a group that is part of a larger group, which
is again treated as a coordination system with its own responsibilities. All those coordination
systems have the role of an EMS creating a hierarchy as presented in Figure 1.1.

EMS (e.g. Region)

EMS (e.g. Area)

EMS
(e.g. District)

local
EMS

local
EMS

Figure 1.1: Hierarchic composition of energy management systems.

Note, the internal composition of EMS is allowed to be different, since each EMS has a
different set of internal devices. For instance, an EMS at the building level has its own set of
renewable energy sources, storage components, etc. EMS that represent districts might differ
with the availability of district heating capabilities. One EMS might have an infrastructure that
operates at high temperature levels, while another one has lower temperature levels and a third
one does not have it at all. Also local transmission constraints might be different. Nevertheless,
each EMS adds control capabilities to the overall system and this is essential to increase the share
of renewable energies. The hierarchical integration adds explicit system boundaries. These are
important for two reasons. First, system boundaries allow to add internal rules or metrics for each
EMS. They help to specify internal operation goals or add local safety constraints for devices.
Second, system boundaries help with abstraction and abstraction helps to find more generalizable
interfaces, which is crucial for system integration. However, the hierarchy and EMS system
boundaries open a number of related problems that need to be solved.
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1.2 Problem Statement

Today, we see already a number of integration efforts to create coordination systems. Most
of the efforts are focused on the device level. For instance, small scale, decentralized energy
resources with a low and medium generation are aggregated into Virtual Power Plants (VPP) to
substitute the capabilities of large power plants and participate at the energy market as introduced
by Willems (2005). Devices are also integrated within local networks to support the local
power supply. This is known as microgrids as introduced in Lasseter and Piagi (2004). Beyond
the pure substitution of bulk power plants and local optimizations, the SES vision introduces
new applications to increase the flexibility and control capabilities within our power supply
system, such as prosumers1, demand side management, charging stations for electric vehicles or
flexibilities. The ultimate goal is the creation of a flexible and reliable network of interacting
power system components that provide a stable, reliable, sustainable and economic supply of
energy. Therefore, we need to lift the integration from single devices to more complex EMS.

Problem 1: Integration with current technologies Current technological solutions in the
energy domain that integrate controllable components are based on the idea that human operators
have systems to supervise a certain area and intervene when something happens. For this
task Supervisory Control and Data Acquisition (SCADA) systems have been developed. A
SCADA system consists of software and hardware components. Its main purpose is to collect
information from remote locations, transfer data to a central facility, and provide graphical
or textual representation for operators that monitor and control the entire system. Since, the
infrastructure is essential for a stable power supply, SCADA systems requires a high degree
of availability, reliability and integrity. Availability and reliability are addressed by SCADA
architectures with redundancy. The integrity requirement is addressed by encapsulating the
system from external access as much as possible. This includes physical encapsulation of control
rooms with dedicated access control, private communication networks, demilitarised zones for
data access, virtual private networks (VPN) and further similar approaches. A good overview
about SCADA fundamentals is described in the NIST analysis by Stouffer et al. (2006), where he
introduces the common architecture decisions for SCADA. Today, most companies in the utility
and distribution sector use SCADA systems that are enriched with specific applications from the
energy domain.

To integrate EMS using SCADA technology means that several severe problems need to
be solved. First, the integration of external components (i.e. from another manufacturer),
particularly end-user equipment is problematic. It is heterogeneous and not that secure as the
clearly defined and highly secured industrial infrastructure equipment that is currently integrated
into SCADA systems. Changes of end-user equipment appear also uncoordinated and more often.
Consequently, system updates are required more frequently and maintainability efforts increase,
but that is time and cost intensive Barnes et al. (2004). Second, end-user equipment has a higher
risk of failures. In current SCADA systems, failures (e.g. overloads of physical connections)
trigger alarms on which engineers react with appropriate actions. Such human interaction is

1The term prosumer describes a system that can produce or consume power. Storage systems can be part of a
prosumer as well.
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only possible if the alarm frequency is low. By integrating lower voltage levels and thousands
of components, the alarm frequency might increase drastically and the necessity for human
interaction rises significantly. Third, SCADA systems operate in encapsulated environments, as
much as possible. Secure operation is provided by controlled system access. Connections are
only established to clearly defined components, which are often physically locked from public
access. The integration of new, non-locked end-user equipment introduces severe threats. It is
therefore a core question, how end-user equipment can be integrated, without opening the access
to critical components of the infrastructure.

Problem 2: Ambiguous architecture specifications For the realization of the smart energy
vision, work on the architecture is as important as work on technologies and products. The idea
of aggregation and hierarchies is not completely new. It has already been intensively discussed
under different terms in the literature. Commonly appearing terms are ‘Virtual Power Plants’,
‘Microgrids’ and ‘Aggregators’ (Asmus, 2010; Hashmi et al., 2011). Also terms like ‘Virtual
Utilities’, ‘Active Distribution Networks’, ‘Prosumers’ or ‘Cells’ are used for this context (Lund
et al., 2005; Braun and Strauss, 2008; Grijalva and Tariq, 2011; Benz et al., 2015). Previous work
on SES architectures, in particular those with the focus on new organization schemes, such as the
work of Grijalva and Tariq (2011) on prosumer oriented architectures; the work on aggregation
principles, e.g. (Asmus, 2010; Braun and Strauss, 2008); or the work on a cellular energy
supply system (Benz et al., 2015) introduce the concept of hierarchy and EMS integration on a
rather informal level. This causes many problems for the systems developer, such as ambiguity,
wrong conclusions and difficulty when checking the conformance of a system to the suggested
architecture. For example, the work by Benz et al. (2015) concentrates on the demonstration
that cells, which represent a group of SES components, can be controlled in such way, that they
provide flexibilities to adapt power production and demand. However, he gives no information
about the involved control systems, their interfaces or the communicated data. Nevertheless, the
idea of a hierarchical integration of similar systems remains appealing and is currently being
discussed as the next architecture (Reuter and Breker, 2018). The ideas are supported with great
funding2. However, so far we have not seen concrete architecture specifications.

Such vague descriptions are problematic when they claim that a system benefits from a
hierarchic architecture but give no information about the concrete system architecture leaving
room for multiple, miscellaneous interpretations. In an architecture specification, it should be
very clear, which systems are available, what is their system boundary, which data is offered by
which system, which interfaces exist, which functionality exist and which system executes which
functionalities. For instance, it should be clear, which system executes the core coordination
calculations like planning and control of the power components, how it receives data and how
it sends data. Basically we need a specification with three concrete ingredients to establish a
hierarchic coordination for EMS. These include coordination models that define the data that
is required at the interfaces, descriptions of the interfaces based on that model, and the system
behaviour specification that describes the data processing for the integrated EMS.

2For instance the SINTEG initiative, with a total budget of 500 Mio. e (Sinteg, 2018), and large projects within
this initiative, for instance C/sells, where cells are the fundamental architectural entity (Reuter and Breker, 2018)
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Problem 3: Specification of EMS system boundaries, interfaces and coordination models
A number of SES applications already integrate and control small scale renewable power system
components. A popular example is a VPP. It combines (simple) EMS from different locations to
a system (mostly a SCADA system), in order to provide the same generation capabilities as a
bulk power plant. This enables access for smaller units to the same energy market as large power
plants. This is a good aggregation example. Another popular SES application is the combination
for control systems in order to coordinate a set of local components in a certain area. This is
the so-called microgrid. It combines various EMS components for a better balancing of the
local consumption and generation. The regional coordination has multiple benefits. It allows to
optimize local energy resources. It reduces the strain on the network and saves grid extension
costs. This is good coordination example.

A holistic architecture of a coordination system should allow a combination of those two
concepts. But today, this is still not possible due to a number of problems. Currently, both systems
have direct access to control the power system components. In a combined system, however,
we need a clear separation into one local EMS, which has the direct control of components and
considers a number of local constraints, and one EMS for aggregation and coordination, which
collects the available resources and transfers them into a larger scale to consider synergies from
the network and remote components. For that, clear system boundaries with clear interfaces and
models for coordination are necessary. To understand the impact of such hierarchies, we need
to specify how the systems shall interact and evaluate those applications in a running system.
Otherwise, the architecture specifications remains incomplete, since they might miss important
details for the desired coordination systems.

Problem 4: Evaluation of hierarchic architectures for EMS coordination Once an archi-
tecture for a system is established, it must be tested and evaluated with respect to its technical
feasibility and whether the benefits obtained are in line with the expected results. For testing and
evaluation of SES architectures that integrate EMS so far no test environment is available. The
reason is simple. Today ,there are hardly open EMS that provide services and can be integrated
to test their behaviour. Most of the research focuses on concepts and research prototypes. To
evaluate architectures for the coordination of EMS we require therefore a technical environment
that is capable to create different EMS or to integrate available EMS for further analysis.

1.3 Research Objectives and Contributions

In this thesis, the goal is to increase the understanding for the coordination of EMS from the
architectural point of view. In that context we also particularly investigate hierarchic architectures
to clarify what such architectures mean for compositions and which benefits (and drawbacks) we
might expect from them. Therefore, we formulate several research objectives that we approach in
the following of this thesis.

Research objective 1: Determine the essential specification elements for the hierarchic compo-
sition of systems to achieve a hierarchic coordination of energy systems.
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The first research objective targets the concept of system composition for energy systems into
groups which are hierarchically structured. The goal is to clarify the specification elements
and prerequisites to create groups of EMS and investigate how those groups interact internally
and towards higher levels. When we investigate the composition of systems, the notion of a
system boundary and system behaviour is important. Therefore, we need to understand what
are the system boundaries of coordination systems from the energy modelling perspective
and software perspective. Are they the same or do we see significant differences so that we
need to extend our specifications in order to develop such coordination systems. What is the
behaviour that we observe in hierarchical systems? Further, for the technical implications we
need to understand, if hierarchical coordination systems are technically feasible. We need
also to find out if and how a hierarchical architecture limits the technical implementation, to
understand if the development of additional protocols is required and how available technical
concepts and best practises, such as architecture design patterns, help to design hierarchic systems.

Research objective 2: Develop a coordination approach for EMS based on mathematical models
using the specification elements of objective one.

Coordination approaches for EMS are based on mathematical models. The second research
objective is to examine the coordination of the EMS starting from general mathematical
approaches and transferring them into the topic of hierarchic EMS compositions. The challenge
here is to understand how energy models can be transferred to interactive systems with clear
interfaces embedded in hierarchical structures. We address here the following questions: Should
energy models be adapted or represented in a different way, as soon as systems architectures are
involved? Which interfaces are suitable to transfer the data required by those models? How do
coordination approaches affect the behaviour of systems and their input and output interfaces?
The aim is to investigate synergies from energy models research with the development process of
coordination systems.

Research objective 3: Identify the benefits but also the drawbacks and limitations of hierarchic
energy coordination systems.

While the first two research objectives focus on the coordination and its fundamentals in the
context of energy and hierarchical composition, the third research objective focuses on the
reflection asking questions like: What do hierarchical systems achieve? Does a hierarchical
architecture reduce complexity? Does it facilitate the integration of EMS? Do hierarchical
approaches support centralised or decentralised approaches? Which systemic effects can be
stated? Addressing the benefits we should also investigate the limitations to find out what do
hierarchic architectures not achieve and what problems arise.

In this thesis we provide the following contributions to address the research objectives from above.

• Analysis of SES models and their usage in hierarchical structures: We present models
that are relevant for the coordination in SES and most importantly we show which infor-

6



1.3 Research Objectives and Contributions

mation of those models is necessary for EMS interfaces and how they can be aggregated
(composed) and disaggregated (decomposed) inside hierarchical coordination systems.

• A generic hierarchic architecture for the coordination of EMS: We suggest a generic
hierarchic architecture that is based on best practises with sound architectural design
patterns. The architecture specifically addresses hierarchical systems including their
interfaces and behaviour that allows aggregation and disaggregation.

• A framework to implement and test hierarchic SES architectures: We develop and
provide a technical framework as open source to evaluate hierarchic SES coordination
systems based on co-simulation. The framework supports the implementation of different
scenarios and the interconnection with industrial systems using state of the art protocols.

• Two case studies to evaluate different coordination systems: To evaluate our concept,
we present two complementary case studies. The first case study investigates a scenario,
where EMS offer flexibilities of power production units. The second case study investigates
the coordination of building-EMS. For both case studies we use our generic architecture,
our framework, design the interface information models based on SES models and use
them to generate industrially usable interfaces.

Analysis of SES models and their usage in hierarchical structures

Our power supply system operation and planning relies on sound mathematical models. They
are widely used throughout different systems: inside control applications; inside scheduling and
optimization systems; as a foundation for energy markets that enforce an economical operation;
integrated in design tools to layout the infrastructure, to configure and size the installed equipment;
and of course to calculate costs, income or determine expected emissions. Depending on the
purpose, such models vary in their granularity and associated details. The details depend on great
extent on the systems at hand and on the time period that is of interest.

In this thesis, we focus on systems for (hierarchical) EMS coordination and on architectures
to build such systems. Coordination belongs to models for optimized scheduling and partly covers
control approaches. To design a sound generic architecture, we introduce a selection of related
mathematical models. We analyse the models top-down in Chapter 3. We start with high-level
coordination approaches based on market models. They improve the economical operation.
We continue with more granular, physical models to present additional effects that effect the
operation. Those models particularly address the distribution of energy, hence, the operation of
energy networks. Finally, models for an optimized scheduling are introduced. These models
address particularly the operation of individual components, such as generation and storage units
that are controlled by an EMS. For each model, we describe the intention behind the model.
The particular result of this analysis is the derivation of transferable information models that are
used for the interfaces to establish an information exchange. Further, we demonstrate how the
information models are used in hierarchical systems that aggregate and disaggregate their models
from the specified interface data in Chapter 5 and Chapter 6.
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A generic hierarchic architecture for the coordination of EMS

For the realization of SES with hierarchical systems, such as cells and their composition to new
cells, work on the architecture is as important as work on power systems models, technologies and
products. The architecture needs to define clear system boundaries in form of system interfaces,
clear system specifications, so that the system engineer knows what functionalities must be
implemented and provide a clear understanding about the composition of the related systems.
To define an architecture that is as much generalizable as possible, we present a constructive
derivation in Chapter 4. First, we describe the envisioned scope and typical requirements of the
envisioned systems. After that, we derive the architecture using best practices from software
engineering using well-known architectural design patterns. We explain them with their rational
and show how they help us to achieve the construction of hierarchical systems.

After the architectural design patterns are clear, we describe the behaviour of single elements
within the hierarchical system. Those elements are sometimes denoted as cells, prosumers,
microgrids, but for us they are simply EMS. We describe the role of those systems and the most
important behaviour in terms of interactions with their surrounding, i.e. how one specific EMS
has to interact with other EMS that belong either to the category parent or child. The parent EMS
is understood as a coordinating system, which process the data from the interfaces of its children.
Based on that it derives an answer signal to coordinate its children. A child EMS is understood as
a system, which realizes available coordination signals into actions. The result of this part is a
better understanding about the involved system boundaries, necessary architectural design pattern
to implement such systems and how the coordination is achieved in terms of a system behaviour.

A framework to implement and test hierarchic SES architectures

We provide a technical framework to test and evaluate the generic architecture. The framework
is implemented as a co-simulation. It supports various hierarchic compositions with different
information models and facilitates the implementation of SES scenarios using standardized
common information models of power systems. It also allows to connect external systems, such
as external EMS or external simulations. This opens the possibility for hardware in the loop
testing, while the framework provides an environment for larger SES simulations. The framework
is available as open source3.

Two case studies to evaluate different coordination systems

We provide two case studies to demonstrate how the hierarchical architecture can be applied for
SES. Both case studies are real prototypes that we implemented according the generic architecture
using the developed co-simulation framework. The first case study investigates a control scenario
with flexibilities of power producers that are interconnected with a virtual power plant. In this
case study, the virtual power plant coordinates groups of power producers. Each group consist of
a number of power producers. Depending on the type of production, each producer can adapt
its production. The possible adaptation is a flexibility. It is offered to the higher component for
coordination. We found that generic architecture is feasible. A hierarchy can be established.

3https://github.com/SES-fortiss/SmartGridCoSimulation, last accessed in March 2020.
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Flexibilities can be aggregated and disaggregated. Industrially usable interfaces can be generated
from the information model. The main difficulty is the choice of the right abstraction to model
the data exchange, but power systems models help here significantly.

The second case study handles a more complex scenario with multiple buildings that are
interconnected over an electrical network and district heating. We show their coordination
when all buildings share their production capacities, storage systems and expected demand in a
coordinated quarter scenario. Due to the slower reaction of the heat network, we explore here a
planning problem. The results are the information model for the interfaces and an analysis that
shows significant system benefits in terms of potential cost and CO2 reduction of the energy
supply. Further, we generate other technical interfaces here, namely OPC UA, which are widely
used in the automation domain. We found also that system boundaries from mathematical
optimization differ to those of the system architecture. Finally, we could confirm that our
generic architecture, our framework, the design of information model for the interfaces based
on presented SES models are beneficial to design hierarchic SES for both system planning and
integration of real EMS.

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces the related work. It
gives an overview over the terms and related concepts, introduces work on other SES architectures,
as well as methods and tools that are used in this domain for specification and analysis. Chapter 3
continues with the foundation of this thesis introducing different models for coordination of
energy systems and describing how those models affect the design of hierarchic architectures.
Chapter 4 introduces the generic architecture and presents the technical framework to test the
architecture. Chapter 5 and Chapter 6 describe and evaluate two cases studies answering the
research questions related to our research objectives. Finally, Chapter 7 summarizes the thesis and
provides directions for future research. Additional material is contained in Appendix A and B.

Previously Published Material

Parts of the contributions presented in this thesis have been published in:

(Bytschkow et al., 2015) Bytschkow, D., Zellner, M., and Duchon, M.: Combining SCADA, CIM,
GridLab-D and AKKA for smart grid co-simulation. In Innovative Smart Grid Technologies
Conference (ISGT), IEEE Power & Energy Society, 2015.

(Bytschkow, 2016) Bytschkow, D.: Towards composition principles and fractal architectures in
the context of smart grids. it-Information Technology, 58(1), 3-14, 2016.

(Bytschkow et al., 2019) Bytschkow, D., Capone, A., Mayer, J., Kramer, M. and Licklederer, T.:
An OPC UA based energy management platform for multi-energy prosumers in districts. In
Innovative Smart Grid Technologies Europe (ISGT Europe), IEEE Power & Energy Society, 2019
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(Koß et al., 2012) Koß, D., Bytschkow, D., Gupta, P. K., Schätz, B., Sellmayr, F., and Bauereiß, S.:
Establishing a smart grid node architecture and demonstrator in an office environment using
the SOA approach. In Proceedings of the International Workshop on Software Engineering
Challenges for the Smart Grid (SE4SG@ICSE), IEEE, 2012.

(Duchon et al., 2014) Duchon, M., Gupta, P. K., Koss, D., Bytschkow, D., Schätz, B., and
Wilzbach, S.: Advancement of a sensor aided smart grid node architecture. In Proceedings of the
International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), IEEE, 2014.

(Heidemann et al., 2019) Heidemann, L., Bytschkow, D., Capone, A., Licklederer, T. and Kramer,
M.: Sector Coupling with Optimization: A comparison between single buildings and combined
quarters. In 8th DACH+ Conference on Energy Informatics, 2019.

Related work that contributes indirectly to this thesis has been published in:

(Hackenberg et al., 2012) Hackenberg, G., Irlbeck, M., Koutsoumpas, V., and Bytschkow, D.: Ap-
plying formal software engineering techniques to smart grids. In Proceedings of the International
Workshop on Software Engineering Challenges for the Smart Grid (SE4SG@ICSE), IEEE, 2012.

(Irlbeck et al., 2013) Irlbeck, M., Bytschkow, D., Hackenberg, G., and Koutsoumpas, V.: Towards
a bottom-up development of reference architectures for smart energy systems. In Proceed-
ings of the International Workshop on Software Engineering Challenges for the Smart Grid
(SE4SG@ICSE), IEEE, 2013.

(Bytschkow et al., 2014) Bytschkow, D., Quilbeuf, J., Igna, G., and Ruess, H.: Distributed MILS
architectural approach for secure smart grids. In International Workshop on Smart Grid Security.
Springer, 2014.

(Bytschkow and Duchon, 2015) Bytschkow, D. and Duchon, M.: Ladestrategien für E-Fahrzeuge:
Koordination vs. Optimierung. In ETG Fachbericht zur Fachtagung - Von Smart Grids zu Smart
Markets. VDE Verlag GmbH, 2015.

(Bytschkow and Ascher, 2017) Bytschkow, D. and Ascher, D.: CIM, Domänenmodellierung
und Herausforderungen für Softwaresysteme im integrierten Verteilnetzbetrieb. In Zukünftige
Stromnetze für erneuerbare Energien (OTTI), 2017.
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In this chapter, we review the related work regarding the specification and analysis of SES
systems. In particular, we discuss current activities that develop SES architectures, specifications
that target system interfaces to improve system interoperability and approaches to evaluate SES
systems in terms of architectures and new functionalities. In each section, we present the related
work, show open issues in these fields and relate them to our work. For the interested reader, this
chapter is a good entry point for further studies.

2.1 Architectures and Architectural Design Patterns for SES

Many countries, national and international organizations are interested in the development of
SES. A particular interest lies in the specifications of the involved systems, because these have
a large impact on the system vendors, power infrastructure, markets, customers and industries.
The specifications are created from people with various backgrounds, from different sectors and
numerous organizations with own goals and visions. These multi-disciplinary specification activi-
ties involve a high degree of interactions between people, software and hardware. Furthermore,
different maturity levels of the involved systems, from sketchy SES concepts due to expected
regulation policies to mature, industrial-strength solutions are considered. Hence, due to these
clashes of interests, specifications are intrinsically complex. Sometimes, they are even seen as
wicked problems (Irlbeck et al., 2013), a term coined by Rittel and Webber (1974).

Several approaches exist to reduce the complexity. Mostly, they involve abstractions to
structure and describe the involved systems. We differentiate, between approaches that derive
standards or domain specific architectures that we call reference architectures, generic architec-
tures that use a predefined pattern to structure system functionalities and architectural design
patterns that constrain the interactions of the involved components. We present those approaches
and how they differ from our approach in the following.

2.1.1 Reference Architectures and Standards

Mature domains, such as communication, databases or automotive have well known reference
architectures (Zimmermann, 1980; Sheth and Larson, 1990; AUTOSAR, 2018). They facilitate
the development of the system, re-use of components and their integration. This lowers the costs
and increases the quality.

SES do not have a worldwide valid reference architecture, due to the different national
regulations within the power sector, which concern the responsibilities of the stakeholders, the
sovereignty about the infrastructure, the related functionalities and access to data. However, there
are several recognized references to guide the product developers and improve the interoperability.
Two popular examples are the IEEE P2030 (IEEE, 2011) from the US and SGAM (ESO, 2012)
from Europe. Both approaches tackle the challenge to define reference architectures for SES with
a common terminology, different abstraction views, involved stakeholders and components, and
most importantly standardised interfaces for the interaction.
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IEEE P2030

The IEEE P2030 standard was developed to grasp the expected variety of the upcoming smart
grid technologies in the US. It started with the NIST work on a roadmap for SES standardisa-
tions (NIST, 2010). The work categorised the expected systems to seven domains and related
connections, shown in Figure 2.1. In a follow up step, the IEEE P2030 initiative continued the
development to create a reference architecture.

Figure 2.1: NIST Smart Grid Framework (NIST, 2010)

Inspired by the success of layered systems in communication and automation, IEEE P2030
introduces for layers for their reference architecture. It defines three layers on top of the presented
domains from the NIST Smart Grid Framework, a power system layer (PS-IAP), a communication
technology layer (CT-IAP) and an information technology layer (IT-IAP). To harmonize the
interoperability, components are allocated to those layers (power system hardware to PS-IAP,
gateways to CT-IAP and energy applications to IT-IAP) and their roles are shortly described
in a comment. Further, their interaction partners (other components) from the same layer are
identified. Each identified channel is labelled and shortly explained as well. However, this is done
on a very informal and rough basis. For instance in CT-IAP, two components like the market
and the public internet are connected over the channel CT26. This channel is specified as: “It
connects the market with utilities and other third-party providers through the public Internet.”
(IEEE, 2011). Other examples are similarly vague and links between the layers do not exist at all.
Therefore, this approach is applicable for classification, but it does not help system developers
to implement solutions. To address this issue, a European initiative has adapted the presented
approach in their EU Mandate M/490, the Smart Grid Reference Architecture Model (SGAM).
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Smart Grid Reference Architecture Model (SGAM)

SGAM is a European approach to develop a reference architecture for smart energy systems (ESO,
2012). It uses initially a similar systematic approach as NIST and the IEEE P2030, but extends it
with more fine granular layers and a complementary perspective that represents the hierarchical
levels of power system management, which they call zones (Figure 2.2). This supports the idea
of aggregation. Instead of a predefined top-down approach of components, SGAM provides a
more generic framework to work with use cases and structure them in the reference model.

Figure 2.2: SGAM reference framework (ESO, 2012).

The idea behind the framework is to develop SES use cases using a model based approach
and map the model elements that are of interest for the specification to the framework’s structure.
This has two benefits. First, the approach is more tailored for development using classical
software requirement elicitation techniques like use cases. This allows to develop more granular
specifications of the intended systems and map them into a general framework. Second, the
mapping allows to collect use cases, store them in a database and provide an indexed library,
where other developers can search and extend the available use cases and related standards.

The application of such approaches have been demonstrated, for example by Dänekas et al.
(2014). In addition, modelling tools have been developed, for instance the SGAM toolbox that
is described by Neureiter (2017) to support the development with a more structured process.
Although the approach looks promising at first glance, the difficulty is hidden in the details.
SGAM offers several zones for hierarchical systems. It envisions that systems of different zones
have different responsibilities with different data models and different protocols. However, the
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main problem of integrating complex EMS is not related to finding the right zone, domain and
layer. It is more pragmatic. It focuses more on the interface and behaviour specification of SES
components, and for coordination they need to correspond to the underlying mathematical models.
So it is similar to cross-cutting issues, as those that have been addressed by the cross-cutting
SGAM teams for system aspects and data communication interfaces (see Section 5.1.3 and
Section 5.1.4 in ESO (2012)). The cross-cutting issue teams particularly emphasise amongst
others the importance of semantics and formalisations of functional requirements at application
levels, as well the harmonization with data models such as the common information model (CIM),
which is an independent standard for the specification of data at the interfaces in the energy
domain.

Common Information Model (CIM)

CIM represents the state of the art standardisation efforts in the energy domain. A good overview
about CIM is given in the book by Uslar et al. (2012) or the official introduction (CIM, 2015).
More recent activities are presented by the CIM user group1. The standardisation activities span
three major standards: IEC 61970-3012, IEC 61968-113 and IEC 62325-3014 that cover different
areas of the power system domain.

The authors work with a model-based approach for their specifications, mainly using the uni-
fied modelling language (UML) to provide a technological independent and abstract description
of the data that exist in the power domain. With the strong focus on modelling power systems,
particularly on electrical equipment, distribution management and markets, CIM has a clear focus
on the interoperability and data exchange of current centralized applications within the energy
domain. Architectural questions are not in the scope of CIM. It therefore lacks in capabilities
to specify architectures, or to describe the behaviour of the intended systems. But it is still very
useful as an internal model within applications to represent power systems.

Bottom-up Development of Reference Architectures

Reference architectures offer a good starting point for the development process and provide
orientation. But unfortunately, the standardization bodies IEEE and European Standardizations
Organizations (ESOs) specifically demand to use top-down approaches (CIM, 2015) following
their classification, while the development of innovative solutions is often organized bottom-up,
where researchers or companies build prototypes to try new approaches or system architectures
and test their application in field tests. Therefore, collecting the information gathered from
those solutions is another important contribution for specification activities. To approach these
development efforts Irlbeck et al. (2013) presents a complementary bottom-up approach that is
based on an incremental extension. In his work, the author develops a method to develop SES
reference architectures based on architectures of systems with different maturity. The intention is
to enable that the reference model can be used and extended by non-experts, but still provide

1The CIM user group: https://cimug.ucaiug.org/, last accessed in March 2020
2IEC 61970 - Part 301 is the base model of power system components and their relations at the electrical level.
3IEC 61968 - Part 11 is an extension for the asset management, work scheduling and customer billing.
4IEC 62352 - Part 301 is another extension that covers the required data exchanges for electricity markets.
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enough formality to analyse system properties or identify important interfaces for standardization.
This approach led to a broader reference architecture (Irlbeck and Koutsoumpas, 2015), which is
particularly useful to aggregate developed solutions and provide a bottom-up specification model
for novel domains.

Relation to our work. The line of research that we presented above is the state of the art to
reduce the complexity of SES and facilitate the development of accepted standards and clearly
defined interfaces for interoperability. The presented approaches help to classify systems and
structure use cases according the defined layers, domains or zones. The classification allows to
compare new applications or systems with systems in the same field, or with systems that are in
the nearby.

In our thesis, we consider the presented reference solutions, but we focus only on one specific
part of it, namely those applications that fall into the category of a hierarchical coordination with
EMS that offer similar functionality and interfaces, including virtual power plants, prosumer
and microgrids as important flexibility providers. We present them in Chapter 5 and Chapter 6.
Our topic is therefore less broad than the presented approaches, since we do not want to give a
reference architecture. Instead, we present a method and specification support to for hierarchical
coordination architectures and present their application in the energy domain. Nevertheless,
we use several components, that can also be found in IEEE P2030, SGAM or the reference
architecture in Irlbeck et al. (2013) and Irlbeck and Koutsoumpas (2015). In addition, we use the
data models of CIM (2015) for our technical implementation (see Section 4.3) as a standardised
representation of the power network and to provide a technology for evaluation that is as close as
possible with real industrial applications.

2.1.2 Generic Architectures for SES

Another line of architecture research for SES tries to reduce the complexity by finding common-
alities for the operation and control of power equipment. The idea is to offer power resources
(production and consumption) to other SES components, to reach a better balance between the
supply and demand of power. That balance is of paramount importance for power supply networks
to achieve a stable operation. Architectures for systems that focus on these commonalities are
often designed with a generic approach in mind. Different generic approaches exist, but the core
idea is to create a cooperation of similarly designed interactive systems. In the following, we
present the work on generic architectures for SES from several research groups.

Prosumer-based Architectures

The research from Moslehi and Kumar (2010) analyses reliability challenges in the power network
due to increasing renewable energy sources. They find that most of them can be solved with
available technologies. Particularly, load management and demand response technologies are
promising. To consider the distribution and large amount of components, they suggest a flat
architecture, where each system offers some particular functionality that can be consumed by
other systems. Instead of central SCADA systems, they suggest to use “intelligent functional
agents” for temporally coordinated hierarchical monitoring and control actions.
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Another work is presented by Grijalva and Tariq (2011), who goes in the same direction
and proposes a prosumer-based smart grid architecture (Figure 2.3 left hand side), to enable a
flat, sustainable power supply. The prosumer is the basic entity in his work. He requires that a
prosumer internally has a layered architecture as in automation systems and specific applications
to interact with other prosumers directly. He argues that the smart grid can be designed as
a network of such prosumer systems. At the same time he shows an architecture of such an
autonomous generic prosumer (Figure 2.3 right hand side) that contains several applications.

Figure 2.3: The prosumer oriented system architecture as depicted in (Grijalva and Tariq, 2011)

Even though the ideas are clearly formulated, the authors stay very generic. They also give
only little details about the intended interfaces stating only very rough ideas. For instance, they
say for the local control service (LCRRL) interface provides operations called “Capability”. But
they omit to explain how such capabilities are specified and how they are used in the system.
They also do not present whether every prosumer has the same set of applications and whether
every prosumer exposes all of its interfaces at each layer to external components or not, and if
there are particular roles for prosumers, like utility prosumers or home prosumers and how they
differ. Without further refinement and a more concrete specification, system developers cannot
realize such systems since many details remain unclear or even ambiguous.

Service Oriented Architectures

The service oriented architecture (SOA) approach (Papazoglou, 2003) is another generic approach
to create an architecture for SES. In SOA the complexity is handled by encapsulating parts of
the required functionality as services that are well-defined, self-contained software components,
which provide standard programming interfaces and are independent of the state or context of
other services. A published service interface provides a common interface, through which any
application can be accessed independent of its concrete implementation (Papazoglou and Van
Den Heuvel, 2007).

It has been demonstrated that EMS systems, e.g. prosumer (Koß et al., 2012; Duchon et al.,
2014), or demand response applications (Chrysoulas and Fasli, 2017) can be created using SOA.
In a SOA each software component is designed as an individual service, which offers a defined
interface to other services. To receive data it subscribes to other services. The communication
is realized either over common internet based protocols, such as TCP/IP or over dedicated
communication buses. This means that every service sends and receives messages that are defined
by the interface over dedicated communication implementations. Shared knowledge between
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different services is avoided. Two goals are achieved in this context: A generic approach for
system interaction in a heterogeneous hardware landscape, which offers generalized interfaces
for data, and higher-level services for data-analysis, event processing and control applications.

An overarching architecture for SES can use SOA concepts, for instance to create a system
that is similar as envisioned by Grijalva and Tariq (2011). Nevertheless, the freedom to create any
service with SOA is just an enabling technology. Without additional restrictions or requirements
to follow certain SES standards, there is no guarantee that SOA based SES systems interacts in a
well defined way. Therefore, the success of a SOA architecture is directly coupled to additional
restrictions and specifications for the desired behaviour and data that is exchanged over the
interfaces.

Holonic Architectures

Holonic architectures are another way to construct hierarchic, flexible and agile systems. A
holonic architecture is an architecture for a system that consists of interacting holons. A holon is
an interactive software component, for which autonomy and cooperation are the two essential
features. It was introduced by Koestler et al. (1967).

Several approaches exist that uses holons to design generic SES architectures, e.g. the work
by Frey (2013); Frey et al. (2013) and by Negeri et al. (2013). A holon is the basic entity in both
approaches. It represents a prosumer system, or more concrete the external visible “gateway”
component, as well as smaller autonomic devices and also systems that integrate and manage
multiple prosumer systems. Frey (2013) develops in his work the generic architecture from the
context of Autonomic Computing with its monitor-analyse-plan-execute (MAPE) cycle (shown
in Figure 2.4), which was introduced in the work of Kephart and Chess (2003).

Figure 2.4: The MAPE control architecture as introduced by (Kephart and Chess, 2003).

In this cycle, there are labelled software components that implement several dedicated
functionalities. The first one is denoted as Monitor. It represents the component that is responsible
to collect the required data. The next component that is denoted as Analyze covers data processing.
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It calculates the current system state or identifies states that requires follow up actions. The
next component called Plan is responsible to plan future task executions. Finally, the execution
of certain actions that lead to a new system state is denoted as Execute component(s). If the
components share common knowledge, e.g. a common database, the architecture is often denoted
as MAPE-K architecture. The MAPE-K cycle forms a control loop around the managed element,
which represents the system of interest, for instance a physical system or a server infrastructure
that runs multiple software components.

Following the Autonomic Computing vision, Frey (2013) designs holons as components
with SES specific functionality. The holons cover the different areas of monitoring, analysis,
planning and execution as a MAPE based architecture. Frey introduces different applications
for a house and a district scenario, where he structures different holons, similarly to different
SOA services as sub-components of the house or the district EMS. The holons are autonomous
software components that interact via message exchanges. His work focuses on the question how
the system handles multiple-objective goals with its generic architecture.

Another comprehensive work with holons as the main architectural element is presented
by Negeri et al. (2013). He uses holons to create an architecture for a control system, where
holons provide several control services and are arranged in a holonic hierarchy (Figure 2.5a). The
services are available using the SOA approach (Figure 2.5b). Negeri describes in his work the
services of a holon, derives the control architecture and presents the results for a coordinated
activity to achieve a peak reduction in a network of houses with photovoltaic systems, electrical
consumption, electrical vehicles, and micro-CHPs.

(a) Organisation of holons.
(b) Architecture of a control holon.

Figure 2.5: Holonic SES systems as depicted in (Negeri et al., 2013).

The holonic concept has a clear focus on autonomy of software components and their
interaction over communication. Every holon has a clear system boundary - its interface -
over which it receives or sends messages. In addition, holons are part of larger systems. This
hierarchical structure is sometimes denoted as a holarchie. Beside these restrictions, the holonic
concept is rather open to create any kind of system with any kind of different holons inside this
system. This is also reflected in both approaches, either from Frey (2013) or Negeri et al. (2013).
Both approaches introduce different types of holons inside their systems, which cover different
functionalities, have different interfaces with different messages for their communication. The
generic aspect in Frey’s architecture is present through the convention that every component
implements a MAPE cycle and a way to approach a multiple goal environment. There is no
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enforcement of a similar interface or a defined behaviour including certain criteria for aggregations
or disaggregations for each EMS in that approach. In consequence, even if you argue that each
EMS has those particular functionalities like monitoring, analysing, planning and execution, there
are no particular restrictions that enforces each EMS to offer similar data at their interface. In
consequence it might happen, that each system is again individual with respect to its interface
and behaviour, even if internally holons are denoted with equal labels. Negeri’s work describes
that each holon offers a set of services with interfaces according the SOA principles. All services
are presented as internal parts of control holons. From the behaviour point of view, the authors
describe their major use case as a negotiation process that relies on different behaviours of holons
that belong to different organisational layers. Therefore, it remains unclear if the holons from
different organisational hierarchies are generic with respect to their interface and behaviour or
if they are again individual systems with individual interfaces. Thus, the holonic concept is
promising, but it requires further work to create a generic architecture for a system with suitable,
interoperable interfaces and the desired hierarchic structure.

Organic Computing

Another approach that aims to reduce complexity for the control of large distributed systems,
such as a smart grid, is Organic Computing (Schmeck, 2005). The name “organic” reflects its
inspiration from biology, where systems are self-contained entities and interact with each other
to achieve some common goal. Organic computing is similar to the MAPE-architecture and
introduces common terms to improve the structure and with that reduce complexity. The generic
architecture of the approach was introduced by Richter et. al (2006) as an observer/ controller
architecture (OCA). The observer collects and aggregates information about the system under
observation and control. The controller receives the aggregated values and takes appropriate
action to influence the system. The focus on these two components particularly emphasizes the
fact that input / output specifications are essential to define proper software architectures. The
OCA can be customized to meet the requirements of different scenarios. At least three main
architectural options are available: (a) central, (b) decentralized / distributed, and (c) multi-level /
regional / hierarchical (Schmeck et. al., 2010). They are shown in Figure 2.6.

(a) Central (b) Distributed (c) Multi-Level

Figure 2.6: Possible realisations of the generic Observer/Controller architecture as depicted
in (Tomforde et al., 2011).
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For smart energy systems, a multi-level hierarchic OCA is presented in the context of smart
homes. An OCA is used to create a flexible middleware, with the objective to integrate different
energy specific applications (Allerding, 2014). A local observer-controller [O/C] component
is assigned to each smart home device. Local O/C-components implement the required device
functionality. A global O/C-component receives the filtered and aggregated information of local
O/C-components to obtain a global state of the system. Based on that it calculates forecasts and
uses optimization techniques to calculate the desired behaviour of the whole system (Becker,
2014). The consideration of multiple energy networks (sector coupling) with OCA is presented
by Mauser (2017). Note, that internally, O/C components can be modularly designed using layers
and exchangeable O/C-units, such as different optimizers or hardware abstraction components
as described by Mauser (2017). The OCA work focused on the development of a particular
building energy management system representing a prosumer. Therefore, even if OCA might be
promising, beside structure, the application of the generic hierarchy with common interfaces as
an underlying architectural concept is still an open question for OCA as well.

Cellular Architectures

Finally, there is another recent concept that is currently widely discussed in Germany in multiple
research projects. It envisions the definitions and investigations of new generic architectures
that enable nested hierarchic EMS structures with different levels. It is denoted as a cellular
architecture. Here, the most popular and recent work is based on activities that are triggered by
the VDE study written by Benz et al. (2015). In their work, the authors analyse the potential
for energy coordination in local area networks and demonstrate how it helps to improve the
network’s operation. The work does not introduce holons, agents or any other form of interactive
or intelligent software systems, it focuses rather on the power technology, current consumers
and achievable energy balances using flexible shifting capabilities similar as Moslehi and Kumar
(2010). The authors show that the system can benefit from a generic architecture approach,
introducing an analogy with cooperating cells (also inspired from biology), where a cell (an area)
is formed from available flexible power components, and smaller cells form larger cells. However,
a concrete definition for a cell and even simple details, like the involved control systems with the
corresponding system boundaries including the data input/output specifications, are missing.

Relation to our work. The presented work of the authors for generic architectures pursue similar
ideas and think in the same direction, as we do in our work. Especially Moslehi and Kumar
(2010); Grijalva and Tariq (2011); Benz et al. (2015) present the potential of the idea very nicely.
Nevertheless, the authors remain rather informal in their studies and omit many important details
for systems developers. The work of Allerding (2014); Becker (2014); Mauser (2017) and Frey
(2013); Negeri et al. (2013) provide more concrete examples. They present several technological
case studies. However, it seems that the ideas in those examples to establish generic architectures
are mainly driven by structural concepts like the MAPE cycle or OCA and complemented by
the emphasis on autonomic nature in the holonic approach. However, it is often not clear if
the presented approaches provide similar interfaces and behaviour, as expected for instance by
Moslehi and Kumar (2010). Several design and implementation questions remain therefore open.
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In our work, we also approach the desired hierarchic system over several layers. We use the
ideas from the presented examples, for instance the fact, that each software system, be it a holon,
or a prosumer, is in fact an EMS with an interface that provides the details for available resources.
We give a clear specification about what an EMS is, describe its interface and the expected
behaviour of such a system to utilize the resources. Additionally, we extend and strengthen
the previous work with architectural design patterns to improve the used software engineering
practises. We demonstrate the usage of well-known interface technologies and concepts such
as REST and OPC UA to show the applicability in a more industrial context. Internally, in our
technical implementation of the behaviour logic we use similar software technologies as Frey, for
instance the akka5 framework. We refer to Chapter 4, where we introduce those concepts and
developed technologies.

2.1.3 Architecture Styles and Architecture Design Patterns

In the previous section, we present general architectures that are used to design novel smart
energy systems. However, there exist another complementary perspective from the software
engineering domain that greatly facilitates the development of systems, which is often denoted
as architecture styles or architecture patterns. It captures best practises from software engineers
that have solved reoccurring problems multiple times and defined specific styles and patterns
to approach architectural questions. It particularly allows dividing important functionality of
component and structuring them in clear and efficient manner. In the following, we shortly
introduce this perspective.

The terms architecture style and architecture pattern are both used to categorise architectures
by describing their commonalities and involved design decisions. The usage of the terms is based
on different definitions and interpretations, and is therefore often inconsistent and sometimes
confusing. We do not want to provide an in-depth discussion and elaboration about all the
different nuances and possible interpretations of this topic, but rather point to existing literature
that deals with this issue and gives a pragmatic interpretation that is used in this thesis.

A detailed discussion about architecture styles, architecture patterns and their differences
can be found in the work of Taylor, Medvidovic and Dashofy (Taylor et al., 2009). After
defining a software architecture as a set of principal design decisions made about the system, they
differentiate between an architectural style and an architectural pattern providing the distinction
that a style is a collection of design decisions, which are context oriented, and a pattern is a
collection of more specific, problem oriented design decisions. Further, the term style is used to
designate strategic decisions and pattern for tactical decisions. Therefore a style differs from a
pattern in its scope, abstraction and the relationship between the design decisions (Taylor et al.,
2009). A clear differentiation relies, however, on an interpretation, whether a design decision is
abstract enough to belong to a style or a pattern. Consequently, they admit that it is not always
possible to identify a crisp boundary between both terms.

Another detailed terminology discussion is given by Fielding (2000). In his work, he
elaborates the terms, architecture, its meta-model (i.e. the elements of an architecture) and
architectural style, which he defines as a coordinated set of architectural constraints, that restricts

5https://akka.io/, last accessed in March 2020

21

https://akka.io/


2 Related work

the roles of architectural elements and the allowed relationships among those elements within
any architecture that confirms to that style. He uses the term architectural style as a mechanism
for categorizing architectures and for defining their common characteristics. He also compares
the term with other definitions, in particular with the work by Perry and Wolf (1992), and the
definitions by Garlan and Shaw (1993); Garlan et al. (1995) and Shaw and Clements (1997).

In contrast to a style, the term pattern does not necessarily target architectures. Instead,
patterns often address implementation specific concerns, i.e. as a recipe for implementing a
desired set of interactions among objects. For instance, SOA is rather a pattern than an architecture
style following this argumentation. According Fielding, patterns are a well-proven possibility
to solve a specific functionality on the implementation level rather than a set of constraints that
restricts the instantiation of the architecture meta-model.

In fact, the definitions of the terms architecture style and pattern are often differently used,
because they directly depend on the definition of the term architecture itself. And many software
architects, including Taylor, Fielding, Perry, Wolf, Garlan, Shawn and Clements, have an own
definition what an architecture is. However, two common observations can be made: (i) Styles
and patterns are used to classify architectures and obtain some kind of architecture classes, and
(ii) a pattern is usually closer to implementation than a style. To avoid further confusions between
those terms, we use the term architecture design pattern (see also Marmsoler (2018)) in the
following.

Several widely accepted architecture design patterns have large impact on system development.
We just name a few to give concrete examples for architecture design patterns. For further
explanations and more detailed examination of this topic we refer to Taylor et al. (2009). A very
successful (and simple) architecture design pattern is the so-called client-server model. This
architecture design pattern knows two elements, the client and the server. The client always
initiates the communication. It sends a request to a server, which takes the request, performs the
required actions and replies to the client. The constraint is that two clients cannot interact. Another
successful example is the layered architecture design pattern, which is the underlying concept
for current communication technologies. Further examples for architecture design patterns are
peer-to-peer, publish-subscribe, pipe-and-filter or the blackboard style.

Working with architecture design patterns significantly helps to design systems, since it
enforces to define concrete roles of components and how they interact. At the same time many
libraries and technologies support the implementation of such systems. Today, we observe
many SES systems that work with architectural design patterns, including SCADA systems
with layers as well as client-servers (Daneels and Salter, 1999; Stouffer et al., 2006), SOA
systems where layers, publish-subscribe and client-servers occur (Duchon et al., 2014), the
presented OCA and holonic systems that have layers for hardware and service abstractions
(Frey, 2013; Allerding, 2014), but also peer-to-peer architectures that are discussed in vision
papers (Lasseter, 2011) and implemented for specific applications for market scenarios in
combination with blockchains (Thut, 2018). But often those architecture design patterns are
not explicitly addressed and the purpose for those decisions is not clear in the SES context.
This leaves a lot of interpretation room for systems developers and leads to an inconsistent
understanding of the intended system complicating further progress on system development.
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Relation to our work. In this work, we do not want to conduct a deep discussion on the
terminology and differentiate between an architecture style and a pattern. Hence, we prefer to
choose only the term architecture design pattern for our categorisation and use constraints that
refer to architectural elements and their composition. Our definition of an architecture design
pattern has two integral parts. The architecture meta-model defines the elements of an architecture
and their composition. Constraints define the propositions that refer to those elements and their
composition. Consequently, if a system architecture is an instance of the architecture meta-model
and fulfils all of the constraints, than it is an admissible system architecture that adheres to the
architecture design pattern. Figure 2.7 presents a schematic representation of our definition what
an architecture design pattern is.

Architecture design pattern

Architecture
Metamodel

Constraints
refer to

System
Architecture

≪ instanceOf ≫ fulfils

Figure 2.7: A schematic representation of an architecture design pattern and its relations to a
metamodel, constraints and architectures.

A consequent application of architecture design patterns to real systems result in a set of
advantages and limitations. One advantage is a greatly improved technical understanding of the
system’s structure and capabilities. Another one is the technical support to reuse and integrate
components. A good example for this is the plethora of components that supports server and
client architectures, or technologies to support the enforcement of security in a layered system.
The good aspect about architecture design pattern is that they can be combined and as long
as they do not interfere with each other. The combination yields basically a combined set of
advantages and limitations (Fielding, 2000). We describe in Chapter 4 how we combine several
basic architecture design patterns to establish our own hybrid architecture design pattern that
helps to implement a generic architecture for SES systems.

It is worth noting here that all approaches, the design of reference architectures, for instance
IEEE P2030, SGAM or Irlbeck et al. (2013), generic architectures, for instance Frey (2013) and
Grijalva and Tariq (2011), as well as architecture styles presented by Fielding (2000) and Taylor
et al. (2009) support the development of the SES vision, by providing a clear terminology and
present possible solutions. These efforts facilitate the integration of components describing the
roles for interconnection and the involved interfaces, but each with another abstraction perspective.
This allows re-using specifications, code and technologies for the interfaces. It simplifies the
integration efforts, reduces costs and increases the quality of the systems.
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2.2 Technical Support for the Evaluation of SES

During the last years many different models, coordination algorithms and architecture concepts for
SES have been developed and evaluated with respect to achievable improvements regarding costs
and emissions or with respect to the technical feasibility. Therefore, different kind of simulations
or demonstrators were developed. The conducted research activities can be distinguished into
systems that represent energy nodes, such as buildings or microgrids and related EMS, and
systems for coordination of power networks, which either address EMS for the operation of
energy networks, e.g. SCADA systems, with dedicated network simulations or solutions that
consist of multiple combined simulations, which we understand as co-simulations. In the
following, we present both approaches and additional technical frameworks that support those
activities.

2.2.1 Living Labs and Smart Buildings (EMS for nodes)

Recently, many new technologies have been developed and installed at the lowest level of our
power supply system, including photovoltaics, storage, CHPs and electrical charging stations. The
demand that those solutions are interactive and support our supply networks more actively leads
to the development of local EMS. In the energy community, such systems are called prosumer,
microgrids, living labs or simply smart buildings. The terms address similar research directions,
where the idea is to create concrete systems and evaluate their potential impact with real demon-
strators. Of course, each solution is often implemented differently. Nevertheless, the solutions
discuss similar functionalities, similar technological stacks, similar architectural ideas and similar
energetic flexibilities. Therefore, their development and the experience collected during those
activities is extremely useful, when the experience is transferred into real applications.

There are plenty of demonstrators available together with very good overviews for that
domain, e.g. by Becker (2014) or Mauser (2017). We therefore refer to their work, instead of
repeating the plethora of details. In their work, Becker (2014) develops together with Allerding
(2014) an EMS for a prosumer system based on the organic architecture approach, that we
presented in the previous section. Their demonstrator is therefore sometimes denoted as the
organic smart home. The system is integrated into the FZI 6 House of Living Labs (HoLL) and
can be used to study the impact of buildings that are aware of their consumption, can adapt their
consumption depending on the user’s comfort and interact with its environment. A technical
overview of the HoLL demonstrator is shown in Figure 2.8 and its software architecture is
illustrated in Figure 2.9. Mauser (2017) extended the demonstrator to cover particularly multiple
energy carriers and derived more advanced control algorithms for the EMS.

The development of the HoLL demonstrator towards a multi-energy system follows the
general trend of combining more energy systems from various sources, as the combination
of several available components promises a better energy utilization and with this another
improvement towards less carbon emissions. This demands additional extensions of building’s
EMS making them more complex, but enabling also the usage of further flexibilities. Therefore,

6A research center related to the Karlsruhe Institute for Technology (KIT), Germany
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Figure 2.8: HoLL: Technical overview according (Becker et al., 2015)

Figure 2.9: HoLL: Software architecture according (Becker et al., 2015)
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more multi-energy solutions for Living Labs and larger systems such as quarter solutions and
microgrids are being further developed. A good example for the next development stages is
the Center for Combined Smart Energy Systems (COSES)7. The goal here is the experimental
demonstration how individual buildings can interact with multiple energy networks and the
validation of power systems models that are currently used for control or within simulations.
The research activities include several perspectives, such as the supply of heat and electrical
power, communication, control and energy management that provide available flexibilities of the
buildings and a connection with external software systems including specific data and interfaces.

Relation to our work. At our research institute fortiss we followed a similar approach as
(Becker, 2014; Mauser, 2017) and developed our own SES Living Lab demonstrator with several
applications, such as predictions and demand response with interfaces in order to interact with
external SES environments. The Living Lab is described in the work by Koß et al. (2012) and
Duchon et al. (2014). It serves us as a prototypic environment to study new methods and control
strategies for the operation of the building, study available protocols and to define interfaces for
potential interactions with the environment, for instance how to offer flexibilities and how in
implement them internally. It also helps to gather data, improve applications for instance energy
forecasts (Rottondi et al., 2015) and try machine learning approaches (Bajpai, 2018). It was also
used in multiple European research projects to integrate it with other Living Labs amongst other
with the HoLL environment and as a technology to coordinate several hierarchic, self-similar
energy nodes in India as presented by Gupta and Duchon (2018). The Living Lab serves as a
reference to implement co-simulations such as virtual power plants (Chapter 5) or coordinating
platforms (Chapter 6). Further, our system will be used at the COSES research centre to study
the interaction of buildings and how to communicate optimized schedules to the building’s EMS,
without interfering too much with their internal measuring and control technology.

2.2.2 Co-simulations (EMS for Networks)

Another way to study the impact of interactive SES solutions and their effects on the network
relies on the usage of simulations. They are a widely used approach to study and analyse
the behaviour of systems, particularly when the systems are complex and many details exist.
Simulations allow to represent novel control strategies and processes that appear in SES, such as
load scheduling, market services or charging of electric vehicles, and execute them under various
conditions. This way, the results and impacts created by novel SES solutions can be analysed.

Usually, simulations are designed to analyse particular parts of the system. In SES those are
for instance physical power flows, energy costs and emissions in particular market designs or
communication delays in real time control systems and their effect on stability. The simulations
work with certain assumptions and detail abstractions. Not all details are covered in a single
simulation. When novel systems with innovative control approaches or market interactions
appear, researchers need to decide, which simulation is suited best to analyse their impact.
Sometimes more than one simulation is required. Therefore, the idea for combined simulations

7www.mse.tum.de/en/coses/, last accessed in March 2020
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(co-simulations) receives more and more attention. Industrial simulation tools seldom provide
a full support for all kind of interactive systems with different inputs and protocols from their
environment, because it is a great overhead for implementation. Therefore, co-simulations
become more attractive. Their excellent use is demonstrated by several software researchers in
the SES domain (Basso et al., 2013; Rohjans et al., 2013; Schütte, 2013; Molitor et al., 2014;
Steinbrink et al., 2019).

Co-simulations are particularly useful to study novel applications and investigate their archi-
tecture design decisions to create real running systems. Our aim is to study several use cases
that include different coordination approaches, like the determination of optimized schedules
for power supply, demand and storage, but also analyse how flexibilities within power supply or
demand can be represented so that are offered as services over interfaces for control applications.
Therefore, two major requirements need to be covered in our approach: We need a very flexible
modelling framework that supports the implementation of our expected services as part of ded-
icated software components or agents that communicate with each other. The communication
topology and message sequences shall be as flexible as possible. Additionally, we need the
simulation of the physical power network, including different physical properties, such as power
flows, voltages as well as different levels and topologies. This is the second major requirement.

A number of related tools that meet the two major requirements have been developed during
the recent years. One early example is the Epochs framework (Hopkinson et. al., 2006), which
couples an agent based simulation with dedicated power system simulation tools using the high-
level architecture (HLA) approach. An extension of that framework was introduced by Lin et. al
(2011) in order to improve the accuracy due to the mixture of event based communication and
cycle based calculation of the power system simulation.

Another approach is MOSAIK, that is available as OpenSource8. MOSAIK was first intro-
duced by Schütte et al. (2011). It is designed as a co-simulation environment with an extended
concept for coupling agent-based and power flow simulations, in particular, for large-scale
simulations, including generation and parametrization of models. Many other tools are available
that go into the same direction. A good overview is given for instance by (Schütte, 2013) that
presents the different approaches and compares their benefits. Another broad summary about
tools that are used in that domain is also provided by Mauser (2017).

Relation to our work. Due to the context of our live running Living Lab demonstrator that exist
at our research institute, as introduced by Koß et al. (2012); Duchon et al. (2014), our intention
was from the beginning not to use only predefined data only, such as *.csv files with profiles of
recorded data, which would be the conventional simulation approach. Instead, the aim is that SES
components are directly integrated into a simulation environment. This allows that the simulation
works directly on real measurements that are communicated from external systems, similar to a
hardware-in-the-loop environment. Therefore, we analysed the available tools and libraries and
created a co-simulation framework that implements dedicated communication interfaces on top
of different power flow solvers and enables the possibility to interact with external systems. We
describe it in more detail in Chapter 4.

8https://mosaik.offis.de/, last accessed in March 2020
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Our co-simulation framework helps us to achieve two goals: Firstly, we can quickly develop
and simulate custom SES solutions and test their feasibility. Secondly, we can test real devices
or applications that support industrial communication protocols, such as OPC UA, IEC 60870-
5-104, Modbus or Siemens S7, and also web based APIs based on REST that are provided by
other research departments with a context given by the simulated environment. In contrast to
co-simulations like MOSAIK, the focus is therefore, not on the generation of large scenarios, but
rather on the evaluation of specific control strategies and the definition of interfaces and flexible
SES architectures, which we present in Chapter 5 and Chapter 6.

2.2.3 Further Technical Frameworks for Distributed Systems

Finally, we like to mention another approach that is not SES specific, but has relevance for
this thesis and also today’s systems in general, since it supports the implementation of highly
distributed systems with available technical frameworks. The approach is similar to multi-agent
systems, but it is based on the so-called actor model. The actor model was first described by
Hewitt et al. (1973) and later extended with Hewitt and Baker (1977) and Agha (1985). In
general an actor is a concurrent entity of computation. It has a message box, internal states and a
behaviour that is triggered by messages. Actors interact by sending messages asynchronously.
After receiving a message in its message box, an actor processes one message at a time. It
executes the following actions concurrently in one step (Agha, 1985): (i) send a finite number of
messages to other actors, (ii) create a finite number of new actors and (iii) determine a behaviour
that handles the next message. An illustrative representation of the basic actor semantics is given
by (Karmani et al., 2009) in Figure 2.10.

Mailbox

Methods

States
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Mailbox

Methods

States
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Methods
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Figure 2.10: Illustration of the actor model (adapted from Karmani et al. (2009)).

The actor model has an impact for implementing systems such as web-services, objects with
locks and functional programming, not only because it allows to implement highly distributed
systems on different machines and distribute the program over the network, but also because
it greatly facilitates to use multi-threading and modern multi-core CPUs with less dead locks
and data races. This provides good scalability, where a single machine might need to handle
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thousands of requests per second. The scalability is not only useful to create web-services,
but also implement simulations that include many different interactive components. The actor
model has today strong support with available software libraries that greatly support implementa-
tion activities, such as scala actors (Haller and Odersky, 2009) and its successor library akka9

as described by Haller (2012) and the documentation written and maintained by Lightbend (2018).

Relation to our work. The design of the generic architecture is not dependent on the introduced
actor model. But the presented actor frameworks, particularly the recent implementations of
akka (Haller, 2012) and (Lightbend, 2018) are helpful to develop a highly scalable framework
to enable simulations and integrations to other external systems. The reason is that distributed,
remote components should interact only via messages, and the desired simulation framework
should be scalable. Our development efforts to establish a proper SES simulation framework
uses the mentioned framework. More details about our approach and the used actor technology is
described in Chapter 4, while concrete SES applications that are based on that technology are
described in Chapter 5 and Chapter 6.

9https://akka.io/, last accessed in August, 2019
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3 ∣ Background and Foundation

In this chapter, we introduce basic terms, mathematical models and concepts that we use through-
out the thesis. The chapter is structured into two main parts. Section 3.1 describes the necessary
background for this thesis from the energy modelling perspective. It introduces relevant math-
ematics models that are used in current operation and their field of application. In Section 3.2,
we discuss how those models affect the design of hierarchic architectures and related system
interfaces. We focus particularly on EMS and coordination approaches in hierarchical structures.
These two parts are the central aspects of this thesis and serve as our foundation to develop and
evaluate the hierarchic SES architecture later on.

3.1 Energy System Models

The operation and control of SES rely heavily on mathematical models of power system engineers.
Simultaneously, software engineers that create control and monitoring systems are faced with
questions for designing appropriate system interfaces, since in practise, control and optimization
systems require data to be transferred to be able to operate. The data specifications required by the
interfaces are implicitly available within the mathematical models. Therefore, understanding those
models as the hearth of system operation is of paramount importance to create SES applications
and related architectures.

Mathematical models are included in different energy systems: inside control applications,
inside scheduling and optimization systems, as a foundation for energy markets that enforce an
economical operation, integrated in design tools to layout the infrastructure in order to configure
and size the installed equipment, and of course to calculate costs, income or determine expected
emissions. Depending on the purpose, such models vary in their granularity and associated details.
The details depend on great extend on the systems at hand and on the time period that is of
interest ranging from seconds, where models are the basis for functionality like control or safety,
over minutes and hours, where models focus on operation and coordination of systems, up to
months or even years, where models investigate system sizes, costs, numbers of components as
well parameters and the types of required systems, as shown in Figure 3.1.

Time10 ms 1 s 1 min 1 h 1 day 1 year

Protective
Systems

Exciter,
Stabilizer

Kinetic
Energy

Ancillary Services:
Freq. control + AGC

Economic Dispatch
(Real-time market +
Redispatch)

Unit Commitment
(Day-ahead market)

Long-term Contracts
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Figure 3.1: Key functionalities and related time scales for power system coordination and
operation (adopted illustration from Jokić (2007) and Huber (2017)).
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The focus of this thesis is the development of system architectures that enable the interconnec-
tion of EMS. We assume that EMS use conventional communication, such as TCP/IP. The reason
is that many EMS are privately owned and operated. For communication, they rely on gateways
that establish secure communications over the internet. Dedicated real time communication
networks are probably to expensive for consumer EMS. Therefore, we focus on the coordination
and operation time scales that are marked in blue in Figure 3.1. Fast control applications with
real time requirements are out of scope.

Coordination applications cover three major tasks: unit commitment, economic dispatch and
ancillary services (see also Huber (2017)). These tasks are supported by coordination approaches
based on models that are economically driven, such as day-ahead markets and real-time markets,
or based on models that consider technical limitations, such as re-dispatch measures by the system
operator. Their main goal is to achieve a reliable, but economic power supply. Unit commitment
tasks schedule the on/off-line status of large power plants, like coal or nuclear. Since those units
have considerable start-up or shut-down times, this task is done quite beforehand. Economic
dispatch determines the exact power production of each generation unit for the upcoming time
periods. This is usually done quite close to operation. Ancillary services is a term that comprises
all services that are activated at runtime to ensure a balanced system. It is a cascading system of
control systems. It includes frequency control (primary control) that limit the deviations from the
nominal frequency and automatic generation control (AGC) that restores the used primary control
resources (secondary and tertiary control). Also those services are mathematically modelled and
traded on particular energy markets.

The white marked blocks of Figure 3.1 indicate that there are many more systems required for
power system operation, both on the faster and slower time scales which are not in the scope of this
thesis. The blocks labelled protective systems, exciter, kinetic energy are necessary to keep the
power system infrastructure technically intact and stable providing thermal protection or isolation,
voltage stabilization, fast frequency drops, respectively. We refer to classical power system
literature, e.g. Kundur et al. (1994) or Andersson (2012), for the interested reader to study those
systems in more detail. The blocks labelled maintenance, long-term contracts and investment
planning, belong to the area of risk management and infrastructure expansion optimization. We
refer to energy system planning and energy economics literature, e.g. Kirschen and Strabac
(2004) or Söder (2011), to get more inside into those activities.

There is no single, commonly accepted model, or approach for coordination that is used
worldwide for all power systems, as power supply systems strongly depend on national regulations
and market designs. The coordination approaches vary more or less from country to country,
depending on the responsibility of power system stakeholders. An attempt to present the large
variety of different possible mathematical models does not serve the purpose of this thesis.
Therefore, in the following of this section, we introduce only a selection of models to demonstrate
how they can be integrated into the desired architecture later on. We use a top-down approach.
We start with high-level, abstract models of the market, which are responsible to improve the
economical operation. We continue with more granular, physical models to present additional
effects that effect the operation. Those models particularly address the operation of energy
networks. Our investigation of energy system models is required to define appropriate system
boundaries, related architectures and system interfaces later on.
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3.1.1 Market Models

Today, the operation of energy systems is essentially coordinated by energy markets. Energy
markets were introduced in the late second half of the 20th by the individual countries (Baldick
et al., 2005), starting worldwide with USA and Chile, in Europe with England and Wales,
and in late 1990s in Germany. The goal was to liberalize the monopolies of the state-owned
or state-regulated, vertical integrated utility companies by splitting the responsibility between
infrastructure operation (transmission and distribution), power generation and customers to
facilitate market based competition. The intention was to create an open, transparent access
for producers and (representatives of) consumers that participate at the energy system. The
infrastructure operator was mostly decoupled from the market. He was only left with the
responsibility of ensuring the safe and reliable operation of the infrastructure.

The energy supply system requires a balanced production (supply) and consumption (demand)
of energy at any point of time. Otherwise, the system becomes unstable and blackouts occur.
Energy markets support the balance with an economical mechanism to adjust supply and demand.
They also ensure that producers are paid for the energy they generate, and consumers pay for
the energy that they consume. Even if the power system is partly automated, the energy market
and related payments are not performed at real-time1. As a solution, energy markets work with
trading periods, for which producers and consumers have to provide bids. In principle, the
periods can cover arbitrary length, but it has proven to be practical to use 1 hour and 15 min
intervals (Kirschen and Strabac, 2004). Market players participate in the market by offering
bids to purchase or sell energy. The bidding process is usually similar to an auction and differs
depending on the desired national market design (Contreras et al., 2001). In Europe, we have the
EPEX Spotmarket2. Here, market participants have quite a “simple” bidding process. They offer
defined bids, which are collected and used to determine a price for the upcoming time periods. A
single bid requires at least the following information: buy or sell indication, desired quantity
in [MWh/period] (volume), desired price in [e/MWh], valid time period(s) and of course the
sender’s identifier for instance the company’s name. Bids that cover multiple periods indicate
that the offer must be fulfilled during those time periods.

Market price building is carried out after all bids have been collected. It starts with sorting.
First, all purchase bids (demand bids) are sorted in a list with descending prices. Selling bids
(supply bids) are sorted in a list with ascending prices. The sorted lists are denoted as a Merit-
Order, since in a perfect market (many participants, everybody has the same knowledge) it reflects
the marginal costs of the energy generation units, where units with the lowest cost are the first
ones that are taken for production, while units with the highest cost are the last ones. After
the ordering, the list with supply bids is contrasted with the ordered list of demand bids. This
corresponds to a quantity-price graph for each future time period, as shown in Figure 3.2. The
intersection yields the market-clearing price for that time period. Mathematically this point has a
special meaning. As shown by Kirschen and Strabac (2004) and Söder (2011) the global welfare
(the economic surplus of consumers and producers) is maximized at this point. This point is also

1There are however ideas to establish such mechanisms. Blockchains are investigated to technologically ensure
related contracts and automate the verified payment processes.

2https://www.epexspot.com, last accessed in March 2020.
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economically Pareto efficient, which means that deviations from marginal costs bidding reduces
the income of that producer that deviates, while other producers benefit (under the assumption
of a perfect competition, where single players have no dominating market power). All demand
bids and all supply bids left of the point are accepted, borderline bids up to the point are partly
accepted, the remaining bids right of the point are not accepted. In consequence, this market
price leads to a schedule for power plants.

demand

supply

traded quantity

clearing price

Quantity [MWh/h]

Pr
ic

e
[e
/MW

h]

Figure 3.2: Supply and demand bids at some time period in a market clearing process.

The introduced market model represents the EPEX Spotmarket. It is well suited for day-ahead
markets and intraday markets. However, as mentioned earlier other market models exist. For
instance, ancillary services (operating reserves) are traded on a pay-as-bid markets (Müsgens
et al., 2014). In Germany, the regulation authority Bundesnetzagentur introduced in 2018 a
pay-as-bid procedure that consists of two parts, one for the compensation of standby duty based
on power capacity and one for the actually delivered power (Bundesnetzagentur, 2018). This
example shows that different market models might even coexist. Therefore, the introduced model
is just a representation for coordination models that use prices. The approach relies on a demand,
supply and a price specification and accurate forecasts, particularly for the demand and supply
from renewable, volatile energies.

Using this model for coordination in a system with a hierarchic architecture that consists
of different levels of EMS is possible, if the interfaces of the participating system are specified
accordingly. Therefore, we can transfer this coordination approach to hierarchical arrangements
of EMS components, but we have to consider several challenges. One such challenge is the
specification of the right data for the interface. Another challenge is the consideration of
forecasts3. We provide a deeper discussion about the necessary interface specification and
hierarchic composition of the models further below.

3Note, forecasts become more inaccurate for smaller systems due to larger influences of single users that have a
more stochastic behaviour than areas or districts (Esslinger and Witzmann, 2012). Therefore, in context to this work,
investigations were done by Rottondi et al. (2015) and Bajpai (2018) to provide more accurate forecasts for EMS using
time series analysis and machine learning approaches, respectively. Another possibility to handle forecast inaccuracies
is to reduce forecast time horizons and approach real time energy trading scenarios. In context to this work, Thut
(2018) used our technology (cf. Section 4.3) and investigated the technical feasibility of blockchains (Ethereum) for
that scenario and explored related limitations.
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Transmission Capacities

Market models rely on the assumption that energy can be transferred to any location without any
restrictions. But this assumption requires a lossless and unrestricted flow of electrical power all
over the system. In real systems, power is transferred over physical lines. They have losses and a
maximum capacity, which might lead to transmission bottlenecks. Hence, for operation, market
models need to be complemented with approaches, which consider those additional constraints.

Mathematically, transmission can be described by power flows that depend on different
regions, their internal demand and supply that produces a power injection into the network,
and available network connections between those regions. In real systems, the power flow is
only determined by the fundamental laws of physics, i.e. Kirchhoff’s laws. We describe these
models in Section 3.1.2 in more detail. Here, we introduce a simplified version for coordination
that considers transmission but in a more simple way, where only the first Kirchhoff’s law is
considered and the second law is neglected. This simplification is sometimes used in power system
modelling to study costs for grid extensions, e.g. Schaber et al. (2012). It also gives us more
insight in possible coordination scenarios, where the power flow can be controlled by operators.

To consider bottlenecks, energy system models introduce geographical regions that are
interconnected. They represent system nodes. A geographical region is denoted with an identifier
i ∈N. It has a demand Di and generation Gi. When power is exchanged between different regions,
we need to consider transmission lines with capacities. The regions inject power into the network
with is transported over the lines. As a result, we can formulate a linear transport problem as
follows. Assume that the region i has the demand Di, the generation Gi and several energy
exchanges Pk,i over transmission lines with other areas. The first Kirchoff’s law requires that the
power is conserved in one node:

∀i ∈N ∶ 0 =Gi−Di+∑
k∈N

Pk,i, (3.1)

where Pk,i denotes the incoming power flow from area k to area i. We can reformulate this
representation into a set of linear equations and add constraints for the transmission capacities:

Ax = b (3.2a)

xlb ≤ x ≤ xub, (3.2b)

where the vector b represents each region’s internal power injection Gi−Di, the vector x represents
the power flows Pk,i, the matrix A represents if connections are available or not, and the vectors
xlb and xub represent the constraints due to transmission limitations. Note that A has generally
not a full rang. It is therefore not invertible and multiple valid solutions exist. This is an important
property of many realistic systems. It reflects the freedom to choose different possible solutions
and opens the possibility for optimizations.

Example 1 To illustrate the work with transmission capacities we show an example of a system
with three zones 1,2,3 (see Figure 3.3). Each region has some demand Di and generation Gi,
which have been forecasted and determined by the market, respectively. We interconnect the
regions with transmission lines that have capacity limitations, which are illustrated in ()-brackets.
The numbers for the example are chosen arbitrarily for demonstration purpose.
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(a) Possible power flows without
relevant bottlenecks.
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(b) Possible power flows with rele-
vant bottlenecks and re-routing (if
technically possible).
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(c) Possible power flows with rel-
evant bottlenecks, re-routing and
re-dispatch. Two circle colours
represent spiting into two market
zones with different prices.

Figure 3.3: Coupling of different regions with transmission capacities in ()-brackets.

Depending on the limitations, different operation schemes in the network occur. As long as
transmission capacities are large enough (Figure 3.3a), all generation and demand take place as
determined by the market. When limitations constrain the operation (Figure 3.3b) the power
transmission is re-routed. This is done by the system operator. For simplicity and just to
demonstrate the effect of transmission limitations in this example, we assume that the power
flow can be freely controlled by the system operator4. When all re-routing measures reach their
technical limitations (Figure 3.3c) we wont have valid solutions for (3.2). In this case, power
generation needs to be re-dispatched. Power plants in regions with missing power have to increase
their generation, while power plants in regions with oversupply have to reduce their generation.
The re-dispatching takes places as part of a congestion management process, for which different
methods are available, as discussed by Söder (2011). As a result, some of the more expensive
generation units are activated, which changes the marginal costs for the different regions and
splits the price from the market perspective.

Equations (3.2) represent meshed networks, where also circular power flows are a possible
mathematical solution. This is an undesired effect. To avoid solutions with circular power flows,
we can reformulate (3.2) into a linear programming optimization problem, where we add costs
for the transmission and write it as:

min
x

λλλ
Tx (3.3a)

s.t. Ax = b (3.3b)

xlb ≤ x ≤ xub, (3.3c)

here, λλλ represents the cost-vector for transmission. It is sufficient to add small positive costs, to
obtain a solution without circular flows.

4Technically, this can only be achieved if the system operator has the right physical equipment to control the
relevant physical properties, such as line impedances or phase angles, e.g. using modern FACTS (Flexible AC
Transmission System) components as explained by Murali et al. (2010). However, we would like to stress that we
cannot always rely on a freely controllable transmission (see also Section 3.1.2).
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Regions and transmission capacities are used for planning and congestion management
activities. The European Power System has multiple market regions and hierarchies, as shown
in Figure 3.4. On the highest level, Europe has five regions that share a common synchronous
electrical grid. The five regions are subdivided into more than 30 market areas, that are mostly
aligned to countries, even though, some countries have several market areas (Italy and Nordic
countries), while other countries (DE/AT/LU) share one market area. To further consider the
transmission capacities, each market area can be internally subdivided into TSO (transmission
system operator) areas, and these in turn can be subdivided into DSO (distribution system
operators) areas. This forms a hierarchical structure of interconnected regions. Detailed analysis
that investigate coordination approaches rely on different regions. For instance, the work carried
out by Schaber et al. (2012) uses 83 regions for Europe, while Huber (2017) uses 268 regions.

Figure 3.4: Map of the European Power System with its synchronous grids and market areas.
(Illustration taken from Wikimedia Commons (2006) and adapted according ENTSO-E (2018))

Short-term Planning

The discussion of possible changes by coordination activities, such as re-dispach, leads quickly
to further considerations that concern not only the network, but also the temporal level. For
instance, unit commitment problems or economic dispatch (see e.g. Baldick (1995) or Huber
(2017)), require additional considerations when turning on and off devices like power plants,
due to start-up and shut-down considerations (time constraints and additional costs) as well as
ramping rates. The temporal dependence is also important for storage systems. The possibility
of charging and discharging devices affects the current and future power flows. Also storage
capacities introduce further constraints. The consideration of such temporal dependencies is
carried out by means of short-term planning activities that extend the models with transmission.
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Models of power systems for short-term planning are often formulated as optimization
problems (e.g. see Simoglou et al. (2010); Söder and Amelin (2011)). The objective is to
determine detailed schedules that state how much each component should generate in the closest
future. Normally, the short-term plan considers some defined time horizon, for instance one or
two days. The plans are subdivided into a number of time periods. The choice of the time period
length is arbitrary, but naturally a period length that corresponds to the time intervals used at the
market is favoured. In Europe they correspond to one hour or 15 min intervals.

Short-time planning is applied for energy systems of various size (countries, cities, districts,
large buildings) as shown by (Mancarella, 2014). Nowadays, more and more renewable energy
systems, storage systems and low carbon technologies, like Combined Heat and Power (CHP),
heat pumps, Power-to-X systems and electric vehicles are installed locally to improve the
environmental footprint and save costs. This demands short-term planning problems to consider
multiple energy networks at once. Therefore, power system optimization is extended with multi
energy carrier systems, for instance as introduced in the two papers by Geidl et al. (2007); Geidl
and Andersson (2007), and applied to different use cases by Orehounig et al. (2015), Liu and
Mancarella (2016) and others. The idea of the model is to define energy conversion systems,
called energy hubs, that are connected to different energy networks. An energy hub is multi-vector
input/output relation that describes the interconnections of different energy forms (e.g. electricity,
gas or district heating). The relation is characterized only through the consideration of power and
the efficiencies of the converter devices. We use this approach to present a compact short-term
planning model that follows the energy hub approach5.

We use a linear optimization model, to illustrate how short-term planning models are defined
(see also Chapter 6 for specific details). The general form is given by:

min
x

λλλ
Tx (3.4a)

s.t. Ax = b (3.4b)

Gx ≤ h (3.4c)

xlb ≤ x ≤ xub, (3.4d)

where the x-vector represents the input power that is subject to optimization, the b-vector the
desired output power, the A-matrix contains the coupling factors (e.g. efficiency rates), the
G-matrix and the h-vector describe the set of dependent temporal constraints, such as storage,
while the vectors xlb and xub vectors describe lower and upper limits for the input variable.

The major scheduling constraint in modelling energy systems is that the demand (the desired
output) is covered by the production and storage operation (the scheduled input) at each time:

D(t) = n∑
i=0

ηiPi(t)+ m∑
j=0

SD
j (t)− m∑

j=0
SC

j (t), (3.5)

where for each time interval t, D represents the demand, Pi the production of unit i, ηi its
efficiency rate, SC

j and SD
j the storage charging and discharging rates of storage component j,

respectively. Further, production and storage rates are limited for each device, i.e.:

5We presented this model as a joint work with colleagues in Bytschkow et al. (2019).
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0 ≤ Pi(t) ≤ Pi,max (3.6)

0 ≤ SC
j (t) ≤ SC

j,max (3.7)

0 ≤ SD
j (t) ≤ SD

j,max (3.8)

where Pi,max is the maximal power of device i, SC
j,max and SD

j,max the maximum charging and
discharging rates of storage j. The capacity constraints of storage equipment is given by

−Ct0
j ≤ ∆t∑

t
η

C
j SC

j (t)−∆t∑
t

1
ηD

j
SD

j (t) ≤C j,max, (3.9)

where, C j,max is the storage capacity of storage component j, −Ct0
j the state of charge at the

planning time t0, η
C
j and η

D
j the charging and discharging efficiencies and ∆t the time interval.

Further, in systems with multiple energy networks, we use labels to denote each network. For
instance in a sector coupled district, we distinguish between heat power and electrical power.
Furthermore, we consider discrete time (e.g. quarter-hour intervals) and a finite time horizon of
the length NH for the planning. Hence, the demand vector b is chosen as

bT = (Dheat(t1), ...,Dheat(tNH),Delec(t1), ...,Delec(tNH)), (3.10)

Similarly, we model the schedule vector with n production and m storage devices as6

xT = (P1(t1), . . . ,P1(tNH), . . . ,Pn(t1), . . . ,Pn(tNH),SC
1 (t1), . . . ,SC

1 (tNH), . . . ,SD
m(t1), . . . ,SD

m(tNH)) .
(3.11)

Matrix A represents conversion efficiencies. It is composed of several sub-matrices based on
available components as

A = (A1, . . . ,An+m) . (3.12)

Further, each sub-matrix has again sub-matrices that reflect the set of networks, as required by
the demand-vector:

Ak = (Ak,heat

Ak,elec
) . (3.13)

Finally, the cost function is defined as a discretised integral over the time as:

Cost = ∆t
NH∑
k=1

⎛⎝
n∑

i=1
ci(tk)Pi(tk)+ m∑

j=1
cD

j (tk)SD
j (tk)+ m∑

j=1
cC

j (tk)SC
j (tk)⎞⎠ . (3.14)

It contains the costs for production and has the possibility to add costs for storage. This helps to
avoid parallel charging and discharging, which is necessary for instance when thermal storage
has costs for operation due to pumps. The cost vector is then:

λ
T = (c1(t1), ...,cn(tNH),cD

1 (t1), ...,cD
m(tNH),cC

1 (t1), ...,cC
m(tNH)). (3.15)

6Note, in our model we consider charging and discharging a separate process, to have a normalized form of the
optimization problem.
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This set of equations defines the short-term problem, i.e. (3.4). The solution gives an optimal
schedule for all components for the given time horizon. By employing the model for each time
step iteratively while moving the time horizon, we obtain a model predictive control (MPC)
approach, as introduced by Rawlings and Mayne (2009). It can be used to coordinate multiple
components inside an EMS, or a microgrid. When the right information is available at an EMS
interface, the MPC can be used to coordinate multiple EMS. We explain this possibility below.

The model can be extended in multiple ways quite easily. Firstly, we can add more networks.
For instance, if multiple heating networks with different temperatures exist, we separately model
those networks and the related converter components that transfer power from one to the other
network.

Secondly, sometimes, for instance in EMS that are connected to a grid infrastructure, the
demand is not only covered by internal production components. Some power is provided by
the grid. Electrical power is a good example for that. The provision of power has costs that
correspond to market prices. To model power delivery from the network and the power injection
into the network we use the same formulation as for storage, where one sub-vector takes power
and another one injects power. The market prices for taking and injecting are included in the
corresponding λ entries. Note, our consideration of a time horizon enables to model variable
prices.

Thirdly, the presented model assumes in Eq. (3.5) that there is only one demand Dξ(t) at
some time per network ξ. Different regions and transmissions are not considered separately. To
model transmission, we can extend Eqs. (3.5) - (3.13) with additional modifications. First, we
split the demand according the individual regions, i.e. system nodes. We label those nodes with
capital letters A,B, ... . We obtain a modified output vector b̃T = (bT

A ,b
T
B , . . .) that contains the

individual demands for each region for each time for each network. Similarly, we adapt the input
vector by allocating the production to the corresponding nodes. Now each element, e.g. Pi(t),
has now one additional label, e.g. Pi,A(t) that includes its node relation. The conversion matrix is
adapted correspondingly as well. Further, to consider transmission, the input vector is extended
with power flows that might occur in the system, similar as in the transport problem defined
by Eq. (3.3). To consider transport losses, we add a conversion factor as well. It means that if
power is sent from, lets say, system A to system B, system A injects the power PA,B and system B
receives only a reduced power described by ηA,BPA,B, where ηA,B ∈ [0..1]. The inverted direction
is modelled accordingly. We illustrate this in Figure 3.5.

Distribution
network

System A System B

PA,B ηA,BPA,B

PB,AηB,APB,A

ηA,B

ηB,A

Figure 3.5: Transmission with a conversion factor.
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Finally, we receive new vectors and matrices in the form of

b̃ = [ A′ Atransmission ]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ã

[ x′

xtransmission
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
x̃

, (3.16)

where A′ and x′ reflect the modifications due to additional node labels, x̃ is extended by xtransmission

that represents additional power flows and have to be determined by the optimization, and
the coupling matrix Ã is extended by transmission lines and related efficiencies described by
Atransmission. For example, a system with a topology as illustrated in Figure 3.5 has the extensions

xtransmission = [ PA,B

PB,A
] , and Atransmission = [ −1 ηB,A

ηA,B −1
] ,

where both values for power transmission PA,B and PB,A are ≥ 0. Note, the power transmission
contributes to the demand in each region. Hence, we consider the first Kirchhoff’s law (cf.
equation 3.1). The optimization takes care that circular flows are avoided.

The presentation of this model is only one possible example to describe energy systems in the
short-term planning context, which is important for the coordination of systems. Usually, those
coordination activities are carried out by system operators with the goal of meeting demands at
lowest costs, by utilities that maximize profits with their bidding strategies, or nowadays by EMS
that control virtual power plants or microgrids. Often additional constraints have to be considered
in the model, such as the possibility to have on-line and off-line devices that have a maximum
and a minimum operational limit. In this case, the model is extended to a mixed-integer linear
programming (MILP) approach, (e.g. Simoglou et al. (2010); Mancarella (2014); Huber (2017)).
Some models consider additionally non-linear dependencies, for instance in the price, in their
equality or inequality constraints, e.g. Geidl and Andersson (2007). This opens the path for
the optimization algorithms in various directions. We do not extend the models much further,
since this thesis focuses more on the integration of such models into a coordinated EMS control
structure.

3.1.2 Physical Models

So far we have described models that focus on the coordination of energy systems based on
steady state power flows using network models, where the energy transport is determined by
the first Kirchhoff’s law. This formulation allows to choose the direction of the flows quite
arbitrarily, as long as the nodes fulfil the requirement of the first law. In real systems, however,
the transport is not only determined by balanced nodes, but also by the second Kirchhoff’s law in
combination with resistivity for electrical networks (Ohm’s law), and hydraulics including liquid
flows, pressure, pressure-losses (Continuity equations, Bernoulli’s principle, Darcy-Weisbach
equations) for district heating. Since, these relations are specific for each network, no generic
model that covers all types of power flow is available as shown by Geidl and Andersson (2007).
In the following, we shortly summarize the two major networks for power transport that concern
EMS, to explain the influence on the coordination approaches in the following.
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Electrical System

Models of electrical systems are based on three basic laws: Ohm’s law, which relates voltages and
currents, and the two Kirchhoff’s laws, which simplify the calculations in networks, by describing
that in nodes, the sum of currents is zero, in closed loops, the sum of voltage differences is zero.
Those three laws determine the power flow in the network.

The electrical power in a system is calculated in its general form with complex notation. By
using Ohm’s law and Kirchhoff in its complex notation, and then identifying the corresponding
coefficients (for the derivation we refer to Andersson (2012)), the general power expression with
node identifiers k,m ∈Ω, where Ω represents all system nodes, is derived as:

Pkm =U2
k Gkm−UkUm(Gkm cos(θk −θm)−Bkm sin(θk −θm)) (3.17a)

Qkm = −U2
k (Bkm+bsh

km)+UkUm(Bkm cos(θk −θm)−Gkm sin(θk −θm)), (3.17b)

where Pkm, Qkm denote the active and reactive power flows from node k to m; Uk,Um the voltages
at those nodes; Gkm, Bkm the conductance and susceptance of the physical lines; θk,θm the phase
angles at the corresponding nodes. A derivation of the network equations yield the corresponding
injections at the nodes as:

Pk =Uk ∑
m∈Ω

Um(Gkm cos(θk −θm)+Bkm sin(θk −θm)) (3.18a)

Qk =Uk ∑
m∈Ω

Um(Gkm sin(θk −θm)−Bkm cos(θk −θm)). (3.18b)

Using the matrix notation the injections are also written as:

S = diag(U)I∗, (3.19)

where S = P+ iQ is the complex power, diag(U) a diagonal matrix made from the voltage vector
and I∗ the complex conjugate of the current vector. The current vector is again calculated from
the voltage vector as:

I =YU, (3.20)

where Y is the complex admittance matrix. Solving the equation (3.19) is a non-linear problem.
Therefore, two very well known approaches exist that we summarize in the following.

DC Model: The first approach to solve the problem is using approximations that linearise
the equations. The following simplifications are made: The voltage differences are assumed
to be small and a per unit system is used, hence Uk ≈Um = 1p.u.. The angle differences are
small in a light load conditions, hence, sin(θk −θm) ≈ θk −θm. The susceptance is larger than
the conductance, hence G ≈ 0. The reactive power is neglected. Using the simplifications in
equations (3.17), we obtain:

Pkm = Bkm(θk −θm), ∀k ∈Ω, (3.21)

where the power flow depends only the phase at each node and the susceptance of the line. This
leads to the DC model that is written for all nodes in matrix notation as:

P =Bθ, (3.22)
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where B is the nodal matrix of susceptances. The elements of that matrix are proportionally to
the line length (Andersson, 2012; Huber, 2017). Note, B has not full rang and multiple solutions
exist, in particular because the differences of the angles are of interest not some specific angles.
To obtain a unique solution, one node is defined as a slack node, which has a fixed reference
angle, e.g. equal to zero (θre f = 0). This allows to leave out one line of the matrix and obtain a
new, invertible matrix B′, so that the remaining angles are calculated as θ =B′−1P, and with that
the power flows in the system.

AC Model: In contrast to the DC model, the AC model does not use simplifications. Instead, the
equations (3.19) are solved directly. The main work for the AC model is therefore to find an
algorithm that allows to calculate a solution in a robust and quick way. There are a number of
possibilities to do that. A popular approach is to use the numerical Newton-Raphson method,
which was developed in the 1960’s for the power flow problem by Carpentier (1962) and Tinney
and Hart (1967). Therefore, equation (3.19) is rewritten as:

0 = diag(U)I∗−S = f(U), (3.23)

with the non-linear function f ∈Cn that depends only on the variables U ∈Cn. Then the solution is
found iteratively by calculating a new voltage vector (including angles), that fits as closely as
possible to the desired power injections of the nodes:

Uk+1 =Uk −Jf(Uk)−1 ⋅ f(Uk), (3.24)

where the Uk represents the k-th iteration of the voltage vector, Jf(Uk)−1 the inverse of the
Jacobian matrix of f evaluated at Uk and f(Uk) the function evaluated at Uk. When ∣f∣ < ε the
iteration might stop and the solution vector with the voltage is used to calculate the power flows,
e.g. using equations (3.17).

It is a research domain to find accurate models and quick solvers to determine optimal power
flows, as for instance described by Milano (2008). The major application area is to identify
congestions and manage them by either a proper control of power flow (see e.g. Murali et al.
(2010)), or to re-dispatch the power production (or consumption) when such options are available.

Summary: Both models, DC and AC, model the power transmission based on physical laws
considering transmission line properties. The DC model is a simplification that neglects losses,
voltages and reactive flows. But, it is fast in the solving process. Even if the losses are neglected,
they can be reasonable approximated in a DC model, once the power flow is known (Andersson,
2012). Solving the DC model with the sum of load and losses gives a rather good solution for
real transmissions, as shown in the study by Overbye et al. (2004). On the other side, the AC
model considers a more granular level of detail, but requires more computational power. It is
used, if we are particularly interested in physical effects and the transmission limitations related
to them, for instance the identification of voltage instabilities. In general, however, the accuracy
of both models, DC (load plus losses) and AC, is suited for congestion management as we obtain
power flows that are observable in real systems (Overbye et al., 2004).
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District Heating

The second network that is of interest for the coordination of EMS is district heating. It relies on
a power transfer using hot water7. The ideal flow of water in pipes is described by the continuity
equations (mass conservation) and Bernoulli’s equations (energy conservation). Further, several
losses are of interest, such as pressures losses (Darcy-Weisbach equation), temperature losses
(depending on the pipe insulations, radius, temperature differences, pipe length, etc., e.g. as
described by Nussbaumer et al. (2017)) and factors like tightness. For the coordination of EMS,
we are interested in a model of the power transfer, similarly as for the electrical system. Therefore,
we have to consider several mathematical relations.

First, the load at each house is determined by the heat exchanger, which connects the network
(primary side (pr.)) and the house (secondary side (sec.)) as shown in Figure 3.6. The power
transfer P at each substation is determined by energy conservation:

P = ṁpr.cp(TW
pr. −TC

pr.) = ṁsec.cp(TW
sec.−TC

sec.), (3.25)

where ṁpr.,ṁsec. are the mass flow rates at the primary and secondary side, cp the specific heat
capacity of the fluid, TW

pr.,T
W
sec. the warm temperatures and TC

pr.,T
C
sec. the cold temperatures.
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Figure 3.6: Two exemplary substations connected with district heating: The left system acts
as a consumer, the right system acts as a producer. Given some network temperatures for the
operation, the substations will have certain temperature limitations on their secondary sides.

To establish some desired power exchange, we have several possibilities. We can control
the mass flows ṁsec. or ṁpr. with pumps or valves, depending on the available systems. Those
values and the internal temperatures provide the corresponding conditions for the possible power
exchange. Further, the mass flow ṁpr. is a measure for the power transfer, but it is also part of the
network flow balance and important for the hydraulics. With the volume flow Qm = ṁpr./ρ the flow
balance can be described for an arbitrary node m as:

Qm−∑
n∈Ω

Qmn = 0, (3.26)

7Initially, also steam based heating networks were available, but nowadays, most of the district heating relies on
hot water (Lund et al., 2014).
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where Qm is the volume flow injected at node m and Qmn the volume flow to the connected nodes
in the network. The volume flow is physically created by the pressure differences and the pipe
characteristics, which add resistivity to the flow. The relation of the volume flow and pressure is
derived from the Darcy-Weisbach equation, e.g. described in Sigloch (2017):

∆pmn = pm− pn ∝Q2
mn, (3.27)

which can be reformulated into a square root relation of Qmn as:

Qmn = kmnsmn
√

smn(pm− pn). (3.28)

where, kmn is a constant factor that depends on the pipe characteristics (see also Sigloch (2017);
Nussbaumer et al. (2017)) , pm, pn the pressures at the different nodes and

smn = { 1 if pm > pn−1 else.
(3.29)

District heating has several additional facts that are important to know for coordination. To
have a stable hydraulic system (i.e. pressure within the specified limits), the sum of all mass
flows ṁpr.,m adds to zero, i.e. ∑m∈Ω ṁpr.,m = 0. Further, the power transfer is proportional to
the mass flow and the temperature difference between the cold and hot side of the network:
Pm ∝ ṁpr.,m ⋅∆Tpr.,m. Therefore, to avoid hydraulic problems and the mixing of the temperatures
that destroys enthalpy and reduces the efficiency, it is reasonable to demand to operate the
network so that all power injections correspond to a proportional mass injection. The
temperature difference between TW

pr. and TC
pr. should be kept as constant as possible, similarly to

the frequency in electrical networks.
Finally, the loss of temperature depends on many factors, such as pipe radius, pipe’s heat

transfer coefficient, heat capacity of water, external temperatures, volume flows and the line
length leading to an exponential expression (see also Glück (1984); Nussbaumer et al. (2017)):

∆T = (T 0−T env.)[1−e−c⋅ L
ṁ ] , (3.30)

where c is a factor that considers pipe parameters and medium characteristics, T 0,T env. the
network and the environment temperature, L the line segment length, and ṁ the mass flow
between the nodes.

Note, the combined model with equations (3.28) leads to a non-linear, non-convex
model (Geidl and Andersson, 2007). Hence, we cannot combine the electric and district heating
networks in terms of their power injections that easily into a common optimization framework
that works only with power injections. However, for the coordination we can work with approxi-
mations (see Section 3.1.1). We further observe that the energy losses that depend on temperature
losses are smaller with higher mass flows. At the same time a high mass flows requires more
pressure differences that increases the power required by the pump. The design of a suitable
coordination will therefore require a trade-off between a high mass flow and the energy losses.
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3.2 Coordination Systems

The presented models are designed to describe energy systems as exactly as possible. They allow
to carry out different systematic studies and ultimately design coordination approaches in order
to optimize the system operation. For that, the developed models assume that some system -
generally a software system - collects all the required data (e.g. Huber (2017)). After the data
collection, the software system calculates the best possible operational set-points and reports
them back to the components. Such systems are for instance coordination systems of independent
system operators (ISOs) or utilities. This assumption, however, faces several obstacles that cannot
be solved that easily in reality.

One obstacle is that the data is not available. There are several reasons for this. One reason is
that most of the models simply assume that they will receive the necessary information. They
only define a system boundary from the model’s perspective, but they omit to define a system
boundary from the software system’s perspective. Therefore, it often remains unclear, which
of the systems (devices or EMS) have to be connected. Also specification of the data at that
boundary, particularly the required level of detail is often left open. That’s why we do not see any
general system interface specifications that can be used for coordination. Instead, we only observe
manufacturer-specific solutions in real systems, including hardware boxes, software systems and
data interfaces (e.g. system integrators such as Next Kraftwerke GmbH). These boxes are send
to the customer and directly connected to the local infrastructure. This opens of course a range
of possibilities for monitoring and control, but it does not help to specify clear generic system
boundaries, or to improve the interoperability. In addition to interoperability, it is also unclear if
additional systems shall be connected and provide necessary data from external systems, such as
forecasts in SES. Shall they be part of local devices or EMS? Shall they be part of the coordination
system itself, or of some intermediate systems? Such questions remain unclear, as long as no
explicit system boundaries, i.e. interface definitions are provided for software systems.

Another obstacle for coordination is that we have different systems for monitoring and control
on different hierarchical levels. On the one hand, we have local control systems (e.g. PLCs
(Programmable Logic Controllers)) that consider local boundaries and operational constraints of
single devices to ensure a reliable operation. On the other hand, we have systems that integrate
and coordinate multiple devices to simplify the operation or reach a more optimized operation.
For instance, we might have an EMS that combines the heating system, with a heat storage,
CHPs, photovoltaic and building automation to meet the buildings demand. On top of that, we
might have an EMS to coordinate power supply in local quarters. On top of that, there might be
a VPP that interacts with the market and monetarizes the residual energy of the quarters. It is
obvious, that not every data point needs to be communicated from PLCs upwards to the VPP. It is
also obvious that not all VPP data are of interest for local PLCs. Instead, we are interested in
available options to aggregate data upwards and in options to break down the signals from the
upper system into a coordination signal for the individual subsystems. Knowing these options
allows to establish coordination more easier.

In the following of this section we address the two obstacles from above. We describe a
suitable system boundary to enable the data collection and its transfer into the desired models in
the first step. In the second step, we describe how these data are used in hierarchical systems.
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3.2.1 System Boundaries

The introduced models for coordination require several input data, like the current demand and
production, forecasts for demand and production (e.g. solar), specifications of production devices
that can be controlled (e.g. CHPs, storage), prices or CO2 emissions that arise when the devices
operate, etc. The system that is described with those models is usually represented based on
a geographically network topology with nodes and links between them, similarly as shown in
Figure 3.7. All nodes belonging to the model are within the system. The system boundary of the
model is in this case a line around an area that includes all contributing nodes.

Power transformer

Local
power producer

External
power supply

System nodes

Figure 3.7: A system boundary for coordination from a model perspective. (Own illustration
adapted from Wolff and Jagnow (2011))

In contrast to that, to reach the desired coordination we need a mechanism that collects
the data and provides an coordination signal to all systems that participate in the coordination
process. Such a mechanism can for instance be implemented with a coordination system (in
general a software) of an ISO or a utility. This requires to define a system boundary of the
software based coordination system, but also for those systems that participate in the coordination
process. Software systems interact with their environment only by receiving and sending data.
The system boundary is defined by their interface that specifies the received Input and generated
Output (Broy and Stølen, 2001). An exemplary interface is shown in Figure 3.8.

Coordination System

Input
Data

Output
Data

System A

System B

. . .

System X

System Y

. . .

Figure 3.8: A system boundary for coordination from a software perspective.
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To rely on system wide coordination activities with mathematical models, similarly as pre-
sented in Section 3.1, we need to define a vendor-independent system interface of the coordination
system. It allows to express what we expect from the connected systems. To illustrate one exam-
ple we take the first of the presented models (market based coordination from Section 3.1.1) and
specify an interface of the coordination system in the following. Market coordination activities
work with bids. Hence, they are the input for the coordination system. The output is the system
price and the notifications if the bids have been accepted or not.

Input

MarketBid:
– BidderIdentifier
– BidNumber
– BidType ∈ {Buy, Sell}
– Quantity [MWh/h]
– Price [e/MWh]
– ValidTimeIntervals {List of valid time intervals}

<Set>

Output

GeneralMarketInformation:
(for each cleared time slot)
– TimeInterval (TStart ,TEnd)
– ClearingPrice [e/MWh]
– ClearedVolume [MWh/h]

BidNotification:
(for each BidderIdentifier)
– BidNumber
– Accepted ∈ {Yes, No, Partly}
– AcceptedVolume ∈ [0%...100%]

<Set>

Figure 3.9: Input / output specification for a coordination system based on market mechanisms.

The input / output specification can be illustrated as shown in Figure 3.9. The coordination
system accepts MarketBids as input from the connected systems. They represent a legally
binding offer for the coordination system. They contain the BidderIdentifier to assign the
message to the sender, the BidNumber to differentiate between different bids from each sender,
the BidType to decide if the sender desires to produce or consume energy, the Price and the
Quantity as the main bid parameters, as well the ValidTimeIntervals to denote the time
intervals for which the bid is valid.

The coordination system provides two types of data as output. Firstly, it provides the general
market information for all connected systems. This includes a market price signal for each time
slot and the cleared volume. Secondly, it provides individual information for each connected
system. Since each bidding system is allowed to offer several bids, the individual information to
each BidderIdentifier contains a set of acceptance notifications for the received BidNumbers. The
output is a legally binding acceptance of the offered bids. The BidNotification states if the
bid has been fully accepted (100%), fully declined (0%) or partly accepted (a value in the range
0%...100%) in accordance to the bid offering mechanism described in Section 3.1.1.

The specification of the interface describes what the coordination system expects from its
environment and clarifies the required level of detail for the data exchange. From the specification
point of view, we assume the coordination system cannot interact with its environment beside
the defined system interface. This sharpens the boundary of the desired system and allows to
carry out tests of the algorithms used by the coordination system. The specification, however,
does not define yet how the data is exchanged. There are many creative ways to achieve such
a data exchange. For instance, the data can be transmitted as a letter, as an email, an excel file
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attachment of an email, written into a database, send over a form via https or with the use of
communication buses, MQTT protocols, OPC UA, etc. The specification does also not define,
who sends what, i.e. the coordination system might expect to receive the data, but it can also
actively request the data from the systems participating in the coordination process. Luckily,
there are many different libraries available that help in implementing the different communication
protocols. Therefore, the specification of the data is the most crucial part for the definition of the
system interface and it fits well to the task of modelling energy systems. In this thesis, we specify
interfaces for different models in more detail in Chapter 5 and Chapter 6.

3.2.2 Internal System Knowledge

Coordination systems rely mostly on received input data to perform their calculations. But for
some tasks they might require additional system knowledge in form of the network topology
and its physical properties (see Section 3.1.2). For instance, for congestion management, the
coordination system requires to know the transmission lines between the system nodes, their
capacities and properties that lead to losses. This knowledge has either to be “given” to the system,
e.g. encoded by an engineer that models and parametrizes all connections, or it can be learned
from (historical) nodal measurements that measure power injections and voltage values (e.g.
as described by Deka et al. (2017)). The availability of internal system knowledge determines,
which models can be used for coordination.

The knowledge about the network topology improves the coordination. The coordination
system becomes more accurate, as physical effects like power losses can be calculated. The
coordination system is also aware of undesired network states that lead to congestions. Therefore,
it can apply congestions management (if the right inputs and outputs to control systems exist)
by rescheduling the demand, supply or storage, controlling components that affect the power
flow like switches, transformers, inverters, for electricity, or valves and pumps in district heating.
Sometimes the right level of internal knowledge cannot be obtained. The reasons are country
and sector specific regulations, lack of valid network information, or temporary contractual
arrangements. For example, for electrical networks there is the so-called unbundling in Germany.
Owners of the infrastructure (e.g. utilities) that have the network topology data are independent
of service providers that interact with nodes (customers). From the coordination point of view,
services providers should offer contracts with flexibilities and coordination possibilities. But they
have not a good internal knowledge. In addition, due to liberalization, every customer is legally
allowed to choose his service provider and even change its contract from time to time. Therefore,
the ideal system with clear boundaries (Figure 3.7) that has a good knowledge of internal network
topology is even harder to establish. In reality we observe systems that have only limited internal
knowledge of a system, as illustrated exemplary in Figure 3.10. All these factors complicate the
development of coordination systems. That’s why we see two types of coordination systems with
respect to the internal system knowledge.

One type of coordination systems work only with data from interfaces and have no internal
knowledge about the topology. The goal of this type of system is to improve the economical
operation of local power producers and consumers, by offering dynamic prices that depend on
the market. Those can be used to optimize the production and demand. This type of coordination
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SP-1
...

SP-N

Figure 3.10: A network of nodes with different service providers (SPs).

systems is often denoted as VPP. The most important advantage of this system is its high flexibility
to integrate other components. VPPs can be used for central coordination. In this case, a VPP
is the only decision making system that sends control signals directly to the components. VPPs
can also be used for decentralized coordination. In this case, a VPP determines only a guiding
signal (e.g. a market price) and the components them-self decide how to schedule their supply or
demand. We explain this type of coordination systems in Chapter 5 in more detail.

The other type of coordination systems has the authority in a clearly defined area. It works
with data from interfaces combined with internal knowledge about the network topology to
achieve a better coordination for a certain area. Such coordination systems match the power
supply and demand while considering the power flows and losses. To do so, they integrate a
critical mass of components that have an influence on the power flows. This type of coordination
systems is often denoted as “microgrid”. Preferably, the microgrid coordination system is the
only decision maker (signal provider) in a certain area, to avoid contradictory signals that lead to
unexpected results. We explain this type of coordination system in Chapter 6 in more detail.

3.2.3 Model Creation with Data from Interfaces

As we describe above, coordination systems are not omniscient, they rely on data that they obtain
over their interfaces. They are also limited by their internal system knowledge. Depending on
the chosen model for coordination, the coordination system needs to transfer the data from the
interface representation into another form to solve the model and transfer it then back to send
output data. Sometimes this is easy and straight forward. Sometimes the data processing requires
significant expertise. In this section, we explain what a developer of coordination systems should
be aware of when transferring data from one form into another one.

A coordination system receives input data from multiple sources, as illustrated by the system
boundary in Figure 3.8. Mostly, the data originates from external systems that represent single
devices, single buildings or sometimes even areas (e.g. microgrids with internal networks).
The received data contains different kind of information. For coordination, the most important
information includes the expected demand and the potential supply of all connected components.
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This information has to be transferred into a suitable data form that depends on the chosen model.
We present two brief examples in the following to show the differences of the data transfer. One
example addresses the auctioning based model and another one the short time planning model as
described in Section 3.1.

Auctioning Based Model

An auctioning based model works with bids (see Figure 3.2). The received data is similarly
to MarketBids (as presented in Figure 3.9). This data is easy to process. The first step is to
collect all bids and create two sets, one for demand (buying bids) and one for supply (selling
bids). Then, both sets are sorted. The sorted sets are used to find the intersection point (the market
clearing price). This point immediately separates the bids into those that are accepted and those
that are declined. The price and the acceptance notification represent the coordination output.
The development of such a coordination system is easy and straight forward. The reason is that
the coordination system receives the data already in a the required form. The difficulty for data
preprocessing is shifted to the connected EMS, which create their bids based on forecasts and
available equipment. Some equipment types are easy to represent as bids, e.g. demand, others are
not, e.g. storage. But this issue is a question for the connected EMS, not the for the developer of
the coordination system.

Short-term Planning Model

The short term planning model uses vectors and matrices (equation 3.4). In difference to the
auctioning based model the data is not directly available in the right form, because the connected
EMS cannot send vectors and matrices. Instead, they send data representing their demand and
supply in a parametrized way, saying which demand is expected and which devices with which
parameters are available. Therefore significant data preprocessing is required to create the right
vectors and matrices. It is reasonable to consider each model parameter individually to create a
short term planning model. We briefly describe which data contributes to which model parameter
in Table 3.1.

Table 3.1: Relation of received data and model parameters for the short time planning model.

Model
parameter

Parameter details Data required

b (bheat ,belec, ...)t ,

where ∀k ∶
bk = (b1, ...,bNH)t

The b-vector represents the expected demand. To create
b, a demand forecast is required for the time horizon of
length NH and the considered networks. The creation of
b depends on whether we have a model that considers
transport or not. When transport is not part of the model,
the demand is aggregated into one value. Otherwise, the
demand-vector is node specific.
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x (x1, ...,xn, ...,xn+m)t The x-vector represents the desired operation of supply
units, storage, externally connected networks and trans-
port. The sub-vectors xk represent generation units for
1 ≤ k ≤ n. They have only one desired value for each
time step and their length is NH . The sub-vectors xk for
n ≤ k ≤ n+n represent units that are able to provide and
take power, such as storage or external networks. Their
length is 2 ⋅NH . The reason for this split is to keep all
elements of the vector ≥ 0. To create x we only require
the information which units are available and NH , because
the values are determined with the optimization.

A (A1, . . . ,An+m) ,
where ∀k ∶
Ak = (Ak,heat

Ak,elec
)

The conversion matrix A contains the efficiency factors
for all units that are also modelled in x. The sub-matrices
Ak represent supply units for 1 ≤ k ≤ n, as well as storage
and external networks for n ≤ k ≤ n+m, due to the afore-
mentioned reasons. Many supply units contribute to one
particular network. In this case only the related sub-sub-
matrix Ak,network has entries. The other sub-sub-matrix
is zero. When units contribute to multiple networks all
related sub-sub-matrices contain the efficiencies. This
inextricably links power injections of multiple networks.
We call those units “coupling units” to denote this link-
age. Storage units and external networks provide or take
power. The corresponding sub-matrices Ak have adapted
dimensions. To create A we require the efficiency values
of each unit and each network (see also equation 3.5).

G similar sub-
structure as A

The G-matrix represents relations that are time dependent,
such as the charging and discharging. It has the same
sub-structure as matrix A. If a unit has no dependencies
related to time, the corresponding entrances are zero. To
create G we require the efficiency factors of the storage
as described in (3.9).

h similar sub-
structure as x

The h-vector contains time related model constraints, for
instance storage capacities. For h we require the current
state of charge and the maximum capacities in order to
calculate the remaining constraints (equation 3.9).

xlb, xub similar sub-
structure as x

The vectors xlb and xub represent the limitations of x (see
equations 3.6-3.8). For non-volatile, fully controllable
generation components those values are fixed and given
by the component manufacturer. For volatile units, like
wind or solar, weather forecasts determine xlb and xub.
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λ similar sub-
structure as x

The λ-vector represents the operational price for each
unit. For most units, the price is fixed, but for the external
suppliers (external network) the price might vary. To
create λ we require the price information from each unit
and the external supplier (e.g. market price).

Details of short time planning problems are very important for developers, who create the
interfaces and develop the data processing. Even if the general model looks similar, the data
processing might differ. To explain that, we can compare a simple model (no transmission, no
network topology) and a similar looking model that covers one additional feature (transmission
with network topology), where some of the vectors and matrices have to be adapted. Without
a topology, the demand of multiple EMS is aggregated into one value. With a topology, the
demand of each EMS is represented individually as a node in the model. With this modification,
the general model (equations in 3.4) looks still similar, but the b-vector, the A-matrix and the
x-vector are different (equation 3.16). The adapted model allocates the demand of each EMS to a
particular network node that changes b, maps each unit to a node that changes also A and add
transport links based on the network topology that changes A and x as well. Those details requires
an adapted processing of the data. Depending on the extension, also the results (represented by
the x-vector that are mapped to the output) might need a modified data processing. The remaining
parts of the coordination system, like the interfaces, or the solvers are easy to be reused, since
the model remains a linear programming problem in this case. Due to these details, it quickly
becomes clear that a collaboration of power system engineers and software developers is essential
for the specification of interfaces that describe which data is required for the models as well as
the data processing related to those data specifications.

Additional Observations

Our development efforts (see Chapter 5 and Chapter 6) reveal additional helpful details that
support the integration of models in coordination systems. The expectation that data is provided
over interfaces and not as data files or scripts, which are often used in MATLAB, affects our
model design. We expect that there might be different numbers of connected EMS. We also expect
that all EMS contain individual equipment. Some EMS provide only demand data, some EMS
provide only supply unit data, some EMS provide both and add storage data on top. Therefore,
the model design needs to support the handling of data that contains different units, different
parameters and different compositions.

This variety leads to a more modular design of the model. The elements in modular models
are all structured in sub-vectors and sub-matrices that are created and modified step by step
when parsing the input data. This allows us to collect initially all inputs of the connected EMS.
After that, the data processing creates multiple sets from the data: one for the demand, one for
controllable supply units, one for volatile supply units, one for couplers and one for the storage
systems. Then we go through each set and modify the model accordingly.

Such a modular design is not only necessary to develop a coordination system, it is also very
beneficial for planning tools, which focus on designing different scenarios with different sets of
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buildings and equipment. This allows to compare scenarios with different equipment, different
model parameters (efficiencies, costs) analyse different time horizons and test different operation
goals such as an economic or an emission based coordination. We therefore recommend modular
model designs that are simply to extend not only for coordination systems, but for any kind of
models related to EMS.

3.2.4 Hierarchical Structures

Continental power systems are interconnected. Nevertheless, system boundaries determine
responsibilities and are therefore indispensable for operation. The interconnection of several
power systems entails the need for coordination between them. This adds additional system
boundaries that affect both geographic representations and software interfaces, as illustrated in
Figure 3.11 and Figure 3.12. These boundaries and responsibilities form a hierarchical structure
with several layers of components with nested system boundaries. To describe the hierarchy more
convenient in the following, we use the terms children and parents to denote connected systems
that belong the layer below and above, respectively.

Local power systems
(smaller areas)

External
Network

Combined power system
(larger area)

Figure 3.11: System boundaries for coordination in hierarchical systems: model perspective.

The geographical representation structures the different areas hierarchically. One large area is
composed of several interconnected sub-areas. A sub-area is again composed of interconnected
sub-systems, like other sub-areas or buildings. The composed entities determine some form
of responsibility, like ownership or administration. This hierarchic composition fits very well
to the general electric grid infrastructure. At the lowest level there are buildings connected to
the low voltage network (e.g. 230 V/ 400 V) with a very broad spectrum of power supplies,
ranging from very simple to very complex systems. Simple systems have only one fixed house
connection with a single measuring device as their power supply. Complex systems have the same
connection and in addition a wide range of controllable devices, such as photovoltaic, battery
systems, CHPs, heat pumps, thermal storage, charge control for electric vehicles and controllable
demand units. Such complex systems have their own EMS, which are the essential component
to interact with coordination systems. On the next higher level we have districts or rural areas,
which are connected to the medium voltage (e.g 1 kV/ 35 kV) over transformer stations and
have power generation units such as wind parks and city power plants. These areas are similarly
structured as shown in Figure 3.11. Currently, these areas have no dedicated EMS, but most
of the renewable units are installed on that hierarchical level. Therefore, the question how to
enable a better control in these areas with coordination systems is quite important for our future
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energy infrastructure design. Depending on how large the area is, it makes sense to divide it
hierarchically into individual buildings, smaller-areas, medium-areas, larger-areas and so on in
such way that each division has a clearly defined boundary for a coordination system. The next
higher level is the transmission network with a high-voltage (≥ 110 kV). It supplies large regions
or cities and covers long distances. Only the largest production units, like nuclear, coal or hydro
power plants are directly connected to that network. All those units have their own EMS with
dedicated interfaces, such as SCADA systems.

Coordination systems
(e.g. local buildings)

Coordination systems
(e.g. smaller areas)

Coordination systems
(e.g. larger areas)

Communication8

Figure 3.12: System boundaries for coordination in hierarchical systems: software perspective.

A similar hierarchic composition as we see for power system networks can be applied to
coordination systems. The composition has to be software based. A composition of software
systems is carried out via the interfaces as system boundaries. In a hierarchical system, a
coordination system always interacts with other EMS, or in other words, with other coordination
systems9. The connected EMS are either children representing systems of smaller areas or parents
representing systems of larger areas. In a hierarchy the coordination system provides potentially
an input / output interface for both adjacent layers. In addition, we do not know in general how
many layers are desired. Therefore, the interface needs to be specified such that there can be
arbitrary many intermediate layers. We can achieve that, when we demand that a coordination
system is always a potential child system, which can be connected to a parent. The parent is
only a coordinator. It interacts just with its direct children without knowing the “deepness” of
the structure below, i.e. it interacts only via the interface without being aware of the system’s
composition. This simplifies greatly the system design and the coordination. But it requires a
generic interface specification for the systems that participate in the coordination process. The
specification needs to cover data that allows to calculate coordination signals based on a common
mathematical approach, similar as we introduced in the previous section. Private information,
such as descriptions and parametrization of internal devices, does not need to be exposed.

8The communication between two coordination systems is bi-directional. Each system offers a defined input and
output interface for that. The interface specification describes which data can be received and which data can be send.
In an implemented system, the interface specification includes further information about the specific communication
protocols used and how communication is established.

9Note, in this work, the terms “coordination system” and “EMS” appear always in the same context. We also
emphasise that the terms “prosumer” or “energy cells” fall under the same category, because all terms simply describe
systems for energy management for a particular environment. In this thesis we use these terms as synonyms.
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3 Background and Foundation

The hierarchical design with coordination systems introduces several needs for specifications,
which we have to consider when we define the behaviour of the systems in addition to the
interface specification. The easiest way to explain it is an example, where the coordination
system is in an intermediate position. Such a system receives data from its children. After
collecting the data, it has multiple options for coordination. The coordination system can directly
calculate the coordination signals for its children, to balance the demand and supply, e.g. using
an auctioning based model or a short time planning model, depending on the desired coordination
design. This behaviour is a classical bi-directional request-reply interaction pattern between
the coordination system and its children. It requires to specify the data exchange between two
adjacent layers. However, when there is not enough local supply available, the coordination
system in a hierarchical structure should be able to ask its parent, whether there is a better option
available. In this case, the coordination system needs to aggregate the data of n-children and send
a request to its parent, who answers the request, after some time. The answer considers only the
aggregated data of n-children. The coordination system needs to process this signal. It needs to
decompose it, so that it can be send back to the children. These two interaction steps require
the specification the data processing across multiple layers from bottom to top and from top to
bottom. It means they need to define how data can be composed and how it can be decomposed.
We deepen the discussion about the composition and decomposition in the next chapters and
show concrete examples in the upcoming case studies, since it is easier to explain the details
behind that with properly introduced examples.

Further, such a hierarchy affects the interface design. The interface of a child looks always
the same for the parent. If an intermediate coordination system receives some data, for instance
MarketBids, it also sends MarketBids to its parent, until at some stage a market clearing process
takes place. Another example can be offered flexibilities, which are send to a parent system and
composed to flexibilities with more volume. These higher volume flexibilities are again offered
to the next higher level. This similarity concerns compositions and decompositions, which are
central to hierarchical systems. We discuss those challenges in more detail in the upcoming
chapters.
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4 ∣ Designing Hierarchical Architectures for SES

In this chapter, we describe the fundamentals to design generic hierarchic architectures in order
to realize coordination activities for EMS according the energy system models that we introduced
in the previous chapter. The intended architecture shall support the design and integration of
systems that use the functionality from child components in order to achieve common system
goals. The integration is particularly promising for SES, where most of the components are part
of an EMS that offers a set of functionality to balance the energy demand and supply. While
there are many special terms for that integration idea, e.g. holons or cellular systems, we use only
the term generic hierarchic architecture to highlight the fact that we should not be tempted by
some extravagant terms to design such a system, but rather focus on available common software
engineering best practises.

This chapter starts with a context for the derivation of the generic architecture. It describes
the envisioned scope, typical system requirements and the approach for the development of the
generic hierarchic architecture. The derivation of the architecture is carried out in the second
section. We use well known architectural design patterns to define the basics for our architecture.
We explain those patterns in detail and use them to create a generic architecture. After these basic
foundation has been laid out, the third section describes the behaviour of the envisioned EMS
components. We use basic behaviour blocks to construct the generic behaviour and show their
interrelation. To support the technical implementation of the described concept, we introduce
a framework that has been developed during this thesis to prepare experimental cases studies.
Finally, we give a short summary to wrap-up the most important concepts of that chapter.

4.1 Context

The ascent of new renewable energy systems that enable less carbon emissions, e.g. photovoltaics,
wind and biogas systems that are complemented with storage systems, heat pumps or electric
vehicles, challenges the current energy system design. The reason is that many of the renewable
systems are connected to the lower voltage levels and widely spread throughout the network,
while conventional large power plants were comparatively less in terms of numbers and easier
to monitor and coordinate. This leads to many questions for integration and automation into an
overall infrastructure as pointed out by Grijalva et al. (2011). Many components of the envisioned
system address similar functionality, particularly, for the operation and management of energy
equipment. Similar functionality opens the possibility to reuse available design concepts, models,
control algorithms, etc., but we need to identify the commonalities in the SES domain, particularly
from the perspectives of power systems and software engineering. This allows to question, which
similar functionalities within EMS are available, how can they help us to describe an architecture,
which constraints are imposed on the architecture and which properties are given if we build a
system that implements those constraints? In the following we try to approach these questions by
understanding the scope and the system environment to identify the most relevant requirements to
build such systems. After this foundation, we describe a methodology to satisfy the requirements
by well known architecture design patterns.
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4 Designing Hierarchical Architectures for SES

4.1.1 Scope

Smart energy systems address a wide range of fields and applications. The broad efforts of national
and international standardization activities, such as IEEE P2030 (IEEE, 2011), SGAM (ESO,
2012) or CIM (CIM, 2015) (see also Chapter 2), show the immense abundance of required
specifications. Each activity cover dozens of components. For instance - only CIM addresses
several hundreds of models1 that cover the standards IEC 61968, IEC61970 and IEC 62325.
They are used for the development of SES use cases, interface and behaviour specifications.
Further projects related to domain analysis (Irlbeck and Koutsoumpas, 2015; Bytschkow and
Ascher, 2017) reveal the large amount of different systems that are used in the context of SES,
including SCADA, ERP (Enterprise Ressource Planing), WFM (Work Force Management),
GIS (Geographic Information Systems), EDM (Energy Data Management), power system state
estimations, power system simulations, power quality measurement systems, predictions, smart
meter management and many other specialized systems of system vendors depending on national
requirements and market mechanisms. Obviously, not all systems and their features are supposed
to be covered by our architecture.

The focus of this thesis is the development of a generic architecture that enables the integration
of several EMS into different hierarchical levels in order to provide additional capabilities for
coordination and optimization of systems. The architecture aims to expose available internal
flexibilities of EMS, which are used in coordination or aggregation activities to offer the flexibility
to higher hierarchic levels. The step backwards, i.e. the decomposition of flexibility to smaller
fragments and its delegation to the lower levels is the respective step in the other direction.
We understand our architecture as a support to establish certain coordination activities that
are envisioned by the SES vision. In this vision a hierarchical structure of components is not
necessarily fixed. We assume that a component be part in different hierarchical groups, in
particular in such with orthogonal operation goals. For instance one component can offer energy
market products at two different markets (e.g. day-ahead or ancillary services as introduced in
Chapter 3). Here, each market represents a dedicated group with its own hierarchy. Or it can offer
a certain percentage of storage capacity to one group and certain percentage to another group.
Hence, the envisioned architecture is not fixed on certain dedicated energy use cases, but rather
on some generic constraints to define a system boundary that allows a better integration of EMS.

Architectures for interactive EMS involve multiple design decisions. Some decisions address
questions for the internal system functionality. These affect internal software components and
their composition to cover requirements, such as the internal control of the system or user
interaction. Other decisions address questions related to the external integration. These affect
externally visible interfaces that enable an interaction with these systems. Particularly the latter
perspective determines the integration capabilities of EMS into an overall system architecture,
which is the major goal of this thesis. We focus therefore more on the external capabilities in the
following. The internal perspective of an EMS is nevertheless still important. We present it in a
complement to this thesis in Appendix A. In our complement we demonstrate that the hierarchical
structure applies also for internal components and can therefore be used for the internal and
external perspectives of an EMS architecture.

1We refer to the UML classes defined from the CIM user group driven by the European committee IEC-TC57.
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4.1 Context

4.1.2 Domain Requirements

The definition of architectures can never be stand-alone. It is always coupled to the requirements
that are expected from the desired systems. Taylor et al. (2009) even argues that the requirements
and the definition of the architecture are naturally and properly pursued cooperatively and
contemporaneously, because our understanding of what works now, and how it works, affects
our wants and perceived needs. The starting point to create a new architecture, thus, is based on
the knowledge about the systems that exist now, their architectures and requirements about all
that is desired that current system fail or fail to provide. We introduce our starting point in the
following, by stating several important requirements for our system architecture.

Distributed Energy Management Systems

EMS are geographically widely dispersed at various places and facilities. From large enterprises
to small companies and private households, all systems should have the possibility to participate
in market oriented SES applications, applications for network control, or both. Thus, there
are two requirements. First, the architecture shall consider that systems are located at remote
locations. Second, an EMS consists of components that support autonomous decisions based on
their environment and their internal or external stimuli. Hence, EMS can receive or publish data
and perform some actions leading to proactive and reactive interactions.

Further, most systems are created with the assumption that they are governed by a single entity.
This is different for collaborating EMS systems. They originate from multiple organisations
and different vendors with multiple organisational boundaries. This implies that deployment
and commissioning are not necessarily synchronized. New components need to be gradually
integrated into the system while slowly exchanging the old ones. The architecture needs to ease
such independent deployment and allows that components co-exist at different life time cycles.

Closely related to the independent deployment is the requirement for extensibility. Even
if a system perfectly matches current requirements, regulators, developers or users will always
have new ideas and desires, which need to be integrated. To enable a good extensibility, clear
interfaces and APIs are key specification areas for crucial for good interoperability.

Multiple organisations also imply that multiple levels of trust exist. Security becomes a
significant concern. Strong security measures should crucial, since the participation of untrusted
users and applications demand for authentication, authorization, and control of exchanged
data. The requirement is that state-of-the art security technologies shall be supported by the
architecture. Security is stated here to highlight its importance. However, suggestions to achieve
this are beyond the scope of this work.

Further, SES are expected to cover thousands of components. Thus, scalability is another
crucial requirement. Scalability means that systems are able to grow without strong limitations
from single components. Sometimes, it implies that components cannot know all participants of
a system, the complete system state or be responsible for the operation of the whole system.

Note, similar requirements also appear in development of web applications. They are well
explained by Fielding (2000), who presents a web architecture reference that is also known as
Representational State Transfer (REST) architecture style. In his work he demonstrates how
requirements are addressed with best practices and architectural design patterns as well.
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4 Designing Hierarchical Architectures for SES

Automation Systems and Physical Interdependency

Much of the recent development is targeted towards the automation of energy systems. Particularly
systems for (real time) monitoring and control are of interest. Such systems today are responsible
to collect data in the field, (pre-) process it locally, send it to a monitoring system and persist it
for documentation and (statistic) analysis. To enable the integration of automation systems we
need to understand them in terms of their architecture and find suitable solutions for integration.
The architecture of automation system follows a layered, pyramid-shaped structure as shown in
Figure 4.1 (left). The pyramid shape is used to emphasize high data flow frequencies between the
low-level components, and lower frequency at the higher-level (Vogel-Heuser et al., 2009). To
enable their integration, security and safety reasons demand that the hardware used for control
is not exposed. In the best case, the available hardware and many other internal details remain
hidden. This is known as encapsulation. Thus, we require to define interfaces on the higher
levels of the architecture and restrict the internal access to the lower levels.

Interfaces to higher level systems are today discussed frequently, especially due to the rising
importance of IT business systems that demand for an intensified cross-linking between the levels.
This led to a rethinking of the pyramid shape. To highlight this intensified cross-linking a double
truncated cone with an information model as the intermediate layer (see Figure 4.1 right) has been
introduced in general by Vogel-Heuser et al. (2009) and for particular execution system applica-
tions by Keddis (2015). It intensifies the connection between three layers: the business logic layer
on top, the intermediate information layer in the centre, and the process layer at the bottom. It also
means that operational goals or settings for the process and field layer are not necessarily defined
on the control layer, but also systems from higher levels might be responsible for the automation
of SES. The interoperability needs therefore flexible and extensive information models that
can be combined with the process level in automation.

Finally, since EMS have a strong physical interdependence the execution of control signals
has an impact on the power supply. Thus we require a consistency of the expected behaviour. It
means that we need to define an expectation how certain signals are translated into physical actions
that are for instance part of a mathematical model for coordination (e.g. short term planing).

Business
Level

Control
Level

Process
Level

Field
Level

Information Model

Figure 4.1: The illustrated shift of architectures in automation and manufacturing systems (Own
illustration based on Vogel-Heuser et al. (2009)).
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4.1 Context

Geographical and Operational Scopes

Systems of the smart energy domain experience recurrent hierarchical patterns in their geo-
graphical and operational scopes. Geographical scopes denote the liability for an energy supply
infrastructure of a defined area. We observe EMS that are responsible for single entities or a
small local area, DSO2 systems that are responsible for distribution in cities or rural areas and
TSO3 systems that are responsible for the transmission infrastructure that covers large distances.
Each authority is responsible to observe and clear all events that occur in their responsibility
area. Their hierarchical structure act as an aggregation mechanism. Geographical scopes have
physical connections to adjacent hierarchical levels as well as to neighbours at the same level.
Such transfer points (e.g. power substations) define the boundaries of the geographical scopes.

Operational scopes define additional system boundaries of issues that are not necessarily
related to grid operation. These are manifold, e.g. trading of power at the market, integration of
facilities into virtual power plants, and all kind of auxiliary services related to the energy domain.
Operational scopes define aggregations of components to provide better services, as scaling
effects lead to higher efficiencies and better short term forecasts. Operational scopes can also
change from time to time, since regulation requires a free choice for customers to select their
service providers.

Software systems are important for both scopes, geographical and operational. One re-
quirement is therefore that different hierarchic affiliations are considered in our architecture.
Tolerance of different hierarchic affiliations is a key requirement to handle situations, where we
have more than one superior hierarchy system. Contrary instructions of hierarchic affiliations
can be avoided by orthogonal responsibilities, which do not interfere on the same resources and
system’s state. Another possibility to tolerate multiple hierarchies are clearly separated interfaces.
This is in fact a good practice for software engineering since it facilitates the separation of
concerns leading to more flexible systems and establishing loose coupling between components,
which can be started, stopped, updated and maintained independently.

We summarize the requirements in Table 4.1 for a better overview and as reference to map
them to the architecture design patterns later on.

Limitations

We presented a set of requirements as a necessary prerequisite to describe what we want to
achieve with our architecture. Of course any list of requirements can be refined and extended
by further specific requirements that are necessary for particular SES applications. Actually,
there are many good literature surveys that specifically collect SES requirements, for instance
by Rohjans et al. (2012). Our selection of the desired requirements focuses on the integration of
EMS on the general level and is not application specific, since we want to specifically tackle the
architectural question of building a system that support the hierarchic coordination of EMS. With
our approach we target to achieve a higher abstraction so that we are not necessarily limited by
single applications and can potentially generalize our architecture to several use cases later on.

2Distribution System Operator
3Transmission System Operator
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4 Designing Hierarchical Architectures for SES

Requirement Description

R1: Remote locations The generic architecture shall integrate remote EMS.

R2: Proactive and reactive
behaviour

The generic architecture shall integrate systems with proactive
behaviour, which triggers some process, as well as with reactive
behaviour, which reacts on triggers and responses appropriately.

R3: Independent
deployment

The architecture shall enable that the systems can be to deployed,
stopped and started independently.

R4: Extensibility The architecture shall support system extensions. It means that
a system might be refined and extended, but due the distributed
nature, it cannot be guaranteed that every system is extended syn-
chronously. Therefore, non-synchronous refinement capabilities
are required.

R5: Scalability A large number of components shall be supported. One single
component shall never limit the total system.

R6: Support of security
mechanisms

State-of-the-art security mechanisms shall be compatible with
the architecture.

R7: Integration of
automation systems

Automation systems shall be integrable in such way that the
architecture does not require the direct access to hardware com-
ponents, since encapsulation is a major mechanism to protect
automation systems.

R8: Flexible information
models

Coordination of EMS involves that control systems are intercon-
nected using similar technologies as business software systems.
The architecture shall support those techniques and allow to de-
sign flexible information models to adapt the interface to different
coordination approaches.

R9: Consistency of
expected behaviour

EMS systems shall provide a clearly defined behaviour to allow
its usage for the control of physical systems.

R10: Aggregation of
components

EMS systems shall be able to aggregate components. Such ag-
gregations represent groups of components that act as one single
component to the upper hierarchy levels.

R11: Different hierarchic
affiliations

EMS systems should be able to take part in different hierarchic
affiliations.

Table 4.1: Overview of the requirements for the hierarchic SES architecture.
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4.1 Context

4.1.3 Approach to Derive the Generic Architecture
Deriving architectures for interoperability and specification of interfaces is often the main ob-
jective of standardisation activities, e.g. IEEE (2011); ESO (2012); CIM (2015). Much time
and effort is spend on good specifications and methods to derive them. There are many different
approaches to derive architectures as pointed out by Irlbeck et al. (2013), for instance top-down
approaches as the IEEE P2030, approaches that provide only certain guidelines with predefined
structure as the SGAM methodology or bottom-up derivations as carried out in the extensive
work by Irlbeck and Koutsoumpas (2015). All those approaches propose reference architectures
that guide systems architects and developers with common terminology to improve knowledge
transfer, enable system comparisons and introduce concepts like software components that can
be reused to facilitate design and integration of new components. Our work is complementary
to the broad domain analysis, since we have done some previous work in that area, for instance
in Irlbeck et al. (2013), Bytschkow and Ascher (2017), Ascher and Bytschkow (2018). But
our major contribution here is to derive an architecture that uses energy system models for
coordination as a base line to allow the integration of different EMS and demonstrate how the
system benefits from this integration. We propose an approach that is based on best software
engineering practises that are known from other domains and combines them with energy related
modelling techniques to achieve the desired coordination of EMS.

The generic architecture is created from a set of architecture design patterns that induce a
set of desired properties (see also Chapter 2). It can always be enriched by application specific
demands and extended by specifications to meet the domain requirements. The idea can be
described more precisely. We suppose that well known architecture design patterns exist. They
describe roles and responsibilities of components in a system. Hence, they provide a set of
clear principles to create a system architecture. An architecture design pattern addresses a set of
requirements and it has certain benefits and weaknesses (Fielding, 2000; Taylor et al., 2009). For
instance, a client-server pattern describes two classes of components that communicate over a
network. A server is a component that offers a set of services and listens for requests upon the
services. It is a reactive process. A client sends requests to the server to trigger an execution
of services. It is a triggering process. The client-server pattern is used for a clear separation of
concerns in a system, but it does not constrain the partitioning of functionality. For instance, we
have systems with ’thin’ and ’thick’ clients, server applications and particular backend systems.
The client-server pattern is well described, e.g. by Andrews (1991) or Taylor et al. (2009).

Our derivation of follows a constructive stepwise approach, similarly as for the development
of REST (Fielding, 2000), the underlying architecture design pattern for many web-applications.
A good practise is to start with a NULL style, where no principles that constrain the system
are present. New patterns are added step by step by explaining their contributions. This allows
to check every step for inconsistencies with the previous set of design patterns and by that
analyse if the envisioned impact is reached step by step. Whenever conflicts become obvious, the
modification can be adapted or weakened to emphasise prioritised properties. It is possible to add
well known and industry proven architecture design patterns, that have been used in many real
life projects as basic building blocks, and combine them to reach a new hybrid architecture design
pattern. Since well known architecture design patterns are known by many system architects, a
combination of two patterns can be evaluated for potential conflicts.
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4.2 Derivation of the Generic Architecture

In the following, we derive the hierarchic SES architecture step by step. We begin the derivation
of the generic architecture with an empty set of constraints. Then we add step by step design
decisions, i.e. well-known architectural design patterns, by describing concretely what exactly
is necessary using our list of requirements (i.e. Table 4.1) and how each individual architecture
design pattern helps us to achieve those requirements. Note, the intention of the architecture
is neither to restrict the communication of components to a particular protocol, nor to propose
certain technologies for the interface, but rather to provide a clear but technology independent
specification and describe the expected interactions between individual components.

4.2.1 Required Architecture Design Patterns

Client-Server

In a system with remote locations (R1) and communication between components we start with
the addition of the client-server design pattern as the first set of principles to our architecture. The
client-server pattern is based on well known and clear responsibilities. As we shortly described
before (Section 4.1.3), the pattern introduces the two roles clients and servers with certain
interaction expectations. Servers wait for request messages. Clients initialize the communication
and ask for services from the servers. The server responses with answers that depend on the
service. Note, if the service is not available there are different protocols that provide certain status
codes and support the communication, for instance the HTTP-protocol. These codes are however
an extension to the server-client pattern. The pattern it-self restricts just the roles and constrains
that clients do not interact. The pattern is depicted in Figure 4.2 to illustrate the idea.

Server

Client Client

: Server Interface (reactive)
: Client Interface (proactive)

Figure 4.2: Client-server architecture design pattern.

A rich set of libraries and available systems is available to realize a client-server architecture.
Besides the requirement of remote locations, the client-server pattern allows to consider (R2) that
we expect for SES: reactive behaviour (server) and proactive behaviour (client). The second
requirement is therefore covered as well. Probably the most significant contribution of the
client-server design pattern is that it is specifically designed for a distributed environment, where
systems can be started and stopped independently. It is therefore perfectly suited to realize an
independent deployment (R3) of different systems and multiple organizational boundaries. Even
if some systems have been stopped and are not reachable for some time, the non-monolithic
architecture enforces that all the other components can still operate and do not necessarily break
down the whole system.
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4.2 Derivation of the Generic Architecture

Composite Pattern (self-similarity)

Next, we would like to add a restriction for our architecture that affects the interface design and
available services of the components. For SES we expect that EMS like prosumers or microgrids
offer a similar set of services, which are repetitively found at every hierarchic level. The idea
is that, no matter on which hierarchical level the system is available and no matter whether the
system is an individual component or a composite of several components, the system should
be treated (integrated) uniformly or in other words transparently. The restriction of a uniform
interface demands that there is common set of services that are provided over the interface of
each EMS 4.

A well known mechanism that enforces unified treatment is the composite pattern (Gamma
et al., 1995). Originally it is a structural pattern for the composition of objects in object-oriented
programming that provides a hierarchical composition of components that have the same set of
services. It is successfully used in many real application that demand a generic approach and
good scalability. File systems or graphical user interface toolkits, such as Java Standard Widget
Toolkit (Java SWT), are good examples. In our architecture, we use the term composition pattern
to denote a structure for the composition of software components that interact via interfaces and
exchange messages. The composite pattern restricts therefore the architecture to a hierarchy of
components that offer a defined set of services and consequently have similar interfaces, even
though each component is responsible for its specific hierarchical level.

The composition pattern restricts the system architecture to two different component types.
The first type is a leaf component. It represents an atomic component that cannot be broke down
further. It has the defined set of services, but no children. The second one is the composite
component. It offers the same set of services and in addition to leafs, it can add or remove other
components and by that cover different system compositions. The composite pattern adapted to
our component based architecture is illustrated in Figure 4.3.

Composite

Leaf Leaf...

Composite

Leaf Leaf...

Leaf

Composite

...

Component
offers: Service A
offers: Service B

Leaf
offers: Service A
offers: Service B

Composite
offers: Service A
offers: Service B
offers: addComponent
offers: removeComponent

0..∗
child

parent

(a) (b)
Figure 4.3: The composite pattern: (a) hierarchic system architecture of interacting of components,
(b) components as composites or leafs.

4 Note, of course each individual EMS still might have other services (vendor specific ones), but to reach the
possibility to coordinate EMS using some common model, each component should be addressed uniformly.
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Combining the composite pattern with the client-server style introduces the restriction that
each component acts potentially as a client and a server. The important contribution of the
combination is that composites and leafs have the same interface and behaviour. We therefore say
that they are self-similar.

The composite pattern is useful for our generic hierarchic architecture to address three
requirements. An architecture that is based on the composite pattern supports the composition
and decomposition of functionality. It allows to delegate requests from parents to children, to
aggregate information from the children and offer a better service to the parent. Consequently,
the aggregation (R10) requirement is addressed by the composite pattern by the design, but due
to its generic structure the exact definition of the interface depends on the application, which we
discuss in more detail in Chapter 5 and Chapter 6.

Further, most of the information processing and coordination can be achieved through
the intermediate composite components that represent groups of components. This reduces
the necessity to send all information all the way to the top level component, which increases
scalability (R5) of the system. Scalability is further supported by the possibility to cache data
at intermediate components. In addition, whenever new components appear, they can easily be
hooked up to any composite components, without influencing the topology of other systems.
This provides a good way to share the work load of services. The scalability property can decay
when we do not consider two factors. On the one hand, a single composite should handle only a
limited number of children, especially if it designed to aggregate the children’s results and the
aggregation process is complex (e.g. some kind of optimisation). The limit should be chosen
such that the composite is well prepared to operate within its performance requirements. The
other factor that might decrease scalability is the depth of the hierarchy, especially when the
communication processes are designed in such way, that they require many request-response
interactions that are passed to next hierarchy levels. In the SES vision each EMS (every hierarchic
level) covers its responsibility as autonomic as possible. Request-response interactions over
several levels should therefore be reduced to a minimum.

The third requirement that is covered is consistency of expected behaviour (R9). Every com-
ponent of the composite pattern has a similar interface with same functionality (cf. section 4.2.3).
Actually, the biggest advantage of the composite pattern, is that it allows an agent to interact with
any composite component (which represents a group of components) exactly the same way as
with leafs. This allows to specify an interaction only once for the composite components. The
other components should follow the same specifications. The combination of the client-server
style with the composite pattern is depicted in Figure 4.4.

Composite

Composite Leaf

: Server Interface (reactive)
: Client Interface (proactive)

Figure 4.4: Client-Server + Composite Pattern.
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The combination of the composite pattern and the client-server approach already provides a
good set of constraints to realize many applications. Those two principles are a good starting point
to specify the design and behaviour of EMS component. Depending on the desired coordination
approach, we can choose which functionality is provided as a server and which as a client, e.g.
flexibility offers or market bids. We can also reason about those systems, which initializes the
interaction and which information is transferred. This is demonstrated in Chapters 5 and 6 that
focus on specific coordination approaches.

Layered Systems

The next constraint of our architecture is the layered architecture design pattern. Layers are
well known from communication systems. They are used to organize a system’s functionality
hierarchically. Each layer provides a set of services. The services use other services of the
layer below it and provides their functionality to next adjacent higher layer. By hiding the inner
layers from the outer ones, the system’s complexity is greatly reduced. In strict layered systems
skipping of layers is not allowed. This increases re-usability and evolvability of systems, as
layers might be exchanged or adapted individually. Layered systems are implemented in many
real word applications. Most communication systems, such as the TCP/IP (Fall and Stevens,
2011) follow the OSI model (Zimmermann, 1980) and use layered protocol stacks. Further
examples are operation systems with their hardware drivers and abstraction libraries. Systems
in the energy domain with gateways and proxies or SCADA systems widely implement layered
system mechanisms to protect their internal functionality from undesired access.

The principle of layered systems helps with two further requirements. We required that our
architecture does need to support state-of-the-art security mechanisms (R6). A layered system
allows to add additional layers for EMS, e.g. smart meter gateways, and add security mechanisms
such as VPN, SSL/TLS to interact with the systems. In fact, there is already a lively discussion by
the regulation bodies with a specification according the Common Criteria by the Federal Office
for Information Security5, about which requirements such a smart meter gateway must fulfil and
how it will be evaluated to obtain a certification in Germany. A layered approach is part of this
specification.

Composite

Composite Leaf

: Server Interface (reactive)
: Client Interface (proactive)

additional layers, e.g. for security,
and automation

Figure 4.5: Client-Server + Composite Pattern + Layered Systems.

5Bundesamt für Sicherheit in der Informationstechnik
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The second requirement that is covered by layered systems is the possibility to integrate
automation systems (R7), that the only one particular layer of automation system is accessible.
This allows access to internal components to be reliably hidden to enforce encapsulation require-
ments. We introduced in Section 4.1.2 that automation in general and SCADA for energy systems
in particular are developed with a layered approach in mind. Even the previously mentioned
Common Criteria specifications discus the question, how to open the possibility to address
automation scenarios with the smart meter gateways. The principles of layers are therefore of
paramount importance for a generic architecture in the energy domain. The addition of layers
to our architecture is depicted in Figure 4.5. In Appendix A we also provide more details how
layers are used in SES prosumer systems.

Unified Interface

Our last three principles already describe the most important structural constraints for our
architecture. We add the last obligatory architecture restriction, that we denote a unified interface,
to emphasise additional requirements to create interfaces, which are easy to integrate and not
bounded to specific technical protocols. With the term unified interface we postulate certain
expectations about a system’s interface 6.

A unified interface demands that external available system capabilities are represented as
addressable resources. Any resource can be accessed by a unique identifier (an address). Any
resource is accessible by a representation that chooses a certain protocol and data format (e.g.
JSON, XML, CSV, or some other format) and multiple representations potentially exist in parallel
(it means that the system might provide its resources with different representations and also
technical protocols (e.g. HTTPS, OPC UA), but the unified interfaces focuses on the definition of
a resource, not on its technical implementation). The current state of a system is a resource as
well. Finally, in a unified interface available options for further interaction are explicitly shown.
It means that resources, which require other resources, refer to each other.

The unified interface principle addresses several mentioned requirements. First, the focus
on addressable resources allows that different hierarchic affiliations (R11) use and interact with
differently available resources, since the resources can be designed so that each affiliation receives
its own set of resources.

Further, the extensibility requirement (R4) is supported, because the system’s capabilities are
presented as a set of addressable resources. Resources can be added or modified and old ones
removed. A resource can have multiple representations, which can be extended if new application
requirements or protocols appear. To facilitate systems compatibility, old representations can
also be kept active, while new ones are added stepwise. This supports a continuous development,
testing and an independent deployment.

6 Note, the term unified interface also appears in the work by Fielding (2000), where it is introduced as a major
ingredient of the REST architecture style, a widely used principle that particularly specifies system interactions. It
defines four principles for an interface: identification of resources; manipulation of resources through representations;
self-descriptive messages; and hypermedia data as the engine of application state. This definition was fundamental for
the work on the world wide web.
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The aggregation requirement (R10) is supported one more time by the explicit representation
of the current system’s state and its capabilities. This allows to observe the state of every
component. State updates can either be pushed upwards the hierarchy, or pulled from the lower
levels, depending on the desired implementation, which we do not restrict here. We represent

the unified interface in the architecture style (see Figure 4.6) by the symbol U to denote
a component, which supports such an interface. An extension with colored blocks for every
component represents the different possibilities for the representation of resources.

Composite
U

Composite
U

Leaf
U

: Server Interface (reactive)
: Client Interface (proactive)

Figure 4.6: Client-Server + Composite Pattern + Layered Systems + Unified Interface.

Publish-Subscribe (optional)

Finally, we add one more optional architecture design pattern to explicitly highlight and support
automated, continuous data exchanges in SES to achieve a higher convergency towards the
integration of automation systems (R7), namely the well-know publish-subscribe pattern. The
publish-subscribe pattern introduces two distinct components: the publisher and the subscriber.
The publisher periodically creates information, e.g. new measurements or system states. The
subscriber obtains this information or is at least informed that new information is available. This
reduces the communication overhead and the necessity to check for new information, as long as
no new information is available.

Further, the publish-subscribe design pattern demands that the publisher maintains a list of
subscribers. Subscribers can subscribe to that list and also deregister their subscriptions. This
allows to establish more flexible connections and adapt the communication channels flexible, if
required by the system. The publish-subscribe design pattern offers another benefit in practise.
First, with the rise of many new IoT applications, there is a strong technological support from
many industrial partners that also offer libraries for the implementation an well standardized
communication interfaces, e.g. MQTT, OPC UA. Second, the developers of such systems can
focus more on the question which data is required and how it can be processed, instead of solving
the technical questions about stable communications and how to handle communication errors,
since those questions are usually covered by the already available technologies.

69



4 Designing Hierarchical Architectures for SES

The publish-subscribe pattern is not really mandatory to create the hierarchical applications,
as it the architecture can be established also with other approaches, e.g. REST or some bus
technologies that have no dedicated requirements for publish-subscribe mechanisms. But the
publish-subscribe pattern greatly facilitates the automation capabilities of components. This
is why this architecture design pattern is marked as optional. To illustrate the addition of the
publish-subscribe pattern to our architecture, we extend the unified interface symbol as U .
The resulting combination of architecture design patterns is illustrated in Figure 4.7.

Composite
U

Composite
U

Leaf
U

: Server Interface (reactive)
: Client Interface (proactive)

Figure 4.7: Client-Server + Composite Pattern + Layered Systems + Unified Interface + Publish-
Subscribe.

Additional remarks on channels

For the work on the architectures, it is worth to note some practical remarks here. Many
architectures introduce components and connectors to model software intensive systems (e.g.
Broy and Stølen (2001), Neubeck (2012), Vogelsang (2015), Junker (2016)). The components
represent certain functionality (system behaviour) and have an interface (system boundary).
Connectors represent data links. Therefore, an architecture often looks like a graph made
from blocks (components) and arrows (connectors). This is done to abstract architectures from
implementation details and focus only on the details that matter for the specific application. Such
separation of concerns is good software engineering practise and very beneficial, as the system
functionality can be evaluated or even formally verified with clear specifications and less complex
system descriptions.

We should keep in mind, though, that particularly connectors in implementations are often
not just pure data links that transmit bits and bytes. In fact, connectors are responsible for many
important actions, which are often abstracted away in an architecture model. This includes
specific protocol implementations, invocations, caching, persistence, messaging, transactions,
routing and sometimes even security related interactions. Consequently, the choice of connectors
do greatly affect the properties of systems. In contrast to components, that are usually application
specific, connectors are more general and can therefore be reused across applications and domains.
In consequence, many re-used libraries in real system implementations are connectors.
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4.2.2 Mapping of Architecture Design Patterns to SES Requirements

We described the generic hierarchic architecture as a system that is constructed stepwise from
other well-known architectural design patterns that are often applied in real systems. They
define the necessary architectural constraints for the generic hierarchic architecture. We use the
constructive approach to cover a set of requirements (i.e. Table 4.1). This clarifies the rationale
behind each decision and makes it easier to understand the implication of each choice. A summary
of the used principles and the addressed requirements is presented in Table 4.2. They focus on
the SES context, but are not limited to that area.

Architecture Design Pattern Addressed Requirements

Client-Server
Remote locations (R1)
Proactive and reactive behaviour (R2)
Independent deployment (R3)

Composition Pattern
(Self-Similarity)

Scalability (R5)
Consistency (R9)
Aggregation (R10)

Layered Systems
Security (R6)
Integration of automation systems (R7)

Unified Interface
(Representation of Resources)

Extensibility (R4)
Flexible information models (R8)
Different hierarchic affiliations (R11)

Publish-Subscribe Integration of automation systems (R7)

Table 4.2: Overview of the required architecture design patterns and related requirements.

An additional benefit of the stepwise construction is that the used architecture design patterns
come along with a set of technologies, such as available libraries, tool support and methods,
which help to understand, design, analyse and implement such systems. In the upcoming work
we give several examples how these presented principles are translated into real systems, which
are used in our real life projects.

4.2.3 Architectural Elements: The Role of an EMS for Coordination

The previous section describes the basic design patterns to create a generic architecture for the
coordination of EMS and explains why we selected them. The architecture design patterns
introduce only carefully selected constraints that are important to design a properly functioning
system. To understand how this creates an architecture, we further need to understand what
are the responsibilities of each component in the system as clearly as possible. Hence, we
need to define the roles of the involved components. The description of the roles is intended
to be technology agnostic and leave the freedom for developers to choose certain technological
solutions or communication protocols.
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On the most abstract level, a component in our generic architecture is an EMS, for instance
a prosumer system, a microgrid, a coordination system for multiple prosumers or microgrids
or a coordination system for multiple other smaller coordination systems. All EMS offer some
defined set of services that depend on the desired coordination model. With the common set of
services, they also provide similar interfaces (in terms of available data) and behaviour (in terms
of data processing or in other words input / output relations for the data). We presented that an
EMS can be a leaf or a composite. But, since all EMS are just a specialized form of the general
EMS component, the EMS role is only component role that requires a specification.

An EMS is an interactive component in a hierarchical system, that continuously offers a set
of resources and requests other resources to perform certain tasks. An instantiated EMS is always
either a composite or a leaf. If it is a composite, the EMS controls and continuously collects
values from its children. If it is a leaf, the EMS controls and collects values from its underlying
local systems. In the SES context, these are physical devices such as simple sensors, advanced
controllers, or even complex equipment (e.g. solar panels, inverters, batteries, heat pumps, etc.).
The collected data enables the EMS to compute the available resources.

In a hierarchic structure (see Figure 4.8) EMS interact by sending messages to the higher
level components (parents) or to lower level components (children) and also respond to such. The
hierarchical interplay and the exchange of messages opens a wide range of possibilities to define
different behaviour patterns depending on the desired application. Hence, the interaction in a
hierarchical system might be complex. To reduce the complexity we break down the possibilities
for message exchanges into atomic steps. This allows a deliberate behaviour specification of a
component.

EMS

EMS

EMS

EMSEMSEMS

EMSEMSEMS

(. . .)

Other EMS
(children)

Figure 4.8: The structure in a generic hierarchical architecture with EMS.

For the decomposition of the potential interactions into atomic steps we use a distinction
of cases, since there are only a limited number of possible input and output relations. A conve-
nient distinction can be made by the triggering mechanism (input messages that triggers some
behaviour) and the sequential reaction of the component. We display all trigger possibilities and
potential continuations that an EMS can have in Figure 4.9. A trigger might originate from the
parent EMS, from the child EMS or from internal states of an EMS application7. Each trigger
has a number of possible successive options.

7Note, an internal state represents internal system triggers, for instance a human user that desires some action, or
from external applications such as smart home applications.
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(a) Trigger: Parent’s msg. (b) Trigger: Child’s msg. (c) Trigger: Internal state

Figure 4.9: A distinction of cases for the specification of the EMS behaviour.

The reactions are the expected behaviour of the EMS component in a hierarchic architecture.
We use the reactions as atomic steps in the following to define the behaviour within our architec-
ture. Since we are all familiar with a conventional organisation hierarchy, the specification of an
EMS is rather intuitive by following the hierarchical arrangement. The lowest level components,
the leafs, provide resources for an operation. They control and monitor physical devices and
abstract from internal details, such as implementation of device specific protocols. Composite
components have the responsibility to aggregate and manage the available resources of their
children in the higher level. Composites provide goals and support with additional information.

An example in our context is the planning and provision of power. The overall goal is to
reach a balance with power production and demand. Individual EMS systems are not aware of
the global situation, but they can control (or at least monitor) their own system. The monitoring
systems provide data about local power injections8. These measurements are used to enable the
planning for the upcoming future. Parents can collect such information from their children and
trigger a planning process. This process results in some coordination signal for the children. Such
signals are for instance set points for a desired power injection for the upcoming time periods, or
prizes that guide the children and motivate them to shift their demand to lower price time intervals,
or utilize more of the available power production during high price time intervals. Children are
responsible to react on these signals. If they are leafs, they control their physical devices. If
they are composites, they decompose the signal into individual signals for their children and
send those downwards in a top-down planning process. Alternatively, planning can be organized
in a bottom-up approach. Children send their desired power injection to their parents. Parents
monitor the contributions and adjust the incentives to reach the desired goal. In this bottom up
process, children trigger the planning process and provide the forecasts. The parents are still
responsible for coordination and can use any kind of incentives to guide the children in order
reach overall system goals, for instance providing economic power supply under the constraint of
system stability.

8The term power injection means that power can either be taken from the network (power demand) or provided to
the network (power production).
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As presented in Figure 4.9, EMS in hierarchical architectures encounter a number of possible
interactions. We go through them in more detail in the following to differentiate between the
possibilities. We always consider one input/output relation as one atomic case or in other
words one atomic behaviour, similarly to the request and response pattern of servers and clients.
Due to hierarchy, we say that the receiving of input is the first step, thus it is a trigger. The
sending of an output is the second step, thus it is a reaction. In the following, we present the
atomic behaviour cases that require attention for the behaviour specification of an EMS. To
demonstrate their application in more complex scenarios, we provide later on two industrial case
studies in Chapter 5 and Chapter 6, where we demonstrate implementations of several hierarchic
applications for the coordination of EMS.

Distinction of Cases (Behaviour Specifications)

Trigger: Parent’s messages.

The first case distinction is based on messages from the parent. We depict all possibilities
in Figure 4.10. The EMS component for which we specify the behaviour is pictured as a
shaded circle. Its parent and its children are denoted with P and C, respectively. The trigger (the
input of the behaviour) is denoted as arrow #1 and the reaction (the output of the behaviour) is
denoted as arrow #2.

P

C

1.

2.

P

C C. . .

1.

2.
2.

delegation
(coordination)

P

1.2.

direct
answer

P

1.

2.

state
update

Figure 4.10: The specification of the EMS behaviour based on parent’s input.

If an EMS receives a message from the parent it has four options. An EMS can delegate the
request either to a single child or it can split the request in several sub-requests and delegate them
to several children. A delegation behaviour should be specified whenever a request concerns the
collaboration of multiple components, e.g. different systems at various locations, but also if it
requires a resource that is offered by a specific child. The delegation behaviour can be seen as a
coordination activity, where a group tries to reach a common goal. Delegation is only possible
for composites.

The next possibility for an EMS behaviour is a direct answer. This behaviour allows to specify
a direct client-server interaction, where the EMS is a server and the parent can contact it directly,
thus the parent is a client. The specification of this behaviour is useful, when a component is able
to respond directly. For instance, the parent can request an update of the current state. Direct
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answer behaviour specifications are of interests for both EMS types, composites and leafs. The
fourth possibility for an interaction is a request that leads to a state update. Such an example is a
request to change a set point for some internally´controlled devices. The set point changes the
internal state. The state update specification is important for both instances, composites and leafs.

It is of course possible and even preferable, to combine multiple atomic behaviour pattern in
a hierarchic EMS coordination to realize more advanced applications, since the the simple steps
are a strong limitation. But the atomic steps are still a good guideline for behaviour specifications.
For instance, it is reasonable to combine delegation and direct answers. This allows to inform the
parent that its request is being processed, while the children do the actual work. The combination
of an state update and direct answer is also useful to acknowledge that set points were received
and successfully established. The exact specification of the behaviour, however, depends on the
application requirements.

Trigger: Child’s and children’s messages

The second triggering mechanism is a message from the children level. Consequently, it applies
only for composites, not for leafs. We differentiate in the following between a single child and a
group of children to provide more possibilities to specify cases. We depict the different options
in Figure 4.11 and structure the atomic behaviours based on the received input (arrow #1) and
provided output (arrow #2).
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Figure 4.11: The specification of the EMS behaviour based on children’s input.
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The upper set of cases in Figure 4.11 describes the behaviour based on inputs from a single
child. The simplest two possibilities are the specification of a direct answer and status update.
This is similar as explained before. The EMS system receives a request and responses with an
answer, or changes its internal state, accordingly.

Another important case triggered by a single child is called support. For instance, an EMS
child schedules its internal resources. It might appear that it has not enough resources, for
instance due to deviations from the forecast. In this case it can send a message to its parent to
request support. The parent might know from previous interactions that is can request additional
resources from other children. In this case it can activate the resources from those other children
to keep the group’s total demand and supply balanced.

The final case of the upper set addresses escalation. A child sends a message to the EMS.
But the EMS does not respond immediately, since it requires support from the parent level. For
example an alarm can be escalated, if it cannot be resolved internally, but there is a possibility to
receive support from the higher level. Actually, in a highly automated system, it is expected to
resolve the incoming tasks on the lowest possible level. Only if this is not possible escalation is
required. Reasons for escalation can be manifold and application specific.

The lower set of cases in Figure 4.11 describes the trigger by a group of children. The
intention here is to specify a behaviour, that is based on a set of messages. The first two cases
are called coordination. The intention of the behaviour specification is to describe how an EMS
reacts to multiple messages from children for further internal coordination. For example, all
children send their available resources. The coordination EMS decides on a fair utilization of
the resources and responds with new set points. The specification of a coordination case can
be quite complex, since the coordination behaviour might result in the application of extensive
optimization algorithms. But it is sill important to define a proper coordination mechanism for an
application, since it includes the specification of the proper input data and the proper output data.
For instance, the presented market models or short-term planning model (see Section 3.1) can
be seen as such coordination mechanisms. Any central control system, with only one particular
decision making instance implements in fact this atomic behaviour. A hierarchical system has
further interaction possibilities, as described below. However, we suggest to establish coordination
behaviour on the lowest hierarchic levels. With that the necessity for escalations is reduced and
the autonomy of more local EMS is increased within the hierarchy.

The next case of the lower set is called aggregation. The specification of an aggregation
provides a mechanism to expose messages that combine the information from the lower layers. A
simple example is the aggregation of the system state that describes the current power injection
of an EMS. The input messages are in that case children specific power values. The aggregation
mechanism is a sum (considering the losses if possible). The output message is the specific
aggregated power value of the responsible EMS.

The remaining atomic case, the state update that is based on multiple children is similar as
explained before. It receives several messages from the children and adapts its internal state based
on those messages.
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Trigger: Internal States

The final set for distinction of cases and the third triggering mechanism is determined by internal
states. We explained in Section 4.2 that an EMS can be quite complex and have a significant
internal structure as well. Internal events might therefore occur frequently. This case helps
to specify how internal events affects the hierarchical applications. The four possibilities are
depicted in Figure 4.12. The state update case has no external interaction. It is, therefore, not in
the scope of the EMS specification. We briefly explain only the remaining three in the following.
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Figure 4.12: The specification of the EMS behaviour based on internal trigger.

The triggered message to child and triggered messages to children cases appear when an
EMS observes an internal state change that triggers an interaction with the lower hierarchical
level. Such an internal trigger can be based on time, a sensor value or user’s input. The trigger
is sometimes used in the specification to define when an interaction starts in the hierarchy and
defines which message is sent to start this interaction process. Since both cases are directed
downwards the hierarchy, they can only be implemented by composites.

Finally, the triggered message to parent case describes all interactions that are started by an
EMS towards the higher level. This case defines when the EMS begins an interaction with its
parent. It specifies the internal trigger and the message that is sent upwards. The final case can be
implemented by both, leafs and composites.

Distinction of Cases: Overview

The distinction of cases presents 16 distinct interaction cases in a hierarchic EMS architecture.
Each case has its own individual input-output relation. Not all cases affect all types of components,
composites and leafs. Not all of them are necessary to create an application to coordinate different
EMS. For instance, a conventional centralized coordination is covered in our approach by the
specific case, where children send data to the parent and receive a reply. Hence, this case in
combination with one of the trigger cases to start the interaction is enough to reason about the
conventional central coordination architecture. All other cases are not necessary. But, if EMSs
are part in a hierarchy the interactions become more complex. Thus, we need to be aware that the
hierarchic architecture as discussed by Moslehi and Kumar (2010); Benz et al. (2015); Howell
et al. (2017) and others is much richer in their available interaction possibilities than presented
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with the flat-architecture approach. Also the system boundary of an EMS in terms of its input-
output relation needs to be defined very clear, because each of the 16 cases requires particular
input messages (that might include a lot of data) and particular output messages. However, there
are several cases as the direct answer cases, that might be required several times for a particular
application. Hence, even if there is only one specific direct answer case defined as an atomic case
different instances of that particular case might exist. It is therefore not that simple. However,
the distinction of cases is a helpful approach to develop specific hierarchic applications, as we
demonstrate further below.

For coordination applications it is reasonable to combine several distinct interaction cases to
establish a more complex interaction between the components. The exact combination depends on
the application requirements. Further, some behaviours require that other behaviour specifications
exist. Hence, the cases are implicitly related. Table 4.3 gives an overview of the described cases,
if they are related and if they impact leafs or composite components.

The overview contains three major observations. Firstly, leafs require only a subset of distinct
behaviour cases specifications, as they do not need to manage children. Composites on the
other side, should have more defined behaviours, in particularly so that they can be used for
coordination activities.

Secondly, the specification of some cases is marked as optional, because of two reasons. An
internal state update is not visible for an external systems, since no information is exchanged.
The specification of this case, therefore, helps to understand the internal behaviour, but it is not
required to define an interaction with external component and define the structure of the message
and its content. Therefore it is not required for any integration specifications and marked as
optional. Further, we mentioned that a triggered message to parents is optional for composites.
The reason is that a composite is usually only a supervisor of children. It does not have own
devices that trigger alarms or violate some value limitation. Most interactions are based on
children’s input. Only some dedicated applications might require this specification, for instance
reporting or a heartbeat. But these two cases can also be easily implemented based on a request
from the parent, and not from an internal trigger.

Thirdly, the generic behaviour cases are interrelated and define a chain of interactions in
a hierarchic systems. For instance, a top-down application could look like this: (i) At the top,
an initial request is send to all children. As a consequence, another behaviour specification is
required that describes the input based on a trigger from the parent. (ii) The intermediate levels
could choose delegation as a desired behaviour. Delegation induces another parent triggered
case specification. (iii) At the children level the application might require to update a state. This
specification of this case ends the chain. Other applications would have similar interrelations
and chains. Note, start points are always internal triggers. For instance, all kind of pull-based
interactions can be implemented with a trigger that is based on times or on internal values.
Push-based interactions can be started similarly. End points of chains are always state updates,
without further interaction. This allows to analyse the specification of behaviours including a
defined termination of an interaction sequence.
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Trigger Case Leaf Composite Specification of
follow up case

P

C

1.

P1: delegation no yes

P2: direct answer (to parent) yes yes

P3: state update (due to parent) yes yes

P

C

1.

C1: direct answer (to child) no yes

C2: support no yes

C3: escalation no yes

C4: coordination no yes

C5: aggregation no yes

C6: state update (due to child / children) no yes

P

C

1.

L1: triggered message to child / chil-
dren

no yes

L2: triggered message to parent yes (opt.)

L3: state update (locally) (opt.) (opt.)

Table 4.3: An overview of the cases distinction for the behaviour specification of an EMS in a
hierarchic architecture.

Summary

The core specification element in our generic hierarchic architecture is an EMS. It is part of
a hierarchical structure and contributes to the overall system behaviour either as a leaf or a
composite. Leafs deliver resources that are aggregated and managed by composites. Composites
forward the aggregates of the resources upwards in the hierarchy, delegate requests downwards in
the hierarchy and introduce an additional management level to support lower level components.
The EMS behaviour in a hierarchic structure can be described with specific behaviour cases that
need to be defined based on application requirements. The distinction of cases allows to reduce
the complexity and describes a clearly specified input-output relation to define the behaviour of
components.
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The presented cases in a hierarchic EMS architecture represent a comprehensive collection of
the possible EMS interaction patterns. The distinct interactions are not complex. They are simple
input / output relations for the intended coordination activities. The simplicity is intended, since
the SES vision of a holistic system with the large variety of different coordination possibilities
is so immense, that we need a simplification in terms of the intended interactions to the very
basic level, as presented here. Without the understanding of which interactions are beneath
a hierarchic structure, the orientation in the development process is not easy and the system
developers often limit themselves to central control systems, where the simple request-reply
patterns dominate. Note, even if the atomic cases look rather simple, the combination of them
in a hierarchic system allows a rich set of specifications that can be used for different kinds of
coordination mechanisms for hierarchic EMS. We discuss more of those concrete and extensive
examples in the upcoming chapters where we explain concrete implementations for different
control scenarios. These implementations are different architecture instances of the presented
generic architecture and cover several different behaviour steps that we introduce here. Those
upcoming chapters cover a major work of this thesis, since they introduce concrete examples for
SES architectures. But before we can start to describe those hierarchic architectures we need to
provide the right technical environment to create SES applications that adhere to our approach
with the generic hierarchic architecture.

4.3 Technical Support to Establish Hierarchical SES Architectures

The previous section introduces the generic hierarchic architecture on a conceptual level. To
evaluate this concept for its technical feasibility and the expected benefits that are reached by this
architecture, we need a sound technological framework, which is able to implement various SES
applications that are then applied to different scenarios. This section presents this technological
framework as the underlying technological infrastructure that has been created in the context of
this thesis.

To study this impact of different SES systems and particularly to be able to create flexible SES
applications we developed a co-simulation framework called Smart Energy System SIMulation
(SESSIM). It combines three important areas for smart energy research: design, modelling and
simulation of interactive EMS components (an architecture perspective), the influence to the
physical system (power system perspective) and several interfaces to integrate real systems as
(hardware in the loop and co-simulation integration) that test different scenarios.

The framework was initially presented in (Bytschkow et al., 2015). It integrates different
technologies such as GridLab-D (a modelling tool for power flow dynamics), Akka (an actor
based framework for large scale distributed applications), EclipseScada (a SCADA system for
integration of remote components) and CIM (common information model for utilities). The
co-simulation framework represents the fundamental vehicle for our analysis that we present
further below.
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4.3.1 Preliminary Considerations

Existing energy systems experience a paradigmatic shift towards more bottom-up intelligence in
a system, where smarter and more flexible components provide additional services to the overall
power supply system. Many research activities and technology providers delivered a wide range
of new custom SES solutions during the last years, e.g. Fang et al. (2012); Koß et al. (2012);
Becker et al. (2015); Mauser (2017). To measure their impact on the power supply infrastructure,
energy models are usually used. However, it is often required that those models are enriched with
real data, or even that the validity of those models is evaluated in real field tests. To do so, the
models and coordination systems that use those models for creating control signals need to be
combined with industrial systems. This is costly and time consuming.

As a preliminary and widely accepted evaluation step simulations are used for system analysis.
Recently, simulations are becoming more combined, not only because the different granularity
of the simulations, but also with real systems to validate the models, to reason about system
requirements such as required time resolutions, the representation and interface specification
for direct control, market driven approaches, demand response and flexibility capabilities as
well as the integration of certain protocols. Instead of developing completely new solutions
it is reasonable to combine the available simulations, tools and techniques. This was initially
introduced by Hopkinson et. al. (2006) and Lin et. al (2011) in the context of SES.

For the interconnection of a simulation tool with real systems several possibilities exist.
Available industrial protocols promote the usage of SCADA servers and clients. More recent
applications also allow to integrate classical REST APIs, or systems with an OPC UA interface.
When we consider the coupling of two different simulations we can use the functional mock-
up interface, introduced by Blochwitz et al. (2012). Schütte (2013) proposes to use different
abstraction layers for the available simulation tools, even though it always remains a challenge
to understand and combine the systems, due to the different semantics, degrees of details, and
usage purpose of the tools. Nevertheless, the approach of a federated framework helps with the
goal of a co-simulation, particularly, if systems are analysed with respect to widely used energy
model metrics that are well known and understood from the systems planning perspective. This
also increases the acceptance of a co-simulation solution and helps system designers not only to
simulate, but also test the solutions in a practicable environment and derive further insights about
a possible impact.

4.3.2 Framework Requirements

The main purpose to develop a co-simulation framework is to create and analyse different SES
solutions, where the hierarchic system is one of them. Instead of developing an independent,
stand-alone solution, the goal is to use well established technologies that are well tested and
effectively applied in the industry. Our co-simulation framework needs therefore to consider a
set of requirements to enable such a design and analysis. This includes some essential modules
for the framework that allow to model the physical world, the communication of between SES
applications including the desired data exchange, as well as establish a connection to real systems.
We explain the main requirements of our modules below.
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SES solutions often involve complex algorithms for distributed control and decision making
that is based on communication and information exchange. The communication may appear not
only at the central location of the control center, but also within the distribution network and at
EMS level within local areas or even buildings. This exchange of data is expected to influence
the design of future power systems, since interactive components will become more and more
an essential part of the infrastructure. Therefore, the capability to model behaviour that relies
on communication - the EMS system behaviour, is the major requirement of the co-simulation
framework. The behaviour models correspond to interactive EMS components that communicate
between each other. For tests and simulation those behaviour models should be easy to refine. It
also means that we should be able to separate the communication mechanisms from the behaviour
of a component, i.e. the communication protocols should be interchangeable.

Another important requirement for the framework is the capability to represent the underlying
physical system. The physical part emphasizes the production, delivery and consumption of
electrical energy. Modelling and analysis activities for power systems have already a long tradition.
Therefore, many commercial and research tools with comprehensive features are available, such
as PSS/E, GRIDLAB-D, DIgSILENT PowerFactory, MATLAB’s SimPowerSystems, OpenDSS
amongst others. One requirement is therefore the integration of (possibly different) power flow
modelling and simulation environments.

Utilities and system operators use different tools and create models that are adjusted to solve
certain tasks and answer different questions. Depending on the purpose of the application, the
level of detail varies and different models of the same system or time frames for the components
are essential (Andersson, 2004). To overcome the burden of different models, a standard
representation with a good level of abstraction that supports export and import functionality to
and from different tools is necessary. If import or export of the standard model is not supported by
the power flow modelling tool, the chosen representation of the model should allow to generate
specific input models with a model transformation.

Additionally, multiple mapping conditions are required. Every physical node (e.g. production
unit) should be able to map to a corresponding behaviour model. At the same time, not every
behaviour model necessarily needs a physical component in the power network (e.g. SCADA or
gateways for the electricity market). Sometimes the physical model is tightly coupled to a geo-
graphic location, e.g. using geographic information system (GIS) information. The geographical
location influences the behaviour of some power components like photovoltaic or wind, and also
provides a better indication to model the behaviour of power consumers. To use this information
in the simulation framework, a mapping should be possible from the environment model to the
corresponding physical components and related behaviour models, since alternatives for different
mappings impacts the system behaviour. This is demonstrated by the research activities for
deployment optimization of power components, e.g. by Akorede et al. (2010), and software
components, e.g. by Aleti et al. (2013).

The next requirement considers the coupling between the behaviour models (interactive
EMS components) with external components that add additional environment information and
behaviour of real systems. Important environment information, such as weather data or market
prices, affects the behaviour of the components and should be accessible in a simple manner.
Therefore, a data base connection with a time series of historical date, or a mechanism to receive
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such information during runtime from an external source should be part of the co-simulation. Such
an interconnection of the co-simulation is also important for the coupling of external components.
Any modelled component in the simulation is an abstraction of a real component. To reduce the
gap between modelling and real running systems, we require that any behaviour model can be
connected to a real system. The concrete connection mechanism is not the main focus of the
simulation. The preferred way is to use well established connections, such as clients for SCADA,
REST or OPC UA. But also more experimental connections are fine, as long as we can connect
to them over a specified network connection.

Beside the interconnection requirements, the real world environment and our co-simulation
framework needs a clear understanding of time, to synchronize real-world and simulation be-
haviour. A mechanism to separately define the application logic and the speed of the simulation
execution is therefore another important requirement. The splitting will also allow to slow down
the simulation. This is also helpful for the visualisation of the simulation state. The interconnec-
tion with real systems imposes also a constrain on the maximum possible frequency of the time
resolution and limits the analysis to higher level logic that includes tasks like planning, decision
making and based on that setting the set points of controllers. Fast control loops that run on PLCs
are not within the scope of the co-simulation framework.

In summary, to investigate SES systems in terms of their architecture, their communication,
their power production and consumption and the impact of interactive EMS on networks, our
technological framework requires to cover:

• Modelling of the behaviour of interactive EMS components

• Modelling of the physical power network, to calculate the power flow

• A mapping between the interactive EMS and the physical topology

• A standard model representation to support import and export functionality

• An interconnection with external systems

• A defined notion of time

4.3.3 SESSIM Framework

To carry out simulations with our architecture we developed the Smart Energy System Simulation
(SESSIM) framework. It combines different tools that are executable at local machines or external
servers. Instead of inventing new simulators, we use many components that have been developed
over decades and are effectively used in the industry. A strict separation of the modules within the
architecture allows to reduce the complexity and use (proprietary) components that are developed
and updated independently. The architecture of the framework is depicted in Figure 4.13.

The system model modules is the main component for the inputs of the co-simulation and
supports different representations. It consists of different sub-modules including an importer
for power system models, an importer for EMS topologies and behaviour models, environment
information, and a mapping module. When starting a simulation, the systems model importer is
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Figure 4.13: Architecture of the SESSIM framework

started to populate the simulation and load all required data into the execution environment. The
power system importer creates a CIM-based model that is also used as the internal representation
of the physical system during the co-simulation. CIM consists of a number of European and
international standards. IEC standard 61970-301 contains the components of a power system
at an electrical level and the relationships between them. IEC 61968-11 covers the areas of
asset tracking, work scheduling and customer billing. Relevant for exchanging data between
participants of electricity markets is IEC 62325-301. We use IEC 61970-301 and IEC 61970-456
for our co-simulation. IEC 61970-456 extends CIM with capabilities to store solved power system
data (power flows). For data storage CIM RDF is used as described in IEC 61970-501.

The system behaviour in terms of the EMS input - output is modelled as a set of commu-
nicating components that mostly represent EMS inside the interactive EMS module. In our
model, we assume that every component represents an independent entity. A component receives
and sends messages. It designate its behaviour based on the received message by changing its
internal state and sending other messages. With that every component acts independently without
globally shared variables. This allows to model inherent concurrency of each EMS. Furthermore,
it enables to implement the application logic independently of the physical model and instantiate
it at run-time with parameters based on the mapping of EMS and physical components. A
connection to external components is achieved by giving each EMS representative one or more
clients including REST and SCADA components. Both, the REST and SCADA clients connect to
external servers and transmits the received information to the other simulated EMS components.
It also allows to send messages from the simulated system to the external server systems. To keep
the system synchronized our interactive EMS module periodically checks the timestamps of the
external connections and adapts the internal simulation clock. The implementation details are
presented below.
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The power system simulation module is performed using a solver that calculates the system
state based on the decisions taken by the EMS components and the measurements transmitted
by the SCADA system. The decisions and measurements represent set-points for the power
simulation. The power system solver returns as a response the resultant values of physical
properties of the power system, such as voltages and power flows. The values are stored in the
CIM model and read by the EMS components. The mapping between the different modules is
established using unique identifiers of interactive EMS components, i.e. the mRID identifier
according the CIM standard.

Finally, the time series of the results is available at the analyzer / visualizer module that stores
the results a file or a data base, depending on the choice of the system engineer. This allows to
process this data by any desired visualization framework or to perform further evaluations.

Interactive EMS Module (System’s Behaviour)

The behaviour of software intensive systems for SES can be modelled in different ways.
Depending on the questions of interest, the model of computation can be, among others,
event-driven (Godfrey et al., 2010), agent-based (Hopkinson et. al., 2006; Lin et. al, 2011), actor-
oriented (Lee et al., 2003) or stream based (Hackenberg et al., 2012). For the implementation of
the interactive EMS module we have chosen the akka toolkit9. It provides a combination of the
actor approach with streams. akka is an open source toolkit that is widely-used in the industry for
highly resilient and reactive systems. It is very scalable and allows a distributed implementation
of components that run on different servers. akka runs on the Java Virtual Machine (JVM) and
supports applications written in JAVA or SCALA. We define SES components with a behaviour
model for actors that are able to communicate and mapped to power system equipment. In the
following we shortly explain the most important implementation constrains, to demonstrate
how co-simulations are created and which basic functionality they provide. The initial im-
plementation work of the module was carried out together with Mack (2014) and extended later on.

Actors in Sessim

Our co-simulation framework is based on actors (see Chapter 2). They create a hierarchic
topology that is the basis of our simulation framework. Actually, every simulated SES component
is an actor with an own behaviour. We call those actors SessimActors. In addition we have two
actors for timing effects and as a coupling mechanism to other modules, in particular, the power
flow simulation module. They are called SessimSupervisor and SessimMonitor. We illustrate
the relationship of all actors in Figure 4.14.

The SessimSupervisor is responsible to trigger the execution of the simulation in Sessim.
It initializes the first layer of the simulation actors according an topology model. The topology
model is prepared as part of the simulation definition. With the initialization, the supervisor
becomes the parent of the first layer actors. The first layer actors spawns then the next layer
of actors as its children according the topology model as well, and so on. After spawning, the
original actor in akka is always as a supervisor that handles the failures of its subordinates. We
use this natural akka convention for our simulation to create a generic hierarchic system model.
Beside initialization, the SessimSupervisor controls the time step execution.

9http://akka.io/, developed by Lightbend Inc., last accessed in March 2020
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Figure 4.14: Actors in Sessim and their internal hierarchy.

The SessimMonitor interacts only with the SessimSupervisor. It is the only component
that has an externally available message inbox to establish a connection to the actor system
from the outside. It provides an API to control the simulation from external applications.
Additionally, it monitors the time of the simulation and is used to adjust its execution speed. The
SessimMonitor is also used to start external tools or systems, whenever the simulation needs
those. In our case we used it to trigger GridLab-D and our own power flow solver, that we will
introduce later.

The SessimActor components are responsible for the main simulation logic. Every
SessimActor has its own behaviour. Therefore, SessimActors are representing EMS that
have an application specific logic and a dedicated interface to exchange data. The individual
behaviours are adapted flexibly to cover different SES scenarios.

SessimActors’ interactions

The behaviour of a SessimActor follows the interaction pattern that is based on the atomic
steps that we presented in the previous section. This interaction pattern is common for all
SessimActors. This facilitates the creation of simulations and helps with the development of
scenarios in a quick and clean way. We show the basic interaction pattern in Figure 4.15.

The interaction pattern consists of a number of steps that are implemented in Java as abstract
methods of the general SessimActor behaviour. Every SessimActor awaits a request message in
its first step. The request message can contain any information. This flexibility is used to request
services or send set-points or prices. It is therefore well suited to create message based interfaces.
If no content is desired, the request is just the forwarded time step from the SessimSupervisor.
After receiving a request message, the SessimActor prepares its own request, and sends it to its
children. After sending the request, the actor waits until all children have answered. Then, the
SessimActor processes the answers, which again have an application specific content. Based
on the answers it makes a decision. It aggregates the answers and executes additional actions,
e.g. stores the answers in a data base or contacts a remote application. After the decision
making the SessimActor notifies its parent with an answer. This hierarchic combination of
the delegation and aggregation behaviour allows to model all the behaviour cases according the
generic hierarchic architecture from the previous section.
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Figure 4.15: The basic interaction pattern of SessimActors.

Connection to external components.

The Sessim framework offers multiple possibilities to establish real-world connections, as akka is
designed to build reactive applications in a web based environment. Therefore, we have a rich
set of libraries to interact with external components over HTTP(S), REST, sockets or similar
interfaces. Our actors can start their own clients or servers. This allows us to connect any actor
to a remote application. If we want to interface with applications from the utility domain, we
use additional technologies in Sessim. As an example for the IEC 60870-5-104 we demonstrated
how to integrate Eclipse NeoSCADA10. It is an an open source SCADA implementation with
a client-server architecture that is used in industrial applications. We used different ways to
demonstrate the integration. The first option with the akka framework is using the inbox of akka.
A second way is to create a client or server instance directly from an actor and connect it to an
external component. In this case the actor sends a message directly over it own client or uses
its server to update the data. We show both possibilities in Figure 4.16. We preferred to use
the second option, where each actor has its own interface after the project, since it offers more
flexibility as the first one.

Intermediate Model (CIM)

The intermediate model is the representation of the physical topology. It allows the coupling of
our interactive EMS module that handles the message exchange between EMS with a solver for
the electrical power flow equations. The coupling is achieved with a mapping of every actor to an
object of the internal model.

The internal representation of the system is implemented according the Common Information
Model (CIM). CIM is based on standardisation activities for a better interoperability of utility
systems. It particularly addresses the exchange of topological data of power networks between
different system operators, that rely on SCADA systems from different vendors. Initially, CIM

10https://www.eclipse.org/eclipsescada/, last accessed in March 2020
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Figure 4.16: Different possible connections with external components in Sessim.

was a development of EPRI11 to standardize EMS interfaces Uslar et al. (2012). But it has grown
beyond the original scope and has become an international standard. CIM contains the standards
IEC 61970-301, IEC 61968-11, IEC 62325-301. It has also received a translation into national
derivatives (DIN EN 61970-301, etc.). For the historical development of CIM and we refer
to (CIM, 2015; Uslar et al., 2012).

CIM follows an object oriented approach to structure its data. It provides a specification to
model energy related equipment and allows to encode a different granularity of the system. Such
different levels of details are illustrated in Figure 4.17. Concerning the level of detail CIM is
a so called node-breaker model. A node-breaker model does not only describe the conducting
elements of the power system but also models additional nodes e.g. open switches. In contrast to
that a bus-branch model as it is typically used in power flow simulation tools only describes the
conduction elements of the network. As a consequence it is necessary to map the elements of the
CIM model (which we would typically get out of a network planning tool) to their bus branch
representatives. This is achieved through aggregation, omitting and direct mapping of the CIM
elements and is described in further detail in (McMorran et al., 2004). Once the mapping is done
the bus-branch representation is processed for the desired power flow solver.

Instead developing an own internal data model, we believe that standard confirm models
provide several advantages. They help with the interoperability and allow to reuse available
software components and libraries of third parties. For the implementation of CIM we used an
ecore model12 of the CIMtool13. The ecore model is used to generate the required objects such
that they are consistent to CIM standards. Using an ecore model that is developed by international
experts reduces the risk of inconsistency. Further, we are able to reuse existing models and directly
use import and export functions of commercial tools or connect our co-simulation framework. If

11Electric Power Research Institute
12Ecore models are used as (meta-)models in the Eclipse Modelling Framework (EMF)
13CIMtool is an open source tool developed to support the CIM standard. http://www.cimtool.org
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Figure 4.17: Details in a general model, CIM and a bus/branch model (Zellner, 2014).

we want connect tools that do not support CIM, we generate the required models, for which CIM
provides a good level of abstraction.

Physical Representation and Solvers

Depending on which power flow solver is used, the bus-branch representation of the model
must be represented in a form that is readable by the solver. We have implemented two model
transformations. One for the OpenSource tool GridLab-D, a power system modelling and
simulation tool, and another one to a matrix/vector format that is used to solve the power flow
model internally with a Newton-Raphson method.

GridLab-D

For GridLab-D the standard input format is a text file according the glm format. For example
a simple bus (node) is defined in the glm format as shown in listing 4.2 and a branch (line) as
defined in listing 4.1. For more examples we refer to the GridLab-D documentation14.

14https://www.gridlabd.org/, last accessed in March 2020
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Listing 4.1: glm line notation (branch)
o b j e c t u n d e r g r o u n d _ l i n e : 1 {

name l i n e A ; p h a s e s AN;
from node : 1 ; t o node : 2 ;
l e n g t h = 1 2 3 . 4 ;
c o n f i g u r a t i o n l i n e _ c o n f i g u r a t i o n : 1 ;

}

Listing 4.2: glm node notation (bus)
o b j e c t node : 1 {

name node1 ;
p h a s e s AN;
n o m i n a l _ v o l t a g e 7200 ;
vo l t age_A 7200+0.0 j ;

}

As a consequence, it is necessary to render the bus-branch java objects to a text file that is
compliant to the glm format. Since we already reduced the model complexity to a bus-branch
level, we only use the node (buses), line (branches) and transformer objects of GridLab-D for the
topology. For the power injections we use the load objects that are connected to a node over a
line. The abilities of GridLab-D to simulate changes in the network topology (e.g. closing and
opening switches) are not required. This part is already handled by the CIM model. After the
transformation of the model to a glm file the calculations are executed using GridLab-D. The
results are returned by GridLab-D as xml which can be read and parsed. Finally the results are
mapped back to the CIM objects they originated from and stored in CIM using the IEC 61970-456
CIM extension.

Matrix/Vector format

Interfacing to GridLab-D from JAVA is rather complex and slow due to the file I/O in each
simulation time step. Therefore an implementation of a own solver was undertaken together
with Zellner (2014). The solver is in many aspects very similar to common solving frameworks
such as MatPower but works directly on the JAVA representation of the CIM. Input for solving
the power flow problem using the Newton-Raphson method (see also Section 3.1.2) are the
admittance matrix Y of the network as well as the bus voltages V = [V1, . . . ,Vn]∗ for the n buses
and the power vector S = [S1, . . . ,Sn]∗ that represents the desired power injections and demands at
the n buses. Note, all elements of the vectors and matrices are complex numbers. The values are
related as shown in (4.1) - (4.3), where I denotes the electric current and diag being the operator
constructing a matrix from a vector with the elements of the vector on its diagonal.

S = diag(V) ⋅ I∗ = diag(I)∗ ⋅V (4.1)

I =Y ⋅V (4.2)

S = diag(Y ⋅V)∗ ⋅V (4.3)

The physical relation (4.3) establishes a set of 2(n−1) non-linear equations, since for each
bus, except the slack/reference bus, the complex equation has a real and an imaginary part. Note,
that in those equations, some values are given, others have to be calculated. The solution gives
the current physical system state. The approach for solving the equations is an Newton-Rapshon
iteration procedure. With (4.4) we describe a deviation of one calculation from the desired
solution. The iteration is defined in (4.5).

xmis(V) = diag(Y ⋅V)∗ ⋅V−S (4.4)
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Vk+1 = −J−1
xmis

(Vk) ⋅xmis(Vk)+Vk (4.5)

Here, J−1
xmis

(Vk) is the inverse Jacobian matrix evaluated at Vk for our power flow function (4.4).
If the deviation is less then a desired threshold, we calculate the resulting bus voltages Vres. Using
Vres we calculate the power injections Sres within the system.

Sres = diag(Y ⋅Vres)∗ ⋅ (Vres) (4.6)

With the input variables for the solver being directly generated from the CIM objects it is
possible to map the solver results back onto the CIM objects and store them CIM conform.

Verification of the power flow solver.

The implementation of an our solver was verified to demonstrate the correctness of the results.
The classical approach to show this is to apply the solver a well known problem set, for which
tested results are available. The power flow problem has several of those examples. They are
recognized and verified by IEEE. The test cases with the verification is provided in our extended
examples code of our open source implementation15.

Synchronisation of Modules and Coupling with External Systems
We described the three major modules of our co-simulation framework. The modules are
independent of each other and need to be coupled for a proper interaction. To couple the modules
different approaches were investigated. One possibility is to run simulations independently and in
parallel. Their coupling is then based on time frames. Whenever, both simulations are complete,
the data is synchronised. This coupling was used by the EPOCHS framework (Hopkinson et. al.,
2006). In this approach both simulators synchronizes with a mediator after a pre-defined simulated
time frame. It has been shown that this coupling introduces time accumulating errors (Lin et. al,
2011), in particular when events occur between the synchronization points, that should affect
both simulators. Therefore, a globally synchronisation in a discrete, event-driven manner is
preferred (Lin et. al, 2011).

We have chosen a discrete, even-driven synchronisation for our framework as suggested
by Lin et. al (2011). For the interaction with external components several conditions are
given. First, we need to be able to handle asynchronous communication schemes, over different
communication channels. The communication latency is not known a priory, but a typical TCP/IP
communication is in a range between several of milliseconds up to some seconds. Since we need
to calculate the actual system state of the interactive EMS and the power system, which might
contain hundreds or even thousands components the synchronisation cannot be expected to have
milliseconds range. Given these conditions our a co-simulation framework in not intended for
fast control schemes and real time systems. But we can establish co-simulation of coordination
scenarios with the models presented in Chapter 3.

To allow asynchronous communication with external systems coupling is established as illus-
trated in Figure 4.18. First, our interactive EMS module supports asynchronous communication
with external systems. For that each actors starts dedicated server instances that receive messages
and respond to messages in parallel to the simulation. We continuously buffer all the incoming

15https://github.com/SES-fortiss/SmartGridCoSimulation, last accessed in October, 2019.
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Figure 4.18: Coupling cycle within the co-simulation framework.

messages from external systems. This is denoted with the reload label. Beside that we couple
the modules with a cycle that determines the next system state based on the previous one. The
starting point is the actual state that is stored within the CIM model. The SessimMonitor starts
the process with a broadcast of the time step. At step (1), every EMS actor reads the current
state from its linked component in the CIM model and from buffers of the external components.
This transfers the current system state knowledge to every actor. Then decision making takes
place (2), as explained in the previous section. This can involve a complex message exchange.
During the decision making process the actors can also request data from external components
to access remote information. After each EMS has decided their new state (e.g. a new power
injection value of a generator or consumer) the new set points are stored in the CIM model (3).
This updates the state of the physical model. The power flow simulation is executed with new
values (4). It determines the new system state of the timestamp. The results are stored in the CIM
model (5). The interactive EMS module considers them during the next iteration.

Testing of External Systems with SESSIM

The framework is not only used to study EMS in combination with physical networks, but due to
its excellent capability to create distributed independent systems it is a good reference to develop
further energy related use cases and test external systems. We used Sessim to create small trading
applications to integrate it with several distributed ledger technologies such as blockchains. The
integration with Ethereum was implemented and described by Thut (2018). The integration with
Hyperledger was implemented and described by Lumani (2018). Further tests were undertaken
with IOTA and the blockchain platform from the Energy Web Foundation (EWF). All those
studies contributed to a good comparison between the blockchain technologies and presented
by Bajpai and Duchon (2019).

Further, the approach in Sessim with the definition of messages and interfaces leads to the
idea to use that data also for Machine Learning approaches. To show that this is the possible
Andres (2019) used our approach and trained different Reinforcement Learning algorithms.
He compared the A2C/A3C (Asynchronous Advantage Actor-Critic) (Mnih et al., 2016), PPO
(Proximal Policy Optimization) (Schulman et al., 2017) and DDPG (Deep Deterministic Policy
Gradient) (Lillicrap et al., 2015). This shows the flexibility and maturity of the framework. It also
underlines again that the strength of our approach is not only the investigation of power flows in
combination with an actor based communication, but particularly the combination with different
kind of technologies, such as blockchains, machine learning and integration of real systems.
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4.4 Summary

To realize the hierarchic composition of EMS and establish coordination within such compositions,
work on the architecture is as important as work on technologies or coordination models. In this
chapter, we present the basic foundation for the generic hierarchic architecture from different
perspectives. We provide several steps to derive such architectures.

We start from requirements that we observe in today’s energy systems where we assume that
EMS are individual components that should be interconnected. Further, we present a systematic
approach how an architecture can be developed on top of those requirements using available best
practises in the form of well-known architecture design patterns from the software engineering
perspective. We present a careful selection of available architecture design patterns that can be
combined to cover the list of the aforementioned requirements.

Furthermore, the architecture is not a pure collection of architecture design principles, but
the behaviour of such a system is quite important for architecture specifications. To understand
the effects of the hierarchic composition for component behaviour, an abstract model of for the
behaviour of individual EMS is introduced. It demonstrates the possible interaction patterns of
an EMS with the help of a case distinction. We show that 16 basic distinctions exist. The cases
are interrelated, as some cases require the existence of other cases. Further, the cases are neither
singletons, since multiple instances might exist, nor all cases are required for EMS leafs and
EMS composites. However, the introduced approach is a step towards the design of architectures
as envisioned by Moslehi and Kumar (2010), Grijalva and Tariq (2011), Benz et al. (2015) and
Howell et al. (2017), because it helps to reason about the core components that are necessary for
coordination, their interfaces and their behaviours.

Further, we present a technical framework that has been developed during this thesis to
create concrete instances of the hierarchic architecture. The technical framework is the Sessim
co-simulation and available as open source. Sessim uses a hierarchical structure with actors that
represent interactive EMS components. All actor components run in parallel. Their hierarchic
structure allows to decompose the system into individual behaviour models for each EMS and
establish architectures with distinct components, distinct interfaces and distinct behaviours for
EMS. We use them to create specific hierarchic architectures for SES. Those specific architectures
focus on the interaction between multiple EMS components and represent the network perspective
is represented by the co-simulation framework. In addition, the actors can establish connections
with real systems. This allows to use the environment to study the interaction with EMS systems
and also simulate their impact on the network level.

Finally, there two additional remarks to this chapter. First, the concept of a hierarchical
architecture is not only applicable to the interconnection between EMS. It can also be applied for
internal EMS sub-components as well. We show this in Appendix A. Second, the framework is
very well suitable to create an environment for additional SES studies, for instance to interconnect
with distributed ledger technologies, such as blockchains (Thut, 2018; Lumani, 2018) and also to
create input data for Machine Learning systems (Andres, 2019). In the following two chapters
we present two concrete instances of the hierarchic architecture for the coordination of EMS.
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This chapter describes a case study that we performed with several industrial partners, among them
a SCADA provider and a utility company. The goal of our collaboration was the development
and the technological demonstration of a more flexible VPP that supports interactive clusters
of components. With this case study we investigate and clarify the meaning of clustering and
hierarchical structures for the coordination of energy systems. This includes the meaning of
system boundaries and system interfaces. Further, we particularly address the first research
objective stated in Chapter 1. We demonstrate the technical feasibility of our concept and validate
the chosen architecture design patterns from Chapter 4. Note, that some product names and logos
used in this case study are protected brands of the industrial partners.

5.1 Context of the Study

The liberalization of the energy markets combined with the increased number of distributed
renewable energy sources lead to the development of the VPP concept during the 2000s as
described by (Santjer et al., 2002; Willems, 2005). Renewable energy sources are often too
small and volatile to meet the minimal trading requirements of the energy markets and too
volatile to guarantee a fixed schedule for generation. However, they are an excellent option
to provide power with less carbon emissions and increase the energy utilization within local
networks. To enable the participation and comply with the requirements of the energy market,
the decentralized components are bundled virtually. In this bundling, local renewable systems
monitor their production and communicate the data over gateways to a centralized software
system. The software system collects all those values, calculates forecasts and places bids at the
market (see also Chapter 3). The software systems is, from the technological point of view, an
EMS with the functionality to dispatch the connected units as well as monitor and control them at
runtime (Ghavidel et al., 2016; Nosratabadi et al., 2017).

The concept has already turned into existing technological solutions. Multiple providers offer
it as a service to owners of distributed resources such as solar, biogas, wind, water, geothermic
and emergency power supply units, combined heat and power as well as controllable demand. Ex-
amples for such providers are: Statkraft (a norwegian power producer and Europeans largest VPP
in 2019), Next-Kraftwerke (a large German VPP provider), Energy2market (also a German VPP
provider) and SWM M/Partnerkraft (a VPP product of the German utility company Stadtwerke
München GmbH).

Today, a VPP, or more precisely the software that collects and processes data to aggregate the
components and interact with the market, is created on top of a system that follows the SCADA
architecture with a flat, central hierarchy. By flat and central, we mean that there is a core system
to integrate all other components. This is schematically shown in Figure 5.1. Of course, the
system can be replicated to provide more reliability, but the information and the decisions for the
operation are done by one central component.
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Figure 5.1: Typical architecture for a virtual power plant with common applications sorted by
expected response times.

The central approach for VPPs has several advantages. The primary advantage is the avail-
ability of data in a central place. It allows different applications to use that data. It also eases the
monitoring and control by an engineer at the control station. Additionally, the system provides
a good reliability, due to the replication capabilities and backup possibilities. It is usually also
heavily secured using different firewalls, virtual networks with dedicated access and a physical
restriction. Today, a variety of energy system applications use the central approach. We refer to
the literature to show the variety of energy related applications, for instance to Fan and Borlase
(2009), who provide a good overview in their work.

The centralization, however, introduces also disadvantages, especially when the number of
connected components becomes larger and more divers. Particularly, the integration of new
components and interconnection of different EMS is challenging. Today, the integration process
for new components requires a lot of manual work. VPP providers usually offer a preconfigured
box to connect remote power generation components. Customers connect the box to the controller
of the generation unit, which is usually some kind of a local Programmable Logic Controller
(PLC). The controller establishes a connection to the box over a MODBUS, PROFIBUS, TCP/IP
or similar interface with industrial protocols, where data and control signals are available. De-
pending on available interfaces, the integration can be more or less difficult. After that, the box
communicates to a central back-end system of the VPP. After the technical interconnection of
the component with the back-end system, the (central) applications are configured with the new
components according their operational settings. This means that the parametrisation for control
and optimization have to be adjusted.

Establishing the integration with such VPP boxes has side effects. Firstly, the installation
uses the local device interfaces that have no abstractions of their data. In consequence, the
control of the device is directly accessible with the box, but encapsulation principles to guarantee
privacy or information hiding cannot be applied for the customer. Abstractions are however
necessary, to describe the capabilities of the component and for data aggregation. Secondly, the
box is a proprietary product that is linked to a dedicated VPP system. Whenever the customer
decides to change the VPP, the box needs to be exchanged. This is quite costly, as the physical
boxes and the system configurations needs to be re-adapted. In a flexible SES environment,

96



5.1 Context of the Study

where many small components interact, this change has to be automatable. So the box needs
either to be independent of the provider and provide standardized interfaces and services, or
the device manufacturer has to provide this interface. Such approaches are for instance driven
by the German VHPready Consortium with their VHPready (Virtual Heat and Power Ready)
standard (VHPready, 2017), the EEBUS Initiative e.V. with their EEBus SPINE (Smart Premises
Interoperable Neutral-message Exchange) standard (EEBus, 2018) or the OpenADR Alliance
with their OpenADR (Open Automated Demand Response) standard (OpenADR, 2013). Thirdly,
in modern energy supply systems generation units can be locally combined to optimize the
internal energy supply from the economical or the environmental perspective, for instance a
photovoltaic system with a battery or a local heat pump. For the local optimization, different
control strategies and corresponding system configurations exist. The direct control with a box
interferes with the local configuration. This leads to a less stable and less configured local system.
The described challenges are related to the system architecture. In a divers and large environment
that is present with current distributed systems, the central approach requires additional flexibility
to integrate not only single components, but also substructures, and abstract representation of
devices.

Further, the VPP operation is developed to establish a schedule, which is influenced by the
market. To achieve the scheduled production is not as easy as for a conventional power plant,
due to the volatility of the renewable energy resources. Due to increasing number of distributed
renewable energy resources, VPPs are rapidly growing. Current VPPs bundle hundreds or
even thousands of components. However, many components are only connected to monitor
their production. This helps to improve the prediction quality and the market bidding. Only a
little number of components can also be directly controlled. This allows to provide a smoother
production schedule. In addition, control capabilities are often limited due to a number of reasons.
For instance, solar and wind generators have a prior rank from the regulative perspective, thus
they feed in as much available electrical power as possible as long as stability is not threatened.
Run-of-the-river water plants often avoid hydropeaking due to ecological reasons for fishes.
Biogas and combined heat and power (co-generation) units prefer a rather constant operation,
since their generator is optimized for a certain power output and preferably generates constant
heat during the cold times, while electrical power is a secondary co-product. Therefore, an
adaptive scheduling and optimization is often used for a minimal subset of the components.
However, with the increasing number of storage components, electric vehicles or heat pumps
more types of flexible components will be accessible in the near future. Also the collection
of renewable energies strongly increases, which increases the necessity for their control. This
allows more and more control and optimization being carried out. To reduce the optimization
complexity a decomposition of the VPP into smaller optimization problems from smaller clusters
might be helpful. Also the integration of single components to one particular cluster leads to a
simplification, since only single clusters are changed, not the complete VPP. This reduces the risk
of adapting the controllers of the complete system and increases the modularity.
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5.2 Study Goal and Research Questions

In this section, we present a more formal version of the study goal and derive from that goal
further research questions to guide our work in the following.

5.2.1 Study Goal

We stated in Chapter 1 three research objectives. This case study tackles the first one. It is to
determine the essential specification elements for the hierarchic composition of systems to
achieve a hierarchic coordination of energy systems. We paraphrase the research objective into
a more formal study goal using the goal definition template as proposed in Wohlin et al. (2012):

We analyse energy coordination systems
for the purpose of characterization, understanding and specification

with respect to hierarchic composition
from the viewpoint of software developer and system integrator

in the context of virtual power plants.

The question for composition of software systems is always related to the system interfaces
and system behaviour. Hence, with this case study we particularly evaluate those two aspects.
For the technical development of such systems we further aim to validate the feasibility of the
architecture design patterns presented in Chapter 4.

5.2.2 Research Questions

Based on the study goal we derive the following research questions.

RQ1: How does the hierarchical concept affect the integration of interactive EMS and the
architecture of composed energy coordination systems?

With this question we aim to investigate the hierarchic composition of EMS. We are particularly
interested in the integration of EMS and related devices into distinct groups that are then integrated
into larger VPP groups and so on. By answering this question we want to understand, if we
can create a hierarchic composable VPP and what it means for the system interface and system
behaviour. To have a clear understanding we make the composition application specific with a
typical coordination functionality of a VPP. This allows us to demonstrate how the hierarchy
affects the design of energy coordination systems in a constrained context.

RQ2: Does the hierarchy support different energy coordination mechanisms?

This research question targets the understanding about the functionalities of VPP clusters. We
aim to analyse, whether our approach is limited to some particular coordination algorithms, or if
it can be applied in a broader sense for different applications and services in a VPP.

98



5.3 Study Design

RQ3: How do the proposed architecture design patterns help us with the development of
such coordination systems?

By answering this question, we aim to validate the architectural design patterns that we described
in Chapter 4. Specifically, we want to demonstrate the technical feasibility of a hierarchic VPP
system application that uses different distributed components as we see in real systems and
interconnect those systems using an architecture that utilizes the proposed architectural design
patterns. The idea is to show, that the architecture design patterns help and simplify the creation
such hierarchical systems.

5.3 Study Design

To answer the research questions we show with an experimental implementation a coordination
example of a demonstrator that uses a hierarchic structure.

5.3.1 Selection of the Coordination Goal

One major goal of a VPP is to enable to participation of smaller renewable energy systems
at the energy market to increase their revenue. Therefore, the VPP places bids at the market
according to weather forecasts and availability constraints of its components. The bidding process
takes place as described in Chapter 3. After the bidding process, the VPP receives acceptance
notifications of its bids together with the expected market price. The notifications are available
quite ahead of the operation time, for instance one day. They represent the expected operation
schedule of the VPP. When the time approaches the actual operation, the forecasts are updated.
This might lead to the identification of expected deviations from the schedule. To reduce those
deviations the VPP operator is allowed to trade at the intraday market as well. This can be done
up to approximately five minutes before the actual operation. Once, the limit of five minutes
exceeds, the VPP is supposed to deliver its contracted schedule. However, the VPP might still
experience certain deviations, either due to wrong forecasts, missing options at the intraday
market, or when components are unexpectedly shut down. Hence, it flexibly needs to adapt its
operation by providing the desired schedule.

In this case study we approach this necessity for control with a coordination using flexibilities.
The term flexibility is quite often used in the power systems domain to describe the possibility to
adapt the operation due to external changes as described by Huber (2017). Consequently several
flexibility models exist, such as presented for instance by Huber (2017); Zade et al. (2018); Nalini
et al. (2019). Currently, even markets for flexibility are investigated that follow a similar approach
as Nalini et al. (2019). In our case study we use the term flexibility to describe that an EMS (or a
device) offers flexibility options at its interface to adapt its behaviour. They can be activated to
trigger adapted power injections. They can also be aggregated for the next hierarchical level to
provide flexibilities with higher volumes. Therefore, the activation and aggregation of flexibility
to restore a desired schedule is the scope of this case study from the coordination point of view.
We describe the details further below.
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5.3.2 EMS Components in a Hierarchical VPP

In our VPP case study we extend the classical central VPP structure by introducing intermediate
systems between the central system and the leafs. We call those intermediate systems Cluster-
Heads. From the architecture perspective, a ClusterHead is a software component, which has the
same core functionality as the hierarchically higher management systems, but is responsible only
for a subset of its components. By dividing the central system into smaller subsystems, we estab-
lish a hierarchy with intermediate EMS that enable to hook up device EMS to different clusters.
Particularly, the monitoring and control capabilities exist on the intermediate hierarchical levels
as well. The original central system integrates a ClusterHead as a regular controllable component.
The ClusterHead, however, abstracts from internal details and its internal composition. This is
shown in Figure 5.2. Multiple intermediate ClusterHead-layers are possible with that structure.
We can even create a cluster that consists of several smaller clusters, or re-arrange the composition
of lower components. The benefit of the hierarchy is that the architecture (i.e. communication
channels and behaviour) of the higher management systems and the involved applications do not
change, since most of the work is already done at lower layers.
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Figure 5.2: Hierarchical VPP architecture with intermediate components.

The hierarchical concept looks simple and clean, but the simplicity comes at the cost of
additional specification effort. Particularly, a meaningful abstraction of EMS is required to create
clear interfaces for the hierarchic architecture. We introduce those abstractions to describe the
interface and explain how to work with them during our study execution.

5.3.3 Demonstrator Environment and Technical Constraints

To demonstrate the technical feasibility a technical demonstrator is part of the case study. It is
designed to reproduce the technical environment of a real VPP. To be close to the real setting as
possible, we performed several workshops with our industrial partners to determine the essential
concepts and activities related to the integration of the components and to find out the involved
coordination functionality.
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During the workshops, the Munich utility presented their current system architecture, which
we cannot depict here in detail due to the confidentiality reasons. However, the setting is similar
to a conventional SCADA system. In general, the connected components are at remote locations,
where they have the generation unit and a technical control system. The technical control system
is often a classical PLC, such as the SPS-S7 from Siemens. To integrate it into a VPP system,
it is connected to a so-called ’Fernwirkanlage’ (FW), which is a hardware component with
communication capabilities to establish a secure remote connection. Currently, the Munich
utility uses the hardware of the type SAE-FW5 and SAE-FW50 with their own VPN system.
For the data exchange the industrial standard IEC 60870-5-104 is used. The FW components
act as gateways. In addition, they offer the possibility to buffer data and create histories as a
backup solution, if communication is not available at some point of time. Furthermore, in terms
of control, the FWs cannot provide a local schedule without additional software at the time of
writing this thesis, but only react to set-points communicated by the VPP system. However, it is
possible to extend the functionality of the FWs by another local device that has this capability
and is locally connected to the FW. For instance, we can use a device similar to a Raspberry Pi
(but which is more reliable) that has the additional functionality and connect it locally to the FW.
This possibility serves as the extension point for the case study. We keep the whole structure of
the real VPP, including the technical protocols and secured communications, and extend the local
system with a new device that allows to add additional local functionality for communication and
control. Later on, according to the process engineering department of the utility, the best case
would be to replace these local devices with certified utility software plugins that are installed
directly at the manufacturers control systems, so that no utility owned hardware is required at all.

Furthermore, in terms of the desired functionality, we discussed in another workshop the
current operation schemes of VPPs in order to understand the necessary control options that
we need to consider in our hierarchic VPP case study. According to the engineers, the VPP
operation has two modes for each device, an autonomous mode and pool-operation mode. In
the pool-operation mode, the central controller controls each generation unit. It means it can be
turned on and off as well as controlled with a set-point that it must follow. In the autonomous
mode, each generation unit does not follow a set-point, but rather its internal logic. For instance,
CHPs operate temperature-controlled, while photovoltaic and wind produce as much as possible.
However, even in the autonomous mode, the devices communicate their current values to the
VPP. If communication breaks down, the devices activate automatically the autonomous mode
and locally connected FW collects the history of production.

Introducing the intermediate ClusterHeads, as presented shortly before, intends to implement
the same set of functionality as a VPP, i.e. to be seen as a VPP for the generation units and also
the same set of functionality as generation units to be seen as a generation component by the
higher level VPP. Hence, the ClusterHead must provide the following functionality:

• Monitoring of the devices and providing aggregated monitoring data for the VPP

• Control of devices to keep a desired schedule

• Providing aggregated control options for the next higher hierarchy level

• Local optimizations to create schedules for its devices (optional)
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In summary, to execute the case study we need to consider the following technical conditions.
First, we require hardware equipment that represents the generators and their controllers. Second,
we require an interconnection of the FW components to show the integration into the SCADA
system and the usage of industrial communication protocols. Third, we require to represent the
VPP software functionality, in the sense of its control logic that is adapted to the hierarchical
structure. This can be done with our presented SESSIM co-simulation framework that we
presented in the last part of Chapter 4.

Note as a short disclaimer, the presented case study stays on a research prototype level. We
cannot evaluate its technical feasibility in real running systems. The reason is that real VPPs are
critical for the system stability and have a large economic impact. However, to plausibilize our
results we use real hardware devices and open source SCADA systems that are used in industrial
applications as well. They are specified and provided by our industrial partners Stadtwerke
München (Munich Utility) and IBH Systems, the company behind the open source project Eclipse
neoSCADA1.

5.4 Study Execution

In this section we describe the steps that we performed in our case study based on the selected
coordination goal and the presented technical environment of the study design. The general
structure of our architecture as shown in Figure 5.2 serves as our guidance. In our first two
steps we start with the basics by specifying the system interfaces and system behaviour of a VPP
coordination system that considers only one hierarchical layer to work out the basic functionality.
This specification is based on our approach presented in Chapter 4. While the first step only
presents the abstract interfaces, the second step continues with a refinement of both the interface
and the behaviour to describe how more advanced coordination system can be developed. In the
third step, we extend the model to a multiple layer hierarchic system and study how coordination
is achieved in hierarchical systems. Here, particularly the composite design pattern is of high
interest, to extend the functionality and introduce additional considerations for aggregation and
delegation. After the hierarchic coordination system was described mathematically, the fourth
step shows how the system is implemented and how our architecture design principles together
with the co-simulation framework helps to create real systems for further evaluations. We also
show the usage of the demonstrator and outline its graphical user interface.

5.4.1 Step 1: Specification of the Interface and Behaviour

The central idea of a hierarchic architecture for EMS coordination is to specify an interface and
behaviour of a system that processes input data from the adjacent hierarchical layers. This defines
the necessary system boundaries to create a software based coordination system. Therefore, we
need to understand what data shall be exposed to external systems an what data is kept within the
local system. One of the most important aspects is that local configurations for EMS systems
exist. Usually this is certain control logic that is desired locally. For instance, internal parameters
exists to keep certain operational limits or achieve some kind of optimization for the local energy

1Eclipse neoSCADA: www.eclipse.org/eclipsescada, last access in March 2020
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usage. This configuration is not intended to be overwritten or exposed to external applications,
due to safety considerations and privacy issues. The first step is therefore to find EMS system
functionality that can be exposed to external systems.

Our approach from Chapter 4 helps in the specification task with a set of atomic cases. The
specification of those cases is shown in detail in Table 4.3. We show an abbreviated version in
Table 5.1 for a better overview of the upcoming specification activities. We start with a first
functionality for our case study and identify the right atomic case for that.

Case Requires (next)
P1: delegation
P2: direct answer (to parent)

P3: state update (due to parent)

C1: direct answer (to child)

C2: support

C3: escalation

C4: coordination

C5: aggregation

C6: state update (due to child / children)

L1: triggered message to child / children

L2: triggered message to parent

L3: state update (locally)

Table 5.1: An abbreviated overview of the case distinction of EMS in a hierarchic architecture.

Monitoring

A common functionality for the (hierarchic) VPP is the monitoring of connected components.
Connected components usually push their status to the VPP. This fits well to the L2: triggered
message to parent case. Further, this (and every other case) involves data exchange between
systems. Data is important to define the interface. The next step is to identify the required data
that is being exchanged in the L2-case.

A VPP connected system produces electrical power. The current PowerProduction is
therefore an important data point. It contains quantitative information about the power production
(power injection). Note, for a VPP we do not need necessarily details like phases, phase angles,
currents, etc. We assume that those values exist inside the EMS, but they are not exposed for the
L2-case. The next data points is ScheduledPower. It reflects the desired operation at the given
time point and considers expected maintenance shut down times. The schedule can be given in
percentage of the installed capacity (e.g. photovoltaic generation) or with an absolute value.

Further, to keep track of additional statistical data, we also need static information about
the components. First, the ProductionCapacity is required to understand the components
maximum available power rating. Also the ProductionType of the power plant, i.e. weather
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the electrical power is produced from solar, wind, water, gas, coal, etc., is important to generate
reports for energy identification and higher transparency in accordance to national laws (Germany:
EnWG §42) and EU Directives. For composite components (ClusterHeads) the ProductionType
represents the aggregated information about the subcomponents. Further data that describes
components in more detail, like installation date, average availability, etc. are of course important
for the management system in terms of administration and maintenance, but we neglect those
data here for the sake of clearness of our case study.

To reflect the possibility for control a component can offer the possibility to increase and
decrease its current production, depending on its type. Therefore the next useful information is
denoted as available Flexibility. Flexibility consists of several sub-data points. Important
ones are the available volume, the speed of its ramp up and ramp down capability and the price
information to steer an economic driven optimization. The price, the ramping speed and the
schedule allows optimized planning and control for the coordination. We will explain flexibility
data later in more detail.

The data fields are used for the interface specification of the L2-case. They are summarized
in Table 5.2, where we use the prefix O: to denote that these data belong to the output interface.
The table represents the abstracted view on the output of each EMS towards the higher hierarchy
levels. The abstracted view reduces complexity and provide information hiding to avoid the
exposition of internal details. The data is used for monitoring as mentioned earlier, but it can also
be used for further use cases like visualization or other.

Case Input Output
L2 none (e.g. time-based) O:PowerProduction

O:ScheduledPower

O:Flexibility

O:ProductionCapacity

O:ProductionType

Table 5.2: The interface specification with the corresponding data fields for L2-case (triggered
messages to upper layers).

With respect to the behaviour, this case is rather simple. A software behaviour is in general
a mapping of its input to its output. Of course, it has also some internal states that influence
its output. For monitoring, there is no dedicated input necessary. We assume that the output is
generated only from internal states that are available at its interface, for instance based on defined
time intervals, for instance every second.

After the definition of an initial atomic case, the next step is the definition of related cases
according our approa<ch. We use Table 5.1 as reference, where the L2-case has follow up relation
to further C-case specifications. It is not necessary to specify all cases, because their necessity
depends on the application requirements. Nevertheless, the relation provides a good orientation
how to systematically continue with sequent specification actions. The interface specification of
the L2-case represent inputs for the C-cases.

In our hierarchic VPP case study, we are particularly interested in two further atomic case
that might be triggered by the L2-case: aggregation to provide the same monitoring data to the
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next hierarchy and coordination that might happen within each individual cluster but also over
different hierarchical levels. This involves the specification of the C5: aggregation and C4:
coordination cases. We present the C4-case in the following and the C5-case further below,
when we present multiple hierarchical levels.

Control Signals (Coordination)

While the aggregation prepares the data for the upper hierarchy, the coordination case (C4-case)
considers the communication downwards, where a ClusterHead component collects the data from
its children, processes the status and sends a message for the coordination back to its children, if
some action is required. The children evaluate the request of the parent and transfer this signal
into new set-points. The input / output interface of the C4-case is shown in Table 5.3 below.

Case Input (n-channels) Output (n-channels)
C4 I:PowerProductions

I:ScheduledPowers
I:Flexibilitys
I:ProductionCapacitys
I:ProductionTypes

O:RequestForAdaptations

Table 5.3: The initial C4 case coordination, including the corresponding data fields at the interface.

In our case study, the coordination case is used for the automation of a cluster. A set of
children send their status to the parent, which is a ClusterHead. The parent checks if the produced
power and the desired schedule are as expected. If this the case, no adaptation is required and the
automation request content is a signal that no adaptation is required. If a deviation is observed,
the parent sends a request for its children, so that they change their power production to fit the
schedule. We explain this in the following in more detail. Finally, the implementation of the
control signal encoded in RequestForAdaptation corresponds to the P3-case (state update due
to parent). This is simply updating its current set-point. The interface is straightforward.

5.4.2 Step 2: Handling of Flexibilities

After specifying an initial version of the interfaces, we approached in a second step the question
how the flexibilities are used concretely for a coordination scenario. We split the question into
two parts. First, we define how a direct implementation between a parent and its children is
implemented (i.e. without the necessity for aggregation and delegation). In a follow up step (our
third step), we investigated how this will be done over multiple hierarchies.

The major coordination goal in our case study is to maintain a desired schedule of a VPP.
For that an EMS sends flexibilities to provide control capabilities of the power production to
the upper hierarchy. A flexibility can be understand as an option that the component offers in
order to adapt its production. It is positive, if the component is able to increase the production,
and negative, if the component is able to decrease the production. For our case study, we use a
number of attributes to quantify a flexibility. The attributes are:
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• Volume (in kW) - it represents the maximum possible power adaptation of the component.

• Ramp-Speed (in kW/second) - it represents how fast a component reacts on desired increase
or decrease of power.

• Start-Delay (in seconds) - it represents how long a component needs to show a first
reaction, e.g. to turn on some generator, after is has received the signal to do so.

• Price (in EUR/kWh) - it represents the cost of the flexibility

• Usage (in kW) - it indicates how much of the flexibility is already being used.

For further tracking every flexibility has a time-stamp to describe when the flexibility was
updated last time and an expiration time point that indicates how long the flexibility is valid to
describe the temporal limitations that affect for instance batteries. The ClusterHead component
uses the flexibility to adjust the power production, if a deviation from the schedule is observed.
The adjustment is communicated over the request message, which defines the desired adaptation
volume of the production (Figure 5.3).

ClusterHead

Child component Child component

volume : FlexVolume
ramp-speed : FlexSpeed
start-delay : FlexDelay
price : FlexPrice
usage : FlexUsage
time-stamp : Time
expiration-time : Time

Flexibility

desiredSetPoint : FlexVolume
time.stamp : Time

RequestForAdaptation

Figure 5.3: Monitoring and coordination with flexibilities.

To demonstrate the activation of the flexibility, we use an illustrative example. The example
represents a coordination case with three different flexibilities.

Example: Coordination by activating available flexibilities

We assume that a cluster of EMS that is coordinated by one ClusterHead system (also an EMS). It
is scheduled to constantly produce 100 kW of power. After 5 seconds of operation the production
suddenly drops to 50 kW, for instance due to a failure of one component. The ClusterHead tries
to restore the desired schedule. For that, it continuously collects the available flexibilities. We
use three flexibilities in our example to explain the effect: Flexibility A, Flexibility B and
Flexibility C. Each is different in its reaction speed, start delay, and price, but the maximum
volume of the flexibilities is equal in this example. The values are shown in Figure 5.4. Further,
we assume that there is a communication delay of one second. Additionally we use discrete
time intervals of one second to demonstrate the behaviour. It means, that one second is required
from the change of the status, until the children components receives the signal with new set
points from the ClusterHead. The set-points are used to activate the flexibility according the
specification.
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volume : 30 [kW]
ramp-speed : 5 [kW/s]
start-delay : 0 [s]
price : 40 [cent/kWh]
usage : 0 [kW]

FlexibilityA :
Flexibility

volume : 30 [kW]
ramp-speed : 3 [kW/s]
start-delay : 3 [s]
price : 20 [cent/kWh]
usage : 0 [kW]

FlexibilityB :
Flexibility

volume : 30 [kW]
ramp-speed : 1 [kW/s]
start-delay : 15 [s]
price : 10 [cent/kWh]
usage : 0 [kW]

FlexibilityC :
Flexibility

Figure 5.4: List of available flexibilities for our example.

In this setting we can establish the congruence of the schedule and current production in
various ways (Figure 5.5). This is used to demonstrate, that even with the same interface various
coordination mechanisms can be used. The simplest solution (see Figure 5.5 (a)) is the calculation
of the difference between the schedule and the production. To reduce the deviation we use
available flexibilities. If we activate the flexibilities only according the corresponding price, which
means that we cover the missing 50 kW only with the cheapest flexibilities (Flexibility C and
Flexibility B) we achieve a reaction is as shown Figure 5.5 (a). In our setting, the gap between
the scheduled production and the observed production is closed after 51 seconds including the
delays of the flexibilities, the ramp up speed and the communication delay.

The coordination algorithm can be improved (see also Figure 5.5 (b) and Figure 5.5 (c)). For
instance, if we choose an approach that immediately activates all flexibilities, in order to close
the gap as quickly as possible. After that the coordination algorithm monitors the current reached
states. As soon as the desired level is reached, it prefers using the lower priced flexibilities
instead of the more expensive ones. In this process it demands that cheaper flexibilities are
ramped up, but it does not consider the communication delay. Therefore, the newly determined
set-points reach the components with one second delay. This behaviour is demonstrated in
Figure 5.5 (b). After the initial gap is closed, the ClusterHead replaces Flexibility A by
Flexibility B and Flexibility C according their ramp up speeds. We see that in this regime
the scheduled production is ramped up until 18 seconds. Then there is an overshoot due to
delays in communication, which lead to the delayed updates when each flexibility reaches it
scheduled level. The final state is established after 53 seconds, when the Flexibility B and
Flexibility C have the desired values and the delay due to the communication vanishes.

This coordination algorithm can further be improved using a simple linear programming (LP)
optimization model that takes all options into account (including all ramp up speeds and the
delays) and optimizes them in one step that leads to schedule consisting of list of time stamps
and related set-points for each flexibility (shown in Figure 5.5 (c)). The LP-model has the similar
general form as for short time planning:

min
x

λλλ
Tx (5.1a)

s.t. Ax = b (5.1b)

Gx ≤ h (5.1c)

xlb ≤ x ≤ xub, (5.1d)

where λλλ is the cost vector containing the flexibility prices, x the discretised vector of the flexi-
bility power contribution and the missing power, b the power delivered by flexibilities, A the
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Figure 5.5: Different coordination approaches of using flexibilities for control.

coupling matrix, G the matrix for the temporal dependencies to consider ramps and delays, h the
corresponding ramp and delay constraints, xlb,xub the volume constraints.

To create the matrices we use the following linear equations. First, we state the power
conservation law for each time step k:

Pk = Pk
mis+ n∑

i=1
Pk

i , (5.2)

where Pk is the deviation to the schedule that need to be closed by the flexibilities, Pk
mis is the

missing power (see also Figure 5.5) and Pk
i is the power of flexibility i at time k with n the number

of flexibilities, with i,k,n ∈N and P ∈R. Further, the volume and the ramp-speed constrain the
power activation for each time k as:

0 ≤ Pk
i ≤ Pk

i,max, (5.3)

0 ≤ ∣Pk+1
i −Pk

i ∣ ≤ ∆Pi,max, (5.4)
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where Pk
i,max represents the maximum power constraints at time k, i.e. it is zero during the

start delay intervals and the available flexibility volume otherwise, while ∆Pi,max represents the
maximum ramp speed of flexibility i between two time steps. Finally, by choosing the production
vector as

xT = (P1
mis, ...,P

H
mis,P

1
1 , ...,P

H
1 , ...,P1

N , ...,P
H
N ), (5.5)

where H,N denotes the chosen optimization horizon and the number of available flexibilities, we
can define h with the corresponding constraints due ∆Pi,max representing the ramp-speeds and
the constraint vectors xlb and xub as zero and Pk

i,max, respectively. This determines all necessary
equality and inequality constraints in order to formulate a classical LP optimization problem.

The optimization formulation for the ClusterHead allows to calculate the required flexibilities
with a model predictive controller (MPC) by applying the received information at hand. Instead
of single set points, the ClusterHead sends a list of set points, with the desired time stamp, so
that the individual flexibilities are controlled more precisely. This removes the overshoots and
the effect due to the communication delay. The MPC based behaviour is shown in Figure 5.5
(c). With this setting, the gap is completely closed after 18 seconds, and the remaining flexibility
replacement is achieved more smoothly.

Finally, the coordination process leads to different costs for the activation of flexibilities at
hand. To compare the costs, we make one last additional assumption. First, we use the cost
parameter of each flexibility. Further, we consider the deviation of power from the schedule is a
non-desired state of the system. We therefore punish this state and assume for that deviation a
cost of 100 cent/kWh. With this, we easily calculate the costs of each algorithm, denoted with
Ctotal as an integral over time,

Ci = ∫ tend

tstart
Ci ⋅ ∣Pi(t)∣ dt and Ctotal = n∑

i=0
Ci, (5.6)

where Ci is the individual cost of a component, and ∣Pi(t)∣ the absolute value of the power. In
our example, we have i ∈ [0..3], where i = 0 represent the deviation from the schedule, hence Cmis

and i = 1,2,3 the activation of the flexibilities. With that, our costs are calculated as shown in
Table 5.4.

Coordination approach Ctotal Cmis CFlexibilityA CFlexibilityB CFlexibilityC

Figure 5.5 (a) 38.8 cent 31.7 cent 0.0 cent 5.1 cent 2.0 cent
Figure 5.5 (b) 26.8 cent 11.4 cent 6.7 cent 6.7 cent 2.0 cent
Figure 5.5 (c) 23.8 cent 9.2 cent 6.0 cent 6.6 cent 2.0 cent

Table 5.4: Cost comparison for different coordination approaches with flexibilities.

The example shows that the coordination with flexibilities can be realized only with data
from the specified interfaces from the L2-case and the C4-case and that there can be different
coordination approaches that lead to different results, depending on the choice of the algorithm.
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5.4.3 Step 3: Flexibilities in Hierarchic Systems

The example above describes the coordination with only one hierarchical layer. Its extension
to multiple layers is therefore the next step in our case study to finish the coordination and
aggregation activity. The desired hierarchical structure is presented in Figure 5.6. We continue
with the specification for the C5: aggregation case, with a mapping of the input to the output
data at the corresponding interfaces. Note the input and output interface supports the same data
types (see also Chapter 3). This case leads to the composition design pattern, which is particularly
important, if we are interested to create a system that consist of similar functionalities at the
different hierarchical levels.

Monitoring part 2 (aggregation)

The functionality for aggregation involves the collection of data from the children, their aggre-
gation and the provision of aggregated data to the upper levels. The syntactic input to output
relation, thus, the system boundary of the software system as presented in Section 3.2 is shown
below in Table 5.5.

Case Input (n-channels) Output
C5 I:PowerProductions

I:ScheduledPowers
I:Flexibilitys
I:ProductionCapacitys
I:ProductionTypes

O:PowerProduction

O:ScheduledPower

O:Flexibilitys
O:ProductionCapacity

O:ProductionTypes

Table 5.5: The initial C5-case aggregation, including the corresponding data fields at the interface.

For EMS coordination, there are potentially several hierarchy layers, in which each EMS
might coordinate a number of other EMS components. Current VPPs handle several hundreds,
sometimes even more than one thousand of components and the number of connected components
is growing. If we assume that each ClusterHead handles around 20 children, its hierarchically
higher component will already handle 202 components, and the next layer 203, and the next
on 204, which is already more than one hundred thousand components. Scalability is therefore
important. In consequence, we cannot handle so many flexibilities with an MPC and need to
reduce the number of data points to coordinate the components.

One ClusterHead maintains several children and acts as a child to the next hierarchical
level. It aggregates the state of its children, the schedules and the available flexibilities. The
aggregation behaviour (the mapping of the inputs values to the output values) is straightforward
for almost all data points. Mostly, the aggregated value is a simple sum of the individual inputs.
For instance, the PowerProduction in a VPP is a sum of its children, since losses are not
considered in a VPP (this is the task of the transmission and distribution system operators). The
aggregated ScheduledPower and the ProductionCapacity as a static value are also a sum of
their constituents. The ProductionType is a weighted composition, based on the types of the
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L0-ClusterHead

Child Child...

L0-ClusterHead

Child Child...

...

L1-ClusterHead

...

Figure 5.6: Hierarchy with multiple layers.

children and their power production. It describes how much energy2 of which type is produced
by the children. Flexibilities are aggregated and processed not as a sum. Their aggregation is
more complex, because we try to avoid sending large lists of all available flexibilities that are
collected upwards, due to scalability.

In our case study we used a combination of individual flexibilities to create flexibilities with a
larger volume during the aggregation process. Similarly, as for coordination, potentially different
aggregation algorithms might exist. For the basic understand about aggregation, we describe only
one example that was done in our case study.

The aggregation is based on two steps. We start by sorting the flexibilities based on their
price. Then we create several price regions to create multiple lists of flexibilities in a certain price
range. In the second step, we aggregate of the flexibilities of one price region to generate a one
single flexibility. We use the same ClusterHead systems from the previous example to explain
that behaviour.

Example: Aggregation of Flexibilities

Assume that two ClusterHeads have received three flexibilities, each. The flexibilities are similar
as before, but to see an effect we slightly vary the parameters of the previous example. This is
presented in Figure 5.7. The modifications are shown in red. The ClusterHeads are marked with
a number to identify their flexibilities.

Both ClusterHeads aggregate the flexibilities before communicating them upwards as follow-
ing. They receive three flexibilities each with a price range is [10..40]. To keep the example easy
to understand, the ClusterHeads create three price ranges, which are [10..20),[20..30),[30..40].
The first step is the grouping of the flexibilities according the price, which is straightforward in
this example.

2Statistics consider time intervals of the type.
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volume : 30 [kW]
ramp-speed : 5 [kW/s]
start-delay : 0 [s]
price : 40 [cent/kWh]
usage : 0 [kW]

Flexibility 1A

volume : 30 [kW]
ramp-speed : 2 [kW/s]
start-delay : 3 [s]
price : 12 [cent/kWh]
usage : 0 [kW]

Flexibility 1B

volume : 30 [kW]
ramp-speed : 1 [kW/s]
start-delay : 10 [s]
price : 10 [cent/kWh]
usage : 0 [kW]

Flexibility 1C

volume : 70 [kW]
ramp-speed : 5 [kW/s]
start-delay : 0 [s]
price : 40 [cent/kWh]
usage : 0 [kW]

Flexibility 2A

volume : 30 [kW]
ramp-speed : 3 [kW/s]
start-delay : 3 [s]
price : 35 [cent/kWh]
usage : 0 [kW]

Flexibility 2B

volume : 30 [kW]
ramp-speed : 1 [kW/s]
start-delay : 10 [s]
price : 10 [cent/kWh]
usage : 0 [kW]

Flexibility 2C

Figure 5.7: List of available flexibilities in a hierarchic system with two ClusterHeads.

The second step is the aggregation of all flexibilities within one price range. Here, this
affects the flexibilities 1B with 1C, and 2A with 2B. For a proper aggregation, we use another
representation for the flexibilities, which is aggregated more easily. Instead of the data fields
that we got from the first example, we present a flexibility as time series graph. The time series
describes the behaviour in detail, in particular it has the information about the ramp speeds and
the delays, which are important for the MPC coordination. The aggregation is achieved with
a superposition of the time series graph, as illustrated in Figure 5.8. The price is calculated as
a weighted average using the volume of the flexibilities. For instance, the aggregated price of
1B+1C is 11 cents and 38.5 cents of 2A+2B.
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Figure 5.8: Aggregation of flexibilities.
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The aggregation with a time series graph is simple and accurate for the technical operation.
This is important for the coordination process. Note, however, that the price information becomes
an approximation, due to the delays and ramp speeds. After the aggregation, the flexibilities are
communicated upwards as messages, which are shown in Figure 5.9.

Aggregated Flexibility 1A

volume : 30 [kW]
price : 40 [cent/kWh]
usage : 0 [kW]

0 2 4 6

Aggregated Flexibility 1B1C

volume : 60 [kW]
price : 11 [cent/kWh]
usage : 0 [kW]

0 10 20 30 40

Aggregated Flexibility 2A2B

volume : 100 [kW]
price : 38.5 [cent/kWh]
usage : 0 [kW]

0 5 10 15

Aggregated Flexibility 2C

volume : 30 [kW]
price : 10 [cent/kWh]
usage : 0 [kW]

0 10 20 30 40

Figure 5.9: List of aggregated flexibilities to the next level.

The next level EMS can aggregate with the same mechanisms. In our example, from the four
received flexibilities, the ClusterHead is able to create two flexibilities, where one of them has the
volume of 130 kW and the price of 38.85 cents/kWh, and another one has the volume of 90 kWh
and the price 10.67 cents/kWh. The ramp speeds and delays can be calculated through the graphs
as demonstrated before.

The benefit of this aggregation approach is twofold. A flexibility with a time series represen-
tation is great for control and optimization. It is particularly good for control techniques such
as MPC. In addition, ideally, instead of models, real measurements of local controllers can be
used to generate the flexibility graph. This would reduce the modelling effort and increase the
confidence in a reliable system. The second benefit is that the coordination process remains
scalable. The flexibilities are selected and processed as demonstrated before (Figure 5.5).

Control signals part 2 (delegation)

Finally, we expect that somewhere on top, a ClusterHead requests the aggregated flexibility from
one intermediate ClusterHead. This leads to the final specification case P1: delegation, where
the input is an updated schedule in form of an RequestForAdaptation. The output has the same
data type as well. This requires the intermediate ClusterHead to decompose the flexibility into
individual flexibility responses to its children. We specify the input/output relation as shown in
Table 5.6, and explain its meaning with another example, where we show how delegation and
disaggregation works with multiple layers.

Case Input Output
P1 I:RequestForAdaptations O:RequestForAdaptations

Table 5.6: The P1-case delegation, including the corresponding data fields at the interface.
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Example: Flexibilities in multiple-layer systems.

We assume that we have two clusters that are arranged as shown in Figure 5.6. Both ClusterHeads
are responsible to balance 100 kW of load, each. The ClusterHeads have the flexibilities as shown
before. To see how the flexibilities are used, we assume that after some time the load of the first
ClusterHead suddenly increases by further 100 kW.

To counter the increasing demand of power ClusterHead-1 immediately activates all of
its flexibilities, as described before using the MPC coordination approach. This is the first
coordination step (the case C4). At the same time, it communicates its new status upwards
together with the aggregated flexibilities (the C5-case). The ClusterHead above notices, that
the system under him lacks 100 kW of production. Therefore, it starts with the coordination
as well. Based on the four received flexibilities (see Figure 5.9) it calculates a better solution
for the coordination. Also for this we use the presented MPC approach. The answer is then a
message that includes the MPC set points as a response. The response message content is shown
in Figure 5.10. The green graph represent the desired set-points. The red graph indicates the
available flexibility reserves. This is the C4-case with hierarchical layers.

Requested Flexibility 1A

volume : 30 [kW]
price : 40 [cent/kWh]
activated : true

0 5 10 15

Requested Flexibility 1B1C

volume : 60 [kW]
price : 11 [cent/kWh]
activated : true

0 10 20 30 40

Requested Flexibility 2A2B

volume : 100 [kW]
price : 38.5 [cent/kWh]
activated : true

0 10 20 30 40

Requested Flexibility 2C

volume : 30 [kW]
price : 10 [cent/kWh]
activated : true

0 10 20 30 40

Figure 5.10: List of MPC requests for activation of flexibilities (to the intermediate ClusterHeads).

Further, the responsible ClusterHead disaggregates the coordination request. We show an
economical way of disaggregation. The more economic solution is preferred and ClusterHead-2
chooses to activate flexibility 2B before 2A (Figure 5.11). This is the P1-delegation-case. Note,
the response is the same as in the C4-case. Thus, the composite pattern effects the parents in a
hierarchy as well. This is a slight variation compared to the object-oriented composite pattern.

Requested Flexibility 2A2B

volume : 100 [kW]
price : 38.5 [cent/kWh]
activated : true

0 10 20 30 40

Requested Flexibility 2A

volume : 70 [kW]
price : 40 [cent/kWh]
activated : true

0 10 20 30 40

Requested Flexibility 2B

volume : 30 [kW]
price : 35 [cent/kWh]
activated : true

0 10 20 30 40

Figure 5.11: Disaggregation example of flexibilities.
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Finally, the leafs react to the responses by activating the received flexibility set-points. This is
the P3-case, a state update due to a parent’s request. After that, no follow-up action is required,
since monitoring is given by L2. We present the specification of the P3 interfaces below.

Case Input Output
P3 I:RequestForAdaptations none application specific, however,

an acknowledgement helps

Table 5.7: The P3 state update case due to parent’s request.

The result of the behaviour is illustrated in Figure 5.12. The hierarchic system closes the gap
of the 100 kW power production only 11 seconds after the load increases. Note, that the activation
of flexibilities from ClusterHead-2 have an additional delay compared to ClusterHead-1. This is
due to the additional hierarchy layer. This delay is a drawback on the one side, but on the other
side, the hierarchic system increases is scalability if it activates the flexibilities of a group first
and uses external flexibilities to improve the economic operation later on. This increases safety
and keeps as much ’intelligence’ as possible at the lower layers reducing potential coordination
necessity.

0 5 10 15 20 25 30 35 40 45 50

200

220

240

260

280

300

320

340

Time [s]

Po
w

er
[k

W
]

Actual Load Predicted Load Missing Power
Flexibility 1A Flexibility 1B Flexibility 1C
Flexibility 2A Flexibility 2B Flexibility 2C

Figure 5.12: Balancing with flexibilities based on an MPC with aggregation and delegation.

5.4.4 Step 4: Architecture Design Patterns and our Coordination Architecture

Our first three steps show how a hierarchic coordination in VPP is designed from a functional
perspective. Therefore, we have defined the system boundaries of the involved systems, which
are from the software engineering perspective the system’s interfaces. We also explained the
behaviour for coordinating distributed resources of a VPP using flexibilities. We demonstrated
only the coordination approach, but no real quantification for the power system operation.
The reason is that the project scope was on designing the right interfaces with the hierarchic
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architecture3. In this step, we continue with the architecture design. We utilize the architecture
design pattern that we presented in Chapter 4 to create a hierarchic architecture. We consider the
following patterns:

(i) client-server - to cover remote interactions,

(ii) composite pattern - to ensure that each component offers the same interface data,

(iii) layers - to ensure that privacy, local safety constraints and security are respected,

(iv) unified interfaces - to ensure that each interface follows a unified representation of data and

(v) publish-subscribe (optional) - to allow better automation, by ensuring that data is only
communicated when changes occur.

The architecture design patterns help us to achieve several construction challenges for the
intended system architecture as initially presented in our study design in Figure 5.2. In a VPP, we
have generation devices, i.e. hardware components with sensors and actuators; EMS that integrate
the hardware components and offer an interface to external systems; Coordination components
like ClusterHeads that integrate EMS and a larger system like SCADA. This leads to different
layers as shown in Figure 5.13.

With such a system in mind, the architecture design patterns help in the following. First, the
client-server demands us to choose, if the EMS that controls a hardware device is implemented
as a server or a client towards the ClusterHead. Both is possible. A server has the advantage
that it is reachable for external components. Hence, a server offers data that can be read from
ClusterHeads (i.e. if the security constraints allow that). The consequence is that ClusterHeads
collect the data using clients from their child EMS and offer their data again as another server to
the next higher level. If we choose that the EMS exchanges its data as a client, the advantage
is that it does not need to have be reachable by the public infrastructure. But on the other side,
the ClusterHead has no possibility to request for data updates, but needs to wait, until the EMS
sends it a new request. Therefore, we decided for an EMS interface towards the higher level to be
implemented as a server, not a client in our case study.

Second, the composite pattern demands us to define the necessary data for the communication
and a behaviour how this data is treated. This was already done in step 1 to step 3.

Third, the layers demand us to define whether some of the functionality can only be accessed
through other layers. In our case study, we have decided that the interface of the EMS is only the
first accessible layer. It can be strengthen by additional security measures with authentication,
authorization, or encryption, like VPNs. However, the internal hardware lies behind the first layer.
It can only be accessed from the internal functions of an EMS, not from external systems. We
use this encapsulation to convert signals from the devices into the data defined by the interface.
Layers are used similarly in more complex EMS as presented in one of our EMS demonstrators
that is also introduced in Appendix A.

Fourth, the unified interfaces demand us to define which kind of protocol is used, but
also which king of representation are available at the interface. We have chosen the widely

3Note, we show in Chapter 6 another case study including quantifiable results for the EMS coordination.
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Hardware controller(s)

Device interface

Functionality:
Local controller, Sensors,
Actuators, Current states

EMS(s) Functionality: Monitoring,
Options for Control /
Flexibilities

Interface

Local interface for devices

ClusterHead(s) Functionality: Monitoring,
Control / Coordination,
Aggregation, Delegation
(intermediate hierarchies)

Interface

Interface

VPP (e.g. SCADA) Functionality: Monitoring,
Control / Coordination
(top hierachical layer)

Interface

Device communication

EMS communication

EMS communication

Design decisions are driven
based on manufacturer APIs
(device interfaces).

Design decisions:
(a) Server or client,
(b) Information model,
(c) Protocol choices

Design decisions same as
above for EMS interfaces

Layered systems

example see Appendix A

(a) requires client-server

(b) requires composite pattern

(c) requires unified interfaces,
publish-subscribe and layers

Figure 5.13: Hierarchic architecture based on the presented architecture design patterns.

used REST (Fielding, 2000) interface with a JSON (Java Script Object Notation) Bray (2017)
representation for the data. The reason was that the representation is simply converted from our
Co-Simulation framework into that format and many libraries are available for the handling of
that format.

Finally, the fifth and optional publish-subscribe architecture design pattern is necessary
for some particular protocols. It also helps to improve the performance for certain use cases.
However, we have not used it in this first case study, due to the previous design decision of the
REST interface. Therefore, our servers show always the current values, but the clients have to
actively ask for new updates. A subscription is not possible. We refer to the next Chapter 6 to
demonstrate the implementation is a larger demonstrator to improve the operation.
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5.4.5 Step 5: Implementation and Demonstrator

The presented case study was implemented in form of a demonstrator table and shown at the
science fair Münchner Wissenschaftstage and the innovation fair of the Munich utility. The
hardware is shown in Figure 5.14. The software perspective is presented in Figure 5.15. The
demonstrator shows a number of components that represent the distributed hardware devices.
They are integrated into distributed EMS (software components), which are integrated into a
larger VPP structure using our co-simulation framework, which is introduced in Section 4.3. The
demonstrator includes several components, which we explain in the following.

Figure 5.14: Demonstrator with real devices integrated with EclipseSCADA and Sessim.

For the field level, we have selected a number of embedded components. Those are a light
sensitive photodiode that represents solar panels (Solar-1), a controllable motor mounted on
a windmill model that represents a wind power generator (Wind), and different led stripes to
show a status of the current set values for a biogas powered CHP (BioGas). Each component
is connected to an Arduino board that is responsible for their control. The controller provides
a variety of voltage levels for analogue control as well as digital I/O interfaces. The task of the
controller is to provide the actual device data and react to set-points. To have a proper reaction
of the components, we additionally implemented delays, ramp-up and ramp-down curves to see
how the system deals with such delays and inertia of physical components. Arduinos are a good
representation of field devices that read and set values for the operation of devices. In addition,
we have a real PLC component as a demonstrator component, the net-line FW-5 micro telecontrol
station that is provided from our utility partner SWM. It is used to validate that our approach can
be combined with the IEC 60870-5-104 protocol.
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Figure 5.15: Deployment of our software components on the demonstrator hardware.

On the higher level, we have a number of RaspberryPis that represent local EMS systems.
Each RaspberryPi establishes a connection to an Arduino over Ethernet using a socket connection.
For the connection to the real PLC component, we use the Eclipse SCADA stack, which allows
us to start a server on the RaspberryPi and collect the data from the PLC over the IEC 870-5-104
protocol. The connections are used to read the sensor values and write new set points for the
actuators. The collected values are processed and exposed from the RaspberryPis with a REST-
interface to any component that has access to the same network. They serve for the interaction
with the ClusterHead components. The reason for choosing a RasperryPi was to demonstrate
the distributed nature of the system. Further, a RaspberryPi has more processing power as an
Arduino and much more flexibility for programming due to an operational system. It allows to
run JAVA, in which we implemented the EMS, as well as to use a rich set of available libraries.
Further, the RaspberryPis provide the possibility for remote access via SSH to update or deploy
our software applications.

The next demonstrator software component is the ClusterHead. The ClusterHead software is
also implemented with Java using Maven and Eclipse and runs on a RaspberryPi as well. For
the implementation a variety of different libraries for the communication, visualization and the
optimization algorithms were used. We deploy and start the ClusterHead software on one the
EMS RaspberryPis to show that a coordination system can be deployed an any device.

The ClusterHead combines two major areas of functionalities, a monitoring and control of its
cluster and its interaction with the higher hierarchic level. For the local cluster, the ClusterHead
monitors and coordinates its components such that a desired schedule is preserved. Therefore,
it periodically reads values from the EMS servers to calculate the current state and compare it
with the schedule. In addition, it calculates the available cluster flexibility, from the component’s
capacities and their current state. Flexibilities are obtained as follows: Controllable devices, such
as biomass generators or co-generation devices provide flexibility based on current production,
their max/min limits with the consideration of ramps. For solar and wind devices we can get
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flexibility by adjusting the power point tracker or the wind blade angles, respectively. Hence,
we get only the option to reduce the power as flexibility. For economical operation, flexibility
options have a price tag. Next, if the ClusterHead observes a difference of production to the
schedule, a control signal is generated with the MPC approach as described before. The signal is
sent to the EMS servers to adapt their production.

It might happen that the difference to the schedule is larger as the available flexibilities. In
that case, the ClusterHead’s interaction with the higher hierarchic level becomes relevant. For
the interaction the ClusterHead calculates aggregated values of the production and all available
flexibilities. It provides them as a server over a REST-interface to the next higher level. The
higher level ClusterHead is implemented with our co-simulation framework SESSIM. SESSIM
runs on a conventional laptop. It provides not only a higher ClusterHead, but also more additional
hierarchies for the VPP, further additional simulated components and a visualization. SESSIM, or
more precisely, the ClusterHead parent actor within SESSIM reads the provided values from the
ClusterHead on the table using its REST interface and simulates additional components that are
clustered in groups4. The parent ClusterHead uses the information for further processing. This
particularly includes the calculation of MPC set points, when the ClusterHead on a lower level
is not able to cover the difference. The higher level ClusterHead has access to the flexibility of
other ClusterHeads. It activates them as described before to keep the overall schedule of VPP.
This allows that unexpected situations, such as faults or missing flexibility, are handled within the
hierarchy, as presented before.

Finally, to show the interoperability with real systems, one additional RaspberryPi (solar-2)
is directly connected to a photovoltaic system on the roof of our research institute fortiss over
a mobile connection. For that we specifically created an interface at our SMG 2.0 system
(introduced in Appendix A). It gets the data directly from the real inverter and provides the
required data over REST to external components. The RaspberryPi on the table converts the
data into the required self-similar hierarchic interface and interacts with the whole demonstration
system exactly the same way, as with embedded devices. Hence, we show that the demonstrator
covers a variety of embedded solutions, remote components and an extensive co-simulation
environment with its hierarchic architecture.

Human Machine Interfaces

To demonstrate the effect for the coordination of EMS to a broader public we developed several
graphical human machine interfaces (HMI) to show the functionality and the hierarchy. One HMI
is established for the ClusterHead of the table (bottom left in Figure 5.14 and a larger illustration
in Figure 5.16). Another HMI represents the higher level ClusterHead that represents the overall
VPP system (bottom right in Figure 5.14 and a larger illustration of it is shown Figure 5.17 and
Figure 5.18).

The HMI for the ClusterHead (see Figure 5.16) is used for the monitoring and automation of
the devices on the table. It allows the coordination of local components and show how a balance
is established automatically for the power production and the desired control set point.

4Scalability tests of SESSIM shows a simulation capability up to tens of thousands additional components, which
clearly outperforms other agent based approaches such as JADE.
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Figure 5.16: Interaction with the ClusterHead.

To experience the system’s behaviour the ClusterHead’s set points are varied with the panel
using the arrows next to the label ’SetPoint’. All components are monitored and visualized on the
panel5. The solar component on the left is the readout from the photosensitive sensor on the table.
Increased lights or shading immediately influences the values. The second solar component is
the readout from the remote PV-installation at the fortiss building. The third component is the
readout from the wind generator motor. We have additional arrows on the left to adjust the ’wind’
power in percent, in order to vary this component. Because the windmill has delays, directly after
an adjustment the wind production is not the same as the desired value. This is shown by the
deviation of the blue bar (current value) from the black cross bar (set point). The controllable
fourth component is controlled using an MPC to establish the right balance.

The HMI of the VPP system, which runs on the laptop, shows how the ClusterHead interacts
with higher level EMS. It has two views, the current production overview including the contri-
bution of individual ClusterHeads (Figure 5.17) and the topology of the whole system that is
available in the simulation (Figure 5.18).

The total VPP system consists of around ninety production components clustered in five
groups. They are modelled according the data provided by SWM and a normalized set of data of
real measured values that represents the schedule of the VPP. The allocation of the components
to the ClusterHeads is chosen such, that each ClusterHead covers multiple types of components.
Each component offers a flexibility according to its type. Solar and wind components offer
negative flexibility meaning that they can reduce its power output. Water cannot be adapted (due
to environmental regulations in Munich). Biogas and biomass components offer positive and
negative flexibility based on their current production and their installed capacity constraints.

5Data values are scaled for demonstration purposes
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Figure 5.17: Higher level EMS that interacts with multiple ClusterHeads.
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Further refinements and further usage

The demonstrator was improved and refined after its first usage, where more features and
components were added to expand the functionality. The general architecture remained unchanged.
The new component setting includes storage components that add further complexity for the
coordination algorithms, as time dependencies of the states are added. The demonstration table
and the HMIs were adapted to show the increased complexity with storage (Figure 5.19).

Figure 5.19: The second version of the demonstrator with storage components.

The training centre of the utility company SWM further uses the demonstration table, in
particularly the architecture of the components and their interaction, including the embedded
devices, like Arduinos and RaspberryPis. The table is also part of their future lab and has been
shown according our partners on different innovation fairs. According their developers it is a
good example to demonstrate the integration of components and the feasibility of hierarchic
architectures. Hence, we show in this case study with our first demonstrator version and the
refinement process that our hierarchic architecture is feasible and can be applied by other system
engineers.
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5.5 Discussion

In this section we discuss and answer our case study research questions, by reflecting our approach
and the technical implementation. We further present the limitations of our approach and discuss
the threats to its validity. We also include the received feedback from our industrial partners.

5.5.1 Research Questions

RQ1: How does the hierarchical concept affect the designs of EMS and the architecture of
composed energy coordination systems?

The integration of components (devices or more complex EMS) relies on the available interfaces
that describe the input and output of the components. Interfaces are the only way in which a
software system interacts with its environment. They are therefore the central aspect to define an
architecture. The behaviour of the components, thus, the understanding how the input is used to
generate the output, is important to describe the functionality of the system. This is the second
important specification activity of describing an architecture. The third part is the composition
of the systems that describes how different components are interconnected. It clarifies which
outputs are connected to which inputs and how this affects the overall system behaviour.

All three activities are described in our case study in the previous sections. We were able
to provide the necessary specifications using the atomic behaviour cases that we introduced
in Chapter 4. They guide our specification activities quite successfully starting from simple
monitoring use cases over to a coordination model and further to an aggregation and delegation
approach. The atomic cases supported us to create a meaningful abstraction for the EMS interfaces.
Our approach also demonstrated the possibility to refine the interfaces, first by stating what a
flexibility is, and then extending the flexibility to a time-series graph, which can be aggregated
more accurately as the initial version.

In summary, the hierarchical concept based on the composite pattern leads the necessity to
define an interface of an EMS that is used at multiple hierarchical levels. The atomic cases provide
a good orientation to start the specification and further guidance leading to the description of a
hierarchic architecture including the three important specification goals: component interfaces,
component behaviours and composition.

RQ2: Does the hierarchy support different energy coordination mechanisms?

Section 5.4.2 introduces the coordination behaviour with the previously introduced interfaces.
The goal of the coordination is to reduce deviations from the schedule based on flexibilities. We
present three coordination algorithms. Each algorithm results in slightly different coordination
signals and different timings in activating the available flexibilities. Therefore, the operation
varies in some parameters, such as the speed to reach the coordination set-point and related costs.
Nevertheless, the question if the hierarchy supports different coordination mechanisms based on
the same interfaces can clearly be answered with yes.
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Further, when considering the different coordination algorithms, starting from very simple
activation rules towards a more sophisticated mathematical model with an MPC, we observed
promising refinements for the interfaces. Particularly, the MPC helped us in refining the spec-
ifications of the flexibilities. Therefore, we see that mathematical models are beneficial for
the definition of the interfaces and should be part of the specification activities. Current activ-
ities for defining the interfaces often rely purely on the device parameters (e.g. the VHPready
standard (VHPready, 2017)). In consequence, more abstract information models, like the one
presented for the flexibility, are not provided. The device parameters are sufficient, as long as
the integration focus on devices. However, with the transition to more general EMS, as currently
discussed in research and by the industry, we need to combine mathematical models with the
current technology. This is further elaborated in the next chapter.

Finally, in this case study we discuss a top-down coordination, meaning that the set-points are
calculated by a higher level system. But our approach is not limited to a top-down coordination.
It is easily possible to realize distributed coordination with the same approach, where each
component does not offer its own flexibility but expects a system price to decide its own set-points.
We can use the same atomic steps to define the related interfaces, behaviour and composition
creating a hierarchic architecture. But we need to understand two behaviours, one that describes
how a component will react on a price and another one that describes how the prices are calculated
and which information is required for that (e.g. forecasts, price sensitivities, etc.).

RQ3: How do the proposed architecture design patterns help us with the development of
such coordination systems?

The last research question targets the validation of our architecture design patterns and the
technical feasibility. In Section 5.4.5 we demonstrated that we were able to implement the
hierarchic systems and that the chosen architecture design patterns were helpful. The precondition
for that was a clear specification of the interfaces together with the coordination behaviour based
on the composite pattern as presented in the Sections 5.4.1 - 5.4.3. Further, the relation of
the architecture design patterns to the implementation decisions are shown in Section 5.4.4 in
Figure 5.13. Therefore, the necessary implementation decisions are in line with the architecture
design patterns. Another finding was that the client-server model requires a decision whether the
EMS interfaces upwards are realized as a server and the higher level ClusterHead reads those
values with a client, or if the client-server model is turned around. Both approaches are possible.
We recommend to have an EMS server with an interface upwards the hierarchy as presented in
Section 5.4.5. The reason is that our architecture should support the possibility for monitoring so
that we receive an assurance that an EMS behaves as expected.

Further, we were able to implement the hierarchic coordination with available technology,
meaning that it was not necessary to develop new technical protocols. Available approaches,
such as REST (unified interface) and the plethora of available libraries for servers and clients are
sufficient and quite successful in implementing such a system (see Section 5.4.5). Therefore, the
focus on designing coordination systems should not be on the development of new protocols, but
rather on a clear specification of the data at the interfaces. The constraints from the composite
pattern were helpful to specify a hierarchic architecture for the coordination of EMS (as shown
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in Figure 5.2). The layered systems architecture design pattern is helpful to ensure that the EMS
does not expose all internal data. It allows also to consider state-of-the-art approaches to add
security. Finally, the publish-subscribe pattern was not used in this case study. We refer to a
following case study to understand how the features of this additional pattern help to improve the
system further.

Further findings

To create the case study we used the SESSIM co-simulation framework. It was very beneficial
not only to create the final demonstrator, but actually is was used all the time, particularly to
develop and test the interfaces and coordination algorithms at much earlier stages. The advantage
of using this framework was that we were able to create a simulation of the expected scenario
very early. We could also start with much simpler interfaces and refine them up to a stage, where
we were sure that the coordination will work with real components. The framework further offers
the advantage that it enforces us to develop a communication that is based on inputs and outputs
of actors, which are not sequential and share no common data states. This is very close to real
systems. SESSIM even allows that each actor has its own server with a dedicated interface. This
saves time, because testing can be done early and without the necessity of deployment the code
on distributed infrastructure.

5.5.2 Threats to Validity

In this section we discuss the main threats to the validity of our case study results.

Construct validity: Construct validity concerns the assurance that we correctly operationalised
the phenomena in which we are interested. To answer our research questions, we followed a
structured approach to define a hierarchic architecture for the composition of energy systems
based on the assumption that an EMS is the major component to interact with. While the
approach seems reasonable some threats remain. Current VPPs compose energy systems in a
central architecture, not a hierarchic one. The reason is that VPPs are software systems operated
from a central place. Those software systems run on hardware with good computational power
and their performance limitation depends on the number of connected components and algorithms
that are used to provide control within a VPP. Currently, VPPs are used more for data collection
and monitoring issues. The pressure for control is still not that high. However, it is clear that
the pressure for control increases in the foreseeable future. The question is how big the pressure
becomes and how intense the control will be so that central optimization becomes impractical.
Only if the central control becomes impractical, hierarchic groups might be a solution, but
decentralised control could be another solution as well. Therefore, the biggest threat is the
question, if hierarchies are required at all. We cannot answer this question completely at this
point. However, if hierarchies are considered as a solution, our case study shows how the design
of EMS interfaces can be approached and how this enables coordination of energy systems.
Finally, since the specification of interfaces are an important engineering task for future energy
systems, our approach helps to lift the specification from single device to more complex EMS
with higher data abstractions at their interfaces.
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Internal validity: Internal validity concerns the assurance that the case study delivers correct
results, such as cause-effect relationships or the data extraction and analysis. This includes the
validity of the data used, the validity whether the models calculate results that are realistic.

With the VPP investigated in this use case, we made several simplifications that might not contain
all the details that real systems require. For instance, each component provides a maximum
production capacity, but not its lower limit. This is used to calculate flexibilities. Hence, the
flexibilities would be different when the lower limit is considered as well. Further, we have also
not defined further details that are required for coordination. For instance we assumed that the
schedule is given. But we neglected how they are created and how users can influence them,
for instance how they activate maintenance modes. Therefore, it is obvious that our case study
is limited, since the system interfaces need to be extended for real applications. But this is a
matter of interface details and we have shown that our interface can be refined. We think that
the VHPready specifications (VHPready, 2017) already go in the right direction, since they
cover most of our points and provide many more. However, they are not able to yet to describe
flexibilities. Hence, they need also to define more abstract data types and our approach would be
beneficial for that specification. Particularly this abstraction is also necessary to lift the interfaces
from single devices to groups of devices and more complex EMS.

Further, our case study works with generalized data provided by the utility partner. It means that
we have normalized historic production profiles of the component’s types, but no individual data
that can be used to reason about schedules. Our flexibilities are only examples to provide the
possibility for control. We had no previous data to analyse them in more detail. Hence, they are
not used to provide quantitatively reliable systemic statements, but to demonstrate how interfaces
play together with coordination approaches and hierarchic structures and the technical feasibility.
To derive a coordination scenario we assume instantaneous deviations from the schedule to show
the reaction of our coordination algorithm. We assume a one second delay that covers the control
decision and communication. This not necessarily exact, since delays exist due to the TCP/IP
communication and the internal processing time. However, this assumption seems reasonable to
explain the three different coordination approaches and their effect.

External validity: External validity is concerned with the generalizability of the case study.
Our system investigates energy system coordination of EMS in the setting of virtual power plants.
Three algorithms with increasing computational complexity are compared. However, there are
many more coordination approaches available. They rely on their own models and require specific
data to either determine the set-points (in a top-down coordination) or a guidance signal such as
prices (in a bottom-up coordination). Our interface and coordination is currently limited to the
case study functionality. To make any claims about the applicability of the other coordination
approaches, we need to repeat the specification process. However, we are quite confident that we
are able to do that for centralized and decentralized approaches. To investigate other scenarios
and improve the generalizability of our work we have carried out a second case study with a
slightly different coordination focus in Chapter 6.
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5.5.3 Limitations

In this section we discuss the limitations of our approach and our case study results. Some
of these limitations can be obviated by extending our specifications or improving coordination
algorithms. Other limitations are more fundamental due to the assumed hierarchical structure and
the specific context of the system under analysis that hampers to transfer our approach to other
types of systems.

Quantified results: Our case study uses real historic data from the industrial partner to demon-
strate the operation of a VPP. We also use real data to parametrize the size of components within
the VPP. However, to demonstrate the coordination we used exemplary data for the flexibilities,
such as ramps and costs. The reason is that so far flexibilities are often described in research,
but there is no reference for a flexibility and no data is available for that. Also for the MPC, we
used exemplary replacement costs to calculate the set-points. Therefore, we cannot make any
statements about the quantified savings when such a coordination is used, since we focus more
on the technical questions to create such a system6.

Applicability in practise: During a last workshop with our industrial partners from the Munich
utility we discussed the possibility to combine our hierarchical approach with the current solution.
Two feedback remarks were particularly of interest as they show the current practical limitations.
First, the clustering of components becomes of interest, if the current central solution encounters
performance limitations, for instance due to long optimization time. This was not yet the case
at the utility, since their VPP had 120 components and most of them were not coordinated
due to regulations that prevent the usage of flexibilities (e.g. solar, wind and water without
hydropeaking due to ecological reasons for fishes). So comparably, only a small number of
components are actively controlled, most of them provide only data to improve forecasts and the
trading capabilities. But the utility carefully follows the topic, particularly because the need for
control is growing with more renewable energy sources and the effect of electric vehicles. Second,
current devices are integrated directly, for instance with a FW or protocols that are provided by
the component providers, such as the VHPready standard. Distinct EMS exist for some use cases
(like PV+battery combination), but they focus more on their internal optimization and often lack
interfaces to interact with them. However, interactive EMS are being developed now in research
and open initiatives like OpenEMS7, so the question of integrating them is not a question if they
will be integrated, but when and in which context, for control or economic reasons.

6Note, to obtain better quantifications we refer to the second case study in Chapter 6
7https://openems.io/, last accessed March 2020
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5.6 Summary

This chapter investigates the hierarchical architecture for EMS coordination in the context of
VPPs. We explain the concept of a VPP and that today’s solutions use a central approach, with
its advantages and disadvantages. To increase the flexibility we describe how VPP components
are extended into a hierarchic architecture using our atomic behaviour steps and the proposed
architecture design patterns. Therefore, a component is represented as an individual EMS that
hides the internal implementation details and provides only abstracted information for energy
production and the flexibilities at its interface. The ClusterHead that is responsible for the
coordination of the EMS. It collects the data and provides the aggregates to the next higher
layer. Additionally, it sends control signals to keep the desired schedule. For that, we use only
the available flexibilities and calculate control signals, which contain the set points for next
times steps of the components. This allows us to control individual components and groups of
components in the same manner. Our assumptions for this approach is that components comply
with their flexibility specifications and follow the control signal. We describe the implementation
of the presented concept as a demonstrator and explain the used architecture design patterns.
The demonstrator contains embedded devices, the ClusterHead software, which is deployed on a
RaspberryPi, and the connected SESSIM co-simulation framework, that additionally simulates
further virtual components to show the interaction in a larger setting. The demonstrator table is
further used by the industry for additional trainings and as an innovation example.
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6 ∣ Architectures for Coordination Systems of Quarters

In this chapter, we describe a second case study to reinforce the generalization argument of our
approach. In this case study we investigate the architectures for coordination systems of quarters
that integrate EMS with multiple energy networks. We also extend our activities to align our
approach stronger with mathematical modelling in order to demonstrate how sound energy system
models support the specification of architectures and EMS interfaces. This case study was carried
out with several industrial and research partners.

We start this chapter with a short context to introduce and clarify related terms, particularly,
multi energy systems and sector coupling. We also motivate the importance of this topic. We
describe the current technological solutions that are used for this context, the challenges and the
gap between the available technologies and the desired solutions. From this starting point we
proceed with our case study goal definition and the formulation of our research questions. Upon
that we describe our case study design and proceed with the case study execution, where we
show stepwise how the EMS coordination is achieved from the mathematical point of view, how
we define the architecture, the EMS interfaces and behaviour based on those models and finally
the implementation into a Multi Energy Management Aggregation Platform (MEMAP). After
the implementation, we carry out a quantitative comparison with and without our coordination
solution. After that we evaluate the numerical results and provide a discussion. A short summary
with our contributions is presented at the end of this chapter.

6.1 Context of the Study

The power sector in Germany has tremendously increased its share with renewable energy in the
recent years. Today, around 54 % are produced from renewable resources1. It is foreseeable, that
the share will further increase in future. This environmental sustainable development is currently,
however, mostly restricted to the electricity sector. Other energy sectors, including heating and
mobility, still rely on fossil fuels. Consequently, sector coupling activities try to improve this
situation by combining components of multiple energy networks. The German Government
describes in their Climate Protection Plan 2050 (BMU, 2016) sector coupling as one of the major
activity areas for future development. Sector coupling integrates the different energy areas and
facilitates the usage of (renewable) energy sources for heating, cooling or mobility instead of fossil
fuels, which improves the overall reduction of green house emissions. Sector coupling provides
also an additional degree for flexibility, which allows a better utilization of energy resources.

Acatech and Leopoldina (Acatech, 2017) particularly emphasise the importance of sector
coupling if buildings are involved, because they strongly benefit from better heat production and
technologies, like heat pumps, thermal storage, district heating, especially, when an integrated
solution exists. Further, they emphasize that sector coupling helps also to utilize waste heat from
the industry, which can be injected into local district heat networks, if such possibilities exist.
This additionally improves the overall energy efficiency.

1Fraunhofer Energy Charts: https://www.energy-charts.de, accessed in March 2020
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The combination of the technologies is an integration challenge. It involves the interconnec-
tion of the different devices for control, but also the interconnection of the different stakeholders
of the systems, such as users, building owners and the operators of the infrastructures (e.g. of
building automation systems, heating or electricity networks). The interconnection is also an
economical challenge, since the costs and the revenues for the usage of the resources need to be
settled as well. This balancing act between the technical and economical integration is challenging
for system manufacturers, particularly, because their systems are originally designed to operate
in a closed environment, but also because requirements for additional interaction are not clearly
specified. We therefore use our approach for hierarchic coordination architectures to reach a
clearer specification for the desired system and to build a prototype that is able to integrate such
distributed technologies.

State of the Art

The development of sector coupling concerns mixed areas with residential, industrial and office
buildings. Today, buildings in such an area have no systems in place to provide energy services to
networks, at best, they have individual automation systems that provides a power management for
single buildings. Providers of building automation system have a long history and offer a large
variety of components, different controllers and software. Their automation system architecture
(see Figure 6.1) is designed as SCADA including the different layers for field devices, automation
with PLC components and the upper layer for the management software.

Figure 6.1: A commercial building automation system architecture (Sauter Cumulus GmbH, 2018).
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The field layer encapsulates different sensors and actuators within the building, which are
either directly connected to controllers, or communicate their values over additional modules.
A variety of different protocols exist for the communication, such as BACnet, DALI, EnOcean,
KNX, Modbus, Profibus, Zigbee, Z-Wave and many more. Next, we have the automation layer.
It encapsulates the controller components, such as PLC or other programmable devices. They
include the behaviour logic for control and forward important signals to the upper layer. The
communication upwards is already realized over Ethernet with IP based protocols, such as TCP,
HTTP(S), or OPC UA. The next layer is responsible for the management and configuration. It con-
sists of different software components for visualization, statistical data processing, configuration
or alarming. Depending on the vendor of the system, the management layer also offers software
for remote access over VPN, WebServices (e.g. weather forecasts) and additional interfaces for
external systems, for instance for security companies, booking services, or for the building’s
technical maintenance.

During our initial workshops with the vendors it became evident that the internal control
logic as well as the internal parametrization is not only complex but also quite individual for
every building. The reason is that the available sensors and actuators influence the behaviour
of the equipment. For example the temperature control of a building strongly depends on them.
Sometimes, there is an integrated solution, which receives the temperature values from integrated
sensors inside the rooms and controls the heating or air conditioning correspondingly. This is a
desirable situation. However, due to cost savings, building owners often use individual systems
that are not integrated into the vendors solution, e.g. local thermostats, smart thermostats like
NEST2 or TADO3. Such solutions interfere with the solutions of the vendor and requires an
adaptation of the control logic of the building automation. This is a complex situation, where an
individual configuration is required, depending on available internal technologies.

Further, not only the internal control logic is individual for each building, each building
has also an individual set of energy supply devices. Those devices are planned and installed to
consider all kinds of conditions, even harsh ones at cold times in the winter. Our industrial partners
confirm that the current planning is such that building’s energy supply must be fully available also
at -14/-16°C. Consequently, the installed equipment has a larger capacity as required during the
most time of the year. Therefore, it often operates in a non-optimal range and its full efficiency
is seldom used. To reach a better utilization, it makes sense to combine several buildings in a
quarter. This allows to use the installed equipment more efficiently and also better utilize the
modernization of equipment in such a combined quarter. With integration, modern equipment is
used more frequently and pays-off more quickly leading to a faster substitution of less efficient,
potentially less environmental friendly equipment.

Building technologies have multiple energy networks. They combine electricity, heating,
cooling, (hot) water and in future also electric mobility. The different energy networks have
components that act as producer, consumer, storage to a particular energy network. There are also
components that act on several networks at the same time, such as CHP or heat pumps. Hence,
each building can be understand as a multi energy prosumer system. To integrate such buildings,
we need a multi energy coordination system as envisioned in our case study.

2https://nest.com, accessed in October, 2019
3https://www.tado.com/de/, accessed in October, 2019
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6.2 Study Goal and Research Questions

In this section, we present the goal of our case study and derive again several research questions
to guide our work. In Chapter 1 we stated three research objectives. The case study in Chapter 5
handles the first objective. This case study focuses on the second and third research objectives.

6.2.1 Study Goal

The research objectives two and three from Chapter 1 are as follows. The former is to develop
a coordination approach for EMS based on mathematical models using the specification
elements of objective one; and the latter is to identify the benefits but also the drawbacks
and limitations of hierarchic energy coordination systems. We use those objectives to state a
structured study goal using the goal definition template as proposed in Wohlin et al. (2012):

We analyse the transfer of mathematical models into a coordination approach
for the purpose of understanding the process and demonstrating the necessary steps

with respect to specification of system boundaries, interfaces, architectures
from the viewpoint of software developer and system integrator

in the context of multi energy districts.

The identification of the benefits, drawbacks and limitations is a reflection of the case study work
to understand which points are helpful at which system development stages and which are not.

6.2.2 Research Questions

Based on our study goal we derive three research questions that we answer throughout the
following work.

RQ4: When energy models are available, what are important details from those models
to specify system interfaces and what are the possible transformation steps to develop an
architecture of a coordination system?

In energy systems control and optimization applications rely on mathematical models of power
system engineers. Simultaneously, software engineers that create control and monitoring systems
are faced with questions for designing appropriate system interfaces, such that different kinds
of interaction schemes are supported. Often, the required data for the interfaces are implicitly
available within the mathematical models, or at least, mathematical models have certain expecta-
tions about the desired data to enable an optimised operation. Moreover, control and optimization
applications require data to be transferred to be able to operate. But this knowledge is not always
transferred and both tasks remain two separated processes. Therefore, mathematical models for
optimization often remain on paper (or as MATLAB code). With our research question we try to
find out the possible steps for that transformation. The first part of the question addresses the
transfer ot the model into a specification of system interfaces. This requires to find the neces-
sary data points for communication due to that model and to clarify whether there are different
representations of a model that can be used for that purpose. Further, this research question
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also requires to clarify the meaning of the term system boundary, to understand whether there
is a different understanding of this term with respect to power system models and coordination
systems and whether this leads to problems. Once the first part is clearly understood, the second
part of this research question aims to investigate which architecture design decisions are necessary
to create a system that is based on the chosen coordination model with the chosen interface data.
It also considers the specification elements of the previous case study, including the hierarchical
structure, the chosen architecture design patterns and the atomic behaviour cases that help to
describe the interaction of the coordination system with other EMS.

RQ5: Which systemic effects can be expected from coordination systems?

In our first case study, we do not provide quantified results that explain how coordination and
hierarchic architectures improve the current power system operation. This is made up here. We
describe a concrete scenario of a district that operates with and without a coordination system. We
compare the results for both cases to evaluate the potential of combining multiple EMS, in order
to improve the state of the art by utilizing the available over capacities from individual buildings.

RQ6: What do hierarchic coordination systems achieve in the context of SES and EMS
and what do they not achieve?

The question reflects our general motivation to clarify whether our approach delivers what
was promised in the beginning or not. The initial idea was to investigate new energy system
architectures that provide control not with a top-down approach (as done today with few large
power generators), but to provide control with a bottom-up approach to reduce complexity. The
bottom-up approach envisions to integrate many distributed systems that offer similar options
(supply, demand, storage) in a hierarchical architecture to support the handling of individual
components and group of components in the same way. With this question we intend to answer
whether this is feasible. We further aim to understand what is improved with the hierarchical
approach and what is not. For instance we would like to know, if our approach supports only
centralised control decisions, or whether decentralised control is supported as well.

6.3 Study Design

To answer the case study research questions we again choose an experimental approach, where
we provide a technical prototype that interconnects several EMS. The prototype is developed as
part of the Multi Energy Management and Aggregation Platform (MEMAP) project. The aim of
the platform is to interconnect several building on the local level, in order to enable a potential
energy exchange. MEMAP develops the required interfaces and a software system for such an
information exchange using a hierarchical architecture. It collects the data over consistent EMS
interfaces (composite pattern) and uses them for the coordination. The interface provides only
abstracted information of the building’s capabilities, not all the details, since only information for
the building’s behaviour from the energy point of view is necessary. The building automation
system still controls the internal components itself and considers its local constrains. The only
task of the platform is the creation of an optimized schedule, so that connected buildings save
costs / emissions, if more efficient components for energy production are available.
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Before we start with the schedule generation and the platform’s interface specification, we
introduce the general system architecture for a better understanding about MEMAP’s operation.
MEMAP is developed to operate as a system that runs on an external server and collects data
from the buildings. Its task is to improve the energy efficiency in the neighbourhood. Therefore,
it establishes a connection to a number of buildings, or more precisely, to the building’s EMS
interfaces that provide the required information (Figure 6.2). For external systems MEMAP
is also seen as an EMS. Hence, it provides also an interface with the same specification as its
children. The data from the interfaces provide the available energy resources of the buildings.
They represents an abstract view on the components that provide potential power injections for
the different networks types, e.g. heating and electricity. The view reflects the current system state
to enable monitoring and provide options for the near future for planing. This allows MEMAP to
monitor and plan an optimized operation of the connected buildings.

Building EMS2

Building EMSn

Building EMS1

Figure 6.2: MEMAP’s high level system architecture.

MEMAP’s high level architecture is similar to the conventional SCADA pyramid structure
with the management level at the top layer and the field devices at the bottom. However, there is
a crucial conceptual difference between MEMAP and SCADA concerning the expected control
logic. SCADA envisions that the logic for control, planning and operation is established on its
management layer. Components on the lower automation and field layers are only responsible
to execute commands and to keep threshold values. Therefore, in SCADA the upper layers are
more “intelligent” than the lower ones. In contrast, MEMAP is not designed to control a large
variety of different field components of a system. Instead it operates on a unified and abstracted
specification of the buildings’ resources. They provide the data to MEMAP, which collects
them, aggregates them and calculates an optimized schedule for the operation to increase the
combined energy efficiency of the buildings. The new schedule is communicated to the buildings
as desired set-points. The execution of the schedule is left to the EMS. The intention is that
following the schedule optimizes the efficiency of overall production and consumption, because
the more efficient components are preferable activated. Hence, the intended cost reduction is a
good incentive for collaboration.

In consequence, most of the control logic is left to the building’s EMS, which are much
better suited to monitor and control its internal equipment. This has several positive effects.
Each building EMS remains a completely individual system, with its own equipment thresholds,
control logic, user access rules, firewalls and other configuration details. The connection between
MEMAP and the EMS is very loosely. Connected systems can be stopped, restarted, updated
and redeployed independently. This supports redundancy and increases the robustness. Such a
loosely coupling is in fact necessary, to allow independent system development and with that the
usage of MEMAP for multiple EMS and different vendors of such systems.
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Further, current building automation systems rely on a set of common communication
protocols (see also Section 6.1). Our case study is designed to use the OPC UA4 protocol. The
OPC UA communication is a widely used protocol from the domain of industrial automation.
Control systems and field devices of building automation systems support this protocol quite often.
Therefore, the usage of the protocol towards higher automation systems, as intended by MEMAP,
is part of the study. The benefit of that protocol is that it brings much build-in functionality
such as security with authentication and authorisation, client-server instances, publish-subscribe
mechanisms, look-up mechanisms to access data, look-up mechanisms to access the semantics of
data, method execution, etc.

6.4 Study Execution

This case study combines mathematical models, hierarchic system architectures and industrial
protocols in a demonstrator. We start the case study execution by defining the mathematical
model for coordination. This model serves us as a preparation to derive the interfaces from that
model and to define the system behaviour based on that model, which we specify in our second
step. The third step shows how such a component is able to interact in a hierarchical system by
defining the aggregation and delegation behaviour. Further, in a fourth step we demonstrate our
implementation, showing our co-simulation approach and its extension towards a platform with
the OPC UA interfaces. In our fifth step, we finally show an execution scenario, where we show
an exemplary district with multiple multi-energy prosumer buildings that exchange energy. This
scenario yields quantified results to demonstrate a potential of such coupling.

6.4.1 Step 1: Definition of the Coordination Model

Energy system coordination relies on the usage of mathematical models. We introduced several
well known examples in Chapter 3, where we described how those models are created and which
purpose they have. For this case study we have developed a classical approach that is similar as
the short term planning approach (see equations 3.4) and relies on the transfer of energy. The
development of our model was a combined work of several researchers5 that was presented
in Bytschkow et al. (2019). We use a model that goes into the same direction as the energy hub
approach developed by Geidl and Andersson (2007) by using multiple power injection vectors
from multiple energy networks. The general form of the model is given by the following objective

4OPC Unified Architecture (OPC UA) standard (OPCFoundation, 2017), which is the successor of the Open Plat-
form Communication (OPC) interface specification. OPC UA replaces all previous OPC based interface specifications
like OPC DA (Data Access), OPC HDA (Historic Data Access), OPC A/E (Alarms and Events), etc. and makes the
interface platform and DCOM independent.

5We particularly thank Alexandre Capone and Jan Mayer amongst others for developing and testing the model
together within the MEMAP research project.
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function with the related equality and inequality equations:

min
x

λλλ
Tx (6.1a)

s.t. Ax = b (6.1b)

Gx ≤ h (6.1c)

xlb ≤ x ≤ xub, (6.1d)

where we have the vectors b, x, h, xlb, xub and λλλ represent the required power demand, the power
generation, the constraints from storage, the lower and upper boundaries of generation and the
cost vector, respectively. The matrix A describes to which extend each generation unit contributes
to the demand and and G how temporal effects are considered during the different time steps. By
applying the optimization model repeatedly for each time stamp with a time horizon of length
NH , we obtain a classical MPC as described by Rawlings and Mayne (2009).

For the coordination of buildings, the power network is described as a set of linear equations
and discretized by sampling the time with time steps of length ∆t. We assume that we have a
quasi static system for electricity and heat exchange, meaning that dynamics caused by effects
such as mass flows are negligible for our coordination time frames. We further assume that our
network is lossless, meaning that power is exchanged and used only by the system nodes (the
buildings), not by the network that transports that power. With that our power is conserved within
the network for each time step t:

n∑
i=1

Pξ,i(t) = 0 (6.2)

where n represents the number of buildings and Pξ,i the individual power injection of building i
and ξ ∈ {Q,P} represents the heat network (Q) and the electrical network (P). The individual
building’s power injections are calculated as:

Pξ,i(t) = ni∑
j=1

ηξ, jG j(t)−Dξ,i(t)+Sξ,i, (6.3)

where ni represents the number of generation devices of building i, G j the generation unit j within
that building, ηξ, j its efficiency rate, Dξ,i the demand and Sξ,i the power injection of the storage
devices within that building. Further, we consider that each of the power devices and storage is
limited by the specified production constraints, i.e.,

0 ≤ ηξ, jG j(t) ≤ Pmax
ξ, j (t) ∧ −Sdis

ξ,i ≤ Sξ,i(t) ≤ Sch
ξ,i (6.4)

where Pmax
ξ, j (t) is the production limit for production devices and Sch

ξ,i, Sdis
ξ,i limit the charging

and discharging. Note, that Pmax
ξ, j (t) is fixed for devices that operate on fossil fuels and variable

for renewable sources that depend on the environmental conditions. This applies for both, the
heat and electrical power. To consider the storage capacities, we further need to consider a time
dependent charging process, i.e.,

−Cξ,i(t0) ≤ ∆t
NH∑
t=t0

⋅ηξ,iSξ,i(t) ≤ (Cmax
ξ,i − Cξ,i(t0)), (6.5)
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where Cξ,i(t0) is the state of charge at time t0 and Cmax
ξ,i the maximum available storage capacity.

With those constraints, we can create the coordination with an MPC. For that we write the
generation and storage into the x-vector as:

xT = (G1(t0), ...,G1(tNH),G2(t0), ...,G2(tNH), ...,SQ,1(t0), ...,SQ,1(tNH), ...), (6.6)

where G represents the generation unit, S the storage units with the time steps t0, ...,tNH that are
considered for the time horizon of planning. Similarly as the generation, we write the demand,
which shall be fulfilled, as vector b:

bT = (DQ(t0), ...,DQ(tend),DP(t0), ...,DP(tNH)), (6.7)

where DQ, DP represents the heat and electrical demand, respectively. Note, the set {Q,P}
indexing the demands represents the available networks. It can be easily extended to cover even
more than those two sectors, leading to an energy system model that might consider also cold
networks or heat networks with other temperature settings. In that case, the demand vector will
be extended as well. Further, the constraints of component’s operational limits are described by
xlb and xub.

The cost function C (the objective function) captures the incidental costs:

C =
tNH∫

t0

⎛⎝
n j∑
j=1

c f uel
j (t)G j(t)⎞⎠dt, (6.8)

where the integral describes a time horizon [t0..tNH ], nk the number of available power generation
sources, c f uel

j (t) the fuel costs that are time depended in case of varying costs or emission profiles.
The expression is discretized to:

C = nH∑
k=0

n j∑
j=1

(c f uel
j (tk)G j(tk)∆t) , (6.9)

such that the cost vector λλλ is written as:

λλλ
T = (c f uel

1 (t0), ...,c f uel
1 (tNH),c f uel

2 (t0), ...,c f uel
2 (tNH), ...). (6.10)

Further, to clearly differentiate between the demand and generation, we use the convention
that all generation values are positive and all demand values are negative. With that convention
we create our matrices. The coupling matrix A is composed of several sub-matrices based on
available components:

A = (A1,A2, ...) . (6.11)

The general composition of each sub-matrix has been chosen to reflect the sector coupling, namely
the heat and electrical power network. Therefore, we split the matrix in sub-matrices representing
each network.

Ai = (Ai,Q

Ai,P
) . (6.12)
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To create the sub-matrices a number of different generation devices are available.
First, we have conventional fuel driven generators, such as oil heaters, gas heaters or diesel

engines, which cover one particular network. They can flexibly adapt their generation. We
therefore call them controllable resources. They have a certain generation capacity and an
efficiency factor.

Second, we have volatile components, for instance wind, photovoltaic or solar thermic
components. They generate power that depends on their installed capacity and the environmental
conditions, such as wind speed or solar radiation. We call them volatile resources.

Controllable and volatile components lead to a diagonal form of the sub-matrices. For a
horizon of NH time steps we have:

AControllable =
⎛⎜⎜⎜⎜⎝
−η 0 ⋯ 0
0 −η ⋯ 0⋮ ⋮ ⋱ ⋮
0 0 ⋯ −η

⎞⎟⎟⎟⎟⎠
∈RNH×NH ,AVolatile =

⎛⎜⎜⎜⎜⎝
−1 0 ⋯ 0
0 −1 ⋯ 0⋮ ⋮ ⋱ ⋮
0 0 ⋯ −1

⎞⎟⎟⎟⎟⎠
∈RNH×NH . (6.13)

The difference in the MPC is that controllable components have constant constraints xlb and xub,
while the constraints of the volatile components are profiles derived from forecasts.

Further, we have storage components that represent the third category storage. They can feed
in and feed out power from the network. To keep positive x vector elements (for computation)
we split the matrix in two parts. This indicates that charging and discharging can be seen as a
separate process and x contains both contributions. Further, to have a correct model of the system,
we need to make sure that storage components avoid charging and discharging at the same time.
We achieve this with small operational costs of the storage. The matrix for storage is then:

AStorage =
⎛⎜⎜⎜⎜⎝
−1 0 ⋯ 0 1 0 ⋯ 0
0 −1 ⋯ 0 0 1 0⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ 0
0 0 ⋯ −1 0 0 ⋯ 1

⎞⎟⎟⎟⎟⎠
∈RNH×2⋅NH , (6.14)

where the first part with a negative sign represents generation that covers demand. This means
discharging for storage components. The second part with a positive sign adds the need for other
generation. This means charging for storage components. Note, each storage component has also
efficiencies for discharging ηdis and charging ηch. They are used for the calculation of the SOC
with the G matrix, which will be described below.

Next, the fourth category are the devices that have an impact on multiple networks. These
are for instance CHPs or heat pumps. We call them couplers. Their sub-matrices are similar to
generation matrices, but have the double amount of rows. The diagonal elements contain the
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efficiencies for each sector:

ACoupler =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ηQ 0 ⋯ 0
0 −ηQ ⋯ 0⋮ ⋮ ⋱ ⋮
0 0 ⋯ −ηQ

−ηP 0 ⋯ 0
0 −ηP ⋯ 0⋮ ⋮ ⋱ ⋮
0 0 ⋯ −ηP

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈R2⋅NH×NH . (6.15)

ηQ and ηP represent the thermal and electrical efficiency. Note, for CHPs, the efficiencies are
available from the component’s manufacturer specification. For heat pumps, the efficiencies can
be easily calculated from the available coefficient of performance (COP). For instance, a COP of
2.5 means for heat pumps that 1 kW of electricity generates 2.5 kW heat. The η-factors in this
case are therefore ηQ = 2.5 and ηP = −1.

The last sub-matrix addresses the delivery and supply from external networks. Similar to
storage system, power can be taken out or put into the networks. We therefore split those two
different parts, exactly as for storage systems. The matrix of external networks is therefore that
same as for storage. The cost for the market is part of λλλ as well and depends on the market
conditions. We consider that buying form the market corresponds to a given price profile (for
instance according EEX6). Selling is also allowed and leads to a negative value, reducing the costs
further. Due to grid tariffs, taxes and additional fees, we require that buying is more expensive
than selling.

The remaining part are the capacity limits, which are time dependent and need an additional
constraint formulation with the G matrix and the Gx ≤ h equation. We use triangular sub-matrices
for that purpose:

Gdis =
⎛⎜⎜⎜⎜⎜⎝

1
ηdis

0 ⋯ 0 −ηch 0 ⋯ 0
1

ηdis

1
ηdis

0 −ηch −ηch 0⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
1

ηdis

1
ηdis

⋯ 1
ηdis

−ηch −ηch ⋯ −ηch

⎞⎟⎟⎟⎟⎟⎠
∈RNH×2⋅NH , (6.16)

Gch =
⎛⎜⎜⎜⎜⎜⎝

− 1
ηdis

0 ⋯ 0 ηch 0 ⋯ 0− 1
ηdis

− 1
ηdis

0 ηch ηch 0⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮− 1
ηdis

− 1
ηdis

⋯ − 1
ηdis

ηch ηch ⋯ ηch

⎞⎟⎟⎟⎟⎟⎠
∈RNH×2⋅NH , (6.17)

where Gdis represents the limitations for discharging and Gch those for charging. Accordingly, we
define the vector elements hdis, which is the current SOC and hch, which represents the remaining
charging capacities. The elements of matrix G are zero, everywhere where storage components
are not present.

6European Energy Exchange in Leipzig.
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6.4.2 Step 2: Specification of the Interface and Behaviour

The second step for MEMAP is the specification of the interface. For the specification we use
several input artefacts. On the one hand we had the mathematical model. On the other hand we
had different requirement specifications that were prepared by our industrial partners, particularly
from the producers of EMS. Those requirement specifications included several documents. One
document was a mind map that described a list of data points from the EMS to MEMAP and
vice versa. Additional documents were visualization mock-ups to demonstrate the usage of those
data points. All three inputs were different in terms of precision and details. For instance, we
observed that production units from our industrial partners were all equally described, no matter
whether they represent controllable units, variable units or couplers. Also many details that are
required for the MPC were missing. Therefore, to combine the mathematical model with the
industrial partners expectation about the data exchange was a crucial task to create the desired
coordination system.

In order to use the MPC for coordination, the correct level of abstraction is required. We
start with the description of the data exchange between MEMAP and an EMS of a building,
by specifying the input and output of the MEMAP platform. Due to the MPC that we have in
mind we require one generic interface specification, such that all interfaces will have the same
specification. The data communicated over that interface will of course differ. This shows one
more time that the composite pattern is useful to create a modular approach for the coordination
of SES. Before we go into the specification details we explain some foregoing considerations that
are related to sector coupling, to understand the intentions behind our specification.

Preliminary considerations for multi energy systems and MEMAP

Any building or more complex quarter consumes or produces heat and electricity. It impacts
therefore multiple networks. For the connection with MEMAP we use the classification type
NetworkType to describe this. Electrical networks have a defined voltage level. District heating
networks have a defined temperature level for the supply and return flow lines. For instance, the
district heating in Munich is specified to 90°C for the supply and a desired value of 45°C for the
return flow (SWM, 2015). To improve efficiency, district heating can be designed to operate with
lower temperatures as well. The effects are described by Lund et al. (2014) and first installations
are already in place (Wesche et al., 2017). This variety has to be considered by the MEMAP
platform.

Further, each building provides components that can be classified according their type of
operation, i.e. generation, consumption, storage or a conversion of electricity into heat and
vice versa. In the following we therefore use the four types of components, which we also call
resources: generators, here in particular also subdivided into ControllableGeneration and
VolatileGeneration, Storage devices and so-called Coupler, which describe systems that
have simultaneous effects on two networks, such as CHPs or heat pumps. The demand is defined
as the fifth resource type Demand. Each resource shall have a unique identifier (ID), so that it
can be referenced by the system. Finally, instead of addressing each component individually, the
interface of MEMAP shall accept lists of typed resources.
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Input and output specifications

In the next step, we specify the system interfaces of the prosumer systems on base of the input and
output for MEMAP. This is the Monitoring (L2-case) and the follow up Coordination (C4-case)
as presented with our case distinction for the specification of EMS. Since this case study is much
more detailed as the previous one, we split the following specification in planning data, which
is required for the MPC and the related coordination behaviour, and live data, which is required
to display additional live information for the participants. The specification is summarized in
Figure 6.3 for the planning data using the previously defined classes and Figure 6.5 for the live
data. We explain it in more detail in the following.

Input

ControllableGeneration:
– Installed generation [kW]
– Efficiency [%]
– OperationalPrice [e/kWh], CO2 [g/kWh]
– NetworkType, ID, Name

<List>

VolatileGeneration:
– Installed generation [kW]
– Efficiency [%]
– OperationalPrice [e/kWh], CO2 [g/kWh]
– NetworkType, ID, Name
– Forecast (list of (power [kW], time) )

<List>

Storage:
– Installed capacity [kWh]
– Current SOC (StateOfCharge) [kWh]
– MaxCharging [kW], C-Efficiency [%]
– MaxDischarging [kW], D-Efficiency [%]
– NetworkType, ID, Name

<List>

Coupler:
– NetworkTypes (n1, n2, ...)
– Installed generation (n1, n2, ...) [kW]
– Efficiencies (n1, n2, ...) [%]
– OperationalPrice [e/kWh], CO2 [g/kWh]
– ID, Name

<List>

Demand:
– ForcastType (Flat Rate, Profile)
– Optimization Criterea (Price, CO2)
– NetworkType, ID, Name

<List>

Output

General MEMAP information:
(for each available NetworkType)
– Costs with coordination [e]
– Costs w/o coordination [e]
– CO2 with coordination [g]
– CO2 w/o coordination [g]
– further information
– (as specified / desired by users)

desiredSetPoints:
(for each registered resource)
– MPC Signal

Figure 6.3: Input/output interface specification of MEMAP towards its children: planning data.

MEMAP expects as its input a number of different planning data points, so that it can create
its optimization model and calculate its optimization result. The planning data consists of a list of
resources, which are provided by the buildings for the coordination with MEMAP. We structure
them in five different categories.
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Controllable generation

The first category of planning covers ControllableGeneration. It represents conventional
generation components that are particularly designed to supply power to one particular network.
Typically, these generations units can be controlled within certain limits and are available over
longer periods of time through the use of (fossil) fuels. Examples of such systems are oil and
gas boilers, wood-fired heating systems and in certain cases, electricity generators such as diesel
generators. We require several data points to consider such systems in MEMAP:

• Maximum power generation - in [kW]

• Minimum power generation - in [kW]

• Generation efficiency - in [%]

• Operational price - in [e/kWh] or additionally also CO2 emissions - in [g/kWh]

• Network type - e.g. an ENUM of {electricity, heat (with temperature constraints), ...}

• ID and a readable name

A possible concrete representation is:

Name Gas boiler
MaxPowerGeneration 20 kW
MinPowerGeneration 0 kW
Efficiency 95%
OperationalCost* 5.91 ct/kWh

CO2 emission 0.20 g/kWh

NetworkType Heat ( ≤ 80°C)
ID name individual URI

*Note: the specification of an efficiency ≠ 100% affects the final costs, which consider the
price and the efficiency. In this case the gas boiler would require 1.053 kWh of primary energy
to produce 1 kWh of heat. This corresponds to an operational cost factor of 6.22 cent/kWh.
The efficiency is an important factor for the economic performance of the component.

Following components that are used within buildings belong to the category of
ControllableGeneration:

Name Primary energy source Production
Gas boiler Natural gas, biogas Heat
Oil boiler Oil Heat
Solid fuel boiler Wood, pellets Heat
Emergency generator Gasoline, gas Electricity
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Volatile generation

The second category is VolatileGeneration. It describes the intermittent generation of compo-
nents like photovoltaic, solar thermic components or wind generation. Volatile generation relies
on the installed capacity and forecasts, that are dependent on environmental conditions such as
solar radiation, temperature or wind power. They represent the upper boundary of the available
production. Generation forecasts are generated from weather forecasts and the parameters of
installed equipment. Historical information are helpful to generate forecasts as well, which we
demonstrated in our research group in different projects (Rottondi et al., 2015; Bajpai, 2018). For
the coordination system interface, we abstract volatile generation to a ForecastedProfile. The
forecast profile is a time series of percentage values of the installed capacity. All other attributes
are the same as for ControllableGeneration. The following attributes are necessary:

• Maximum power generation - in [kW]

• Minimum power generation - in [kW]

• Generation efficiency - in [%]

• Operational price - in [e/kWh], CO2 emissions - in [g/kWh]

• Network type - e.g. an ENUM of {electricity, heat (with temperature constraints), ...}

• ID and a readable name

• Forecast profile - in [% over time]

A possible concrete representation is:

Name Solar thermal system
MaxPowerGeneration 5 kW
MinPowerGeneration 0 kW
Efficiency* 95%
OperationalCost 0.0 ct/kWh

CO2 emission 0.0 g/kWh

NetworkType Heat ( ≤ 80°C)
ID individual URI
Forecast (0:00, 0%) , (6:00, 5%), (6:15, 7%), (6:30, 10%), (6:45, 5%), ...
*Note: the available power generation is limited by the forecast and the installed capacity.
Further, the operational costs of volatile producers is usually zero, therefore, the efficiency
factor of volatile producers does hardly impact the coordination.

Following components that are used within buildings belong to VolatileGeneration:

Name Primary energy source Production
Photovoltaics Solar radiation Electricity
Solar thermal system Solar radiation Heat
Wind turbine Wind Electricity
Small water turbine Water Electricity
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Storage

The third category addresses Storage. Storage is available in form of electrical batteries and
thermal energy storage, for instance hot water or phase change material devices. EMS with such
options are able to store the energy for the appropriate NetworkType and release it at later time
points. This category gives additional options for the scheduling by shifting the time of charging
and discharging. The required attributes for scheduling are:

• Installed storage capacity - in [kWh]

• Current state of charge (SOC) - in [kWh]

• Maximum power for charging and discharging - in [kWh]

• Efficiencies for charging and discharging - in [%]

• Network type, ID and a readable name

A possible concrete representation is:

Name Lithium-ion battery (one-phase connected)
Capacity 12.0 kWh
Current SOC 5.5 kWh
MaxCharging 3.3 kW
MaxDischarging 3.3 kW
EfficiencyCharging 98%
EfficiencyDischarging 98%
NetworkType Electricity (220 V)
ID individual URI

Following components that are used within buildings belong to Storage:

Name NetworkType
Buffer vessel (various technologies) Heat
Domestic hot water (various technologies) Heat
Phase-change materials (various materials) Heat
Batteries (various technologies) Electricity

Coupler

Components that impact multiple networks at the same time are denoted as Couplers. Among
these are, for example, CHPs, heat pumps and fuel cells. Cooling systems can also be classified
as couplers. But their consideration is only beneficial if cooling production and demand can be
measured and regulated and therefore modelled as an individual network type. Couplers support
several networks. Therefore, this category requires to have multiple NetworkTypes and multiple
efficiency attributes that describe the coupling between the networks. The following attributes for
resource planning are required for couplers:
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• NetworkType for network 1

• NetworkType for network 2

• Installed power capacity network 1 - in [kWh]

• Installed power capacity network 2 - in [kWh]

• Efficiencies for network 1 and 2 - in [%]

• Operational costs - in [e/kWh] or additionally also CO2 emissions - in [g/kWh]

• ID and a readable name

A possible concrete representation is:

Name CHP
NetworkType (network 1) Heat ( ≤ 80°C)
NetworkType (network 2) Electricity (220 V)
Installed power (network 1) 43 kW
Installed power (network 2) 21 kW
Efficiency (network 1) 61%
Efficiency (network 2) 29%
OperationalCost* 5.91 ct/kWh

CO2 emission* 0.20 g/kWh

ID individual URI
*Note: the same cost calculation applies here as for controllable generation components

Due to the different nature of couplers, we show another typical coupler specification:

Name Heat pump
NetworkType (network 1) Heat ( ≤ 45°C)
NetworkType (network 2) Electricity (220 V)
Installed power (network 1) 25 kW
Installed power (network 2) 10 kW
Efficiency (network 1) 250%
Efficiency (network 2) -100%
OperationalCost* 0.0 ct/kWh

CO2 emission* 0.0 g/kWh

ID individual URI
*Note: the operational costs and CO2 emission of zero mean that no specific fuel costs are
involved to operate the component. However, it does not mean that the component can be
used without any costs at all, due to an implicit connection to the secondary network, where
the negative efficiency indicate that additional electricity is required. This electricity has to
be bought from the market or be produced from another component and therefore generates
additional costs that are allocated to thes other component.

Following components that are used within buildings belong to the category Coupler:
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Name Fuel Network 1 Network 2
CHP gas, oil heat/electricity electricity/heat
Heat pump (air source) - heat electricity
Heat pump (water source) - heat electricity
Fuel cell hydrogen, gas heat/electricity electricity/heat
Electrical heating - heat electricity

Demand

Finally, the last category is Demand. It denotes all components and systems, whose power supply
must be provided by other generation components. The required supply of entire buildings or
quarters is represented with a consumption profile. Certain buildings have a rather predictable
demand profile, while others, especially private households are quite difficult to obtain, due of the
strong correlation with the user behaviour that is more stochastic. The forecast become more easy
with a larger number of private households due to better statistics (Esslinger and Witzmann, 2012).
The specification supports two options to work with demand profiles. One option is to receive a
concrete demand profile, similar to forecasts of volatile units. The other option is that a building
does not provide a demand profile. In this case MEMAP requires to create its own demand
forecast7. Further, we expect that buildings offer a price information to cover demand. This is
for instance the market price that a normal consumer pays. In addition, we prepare MEMAP to
handle different optimization criteria, such as price and CO2 emissions. Therefore, we require an
optimization flag for the demand, which represents the desired optimization criteria. This enables
to steer MEMAP’s MPC towards an economical price based optimization or an ecological CO2

optimization. In summary, the following attributes are required for demand:

• ForecastType (forecast available / forecast not available)

• Time series for demand - in [kW over time]

• Operating costs for the connection point (electricity price / heat price)

• Optimization criteria - e.g. as ENUM of the quantity price, CO2

• NetworkType, ID and a readable name

A possible concrete representation is:

Name Building XYZ
ForecastType Forecast available
NetworkType Electricity
TimeSeries [(0:00,0.5kW),(0:15,0.6kW),(0:30,0.4kW),...]
CostReference Electricity market
OptimizationCriteria price
ID individual URI

7Note, to obtain reliable consumption profiles is a large topic on its own. It goes beyond the scope of this thesis.
In this case study we assume that a forecast profile is available. We use the approach described by (Jambagi et al.,
2015; Kramer et al., 2016, 2017) to generate the electricity and heat profiles for the MEMAP case study.
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Schematic input abstraction

All five input categories represent the building EMS data on an abstract level. That can also be
visualized as a schematic house representation similar as in SCADA systems and appears more
familiar for mechanical electrical plumbing engineers (Figure 6.4), who work with similar repre-
sentations for the dimensioning of the technical equipment and economical calculations. Each
component (e.g. ⟨Ctrl.Gen.⟩, which represents a controllable component) has to be instantiated
with its individual parameters. This allows to model the input for MEMAP for the simulation.

⟨Ctrl.Gen.⟩ ⟨Vol.Gen.⟩ ⟨Storage⟩ ⟨Demand⟩

⟨Ctrl.Gen.⟩ ⟨Vol.Gen.⟩ ⟨Storage⟩ ⟨Demand⟩

⟨Coupler⟩⟨Coupler⟩
Electrical
network

Heating
network

Figure 6.4: A schematic representation of MEMAP’s input interface.

Planning output

The output specification of MEMAP for the planning data interface is straight forward. Every
building offers a set of available options for the coordination represented as resources. The output
is therefore a list of scheduled MPC set-points for each registered resource. The set-points are
communicated as a time series with expected power values for certain time intervals. Every EMS
receives only the set-points for its own resources, depending on the unique resource identifiers
that are obtained through the input data.

Further, MEMAP provides general information as output. This includes the information about
the expected costs that can be achieved as a group, and the expected costs that are achievable as an
individual buildings without coordination. The same applies for the CO2 level. This information
demonstrates the potential of a coordinated approach and allows to decide for the EMS, whether
it benefits from MEMAP or not. We explain further below how this is realized in MEMAP.
Finally, we also leave further open data fields to extend the output interface depending on the
user requirements.
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Live data input and output specification

The intention of MEMAP is the support of EMS controlled buildings, so that they establish a
more energy and cost efficient power supply in a group. Therefore, in addition to optimized
schedules the system needs information to check, whether all EMSs operate as intended, or if
an adaptation of the schedules is required. This interface extension is labelled as live data and
presented in Figure 6.5. This improves the monitoring within MEMAP.

Input

CurrentMeterValues:
– PowerInjection [kW]
– MeterReading [kWh]
– NetworkType, ID, Name

<List>

CurrentSetPoints:
– CurrentPlan
– ID, Name

<List>

Output

Node specific information:
(for each NetworkType)

– Current power injection [kW]
– Additional network specific
– information at connection point
– (e.g. °C, voltage, etc.)
– Histories & Statistics (e.g. costs,
– power balance, CO2, etc. )

Figure 6.5: Input/output interface specification of MEMAP towards its children: live data.

Live data input covers two categories. We require CurrentMeterValues as input for
monitoring. It describes the building’s power injection into the network. The feed in and the feed
out from the network is represented as PowerInjection. It has the unit of [kW]. The number
is positive, if the power network receives power and negative, if power is taken from it, similar
as a wallet. To consider the power over time (i.e. time integrations), we also require the current
MeterReading in [kWh]. These readings helps to monitor the fit to the schedules. All current
meter values measure a dedicated NetworkType.

The next category CurrentSetPoints allows to check whether the EMS systems have
agreed on the schedules and plan their resources accordingly. The agreement is checked with the
CurrentPlan, which should correspond to the previously received MPC signal. Further each
plan has the ID of the corresponding resource and a human readable name.

In the process of designing the interface for the live data input, we have thought about adding
more data to enable additional control options. Such additional control options help MEMAP
to react on occurring deviations in the system. The need for such short time corrections will
definitely occur in real systems, either due to deviations from the forecasts, or due to other
unpredictable situations, such as failures or clouds that covers photovoltaic systems. Such
additional data points also open new control and specification questions for MEMAP and increase
the complexity of the composed system. The questions would be similar as described with the
flexibilities in the previous VPP case study in Chapter 5. Due to the length of this chapter, and to
avoid reoccurring content, we have skipped this specification here.

Finally, the live data output of MEMAP addresses each EMS system as an individual node.
The output data consists of current values that MEMAP observes at the connection points of each
EMS. This includes the observed power injections, and specific network information such as the
temperature of the input and the return flow, network pressure or electrical voltage. In addition
to the current state, the each EMS system is interested in historical and statistical information,

150



6.4 Study Execution

which shows how the building performed during the last days, months or years. The transparency
is particularly required for the economical costs, but it also helps the EMS operators and MEP
engineers in their own decision making, such as further investments or maintenance activities.
The output interface of MEMAP for the general status and the node specific information can be
used to develop front-ends and reporting for the users. This can be done either in the platform
itself, or within the individual building EMS, depending on the endeavour of the EMS provider.

Coordination behaviour and the creation of the MPC signal

After the specification of the interface we define the coordination behaviour of MEMAP. Note,
MEMAP is an EMS in the role of a coordination system. The coordination behaviour is a function
that uses its input, thus, the data from the input interface, to create an output. The specification of
the behaviour is essentially the MPC that we introduced in Step 1. Here we describe the model
composition from the input data so that the MPC can be carried out.

MEMAP interacts with several building EMS. Each EMS has the specified interface from
which MEMAP receives data and sends data to it. It provides five lists with different resource
types. Each list might have one or more resources, but the list can also be empty. Therefore the
first step of MEMAP’s behaviour is to construct the optimization model, i.e. the matrices from
equations 6.11 to 6.17 in order to solve it in a second step, i.e. equations 6.1. This is straight
forward. First, we compose the demand vector using all demand resources from the buildings.
Then, we sum the demand for each time step and create an b-vector of length 2 ⋅NH for a two
network system and with NH being the MPC horizon. After that we compose the remaining
resources. Each resource is used to create its own sub-matrix as explained before (eq. 6.11-6.17)
and the corresponding constraint and price vectors xlb,xub,h,λλλ. Then, if an external network
is available, we add it to consider the buying of external power as well. Finally, all matrices
are composed. We exemplary show the composed matrix A is in Figure 6.6, where we include
several concrete component to illustrate their individual sub-matrices. The diagonal elements are
marked in blue. Note, that the MPC is very modular. Many further resources can be added easily.
Additional networks can be considered as well.

After this, MEMAP calculates the MPC signal for the given time horizon. The solution
yields the x vector. It represents the desired power injection schedule for the generation and
storage components. The x vector corresponds to the MPC set-points for the individual resources.
Therefore, the last behaviour step of MEMAP is to decompose the x-vector in its individual
components based on the IDs of the resources, calculate the individual set-points using the
resource efficiencies and send those to the related EMS. Further, for the district heating we
introduced in equation 3.25 (cf. Section 3.1) that the heat power has two variable parameters on
the district heat side, i.e. ṁpr. and ∆Tpr.. To keep the hydraulics stable (i.e. the mass flow rates for
the cold and warm side must be balanced) the set-points assume that ∆Tpr. is kept constant. In
this case the desired power injections of each building (equation 6.2) and the relation PQ,i ∝ ṁi,pr.

can be reformulated into:

n∑
i=1

ṁi,pr.(t) = 0, (6.18)
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Figure 6.6: An illustrative example of Ax = b.

which keeps the mass flows balanced8. The realization of the set-points is left to the EMS.
Hence, each EMS that participates in the coordination process, is expected to control its internal
equipment accordingly. MEMAP monitors whether the EMS received the set-points (live data
interface), monitors the related power flows and calculates new schedules if required.

Two remarks are important here. The modular composition of the MPC using interface data
leads to a very flexible system, such that modifications between different time steps are allowed.
For instance, it possible to dynamically adapt the parameters of the resources after each time step,
such as efficiency factors of heat pumps that depend on the environmental conditions or prices
when the purchase price of gas or oil changes. Resources can be added or removed, for instance if
a device is added to a building, or if a device switches to maintenance mode. Such modifications
occur inside the individual EMS. MEMAP’s behaviour considers them with its modular MPC.

Another remark concerns the selection of components for district heating. District heating
operates at certain temperatures, e.g. see Lund et al. (2014). The temperature level determines
whether a component can feed into that network or not. For instance, if the temperature is at
80○C in district heating, but a heat pump delivers only 45○C, it is not able to participate. This is
also true for the demand, but with reversed conditions. A building might require to have 80○C
as its heating demand, but if the district heating is operated at 45○C, then the demand cannot be
supplied from that source of power. Hence, the MEMAP needs to select all suitable resources that
can participate at the coordination process, i.e. being an input for the MPC. Such a selection or
the possibility to have more pipes with different temperature levels is currently being researched,
for instance within the CoSES Research Centre9. It is not in the scope of this case study.

8Note, imbalances in the hydraulic system might be balanced with low loss headers in district heating systems.
9CoSES: Center for Combined Smart Energy Systems in Garching, Germany, 2019.
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6.4.3 Step 3: Specification of Aggregation and Delegation

In the previous steps, we have handled only an interaction between a central coordination system
with multiple children (Figure 6.7a). For a hierarchic structure, we further have to define the
aggregation and delegation behaviour (Figure 6.7b). The approach is similar as in our first case
study from the previous chapter.

Building EMS2

Building EMSn

Building EMS1

(a) Coordination I(↑)/O(↑).

Building EMS2

Building EMSn

Building EMS1

(b) Aggregation I/O (↑) and Delegation I/O (↑).
Figure 6.7: MEMAP in a hierarchical setting with the corresponding I/O interfaces.

Aggregation behaviour

We have seen that the presented coordination is already modular with generation units, demand
profiles, or storage components. A higher amount of resources increases the optimization effort
quite significantly. To overcome this issue, the idea in a hierarchy is not to optimize individual
buildings, but as aggregated systems representing quarters, while still being able to use the same
coordination approaches, i.e. the same mathematical model (equations 6.1) as before.

The aggregation behaviour, thus the C5-case, is a mapping from MEMAP’s previously
defined input interface to a similarly defined output interface. The idea is that MEMAP is able to
provide the same resource options to a larger coordination system in the same way as individual
building EMS. This realizes a hierarchic structure that is investigated with prosumer oriented
architectures or the cellular approach, as presented in Chapter 1. The C5-case demonstrates the
necessary system boundaries from the software perspective with respect to higher levels. The
C5-case interface is shown in Figure 6.8. We explain the aggregation behaviour in the following
based on the individual resource types.

ControllableGeneration components differ by their installed generation limits, efficiency,
costs and of course the network. The dominant criteria for scheduling controllable resources is the
price. Hence, we start the aggregation by normalizing all costs to a nominal efficiency of 100%.
This means that a component with an efficiency of 80% and a cost of 6 cent/kWh is normalized
to an efficiency of 1 and a cost of 7.5 cent/kWh. If two normalized costs are close and have the
same NetworkType, aggregation is possible. The interpretation of “close” is of course rather
flexible. To demonstrate one possible aggregation example, we create two groups, one group
that represents low cost components and one the high cost components. The groups are divided
by the median price. The aggregation combines two controllable components by adding their
InstalledPower, calculate the new cost (weighted average) and giving the aggregated resource
a new ID and a name. We keep track of the aggregated components with lists that represent the
constituents of the new resource.
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Input

ControllableGeneration:
– Installed generation [kW]
– Efficiency [%]
– OperationalPrice [e/kWh], CO2 [g/kWh]
– NetworkType, ID, Name

<List>

VolatileGeneration:
– Installed generation [kW]
– Efficiency [%]
– OperationalPrice [e/kWh], CO2 [g/kWh]
– NetworkType, ID, Name
– Forecast (list of (power [kW], time) )

<List>

Storage:
– Installed capacity [kWh]
– Current SOC (StateOfCharge) [kWh]
– MaxCharging [kW], C-Efficiency [%]
– MaxDischarging [kW], D-Efficiency [%]
– NetworkType, ID, Name

<List>

Coupler:
– NetworkTypes (n1, n2, ...)
– Installed generation (n1, n2, ...) [kW]
– Efficiencies (n1, n2, ...) [%]
– OperationalPrice [e/kWh], CO2 [g/kWh]
– ID, Name

<List>

Demand:
– ForcastType (Flat Rate, Profile)
– Optimization Criterea (Price, CO2)
– NetworkType, ID, Name

<List>

Output

ControllableGeneration:
– Installed generation [kW]
– Efficiency [%]
– OperationalPrice [e/kWh], CO2 [g/kWh]
– NetworkType, ID, Name

<List>

VolatileGeneration:
– Installed generation [kW]
– Efficiency [%]
– OperationalPrice [e/kWh], CO2 [g/kWh]
– NetworkType, ID, Name
– Forecast (list of (power [kW], time) )

<List>

Storage:
– Installed capacity [kWh]
– Current SOC (StateOfCharge) [kWh]
– MaxCharging [kW], C-Efficiency [%]
– MaxDischarging [kW], D-Efficiency [%]
– NetworkType, ID, Name

<List>

Coupler:
– NetworkTypes (n1, n2, ...)
– Installed generation (n1, n2, ...) [kW]
– Efficiencies (n1, n2, ...) [%]
– OperationalPrice [e/kWh], CO2 [g/kWh]
– ID, Name

<List>

Demand:
– ForcastType (Flat Rate, Profile)
– Optimization Criterea (Price, CO2)
– NetworkType, ID, Name

<List>

Figure 6.8: Interface specification of MEMAP towards higher level EMS.

The aggregation of VolatileGeneration is easier, since the operational costs are usually
close to zero. Hence, all volatile generation components can be aggregated to a single volatile
resource. We add all parameters and forecasts that are later reflected in the upper limits of the
coordination model.

The aggregation of Coupler components is more complex, due to the large variety of
efficiencies, costs, installed power, COPs, etc. Thus, we cannot reuse the aggregation mechanisms
for ControllableGeneration, particularly because the combination of the two efficiencies (e.g.
CHP and heat pumps) leads to different energy injections on the networks and they also have
a significant difference in their expected temperature range. Therefore, we use a heuristic that
differentiates between two typical coupler components, the heat pump and the CHP in the first
step10. In the second step we aggregate CHPs and heat pumps separately.

10Note that we describe only one possible aggregation example that we can use for our case study. But there might
be other good aggregation solutions to reduce the optimization effort as well.

154



6.4 Study Execution

The first aggregation applies to components without fuel costs, such as heat pumps. They
provide power to one network by taking power from another one. The efficiency is represented
by the COP factor for the primary network. A higher COP means a better conversion. Therefore,
we first sort heat pumps by their COP. Then, we aggregate them according their efficiencies
using two groups (low COP, high COP) as described before. The aggregation sums up the static
attributes, calculates a new COP, gives the new resource an ID and a new name. It then uses two
lists to keep track of the group composition.

The second aggregation applies to components with fuel costs, such as CHPs. Here, we
calculate the normalized costs first, where we consider the efficiency for the heat network. The
reason is that CHPs are primarily used for heat generation. Then, we sort the normalized costs,
create two sub-groups with components that have similar costs separated by the median value,
calculate new average cost for each sub-group and sum up the operational limits as before. Finally,
we give both resources a new ID, a new name, and keep two lists for the group composition. The
different categorizations that are used for the aggregation of couplers are sketched in Figure 6.9.

List of available couplers Combined heat and powerHeat pumps

high
COP

low
COP

high
costs

low
costs

Figure 6.9: Aggregation structure of Coupler components.

Further, the aggregation of Storage requires no sorting of costs. Instead we have to take care
about different speed rates for charging and discharging. For instance, if we have one storage
component that allows fast charging, but has a comparatively little capacity, for instance a 10 kW
charging rate and 10 kWh capacity, and we have another storage component that has moderate
charging rate and a high capacity, for instance 3 kW charging rate and 30 kWh capacity, an
aggregation that has a 13 kWh charging rate and 40 kWh capacity is not a good choice. Therefore,
we aggregate storage components based on their network type and the time to completely charge
and discharge the storage component. Luckily, efficiencies for storages are usually close to 100%.
Nevertheless, for the aggregation they are combined as a weighted average as well. Note, with
respect to the SOC (0..100%), when aggregation is active, we should try to balance our aggregated
storage components keeping the SOC at a comparable level between those storage components
that are aggregated into one resource.

Finally, the aggregation of the Demand is a sum. This is anyway done when the vector b is
created. It can be directly communicated upwards for the corresponding network types.

As a short summary, aggregation is used to improve the scalability of the optimization, by
reducing the number of components that are used in the optimization. We group and aggregate
similar components to obtain similar coordination results. Of course, such an aggregation reduces
the level of details and might slightly blurs the potential operation. Nevertheless, the important
aspect is that more efficient components are differentiable from the less efficient ones, which
allows to prefer the more efficient ones for the operation. This distinction is important to achieve
a more efficient system.
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Delegation behaviour

After the aggregation behaviour we discuss also the other direction, namely the P1-case delegation
that describes the mapping of set-points for the aggregated resources to its original representatives.
The output specification in Figure 6.3 shows that decomposition applies to the set-points of the
MPC or to the general information. The coordination aims to reduce the overall costs or emissions
with an optimized scheduling. We therefore specify a delegation behaviour only for the MPC
signals for the five component types, not the general information.

ControllableGeneration’s MPC signal corresponds to a list of set-points valid at specific
time intervals. The task of the delegation is to create set-points for the children EMS in such
way, that the aggregated set-points are fulfilled for each time step. It is straight forward for the
boundary cases with 0% and 100% that correspond to the maximum production or turned off
devices. In this case delegation forwards the values, accordingly. For the intermediate case,
the MPC set-points have to be adjusted for each resource. For the best efficiency the signal is
delegated to the cheapest resources first. However, this might lead to sharp production ramps for
individual devices. For a smoother device operation the set-points can be chosen proportionally.

The delegation of the MPC set-point for VolatileGeneration corresponds to the task of
matching the the MPC set-points with available production profiles from the children. Since
the MPC signal is created from the previously communicated forecasts for volatile generation
(xlb and xub), it has to be mapped back to the corresponding components that were able to
produce the required amount. Usually, volatile generation is used at full capacity since the
operational costs are almost zero. The delegation therefore forwards that 100% signal to all
volatile components. Only if explicit limitation of the production is required (for instance for use
cases like congestion control) the delegation proportionally limits all of the children’s production
to reach a fair utilization of the components.

While the aggregation of Coupler components is complex, the delegation is not that difficult
and similar to the delegation of ControllableGeneration. The boundary cases with 0% and
100% are straight forward. The intermediate cases require to send the proportional signal to each
component to keep a good quality of the MPC signal. To improve costs, we can use more efficient
components first (lower normalized costs or a higher COP) but we need to decide on one network,
i.e. heating to keep the hydraulic network more stable. This results in small deviations in the
electricity schedule, due to the fact, that each coupler has two efficiency values for each networks.
However, since we use the more efficient components, we either save heat costs (for CHPs) or
can sell not required electricity (heat pumps). Nonetheless, we have to be careful and decide, if
our delegation prefers a higher precision or small deviations but slightly improved costs.

Storage components’ MPC signal includes the charging and discharging rates for the time
steps. The efficiency is the average weighted efficiency. For delegation we proportionally allocate
the set-points of the aggregated (virtual) storage based on the charging rates of the sub-ordinate
storage components, to keep a good MPC quality, similarly as a battery management system.

The Demand is an expected profile that is part of the optimization problem formulation (see
vector b). No MPC signal is required, therefore, nothing has to be delegated. Note, we specifically
decided not to consider demand response use cases in this thesis. Otherwise, we the delegation of
demand response would be an interesting research topic on its own.
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6.4.4 Step 4: Implementation, Design Patterns and Industrial Interfaces

In this part, we present the implementation of our coordination approach. This allows us to
evaluate its feasibility and obtain quantitative results with respect to the expected potential
improvement of the energy costs and savings within interconnected EMS. The implementation
of the case study is carried out with SESSIM, the co-simulation framework that is developed
for this thesis and introduced in Section 4.3. The co-simulation framework implements every
EMS, such as an EMS of a building or a higher level coordination system, as an independent
actor. Each actor has its own environment such that its internal data is not accessible from outside,
thus, internal data is not exposed. The interaction between different actors is only possible via
communication with messages. We use only serializable data as message contents to represent the
data exchange. This approach allows us to generate different interfaces representations directly
from those data points. With that SESSIM becomes and excellent framework to study interactive
systems and specify the necessary interfaces and system behaviour.

The implementation of the MEMAP case study includes two steps. The first step is the
representation of all participating EMS (every building and the coordination system) completely
within the SESSIM framework and the implementation of the systems behaviour as an actor
logic. This allows to simulate and study different scenarios. For the first step we only apply the
composite pattern as a central architecture design pattern, since we are interested in a scalable
simulation without clients and servers. The second step is the extension of the framework into a
server based platform that interacts with real EMS systems. It extends the first step by adding
clients and servers, layers, unified interfaces and publish-subscribe mechanism to create a fully
operational, distributed system. In this step, MEMAP connects to various EMS interfaces of our
industrial partners, such as the SAUTER Vision System11 (see also Figure 6.1). After that it reads
the data from those interfaces, performs exactly the same calculations as within the simulation
environment and sends the MPC signals to the remote systems. This helps to test the logic in a
simulation first and then evaluate the interaction with real hardware systems and with that provide
a hardware in the loop test environment to evaluate control models later on. The implementation
is available as open source12. We describe our two steps in the following.

Implementation as a co-simulation (tool for planning)

The first step of the implementation was to create a simulation environment, in which we are
able to define our data points and the behaviour of different systems including, devices, EMS
and MEMAP. We used our co-simulation framework. In SESSIM, the central element for the
implementation is an actor. An actor receives messages, executes a behaviour and sends messages.
For the case study we created a hierarchical system of interacting actors (see Figure 6.10). We
developed three different types of actors: Device actors that represent the devices within a
building, Building actors that control the devices and represents local EMS and Aggregator

actors that coordinate the individual EMS and represent the MEMAP coordination system.

11A commercial building management system that is used for large and complex systems, like quarters, including a
variety of different devices, sensors and actuators for control.

12SESSIM: https://github.com/SES-fortiss/SmartGridCoSimulation, last accessed in March 2020
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Figure 6.10: Chosen actor hierarchy for the implementation in the SESSIM framework.

The type of the actor determines its interface and behaviour. The Device actor has behaviour
(and interface) that represents our five basic resources. It sends its device parameters to the
building EMS. When its gets a response, it executes the requested set-point. As EMS systems,
the Aggregator actor (MEMAP) and Building actors (B-EMS) are almost equal. They have
the same external interfaces and behaviour. Only the possibility to have specific local devices
differentiates them. They receive lists of resource messages from below and are able to carry out
the MPC that was presented above, with the difference that the EMS actors receive individual
device resource messages from their internally available components, while the MEMAP actors
receive messages that contain lists of resources, as specified beforehand.

Consequently, there are only two different message types being exchanged between the EMS
and MEMAP coordination system in SESSIM. One message type is called BuildingMessage. It
communicates resources upwards and represents the input data of MEMAP as described above
in Figure 6.3. The second message contains the content for the communication downwards. It
is called OptimizationResult and contains the desired set points for the individual IDs of the
communicated energy resources. It represents the output data of MEMAP (see Figure 6.5).

To implement the behaviour we use the main methods of the SessimActor’s behaviour steps
that we introduced in the general description of the SESSIM framework in Figure 4.15. It is
convenient to use the following two methods:

1. handleRequest(): This method triggers, when a request from the parent actor arrives. It
adapts the EMS internal state based on the request. If child components are available, own
requests to the children are prepared. After this, the requests are sent downwards.
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2. makeDecision(): This method triggers, when all answers from the children arrive. It
processes the messages from the children, runs the optimization and adapts the internal
state. It also prepares an own answer to the parent. Afterwards, an answer message is sent
upwards to the higher EMS coordination system.

The first step represents the mapping of the input to the output from the higher hierarchies to the
lower ones. The second step represents the input to output mapping for the other direction. The
splitting of the behaviour in different sub-steps is helpful to implement different functionalities in
MEMAP. We explain in the following how our behaviour is implemented.

makeDecision()

This method implements the behaviour of an EMS actor that processes the input from the children.
In our case study implementation this is the method, where the aggregation and optimization
takes place. When the EMS actors receive the resource data from their children, they create
new BuildingMessages that are sent upwards to their parents. The parent actors receive several
BuildingMessages from their EMS children. They use those data as an input for the MPC. Every
instance of the BuildingMessage is added to the matrix representations (equations 6.11 - 6.17),
as we described in the previous section. After all instances are added, we solve the optimization
problem using the joptimizer library13. The optimization solves equations 6.1 in the next step.
The solution vector is stored together with the names in a Map, which maps the identifiers of the
EMS resources of type String to an MPC signal represented as double[] arrays. This map
represents the MPC schedule. It is communicated as request during the next simulation time step
within our simulation.

Further, this method allows to implement additional functionality. First it is used to store
the decision results of each time step to generate a history of decisions. Two options have been
implemented and tested to store the history. The simple method is a CSV file writer, which
updates a result file with the current information. For more advanced functionalities we initialize
a data base connection to store the information.

handleRequest()

The second important method of the SessimActor’s behaviour processes the input from the
parent. This input contains the MPC set-points from the parent. The actor reads these set-
points and delegates them to the lower hierarchic components in the simulation, i.e. a building
communicates those set-points to its devices. It also updates the live data (see Figure 6.5). Note,
since the EMS system is quite complex and has to check additional internal constrains, is can
decide itself whether the component fulfils the schedule or not. The parent has no access to the
components below the EMS system, thus, the devices within a building. This is an important
constraint by our industrial project partners.

13An open source optimization library implemented in java: http://www.joptimizer.com/. The library is based
on the commons-math and the colt libraries, which we also used in our framework for the Newton-Raphson solver,
that was presented in section 4.3
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Configuration of the simulation

The configuration of SESSIM is used to model the scenarios that are of interest. SESSIM
provides a single class for that task to keep the maintainability as simple as possible, the so-called
Topology. The topology configures the framework and adds the desired actors to the system.
Actors can be added by giving them a name and their parent actor. Power component actors
additionally need parameters, similarly as shown in the specification of input data fields in
Figure 6.3, and if required a specification of the profile reader, which is responsible to obtain
the desired demand profile or the photovoltaic forecast. The Topology configuration class
also specifies additional simulation parameters, like the number of simulation steps, their time
intervals, the MPC horizon length, etc. The configuration class is also extractable to an external
file, so that we can configure the simulation in a JSON like file format. This enables also to create
graphical user interfaces for the configuration of MEMAP, as shown in Figure 6.11.

Figure 6.11: A visualisation to configure the simulation. It is used as a planning tool in MEMAP.

Visualization of the simulation

The visualization of our case study has two parts, a live view and a view for time series analysis.
The live view displays the current values of the actor using a light weight jetty server. Every
actor displays its current state as a application/json output, which is then used for web based
visualizations implemented with JavaScript. For the generation of historical views we used two
approaches, depending on the purpose. For presentations and analysis with graphs, which we
show in the upcoming section, we use CSV files. For the web based applications have developed
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REST based history requests, that provide the required back-end connection to a postgresql14

data base to show additional statistical informations. The visualizations with servers were the
first steps towards the utilization of SESSIM as a platform.

Implementation as Coordination Platform with Industrial Interfaces

In the following we describe further implementation activities that have been carried out on top
of the first step. Since the research project MEMAP is still ongoing during the writing of this
thesis, we present here the first steps that describe the basic architecture and interfaces. The
contribution of this section is the transfer from to real running platform systems that communicate
over reliable, industrially well tested and widely used automation technologies using the same
architecture and interface specifications.

This server-based implementation activity relies on same data as in the messages within the
simulation. But it converts them into real server based interfaces for the communication with
external EMS systems. In contrast to the first case study (see Chapter 5), where we implemented
the communication using REST, the idea of MEMAP is to use interfaces from the automation
domain. We therefore decided to apply our architecture design pattern using OPC UA (OPC
Unified Architecture) for the machine to machine communication. Most of our industrial partners
have a good experience with OPC UA implementations and plan further extensions based on this
interface. Therefore, the implementation of OPC UA communication technology is a promising
choice and has a number of advantages. We describe our implementation and the role of the
architecture design patterns in the following.

OPC UA

OPC UA is an open standard for the communication in industrial automation. It specifies the
information exchange and the communication model for machine to machine interaction. Today,
it is often used for the communication between devices within an automation system, between
several automation systems and between automation and operational systems. OPC UA is based
on clients and servers as interacting partners. Every client may interact concurrently with one
or multiple servers and vice versa (OPCFoundation, 2017). Further, each system may contain
multiple clients and multiple servers. OPC UA supports the conventional client server request and
response pattern and publish-subscribe mechanisms. The publish-subscribe pattern is established,
when a client requests the OPC UA server to subscribe to a particular data node. After subscription,
the server notifies the client when the data point is updated. This reduces the communication
overhead and allows to implement event based systems. Systems with OPC UA are well suited
to operate in closed networks but also over the internet, since security is an inherent part of the
protocol including authentication, access control and encryption. The OPC UA stack supports
additionally several defined concepts, including discovery and browsing, the ability to represent
structure, behaviour and semantics with type definitions, relations between nodes and access over
the address space in an information model (Lange et al., 2010; OPCFoundation, 2017). This
makes OPC UA well prepared for a wide range of problem domains.

14https://www.postgresql.org/, last accessed in March 2020
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MEMAP’s OPC UA interface

For our case study we implemented OPC UA as the main interface for the MEMAP platform.
Each EMS offers its data over OPC UA to its parent, hence each EMS is an individual server
system. MEMAP repeats this pattern. It implements client to communicate with its children. For
the communication with its parents it has a server. The architecture is illustrated in Figure 6.12.

Same behaviour as
implemented in the
simulation

OPC UA Server

OPC UA
Client #2

OPC UA
Client #1

OPC UA
Client # ...

Data access for higher hierarchies

Subscription to lower hierarchies

Figure 6.12: MEMAP architecture with OPC UA.

The choice for that design had several reasons. First, every EMS system already runs as a
dedicated system. It provides its users the possibility to monitor and configure the system. For
that it collects the data of the controllers, which it can offer to external systems as a server. Second,
the benefit that the EMS implements a server is that any external system, like MEMAP, has to
implement the interface of the EMS, not vice versa. This allows the EMS to offer its interface to
different vendors over its API. The EMS is also controls the security settings. The third benefit is
that the coordination system is aware whether the EMS follows the coordination suggestions or
not. This allows to coordinate with more confidence. When an EMS is not following the schedule,
the coordination system is able to adapt its planning accordingly.

The implementation of OPC UA servers and clients is realized with the Eclipse Milo open-
source library15. To represent exactly the same information as in our SESSIM co-simulation, the
configuration of the OPC UA server is automated. We presented that in Bytschkow et al. (2019).
For generation of the interface we convert the specified BuildingMessage object into a OPC
UA interface using a generic JSON serialization. This is achieved with the gson library. The
interface set-up is implemented in three steps:

1. Create a JSON string with gson.

2. Use the string as a stream input for the JsonReader and use the tokens to generate two
types of nodes: a) ObjectNodes that represent either JSON objects or JSON arrays that
contain other nodes; and b) ValueNodes, which represent variables with specific values,
such as doubles, integers or strings.

3. Configure the OPC UA server such, that all ObjectNodes are represented as OPC UA
folders, and ValueNodes are represented as subscribable values.

15https://github.com/eclipse/milo, last accessed in March 2020
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Figure 6.13: Snapshot of the MEMAP OPC UA interface with UaExpert16.

The automated generation of the OPC UA server configuration creates the desired interface.
We display the outcome with an industrial client software in Figure 6.13. It represents the
Json Objects and arrays as folders. All other JSON data types are represented as ValueNodes,
hence the data (green tags) for which the client subscribes to. The input interface from the
specification (Figure 6.13) is restricted with the access level “CurrentRead”. The output interface
is represented by the folder desiredSetPoints. It collects the set-points (the MPC-signal) with
an component identifier as an array of desired values for the next timestamps. It has the access
level “CurrentWrite”. This allows MEMAP to write on the server interface, while the server can
continuously update its values for the input interface.

Further extension to create the platform

Finally, we describe the last extension steps of MEMAP from a simulation to a real platform
running on a dedicated server environment. To test the system we first implemented that each
building actors starts its own OPC UA server with the explained interface. This represents individ-
ual EMS systems. The OPC UA servers allow to subscribe to their interface values. Additionally,
we have dedicated EMS systems from our industrial partners, which can be connected as well.

16UaExpert is an industrial OPC Client Software from Unified Automation GmbH.
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Then the platform starts as second step. MEMAP offers a web interface, where we can add the
endpoint urls of the OPC UA servers from the individual EMS. When an url address is provided,
MEMAP starts an OPC UA client within the actor framework, that subscribes to the servers. The
clients read the values of the EMS systems and set the desired set points. Additionally, every
MEMAP actor can have a data base connection, that is used to store the received EMS values.
The data base allows the visualization of historical data, that includes the consumption for heat
and electricity, as well as the production and consumption values of the related components. This
visualization of MEMAP requires one additional server. We implemented one additional jetty
server for this purpose, but could have used any other server system as well.

The behaviour logic of MEMAP in the handleRequest() and makeDecision() methods
remains unchanged compared to the co-simulation. That ensures that the developed algorithms
are the same for the server system. But we extend the actor’s behaviour of MEMAP from the
co-simulation with additional methods that are responsible to trigger the process as described
in Figure 4.15, since we do not purely rely on the internal communication by actors, but mainly
on signals from external systems. The extensions represent the receiving process, which takes
place before handleRequest() as messages from the parent and makeDecision() methods as
messages from the children. In total we implement the remaining methods from Figure 4.15.

The first extension is required to establish the top-down communication path. It begins
by reading the parents requests in OPC UA. For this, we implement a trigger to read the
desiredSetPoint. This event represents that the new set-points are provided by the parent and
the handleRequest() method needs to be is executed. Without children, the handleRequest()
method correspond to an update the desired MPC set-points internally. With children this method
delegates the MPC signal received by the server to the clients (see also Figure 6.12). The clients
send then own signals to their connected servers in the follow up step.

The second extension is required to establish the bottom-up communication path. In our
implementation this corresponds to a read the currently available values in the EMS below using
clients that are connected to the children’s server interfaces. We decided with our partners on
a periodic clock timer. When the periodic timer triggers, all required values are collected from
the clients and the makeDecision() method is executed. If it has no parent above, the method
performs the presented optimization, and updates the MPC results with the connected clients.
Otherwise, this method aggregates the values, to update its own OPC UA server interface.

This extension implements the system according our architecture design patterns. OPC
UA requires the client-server pattern. Further, the composite pattern follows our essential
specification activity with an interface that offers a good abstraction from technical details
of energy components such as generation units, storages and demand. It enables to define a
coordination behaviour that is not only used for one particular coordination system, but also
for different hierarchical levels, since our optimization handles differently equipped buildings,
without the requirement for any adaptation, and can even dynamically be adapted to a changing
number of available children. This is clearly beneficial for the system design. Further, the
OPC UA server is only a gateway that offers data and receives data. The internal logic of the
EMS, particularly the details for controlling the devices is not exposed. Thus, we have a good
separation of concerns and abstraction. Note, separation of concerns require to focus on details
that matter (Dijkstra, 1982), while abstraction is used to hide complexity (Liskov, 1988) and
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therefore makes they system easier to maintain and develop. Both principles are considered a
good software engineering practise. We use internal layers as an architecture design pattern for
that purpose. Further, we consider unified interfaces as follows. We use OPC UA throughout the
system, but we theoretically have the possibility to implement the same interface with another
representation, for instance with MQTT or REST. Finally, this case study demonstrates that the
publish-subscribe architecture design pattern is beneficial. It increases several system properties.
When we use publish-subscribe with OPC UA, we reduce the communication overhead, since
we communicate only the changing parameters. This reduces the necessary data exchange. The
publish-subscribe pattern was also beneficial for the system stability, since communication faults
are handled intrinsically by the OPC UA libraries. Hence, we can easily reconnect, restart the
system or taking other appropriate measures.

6.4.5 Step 5: Evaluation Scenario

MEMAP’s benefit for energy optimization and its flexible design is demonstrated in the following.
We developed together with our industrial partners multiple reference scenarios. Here, we
demonstrate a collaboration of five houses of different size. Each house has an individual
electricity and heat demand. Additionally each house has its own individual equipment to cover
these demands. MEMAP’s task is the coordination of the connected buildings to evaluate the
potential energy efficiency improvement in a scenario, where buildings exchange energy. For
that we assume that the houses are interconnected electrically and with district heating. The
improvement of the efficiency is measured with operational costs and CO2 emissions.

We start by modelling expected demands for one arbitrary day. We use the approach described
by (Jambagi et al., 2015; Kramer et al., 2016, 2017), which specifically develops individual
reference profiles for building electricity and heat demand. We create two single private house
holds and three multi-family houses. The profiles are illustrated in Figure 6.14.
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Figure 6.14: Demand profiles for the MEMAP scenario.
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In the second step we model the generation of the houses to cover the demand. We use
different generation units that are currently available in the market. Controllable generation units
are oil and gas boilers. As volatile generation, we us photovoltaic and solar thermic components.
For their profiles, we use measured values as a reference17 to obtain solar profiles, one for a
sunny day and one for cloudy day with solar in the afternoon. As storage components we use
electrical batteries and thermic storage. As couplers we use CHPs and heat pumps. Each house
has its individual equipment configuration, which is shown in Figure 6.15. The diversity leads to
different optimization options for MEMAP, which we want to demonstrate with this case study.
The five houses define a small district. For modelling the energy exchange, those five houses
represent the system boundaries similar to a district shown in the beginning in Figure 3.7. Note,
we would like to emphasize here that the system boundaries that we have mind when discussing
the energy system perspective are different as for software systems.
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Figure 6.15: The MEMAP reference scenario.

Building #1. The first building in the scenario is a large private household with conventional
equipment. It represents the most convenient and a classical set-up in Germany. The house has a
daily electricity demand of 14.4 kWh, a thermal demand for heating and hot-water of 51.4 kWh
(profiles as shown Figure 6.14). Electricity is supplied by the electrical network with market
prices. For the supply of heat and warm water we use an oil boiler for the house. The oil boiler
has a maximum installed power of 20 kW heating power and 95% efficiency. The fuel costs are
assumed with 6,85 ct/kWh18.

17Measured values are available from different sources. We used the demo dashboard page from discovergy:
https://discovergy.com/, accessed in September 2018.

18Deutscher Energieholz- und Pellet-Verband e.V. (DEPV). Prices in Germany in August 2018. Found at the url:
https://depv.de/de/pelletpreis, accessed in September 2018.
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Building #2. The second building also represents a large private household, but it has more
modern equipment to improve the costs of its supply. The demands of the house are 16.5 kWh
electrical and 50.0 kWh thermal. To improve its electrical balance, it has a photovoltaic installation
of 5 kWp, and a 12 kWh battery that is connected with three phases with a maximum charging
and discharging rate of 9 kW19. The storage efficiency is assumed with 98 %, each for charging
and discharging. For the heating and hot-water supply, the house has one gas boiler, also with
20 kW heating power but 98% efficiency. The fuel costs are assumed with 5.91 ct/kWh20.

Building #3. The third building represents a medium sized multi-family household. It has a
daily electrical demand of 147.8 kWh and 457 kWh for heating and hot-water. For the supply of
this demand, the building has a large photovoltaic with 40 kWp and a heat pump with 10 kW
electrical power and a coefficient of performance (COP) of 2.5, which is a good extension of the
photovoltaic system. In addition, it has the same gas boiler as building #2 to cover the demand
peaks with 20 kW heating for additional heat support and a thermal storage of 100 kWh capacity.
The thermal storage can be charged and discharged with a power up to 60 kW and an efficiency
of 90 %.

Building #4. The fourth building is a medium sized, multi-family building as well. Its daily
demand values are 127.5 kWh electric and 286.5 kWh thermal. The demand is covered with a
mini-CHP plant in combination with thermal storage. The parameters of the CHP plant are 20 kW
electrical power (29% electrical efficiency) and 43 kW thermal power (61% thermal efficiency)21.
The CHP is fuelled with gas with the costs of 5.91 ct/kWh. Building #4 has a storage with 100 kWh
capacity, 60 kW (dis)charge rates and 90 % efficiency.

Building #5. Finally, the last building is a multi-family home as well, but slightly smaller than
building #3 and building #4. It has a daily demand of 80.5 kWh electric and 316.9 kWh thermal.
The demand is covered with a mini-CHP plant in combination with a thermal storage, similar as
building #4. The CHP has the same parameters as for building #4 but slightly reduced efficiencies
with 28% el. and 60% th.. Further, is has a thermal storage with the same parameters as the
previous buildings. In additional, building #5 is equipped with a solar thermic system, which has
an installed power of 20 kWp. For solar thermal generation we take the same profiles as for the
photovoltaic production that are used for the solar of buildings #2 and #3.

Coordination assumptions. MEMAP coordinates the power exchange between houses, which
is only possible if certain conditions are fulfilled by the system. This includes available hardware,
measured and communicated values and no disturbing regulatory constrains. We also use some
simplifications in our coordination, which we summarize in the following as assumptions.

A1 Electrical power and heat can be exchanged between the houses, i.e. there is an electrical
network and district heating between the participants. Losses are neglected in the case study.

19The values correspond to the fenecon pro 9-12 storage system.
20Prices taken from Deutscher Energieholz- und Pellet-Verband e.V. as above
21The values correspond to the Vailland ecoPOWER 20.0 system.
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A2 There is a connection to an external electrical network with market prices. If necessary,
electricity can be feed out (bought) or feed in (sold) that network.

A3 Participating EMS provide reliable data, i.e. they truthfully report their demand and
generation. The data is also not falsified by the communication.

A4 We do not consider electrical instabilities, such as voltage drops or frequency deviations.

A5 Components have constant efficiencies. They do not change at different set-points.

A6 Components’ dynamics are not considered for planning. This means that components are
allowed to change their operational state arbitrarily between time steps.

A7 Each component that produces or consumes heat interacts with the same district heating
network. This also particularly assumes, that boilers, CHP, solar thermic components and
heat pumps are allowed to feed into the same network.

6.4.6 Step 6: Simulation of the Scenario

The defined scenario is implemented and executed in the planning tool version of SESSIM
as introduced in the previous section. To show the contribution of MEMAP we compare two
situations.

• The first situation represent individual houses, where each house has an EMS that calcu-
lates its own optimal schedule. This is the best case that an individual EMS can achieve.

• The second situation represent the coordination with MEMAP, where MEMAP calculates
an optimal schedule for the combination of five houses. The houses follow that schedule
and exchange their energy within the quarter.

The comparison uses certain environmental conditions. For demand we use the generated
data according Jambagi et al. (2015); Kramer et al. (2016, 2017). For the forecasts of solar
generation, we use real historic data as introduced above. For photovoltaic components we use a
“bad” summer day that generates 30% of energy compared to a summer day with excellent weather
conditions22. For the planning, we use 15 min time intervals. Further, we compare different
MPC horizon lengths nMPC to evaluate its effect on the behaviour. Further, we use constant
prices for the fuel and the electricity tariff of the grid. The constant electricity tariff is assumed
to be 0.25 e/kWh. It represents the buying price. If power is injected back into the network, the
component receives 50%. This considers that the electricity tariff (in Germany) consists around
50% from taxes and 50% for the costs of the generation, transmission and distribution. We run
the simulation over the period of one week, where each day has the same demand and solar
production profiles. This reduces errors due to a fixed starting condition.

All data and scenario specification are accessible online as part of the tool 23. We published the
implementation and its results in Bytschkow et al. (2019) and a follow up work together with our
research partners in Heidemann et al. (2019).

22We used recorded data from the 21st of July 2018, which was a cloudy day with more sun in the afternoon.
23https://github.com/SES-fortiss/SmartGridCoSimulation
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6.5 Results

In this section, we present the results of our scenario and discuss the effects of the coordination
system. It shows the potential of combined multi energy prosumer buildings in a quarter. We
demonstrate the capability to improve the current energy supply by using only the communicated
data for the optimization. This gives more insight about MEMAP’s functionality and the general
potential to utilize energy resource more efficiently due to the interconnection.

Comparison of a quarter with and without MEMAP (fixed prices)

The first result is the demonstration that our coordination approach and the developed system has
the potential to improve the energy usage for a group of buildings. The results for our scenario
in terms of costs, thus, the improvement of resource utilization through MEMAP are shown
in Table 6.1 for various MPC horizons. The results that describe how the generators cover the
demand are shown in Figure 6.16 for building #2 (Figure 6.16). This Figure is also a good
reference to explain how the MPC works in general. The other individual profiles of buildings #1,
#3, #4 and #5 are presented in Appendix B, in more detail. The coordinated case with MEMAP,
which has many different production components, is presented in Figure 6.17.

Cost [C]
MPC: NH (time) Building1 Building2 Building3 Building4 Building5 SUM MEMAP

1 (15min) 51.9 27.6 347.2 220.9 182.8 830.6 664.4
4 (1h) 51.9 27.5 342.9 221.1 181.9 825.3 664.0
12 (3h) 51.9 26.3 340.4 221.0 180.0 819.7 664.0
24 (6h) 51.9 24.8 337.9 220.8 180.0 815.4 663.8
36 (9h) 51.9 24.4 338.5 221.0 180.1 815.9 663.5
48 (12h) 51.9 24.7 338.4 221.0 180.4 816.4 663.6

Table 6.1: The cost comparison for a 7-days period with a fixed electricity tariff.

The cost comparison (Table 6.1) shows three very interesting effects: The influence of the
MPC horizon to individual buildings, the effect of MEMAP’s coordination compared to individual
buildings and the effect of the MPC horizon to MEMAP.

The first effect (the expected one) is that the optimized schedule of single buildings leads
to less costs with an increasing MPC horizon, but only if flexibilities such as storage that shifts
allows a better power balancing is available. This is the case, where solar power components are
combined with storage. The effects of the cost oriented MPC is intuitive. Building #2 uses its
battery to store energy, but only if it has the possibility to save costs within the upcoming MPC
horizon. It means that the battery is not utilized, if costs are not saved. This is the case, when
the demand is constantly lower than the production. Then the building sells the overproduction,
since the storage has an efficiency that is less than 100%. The same is true, when the demand is
constantly higher than the production in the upcoming MPC horizon. Then the optimal behaviour
is to use the total production to cover the demand and to discharge the battery. Hence, charging
becomes only useful when the two states interchanges. For instance, when the production is
higher than the demand initially, but at some time point becomes lower within the visible MPC
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Figure 6.16: Operation of Building #2 in the individual mode with 6 hours MPC horizon (NH=24).

horizon. Then the building stores energy to reduce the necessity of buying expensive energy. We
see that this effect twice in Figure 6.16, once around 11:30 and later starting around 13:00. Due to
the MPC horizon of six hours, the building plans with the upcoming demand until 19:00 and start
charging. However, it charges initially not at full speed. It tries only to cover the visible residual
demand during the upcoming MPC horizon. The six hours time horizon also prevents to plan the
complete night time, thus, it does not use the battery at its full potential from the beginning. As a
consequence, the planing of the charging becomes more efficient with longer horizons.

The second effect shows that interconnection of multiple buildings is beneficial for the
operation. When all houses are coordinated through MEMAP, the total costs is reduced by
about 20% compared to the sum of individual houses. The reason for the saving is that less
efficient components are substituted by the more efficient ones (see Figure 6.17). For instance,
the oil boiler of building #1 is replaced (i.e. it is always switched off) by the more cost efficient
gas boilers. The gas boilers are again replaced by the more efficient CHPs. Further, the most
efficient CHP (i.e. CHP of building #4) is used more often that the CHP of building #5. This
replacement strategy leads to the strong cost reduction of 20%. It is repeatable for different
settings and environmental conditions (see also Appendix B for further scenarios). Depending on
the composition of components and electricity tariffs, we always observe a cost saving between
15% and 40%. But of course, this saving depends on the demands, available components and
environmental factors such as solar radiation profiles.
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Figure 6.17: Operation of the quarter coordinated by MEMAP with 6 hours MPC horizon (NH=24).

The third effect is, however, surprising. We observe that MEMAP’s costs are almost constant
for increasing MPC horizon lengths. The reason for that is that storages are not used that much
in MEMAP, as the flexibility for time shifting the demand or production is encountered by a
good distribution of power. In particular, MEMAP’s MPC finds a very efficient combination of
two components, the heat pump and the CHP. Those two components are a great combination
and can cover most of the demand profiles24. The combination is so efficient, that it establishes
almost a self-supply of heat and electrical power within the quarter. Additionally, it does not use
the storage capabilities during the majority of the time (because of losses due to the charging
efficiencies). As a consequence, the increasing MPC horizon length does not improve the costs.
This is visible in the MEMAP’s behaviour, which is presented in Figure 6.17. Note, that the
thermal storage of all three multiple family buildings have a combined capacity of 300 kWh, and
the battery of the single household building #2 has a capacity of 12kWh.

Further, it is also quite impressive that the coordination of MEMAP provides a complete
coverage of consumption without the necessity to buy electricity from the grid. CHPs always
produce heat and electricity, while the heat pump uses this electricity to complementary produce

24Note, that is particularly possible due to our assumption A7. For further remarks, see the limitations section of
this case study further below.
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additional heat very efficiently. Controllable generation components (not the couplers) are mostly
neglected. To study this observation, we simulated further additional scenarios with different
components, demand profiles and power tariffs. The combination of the CHP and the heat pump
seems in fact very stable, throughout most of the scenarios:

• In scenarios with more renewable electricity production (e.g. large photovoltaic compo-
nents, sunny days), the overproduction is completely sold to the grid, even if the price for
selling is quite low. An increasing MPC horizon does not improve the costs.

• In scenarios with more renewable thermal production (e.g. large solar thermic components),
the volatile heat production is used intensively and reduces costs, but surprisingly, the
storage components are still not used that more intensively. The combination remains
stable and the increasing MPC horizon does not lead to additional improvement.

• In scenarios with higher heat demand, the CHP and the heat pump combination is not
changed as well, but the heat pump reaches its full operational limits more often.

• Only in scenarios with an increased electrical consumption (e.g. with electrical cars)
additional power is bought from the market. In this case also the storage of electricity, leads
to better costs with an increased MPC horizon. The reason is that buying of electricity can
be avoided more often with batteries.

In summary, the third effect is that the combination of heat pumps with CHPs establish a very
efficient operation, especially, when the heat demand is twice as much (in terms of kW) or more
in comparison to electricity25. This ratio is today probably valid for most of the existing demand
profiles. Only deviations from this ratio, thus, increased electricity demand, are covered with
batteries to prevent the buying of electrical power.

The effect of variable prices for MEMAP

As a second evaluation we looked at scenarios with time dependent electricity tariffs. They allow
more active prosumer participation, since storing, selling and buying of power at different times
becomes one additional option to optimize the costs. To show the effect, we have decided not
to use a typical dynamical price from the EEX spot market, even if this was technologically
very easy to do. The reason is that MEMAP’s behaviour profiles becomes very complex and
are not easy to understand due to the high number of involved components. Instead, we show a
simple price profile, where the price is constantly 0.05 [e/kWh] in the hours from 0:00 to 11:00 and
0.30 [e/kWh] from 12:00 to 23:00 and interpolated in between. We also use a good summer day
as environmental input, to vary the environment slightly and show the full potential of MEMAP.
The remaining parameters remain as before. The cost table for the second evaluation is shown in
Table 6.2 for different MPC horizon lengths. The operation of the quarter is shown in Figure 6.18,
the individual building’s operation is presented in the Appendix.

In this flexible price scenario, storage components are heavily used. Electricity trading
becomes attractive and also the heat is stored more frequently to increase the efficiency. We see

25The exact ratio depends on the CHP efficiency factors ηQ and ηP and the heat pump’s COP-factor.
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Cost [C]
MPC: NH (time) Building1 Building2 Building3 Building4 Building5 SUM MEMAP

1 (15min) 47.7 5.8 95.1 224.4 178.0 550.9 366.1
4 (1h) 47.7 1.6 90.6 224.2 175.6 539.6 361.6
12 (3h) 47.7 -5.1 84.4 223.0 169.3 519.3 355.8
24 (6h) 47.7 -8.1 79.5 218.7 158.7 496.5 356.6
36 (9h) 47.7 -7.8 74.9 211.9 149.4 476.1 357.4
48 (12h) 47.7 -8.1 71.5 206.9 147.2 465.3 357.5

Table 6.2: The cost comparison for a 7-days period with a flexible electricity tariff.
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Figure 6.18: MEMAP’s operation with 6 hours MPC horizon (NH=24) and flexible price.
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a number of effects. The first observation is that the MPC horizon matters, since it determines
the operation of storages. The longer the horizon, the better storage components can be used.
However, there is a limit. As soon as the horizon enables to utilize the storage components in their
full range, its impact slows down. Further, we observe different preferences for the ranking of the
components, that depend on the price level and the environmental conditions. Due to this ranking,
the strong combination between the CHP and the heat pump decouples for the different price
regions. Heat pumps becomes preferably used during low cost intervals together with gas boilers.
The reason is that electricity becomes cheaper and the pure heat efficiency of gas boilers is better
than those of the CHPs. CHPs, on the other hand, are preferably activated during high cost
periods, since they additionally generate income through the production of electricity. Volatile
energies simply increase the profitability, as the system takes their power without additional costs
to increase its profit.

Even if the behaviour is different for the second scenario and we see a decoupling of the
previous combination. Another major result remains as well. MEMAP achieves a cost saving
of 20% to 35% compared to individual buildings, depending on the MPC horizon. Therefore, a
coordination of several buildings, or in other words, the interconnection of individual EMS with
a coordination system as MEMAP leads to better utilization of components in a neighbourhood.

6.6 Discussion

In this section, we discuss the findings of the presented case study. We reflect our case study
steps to answer the stated research questions and discuss the threats to their validity. We also
present the limitations of our approach to clarify the contribution.

6.6.1 Research Questions

In Section 6.2.2, following research questions are introduced as a motivation for this case study.

RQ4: When energy models are available, what are important details from those models to
specify system interfaces and what are the possible transformation steps to develop an
architecture of a coordination system?

RQ5: Which systemic effects can be expected from coordination systems?

RQ6: What do hierarchic coordination systems achieve in the context of SES and EMS and
what do they not achieve?

We now discuss which parts of our work contribute to which research question and to which
extend the stated questions are resolved.

RQ4: When energy models are available, what are important details from those models
to specify system interfaces and what are the possible transformation steps to develop an
architecture of a coordination system?

In Section 6.4.1, we introduce a short-term planning model similar to the EnergyHub approach
presented Geidl and Andersson (2007). This model shows how operational planning of energy
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systems is carried out by power system engineers (see also Chapter 3 for more details). The
presented model of Section 6.4.1 has two representations. The first representation is given by
equations 6.2 - 6.5. Those equations represent physical constraints that determine the operation
of the system. They are used to create the second representation of the model, which is the
matrix form, i.e. equations required by the general optimization model described by 6.1. The
matrix form contains the same details as the first representation, but we have to write them more
explicitly. We did this with equations 6.6, 6.7, 6.10 - 6.17. This explicit matrix representation is
not always presented in research papers (see also Bytschkow et al. (2019)). The reason is that
the first representation is sufficient to describe the system and many solver can work with that
already. It is shorter to write and its assumptions are easier to understand. Hence, for research
this is the more convenient representation. However, to specify the communication interface, the
matrix representation give additional insights. We explain why in the following.

In Section 6.4.2, we specify the interface of the coordination system that executes the planning
process, i.e. solves the optimization equations 6.1 to create an MPC signal to the EMS. We use
five different resource types for the specification. The reason for choosing those five types is
found the matrix form, i.e. in equations 6.11 - 6.17. They very intuitively describe how each
component is used and contain the necessary details for the specification. Further, the matrix
form allows to understand the contribution of each resource and decompose the given information
such that a very intuitive mapping of the model details to the interface can be derived. Hence,
this representation gives more insights for the interface specification. Equations 6.2 - 6.5 can be
seen as requirements to derive the matrix form. Their large benefit is that those equations can be
easier analysed to understand the assumptions of system model and therefore the effects that are
taken into account.

Further, we explain in Section 6.4.3 the data mappings of the input/output relation in a
hierarchic structure. Hence, we explicitly show the system boundaries of the coordination system
and related EMS from the software system perspective. This helps us to understand what a
system boundary is. Such system boundaries are not available in the energy model perspective,
i.e. Section 6.4.1. Instead the mathematical coordination model throws all the information
into one place and assumes that this is the system of interest. It specifies what is inside of that
model, but not how the system interacts with its environment. Therefore, the understanding of
the term system boundary is quite different when we compare the work done by power system
engineers and software system engineers (see also Section 3.2.1). That is one essential reason
why many previous work on general SES architectures, such as the prosumer oriented architecture
presented by Grijalva and Tariq (2011) or cellular power systems concepts presented by Benz
et al. (2015) are that vague. They often miss to specify a concrete system boundary and therefore
do not provide enough information about the envisioned system and an architecture to create this
system. In order to do so, they need both aspects, the concrete model for the execution as in our
Section 6.4.1 and the concrete interface specification as in our Sections 6.4.2 and 6.4.3.

To create the coordination system, we further constrain our architecture by the usage of well
known architecture design patterns in Section 6.4.4. The architecture design pattern allow us
to specify, how to integrate EMS into a group, which is realized by the MEMAP system. The
MEMAP group remains flexible with respect to the number EMS components that belong to this
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group, but MEMAP has still a clear boundary, with respect to external systems. This allows to
implement the ideas from Grijalva and Tariq (2011) or Benz et al. (2015) in real systems.

In our work we demand that an EMS is a server, with the specified interface towards the
coordination system. This allows to access the necessary data from an EMS and to monitor its
reaction on control signals, while the internal control system remains hidden. The choice of
the protocol is not that crucial, but we suggest to use an industrial ready implementation. Thus,
the second case study confirms that the proposed architecture design pattern are useful for the
specification of the system and reliable for its implementation. This reinforces the generalization
argument of our approach that was left open from the first case study in Chapter 5.

RQ5: Which systemic effects can be expected from coordination systems?

To analyse the effect of integrating EMS into coordination systems we have carried out a
simulation in Section 6.4.6 using the scenario described in Section 6.4.5. The results are discussed
in Section 6.5. Further results are shown Appendix B.

We described a situation, where advanced EMS that are capable to carry out their own
optimized MPC are compared with an integrated approach, where a coordination system does the
same, but in an integrated quarter scenario. The result is that the coordination system outperforms
the individual EMS. In our scenario the improvement is in the order of 15%-30%. The exact
number depends on time horizon, the environmental conditions and external prices. However, the
integrated solution finds always a better solution as individual systems.

When we have a deeper look into the scenario execution, in particular in the time series results
for the activated components we found that the reason for the better performance is mainly because
MEMAP replaced the bad components first. In integrated quarters modernization of equipment
within a single building becomes beneficial for the whole quarter. Thus, integrated solutions
will be a reasonable approach that replaces bad equipment. The replacement will be quicker,
if we assume the modernization activities within a group are more frequent as modernization
single systems. The particularly nice side effect is that the increase of efficiency is beneficial
for all participants of the quarter, the providers of the efficient equipment and those ones whose
equipment is replaced. Further, integrated solutions open the path towards the usage of additional
energy sources that are today hardly used, for instance the waste heat that sometimes occur
in larger systems. This improves the energy utilization even further. Note, that the presented
systemic effects are based on the introduced model. The model is only an approximation of
the real system. We present further below how this threatens our statements for that research
question.

RQ6: What do hierarchic coordination systems achieve in the context of SES and EMS,
and what do they not achieve?

The last research question is a retrospect on the general idea of having a hierarchical system to
coordinate EMS. In Section 6.3 we discuss the hierarchical structure of this case study and work
upon that structure throughout the different steps in Sections 6.4.2 - 6.4.4. We see that a hierarchy
is beneficial to establish the desired coordination in different ways.
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One benefit is that we capture the right system boundaries and are able to describe system
interfaces between the different hierarchical layers. This provides a clear understanding about the
functionality of each hierarchical layer. In our case study the coordination system is responsible
to improve the operational control of the quarter. The individual EMS are responsible to control
their devices. The data exchanged between those two layers is given by the interface specification.
This separation enables to apply two fundamental principles that are important for software
engineering, the separation of concerns and abstraction. We particularly emphasize this point in
Section 6.4.4.

Another benefit of the hierarchy is presented in Section 6.4.5. It describes a group that is
created. Section 5.4.3 shows another similar example. We demonstrate that the notion of a
group and a system coordinating that group is interrelated. The benefit of the hierarchy is that it
supports to reason about groups, their system boundaries and their behaviour. This means that we
can clearly distinguish which behaviour belongs to the inner behaviour of the group and which
behaviour belong to the externally visible behaviour. We work on that also in Section 6.4.3.

Nevertheless a hierarchical system is not a one size fits it all solution. Section 6.4.5 presents
our assumptions to develop a coordination for the group of buildings. In that section we assume
that power can be freely exchanged between the participants (A1, A7). This limits the hierarchic
system as follows. As long as we consider only one area, coordination is able to take place
as presented. But, if we have two areas and each one has it own district heating, coordination
becomes more complex. The coordination of two distinct areas is possible, but it requires
to introduce a network topology that limits the power exchange. We have presented such an
extension in (Heidemann et al., 2019). In this extension we can model that both groups share
one electrical grid, but have two distinct heat networks. The MPC considers the corresponding
constraints. However, the information of the network topology needs to be available to the
coordinator, but it is not clear whether this information can be provided by the children of the
coordinator or not. Therefore, the hierarchy cannot be simply extended to the higher levels,
without taking such considerations into account.

Therefore, as answer to the research question, our approach and the hierarchical structure
helps due to presented reasons. But it is not necessarily the one fits it all solution. We have to
be sure, that the system that is being controlled meets the physical requirements, otherwise the
hierarchic coordination is not possible.

6.6.2 Threats to Validity

In the following, we present the threats to our case study results. We use again the three categories
construct validity, internal validity and external validity as introduced in the previous chapter.

Construct validity: To answer the research questions of our case study, we created a coordina-
tion system for a quarter. For the creation we used a classical multi-energy coordination model in
Section 6.4.1. It was used to derive a coordination system with a hierarchic architecture.

One threat is that we have not selected a representative model. Instead we used a model
that is not suited for coordination. Therefore, it should no be used to specify the interfaces
of the EMS. We tried to mitigate this threat by using a model that is used in a larger research
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project setting, where different research partners, among them power system engineers and
industrial partners with experience in district heating and EMS providers discuss the model
intensively and work on extending this model together. We also presented the model at two
different conferences (Bytschkow et al., 2019; Heidemann et al., 2019), where we got positive
feedback on our approach. One could also argue that another model, for instance for distributed
control is better suited for coordination. This might be indeed the case. Of course in distributed
control, the data at the interfaces will change. Nevertheless, our main argument to use models for
the specification of coordination behaviour and the interfaces remains also valid for that case.

A second threat is that our approach that is based on several steps is not suited to create a
system architecture for a system that integrates EMS and coordinates them. Hence, our work
describes a non realizable system. We mitigate this threat by creating a real coordination system
that integrates several EMS with real devices. Among them, there is a large experimental
laboratory COSES at the Technical University of Munich26. It has real devices and real
networks for extensive studies of control models and control systems. Actually, our integration
effort aims at creating a reliable environment to study the validity of coordination models,
including the presented model but also its future versions in real experiments and to reason
about the system architecture for coordination system. The question remains, if our solution
by specifying the interfaces based on the matrix form of the model is easier for other partners
as well, since so far many transformation steps from the model up to the system architecture
were done by us. Therefore, we can only argue for the ease of transformation from our perspective.

Internal validity: Our case study provides quantitative effects that are reached by our system.
These claims are of course only valid for the presented model and the selected scenario. We
present both in Section 6.4.5. Several threats remain open.

The accuracy of the components for our coordination model are quite abstract. Our model
is linear, meaning that a component might take any states between zero and its maximum limit.
The threat is that not all components are like that. Especially CHPs, oil and gas boilers should be
able to be turned off or operate in a defined bandwidth. This can be solved by choosing another
optimization model for the MPC, for instance a MILP. This leads to different results. However,
we saw in our time series analysis that components, like gas and oil boilers and also storages
are used less frequent as in single systems. In combined systems like the quarter, the efficient
components dominate and they run at higher operation set-points. This effect favours our claim
for using coordinated systems even more. Another accuracy issue of the model is that we assume
a fixed efficiency. Also this assumption can be removed, if we create a non-linear optimization
model. The non-linear model, thus, would give more precise results for Section 6.5. But our
architecture would not be affected by that. Further, in current district networks, for instance
from the local utility, the temperature level for the heat supply line is around 80-90°C (SWM,
2015). Not all components can feed into that network. As a consequence, MEMAP should only
take those resources into account that can technically feed into the network. However, future
district heat networks are expected to operate at much lower heat temperatures, for instance at
45°C (Lund et al., 2014; Wesche et al., 2017). We therefore expect, that most of the components

26Center for Combined Smart Energy Systems (COSES)
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might be able to inject heat power. Further model accuracy issues can be considered. For instance,
losses for electricity and heat can be considered. Dynamics can be added to components in order
to tweak the model towards reality. However, those tweaks are more a parametrization issue of the
model, not a conceptual problem of our approach. Also, we intend to work with partners to use
MEMAP in an experimental environment, where we can validate the model and our assumptions
in real experiments, as presented before.

The second possible threat for the investigated coordination is based on the available data
set that we used for the parametrization of the scenario and as demand profiles. This might
result in wrongly chosen devices and unrealistic consumption and production profiles. We
discussed this issue with our project partners several times. To mitigate this threat, we went
with the project into a field test in Riemerling, which is a suburban area close to Munich. This
area should be the reference for our case study. We analysed five buildings together with our
industrial partners to create a better scenario. We observed indeed that many generation units are
oversized. Unfortunately, the generation units are rather old and similar to oil and gas boilers.
Modern devices like heat pumps or CHPs were not present. This is however, important to show
the potential of coordination particularly for a multi-energy scenario. To address the issue of
better data we prepared a native connection of MEMAP to the meters of the buildings. For that
we use our system with the described interfaces (see Section 6.4.4). We analysed the available
interfaces and our architecture allows this interconnection. However, at the time of writing, the
data from the field test was not available, therefore, we relied on the generated data provided by
our research partners (i.e. Jambagi et al. (2015); Kramer et al. (2016, 2017)). Nevertheless, from
the technical point of view we are able to integrate also real field tests into our system. Therefore,
available data might increase the confidence of the results, but it not a conceptual issue of our
system architecture.

External validity: The argument for generalization is supported by this and the previous case
study. The main threat here is that the number sample sizes is too small and too synthetic due to a
limited number of real EMS. To mitigate this thread we worked with industrial engineers and
other research groups from different domains. We integrated several EMS, from research and
from the industry. The integration was not always possible with OPC UA, since other REST API
were in the field as well. However, the general representation including our architecture design
pattern was possible. When scanning through the different EMS, we got the impression that all
systems are indeed quite similar and that with time we will have to possibility to coordinate them.

6.6.3 Limitations

Finally, in this section we discuss the limitations of our case study. Some of the limitations can be
eliminated by extending our approach with additional functionality, that were not in the focus in
the presented case study. Other limitations exist due to practical reasons and the current technical
state of the art.

EMS schedule commitment: In our case study we introduce MEMAP. This is a system for
coordinating EMS. Its intention is to collect the data from the individual building EMS and
propose a better, coordinated scheduling. If the building follows this schedule, we obtain the
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desired results (see Section 6.5). We only show the case where each EMS behaves as expected.
We do not show what can be done when a building does not follow the signal. This however is
important in real systems, since without considering such cases, the coordination will not work.
A solution might be to consider only those buildings that follow the signals provided coordination
system, since its participation in MEMAP can also be seen as a commitment to provide resources.
Buildings that ignore the signal can be temporarily excluded and do not profit from the savings.

Deviations from schedule: In this case study we present an MPC that considers planning with
some time horizon (see Section 6.4.1). Even though the MPC can be updated regularly, for
instance once every minute, it has not be designed to close potential deviations from the schedule.
Its task is only to plan the supply and expected demand accordingly. Therefore, a parallel control
application to close the deviations is beneficial. We have presented a possible solution in the first
case study (see Section 5.4.2). Hence, a combination of both case studies would be desired, that
considers potential side effects (e.g. SOC) as well.

Internal EMS behaviour: We understand an EMS as a black box component (see Section 6.4.2
- 6.4.4). It provides its resources at the interface, but we have no information about its internal
system details. This is an intentional design of our system and we think that also in future,
coordination systems will have to rely only on the EMS data that is provided over the interface.
Of course, to understand the technical implications we need also to study how the EMS behaves
internally. Additional essential technical design decisions are required to create a system with the
technical possibility for power injections into the network. Particularly, also the consideration
of the district heating temperature limits our approach, as some components might not be able
to inject their power that easily. We discussed this issue a lot in the project with our industrial
and power system engineering partners. One possibility is to filter out such components from
the interface of the EMS or from the MPC, hence neglect them in the coordination. Another
possibility is apply MEMAP in quarters with low temperature district heating. But these questions
go beyond the scope of a software architecture. We leave them for future work.

Business cases: Our case study demonstrates that in an integrated solution operational costs are
reduced (see Section 6.5). This immediately opens the question how those savings are shared
between the building operators and how the coordination system is reimbursed. It also opens
several questions with respects to a return on investments along modernization activities. In our
case study we do not discuss those points and leave this as its own topic.

Interoperability limitations: The final limitation is important for the system developer. Our
case study assumes that each building has an EMS with an OPC UA server. But we will
usually not find this situation in real systems yet. To reach the interoperability with MEMAP easy
modifications are possible. A possible technical extension is to use the same interface specification,
but implement it using other available APIs, e.g. with REST. Since REST already exists in many
solutions the modification is quite easy to achieve. Often, REST based interfaces use the JSON
serialization as the main data format, exactly as we do in our internal messages within MEMAP.
This allows to convert REST interfaces into the desired message format. Actually, this has been
used in Section 5.4. Therefore, this limitation can be hurdled by adapting the protocols and
parsing the data according the desired coordination model. It is not a conceptual problem.
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6.7 Summary

We presented a case study in the area of sector coupling to create a hierarchical coordination
system using the approach and architectural constraints of the preceding chapters. The case study
demonstrates how a rather complex scenario with a high variety of different energy components
is controlled using our generic architecture. The case study provides a research contribution in
two important areas.

The first contribution is a description of a stepwise approach, that uses mathematical models
for coordination to specify coordination systems, particularly the system boundaries that matters,
namely the interfaces of those systems that are being integrated and their behaviour. In contrast
to other approaches, which focus either on the behaviour (e.g. MATLAB optimizations, devel-
opment of controllers) or interfaces (e.g. standardization activities), we demonstrate how the
two important areas can be addressed in a consistent manner. Such discussions are of paramount
importance to clarify the boundaries of the involved system and to provide concrete information
for system developers that implement real running systems.

We further show the implementation of the presented solution with a prototype that exists in
two stages. The initial stage is a simulation. It provides a framework to simulate and evaluate
different scenarios and to determine the potential for sector coupling and interconnection of
quarters. The simulation uses a linear model to calculate an optimized schedule. The MPC
with the linear model is just an example. If the accuracy is not high enough, the model can
be exchanged with other, more precise optimization approaches, for instance mixed integer
programming or other non-linear optimization methods. In that case, we might need to refine
the interface, thus, extend the available data points. This, however, is straight forward. The
improved stage is a sever based platform. It provides real industrial interfaces and a realistic
environment, while the internal logic is the same as in the simulation. The platform can be used
to study hardware in the loop system or even control real EMS later on.

The second contribution is the demonstration that we achieve a better efficiency in combined
quarters. To make such statements, we compare the best possible operation of individual buildings
with the combined quarter solution. We see cost savings in the order of 20% and more depending
on the composition of the devices and the environmental conditions. The improvement is mainly
achieved by substituting some of the worse components with better ones. We also observe
promising combinations of components for different environmental conditions. The case study
confirms, that a higher energy efficiency can be achieved when quarters are coupled together. Our
approach is easily extensible to other scenarios and other device combinations so that we are able
to use our system for further studies of smart energy system solutions.

Finally, we would like emphasize that any system description without a clear system boundary
specification remains vague even if the general idea of combining different systems seems intuitive
at the beginning. A way to reduce this ambiguousness is to define clear system interfaces and
a clear behaviour. This is the only way to create systems as envisioned by Moslehi and Kumar
(2010); Grijalva and Tariq (2011); Benz et al. (2015) and achieve a higher contribution of smaller
prosumer systems with additional flexibility.
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This chapter summarizes the findings and contributions of this work and provides an outlook for
possible future research directions.

7.1 Conclusions

The aim of this thesis is to improve the capabilities to integrate energy system components in
coordination approaches and by that increase control capabilities in power systems. The increase
of control capabilities is of paramount importance for environmental friendly and reliable power
supply systems with many renewable energy sources. The reasons for that are explained in the
motivation of our work. The current state of the art has a number of open conceptual and practical
problems that hinder the integration:

• Problem 1: Integration with current technologies,
particularly in context of secured SCADA systems that need to be opened and extended
with the possibility to integrate more consumer oriented devices.

• Problem 2: Ambiguous architecture specifications,
particularly when similarities of components are the only description (e.g. Moslehi and
Kumar (2010); Grijalva and Tariq (2011); Benz et al. (2015)), but other architectural
questions like system interfaces and system behaviour are neglected.

• Problem 3: Specification of EMS system boundaries, interfaces and coordination models,
particularly because of the different understanding of system boundaries of power system
models compared to software system models.

• Problem 4: Evaluation of hierarchic architectures for EMS coordination,
particularly because of the missing technological support to evaluate such architectures and
that current coordination models focus on devices rather than on EMS with an interface
that represents the available control flexibility.

To approach these problems, we introduce a number of contributions. First we analyse current
power system coordination models that are of interest for coordination. We then provide an ap-
proach to specify a generic hierarchic architecture to coordinate EMS, i.e. to specify the interfaces
and the behaviour of EMS that are part in a hierarchic structure of interacting components. We
use well-known architecture design patterns to explain and support the creation of such systems.
We further complement the approach with a technological framework to study such architectures
in a follow up step. We validate our approach with two case studies that integrate systems with
interfaces that are also used for the integration of industrial systems. The case studies answer
several research questions related to hierarchical coordination systems in the energy domain.
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Analysis of SES models and their usage in hierarchical structures

Mathematical models are the essential basis for power system planning and operation. To create
an architecture we presented and described classical energy system models that are of interest
for coordination. We particularly focused on the data that is available within those models. In
the next step, we worked out the notion of a system boundary of energy system models and its
different meaning compared to the system boundary of a coordination system, which is always a
software-based system with a clearly defined input and output interface. We provided several
examples for interfaces that are specified such that an energy model can be derived from the data
available at the interfaces. Finally, we worked out how the specification of such an interface
is transferred into a hierarchy of coordination systems. Since system boundaries, i.e. system
interfaces, are important to specify architectures, this analysis provides several missing details,
i.e. the necessary data at the interfaces, to approach the problems from above.

A generic hierarchic architecture for the coordination of EMS

To develop an architecture that is used for the coordination of EMS in real systems, we provide a
detailed step-by-step derivation of architecture constraints that are required to build such a system.
The derivation includes the following steps:

• Identification of important requirements containing the current technological state of
practise for energy systems and required extensions for SES.

• A stepwise consideration of five architecture design patterns to address the previously
identified requirements. The architecture design patterns include the client-server model,
composite pattern, layered systems, unified interface and the optional (but beneficial)
publish-subscribe pattern.

• A behaviour description using a distinction of cases for hierarchical systems, where
parent components interact with child components. The distinction allows to describe
the behaviour of EMS in a hierarchy based on atomic behaviour cases. It therefore
helps to clarify the possible interactions in a hierarchy and simplifies the specification of
coordination systems with behaviour specifications based on input to output mappings.

The presented architecture design patterns and the case distinctions as interaction specifications
between software systems are the basic constraints to define hierarchic architectures for the coor-
dination of EMS. They provide a clear specification and additionally help to discuss architecture
design decisions at an early stage of system development. This reduces ambiguity that we see in
other specification activities and eases the system implementation later on. Further, the selection
of well-known architecture design patterns allow to choose certain technologies, i.e. available
libraries or protocols, for the implementations. This speeds up the development process and
reduces errors in the implementations, because we rely on well tested and sound technology
stacks from other domains that are used in many industrial applications.
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A framework to implement and test hierarchic SES architectures

To facilitate the practical usage of our approach, we developed a framework to implement and test
concrete scenarios. The framework is designed as a co-simulation framework. The framework
is actor based, i.e. the behaviour of software systems (e.g. an EMS) is represented as an actor.
Actors do not share their internal states and interact only via messages. They are therefore a
representation of distributed systems as we see in reality. The framework supports:

• Implementation of EMS that are arranged in a hierarchy and interact only via messages.
The messages can be automatically converted into interfaces, e.g. REST or OPC UA.

• Consideration of power system topologies using a standard representation with CIM.

• Solving power system equations with external simulation tools, such as Gridlab-D, but also
with internal solvers.

• Interaction with external systems using the client-server model, where each actor has the
possibility to have its own server or its own client to provide data for external systems or to
obtain data from other external servers, respectively.

The framework is used as a technological vehicle to implement the presented simulation scenarios.
Beside the presented work, the framework was used to study Distributed Ledger Technologies
(DLT), also knownas blockchains, by Thut (2018); Lumani (2018); Bajpai and Duchon (2019),
where a set of EMS (actors) interacted over DLT to offer bids for supply and demand. Another
usage of the framework was to exchange observations for machine learning scenarios to implement
and evaluate whether reinforcement learning is suited to learn the coordination by Andres (2019).
The framework is therefore suited to study different concepts for the SES domain.

Case study: Hierarchical architectures for virtual power plants

To evaluate our approach (specification of a hierarchic system of EMS), we worked on two
case studies. The first case study is a hierarchical VPP that consists of clusters of components.
Clusters are used to create a representative for a group of components. The group is used to keep
a schedule for power production on the one hand and communicate the remaining flexibility to the
higher hierarchy level on the other hand. This case study shows how a hierarchic architecture is
created. The interfaces are designed to offer control flexibilities. The behaviour is a coordination
algorithm that is responsible to activate flexibilities in order to keep a desired schedule. The case
study answers the following research questions:

RQ1: How does the hierarchical concept affect the integration of interactive EMS and
the architecture of composed energy coordination systems? We demonstrated that
the most important aspect for integration is the definition of the EMS interface. The
interface defines the system boundary. For the hierarchy, it is necessary that the interface
specification applies to multiple hierarchical levels. Thus, the interface should be specific
enough so that leaf EMS are able to represent their devices, but at the same time abstract
enough, so that group representatives (cluster systems) use the same interface also towards
their parents. To specify the system’s behaviour, the input to output data processing should
be clear, particularly for intermediate cluster systems. Our behaviour cases structure the
specification activities.
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RQ2: Does the hierarchy support different energy coordination mechanisms? Yes, we
presented three different coordination mechanisms to demonstrate such support. The
shown coordination mechanisms vary in their complexity and in their accuracy (speed of
establishing the desired system state). Nevertheless, they integrate the systems using the
same interfaces. This confirms that interfaces are essential to create a feasible specification.

RQ3: How do the proposed architecture design patterns help us with the development of
such coordination systems? We evaluated whether the proposed architecture design
patterns fit to create a feasible technical solution. We found that the architecture design
patterns do help with that. They help to understand the system’s composition and the inter-
action between the composed systems. Further, they allow to select suitable technologies
and implement a running system. They also support the generalisation of our approach.

Case study: Architectures of coordination systems for quarters (multi-energy systems)

The second case study applies our approach in the context of multi-energy systems (i.e. sector
coupling). We focus on the integration and coordination of more complex EMS. The goal is to
improve the energy efficiency in a quarter based on available supply and demand that exist in
participating buildings with the specific requirement to combine different energy sectors (heat
and electricity). We present a technical solution and answer the following research questions:

RQ4: When energy models are available, what are important details from those models to
specify system interfaces and what are the possible transformation steps to develop
an architecture of a coordination system? Energy system models for coordination
describe the matching of available energy supply with the expected demand. The models
are expressed as a set of equations. Because of classical solving methods (e.g. LP or MILP)
also matrix representations exist. These representations give us additional information for
the input / output data of the optimization. The behaviour specification goes along that.
We have shown several transformation steps how to derive the hierarchical system from
an short-term planning model including an automatic generation of OPC UA interfaces.

RQ5: Which systemic effects can be expected from coordination systems? To derive quan-
titative numbers, we compared two operational scenarios, one where EMS of single
buildings optimize their own behaviour, and a second one, where the coordination system
does it for a larger setting. We could confirm that an integrated always system outperforms
single buildings, if it has the physical capabilities to exchange the power. The main
reason for that are additional options to select efficient equipment for the operation. The
improvement depends on the devices and the environmental conditions. In our scenario
we observed savings in the order of 20% and higher.

RQ6: What do hierarchic coordination systems achieve in the context of SES and EMS
and what do they not achieve? Our architecture has several benefits. It identifies
the system boundaries of relevant systems quite successfully. This allows to specify
interfaces between the hierarchical levels. It also helps with the separation of concerns
and abstraction. Further, it allows to establish coordination groups. The groups support
each other, when this is physically possible (i.e. transmission lines exist and nodes inject
power bi-directionally), if not, the hierarchy does not offer additional benefits.
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Further findings

Our work demonstrates that hierarchical architectures are technically feasible for energy systems.
Our two case studies explore control and planning coordination applications for energy systems.
For control, we show that flexibilities are useful to cover deviations. We specify the interfaces
and show coordination mechanisms for that. For planning, we show an extended sector-coupling
scenario with multiple buildings. Therefore, our conclusion is that hierarchic architectures are
reasonable.

However, in contrast to the previous work, where the authors assume that a generic hierarchic
architecture is simple solution for the energy domain (e.g. Moslehi and Kumar (2010); Grijalva
and Tariq (2011); Benz et al. (2015); Reuter and Breker (2018)) we see that concrete specifications
are still complex. Therefore, the expectations for simple solutions are probably exaggerated. The
complexity is hidden in the necessary level for details in this technical domain. For instance,
a flexibilities from the first case study is modelled as activation profiles with a fixed price.
This is only an approximation. Many more details can be added to the specification. For
instance, flexibilities can add a non-fixed price, e.g. due to a non-linear efficiencies of the
components’ production. Such details improve the model accuracy, but increase the complexity
for the aggregation and decomposition of control signals for the lower hierarchical level. This
diminishes the benefits of a simple hierarchy. Similar effects are present in the second case
study. For instance, thermal components like heat pumps can only inject power into networks
with suitably temperatures. If the temperature is too high, heat pumps have to be omitted in
the operation. Of course, this can be considered in a rigorous algorithm. However, such details
require more expressive EMS systems and the underlying infrastructure needs to support these
kind of operation schemes, i.e. with higher and lower supply temperatures. This requires further
analysis in the future from power system engineers and software system engineers. Nevertheless,
we see that coordination provides better results than individual buildings, therefore, integration
and coordination of EMS is an important technology to improve our energy systems.

7.2 Outlook

In this section, we outline possibilities for future research activities that improve or extend the
presented contributions.

Application of our approach in extended SES scenarios

We present two case studies. Each case study evaluates one particular coordination type, i.e.
control or planning, but not both at the same time. The combination of control and planning in
one system would provide further insights. It would define additional data points for the design
of EMS interfaces. The implementation of an extended solution is therefore quite interesting.
Further, we observed further hierarchic applications with self-similar interfaces in related projects.
For instance in the work by Gupta and Duchon (2018) the same structure is used to define
applications for restoration scenarios in power systems. Such applications provide additional
insight in the application of hierarchical systems and extend them to further scenarios. We are
also quite confident that our work is beneficial for the specifications of the cellular energy system,
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which is currently discussed by the VDE (German Electrical Engineering Association). The
reason is that the presented concepts are still quite close to the modelling approach (as presented
by (Benz et al., 2015)). Therefore, it would be quite helpful apply our approach in such projects.

Evaluation and validation of the models in real field tests

The current specification of our interfaces is deduced from an MPC approach, which is a classical
way to show the potential for an improved operation of energy systems. However, the models
that we use are of course only approximations. Therefore, it is desirable to validate the accuracy
of the models in real experiments. This allows to determine and validate which factors are
additionally required for the model and which are not that important. Actually, we plan to validate
our second case study in a real laboratory with our partners. This laboratory is currently created
at the Technical University in Munich at the CoSES Research Center1. In this experimental
environment, we will be able to investigate the second case study in more detail. But, this is
future work for multiple researchers from the power system and computer science domain.

Using AI for EMS coordination

Our coordination relies on models that contain significant modelling knowledge of power system
engineers and depend a lot on specific scenario details. When modelling such a system, it is
always a lively discussion, which details are necessary, which parameters are considered in which
accuracy and which ones can be neglected in our coordination approach. Hence, the modelling
itself is quite time intensive and the details impact the required computational power to calculate
the optimal schedule for the components. The available framework allows to obtains real data
and apply machine learning techniques. The work of Andres (2019) shows the first steps in that
direction. It is of high interest to study if this can also be applied in a real environment. This
would reduce the modelling effort, and in addition, it could be a generic way to capture physical
models and topologies for coordination systems.

Transfer of the approach to other domains

Finally, our case studies evaluate the hierarchic architectures for coordination specifically for
the energy domain. Although the results indicate that the approach if applicable in this specific
domain, further evaluation is required, if we want transfer our approach to other domains.
Especially those domains are of interest that rely on the planning of resources and can be structured
in different hierarchies. Possible domains could be logistics, mobility, city planning or even
financial products. We expect that these domains require adapted models and new specifications
for the interfaces. Nevertheless, our approach might provide new thought-provoking impulses,
particularly for planning tools and systems for monitoring and control in these domains as well.

1CoSES: Center for Combined Smart Energy Systems
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Complementary to this thesis, we developed within our research group an EMS for a prosumer
to control the appliances that are part of our research environment. The developed system is a
layered, modular, component based automation system with a focus on energy efficient operation.
It hierarchically integrates an extensive set of heterogeneous devices and runs in a distributed
environment. We call the system SMG 2.0 1. It received several iterations from (Koß et al., 2012),
a SOA based prosumer system, to (Duchon et al., 2014) an improved sensor aided SES node.

Our EMS controls an SES node that consumes, produces and stores energy. It is a classical
prosumer system. Our hierarchical concept is a main architectural style to provide monitoring
and control interfaces (APIs) for applications. We developed several EMS services, that integrate
various sensors, actuators and different devices, which can be controlled to shift or adapt their
energy consumption. Flexible devices, such as a battery, provide additional operational flexibility.
We use them to optimize the building behaviour based on internal optimization criteria (e.g. user
settings) or on external stimuli (e.g. flexible prices), depending on the set up of our experimental
settings. This allows to react on external price signals, operate as a self-balancing system node or
participate as a component in demand side management solutions.

Research focus

The general aim of the SMG 2.0 system is to provide an experimental environment and collect
experience for the investigation of different smart energy problems and possible solutions. The
aim can be broken down into required functionality including: (i) technical solutions to integrate
our physical hardware (sensors and actuators) and their deployment on various system platforms;
(ii) conceptual solutions like interconnection to different stakeholders, energy markets or neigh-
bourhoods; (iii) algorithmic solutions like forecasts and optimized scheduling of devices; and (iv)
solution for human machine interactions (Duchon et al., 2014). The evaluation of those solutions
is part of the developers’ research activities.

Experimental setting

The SMG 2.0 system was developed at the research institute fortiss. It is the core software system
of the Smart Energy Living Lab to control and monitor various distributed devices. It provides a
variety of functionality for an energy efficient operation, its automation as well as an interface for
user interactions with the Living Lab. The Living Lab is a retrofitted office building with various
sensors, actuators and equipment for energy production and storage. We distinguish between four
categories of components that are available in the Living Lab. They are shown in Figure A.1.

The first category includes energy production and storage components. The Living Lab has
photovoltaic solar modules with 5.4 kWp installed power on the roof. It is connected with an
inverter to a number of selected office rooms of the building. In addition, we have a 8 kWh

1Smart Micro Grid 2.0
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Figure A.1: Smart Energy Living Lab: Technical overview

LiFePO4 battery system that supplies the same rooms. The Living Lab office space is extended
with additional energy data logging equipment that we process with our SMG 2.0 system as well.

The second category subsumes all the devices that belong to the building automation domain.
This includes the rich variety of sensors in the rooms, like temperature, humidity, occupancy,
brightness, smoke detection, and actuators for lights, blinds or power sockets. The equipment
from the second category covers a broad range of technological solutions, like KNX, Dali, BacNet,
Modbus, EnOcean, ZigBee, Z-Wave, etc. Depending on the use case, we used wired or wireless
solutions for building automation.

The third category of the Living Lab covers the field of smart meters. They provide relevant
energy data and protocols for Energy Data Management (EDM) applications and are expected
to act as a gateway, which aims to provide a rich functionality within the Home Area Network
(HAN). We use various vendors with different technologies in the Living Lab to understand the
implications of smart meters for the IT systems within the utility sector. Our equipment includes
smart meters from Fröschl, PacSentron, IP-Switch, EnOcean and Hexabus plugs.

Finally, the fourth category of devices is dedicated to thermal components, including heating
and air conditioning. This allows us to quantify the thermal demand of buildings and its users.
We can also identify additional flexibility of thermal energy demands to support functionality for
valley filling, or peak shaving by temporarily shifting the device’s operation. Further applications
in this category are related to the field of energy coupling, in which previously disconnected
infrastructural domains like electric and thermal installations are interconnected. This allows
further optimization of the energy efficiency, and additional strategies to improve the infrastructure
reliability.
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All devices of the four categories are controlled by our software system. For its implementa-
tion multiple requirements were important. We stated them in (Duchon et al., 2014), but in order
to understand the rational for the chosen architecture and how the hierarchical architecture helps
to address those requirements we give a short summary in the following.

Requirements

The core challenge was to design a system that can be developed stepwise and be maintained
as easy as possible, as our research projects often requires modifications, integration of new
components, and new functionality from the rich variety of energy related research tasks. We
therefore decided to have a very modular design. Beside that, we had a number of additional
requirements due to our living lab environment. The system should be: (i) able to handle various,
distributed sensors and actuators, independent of any vendor, (ii) able to gradually integrate new
functionality, (iii) able to build functionality that uses available functionality, (iv) extensible so
that new components and devices can be added or removed in an easy way, preferably at runtime,
(v) simple to configure, maintain, and troubleshoot, (vi) scalable, so that it can handle a lot of
communication and data exchange, (vii) able that the user adjusts the trade off between energy
efficiency and user comfort, (viii) offering various interfaces for outside communication, e.g. to
exchange data with mobile devices, energy markets, aggregators or utilities for ancillary services.

Based on the requirements and a previously available demonstrator that was based on a
layered, service oriented architecture (Koß et al., 2012), the system was adapted to enable more
flexibility with respect to the interconnection of functional components. This step also introduced
the hierarchic architecture as a generic principle of the EMS, which introduced an API for the
design and interconnection of new components within the system. We explain the hierarchic
concept as part of our architecture in the next step.

Generic architectures for prosumer EMS

The SMG 2.0 system is based on a modular, component based architecture that uses hierarchical
structures with similar interfaces in multiple software components. The provided functionality is
encapsulated in loosely coupled components. They can be developed and deployed independently
on a single machine as well as in a distributed system environment. The interconnection of
components is purely message-based. We use a scalable message brokering system that handles
the distribution of the messages between the connected components. The binding is based on a
publish-subscribe mechanism, that connects output messages to input queues of the connected
components. All messages can be also sent without an established binding, but they won’t be
delivered. This loose coupling eases the development and deployment of components and enables
to start and stop components independently of each other.

The available system components are shown in Figure A.2. We have chosen a layered ar-
chitecture to reduce the complexity for the interaction between the components and abstract
from the large heterogeneity of the hardware devices. We established four layers based on their
functionality. The lowest layer is responsible for the integration of hardware devices. It provides
an abstraction from the sensors and actuators and harmonizes their interaction with the system.
The layer above the hardware contains the core functionality of the system. It provides basic
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functionality for the SMG 2.0 system for further applications, including data aggregation, persis-
tence and management of components and can be seen as a middleware solution. The third layer
of SMG 2.0 contains the business logic. It is an EMS that includes components for automation,
analysis and planing. The layer additionally provides several APIs for external applications, such
as visualisations, market components, or external services. External applications have no access
to the internal message brokering system and belong to the fourth layer.

Figure A.2: Overview of SMG 2.0 software components

Hierarchy within the ContainerManager

Our system provides a solid base of functionality for the creation of various EMS applications.
We start with the most important component for applications - the ContainerManager. It is
used as a connection to the system’s sensors and actuators. The ContainerManager provides
the main API to access all recent information within the system and to control the actuators. It
is designed according our generic hierarchic concept and allows to organize and structure the
physical world entities, represented by the ActuatorClients, by their types, relationships and
functionality with composites that we call container. A container in the system represents a part
of the building that contains some connected devices. For instance a room is a container. It has a
unique id and contains various sensors (or rather the information for subscription to corresponding
ActuatorClients), actuators and other containers that represent further substructures, e.g. a work
space of an employee or a complex device that contains multiple sensors/ actuators. Every
container can be part of a higher hierarchical component, such as a room is part of a floor or
a building. The hierarchical structure of the ContainerManager is shown in Figure A.3. The
relationship between the containers is expressed by edges. It refers to the unique ids of the parent
and the child. Based on those associations, the ContainerManager establishes the communication
with the devices over the message brokering system.
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Figure A.3: The generic concept of the ContainerManager component in SMG 2.0 .

The ContainerManager bundles the information received by the components. It listens
to the events and aggregates them along the container structure in a bottom-up aggregation
process. We have implemented different aggregation functions for every building parameter,
such as lights, temperature and power usage. For lights we have multiple aggregations. We
consider that lights are switched on, if at least one light switch is turned on, but we also provide a
percentage value, that determines how much of the lightning is turned on. Beside that, we also
have light-sensors that measure the current brightness. If multiple light-sensors are present, the
aggregation is the average value. The averaging aggregation applies for temperature sensors as
well. The aggregation function for the power consumption is a sum. Only the aggregated values
are provided for applications that access the ContainerManager over its API and the message
brokering system.

The downwards direction, from application to devices, is also handled by the ContainerMan-
ager. It provides the interface to control devices. For some devices we have a unified control
mechanism, for instance for lights. Some of the devices are more complex. They have a unique
specification. The control is enabled by forwarding the specification of their interface. This
allows for applications to send specific control signals to the ContainerManager, which forwards
them to the devices, and makes sure that their initialization is correct.

Another concept of the ContainerManager includes the usage of so called virtual containers.
It is a concept to achieve higher flexibility to structure components. A virtual containers can
freely combine different rooms and devices. The virtual container has the same capabilities as a
regular container, however, it is not allowed to forward the values from the children upwards the
hierarchy, to keep the aggregation functions intact. This increases the flexibility for applications,
at the same time, the complexity remains controllable. Virtual containers can also be created at
runtime and exist temporarily. This allows users to get control over office rooms, or some devices,
only when necessary. At the same time, the values are not forwarded upwards. Hence, a virtual
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component receives all values such as the power consumption, however, they do not influence the
overall consumption of the building. This keeps the complexity as simple as possible.

Furthermore, the ContainerManager allows a reconfiguration of components within the
system. Any new ActuatorClient is initially connected to a container. The default container is
the fortiss building. A user with access to the configuration of the ContainerManager can easily
change the topology during runtime, by simply changing the edges between components. The
ContainerManager recognizes those changes and makes sure that the whole behaviour of the
system is adapted according the change, including the communication and the behaviour in terms
of the aggregation functions.

Hierarchic architecture for the integration of multiple prosumers

The introduced concept and its implementation by the ContainerManager is not only applied to
a single building automation system at fortiss, but is also successfully extended to distribution
networks with remote locations and multiple SMG 2.0 systems, each with its own ContainerMan-
ager as well. Such a system is implemented in the Amrita Smart Grid Demonstrator2 during the
collaboration within the Indigo Stabilize-E Project (Gupta and Duchon, 2018) with the goal to
improve the power supply reliability in local areas. We use multiple SMG 2.0 systems according
our architecture concept to realize the flexible interconnection of EMS systems. The setting of
the field test is shown in Figure A.4. Red boxes show the installed SMG 2.0 systems. They are
responsible for the control of smart devices, which are illustrated by the blue boxes.

Figure A.4: Electrical scheme of the Amrita Smart Grid Demonstrator with several hierarchic
SMG 2.0 prosumer systems based on (Gupta and Duchon, 2018).

2Amrita Vishwa Vidyapeetham (Amrita) - Center for Wireless Networks and Applications, Kerala, India, https:
//www.amrita.edu/center/awna, last accessed March 2020
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The integration process is as following: An SMG 2.0 system registers another SMG 2.0
system as a child device. After registration, the parent system receives monitoring and control
access to the aggregated functionality of the child SMG 2.0 . It gets only the aggregated values,
without access to its internal structure and internal events. The hierarchical structure is shown in
Figure A.5. The interconnection uses an ActuatorClient that establishes the connection via REST.
Internally, the ActuatorClient registers the children as complex devices and receives a container
ID from the ContainerManager. This allows to use the same ContainerManager specifications
even for remote and more complex devices. As a result, hierarchic architecture is used twice in
that field test, as an internal composition and an external one.

P2 P3 P4 P5 ... P8 P9 ... P15

Aggregator EMS 1 Aggregator EMS 2 Aggregator EMS 3

Control Station EMS

Intelligent
Node Level

Aggregator
Level

Control
Station Level

Figure A.5: Hierarchic composition of SMG 2.0 systems according (Gupta et al., 2016).

Further core components of the demonstrator

The other SMG 2.0 core components of the system have a support functionality. We shortly
describe them here to establish an understanding how the whole system works. A more detailed
description can be found in (Duchon et al., 2014).

The InformationBroker component represents the persistence of the data. It has access to a
database system and stores every event that is sent over the message brokering system. We usually
use a MySQL database on a larger server for this task. Occasionally, for some particular research
activities we also use a specialized embedded database on small devices like RaspberryPis and
Odroids, and also MongoDB for some specialized tasks. In addition to the storage functionality,
the InformationBroker provides an interface to for accessing historical data. This is particularly
important for higher level services. The InformationBroker has access to all system data, such a
user profiles, configurations or historical event data.

The ActuatorMaster component represents the central registrar. Is us responsible to register
all ActuatorClients from the lower layer. Whenever a new sensor or actuator component starts
in the system, it registers at the actuator master with the specification of its capabilities. The
master uses this specification to fulfil a number of tasks. First, it introduces the new client to
the other core components, including ContainerManager, InformationBroker, Ambulance and
Postman. From the introduction process, it receives additional information that it forwards to the
client. This particularly includes a container id from the ContainerManager. After a successful
registration, the clients can access the message brokering and send values or receive commands.
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A Additional hierarchic architectures for prosumers

The UserManager controls the authentication and authorization process for components of
users. It also manages the user profiles, which contain the desired settings, e.g. the room condi-
tions such as preferable temperatures, temperature sensitivity and light conditions. Furthermore,
it manages the user creation, deletion, or editing of users.

The Postman component is a notification system, that listens on all events and can generate
different messages, such as email, twitter, or sms. This allows to implement any form of
notifications that is desired by the system operator or system user.

The Ambulance component is responsible for the monitoring of the system’s health and the
management of the components. It checks which components are operational and which status
they provide. If any component is malfunctioning, the Ambulance component can stop and restart
the component. It can also generate events, so that the Postman components notifies the system
operator.

Further, the SMG 2.0 core components rely on a set of common libraries. Libraries are utility
functions to interact with components. The first one is the RemoteFramework. It handles the
access to the messaging system. The library was designed to support different message bus
systems. The current SMG 2.0 system uses the RabbitMQ3 message broker with the Advanced
Message Queuing Protocol (AMPQ) protocol. This allows a platform independent message
exchange. The RemoteFramework supports also other messaging systems, like the OSGi internal
message system, or the Java Message Service (JMS) and its implementation with Apache
ActiveMQ4. The second library SMGconf is used for configuration. It contains deployment
information like the addresses and ports of the server the system is running on, the database
access and logging configuration.

The SMG 2.0 architecture is designed for a flexible system environment, where any com-
ponent can be activated and stopped independently. We chose the OSGI platform for the
implementation as our main environment. It runs on top of the JVM (Java Virtual Machine).
The OSGI standard allows to implement components as bundles5 that can be installed, started,
stopped, updated and de-installed.

For further implementation details and a description of the other components we refer to the
previously published material (Koß et al., 2012; Camek et al., 2013; Duchon et al., 2014; Gupta
et al., 2015; Rottondi et al., 2015; Gupta et al., 2016; Gupta and Duchon, 2018).

3https://www.rabbitmq.com/, last accessed in August, 2019
4http://activemq.apache.org/, last accessed in August, 2019
5According the OSGi standard, a bundle is the smallest software unit of modularization. Technically, it is a .jar

file with additional meta information.
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B ∣ Additional visualizations for the results in MEMAP

This appendix presents more details for the MEMAP case study, which were not shown in the
previous chapter. Particularly, we show here the results of the optimization presented in Chapter 6
for each individual building. This represents the most efficient behaviour of a single building that
has an own EMS system. It is the upper cost bar for each building and therefore the reference
scenario to compare it with MEMAP’s operation. The costs for every building were already
presented in Table 6.1 for the fixed price and an cloudy summer day, and in Table 6.2 for the
variable price and a sunny summer day. We structure the following of this chapter accordingly.

Fixed price, cloudy summer day
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Figure B.1: The price signal for the scenario with the fixed price.

0:00 4:00 8:00 12:00 16:00 20:00 23:59

0.2

0.4

0.6

0.8

Time

N
or

m
al

iz
ed

so
la

rr
ad

ia
tio

n

solar radiation

Figure B.2: The solar radiation power, cloudy summer day.
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Figure B.3: Building #1, 6 hours MPC horizon, fixed price.

Building #1 has almost no flexibilities. Therefore it simply covers its thermal demand with its
oil boiler and buys all electricity on the market. The oil boiler has an efficiency of 95% and costs
of 6.85 [ct/kWh]1. The building has a daily electricity demand of 14.4 kWh, a thermal demand for
heating and hot-water of 51.4 kWh. The costs for that day are 7.42 e .

1Deutscher Energieholz- und Pellet-Verband e.V. (DEPV). Prices in Germany in August 2018. https://depv.
de/de/pelletpreis, accessed in September 2018.
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Figure B.4: Building #2, 6 hours MPC horizon, fixed price.

Building #2 has a similar thermal supply as the previous building but one additional photo-
voltaic system and a battery system. The optimization of its behaviour with a horizon length of
6 hours leads to a result, which stores enough power to cover a 6 hours period. The rest of the
produced power is sold to the market. During the times without solar power the optimizations
smooths the discharging such, that it continuously tries to discharge its battery in a 6 hours period.
Therefore, it discharges the battery quite slowly, and buys the rest from the market. The gas
boiler has an efficiency of 98% and costs of 5.91 ct/kWh. The demands for the day are 16.7 kWh
electrical and 25.0 kWh thermal. The corresponding costs of building #2 are 3.59 e .
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Figure B.5: Building #3, 6 hours MPC horizon, fixed price.

Building #3 has a 20 kW gas boiler with an efficiency of 98% and a 40 kWp photovoltaic
system. In addition, it has a heat pump and thermal storage for its heat demand. The demands
represent a multi family home. The optimization suggests to use the gas boiler at times, where the
electrical demand is higher than the PV production. Because the gas boiler has a maximum heat
production, which is often exceeded by the demand, the thermal storage is charged and discharged
regularly. The reason for the preference of gas is that its production costs 6.03 ct/kWh (i.e. 5.91
divided by 0.98), while the heat pump production with a COP of 2.5 and an electrical price of
25 ct/kWh costs 10 ct/kWh. A better heat pump with a higher COP, or less expensive electricity
costs could change this preference. During the sunny periods however, the heat pump becomes
more economical than selling the the overproduction and starts with additional production. This
charges the thermal storage as well. The overall costs of building #3 for that day are 48.44 e , to
cover 145.8 kWh electrical and 457.1 kWh thermal demand.
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Figure B.6: Building #4, 6 hours MPC horizon, fixed price.

Building #4 has no solar production and no gas or oil boilers. Instead it has a CHP that can
produce heat and electricity at the same time and a thermal storage to buffer heat. Its optimal
operation shows that it avoids to buy electricity under any circumstances. It covers all of its
electricity and stores the overproduced heat. In times with a very high thermal demand the CHP
produces a lot and sells the overproduction of the electricity. Otherwise, there are not much to
optimisation options left. The costs are 31.56 e for 127.5 kWh electricity and 286.5 kWh thermal
demand.
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Figure B.7: Building #5, 6 hours MPC horizon, fixed price.

Building #5 is similar as building #4, but it has in addition one solar thermic generation unit
with 20 kWp. Its daily demand is 80.5 kWh electric and 316.9 kWh thermal. This corresponds to
more heat oriented demand profile and changes slightly the behaviour. Building #5 still controls
its CHP in such way, so that it avoids any external buying. Hence, during sunny periods, with
additional heat generation from solar thermal generation, it operates electricity driven. In the
darker periods, it operates heat driven. The over production of electricity during the dark periods
is sold to the market. The operational costs are slightly improved with solar thermal production
and sum up to 25.82 e for that day.
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Variable price, sunny summer day

To compare the fixed price scenario with a more future oriented situation, where prices are used
as a signal to steer energy demands and supplies, we change the price profiles. We choose a
simple price curve with two different price levels with a high price and a low price period, for a
better understanding of the effect. Remember, that we sell the electricity with price that is 50%
less compared to the current market prices, to consider taxes and additional dues. Already this
simple price example shows that advanced EMS react to this external input. Additionally, to
explore more of the storage systems potential, we assume a sunny day in this scenario.
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Figure B.8: The price signal for the scenario with the variable price.
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Figure B.9: The solar radiation power for a sunny summer day.
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Figure B.10: Building #1, 6 hours MPC horizon, variable price.

Building #1 has the same behaviour in the flexible price scenario as before, because it has no
flexibilities to adapt its behaviour and reduce the costs. The costs for that day are 9.89 e , due to
the different electricity prices.
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Figure B.11: Building #2, 6 hours MPC horizon, variable price.

Building #2 changes its behaviour completely for the second scenario. Firstly, its storage is
completely used to reduce buying but particularly also for trading. The storage is fully charged at
low price periods and discharged at the high price periods. The heat is covered by the gas boiler.
The costs improves from 7.42 e in the first scenario to a negative value of -1.14 e in the second,
due to the increased solar radiation and trading with the battery. Negative costs mean that the
building has additional income.
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Figure B.12: Building #3, 6 hours MPC horizon, variable price.

Building #3 reacts on the variable price with its heat pump. During the low cost period, the
heat pump has a cheaper production than the gas boiler and can therefore save costs. It tries
to cover all the demand within the MPC horizon. In addition the heat pump is the preferred
device during the sunny period, where it is also used to charge the thermal storage. When the
price increases, the heat pump is only used to cover the heat demand, but not to produce heat for
storage. Instead, the electricity from the PV is sold to the market. During the dark times and
high prices, the electricity demand is bought from the market, while the heat demand is covered
by the gas boiler and thermal storage. The costs for that day are 11.44 e , which is a significant
improvement to the previous scenario, where they were more than four times higher.
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Figure B.13: Building #4, 6 hours MPC horizon, variable price.

Building #4 adapts its CHP usage to the variable price as well. During the low cost period it
operates heat driven together with the heat storage to cover the thermal demand. The remaining
electricity power is covered by the market. During the high cost period the CHP shifts to an
electricity driven operation, that never buys electricity, sells the overproduced electricity, and
supports with the heat demand with storage. When the MPC recognises an upcoming low cost
period (next day has the same price profile), the CHP increases its production to store additional
heat, which can be used during those low cost periods and reduce the CHP operation. The total
costs for that day are 31.00 e , which is a only decent improvement to the previous scenario with
31.56 e .
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Figure B.14: Building #5, 6 hours MPC horizon, variable price.

Building #5 has similar schedules as building #4, meaning that it operates heat driven during
the low cost period and uses its thermal storage as well. During the high cost period, it operates
electricity driven and uses the MPC horizon to store enough heat for the next day. An interesting
optimization result is that the freely available solar thermal heat production is not completely used,
when the high cost period starts. The reason is that at 12:00 the optimization sees only high prices
within the MPC horizon and wants to use the CHP to eliminate the need of buying electricity.
Since the usage of the CHP produces heat as well, it reduces the solar thermal production. The
costs of building #5 are 22.03 e , which is a decent reduction in comparison to the first scenario.

Short Summary

The second scenario with flexible prices shows that flexible buildings profit most. Photovoltaic
systems and batteries are particularly useful. They help to avoid buying of electricity, use heat
pumps and operate CHPs more heat driven. The reduction of costs is achieved by three major
factors: increased solar radiation, batteries, and the availability of several components to choose
the best option for each external condition. Particularly the last point is provided by MEMAP.
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