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ABSTRACT

The goal of this dissertation is the development and demonstration of methods to improve wind
condition awareness on wind turbine and farm level to finally benefit wind farm control and other
applications.

Currently, turbines are not fully aware of their wind inflow as typically only point measurements,
taken at the turbine nacelle, are available. Within a wind farm also, it is unknown where and how
wakes, characterized by reduced wind speed and increased turbulence, develop exactly. The interaction
between wake and turbine leads to power loss and increased fatigue loading. During operation of wind
farms today, this interaction is largely neglected, and therefore turbines are controlled individually to
optimize their own performance, instead of the collective wind farm performance.

Within this dissertation, first a new method is presented that improves wind condition awareness
on turbine level: By analysis of blade bending moments, which are available on many modern turbines,
the detailed inflow within the rotor disc of a turbine is inferred. Second, it is shown that such informa-
tion can be exploited to detect and measure the position of wakes within a wind farm. Additionally, a
method to improve and correct wind farm models by learning from turbine measurements, that are
today already available by default, is presented. Lastly, the wind and wake condition awareness is used
for the collective optimization of turbines using wake steering wind farm control.

Numerical simulations have been used to develop, test and improve the various methods and
models. The approaches have been validated and the technical feasibility has been confirmed in scaled
wind tunnel tests, that provide measurable and repeatable conditions. Full-scale tests and real turbine
data has been employed to prove and demonstrate the final applications.

The presented publications include practical examples of wind sensing and their applications.
Results feature a field test on a multi-MW turbine demonstrating the improved wind condition aware-
ness using the load-based inflow estimation method. On the same turbine, also the ability to detect
an impinging wake of a neighboring turbine could be successfully tested. The improvement of wind
farm models by learning from historical operating data has been demonstrated on a large 43-turbine
wind farm. The collective optimization of a wind farm during operation has finally been shown in
scaled wind farm experiments, rewarded by reduced loads and a significant increase in total wind farm
energy capture.

Deploying the presented methods in real wind farms, significant reductions in the cost of energy are
to be expected. But also further applications are possible, reaching from the assessment of historical
wind conditions and predictive maintenance to wake detection triggered sector management.
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CHAPTER 1

Introduction

It is extremely likely that the increase of greenhouse gases within the earth atmosphere and the
subsequent global warming since the mid-20th century is caused by human [1]. Due to the expected
devastating effects of future global warming, the Paris Agreement of 2015 formulated the goal of
keeping the temperature increase below 2◦ Celsius compared to the pre-industrial level. Today, this
agreement is signed or acceded by almost all countries [2] and many countries try to reduce their
greenhouse gas emissions.

A large fraction of man-made greenhouse gas emissions can already be attributed to electricity
generation and a further increase in the electricity demand due to the future electrification of other
sectors is very likely. Therefore, the development of solutions reducing the emissions from electricity
production are of huge importance. Apart from a more sensible and less lavish electricity consumption,
technologies to generate electricity with significantly reduced emissions can support the accomplish-
ment of the Paris Goals. Today, commercially available technologies include biomass, geothermal,
hydropower, nuclear, concentrated solar power, photovoltaics, and wind energy – here sorted from
high to low life-cycle equivalent CO2 emissions per kWh produced [3]. Note that wind energy still
has positive life-cycle emissions, which are however about 70 times smaller than for conventional
coal-fired power plants.

Even though there is no single best technology, wind energy has experienced a tremendous growth
during the last decades due to several reasons including policies, subsidies and significant technologi-
cal improvements. Indeed, the electricity production from wind energy has increased globally from
104 TWh in 2005 to 1273 TWh in 2018, representing more than a twelve-fold in 13 years. In 2018, 4.8%
of the global electricity production has been generated by wind energy [4]. In Germany, that number
has already reached 24.6% in 2019 [5]. This electricity is produced by a globally installed wind power
capacity of 591 GW at the end of 2018 [6], out of which 60 GW are installed in Germany. Forecasts
predict a relentless growth in the coming decades. The Stated Policies Scenario of the International
Energy Association predicts a globally installed wind energy capacity of 1856 GW in 2040, which is
more than three times the installed capacity at the end of 2018 [7].

The future growth of wind energy cannot be taken for granted. Indeed, the past growth revealed
some new problems that will become even more relevant in a widespread use of wind energy. Especially
in Germany, a public resistance caused among others by the turbines impact on landscape, their noise,
bird strikes, and psychological effects is becoming stronger. In fact, changed policies and other causes
have already led to a drastic reduction in new installations in Germany [8], especially in Bavaria [9].

Developing solutions to reduce such negative impacts on society and environment is part of the
agenda within industry and research, even though the core goal is typically a reduction of the cost
of energy [10]. Such cost reduction directly promotes wind energy usage leading to less emissions
from conventional power plants. Likewise within this dissertation: new methods and tools have been
developed, implemented and tested with the goal of improving the operation of wind farms and
thereby primarily decreasing their cost of energy. Indirectly, the developed methods can also help
reducing the negative impact of wind energy on the environment. For example, the achieved wind
farm efficiency improvement through wind farm control increases the energy capture per surface area.
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2 Chapter 1. Introduction

Thereby less space is needed and even sites with less good wind conditions can be economically used
for wind energy projects. Hence, ecologically or socially precious sites might be left untouched.

1.1 Research topics and innovative content

The goal of this dissertation is the development and demonstration of methods to improve wind
condition awareness on wind turbine and farm level to finally benefit wind farm control and other
applications. To structure the work, four main topics – wind sensing, wake detection, wind farm models,
and wind farm control – have been defined. Therein, methods and models have been developed and
tested based on numerical simulations; the technical feasibility and validation has been confirmed in
scaled wind tunnel tests; and full-scale tests as well as real turbine data has been employed to prove
and demonstrate some of the applications.

In the following, the four topics are highlighted, their background is discussed and the respective
innovative content within this dissertation is stated. Note that the topics and respective publications
are highly linked among each other, as also described later on. Some parts of the following text within
this chapter are excerpts of the various publications presented within this dissertation.

Topic 1: Wind sensing

Background: Wind turbines are not fully aware of the wind conditions they operate in. Every turbine
is equipped with wind sensors on top of the nacelle, which are typically used for aligning the
turbine into the wind and to identify whether cut-in or cut-out wind speeds have been reached.
Even though the complex turbine-flow interaction is typically anticipated, those measurements
are only accurate enough for some tasks.

External measurement equipment, as met-masts, LiDAR (Light Detection And Ranging) systems
and other remote sensing technologies are often costly and difficult to use and integrate. There-
fore, such equipment is mainly used in applications as site assessment or research projects. In
addition, external and nacelle-based sensors often provide point information only, however
wind conditions show spatial variability within the rotor disc and also within the whole wind
farm, especially in complex terrain [11], but also in large offshore wind farms [12].

The knowledge of the detailed wind turbine inflow during operation or even historically benefits
many applications. For example, a turbine controller can be improved when scheduled as func-
tion of wind speed [13], consumed turbine lifetime depends on historic wind and environmental
conditions [14], and for successful wind farm control it is crucial to know the atmospheric
stability and wake positions within a farm [15]. Moreover, wind farm power and weather fore-
casting, site assessment for wind farm extensions, wake detection triggered sector management
(shutdown for closely spaced turbines), estimation of available wind farm power, and many
further applications can benefit from detailed information of the inflow on each turbine rotor.

Innovative content: A new method estimating the turbine inflow using the rotor-as-a-sensor concept
has been developed, implemented and successfully tested within this doctoral project. The
wind estimation method bases on the analysis of measured blade root bending moments. The
key advantage of the method is that the implementation on a turbine is simple and cheap as
it requires only a software update. The necessary load sensors are already available on many
modern turbines, especially if individual-pitch-control or condition monitoring is installed.

In details, a new cone coefficient is defined and computed using a standard numerical turbine
model. The coefficient relates blade bending loads to the local inflow at the blade, depending on
the tip-speed-ratio, blade pitch and other parameters. Employing the coefficient or a respective
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look-up-table during turbine operation or historically, the estimated blade inflow can be mapped
to a part of the rotor disc given the known blade position. Thereby a local- or sector-effective
wind speed in four different quadrants of the rotor is estimated, but also local turbulence or
rotor-effective inflow shear, that can be used as rough proxy of the atmospheric stability, can be
inferred.

The method is tested systematically within a simulation environment in Paper 1. First exper-
imental tests in scaled wind tunnel experiments are described in Papers 2 and 3. Finally, a
successful field test on a 3.5 MW wind turbine is presented in Paper 4.

Topic 2: Wake detection

Background: The exact wake positions within a wind farm are often unknown or only know with low
accuracy. Modern wind farms may contain tens or hundreds of individual wind turbines. Each
machine converts a part of the kinetic energy carried by the air stream into electrical energy. As
a consequence of this energy conversion process, behind each wind turbine a complex wake
structure develops, which is characterized by a slower wind speed and a higher turbulence
intensity. Wakes undergo complicated phenomena, including the breakdown of near-rotor
vortical structures, mixing, recovery, meandering and merging with other wakes. All such
processes are strongly influenced by several parameters, including the operating conditions
of the machines, the characteristics of the atmosphere, the orography and roughness of the
terrain or the sea state, and the interactions among neighboring wakes. Wakes impinging on
downstream wind turbines within a wind farm are a cause of significant power loss and increased
fatigue loading [16]. Depending on the situation, the increased loading forces in some cases
wind farm operators to completely switch off closely spaced turbines for large wind direction
sectors (sector management) [17].

Several solutions to address the problem of wake interaction are currently being actively in-
vestigated, including the alleviation of loads on the affected downstream machines by active
controls [18] and the idea of redirecting wakes away from downstream turbines as discussed in
more detail in Topic 4. For developing such solutions, a precise knowledge of the wind inflow
conditions at the rotor disk of each machine as well as the wake positions within the wind farm
is essential. For example, when using wake redirection to alleviate a partial wake overlap, it is
necessary to know with certainty which side of the downstream rotor is affected, in order to
deflect the wake of the upstream machine in the correct direction.

The wakes within a wind farm can be predicted by wind farm models (see also Topic 3), for
example used in wind farm layout planning for the estimation of the annual energy production.
Some of those models show good long-term accuracy, however especially their short-term
prediction quality and reliability is strongly affected by a number of factors, including the stability
and characteristics of the atmosphere and the proper calibration of the model parameters, as
well as a good knowledge of the ambient wind conditions. For instance, during wind farm
operation even a small bias in the wind direction model input leads to a significant error in the
predicted wake position at a turbine several diameters downstream. In addition to wind farm
models, also LiDAR and other remote sensing devices have been proposed for measuring wake
positions within a wind farm. Installations are either based on ground [19] or nacelle [20, 21].
Even though some methods promise low cost, additional hardware is necessary by definition
and the integration might be difficult.

At present, wind turbines in wind farms do not operate based on a detailed understanding of
the wind conditions that affect them. In fact, wind turbines typically use only nacelle or hub
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mounted wind measurement devices, which can only provide information on wind speed and
direction at the single point in space where these devices are installed (see also Topic 1). Wind
turbines are therefore unaware of the presence of an impinging wake.

Innovative content: Different wake detection methods, employing the wind sensing methods (see in-
novative content of Topic 1 and Papers 1-4) have been developed, implemented and successfully
tested within this doctoral project. Key advantages are the abundance of additional hardware
compared to remote sensing solutions, and an improved accuracy with respect to wake models
in case of uncertainties.

The first method bases almost purely on the wind sensing methods and does not require any wind
farm or wake model. The result is an independent wake detection, that can still be compared to
wind farm model predictions, for example to identify significant violations between model and
reality. The method works as follows: The local wind estimation shows a distinct fingerprint of
an impinging wake, which is characterized by a significantly reduced flow velocity and increased
turbulence intensity in the part of the rotor disc that is mostly affected by the wake. A simple
but efficient threshold comparison has been proposed to indicate whether a wake impinges on
either side of a turbine rotor. The approach is tested within a simulation environment in Paper 1,
within a scaled wind tunnel environment in Papers 2 and 3, as well as in full-scale in Paper 4.

A second method measures the exact position of an impinging wake on a turbine rotor. Thereby,
a wake model is directly compared against the local flow velocity estimates, such that more
detailed information, carrying the exact wake position with respect to the rotor disc, can be
inferred. The method is tested in a scaled wind tunnel environment in Paper 8.

Finally, a sophisticated method has been developed that combines the wind sensing method
with a wind farm model. This way, the wind farm model is improved online during operation of
the wind farm, generating high quality predictions of the wake speed and position. Following
the updated model, significant improvements in model predictions can be achieved especially
during situations that are characterized by uncertain wind farm model inputs, as shown in wind
tunnel experiments in Paper 11.

Topic 3: Wind farm models

Background: Wind farm models are used to simulate the performance of wind power systems. A
wind farm model typically includes a model of the wind turbines and a model of the flow.

Various wind farm flow models have been developed and are described in the literature. While
Direct Numerical Simulation (DNS) is still out of reach for practical applications due to its
overwhelming computational cost, Large Eddy Simulation (LES) methods are now routinely
used for the modeling of wind farm flows [22, 23]. Although invaluable for the understanding of
the behavior of the atmospheric boundary layer and of wakes, LES is however still very expensive,
so that its use outside of some specialized applications is limited. To reduce cost, one can
resort to lower fidelity computational fluid dynamics (CFD) models [24], or to the extraction
of reduced order models (ROMs) from higher fidelity ones [25]. Instead of deriving models
from first principles, another widely adopted approach is to use engineering models, which are
expressed in the form of parametric analytical formulas with a limited number of degrees of
freedom and hence a much reduced numerical complexity [26–28].

Such analytical wake models, as opposed to high-fidelity CFD models, are usually simple, easy
to implement and computationally inexpensive. In fact, they only simulate macroscopic average
effects of wakes and not their small scales and turbulent fluctuations. Analytical wake models



1.1. Research topics and innovative content 5

find applicability in all those cases that do not need to resolve small spatial and fast temporal
scales, such as the calculation of the power production of a wind plant over a sufficiently long
time horizon. Such models are also extremely useful in optimization problems, where a large
number of simulations might be required before a solution is reached, or where calculations
need to be performed on the fly in real-time. Analytical wake models are thus often utilized in
wind farm layout planning and in the emerging field of wind farm and wake control [24, 29, 30].

Even though such models are constantly improved and refined [31], they will most likely always
exhibit only a limited accuracy in many practical applications, for example whenever an im-
portant role is played by effects such as orography, (seasonal) vegetation, spatial variability of
the wind, sea state roughness, the erection of other neighboring wind turbines, the presence
of obstacles, and others. In addition, low fidelity models often lack some physics, e.g. the flow
acceleration caused by wake and rotor blockage, secondary steering or others.

However, because of their indisputable usefulness, analytical wake models have been extensively
studied in the literature. The Jensen (PARK) formulation is one of the most widely used wake
models, to the extent that it is sometimes considered as the industry standard [32]. The model
was first introduced by Jensen [33], and later further developed by Katic [34]. Other widely used
and cited wake models include the Frandsen model [26], the FLORIS model [27], and the EPFL
Gaussian models [28, 35].

Innovative content: An analytical turbine wake model, previously published with errors, has been
corrected and presented in Paper 5. Due to the models double Gaussian wake shape, the wake
model features an improved accuracy with respect to state-of-the art models within the turbine
near wake.

In Paper 6, wind farm model parameters are identified based on wake velocity measurements at
hub height of an isolated scaled turbine, followed by an analysis of the model predicted power
production within a scaled 3-turbine wind farm. Similarly, several different wind farm models
are tuned in Paper 7 and a detailed analysis of their respective accuracy in velocity predictions is
presented.

Papers 8 and 11 combine the wind sensing approach (see Topic 1) with a wake model to enable
the quantitative position estimation of an impinging wake (see Topic 2) and an online correction
of the wake model itself.

Focusing on the practical applicability, Paper 9 describes a method to calibrate and correct
a wind farm model using only available SCADA (Supervisory Control And Data Acquisition)
measurements. The idea pursued takes a rather pragmatic approach: based on the realization
that it will always be difficult —if not altogether impossible— to include all effects and all physics
in a model of limited numerical complexity, a given model is corrected by unknown parametric
terms, which are then learnt by using operational data.

The application of wind farm models for wind farm control is discussed in Paper 13, and a scaled
wind tunnel experiment demonstrating model-based wind farm control using wake steering is
described and presented in Paper 12 (for both, see Topic 4).

Topic 4: Wind farm control

Background: In the past, most of the research in wind energy technology focused on the optimization
of wind turbines. In recent years, interest has expanded from the level of the individual machines
to the one of wind farms, or to emphasize its role as a production unit often also called wind
power plant within this context.
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Wind energy production is often organized in wind turbine clusters and farms rather than
single isolated wind turbines, because of lower construction, maintenance and commissioning
costs. Since the wakes of upwind turbines have a strong impact on the power and loading
of downstream machines, the design and planning of a wind farm take already the complex
interactions through the individual wakes partially into account [36].

Recently, interest has grown in the area of cooperative control of wind turbines during operation,
with the goal of maximizing the total wind farm power output, minimizing fatigue loading,
or achieving a given power setpoint [37]. To reach those or similar goals, some form of wake
coordination and control among the wind turbines is required. Ideas include the redirection of
wakes away from downstream machines [22, 38–40], the curtailment of upstream wind turbines
[41] and the promotion of a faster wake recovery, for example by periodic pitching of the rotor
blades [42].

Wake steering, a particularly promising approach, uses an intentional misalignment of the
upstream turbine rotor with respect to the incoming wind vector. Thereby, a lateral force is
induced on the flow, leading to a slight change in the local wind direction and to a deflection of
the wake downstream. The loss in power production caused by the turbine misalignment, can
be more than compensated for by the increased power production of a wake-free downstream
turbine.

Today, various wake steering wind farm control algorithms have been tested in simulation
environment [27, 43, 44] and first field tests are being conducted showing very promising results
[45–47].

Innovative content: A closed-loop wind farm controller, with a model-free gradient based extremum
seeking algorithm, has been tested in a scaled 3-turbine wind farm. The experiment presented in
Paper 10 shows significant power gains and is the first closed-loop wind farm control experiment
within a scaled wind farm. The work was awarded the Energy Price by the State of Bavaria [48].

The use or inclusion of wind farm models can improve the control performance and Paper 13
presents first a field validation of the model power predictions and second a model-based
estimation of the potential increase of the annual energy production for a specific onshore wind
farm assuming wake steering wind farm control.

Combining the wind sensing method with a wind farm model, improved predictions of the
wake speed and position, can be achieved (see Topic 2). Accordingly, in Paper 11, the expected
achievable power production of a scaled wind farm using wind farm control is predicted using a
wind farm model that is corrected online using the wind sensing method. Results highlight an
improved predictability, especially during situations that are characterized by uncertain model
inputs.

In Paper 12, a model-based wind farm controller for power maximization is tested in a scaled
wind farm with varying ambient wind conditions. The open-loop controller relies on look-up-
tables computed using different wind farm models, storing the optimal turbine misalignments
depending on ambient wind conditions. Even though dynamic effects as wake propagation are
not taken into account by the controller, a significant increase in power production could be
achieved, especially when using the method and wind farm model presented in Paper 9 (see
Topic 3).

1.2 Publications

Within this publication-based dissertation, thirteen publications are included and referred to. Fig-
ure 1.1 shows a schematic overview of all publications (Papers 1-13), and the respective references are
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listed below in Section 1.2.1. For reasons of clarity and comprehensibility, a color bar is assigned to
each paper in Fig. 1.1 showing the four main topics covered: wind sensing (light gray), wake detection
(gray), wind farm model (blue) or wind farm control (green). The papers are categorized in simulation,
wind tunnel and full-scale, see also the dashed lines. The publications led by the author of this disser-
tation are marked with superscript L, the remaining papers contain significant scientific contribution,
but are not led by the author.

Figure 1.1: Schematic overview of publications presented within this thesis.

The first set of papers (first column in Fig. 1.1) focuses on topics of wind sensing and wake
detection—starting at simulations, covering wind tunnel experiments and finally also full-scale ex-
periments. In Paper 1 the method of wind sensing and wake detection is described first and tested
systematically within a simulation environment. An experimental test within a wind tunnel is con-
ducted in Paper 2, including a validation using short-range LiDAR measurements of the turbine inflow.
The applicability of the wake detection method, also during individual pitch control (IPC), is shown
in Paper 3. Paper 4 finally presents a test and validation of the wind estimation and wake detection
methods on a multi-MW full-scale wind turbine.

The second set of papers (second column) focuses on wind farm models even though links to wind
sensing and wake detection exist. Paper 5 shows the development of a double Gaussian wake model
for the near wake. Papers 6 and 7 cover the tuning and comparison of wind farm (WF) models for
scaled wind turbines. Paper 8 combines the wind sensing approach with a wake model to enable the
quantitative estimation of wake position. Paper 9 describes a method to improve wind farm models
using historical turbine measurements.

The last set of papers (third column) focuses on wind farm control, and includes links to wind
sensing, wake detection, as well as wind farm models. In Paper 10 a closed-loop model-free wind farm
control algorithm is tested within the wind tunnel to maximize the total power. Paper 11 combines
wind sensing and wind farm models to online correct the modeled wake position and deficit, allowing
an improved prediction of the maximum achievable power during farm operation and control. Pa-
per 12 presents model-based farm control during wind direction changes using different underlying
wind farm models, again in wind tunnel experiments. Paper 13 shows finally the application of a wind
farm model on a full-scale plant to estimate wake losses and the potential increase in annual energy
production using wake steering control.
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1.2.1 List of publications

The following peer-reviewed, published and Scopus-listed publications have been included into this
thesis. The respective chapter of each publication (Chapters 3 to 15) includes a summary and states
the contribution of the author of this dissertation. As each publisher granted a reprint permit for this
thesis, a copy of each paper is also included in each chapter.

Publications led by the author:

• Paper 1: C. L. Bottasso, S. Cacciola, and J. Schreiber, “Local wind speed estimation, with ap-
plication to wake impingement detection,” Renewable Energy, vol. 116, pp. 155–168, 2018. doi:
10.1016/j.renene.2017.09.044

• Paper 3: C. L. Bottasso, S. Cacciola, F. Campagnolo, and J. Schreiber, “Wake detection for wind
farm control – formulation and validation,” 34th Wind Energy Symposium, AIAA SciTech Forum,
2016. doi: 10.2514/6.2016-1741

• Paper 4: J. Schreiber, C. L. Bottasso, and M. Bertelè, “Field testing of a local wind inflow estimator
and wake detector,” Wind Energy Science, vol. 5, no. 3, pp. 867–884, 2020. doi: 10.5194/wes-5-
867-2020

• Paper 5: J. Schreiber, A. Balbaa, and C. L. Bottasso, “Brief communication: A double-gaussian
wake model,” Wind Energy Science, vol. 5, no. 1, pp. 237–244, 2020. doi: 10.5194/wes-5-237-2020

• Paper 6: J. Schreiber, E. M. Nanos, F. Campagnolo, and C. L. Bottasso, “Verification and cali-
bration of a reduced order wind farm model by wind tunnel experiments,” Journal of Physics:
Conference Series, vol. 854, p. 012041, 2017. doi: 10.1088/1742-6596/854/1/012041

• Paper 8: J. Schreiber, S. Cacciola, F. Campagnolo, V. Petrović, D. Mourembles, and C. L. Bottasso,
“Wind shear estimation and wake detection by rotor loads — first wind tunnel verification,” Jour-
nal of Physics: Conference Series, vol. 753, p. 032027, 2016. doi: 10.1088/1742-6596/753/3/032027

• Paper 9: J. Schreiber, C. L. Bottasso, B. Salbert, and F. Campagnolo, “Improving wind farm flow
models by learning from operational data,” Wind Energy Science, vol. 5, no. 2, pp. 647–673, 2020.
doi: 10.5194/wes-5-647-2020

• Paper 11: C. L. Bottasso and J. Schreiber, “Online model updating by a wake detector for wind
farm control,” in 2018 Annual American Control Conference (ACC). IEEE, 2018, pp. 676–681. doi:
10.23919/ACC.2018.8431626

• Paper 13: J. Schreiber, B. Salbert, and C. L. Bottasso, “Study of wind farm control potential
based on SCADA data,” Journal of Physics: Conference Series, vol. 1037, p. 032012, 2018. doi:
10.1088/1742-6596/1037/3/032012 (publication led in equal amount by B. Salbert)

Publications with significant scientific contribution by the author:
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CHAPTER 2

Methods

Within this dissertation various new methods have been developed, but also existing methods have
been implemented and integrated. As presented in Section 1.1, four main topics have been defined
and the relevant methods are summarized in the following sections accordingly.

As this is a cumulative dissertation, the summarized methods have been published previously.
Consequently, this chapter contains also excerpts of the various publications included within this
dissertation.

2.1 Wind sensing

The concept of using the wind turbine rotor as a wind sensor has been proposed to improve wind
condition awareness [62–64]. In a nutshell, wind sensing uses the response of the rotor —in the form
of loads, accelerations and other operational data— to infer the characteristics of the wind blowing on
the turbine. Therefore, wind sensing is a sort of model inversion, where the response of the system is
used to estimate the disturbance (in this case, the wind).

The simplest and probably most widely used wind sensing technique is the torque-balance es-
timation [65, 66]. Thereby, turbine power or torque are used to estimate the rotor-effective wind
speed by the power curve or power coefficient. The concept has been also extended to estimate other
characteristics of the inflow, notably the wind directions and shears, as reviewed in [64].

Within this dissertation, a new method is developed that bases on an aerodynamic cone coefficient
and uses the blade out-of-plane bending moment to estimate the local wind speed at the position
occupied by a blade. The method is very similar to the torque-balance estimation of the wind speed,
with the important difference that it produces a localized speed estimate instead of a rotor-effective
one. The rotating blades therefore operate as scanning sensors that, travelling across the rotor disk,
sample the local variability of the inflow. In turn, the local wind speed estimates are used for obtaining
two key pieces of information on the inflow: the vertical shear, which is an important load-driver
and an indicator of atmospheric stability, and the horizontal shear, which can be used to detect the
presence and location of an impinging wake (methods are shown in Section 2.2). Today, only a scanning
LiDAR would be able to provide similar information on the inflow, albeit not exactly at the rotor disk
—as done here, as the rotor itself is the sensor in this case— and with a very different level of complexity
and cost.

The present method has some very interesting features. First, it is model-based, and therefore it
does not necessitate the use of extensive data sets for its training. Second, it is based on an extremely
simple model of the rotor (expressed through the cone coefficient), which can be readily computed
from a standard aeroelastic model of a wind turbine. Third, the resulting estimator is in the form
of a simple look-up-table that is computed offline, resulting in an online on-board implementation
of negligible computational cost. Fourth, when load sensors are already installed on the turbine for
load-alleviating control or monitoring, this wind sensing technique requires no additional hardware,
and therefore its implementation simply amounts to a software upgrade.

11
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The remaining section is organized as follows. First, the basic method to estimate the standard
rotor-effective and the novel blade-effective wind speed using the cone coefficient is presented in
Section 2.1.1. Second, a simple procedure to derive a sector-effective wind speed from the blade-
effective wind speed summarized in Section 2.1.2. Finally, it is shown in Section 2.1.3 how the effective
vertical and horizontal wind shear can be estimated.

2.1.1 Rotor- and blade-effective wind speed estimation

Considering a steady and uniform wind speed V , the power Cp and cone Cm coefficients are defined
as

Cp(β,λ, q) = TaeroΩ

0.5ρAV 3 , (2.1a)

Cm(β,λ, q,ψi ) = mi

0.5ρARV 2 , (2.1b)

where β is the blade pitch angle, λ=ΩR/V the tip speed ratio,Ω the rotor speed, R is the rotor radius
and A = πR2 the swept disk area, ρ is the air density and q = 1/2ρAV 2 the dynamic pressure, while
Taero is the aerodynamic torque. The azimuthal position of the i th blade is given by ψi , while mi is its
out-of-plane root bending moment. Coefficients Cp and Cm are readily computed using an aeroelastic
model of the turbine, today customarily based on a blade element momentum (BEM) method, for
example the one implemented in the FAST code [67].

Different approaches to estimate wind speed from the power coefficient are reviewed in detail by
Soltani et al. [66]. Here, both the power and the cone coefficients are used: while the former yields
a rotor-effective wind speed (i.e., an average quantity over the entire rotor disk), the latter is used to
sample the local wind speed at the azimuthal position occupied by a blade. Given coefficients Cp and
Cm computed for a reference air density ρref, look-up-tables (LUTs) are generated that return wind
speeds given measured loads Taero or mi , blade pitch β, rotor speedΩ and air density ρ. Noting the
rotor-effective wind speed estimated from the torque balance equilibrium as VTB and the one from
blade loads as Vi , the inversion of Eqs. (2.1) yields

VTB = LUTCp (β,Ω,Taero,
ρ

ρref
), (2.2a)

Vi = LUTCm (β,Ω,ψ,mi ,
ρ

ρref
). (2.2b)

Instead of the simple non-linear model inversion adopted here for simplicity, more sophisticated
methods can be used, for example based on Kalman filters or input observers [66], which may slightly
improve the results at the cost of an increased complexity. A rotor-effective wind speed can also be
obtained from the blade-effective ones by simple averaging over all (three) blades:

VB = 1/3
3∑

i=1
Vi . (2.3)

Although in a non-uniform inflow the two rotor-effective speeds VTB and VB are not necessarily
identical, they are in practice very similar. The redundancy offered by VTB and VB offers opportunities
for sensor calibration, as shown in Paper 4.

In Eq. (2.2a), Taero is computed from the dynamic torque balance equilibrium JΩ̇= Taero −Tmeas −
Tloss, where J is the total rotor, drivetrain and generator rotational inertia, while Ω̇ is the rotor acceler-
ation and Tmeas is the measured torque at the generator. Mechanical losses in the whole drivetrain
are taken into account by the term Tloss [66]. Here, for the accuracy of the wind speed estimate, a
dynamic model is used to compute the aerodynamic torque. In fact, the energy converted into rotor
acceleration or deceleration is typically large, given the large rotational inertia of the system.
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A simpler approach is used for Eq. (2.2b), where the blade dynamic response is neglected. This
way, the induced out-of-plane bending moment is directly set to the corresponding measured load,
i.e. mi = mi ,meas, where mi ,meas is provided by blade-mounted strain gages, optical sensors or similar
devices. Although even in this case one could include a dynamic model of the flapping motion,
similarly to what is done for the torque balance case, the smaller inertia and high damping of this
degree of freedom makes this more sophisticated approach superfluous.

The power and cone coefficients of Eqs. (2.1) are computed when the rotor axis is aligned with
the ambient wind direction. Hence, strictly speaking, Eqs. (2.2) can be used to estimate wind speeds
only in the same aligned conditions. However, this is typically not the case in practice, as turbines are
often misaligned with respect to the wind by several degrees. It is shown in the results of Paper 4 that
moderate misalignments do not significantly affect the estimation of wind speeds, and that the effects
of larger misalignments can be corrected for pragmatically.

2.1.2 Sector-effective wind speed estimation

An average wind speed over a rotor sector can be readily computed by averaging the blade-effective
estimate Vi between two azimuthal angles ψa and ψb:

VS =
∫

AS

Vi (ψ)dAS, (2.4)

where AS = (ψb −ψa)R2/2 is the area of the sector. A new sector-effective speed estimate is generated
as soon as a blade leaves the sector.

The sector width can be arbitrarily defined. Figure 2.1 shows the case of the four equally sized
90-degree-wide sectors, yielding the four sector-effective wind speed estimates VS,left, VS,right, VS,up,
and VS,down. Clearly, a finer sampling of the inflow over the rotor disk can be achieved by using smaller
sectors. With three blades, each of the sectors is updated three times per rotor revolution. With one
single instrumented blade, the update frequency reduces to once per revolution.

Figure 2.1: Wind turbine rotor disk with sectors and inflow coordinate system. This naming convention is in the
downstream viewing direction.

It is shown in Paper 1 that, for a linear inflow shear and a 90-degree-wide sector, the sector-effective
wind speed corresponds to the inflow speed at a distance of approximately 2/3R from the hub center.

2.1.3 Shear estimation

The vertical wind shear can be modeled as a power law profile with exponent α, while the horizontal
shear is assumed to be linear with coefficient κ. The inflow wind speed V can therefore be written as

V (z, y) =VH

((
z

zH

)α
+κ y

R

)
, (2.5)
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where z and y are the vertical and lateral coordinates, respectively, with origin at the turbine foundation,
as shown in Fig. 2.1. Furthermore, VH is the speed at the hub center, which is located at z = zH and
y = 0.

Assuming that the sector-effective speed samples the inflow profile at ±2/3R along the z and y
axes, according to Paper 1, the shear coefficients can be estimated from the sector-effective wind
speeds by using Eq. (2.5), which yields

αB = ln

(
VS,up

VS,down

)(
ln

(
zH +2/3R

zH −2/3R

))−1

, (2.6a)

κB = 3

2

VS,right −VS,left

VS,right +VS,left
. (2.6b)

This way, the vertical shear is estimated using the top and bottom sectors, while the horizontal
shear using the two lateral sectors. One could also use all four sectors together, and solve Eq. (2.5)
simultaneously in a least squares sense for both αB and κB.

2.2 Wake detection

The first part of this section, Section 2.2.1, includes the description of a model-free wake detection
method that almost purely bases on the wind sensing methods without the use of any wake model.
The second part, Section 2.2.2, describes methods to include a wake or wind farm model, such that
more detailed wake information can be obtained.

2.2.1 Model-free

The model-free wake detection method has been formulated exploiting the distinct fingerprint that a
wake causes on a downstream turbine when it is impinging on the rotor. The methods key feature is its
simplicity. Successful experimental tests have been conducted in wind tunnel experiments presented
in Papers 2 and 3, as well as in full-scale presented in Paper 4.

As a turbine wake can always be characterized by a reduced flow velocity, the sector-effective
wind speed estimates, see Section 2.1.2, of a turbine operating in the proximity or within a wake of
an upstream turbine, provides a variation, especially in the horizontal turbine rotor sectors. Without
wake interaction, the wind speed within the left and right sectors, see Fig. 2.1, are expected equal, if
averaged over a long enough time horizon to remove turbulent fluctuations. Note that a moderate
turbine misalignment, that generally occurs during normal turbine operation, is not affecting the
estimates significantly and that a larger known misalignment, used for wake steering, can be corrected
for. On the other hand, the vertical sectors (up and down) are not equal and vary depending on the
amount of vertical inflow shear caused mainly by the atmospheric stability and surface roughness.

A significant horizontally sheared inflow can be expected in case of larger obstacles blocking the
inflow, which are typically not within the proximity of wind turbines. Importantly, also a neighboring
wind turbine can be seen as obstacle, as due to the energy conversion process the flow velocity is
reduced.

Assuming a similar hub height of the upstream turbine and its wake following approximately the
surface of the terrain, the shed wake affects the downstream turbine horizontal sector-effective wind
speed estimates qualitatively as a function of wind direction as illustrated in Fig. 2.2. In the lower part
of the figure, different exemplary wake interference scenarios, indicated by letters A-E, are shown for a
wind farm of two wind turbines from top-view. The upstream turbine rotor is shown by the gray bar
and for the downstream turbine rotor the black and red bars indicate the left and right (downstream
viewing) rotor disc sectors respectively. The wake of the upstream turbine is depicted in blue and
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Figure 2.2: Illustration of the model-free wake detection concept.

the wake profile is sketched using dashed lines therein. The wake of the downstream turbine is not
included. The ambient wind direction is shown by the blue thick arrow and, as in conventional wind
farm operation, both turbine rotors are oriented to face the incoming wind. The upper part of Fig. 2.2
shows the velocity estimate or fingerprint in the left and right sectors as a function of wind direction.
For low wind directions corresponding to scenario A, the wake of the upstream turbine is not or only
very weakly affecting the downstream turbine. Still, depending on the wake expansion and wake
meandering a slightly reduced velocity may be estimated within the right sector, as it is closer to the
wake center. In scenario B the wind direction has increased, and the right sector is significantly affected
by the upstream turbine wake. The left sector is also partially affected and, depending on the wake
overlap a smaller or larger reduction can be observed. Note that this right sided wake impingement is
always characterized by a significantly lower velocity in the right sector compared to the left. Scenario
C shows the situation that the upstream turbine wake is fully impinging on the downstream turbine.
This full wake scenario shows significant reductions in both sector velocities. As no significant delta
between the two sector velocities can be identified, the scenario can be distinguished from a weak or
absent wake interaction (scenario A and E) by a comparison of the absolute flow velocity, for example
given by the rotor-effective wind speed estimate of the upstream turbine, indicated in gray. Scenarios
D, showing a left-sided wake impingement, and E are symmetric to scenario B and A.

Based on these observations, a simple approach to detect a wake interference condition is to
calculate the relative wind speed difference δV between the two rotor sides, by using a filtered sector-
effective and rotor-effective wind speed

δV = VS,right −VS,left

VB
(2.7)

where (̄·) indicates a low-pass filtered value. An indication of a left- or right-sided wake impingement
may now be obtained by evaluating the sign of δV and comparing its absolute value with a threshold.
Clearly, the choice of threshold and also low-pass filter cut-off frequency during implementation, see
Papers 3 and 4, is delicate and needs special attention as both depend, among other factors, on the
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turbine distance, the wake recovery in the given ambient wind conditions and of course the application
that is supposed to use the obtained wake detector information.

Note that this method can be used as trigger for wind farm sector management or similarly for a
gradient based wind farm control algorithm as presented in Paper 10.

2.2.2 Model-based

Wake position estimation

Based on the knowledge of wind conditions as the ambient turbulence intensity and wind speed,
analytical wake models, see also Section 2.3, can be used to estimate the wake shape and its speed
deficit. By evaluating the model at the downstream distance where the sensing turbine is located, a
model-based wake profile can be generated specific to the upstream turbine operation and current
ambient conditions.

In turn, one can calculate the wake model expected horizontal shear κM(d) and expected rotor-
effective wind speed VM(d) that a turbine operating within the wake at a given lateral distance d to the
wake center should be exposed to. The idea is then to match expected and load based observed shear
and as well as rotor-effective wind speed, in order to estimate the lateral distance d to the wake center.
This can be obtained by solving the following optimization problem

d = argmin
d

([
VB −VM(d)
κB −κM(d)

]T [ c
V 2∞

0

0 1−c
κ2

ref

][
VB −VM(d)
κB −κM(d)

])
, (2.8)

where scaling is performed by weights based on the mean ambient wind speed V∞ and a reference
shear κref, while c ∈ [0,1] allows one to give more emphasis to one term or the other. For example, the
actual value of V∞ can be set to the low pass filtered rotor-effective wind speed estimation of the first
row of wind turbines, while κref can be set to the maximum expected shear.

Clearly, instead of the horizontal shear κ also the relative wind speed difference δV can be used.
It is similarly possible to use the individual sector-effective wind speeds, or other turbine estimated
quantities as turbulence intensity, as long as the wake model shows a distinct dependency with respect
to the lateral wake position d .

The method is demonstrated in detail in Paper 8 by application on a scaled wind farm operated
within a wind tunnel.

Integrated wind farm model update

This section extends the above presented idea of the wake position estimation. Here however, the
corrections are fed back to the wind farm model itself. Thereby, based on the measurements made on
the plant, the model can be corrected at run-time and consequently also the model predictions can be
improved.

To correct model predictions, one might think of using standard and already available measure-
ments of power and hub-height wind speed, for example using a Kalman filter. Unfortunately, this
might not work in general because power and rotor speed might not carry enough informational
content to correct for some model errors, as shown in Paper 11. In fact, in the case of a biased power
prediction at a downstream wind turbine, one cannot distinguish whether the error is caused by a
wrong wind speed in the wake (for example, due to an inaccurate modeling of wake recovery) or by a
wrong location of the wake with respect to the impinged rotor disk.

This impasse is solved using the load based local wind speed estimates. This way, a wake model
can be improved online during operation of the wind farm, generating high quality predictions of
the wake speed and position within the farm. Depending on the application, the corrected model
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can be used for example to improve the model-based control action. The idea is presented here with
reference to a static wind farm flow model, although nothing in this approach prevents its extension to
the dynamic case.

Figure 2.3: Wind farm model update scheme.

Figure 2.3 illustrates the concept, highlighting the main components. In general, the plant provides
measurements of the ambient conditions to the wind farm model, such that it can be used for a specific
purpose, for example wind farm control. For wind sensing, the specific turbine loads are employed as
described in Section 2.1. By comparing the model outputs with the wind sensing estimates, the model
error is estimated and the correction is fed back to the wind farm model.

In the following, the model update method is formulated based on a generic non-linear static wind
farm model. A similar formulation could also be derived for a dynamic model, leading in that case to a
standard Kalman filtering problem. The static model is written as

x = f (m, p), (2.9a)

y = g (x), (2.9b)

where f is a non-linear static function, which depends on the model formulation. Measurements
of ambient conditions are noted m, and include air density and free stream wind speed as well as
direction (typically estimated by the upstream wind turbines). Physical tunable coefficients of the
model and the wind farm layout are represented by the vector of parameters p. The model states are
indicated as x, and in the present work they include the velocity and lateral position of the wake of each
turbine. A set of outputs y is defined by function g . The outputs may be represented by the turbine
power of the downstream turbines, but they also include estimated sector-effective flow velocities at
the downstream rotors.

In general, the predictions of the model states will be in error, due to a lack of model fidelity, mis-
tuning of the parameters or inaccuracies in ambient conditions. This can be corrected by introducing
a state error e. The corresponding corrected state x̂ becomes

x̂ = x +e. (2.10)

A maximum likelihood estimate of the state error can be readily obtained by solving the following
problem

min
e

(z − ŷ)TR−1(z − ŷ) (2.11)

where z are measurements and ŷ the corresponding updated model outputs (y = g (x̂)). For a given
fixed covariance R, this procedure corresponds to the method of least squares.

Note that, as ambient wind conditions are often uncertain, the presented formulation could be
extended by including these within the list of states. However, it is also clearly necessary to ensure the
observability of all chosen states. For example, a wrong wind direction might not be distinguishable
from a wrong wake location. The development of a general formulation for the estimation of wind
farm flow model states is a problem of great interest, which has been however outside of the scope of
this thesis.
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The method is demonstrated in detail in Paper 8 by application on a scaled wind farm operated
within a wind tunnel.

2.3 Wind farm models

Within this section first, in Section 2.3.1, a double Gaussian wake model is described that models
especially the near wake of an individual turbine. Second, in Section 2.3.2, it is shown how such a wake
model can be extended and integrated to model the flow velocities and turbine power within a wind
farm. Finally, in Section 2.3.3, a method to parameterize and improve a wind farm model by learning
from operational data is presented.

2.3.1 Wake model

The double Gaussian wake model is derived similar to the Frandsen [26] and EPFL single Gaussian
models [35]. Following their approach, the conservation of momentum principle is applied on an
ansatz velocity deficit distribution, which includes an amplitude function. Thereby, an expression for
the amplitude is obtained that assures conservation of momentum.

At the downstream distance x from the wind turbine rotor and at the radial distance r from the
wake centerline, the wake velocity deficit U∞−U (x,r ) is modeled as the product of the normalized
double Gaussian function g (r,σ(x)), which dictates the spatial shape of the deficit, with the amplitude
function C (σ(x)). This yields

U∞−U (x,r )

U∞
=C (σ(x))g (r,σ(x)), (2.12)

where U∞ represents the ambient wind speed and U (x,r ) the local flow velocity in the wake. The
double Gaussian wake shape function, which is symmetric with respect to the wake center, is defined
as

g (r,σ(x)) = 1

2

(
eD+ +eD−

)
, D± = − (r ± r0)2

2σ2(x)
, (2.13)

where r0 is the radial position of the Gaussian extrema. The standard deviation of the Gaussian
function, noted σ(x), represents the width (cross-section) of each of the two single Gaussian profiles.
The wake expands with downstream distance x, causing the transformation of the initial double
Gaussian profile in the near wake, through a flat-peak transition region, into a nearly single Gaussian
profile in the far wake. As in [35] the wake expansion function is modeled as a linear function with
respect to the downstream distance x

σ(x) = k∗(x −x0)+ε, (2.14)

where parameter k∗ controls the rate of expansion, while ε represents the wake expansion at x0, which
is the downstream position of the stream tube outlet. A detailed discussion on the derivation of the
parameters and x0, using a mass conservation between the Betz stream tube and the wake model can
be found in Paper 5.

The conservation of momentum principle is now applied on the ansatz velocity deficit distribution,
using the amplitude function C (σ(x)) as a degree of freedom. Accordingly, the axial thrust force T is
related to the rate of change of momentum p of the flow throughout the stream tube (see Fig. 2.4), i.e.

T = dp

dt
= ṁ∆Ũ = ρ

∫
AW

U (x,r ) (U∞−U (x,r )) dAW, (2.15)

where ṁ is the mass flow rate through the stream tube, ∆Ũ an effective wake velocity deficit, ρ the air
density and AW a planar cross-section at least large enough to contain the wake deficit. Equation (2.15)
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Figure 2.4: Stream tube with nomenclature: U∞ is the ambient wind speed; U (x,r ) is the local flow velocity
in the wake at the downstream position x and radial distance r from the wake centerline; ṁ is the
mass flow rate through the stream tube; AW is a planar cross-sectional area large enough to contain
the wake deficit, and A0 is the rotor disk area; T is the thrust force (by the principle of action and
reaction, an equal and opposite force is applied by the rotor onto the flow).

is only valid if there is an equal pressure and negligible flow acceleration at the inlet and outlet sections
of the stream tube and, additionally, if shear forces on the control volume can be neglected. The thrust
force T is customarily expressed through the non-dimensional thrust coefficient CT as

T = 1

2
ρA0U 2

∞CT, (2.16)

where A0 is the rotor swept area.
If the wake velocity, defined in Eqs. (2.12) and (2.13), is substituted into the Eq. (2.15), one obtains

T = ρπU 2
∞C (σ)

∫ ∞

0

(
eD+ +eD− − C (σ)

2

(
e2D+ +e2D− +2eD++D−

))
r dr. (2.17)

Note that, as the double Gaussian wake expands all the way to infinity, the integral boundary is set
accordingly. The integration of Eq. (2.17), whose details are provided in Paper 5, yields

T = ρπU 2
∞C (σ) (M −C (σ)N ) , (2.18)

where

M = 2σ2e
−r 2

0
2σ2 +p

2πr0σerf

(
r0p
2σ

)
, (2.19a)

N =σ2e
−r 2

0
σ2 +

p
π

2
r0σerf

(r0

σ

)
. (2.19b)

By substituting the thrust given by Eq. (2.16) into Eq. (2.18), and solving the resulting quadratic equation
for the amplitude function C (σ), one obtains

C±(σ(x)) =
M ±

√
M 2 − 1

2 NCTd 2
0

2N
, (2.20)

where d0 = p
4 A0/π is the rotor diameter. Both solutions of the amplitude function C (σ) would

theoretically lead to the conservation of momentum at all downstream distances. However, the velocity
profiles obtained by using C+(σ) are characterized by a negative speed (i.e., in the direction opposite
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to the ambient flow), and thus C+(σ) is deemed to be a nonphysical solution. Therefore, the true
solution for the amplitude function is C−(σ). In addition, a momentum-conserving solution exists
only if M 2 −1/2 NCTd 2

0 ≥ 0, which might not always be the case for large values of CT.
The derived expressions for M and N presented in this thesis differ from the results reported in

the original publication [32], even though all assumptions are identical. The expressions reported
in the original paper were also evaluated numerically, yielding nonphysical results that violate the
conservation of mass and momentum underlying the formulation.

In Paper 5 the wake model is calibrated and validated using large eddy simulations replicating
scaled wind turbine experiments.

2.3.2 Farm model

Using a static wake model, for example the double Gaussian model described in Section 2.3.1 and
Paper 5, the steady state velocities within a wind farm together with the corresponding operating
states and power outputs of all turbines can be computed using a farm model. As a basis, the ambient
conditions need to be known. A procedure to estimate those from un-waked machines operating in
free stream is described in Paper 13.

The algorithmic procedure which is typically followed in such wind farm models [27, 44] is summa-
rized in the following steps:

1. The power and thrust of the upstream turbines are computed based on the turbine aerodynamic
characteristics, the alignment with the local wind direction and the regulation strategy. In
practice the power and thrust versus wind speed curves are typically employed, and a cosine-law
is followed to model the power and thrust reduction due to turbine yaw misalignment.

2. The wakes shed by these turbines are calculated in terms of their speed deficit, see Section 2.3.1,
and trajectory. Depending on the wake model, a separate wake deflection model [38] can be
integrated in this step.

3. The velocity at the rotor disks of the turbines immediately downstream are now computed. In
case of multiple wake impingements on a rotor, a combination model is used to superimpose
multiple wake deficits.

4. Similarly, an added turbulence model [68] is used to estimate the turbulence intensity at a
downstream turbine rotor disk, as this local ambient parameter affects the expansion rate of the
turbine wake.

5. Steps 1-4 can be repeated marching downstream throughout the wind farm until the last down-
stream turbine is reached.

Different implementations of such wind farm models have been presented in literature and some
are open-source [69, 70].

2.3.3 Model augmentation

Within this subsection a method to improve and correct an engineering wind farm flow model by using
operational data is summarized. A detailed derivation is given in Paper 9.

The idea pursued takes a rather pragmatic approach: based on the realization that it will always
be difficult —if not altogether impossible— to include all effects and all physics in a model of limited
numerical complexity, the given model is corrected by unknown parametric terms, which are then
learnt by using operational data.
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In details, a reference baseline model is augmented with parametric error terms, which are iden-
tified using data. The baseline model already includes prior knowledge based on physics, empirical
observations and experience. Therefore, even prior to the use of data, a minimum performance can
be guaranteed. The choice of parametric error terms is driven by physics and the knowledge of the
limitations of the baseline model. Once the errors are identified using operational data, their inspec-
tion can help clarify the causes of discrepancy between model and measurements. Eventually, this can
be used to improve the underlying baseline model. Furthermore, by looking at the magnitude of the
identified errors, significant deviations from the baseline model can be flagged to highlight issues with
the model itself, the data or the training process.

Finally, it should be noted that the identification of the error terms can be combined with the tuning
of the parameters of the baseline model. This addresses yet another problem: tuning the parameters
of a model that lacks some physics may lead to unreasonable values for the parameters, as the model
is stretched to represent phenomena that is does not contain. The proposed hybrid approach, the
simultaneous identification of the parameters of the baseline model together with the ones of the
error terms eases this problem, as unmodeled phenomena can be captured by the model-augmenting
terms, thereby reducing the chances of nonphysical tuning of the baseline parameters.

As for many identification problems, it is in general not possible to guarantee that all unknown
parameters are observable and non-collinear given a set of measurements and, hence, given a certain
informational content. To address this problem, the method proposed in [71] can be used, where
the original unknown parameters are recast into a new set of statistically uncorrelated variables by
using the Singular Value Decomposition (SVD) of the inverse Fisher information matrix. Once the
problem has been solved in the space of the orthogonal uncorrelated parameters, the solution is
mapped back into the original physical space. This approach not only avoids the ill-posedness of the
original problem, but also allows one to clarify which physical parameters are visible given a certain
data set.

The method is applied and tested on a scaled wind farm as well as historical measurements of a
full-scale 43-turbine wind farm in Paper 9.

2.4 Wind farm control

The wind farm control strategy presented in this section targets the maximization of the wind farm
power output by redirecting, through yawing, the wakes shed by the upstream wind turbines. Part
of this section are excerpts of a CL-Windcon project deliverable report [72], written by the author of
this dissertation. Note that a very similar strategy could be followed with the objective of minimizing
or redistributing fatigue loads assuming the wind farm model is able to describe those. However, by
following the here described method, that is only targeting an optimization of the power production,
also beneficial effects on the fatigue load distribution can be observed: Due to misalignment, small
increases in the upstream turbine damage equivalent loads, which are in absolute terms still smaller
than those measured at the downstream turbines due to the wake induced inhomogeneity and turbu-
lence there, and a significant reduction at the downstream turbines, as they are less affected due to the
deflected wakes, could be observed in Paper 12.

The overall methodology is sketched in Fig. 2.5, which is split into two parts separated by the
dashed line. The upper part contains the modelling and optimization which can be done offline,
and the lower one contains the wind farm control method that runs online at plant level. By this
separation, the wind farm control algorithm does not require the execution of time demanding wind
farm simulations or optimizations during operation, which significantly simplifies its deployment in
industry.

The modeling and optimization parts rely on a static wind farm model, which eases the use of
offline computed look-up tables of turbine set-points. First, historic SCADA (Supervisory Control and
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Figure 2.5: Wind farm control scheme.

Data Acquisition) measurements of the wind turbines are used to estimate the historic ambient wind
conditions, for example following the approach presented in Paper 13, that bases on turbine power
and yaw orientation. If available, also historic loads can be used, employing the rotor-as-a-sensor
concept. Second a model tuning can be performed, following for example the approach presented
in Paper 9, where even unmodeled effects are learned. Even though a traditionally parametrized
baseline model leads to significant gains in power production, such learning increases the achieved
gains further as shown in Paper 12. Note that it is also possible to base the parameterization on other
field measurements or CFD simulations.

Once an accurate wind farm model is available, a look-up table of turbine set-points, i.e. the set of
yaw misalignments that maximize the wind farm power output, for a grid of ambient wind conditions
can be computed through optimization. In this regard, the most important inputs to such look-up
tables are

• the wind direction, which mainly affects the direction followed by the wakes during their down-
stream propagation;

• the wind speed, that mainly defines whether turbines are operated below or at rated power;

• the turbulence intensity, which mainly affects the wake recovery.

In addition, uncertainties can be taken into account by the optimizer. For example, an approach
can be followed that involves a robust optimization [43] or uncertainties can be accounted for employ-
ing the detector as presented in Paper 11. The most important sources of uncertainties include

• uncertainties in the measurement of ambient conditions, which can normally not be avoided.
For example, if the wind direction is, due to turbulence, post-processed with low-pass filters, the
induced phase delay could be a significant source of measurement or input error;

• model-plant mismatch: due to limited fidelity or wrong parametrization, the control-oriented
wind farm model cannot exactly replicate the real plant in all possible operating conditions. Note
that the work on model improvements presented in Paper 9 effectively reduces model-plant
mismatch;

• unmodeled dynamic effects: if the control-oriented wind farm model is, as in the present case, a
static model, dynamic effects, like wake advection or wind farm actuation delays (e.g. due to a
limited yaw rate), are not properly modeled. These effects generate uncertainties, which should
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be considered. For example, the effect of delays associated to wake propagation during changing
wind conditions can be partially cast into wind direction uncertainties;

• change of ambient conditions during control cycle: depending on the wind farm control fre-
quency, i.e. how often the turbine set-points are updated, the ambient conditions might change
during the cycle time. In case of large control cycles (e.g. every 10 minutes) the expected change
in wind direction within that time window should be accounted for.

The lower part of Fig. 2.5 shows the wind farm control logic which has to be executed online.
The approach allows a rather simple implementation in real plants [45–47]. First the ambient wind
conditions are estimated following the same or similar procedure as used for the historic SCADA data.
The control logic receives as input those ambient wind conditions, including wind direction, wind
speed and turbulence intensity. Filtering might be used to remove fast fluctuations, obtaining a control
behavior that only reacts to low-frequency changes [46, 73].

The core of the control logic is a simple interpolation within the look-up tables already computed
offline. In addition, some sort of logic needs to be included ensuring a save and reliable operation even
during unexpected events. Finally, the turbine set-points are dispatched to each individual turbine.
For each machine, the yaw misalignment can be applied as an offset to the current set point of the
turbine yaw controller. In this sense, the original yaw control logic of the turbine is unaffected, which
eases the implementation of wake deflection on existing turbines.

According to the presented method, the wind farm control potential of a specific wind farm
has been computed in Paper 13: By evaluating the wind farm model on historic wind conditions,
simulating the normal wind farm operation as well as the optimal one by employing identified optimal
turbine set-points, the expected increase in annual energy production (AEP) has been quantified. The
wind farm control method has been deployed in scaled wind farm experiments in Paper 12.





CHAPTER 3

Paper 1: Local wind speed estimation, with
application to wake impingement detection

3.1 Summary

First, a new method to estimate the rotor-effective wind speed (REWS) is presented. The method bases
on the definition of an out-of-plane bending coefficient, correlating the turbine loads to wind speed.
The coefficient can be computed using a blade element momentum based turbine simulation tool
and, if blade bending sensors are available at the given turbine, employed for wind estimation during
turbine operation. Based on dynamic turbine simulations, the new method is compared, also in terms
of rotor-effective turbulence intensity and integral length scale estimates, to a state-of-the-art torque
balance based estimator.

Second, the new method is further extended to estimate the local blade-effective wind speed and a
sector-effective wind speed (SEWS), which describes the wind speed of only a part of the rotor disc.
The later can be used for wind shear estimation and wake detection.

Simulations of a turbine operating within the wake of an upstream turbine are conducted, high-
lighting the ability to estimate the SEWS and turbulence intensity in highly non-uniform inflow. A
wake detector, that bases on a simple comparison of the estimated local wind speed in the left and
right part of the rotor disc, is tested in different wind conditions, including a meandering wake, and
during turbine misalignment with respect to ambient wind.

Demonstrations on NREL CART3 turbine measurements confirm, that the REWS estimation is in
good agreement with the state-of-the-art method and that the SEWS estimation correlates well with
met-mast reference measurements. A validation of the wind sensing methods on a multi-MW wind
turbine is presented in Paper 4.

3.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has conducted the implementa-
tion, simulations and experimental analysis, which have been supervised by Stefano Cacciola. Carlo L.
Bottasso developed the core idea of load-based wind sensing and all authors provided important input
through discussions feedback and by writing the paper.

3.3 Reference

C. L. Bottasso, S. Cacciola, and J. Schreiber, “Local wind speed estimation, with application to wake im-
pingement detection,” Renewable Energy, vol. 116, pp. 155–168, 2018. doi: 10.1016/j.renene.2017.09.044
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a b s t r a c t

Wind condition awareness is an important factor to maximize power extraction, reduce fatigue loading
and increase the power quality of wind turbines and wind power plants. This paper presents a new
method for wind speed estimation based on blade load measurements. Starting from the definition of a
cone coefficient, which captures the collective zeroth-harmonic of the out-of-plane blade bending
moment, a rotor-effective wind speed estimator is introduced. The proposed observer exhibits a per-
formance similar to the well known torque balance estimator. However, while the latter only measures
the average wind speed over the whole rotor disk, the proposed approach can also be applied locally,
resulting in estimates of the wind speed in different regions of the rotor disk. In the present work, the
proposed method is used to estimate the average wind speed over four rotor quadrants. The top and
bottom quadrants are used for estimating the vertical shear profile, while the two lateral ones for
detecting the presence of a wake shed by an upstreamwind turbine. The resulting wake detector can find
applicability in wind farm control, by indicating on which side of the rotor the upstream wake is
impinging. The new approach is demonstrated with the help of field test data, as well as simulations
performed with high-fidelity aeroservoelastic models.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Modern wind power plants may contain tens or hundreds of
individual wind turbines. Each machine converts into electrical
energy a part of the kinetic energy carried by an air stream tube
interacting with its rotor disk. As a consequence of this energy
conversion process, behind each wind turbine a complex wake
structure develops, which is characterized by a slower wind speed
and a higher turbulence intensity. Wakes undergo complicated
phenomena, including the breakdown of near-rotor vortical
structures, mixing, recovery, meandering and merging with other
wakes. All such processes are strongly influenced by several pa-
rameters, including the operating conditions of the machines, the
characteristics of the atmosphere, the orography and roughness of
the terrain or the sea state, and the interactions among neighboring
wakes.

Wakes impinging on downstream wind turbines within a wind

farm are a cause of significant power losses and increased fatigue
loading. Several solutions to address this problem are currently
being actively investigated [1], including the idea of redirecting
wakes away from downstream machines [2,3,4,5], the curtailment
of power of upstream wind turbines [6], the promotion of a faster
wake recoverydfor example by pitching the rotor blades [7]d, and
the alleviation of loads on the affected downstream machines by
active controls [8].

For developing effective solutions that are capable of actively
changing the wind farm flow, a precise knowledge of the wind
inflow conditions at the rotor disk of each machine is essential. For
example, when using wake redirection to alleviate a partial wake
overlap, it is necessary to know with certainty which side of the
downstream rotor is affected, in order to deflect the wake of the
upstream machine in the correct direction.

Unfortunately, at present wind turbines do not operate based on
a detailed understanding of thewind conditions that affect them. In
fact, wind turbines typically use nacelle or hub mounted wind
measurement devices, which can only provide information onwind
speed and direction at the single point in spacewhere these devices
are installed. Therefore, wind turbines are unaware of the presence
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of an impinging wake and of many other important inflow pa-
rameters, as for example vertical shear and veer. Clearly, this lack of
situation awareness severely limits the application of sophisticated
wind turbine and wind farm control approaches.

Reduced wind farm models [9,10], often based on engineering
wake models or model-compression techniques, are able to
represent to a certain extent the wind farm flow conditions and
wake interactions at a moderate computational complexity. Given
their limited computational cost, such models are also good can-
didates for the synthesis of model-based controllers. However, the
quality and reliability of the predictions provided by these models
are typically affected by a number of factors, including the stability
and characteristics of the atmosphere and the proper calibration of
the model parameters. Even in this case, a more sophisticated
awareness of the flow conditions than it is currently available
would prove very valuable. If one could measure the wind condi-
tions at the rotor disk of each machine, this information could be
used to improve/correct the predictions of the reduced order
models, in turn providing higher quality information for advanced
control applications.

LiDARs (Light Detection And Ranging) are remote sensing de-
vices that are able to measure wind conditions and to detect wakes
and their locations [11]. Both ground-based and nacelle-mounted
LiDARs, possibly used in synergy, can provide a fairly complete
description of the flow at the sampling rates necessary for wind
turbine and wind farm control. Unfortunately, however, the use of
LiDARs is still confined to research applications, and they are not yet
routinely deployed in the field on production machines because of
cost, availability, reliability and technological limits of the

measurements. These include spatio-temporal averaging,
complexity of multi-component measurements of the wind vector,
effects of turbulence convection and interaction with the rotor in-
duction zone.

In summary, there is a need to develop alternative methods for
wind flow measurement that can improve the situation awareness
of wind turbines. Such methods should be simple and reliable, and
they should be able to provide detailed information on the flow
characteristics at each wind turbine rotor disk in real time during
operation. The availability of such new methods would facilitate
the development of modern smart control approaches, to improve
power capture and reduce loading for wind turbines operating
within power plants.

To address these needs, the concept of using the rotor as a
generalized anemometer has been recently proposed [12,13,14,15].
In a nutshell, the idea ofwind sensing is that any change in the wind
conditions at the inflowwill be reflected in a corresponding change
in the response of the rotor. In other words, there is in general a
well defined map between some wind parameters and some spe-
cific features of the rotor response. By measuring such response
dfor example in terms of blade loads or accelerations, torque, rotor
speed, blade pitch, etc.d one may invert the map, under suitable
hypotheses and conditions, to estimate the wind characteristics.
Recent results (see Ref. [15] and references therein) indicate that
several wind states can be reliably observed using blade loads,
including wind speed, vertical and horizontal shears, lateral
misalignment and upflow. As many modern machines are already
equipped with load sensors, typically for enabling load-alleviating
feedback control laws, the implementation of such approaches

Notation

A Rotor disk area
AB Planform area of the rotor blade
AS Area of a rotor sector
B Number of blades
Cm0 Cone coefficient
CP Power coefficient
D Rotor diameter
E½$� Expected value
J Rotor inertia
P Measurement noise variance
Q Process noise variance
R Rotor radius
Taero Aerodynamic torque
Tfriction Friction torque
Tgen Generator torque
V Wind speed
m Out-of-plane bending moment
n Gearbox ratio
q Dynamic pressure
r Spanwise radial coordinate
t Time
u Longitudinal wind speed
v Measurement noise
w Process noise
z Kalman filter output
U Rotor speed
b Blade pitch angle
dTI Left-right relative turbulence intensity difference
dV Left-right relative wind speed difference
ε Error

g Horizontal wind misalignment
k Vertical power-law shear exponent
klin Vertical linear shear coefficient
l Tip speed ratio
j Azimuth angle
r Air density
s Standard deviation
x Non-dimensional spanwise radial coordinate
ð$Þ Average quantity
_ð$Þ Time derivative,d$=dtcð$Þ Measured quantity
ð$ÞBE Blade-effective quantity
ð$ÞRE Rotor-effective quantity
ð$ÞSE Sector-effective quantity
ð$Þh Quantity referred to the hub
ð$Þi Quantity referred to the ith blade
ð$Þk Quantity referred to the kth time step
BEM Blade Element Momentum
BLE Blade Load Estimator
HAWT Horizontal Axis Wind Turbine
ILS Integral Length Scale
LiDAR Light Detection And Ranging
REILS Rotor-Effective Integral Length Scale
RETI Rotor-Effective Turbulence Intensity
REWS Rotor-Effective Wind Speed
SETI Sector-Effective Turbulence Intensity
SEWS Sector-Effective Wind Speed
TBE Torque Balance Estimator
TI Turbulence Intensity
TSR Tip Speed Ratio
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may not require any additional hardware, and therefore may come
at the cost of a simple software upgrade.

The current paper falls within the new field of wind sensing.
Within the general idea of using the rotor as a wind sensor, the
present work proposes a new and simple method to estimate some
wind characteristics that imply non-uniformwind conditions at the
rotor disk. Relevant examples are vertical shear and the impinge-
ment of a wake shed by an upstream machine.

The method is based on the estimation of the wind speed by the
out-of-plane blade bending moment, as explained in more detail in
Section 2. Similarly to the thrust coefficient, one may define a cone
bending coefficient, which depends on the tip speed ratio (TSR) and
blade pitch. The cone coefficient captures the (collective) zeroth-
harmonic of the blade loads, and it can be interpreted as the con-
stant term produced by Coleman-transforming the individual loads
of each blade. Using the three blades together, knowledge of the
loads in addition to rotor speed and blade pitch allows one to es-
timate a rotor-equivalent wind speed from the cone coefficient. The
estimate is obtained by the use of a Kalman filter, which enhances
the robustness of the approach in the face of noise and distur-
bances, always present in practical applications in the field.

A similar rotor-equivalent estimate of the wind speed may be
obtained by the well known torque balance estimator [12]. In that
case, one uses the power coefficient and, based on measured shaft
torque together with rotor speed and blade pitch, wind speed is
obtained by filtering. A comparison between the two approaches
shows results of similar quality. It is speculated that the present
approach might yield better estimates in the high frequency
spectrum, especially onmachines with particularly large diameters.
In fact, the flap response of the rotor is not slowed by its large rotary
inertia, as it is on the other hand the case for the torque balance
estimator. Results shown in this paper indicate that the method has
sufficient temporal resolution for estimating with good accuracy
even the Turbulence Intensity (TI), and in turn the Integral Length
Scale (ILS) of the flow.

However, a crucial difference of the proposed approach with
respect to the torque balance method is that the former can be
specialized to the observation of local flow conditions on different
parts of the rotor; this is in contrast to the exclusively global esti-
mates provided by the latter. Specifically, by using the load infor-
mation for each single blade independently, one may sense the
wind at the azimuthal location occupied by that blade, as explained
in Section 3. Averaging over an azimuthal interval, an estimate of
the local wind speed in a rotor sector can be readily obtained. In
turn, from the local wind speed one may also easily derive an es-
timate of the corresponding local TI.

This new idea is here developed by subdividing the rotor into
four quadrants, although other choices are clearly possible. The
local speed estimates obtained by the proposed method may be
used to detect speed differences over the rotor disk. At first, the idea
of detecting the effects of the vertical shear is investigated by using
field test data. Experiments conducted with different data sets
show that the vertical distribution of wind speed detected over the
top and bottom rotor quadrants correlates well with the one
measured by a met-mast equipped with anemometers.

In Section 4, the new proposed concept is finally applied to the
observation of waked conditions. A simulation environment is used
in this case. Although any model cannot clearly be perfectly faithful
to reality, the use of simulations has the advantage that one has a
complete knowledge of the situation. In the present case, this
means that one knows exactly the ground truth wind speeds in the
various areas of interest. In addition, it is easier within a simulation
environment to try and determine the effects of various disturbing
effects. The study considers various waked conditions, which differ
in the degree of overlap with the affected rotor disk. Extensive

simulations and comparisons of the results of the observationswith
respect to the reference exact solutions demonstrate the general
ability of the proposed formulation of distinguishing between
waked and unwaked conditions, indicating the affected rotor side
of the interaction. Other recent related papers [16,17,18] present
studies of the performance of the same method with reference to
experimental data measured on a scaled wind farm facility. The
papers also show how to estimate the wake position based on the
local wind speed estimates developed in the present work.

Finally, the present work is terminated by Section 5, where
conclusion are drawn and plans for future work are sketched.

2. Estimation of rotor-effective wind parameters

2.1. A novel formulation for wind speed estimation based on the
cone coefficient

In this work, the Rotor-EffectiveWind Speed (REWS) is obtained
by a Blade-Load-based Estimator (BLE), which makes use of the
zeroth harmonic (or cone) of the out-of-plane bending rotor loads.
Considering a steadywind condition, the cone coefficient is defined
as

Cm0ðlRE;b; qREÞ ¼
1
2p

Z 2p

0

XB
i¼0

miðjiÞdj

1
2 rARV

2
RE

; (1)

where lRE ¼ UR/VRE is the rotor-effective TSR, U the rotor speed, R
the rotor radius, VRE the REWS, b the blade pitch angle, B the
number of blades, mi the out-of-plane root bending moment of
blade i (which occupies the azimuthal position ji over the rotor
disk), r the density of air, A the rotor disk area and finally

qRE ¼ 1=2rV2
RE the rotor-effective dynamic pressure. The numer-

ator of the right hand side represents the average over a rotor
revolution of the sum of the out-of-plane blade bending moments,

m0 ¼ PB
i¼1mi. In the terminology of the Coleman transformation,

m0 represents the collective, cone or zeroth harmonic of the loads,
while the higher harmonics would be given by appropriate sine and
cosine combinations of the same loads [19].

As in the case of the familiar power and thrust coefficients, also
the cone coefficient depends on the operating condition through
TSR and blade pitch. In addition, as indicated on the left hand side
of the previous expression, the cone coefficient also depends on
dynamic pressure. In fact, rotor and tower deform under loading, so
that the same TSR and blade pitch at two different wind and/or
density conditions may in principle correspond to slightly different
non-dimensional cone (but also power and thrust) coefficients.

Once the cone coefficient has been computed for all operating
conditions of interest, Eq. (1) can be used to estimate VRE. To this
end, the equation is rewritten for the generic time instant t as

bm0ðtÞ ¼
1
2
rARV2

REðtÞCm0ðlREðtÞ;bðtÞ; qREðtÞÞ; (2)

where bm0 is computed based on the measurements provided at
that instant of time by blade load sensors. The rotor-effective dy-
namic pressure qRE is computed by a moving average looking
backward in time over a suitable time window, to capture the
working point about which the machine is operating. Since also the
rotor speed U can be easily measured together with the blade pitch
angle b, the sole unknown in the equation is the REWS VRE, which
can therefore be readily computed.

The contribution of the gravitational loads are assumed to have
been eliminated from the blade bending moments. In fact, not
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having an aerodynamic origin, gravitational loads cannot be non-
dimensionalized by the denominator of Eq. (1). In turn, this pre-
vents the correction of the coefficient for density, which is on the
other hand important for the practical application of the method in
realistic conditions. The elimination of the effects of gravity is
achieved by first pre-computing the corresponding bending mo-
ments for preselected values of the azimuthal blade position, at
each time step interpolating these values to get the one corre-
sponding to the actual position, and finally subtracting the inter-
polated value from the currently measured bending moment. As
previously noted, to account for the deformation of the machine at
different operating points, such procedure can be scheduled in
terms of the current mean dynamic pressure.

To increase the robustness of the estimates in the face of mea-
surement and process noise, an Extended Kalman filter is used for
the computation of VRE. The wind speed update at the generic time
step k is defined as

VREk
¼ VREk�1

þwk�1; (3)

wk being the process noise with covariance Q. The very simple
model used here has the advantage of depending on the single
tuning parameter Q, and it performed reasonably well in the ex-
periments reported later on. Nonetheless, it is clear that a more
sophisticated model of the wind dynamics might be considered, for
example in order to ensure specific characteristics to the wind
spectrum. Finally, the non-linear output equation of the filter is
defined as

zk ¼
1
2
rARV2

REkCm0

�
lRE; b; qREk

��m0 þ vk; (4)

where vk is the measurement noise with covariance P, while the
output zk is set to 0 to enforce Eq. (2) at each step. The filter pa-
rameters Q and P should be tuned in order to obtain good quality
estimates in different wind conditions, as shown later on in the
results section.

2.2. Estimation of wind speed by the power coefficient

A dynamic Torque Balance Estimator (TBE) [12,20,21,22,23] of
the REWS is described next. The well known TBE is introduced to
provide a reference performance in the estimation of the wind
speed, to be used for comparison and validation of the previously
described cone-coefficient-based estimator. The TBE uses a dy-
namic model of the rotor torque balance, which writes

JU
:

¼ Taero � nTgen � Tfriction; (5)

where J is the moment of inertia of the rotor-generator-drive-train

assembly referred to the low speed shaft, U
̇
the rotor acceleration,

Taero the aerodynamic torque, n the gearbox ratio, Tgen the generator
torque and Tfriction(U) a mechanical loss term accounting for friction
in the bearings and drive-train. The aerodynamic torque can be
expressed as a function of the power coefficient CP as

Taero ¼ 1
2U

rAV3
RECPðlRE; b; qREÞ: (6)

Note that the power coefficient, similarly to the cone coefficient,
is a function of the dynamic pressure as it may be influenced by
aeroelastic effects. Here again, as all quantities appearing in the
equation are either measured or can be estimated, the sole
remaining unknown is the REWS VRE for which the equation can be
solved.

Even in this case, to hedge against disturbances and noise the
Extended Kalman filter is used, resulting in the following non-
linear output equation

zk ¼
1
2U

rAV3
REkCP

�
lRE; b; qREk

�� nTgen � Tfriction � JU
:

þ vk: (7)

2.3. Estimation of turbulence intensity and integral length scale

The Rotor-Effective Turbulence Intensity (RETI, noted TIRE) is
directly obtained by the 10-min REWS mean VRE and standard
deviation sVRE

:

TIRE ¼ sVRE

VRE
: (8)

Clearly, for the RETI to be a good quality estimate of the real flow
turbulence intensity interacting with the rotor disk, the REWS
should approximate the real wind speed in a sufficiently ample
bandwidth, typically up to 0.2 Hz. In this sense, REWS estimators
that perform an excessive filtering effect might not provide for
suitable estimates of the RETI.

The Rotor-Effective Integral Length Scale (REILS) is readily ob-
tained based on the 10-min auto-correlation of the REWS, as for
example described in Ref. [24].

2.4. Comparison of the two methods

Before moving on to the estimation of local wind speeds, esti-
mates of rotor-equivalent wind quantities based on blade loads are
compared to the ones obtained with the use of the well known TBE,
with the purpose of establishing the performance characteristics of
the new method.

At first, a simulation study was conducted by using the high-
fidelity aeroservoelastic model of a 3 MW wind turbine, imple-
mented with the modeling environment Cp-Lambda [25]. The
machine is an upwind three-bladed variable-speed HAWT, repre-
sentative of current wind turbine designs, with a rotor diameter of
93 m and a hub height of 80 m. The wind turbine is modeled as a
flexible multibody system expressed in Cartesian coordinates,
whose blades and tower are rendered using geometrically exact
beam models, which are in turn discretized in space using the
isoparametric finite elementmethod. Lagrangemultipliers are used
for enforcing mechanical constraints, resulting in a high-index
differential algebraic formulation, which is marched in time by a
preconditioned energy decaying integration scheme [26]. The
aerodynamicmodel is based on the coupling of lifting lineswith the
classical Blade Element Momentum (BEM) theory. The model
operates in closed-loop with a collective blade pitch and torque
controller. Turbulent wind fields were obtained with the TurbSim
code [27]. At each instant of time, sensors within the model,
including strain sensors at the blade roots emulating strain-gages,
gather the necessary information that is in turn fed to the
estimators.

At each time instant, a reference “ground-truth” REWS was
calculated from the wind grid as

VRE;grid ¼ 1
A

Z2p
0

ZR
0

uðr;jÞr dr dj; (9)

where u is the wind speed in the longitudinal direction, similarly to
what done by Østergaard et al. [20]. Other definitions are possible,
as the one used by Soltani et al. [12], where wind speed is weighted
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by the local power coefficient. Based on this reference REWS,
reference RETI and REILS were readily obtained, as previously
described.

Fig. 1a shows at top the reference REWS (at left) and RETI (at
right), for parts of one turbulent wind realization characterized by
an ambient wind speed of 20 m/s with a TI of 5% and a vertical layer
with shear exponent equal to 0.2, based on the Kaimal turbulence
model. The bottom part of the figure shows the corresponding er-
rors between estimate and reference, for both the REWS (at left, in
meters per second) and the RETI (at right, in percentage points).

For different average wind speeds and TIs, the estimation error
mean E[ε] and standard deviation s

ε
are shown in Table 1a. These

quantities are computed on one realization of the turbulent wind
time history of 40 min of length, which are enough to bring the
statistics to convergence. Results indicate that both methods pro-
duce similarly good estimates.

For the same wind conditions, Table 2 reports the statistical
properties of the estimation error for the REILS, in percentage.
Again both estimators yield reliable results, although the TBE ap-
pears to be slightly more accurate.

Next, field measurements were used to characterize the quality
of the BLE, again in comparison with the TBE. Measurements were
obtained on the CART3 (Controls Advanced Research Turbine, 3-
bladed) [28], operated by the National Wind Technology Center
(NWTC) of the National Renewable Energy Laboratory (NREL). This
600 kWwind turbine has a rotor radius of 20m and a hub-height of
40 m.

A met-mast is located 85 m from the wind turbine, and it is
equipped with three anemometers and wind vanes located at 15,
36 and 55 m above ground. Wind recordings sampled at 400 Hz
were selected for wind directions aligned with the met-mast and
wind turbine axis. To account for the time delay between met-mast
and wind turbine, the three anemometer measurements were first
averaged at each time instant to give a rotor meanwind speed, and
then time-shifted based on the 1500-s averaged mean wind speed.

The wind turbine cone and power coefficients were based on a
previously validated aeroelastic model of the wind turbine, implemented with the simulation tool FAST [29,30]. The co-

efficients were obtained by averaging the machine relevant

Fig. 1. Top: reference REWS (at left) and RETI (at right). Bottom: estimation errors for REWS (at left) and RETI (at right).

Table 1
REWS and RETI estimation error means E[ε] and standard deviations s

ε
for the BLE

and TBE estimators, for multiple realizations of different wind conditions.

(a) REWS

ambient E[ε] in m/s s
ε
in m/s

V TI BLE TBE BLE TBE

5 m/s 2% �0.03 �0.03 0.02 0.01
5 m/s 5% �0.04 �0.03 0.03 0.02
5 m/s 10% �0.05 �0.02 0.05 0.05
20 m/s 2% 0.02 0.07 0.06 0.07
20 m/s 5% 0.02 0.08 0.13 0.14
20 m/s 10% �0.09 0.02 0.25 0.25

(b) RETI

ambient E[ε] in pps s
ε
in pps

V TI BLE TBE BLE TBE

5 m/s 2% 0.14 -0.02 0.07 0.01
5 m/s 5% 0.12 -0.04 0.17 0.03
5 m/s 10% 0.10 -0.10 0.28 0.05
20 m/s 2% 0.06 0.13 0.01 0.01
20 m/s 5% -0.01 0.11 0.01 0.03
20 m/s 10% -0.03 0.05 0.03 0.04

Table 2
REILS estimation error means E[ε] and standard deviations sε for the BLE and TBE
estimators, for multiple realizations of different wind conditions.

ambient E[ε] in % s
ε
in %

V TI BLE TBE BLE TBE

5 m/s 2% 0.94 3.82 5.29 3.10
5 m/s 5% 5.49 5.08 5.36 5.21
5 m/s 10% 5.56 5.12 4.66 4.58
20 m/s 2% 0.16 �0.82 9.96 6.00
20 m/s 5% 2.56 0.33 6.51 5.93
20 m/s 10% 1.81 0.47 5.79 4.72
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response obtained with dynamic simulations in steady-state winds
at various TSR and blade pitch settings, once the solution had
settled onto a periodic orbit. Given its small size and robust con-
struction, for this machine the dependency of the coefficients on
the dynamic pressure is negligible, and therefore it was not taken
into account.

For one specific representative time history of 600 s of duration,
Fig. 2 shows the met-mast average, as well as the REWS computed
by the BLE and the TBE. For completeness, the plot also reports the
wind speed measured by the nacelle-mounted anemometer, which
however is a point measurement (as opposed to a rotor-equivalent
quantity) and also exhibits a significant offset. It should be
mentioned that in this case the met-mast-measured wind can
hardly be considered as a “ground truth”, as it is only based on three
point measurements and it neglects the evolution of the flow from
themet-mast to thewind turbine rotor (Taylor's frozen hypothesis).
Nonetheless, the plot shows that the BLE and TBE are in good
agreement between themselves and in a reasonable one with the
met-mast-provided information. Similar results were obtained
with the use of different time histories from this samemachine and
experimental setup.

3. Estimation of local-effective wind parameters

The BLE method can be finally specialized to estimate the wind
speed experienced in different parts of the rotor disk. The basic idea
is to use each blade as amoving sensor whose out-of-plane bending
load is strictly connected to the local wind speed at the blade
position.

To this end, Eq. (2) is modified as

bmiðtÞ ¼
1
2B

rARVBEðjiðtÞÞ2Cm0ðlBEðjiðtÞÞ;bi; qBE Þ; (10)

where ð$Þi indicates quantities pertaining to the ith blade. As in the
previous case, this expression is used to define the output equation
of an Extended Kalman filter (cf. Eq. (4)), which yields an estimate
of the blade local-effective wind speed VBE(ji(tk)) at the azimuthal
location ji occupied by the blade at time instant tk.

From the blade local-effective wind speed, a Sector-Effective
Wind Speed (SEWS), noted VSE, is obtained by averaging over an
azimuthal interval of interest, as

VSEðtÞ ¼
1
AS

Z
AS

VBEðjðtÞ Þ dAS: (11)

The SEWS estimate can be updated every time a blade leaves the
sector, i.e. with a frequency equal to B�Rev, while the zero-order
hold can be employed in between two updates. This concept is
symbolically illustrated in Fig. 3.

A Sector-Effective Turbulence Intensity (SETI), noted TISE, is
readily computed from the SEWS as

TISE ¼ sVSE

VSE
; (12)

being sVSE
the standard deviation of the SEWS.

The SEWS has the meaning of an average velocity over the disk
sector. Hence, the question arises: what is the spanwise location of
such an average along the disk radius? In fact, this information may
be useful for the validation and interpretation of the results. For
example, later on the estimated SEWS will be compared to mea-
surements obtained with a met-mast, and therefore it is necessary
to know at which height along themetmast the comparison should
be performed.

The blade root bending moment on a sector S occupying the
azimuthal span Dj ¼ j2 � j1 with area AS ¼ DjR2/2 can be written
as

mS ¼ 1
2B

rR3
Z1
0

Zj2

j1

Vðx;jÞ2CTðx;jÞx2 djdx; (13)

where x ¼ r/R is the nondimensional radial position, r the dimen-
sional one, and CT the local thrust coefficient. According to stream-
tube theory, CT ðxÞ ¼ 4aðxÞð1� aðxÞÞ, where a(x) is the axial induc-
tion factor. As aðxÞz1=3 for a well designed blade, then CT can be
assumed to be roughly constant over the rotor disk. Therefore,
introducing the constant equivalent wind speed VSE over the sector,
one readily finds

mS ¼ 1
2B

rV2
SEAS

2
3
RCT : (14)

This expression indicates that the blade bendingmoment can be
interpreted as being produced by the thrust applied at 2R/3 span. In
this sense, VSE can be interpreted as the wind velocity sampled at
that same location.

A more refined analysis can be developed by assuming a linear
vertical wind shear, which can be expressed as

Fig. 2. REWS BLE (red line) and TBE (blue line) estimates, averaged time-shifted met-mast wind speed (black line), and onboard nacelle-mounted anemometer wind speed (gray
dashed line), for field measurements obtained with the NREL CART3 wind turbine. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Vðx;jÞ ¼ Vh

�
1þ klin

z� zh
R

�
; (15a)

¼ Vhð1þ klin x cos jÞ; (15b)

where Vh is the hub height, klin the linear shear coefficient, and z a
vertical coordinate pointing upwards, zh being the hub height. In
this case, one would like to find the equivalent height ez where V is
sampled by the estimator. Using both expressions (15a) and (15b) in
Eq. (13), considering a constant CT, solving for z and simplifying the
result, one finds the following expression for the effective height ez:

ez� zh
R

¼ 1
klin

0
BBBBBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

Z j2

j1

ð1þ klin x cos jÞ2x2 djdx

Dj=3

vuuuut � 1

1
CCCCCCCCCA

(16)

Even though the effective height is a function of the shear co-
efficient klin, one may safely assume ðez� zhÞ=R z ±2=3 for the up-
per and lower sectors. Indeed, the variation of this quantity with klin
is very small, being for the upper sector ðez� zhÞ=Rjklin¼�0:5 ¼ 0:662

and ðez� zhÞ=Rjklin¼þ0:5 ¼ 0:682.

3.1. Use of local-effective wind parameters

The concept of SEWS can be used for detecting areas of different
wind speeds over the rotor disk. For example, consider the four
quadrants depicted in Fig. 4.

A partial wake impingement, whereby the wake shed by an
upstream wind turbine has a partial overlap with the rotor disk,
will create different wind speeds on the right and left sectors of the

rotor. Therefore, by looking at the difference of the SEWS between
the right and left quadrants, one may be able to detect a wake
interference condition, information that can be exploited for wind
farm control. This information can also help distinguish whether
the wake is impinging over one or the other side of the rotor disk,
which is again useful for wake redirection control purposes.

Since a wake is characterized not only by a speed deficit but also
by a higher TI than the ambient flow, a partial wake condition will
also typically imply different TI levels on the two sides of the rotor.
As the proposed formulation is also capable of estimating local TI
values over the different quadrants, this information can in prin-
ciple be used in conjunction with the local speed to increase the
confidence level of a correct wake interference detection.

Similarly, a vertical wind shear will imply different wind speeds
on the top and bottom quadrants. Here again, the SEWS on these
two rotor sectors may be used for estimating this wind parameter,
which in turn may find applicability inwind turbine and wind farm
control (for example, by correlating wind shear and atmospheric
stability, which has strong effects on the behavior of wakes).
Additionally, by averaging over the left and right quadrants, one
may have an indication of the wind speed at hub height. This,
together with the SEWS of the top and bottom quadrants, produces
a three-point estimate of the wind speed in the vertical direction,
which can in principle be used for estimating an inverted wind
profile, typical of conditions characterized by low level jets. In this
case, the use of a higher number of sectors than the four used here
might provide for an even better vertical resolution.

The use of SEWS for estimating shear and wake impingement is
demonstrated in the following pages by the use of several exam-
ples, which make use of synthetic simulation data as well as field
tests. A validation performed with scaled experiments conducted
with wind turbine models in a boundary layer wind tunnel is
described in a different publication [16].

4. Results

4.1. Vertical shear estimation from field test data

At first, the proposed formulation was verified with respect to
its ability in estimating the vertical wind shear, again with refer-
ence to field test data gathered on the NREL CART3 wind turbine.
Although the primary goal of this work is the development of a
wake state estimator, both vertical shear and wake interference are
characterized by different average wind speeds on different rotor
quadrants. Therefore, this test still gives relevant information on
the general ability of the formulation of detecting wind speed
variations over the rotor disk.

Based on the previously illustrated analysis, wind velocity esti-
mates can be interpreted as flow samples at 2/3R. Therefore, for the
lower sector, estimates are compared to the time-shifted and

Fig. 3. Estimation of blade-effective and sector-effective wind speeds, from the loads of a blade passing through a rotor disk sector.

Fig. 4. Rotor disk partitioned into four quadrants, noted left and right, and top and
bottom. Naming of the quadrants considers an upwind view direction.
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linearly interpolated anemometer measurements at 2/3R below
hub height (i.e., 27 m from the ground). Similarly, the upper sector
reference is obtained by interpolating the measurements at 2/3R
above hub height (i.e., 53 m from the ground).

Fig. 5 shows a time history of the estimated SEWS for a period of
100 s. It should be noted that the distance between met-mast and
wind turbine clearly implies an approximation due to the adoption
of Taylor's frozen turbulence hypothesis. In addition, it should also
be remarked that the SEWS represents a spatial mean wind speed,
while anemometers only provide point-wise measurements.
Nonetheless, considering these two limitations of the present
comparison, the estimates follow reasonably well the trend of the
met-mast anemometers. In particular, it appears that the estimates
are capable of consistently detecting the right sign of the shear (in
other words, whether the speed in the top quadrant is higher or not
than in the lower one), and the correct overall behavior of this
quantity.

4.2. Wake state estimation

The simple wind farm layout depicted in Fig. 6 was used for
studying the ability of the proposed formulation in detecting the
impingement on a rotor of the wake shed by an upstream wind
turbine. Both machines are 3 MW HAWTs, identical to the ones
used in the previous numerical study.

The longitudinal distance between the twowind turbines is four
times the diameter of the rotor (4D), which is a closely spaced
configuration that might be representative of compact wind farms
designed to reduce land occupation in onshore sites located in
geographical areas of relatively high population density. The lateral
distance of the two wind turbines is taken as a parameter, which is
varied in order to realize different wake overlaps for a given fixed
wind direction. When noted, the downstream wind turbine oper-
ates with a given misalignment angle g with respect to the wind
vector, which will probably be a relatively common mode of
operation in the future within closely spaced wind farms. In fact,
deliberate wind misalignment can be used for deflecting the wake
away from downstream machines, thereby reducing interferences
to the benefit of power output and loading. Tests conducted herein
with a misaligned machine are meant to verify whether the wake
state observer works also in this operating condition.

The wake of the upwind turbine is modeled by the super-
position of a turbulent wind grid generated with TurbSim, and the
first order solution of the wind speed deficit of the Larsen model

(EWTSII model) [31]. Although this is only a rather crude and
idealized behavior of a wind turbine wake, it still serves the pur-
pose of generating awind field that has different wind speed values
and TIs over the rotor of the affected downstream wind turbine.

As an example of the wind fields generated this way, Fig. 7a
shows for a random time instant the TurbSim wind grid obtained
for a mean wind speed of 8 m/s, a 5% TI and a shear layer with
exponent equal to 0.2. For the same instant of time, Fig. 7b shows
the superposition of the turbulent wind with the Larsen model, for
a lateral distance between the two machines of 0.5D.

Due to the wind speed deficit characterizing the wake core,
turbulence inside the wake is increased, as shown in Fig. 8. Fig. 8a
shows the 10-min TI in percentage at each grid point without wake
superposition, whereas Fig. 8b shows the same quantity for the two
superimposedwind fields. Clearly, this is only a very crudemodel of
the actual turbulent behavior of a wake, although here again it
serves the purpose of creating areas of different TI over the rotor
disk.

4.3. Wake interference detection

There may be multiple ways of detecting a wake impingement
by analyzing the turbine response. For a reliable wake detection a
combination of various methods may be advisable, including geo-
metric information on the wind farm layout and the wind direction
in addition to wind speed. While the general problem of wake
detection is very interesting and also quite important for wind farm
control purposes, the attention is restricted in this work to the sole
use of the information obtained by the proposed estimation
technique.

A detection based on SEWS is investigated first. To this end,

Fig. 5. SEWS estimation based on NREL CART3 measurements of the bottom (red) and top (green) sectors. Interpolated and time-shifted met-mast measurements are shown as
reference in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Configuration of the two wind turbines for the wake detection simulation
study.
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Fig. 9 shows various wake interference scenarios, defined by the
lateral distance between the rotor centers of the upstream and
downstream wind turbines, for an ambient mean wind speed of
8 m/s, a TI of 5% and a shear leayer with exponent equal to 0.2. For

each scenario, corresponding to a column subplot of the overall
figure, the left and right sector wind speed estimates are displayed
as functions of time. Each column subplot also reports reference
values computed by spatially averaging the wind speed at each

Fig. 7. Turbulent wake model obtained by the superposition of Kaimal turbulence with Larsen model. Color bar in m/s; the downstream rotor circumference is indicated by a black
circle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. TI for the turbulent wake model obtained by the superposition of Kaimal turbulence with Larsen model. Color bar in percentage; the downstream rotor circumference is
indicated by a black circle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Estimated and reference (ground truth) sector wind speeds vs. time. Each column plot represents a different wake overlap, characterized by a different lateral distance
between upstream and downstream rotor centers. Left sector SEWS: reference speeds shown in black dashed lines, estimates in cyan; right sector SEWS: reference speeds in black
solid lines, estimates in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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instant of time from the synthetic turbulent wind field. Such
reference values represent a ground truth with respect towhich the
estimates should be compared.

The figure clearly shows that in partial wake conditions (±0.75D,
±0.5D and ±0.25D) the SEWS is, as expected, smaller on the side of
the rotor disk affected by the wake. This difference increases for
increasing overlap, suddenly dropping to zero when the down-
stream rotor is in full wake condition. Clearly, any wind speed
estimator can not readily distinguish between a full waked and a
completely unwaked condition, although wind direction and wind
farm layout may come to the help in such a case. Interestingly, the
plot also shows that the estimates seem to follow quite well the
ground truth, correctly identifying both the sign and themagnitude
of the wind speed imbalance over the two rotor sides.

Based on these observations, a simple approach to detect awake
interference condition is to calculate the relative wind speed dif-
ference dV between the two rotor sides, by using a moving averaged
SEWS calculated on the left and right quadrants:

dV ¼ VSE;left � VSE;right

VRE
: (17)

An indication of a left or right-sided wake impingement may be
obtained by checking the sign of dV and comparing its absolute
value with a threshold. It was observed that slightly different left
and right thresholds could be used for better detection perfor-
mance, on account of the non-symmetric lateral behavior of the
rotor, due to its spin direction.

In turbulent unwaked wind conditions, speed fluctuations due
to the passage of large eddies will generate significant lateral
shears, which may be wrongly interpreted as the presence of a
wake by the impingement detector. Similarly, in waked conditions,
large turbulent fluctuations may temporarily hide the presence of
the wake speed deficit. These problems may be alleviated by
computing dV not with the instantaneous SEWS values, but with
moving averages computed on a sufficiently long window of time
to filter out the effects of turbulent fluctuations. Clearly, excessively
long time windows would have the effect of inducing long delays
and missing wake motions due to meandering.

In support of the information coming from wind speed imbal-
ances, also TI can be used as an additional indicator of wake
interference. Similarly to the previous plot, Fig. 10 shows the

ground truth and estimated SETI values for different degrees of
overlap between the two machines. Here again it appears that the
proposed estimator is capable of appreciating the differences in TI
over the two sides of the rotor. In addition, these estimates corre-
late quite well with their reference values. Consequently, one could
here again define a relative TI difference dTI, exactly as done for the
wind speed. Checking the value and magnitude of this additional
indicator could be used for reinforcing the information obtained by
computing the wind speed imbalance, in the interest of a hopefully
more robust and reliable indicator.

4.4. Simulation studies

In the following, several wake interference scenarios were
realized with the wind and turbine models described above. Wake
detection was based in all cases on the dV parameter, therefore
looking for an imbalance of the SEWS on the right and left quad-
rants of the rotor. The threshold in dV used for discriminating a
wake interference from a non-interference case was set to 0.12,
while the time span of the moving average window to 60 s. Wind
conditions also included a power-law vertical wind shear k and
downwind turbine yawmisalignment g, to investigate the effects of
these parameters on the detection quality.

Fig. 11 shows results obtained for four different shear and tur-
bulence intensity combinations. For different overlaps, each plot
displays the detection ratio on the right quadrant (dark blue bars
pointing upwards), and on the left one (light blue bars pointing
downwards). The detection ratio is defined as the ratio of the
number of time instants when the wake is detected, divided by the
total number of time instant in a sequence of a given length (here
chosen to be 10 min). For each combination of parameters, one
single 10-min sequence was used, as additional realizations lead
only to marginal changes in the results.

For the cases of low ambient turbulence (TI ¼ 5%) with two
different vertical shear layers, results show that a wake can be al-
ways detected for overlaps between around 0.25D and 0.75D on
either side of the disk. For the cases characterized by higher
ambient turbulence (TI ¼ 10%), the wake is not always perfectly
detected due to a faster wake recovery, which in turn leads to a
smaller wake deficit. In fact, the wake model predicts a maximum
deficit in the wake center of around only 2.5 m/s. That deficit is not
as large as in the low turbulence case, where the maximum deficit

Fig. 10. Estimated and reference (ground truth) sector TIs vs. time. Each column plot represents a different wake overlap, characterized by a different lateral distance between
upstream and downstream rotor centers. Left sector SETI: reference TIs shown in black dashed lines, estimates in cyan; right sector SETI: reference TIs in black solid lines, estimates
in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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is about 4.5 m/s. This smaller deficit creates a smaller difference
between SEWS on the two rotor sides, in turn decreasing the
detection quality. However, the detection ratio remains sufficiently
high for all conditions between 0.25D and 075D. It also appears
that, although false negatives are clearly present, false positives are
typically not. Improvement are foreseeable by scheduling both
threshold andmoving average window size as functions of ambient
parameters, at the expense of an increased overall complexity of
the algorithm implementation and use.

Fig. 12 shows results for one single wind condition (vertical
shear exponent equal to 0.2, TI ¼ 5%), but for four different yaw
misalignment angles of the downstreamwind turbine (g¼ ±10 deg
and ±20 deg). These conditions are meant to represent situations
when the downstreamwind turbine is actively redirecting its wake
away from a machine located further downstream, using some
suitable control strategy. In all cases the detection quality is similar
to the non-misaligned case reported previously. This can be
explained by the fact that the SEWS of the two lateral sectors are
little affected by wind direction.

Next, a case characterized by a meandering wake was consid-
ered. In order to approximate such a case, the lateral distance y
between wake and turbine center was varied in time according to
the following expression:

y ¼ 1Dðsinð2pftÞ � 1Þ; (18)

where f is the meandering frequency. Accordingly, the resulting
wake will oscillate between an unwaked state (y ¼ �2D) to a fully

waked one (y ¼ 0D). In total, 28 wake oscillations with a frequency
of f ¼ 0.05 Hz were analyzed, for an ambient mean wind speed of
8 m/s, TI of 5% and a vertical shear layer exponent k ¼ 0.1. In this
scenario, it is important to ensure a fast detection in order to cap-
ture wake motions. To this end, the detection threshold was raised
to 0.2 and the moving average filter was eliminated. This same
combination of parameters yields good results also in the low
turbulence conditions analyzed earlier. The resulting detection ra-
tio is displayed in Fig. 13.

The lower subplot shows the oscillating wake center. Positions
between �0.75D and �0.25D are marked in red, since within that
range a correct wake state detection is typically possible, as pre-
viously shown. The upper subplot shows the scaled mean REWS,
using a dashed red line. This quantity was computed on the wind
grid, and clearly exhibits a drop when a significant wake overlap is
present.

The same upper plot also shows the detection ratio, using a solid
blue line, which indicates that a left-sided wake impingement is
detected twice throughout a full meandering cycle. When the wake
center is far outside of the rotor disk, a wake impingement is never
detected, so that there are no false positives. The first detection
peak refers to the entrance of the wake on the rotor disk, while the
second one to its exit, both times on the left side of the rotor disk.
The gap between these two peaks corresponds to the full wake
condition, realized when the wake is exactly aligned in front of the
downstream wind turbine. This situation could be perhaps detec-
ted by comparing the REWS on the upstream and downstream
wind turbines, as well as considering the alignment of their

Fig. 11. Wake state detection based on SEWS estimation for varying wake overlap, for an 8 m/s ambient wind speed and different vertical shear and ambient TI.
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connecting line with the wind direction. Comparing the detection
rate with the wake center position, a delay of about 2 s can be

observed. This time delay corresponds to approximatively 1/3 of a
rotor revolution, and it is due to the fact that a new estimate of the

Fig. 12. Wake state detection based on SEWS estimation for varying wake overlap and different misalignment of the downstream wind turbine, for an 8 m/s ambient wind speed,
vertical shear exponent equal to 0.2 and TI ¼ 5%.

Fig. 13. Upper subplot: detection ratio (blue line) for the meandering wake problem, and scaled REWS (dashed red line), as an average over 28 cycles. Lower subplot: wake center
positions vs. time over one cycle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

C.L. Bottasso et al. / Renewable Energy 116 (2018) 155e168166

38 Chapter 3. Paper 1: Local wind speed estimation, with application to wake impingement detection



SEWS is realized only once a blade leaves a sector.

5. Conclusions and outlook

This work has presented the formulation of a new method to
estimate the wind speed inflow at the rotor disk of a wind turbine.
The proposed method falls within the general area of wind sensing,
where the whole rotor is turned into a sensor. By using measure-
ments of the rotor response, in this case in the form of blade loads,
the response is inverted to estimate the wind conditions. If load
sensors are available on awind turbine, for example to enable load-
driven control, the present method does not require any additional
hardware and it amounts to a simple software upgrade.

The proposed approach uses the cone coefficient, which cap-
tures the zeroth-harmonic bending of the blades, to infer the wind
speed bymeans of a Kalman filter. When loads from all rotor blades
are used together, a rotor-equivalent wind speed can be estimated.
Simulation and experimental results shown here indicate that this
method compares favourably with the well known approach based
on the power coefficient. Furthermore, it also appears that the time
resolution is sufficient to successfully estimate the associated RETI
and REILS.

However, differently from other wind sensing approaches, the
proposed formulation has also the ability of sensing variations of
the wind speed over the rotor disk. In fact, by using the bending
moment measured on each blade individually, one can obtain local
estimates of the wind speed. These estimates were here averaged
over four rotor quadrants, to yield sector-equivalent wind speed
measurements.

The knowledge of areas of different local wind speeds over the
rotor disk can be used to infer a lack of uniformity of the wind field.
In particular, it was shown with the help of experimental field test
data that the method is capable of observing the different wind
speeds that characterize the top and bottom quadrants of the rotor,
on account of the vertical shear profile.

As an even more interesting application, the paper considered
also the detection of the impingement of the wake shed by an
upstream wind turbine. Since a wake is characterized by a speed
deficit and an increased TI, a partial wake overlap can in principle
be detected by measuring speed and TI on the left and right
quadrants of the rotor. Simulation results indicate that this is
indeed possible with the proposed approach. In fact, studies con-
ducted with a high-fidelity aeroservoelastic model of a wind tur-
bine interacting with a turbulent wake model have shown the
general ability of the present method in detecting the presence of a
partial wake overlap, even in the presence of wake meandering.

The proposed idea is being further investigated along different
lines of research. From a validation point of view, the method is
being demonstrated with the help of wind tunnel tests conducted
with aeroelastically scaled models. Full-scale experiments with
LiDARmeasurements of waked conditions should become available
soon, hopefully enabling a first verification in the field. Additionally,
the scaled experimental facility is being used for exploiting the
proposed method at the wind farm control level, where it is being
used to trigger a left or right deflection of the upstreamwake, based
on where the wake impingement is detected. The method is also
being used to improve the quality of the estimates produced by a
reduced order flow model, used for closed-loop model-based wind
farm control. Finally, the vertical resolution provided by the use of
sectors is being exploited for the identification of the presence of
low level jets in the atmosphere.
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CHAPTER 4

Paper 2: Wind Tunnel Validation of a Wind
Observer for Wind Farm Control

4.1 Summary

Within this paper, an experimental wind tunnel validation of the wind observer described in Paper 1
is conducted. A scaled wind turbine of type G1 is used and described in detail. As the scaled turbine
is not equipped with blade root bending sensors, a method using the Coleman transformation is
used, which estimates the blade root bending moments from low-speed shaft loads. The experimental
setup includes a second turbine, that is located 4 diameters upstream. It is laterally displaced by 0.5
diameters and generates a wake that impinges on the sensing downstream turbine. Two synchronized
short-range LiDARs (Light Detection And Ranging) are located further upstream, scanning a defined
circular trajectory in variable distances upstream the sensing wind turbine, providing a reference
velocity measurement.

Within the first experiment, the upstream turbine is not operating and the load-based velocity
estimates of the sensing turbine within the four rotor disc sectors is compared to the LiDAR reference.
As the LiDAR measurements are conducted within the turbine induction zone and the load-based
estimates represent ambient velocities, the LiDAR measurements are corrected using an induction
model. Within the second experiment, the upstream turbine is operating and the LiDAR reference
velocity within the most wake affected sector is corrected for the effect of wake recovery in addition.
Results show the estimators capability of accurately detecting wind speed in free-stream, even though
some small estimation bias could be identified. During waked turbine operation, the most affected
sector shows a larger velocity estimate than the LiDAR reference, probably due to a variety of causes.
The part of the rotor disc where the wake center is located, shows the smallest velocity estimates
proving the capability of qualitatively detecting the wake.

4.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has implemented the wind
estimator for the experimental test. The design and conduction of the experiments has been shared
equally with Filippo Campagnolo, who also led the analysis. The discussion of results and the writing
of the publication was shared in equal parts among all authors.

4.3 Reference

F. Campagnolo, J. Schreiber, A. M. Garcia, and C. L. Bottasso, “Wind tunnel validation of a wind observer
for wind farm control,” Proceedings of the International Offshore and Polar Engineering Conference,
2017. [Online]. Available: https://www.onepetro.org/conference-paper/ISOPE-I-17-410
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ABSTRACT

This paper describes the validation of a wind observer using
LiDAR measurements obtained during a wind tunnel experiment.
The setup represents a scaled wind farm composed of three
actuated and sensorized wind turbine models operating in a
turbulent boundary layer. Rotor loads and other wind turbine
response data are used to estimate in real time during operation
the local wind speed experienced by each wind turbine. The
estimates of the rotor inflow produced by the wind observer are
compared with flow data measured by two short-range LiDARs.
These devices provide fully synchronized scans of the flow
along given trajectories. The paper compares the observed
and measured wind conditions, demonstrating a good match-
ing between these two independent flow measurement techniques.

KEY WORDS: wind observers; wind farm; wakes; LiDAR;
scaled wind turbine models; wind tunnel testing

INTRODUCTION

Wakes shed by wind turbines exhibit a lower wind speed and
higher turbulence intensity than the free stream, leading to re-
duced power output and increased fatigue loads for downwind
turbines within wind farms. Knudsen et al. (2014) suggested that
there is a large potential in wind farm control (WFC) by means
of active wake deflection or wake management. This technology,
if brought to maturity and deployed in the field, might lead to
significant increases in energy capture and reduced loading for
wake-affected turbines.

Independently from the use of a specific WFC algorithm, it is
clear that both a detailed knowledge of the wind conditions within
a wind farm and of the effects of control actions on the behavior

of wakes, play a key role. Indeed, wakes can be managed ef-
fectively only if one can estimate with sufficient accuracy their
characteristics –including trajectory, speed deficit, turbulence in-
tensity, and others–, as well as the response of wakes to changes
in wind turbine operational conditions and environmental effects.
In fact, wake characteristics are affected by ambient wind direc-
tion, atmospheric stability, neighboring orography of the terrain,
the possible misalignment of the turbine with the wind vector and
other factors. Given the complexity of the involved physics, it
is generally difficult to predict the behavior of wakes and their
evolution purely by means of numerical tools. In this sense, the
estimation and/or measurement of wind characteristics in the field
may come to the help.

Some of such methods, like nacelle-mounted anemometers or
met-masts, might not be sufficient for enabling sophisticated wind
farm control, since they provide only point-wise measurements.
Scanning LiDAR systems, despite being very effective, are still
not widely available due to their cost. Instead of using devices
that directly measure the wind flow, wind properties can be esti-
mated directly from the operational response of wind turbines, as
it is the case for the rotor effective wind speed computed by means
of turbine power or torque (Soltani et al., 2013), or wind shears
and misalignments obtained from rotor load harmonics (see Cac-
ciola et al., 2016 and references therein).

Recently, Bottasso et al. (2016) proposed a method for estimat-
ing the local wind speed, using measured blade root bending mo-
ments. This method, once applied to downwind wind turbines
impinged by wakes, has been used by Schreiber et al. (2016) to
estimate the wake deficit and the wake position. The same authors
also experimentally demonstrated some capabilities of the method
by using scaled wind turbines operated in a large boundary layer
wind tunnel.

This paper aims at expanding the work done so far. At first the
method is briefly described. Next, an experimental facility is de-
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scribed that is used to simulate wind farms, and therefore wake-
to-turbine and wake-to-wake interactions, within the boundary
layer wind tunnel of the Politecnico di Milano. Results concern-
ing the experimental validation of the full capabilities of the wind
observer are then discussed, followed by conclusions and future
activities.

WIND SECTOR OBSERVER

The observer, whose capabilities are discussed and validated in
the following, is the one described in Schreiber et al. (2016) and
Bottasso et al. (2016). As specified in greater detail therein, mea-
sured blade root bending moments are correlated with the local
effective (LE) wind speed felt by the blade through a cone coeffi-
cient defined as

Cm0(λLE,β ,q) =
m(ψ)

1
2 ρARV 2

LE
, (1)

where λLE is the local effective tip speed ratio (TSR), β the blade
pitch angle, q the dynamic pressure, m the measured out-of-plane
root bending moment of the blade located at the azimuthal posi-
tion ψ , VLE the local effective wind speed, ρ the density of air, A
the rotor disk area and R the rotor radius. Equation 1 makes use of
cone coefficients –stored in look-up tables and obtained through a
BEM-based simulation tool–, which are functions of TSR, β and
q. Since both the TSR and the dynamic pressure are functions
of the unknown local effective wind speed, the equation can be
solved numerically for each of the rotating blades by using, as in-
puts, the rotor speed, the blade pitch, the bending moment and, of
course, the cone coefficients.

The LE wind speed can than be used to compute, trough simple
averaging, the velocities in non-rotating sectors of the rotor disk.
Choosing four equally sized sectors, as shown in Fig. 1, the sector
effective (SE) wind speed can be readily inferred.

Fig. 1: Wind turbine rotor with four sectors (S1, S2, S3, S4).

The scaled wind turbines used within this research are currently
not equipped with blade load sensors, but rather by strain gages
mounted on the rotating shaft. However, the out-of-plane root
bending moment mi of blade i can be readily reconstructed by
employing the Coleman transformation
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0.5 cos(ψ1) sin(ψ1)

0.5 cos(ψ2) sin(ψ2)

0.5 cos(ψ3) sin(ψ3)







m0
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 , (2)

where ψi is the azimuth position of blade i.

To obtain the collective or mean out-of-plane root bending mo-
ment m0, the rotor effective wind speed VRE is estimated first by
solving the torque balance equation

JΩ̇ =
ρAV 3

RECP(λ ,β )

2Ω
−Tshaft, (3)

where J is the rotor inertia, Ω the rotor speed, Tshaft the measured
torque at the shaft, while ˙(·) indicates a derivative with respect to
time. Next, m0 can be obtained solving Eqn. 1 by setting VRE =
VLE.

To obtain the fixed frame aerodynamic nodding and yawing mo-
ments (noted N and Y , respectively) the measured rotating shaft
bending loads (Nrot and Yrot) are first high-pass (HP) filtered to re-
move a possible zero drift. This does not lead to a loss of informa-
tion as long as the assumption of a steady inflow is fulfilled. Next,
loads are transformed into the fixed frame of reference through
a rotation matrix. The constant gravitational nodding moment
NG = Md, where M is the rotor mass and d the sensor distance to
the rotor plane, is also considered. The fixed frame nodding and
yawing moments become
[

N

Y

]
=

[
cos(ψ) sin(ψ)

−sin(ψ) cos(ψ)

][
Nrot,HP

Yrot,HP

]
−
[

NG

0

]
, (4)

and Eqn. 2 can finally be solved.

EXPERIMENTAL SETUP

Experiments were conducted in the boundary-layer (BL) test sec-
tion of the wind tunnel of the Politecnico di Milano, which has a
cross-sectional area of 13.84 m by 3.84 m and a length of 36 m.
The experimental setup included scaled wind turbine models, de-
signed for wind farm control research applications, as well as two
short-range WindScanners, developed by the Department of Wind
Energy of the Technical University of Denmark (DTU). Atmo-
spheric boundary-layer (ABL) conditions were simulated by the
use of spires placed at the chamber inlet. The vertical profile of
the longitudinal wind speed was measured prior to testing, result-
ing in the following best-fitted exponential law

U(z) = UH

(
z

zH

)0.088

, (5)

where UH ≈ 5.7 m/s and zH = 0.825 m are the free-stream wind
speed at hub height and the elevation of the rotor axis from the
ground, respectively. The turbulence intensity at hub height was
circa 5%.

The G1 wind turbine models

Tests were conducted with scaled wind turbine models whose ro-
tor diameter D is 1.1 m (in the following named G1s, for Generic
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Fig. 2: G1 rotor-nacelle assembly (left) and overall model layout (right).

1 meter diameter rotor), which have been used within other re-
search projects (Campagnolo et al., 2016a, 2016b, 2016c).

The model (see Fig. 2) has dimensions that seek for a compro-
mise among the need for miniaturization, wind tunnel blockage,
Reynolds effects and the need to realize multiple wind turbine in-
terference conditions typical of wind farm operations. The scaled
wind turbine was designed to enable a realistic energy conver-
sion process. This means that it exhibits good aerodynamic per-
formance both at the airfoil and rotor levels, while its wake is
characterized by realistic shape, deficit and recovery when com-
pared to full scale machines. Moreover, the model features ac-
tive individual pitch, torque and yaw control that, together with a
comprehensive onboard sensorization of the machine (including
measures of shaft and tower loads), enables the testing of modern
control strategies.

The G1 turbine rotor has an angular speed up to 850 rpm (clock-
wise rotation) and it is equipped with three blades, whose individ-
ual pitch angle can be varied by means of a small brushed motor
equipped with a gearhead and built-in relative encoder. The three
motors, housed in the hollow root of the blades, are each con-
trolled by an electronic board placed within the hub spinner. Be-
tween the hub and the front bearings, strain gages glued on four
small bridges provide measurements of the aerodynamic torque
and of the bending loads. Three miniaturized electronic boards,
fixed to the hub, provide for the power supply and conditioning
of the shaft strain gages, while a 12-channels slip-ring, located
within the rectangular carrying box that holds the main shaft by
means of two bearings, is used to transmit signals from the ro-
tating system to the fixed one, and vice versa. A torque-meter
measures the torque provided by a brushless motor operated as a
generator, located in the rear part of the nacelle. At tower base,
a custom made load cell measures fore-aft and side-side bending
moments. The entire nacelle can be yawed by means of a brushed
motor located within the hollow tower, while an optical encoder
provides the necessary feedback to an electronic device that con-

trols both the yaw actuator and a magnetic brake, which is enabled
only when no yaw actuation is required.

Each model is controlled by a M1 Bachmann hard-real-time mod-
ule that real-time executes, similarly to what is done on real wind
turbines, collective or individual pitch-torque control laws similar
to the ones described in Bossanyi (2000) and references therein.
The wind farm layout, consisting of 3 G1s longitudinally spaced
of 4D and laterally shifted by 0.5D, is shown in Fig. 3, together
with two short-range WindScanners, labelled LiDAR1 and Li-
DAR2.

Fig. 3: Wind farm layout in the wind tunnel, showing also refer-
ence frame (centered at the tower base of WT2) and direction of
positive yaw misalignment Φ.

The performance of the G1 rotor, whose blades are equipped with
the low-Reynolds airfoil RG14 (Lyon et al., 1998), was measured
for different values of the airfoil Reynolds numbers (between 50-
90000) and at several combinations of TSR and collective pitch
settings.
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Nominal airfoil polars were obtained with XFOIL. Parameter
ncrit, which governs flow transition (Drela and Youngren, 2001),
was set to a value that is typical of the turbulent flow condi-
tions experienced in the Politecnico di Milano wind tunnel. How-
ever, significant differences were noticed between the measured
and theoretical Blade Element Momentum (BEM)-based aerody-
namic performance computed using nominal polars. This prob-
lem is probably due to inaccuracies in the airfoil performance
computation, in turn due to the challenges associated with the
prediction of the laminar bubble separation at very-low Reynolds
number. To correct for this, an identification procedure (Bottasso
et al., 2014) was used to calibrate the polars, leading to the satis-
factory agreement shown in Fig. 4.
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Fig. 4: G1 power (top) and thrust (bottom) experimental (solid
lines) and BEM (dashed lines) coefficients, as function of TSR
and blade pitch.

The short-range LiDARs

Each of the two short-range LiDARs was installed near the walls
of the tunnel, approximately 7D upwind of the turbine models.
The LiDARs provide averaged wind speeds at rates up to 390 Hz.
They are both equipped with two prism motors and a focus motor,
steering the laser beam within a cone of 120 deg of aperture. A
common central motion controller ensures that the two focused
laser beams are synchronously following a common scanning tra-
jectory. A complete description of the system, as well as the
demonstration of its potential when applied to the measurement
of small scale flow structures in a wind tunnel, is given in Floris
van Dooren et al. (2017).

Three LiDAR systems with three linearly independent beam di-

rections would be necessary to measure the three-dimensional
flow velocity vector. Given the distance from the LiDARs and
the points of measurement, as well as considering that LiDAR
heads are located slightly above the turbine hub height, the plane
created by the LiDAR beams is mostly horizontal (±3 deg). It can
therefore be assumed that, from two temporally and spatially syn-
chronised line-of-sight measurements, one can derive the compo-
nents of the flow speed along (v) and laterally (u) to the main
wind direction, with an insignificant contamination of the result
by the vertical wind speed component (w) (Floris van Dooren et
al., 2017).

Measurement campaign

The measurement campaign aimed at demonstrating the capabili-
ties of the developed wind sector observer described in a previous
section. More specifically, the following scenarios were tested.

Measurement of wake profiles along a line

The LiDARs performed measurements along crosswind lines at
1D distance upstream of WT2 and at hub height, spanning ap-
proximately 6D around the rotor axis of WT1. The complete line,
covered every 1 s with equally sampled measurements, was mea-
sured for 30 s and for different settings of the WT1 yaw misalign-
ment angle ΦWT 1. Goal of this test was to prove the ability of
the wind sector observer to detect, in the sector impinged by the
wake of WT1, wind speed changes due to yaw-based wake steer-
ing. In order to compute, from measured data, the sector effective
wind speeds in the four sectors of Fig. 1, it is necessary to know
the flow speed on the overall rotor disk, starting from the avail-
able data measured along a crosswind line at hub height. To this
end, the wake profile, obtained by bin averaging the LiDAR data,
is first best-fitted with a Gaussian function, modeling the wake
deficit. In addition, a first-order polynomial is used to account for
a possibly non-uniform flow speed along the crosswind direction.
This results in the wake profile shown in Fig. 5.

−2 −1.5 −1 −0.5 0 0.5 1
2

4

6

y [D]

v
[m

/s
]

Lidars Data
Best-fit

Fig. 5: LiDAR measured wake profile and its best-fit.

The Gaussian function is then rotated around the wake center and
superimposed with the free-stream vertical shear and horizon-
tal profiles, resulting in the longitudinal flow speed distribution
vLP(y,z) shown in Fig. 6. The sector effective wind speeds can
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then be computed as:

VLP−SE,i =
1
Ai

∫∫

Ai

vLP(y,z)dydz, (6)

where Ai is the ith non-rotating sector area of the WT2 rotor disk.
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Fig. 6: Reconstruction of the longitudinal flow speed distribution
from LiDAR crosswind measurements. The non-rotating sectors
of the WT2 rotor disk and the LiDAR closed –nearly circular–
path (red dots) are also depicted in the figure.

Measurement of flow profiles along a circular pattern

The LiDARs performed measurements, along the closed –nearly
circular– path shown in Fig. 6, at three distances upstream of WT2
(ξ = x/D =−0.5;−1;−2). The diameter of the closed path was
set equal to approximately 2/3D, since it has been shown that, for
linear horizontal shear profiles of the longitudinal wind speed, the
wind speed sampled at this point represents the sector effective
wind speed (Bottasso et al., 2016).

Tests were carried out under two different operating conditions.
In the first case, WT1 is standing still, which means that WT2 was
impinged by the vertical wind profile simulated within the wind
tunnel; this condition is referred in the following as the No-Wake
case. In the second case, WT1 operates in region II and with
its rotor exactly aligned with the wind direction, which means
that WT2 was partially impinged by the wake produced by the
upstream wind turbine; this condition is termed the Wake case.

A set of longitudinal wind speed measurements {vCP} was ac-
quired for a duration of 60 s, for each combination of operating
conditions and measuring planes. This set can be mapped into a
set of times {t} and a set of in-plane coordinates {(y,z)}, which
collects the positions the lasers beams focused on during the test.
The whole closed path was covered in approximately 0.16 s,
which yields the average speed along the four paths Li shown in
Fig. 6, sampled at a frequency of approximately 6.25 Hz. At first,

the set of wind speed measurements was split into the following
sets

{vCP,i}= {vCP|(y,z) ∈ Ai} , (7)

each associated to a set of times

{ti}= { t|(y,z) ∈ Ai} . (8)

Four sets {VCP−L,i} of average speeds along Li can therefore be
obtained, where the kth element of each set is defined as

V (k)
CP−L,i =

〈{
vCP,i | t(k)

in,i ≤ ti ≤ t(k)
out,i

}〉
, (9)

where t(k)
in,i and t(k)

out,i are the instants when the focus of the LiDAR
beams respectively entered and left, for the kth time, the ith rotor
disk sector. Four sets of times {TCP,i} are then associated to the
average speeds, where the kth element of each set is defined as

T (k)
CP,i =

t(k)
in,i + t(k)

out,i

2
. (10)

In order to use this data sets for validating the wind sector ob-
server, it is necessary to account for the fact that the average
speeds {VCP−L,i} may differ from the mean of the flow speed
within the ith rotor disk sector, especially for the Wake case.
Therefore, the longitudinal flow speed distribution vLP(y,z), ob-
tained by measuring along crosswind lines and with the models
operating as in the Wake case, was used to compute the expected
average speeds along the four paths Li:

VLP−L,i =

∫
Li

vLP(y,z)ds
∫
Li

ds
, (11)

which allows one to compute the ratio ri =
VLP−SE,i
VLP−L,i

. In turn, this
is used to obtain the following set of average speeds:

{VCP−SE,i}= ri {VCP−L,i} . (12)

Table 1, which reports the ratio for the four rotor disk sectors,
shows that substantial differences are observed when one looks at
the 3rd rotor disk sector, which is fully immersed into the wake
produced by WT1. However, almost negligible differences are
observed for the 1st one, which is almost out of the wake produced
by WT1. Therefore, correcting the average speeds along Li for the
No-Wake case appears not to be necessary.

Sector VLP−SE [m/s] VLP−L [m/s] ri
1 5.441 5.412 1.005
2 4.308 4.234 1.017
3 2.798 2.626 1.065
4 4.814 4.683 1.028

Table 1: Comparison between average speeds along paths Li and
average speeds within the rotor disk sector Ai.
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RESULTS

At first, we focused on the comparison between the average of
the sets 〈{VCP−SE,i}〉 with the average of speeds observed by the
wind sector observer for the No-Wake case. The results, reported
in Fig. 7, show that the 4th (upper) sector experiences the highest
speed and the 2nd (bottom) the lowest one. On the other hand,
wind flows through the 1st and 3rd sectors feature speeds that are
between these two extreme values. This is indeed the expected
behavior due to vertical shear. It can be also appreciated that the
closer to the turbine the LiDAR beams are focused, the lower the
measured velocity is, which agrees with the expected effect of the
rotor induction on the upstream flow (Burton et al., 2001).
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V
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/s
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V∞
ξ = -2
ξ = -1
ξ = -0.5D

Fig. 7: No-Wake case: comparison between the average of the
sets 〈{VCP−SE}〉, computed at different ξ = x/D, and the undis-
turbed velocity V∞ with the wind sector observer predictions.

Given that the wind speeds predicted by the observer are the ones
of the undisturbed flow (Schreiber et al., 2016), one must correct
the measured speed data by the effect produced by the rotor in-
duction in order to properly validate the observer. The approach
of Medici et al. (2011) has been used for this purpose. Specifi-
cally, the undisturbed velocity V∞,i of each sector, as well as the
axial induction factor a, are the ones that best-fit the following set
of equations to the measured data:

〈{VCP−SE,i}〉(ξ ) = V∞,i

[
1−a− 2aξ√

1 + 4ξ 2

]
. (13)

The rotor axial induction factor was included within the parame-
ters that the fitting algorithm estimates, instead of using the BEM-
based value. In fact, Eqn. 13 proved to overestimate the predicted
velocity deficits when the BEM-based axial induction factor is
used (Simley et al., 2016).

Table 2 reports a comparison between the sector undisturbed ve-
locity V∞,i and the wind speeds VWO,i predicted by the observer,
together with the relative errors. Results show that the wind
observer slightly overestimates, by approximately 5%, the wind
speeds on all four rotor disk sectors, probably due to uncertain-
ties in the BEM-based cone coefficients. Indeed, such coefficients
could be further tuned to lead to a better agreement between mea-
surements and observations. However, the observer appears to

be clearly capable of properly detecting the effect of the vertical
shear on the wind speed experienced by each sector.

Sector VWO [m/s] V∞ [m/s] Err. [%]
1 5.95 5.67 +4.70
2 5.70 5.38 +5.52
3 5.94 5.60 +5.98
4 6.20 5.95 +4.06

Table 2: No-Wake case: comparison between the sector
undisturbed velocity V∞ and the wind speeds VWO predicted by
the observer.

Results for the Wake case, are reported in Fig. 8. It can be noticed
that the 3rd sector, being fully impinged by the wake of WT1,
experiences a very low velocity. On the other hand, the 1st sector,
being almost out of the wake, experiences nearly the same speed
as in the No-Wake case. Meanwhile, sector 4, as expected, is
crossed by a flow whose speed is higher than the one experienced
by sector 2, due to the vertical shear. However, both sectors, being
partially in the wake, experience speeds in between the ones of the
left and right sectors, as expected.
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Wind Observer
V∞,Vw

ξ = -2
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ξ = -0.5

Fig. 8: Wake case: comparison between the average of the sets
〈{VCP−SE,i}〉, computed at different ξ = x/D, and the undisturbed
velocity V∞ or wake speed Vw with the observer wind predictions.

As for the No-Wake case, measured data needs to be corrected
by the effect of the rotor induction, which reduces the speed the
closer one gets to the disk. However, for the sectors that are highly
impinged by the wake of WT1, it is also necessary to account for
wake recovery. Indeed, LiDAR beams are not focused at the rotor
disk location; the speeds they measure would be therefore lower,
even if corrected by rotor induction, than the speeds of the wind
flows that cross the rotor sectors. As a result, they could not be
compared to wind observations. Wake recovery plays, then, an
opposite effect than rotor induction, since it accelerates the flow
velocity as the wake moves further downstream, i.e. the closer to
WT2 one looks. The combination of these two opposite effects
is clearly visible if one observes the trend of 〈{VCP−SE,3}〉, eval-
uated with respect to ξ . For the 3rd sector, indeed, the measured
wind speed increases closer to the rotor disk, while the other sec-
tors are characterized by behaviors similar to those observed for
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the No-Wake case. The two effects can be modeled by combining
the Jensen model equation (Katic et al., 1986)

Vw(ξ ) = V∞

[
1− 2aWT 1

[1 + 2k (4 + ξ )]2

]
, (14)

to Eqn. 13. The distance from WT1, expressed as 4+ξ , accounts
for the longitudinal distance between the wind turbines, which is
4D, and negative values of ξ . This way, one can obtain the undis-
turbed velocity V∞,i of each sector, as well as the axial induction
factor a of WT2, by best-fitting the following set of equations to
the measured data:

〈{VCP−SE,i}〉(ξ ) = V∞,i

[
1−a− 2aξ√

1 + 4ξ 2

]
, for i = 1,2,4,

(15a)

〈{VCP−SE,3}〉(ξ ) = V∞,3[
1−a− 2aξ√

1 + 4ξ 2

][
1− 2aWT 1

[1 + 2k (4 + ξ )]2

]
.

(15b)

A wake expansion coefficient k = 0.046, calibrated by previous
wind tunnel tests (Campagnolo et al., 2016a), and a BEM-based
axial induction factor aWT 1 = 0.4 were used as parameters of the
fitting.

By this approach, one can:

• compare wind speeds predicted by the observer to the undis-
turbed velocity V∞ for sectors that are out or partially in the
wake of WT1, thus neglecting the effects of wake recovery;

• for sector 3, which is fully impinged by the wake of WT1,
compare the observer prediction to the wake speed Vw eval-
uated at ξ = 0.

The comparison, reported in Table 3, is satisfactory for sectors
that are out or partially in the wake of WT1. On the other hand,
the observer performance is poor in predicting the speed of the
flow crossing a fully wake-impinged sector. The mismatch could
be due to uncertainties in the measurements. In fact, the ability of
short-range WindScanners of measuring wind speeds lower than
2 m/s along their line of sight is questionable (Floris van Dooren
et al., 2017). An additional reason might be an inappropriate mod-
eling of the wake recovery and/or rotor induction effects, or the
detection accuracy of wind sector speeds by means of hub loads.

CONCLUSIONS

The paper has presented experimental results obtained in a large
boundary layer wind tunnel, which were used to characterize the
performance of a local wind observer based on rotor loads.

The observer proved to be capable of accurately detecting the
sector effective wind speed for a wind turbine operating in free
stream conditions, i.e. not impinged by wakes. In particular,

Sector VWO [m/s] V∞ [m/s] Vw(0) [m/s] Err. [%]
1 5.92 5.83 - +1.59
2 4.54 4.64 - -2.20
3 4.00 - 3.23 +19.3
4 5.29 5.17 - +2.28

Table 3: Wake case: comparison between the sectors
undisturbed velocity V∞ or wake speed Vw and the wind speeds
VWO predicted by the observer.

it has been shown that the observer can properly detect the ef-
fect of the vertical shear on the wind speed experienced by each
sector. This could be exploited for estimating the vertical shear,
which is known to be strictly related to the stability of the atmo-
sphere. Since atmospheric stability plays a major role in deter-
mining wake behavior, which may significantly affect wake man-
agement techniques (Vollmer et al., 2016), it is clear that knowl-
edge of vertical shear at each turbine location within a wind power
plant could lead to potential benefits at the level of wind farm con-
trol.

The observer also proved to be capable of accurately detecting the
speed of wind flows crossing sectors that are partially impinged
by wakes. The comparison, in terms of mean values, between
LiDAR and observer measurements proved to be unsatisfactory
for sectors completely immersed in the wake shed by upstream
machines. Possible explanations for this inconsistency have been
proposed, but deeper analyses are required to fully explain these
results. However, the velocity deficit is qualitatively detected by
the wind observer. Such information will be exploited by wake
management strategies, currently under development, which aim
at steering wakes away from downstream turbines.

Further work will aim at characterizing the time it takes for the
observer to detect changes of the SE wind speeds, due to the
turbulent nature of the wind and time-varying wind directions.
Moreover, further analyses will be performed to characterize the
quality of the estimations for significant yaw misalignment an-
gles, e.g. if the waked turbine itself is intentionally yawed to
redirect its own wake.
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CHAPTER 5

Paper 3: Wake detection for wind farm control –
formulation and validation

5.1 Summary

Within this work a method to detect an impinging wake on a turbine rotor is described. The underlying
methods, which base on the sector-effective wind speed (SEWS) estimates and their variations within
the turbine rotor disc, are described corresponding to the work within Paper 1.

An experimental validation is presented using scaled wind farm experiments within a boundary
layer wind tunnel. The two scaled turbines of type G2 are equipped with blade root bending sensors
(different to the models used in Paper 2) and the downstream turbine is installed at varying lateral
positions with respect to the upstream turbine. Thereby, different amounts of wake impingement
could be simulated to validate the wake detector. The SEWS within the part of the rotor disc that is
affected most by the upstream turbine wake, shows significantly reduced velocity, confirming the
general applicability of the wake detector. The wake detector, which bases on the comparison between
the left and right sector-effective wind speed estimates, finally shows large wake detection ratios for
lateral turbine displacements between ±(0.3 up to 0.6) rotor diameters. Thereby, the wake detector
identifies whether the wake impinges on the left or on the right part of the rotor disc, which is of
importance especially if the specific location of a wake needs to be known, i.e. for wake steering wind
farm control. The method does not identify very weak or full wake impingements, the latter however
can be identified by power or rotor-effective wind speed comparisons. In experiments at different
ambient wind speeds and without wake impingement, the wake detector shows now false positives.

The paper shows that the developed method for local wind estimation and wake detection also
works when individual pitch control (IPC) is used at the sensing turbine.

5.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has conducted all simulations and
technical analysis of the wind speed estimator and wake detector. The wind tunnel experiments have
been conducted by Filippo Campagnolo. The discussion of results and the writing of the publication
was shared in equal parts among all authors.

5.3 Reference

C. L. Bottasso, S. Cacciola, F. Campagnolo, and J. Schreiber, “Wake detection for wind farm con-
trol – formulation and validation,” 34th Wind Energy Symposium, AIAA SciTech Forum, 2016. doi:
10.2514/6.2016-1741
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Abstract. A method to detect wake impingement on a wind turbine is described. The wake 

detector, which uses rotor loads as measured by on-board sensors, can then be used for 

implementing wind farm control strategies, for example in the form of wake redirection. The 

method is verified and validated by using field test data, aeroservoelastic simulations and by 

experimental data obtained with scaled wind turbine models tested in a large boundary layer 

wind tunnel. 

1.  Introduction and motivation 

In the past, most of the research in wind energy technology focused on the optimization of wind turbines. 

In recent years, interest has expanded from the level of the individual machines to the one of wind farms. 

Optimal site selection, layout and control of wind farms are extremely complex tasks that require an 

understanding of the aerodynamic interactions among the various machines and with the environment. 

These are all problems that are not yet fully understood and that are still challenging to model in an 

accurate way.  

In this contribution, we describe our ongoing work on wind farm control. Ad hoc observers are used 

for detecting wake interaction conditions, in turn enabling cooperative control strategies for power 

maximization and load mitigation by active wake deflection. Our research program includes a scaled 

experimental facility for the simulation of wind farms in a boundary layer wind tunnel, which is used 

for the validation of simulation tools and the verification of control strategies. 

A wind turbine extracts energy out of the wind flow and thereby sheds a wake characterized by a 

reduced wind speed and an increased turbulence intensity, as shown in Fig. 1. In certain conditions 

within a wind farm environment, turbines may be affected by the wake of upstream machines, an 

interaction that typically results in reduced power output and increased fatigue loads. Wake mitigation 

or redirection performed by a wind farm controller may reduce these undesired effects [1-3].  
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Figure 1. At left, wake and turbulence effects in a wind farm; at right: power curtailment and wake 

deflection strategies for wind farm cooperative control. 

 

For any such control logic to be effective, it is crucial to know the flow conditions within the wind 

farm. A main objective of the present research project is to develop techniques for utilizing the rotor of 

each turbine as a wind sensor, by measuring wind characteristics as well as detecting potential wake 

impingements. Together with flow and wake models, these measurements can then be exploited by a 

closed loop wind farm controller for better energy capture and reduced fatigue loading. LiDARs (Light 

Detection and Ranging) may also be able to detect the location of a wind turbine wake [4], and therefore 

in principle they could be used to achieve such a goal. However, their use is still confined to research 

applications, and they are not yet routinely deployed in the field on production machines. The approach 

described herein represents an alternative method for wake detection that may be implemented at no 

cost on existing wind turbines equipped with load sensors. 

In the present work, an estimation of the mean wind speed at the position occupied by each blade is 

obtained based on measurements of blade root bending moments. Those estimates are then used to detect 

a wake impingement condition on either side of the rotor disk. This new approach is demonstrated and 

validated with the help of aeroservoelastic simulations in a high-fidelity environment, using field test 

data, and also by wind tunnel tests of a scaled wind farm model. The use of rotor loads for the detection 

of wind conditions is a technology that was first proposed in [5] and further developed in [6-11].  

2.  Methods 

At first, a rotor-effective wind speed estimator is developed, based on the out-of-plane cone (i.e. 

averaged over the number of blades) bending rotor loads. The cone coefficient is defined as 

 

𝐶𝑚0
(𝜆𝑅𝐸 , 𝛽, 𝑉𝑅𝐸) =

1
2𝜋 ∫ ∑ 𝑚𝑖(𝜓𝑖)𝐵

𝑖=1 d𝜓
2𝜋

𝜓=0

1
2 𝜌𝐴𝑅𝑉𝑅𝐸

2
,                                                    (1) 

 

where 𝜆𝑅𝐸 is the rotor-effective tip speed ratio, 𝛽 the pitch angle, 𝑚𝑖 the out-of-plane bending moment 

of blade i occupying the azimuthal position 𝜓𝑖, 𝜌 is the density of air, 𝐴 the rotor disc area, 𝑅 the rotor 

radius and 𝑉𝑅𝐸 the unknown rotor-effective wind speed. With this definition, the blade collective 

bending moment 𝑚0 = ∑ 𝑚𝑖
𝐵
𝑖=1 𝐵⁄  is computed as 

 

𝑚0(𝑡) =
1

2𝐵
𝜌𝐴𝑅 𝑉𝑅𝐸

2(𝑡) 𝐶𝑚0
(𝜆𝑅𝐸(𝑡), 𝛽(𝑡), 𝑉𝑅𝐸(𝑡)),                                         (2) 
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where 𝐵 is the number of blades. At each instant of time, 𝑚0 is measured by blade load sensors. As also 

the rotor speed 𝛺 can be easily measured together with the blade pitch angle 𝛽, the sole unknown in the 

equation is the effective wind speed 𝑉𝑅𝐸, which can therefore be readily computed.  

To increase robustness of the estimates in the face of measurement and process noise, an Extended 

Kalman filter is used for the computation of 𝑉𝑅𝐸. The wind speed update is defined as 

 

𝑉𝑅𝐸𝑘 = 𝑉𝑅𝐸𝑘−1 + 𝑤𝑘−1,                                                                     (3) 

 

𝑤𝑘 being the process noise with covariance 𝑸, while the non-linear output equation is defined as  

 

𝑧𝑘 =
1

2
𝜌𝐴𝑅 𝑉𝑅𝐸𝑘

2  𝐶𝑚0(𝜆𝑅𝐸 , 𝛽) − �̂�0 + 𝑣𝑘 ,                                                       (4) 

 

where 𝑣𝑘 is the zero-mean measurement noise with covariance 𝑹, �̂�0 are the measured loads, while the 

output 𝑧𝑘 is set to 0 to enforce the desired equation at each step. 

Such a method delivers estimates of the wind speed and turbulence intensity that are similar, if not 

slightly superior, to the classical rotor-effective wind speed estimators based on the torque balance 

equation using the power coefficient 𝐶𝑃 [12].  In fact, the present approach may be somewhat less limited 

in frequency than the classical one, which is slowed by the significant inertia of the rotor. An example 

of the quality of the resulting estimates of the wind speed in the time domain is shown in Fig. 2. The 

effective wind speed reference, shown in the figure using a black solid line, was computed from the 

simulation input as the spatial mean of the longitudinal wind speed within the rotor disk area, as already 

done in Østergaard et al. [13]. The estimates provided by the present method are of good accuracy and 

robustness with respect to the tuning parameters of the filter. 

 

 

Figure 2. Effective wind speed time history and its estimates, obtained by the cone estimator using 

the 𝐶𝑚0
 coefficient and by the classical formulation based on the power coefficient 𝐶𝑃 [12]. 

 

Next, the method is specialized to the estimation of wind speed on sectors of the rotor disk. To this 

end, considering the ith blade, the previous moment equation is modified as  

 

𝑚𝑖(𝑡) =
1

2𝐵
𝜌𝐴𝑅 𝑉𝐿𝐸

2(𝑡, 𝜓) 𝐶𝑚0
(𝜆𝐿𝐸(𝑡, 𝜓), 𝛽𝑖(𝑡), 𝑉𝐿𝐸(𝑡)),                                 (5) 

 

where 𝛽𝑖 is the 𝑖th blade pitch angle, whereas the blade local-effective wind speed is defined as 

 

𝑉𝐿𝐸(𝜓) =
1

𝐴𝐵
∫ 𝑉d𝐴𝐵(𝜓)

 

𝐴𝐵

,                                                                 (6) 

 

𝐴𝐵 being the planform area of the rotor blade. From the blade local-effective wind speed, a sector-

effective wind speed is obtained by averaging over an azimuthal interval of interest. The concept is 
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illustrated in Fig. 3, which shows how the passage of a blade over a disk sector can be used for estimating 

a sector-effective wind speed: 

 

𝑉𝑆𝐸(�̃�) =
1

𝐴𝑆
∫ 𝑉𝐿𝐸(𝑡, 𝜓) d𝐴𝑆

𝐴𝑆

=
1

𝜓2 − 𝜓1
∫ 𝑉𝐿𝐸(𝑡, 𝜓)d𝜓.                                   (7)

𝜓2

𝜓1

 

  

Finally, from the knowledge of the wind speed, the sector turbulence intensity can be readily computed. 

 

Figure 3. Estimation of local-effective and sector-effective wind speed and turbulence intensity, 

from the loads of a blade passing through a rotor disk sector. 

3.  Results 

Both the wind speed estimator and the wake detector based on it were validated using field test data, 

aeroservoelastic simulations and wind tunnel testing. 

3.1.  Validation with field test data 

At first, the new method was tested using field data of the NREL CART 3 wind turbine [14]. As this 

machine does not experience significant waked conditions, due to the location of its neighboring wind 

turbines, the proposed method was used to estimate the different velocities in the top and bottom 

quadrants of the rotor, providing this way an estimate of the vertical wind shear.  

A nearby met-mast, shown in Fig. 4, provides reference anemometric measurements. In order to 

compare the estimates provided by the proposed method with the two measurements available at the 

met-mast at different heights, it is useful to derive a point measurement from the sector-effective wind 

speed obtained from blade loads. As shown in Ref. [6], the estimator can be interpreted as sampling the 

wind field at about 66% of the blade span. Consequently, the anemometer measurements were 

interpolated at hub height ±2/3 𝑅 and used as reference measurements in the following plot to judge 

the quality of the load-based estimates. 

 

Figure 4. Sketch of met-mast anemometer position wrt the NREL CART 3 wind turbine. 

 

58m 

15m 

58m 

40m 

40m 

Met-mast  
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Figure 5 shows a good agreement between the estimated sector-effective wind speeds with the 

interpolated point-wise anemometric measurements. The trends are reasonably well followed and a 

higher wind speed is typically detected in the top than in the bottom quadrant. 

 

 

Figure 5. Estimation of top and bottom quadrant effective wind speeds, and comparison 

with interpolated met-mast data for the NREL CART 3 wind turbine. 
 

3.2.  Validation using aeroservoelastic simulations 

Next, the new method was used for estimating the local wind speed separately on the left and right 

parts of the rotor, thereby detecting the possible presence of an area of reduced speed and increased 

turbulence intensity, which may indicate the presence of a wake. As no experimental data was available 

for this case, a simulation study was conducted, by using a high-fidelity aeroservoelastic model [15] of 

a multi-MW wind turbine operating in different partial and full wake conditions. The turbulent wind 

field was obtained by the superposition of Mann’s turbulence with Larsen wake model. 

The results of the estimation are summarized by Figs. 6 and 7, which show the actual and estimated 

local wind speeds and turbulence intensities in two lateral quadrants of the rotor. Each subplot refers to 

a different overlap indicated by the lateral distance between rotor and wake center. 

 

 

Figure 6. Estimation of local wind speed on two lateral rotor quadrants. 
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Figure 7. Estimation of local wind turbulence intensity on two lateral rotor quadrants. 

 

To simulate the effects of a meandering wake, the wake position was laterally displaced between 

far out-of-wake and full-waked conditions as a function of time according to 𝑦 = −1D +
1D sin(2𝜋𝑓𝑡) (cf. Fig. 8), where the frequency 𝑓 was set to 0.05 Hz. As shown in the picture, the 

method reliably detects the waked conditions, with a small delay of about 2 sec, which correspond to 

about one third of a revolution.  

 

Figure 8. Detection of a meandering wake. 

3.3.  Validation using scaled models in a boundary layer wind tunnel 

Finally, the method was validated using experimental data obtained using scaled models (Fig. 9) 

tested in the large boundary wind tunnel of the Politecnico di Milano [16].  
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Figure 9. Scaled wind turbine models, and experimental setup in the wind tunnel for the testing 

of wind farm control strategies. 

 

One wind turbine model was operated in the wake of an upstream machine, at a distance of four 

diameters, representative of a closely spaced wind power plant layout. The machine, equipped with 

load sensors on the blades, was controlled in closed loop both by a standard collective pitch and torque 

controller, as well as by an individual blade pitch controller used for load alleviation in partial wake 

conditions. Loads measured on the machine in various different interference conditions were used for 

estimating wake impingement, as previously explained. During all tests the ambient turbulence 

intensity was about 7%, with a wind shear layer characterized by a power law exponent equal to 𝜅 =
0.26. 

Figure 10 shows the estimation of the local wind speed on two lateral rotor quadrants for the 

standard collective pitch controller. Similarly, Fig. 11 shows the estimations during tests with the 

individual pitch controller. Not all lateral displacements could be tested for the latter controller, but a 

comparison between the available results indicates that the local wind speed can be estimated 

independently of the controller choice. 
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Figure 10. Estimation of local wind speed, collective pitch control case. 

 

 
Figure 11. Estimation of local wind speed, individual pitch control case. 

 

By comparing the estimations in the horizontal quadrants, scaled by the estimated rotor effective 

wind speed, the wake can be detected with good accuracy on either side of the rotor. Figure 12 shows 

the detection ratio for the collective pitch control case. The small asymmetry between the left and 

right wake impingement cases can be explained by a slight overestimation of the wind speed in the 

left quadrant due to turbine up-tilt. This problem is currently being corrected in a new release of the 

observer. 

 

 
Figure 12. Wake impingement detection ratio for different lateral displacements. 

 

The robustness of the wake impingement detector is evaluated for another set of measurements 

where no upwind turbine is present. As clearly shown in Fig. 13, for all wind speeds between 2.9 and 

6.5 m/s, representing several operating points in control regions II and III, there are no false detection 

events. 
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Figure 13. Detection ratio at different wind speeds without wake impingement. 

 

4.  Conclusions and outlook 

A method was described that can be used for detecting wake impingement on a wind turbine within 

a wind power plant. The proposed method is capable of estimating with good accuracy the local wind 

speed and turbulence intensity, and in particular it is able to detect variations of these quantities on the 

two sides of the rotor that may be indicative of a wake interference condition. Similar results can be 

derived for various wind conditions, demonstrating the robustness of the local wind speed estimator. 

The verification and validation of the observer is obtained by using field test data, aeroservoelastic 

simulations, as well as scaled experiments performed in a boundary layer wind tunnel with sophisticated 

wind turbine models.  

The new wake detector is currently being used for driving wake deflection strategies by active wind 

turbine yaw. Such form of wind power plant control will also be tested in forthcoming wind tunnel 

entries using the scaled wind farm facility developed by our group.   
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CHAPTER 6

Paper 4: Field testing of a local wind inflow
estimator and wake detector

6.1 Summary

Within this paper, a field test of the wind observer described in Paper 1 is conducted. The validation
study employs two full-scale 3.5 MW wind turbines and a nearby met-mast. For one of the turbines,
two blades are equipped with blade root bending sensors allowing the application of the wind sensing
method.

Results show that the load-based vertical inflow shear estimation correlates very well with met-
mast reference values. As the met-mast is only reaching turbine hub height, load-based shear estimates
using only the lower part of the rotor disc are compared and consequently correlate better with the
met-mast reference than full rotor estimates. The load-based estimation of the horizontal shear could
not be quantitatively compared to any reference value, however the shed wake of the second turbine
could be used for qualitative assessment: depending on the wind direction, the wake impinges on
different parts of the sensing turbine thus leading to a distinct fingerprint in the horizontal shear and
the corresponding sector-effective wind speeds. Thereby, a left, right or full wake overlap could be
clearly identified. As the method relies on the accuracy and calibration of sensors, procedures are also
presented and demonstrated which correct for possible sensor miscalibration.

6.2 Contribution

The author of this dissertation has conducted the main research work and prepared a first draft of
the manuscript. Carlo L. Bottasso developed the core idea of load-based wind sensing, supervised
the research and contributed to the writing of the paper. Marta Bertelè assisted in the measurement
post-processing and analysis. All authors provided important input to this research work through
discussions, feedback and by improving the manuscript.

6.3 Reference

J. Schreiber, C. L. Bottasso, and M. Bertelè, “Field testing of a local wind inflow estimator and wake
detector,” Wind Energy Science, vol. 5, no. 3, pp. 867–884, 2020. doi: 10.5194/wes-5-867-2020
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Abstract. This paper presents the field validation of a method to estimate the local wind speed on different
sectors of a turbine rotor disk. Each rotating blade is used as a scanning sensor that, traveling across the rotor
disk, samples the inflow. From the local speed estimates, the method can reconstruct the vertical wind shear
and detect the presence and location on an impinging wake shed by an upstream wind turbine. Shear and wake
awareness have multiple uses, from turbine and farm control to monitoring and forecasting.

This validation study is conducted with an experimental data set obtained with two multi-megawatt wind
turbines and a hub-tall met mast. Practical and simple procedures are presented and demonstrated to correct for
the possible miscalibration of sensors.

Results indicate a very good correlation between the estimated vertical shear and the one measured by the
met mast. Additionally, the proposed method exhibits a remarkable ability to locate and track the motion of an
impinging wake on an affected rotor.

1 Introduction

Knowledge of the wind turbine inflow can enable several
applications. For example, a turbine controller can be im-
proved when scheduled as a function of wind speed (Øster-
gaard et al., 2007). Similarly, a farm controller benefits from
knowledge of the atmospheric stability, because of its strong
effect on wake recovery, and from an improved understand-
ing of wake position (Vollmer et al., 2017), because of its
crucial implications on power output and loading. Apart from
control applications, other usage scenarios include lifetime
assessment and fatigue consumption estimation, which are
clearly dictated by the inflow conditions experienced by each
turbine (Ziegler and Muskulus, 2016). Moreover, wind farm
power and wind forecasting, post-construction site assess-
ment, sector management triggered by wake detection for
closely spaced turbines, and estimation of available wind
farm power are all additional applications that can profit from
knowledge of the inflow affecting each single turbine. Un-
fortunately, this information is not available on today’s wind
turbines that, as a consequence, operate “in the dark” based

only on a limited awareness of the environment in which they
are immersed.

Indeed, turbines are equipped with wind sensors, typi-
cally located on the nacelle or the spinner, which are used
for aligning the rotor axis into the wind and for identifying
whether the cut-in or cut-out wind speeds have been reached.
Even though these measurements might be accurate enough
for these simple tasks, the actual complexity of the turbine
inflow remains completely beyond the reach of such sensors.
In addition, wind vanes and anemometers provide pointwise
information, while wind conditions exhibit significant spa-
tial variability not only at the large scale of the farm, as in
offshore plants (Peña et al., 2018) and at complex terrain
sites (Lange et al., 2017; Schreiber et al., 2020), but also at
the smaller scale of the individual turbine rotor disk (Mur-
phy et al., 2019). More sophisticated measurements can be
provided by lidars (Held and Mann, 2019) and other remote
sensing technologies, which are however still costly and –
being mostly used for assessment, validation, and research –
are not yet commonly used for production installation.

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.
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The concept of using the wind turbine rotor as a wind sen-
sor has been proposed to improve wind condition awareness
(Bottasso et al., 2010; Simley and Pao, 2016; Bertelè et al.,
2017). In a nutshell, wind sensing uses the response of the ro-
tor – in the form of loads, accelerations, and other operational
data – to infer the characteristics of the wind blowing on the
turbine. Therefore, wind sensing is a sort of model inversion,
where the response of the system is used to estimate the dis-
turbance (in this case, the wind). The simplest and probably
most widely used wind sensing technique is torque-balance
estimation (Ma et al., 1995; Soltani et al., 2013). Thereby,
turbine power or torque is used to estimate the rotor-effective
wind speed by the power curve or power coefficient. The
concept has been more recently extended to estimate other
characteristics of the inflow, notably the wind directions and
shears, as reviewed in Bertelè et al. (2017).

This paper considers the approach first formulated by Bot-
tasso et al. (2018). Through an aerodynamic “cone” coeffi-
cient, this method uses the blade out-of-plane bending mo-
ment to estimate the local wind speed at the position occu-
pied by a blade. The method is very similar to the torque-
balance estimation of the wind speed, with the important dif-
ference that it produces a localized speed estimate instead
of a rotor-effective one. The rotating blades therefore oper-
ate as scanning sensors that, traveling across the rotor disk,
sample the local variability of the inflow. In turn, the local
wind speed estimates are used for obtaining two key pieces
of information on the inflow: the vertical shear, which is an
important load driver and an indicator of atmospheric stabil-
ity, and the horizontal shear, which can be used to detect the
presence and location of an impinging wake. Today, only a
scanning lidar would be able to provide similar information
on the inflow, albeit not exactly at the rotor disk – as done
here, as the rotor itself is the sensor in this case – and with a
very different level of complexity and cost.

The present method has some very interesting features.
First, it is model-based, and therefore it does not necessi-
tate extensive data sets for its training. Second, it is based on
an extremely simple model of the rotor (expressed through
the cone coefficient), which can be readily computed from a
standard aeroelastic model of a wind turbine. Third, the re-
sulting estimator is in the form of a simple lookup table that is
computed offline, resulting in an online onboard implementa-
tion of negligible computational cost. Fourth, when load sen-
sors are already installed on the turbine for load-alleviating
control or monitoring, this wind sensing technique requires
no additional hardware, and therefore its implementation
simply amounts to a software upgrade. The wind sensing
method considered here has already been tested with blade
element momentum (BEM) aeroelastic simulations (Bottasso
et al., 2018), large-eddy simulations (Schreiber and Wang,
2018), and scaled wind tunnel tests (Campagnolo et al.,
2017). Applications related to wake position tracking within
a wind farm have been presented in Schreiber et al. (2016)
and Bottasso and Schreiber (2018).

The goal of the present paper is to validate the wind sens-
ing approach of Bottasso et al. (2018) in the field. To this
end, the method is exercised on a data set obtained with two
3.5 MW turbines, one of which has two blades equipped with
load sensors, and a meteorological mast (met mast). Since a
perfect calibration of the sensors cannot always be guaran-
teed, another goal of the paper is to present and demonstrate
simple and effective methods to correct the measurements
and improve accuracy.

The paper is organized as follows. First, the formulation
of the wind sensing method is reviewed, including the esti-
mation of rotor-effective and sector-effective wind speeds,
as well as of horizontal and vertical shears. Next, the ex-
perimental setup is described, including the site layout and
the available measurements. The result section represents the
core of the paper and illustrates in detail the performance
of the wind sensing technique. A first part of the analysis
is concerned with the validation of the vertical shear esti-
mates. Then, the attention is turned to the detection of wake
impingement, which is studied by exploiting the waking in-
duced at the site for some wind directions by a neighbor-
ing turbine. Finally, the effects of cross-flow are considered,
demonstrating that the typical inevitable misalignments be-
tween turbine and wind vector do not pollute the estimates.
Conclusions and an outlook on future work are given in the
last section.

2 Methods

2.1 Rotor and blade-effective wind speed estimation

Considering a steady and uniform wind speed V , the power
coefficient Cp and cone coefficient Cm (as introduced in Bot-
tasso et al., 2018) are defined as

Cp(β,λ,q)=
Taero�

0.5ρAV 3 , (1a)

Cm(β,λ,q,ψi)=
mi

0.5ρARV 2 , (1b)

where β is the blade pitch angle, λ=�R/V the tip speed
ratio, � the rotor speed, R the rotor radius and A= πR2 the
swept disk area, ρ the air density, and q = 1/2ρV 2 the dy-
namic pressure, while Taero is the aerodynamic torque. The
azimuthal position of the ith blade is given by ψi , while mi
is its out-of-plane root bending moment. Coefficients Cp and
Cm are readily computed using an aeroelastic model of the
turbine, today customarily based on a BEM method that,
in the present work, is the one implemented in the FAST
code (Jonkman and Jonkman, 2018).

Different approaches to estimate wind speed from the
power coefficient are reviewed in detail by Soltani et al.
(2013). However, following Bottasso et al. (2018), here we
use both the power and the cone coefficients: while the for-
mer yields a rotor-effective wind speed (i.e., an average quan-
tity over the entire rotor disk), the latter is used to sample

Wind Energ. Sci., 5, 867–884, 2020 https://doi.org/10.5194/wes-5-867-2020
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the local wind speed at the azimuthal position occupied by
a blade. A local radial sampling would require a more so-
phisticated approach and additional sensors along the blade
span, with increased complexity and cost. Given coefficients
Cp and Cm computed for a reference air density ρref, lookup
tables (LUTs) are generated that return wind speeds given
measured loads Taero and mi , blade pitch β, rotor speed �,
and air density ρ. Noting the rotor-effective wind speed es-
timated from the torque balance equilibrium as VTB and the
one from blade loads as Vi , the inversion of Eqs. (1) yields

VTB = LUTCp

(
β,�,Taero,

ρ

ρref

)
, (2a)

Vi = LUTCm

(
β,�,ψ,mi,

ρ

ρref

)
. (2b)

Instead of the simple nonlinear model inversion adopted here
for simplicity, more sophisticated methods can be used, for
example based on Kalman filters or input observers (Soltani
et al., 2013), which may slightly improve the results at the
cost of an increased complexity. A rotor-effective wind speed
can also be obtained from the blade-effective ones by simple
averaging over all (three) blades:

VB = 1/3
3∑
i=1

Vi . (3)

Although in a nonuniform inflow the two rotor-effective
speeds VTB and VB are not necessarily identical, they are in
practice very similar, as shown later on in the results section.
The redundancy offered by VTB and VB offers opportunities
for sensor calibration, as also described later on.

In Eq. (2a), Taero is computed from the dynamic torque
balance equilibrium J �̇= Taero−Tmeas−Tloss, where J is the
total rotor, drivetrain, and generator rotational inertia, while
�̇ is the rotor acceleration and Tmeas is the measured torque
at the generator. Mechanical losses in the drivetrain are taken
into account by the term Tloss (Soltani et al., 2013). Here, for
the accuracy of the wind speed estimate, a dynamic model is
used to compute the aerodynamic torque. In fact, the energy
converted into rotor acceleration or deceleration is typically
large, given the large rotational inertia of the system.

A simpler approach is used for Eq. (2b), where the blade
dynamic equilibrium is neglected. This way, the out-of-plane
bending moment is directly set to the corresponding mea-
sured load, i.e., mi =mi,meas, where mi,meas is provided by
blade-mounted strain gages, optical sensors, or similar de-
vices. The introduction of a flapwise dynamic equilibrium
equation, although certainly possible, would not be straight-
forward because of the coupling with the tower fore–aft mo-
tion and the need to estimate additional relevant modeling
parameters. Therefore, in the interest of simplicity and prac-
tical applicability, the phase delay caused by the dynamic re-
sponse of the blade was taken into account by estimating an
azimuth bias in the response, as described in Sect. 3.7. Due

Figure 1. Wind turbine rotor disk with sectors and inflow coordi-
nate system. This naming convention is in the downstream viewing
direction.

to the high damping of the flap degree of freedom, even the
present simplified method seems able to provide accurate re-
sults, as also shown in previous simulation studies (Bottasso
et al., 2018).

The power and cone coefficients of Eqs. (1) are computed
when the rotor axis is aligned with the ambient wind direc-
tion. Hence, strictly speaking, Eqs. (2) can be used to esti-
mate wind speeds only in the same aligned conditions. How-
ever, this is typically not the case in practice, as turbines are
often misaligned with respect to the wind by several degrees.
It will be shown later on that moderate misalignments do not
significantly affect the estimation of wind speeds and that the
effects of larger misalignments can be corrected for.

2.2 Sector-effective wind speed estimation

An average wind speed over a rotor sector can be readily
computed by averaging the blade-effective estimate Vi be-
tween two azimuthal angles ψa and ψb:

VS =

∫
AS

Vi(ψ)dAS, (4)

where AS = (ψb−ψa)R2/2 is the area of the sector. A new
sector-effective speed estimate is generated as soon as a blade
leaves the sector.

The sector width can be arbitrarily defined. Figure 1 shows
the case of the four equally sized 90◦ wide sectors used in this
work, yielding the four sector-effective wind speed estimates
VS,left, VS,right, VS,up, and VS,down. Clearly, a finer sampling
of the inflow over the rotor disk can be achieved by using
smaller sectors. With three blades, each of the sectors is up-
dated three times per rotor revolution. With one single in-
strumented blade, the update frequency reduces to once per
revolution. The effects of sampling frequency on the local
wind speed estimates are analyzed in Sect. 3.3.

It was shown in Bottasso et al. (2018) that, for a linear in-
flow shear and a 90◦ wide sector, the sector-effective wind
speed corresponds to the inflow speed at a distance of ap-
proximately 2/3R from the hub center.
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2.3 Shear estimation

The vertical wind shear is modeled as a power-law profile
with exponent α, while the horizontal shear is assumed to
be linear with coefficient κ . The inflow wind speed V can
therefore be written as

V (z,y)= VH

((
z

zH

)α
+ κ

y

R

)
, (5)

where z and y are the vertical and lateral coordinates, re-
spectively, with origin at the turbine foundation, as shown in
Fig. 1. Furthermore, VH is the speed at the hub center, which
is located at z= zH and y = 0.

Assuming that the sector-effective speed samples the in-
flow profile at ±2/3R along the z and y axes, according to
Bottasso et al. (2018), the shear coefficients can be estimated
from the sector-effective wind speeds by using Eq. (5), which
yields

αB = ln
(
VS,up

VS,down

)(
ln
(
zH+ 2/3R
zH− 2/3R

))−1

, (6a)

κB =
3
2
VS,left−VS,right

VS,left+VS,right
. (6b)

This way, the vertical shear is estimated by using the top and
bottom sectors, while the horizontal shear is estimated by us-
ing the two lateral sectors. One could also use all four sectors
together, and solve Eq. (5) simultaneously in a least-squares
sense for both αB and κB. However, this does not lead to ap-
preciable differences in the results of this paper.

The vertical shear estimate is validated in this work by
comparison with an IEC-compliant met mast, reaching up
to hub height. However, shears computed over the whole ro-
tor or over only its lower half can be significantly different;
therefore, one should not compare the full-rotor shear ob-
tained by Eq. (6a) with a lower-half-rotor shear provided by
a hub-tall met mast. To address this issue, a lower-half-rotor
shear estimate is defined here. This quantity is computed by
first averaging the two lateral (left and right) sectors to pro-
vide a hub-height speed that, together with the lower sector,
is then used to estimate the shear on the sole lower portion
of the rotor disk. Using Eq. (5), the lower-half-rotor shear
estimate is obtained as

αlower,B = ln
(
VS,left+VS,right

2VS,down

)(
ln
(

zH

zH− 2/3R

))−1

. (7)

3 Results

3.1 Experimental setup

This validation study is conducted using an eno114 wind
turbine manufactured by Eno Energy Systems GmbH. This
turbine, in the following named WT1, has a rated power of
3.5 MW, a rotor diameter D = 114.9 m, and a hub height

zH = 92 m. Two of the blades are equipped with blade load
sensors, mounted in close proximity to the root and capable
of measuring the two flapwise and edgewise components.

The site is located approximately 10 km south of the
western Baltic Sea in a slightly hilly terrain without abrupt
changes in elevation, approximately 1 km east of the village
of Brusow (Germany), as described by Bromm et al. (2018).
During the time of the year of the test campaign, the site is
characterized by prevailing westerly wind directions, mostly
neutral atmospheric stratification, and wind veers between 0
and 10◦ (Bromm et al., 2018).

At the site, a second turbine of the same type, named WT2,
and a meteorological mast are also installed. Figure 2 shows
a satellite image of the site, including the waking directions
and distances among the three installations. WT1 is down-
stream of the met mast for a wind direction 0MM−>WT1 =

192.5◦, while WT1 is waked by WT2 for 0WT2−>WT1 =

145◦. The met mast is equipped with a wind vane (manu-
factured by Thies GmbH, catalogue number 4.3150.00.212)
installed at 89.4 m and three cup anemometers (also manu-
factured by Thies GmbH, catalogue number 4.3351.00.000)
at different heights, the topmost reaching 91.5 m, which is
just half a meter shy of the turbine hub height. The relevant
heights of the turbine and met-mast anemometers are shown
in Fig. 3.

3.2 Measurements

Synchronized measurements of WT1 and the met mast were
made available by the turbine manufacturer and operator for
41 d from 19 October to 29 November 2017. The measure-
ments include main shaft torsion Tmeas, blade root out-of-
plane bending moments for two blades m1,2, rotor speed �,
blade pitch β, and rotor azimuth position ψ . The air den-
sity ρ was computed by the ideal gas law using measured air
pressure and temperature. Met-mast measurements include
wind speed VMM,1–3 at the three heights zMM,1–3 and wind
direction 0MM at 89.4 m.

All measurements were sampled at 10 Hz. To eliminate
higher-frequency turbine dynamics and measurement noise,
the rotor speed and torque signals were low-pass filtered us-
ing a fifth-order Butterworth filter with a −3 dB cutoff fre-
quency of 6 rpm.

The long-term average readings of the two blade load sen-
sors are expected to be equal. However, when comparing the
mean sensor values for any of the available days, the rela-
tive difference between the two blades was found to be be-
tween 4.8 and 5.8 %, whereas the absolute differences var-
ied between −100 and −300 kN m. This mismatch between
the two blades suggests a consistent measurement error of
one or both sensors. The cause for this error could not be
ascertained but might be due to miscalibration, sensor drift,
or pitch misalignment. As an exact determination of the root
reason of such inconsistencies is often difficult in a field en-
vironment (Bromm et al., 2018), a cause-independent correc-
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Figure 2. Satellite image with WT1, WT2, and met mast, including waking directions and distances (© Google Maps).

Figure 3. Sketch (to scale) of met mast and WT1 with relevant dimensions.

tion method was used here. The first 24 h of data were used
to identify a scaling factor s = 0.0274 such that m1(1+ s)=
m2(1−s), where (·) indicates a mean value. This scaling fac-
tor was then used to correct the sensor readings for the whole
data set. For a long-term implementation, a similar correction
could be applied periodically to compensate for time drifts.
Notice that this scaling simply ensures consistent measure-
ments between the two sensors, but not their absolute accu-
racy, which is corrected later in Sect. 3.6 by comparison be-
tween the rotor-effective wind speeds VTB and VB. In fact,
as these two quantities are based on independent measure-

ments (torque and blade loads), they provide an opportunity
to calibrate one or the other sensor.

The data set was filtered, retaining only measurements cor-
responding to normal turbine operation with pitch and ro-
tor speed within the LUT limits (see Sect. 3.5). Measure-
ments taken during yawing maneuvers were also discarded.
In fact, yaw generates additional loads on the blades that
would be erroneously interpreted by the observer, resulting
in a pollution of the wind estimates. For an observer to ac-
curately estimate wind even during yaw maneuvers, yaw-
induced loads could be pre-computed and stored in a lookup
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table; during operation, one could interpolate within the table
in terms of the current yawing rate and possibly wind speed
(in case yaw-induced aerodynamic loads, in addition to the
inertial ones, also need to be taken into account) and remove
the resulting loads from the measured ones. This procedure
was however not tested in this work, and therefore yaw ma-
neuvers were eliminated from the data set. After each dis-
carded measurement, an interval of 1 min for the estimator
re-initialization was accounted for.

The statistical analysis reported below is conducted with
10 min averages, which are standard in several wind en-
ergy applications. However, higher-frequency estimates are
indeed possible, as shown in Sect. 3.7. Of the initial data set,
a total of 4279 consecutive 10 min quantities were obtained,
representing approximatively 30 d of operation.

3.3 Estimator update frequency

The sampling rate of the sector-effective wind estimator
varies depending on rotor speed and the number of instru-
mented blades. For the present case, where only two blades
are equipped with load sensors and the rotor speed varies
between 5 and 12 rpm, the wind speed estimate update fre-
quency varies approximately between 0.17 and 0.4 Hz. No-
tice that, since only two out of three blades are instrumented,
the update frequency is not constant – even at constant rotor
speed.

To quantify the effects of a limited update frequency, Fig. 4
shows the met-mast-measured shear coefficient. The solid
black line represents the shear computed based on the signals
provided by the cup anemometers at a 10 Hz sampling fre-
quency. The red dashed line reports that same signal down-
sampled at 0.17 Hz, which is the estimator update frequency
for low rotational speeds. A comparison between the two
curves shows that even this slowest update frequency is high
enough to capture the most energetic fluctuations of the in-
flow.

3.4 Reference inflow

The ambient inflow measured by the met mast is assumed to
obey the vertical power law given by Eq. (5). Consequently,
the met-mast-measured hub-height reference speed Vref and
power exponent αMM were computed as best fits of the mast
measurements at the three different available heights, i.e.,

(Vref,α)= arg min
Vref,α

3∑
i=1

(
VPL

(
zMM,i,Vref,α

)
−VMM,i

)2
. (8)

Only two measurements at two different heights are strictly
necessary in order to compute the two parameters of the
power-law Vref and α. In the present case three measurements
are available, although the highest two anemometers, being
only about 2 m apart, essentially provide the same informa-
tion.

Depending on wind direction, the met mast is located
up to 288 m upstream of WT1, as shown in Fig. 2 for
0MM−>WT1. To synchronize met-mast and turbine measure-
ments, assuming Taylor’s frozen turbulence hypothesis, each
10 min met-mast measurement was time-shifted by 1t =

sMM−>WT1/Vref, where sMM−>WT1 is the downstream dis-
tance from met mast to WT1.

3.5 Lookup-table implementation

An aeroelastic model of the turbine was provided by
the turbine manufacturer, implemented in the software
FAST (Jonkman and Jonkman, 2018). To compute the power
and cone coefficients of Eq. (1), a total of 10 626 dynamic
simulations were performed in steady and uniform wind
conditions for all combinations of β ∈ [0 : 1 : 20]◦, � ∈ [3 :
0.5 : 14] rpm, and V ∈ [1 : 1 : 22]m s−1, which took just a
few hours on a standard desktop PC. Eliminating the tower
and drivetrain dynamics, a converged periodic response was
achieved in three rotor revolutions.

Considering the last revolution, the power coefficient was
computed from the mean torque, while the cone coefficient
was obtained from the blade root out-of-plane bending mo-
ment of one of the blades as a function of ψ . The lookup
tables were compiled, for each β, �, and – if applicable –
ψ , by computing speed as a function of load. If the blade
is stalled or partially stalled, the speed–load relationship is
non-monotonic. When this happens, the rotor-effective wind
speed VTB of Eq. (2a) can be used to resolve the indeter-
minacy and identify the correct speed corresponding to the
measured load.

3.6 Validation of rotor-effective wind speed estimation

First, the rotor-effective speed estimates VTB (computed
through the torque balance equilibrium by Eq. 2a) and VB
(computed using blade bending moments by Eq. 3) are com-
pared to each other and to the reference met-mast speed given
by Eq. (8). A direct comparison between VTB and VB re-
vealed that the latter provides systematically slightly higher
wind speeds than the former. This discrepancy may be caused
by sensor drift, miscalibration, pitch misalignment, and/or
deficiencies of the simulation model used to compute the
aerodynamic coefficients. Unfortunately, the root causes of
the discrepancy could not be determined within the scope
of the present work, nor could the simulation model be sys-
tematically validated; this is also probably the norm rather
than the exception in many practical cases when working in
the field. To pragmatically correct these sources of estima-
tion bias, all speed estimates (VB, VS,left, VS,right, VS,up, and
VS,down) in the remainder of the paper were scaled by a factor
c = 0.928. This scaling ensures the best correlation between
VB and VTB and was identified based on the first 7 d of mea-
sured data. Note that a direct scaling of the load measure-
ments is also possible and potentially even more accurate.
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Figure 4. Time series of the met-mast-measured shear coefficient, at the original acquisition frequency of the cup anemometers (10 Hz) and
downsampled at 0.17 Hz, which is the sector-effective wind estimation frequency for low rotor speeds.

Figure 5. Torque-balance-based rotor-effective wind speed VTB
(Eq. 2a) vs. met-mast reference wind speed Vref (Eq. 8).

It is worth pointing out that the redundancy of the two
estimates VB and VTB offers the opportunity to ensure the
consistency between different sets of sensors (the ones mea-
suring blade loads and the ones providing rotor torque). For
example, here the torque sensors were properly calibrated,
as indicated by the independent measurements of the met
mast, while the blade load sensors were not. Therefore, the
redundancy was used to calibrate the load sensors against the
torque ones. Similar recalibration procedures might also be
used in situations where a met mast is not available, if one
can ensure that at least one set of sensors is properly cali-
brated.

After correction, a comparison between met-mast refer-
ence speed Vref and torque balance estimates VTB and VB is
shown in Figs. 5 and 6, respectively. These results include
only 3420 data points where the met-mast wind direction
lies between 180 and 337.5◦, to avoid conditions where the
turbine or the met mast operate in the wake of either WT1
or WT2 (assuming a ±35◦ margin). The Pearson correla-
tion coefficient R is approximatively equal to 0.99, while the
root-mean-squared error is εRMS ≈ 0.44 m s−1 and the lin-
ear best fit (y = ax+ b) has a slope a = 1.01 and an offset
b ≈−0.15 m s−1. These results indicate that, after calibra-
tion, the two methods correlate well with the (approximate)
ground truth provided by the met mast and that both yield
very similar estimates.

Figure 6. Corrected bending-load-based rotor-effective wind speed
VB (Eq. 3) vs. met-mast reference wind speed Vref (Eq. 8).

3.7 Validation of vertical shear estimation

After discarding waked conditions from turbine WT2 (with a
±35◦ margin), an analysis of the long-term mean horizontal
shear revealed it to be nonzero. This finding is in contrast to
expectations. In fact, while for a narrow wind direction sector
some horizontal shear due to local orography or vegetation
can be expected, such effects should disappear considering
the complete wind rose.

This behavior can be explained by a possible bias in the
measurement of the azimuthal position of the rotor, which
has the consequence of generating a nonzero horizontal shear
and reducing the vertical one. In addition, another effect
should be considered: as no blade dynamics were included
in the model (see Sect. 2.1), the response of the blade is as-
sumed to instantaneously follow a wind speed change. This
is in reality not true, and the actual response will have a phase
delay, which appears as yet another source of azimuthal bias.

The expected behavior of the horizontal shear can be used
for eliminating these effects. In fact, enforcing a null long-
term average horizontal shear corrects both for azimuth sen-
sor bias and for having neglected blade dynamics. To this
end, the vertical and horizontal shears were rotated by ψbias,
until a null mean horizontal shear was obtained. Accordingly,
the mean vertical shear also reached its maximum. Using
again the first 7 d of measurements, the azimuth bias was
identified as ψbias = 14.8◦. In the remainder of this work, the
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sector-effective wind speeds and the two shears are computed
using the corrected azimuth signal ψcorr = ψ +ψbias.

The effects of blade dynamics would be more precisely
rendered by a rotor-speed-dependent azimuth bias. In fact,
by repeating the shear rotation for binned values of the ro-
tor speed, a clear bias–rotor speed correlation was observed,
with bias values in the range between about 12 and 19◦. In
addition, other effects could cause the azimuth bias to drift
over time; indeed, a bias of 16.3◦ was found by using the last
7 d of data, a slightly different value than the one obtained
using the first 7 d. However, these slight variations in the bias
and its variability with rotor speed have only a very limited
effect on the quality of the results. Therefore, for simplicity,
it was decided to use the constant average value of 14.8◦.

As previously discussed, the reference inflow profile mea-
sured by the met mast with Eq. (8) only includes measure-
ments up to hub height. Accordingly, the load-based lower-
half-rotor vertical shear αlower,B (computed by Eq. 7 in terms
of the two horizontal and the bottom sectors) is the only shear
that can be validated with respect to met-mast measurements.

A 12 h excerpt from the complete set of results is shown in
Fig. 7, where 10 min means of measurements and estimates
are provided as functions of time. Notice that the data points
are not equally spaced because of the elimination of yaw-
ing maneuvers and other conditions not accounted for in the
LUTs.

Panel (a) shows the wind direction 0MM measured at the
met mast and the turbine yaw orientation γWT1; the direction
for which the met mast is directly upstream of the sensing
turbine is 0MM−>WT1 = 192.5◦, and it is shown by a hori-
zontal solid line.

Panel (b) shows the reference wind speed Vref measured
at the met mast, together with the torque-balance VTB and
blade-load-based VB rotor-effective speeds. As already no-
ticed, both methods provide very similar results; in addition,
especially for wind directions where mast and turbine are
nearly aligned, both follow the reference very closely.

Panel (c) shows again the met-mast reference wind speed
at hub height (solid line) and the one at zH− 2/3R (dashed
line). The respective load-based estimates are indicated with
a blue solid line and • symbols for the hub-height speed and
with a red solid line and × symbols for the lower-height
speed. Both estimates correlate well with their respective ref-
erences, especially when mast and turbine are aligned. The
small rotor icon shows, using the color code of the panel, the
two horizontal sectors (used to estimate the hub-height wind
speed 1/2(VS,left+VS,right)) and the lower sector.

Panel (d) finally shows the mast vertical shear αMM and
the load-based estimate αlower,B, computed based on the data
shown in panel (c) using Eq. (7). Except for some small un-
derestimation and noise, the load-based shear follows the ref-
erence quite accurately. The load-based horizontal shear κB
is also reported in the same figure. Although no met-mast
reference is available in this case, as expected the horizontal
shear is always essentially null.

Figure 8 shows the correlation between the lower-half-
rotor shears αlower,B and αMM. Only wind directions from
190 up to 200◦ are included in the figure, resulting in N =
155 10 min data points. These conditions contain the direc-
tion where the met mast is directly upstream of WT1. The
Pearson correlation coefficient is R = 0.92. The shear is un-
derestimated with respect to the met-mast reference by a fac-
tor 1/a = 0.88, obtained by the linear best fit (y = ax+ b)
shown in the figure with a blue dashed line. By looking at
Fig. 7c, a comparison of the wind speed at hub height and
at zH− 2/3R with their respective met-mast references indi-
cates that the former is quite accurate, while the latter has a
small positive bias. This difference could possibly be caused
by a nonideal power-law inflow profile (Møller et al., 2020),
leading to a biased met-mast reference shear, although a
definitive explanation of this mismatch could not be reached
with the present data set. Figure 9 shows the correlation be-
tween the full-rotor shear αlower,B and the lower-half-rotor
shear αMM. As the two shears are computed over two differ-
ent vertical distances, their correlation is lower than in the
case of Fig. 8, as expected.

A more complete overview of the results, including a
broader range of wind directions, is shown in Fig. 10. The
x axis reports wind directions from 180 to 340◦, in 10◦ wide
bins. All results of Fig. 8 fall in the second bin from the left.
The number of available measurements N within each bin
is shown in Fig. 10a. Panel (b) shows the Pearson correla-
tion coefficient R, between the met-mast reference αMM and
the load-based shear estimate αlower,B. Here and in the other
plots, a blue solid line indicates results for the lower-half-
rotor shear, while a red dashed line is used for the full-rotor
shear. The best correlation is achieved for the wind direc-
tion where the met mast is directly upstream of the turbine
(0MM−>WT1 = 192.5◦). For the same wind direction bin, the
minimum root-mean-squared error is also achieved, as shown
in panel (c). Considering that all wind directions are for un-
waked met mast and turbine, these results suggest the pres-
ence of a spatial shear variation, probably caused by the lo-
cal vegetation and/or the village in the west that is partially
visible in Fig. 2. This interpretation is also confirmed by pan-
els (d) and (e), which show the linear best-fit coefficients a
and b. For wind directions up to 235◦, the slope coefficient a
achieves values between 1.02 and 1.18, increasing up to 1.67
in the remaining wind directions. The constant b is nearly
zero for all wind direction values.

Looking at the plots, it appears that the full-rotor shear
differs from the lower-half-rotor shear, as already reported
by Murphy et al. (2019) and as also observed earlier here
in Fig. 8. The validation of the full-rotor shear estimated by
the proposed method would necessitate a met mast reach-
ing the rotor top height or a velocity-azimuth display (VAD)
lidar, which however were not available for the present re-
search. Nonetheless, the results obtained for the lower-half-
rotor shear appear to be very encouraging, and there is no
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Figure 7. Time series reporting met-mast wind direction and turbine yaw orientation (a), met-mast and estimated rotor-effective wind
speeds (b), speeds at different heights (c), and met-mast and estimated vertical and horizontal shears (d).

Figure 8. Correlation between the lower-half-rotor vertical shear
αlower,B and the met-mast shear (up to hub height) αMM, for wind
directions from 190 to 200◦.

technical reason why similar results should not be achievable
for shear estimates over the entire rotor disk.

Finally, the effects of a higher temporal resolution are con-
sidered. Figure 11 compares the 10 Hz lower-half-rotor ver-
tical shear to the met-mast reference; this figure is there-

Figure 9. Correlation between the rotor-equivalent (full rotor) ver-
tical shear αB and the met-mast shear (up to hub height) αMM, for
wind directions from 190 to 200◦.

fore similar to Fig. 7d, which was however obtained with
10 min averages. Within the 20 min considered in the figure,
the wind direction was approximately constant and equal to
190◦, resulting in the met mast being 2D directly upstream of
the turbine, while the wind speed was approximately equal to
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Figure 10. Statistics of the shear estimates as functions of wind direction. Blue solid line: lower-half-rotor shear; red dashed line: full-rotor
shear. (a) Number of 10 min data points; (b) Pearson correlation coefficient; (c) root-mean-squared errors; (d, e) linear best-fit coefficients
(y = ax+ b).

Figure 11. Comparison of 10 Hz met-mast vertical shear αMM with lower-half-rotor shear αlower,B during a period of 20 min.

7 m s−1. Based on the wind speed, the met-mast signal was
time-shifted assuming Taylor’s frozen turbulence hypothe-
sis. The plot shows that the load-based estimate αlower,B fol-
lows the main trends of the met-mast reference αMM. There
are however discrepancies at the higher frequencies. It is not
possible to conclusively determine the causes of these differ-
ences based exclusively on the available data. However, the
non-colocation of the measurements might clearly be among
the reasons. For example, the spike of the met-mast shear at

03:04 is not visible in the load signals, which might indicate a
local turbulent fluctuation at one of the met-mast anemome-
ters not rigidly convecting downstream to the turbine rotor.

3.8 Validation of wake detection

As no measured reference for the horizontal shear was avail-
able for this study, the wake of the second turbine was used
for a qualitative validation. This wake interference study
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nicely illustrates the very interesting wake detection capa-
bilities of the proposed method.

Figure 12 reports a time series corresponding to 12 h of
operation, which experienced wind direction changes from
approximatively 100 to 180◦. This data subset includes a sig-
nificant duration where WT1 is waked by WT2. Panel (a)
shows the met-mast wind direction 0MM and turbine yaw
orientation γWT1, where the waking direction 0WT2−>WT1
is reported as an horizontal solid line (see also Fig. 2). Panel
(b) shows the reference met-mast wind speed Vref, as well as
the load-based rotor-equivalent estimates VTB and VB. The
reference 10 min turbulence intensity TIref computed from
Vref is shown on the right y axis. Panel (c) shows the sector-
effective wind speeds VS,right/Vref and VS,left/Vref for the two
horizontal sectors, nondimensionalized by the met-mast ref-
erence wind speed. The small rotor icon shows, using the
color code of the panel, the left (red) and right (blue) sectors.
Panel (d) reports the horizontal shear estimate κB computed
according to Eq. (6b).

Vertical dashed lines are used to highlight four time in-
stants, labeled with the letters from A to D. For each of
these time instants, the position of the wakes of the two tur-
bines is visualized in Fig. 12e using the FLORIS wake model
(Doekemeijer and Storm, 2019). The yellow color indicates
the ambient wind speed, while the blue color is used for the
lower speed in the wakes. The rotor disk of WT2 is shown
with a solid black line, while a red line is used for the left
sector of WT1 and a blue line for the right one. Finally, the
small cross symbol indicates the met-mast (MM) position.

At instant A (time equal to 02:05), Fig. 12 shows that the
wind direction reaches 130◦ and the left sector of WT1 gets
waked by WT2, as clearly illustrated by a reduced speed in
the left sector and a negative horizontal shear. At time in-
stant B (02:35), the wind direction has turned back to 122◦:
as the turbine is not waked anymore, the estimated shear is
null and an equal wind speed is estimated on both the left
and right sectors. The rotor-effective wind speed is slightly
smaller than the met-mast reference value; however, for this
wind direction, the met mast is not aligned with the turbine,
which might explain this small discrepancy. At time instant C
(03:45), the wind direction has increased and WT1 is waked
again (0WT2−>WT1 = 145◦): after an initial reduction in the
left sector speed, the right sector is also affected (dropping
below 0.7), indicating a full waked condition. This is fur-
ther confirmed by the reduction in the rotor-effective wind
speeds with respect to the one measured by the met mast.
Later, a wake impingement on the right sector is observed
at time D (05:00), followed by a second full waking at time
05:30. At 06:00, the wind direction has increased to 156◦

and both sectors operate again in nearly free stream. Accord-
ingly, the rotor-effective wind speeds increase to reach the
met-mast reference. Later again, the wind direction varies
slightly, leading to partial wake impingements on the right
side until, finally (at ≈ 12.00), the wind direction increases
further and the horizontal shear becomes almost zero.

Note that the horizontal shear deviates slightly from 0 be-
tween 06:00 and 10:30 even though the wind direction is
approximately constant around 155◦. An explanation can be
potentially found in the increased turbulence (after sunrise, at
around 07:58), which might enhance wake meandering and
increase the expansion of the wake. The high turbulence be-
fore 02:00 can be attributed to the met mast being affected
by WT2.

This time series very nicely illustrates how the horizontal
sector-effective wind speeds and the horizontal shear can be
used to understand the instantaneous position of a wake with
respect to an affected turbine rotor disk.

Figure 13 reports extended results, showing all available
10 min values as functions of met-mast wind direction within
the range from 0WT2−>WT1− 45◦ = 100◦ to 0WT2−>WT1+

45◦ = 190◦. The waking wind direction from WT2 onto
WT1 (0WT2−>WT1) is indicated by a vertical dashed line.

Panel (a) shows the rotor-effective wind speed VB/Vref,
nondimensionalized by the reference speed of the met mast.
Values larger than 1 can be observed for wind directions
close to 100◦, as the wake of WT2 is affecting the met mast
(see Fig. 2). For wind directions close to 145◦, lower speeds
are observed, caused by the wake of WT2 impinging on
WT1. For other wind directions, the speed stays close to 1,
even though some scatter can be observed.

Panel (b) shows the nondimensional sector-effective wind
speeds VS,right/Vref and VS,left/Vref. The small rotor icon
shows, using the color code of the panel, the left (red) and
right (blue) sectors. For wind directions between≈ 125◦ and
140◦, the local wind speed is smaller in the left sector, in-
dicating that the wake of WT2 mainly affects that portion of
the rotor disk. Similarly, for wind directions between 145 and
about 160◦, the right sector is affected by the presence of the
wake.

Panel (c) shows the horizontal shear estimate. This quan-
tity is close to zero for all wind conditions, except around
the waking direction. Negative values indicate a left-sided
wake impingement, while positive values indicate a right-
sided one. Note that the scatter observed in panels (a) and
(b), e.g., for wind directions between 160 and 170◦, seems
not to be caused by wake interaction but rather by variations
in the reference wind speed, as the horizontal shear is not
affected.

For wind directions close to 140◦, only very few mea-
surement points are available. This suggests that the lower-
than-ambient wind speed within the wake of WT2 triggers
frequent shutdowns of WT1. The load-based estimator does
not operate during turbine shutdowns. Figure 14 shows in
2◦ wide bins the probability of the WT1 status indicating
“no operation”. Wind directions were obtained from the met
mast, using all available days without discarding any data
point. Indeed, mean direction bins close to 0WT2−>WT1 =

145◦ support the hypothesis of frequent wake-induced tur-
bine shutdowns. Additionally, Fig. 14 reports a maximum
for the bin centered at 141◦. This, together with the shear
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Figure 12. Time series characterized by varying wake interference conditions, with met-mast wind direction and turbine yaw orientation (a),
reference met-mast wind speed, rotor-effective wind speed estimates and reference turbulence intensity (b), left and right sector-effective
speed estimates (c), and horizontal shear estimate (d). (e) Wake visualizations based on the FLORIS model for different wind directions at
time instants A through D.

shown in Fig. 13, suggests a small bias in the met-mast wind
direction measurement and/or that the wake is not develop-
ing exactly along the downstream direction. Indeed, the latter
is a phenomenon observed in stable atmospheric conditions
when the flow presents a significant vertical shear (Vollmer
et al., 2016; Bromm et al., 2018).

These results demonstrate a remarkable ability of the pro-
posed local speed and shear estimates to identify whether and
to which extent a downstream turbine operates in the wake
of an upstream machine. Note also that the met-mast refer-
ence wind direction is just a point measurement at one single
height above the ground. In addition, other unknown inflow
parameters, such as for example veer, may affect wake de-
velopment. Therefore, the scatter of some of the data points
in Fig. 13 is not necessarily due to inaccuracies of the wind

estimator, but might be rather due to the indirect, incomplete,
and pointwise measurement of the reference wake position.

3.9 Effect of turbine misalignment on estimates

As previously mentioned in Sect. 2.1, in theory the present
method is formulated for turbines aligned with the ambi-
ent wind direction. However, in practice this happens only
quite rarely, as every turbine in general operates with some
degree of misalignment with respect to the incoming wind
vector. This is mainly due to two reasons. First, the onboard
wind vane(s) may not always provide an exact measurement
of the local wind direction. Second, yaw control strategies
generally avoid an excessively aggressive tracking of wind
direction changes. In fact, a turbine will typically yaw only
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Figure 13. Wind speeds and shear at the WT1 rotor disk as functions of wind direction. (a) Nondimensional load-based rotor-effective wind
speed. (b) Left and right sector-effective wind speeds. (c) Horizontal shear.

Figure 14. Probability of WT2 being in “no operation” state as a
function of met-mast wind direction (using 10 Hz measurements of
all available days).

when its misalignment with the wind has been above a cer-
tain threshold for a long-enough duration of time. This is
done to limit duty cycle and yaw expenditure, given the very
considerable mass of the rotor–nacelle system and the rather
modest power capture loss caused by a misalignment of a
few degrees.

Since the hypothesis on which the theory is based differs
from the situation encountered in practice, it is necessary to
show that the typical misalignments of normal turbine opera-
tion do not pollute the speed and shear estimates provided by
the proposed method. This is achieved here by showing that
shears and misalignment are indeed uncorrelated.

To this end, Fig. 15 shows the rotor-effective wind speed
as well as the horizontal and vertical shear estimates as func-
tions of the turbine–wind misalignment angle 0rel,WT1. The
misalignment is measured using the onboard wind vane. As
this instrument may not always be very precise on some tur-

bines, the misalignment angle was also computed by using
the met-mast wind direction together with the turbine ab-
solute orientation; however, in the present case no signifi-
cant difference was observed between these two methods of
computing the misalignment angle. The results of the figure
only include data points for wind directions between 180 and
337.5◦, to avoid waked conditions.

Panel (a) reports the nondimensional rotor-effective wind
speed VB. This quantity decreases for increasing misalign-
ment angle, as shown by the second-order polynomial fit
reported with a dashed line. Such behavior is completely
expected and can be corrected for, if the misalignment is
known, by using the cosine law (Gebraad et al., 2015; Flem-
ing et al., 2017; Schreiber et al., 2017).

As shown, the rotor-equivalent wind speed is clearly cor-
related with misalignment, because the effective speed or-
thogonal to the rotor plane varies as a function of this angle.
However, there is no reason why the vertical and horizontal
shears – which are physical characteristics of the inflow –
should also exhibit a similar dependency. To verify this fact,
panel (b) shows the horizontal shear estimate κB, which is
almost constant with respect to misalignment angle (and also
very close to zero). Finally, panel (c) shows the vertical shear
αB. It appears that both shears have only a very marginal de-
pendency on wind misalignment, as shown by the parabolic
best fits reported with dashed lines in the plots. The larger
fluctuations of the vertical shear compared to the horizon-
tal one are probably caused by time-varying ambient inflow
conditions, as also visible in Fig. 9.
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Figure 15. From top to bottom: rotor-effective wind speed VB, horizontal shear κB, and vertical shear αB, all plotted as functions of wind
turbine misalignment angle 0rel,WT1.

The data show that the shears are essentially uncorrelated
with misalignment. These results demonstrate that the pro-
posed method works without significant errors for turbine–
wind misalignment angles up to ≈±10◦.

Larger turbine misalignment angles would be necessary
for wake steering control (Fleming et al., 2017), where the
rotor is intentionally pointed away from the wind to deflect
the wake laterally. The performance of the proposed method
could not be tested in such conditions within the present re-
search, as no large misalignment angles were present in the
available data set. However, even in that case, the procedure
illustrated here could be used for pragmatically correcting
possible errors caused by misalignment. In fact, by plotting
shears as functions of misalignment angle, a best-fit correc-
tion function could be readily derived and used for adjusting
the estimates, if necessary.

4 Conclusions

A method to estimate the local wind speeds over sectors of
the rotor disk has been tested on a 3.5 MW wind turbine. Re-
sults have been compared to reference values obtained with a
nearby met mast. For some wind directions, the sensing tur-
bine is waked by a second machine. This feature of the test
site has been exploited to test the ability of the proposed local
wind sensing technique to detect wake impingement.

The wind sensing method has been previously studied and
evaluated in simulations and scaled experiments. The present
work has presented the first full-scale demonstration. Based

on the field test results shown herein, the following conclu-
sions can be drawn.

– A rotor-effective wind speed can be estimated from
blade out-of-plane bending moments, with a quality that
is nearly indistinguishable from the well-known torque-
balance method.

– The vertical wind shear estimated from out-of-plane
bending moments correlates very well with the met-
mast reference. The best results were obtained when the
mast is directly upstream of the turbine. This suggests
that some of the scatter in the results might be due to a
lack of knowledge of the exact ground truth, rather than
to a lack of accuracy of the proposed method.

– The vertical shear measured by the met mast up to hub
height differs from the shear measured over the whole
rotor disk. This is likely a feature of the flow, and not of
the method tested here.

– The local wind speeds estimated on two lateral sectors
of the rotor disk show the clear fingerprint of an imping-
ing wake shed by a neighboring turbine. By looking at
the two sectors, one can distinguish left, right, or full
wake overlaps.

– Simple and very practical techniques can be used to cor-
rect for various sources of error, including not perfectly
calibrated load or azimuth sensors, as well as model ap-
proximations.
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The present load-based wind estimation method provides
for a remarkably simple and effective opportunity to esti-
mate atmospheric inflow conditions on operating turbines.
The method is based on readily available quantities that can
be easily computed from a standard model of a wind tur-
bine and does not need to be trained from extensive data sets.
The onboard implementation uses pre-computed lookup ta-
bles and hence has a negligible computational cost. When
load sensors are already installed on a turbine, for example
for load-reducing control, this novel wind sensing capabil-
ity is simply obtained as a software upgrade. Wind sensing
opens up a number of opportunities that can profit from a bet-
ter knowledge of the inflow, including turbine and wind farm
control, lifetime consumption estimation, predictive mainte-
nance, and forecasting, among others.
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Appendix A: Nomenclature

BEM Blade element momentum
LUT Lookup table
MM Met mast or meteorological mast
WT1 Wind turbine 1 (sensing turbine)
WT2 Wind turbine 2
a Linear best-fit constant (y = ax+ b)
A Rotor disk area
AS Sector area
b Linear best-fit constant (y = ax+ b)
Cm Cone coefficient
Cp Power coefficient
c Speed estimate scaling factor
D Rotor diameter
J Total rotational inertia
mi Blade root out-of-plane bending

moment of blade i
mi,meas Measured blade root out-of-plane

bending moment of blade i
N Number of measurements
q Dynamic pressure
R Rotor radius or Pearson correlation

coefficient
s Load scaling factor
sMM−>WT1 Downstream distance between

met mast and wind turbine WT1
Taero Aerodynamic torque
Tmeas Measured torque
TIref Met-mast-measured reference

turbulence intensity
V Wind speed
VB Blade-load estimated rotor-effective

wind speed
VH Wind speed at hub height
Vi Blade-effective wind speed estimate

of blade i
VMM,i Met-mast-measured wind speed at

height i
VPL Power-law inflow profile
Vref Met-mast-measured reference wind

speed of inflow profile
VS Sector-effective wind speed
VS,left/right/up/down Load-based estimation of left/right/

up/down sector
VTB Torque-balance estimated rotor-

effective wind speed
y Lateral position
z Height above ground
zH Hub height
zMM,i Installation height of sensor i on

met mast

α Vertical shear exponent
αB Load-based estimated vertical shear

exponent
αlower,B Load-based estimated vertical shear

exponent on lower half of rotor disk
αMM Met-mast-measured vertical shear

exponent
β Blade pitch angle
γ Turbine yaw orientation (clockwise

from due north)
0 Wind direction (clockwise from due

north)
0A−>B Direction of wind blowing from point

A to point B (clockwise from due north)
0MM Wind direction at met mast
0rel,WT1 Relative wind direction at nacelle of

WT1
1t Time delay between measurement at

met mast and turbine
εRMS Root-mean-squared error
κ Horizontal shear coefficient
κB Load-based estimated horizontal shear

coefficient
λ Tip speed ratio
ρ Air density
ρref Reference air density
ψ Blade azimuth position
ψa Blade azimuth position, beginning of

sector
ψb Blade azimuth position, end of sector
ψbias Blade azimuth measurement offset
ψcorr Corrected azimuth measurement
� Rotor speed
�̇ Rotor acceleration
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CHAPTER 7

Paper 5: Brief communication: A double
Gaussian wake model

7.1 Summary

This work presents an analytical turbine wake model, based on a double Gaussian velocity distribution
function, correcting and improving a previous publication. The wake model, which has also been
employed in Paper 11, is derived applying the principle of momentum conservation, and the stream
tube theory was used to estimate the conditions at the stream tube outlet.

The model is exemplary tuned and validated using high-fidelity large eddy simulations (LES) of
a scaled turbine, replicating wind tunnel experiments. It is shown that especially for the near wake,
where a double Gaussian wake profile is clearly visible, the presented model is superior to a widely
used single Gaussian reference wake profile.

7.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has conducted the main research
work. Amr Balbaa identified the mistakes of the previous paper and implemented the correct model.
Carlo L. Bottasso supervised the research. All authors provided important input to this research work
through discussions, feedback and by writing the paper.

7.3 Reference

J. Schreiber, A. Balbaa, and C. L. Bottasso, “Brief communication: A double-gaussian wake model,”
Wind Energy Science, vol. 5, no. 1, pp. 237–244, 2020. doi: 10.5194/wes-5-237-2020
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Abstract. In this paper, an analytical wake model with a double-Gaussian velocity distribution is presented,
improving on a similar formulation by Keane et al. (2016). The choice of a double-Gaussian shape function is
motivated by the behavior of the near-wake region that is observed in numerical simulations and experimental
measurements. The method is based on the conservation of momentum principle, while stream-tube theory is
used to determine the wake expansion at the tube outlet. The model is calibrated and validated using large eddy
simulations replicating scaled wind turbine experiments. Results show that the tuned double-Gaussian model is
superior to a single-Gaussian formulation in the near-wake region.

1 Introduction

Analytical engineering wind farm models are low-fidelity
approximations used to simulate the performance of wind
power systems. A wind farm model includes both a model
of the wind turbines and a model of the modifications to
the ambient flow induced by their wakes, together with their
mutual interactions. Analytical wake models, as opposed to
high-fidelity computational fluid dynamics (CFD) models,
are simple, easy to implement, and computationally inexpen-
sive. In fact, they only simulate macroscopic average effects
of wakes and not their small scales or turbulent fluctuations.
Engineering wake models find applicability in all those cases
that do not need to resolve small spatial and fast temporal
scales, such as the calculation of the power production of a
wind plant over a sufficiently long time horizon. Such models
are also extremely useful in optimization problems, where a
large number of simulations might be required before a so-
lution is reached or where calculations need to be performed
on the fly in real time. Analytical wake models are thus of-
ten utilized in wind farm layout planning and in the emerg-
ing field of wind farm and wake control (Scholbrock, 2011;
Churchfield, 2013; Boersma et al., 2017).

Because of their indisputable usefulness, engineering
wake models have been extensively studied in the literature.
The Jensen (PARK) formulation is one of the most widely
used wake models, to the extent that it is sometimes consid-

ered the industry standard (Keane et al., 2016). The model
was first introduced by Jensen (1983) and later further de-
veloped by Katić et al. (1986). Other widely used and cited
wake models include the Frandsen model (Frandsen et al.,
2006), the FLORIS model (Gebraad et al., 2014), and the
EPFL Gaussian models (Bastankhah and Porté-Agel, 2014,
2016).

All such models have been designed to faithfully repre-
sent the average flow properties of the far-wake region. How-
ever, in the near wake (which is usually defined as the region
up to about 4 diameters (4 D) downstream of the rotor disk),
the models seem to lack accuracy. Nowadays, onshore wind
farms tend to be closely packed, and turbine spacing often
reaches values close to or even below 3 D (Schreiber et al.,
2018; energiespektrum.de, 2015). This raises the necessity
of developing models that accurately represent the wake not
only far away from the rotor disk but also in the near and
mid-wake regions.

Keane et al. (2016) developed a wake model featuring a
double-Gaussian velocity deficit distribution in an attempt
to formulate a model that closely resembles observed speed
distributions in both the near- and far-wake regions. In fact,
while a single-Gaussian function is considered to be a good
approximation of the wake velocity distribution in the far
wake (Bastankhah and Porté-Agel, 2014, 2016), the near
wake is better approximated using a double-Gaussian dis-
tribution. This is due to the presence of two minima in the
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speed profiles close to the rotor disk, as also observed in ex-
perimental measurements and high-fidelity CFD simulations
(Wang et al., 2017). The double-Gaussian model by Keane
et al. (2016), which is referred to as the Keane model in this
paper, was developed in a similar fashion to the EPFL Gaus-
sian model (Bastankhah and Porté-Agel, 2014), and it was
intended to respect the principles of mass and momentum
conservation.

In this short note, a double-Gaussian wake model, based
on Keane’s model and with emphasis on near-wake flow be-
havior, is derived, calibrated, and validated. The present for-
mulation addresses and resolves some issues found in the
original implementation of Keane et al. (2016), primarily
concerning momentum conservation. In addition, the wake
expansion function is defined such that mass flow deficit con-
servation is achieved at the stream-tube outlet.

This paper is organized as follows. The derivation of the
double-Gaussian wake model is detailed in Sect. 2, along
with the formulation of the wake expansion function. In
Sect. 3, the model is tuned and validated, using both ex-
perimental measurements obtained with scaled models in a
boundary layer wind tunnel and by numerical results of high-
fidelity large eddy simulations (LESs). Additionally, the per-
formance of the double-Gaussian model is compared to a
standard single-Gaussian formulation. Concluding remarks
and future work recommendations are given in Sect. 4. Fi-
nally, Appendix A derives some integrals appearing in the
formulation.

2 Wake model description

2.1 Double-Gaussian velocity deficit

The double-Gaussian wake model is derived in a similar way
to the Frandsen (Frandsen et al., 2006) and EPFL single-
Gaussian models (Bastankhah and Porté-Agel, 2014). Fol-
lowing their approach, the conservation of momentum prin-
ciple is applied on an ansatz velocity deficit distribution,
which includes an amplitude function. Thereby, an expres-
sion for the amplitude is obtained that assures conservation
of momentum.

At the downstream distance x from the wind turbine ro-
tor and at the radial distance r from the wake centerline, the
wake velocity deficit U∞−U (x,r) is modeled as the prod-
uct of the normalized double-Gaussian function g(r,σ (x)),
which dictates the spatial shape of the deficit, with the am-
plitude function C(σ (x)). This yields

U∞−U (x,r)
U∞

= C(σ (x))g(r,σ (x)), (1)

whereU∞ represents the ambient wind speed andU (x,r) the
local flow velocity in the wake. The double-Gaussian wake
shape function, which is symmetric with respect to the wake

Figure 1. Stream tube with nomenclature: U∞ is the ambient wind
speed; U (x,r) is the local flow velocity in the wake at the down-
stream position x and radial distance r from the wake centerline;
ṁ is the mass flow rate through the stream tube; AW is a planar
cross-sectional area large enough to contain the wake deficit; A0 is
the rotor disk area; and T is the thrust force (by the principle of ac-
tion and reaction, an equal and opposite force is applied by the rotor
onto the flow).

center, is defined as

g(r,σ (x))=
1
2

(
eD+ + eD−

)
, D± =

−(r ± r0)2

2σ 2(x)
, (2)

where r0 is the radial position of the Gaussian extrema. The
standard deviation of the Gaussian function, noted σ (x), rep-
resents the width (cross section) of each of the two single-
Gaussian profiles. The wake expands with downstream dis-
tance x, causing the transformation of the initial double-
Gaussian profile in the near wake, through a flat-peak tran-
sition region, into a nearly single-Gaussian profile in the far
wake. The wake expansion function is discussed in further
detail in Sect. 2.2. A possible improvement to the present
model might include an azimuth-dependent double-Gaussian
function. This would allow one to model a non-axisymmetric
double-peaked wake profile, caused by a sheared inflow
and/or by the misalignment of the rotor axis with respect to
the wind, at the cost of extra tuning parameters.

The conservation of momentum principle is now applied
on the ansatz velocity deficit distribution, using the ampli-
tude function C(σ (x)) as a degree of freedom. Accordingly,
the axial thrust force T is related to the rate of change of mo-
mentum p of the flow throughout the stream tube (see Fig. 1),
i.e.,

T =
dp
dt
= ṁ1Ũ = ρ

∫
AW

U (x,r) (U∞−U (x,r)) dAW, (3)

where ṁ is the mass flow rate through the stream tube, 1Ũ
an effective wake velocity deficit, ρ the air density, and AW a
planar cross section at least large enough to contain the wake
deficit. Equation (3) is only valid if there is an equal pres-
sure and negligible flow acceleration at the inlet and outlet
sections of the stream tube and, additionally, if shear forces
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on the control volume can be neglected. The thrust force T
is customarily expressed through the nondimensional thrust
coefficient CT as

T =
1
2
ρA0U

2
∞CT, (4)

where A0 is the rotor swept area.
If the wake velocity, defined in Eqs. (1) and (2), is substi-

tuted into the Eq. (3), one obtains

T = ρπU2
∞C(σ )

∞∫
0

(
eD+ + eD− −

C(σ )
2(

e2 D+ + e2 D− + 2eD++D−
))
r dr. (5)

Note that as the double-Gaussian wake expands all the way
to infinity, the integral boundary is set accordingly. The inte-
gration of Eq. (5), whose details are provided in Appendix A,
yields

T = ρπU2
∞C(σ ) (M −C(σ )N ) , (6)

where

M = 2σ 2e
−r20
2σ2 +

√
2πr0σ erf

(
r0
√

2σ

)
, (7a)

N = σ 2e
−r20
σ2 +

√
π

2
r0σ erf

( r0
σ

)
. (7b)

By substituting the thrust given by Eq. (4) into Eq. (6), and
solving the resulting quadratic equation for the amplitude
function C(σ ), one obtains

C±(σ (x))=
M ±

√
M2− 1

2NCTd
2
0

2N
, (8)

where d0 =
√

4A0/π is the rotor diameter. Both solutions
of the amplitude function C(σ ) would theoretically lead to
the conservation of momentum at all downstream distances.
However, the velocity profiles obtained by using C+(σ ) are
characterized by a negative speed (i.e., in the direction op-
posite to the ambient flow), and thus C+(σ ) is deemed to
be a nonphysical solution. Therefore, the true solution for
the amplitude function is C−(σ ). In addition, a momentum-
conserving solution exists only if M2

− 1/2NCTd
2
0 ≥ 0,

which might not always be the case for large values of CT.
The derived expressions for M and N presented in this

paper differ from the results reported in the original publica-
tion by Keane et al. (2016), even though all assumptions are
identical. The expressions reported in the original paper were
also evaluated numerically, yielding nonphysical results that
violate the conservation of mass and momentum underlying
the formulation.

2.2 Wake expansion function

In the previous section, following the conservation of mo-
mentum, the shape of the double-Gaussian wake deficit has
been defined as a function of the Gaussian parameter σ . In
this section, a wake expansion function σ (x) is introduced,
which is linear with respect to the downstream distance x.
By mass conservation, the wake expansion at the position of
the stream tube outlet is therefore identified.

In previous work by Frandsen et al. (2006) and Bastankhah
and Porté-Agel (2014), stream tube theory was employed
to derive an equation for the initial wake width at the tur-
bine rotor. Thereby, the number of tunable parameters of the
wake expansion function is reduced, facilitating model cali-
bration. However, this approach includes the assumption that
the stream tube outlet is located exactly at the turbine rotor
itself, which is hardly true. Results indicate that the derived
initial wake width is too large to fit experimental measure-
ments, which in turn requires a model retuning (Bastankhah
and Porté-Agel, 2014).

In the present work, the stream tube outlet is not assumed
to be located at the turbine rotor (x = 0) but at the unknown
downstream position x0. Therefore, the expansion function is
defined as

σ (x)= k∗(x− x0)+ ε, (9)

where parameter k∗ controls the rate of expansion, while ε
represents the wake expansion at x0. The wake expansion
function is assumed to be linear as in Bastankhah and Porté-
Agel (2014).

To derive ε, mass conservation between the Betz stream
tube and the wake model is enforced. Starting from Eq. (3),
Frandsen et al. (2006) and Bastankhah and Porté-Agel (2014)
show that the mass flow deficit rate at the outlet of a Betz
stream tube (noted ST) can be written as

ṁST = ρ

∫
AST

U∞−UST

U∞
dAST

= ρ
π

8
d2

0β

(
1−

√
1−

2
β
CT

)
, (10)

where UST is the uniform cross-sectional wake velocity. In
this expression, β is the ratio between the stream tube outlet
area AST and the rotor disk area A0, which can be expressed
as a function of the thrust coefficient CT as

β =
AST

A0
=

1
2

1+
√

1−CT
√

1−CT
. (11)

At the Betz stream tube outlet (x = x0), the mass flow
deficit rate of the double-Gaussian (noted DG) wake model
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Figure 2. Visualization of the width of the double-Gaussian func-
tion ε at the stream tube outlet, as a function of the thrust coefficient
CT and the position of the Gaussian extrema r0.

writes as

ṁDG = ρ

∫
AW

U∞−U (x0, r)
U∞

dAW

= ρπM(ε)
M(ε)−

√
M(ε)2− 1

2N (ε)CTd
2
0

2N (ε)
. (12)

By equating both mass flow deficits (i.e., ṁDG = ṁST), the
initial wake expansion ε can be derived. The solution was
computed numerically as a function of the thrust coefficient
CT and the spanwise location of the Gaussian extrema r0.
The resulting surface is presented in Fig. 2. Note that the
solution to stream tube theory is defined only in the range
0≤ CT < 1, and ε tends to infinity as the thrust coefficient
approaches the value of 1, due to mass conservation.

The remaining parameters, x0 and k∗, in the linear wake
expansion function expressed by Eq. (9) are not explicitly
modeled, and they should be tuned based on experimental
measurements or high-fidelity simulations, as shown in the
next section. Note that the underlying momentum conserva-
tion statement expressed by Eq. (3) has only been defined
for ambient pressure. Therefore, the formulation is, strictly
speaking, only valid for x ≥ x0. However, as pressure recov-
ers rapidly immediately downstream of the rotor, reasonable
approximations can also be expected for x < x0. Finally, k∗

is expected to depend on atmospheric conditions (Peña et al.,
2016) and turbine thrust (Campagnolo et al., 2019).

3 Model calibration and validation

3.1 Experimental and simulation setup

To calibrate and validate the double-Gaussian wake model,
time-averaged flow measurements from an LES numerical
solution have been used. The CFD simulation replicates
an experiment conducted with the scaled G1 wind turbine
(Campagnolo et al., 2017, 2019), which has a 1.1 m rotor di-
ameter and a 0.8 m hub height. Its design operating tip speed
ratio is 8 and its rated rotor speed is 850 rpm. The G1 model
is designed such that the characteristics of its wake are real-
istic in terms of shape, velocity deficit, and recovery. In ad-
dition, the model features closed-loop pitch, torque and yaw
control, and load sensors located at the shaft and tower base
(Campagnolo et al., 2017). The experiment was conducted
with a single G1 wind turbine model in the 36m× 16.7m×
3.84m boundary layer wind tunnel at Politecnico di Milano.
The wake profile was measured using hot-wire probes at
the downstream distances x/D = {1.4, 1.7, 2, 3, 4, 6, 9}
from the turbine. At each downstream location, the velocity
was measured at hub height at different lateral positions y
and then time averaged to obtain a steady-state value. The
ambient wind velocity within the wind tunnel was measured
using a pitot tube placed upwind of the G1 model. The wind
tunnel experiment was conducted with a 5 m s−1 hub height
wind speed, a power law exponent of 0.144, and a turbulence
intensity of approximately 5 %, with the wind turbine oper-
ating at CT ≈ 0.75.

A complete digital copy of the experiment was developed
with the LES simulation framework developed by Wang et al.
(2017), which includes the passive generation of a sheared
and turbulent flow, an actuator line model of the wind tur-
bine implemented with the FAST aeroservoelastic simula-
tor (Jonkman and Buhl Jr., 2005) and the tunnel walls. The
simulation model includes also a slight lateral nonunifor-
mity of the inflow, in the form of a 2.7 % horizontal shear,
caused by the wind tunnel internal layout upstream of the
test chamber and by the tunnel fans. The proposed double-
Gaussian wake model was calibrated and validated using
time-averaged CFD simulation results at the same down-
stream distances as the experiments, numerical and experi-
mental measurements being in excellent agreement with each
other.

3.2 Parameter identification and results

The double-Gaussian model proposed in this work has three
tunable parameters: k∗, x0, and kr. Parameters k∗ and x0 are
used to describe the wake expansion downstream of the tur-
bine rotor, as expressed by Eq. (9). The third parameter, kr,
is defined as r0 = kr/2, and it describes the position of the
Gaussian extrema. When kr = 1 the curve extrema are lo-
cated at the tip of the rotor blades, while for kr = 0 the two
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Table 1. Identified model parameters.

Operating conditions Parameters

U∞ (m s−1) CT (–) k∗ (–) x0 (D) kr (–)

5.00 0.75 0.011 4.55 0.535

Gaussian functions coincide at the wake center, leading to a
single-Gaussian wake profile.

In the original formulation by Keane, kr was fixed at 75 %
blade span, as it was argued that most lift is extracted from
the flow at this location. In the present work the parameter is
tuned based on measurements, as the assumed 75 % blade-
span position did not lead to satisfactory results.

The goal of model calibration is to ensure that the wind
velocity profiles match the reference data set as closely as
possible. To this end, the squared error between the wake
model and CFD-computed wake profiles is minimized with
respect to the free parameters. This estimation problem was
solved using the Nelder–Mead simplex algorithm imple-
mented in the MATLAB function fminsearch (Lagarias
et al., 1998). To ensure the generality of the results, only a
subset of the reference data was used for parameter estima-
tion (namely the downstream distances 1.7, 3, and 6 D), while
the others were used for verification purposes.

The identified parameters are presented in Table 1. The
Gaussian extrema were found to be at approximately 53.5 %
of blade span (kr = 0.535), while the wake width at x0 is ε =
0.23 D. Model calibration also resulted in the positioning of
the stream tube outlet at x0 = 4.55 D, which appears to be a
realistic value for the investigated turbine.

Figure 3 shows the experimental wake measurements us-
ing black circles, for all available downstream distances. The
CFD results, shown using red × symbols, are almost identi-
cal to the experimental measurements, highlighting the qual-
ity of the LES simulations. The predictions of the double-
Gaussian model are shown in solid blue lines.

The model exhibits good generality, as demonstrated by
the good matching of the profiles at distances that were not
used for model estimation. Especially in the near-wake re-
gion up to about 3 D, the placement of the Gaussian extrema
appears to be in good agreement with the measured one.

The performance of the model clearly depends on the data
used for its calibration. Using reference data close to the tur-
bine rotor is important for accurately gauging the positions of
the velocity profile extrema, while a wider rage of distances
leads to an improved expansion behavior. In the present case,
more data from the near-wake region (1.7 and 3 D) were con-
sidered in the tuning process than in the far wake (6 D). This
leads to a slight overestimation of the velocity deficit at 9 D,
which could be attributed to an underestimation of the ex-
pansion slope k∗. However, tuning the model using the entire
set of reference data points leads to only small differences in

the identified parameters, which in turn produce wake pro-
files that are fairly similar to the ones presented here. On the
other hand, identifying the model using only data points from
the far wake resulted in better fitting results at 9 D but with
either very small values of r0 – which led to nearly single-
Gaussian profiles – or with high values of the k∗ expansion
slope – which led to nonphysical solutions of Eq. (8) for the
amplitude function in the near-wake region, due to exces-
sively small Gaussian widths.

Figure 4 depicts with a solid blue line and ∗ symbols the
root mean square error (RMSE) between the DG wake model
(based on the parameters reported above, obtained from mea-
surements at 1.7, 3, and 6 D) and the reference CFD data as
a function of downstream distance. To identify a lower error
bound, the DG wake model parameters were also tuned sep-
arately at each downstream distance, obtaining seven differ-
ent local parameterizations. The corresponding RMSE with
respect to the CFD solution is reported in the same figure us-
ing a dashed blue line. The small difference between the two
curves shows that the single (global) parameterization com-
puted using only three distances is only marginally subopti-
mal, in the sense that it is very close to the best possible fit-
ting that a double-Gaussian shape function can achieve. The
plot shows also a slight increase in the difference between
the two curves in the far-wake region, which can again be
attributed to the fact that only one large-distance (6 D) mea-
surement was used in the global tuning.

As a comparison, Fig. 4 also shows the results obtained
with the EPFL single-Gaussian (SG) model (Bastankhah and
Porté-Agel, 2014). The SG model was identified with the
same procedure and measurements used for the DG model,
obtaining εSG = 0.3177 and k∗SG = 0.0082; the correspond-
ing RMSE with respect to the CFD results is reported in
the figure using a solid red line with circles. The lower er-
ror bound for the SG model, here again obtained by tun-
ing the parameters independently at each one of the seven
available downstream distances, is shown using a dashed red
line. As expected, the SG wake model shows a significantly
larger RMSE in the near-wake region than in the DG case.
In fact, here the wake profile is indeed characterized by two
peaks, so that the double-Gaussian shape function allows for
a more precise representation of the actual flow characteris-
tics. Here again it should be noted that the difference between
the global and local parameterizations is quite small, which
strengthens the conclusion that improved results are due to
the ansatz velocity deficit distribution and not to the specific
parameterizations. Comparing the SG with the DG model,
Fig. 4 shows that both reach very similar RMSEs for 9 D.
The similarity between the two models continues for larger
downstream distances.
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Figure 3. Normalized wind velocity profiles of the double-Gaussian model (solid blue line) compared to experimental measurements (black
circles) and CFD simulations (red × symbols). The distances 1.7, 3, and 6 D were used for model calibration.

Figure 4. Root mean square error between the reference CFD velocity deficit data and the engineering wake models. Double-Gaussian (DG)
wake model identified using measurements at 1.7, 3, and 6 D: solid blue line with ∗ symbols. DG wake model parameterized locally at each
downstream distance: dashed blue line. Single-Gaussian (SG) EPFL wake model identified using measurements at 1.7, 3, and 6 D: solid red
line with circles. SG EPFL wake model parameterized locally at each downstream distance: dashed red line.

4 Conclusions

This short paper presented an analytical double-Gaussian
wake model. The proposed formulation corrects and im-
proves a previously published model proposed by Keane
et al. (2016). The shape of the velocity deficit distribution
in the wake is described by two Gaussian functions, which
are symmetric with respect to the wake center, while the am-
plitude of the velocity deficit is derived using the principle of
momentum conservation. A linear expansion of the width of
the Gaussian profiles was assumed, and stream tube theory
was used to estimate the conditions at the stream tube outlet.

The model was calibrated and validated using a set of
time-averaged CFD simulation results, which replicate wind
tunnel experiments performed with a scaled wind turbine in
a boundary layer wind tunnel. Results show that the model
fits the reference data with good accuracy, especially in the
near-wake region where a single-Gaussian wake is unable to
describe the typically observed bimodal velocity profiles. In

the far wake, a slight overestimation of the wake deficit could
be observed. It is speculated that this might be due to the
wake expansion gradient being slightly different in the near-
and far-wake regions. This claim, however, would need ad-
ditional work to be substantiated. The different shape of the
wake in the near- and far-wake regions also suggests stitching
the two models together, the double Gaussian being used in
the near-wake region and the single Gaussian further down-
stream. This would avoid the need for a single tuning that has
to cover such a long distance and different behaviors. Addi-
tional future work could extend the wake model to include
wake deflection, which could be done in a rather straight-
forward manner by following Bastankhah and Porté-Agel
(2016). In this case, a nonsymmetric double-Gaussian shape
function could be used to model the kidney shape of a de-
flected wake (Bartl et al., 2018). More in general, an azimuth-
dependent double Gaussian might be used to account for the
effects of both misalignment and a sheared inflow.
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Appendix A: Integration of the momentum flux
conservation formula

Equation (5) can be written as

T = ρπU2
∞C(σ ) (M −C(σ )N ) , (A1)

where

M =

∞∫
0

(
eD+ + eD−

)
rdr, (A2a)

N =

∞∫
0

(
1
2

(
e2 D+ + e2 D− + 2eD++D−

))
rdr. (A2b)

In the following, integrals M and N are solved to obtain
Eq. (7a) and (7b).

A1 Derivation of M

M can be split into two terms:

M = I1+ I2. (A3)

Term I1 is defined as

I1 =

∞∫
0

eD+rdr = lim
R→∞

R∫
0

re
−(r+r0)2

2σ2 dr. (A4)

Noting that D± =
−(r±r0)2

2σ 2(x) , one gets

I1 = lim
R→∞

−σ 2e
−(r+r0)2

2σ2 −

√
πr0σ erf

(
r+r0√

2σ

)
√

2

R
0

, (A5a)

= σ 2e
−r20
2σ2 −

√
2πr0σ

2
erfc

(
r0
√

2σ

)
, (A5b)

where erf is the Gauss error function,

erf(x)=
1
√
π

x∫
−x

e−t
2
dt, (A6)

and erfc(x)= 1− erf(x) its complementary function. Simi-
larly, I2 writes as

I2 =

∞∫
0

eD−rdr = lim
R→∞

R∫
0

re
−(r−r0)2

2σ2 dr, (A7)

and its integral is computed as

I2 = lim
R→∞

−σ 2e
−(r−r0)2

2σ2 +

√
πr0σ erf

(
r−r0√

2σ

)
√

2

R
0

, (A8a)

= σ 2e
−r20
2σ2 +

√
2πr0σ

2
erfc

(
−r0
√

2σ

)
. (A8b)

Combining the previous results, one gets Eq. (7a), i.e.,

M = I1+ I2 = 2σ 2e
−r20
2σ2 +

√
2πr0σ erf

(
r0
√

2σ

)
. (A9)

A2 Derivation of N

Term N can be split into three terms

N =
1
2

(I3+ I4+ 2I5) . (A10)

Terms I3 and I4 are collectively defined as

I3+ I4 =

∞∫
0

(
e2 D+ + e2 D−

)
rdr

= lim
R→∞

R∫
0

re
−(r+r0)2

σ2 + re
−(r−r0)2

σ2 dr. (A11)

Solving the integral yields

I3+ I4 = lim
R→∞

[
−σ 2

2

(
e
−(r+r0)2

σ2 + e
−(r−r0)2

σ2

)

−

√
π

2
r0σ

(
erf
(
r + r0

σ

)
− erf

(
r − r0

σ

))]R
0
, (A12a)

= σ 2e
−r20
σ2 +

√
πr0σ erf

( r0
σ

)
. (A12b)

Finally, I5 is defined as

I5 =

∞∫
0

eD++D−rdr = lim
R→∞

R∫
0

re

(
−(r+r0)2

2σ2 −
(r−r0)2

2σ2

)
dr, (A13)

which, once integrated, gives

I5 = lim
R→∞

[
−σ 2

2
e

−

(
r2+r20

)
σ2

]R
0

, (A14a)

=
σ 2

2
e
−r20
σ2 . (A14b)

Therefore, one gets

N =
1
2

(I3+ I4+ 2I5)= σ 2e
−r20
σ2 +

√
π

2
r0σ erf

( r0
σ

)
, (A15)

which corresponds to Eq. (7b).
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CHAPTER 8

Paper 6: Verification and Calibration of a
Reduced Order Wind Farm Model by Wind

Tunnel Experiments

8.1 Summary

In this work a wind farm flow and power model (FLORIS) is calibrated and tested on a scaled wind farm
consisting of three G1 turbines. Thereto, the wind farm model and wake parameters are identified
based on wake velocity measurements at hub height of an isolated turbine using a least squares
approach. Different operating conditions and yaw misalignments with respect to the incoming flow
are taken into account to also capture wake steering.

In three different wind farm layouts, each evaluated including various combinations of turbine
misalignments, the model predicted power production of each turbine is compared to experimental
measurements. Results show a good correlation of the overall trends. Notably the model predicted
optimal yaw misalignments for maximum wind farm power are close to the experimentally identified
values. The absolute power measurements are not always well predicted and various possible causes
for the mismatch are discussed and taken into account in subsequent Paper 9.

8.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has conducted the main research
work. Emmanouil Nanos implemented a first version of the wind farm model. Filippo Campagnolo
conducted the wind tunnel experiments and Carlo L. Bottasso supervised the whole research. All
authors provided important input to this research work through discussions, feedback and by writing
the paper.

8.3 Reference

J. Schreiber, E. M. Nanos, F. Campagnolo, and C. L. Bottasso, “Verification and calibration of a reduced
order wind farm model by wind tunnel experiments,” Journal of Physics: Conference Series, vol. 854, p.
012041, 2017. doi: 10.1088/1742-6596/854/1/012041
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Verification and Calibration of a Reduced Order

Wind Farm Model by Wind Tunnel Experiments

J Schreiber1, E M Nanos1, F Campagnolo1, C L Bottasso1,2

1 Wind Energy Institute, Technische Universität München, Boltzmannstraße 15, D-85748
Garching bei München, Germany
2 Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Via La Masa 34,
I-20156 Milano, Italy

E-mail: {johannes.schreiber, em.nanos, filippo.campagnolo, carlo.bottasso}@tum.de

Abstract. In this paper an adaptation of the FLORIS approach is considered that models
the wind flow and power production within a wind farm. In preparation to the use of this
model for wind farm control, this paper considers the problem of its calibration and validation
with the use of experimental observations. The model parameters are first identified based on
measurements performed on an isolated scaled wind turbine operated in a boundary layer wind
tunnel in various wind-misalignment conditions. Next, the wind farm model is verified with
results of experimental tests conducted on three interacting scaled wind turbines. Although
some differences in the estimated absolute power are observed, the model appears to be capable
of identifying with good accuracy the wind turbine misalignment angles that, by deflecting the
wake, lead to maximum power for the investigated layouts.

1. Introduction
In a wind farm environment wind turbine wakes, which are characterized by a lower wind speed
and higher turbulence intensity than the free steam, can adversely affect other turbines. This
in turn may lead to higher fatigue loads and a significantly reduced power output on affected
turbines.

To increase total wind farm power and/or reduce fatigue loads, several techniques have been
proposed [1, 2]. At present, one of the most promising approaches seems to be a technique
where the wake is deflected by operating the wind turbine in yaw-misalignment condition with
respect to the incoming wind [3]. In fact, as the wind turbine is yawed out of the wind, its
wake is laterally deflected, which may reduce its interaction with downstream machines. Wind
farm control strategies based on wake deflection have been proposed to increase the total energy
capture and/or decrease fatigue loading [3, 4]. In this context, reduced order wind farm models
as the FLORIS (FLOw Redirection and Induction in Steady-state) approach [4] may be used to
enable model-based wind farm control.

This paper describes first a FLORIS-like wind farm model. Next, its parameters are calibrated
based on wake measurements of a scaled wind turbine in a wind tunnel environment. Finally,
the tuned model is used to estimate the wind farm power output for several different wind
farm layouts comprising three scaled interacting wind turbines. For each layout, a variety of
different yaw-misalignment combinations are tested and the turbine power is compared to the
model-predicted one. Results and the causes for the observed mismatches are discussed.
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2. Wind farm model
In this section a reduced order wind farm model is presented, following the work of Gebraad
et al. [4]. In the present study, the model has been re-implemented with some modifications.
First, the model describing expansion, reduction and deflection of a single wind turbine wake
is presented. Next, the models that describe wind turbine power extraction and multiple wake
interactions are presented. Finally, the process of calculating wind farm flow and power is
summarized.

Figure 1. Wake model with three zones.

It is assumed that every wind turbine wake consists of three wake zones, as depicted in
figure 1. In the generic wake zone i, the Jensen model [5] is used to describe wake expansion
in terms of coefficient ke,i. Experimental results suggest that the wake diameter of a turbine
operated in a misaligned condition with respect to the wind direction is reduced (see the results
section later on in this work). Taking this effect into account, the wake zone outer diameter is
defined as

Di(∆x, γ) = max

(
0, (D + 2∆xke,i) cos(γ)ke,γ

)
, (1)

where ∆x is the distance downstream of the wind turbine, D the rotor diameter, γ the wind
turbine yaw-misalignment angle and ke,γ a parameter that describes the reduced wake expansion
due to wind turbine yaw-misalignment. As the wake zones can have a negative expansion
coefficient, the wake diameter has to be limited to positive values.

The wake velocity in each wake zone is described by the Jensen wake model as

Ui(∆x) = U∞
(

1− ri(∆x)
)
, (2)

where U∞ is the ambient free stream velocity and ri the reduction factor defined as

ri(∆x) = 2a

(
D

D + 2∆xkr,i

)2

, (3)

where a is the wind turbine induction and kr,i the wake reduction parameter of wake zone i.
The wake center line deflection due to yaw-misalignment is taken into account as described

in [4], leading to

δy(∆x, γ) =

CT(γ)

(
15(2kd

∆x
D + 1)4 + CT(γ)2

)

30kdD (2kd
∆x
D + 1)5

−
CT(γ)D

(
15 + CT (γ)2

)

30kd
, (4)
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where kd is the single parameter describing the recovery of the wake flow direction and CT the
turbine thrust coefficient, which in turn is defined as a function of the rotor induction a and the
yaw-misalignment as

CT (γ) =
1

2
cos(γ)2 sin(γ)

(
4a(1− a)

)
. (5)

For calculating the power extracted by a wind turbine, its rotor disk is split into m discrete
elements e. The turbine power is obtained by summing up the power extracted in each element

P =
m∑

e=1

1

2
ρAeCP(γ)V 3

e , (6)

where ρ is the air density, Ae the element area, Ve the wind velocity at the discrete element and
CP(γ) the power coefficient expressed as a function of yaw-misalignment as

CP(γ) = CP,γ=0 cos(γ)kp . (7)

Furthermore, CP,γ=0 is the power coefficient of the turbine operating aligned with the wind,
while kp is the parameter taking into account power reduction due to yaw-misalignment. Speed
Ve is calculated based on the wake deficits of all upstream turbines

Ve = U∞

(
1−

( n∑

w=1

r2
w

) 1
2

)
, (8)

where n is the number of wake zones overlapping with the turbine rotor, while rw the reduction
factor of a wake zone impinging the element. In case n = 0, no wake is impinging on the element
and therefore Ve = V∞.

The implemented algorithm is organized as follows. First, the power and wake characteristics
of the first upwind turbine is calculated. In a second step, the next wind turbine is considered
and the wake position, reduction, and expansion of all upwind turbines are interpolated at
the given downwind position. Based on this, the turbine power can readily be computed by
equation (6) and (8). Finally, the turbine wake is also computed, using equations (1,2) and (4),
and the second step is repeated until the last turbine is reached.

3. Results
3.1. Experimental setup
The experiments described in this section were conducted with a scaled wind farm (see figure 2)
composed of three identical scaled wind turbine models, longitudinally spaced 4 diameters (D)
apart, whose rotor diameter is equal to 1.1 m (in the following named G1s for Generic 1 m
diameter rotor), which were already used in other research projects [3, 6, 7]. The models were
operated in the boundary-layer test section of the wind tunnel of the Politecnico di Milano,
which has a cross-sectional area of 13.84 m by 3.84 m and a length of 36 m. Atmospheric
boundary-layer conditions were simulated by the use of spires placed at the chamber inlet. The
vertical profile of the longitudinal wind speed was measured prior to testing, resulting in the
following best-fitted exponential law

U(z) = UH

(
z

zH

)0.088

, (9)

where UH ≈ 5.7 m/s and zH = 0.825 m are the free-stream wind speed at hub height and the
elevation of the rotor axis from the ground, respectively. The turbulence intensity (TI) at hub
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Figure 2. Wind farm layout in the wind tunnel.

Figure 3. G1 rotor-nacelle assembly (left) and overall model layout (right).

height was circa 5%. The undisturbed wind speed was measured by means of a pitot tube, also
shown in figure 2, placed at hub height and 3D in front of the upstream model.

The dimensions of the model (see figure 3) are a compromise among the need for
miniaturization, wind tunnel blockage, Reynolds effects and the need to realize multiple wind
turbine interference conditions typical of wind farm operations. The scaled wind turbine is
characterized by realistic aerodynamic performance, both at the airfoil and rotor levels, and
generates a wake with shape, deficit and recovery that match closely the ones of a full scale
machine. Moreover, the model features active individual pitch, torque and yaw control that,
together with a comprehensive onboard sensorization of the machine (including measures of
shaft and tower loads), enables the testing of modern control strategies.

Each model is controlled by a M1 Bachmann module that hard-real-time executes, similarly
to what is done on real wind turbines, control laws similar to the ones described in [8] and
references therein. In the present study, only operation below rated wind speed was considered.
Therefore, the turbines were torque controlled according to a precomputed quadratic relation
between rotor speed and torque.

3.2. Model parameter identification
For the identification of the model parameters, the wake velocity of an isolated G1 wind turbine
was measured with hot wire probes and compared to model-predicted velocities. In the wind
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conditions described above (TI of circa 5%), wake measurements were available at hub height
at several downwind distances (3D, 4D, 6D, 9D). In this first set of experiments, no wake
measurements in yawed condition had been conducted (γ = 0). Therefore, a second set of
experiments had to be used for identifying the parameters that influence the wake in case of
yaw-misalignment (ke,γ and kd). In this second set of experiments, TI was much lower (TI of circa
1%), but the wind turbine was operated with yaw-misalignments between −20◦ < γ < +20◦.
The wake velocity was measured at a distance of 4D downwind of the wind turbine, again at
hub height.

For the parameter identification, the hot wire velocity measurements VHW were utilized to
solve the minimization problem

min
p

∫
(VHW(x)− VM(x, p))2 dx, (10)

where x is the lateral position of the measurement, VM the model-predicted wake velocity for
a set of model parameters p. The problem is solved by the Nelder-Mead simplex direct search
algorithm implemented in the MATLAB function fminsearch. The wind turbine induction was
obtained from a G1 blade element momentum simulation and set to a = 0.35 for operation below
rated wind speed.

For the first set of experiments, the model parameters to be identified are defined as

p1 = {ke,1, ke,2, ke,3, kr,1, kr,2, kr,3}. (11)

Figure 4 shows the hot wire measurements VHW(x) (red dashed line) and the model-predicted
wake velocity VM(x, p) (blue solid line) for the identified set of parameters. Only measurements
at 4D were utilized for the identification (red solid line). The good quality matching of the
profiles at 3D, 6D and 9D, since they were not used for calibrating the model, demonstrate its
good generality.

V [-]
0.5 1

x 
[D

]

-1

-0.5

0

0.5

1
3 D

V [-]
0.5 1

4 D

V [-]
0.5 1

6 D

V [-]
0.5 1

9 D

Figure 4. First measurement set (TI circa 5%), modeled (blue solid line) and measured (red
solid and dashed lines) wake deficit for different distances behind the wind turbine.

To identify the wake parameters that play a role in turbine yaw-misalignment, the second set
of experiments was used and the parameters to be identified by equation (10) were set to be

p2 = {ke,γ , kd}. (12)
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Figure 5. Second measurement set (TI circa 1%), modeled (blue solid line) and measured (red
solid and dashed lines) wake deficit for different yaw-misalignments.

The parameters p1 were re-identified for the low TI case to take the slower wake recovery of
this different flow condition into account. Figure 5 shows the hot wire measurements VHW(x)
and the model-predicted wake velocity VM(x, p) for the identified set of parameters. Again, the
generality of the wake model is demonstrated by only taking the measurements of γ = −20◦ and
γ = 0◦ into account during the identification. Note the wake diameter reduction in the cases
characterized by larger yaw-misalignment. The modeled maximum wake diameter for γ = 0◦

is 1.2D, whereas for γ = ±20◦ the wake diameter is only 1D, giving a good fit with the wake
measurements.

It is assumed that the parameters ke,γ and kd are independent of TI. Therefore, they can be
used to describe the wake also for the higher TI cases used in the wind farm experiments.

Parameter kp was identified based on a subset of the wind farm experiments in which the first
turbine yaw-misalignment was−36◦ < γ < 0◦. In this subset, the first wind turbine experimental
power coefficient CP,Exp(γ) was calculated based on turbine power measurements and pitot tube
measurements 3D in front of the hub, as shown in figure 6 (red circles). The squared error
between the measured and modeled power coefficients, given by equation (7), was minimized
with respect to the free parameters kp and CP,γ=0, yielding the modeled power coefficient shown
in figure 6 (blue solid line). Coefficient CP,γ=0 was included in the free parameters to account
for a low precision in the pitot tube measurements.

The full set of identified model parameters is reported in Table 1. For the sake of completeness,
Table 1 also reports the identified parameters for low TI, which correspond to Figure 5.

Table 1. Identified model parameters.

ke,1 ke,2 ke,3 kr,1 kr,2 kr,3 ke,γ kd kp

high TI -0.0251 0.0011 0.0386 0.0320 0.0669 0.2130 2.8808 0.1219 1.7870
low TI -0.0363 -0.0062 0.0236 0.0140 0.0433 0.1864 2.8808 0.1219 1.7870
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Figure 6. Measured (red circles) and modeled (blue solid line) power coefficients plotted as
functions of wind turbine yaw-misalignment.

3.3. Wind farm experiments
In the wind farm experiments, three G1s were operated in the wind tunnel in three different
layouts (noted A, B and C) as shown in figure 7. In each layout, the most upwind wind turbine
is labeled WT1, the middle turbine is noted WT2, while the most downwind wind turbine is
termed WT3. The turbines were torque controlled below rated wind speed, and the reduced
order model assumed a constant operation of all turbines with CP,γ=0 = 0.419 and a = 0.35.

Figure 7. Wind farm layouts A, B, C with lateral displacements of ±0.5D and 0D. The
longitudinal displacement is approximately 4D. Note that the sketch is not to scale.

First, for every layout several experiments were conducted with different yaw-misalignments
of WT1 (γ1), in order to deflect the wake away from the downstream turbines. For these
experiments, figure 8 shows the power coefficient of all three wind turbines and the total wind
farm in layouts A, B and C, as indicated by the column title. The red circles indicate the
measured and the blue solid line the modeled power coefficient, respectively.
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Figure 8. Measured (red circles) and modeled (blue solid line) power coefficient for WT1, WT2,
WT3 and the total wind farm, for layouts A, B and C.

The first row of subplots shows the power coefficient of WT1 (CP,1) in each layout. As
expected from the identification of parameter kp, the model-predicted and measured results
correlate very well.

The second row of subplots shows the power coefficient of WT2 (CP,2). For γ1 = 0◦, the model
predicts well the downwind turbine power for all layouts. However, a small asymmetric behavior
in the measurements can be observed between the symmetric layouts A and B — perhaps due
to asymmetric wake behavior or due to a small horizontal variation in the wind tunnel inflow
speed. In the experiments of layout B, maximum power is reached already at γ1 ≈ 25◦ and
further upwind turbine yawing does not influence the second wind turbine power anymore. In
the full wake case of layout C, the model significantly over-predicts power for |γ1| > 10◦. A
first hypothesis that could explain this behavior is that the model predicts a slightly inaccurate
wake location in the yawed cases (which is possible, given that the corresponding parameter
was identified at a much lower TI). Indeed, simulations with a larger wake deflection parameter
(kd = 0.28, see blue dashed line) show improved results for layout C, but the new parameter
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affects also the results in layouts A and B, where now the modeled power coefficient exhibits an
increased error. Results in layout C might improve by adjusting the model in such a way that
in yaw-misalignment conditions the wake speed decreases or the wake diameter reduces further
than currently predicted, but this would worsen the results in layouts A and B. The previously
mentioned slight lateral variation in the inflow speed, which cannot be captured by the use of
a single pitot tube, could also be a partial cause of the mismatch seen here. It is also possible
that the wake deflection position is affected by the downwind turbine position. Understanding
the reasons causing these discrepancies will be part of further studies, involving additional wind
farm flow measurements.

The third row of subplots shows the power coefficient of WT3 (CP,3). In layout A and
B, no significant γ1-dependency can be observed in the experiments as well as in the model.
Nevertheless, the power is constantly under-predicted. The cause might be a faster wake recovery
of the wake of WT2 that, operating within the wake of WT1, experiences a higher turbulence
intensity, leading to a faster wake mixing. Conversely, a strongly deflected wake (i.e. |γ1| > 25◦)
should in that case also lead to lower power at WT3 — an effect that however is not observed in
the experiments. Again, further studies and measurements are necessary to better explain this
contradiction. For layout C, the power of WT3 is clearly affected by γ1. The model correctly
predicts an increase of power for increased γ1. However, above |γ1| > 20◦ the experimental
results show a decrease of power, which might be caused by a slower wake recovery of the WT2
wake compared to the full wake case (γ1 = 0).

The total power coefficient of all three wind turbines (CP,WF = CP,1 +CP,2 +CP,3) is shown
in the last row of figure 8. Taking into account the discrepancies noted above, the overall
correlation is rather good. In layouts A and B the predicted power achieves a maximum for
|γ1| = 20◦, which correlates well with the experimental data. In the full wake case, the predicted
power is maximum at |γ1| = 34◦, which again correlates well with the experimental data.

For layout B, experiments were also conducted in which WT2 is operating in yaw-
misalignment (γ2). Figure 9 shows experiments in which WT2 is yawed by γ2 = 8◦ (first
column), γ2 = 18◦ (second column) and γ2 = 28◦ (third column). The power of WT1 is again
well predicted. For WT2 the modeled and measured power decreases for increased γ2, even
though the model under-predicts this effect slightly at higher γ2. The power of WT3 increases
as expected with increased γ2. Surprisingly, for γ2 = 28◦ the WT3 power exceeds the maximum
power coefficient in four experiments — possibly due to a flow acceleration just outside of
the wakes of WT1 and WT2. The total power of all three turbines follows the trend of the
experiments, but the previously observed power over-prediction becomes smaller for increased
γ2, mainly due to the under estimation at WT2 and the smaller error at WT3.

The full set of experiments, not shown here for brevity, includes all combinations of γ1 and
γ2 in steps of 2◦ around the point of maximum power. By using this data, the experimental
optimum yaw configuration could be readily identified and was found to be at γ1 = 20◦ and
γ2 = 16◦. The model-predicted point of maximum wind farm power was on the other hand
found to be located at γ1 = 20◦ and γ2 = 22◦.

4. Conclusions and outlook
In this paper, the parameters of a reduced order wind farm model were identified with the help
of wake measurements along a hub-height horizontal line for an isolated wind turbine. The
modeled wakes are in good agreement with the measurements, even though only a small subset
of the measurements were taken into account for the model identification procedure.

For three different wind farm layouts, including a variety of yaw angles of the two
upstream wind turbines, the model-predicted wind turbine power coefficient was compared with
experimental measurements. The comparison shows a good correlation in the overall trends, but
the absolute values are not always well predicted especially for the last downstream wind turbine.
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Figure 9. Measured (red circles) and modeled (blue solid line) power coefficient for WT1, WT2,
WT3 and the total wind farm, for layout B for different γ2 values.

The causes are believed to be a combination of various effects, including a faster recovery of
wakes shed by waked turbines, flow acceleration outside the wakes, lateral flow speed variations
in the wind tunnel, Reynolds number effects in the experiments, the assumption of a uniform
power coefficient on each rotor, the assumption of axisymmetric wakes and certainly additional
not modeled and fully understood effects like the influence of the downwind turbines on the
upstream wake development.

Regardless of these open questions, it is important to note that the employed rather simplistic
wind farm model, after a tuning by wake measurements, predicts well the operating point of
maximum wind farm power. This is a promising result in view of the use of the model for
wind farm control. It is also worth noting that the power gradient is very small around the
optimum yaw angles for all studied layouts, implying that for wind farm control purposes a
rough estimation of the optimum yaw configuration should be enough to harvest most of its
potential.

Future work will try to clarify the open points and improve the model, taking into account
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the various deficiencies stated above. In addition, rotor load-based wind estimation and wake
detection techniques [9] will be coupled with the model for the development of robust model-
based closed-loop wind farm control.
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CHAPTER 9

Paper 7: Comparison of Analytical Wake Models
with Wind Tunnel Data

9.1 Summary

In this work several different analytical wake models are tuned and a comparison of wake velocity,
wake deflection and turbulence intensity predictions against wind tunnel measurements is conducted.

For model tuning, hub height wake measurements at different downstream distances of a single
scaled G1 wind turbine are employed and a Maximum Likelihood Estimation is used for parameter
estimation. Compared to the work presented in Paper 6, a more complete data set has been available.

The wake model comparisons base on the same tuning data set and quantify the respective
mismatches using a root mean squared relative error. Results show that the Porté-Agel wake model,
with only four parameters, is superior to all other investigated wake models.

9.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has supervised and assisted in
the technical implementation of the model tuning and comparison. Filippo Campagnolo led the whole
research work, conducted the experiments and analysis. Anil Molder conducted the coding and data
analysis. Carlo L. Bottasso supervised the whole research. All authors provided important input to this
research work through discussions, feedback and by writing the paper.
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Abstract. In this paper a comparison between the wake velocity, wake deflection and
turbulence intensity predictions of several wake models was carried out against wind tunnel
data obtained with a state-of-the-art scaled wind turbine model. In order to achieve a fair
comparison, the models’ parameters were all tuned with respect to the same experimental data-
set using the Maximum Likelihood Estimation (MLE) method. A quantitative assessment of all
models’ predictions highlighted that the Porté-Agel model seems to provide, for a wide range
of inflow and wind turbine operating conditions, the most accurate estimation of the wake flow
field. Further improvements to the model are also suggested in the conclusions.

1. Introduction
In recent years, many research activities have focused on formulating cooperative control
strategies for wind turbines that aim at maximizing the power produced by a wind farm. Among
the developed strategies, the ones that showed so far the greatest potential are based on de-rating
or misaligning, with respect to the wind, the upstream wind turbines [1]. In this regard, many
research institutes have developed analytical models to predict the effects that these strategies
have on the wake shed by a wind turbine. Many of these models require the calibration of
tuning parameters, an activity that implies the availability of experimental data, often obtained
through wind tunnel tests, or data obtained by means of CFD simulations. However, the data
set used for the calibration of the various models is often heterogeneous: experimental/numerical
data, different inflow conditions, different characteristics and operating conditions of the used
wind turbine models. All this hampers an objective and quantitative comparison of the accuracy
of these models, whose calibration parameters are often optimized for a specific inflow or wind
turbine operating condition. This article therefore aims at comparing the prediction of different
analytical wake models with data obtained by testing a state-of-the-art wind turbine scaled
model in a boundary layer wind tunnel. To this end, and in order to ensure a fair comparison,
the models’ parameters are all re-tuned using the data itself. This paper is therefore organized as
following: at first an overview of the investigated analytical wake models, including the related
equations and tunable parameters, is provided in §2. Next, the experimental setup is presented
in §3, followed by the description of the approach adopted for the tuning of the parameters,
given in §4. Successively, the comparison between the models’ predictions and the experimental
data is discussed in §5, while the conclusions are drawn in §6.
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2. Overview of analytical wake models
2.1. Jensen wake model
The Jensen one-dimensional wake model proposed in [2] is a pioneering work in the field. It
assumes a top hat shape of the velocity U(x) within the wake by means of Eq. 1, where the
tunable parameter α governs the wake recovery, U0 is the inflow speed, D0 is the rotor diameter,
x is the downstream distance to the rotor disk and a the rotor axial induction.

U(x) = U0

{
1− 2a

(
D0

D0 + 2αx

)2
}
. (1)

2.2. Frandsen wake model
The Frandsen [3] wake model also estimates the flow velocity in the wake assuming a top
hat shape distribution. Differently than the Jensen model, the wake diameter D(x) and wake
expansion coefficient α(x) are calculated as

U(x)

U0
=

1

2
+

1

2

√
1− 2

D2
0

D(x)2
CT , with

D(x)

D0
= (βk/2 + αs)1/k, (2a)

α(x) = βk/2[(1 + 2α(noj)s)
k − 1]s−1, with β =

1

2

1 +
√

1− CT√
1− CT

, (2b)

with s = x/D0 and CT the rotor thrust coefficient, while α(noj) and are k are the tunable
parameters that govern the wake recovery.

2.3. FLORIS wake model
The FLOw Redirection and Induction in Steady-state (FLORIS) wake model [4] considers the
flow within the wake as the superimposition of three wake zones, each characterized by an
expansion and decay rates governed by different coefficients, denoted with subscript q in Eqs. 3,
in turn function of tunable parameters me,q, MU,q, aU and bU . The model is also capable of
predicting the wake lateral displacement yw,yaw(x) associated to a rotor that operates misaligned,
of an angle γ, with respect to the wind direction, as shown in Eqs. 3c-3d, where kd is a tunable
parameter. The overall wake lateral displacement from the rotor centerline yw(x) also accounts
for the combined effect of rotor rotation and wind shear, as shown in Eq. 3e, with ad and bd
being tunable parameters.

Dq(x) = max(D0 + 2keme,qx, 0), (3a)

U(x, r) = U0[1− 2ac(x, r)], with c(x, r) function of cq(x) =

[
D0

D0 + 2kemU,q(γ)x

]2

, (3b)

mU,q(γ) =
MU,q

cos(aU + bUγ)
, (3c)

yw,yaw(x) ≈
C̃T (a, γ)

[
15
[

2xkd
D0

+ 1
]4

+ C̃T (a, γ)2

]

30kd
D0

[
2xkd
D0

+ 1
]5 , (3d)

yw(x) = yw,rot(x) + yw,yaw(x), with yw,rot(x) = ad + bdx. (3e)
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2.4. Porté-Agel wake model
The Porté-Agel wake model was firstly proposed in [9], further improved in [10] and presented
in its final form in [11]. The model is capable of computing the relative wake deficit ∆U/U0

in a 3-D domain using Eqs. 4a-4c, where the wake decay rate depends, through the tunable
parameters ka and kb, to the inflow turbulence intensity. The wake deflection δ associated to
misaligned condition is computed with Eq. 4e, which accounts for the the deflection in the near
and far wake. The first one is governed by the wake skew angle at the rotor disk θC0 and by
the length of the wake potential core x0, which is a function of two tunable parameters α∗ and
β∗. The wake turbulence intensity is calculated with the model proposed in [12] (Eq. 4g), where
TIa,b,c,d are tunable parameters.

∆U(x, y, x)

U0
=

(
1−

√
1− CT cos γ

8(σyσz/D0
2)

)
exp

(
−0.5

(
y − δ
σy

)2
)

exp

(
−0.5

(
z − zh
σz

)2
)
,

(4a)

σy(x, γ)

D0
= ky

(x− x0)

D0
+

cos γ√
8

and
σz(x)

D0
= kz

(x− x0)

D0
+

1√
8
, (4b)

ky = kz = kaI0 + kb, (4c)

x0(I0, γ)

D0
=

cos γ(1 +
√

1− CT )√
2(α∗I0 + β∗(1−√1− CT ))

, (4d)

δ

D0
= θC0

x0

D0
+
θC0

14.7

√
cos γ

kykzCT
(2.9 + 1.3

√
1− CT − CT ) ln




(1.6 +
√
CT )

(
1.6
√

8σyσz
D0

2 cos γ
−√CT

)

(1.6−√CT )
(

1.6
√

8σyσz
D0

2 cos γ
+
√
CT

)


 ,

(4e)

θC0(γ) =
0.3γ

cos γ
(1−

√
1− CT cos γ), (4f)

I2
wake =

√
I2

0 + I2
+, with I+(I0, x) = TIaa

TIbITIc
0 (x/D0)TId . (4g)

2.5. 2D k Jensen wake model
The 2D k Jensen wake model, proposed in [5] and improved in [6], provides equations for
modeling the flow velocity and turbulence intensity within the wake. At first the one-dimensional
flow velocity is computed using a wake decay coefficient that is proportional, through the tunable
parameter k0, to both the inflow (I0) and wake turbulence intensity. The turbulence within the
wake is then predicted with the Larsen model [7] (Eq. 5b), where TIa,b are tunable parameters.
The 2-D velocity deficit is then approximated by a cosine function (Eq. 5c).

u∗(x) = U0


1− 1−√1− CT(

1 + kx
D0/2

)2


 , with k = k0

Iwake
I0

, (5a)

Iwake =
√
I2

0 + I2
add, with Iadd(x) = TIa(x/D0)TIb

√
1−

√
1− CT , (5b)

U(x, r) = (U0 − u∗(x)) cos

(
π

rx
r + π

)
+ u∗(x), with rx = kx+

D0

2
. (5c)
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2.6. Jensen-Gaussian wake model
The Jensen-Gaussian wake model [8] is similar to the previous 2D k Jensen. The one-dimensional
flow velocity is calculated first through the tunable parameters k0 and Kn, with Kn also affecting
the turbulence intensity in the wake, while the velocity distribution, assumed Gaussian, is
calculated according to Eq. 6b:

u∗(x) = u0


1− 2a

(
1 + kx

r1

)2


 , with k = k0

Iwake
I0

, Iwake(x) =

(
Kn

CT
(x/D)0.5

+ I0.5
0

)
, (6a)

U(x, r) = U0 − (u0 − u∗)
5.16√

2π
e

−r2

2(rx/2.58)2 , with rx = kx+ r1 and r1 =
D0

2

√
(1− a)

(1− 2a)
. (6b)

3. Experimental setup
The experimental data were obtained by means of wind tunnel testing. In detail, experiments
were conducted in the boundary-layer test section of the Politecnico di Milano wind tunnel using
a scaled G1 wind turbine [13]. Two different inflows were simulated: one characterized by a
moderate turbulence intensity (mod-TI) equal to 6.1%, and one characterized by high turbulence
intensity (high-TI), equal to 11%. The mean undisturbed wind speed, measured at hub height
with a pitot tube placed 5D upstream of the G1, was 5.60 and 5.46 m/s, respectively for mod-TI
and high-TI inflow.

For both inflows, 11 experimental observations were conducted, each one characterized by a
different wind turbine operating condition. Nine observations were performed with the rotor disk
misaligned of γ = −40◦ : 10◦ : +40◦ with respect to the wind tunnel axis (positive misalignment
corresponds to a counter-clockwise rotation from the wind to the rotor axis looking down onto
the terrain), while two observations where conducted with the the aligned G1 operated under
power de-rating conditions. During each test, a closed-loop wind turbine controller [13] was
used to find the optimal rotational speed Ω and collective blade pitch β. Their average values
are reported in Table 1 together with the rotor thrust coefficient CT . These were computed by
means of a Blade Element Momentum (BEM) model that makes use of tuned airfoil polars [14],
and were extremely close to the thrust coefficients computed using the fore-aft load sensor placed
at tower base.

The speed in the wake was measured, at 5D, 7.5D and 10D downwind of the G1, using a
hot-wire traversing system [15] and along horizontal lines at hub height, thus generating a total
of 66 data sets.

4. Formulation of the tuning method
From the the experimental data-set, average normalized flow velocities and turbulence intensities
were derived at specific locations expressed in Cartesian coordinates (x, y, z). To account for
the inhomogeneity of the flow within the wind tunnel [16], the normalized flow velocities were
obtained by dividing the average speed in the wake by the corresponding velocity previously
measured at the same coordinate (y, z), but three diameters upstream of the model. In this
work, the model outputs ŷi, associated to the ith experimental observation ỹi, are therefore
defined as

ŷi =

[
. . . ,

(
v̂i,d
)T

,
(
t̂i,d
)T

, . . .

]T
, d = 5D, 7.5D, 10D (7)
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Table 1. Wind turbine operating conditions for all performed tests with mod-TI and high-TI
inflow conditions.

mod-TI, U0 = 5.60 m/s high-TI, U0 = 5.46 m/s

Ω[rpm] β[◦] γ[◦] CT [−] ID Ω[rpm] β[◦] γ[◦] CT [−] ID

806.3 1.42 0 0.79 1 770.6 1.45 0 0.79 12
806.0 1.99 0 0.73 2 773.3 2.05 0 0.73 13
796.1 2.50 0 0.68 3 770.0 2.44 0 0.69 14
656.4 1.42 −40 0.51 4 631.2 1.42 −40 0.51 15
729.4 1.42 −30 0.63 5 693.2 1.42 −30 0.62 16
773.2 1.42 −20 0.72 6 734.8 1.42 −20 0.72 17
798.4 1.42 −10 0.77 7 758.5 1.43 −10 0.77 18
797.6 1.42 10 0.77 8 760.9 1.43 10 0.77 19
774.9 1.42 20 0.71 9 737.8 1.42 20 0.72 20
731.9 1.42 30 0.62 10 696.2 1.42 30 0.62 21
659.4 1.42 40 0.51 11 629.6 1.42 40 0.51 22

where v̂i,d and t̂i,d are respectively the normalized velocities and turbulence intensities predicted
by a model at a downwind distance d and at the same points were the flow was measured during
the experimental campaign.

The tuning process was then carried out in two steps, both requiring the minimization of a
cost function, which was performed using MATLAB’s fminsearch. At first, the adopted cost
function (SRE) was defined as

SRE =

M∑

i=1

∑

d


wv

N i,d∑

j=1

(
v̂i,dj − ṽ

i,d
j

ṽi,dj

)2

+ wt

N i,d∑

j=1

(
t̂i,dj − t̃

i,d
j

t̃i,dj

)2

 , (8)

where M is the number of used observations, N i,d is the number of data points measured, for
the ith observation, at the downwind distance d, while wv and wt are weighting factors. The
output of the minimization problem was then used as initial guess for a successive minimization
that seeks for a maximum likelihood estimate (MLE) of the models’ tunable parameters, an
approach that can account for the inevitable presence of various sources of errors and noise in
the measurements. To this aim, the adopted cost function was defined, as in [17], equal to

J =
Mn

2
ln(2π) +

M

2
ln det(R) +

1

2

M∑

i=1

rTi R
−1ri, (9)

where R, the error covariance matrix of the residuals computed as

R =
1

M

M∑

i=1

rir
T
i , (10)

is nonsingular if M , the dimension of the residual vector r, is smaller than the number of used
observations M . In this regard, the residual ri associated to the ith observation was defined as

ri =

[
. . . , wv

∥∥∥∥
(
v̂i,d − ṽi,d
ṽi,d

)∥∥∥∥+
√
wtf

i,d
(
t̂i,d, t̃i,d

)
, . . .

]T
d = 5D, 7.5D, 10D, (11)

where the function f i,d was defined as f i,d = t̂i,d−t̃i,d

t̃i,d
when tuning the Porté-Agel model’s

parameters, while it was defined as f i,d =
∥∥∥
(
t̂i,d−t̃i,d

t̃i,d

)∥∥∥ when tuning the 2D k Jensen and

Jensen-Gaussian models, with t̂i,d and t̃i,d respectively the predicted and measured average
turbulence within the wake at a distance d.
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5. Results
In order to account for the different capabilities of the the various investigated models, different
set of observations were used for their parameters’ tuning. Moreover, since it is well-known
that the inflow turbulence strongly affect the wake decay rate [18], two distinguished set
of parameters were tuned using, separately, observations performed with mod-TI and high-
TI inflows. However, only a single set of the Porté-Agel model’s parameters was tuned,
using observations pertaining to both inflows. This model, indeed, already accounts, through
Eq. 4c, for the relationship between the inflow turbulence and the wake recovery. Despite the
2D k Jensen and Jensen-Gaussian models also account for this relationship (Eqs. 5a and 6a),
preliminary verifications showed that a single set of tunable parameters would have provided
poor predictions of the speed in the wake.

Table 2. Models’ tuned parameters.

mod-TI high-TI

Jensen α = 0.033 α = 0.047

Frandsen α(noj) = 0.008 k = 3.023 α(noj) = 0.020 k = 1.740

FLORIS

MU,1 = 0.227 MU,2 = 0.719 MU,3 = 2.341 MU,1 = 0.388 MU,2 = 0.692 MU,3 = 1.809
me,1 = −0.694 me,2 = 0.369 me,3 = 0.876 me,1 = −0.646 me,2 = 0.250 me,3 = 1.097
kd = 0.105 ad = −0.071 bd = 0.014 kd = 0.168 ad = −0.077 bd = 0.011
aU = 13.551 bU = −0.112 aU = 7.666 bU = 0.040

2D k Jensen k0 = 0.0343 TIa = 0.1252 TIb = −0.0287 k0 = 0.0524 TIa = 0.3624 TIb = −0.5998

Jensen-Gaus. k0 = 0.0307 Kn = 0.2628 k0 = 0.0879 Kn = 0.141

Porté-Agel ka = 0.089, kb = 0.027, α = 0.952, β = 0.262, TIa = 0.082, TIb = 0.608, TIc = −0.551, TId = −0.277

The parameters of the Jensen, Frandsen, 2D k Jensen and Jensen-Gaussian models were
calibrated using observations obtained with the aligned wind turbine rotor (ID 1-3 for mod-TI,
ID 12-14 for high-TI, see Table 1). Concerning the FLORIS model, the parameters that govern
the wake deficit were tuned first using the non-yawed cases, while the parameters that govern
the wake deflection were tuned after, using the observations gathered with a misaligned wind
turbine (ID 1/4-11 for mod-TI, ID 12/15-22 for high-TI). Concerning the weighting factors wv
and wt of Eqs. 8 and 11, they were set respectively equal to 1 and 0 when tuning the parameters
of those models that do not provide sub-models for the turbulence intensity prediction, while
they were set respectively equal to 1 and 0.1 when tuning the parameters of the 2D k Jensen and
Jensen-Gaussian models. These two models, indeed, make use of prediction of the turbulence
intensity within the wake to estimate its deficit; an higher value of wv was then used to guide
the optimizer toward the research of a set of parameters that provide a better estimation of the
wake velocity deficit, rather than a proper estimation of its turbulence intensity. Concerning the
tuning of the parameters of the Porté-Agel model, those that govern the wake deficit/deflection
were tuned first, setting wv = 1 and wt = 0, and using all observations except the ones with
γ = ±40◦. Successively, the parameters of the turbulence sub-models were tuned, setting wv = 0
and wt = 1, and using observations obtained with the aligned wind turbine rotor. The resulting
tuned parameters are reported in Table 2.

5.1. Comparison between experiments and models’ predictions
Figures 1 and 2 depict the models’ predicted normalized flow velocity and the corresponding
measurement data for the non-yawed cases, and for moderate and high turbulence intensity
inflow conditions, respectively.
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Figure 1. Flow velocity estimations for the Jensen ( ), Frandsen ( ), FLORIS ( ),
2D k Jensen ( ), Jensen-Gaussian ( ) and Porté-Agel ( ) models compared to wind tunnel
measurements (◦) performed at hub height, with mod-TI inflow, null yaw misalignment and
three CT settings (ID 1-3).
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Figure 2. Flow velocity estimations for the Jensen ( ), Frandsen ( ), FLORIS ( ),
2D k Jensen ( ), Jensen-Gaussian ( ) and Porté-Agel ( ) models compared to wind tunnel
measurements (◦) performed at hub height, with high-TI inflow, null yaw misalignment and
three CT settings (ID 12-14).
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The plots highlight that the Jensen and Frandsen models’ predictions are quite inaccurate,
especially for mod-TI inflow, while the predictions of the other models are quite satisfactory,
particularly for high-TI inflow. Quite outstanding are the wind speed estimations of the Porté-
Agel model, especially for mod-TI inflow conditions, while it seems that the same model is
overestimating the wake deficit at 5D for high-TI inflow and with the wind turbine operating
under de-rated power conditions.
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Figure 3. Flow velocity estimations for the FLORIS ( ) and Porté-Agel ( ) models compared
to wind tunnel measurements (◦) performed at hub height, mod-TI inflow, γ = -40:10:-10 &
10:10:40 (ID 4-11).

Since only the FLORIS and Porté-Agel models are capable of predicting the wake deflection
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due to yaw-misaligned conditions, Figs. 3 and 4 report, respectively for mod-TI and high-TI
inflow conditions, the comparison between the experimental data and the normalized wake
speed estimated by these two models when the G1 was yawed of γ = ±40,±30,±20,±10.
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Figure 4. Flow velocity estimations for the FLORIS ( ) and Porté-Agel ( ) models compared
to wind tunnel measurements (◦) performed at hub height, high-TI inflow, γ = -40:10:-10 &
10:10:40 (ID 15-22).

The plots within the figures allow to appreciate the impact of yaw misaligned operations on
the wake shed by the scaled wind turbine model: as expected, as higher the misalignment is,
as lower is the wake velocity deficit and higher is the wake deflection. Concerning the models’
predictions, both the FLORIS and Porté-Agel are quite accurate, specially for γ between the
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range of ±20◦. The FLORIS model seems however less accurate for γ = ±30◦, and quite
inaccurate for those conditions characterized by very high yaw misalignment, i.e with γ = ±40◦.
The Porté-Agel’s prediction are overall outstanding, despite a moderate mismatch with the
experimental observations can be observed for γ = ±40◦ and mod-TI inflow conditions.
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Figure 5. Turbulence intensity estimations for the 2D k Jensen ( ), Jensen-Gaussian ( ) and
Porté-Agel ( ) models compared to wind tunnel measurements (◦) performed at hub height,
with mod-TI inflow, null yaw misalignment and three CT settings (ID 1-3). The experimental
average turbulence intensity within the wake is reported with a black dashed line.
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Figure 6. Turbulence intensity estimations for the 2D k Jensen ( ), Jensen-Gaussian ( ) and
Porté-Agel ( ) models compared to wind tunnel measurements (◦) performed at hub height,
with high-TI inflow, null yaw misalignment and three CT settings (ID 12-14). The experimental
average turbulence intensity within the wake is reported with a black dashed line.

Three of the investigated models (2D k Jensen, Jensen-Gaussian and Porté-Agel) are also
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capable of estimating the turbulence intensity within the wake. These are compared to the
experimental observations in Figs. 5 and 6. Since all models assume a spatially constant
turbulence, they are not capable of correctly reproducing the distribution of the turbulence
along the horizontal line. In any case, it is possible to evaluate the accuracy of the three models
in predicting the average value of the wake turbulence, whose experimental data is also reported
in the subplots. In this sense, all three models produce satisfactory estimates for low-TI inflow,
with the Porté-Agel model that seems to perform slightly better than the others. However, the
data related to the high-TI inflow show that the 2D k Jensen model is more effective than the
other two in predicting the wake turbulence at 5D, while predictions for greater distances tend
to get closer. It seems, in fact, that the Jensen-Gaussian and Porté-Agel models are not able to
properly estimate the rate of decrease of the turbulence in the wake associated with its speed
recovery.

5.2. Overall assessment of the models’ accuracy
In order to quantitatively assess the average accuracy of the investigated models, in terms of
prediction of the wake speed, deflection and turbulence intensity for all tested conditions, three
average Root Mean Squared Relative Error (RMSRE) were calculated as

RMSREv =
1

M

M∑

i=1

√√√√√1

3

∑

d

1

N i,d

N i,d∑

j=1

(
v̂i,dj − ṽ

i,d
j

ṽi,dj

)2

, (12a)

RMSREt =
1

M

M∑

i=1

√√√√1

3

∑

d

(
t̂i,d − t̃i,d

t̃i,d

)2

. (12b)

In particular, six RMSREv were computed, for all models, using prediction and observations
related to all the non-yawed cases. Similarly, two RMSREv were computed, for the FLORIS
and Porté-Agel models, using prediction and observations related to all the yawed cases. Finally,
three RMSREt were computed using data related to all the non-yawed cases.
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Figure 7. Average RMSRE of model estimations for velocity deficit, wake deflection and
turbulence intensity.

The obtained RMSRE, reported in Fig. 7, confirm the observations discussed in the previous
section. The Porté-Agel model, indeed, provide the best predictions of the velocity deficit and
wake deflection. However, different conclusions can be given by looking at the accuracy of the
turbulence intensity predictions: in this case, indeed, the 2D k Jensen model exhibits the best
performance.
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6. Conclusions and outlook
The comparison between the experimental data and the numerical predictions, as well as the
overall evaluation of the accuracy of the various models, allows to conclude that the Porté-Agel
model seems to be the most accurate in terms of prediction of the wake speed and deflection
related to a wide range of inflow and wind turbine operating conditions (thrust coefficient
and yaw misalignment). Moreover, the model tuning requires the identification of solely four
parameters, i.e. less than all the other models except the Jensen-Gaussian, which, however, do
not provide estimation of the wake deflection.

However, further improvements could still be added to the model. One of this could be
accounting, as suggested by [19], for the dependency of the wake decay rate to the operating
thrust coefficient by modifying Eq. 4c into

ky = kz = kaI0 + kb + kcCT . (13)

By utilizing this approach, a new set of parameters (ka =0.054, kb=0.025, kc=0.003, α=1.642,
β=0.155) can be found, leading to a reduction, from 0.0350 to 0.0281, of the RMSREv related
to all the non-yawed cases. Finally, another minor improvement to the Porté-Agel would be the
implementation of a difference turbulence intensity sub-model, like the one of 2D k Jensen model.
A better prediction of the turbulence in the wake would lead, in fact, to a better prediction of
the recovery associated to a wake shed by a downstream turbine.
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CHAPTER 10

Paper 8: Wind shear estimation and wake
detection by rotor loads – First wind tunnel

verification

10.1 Summary

This work builds upon Papers 1, 2 and 3, and extends the load-based wake detection to also estimate
the exact position of an impinging wake. In details, the new method uses two different load-based
turbine inflow estimates: a rotor-effective horizontal inflow shear estimate, which is computed from
the sector-effective wind speed estimates, and a rotor-effective wind speed estimate. A wake model, in
this work for simplicity solely based on experimental single turbine wake measurements, is used to
generate corresponding reference values as function of lateral wake position. An optimization problem
is formulated as minimization of the difference between load-based inflow estimates and wake model
references as function of wake position. Its solution is the wake position estimate.

The method is tested within the paper on a scaled wind turbine of type G2 that is installed within a
boundary layer wind tunnel 4 diameters behind an upstream turbine. The sensing turbine is operated
in 12 different lateral displacements, to simulate a variety of different wake positions. Results, also
taking into account the effect of possible load-based inflow estimation errors, show a robust wake
position estimation.

10.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has developed the methodology
and conducted the main analysis. The experiments have been conducted by Filippo Campagnolo and
Vlaho Petrović. Stefano Cacciola and Delphine Mourembles supported the analysis. Carlo Bottasso
supervised the whole research. The discussion of results and the writing of the publication was shared
in equal parts among all authors.

10.3 Reference
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estimation and wake detection by rotor loads — first wind tunnel verification,” Journal of Physics:
Conference Series, vol. 753, p. 032027, 2016. doi: 10.1088/1742-6596/753/3/032027
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Abstract. The paper describes a simple method for detecting presence and location of a
wake affecting a downstream wind turbine operating in a wind power plant. First, the local
wind speed and shear experienced by the wind turbine are estimated by the use of rotor loads
and other standard wind turbine response data. Then, a simple wake deficit model is used to
determine the lateral position of the wake with respect to the affected rotor. The method is
verified in a boundary layer wind tunnel using two instrumented scaled wind turbine models,
demonstrating its effectiveness.

1. Introduction
The wake shed by a wind turbine is mainly characterized by a lower wind speed and higher
turbulence intensity than the free stream. In a wind farm environment, a wake can adversely
affect other downwind turbines, leading to reduced power output and increased fatigue loads.
It has been suggested that there is a large potential in wind farm control (WFC) by means of
active wake deflection or wake management [1]. For example, using a WFC algorithm for wake
deflection by yawing, a CFD simulation study showed a possible increase of power production
for a specific favourable configuration of more than 10% [2]. Wind tunnel experiments confirm
that a power increase of the same magnitude can indeed be achieved [3]. If brought to maturity
and eventually deployed in the field, such technology has the potential of leading to significant
increases in energy capture and reduced loading, and might also impact the way wind power
plants are designed.

Knowing the wind conditions within a wind farm is of major importance for any WFC
algorithm. In fact, wake management may lead to a positive outcome if one knows the correct
location of the affecting wake. On the contrary, an erroneous knowledge of the conditions may
lead to a detrimental effect on power, loads, or both.

The wake position in a wind farm depends on the ambient wind direction, the conditions of
the atmosphere and the neighboring orography of the terrain, and the possible misalignment of
the turbine with the wind. There are several methods to measure wind characteristics. However,
nacelle sensors or met-masts provide only point-wise measurements, which might not be sufficient
for enabling sophisticated wind farm control. Scanning LiDAR systems on the other hand might
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very effectively map the flow field, but they are not available in most wind farms yet. Another
approach uses the rotor response to estimate wind properties. Based on the turbine power or
torque, the rotor effective wind speed can be estimated, which gives an indication of the mean
wind speed at each turbine [4]. In addition, it was shown that shear can be also detected by a
linearized wind turbine model [5] or by a data driven approach based on blade load harmonics,
a method that can also estimate wind direction [6, 7].

In this paper a method is proposed for estimating the position of a wake relative to an
affected wind turbine rotor. The method first estimates the local wind speed and horizontal
shear using measured blade root bending moments, as more fully described in Ref. [8]. Then, by
using a model of the wake deficit, the wake position is determined. The paper first formulates
the proposed approach and then experimentally demonstrates it by using scaled wind turbines
operated in a large boundary layer wind tunnel. Experiments included several different operating
conditions, characterized by different degrees of wake interference between an upstream and a
downstream wind turbine. Results give evidence of the fact that the horizontal shear and relative
wake position experienced by a waked turbine can be estimated in operation.

2. Formulation
The method relies on measurements of the blade root bending moments, which are typically
available on modern MW-turbines. By the definition of a cone coefficient, these loads are
correlated with the local effective (LE) wind speed at the rotor blade. This is a similar approach
to the well-known method based on the power coefficient, where torque is correlated with the
rotor effective wind speed.

The cone coefficient is defined as

Cm0(λLE, β, q) =
m(ψ)

1
2ρARV

2
LE

, (1)

where λLE is the local effective tip speed ratio, β the pitch angle, q the dynamic pressure, m
the out-of-plane root bending moment of the blade occupying the azimuthal position ψ, VLE the
local effective wind speed, ρ the density of air, A the rotor disc area and R the rotor radius.
Based on the knowledge of the measured loads and other operational parameters, Eq. (1) can
be solved at every time instant for the VLE wind speed.

Next, the LE wind speed of each blade can be used to calculate average velocities in predefined
non-rotating sectors on the rotor disc. By choosing four equally sized quadrants, four sector
effective (SE) wind speed estimates on the rotor disc (left, right, top and bottom quadrant) can
be inferred.

The observed SE wind speed can be further processed to estimate a horizontal shear coefficient
κlin, defined by

V (y) = Vh

(
1 + κlin

y

R

)
, (2)

where V (y) is the longitudinal wind speed at the lateral position y, and Vh the wind speed at the
hub. For linear shear profiles, it was shown that the SE speed represents the wind speed sampled
at about 2/3R [8]. Assuming that the hub wind speed is known through a rotor effective (RE)
wind speed estimate (Vh ≈ VRE), one can then infer the linear horizontal shear coefficient κlin,obs
as

κlin,obs(t) =
VSE,left(t)− VSE,right(t)

4/3VRE(t)
. (3)

Based on the knowledge of wind conditions as the ambient turbulence intensity (TI) and wind
speed, engineering wake models [9] can be used to estimate the wake shape and its speed deficit.
In turn, one can calculate the expected shear κlin,exp(d) and expected rotor effective wind speed
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VRE,exp(d) that a turbine operating within the wake at a given lateral distance d to the wake
center should be exposed to. The idea is then to match expected and observed shear and rotor
effective wind speed, in order to estimate the lateral distance d of the wake. This is obtained
by solving the following optimization problem

min
d

([
VRE,obs − VRE,exp(d)
κlin,obs − κlin,exp(d)

]T [ c
V 2∞

0

0 1−c
κ2ref

] [
VRE,obs − VRE,exp(d)
κlin,obs − κlin,exp(d)

])
, (4)

where scaling is performed by weights based on the mean ambient wind speed V∞ and a reference
shear κref , while c ∈ [0, 1] allows one to give more emphasis to one term or the other. For example,
the actual value of V∞ can be set to the low pass filtered RE wind speed estimation of the first
row of wind turbines, while κref can be set to the maximum expected shear.

3. Results
The present method was verified with two scaled wind turbines (termed G2s, for Generic wind
turbine, 2 m diameter) operated in one-to-one interference conditions within in the boundary
layer wind tunnel of the Politecnico di Milano [10].

Each G2 is managed by a torque-pitch controller and a supervisory system, similarly to a
full scale machine. The G2 wind turbine has a hub height of 1.7 m, and a rated rotor speed
of 380 rpm (clockwise rotation). The machine is equipped with three blades each housing, in
the hollow root, its own pitch actuator commanded by an electronic control board mounted
on the shaft. The shaft rotates on two bearings, held by a rectangular carrying box and it is
instrumented with strain gages to measure torsional and bending loads. Similarly, each blade
root is equipped with strain gages that measure bending moments. The transmission of all
electrical signals from the rotating system to the fixed one and vice versa is provided by a slip
ring. At the tower base a balance provides measurements of the three force and three moment
components. The general arrangement of a one-to-one interference condition realized with two
G2s is shown in Fig. 1.

The rotor blades were designed using special low-Reynolds airfoils. The aerodynamic
performance of the rotors was measured, for different values of the airfoil Reynolds numbers,
by operating the models at several combinations of tip speed ratio (TSR) λ and collective pitch
settings β. Measurements were then corrected for wall blockage [10]. Non-negligible differences
were observed between the experimentally measured and theoretical Blade Element Momentum
(BEM)-based rotor aerodynamic performance computed using nominal polars. To correct for
this problem, an identification procedure [11] was used to calibrate the nominal airfoil polars
obtained by other authors from wind tunnel measurements or numerical simulations. Based
on this calibrated polars, the cone coefficient of the turbines was computed with an aeroelastic
turbine model implemented in the simulation environment Cp-Lambda [12].

The ambient wind tunnel mean wind speed was measured with a pitot tube and set to
V̄ = 4.8 m/s, which represents an operating condition below rated wind speed. By placing
spires at the wind tunnel inlet, a turbulent flow characterized by a TI of 8% and a vertical
shear with power law exponent κ = 0.26 could be modeled. The second turbine was placed four
diameters (4D) downwind of the first turbine at different lateral displacements.

To establish the reference against which to compare observations, this study directly utilizes
wake measurements instead of an engineering wake model. In order to define the expected shear
κlin,exp(d) and wind speed VRE,exp(d), the mean wake wind speed was measured 4D downstream
of an isolated turbine along a horizontal line at hub height, by using triple hot wire probes.
Figure 2a shows the nondimensional longitudinal wind speed measurements, together with a
symmetric Gaussian fit. Therein, each measurement point represents a 60-second recording
at a sampling frequency of 100 Hz. The wake center is located at a small lateral distance
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Figure 1: G2 models for one-to-one interference conditions.
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Figure 2: Wake measurements and symmetric wake modeling.

d0 = −0.03 D with respect to the upwind turbine. This translation is believed to be caused
by several effects, including the complex aerodynamic interaction between wake rotation and
vertical shear as well as the up-tilt of the turbine. Assuming a rotationally symmetric wake,
the Gaussian fit is superimposed to the ambient shear as shown in Fig. 2b. Based on this wake
shape, a least squares algorithm is used to calculate the expected shear κlin,exp(d) and wind
speed VRE,exp(d) that should be experienced by a turbine operating in that wake at a given
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lateral displacement to the wake center d.
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Figure 3: Estimated and expected wind properties for a turbine operating in the wake of an
upstream turbine at different lateral turbine displacements.

Figure 3a shows the expected shear κlin,exp as a function of the lateral turbine displacement.
For a turbine displacement of 0D the expected shear is slightly positive due to the small lateral
displacement of the wake center described above. For 12 different lateral downwind turbine
displacements, the average observed horizontal shear κlin,obs (see Eq. (3)) is also displayed. The
expected and observed shear correlate well, even though the observed absolute values tend to
be smaller than the expected ones (maximum absolute error ∆κ,max = 0.15). This might be
caused by estimation errors as well as by the simple approach used here for modeling the wake.
Most importantly, the downwind turbine itself certainly affects the wake development, so that
the expected wind properties used by the algorithm might differ from the real ones.

Figure 3b shows the expected and observed RE wind speed using the torque balance
estimation. Both show a good correlation, but small errors are present also in this case
(∆V,max = 0.40m/s), due to the same reasons noted above.

By solving Eq. (4) (with V∞ = 4.8 m/s, κref = 0.3 and c = 0.5) the wake center position
dobs can be estimated. Results are reported in Fig. 4a using blue cross symbols. In addition,
the same plot reports results obtained by polluting the shear estimates with errors of ±∆κ,max.
As a reference, the figure plots also the expected wake center position dexp, which is the sum of
the lateral turbine displacement and d0. As expected, a significant error in shear estimation can
lead to a wake center position estimate on the wrong side of the wind turbine, especially for a
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Figure 4: Estimated and expected wake center position at different lateral turbine displacements.

large lateral turbine displacement. Nevertheless, in most instances the observed and expected
wake positions correlate well.

Figure 4b shows the observed RE wind speed, including the effects of errors of ±∆V,max.
Here again, the observed and expected wake positions correlate well.

4. Conclusions and outlook
The paper has presented a simple algorithm to determine the lateral position of a wake impinging
on a wind turbine. Experimental results obtained in a large boundary layer wind tunnel show
that the estimated wake center position correlates well with the expected one even in the face
of uncertainties, showing the robustness of the presented method.

Estimation errors are likely to be caused by the reference wake characteristics used for
detecting the position of the wake. In fact these quantities were here based on the symmetric
wake model of an isolated wind turbine, while it is clear that the real wake is not exactly
symmetric and it is in general distorted by the interaction with the downstream machine. The
hypothesis that reference quantities are the main culprit of estimation errors is supported by
a recent simulation study [13] which, not being affected by such effects, was in fact able to
achieve very accurate wake position estimates. To overcome these uncertainties, results from
wind tunnel experiments with a scanning LiDAR will be used in a continuation of this work,
together with an ongoing CFD simulation study.
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[7] Cacciola S, Bottasso C L and Bertelè M 2016 Simultaneous observation of wind shears and misalignments from

rotor loads, TORQUE 2016, The Science of Making Torque from Wind, Garching bei München, Germany,
Oct. 5–7, 2016.

[8] Bottasso C L, Cacciola S and Schreiber S 2016 Wind speed sensing and wake detection from rotor loads
Renew. Energy (under review)

[9] Renkema DJ 2007 Validation of wind turbine wake models. Delft University of Technology. Master thesis.
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CHAPTER 11

Paper 9: Improving wind farm flow models by
learning from operational data

11.1 Summary

This work is a continuation of Papers 6 and 7, which use dedicated flow measurements for model
tuning. As such measurements are in real pants typically not available or very costly, this work describes
a method to calibrate and correct an analytical wind farm model using operational data. In details, error
terms are surgically inserted into the model equations and its parameters are learnt from operational
data. Following the method, a baseline model, that often represents reality with already good accuracy,
can be improved and even effects that are not present in the baseline model can be accounted for.
Examples of those effects include non-uniform wind farm inflow, potentially due to orographic effects,
and secondary steering.

Different to Papers 8 and 11, which combine wind sensing and wind farm models for wake
detection, the presented method is not using the local wind estimation methods, even though an
inclusion within the formulation is straight forward and likely to improve performance. The decision
is driven by the fact that wind farm operators, that are expected to be the main user of the presented
method, usually do not have access to the numerical turbine models that are required for local wind
estimation. Indeed, in this work only the turbine power, that is available through standard SCADA
systems is used and still a significant improvement of the wind farm model predictions is obtained.

Results are first shown for a scaled wind farm within a wind tunnel that allows detailed and
extended measurements to verify that indeed the correct error terms are identified. Note that within
the wind farm control experiments in Paper 12 the here improved model shows better results than the
baseline model. Finally, the method is applied to a real wind farm in complex terrain and the improved
model prediction is demonstrated.

11.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has conducted the main research
work. Carlo L. Bottasso developed the core idea of model augmentation, its formulation and the overall
solution methodology, and supervised the whole research. The author of this dissertation and Carlo
L. Bottasso wrote the manuscript. Bastian Salbert pre-processed the field measurements. Filippo
Campagnolo was responsible for the execution of the wind tunnel tests. All authors provided important
input to this research work through discussions, feedback and improving the manuscript.

11.3 Reference

J. Schreiber, C. L. Bottasso, B. Salbert, and F. Campagnolo, “Improving wind farm flow models by
learning from operational data,” Wind Energy Science, vol. 5, no. 2, pp. 647–673, 2020. doi: 10.5194/wes-
5-647-2020
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Abstract. This paper describes a method to improve and correct an engineering wind farm flow model by using
operational data. Wind farm models represent an approximation of reality and therefore often lack accuracy and
suffer from unmodeled physical effects. It is shown here that, by surgically inserting error terms in the model
equations and learning the associated parameters from operational data, the performance of a baseline model
can be improved significantly. Compared to a purely data-driven approach, the resulting model encapsulates
prior knowledge beyond that contained in the training data set, which has a number of advantages. To assure
a wide applicability of the method – also including existing assets – learning here is purely driven by standard
operational (SCADA) data. The proposed method is demonstrated first using a cluster of three scaled wind
turbines operated in a boundary layer wind tunnel. Given that inflow, wakes, and operational conditions can be
precisely measured in the repeatable and controllable environment of the wind tunnel, this first application serves
the purpose of showing that the correct error terms can indeed be identified. Next, the method is applied to a
real wind farm situated in a complex terrain environment. Here again learning from operational data is shown to
improve the prediction capabilities of the baseline model.

1 Introduction

Knowledge of the flow at the rotor disk of each wind turbine
in a wind power plant enables several applications, including
wind farm control, the provision of grid services, predictive
maintenance, the estimation of life consumption, the feed-in
to digital twins, and power forecasting, among others.

This paper describes a new method to improve a wind farm
flow model directly from standard operational data. The main
idea pursued here is to use an existing wind farm flow model
to provide a baseline predictive capability; however, as all
models contain approximations and may lack the description
of some physical phenomena, the baseline model is improved
(or “augmented”, which is the term used in this work) by
adding parametric correction terms. In turn, these extra ele-
ments of the model are learned by using operational data. The
correction terms capture effects that are typically not present
in standard flow models (such as, for example, secondary
steering, Fleming et al., 2018; or wind farm blockage, Bleeg
et al., 2018) or that are highly dependent on a specific site or

difficult to model upfront (such as, for example, nonuniform
inflow caused by local orography and vegetation).

Various wind farm flow models have been developed and
are described in the literature. Whereas direct numerical sim-
ulation (DNS) is still out of reach for practical applications
due to its overwhelming computational cost, large-eddy sim-
ulation (LES) methods are now routinely used for the mod-
eling of wind farm flows (Fleming et al., 2014; Breton et al.,
2017). Although invaluable for the understanding of the be-
havior of the atmospheric boundary layer and of wakes,
LES is however still very expensive, so that its use outside
of some specialized applications is limited. To reduce cost,
one can resort to lower-fidelity computational fluid dynam-
ics (CFD) models (Boersma et al., 2019), or to the extraction
of reduced-order models (ROMs) from higher-fidelity ones
(Bastine et al., 2014). Instead of deriving models from first
principles, another widely adopted approach is to use engi-
neering models, which are expressed in the form of paramet-
ric analytical formulas with a limited number of degrees of
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freedom and hence a much reduced numerical complexity
(Frandsen et al., 2006; Gebraad et al., 2014; Bastankhah and
Porté-Agel, 2016). The present paper uses this last family of
methods, although ideas similar to the ones developed here
could also be applicable to higher-fidelity models.

Even though engineering models are constantly improved
and refined (Fleming et al., 2018), they will most likely al-
ways exhibit only a limited accuracy in many practical ap-
plications, for example whenever an important role is played
by effects such as orography, (seasonal) vegetation, spatial
variability of the wind, sea state roughness, the erection of
other neighboring wind turbines, the presence of obstacles,
and others. In addition, low-fidelity models often lack some
physics, e.g. the flow acceleration caused by wake and rotor
blockage, secondary steering, or others. The idea pursued in
this paper is then to take a rather pragmatic approach: based
on the realization that it will always be difficult – if not alto-
gether impossible – to include all effects and all physics in a
model of limited numerical complexity, a given model is cor-
rected by unknown parametric terms, which are then learned
by using operational data.

The idea of improving an existing model based on mea-
surements is hardly new, and it is actually an important topic
in the areas of controls and system identification. For exam-
ple, in the field of wind farm flows, a Kalman filtering ap-
proach has been proposed by Doekemeijer et al. (2017) to
update model predictions based on lidar measurements. Here
again the present paper takes a more pragmatic approach, and
model updating is based exclusively on data provided by the
standard supervisory control and data acquisition (SCADA)
systems that are typically available on contemporary wind
turbines. On the one hand this has the advantage that the pro-
posed method is applicable to existing assets, as it does not
necessitate extra sensors. On the other hand, given that stored
SCADA data typically represent 10 min averages, this also
implies that the models obtained by this technique are of a
steady-state nature. Although unsteady effects in wind farms
are clearly important, steady-state models are still very valu-
able and can support many of the applications listed above. In
addition, nothing prevents the generalization of the proposed
approach to unsteady flow models, assuming that the relevant
higher-frequency data sets are available, which is already the
subject of ongoing work from these authors.

The contemporary literature – and not only in the field of
wind energy – indicates an increasing interest in data-driven
approaches. Just to give one single example related to wake
modeling, a purely data-driven approach has been recently
described by Göçmen and Giebel (2018). However, the cur-
rent enthusiasm for data should not make one forget that
physics-based and analytical models are also extremely valu-
able because they often encapsulate significant knowledge on
a given problem, often corroborated by long experience. In
fact, purely data-driven approaches suffer from a number of
limitations that descend directly from a very simple and in-
evitable fact: a model that is exclusively based on data can

only know what is contained in the data set that was used to
build it. Typically, this means that a very significant amount
of data is necessary to obtain a model that is sufficiently gen-
eral and accurate. Furthermore, the data have to cover the
entire spectrum of operation of the system. This also means
that the model might have very poor knowledge (and hence
poor performance) for rare situations or conditions that take
place at the boundaries of the operating envelope, where few
if any data points might be available.

An alternative to the purely data-driven approach is pre-
sented in this work, where a reference baseline model is aug-
mented with parametric error terms, which are then identified
using data. The baseline model already includes prior knowl-
edge based on physics, empirical observations, and experi-
ence. Therefore, even prior to the use of data, a minimum per-
formance can be guaranteed. The model is augmented with
parametric error terms, whose choice is driven by physics
and the knowledge of the limitations of the baseline model.
Once the errors are identified using operational data, their in-
spection can clarify the causes of discrepancy between model
and measurements. Eventually, this can be used to improve
the underlying baseline model. Furthermore, by looking at
the magnitude of the identified errors, significant deviations
from the baseline model can be flagged to highlight issues
with the model itself, the data, or the training process.

Finally, it should be noted that the identification of the er-
ror terms can be combined with the tuning of the parameters
of the baseline model. This addresses yet another problem:
tuning the parameters of a model that lacks some physics
may lead to unreasonable values for the parameters, as the
model is “stretched” to represent phenomena that it does not
contain. By the proposed hybrid approach, the simultaneous
identification of the parameters of the baseline model to-
gether with the ones of the error terms eases this problem,
as unmodeled phenomena can be captured by the model-
augmenting terms, thereby reducing the chances of nonphys-
ical tuning of the baseline parameters.

The baseline model parameters and the extra correction
terms have a different functional form in the augmented gov-
erning equations. Hence, they should be distinguishable from
each other, as they imply different effects on the model. How-
ever, as for many identification problems, it is in general not
possible to guarantee that all unknown parameters are ob-
servable and noncollinear given a set of measurements and,
hence, given a certain informational content. To address this
problem, the method proposed by Bottasso et al. (2014a) is
used here, where the original unknown parameters are recast
into a new set of statistically uncorrelated variables by using
the singular value decomposition (SVD) of the inverse Fisher
information matrix. Once the problem has been solved in the
space of the orthogonal uncorrelated parameters, the solution
is mapped back onto the original physical space. This ap-
proach not only avoids the ill-posedness of the original prob-
lem, but also allows one to clarify which physical parameters
are visible given a certain data set.
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The paper is organized as follows. First, the baseline
model is introduced in Sect. 2.1, together with a detailed de-
scription of the proposed parametric corrections in Sect. 2.2.
Next, the SVD-based parameter identification method is pre-
sented in Sect. 2.3. The approach is then applied in Sect. 3.1
to a cluster of scaled wind turbines operating in the atmo-
spheric test section of the wind tunnel of the Politecnico di
Milano (Bottasso et al., 2014b). The goal of this first applica-
tion is to show that a correct identification of the error terms
can be achieved. This is indeed possible in the controllable
and repeatable conditions of a wind tunnel, where inflow and
wake characteristics can be precisely measured, something
that is hardly possible today in the field. Specifically, it is
shown that the method can correctly learn the lack of unifor-
mity of the wind tunnel inflow, which is akin to what happens
in a real wind farm because of orographic effects. Similarly,
it is shown that secondary steering, which is completely ab-
sent from the baseline model used here, can be learned by us-
ing turbine power measurements only. A more extended view
on the wind tunnel results is reported in Appendix A. After
having demonstrated the method in the known and controlled
wind tunnel environment, a second application is developed
in Sect. 3.2 that targets a real 43-turbine wind farm. Here re-
sults indicate that the augmented model has a markedly im-
proved prediction capability when compared to the baseline
one, thanks primarily to the identification of orographic ef-
fects on the inflow and the tuning of other model parameters.
Finally, conclusions are drawn in Sect. 4.

2 Methods

2.1 Baseline wind farm flow model

The proposed method is applied here to the baseline wake
model of Bastankhah and Porté-Agel (2016), implemented
within the FLORIS framework (Doekemeijer and Storm,
2018). Given ambient wind conditions, steady-state veloc-
ities within a wind farm can be computed by this model,
together with the corresponding operating states and power
outputs of all its turbines. First, ambient conditions are es-
timated from un-waked machines operating in free stream,
which are identified by the turbine yaw orientations and the
wake model (Schreiber et al., 2018). Then, power and thrust
of the upstream turbines are computed based on the turbine
aerodynamic characteristics, regulation strategy, and align-
ment with the local wind direction. Next, the wakes shed by
these turbines are calculated in terms of their trajectory and
speed deficit. In turn, this yields the velocity at the rotor disks
of the turbines immediately downstream. In the case of mul-
tiple wake impingements on a rotor, a combination model
is used to superimpose multiple wake deficits. Similarly, an
added turbulence model is used to estimate the turbulence in-
tensity at a downstream turbine rotor disk, as this local ambi-
ent parameter affects the expansion of the wake. This process

is repeated marching downstream throughout the wind farm
until the last downstream turbine is reached.

In this work, the implementation uses the selfSimilar
FLORIS velocity deficit model, the rans deflection model,
the quadraticRotorVelocity wake combination model, and
the crespoHernandez added turbulence model. The interested
reader is referred to Bastankhah and Porté-Agel (2016), Cre-
spo and Hernández (1996), and Doekemeijer et al. (2019)
and references therein for detailed descriptions and deriva-
tions of these models.

Engineering wake models depend on a number of param-
eters, which should be tuned in order to obtain accurate pre-
dictions. For the specific model used in this work, these tun-
able factors are the wake parameters α, β, ka, kb, ad, and bd
and the turbulence model parameters TIa, TIb, TIc, and TId
(Bastankhah and Porté-Agel, 2016).

In this work, the parameters are first set to an initial value,
either taken from the literature or identified with ad hoc mea-
surements; these initial values are held fixed throughout the
analysis and not changed further. Corrections to the initial
values are then expressed as

k = k∗+pk, (1)

where k is a model parameter, k∗ its initial value, and pk
the correction. Although this is not strictly necessary, this re-
dundant notation helps highlight the changes to the nominal
model parameters obtained by the proposed procedure.

2.2 Model augmentation

The engineering model described earlier is a rather simple
approximation of a flow through a wind power plant and it
is therefore bound to have only a limited fidelity to reality,
with a consequently only limited predictive accuracy. Even
for more sophisticated future models, it is difficult to imag-
ine that all relevant physics will ever be precisely accounted
for. But even if such a model existed, in practice one might
simply not have all necessary detailed information on the rel-
evant boundary and operating conditions that would be re-
quired. For example, one might not know with precision the
conditions of the vegetation around and within a wind farm,
with its effects on roughness and, hence, on the flow charac-
teristics. In other words, it is safe to assume that all models
are in error to some extent and probably always will be.

To address this problem, the model can be pragmatically
augmented with correction terms. Here one could take two
alternative approaches: either a generic all-encompassing er-
ror term is added to the model or “surgical” errors are intro-
duced at ad hoc locations in the model to target specific pre-
sumed deficiencies. The first approach could be treated with
a brute-force parametric modeling approach, for example by
using a neural network. Here, the second approach was used,
as it allows for more insight into the nature of the identified
corrections. The specific parametric corrections used in the
present paper are reviewed next. It is clear that these are only
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some of the many corrections that could be applied to the
present baseline model, so that the following does not pre-
tend to be a comprehensive treatment of the topic. Nonethe-
less, results indicate that some of these corrections are in-
deed significant and provide for a marked improvement of
the baseline model.

– Nonuniform inflow. The inflow to a wind farm can ex-
hibit spatial variability, mostly because of orographic
and local effects, especially in complex terrain condi-
tions. For example, commercial wind resource assess-
ment tools include topographic speedup ratios custom-
arily computed by CFD models (Jacobsen, 2019). In
contrast to this established practice, no direct or equiv-
alent modeling of orographic effects is at present avail-
able in engineering wake models. Another reason for
inflow variability may be due to wind farm blockage ef-
fects (Bleeg et al., 2018). Indeed, current wake models
such as the one used here assume that upstream turbines
affect downstream ones through their wakes but do not
model the effects of downstream machines on the up-
stream ones. In a wind farm, depending on the wind di-
rection and cross-wind location considered, the number
and operating state of downstream turbines vary, which
may induce a cross-wind speed variability in the inflow.

To capture some of these effects, the model ambient
flow speed V∞ is expressed here as a function of height
above ground Z, cross-wind lateral position Y , and am-
bient wind direction 0 as

V∞(Y,Z,0)=(
1+ faugm,speed

(
Y,0,cspeed,pspeed

))
V∞,0

(
Z

zh

)αvs

, (2)

where V∞,0 is the reference (baseline uncorrected)
ambient flow speed and zh the reference height of
the vertically sheared flow with exponent αvs. Func-
tion faugm,speed(Y,0,cspeed,pspeed) is the speed correc-
tion term. This function is defined in the 2D space
Y ∈ [Ymin,Ymax], 0 ∈ [0min,0max]. For each value of
the ambient wind direction 0, Y is a lateral coor-
dinate orthogonal to it that spans the width of the
farm; hence, by selecting 0min and 0max a lateral in-
flow nonuniformity can be modeled for a given sec-
tor or the whole wind rose of directions. The (Y,0)
space is discretized into rectangular cells with corner
nodes cspeed = [. . .; (Yi,0i); . . .] (for an example, see
Fig. 16). The corresponding unknown error nodal values
are stored in vector pspeed, and bilinear shape functions
interpolate the error in each cell based on the nodal val-
ues at its corners. Equation (2) could be extended to also
include a longitudinal wind-aligned coordinate, simi-
larly to the localized speedup ratios of Jacobsen (2019),
to model wind farm blockage effects.

Local orographic effects and blockage may also induce
variability in the wind direction 0. Similarly, the verti-
cal shear exponent αvs and turbulence intensity I may
vary, for example on account of nonuniform roughness
induced by vegetation or other obstacles. To include
these effects in the farm flow model, the baseline quan-
tities are augmented as

0(Y )= 0ref+Yfaugm,dir
(
0ref,cdir,pdir

)
, (3a)

αvs(0)= αvs,ref+ faugm,shear
(
0,cshear,pshear

)
, (3b)

I (0)= Iref+ faugm,I
(
0,cI,pI

)
. (3c)

In all these expressions, (·)ref indicates a baseline
reference quantity, while function faugm,(·) is a cor-
rection term. This function is defined on the 1D
space 0 ∈ [0min,0max], discretized with nodes c(·) =

[. . .;0i; . . .](·), using linear shape functions to interpo-
late the corresponding nodal values p(·). Here again, by
selecting 0min and 0max, corrections can be applied to
the whole wind rose or just to a sector.

– Secondary steering. By misaligning a wind turbine ro-
tor with respect to the incoming flow direction, the ro-
tor thrust force is tilted, thereby generating a cross-flow
force that laterally deflects the wake. As shown with the
help of numerical simulations by Fleming et al. (2018),
this cross-flow force induces two counter-rotating vor-
tices that, combining with the wake swirl induced by
the rotor torque, lead to a curled wake shape. As ob-
served experimentally by Wang et al. (2018), the ef-
fects of these vortices result in additional lateral flow
speed components, which are not limited to the wake it-
self but also extend outside of it. By this phenomenon,
the flow direction within and around a deflected wake
is tilted with respect to the upstream undisturbed di-
rection. Therefore, when a turbine is operating within
or close to a deflected wake, its own wake undergoes
a change of trajectory – termed secondary steering –
induced by the locally modified wind direction. Al-
though models of this phenomenon are being devel-
oped (Martínez-Tossas et al., 2019), they significantly
increase the computational cost and are not yet avail-
able in standard implementations of engineering wake
models such as the one used here.

The change of wind direction 10 at a downstream tur-
bine induced by secondary steering (indicated by the
subscript ss) is modeled here as

10(y)= faugm,ss
(
ỹ,0init,pss

)
, (4)

where faugm,ss is the correction term and ỹ = Y −ywc is
the lateral distance to the wake centerline (see Fig. 1),
defined in the baseline wind farm model as the locus
of the points of minimum flow speed. According to the
notation used in Eq. (6.12) of Bastankhah and Porté-
Agel (2016), 0init indicates the initial wake direction of
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the closest upstream turbine. The correction term is ex-
pressed as the difference of two Gaussian functions and
more precisely

faugm,ss
(
ỹ,0init,pss

)
=

0init

(
pss,1 exp

(
−0.5

(
ỹ+ sgn(0init)pss,3

pss,2

)2
)

−pss,4 exp

(
−0.5

(
ỹ+ sgn(0init)pss,6

pss,5

)2
))

, (5)

where pss = (pss,1,pss,2,pss,3,pss,4,pss,5,pss,6) is the
vector of free parameters, where parameters 1 and 4 are
related to the amplitude, 3 and 6 to the standard devia-
tion, and 2 and 5 to the location of the correction func-
tions. Since the Gaussian functions are not centered at
the wake centerline and the effect of secondary steer-
ing is assumed to be symmetric with respect to the mis-
alignment angle, the correction term also depends on the
direction of wake deflection sgn(0init).

This particular choice of the shape functions is moti-
vated by the results shown in Fig. 8b of Wang et al.
(2018). Indeed, LES simulations and measurements re-
veal the presence of a stronger lateral velocity compo-
nent directed towards the wake on the leeward side of
the wake itself, and of an opposite and weaker lateral
component on the windward side. Such a distribution
can be approximated by two Gaussian functions using
Eq. (5).

Note that the change in local wind direction also leads to
a slight lateral deflection of the nonuniform wind farm
inflow introduced previously. More precisely, for a tur-
bine that is located 1X behind an upstream turbine, the
nonuniform inflow expressed by Eq. (2) is evaluated at
Y +1X sin(10) instead of Y .

Figure 1a shows the hub height flow speed for two
wind turbines modeled in FLORIS, with the turbine ro-
tor disks being indicated with thick black lines. The
wake centerlines and the undisturbed free-stream wind
direction are indicated by black dotted and dashed lines,
respectively. The upstream turbine is misaligned with
respect to the incoming flow, and therefore its wake
is deflected laterally. Using the baseline wake model,
the downstream turbine wake develops along the free-
stream wind direction. Panel (b) of the same figure
shows the effects of the secondary steering correction
term given by Eq. (5). The plot clearly shows that the
downstream turbine wake path is affected by the locally
changed wind direction.

– Non-Gaussian wake and flow acceleration. Engineering
wake models are based, among other hypotheses, on
assumed shapes of the speed deficit. For example, the
present baseline model assumes a Gaussian distribution

of the speed deficit within the wake. Another assump-
tion is that the flow outside the wake is undisturbed and
equal to the free stream. However, these assumptions
can, at times, not be exactly satisfied, as already ob-
served by Xie and Archer (2017) and Martínez-Tossas
et al. (2019), among others. For example, aisle jets are
local accelerations of the flow outside of the wake, pro-
duced by local blocking in the neighborhood of an oper-
ating turbine. It has been reported that aisle jets can in-
duce local flow speedups in excess of 10% of the undis-
turbed inflow (Dörenkämper et al., 2015).

To account for such effects, the wake velocity Vwake of
the baseline model is corrected as

Vwake (dwc)=

Vwake,FLORIS (dwc)
(
1+ faugm,acc

(
dwc,cacc,pacc

))
, (6)

where Vwake,FLORIS is the baseline Gaussian wake speed
profile, dwc is the absolute distance to the wake center
(which, at hub height, is equivalent to |ỹ|), and faugm,acc
represents the correction term, which – similarly to the
previous corrections – is modeled with linear shape
functions characterized by node locations cacc (in terms
of dwc) and nodal values pacc.

– Reduced power extraction due to nonuniform wind tur-
bine inflow. Numerical simulations conducted in FAST
(Jonkman and Jonkman, 2018) using its blade element
momentum (BEM) implementation yielded a slight re-
duction in the rotor power coefficient for horizontally
sheared flow, when compared to unsheared conditions
with the same hub wind speed. Even though BEM can
only give a rough indication for such an effect, a cor-
rection of the power coefficient of the baseline model is
introduced here in the form

CP = CP,κ=0

(
1+pκκ2

)
, (7)

where CP,κ=0 is the nominal power coefficient, κ the
equivalent horizontal linear shear coefficient on the ro-
tor disk, and pκ the free correction parameter. The lin-
ear shear κ is either due to a lack of lateral uniformity
of the inflow or due to the impingement of a wake, and
it is evaluated accordingly within the farm model.

– Wind-speed-dependent power loss in yaw misalignment.
The baseline formulation models the power extraction
of a misaligned wind turbine using the cosine law
CP(γ )= CP cos(γ )pP , whereCP is the power coefficient
of the wind-aligned turbine, γ the misalignment an-
gle with respect to the local flow direction, and pP the
power loss exponent. Different power loss exponents
have been reported in the literature, ranging from the
value of 1.4 found by Fleming et al. (2017) to 1.8 ac-
cording to Schreiber et al. (2017), 1.9 for Gebraad et al.
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Figure 1. Effect of secondary steering on the trajectory of a down-
stream turbine. (a) Baseline wake model; (b) baseline model aug-
mented with the empirical correction term of Eq. (5).

(2015), and all the way to the ideal value of 3 that is ex-
pected if only the rotor-orthogonal ambient flow com-
ponent contributes to power extraction (Boersma et al.,
2019). In addition, pP might also depend on the regu-
lation strategy used by the turbine controller. Here, the
power coefficient in misaligned operation is augmented
as

CP = CP cos(γ +pP0)pP+pP,a(V−Vrated)+pP,b , (8)

where CP is the power coefficient of the flow-aligned
turbine (possibly reduced by shear effects, as argued
above), pP0 is the misalignment angle at which the tur-
bine produces maximum power, and V and Vrated are,
respectively, the rotor effective and rated wind speeds.
Finally, pP is the baseline exponent, while pP,a and pP,b
are free parameters that model a linear wind speed de-
pendency of the cosine law.

2.3 Parameter identification method

The parameters of the baseline model and of its correction
terms are identified with the method developed by Bottasso
et al. (2014a). The formulation of the parameter estimation
problem is independent of whether the parameters belong to
the baseline model or to its correction factors. In this sense,
one can use the same method to just tune the baseline param-
eters without considering the correction terms, just identify
the correction terms at the frozen baseline model, or concur-
rently identify both sets.

The formulation is based on the classical likelihood func-
tion, which describes the probability that a given set of noisy
observations can be explained by a specific set of model pa-
rameters. By numerically maximizing this function, a set of
parameters is identified that most probably explains the mea-
surements. Bound constraints are used to guide the process
and ensure convergence to meaningful results.

The accuracy with which the parameters can be estimated
depends on how flat the likelihood function is with respect to

changes in the parameters. For example, a flat maximum of
the function implies that different nearby values of the model
parameters are associated with similar values of the likeli-
hood. These characteristics of the solution space are captured
by the Fisher information matrix, which can be interpreted
as a measure of the curvature of the likelihood function. Fur-
thermore, it can be shown that the variance of the estimates is
bound from below (Cramér–Rao bound) by the inverse of the
Fisher matrix (Jategaonkar, 2015). Although the analysis of
the Fisher information is useful for the understanding of the
well-posedness of an estimation problem and of the quality
of the identified model, it does not offer a constructive way of
reformulating a given ill-posed problem. Indeed, a flat solu-
tion space and collinear parameters are to be expected in the
present case, given the complex couplings and dependencies
that may exist among the various parameters of a wind farm
flow model and its correction terms.

To overcome this limitation of the classical maximum like-
lihood formulation, following Bottasso et al. (2014a), the
original physical parameters of the model are transformed
into an orthogonal parameter space, by diagonalizing the
Fisher matrix using the SVD. This way, as the parameters are
now statistically decoupled, one can set a lower observabil-
ity threshold and in the analysis retain only the ones that are
in fact observable given the available set of measurements.
Once the problem is solved, the uncorrelated parameters are
mapped back onto the original physical space.

As shown later on, this approach achieves multiple goals:
it allows one to successfully solve a maximization problem
with many free parameters, some of which might be interde-
pendent on one another or not observable in a given data set;
it reduces the problem size, retaining only the orthogonal pa-
rameters that are indeed observable; it highlights, through the
singular vectors, the interdependencies that may exist among
some parameters of the model, which provides for a useful
interpretation tool that may guide the reformulation of parts
of the model and its correction terms.

2.3.1 Maximum likelihood estimation of model
parameters

A steady-state wind farm model can be mathematically ex-
pressed as

y = f (p,u), (9)

where f (·, ·, ·) is the nonlinear static function describing
the wind farm model, which depends on free parameters
p ∈ Rn. These parameters can include both wake model pa-
rameters and/or model augmentation parameters. The model
inputs u ∈ Rnu include ambient wind conditions (i.e. ambi-
ent wind speed, direction, air density, turbulence intensity)
and control inputs (i.e. yaw misalignment, partialization fac-
tor, blade pitch, rotor speed of each turbine). The model out-
puts y ∈ Rm represent quantities of interest for which mea-
surements are available, in the present work these being the
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power outputs of each wind turbine in the farm. Experimen-
tal observations z of the simulated outputs y will in general
result in a residual r ∈ Rm, caused by measurement and pro-
cess noise (e.g. plant–model mismatch), so that

z= y+ r. (10)

Given a set S = {z1,z2, . . .,zN } of N independent obser-
vations, the likelihood function (Jategaonkar, 2015) can be
defined as

L(S
∣∣
p

)=
N∏
i=1
p
(
zi
∣∣
p

)
, (11)

where p(·) is the probability of S given p. Assuming the
residuals r with covariance R to be statistically independent
within the set of measurements (i.e. E[r irTj ] = Rδi,j , where
δi,j is the Kronecker delta), the likelihood function can be
written, following Jategaonkar (2015), as

L
(
S
∣∣
p

)
=(

(2π )mdet
(

R−1
))−N/2

exp

(
−

1
2

N∑
i=1

rTi Rr i

)
. (12)

Maximizing L (or minimizing its negative logarithm), a max-
imum likelihood estimate of the parameters can be obtained
as

pMLE = argmin
p
J (p), (13)

where J (p)=− ln(L(S
∣∣
p

). The measurement noise covari-
ance matrix R can be estimated under mild hypotheses as
R=

∑N
i=1r

T
i r i , yielding J (p)= det(R), leading to an itera-

tion between a solution at given covariance and a covariance
update step (Jategaonkar, 2015). However, in this paper the
measurement noise covariance matrix is estimated a priori
and therefore assumed to be known. The cost function there-
fore becomes

J (p)=
1
2

N∑
i=1

rTi R−1r i . (14)

To ensure reasonable and physically viable solutions, pa-
rameters can be forced to stay within predefined upper (sub-
script ub) and lower (subscript lb) bounds, by adding the
corresponding inequality constraints plb ≤ p ≤ pub to prob-
lem (13). As the parameter values and constraints can differ
in magnitude, it is a good practice to scale all parameters
such that a value of 1 corresponds to the upper bound pub
and a value of −1 to the lower one plb. The optimization
problem can finally be solved numerically by a suitable al-
gorithm, such as sequential quadratic programming (SQP)
(Nocedal and Wright, 2006).

2.3.2 Identifiability of parameters

The Fisher information matrix F ∈ Rn×n is defined as

F=
N∑
i=1

[
∂yi

∂p

]T
R−1

[
∂yi

∂p

]
(15)

and describes the curvature of the likelihood function. It can
be shown (Jategaonkar, 2015) that a lower bound (termed
Cramér–Rao bound) of the covariance of the estimated pa-
rameter is given by

F−1
= P≤ Var

(
pMLE−ptrue

)
, (16)

where ptrue represents the true but unknown parameters. The
kth diagonal element of P is a lower bound on the variance
of the kth estimated parameter, while the correlation between
different parameters is captured by the off-diagonal terms of
that same matrix. The correlation coefficient between two pa-
rameters i and j is defined as

9pi ,pj =
Pi,j√
Pi,iPj,j

, (17)

where Pi,j denotes the i,j th element (row, column) of P.
By analyzing the estimated parameter variance, as well as
the correlation between parameters, valuable insight into the
well-posedness of the parameter identification problem can
be readily obtained.

2.3.3 Problem transformation and untangling using the
SVD

When some parameters are highly correlated or have large
variance, the problem is ill-posed: it might exhibit sluggish
convergence, or no convergence at all, and small changes in
the inputs may lead to large changes in the estimates. Such
situations are difficult to solve in physical space, because
parameters are typically coupled together to some degree
through the model.

To untangle the parameters, one may resort to the SVD
(Golub and van Loan, 2013). By this approach (Hansen,
1987; Waiboer, 2007; Bottasso et al., 2014a), the original pa-
rameters are mapped into a new set of uncorrelated (orthog-
onal) parameters. Since the new unknowns are uncorrelated,
one can set a threshold to their variance by using the Cramér–
Rao bound and only retain those in the optimization that are
observable within the given data set.

The Fisher matrix F is first factorized as F=MTM, where
M ∈ RNm×n is defined as

M=


R−1/2 ∂y1

∂p

R−1/2 ∂y2
∂p

. . .

R−1/2 ∂yN
∂p

 . (18)
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Assuming a larger number of measurements than parameters
(Nm> n), matrix M can be decomposed into

M= U6VT , (19)

where U ∈ RNm×Nm and V ∈ Rn×n are the matrices of left
and right, respectively, singular vectors, while

6 =

[
S
0

]
, (20)

where S ∈ Rn×n is a diagonal matrix, whose entries si are the
singular values sorted in descending order.

By using Eq. (19) and the factorization of F, the inverse of
the Fisher information matrix can be written as

P= VS−2VT . (21)

Note that the columns of the orthogonal matrix V are also
the eigenvectors of P and s−2

i the corresponding eigenval-
ues. Furthermore, P and F are symmetric and, based on the
spectral theorem, diagonalizable.

The physical parameters p can now be transformed into a
new set of orthogonal parameters 2 by a rotation performed
with the right singular values:

2= VT p. (22)

For the transformed set of parameters, the Cramér–Rao
bound on the variance of the estimates is the diagonal matrix
S−2
≤ Var(2MLE−2true). Therefore, a small singular value

si corresponds to a large uncertainty in the corresponding or-
thogonal parameter estimation.

To remove parameters that cannot be estimated with suffi-
cient accuracy, matrix S can be partitioned as

S=
[

SID 0
0 SNID

]
, (23)

where SID contains the identifiable singular values, i.e. those
such that s−2

i < σ 2
t , σt being a threshold on the highest ac-

ceptable standard deviation in the estimate. On the other
hand, matrix SNID contains singular values associated with
parameters that cannot be identified with sufficient accuracy
and are therefore discarded. Accordingly, V is also parti-
tioned as V= [VID,VNID], while the orthogonal parameters
are partitioned as 2= [2T

ID,2
T
NID]

T . Finally, the physical
parameters are expressed in terms of the sole identifiable or-
thogonal parameters:

p ≈ VID2ID. (24)

Given that the Fisher matrix depends on the values of the pa-
rameters p, an iterative procedure should be followed, where
the diagonalization of the problem is repeated at each update
of the parameter vector.

2.3.4 Identification method with variable measurement
weights

In some cases, it may be useful to increase the importance
of some measurements in the parameter estimation problem.
This can be readily obtained by simply treating an observa-
tion with weight w as if it appeared w times in the obser-
vation data set (Karampatziakis and Langford, 2011). Cost
function (14) then becomes

J (p)=
1
2

N∑
i=1

wir
T
i R−1r i, (25)

where wi is the relative weight of observation i and∑N
i=1wi =N . Similarly, the Fisher matrix becomes

F=
N∑
i=1

wi

[
∂yi

∂p

]T
R−1

[
∂yi

∂p

]
, (26)

and its factorization is

M=


√
w1 R−1/2 ∂y1

∂p
√
w2 R−1/2 ∂y2

∂p

. . .
√
wN R−1/2 ∂yN

∂p

 . (27)

The remainder of the formulation is not affected by the intro-
duction of weights.

3 Results

The proposed method is first applied in Sect. 3.1 to a wind
tunnel experiment with a small cluster of three wind tur-
bines and then in Sect. 3.2 to a real wind farm consisting
of 43 wind turbines. The former example aims at a verifica-
tion of the correctness of the identified augmentations, given
the known and controllable conditions of the scaled experi-
ments, whereas the latter is meant to offer a first glimpse of
the practical applicability of the new method in the field.

3.1 Wind tunnel verification

Whether identified model corrections are indeed physical or
only an artifact of the model–measurement mismatch is diffi-
cult to prove in general. From this point of view, wind tunnel
experiments provide a unique opportunity to verify the con-
cept proposed in this paper. Indeed, the overall flow within a
cluster of turbines can be measured with good accuracy, and
the experiments can be repeated in multiple desired operat-
ing conditions. The aim of this section is then to show that,
even in the presence of multiple possibly overlapping model
terms, the correct improvements to a baseline model can be
learned from operational data only.
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Figure 2. Wind farm layout for a null turntable rotation, looking
down onto the wind tunnel floor.

3.1.1 Experimental setup

The experimental setup is composed of a scaled cluster of
three G1 wind turbines, each of them equipped with active
yaw, pitch, and torque control. The turbines were operated
in the boundary layer test section of the wind tunnel of the
Politecnico di Milano. Details on the models and the wind
tunnel are reported, among other publications, in Campag-
nolo et al. (2016a, b, c).

The turbines are labeled WT1, WT2, and WT3, starting
from the most upstream one and moving downstream. The
machines are mounted on a turntable, whose rotation is used
to change the wind direction with respect to the wind farm
layout. In the nominal configuration, i.e. for a turntable ro-
tation γTT = 0◦, the three turbines are aligned with the wind
tunnel main axis – and hence with the flow velocity vector.
The turbines are installed with a longitudinal spacing of 5
diameters (D), as shown in Fig. 2 with a view looking down
towards the wind tunnel floor. As indicated in the figure, pos-
itive turntable rotations are clockwise. For γTT 6= 0◦, the lon-
gitudinal distance between the turbines decreases slightly.
However, considering that in this work the largest investi-
gated turntable angle was ±11.5◦, the longitudinal distance
varied only between 4.9D and 5D.

A pitot probe was placed at hub height, 3D upstream of the
first G1 in the nominal configuration. The probe was there-

Figure 3. View looking downstream of the cluster of three G1 tur-
bines.

fore not placed on the turntable, and its position remained
fixed with respect to the wind tunnel test section. A wind-
tunnel-fixed reference frame, used in the following to discuss
the results, is also depicted in Fig. 2. Its origin is placed at the
turntable center, while the frame x axis is aligned with the
wind direction; the y axis points left, looking downstream;
and hence Z points vertically up from the floor to complete
a right-handed triad.

The yaw angle γWTi of the ith wind turbine is positive for
a counterclockwise rotation looking down onto the floor, as
shown for WT1 in Fig. 2, and null when the rotor disk is or-
thogonal to X and, therefore, to the nominal wind direction.

Figure 3 shows a photo of the cluster of turbines, looking
downstream with WT1 in the foreground. The wind tunnel
floor is blue, whereas the turntable is black.

The ambient wind speed V∞,0 measured by the pitot
tube was, for all conducted experiments, between 5.20 and
5.75 m s−1, which corresponds to slightly below-rated condi-
tions. The ambient turbulence intensity was equal to 6.12%,
while the vertical shear was αvs = 0.144.
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Figure 4. Power and thrust coefficients vs. wind speed for the G1
turbine.

3.1.2 Model setup

The FLORIS model implementation used in this work is
the one available online (Doekemeijer and Storm, 2018). All
baseline model parameters are reported in Table 1 and taken
from Campagnolo et al. (2019), where they were identified
based on wake measurements of a single isolated G1 turbine.

Figure 4 shows the G1 powerCP and thrustCT coefficients
as functions of wind speed V . The curves were obtained from
dynamic simulations conducted in turbulent inflow, using the
same controllers implemented on the scaled models. The CP
and CT vs. tip speed ratio (TSR) and blade pitch setting
curves were obtained with a BEM formulation using experi-
mentally tuned airfoil polars (Bottasso et al., 2014a). As the
turbine controller does not consider variations in air density
ρ, the coefficients shown in the figure exhibit a slight depen-
dency on this ambient parameter. Within FLORIS, this effect
is taken into account by interpolating within the coefficients
based on the actual density measured in the wind tunnel
during each experiment. For all reported test conditions, air
density varied in the range ρ ∈ [1.159,1.185] kg m−3. The
power loss exponent in misaligned conditions was evaluated
experimentally to be pP = 2.1741, while for thrust the coef-
ficient was found to be pT = 1.4248.

The ambient wind speed was determined from the pitot
tube. It was observed that, by using this value, the power of
a free-stream turbine predicted by the FLORIS model was
slightly underestimated, most probably due to the sheared
flow. To correct for this effect, measurements provided by the
pitot tube were scaled by the factor 1.0176, which was com-
puted in order to match simulated and measured power. Fur-
thermore, in the original FLORIS implementation the power
of a turbine is computed as P = 1/2ρAV 3

avgCP, where Vavg
is the average wind speed at the rotor disk and A the rotor

disk area. Here, power was computed by integrating over the
rotor disk area, i.e. P = 1/2ρ

∫
A
V 3CPdA, which is probably

slightly more accurate even though it involves a minor in-
crease in computational effort.

3.1.3 Ranking of correction terms

To initially assess the role of the various parameters, a rank-
ing analysis was conducted. The parameters were clustered
in sets, depending on their role in the model. A first identi-
fication was performed using all parameter sets, yielding the
presumed best value, denoted Jref, of the cost function ex-
pressed by Eq. (14). The analysis was then repeated multiple
times, each time removing one parameter set from the opti-
mization. By looking at the resulting change in the value of
the cost function, one may then rank the various parameter
sets in order of importance. The analysis is based on a to-
tal of 190 experimental observations, as described in greater
detail in the following.

All augmentation terms described in Sect. 2.2 were con-
sidered, except for the lateral variation in wind direction
and the wind-direction-dependent vertical shear, as they are
not applicable to the wind tunnel experiments. The nonuni-
form flow speed was modeled using five nodes located at
cspeed(Y )= [−3,−2,−1,0,1]m (which correspond to ap-
proximatively [−2.7,−1.8,−0.9,0,0.9]D) and also indi-
cated in Fig. 2 using× symbols. As only the turbine positions
with respect to the flow are modified by rotating the turntable,
a wind direction dependency was not included in this correc-
tion term. Table 2 reports the initial values and lower and
upper bounds – chosen based on an educated guess – for the
nonuniform inflow and secondary steering correction terms.

Figure 5 shows the relative increase in the cost function
when eliminating one parameter set at a time. The figure
clearly indicates that the most important parameters are the
ones modeling laterally nonuniform speed and secondary
steering. Indeed, this particular wind tunnel, due to its inter-
nal configuration and large width, does present a significant
nonuniform flow speed, as already discussed by Campagnolo
et al. (2019). Likewise, the effect of secondary steering is par-
ticularly important and should not be neglected for accurate
predictions in misaligned conditions, as already reported in
various publications. Based on these results, in the following
only nonuniform inflow and secondary steering corrections
are considered.

3.1.4 Results

A total of 451 observations were available, including 11 dif-
ferent turntable positions and thus wind farm layouts, with
turbine yaw misalignments ranging from −40 to +40◦. A
total of 190 observations were used to identify the five pa-
rameters associated with nonuniform inflow speed and the
six associated with secondary steering, whereas the remain-
ing data points were used for model validation. The various
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Table 1. Initial FLORIS parameters for the G1 turbine.

α∗ β∗ k∗a k∗b a∗d b∗d TI∗a TI∗b TI∗c TI∗d

0.9523 0.2617 0.0892 0.027 0 0 0.082 0.608 −0.551 −0.2773

Table 2. Definition of the parameters, together with their initial values, lower and upper bounds, and identified values.

i pi plb,i pub,i pinit,i popt,i Implementation

1–5 pspeed [−0.1,−0.1, . . . [0.1,0.1, . . . [0,0,0,0,0] [0.079,0.029, . . . faugm,speed(Y,Z,0,cspeed,pspeed)
−0.1,−0.1,−0.1] 0.1,0.1,0.1] −0.051,−0.006,0] cspeed = [−3,−2,−1,0,1]m

6–11 pss [−3,0, . . . [3,1.5, . . . [−0.5,0.5, . . . [−0.94,0.63, . . . faugm,ss(ỹ,0init,pss)
−3,−3, . . . 3,3, . . . 0.2,−0.25, . . . 0.20,−0.48, . . .
0,−3] 1.5,3] 0.5,−0.2] 0.73,−0.28]

Figure 5. Relative increase in the optimization cost function when
eliminating one parameter set at a time.

tested configurations in terms of turbine misalignments and
turntable positions are reported in the figures of Appendix A.

Among all the available measurements gathered at each
operating condition, only the steady-state power of the wind
turbines was utilized, mimicking what could be done at full
scale in the field using SCADA data. The model outputs y
(see Eq. 9) are defined as

y =
1
Pref

 PWT1
PWT2
PWT3

 , (28)

where PWTi is the power of the ith wind turbine and Pref =

37.6W is a reference value used as the scaling factor. Based
on experience, a diagonal measurement noise covariance ma-
trix R with all three terms equal to σ 2

= 0.0252 was speci-
fied.

The threshold of the highest acceptable standard variance
σ 2

t for the orthogonal parameters was set to 0.01. As the
parameters are scaled within a range of [−1,1], the thresh-
old corresponds to a relative variance of 2%. Wind-aligned
operating conditions (i.e. γWT1 = γWT2 = γWT3 = 0◦) were
weighted with a factor of 2, to increase their importance in
the parameter estimation process.

The constrained optimization problem (13) was solved in
MATLAB using the fmincon function with the interior-point
algorithm (Mathworks, 2019). As the baseline model with
its initial nominal values (p = pinit) is far away from the
optimal solution, a first optimization was performed includ-
ing only the inflow correction. Afterwards, three iterations
were conducted including all 11 parameters. At each itera-
tion, a total of eight orthogonal parameters could be iden-
tified within the specified variance threshold. The method
converged very quickly, as the identified parameters and the
residual did not change significantly after the first iteration.
Figure 6a shows the initial variance of all 11 orthogonal
parameters, and panel (b) shows the variance computed af-
ter the first iteration. The horizontal black line indicates the
threshold σ 2

t .
Interestingly, the 11th orthogonal parameter seems to have

a very low observability. Table 3 shows the transformation
matrix VT that links the physical parameters to the orthog-
onal ones (2= VT p; see Eq. 22). The 11th orthogonal pa-
rameter is almost entirely associated with pspeed,5, which cor-
responds to the inflow speed augmentation node at position
Y = 1 m. Indeed, the location of this node is such that it has
only a very marginal effect on the turbine outputs and, hence,
a very low observability, as shown later in Fig. 7. The trans-
formation matrix reported in Table 3 also shows that the other
two orthogonal parameters with low observability (9 and 10)
represent secondary steering modes, mainly associated with
the second Gaussian function of the correction term.

Table 4 presents the correlation matrix 9 (see Eq. 17) and
shows a clear and to be expected dependency among neigh-
boring inflow parameters. Among the secondary steering pa-
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Figure 6. Variance of the orthogonal parameters before (a) and after (b) the first iteration. The identifiable orthogonal parameters are shown
in red, whereas all others are shown in blue.

Table 3. Transformation matrix VT after the first iteration. Each row corresponds to a different orthogonal parameter.

rameters, strong but less obvious correlations are present,
which suggest that a simplification of the assumed correction
term might be possible.

Figure 7 shows the identified inflow augmentation func-
tion. In the picture, whiskers indicate the parameter uncer-
tainty σi , computed based on the Cramér–Rao lower error
bound as σ =

√
diag(P) (see Eq. 16). The same figure also

reports measurements obtained with hot-wire probes in the
empty wind tunnel at three different heights above the floor.
These measurements, and especially the ones at hub height,
are in good agreement with the estimates provided by the
proposed method. The figure also reports (with × symbols)
the lateral position of the upstream turbine for the investi-
gated turntable rotations. Noting that all points are shifted
to the left helps explain why the parameter associated with

the inflow node at Y = 1 m has a very low – but still finite –
observability.

The identified secondary steering augmentation term is vi-
sualized in Fig. 8. The plot shows the wind direction change
10 as a function of the distance ỹ to the wake centerline for
a turbine misalignment of 20◦. The gray shaded area shows
the uncertainty band popt,i ± σi . Consistently with the find-
ings of Wang et al. (2018), the maximum change in wind
direction is found at approximatively 0.3D on the leeward
side of a deflected wake. The maximum magnitude of sec-
ondary steering in this operating condition is 1.9◦, which is
again comparable to the results of Wang et al. (2018).

The validity of the augmentation terms, identified as ex-
plained, was assessed by comparing the results of the simu-
lation model with experimental wake measurements from a
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Table 4. Correlation coefficients 9 after the first iteration.

Figure 7. Identified nonuniform inflow speed augmentation term
(solid line) and associated standard deviation (whiskers). Hot-wire
measurements at different heights above the floor are shown in thin
solid lines. The upstream turbine (WT1) y position for all investi-
gated turntable rotations is shown by × markers placed along the
lower edge of the figure.

different test campaign. The setup was identical to the one
considered here, except for the fact that only the first two up-
stream wind turbines were installed in the wind tunnel. At
the downstream distance where the third wind turbine should
have been installed, flow velocity measurements were ob-
tained at turbine hub height using hot-wire probes. Figure 9
shows wake profiles for the turntable position γTT = 0◦ for
various combinations of turbine yaw misalignments, as indi-
cated by the subplot titles. Each subplot is accompanied by
two flow visualizations, one based on the baseline FLORIS
model and the other on its augmented version. The figures

Figure 8. Identified wind direction change 10 due to secondary
steering as a function of distance ỹ to the wake centerline for a
turbine misalignment of 20◦. The gray shaded area shows the un-
certainty band.

also include the points at which the flow was measured with
the probes.

In the left subplots, the improvements of the augmented
model with respect to the baseline FLORIS are exclusively
due to the inflow correction, as the upstream turbine is
aligned with the flow and therefore there are no secondary
steering effects. In the right subplots, the upstream turbine
is misaligned (γWT1 = 30◦) and secondary steering effects
are present. Taking into account that model augmentation
was obtained exclusively by turbine power measurements,
the improved matching of the wake profiles is remarkable.
Still, even with the extra correction terms some small model
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Figure 9. Wake profiles 5D behind WT2 for various combinations of turbine yaw misalignment. Experimental values are indicated by the
× symbols. Each subplot is accompanied by two flow visualizations based on the FLORIS model and its augmented version.

mismatches are present; these might be caused by the wake
combination model, which was not augmented in this study.

The turbine power coefficients are computed as

CP,i =
PWTi

0.5ρAV∞(YWTi,zh,0)3 , (29)

where V∞ is the augmented inflow function given by Eq. (2),
evaluated at the respective turbine position YWTi and hub
height zh. A detailed overview of the results is offered by the
figures of Appendix A, which report the power outputs and
the model errors for all wind farm configurations. For read-
ability, here a more synthetic overview of the results is pre-
sented, by condensing the information contained in Figs. A1,
A2, and A3 in the probability density plots of Fig. 10. This
figure shows the results for the baseline FLORIS model us-
ing a black dashed line, for the 11-parameter augmented
model (i.e. including only nonuniform inflow speed and sec-
ondary steering corrections) using a red solid line, and for the
27-parameter augmented model (i.e. including all additional
augmentation terms presented earlier) using a red dotted line.
The root-mean-squared errors εRMS are shown in the respec-
tive legends.

Note that the FLORIS error distribution shows two peaks
for WT1 and WT3, indicating the presence of two uncorre-
lated errors. The 11-parameter model removes these peaks,
even though a smaller pair of peaks remains for WT2 and
WT3, indicating additional errors that only the 27-parameter
augmented model is able to capture.

Here again the trend is clear: the addition of nonuniform
speed and secondary steering substantially increases the ac-
curacy of the baseline model, with additional small – but

Figure 10. Error distributions for each turbine for all tested con-
figurations, for the baseline FLORIS model (black dashed line),
the 11-parameter augmented model (red solid line), and the 27-
parameter augmented model (red dotted line).

not insignificant – gains offered by the additional correction
terms. Finally, there is still room for improvement, possibly
through extra correction terms not yet explored.
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Table 5. Turbine specifications.

Type Rated power Cut-in wind Rated wind Rotor diameter Hub height Installed
(MW) speed (m s−1) speed (m s−1) (m) (m) units (–)

GE1.5s 1.5 4 13 70.5 65 36
GE1.5sle 1.5 3.5 12 77 80 7

3.2 Field application

In this section the model augmentation and identification
method is applied to a full-scale wind farm, to test its ap-
plicability and usability in a realistic scenario. In such con-
ditions, it is often difficult to assess whether the identified
model corrections are indeed physical or not, due to a lack of
knowledge of the actual ground truth. To deal with this prob-
lem, the classical approach of splitting the data set was used
here: first, a relatively small subset of measurements is used
for model and error identification; then, the rest of the data
set is used for a verification of the generality of the identified
model and of its improved performance with respect to the
baseline one.

3.2.1 Wind farm and data preprocessing

The onshore wind farm is situated close to Sedini, on the
Italian island of Sardinia, and it consists of 43 GE1.5s and
GE1.5sle wind turbines, as specified in Table 5.

The wind farm is located at a rather complex site, as shown
in Fig. 11. Blue turbines are of the type GE1.5sle and black
and red turbines are of the type GE1.5s, the latter being used
as sensing turbines as explained later. Figure 12 shows a top
view of the wind farm, including the turbine identifiers.

Historical 10 min SCADA data were made available for
this research for a period of 24 months, throughout the years
2015 and 2016. The recorded turbine yaw orientations ex-
hibit sudden jumps and long-term drifts. An ad hoc algo-
rithm was developed for detecting and correcting these data
issues. On average, for each turbine 45% of the data points
were missing, and 23% were discarded because of low power
output (< 5 kW) or rotor speed (< 1 rpm). As a result, about
33 700 data points were available for each turbine. Regarding
the missing data points, it is unknown whether the turbines
were operating or just not reporting. To avoid eliminating a
large fraction of the data set, it was assumed that the turbines
were indeed operational and thus shedding wakes. This way,
even if recordings of one or more turbines were missing at
a specific time instance, the data points of the other turbines
could still be used.

As no direct measurements of ambient conditions were
available, the method described by Schreiber et al. (2018)
was used to identify ambient wind speed and direction. The
procedure works as follows. First, the ambient wind direction
is estimated from turbine yaw orientations. Second, the am-
bient wind speed is estimated from the rotor effective wind

speed of the free-stream turbines, computed from the turbine
power curve below rated wind speed. For this purpose, the
three sensing turbines A5-24, A5-25, and A5-26 indicated in
red in Fig. 12 were used, checking that they were unwaked
by using the flow model; the average of these speeds was
attributed to the location of turbine A5-25. This way, 5667
ambient wind conditions could be processed for a range of
wind directions 0 ∈ [184◦,320◦]. Based on the ambient wind
conditions, the data of all turbines were aggregated in two-
dimensional bins: ambient wind speed (bin width of 2 m s−1)
and ambient wind direction (bin width of 5◦). Figure 13
shows the scaled number of measurements in each bin be-
tween 6 and 12 m s−1.

3.2.2 Model setup

Here again the FLORIS implementation was based on the
version available online (Doekemeijer and Storm, 2019).
The initial values of both the wake and turbulence model
parameters were set according to Bastankhah and Porté-
Agel (2016) for (α∗,β∗), Crespo and Hernández (1996)
for (TI∗a ,TI∗b,TI∗c ,TI∗d), Niayifar and Porté-Agel (2015) for
(k∗a ,k

∗

b ), and Gebraad et al. (2014) for (a∗d ,b
∗

d), as reported in
Table 6.

The required turbine power and thrust versus wind speed
curves were provided by the turbine manufacturer. The ver-
tical shear exponent of the inflow was set to αvs = 0.143 and
the turbulence intensity to 14 %, which represent annual aver-
age values measured at 65 m of height by an on-site met mast.
Air density was set to the constant value ρ = 1.177 kg m−3.

The different turbine foundation heights were accounted
for by accordingly increasing the tower heights, using the
lowest foundation height as reference (turbine A1-02). In-
deed, power measurements of the upstream turbines show a
correlation with the actual turbine hub height with respect to
sea level (SL), as shown in Fig. 14. As indicated by the only
approximate correlation shown by the figure, it is clear that
such simple correction might not provide satisfactory results
for all wind directions and all turbines, because complex or-
thographic flow effects might also play a role. Nonetheless,
this approximate correction seems to be a step in the right
direction. In addition, some of these effects may be corrected
by the lateral nonuniformity terms added to the augmented
model. The reference height of the sheared inflow zh (see
Eq. 2) was set to the hub height of the sensing turbine A5-25.
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Figure 11. The 3D view of the Sedini wind farm with terrain elevation, as seen from 0 = 260◦.

Table 6. Initial FLORIS parameters for the Sedini wind farm.

α∗ β∗ k∗a k∗b a∗d b∗d TI∗a TI∗b TI∗c TI∗d

2.32 0.154 0.3837 0.0037 −0.0356 −0.01 0.73 0.8325 0.0325 −0.32

Figure 12. Top view of the Sedini wind farm with turbine identi-
fiers. The gray arrows indicate the x and y axes for an ambient wind
direction 0 = 260◦.

3.2.3 Ranking of correction terms

As for the wind tunnel experiments, here again a first analy-
sis was aimed at ranking the various correction terms. How-
ever, since the turbines were operated with a conventional
wind-aligned strategy, secondary steering corrections were
neglected. The ranking is based on data points in the range
V ∈ [8,10]m s−1, as described in greater detail in the follow-
ing.

Figure 15 shows the relative increase in the cost function
after optimization eliminating one set of parameters at a time.
The results clearly indicate that the nonuniform wind farm
inflow speed pspeed is the most important correction. In fact,
this was to be expected, given that the Sedini wind farm is
located at a rather complex site. Results also indicate a non-
negligible effect of the wake deflection parameters for non-
misaligned operation (ad,bd).

On the other hand, the additional model augmentation
parameters (pTI,pwinddir,pacc,pshear) do not seem to con-
tribute to a significant extent. Note also the slight retuning of
parameters (α,β,ka,kb) and (TIa,TIb,TIc,TId), which can
be explained with the fact that their initial values were taken
from the literature and therefore apply to different turbine
types and sites.

Given these results, the rest of the analysis is based
only on the subset of parameters pinflow, (pad ,pbd ),
(pα,pβ ), (pka ,pkb ), and (pTIa ,pTIb ,pTIc ,pTId ). The aug-
mentation term for nonuniform inflow speed is modeled
using five nodes along the lateral position Y located at
[−2000;−1000;0;1000;2000]m (which is approximatively
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Figure 13. Scaled number of measurement data points (10 min mean) within each speed and direction bin.

Figure 14. Correlation between power output and hub height with respect to SL. (a) Power (× symbols and left y axis) and rotor height
above SL (◦ symbols and right y axis) vs. lateral turbine position for a wind direction 0 = 240◦. (b) Power vs. rotor height above SL for
0 ∈ [220◦,275◦] and V∞ ∈ [8,10]m s−1. All conditions are free stream and all turbines of type GE1.5s.

Figure 15. Relative increase in the optimization cost function for
the Sedini wind farm when eliminating one parameter set at a time.

[−28;−14;0;14;28]DGE1.5s) and six nodes in wind direc-
tion 0 at [180;210;140;270;300;330]◦, resulting in 30

nodes. The Y -coordinate axis is orthogonal to the wind di-
rection and its origin Y = 0 m is located at the position of
wind turbine A5-25, as shown in Fig. 12.

The definitions of the correction parameter, together with
their bounds and converged values, are reported in Table 7.
Note that all parameters were set to zero at the beginning of
the identification process.

3.2.4 Results

To identify the 40 parameters of Table 7, only aggre-
gated mean power measurements for wind speeds V ∈

[8,10]m s−1 were used. In addition, only one-third of all
wind direction bins were employed,

The model outputs y (see Eq. 9) were defined as

y =
1
Pref

 PWT1
. . .

PWT43

 , (30)

where PWTi is the power of wind turbine i and Pref =

1.11 MW a reference wind turbine value used as a scaling
factor. A diagonal measurement noise covariance matrix R
was used, with all diagonal terms equal to σ 2

= 0.012. The
threshold of the highest acceptable variance in the orthogonal
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Table 7. Definition of the parameters, together with their lower and upper bounds, and initial and identified values. Bold italic numbers
indicate vectors containing that number repeated as many times as the vector length.

i pi plb,i pub,i pinit,i popt,i Implementation

1–30 pinflow –0.1 0.1 0 see Fig. 16 faugm,speed(Y,Z,0,cspeed,pspeed)
31 pα −α∗ 4 0 0.7837 α = α∗+pα
32 pβ −β∗ 2 0 1.063 β = β∗+pβ
33 pka −k∗a 1 0 −0.2440 ka = k

∗
a +pka

34 pkb −k∗b 0.1 0 0.01862 kb = k
∗
b +pkb

35 pad −0.5 0.5 0 −0.3169 ad = a
∗
d +pad

36 pbd −0.1 0.1 0 −0.02246 bd = b
∗
d +pbd

37 pTIa −TI∗a 1 0 −0.09577 TIa = TI∗a +pTIa
38 pTIb −1 1 0 0.3403 TIb = TI∗b +pTIb
39 pTIc −1 1 0 0.4452 TIc = TI∗c +pTIc
40 pTId −1 1 0 −0.3337 TId = TI∗d +pTId

Figure 16. Identified inflow augmentation parameters (a) and their uncertainties (b). Nodal points are indicated by the circle markers.

parameter estimate was set to σ 2
t = 0.01, which corresponds

to a relative variance of 2%. The relative weight of each ob-
servation was set proportional to the number of measurement
points within the respective bin. In a first iteration, 29 orthog-
onal parameters could be identified. In the second and third
iterations only 23 and 25 orthogonal parameters fell below
the threshold, although results changed only marginally after
the first iteration.

The identified optimal parameter values popt,i are in-
cluded in Table 7 and, for the inflow augmentation, are
also reported in Fig. 16. The plot shows, according to
the color map, the inflow augmentation function values
faugm,speed(Y,0,cspeed,pspeed) in panel (a). Each nodal point
is indicated by a circle marker. The figure shows that sig-
nificant variations in the inflow speed have been detected:
for example, considering 0 = 270◦, the inflow speed at Y =
+1000 m (approximately at the location of wind turbines A3-
19, A3-20, and A3-21) is 3.5% smaller than the one mea-

sured at the reference turbines A5-24, A5-25, and A5-26.
For the same wind direction, the speed at Y =−1000 m (ap-
proximately located at the wind turbines A4-36, A4-37, and
A4-38) is 4.8% larger. These variations are expected to be
mainly caused by terrain effects. Panel (b) of Fig. 16 shows
the parameter uncertainty (Cramér–Rao bounds). The param-
eter at the nodal point (Y =−2000 m; 0 = 330◦) is com-
pletely unobservable, because it lies far outside of the wind
farm perimeter (see Fig. 12). Some of the outer nodal points
at Y =±2000 m do show significantly increased uncertain-
ties. However, the corresponding augmentation parameters
(panel a) are approximatively zero.

Figure 17 shows the power coefficient of each individual
wind turbine, as indicated by the subplot title, as a func-
tion of wind direction. The power coefficient is computed
as CP = P/(0.5ρAV 3), where ρ = 1.177 kg m−3 is the con-
stant air density, A= π (70.5/2)2 m2 a reference rotor area,
and V the corresponding estimated ambient wind speed.
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Figure 17. Power coefficient of each individual wind turbine, as indicated by the subplot title, as a function of wind direction 0 for wind
speeds V ∈ [8,10]m s−1. The gray shaded area indicates the standard deviation within the binned measurements. The number of measure-
ments within each bin is reported in Fig. 13.

Blue crosses indicate SCADA data points, with the ones
used for identification circled. The gray shaded area indi-
cates the standard deviation within the binned measurements.
The FLORIS (non-augmented) power estimates are shown
by black dashed lines, whereas the augmented model results
are shown using red solid lines.

Even though the baseline FLORIS power estimates al-
ready exhibit a reasonable correlation with the measurements
for many turbines and wind directions, a significant improve-
ment is achieved by the augmented model. Note that for
0 < 210◦ and 0 > 300◦ the number of measurement points

within each bin is reduced (see Fig. 13), limiting the mea-
surement quality and trustworthiness. More specifically, the
augmented model shows improvements in the modeling of
the free-stream turbine power, due to the effects of the wind
farm inflow augmentation terms. Furthermore, the predic-
tions of the wake-induced power deficits are corrected, im-
proving in many cases the deficit depth as well as the deficit
location in terms of wind direction.

The same results of Fig. 17 are also presented in a
more synthetic form in terms of error probability densi-
ties in Fig. 18, where the error is defined as ε = CP,Meas.−
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Figure 18. Error probability density functions for different wind
speed ranges.

CP,FLORIS/Augm.. Each subplot shows the results for a dif-
ferent wind speed range. Note that the modeling error is
also reduced for wind speed ranges that have not been
used for model identification (i.e. V ∈ [6,8]m s−1 and V ∈
[10,12]m s−1). The overall root-mean-squared error is re-
ported within the legend, showing error reductions of 14%,
22%, and 19%, highlighting the generality of the identified
model and augmentation parameters.

4 Conclusions

This paper has presented a new method to calibrate and aug-
ment parametric wind farm models. The proposed approach
builds on the vast body of knowledge and experience em-
bedded in available reduced wind farm flow models. How-
ever, recognizing that any such model will always have only
a limited prediction accuracy, the present approach augments
a baseline model with extra ad hoc terms designed to correct
some of its presumed specific deficiencies. These additional
elements of the model are then learned from operational data.
Optionally, the baseline model parameters can also be tuned
within a single integrated process. By design, the method
has been exclusively based here on SCADA power measure-
ments; therefore, it is readily applicable to most operational
wind farms, whenever such data are available. However, the
concept of model augmentation is very general and could
clearly also be used with other measurements.

To limit the number of free parameters and to over-
come the fact that the identification problem can be over-
parameterized and hence ill-posed, a parameter transforma-

tion into an orthogonal space has been used. Thereby, only
parameters that are sufficiently visible within a given data
set enter into the identification process.

The method was first applied to a large data set obtained
with scaled wind turbines operating in a boundary layer
wind tunnel. Thereby, it was shown that a correct learning
of the extra modeling terms is achieved. These conclusions
are made possible by the fact that, in this case, the flow and
wake characteristics are known with good accuracy. Next,
the method was tested on a real wind farm, in a realistic and
highly complex situation.

Based on the results shown here, the following conclusions
can be drawn.

– Within the wind tunnel environment, a correct learning
of nonuniform wind farm inflow speed and of secondary
steering effects has been achieved. In particular, the lat-
ter shows a good match with detailed wake measure-
ments in wind-misaligned conditions. It is remarkable,
and very promising, that such detailed features of the so-
lution could be inferred purely from operational power
data, even when starting from a baseline model that does
not at all consider secondary steering.

– The application to field data has shown that, as expected
for the complex-terrain site analyzed here, orographic
effects play a driving role. A marked model improve-
ment could be observed, even in conditions where the
model was used for extrapolating outside of the train-
ing conditions. It is worth noting that, in many practical
onshore applications, orographic effects will be present,
and the fact that one can learn them from simple and
readily available operational data is very encouraging.
Again, it should be explicitly pointed out that the base-
line model did not include any orographic corrections.

– It has been shown that model tuning and the learning of
extra correction terms can be achieved simultaneously.
This reduces the risk of adapting the baseline parame-
ters beyond their reasonable limits, driven by unmod-
eled physics.

– Although the augmented models show a much improved
accuracy with respect to the baseline, some model mis-
match still remains. Although these remaining errors
may often be caused by issues in the data rather than
in the model, additional improvements are thought to
be possible.

Future work will apply the proposed method to other wind
farms, to increase confidence in the obtained results. From
longer and richer data sets, possibly in conjunction with me-
teorological reanalyses, it is presumed that yearly and sea-
sonal variations could be observed. The integration of CFD
analyses can be used to support and confirm the identifica-
tion of orographic effects. Attention should also be paid to
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improved and additional forms of model corrections, includ-
ing wake overlap models. Finally, it is worth pointing out
again that an improved knowledge of the flow within a wind
farm finds applicability in a potentially large range of digi-
tally driven applications, including wind farm control, life-
time estimation, power forecasting, predictive maintenance,
and others. Therefore, it is expected that methods for high-
accuracy flow predictions in wind farms will be the subject
of significant future research efforts.
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Appendix A: Extended wind tunnel results

Figures A1, A2, and A3 report the power outputs of WT1,
WT2, and WT3, respectively, for all tested configurations.
In each figure, clusters of three subplots represent a unique
turntable position, as indicated by the title and the wind farm
layout sketch therein. The left part of each subplot shows
the turbine power coefficient CP,WTi as a function of γWT1
(x axis) and γWT2 (y axis). All measured configurations are
indicated by a small cross symbol, whereas the measure-
ments used for parameter identification are circled. The cen-
tral part of each subplot shows the FLORIS model error
εFLORIS = CP,Meas.−CP,FLORIS, including an annotation of
the root-mean-squared error εRMS. Similarly, the right part
of each subplot shows the augmented model error εAugm..

For the first upstream wind turbine, WT1, the base-
line FLORIS shows significant errors depending on the
turntable position. For γTT < 0◦ the model underpredicts tur-
bine power because of the lack of uniformity of the flow, as
also shown in Fig. 7. The opposite behavior can be seen for
γTT > 0◦. The augmented model however shows significant
improvements, which are due to the inflow correction. Still,
some underprediction for γTT =−11.5◦ is present, which is
probably caused by an excessively small number of parame-
ters in the inflow augmentation function and/or by the third
wind turbine power measurements, which are also strongly
affected by lateral inflow variations.

The power of WT2, shown in Fig. A2, is only weakly
affected or improved by the model corrections. In fact, in
all investigated conditions, the second turbine lateral posi-
tion remains almost constant, such that the inflow correc-
tion does not have a significant direct effect. However, sec-
ondary steering only slightly changes the inflow direction at
WT2; for example, as shown in Fig. 8, a 20◦ misalignment
of WT1 changes the wind direction by about 1.9◦. This leads
to small misalignments and thus only very small changes in
power output considering the cosine law. In addition, sec-
ondary steering also leads to a slight lateral deflection of the
nonuniform inflow.

The power of WT3, reported in Fig. A3, shows significant
improvements when using the augmentation terms. For ex-
ample, for γTT > 0◦ the baseline model underpredicts the real
flow velocities – and hence the power output – at WT3, an
error that is corrected by the augmented model. In addition,
for | γWT1 |> 0, secondary steering augmentation affects the
deflection of the second turbine wake (as shown in Fig. 8),
leading to further improvements.
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Figure A1. Wind turbine WT1. Each cluster of three subplots represents a unique turntable position, as indicated by the title and the wind
farm layout sketch. Left subplot: turbine power coefficientCP,WT1 as a function of γWT1 (x axis) and γWT2 (y axis). Middle subplot: FLORIS
model error. Right subplot: augmented model error. Cross symbols: all measured configurations. Circles: conditions used for parameter
identification.
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Figure A2. Wind turbine WT2. Each cluster of three subplots represents a unique turntable position, as indicated by the title and the wind
farm layout sketch. Left subplot: turbine power coefficientCP,WT2 as a function of γWT1 (x axis) and γWT2 (y axis). Middle subplot: FLORIS
model error. Right subplot: augmented model error. Cross symbols: all measured configurations. Circles: conditions used for parameter
identification.
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Figure A3. Wind turbine WT3. Each cluster of three subplots represents a unique turntable position, as indicated by the title and the wind
farm layout sketch. Left subplot: turbine power coefficientCP,WT3 as a function of γWT1 (x axis) and γWT2 (y axis). Middle subplot: FLORIS
model error. Right subplot: augmented model error. Cross symbols: all measured configurations. Circles: conditions used for parameter
identification.
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CHAPTER 12

Paper 10: Wind tunnel testing of a closed-loop
wake deflection controller for wind farm power

maximization

12.1 Summary

This work presents the application of a closed-loop wind farm controller for power maximization on
a scaled wind farm consisting of three G1 turbine models. In details, a model-free gradient based
extremum seeking wind farm controller varies the upstream turbine yaw misalignment and thereby
the turbine wake is deflected. The resulting gradient of the turbine and neighboring turbine total
power is measured and drives the yaw misalignment until a maximum power is reached. This process
is overlapped and repeated for all upstream turbines until convergence.

The experimental results show that the optimal yaw misalignment configuration can be reached,
leading to a significant —for the investigated wind farm layout and inflow more than 15%— wind farm
power increase.

The presented work bases on a model-free approach with the advantage that a properly param-
eterized wind farm model is not necessary. A drawback is that for reaching the optimal turbine
misalignments a significant amount of time is required. The opposed model-based approach, as
presented in Papers 12, is faster and able to react quickly to changes in inflow conditions.

12.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has conducted parts of the
post-processing and analysis. Filippo Campagnolo led the whole research work and conducted the
experiments. All authors provided important input to this research work through discussions, feedback
and by writing the paper.

12.3 Reference

F. Campagnolo, V. Petrović, J. Schreiber, E. M. Nanos, A. Croce, and C. L. Bottasso, “Wind tunnel testing
of a closed-loop wake deflection controller for wind farm power maximization,” Journal of Physics:
Conference Series, vol. 753, p. 032006, 2016. doi: 10.1088/1742-6596/753/3/032006
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Abstract. This paper presents results from wind tunnel tests aimed at evaluating a closed-
loop wind farm controller for wind farm power maximization by wake deflection. Experiments
are conducted in a large boundary layer wind tunnel, using three servo-actuated and sensorized
wind turbine scaled models. First, we characterize the impact on steady-state power output
of wake deflection, achieved by yawing the upstream wind turbines. Next, we illustrate the
capability of the proposed wind farm controller to dynamically driving the upstream wind
turbines to the optimal yaw misalignment setting.

1. Introduction
Wind energy production is often organized in wind power plants rather than single isolated
wind turbines, because of lower construction, maintenance and commissioning costs. However,
the design of a wind farm requires taking into account the complex interactions that take place
within the wind power plant itself, since the wakes of upwind wind turbines have a strong impact
on the power and loading of downstream machines. In recent years, interest has grown in the
area of cooperative control of wind turbines, with the goal of maximizing the total wind farm
power output, of achieving a given power setpoint while minimizing fatigue loading, or others
that require some form of coordination among the wind turbines.

Among the several approaches investigated so far [7], controlling the direction of the wake by
yawing the upwind wind turbines seems to be the most promising one [6]. In fact, by redirecting
the wake, one may reduce or eliminate altogether the exposure of downwind wind turbines to
the wakes shed upstream. In this paper, we present results obtained by testing a closed-loop
wind farm control algorithm in a large boundary layer wind tunnel [3] using servo-actuated and
sensorized wind turbine models, described in §2. The model-free controller, which optimizes
online the yaw misalignment of the upstream wind turbines to increase the total wind farm
power output, is discussed in §3, while results are reported in §4.

2. Experimental setup
Tests were conducted with a scaled wind farm (see Fig. 1) composed of three identical scaled wind
turbine models with a rotor diameter of 1.1 m (in the following named G1s). The undisturbed
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wind speed was measured by means of a Pitot tube, also shown in the figure, placed at hub
height and 3 diameters in front of the upstream model.

Figure 1: Wind farm layout in the wind tunnel

Each G1 (see Fig. 2), whose rated rotor speed is 850 rpm, is equipped with three blades,
which are composed by a layer of unidirectional carbon fiber covering a machined Rohacell
core, mounted on the hub with two bearings in order to enable pitch actuation while limiting
free-play. The individual pitch angle of each blade can be varied by means of a small brushed
motor equipped with a gearhead and built-in relative encoder, used to measure the blade pitch.
The three motors are housed within the blades hollow root, and their position is monitored and
adjusted by dedicated electronic control boards housed in the hub spinner.

The shaft is held by two bearings, in turn housed in the rectangular carrying box that
constitutes the main frame of the nacelle. The shaft also exhibits four small bridges on which
strain gages are glued, to provide measurements of the torsional and bending loads. Three
miniaturized electronic boards, fixed to the hub, provide for the power supply and conditioning
of the shaft strain gages. The transmission of the electrical signals from the rotating system to
the fixed one, and vice versa, is guaranteed by a through-bore 12-channels slip ring.

Figure 2: Layout of G1 model

A torque-meter, located after the two shaft bearings, allows for the measurement of the torque
provided by a brushless motor equipped with a gearhead and a tachometer. The motor, located
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in the rear part of the nacelle, is operated as a generator by using a servocontroller. An optical
encoder, located between the slip ring and the rear shaft bearing, allows for the measurement
of the rotor azimuth.

The entire nacelle can be yawed by means of a brushed motor, housed within the hollow
tower, equipped with a gearhead. This latter element is connected by a multi-beam coupling to
a shaft rigidly joined to the rectangular carrying box, and hold in place by two bearings located
within the upper portion of the tower. An optical encoder provides feedback to an electronic
device that controls both the yaw actuator and a magnetic brake.

The tower, whose stiffness was designed so that the first fore-aft and side-side natural
frequencies of the nacelle-tower group are properly placed with respect to the harmonic per-
rev excitations, is softened at its base by machining four small bridges, on which strain gages
are glued. Bridges were sized so as to have sufficiently large strains to achieve the necessary
level of accuracy for the strain gages. Two electronic boards provide for the power supply and
adequate conditioning of this custom-made load cell.

Aerodynamic covers of the nacelle and hub ensure a satisfactory quality of the flow in the
central rotor area

Due to the small dimensions of the scaled wind turbine, low Reynolds numbers are expected.
Therefore, the low-Reynolds airfoil RG14 [8] was chosen for the model wind turbine blades. The
aerodynamic performance of the rotor was measured for different values of the airfoil Reynolds
by operating the models at several combinations of tip speed ratio (TSR) and collective pitch
settings. The measured maximum power coefficients are approximately 0.42 at λ ∈ [7, 8] and
β ∈ [−2◦, 0◦].

3. Control system
The control system of the wind turbine models is organized in three different levels, as shown
in Fig. 3. The low level control operates the wind turbine actuators, while the communication
with sensors, actuators, and control algorithms are implemented on the industrial real-time
controller Bachmann M1 (http://www.bachmann.info). Wind farm control algorithms, as well
as supervisory control for each model, are implemented on a standard PC, which communicates
with each wind turbine controller over an Ethernet network.

Wind turbine

• Sensors

• Actuators

Bachmann M1

• Power control

• IPC and CyPC

• Yaw control

• Safety system

• Data logging

Supervisory PC

• Supervisory

control

• Wind farm

control

Wind turbine

• Sensors

• Actuators

Bachmann M1

• Power control

• IPC and CyPC

• Yaw control

• Safety system

• Data logging

. . .

Figure 3: Control structure of the wind turbine models.
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3.1. Wind turbine control system
The Bachmann M1 system used for wind turbine control is a modular real-time controller with
a CPU module for running control algorithms, a counter module for acquiring rotor speed and
azimuth from the digital encoder, a communication module for communication with actuators
through a CAN network and two analogue input-output modules for acquiring measurements
and sending commands to the torque motor and the yaw break. The Bachmann M1 system is
capable of acquiring data with a sample rate of 2.5 kHz, which is used for acquiring aerodynamic
torque, shaft bending moments and rotor azimuth position. All other measurements are acquired
with a sample rate of 250 Hz.

Each wind turbine model is controlled by a separate Bachmann M1 system with a sampling
time of 4 ms. Besides data-logging and safety systems (such as shutdown in case of overspeed),
the following control algorithms are implemented on each M1 system:

• Power control, i.e. torque and collective pitch control (CPC). A standard power
control is implemented based on [1], with two distinct control regions. In the region below
rated wind speed, blade pitch angles are kept constant, while the generator torque reference
follows a quadratic function of rotor speed in order to maximize energy extraction. Above
rated wind speed, the generator torque is kept constant, while a PI controller is used to
collectively pitch the rotor blades in order to keep the generated power at the desired level.
Additionally, for the purpose of wind farm control, the wind turbine power output can be
lowered to an arbitrary percentage of the available power below rated wind speed and of the
nominal power above rated wind speed. Since power reduction can be achieved in different
ways, it is possible to easily modify the control trajectories while the models are idling.

• Individual and cyclic pitch control (IPC and CyPC). Besides collective pitch control,
the models are also capable of individually pitching each blade, enabling additional control
actions for influencing loading or wakes. To this aim, the reference of each blade follows a
harmonic function of the blade azimuth position with adjustable amplitude and phase angle.
This leads to continuous blade pitching with frequency 1P, whose maximal amplitude has
to be constrained according to the pitch actuator capabilities. This kind of pitch activity
has a strong impact on loads, while the generated power remains unaffected above rated
wind speed. On the other hand a slight power loss can be observed below rated wind speed,
depending on the pitch amplitude [2, 11]. The amplitude and the phase angle of the blade
pitch can be determined either in close loop by two decoupled PI controllers trying to reduce
1P oscillations of the shaft bending moments (IPC, for more details see [10]), or in open
loop (CyPC).

• Yaw control. The misalignment angle of a wind turbine model with respect to the wind
can be set by changing the yaw angle. A PI controller is used for controlling the yaw motor,
and the yaw reference value is provided from the supervisory controller. An additional
control logic is implemented that enables the yaw brake once the nacelle gets in the desired
position. Whenever the yaw reference is changed, the brake is released and the PI controller
ensures that the nacelle is yawed to the new position. Besides constant yaw references, the
yaw controller is also capable of continuous yaw motion, such as a harmonic function with
adjustable amplitude and frequency. Such a motion can be useful for wind farm control
algorithms or for the generation of wake meandering in the wind tunnel.

3.2. Wind farm control system
High level control is implemented on a standard PC, and communication with the wind turbine
Bachmann M1 controllers is established over an Ethernet network. Through a dedicated graphic
interface, the supervisory controller allows for the user to monitor the wind turbine conditions,
change their operating state, control algorithms and reference values, and to set up and initialize
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the data acquisition process. Additionally, a wind farm control algorithm collects measurements
from the Bachmann M1 controllers, and can send the following control actions back to them:

• a command to reduce produced power,

• a yaw angle reference,

• CyPC settings.

The wind turbine controller described in §3.1 is in charge of following the references sent by the
wind farm controller.

At present, a gradient-based extremum seeking control algorithm is implemented with the
goal of increasing energy capture. Gradients are computed by first-order finite differencing the
energy capture, properly averaged over a time horizon, at two different wind turbine operating
points. The control algorithm is based on [5], where yaw misalignment optimization is performed
rather than axial induction. The algorithm uses the simplified assumption that control actions
of a wind turbine affect only the closest downstream wind turbine. Therefore, instead of solving
a single optimization problem for the entire wind farm, a series of smaller optimization problems
(one for each wind turbine) is being solved:

γ∗i = arg max
γ

Pi + Pi+1. (1)

The optimal yaw angle γ∗i is therefore determined based on the power output of the ith wind
turbine Pi and its closest downwind neighbor, Pi+1. The optimization problems are suitably
synchronized by waiting for the propagation of the wakes only to the neighboring wind turbines,
thus significantly reducing the convergence time of the algorithm. The time required for the
wake to propagate is computed online using Jensen’s model to estimate the speed in the wake.
The average wind speed measured by the Pitot tube described earlier is used as input to the
Jensen’s model. The axial induction factor is computed by properly non-dimensionalizing the
rotor thrust, in turn derived from the fore-aft bending moment measured at tower base, using
the well-known relationship

CT = 4a(1− a). (2)

The wake decay coefficient is obtained by best-fitting experimental data from previous wind
tunnel tests [4].

Although such an approach changes the original objective (power maximization in the entire
wind farm), and therefore could result in suboptimal performance, it can also lead to significantly
faster convergence.

4. Results
Tests were conducted by simulating the atmospheric boundary layer by means of spires placed
at the inlet of the wind tunnel, in order to generate a wind speed vertical profile and turbulence
intensity typical of offshore applications.

The machines were arranged with a flow-wise longitudinal spacing of 4 diameters and a
laterally shift of half a diameter, as depicted in Fig. 1. The average wind speed measured by the
Pitot tube described earlier is used to derive the wind turbine and wind farm power coefficients,
the latter being defined as the sum of the wind turbine ones.

At first, different combinations of yaw misalignment for the upstream (WT1) and second
(WT2) wind turbine model were tested within the wind tunnel, with the aim of experimentally
identifying the operating condition maximizing wind farm power output. Figure 4 shows that,
for the tested wind farm layout and wind condition, wind farm power can be substantially
increased (up to 15%) by misaligning WT1 and WT2 of approximately 20 deg and 16 deg,
respectively.

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 032006 doi:10.1088/1742-6596/753/3/032006

5

12.4. Copy of Paper 10 167



0 10 20
0

5

10

15

20

25

γWT1 [deg]

γ
W

T
2

[d
eg

]

0.95

1

1.05

1.1

1.15

C
P

[-
]

Figure 4: Measured wind farm power coefficient CP as function of upstream WT yaw
misalignment (γWT1) WT yaw misalignment (γWT1).

0 200 400 600 800
−5

0

5

10

15

20

25

Time [s]

γ
[d

eg
]

WT1
WT2

0.3

0.4

C
P

[-
]

WT1

0.3

0.4

C
P

[-
]

WT2

0 200 400 600 800

0.3

0.4

Time [s]

C
P

[-
]

WT3

0 200 400 600 800
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time [s]

C
P

[-
]

WF

Figure 5: WTs yaw misalignment (on left), WTs power coefficient (center) and wind farm power
coefficient as function of time (right)

.

Figure 5 shows the time evolution of the upstream WT yaw misalignments, as well as the
evolution of the power coeffient for the three wind turbines and the whole wind farm, after
the activation of the proposed wind farm controller. The data reported in Fig. 5 clearly
highlights that the wind farm controller is capable of dynamically driving the wind turbines
to yaw misalignment settings that, based on the results shown in Fig. 4, maximize the wind
farm power output. This leads to an increase of power in excess of 15%, a result which is in line
with what reported by other authors using simulations [6] and wind tunnel testing [9].
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5. Conclusions
A closed-loop model-free controller has been developed and tested in a large boundary layer wind
tunnel, where one can simulate wind conditions typical of offshore applications. Thanks to the
use of sophisticated wind turbine models, extensively instrumented and equipped with individual
pitch, torque and yaw control, it has been experimentally demonstrated that wake redirection
by means of yaw misalignment can lead to substantial increase in wind farm power output.
Moreover, it was shown for the first time that a closed-loop wind farm controller is capable of
dynamically driving the upstream wind turbines to the optimal operational conditions.
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CHAPTER 13

Paper 11: Online model updating by a wake
detector for wind farm control

13.1 Summary

In this work a method to update an engineering wake model online based on measurements provided
by waked downstream turbines is presented. Thereto, the wake model, which has been developed in
Paper 5, gives an estimate of the wake deficit and position. The wind sensing method, developed in
Paper 1, provides local velocity estimates on the turbine rotor, which also carry information on the
actual location and deficit of the wake. To improve model predictions, the wind sensing estimates are
employed to correct the modeled wake deficit and position.

Scaled wind tunnel experimental results show that in case of a slightly erroneous wake model, for
example induced by wrong parameterization or inputs, errors in model predictions, relevant in wind
farm control applications, can occur. Applying the online model update, the wake position and deficit
is corrected and a significant improvement in model prediction has been achieved.

13.2 Contribution

Within this peer-reviewed publication, the author of this dissertation has conducted the main research
work. Carlo L. Bottasso supervised the research and both authors provided important input through
discussions, feedback and by writing the paper.
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Abstract— An engineering wake model is updated online 

based on measurements provided by shaded turbines. 

Departing from other approaches, the measurements include 

information on the impinging wakes, obtained by a wake 

detector based on measured rotor loads. The updated model 

exhibits improved prediction capabilities, and it can be used for 

implementing a model-based wind farm controller.  

I. Introduction 

Each turbine in a wind farm emits a wake characterized by 
reduced velocity and increased turbulence, leading to losses 
in power production and increased loads on downwind 
turbines. The negative effects of wake interactions may be 
mitigated by wake management strategies [1]. One possible 
implementation of such strategies is based on a wind farm 
flow model: the predictions of the model are used by a 
controller, whose aim is to energize and/or redirect wakes for 
improved energy yield and/or reduced loading.  

The performance of any such model-based control method is 
inherently limited by the accuracy of its underlying model. 
Unfortunately, any model has limitations –at least in some 
situations–, and especially the simple reduced-order or 
engineering models used for control synthesis. However, the 
fidelity of a model can be corrected and improved at run-time 
based on measurements made on the plant. Figure 1 
illustrates this concept. 

  

Figure 1.  Wind farm control with model updating. 

To correct model predictions, one might think of using 
standard and already available measurements of power and 
hub-height wind speed, for example using a Kalman filter. 
Unfortunately, this might not work in general because power 
and rotor speed might not carry enough informational content 
to correct for some model errors, as shown later on in this 
work. In fact, in the case of a wrong power prediction at a 
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downstream wind turbine, one cannot distinguish whether the 
error is caused by a wrong wind speed in the wake (for 
example, due to an inaccurate modeling of wake recovery) or 
by a wrong location of the wake with respect to the impinged 
rotor disk. 

This impasse is solved by using our newly-developed wake 
detector [2]: by using rotor loads, the detector reveals the 
presence of a wake by mapping blade loads into local 
estimates of the wind speed over sectors of the rotor disk. 
This way, a wake model can be improved online during 
operation of the wind farm (according to the scheme of 
Fig. 1), generating high quality predictions of the wake speed 
and position within the farm. In turn, this improves the 
control action computed on the basis of these predictions. 
This idea is developed in the present work with reference to a 
static wind farm flow model, although nothing in this 
approach prevents its extension to the dynamic case. Similar 
concepts of state estimation have been explored in the 
context of dynamic wake models in [3, 4]. However, it is 
unclear whether such formulations are able to cope with 
simultaneous errors in wake recovery and trajectory, as the 
method presented herein.  

This paper is organized as follows. Section II formulates the 
model update approach, the wind farm model and the load-
based wind detector. Section III describes different possible 
implementations of the model update method. The various 
options are then tested with reference to experimental 
measurements obtained on a scaled wind farm facility 
operated in a large boundary layer wind tunnel. Finally, 
Section IV summarizes results and conclusions, and gives an 
outlook towards future work. 

II. Methods 

A. State update  

The model update method is formulated here based on a 
generic non-linear static wind farm model. A similar 
formulation could also be derived for a dynamic model, 
leading in that case to a standard Kalman filtering problem. 
The static model is written as  

 𝑥 = 𝑓(𝑢, 𝑚, 𝑝) 

 𝑦 = 𝑔(𝑥), 

where 𝑓 is a non-linear static function, which depends on the 
model formulation. The control inputs are noted 𝑢, and 
include the yaw and induction of each wind turbine in the 
farm. Measurements of ambient conditions are noted 𝑚, and 
include density and free stream wind speed and direction 
(typically estimated by the upstream wind turbines). Physical 
tunable coefficients of the model and the wind farm layout 
are represented by the vector of parameters 𝑝. The model 
states are indicated as 𝑥, and in the present study they include 
the velocity and lateral position of the wake of each turbine. 
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A set of outputs 𝑦 is defined by function 𝑔. As shown later 
on, the outputs may be represented by the turbine power at 
the downstream turbines, but they may also include estimated 
flow velocities at the downstream rotors.  

In general, the predictions of the model states will be in error, 
due to a lack of model fidelity, mistuning of the parameters 
or inaccuracies in ambient conditions. This can be corrected 
by introducing a state error 𝑒. The corresponding corrected 
state �̂� becomes 

 �̂� = 𝑥 + 𝑒 

A maximum likelihood estimate of the state error can be 
readily obtained by solving the following problem 

 min𝑒  (𝑧 − �̂�)T𝑅−1(𝑧 − �̂�) 

where 𝑧 are measurements and �̂� the corresponding updated 
model outputs (�̂� = 𝑔(�̂�)). For a given fixed covariance 𝑅, 
this procedure corresponds to the method of least squares. 

Note that, as ambient wind conditions are often uncertain, the 
presented formulation could be extended by including these 
same conditions within the list of states. However, it is also 
clearly necessary to ensure the observability of all chosen 
states. For example, a wrong wind direction might not be 
distinguishable from a wrong wake location. The 
development of a general formulation for the estimation of 
wind farm flow model states is a problem of great interest 
[4], which is however outside of the scope of the present 
paper. 

B. Wind farm model 

The wind farm model includes two components: a wake 
model and a power model. The wake model is based on the 
double Gaussian profile proposed by [5], combined with the 
yaw-induced wake deflection developed in [6]. The 
combination of the two models gives the evolution of the 
flow speed within the wake downstream of each rotor disk, 
together with its spatial location. The power model yields the 
turbine power output by computing the mean flow speed at 
the rotor using a disk-attached grid. The turbine power 
coefficient 𝐶P,𝛾=0 is assumed to be constant below rated wind 

speed. To take into account the power reduction in 
misaligned conditions, the following relationship is used 

 𝐶P(𝛾) = 𝐶P,𝛾=0 cos(𝛾)𝑝P 

where 𝛾 is the turbine misalignment angle and 𝑝P a tunable 
parameter. 

When implementing the state update for wake speed 𝑢, 
Eq. (3) is modified as �̂� = 𝑢 + 𝑟𝑒, where 𝑟 is the Keane 
wake reduction (see Eq. (22) of [5]). Since the Keane wake 
model uses a Gaussian shape for the speed deficit –and hence 
does not have a well-defined wake width–, this form of the 
error avoids changing the ambient wind speed away from the 
wake. 

B. Wind detector 

A load-based wind speed detector [2] is used to estimate the 

flow at the downstream wind turbine. As shown in Fig. 2, 

the detector works by mapping blade loads into local 

estimates of the wind speed. These are then averaged over 

sectors of the rotor disk. The resulting sector-effective (SE) 

wind speed measurements on the left and right parts of the 

rotor (noted 𝑉SE,left
 and 𝑉

SE,right
, respectively) are then used 

in the state update formulation described earlier on. 

 

 

Figure 2.  Wind detector estimating the left and right sector-equivalent 

wind speeds. 

 

III. Implementation & results 

A. Implementation 

To evaluate the proposed method, three versions of the state 
update formulation are implemented for a simple farm 
consisting of two wind turbines. In the notation used below, 
the upstream wind turbine is indicated as WT1, while the 
downstream one as WT2. 

The simplistic method (subscript 𝑠) is intended to 
demonstrate that, by only using power measurements at the 
downwind turbine (𝑃WT2,exp), it is in general not possible to 

correct at the same time for errors in lateral wake position 
(𝑑WT1) and speed (𝑢WT1) of the upstream wind turbine. In 
contrast to the simplistic method, the power method 
(subscript 𝑝) is well-posed, as it only tries to correct the wake 
speed and not its position based on downstream power 
measurements. The wind-sensing method (subscript 𝑤𝑠) 
includes as measurements also the SE wind speeds 

𝑉WT2,exp
SE,left/right

 obtained by the wind detector on the downwind 

turbine. This way, the method is able to correct for both 
speed and position in the wake.  

Table 1 gives an overview of the three different approaches. 
For all cases, the ambient conditions are obtained from the 
front wind turbine: wind direction is measured by the on-
board wind vane, while the ambient wind speed is computed 
by the rotor effective wind speed corrected for yaw 
misalignment using Eq. (5).  

The diagonal entries of the covariance matrix 𝑅 are initially 
set to 1/𝑃𝑟

2 for power and to 1/𝑉𝑟
2 for the SE wind speed 

model outputs, where (∙)𝑟 indicates a rated quantity. When 
using maximum likelihood, the covariance is updated after 
each iteration based on the residuals. Problem (4) is solved 
using the Nelder-Mead simplex algorithm implemented in the 
MATLAB function fminsearch [7]. 

 

 

 

TABLE I.  STATE UPDATE IMPLEMENTATIONS 
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Method: Simplistic (∗= 𝑠) Power (∗= 𝑝) Wind-sensing (∗= 𝑤𝑠) 

𝑥(∗) = [
𝑑WT1

𝑢WT1 
] [𝑢WT1] [

𝑑WT1

𝑢WT1 
] 

𝑥(∗) = [
𝑑WT1 + 𝑒d

𝑢WT1 + 𝑟𝑒u
] [𝑢WT1 + 𝑟𝑒u] [

𝑑WT1 + 𝑒d

𝑢WT1 + 𝑟𝑒u
] 

�̂�(∗) =  [𝑃WT2] [𝑃WT2] [

𝑃WT2

𝑉WT2
SE,right

𝑉WT2
SE,left 

] 

𝑧(∗) = [𝑃WT2,exp] [𝑃WT2,exp] [

𝑃WT2,exp

𝑉WT2,exp
SE,right

𝑉WT2,exp
SE,left  

] 

 

B. Experimental setup 

Experimental tests with scaled wind turbine models were 
used to study the performance of the various state update 
formulations. The scaled turbines, designed for realistic wake 
behavior, were operated in the boundary layer wind tunnel of 
the Politecnico di Milano at an ambient hub-height wind 
speed of 5.8 m/sec and a turbulence intensity of about 5%. A 
detailed description of the turbines and the wind tunnel can 
be found in [8, 9]. The wind farm layout is depicted in Fig. 3, 
where 𝛾WT1 is the yaw misalignment of the upstream wind 
turbine with respect to the wind vector, positive as indicated 
in the figure. The two turbines are operated at a longitudinal 
distance of 4 diameters (D) with no lateral displacement. 

 

Figure 3.  Wind farm layout, top-view. 

 

The wind farm model parameters 𝑝 include the power loss 
exponent 𝑝𝑃 (see Eq. 5), the coefficients 𝑘∗, 𝜖, and 𝑛 𝑡hat 
define the wake shape through the expression 𝜎 =
𝑘∗𝑌𝑛 + 𝜖 (where 𝜎 is the standard deviation of the double 
Gaussian wake deficit), and finally the scaling factor 𝑐− [5]. 
The parameters were first manually tuned with the objective 
of obtaining a good fit of the model predictions with the 
experimentally measured wake speed, downstream turbine 
power and SE speeds at various yaw misalignments of WT1. 
Figure 4 shows in the upper subplot a comparison between 
measured (subscript 𝑒𝑥𝑝) and modeled power at both 
turbines. The lower subplot shows the SE wind speeds for the 
left and right sectors of WT2. Each experimental data point 
represents the mean value of a 60 sec time recording. As the 
scaled turbine models used in these particular experiments 
are not equipped with blade load sensors, blade loads were 
reconstructed from shaft loads using the Coleman 
Transformation as described in [9]. To account for the fact 

that the reconstructed experimental blade loads do not 
contain frequencies above 1P (one per revolution), also the 
SE wind speed computed from the wind farm model was 
accordingly filtered. This was obtained by first best-fitting 
over the turbine rotor disk a linear wind field, and then 

computing from it the desired quantities 𝑉WT2
SE,left/right

.  

  

Figure 4.  Comparison between experimental and modeled turbine power 

and SE wind speeds. 

C. Results 

An experimental time sequence was obtained by stacking one 
after the other a number of recordings, each one 
corresponding to a different constant yaw setting of the front 
machine. Since the flow is turbulent, wake dynamics induced 
by turbulent fluctuations, including meandering, are included 
in the recordings. However, the effects of transient changes 
from one yaw set point to the next are not, including the 
corresponding travel-time wake delays, which can be 
estimated to be approximatively equal to 1 sec. Since delays 
are not included in the static model used here, all signals 
were filtered with a moving average of 4 sec. The filter 
window size was chosen to reduce effects of short-term 
fluctuations, which are believed to be of limited interested for 
plant-level control. 

Figure 5 shows the performance of the simplistic state update 
method. The upper subplot shows the time history of the 
upwind turbine yaw position 𝛾WT1, which changes in three 
steps from 0 deg to 30 deg. Previous experiments indicated 
that the last yaw position in the plot is the approximate point 
of maximum power production for the present wind farm 
configuration. The second subplot shows the experimentally 
measured power produced by the downwind turbine 
(𝑃WT2,exp), together with the state updated model prediction 

(noted 𝑃WT2,s, where the second subscript indicates the 

simplistic formulation). The two lines are essentially 
identical, indicating an almost perfect prediction of power 
output by the model. The plot also shows that power 
increases after each yaw step, which is indeed caused by the 
wake deflecting laterally and thereby reducing its effects on 
the downstream rotor.  

The third subplot shows the SE wind speeds in the left and 
right turbine sectors. The experimental measurements from 
the wind speed detector (solid lines with marker) show the 
direction of wake deflection: with increasing time and yaw, 

Wind direction 

WT2 
𝑌 = 4D 

WT1 

𝛾WT1 
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the flow velocity in the left sector increases, implying that the 
wake center is moving to the right. The SE wind speeds of 
the updated simplistic method are also shown on the same 
plot. These curves reveal that the model-predicted flow 
velocities, which were not explicitly taken into account by 
the method, behave in a radically different way from the 
measured ones. In fact, the simplistic state update method 
corrects the wake center position by moving it to the left of 
the downwind turbine, instead of to the right as it should be. 
The last subplot of Fig. 5 shows the corresponding state 
errors. The large error in wake speed significantly alters the 
wake deficit, while the error in wake position implies that the 
wake center is located to the left of the rotor.  

The simplistic method is clearly ill-posed, as two 
independent states are corrected using only one 
measurement. Therefore, multiple combinations of wake 
speed and displacement can be obtained that, although 
completely wrong, still apparently lead to a very good power 
estimate. A controller using the predictions of such a model 
is invariably bound to fail.  

Notice that the ill-posedness of the present formulation is 
rather obvious, by considering that one single global rotor 
measurement as power cannot distinguish between changes 
due to a different wake recovery or position. Indeed, in the 
context of the present formulation, a well-posedness check 
can be formulated by considering the linearized version of 
Eq. (2), i.e.  𝑦 = 𝐶𝑥, where 𝐶 = 𝜕𝑔 𝜕𝑥⁄ . The problem can be 
considered to be well posed if state 𝑥 can be deduced from 
measurements 𝑧 of 𝑦, a condition that is satisfied only if 
null(𝐶) = {0}, i.e. if 𝐶 is of full column rank. This is akin to 
the observability condition for dynamical systems, 
specialized to the present static case. For the simplistic 
approach, 𝐶 is a 1 × 2 matrix that cannot satisfy this 
observability condition. 

 

Figure 5.  Predictions of the on-line corrected simplistic model (𝑠) 

compared to experimental measurements (𝑒𝑥𝑝). 

 

Figure 6.  Downwind turbine power predicted by the wind-sensing method 

(𝑃WT2,ws) and the power method (𝑃WT2,p), compared with the experimental 

one (𝑃WT2,exp), for various modeling errors.  

After having illustrated the ill-posedness of the simplistic 
method, the power and wind-sensing approaches are 
compared. In both cases, the problem is now well-posed: for 
the power method, only wake speed is corrected based on 
measured power, while for the wind-sensing method the 
presence of the wake detector allows for the separation of the 
effects caused by wake speed from those caused by position. 
To better understand the characteristic of the methods, 
artificial errors were imposed on the wind farm model. An 
error in wake recovery and expansion is simulated by 
changing the modeled longitudinal distance 𝑌 between the 
turbines with respect to the one of the experiments. In 
addition, to simulate an error in the modeled wake position, 
the lateral distance 𝑋 is also varied. 

For nine combinations of modeling errors, Fig. 6 reports the 
model-predicted power together with the experimentally 
measured one. Independently of the modeling error, it 
appears that power is always well predicted. The SE wind 
speeds at the downwind turbine are shown in Fig. 7. Solid 
lines with markers represent experimental measurements, 
dash-dotted lines the power method and solid lines without 
markers the wind-sensing method flow speeds. The wind-
sensing method provides predictions that are very close to the 
experimental measurements, independently of the modeling 
error. In fact, both wake speed and wake position can be 
corrected independently by this approach. On the other hand, 
the power method only corrects wake speed. Therefore, it 
provides good results only in the case of model errors in the 
longitudinal displacement (middle column of the subplots). 
However, as soon as there is also an error in the wake 
position, flow velocities do not match anymore. These 
discrepancies may translate into significant deficiencies when 
it comes to utilizing the wind farm model for control 
purposes.  
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Figure 7.  Downwind turbine SE wind speeds predicted by the wind-

sensing method (𝑉WT2,ws
left/right

) and the power method (𝑉WT2,p
left/right

), compared to 

the experimental ones (𝑉WT2,exp
left/right

),  for various modeling errors.  

To illustrate this point, Fig. 8 shows, for one of the nine cases 
considered above, the maximum possible wind farm power 
predicted by the model by yawing the upwind turbine to its 
optimal position. In the experiment, the optimal position is 
approximatively equal to 30 deg, which are reached after 
90 sec. Even though the power method is apparently able to 
match the downwind turbine power during the experiment, 
this is in reality based on a wrong prediction of the flow 
within the farm. Hence, the maximum predicted power is 
highly overestimated. On the other hand, the wind-sensing 
method, being capable of a more faithful prediction of the 
actual flow, provides for a realistic estimate of the maximum 
achievable power throughout the whole test case. This 
highlights the importance of correctly modeling the flow 
within the wind farm for control purposes. 

 

Figure 8.  Measured wind farm power (𝑃WF,exp) and model-predicted 

maximum available wind farm power 𝑃max,WF. For 𝑡 > 90s, the experiment 

reaches the optimal solution. 

IV. Conclusions 

A model-based wind farm control algorithm can only be as 
good as its underlying model. In a realistic scenario, various 
sources of uncertainties and model defects limit the 
predictive capabilities of any wind farm flow model. After 
having calibrated the model offline, the only remaining way 
to improve this situation is to correct the predictions of the 
model online, by using measurements obtained on the plant.  

The present paper has considered the problem of model-
updating, in the context of a well-known static engineering 
wake model. The model can predict the flow speed within the 
wake, as well as its geometry and spatial location depending 
on environmental and wind turbine operational parameters. 

Three possible implementations of the method have been 
considered. The first, and possibly the most natural, tries to 
correct model predictions by using power measurements on 
the downstream turbine. Unfortunately, but quite obviously, 
the method was shown to fail because of its inability to 
distinguish between effects caused by wake speed or 
position. 

The second approach uses power to correct only for wake 
speed. This avoids the problem being ill-posed, but clearly 
cannot correct the predictions of the model whenever the 
wake position is in error. It was shown that, even in the very 
simple two-wind turbine case considered here, this 
formulation may lead to significant errors in maximum 
power predictions. 

Finally, a novel method based on a wake detector was 
proposed. The wake detector is capable of estimating the 
local wind speeds on the left and right sectors of the rotor 
disk. Clearly, the two velocities carry information on the 
actual location of the wake with respect to the affected rotor. 
This allows one to distinguish between wake speed and 
location, and results in the correct update of both states of the 
engineering model. 

The present work is to be considered only as a preliminary 
study, and further investigations are planned. These include 
studies of observability in the case of only partially 
impinging wakes, as well as the investigation of more 
complex wake interference scenarios. The model update 
formulation will also be exploited for designing wind farm 
control laws using optimal model-based approaches.  
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CHAPTER 14

Paper 12: Wind tunnel testing of wake steering
with dynamic wind direction changes

14.1 Summary

Within this work a model-based wind farm controller is tested in a scaled wind farm environment
including dynamic wind direction changes. The open-loop controller bases on look-up-tables which
have been pre-computed using different wind farm models with varying accuracy.

Each table contains the turbine yaw misalignments that lead to maximum wind farm power
for a variety of given constant wind directions. The wind farm controller is implemented to read
the measured ambient direction at each time instant and to set the corresponding optimal yaw
misalignments, stored in the look-up-table, on each turbine. As the wind conditions change constantly
and a very simple control approach is followed, a measurement uncertainty has been accounted for
during the look-up-table computation.

Experimental tests on a wind farm consisting of three scaled wind turbines have been finally
conducted based on a measured full-scale wind direction time history. A significant increase in energy
production could be measured using each look-up-table. In details, the table computed using the
baseline FLORIS wind farm model resulted in gains of approx. 4.5%, the table computed using the
improved model of Paper 9 resulted in approx. 5% and a purely data driven model, obtained using
an extensive data set, resulted in approx. 5.5% highlighting the maximum achievable gain following
the control approach. The results show that the higher model accuracy obtained through the model
improvements developed and shown in Paper 9 indeed improve power capture.

As the scaled turbine models are equipped with load sensors, the effect of wind farm control on
the damage equivalent loads could be also assessed: The wake steering controller reduces loads on the
downstream turbines in all cases. Even though, the front turbine experiences an increase of damage
loads, they never exceed those of the downstream turbines. Consequently, the load distribution among
the turbines becomes more even, resulting in a better balanced lifetime of the turbines.

14.2 Contribution

The author of this dissertation has developed and implemented the wind farm control algorithm
and participated in the design and analysis of the experiments. Filippo Campagnolo conducted the
experiments and led the whole research work. All authors provided important input to this research
work through discussions, feedback and by writing the paper.

14.3 Reference

F. Campagnolo, R. Weber, J. Schreiber, and C. L. Bottasso, “Wind tunnel testing of wake steering
with dynamic wind direction changes,” Wind Energy Science, vol. 5, no. 4, pp. 1273–1295, 2020. doi:
10.5194/wes-5-1273-2020
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Abstract. The performance of an open-loop wake-steering controller is investigated with a new unique set of
wind tunnel experiments. A cluster of three scaled wind turbines, placed on a large turntable, is exposed to a
turbulent inflow and dynamically changing wind directions, resulting in dynamically varying wake interactions.
The changes in wind direction were sourced and scaled from a field-measured time history and mirrored onto
the movement of the turntable.

Exploiting the known, repeatable, and controllable conditions of the wind tunnel, this study investigates the
following effects: fidelity of the model used for synthesizing the controller, assumption of steady-state vs. dy-
namic plant behavior, wind direction uncertainty, the robustness of the formulation in regard to this uncertainty,
and a finite yaw rate. The results were analyzed for power production of the cluster, fatigue loads, and yaw
actuator duty cycle.

The study highlights the importance of using a robust formulation and plant flow models of appropriate fidelity
and the existence of possible margins for improvement by the use of dynamic controllers.

1 Introduction

Wakes produced by upstream wind turbines have a pro-
found influence on the performance of downstream ma-
chines. Compared to clean isolated conditions, waked tur-
bines produce less power, approaching a 50 % reduction for
full-wake interaction (Mechali et al., 2006), and they experi-
ence increased loading (Madjidian et al., 2011; Bustamante
et al., 2015; Vera-Tudela and Kühn, 2017). The impact in
terms of both lost production and increased loading is sig-
nificant and has cascading effects on operation and main-
tenance (O&M) and lifetime. Probably one of the most di-
rect indications of the impact of wakes outside of the scien-
tific literature is given by the press announcement issued by
Ørsted (formerly DONG) in October 2019. In this announce-
ment, Ørsted, the largest offshore wind energy developer in
the world, warned investors that it will not be able to meet its
long-term financial targets. Next to market issues, “...the neg-
ative impact of two effects across our asset portfolio, i.e., the
blockage effect and the wake effect” was listed as the main
reason. In addition, Ørsted stated that “...underestimation of

blockage and wake effects is likely to be an industry-wide
issue” (Ørsted, 2019).

Wind farm control is widely recognized as one of the
main solutions to mitigate wake effects (Gebraad et al., 2016;
Fleming et al., 2016; Vali et al., 2017; Fleming et al., 2017;
Raach et al., 2018; Fleming et al., 2019). In wind farm con-
trol, the turbines in a wind farm operate in a coordinated, col-
laborative fashion. This stands in direct contrast to the stan-
dard, locally greedy approach in which each machine works
independently from the others to maximize its own power
output – even if this is detrimental to the output of its neigh-
boring turbines. A number of wind farm control strategies
are currently being investigated, including static and dynamic
induction control (Frederik et al., 2020) and wake steering
(Knudsen et al., 2015; Fleming et al., 2016). Among these,
wake steering is probably the most promising technique for
practical field deployment, and reports of field tests have al-
ready been published (Fleming et al., 2017, 2019; Howland
et al., 2019). This control technology is also offered as a fea-
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ture for offshore wind farms by one of the leading wind tur-
bine manufacturers (Siemens Gamesa, 2019).

Although a field demonstration is clearly the final litmus
test for any technology, simulations with high-fidelity models
and scaled testing in wind tunnels offer some unique oppor-
tunities to improve knowledge and understanding. Bottasso
et al. (2014) pioneered wind tunnel testing beyond pure aero-
dynamic investigations by developing several experimental
applications based on actively controlled scaled wind tur-
bines. Campagnolo et al. (2016c) followed up with an exper-
imental demonstration of closed-loop wake steering. In ad-
dition to their own scientific advances, these works provided
comprehensive opportunities for the validation of simulation
models (Wang et al., 2019).

The present paper follows in these same tracks. Here three
scaled turbines are tested in a large boundary layer wind tun-
nel, where dynamic wind direction changes are generated by
using a turntable. The three machines are governed by an
open-loop wake-steering controller, while each machine is
operated by its own closed-loop yaw, pitch, and torque con-
troller. The known, repeatable, and controllable environment
of the wind tunnel offers the opportunity to address some key
questions:

– What are the effects of neglecting the dynamics of wake
interaction by using a steady-state controller? And what
are the additional effects caused by a limited yaw rate
and a finite sampling time of the controller?

– What are the effects on performance of the fidelity of
the underlying model used for control synthesis? Does
it pay off to use a better model, and what are the mar-
gins for improvement? Are conclusions different when
looking at power, loads, or actuation effort?

– What are the benefits of using a formulation that is ro-
bust in the face of uncertainties, as opposed to a naive
deterministic approach? And is there a minimum wake
interaction threshold below which it might be better not
to use a wake-steering controller?

This study is an initial effort to try and answer these ques-
tions.

The paper is organized as follows. Section 2 describes the
experimental setup, including the scaled turbines, the tun-
nel sheared and turbulent inflow, and the generation with a
turntable of dynamic wind direction changes that mimic ac-
tual field measurements. Since the ground truth wind direc-
tion is known in the case of the experiment, a filtering ap-
proach is described to provide the controller with a tunable
level of uncertainty, with the goal of characterizing its ef-
fects on performance. Section 3 describes the control formu-
lation and implementation. A model-based robust formula-
tion is used here, which first derives look-up tables (LUTs)
by an offline optimization and then interpolates within the
LUTs at run-time based on the detected operating conditions.

Figure 1. Experimental setup, showing the three model turbines
mounted on the wind tunnel turntable. The x–y–z frame is fixed
with respect to the tunnel and does not rotate with the turntable.

To explore the effects of varying model fidelity, three differ-
ent farm flow models are considered. The first is a MAT-
LAB implementation of the FLORIS model developed by
TU-Delft (Doekemeijer et al., 2019), which differs from the
latest release (NREL, 2020) and lacks the effects of sec-
ondary steering and nonuniform inflow. The second is an
improved version of the same model based on the learning
of correction terms from operational data, termed FLORIS-
Augm (Schreiber et al., 2020). The third farm flow model is
a purely data-driven model that, based on the accurate mea-
surements that are possible in the wind tunnel, can be consid-
ered an exact steady-state representation of the experiment.
Section 4 presents an analysis of the experimental results.
The non-robust formulation is analyzed first in terms of the
effects on performance of uncertainty level, finite yaw rate,
neglected dynamics, and model fidelity. Next, the robust for-
mulation is considered and compared to the non-robust one,
looking at the metrics of power, fatigue loading, and actuator
duty cycle. Section 5 concludes the work and provides some
initial answers to the questions posed above.

2 Experimental setup

The experimental setup is shown in Fig. 1: a small cluster
composed of three scaled wind turbines is installed on the
13 m diameter turntable of the atmospheric test section of
the wind tunnel of the Politecnico di Milano (Bottasso et al.,
2014). The turntable can be rotated by the angle 8 to simu-
late different wind directions. This is achieved by first lifting
the turntable with an air cushion by approximately 20 mm
and then rotating it by means of a friction wheel. A dedi-
cated controller is used to track the user-prescribed rotation
time history. An optical encoder with an accuracy of ±0.1◦

is used as feedback. The turntable was in the lifted position
throughout the course of each experiment.

The three turbines are aligned in a row with a longitudinal
spacing of five rotor diameters (5 D), and they are termed
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WT1 (upstream), WT2 (center), and WT3 (downstream).
The wind direction8 is zero when the turbine row is parallel
to the wind tunnel centerline. In this position, the row of tur-
bines is located−1.5D to the left of the centerline when look-
ing upstream. Angle 8 is positive for a clockwise rotation of
the turntable viewed from the top (see Fig. 1); this means that
a positive 8 corresponds to the wind blowing from the left
of the row of turbines when looking upstream.

Rotating the turntable does not exactly correspond to a
change in wind direction with respect to fixed ground. In fact,
the scaled turbines experience a translational movement pro-
portional to the angular speed of the turntable and to their
distance from the center of rotation. This generates an addi-
tional flow velocity relative to the rotor, on average equal to
approximately 0.04 m s−1. In turn, this creates a small extra
local wind direction change, quantified to less than 0.5◦ for
the current setup and testing conditions. Other differences
with respect to a real wind direction change are caused by
the slight horizontal shear present in the wind tunnel flow.
The translational movement exposes the turbines to different
flow speeds as they move laterally in the tunnel during the
turntable rotation. This effect is not negligible, but it can be
accounted for if the horizontal shear is known, as discussed
later.

2.1 Wind turbine model

Three identical G1 scaled models with a rotor diameter, hub
height, and rated rotor speed of 1.1 m, 0.825 m, and 850 rpm,
respectively, were used in the experiments. The models, al-
ready used in previous research projects (Campagnolo et al.,
2016a, c, b), are equipped with active pitch, torque, and yaw
control. Strain gauges measure loads on the shaft and at the
tower base. Further details about the G1 design, its aero-
dynamic performance and several of its applications can be
found in Bottasso and Campagnolo (2020).

Each wind turbine is controlled with a dedicated real-
time Bachmann M1 system, where supervisory control
logic, pitch–torque–yaw control algorithms, and all neces-
sary safety, calibration, and data-logging functions are im-
plemented. Demanded reference values for torque, pitch, and
yaw are computed by the wind turbine controller and then
sent to the actuator control boards, where low-level control
functions are executed. The M1 system acquires torque, shaft
bending moments, and rotor azimuth position with a sample
rate of 2.5 kHz, whereas all other measurements (tower base
loads, blade pitch angles, and wind speed and direction) are
acquired with a sample rate of 250 Hz.

A standard power controller is implemented based on
Bossanyi (2000), with two distinct control regions (Burton
et al., 2011). Below rated wind speed (region II), the blade
pitch angle is held constant, while the generator torque is a
quadratic function of the rotor speed that enforces a constant
tip speed ratio (TSR). Above rated wind speed (region III),
the generator torque is kept constant, while a proportional-

integral (PI) controller changes the collective pitch of the
blades to enforce a constant generated power.

The nacelle orientation γnac is positive for a counterclock-
wise rotation when viewed from the top (see Fig. 1) and can
be varied at will with respect to the base. The positioning is
achieved with a PI controller executed on the control board
of the yaw motor. A yaw brake can be engaged once the na-
celle reaches the desired position within a tolerance of±0.2◦.
Whenever the reference orientation is changed, the brake and
the motor are simultaneously actuated to ensure smooth tran-
sitions.

The wind farm controller was implemented on a desktop
PC, communicating with the turbine controllers through the
MODBUS protocol. This plant-level controller sets a desired
misalignment angle γ with respect to the wind for each tur-
bine. A positive γ corresponds to a counterclockwise mis-
alignment looking down onto the model, i.e., the opposite
direction of 8. The relationship between wind direction, na-
celle orientation, and yaw misalignment angle is

γ = γnac−8. (1)

Figure 2 shows the behavior of the G1 rotor thrust coeffi-
cient CT and power coefficient CP with respect to the rotor-
effective wind speed UREWS (top row of the figure) and with
respect to the misalignment angle γ (bottom row of the fig-
ure).

The behavior of the thrust and power coefficients vs. rotor-
effective wind speed was obtained by closed-loop simula-
tions with FAST (Jonkman and Jonkman, 2018), using tur-
bulent flow conditions similar to the ones generated in the
wind tunnel in terms of speed and turbulence intensity. The
blade aerodynamic model uses Reynolds-dependent airfoil
polars tuned as described in Wang et al. (2020). Figure 2b
shows that the wind turbine CP is affected by the Reynolds
dependency of its airfoil polars in region II (i.e., for wind
speeds lower than approximately 5.7 m s−1). At low winds,
and hence at low rotational speeds, the blade airfoil efficiency
is reduced because of the low chord-based Reynolds number,
resulting in a reduction of CP. However, the Reynolds num-
ber has only a modest effect on the lift coefficient (Wang
et al., 2020), thus resulting in an approximately constant CT
(see Fig. 2a).

The behavior of the thrust and power coefficients vs. mis-
alignment angle was characterized with dedicated wind tun-
nel tests, conducted for γ ∈ ±31◦ with the turbine operat-
ing in region II. The results are reported in Fig. 2c, d. The
best-fitting cosine-law power-loss exponents equal 2.174 and
1.425 for the power and thrust coefficients, respectively.

2.2 Inflow characteristics

Spires placed at the inlet of the test section passively gener-
ate an atmospheric-like boundary layer. The flow was charac-
terized with three-component constant-temperature hot-wire
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Figure 2. CT (a) and CP (b) vs. rotor-equivalent wind speed UREWS. CT (c) and CP (d) vs. misalignment angle γ .

probes (CTA), scanning a vertical line 4 D upwind of WT1.
The vertical profiles of the longitudinal wind speed U (nor-
malized by the speed at hub height zH) and the turbulence
intensity (TI) are shown in Fig. 3a, b, respectively. The top
and bottom points of the rotor are indicated with solid black
lines, while a dashed black line indicates hub height. The
vertical wind profile within the rotor disk is best-fitted by a
power law with an exponent equal to 0.144, while turbulence
intensity at zH is approximately equal to 6 %, mimicking typ-
ical neutral, offshore conditions (Hansen et al., 2012).

For a correct interpretation of the wind farm control re-
sults, the small lateral nonuniformity of the wind tunnel flow
needs to be taken into account (Wang et al., 2017). In fact,
as the turntable is rotated, the turbines are also displaced lat-
erally, thereby encountering slightly different ambient condi-
tions. The ambient wind speed was measured by a pitot tube
installed at hub height, laterally shifted 1.5 D to the left of
the wind tunnel centerline and 3 D upwind of WT1. The pitot
tube is, therefore, in front of the turntable and remains fixed
with respect to the wind tunnel as the turntable is rotated.
This means that the pitot tube is exactly in front of WT1 only
for8= 0, whereas it is laterally displaced with respect to the
front turbine in all other cases. Hence, given the nonunifor-
mity of the wind tunnel boundary layer, when the turntable is
rotated the turbines are exposed to a local ambient flow that
differs slightly from the one measured by the pitot tube.

To characterize this effect, one G1 was positioned at sev-
eral different lateral locations y across the wind tunnel (see
Fig. 1). The local rotor-effective wind speed UREWS was
computed directly from the torque measured on the turbine

for each location. The resulting lateral profile of the wind
speed is reported in Fig. 3c. This diagram shows the pres-
ence of a horizontal shear with changes in wind speed up to
±4 %, for both left and right shifts with respect to the pitot
tube. These changes will clearly cause significant changes in
power, due to its cubic dependency on speed.

2.3 Dynamic wind direction changes

Testing at scale implies not only different physical dimen-
sions of the model, but also a scaling of time with respect
to the original system. Specifically, the time speedup fac-
tor is defined as nt = tM/tP, where tM is the time of the
scaled system and tP the time of the full-scale system (Bot-
tasso et al., 2014; Canet et al., 2020; Bottasso and Cam-
pagnolo, 2020). If nl = lM/lP is the scale factor, i.e., the ra-
tio between the characteristic lengths of the model lM and
of the physical system lP, then dimensional analysis gives
that tM = tPnlVP/VM, where VM and VP are the wind veloc-
ities in the two cases. For testing in a boundary layer wind
tunnel, nl =O(10−1

− 10−2) and VP/VM =O(100), imply-
ing that time flows O(101

− 102) times faster in the exper-
iment than in the physical full-scale reality. In this specific
case, the G1 turbine represents a nl = 1/160 scaled model of
an 8 MW full-scale machine (Desmond et al., 2016), while
VP/VM = 2. Therefore, time flows faster by a factor of 80 in
the wind tunnel than at full scale. Thus, 1 h of testing in the
tunnel corresponds to about 3.3 d in the field, an additional
valuable side effect of testing at scale. A simple example of
the acceleration of time is provided by the wake advection
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Figure 3. Characteristics of the wind tunnel boundary layer: vertical profiles of wind speed (a) and turbulence intensity (b), measured with
CTA probes; lateral profile of the wind speed (c), measured using the rotor as a sensor.

time, which is the time necessary for a flow perturbation to
travel from an upstream turbine to a downstream one. As a
first approximation, the wake advection time is equal to the
ratio of the distance between the two machines and the flow
speed. If the wind tunnel and full-scale inflow speeds are in a
ratio of 1/2, as in the present case, it is clear that in the wind
tunnel the wake advection time is much shorter than at full
scale, because the distance between the two turbines is much
smaller (by a factor of 160).

In order to obtain results that can be up-scaled, changes in
wind direction simulated in the wind tunnel should realisti-
cally mimic full-scale variations. To this end, a wind direc-
tion time history was measured at 1 Hz at an onshore test site
located in northern Germany using a wind vane installed at a
height of 89.4 m on a met mast (Bromm et al., 2018). Within
the available dataset, 5 d of measurements were selected and
scaled by nt , obtaining a time history used for driving the
turntable rotation. The data selection criteria were as follows:

– met mast always fully out of the wakes of neighboring
machines;

– wind direction variations within the range ±15◦ as,
given the experimental setup, wake interactions within
the cluster are expected only for 8 ∈ ±15◦;

– enough data to draw statistically meaningful conclu-
sions, using Fleming et al. (2019) as a guideline.

Figure 4a reports the frequency spectrum of the scaled
(i.e., sped-up) field-measured wind direction time series
8Met. The plot also shows the spectrum of the wind direc-
tion changes 8CTA already naturally present (without using
the turntable) in the wind tunnel flow due to the generated
turbulence, as measured with the CTA probes. The figure
shows that there is a very good match at the high frequen-
cies between the real flow and the one in the wind tunnel.
On the other hand, it is also evident that the wind tunnel
boundary layer completely misses the large-amplitude fluc-
tuations present in the field at scaled frequencies below about

0.66 Hz. Taking into account the time scaling factor, this
means that wind direction fluctuations characterized by a pe-
riod above approximatively 2 min are missing from the tun-
nel flow. Since these are the dominant wind direction changes
for wind farm control (Simley et al., 2020), a way is needed
to fill the lower band of the spectrum.

With the turntable, these missing low-frequency wind di-
rection fluctuations can be filled in. Unfortunately, an exact
reproduction of the complete spectrum is not possible due
to hardware limitations. In fact, the rotational acceleration of
the turntable is limited by the maximum force that can be ex-
erted with the driving friction wheel. At higher accelerations,
inertial effects on the models would also have to be taken into
account. To obtain a time series that could be followed by
the turntable, piecewise cubic splines were used to best fit a
2 min moving average of the wind direction time history, un-
der the constraints of maximum achievable acceleration and
velocity. The resulting time series 8turn is compared to the
sped-up 2 min average of 8Met in Fig. 4c.

Figure 4b shows the spectrum of the resulting wind di-
rections obtained by combining the natural changes present
in the wind tunnel flow with the artificial ones generated by
the turntable. A comparison with the field-measured spec-
trum shows that the two match very well at the lowest and
highest frequencies. On the other hand, the combined wind
tunnel flow has a gap in the range 0.04–0.66 Hz, which cor-
responds to direction changes between 2 and 30 min at full
scale. Filling this gap would require a modification to the ac-
tuation system of the turntable, which was unfortunately not
possible within the scope of the present work.

3 Open-loop wake-steering controller

The wind farm control strategy is the open-loop algorithm
sketched in Fig. 5. The algorithm consists of a model-based
optimization that produces a look-up table (LUT) of discrete
set points, followed by an interpolation within the precom-
puted table at given instantaneous ambient conditions.

https://doi.org/10.5194/wes-5-1273-2020 Wind Energ. Sci., 5, 1273–1295, 2020

14.4. Copy of Paper 12 185



1278 F. Campagnolo et al.: Wind tunnel testing of wake steering with dynamic wind direction changes

Figure 4. (a) Spectrum of the sped-up field-measured wind direction time series 8Met (solid blue), the turbulence-induced wind direction
changes in the tunnel8CTA (dashed red), and the turntable rotation8turn (dashed–dotted orange). (b) Spectrum of the sped-up wind direction
changes in the field 8Met (solid blue) and the combined wind direction changes in the wind tunnel 8CTA+8turn (dashed green). (c) Time
history of the 2 min average of the sped-up field-measured wind direction (blue), compared to the time history used to drive the turntable
rotation (dashed–dotted orange).

A wind farm flow model is first calibrated with the use of
preexisting data (and possibly retuned online during opera-
tion, although the present work did not make use of this pos-
sibility). Based on this model, an optimization is performed
offline to compute the optimal set points of each machine
in the farm that minimize a cost function for given ambient
conditions. In this work, the set points consist of yaw offsets
of each turbine with respect to the ambient flow direction;
a more general implementation could be additionally sched-
uled in terms of wind speed and turbulence intensity. To un-
derstand the effects of model fidelity on the controller per-
formance, LUTs were computed based on the three different
flow models described in Sect. 3.1.

During operation, filtered ambient wind conditions are
computed, including wind direction, wind speed, and tur-
bulence intensity (because of its effect on wake recovery).
These conditions can be estimated from the operational data

of the turbines (Schreiber et al., 2018), or simply by a met
mast (Fleming et al., 2019). Based on the ambient wind con-
ditions, the control logic interpolates within the LUT to com-
pute the current set points, which are then dispatched to each
individual wind turbine. The process of ambient condition
estimation, LUT interpolation, and dispatching is repeated
with a desired frequency.

Similar controllers have been recently implemented and
tested in the field (Fleming et al., 2019). However, the im-
plementation in a wind tunnel experiment has some specific
features, which are discussed next.

The ambient conditions in the experiment are character-
ized by constant mean wind speed and turbulence intensity
but variable low-frequency wind direction changes generated
by the turntable. Figure 6a shows the combined wind direc-
tion time history8CTA+8turn, its 1.5 s moving average, and
the turntable rotation8turn. In the experiments, the true wind
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Figure 5. Wind farm control scheme. The option to update the
model at runtime to recompile the LUTs (dashed line) was not used
in the present work.

direction is therefore known through the turntable encoder
with a high accuracy and signal-to-noise ratio, something
that is hardly possible in the field.

The turntable signal is filtered and provided as wind direc-
tion input to the controller. By filtering this signal, the con-
troller reacts only to low-frequency fluctuations and neglects
higher-frequency turbulent changes, which is desirable for
yaw-based control (Simley et al., 2020; Fleming et al., 2019).
However, increasing the filtering action generates longer de-
lays, which has the effect of changing the wind direction seen
by the controller with respect to the true one. This fact was
exploited here to generate a variable level of uncertainty and
study its effects on the controller performance. To assess the
effects of filtering (i.e., uncertainty), three values of the mov-
ing average time window were considered and used as input
for the controller, namely TMAvg = 1.5, 7.5, and 15 s, which
correspond to 2, 10, and 20 min at full scale. The effects
of the filter on the wind direction time series are shown in
Fig. 6b.

At runtime, the controller outputs the optimal yaw mis-
alignment angle γ1 for WT1 and γ2 for WT2 at each time step
(equal to 0.75 s, which corresponds to 1 min at full scale),
whereas the downstream turbine WT3 adopts a standard
wind-tracking yaw strategy with the same time step. To guar-
antee a more precise yaw misalignment (Bossanyi, 2018),
a direct control of the nacelle orientation was preferred to
the indirect approach used by Fleming et al. (2017, 2019).
In this method, the required absolute nacelle orientation is
computed from Eq. (1) as γnac = γ +8meas, where 8meas is
the measured wind direction (i.e., the filtered turntable en-
coder signal). The nacelle is then actuated with a maximum
yaw rate γ̇max = 10◦ s−1 (0.125◦ s−1 at full scale) to limit gy-
roscopic loads on the G1. As discussed later, the maximum
yaw rate has a significant effect on performance; it should be
noted that the value chosen here is lower than the 0.3◦ s−1

at full scale used in other publications (Bak et al., 2013;
Jonkman et al., 2009).

3.1 Wind farm models

Three different wind farm models of different fidelity were
used for the synthesis of the LUTs: the lower level of
fidelity is provided by the FLORIS model, described in
Sect. 3.1.1; the intermediate level by a data-augmented ver-
sion of FLORIS, described in Sect. 3.1.2; and the higher fi-
delity level is given by a purely data-driven model, described
in Sect. 3.1.3.

For consistency with the wind tunnel experiments, a wind
direction change was accounted for in the models as a rota-
tion of the wind farm. A variation in the wind direction is
therefore also associated with a slight variation in the ambi-
ent speed sensed by each wind turbine, because of the hori-
zontal shear of the inflow shown in Fig. 3. The extra velocity
component caused by the motion of the turbine and its effect
on the local wind direction were not included in the models
because they are negligible.

3.1.1 FLORIS model

Given a set of ambient wind conditions, the FLORIS model
computes the steady-state flow within a wind farm and, in
turn, the power output of the individual turbines (Doeke-
meijer et al., 2019). The present results were obtained with
the MATLAB implementation available online (Doekemei-
jer and Storm, 2018), using the selfSimilar velocity deficit,
the rans deflection, the wake model of Bastankhah and
Porté-Agel (2016), the quadraticRotorVelocity wake combi-
nation, and the crespoHernandez added turbulence (Crespo
and Hernández, 1996). To improve accuracy at the cost of a
slightly increased computational effort, the power of a tur-
bine is computed by integrating the flow at the rotor disk us-
ing P = 1/2ρ

∫
A
V 3CPdA (where ρ is air density, V the local

wind speed, and A the rotor disk area), instead of the orig-
inal implementation based on the rotor-average wind speed.
The speed dependency of the thrust and power coefficients
and the yaw-dependent power losses reported in Fig. 2 were
implemented as well. The ambient wind field in the model
is horizontally sheared to match the wind tunnel inflow. The
model was tuned based on wake measurements of one iso-
lated G1 turbine, as discussed in Campagnolo et al. (2019),
obtaining the parameters reported in Table 1; notice that, hav-
ing been tuned with ad hoc measurements, the values of these
parameters differ from the ones provided by Bastankhah and
Porté-Agel (2016) and Crespo and Hernández (1996). The
wind speed at y = 0 was set to 5.25 m s−1, while the turbu-
lence intensity was set to 6.1 %.
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Figure 6. (a) Time history of the combined wind direction changes experienced by the farm (blue), its 1.5 s moving average (orange), and
the measured turntable rotation (red). (b) Effect of the increasing time-averaging window TMAvg on the wind direction time series.

Table 1. FLORIS parameters calibrated according to Campagnolo et al. (2019).

α β ka kb TIa TIb TIc TId

0.9523 0.2617 0.0892 0.027 0.082 0.608 −0.551 −0.2773

3.1.2 Data-augmented FLORIS model

An improved level of fidelity is obtained by an augmented
version of the baseline FLORIS model (termed FLORIS-
Augm), following the approach described in Schreiber et al.
(2020). The central idea of model augmentation is to sur-
gically insert additional terms into the governing equations
to represent expected errors or effects lacking in the model
(for example, secondary steering, which is very relevant in
the present context and not present in the version of FLORIS
used here). The correction terms are expressed in terms of
parametric functions that are identified (or learned) from op-
erational data. Since a baseline performance is provided by
the underlying FLORIS model, learning is limited to small
errors, which somewhat eases the requirements on the data.
On the contrary, a purely data-driven approach, which does
not use a reference model as a baseline, poses more stringent
requirements on the training dataset; indeed, a data-driven
model only “knows” what is in the data and nothing else. In
practical field applications, it is possibly difficult to generate
a rich-enough dataset to identify a model of high quality and
wide generality.

The model augmentation method was demonstrated with
the use of standard SCADA (supervisory control and data
acquisition) data in Schreiber et al. (2020). Here, a simi-
lar approach was followed, by adding to FLORIS correction
terms for nonuniform inflow and secondary steering (Flem-

ing et al., 2018). The errors were then identified based on the
power output of the three turbines in a variety of conditions,
including different wind directions and different yaw mis-
alignments, using a subset of the data used for the derivation
of the data-driven model described in the following. Further
details are given in Schreiber et al. (2020).

Although the FLORIS-Augm model is more accurate than
the baseline FLORIS, it is still not perfect. Therefore it is
interesting to verify whether an even higher-fidelity model
might improve the performance of the wind farm controller.
To answer this question, yet another unique ability of wind
tunnel testing was exploited here. An extensive, high-quality
dataset covering all operating conditions of interest was ob-
tained in the wind tunnel. Based on this dataset, a high-
fidelity, purely data-driven model is derived next.

3.1.3 Data-driven model

A dataset was generated by measuring the power out-
put of the three turbines for the 11 wind directions 8=
[0,±2.29,±4.58,±6.89,±9.21,±11.54]◦. For each wind
direction, the two upstream turbines were operated at various
steady misalignment angles γ in the range ±10◦ around the
optimal misalignments that, according to the FLORIS model,
maximize the total plant power.

The data-driven model was obtained by best-fitting a re-
sponse surface to the resulting set of data points, using
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shape functions inspired by experimental observations and
the wake superimposition models used in FLORIS. The for-
mulation of the interpolating shape functions is presented in
Appendix A.

3.1.4 Normalized power

The normalized power Pn,j of the j th wind turbine is defined
as

Pn,j =
Pj

1/2ρAU3
j

, (2)

where Uj is the ambient wind speed at the location of that
turbine. Here, the ambient speed is measured by the reference
pitot tube and then corrected for the tunnel horizontal shear.
The total normalized wind farm power is defined as Pn,WF =∑
jPn,j .
For a turbine operating in undisturbed inflow, normalized

power is equal to the standard power coefficient CP. How-
ever, normalized power and the power coefficient differ for a
turbine operating in the wake of an upstream machine. Nor-
malized power is preferred to the power coefficient in the
present analysis, because it reveals the reduced power extrac-
tion of a waked turbine when compared to an unwaked one,
a difference that is lost to the classical power coefficient. In
fact, two turbines – one in the wake of the other – might be
operating in region II at the same power coefficient, although
the downstream machine would have a much reduced power
output than the front one, which would result in a lower nor-
malized power compared to the upstream turbine.

3.1.5 Comparison of the three models

Figure 7 shows the normalized power of the individual tur-
bines and the whole cluster for the case 8= 0◦ (i.e., with
the wind blowing parallel to the row of turbines). Results are
plotted versus the misalignment angles γ1 and γ2 of the two
front turbines WT1 and WT2. Measured data points are indi-
cated with red dots, while smooth surfaces show the predic-
tions of the baseline FLORIS (left), FLORIS-Augm (center),
and data-driven (right) models. A quantitative overall mea-
sure of the quality of the fits is given by the root-mean-square
(rms) errors eRMS, expressed in percent of the available free-
stream wind power and included in the legends.

By looking at the plots and at the fitting RMS errors, it ap-
pears that the quality of the models degrades when moving
downstream along the row of turbines, as expected, consid-
ering the increasing role of wake interactions. A comparison
of the plots by column reveals the increasing level of fidelity
of the models, where FLORIS-Augm is better than FLORIS,
and data-driven is better than FLORIS-Augm.

3.2 Look-up table computation

In general, the LUTs for an open-loop wake-steering con-
troller should depend on wind direction, wind speed, and tur-

bulence intensity (because of its effect on wake recovery).
However, in the present wind tunnel experiments the last two
parameters are kept constant, so that the LUTs were sched-
uled only with respect to wind direction. A resolution of 0.2◦

was used for wind directions 8 ∈ ±2◦, whereas a lower res-
olution of 1◦ was used outside of this range.

For robustness, wind direction and yaw uncertainties
should be taken into account in the calculation of the LUTs
(Quick et al., 2017; Rott et al., 2018; Simley et al., 2020).
Here only uncertainties in wind direction were considered,
because yaw uncertainties due to possible sensor errors are
negligible for the calibrated G1s.

Steady-state models such as the ones used in this work al-
ready include the effects of the higher-frequency wind direc-
tion changes of the spectrum. For example, the wake profiles
measured by Campagnolo et al. (2019) and used to identify
the model parameters of Table 1 represent mean steady val-
ues, whereas the actual instantaneous wake undergoes me-
andering fluctuations. In this sense, it is important to realize
that the wake model already contains the effects of the wind
direction changes naturally present in the wind tunnel flow,
whose spectrum is reported in Fig. 4a in red. However, steady
models lack the flow dynamics at the lower frequencies and
the delays caused by the advection downstream with a finite
travel speed. These models are therefore only capable of pre-
dicting slow changes of wind turbine power (Simley et al.,
2020). A robust control formulation (Rott et al., 2018) should
take into account the uncertain knowledge of the wind direc-
tion at these slower timescales.

Here again, wind tunnel testing presents some opportuni-
ties that are hardly available when testing in the field. In fact,
the actual turntable rotation represents the “ground truth”,
while the controller takes as input the filtered signal (shown
in Fig. 6b). It follows that wind direction uncertainties are
known in this case and are represented by the difference 18
between these two quantities. Therefore, one can change the
value of the uncertainties (which is challenging in reality at
full scale, since the ground truth is typically unknown) by
simply changing the filtering of the turntable rotation. This
approach was used here to study the effects that uncertain-
ties have on the performance of the controller. Figure 8 re-
ports the distribution of18 for two values of TMAvg equal to
7.5 and 15 s. The fitted Gaussian normal distributions have
standard deviations σ8 = 2.01 and 3.42◦, respectively. For
TMAvg = 1.5 s wind direction uncertainties are negligible.

For each flow model, robust LUTs were computed based
on the approach of Rott et al. (2018) for σ8 = [0 : 2 : 6]◦. The
MATLAB pattern-search algorithm was used to solve the re-
sulting bounded optimization problem. For each considered
wind direction 8, the optimal yaw misalignments γ ∗1 and γ ∗2
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Figure 7. Normalized power of WT1 (first row), WT2 (second row), WT3 (third row), and the wind farm (fourth row), as functions of
the misalignment angle γ of the two front turbines WT1 and WT2, for the wind direction 8= 0◦. Red dots: experimental measurements.
Smooth surfaces: baseline FLORIS (left), FLORIS-Augm (center), and data-driven (right) models.

Figure 8. Distribution of wind direction uncertainties, i.e., difference between the actual turntable position and its filtered value (which is
the wind direction input to the controller) for TMAvg = 7.5 s (a) and TMAvg = 15 s (b).
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for WT1 and WT2 were computed as

[
γ ∗1 (8),γ ∗2 (8)

]
= argmax

γ1,γ2

9∑
k=0

PM
(
8+18k,

γ1−18k,γ2−18k,−18k
)
f (18k), (3a)

such that: [γ1,γ2] ∈ ±30◦, (3b)

where 18k = (4k/9− 2)σ8 is the wind direction uncer-
tainty varying in the range±2σ8, f ∼N (0,σ8) is the Gaus-
sian normal distribution, and PM (8,γ1,γ2,γ3) is the wind
farm power predicted by the wind farm model.

The LUTs obtained with the baseline FLORIS model for
different values of σ8 are shown in Fig. 9a and b. The effect
of an increasing uncertainty is that of generating a smoother
transition around 8= 0◦, and in general smaller misalign-
ment of the turbines with respect to the wind.

Figure 9c and d compare the LUTs obtained with the three
models for σ8 = 0◦. Considering the front turbine misalign-
ment γ1 (Fig. 9c), the main difference among the LUTs is
in the position of the transition point between positive and
negative yaw offset, which is 0, −0.5, and −0.8◦ for the
baseline FLORIS, FLORIS-Augm, and data-driven models,
respectively. The nonzero transition point predicted by two
of the models can be ascribed to the nonsymmetric behav-
ior of power for the cluster of turbines, shown in Fig. 10a
for the greedy policy, i.e., no wake-steering control. Indeed,
the figure shows that the minimum of the wind farm normal-
ized power is at about−0.8◦, i.e., for a wind blowing slightly
from the right of the row of turbines when looking upstream.
This is due to the combined effects of the tunnel horizontal
shear and the slight lateral deflection for null yaw misalign-
ment created by the vertically sheared flow.

Looking at the second turbine misalignment γ2 (Fig. 9d),
there is a significant difference among the three models. In
fact, the baseline FLORIS does not include secondary steer-
ing, which is on the other hand represented to a different
level of fidelity by the FLORIS-Augm and data-driven mod-
els. This effect leads to smaller misalignments for the sec-
ond compared to the front machine, in agreement with other
recent wind tunnel studies (Campagnolo et al., 2016c; Bas-
tankhah and Porté-Agel, 2019).

4 Results

4.1 Maximum theoretical performance of the controllers

Before considering the behavior of the controllers in the ex-
periments, it is interesting to establish a theoretical upper
limit to their performance, neglecting dynamic effects, lim-
ited yaw rates, and uncertainties. To this end, the data-driven
model was used as plant, being essentially an exact represen-
tation (except for measurement errors) of the wind farm be-
havior for a constant mean wind speed. The wind farm power
output was computed using the greedy control policy and the

LUTs for σ8 = 0◦. The total power output of the cluster is
shown in Fig. 10a, while panel (b) shows the percent power
gain with respect to the greedy policy.

Results indicate that all models lead to positive gains for
all investigated wind directions, up to about 25 % in the
best conditions. The gains for the baseline FLORIS model
are only slightly smaller than for the FLORIS-Augm and
the data-driven model. This appears to indicate that the cost
function of problem (3a) is rather insensitive to the details of
the underlying model in the absence of uncertainties. How-
ever, these results might be misleading, because uncertain-
ties are indeed present in reality and play a significant role,
as shown later.

The results of Fig. 10 can be used to compute the max-
imum possible performance of the controllers for the wind
direction time series used in the experiments and shown
in Fig. 4. Under the assumption of an exact knowledge of
the wind direction, an instantaneous realization of the re-
quired yaw misalignments, and the absence of any flow dy-
namics, the power gains of the baseline FLORIS, FLORIS-
Augm, and data-driven LUTs are respectively equal to
10.73 %, 11.41 %, and 11.84 %. These figures establish a
non-achievable maximum theoretical performance of the
controllers for this particular farm layout and wind direction
time history.

4.2 Impact of different non-robust controller
implementations

Next, wind tunnel tests were performed to characterize the
effects of the following aspects of open-loop wake steering:

– uncertainty level (which, in the present context, is re-
lated to the filtering of the wind direction, i.e., of the
turntable rotation);

– effect of a finite yaw rate and of neglected wake dynam-
ics;

– model fidelity, according to the three considered models
FLORIS, FLORIS-Augm, and the data-driven model.

The analysis is conducted first for a non-robust controller
implementation, i.e., for the formulation expressed by prob-
lem (3a) with σ8 = 0◦, while the performance of a robust
controller is considered later in the paper.

Dynamic changes in wind direction were obtained by ac-
tuating the wind tunnel turntable, as described in Sect. 2.3,
in the offshore inflow conditions described in Sect. 2.2. Each
test was performed for a total of 90 min divided into nine
intervals of 10 min each. This allowed for the periodic cal-
ibration of the wind tunnel and the wind turbine sensors, to
guarantee the highest possible accuracy of the measurements.

Tests with the greedy control strategy were repeated four
times, dispersed over the course of the experimental cam-
paign. The averaged power values for the 90 min wind direc-
tion time series were normalized with the results of the first
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Figure 9. LUTs of optimal misalignment angles γ1 and γ2 vs. wind direction 8. (a, b) FLORIS LUTs for different uncertainty levels. γ ∗1
for WT1 (a), γ ∗2 for WT2 (b). (c, d) LUTs for different models and σ8 = 0◦. γ ∗1 for WT1 (c) and γ ∗2 for WT2 (d).

Figure 10. (a) Wind farm power output as a function of wind direction for different control policies. (b) Maximum theoretical percent power
gain with respect to the greedy policy for the three flow models.

test and are shown in Fig. 11 for the whole wind farm and
for each wind turbine. The standard deviation of these values
across the four repetitions is equal to 0.98 % of the available
free-stream wind power for the whole cluster, and to 0.15 %,
0.42 %, and 0.51 % for WT1, WT2, and WT3, respectively.
These uncertainties, which can be mainly ascribed to errors
of the pitot transducer and shaft torque meter, are acceptable
considering the purpose of this analysis and are well below
the differences caused by the various effects studied herein.

4.2.1 Effect of wind direction uncertainties

Experimental tests were performed with non-robust LUTs
obtained from the baseline FLORIS model for the three filter-
ing values TMAvg = 1.5 s (σ8 = 0◦), 7.5 s (σ8 = 2.01◦), and
15 s (σ8 = 3.42◦), which correspond to the three wind direc-
tion time histories shown in Fig. 6b.

The power gains with respect to the greedy policy are
shown in Fig. 12. Average values aggregated over the whole
wind direction time history are shown at wind farm level and
for the single turbines. As expected, results indicate a pro-
gressive degradation of performance for an increasing level
of uncertainty (i.e., for increasing TMAvg and hence σ8). The
effects on the front turbine are very limited, whereas they are
more pronounced for the second and third turbines due to
the effects caused by wake interactions. Indeed, power vari-
ations at the front turbine caused by a non-exact alignment
with the wind are rather small according to the cosine law
shown in Fig. 2d; on the other hand, a non-exact misalign-
ment has a much amplified effect on the location of the wake
downstream of the rotor, which may induce large losses on
the downstream turbines. Such losses could be even larger
for a greater spacing between turbines than the 5 D of the
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Figure 11. Repeatability of the experiments: averaged, normalized power for the wind farm (a) and the individual wind turbines (b) for four
90 min repetitions with the greedy control strategy.

Figure 12. Averaged power gains aggregated over all wind directions for different values of TMAvg (i.e., of wind direction uncertainties σ8).

present experiment. The impact on the overall farm power
output is substantial: increasing σ8 from 0 to 3.42◦ cuts the
power gain by more than half.

4.2.2 Effect of yaw rate and neglected wake dynamics

Even in the absence of wind direction uncertainties (TMAvg =

1.5 s, σ8 = 0◦), the farm-level power gain (about 6.7 %,
Fig. 12a) is much lower than the established theoretical up-
per limit (10.73 %, Sect. 4.1). This difference is caused by the
limited yaw rate of the turbines and by having used a steady
model and controller, which implies neglecting the dynamics
of wake interaction (including the intrinsic dynamics of the
wake, its slow-scale meandering fluctuations, and the advec-
tion downstream of any change with a finite travel speed).

Figure 13 establishes the impact of these effects on the
performance of the controller. The plot reports plant-level
power gains with respect to the greedy policy, as functions
of wind direction. To reduce noise in the figure, each point
in the plot represents the average power gain for a wind di-
rection bin with a width of 2.5◦. The solid orange line with
∗ symbols reports the gains measured in the experiment. The
solid blue line with ◦ symbols indicates the theoretical up-
per limit when using the baseline FLORIS model, obtained
by binning the data shown in Fig. 10b. The dashed–dotted

green line with 4 symbols shows the gains computed by a
simulation conducted with the data-driven model, using the
yaw misalignment angles γMeas measured in the experiment.
Since the data-driven model can be assumed to be an exact
steady-state representation of the experiment, the green line
of the figure shows the impact of a limited yaw rate on the
maximum theoretical performance. Finally, the dashed red
line with � symbols shows the gains when using the yaw
misalignment angles γ ∗ requested by the controller, com-
puted with the data-driven model, i.e., without considering
limits in the yaw rate.

These curves allow for the quantification of the following
effects:

– The difference between the lower orange curve and the
green curve can be attributed to neglected wake dynam-
ics; this non-negligible difference could in principle –
at least in part – be regained by using a dynamic con-
troller, instead of the steady-state controller considered
here.

– The difference between the green and the red curves is
due to a finite yaw actuation rate. This difference in-
dicates that another non-negligible power capture im-
provement could be gained by a faster actuation, which
however would have to be traded against increased load-
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Figure 13. Wind farm power gains with respect to the greedy policy
vs. wind direction 8. Tests were performed with zero wind direc-
tion uncertainty (σ8 = 0◦), and LUTs were synthesized from the
baseline FLORIS model.

ing and actuator duty cycle (ADC). This gain is limited
to relatively small misalignments (about8 ∈ ±6◦ in the
figure).

– Finally, the difference between the red and the upper
blue curve is due to remaining effects, such as the finite
sampling time of the controller. This small difference
indicates that these effects are negligible with respect to
the others.

4.2.3 Effects of wind farm model fidelity

The influence of wind farm models with an increasing level
of fidelity was assessed for the case of negligible wind direc-
tion uncertainties (TMAvg = 1.5 s, σ8 = 0◦). Figure 14 shows
the averaged wind farm power gains aggregated over the
whole time history for the three different models. The ex-
perimentally measured gains are reported in Fig. 14a, while
Fig. 14b shows the gains obtained by simulations with the
data-driven model as plant and the misalignment angles
γMeas measured in the experiments. The maximum theoret-
ical power gains of Sect. 4.1 are shown in Fig. 14c. Again,
the lower gains of Fig. 14b compared to Fig. 14c can be at-
tributed to the limited yaw rate. The lower power gains of
Fig. 14a compared to Fig. 14b can be attributed to neglected
dynamics.

The figures show that LUTs synthesized with better wind
farm models lead to higher power gains. In fact, for the wind
tunnel experiments, employing the FLORIS-Augm and data-
driven LUTs increases the power gain by 5.1 % and 16.7 %,
respectively, compared to the baseline FLORIS case. The
simulation results of Figs. 14b and c show a similar trend.
However, the benefits of the highest-fidelity model over the
lower-fidelity ones for both simulation cases (10.1 % and
10.4 %) are smaller than in the experiments (16.7 %). This
might be due to dynamic effects, which could affect the con-
troller performance in different ways depending on the un-
derlying flow model.

4.3 Robust implementation accounting for wind
direction uncertainties

Further experiments were conducted using robust LUTs
computed according to problem (3a) for σ8 = [0 : 2 : 6]◦

based on all three models. For all tests, the wind direction
(i.e., the turntable encoder signal) was filtered with a mov-
ing average with TMAvg = 7.5 s. This corresponds to 10 min
at full scale, similarly to typical 10 min SCADA data. As
shown in Fig. 8, this means that the simulated wind direc-
tion uncertainty in the experiments had a standard deviation
σ8 = 2.01◦.

Figure 15 reports the power gains with respect to the
greedy case for the baseline FLORIS model for varying un-
certainty levels σ8 in the formulation of the LUTs (i.e., for
increasing robustness). To reduce noise, the plot was gener-
ated with average values according to wind direction bins
with a width of 2.5◦. The figure shows that, with an in-
creasing level of uncertainty, power is shifted from the most
downstream machine (bottom left plot) to the upstream one
(top left plot), whereas the turbine in between is substan-
tially unaffected (top right plot). This makes intuitive sense:
with large uncertainties in the wind direction, the power out-
put of downstream machines becomes more uncertain; there-
fore, the controller tries to lose less power upstream, where
changes in wind direction have a more limited impact on
the local capture. This clearly comes at a cost, and the total
power output at the farm level decreases (bottom right plot).
With small uncertainties, the opposite happens: since the lo-
cation of the wakes is more certain, it pays off to deflect the
wake of the front machines in order to try to boost capture
downstream.

It should also be noted that wind farm power gains may be
negative away from conditions with strong wake interactions.
This is indeed the case here for wind directions 8<−10◦

and 8> 8◦. This suggests that wake steering should only
be applied in cases where strong enough interactions are ex-
pected, and switched off elsewhere.

Figure 16a shows the overall experimental power gains
with respect to the greedy case for the various models and
for increasing robustness. Additionally, Fig. 16b and c re-
port simulation results with the data-driven model as plant
and the effectively realized misalignment angles γMeas or the
demanded misalignment angles γ ∗, respectively. The power
gain change with respect to the FLORIS LUTs with σ8 = 0◦

is reported above each column. If one looks at the experi-
mental data, shown in Fig. 16a, the power gains are equal to
about 4 %–6 %, a range that is considerably lower than the
theoretical maximum reported in Fig. 14c. Moreover, gains
are higher and less affected by uncertainties for the better-
fidelity model. From this point of view, it appears that a
higher-fidelity model could provide better and more robust
results than a lower-fidelity one.

The situation considered here is indeed much more realis-
tic than the one discussed in Sect. 4.2, and the lower gains
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Figure 14. Normalized wind farm power gains for the three models of different fidelity: (a) experimental results, (b) simulations with γMeas,
and (c) maximum theoretical power gain.

Figure 15. Power gains with respect to the greedy policy vs. wind direction, shown for the baseline FLORIS model and increasing robustness
of the LUTs.

observed in this case are due to wind direction uncertain-
ties, limited turbine yaw rate, and wake propagation dynam-
ics. The best performance in the experiments is obtained with
the data-driven model for σ8 = 6◦. Additionally, the exper-
imental results of the FLORIS-Augm model are better than
the ones of the baseline FLORIS. For both the data-driven
and the FLORIS-Augm models, lower gains are obtained
when neglecting uncertainties (σ8 = 0◦), which points to the
importance of using a robust formulation. Surprisingly, the
baseline FLORIS model exhibits just the opposite behavior.

The maximum gains in the experiments are obtained for
σ8 = 4 and 6◦ for the FLORIS-Augm and data-driven mod-
els, respectively. These values are significantly higher than
the actual uncertainty in the wind direction signal (equal to
σ8 = 2.01◦). This is probably due to the limited yaw rate. In

fact, Fig. 16b shows that with a limited rate even the simula-
tion results yield the best gains for σ8 = 4◦, while Fig. 16c
shows that without rate limits the optimal performance is ob-
tained for the effective uncertainty σ8 = 2◦ present in the
driving signal. This makes intuitive sense: LUTs computed
with a lower uncertainty result in higher gradients of the
misalignment angle with respect to wind direction changes,
which are less likely to be achieved by a limited yaw rate.

These results allow for some interesting considerations.
First, if the model is strongly biased, as in the present base-
line FLORIS case, introducing robustness in the formulation
may decrease performance. This is in contrast to the results
reported by Rott et al. (2018), who, however, did not consider
biased models. On the contrary, robustness increases perfor-
mance if the underlying models have better fidelity, which is
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Figure 16. Overall power gains for the three models of different fidelity and increasing robustness of the LUTs: (a) experimental results,
(b) simulations with γMeas, and (c) simulations with γ ∗.

the case here for the FLORIS-Augm and data-driven mod-
els. Moreover, the impact of a limited yaw rate should cer-
tainly be taken into account in the calculation of the LUTs,
as proposed by Simley et al. (2020). More importantly, better
models and robust LUTs lead to better performance.

4.4 Impact on actuator duty cycle and loads

The wind tunnel experiments were also used to evaluate the
impact of wake steering on yaw control effort and fatigue
loads.

The average wind farm yaw ADC is defined as

ADCWF =
1

NWF

NWF∑
j=1

1
T

T∫
0

∣∣γ̇nac,j (t)
∣∣

γ̇max
dt, (4)

where γ̇nac,j (t) is the time rate of change of the orientation of
the j th wind turbine, andNWF = 3 is the number of turbines.

The average wind farm ADC is an indicator of the usage of
the yaw actuators and could therefore be used to quantify the
impact of wake-steering control on the maintenance cost of
the yaw drives.

Figure 17 shows the increase 1ADCWF with respect to
the greedy control policy. The effect of filtering the wind di-
rection signal is shown in Fig. 17a for the non-robust LUT
baseline FLORIS formulation. As expected, a longer averag-
ing window smooths the signal, resulting in less yaw activity
(but also less power and more fatigue damage, as shown in
Figs. 12 and 18a). The increase in ADC with respect to the
greedy control case is, however, very substantial.

The results obtained with robust LUTs based on the three
models are shown in Fig. 17b, for a wind direction signal fil-
tered with TMAvg = 7.5 s. Comparing Fig. 17b with Fig. 17a
shows that a robust formulation decreases ADC, as expected
by the reduced misalignments prescribed by the controller
(see Fig. 9a, b). Increasing robustness has a dramatic ef-
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Figure 17. Change in wind farm yaw ADC with respect to the greedy case. (a) Effect of direction uncertainty: non-robust LUT for the
baseline FLORIS model and varying TMAvg. (b) Effect of robustness and model fidelity: LUTs for the three models and increasing robustness,
for a wind direction signal filtered with TMAvg = 7.5 s.

Figure 18. Change in combined rotating shaft DELs with respect to the greedy case. (a) Effect of direction uncertainty: non-robust LUT
for the baseline FLORIS model and varying TMAvg. (b) Effect of robustness and model fidelity: LUTs for the three models and increasing
robustness, for a wind direction signal filtered with TMAvg = 7.5 s.

fect on ADC, which however is still much higher than in
the greedy case even for σ8 = 6◦. There is a clear tradeoff
in wake steering between the benefits of an improved power
capture and the detriments caused by an increased ADC. Ad-
ditionally, the figure also shows that model fidelity has only
a relatively minor effect on ADC.

Damage Equivalent Loads (DELs) were computed from
bending moments measured on the rotating shaft and at the
tower base. Load signals were first filtered above the 6P rotor
frequency to remove high-frequency mechanical vibrations.
In addition, tower loads were corrected from 1P harmonics
generated by the small inertial and aerodynamic imbalance
of each rotor. A similar correction was applied to the fixed-

frame hub loads computed from the rotating shaft compo-
nents. Once cleaned of the 1P component, the fixed-frame
loads were projected back onto the shaft frame, obtaining ro-
tating loads corrected for rotor imbalance.

Bending DELs of the rotating shaft are reported in Fig. 18,
while tower base bending DELs are given in Fig. 19. In both
cases, combined DELs were obtained by projecting the two
measured orthogonal bending components on the direction
associated with the maximum DEL, and normalizing by the
temporal average of 1/2ρπR3U2

Pitot, where R is the rotor ra-
dius. The loads for WT1 for varying TMAvg and for the base-
line FLORIS cases are not reported in the figure, due to a
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Figure 19. Change in combined tower base DELs with respect to the greedy case. (a) Effect of direction uncertainty: non-robust LUT for
the baseline FLORIS model and varying TMAvg. (b) Effect of robustness and model fidelity: LUTs for the three models and increasing
robustness, for a wind direction signal filtered with TMAvg = 7.5 s.

problem with the recording of the rotor azimuth of that tur-
bine during these tests.

A few observations can be made from the results for
the shaft DELs. First, as expected and as clearly visible
in Fig. 18a, load mitigation with non-robust LUTs worsens
rapidly for increasing uncertainty (i.e., increasing TMAvg),
since more wake interactions are taking place downstream.
Second, when using robust LUTs, model fidelity seems to
have only a modest effect on DELs, as shown in Fig. 18b.
Third, by pointing the rotor away from the wind, the DELs
of the front machine have a moderate increase, which is again
an expected behavior. However, it is particularly interesting
to look at the effect of varying robustness. Indeed, only a
marginal increase in DELs is observed for σ8 = 6◦, which
still corresponds to significant power gains (cf. Fig. 16).
Moreover, wake steering is particularly beneficial for the
DELs of the second and third turbines, with reductions vary-
ing between 7 % and 12 %, depending on the LUTs. In gen-
eral, DEL reductions seem to be correlated with power gains:
robust LUTs with the largest power gains also generate the
maximal load reductions.

Similar conclusions can be drawn from looking at the re-
sults for the tower base DELs, despite some differences com-
pared to the shaft loads. Although the absolute loads on the
front turbine never exceed those of the downstream ones, the
tower DELs of WT1 increase much more significantly with
yaw misalignment than the shaft DELs (compare top plot of
Fig. 19b with the one of Fig. 18b). Again the increment be-
comes almost negligible when robust LUTs computed with
σ8 = 6◦ are used, as shown in Fig. 19b. The tower DELs of
the second turbine are significantly reduced, up to about 30 %
depending again on the LUTs and on the filtering of the wind

direction, whereas the load mitigation on the third turbine is
less pronounced and shows a less clear trend.

5 Conclusions

This paper has presented an analysis of the effects of wind
direction changes on the performance of an open-loop wake-
steering controller.

The study was based on the results of a new unique set of
experiments conducted with three scaled turbines operated in
a large boundary layer wind tunnel. Wind direction changes
were simulated with a turntable, driven by actual measure-
ments performed in the field that were scaled to match the ac-
celerated time of the experiment. The filtered wind direction
provided as input to the controller was shown to represent a
realistic approximation of the signal that could be acquired
by a met mast in the field. Three different models of increas-
ing fidelity were used for the synthesis of the control laws.
The control formulation was based on an established robust
approach, which includes a naive deterministic optimization
as a special case.

The unique possibilities offered by testing in the known,
repeatable, and controllable environment of the wind tunnel
were exploited here to

– establish a theoretical upper limit to the performance of
the controller in the absence of dynamics;

– separate the effects of neglected dynamics, model fi-
delity, and actuation rate;

– feed to the controller a variable level of uncertainty, in
order to quantify its effects on performance.
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Based on the results of this study, the following conclu-
sions can be drawn:

– Higher-fidelity models lead in general to slightly better
results in terms of power capture, whereas the effects
of fidelity on actuator usage and fatigue loads are mod-
est. In addition, higher-fidelity models appear to be less
susceptible to the effects of uncertainties.

– The use of a robust formulation is beneficial in terms
of power capture but yields even higher payoffs when
looking at other metrics. In particular, the overall plant-
level ADC and the DELs of the front turbine are greatly
reduced when compared to a non-robust formulation.

– The previous statement is however only true if the un-
derlying flow model is accurate enough. In fact, the
use of a robust formulation actually decreased perfor-
mance for the baseline FLORIS model (which lacks
important effects such as secondary steering), in terms
of both power capture and load mitigation downstream.
This seems to indicate that excessively simplified mod-
els should probably be avoided.

– Increasing the robustness of the controller has the ef-
fect of shifting power upstream, as the position of the
wakes is affected by larger uncertainties than the ones
caused on the front turbine by a non-exact alignment
with the wind. This however comes at a cost, as higher
wake interactions are allowed to take place for increas-
ing robustness, in turn leading to a lower power capture
at the plant level.

– A robust implementation may lead to power losses in
conditions with weak or absent wake interactions. This
might suggest the use of wake steering only around
conditions where significant wake effects are expected,
whereas it should be switched off elsewhere.

– There is a non-negligible margin in power capture per-
formance that may be attributed to dynamic effects. This
seems to indicate that dynamic controllers, as opposed
to the steady-state ones used here, might lead to a better
performance, at the cost of a higher complexity.

– Yaw rate is an important performance driver, and indeed
higher rates achieve better results in terms of power
output at the farm level. However, this clearly comes
at a large cost in terms of actuator usage and load-
ing. Such tradeoffs can only be quantified by a system-
level design study, which is however turbine- and plant-
dependent and beyond the scope of this paper.

The present work could benefit from improvements to the
experimental setup and the control methods. A relatively
straightforward modification to the turntable could allow for
higher accelerations, filling a missing band of frequencies in
the wind direction spectrum. Instead of using the turntable
rotation as an approximation of a met-mast-measured wind
direction, the ambient conditions could be estimated directly
from the wind turbine operational data (Schreiber et al.,
2018). Finally, dynamic closed-loop controllers could be
tested to understand and quantify their potential benefits with
respect to the present simpler approaches.
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Appendix A: Interpolating functions for the
data-driven surrogate model

A surrogate model of the behavior of the cluster of three
turbines is derived based on experimental measurements of
power and wake displacement and on wake superposition
principles.

Figure A1a reports, as a function of the wind direction
8, the measured normalized power Pn,dalign (see Sect. 3.1.4)
of the downstream turbine in a two-turbine cluster operat-
ing below rated wind speed. Both turbines are aligned with
the wind, i.e., γu = γd = 0, where γu and γd are the yaw mis-
alignments of the upstream and downstream turbines, respec-
tively. The measured data points can be interpolated with the
following function:

Pn,dalign

CII
P
=


1−B (1− sin(πC8−D)) ,

if D−3/2π
πC

<8<
D+π/2
πC

,

1, otherwise,
(A1)

where CII
P is the power coefficient below rated speed, while

B > 0, C > 0, and D are tunable parameters.
Figure A1b reports the lateral displacement δwc of the

wake of a G1 turbine as a function of the wind misalign-
ment angle γ , measured 5 D downstream of the rotor. The
measured data points can be interpolated with the following
function:

δwc = E sin(Fγ ) , (A2)

where E > 0 and F > 0 are tunable parameters. When the
wake of an upstream turbine is deflected, the wake overlap
at the downstream machine can be approximated with the
overlap that would occur for a wind direction8+18, where

18≈ sin18=
δwc

1X
=
E sin(Fγ )
1X

, (A3)

and 1X is the longitudinal distance between the two tur-
bines.

In region II, the power coefficient of a wind-misaligned
turbine can be expressed as

CP = C
II
P cosn (γ +φ) , (A4)

where n is the power loss exponent, and φ is the phase asym-
metry caused by a vertically sheared inflow.

These interpolating functions can be used to express the
normalized power Pn,d at a misaligned downstream machine
as a function of γu for a given wind direction 80. In fact,
inserting Eq. (A3) into Eq. (A1), considering Eq. (A4), one
gets

Pn,d =



CII
P

(
1−B

(
1− sin

(
πĈ sin(Fγu)− D̂

)))
cosnd (γd+φd) ,

if D̂−3/2π
πĈ

< sin(Fγu)< D̂+π/2
πĈ

,

CII
P cosnd (γd+φd) ,

otherwise,

(A5)

where Ĉ = CE/1X and D̂ =D−πC80, while nd and φd
are, respectively, the power loss exponent and phase asym-
metry of the downstream turbine. For a three-turbine cluster,
such as the one described in Sect. 2, Eq. (A5) can be used to
model the normalized power of WT2.

The normalized power at the downstream turbine j af-
fected by the wake released by the upstream turbine i can
also be written as

Pn,j = C
II
P
(
1− δi(Xj )Ai→j

)3cosnj
(
γj +φj

)
, (A6)

where δi(Xj ) is the speed deficit of the wake of turbine i
at the downstream distance Xj where turbine j is located,
and Ai→j is the fractional overlap area of the rotor of j with
the wake of i. Using Eqs. (A5) and (A6), the speed deficits
caused by turbine-to-turbine wake interactions can be readily
obtained. In fact, the deficit at turbine j caused by the wake
released by turbine i is computed as

δi(Xj )Ai→j =
1−

(
1−Bij

(
1− sin

(
πĈij sin(Fiγi)− D̂ij

)))1/3
,

if
D̂ij − 3/2π

πĈij
< sin(Fiγi)<

D̂ij +π/2

πĈij
,

0, otherwise,

(A7)

where Bij , Ĉij , D̂ij , and Fj are the corresponding tunable
parameters.

Finally, the method of the sum of energy deficits
(Renkema, 2007) is used for combining the wakes of the two
upstream turbines to get the normalized power of the aligned
third machine:

Pn,3 = C
II
P

1−

√√√√ 2∑
j=1

(
δj (X3)Aj→3

)23

. (A8)
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Figure A1. Experimental data points and their best fits for the derivation of the interpolating functions. (a) Normalized power of the
downstream turbine in a two-turbine cluster vs. 8 for γu = γd = 0. (b) Wake displacement vs. misalignment γ .
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CHAPTER 15

Paper 13: Study of wind farm control potential
based on SCADA data

15.1 Summary

Within this work an analytical wind farm model is first validated against SCADA (Supervisory Control
And Data Acquisition) data from a typical onshore wind farm consisting of different turbine types
installed in an irregular layout. The relevant model inputs as wind speed, direction and turbulence
intensity are extracted from standard SCADA measurements that are typically available in every wind
farm. Comparisons between model-predicted and measured wake induced power deficits show a
good agreement, validating the wind farm model. Secondly the work takes the wind conditions of a
full year of operation into account to estimate the total wake losses and the increase of annual energy
production that could be achieved by wake steering. Thereby the wind farm model is used to compute
for each turbine the optimal yaw misalignment depending on the inflow condition, giving a wind farm
control look-up-table as used in the scaled wind farm control experiments in Paper 12. For the specific
site, an increase in annual power production of almost 2% is estimated, and the wind farm power is
expected to increase by more than 10% for specific wind conditions.

15.2 Contribution

Within this peer-reviewed publication, the main research work has been conducted by the author
of this dissertation and in equal amount by Bastian Salbert. In details the author of this dissertation
initiated the project and closely steered and supervised the research and implementation conducted
by Bastian Salbert. All authors provided important input to this research work through discussions,
feedback and by writing the paper.

15.3 Reference

J. Schreiber, B. Salbert, and C. L. Bottasso, “Study of wind farm control potential based on SCADA data,”
Journal of Physics: Conference Series, vol. 1037, p. 032012, 2018. doi: 10.1088/1742-6596/1037/3/032012
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Abstract. In this work, a control-oriented wind farm model is validated against SCADA
data from a typical on-shore wind farm, without additional instrumentation available. The
comparison of model-predicted and measured power deficits due to wake impingement shows
good agreement. Furthermore, the model is used to compute optimum yaw misalignments for
yaw-induced wake steering, leading to an estimated 1.7 % increase in annual energy production
by mitigation of wake losses. Results show that wake steering based on standard SCADA data,
which is usually available in operational wind farms, has promising potential for open-loop
model-based wind farm control.

1. Introduction
Wake interactions within wind farms lead to power losses and increased fatigue loading. Wind
farm control (WFC) aims at mitigating these wake effects by operating the turbines within a
plant in a coordinated manner. This is in contrast with the current greedy policy, where each
machine operates individually to maximize its own power capture [1]. Recent approaches focus
on increasing plant-level power capture by axial induction or wake redirection control [2, 3]. The
latter seems to be a particularly promising approach, and it works by laterally steering wakes
through the intentional misalignment of the rotor with respect to the incoming wind vector.

For a computationally efficient prediction of wake behavior and turbine power production,
parametric wind farm models have been developed, facilitating WFC design and application [4].
This study validates such a model for baseline operation, and then uses it to investigate the
potential increase in annual energy production (AEP) by yaw-induced wake steering.

In a first step, results from the well-known FLORIS (FLOw Redirection and Induction in
Steady-state) [5] wake model are compared to historical 10 minute SCADA (Supervisory Control
and Data Acquisition) measurements from a typical on-shore wind farm. Ambient wind direction
is estimated from calibrated turbine yaw measurements, and undisturbed inflow is established
from free-stream reference turbines. The model is able to predict power losses due to wake
interactions with good accuracy for all investigated wind directions. In fact, the simulated AEP
matches measurements within a 1.4 % accuracy.

Finally, the potential increase in AEP is estimated using a model-based wake steering
strategy, termed here “advanced sector management”. Thereby, pre-calculated optimum yaw
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misalignments are set for the individual turbines as a function of ambient wind conditions. For
the investigated cluster of wind turbines, a potential increase in AEP of 1.7 % is obtained.

2. Models, methods and power plant
2.1. Wind farm model
The FLORIS wake model [5] together with the Jiménez deflection model [6] are employed within
a wind farm framework, which is able to account for arbitrary plant setups with irregular
turbine positions, differing hub heights and machine types. The combined velocity reduction of
overlapping wakes is derived from the superposition of the energy deficits in the individual wakes,
according to the Katic [7] wake interaction model. It was verified that the model implementation
gives results identical to the public-domain TU Delft code [8].

The parameter set from Gebraad et al. [4], reported in table 1, is used for all turbines. These
parameter values were used “as is”, without any further tuning for the specific site considered
here.

Table 1: FLORIS parameters for the NREL 5MW turbine, identified from CFD simulations
in a neutral atmospheric boundary layer with TI = 6 % by Gebraad et al. [4]

Power
Wake

Deflection Expansion Velocity

pP 1.88 kd 0.15 ke 0.065 MU,1 0.5
ad −4.5 me,1 −0.5 MU,2 1
bd −0.01 me,2 0.22 MU,3 5.5

me,3 1 aU 5
bU 1.66

Wind-speed-dependent turbine power and thrust coefficients derived from publicly available
power curves are assigned to each turbine in the wind farm. Power down-rating for noise
reduction at night can be considered by altering the performance curves accordingly. During
simulation, thrust and power coefficients are interpolated [9] and power is calculated for each
turbine as function of rotor-averaged wind speed.

Besides the wind farm setup and wake model parametrization, the model inputs are
represented by ambient wind speed, direction, shear and air density. A change in ambient
turbulence intensity could be considered by adapting the wake expansion parameter for the
whole power plant.

2.2. Test wind farm
Windpark Dornum is located in north-western Germany, 5 km away from the North Sea. It is
surrounded by flat grassland except for two small villages east- and north-westwards of the wind
farm, approximately 1 km away. The region is very populated with wind turbines, ranging from
small ∼ 100 kW to large multi-MW machines that are owned and operated by different parties.
Figure 1 gives a view of the southward wind farm section.

SCADA data of 12 wind turbines was provided by the operator and used for the present
study. While this complete set is used for the WFC potential analysis, only a cluster of six
identical turbines (E-70, rotor diameter 71 m, hub height 64 m) is utilized for model validation,
enabling a direct analysis of wake-caused power deficits, as explained later on more in detail.
As shown in figure 2, the investigated turbines are in proximity of several machines of different
sizes. Only the wakes of the closest 45 turbines are taken into account in this study, while more
than 100 additional turbines further away are not considered, as their influence is expected to
be small.
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Figure 1: Photograph of Windpark Dornum, taken from PD210 looking towards the south.

Figure 2: Arrangement of the 45 simulated wind turbines. The grey rectangle encloses the
12 measurement turbines used for optimization; red circles highlight the six E-70 turbines
with 64 m hub height used for validation. The subplot in the lower right corner shows all
surrounding turbines, including the ones not used in the simulation.

A full year of 10 minute averaged SCADA measurements was provided, from which the nacelle
anemometer wind speed, measured turbine power (and its extreme values) and yaw orientation
are employed. Therefore, the complete data set comprises 52 704 data points for each of the 12
turbines.

The raw data is prepared using a three-step procedure: firstly, data is pre-processed and
formatted (conversion of time stamps to UTC+1, removal of duplicate measurements, etc.).
Secondly, turbine measurements are discarded in case of

turbine malfunction: turbine status indicating a malfunction,
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no power production: power smaller than 5 kW or rotor speed smaller than 1 rpm, or
outliers: anomalous conditions, detected by comparing the anemometer wind speed with
power measurements. In case of wind speed above rated and a power production deviating
more than 5 % from nominal (or night-reduced) rated power, the condition is marked
as an outlier. These conditions are believed to mainly originate from unscheduled power
curtailments demanded by the grid operator.

The resulting number of discarded data points for the individual turbines is summarized
in table 2. Note that one data point can belong to multiple categories at once.

Finally, the remaining data is aggregated into a set of data points, valid for all individual
turbines simultaneously. Overall, the data preparation leaves 33 635 (≈ 64 %) of “good” data
points for further usage.

2.3. Determination of ambient wind conditions
In the absence of additional measuring devices such as meteorological masts or LIDARs, the
ambient wind conditions must be estimated from SCADA data alone. A method has been
developed that first estimates the ambient wind direction from turbine yaw measurements, and
then identifies a set of undisturbed free-stream turbines. In turn, these are used for calculating
ambient wind speed, turbulence and vertical wind shear.

The ambient wind direction can be obtained from the average yaw orientation of all turbines,
rather than using wind vane measurements. In fact, on-board wind vane measurements are often
not recorded by the SCADA system, which is also the case for the wind farm under consideration.
In addition, wind vanes might not always be very accurate, due to their point-wise nature and
disturbances from blade passage, rotor wake and nacelle interference effects. Given that the
yaw position sensors are usually poorly calibrated (typically, only for rewinding purposes), the
average 12-turbine yaw angle is manually corrected by a constant scalar offset to fit the observed
power deficit positions to the waking wind directions expected from the wind farm layout. A
similar procedure was used by [10, 11, 12], using the yaw signal of only one single reference
turbine. In this work, the approach is extended by using the average pointing direction of the
entire wind farm. Using multiple yaw signals increases the confidence in the determined ambient
wind direction and compensates for turbulent wind direction fluctuations over the area of the
wind farm. For larger clusters of wind turbines, more sophisticated models could be employed
to also account for large-scale variations of wind direction.

Free-stream turbines are used to determine ambient wind speed, turbulence, shear and
reference power, as described later on. The determination of whether a turbine operates in
free-stream or not, is here obtained by evaluating the wind farm model with a conservative
wake expansion coefficient. A turbine is defined as operating in free-stream if, for a certain wind
direction, it does not experience power losses from wake impingement. In the present study,
the wakes of all 45 simulated wind turbines are taken into account for the determination of
free-stream conditions. The free-stream turbines identified in this way (out of the set of six E-70
turbines) are shown in figure 3 for varying wind directions.

To measure ambient wind speed, it is generally advantageous to use the rotor effective wind
speed (REWS) instead of the point-wise measurements provided by the nacelle anemometer.
Even though the latter might be partially corrected for turbine induction as well as nacelle
and blade induced flow disturbances, the REWS is a better indicator for overall ambient wind
speed. There are different methods for REWS estimation discussed in the literature [13, 14].
Most of these methods usually require detailed turbine information, which is however often not
available. Therefore, this work estimates REWS simply by using publicly available curves of
turbine power versus wind speed. Thereby, given the SCADA measured power, the wind speed
is readily obtained from the power curve of the corresponding turbine. Note that, by using such
technique, a non-ambiguous REWS determination is only possible between cut-in and rated
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Table 2: Number of data points discarded for
each turbine.

Turbine Turbine No Power
Outliers

ID Malfunction Production

GD094 249 5506 394
GD096 850 6337 353
GD101 847 8032 651
GD112 993 8136 651
GD118 898 9208 715
GD121 921 7877 616
PD105 94 5764 723
PD115 272 5628 1384
PD120 280 5290 706
PD210 894 8573 1732
PD240 147 5944 1533
PD410 130 5877 1321

E-70, 64.0m

Figure 3: Free-stream reference turbines as
functions of wind direction by name (top)
and resulting number (bottom).

power (control region II, or partial load). In this work, the ambient wind speed is obtained by
averaging the REWS of all free-stream turbines. In case that no free-stream turbine exists or can
provide a REWS estimate, the ambient wind speed cannot be determined and the data point
has to be removed (see next section). As for the ambient wind direction, more sophisticated
averaging methods could be used in larger power plants to account for a variation of ambient
wind speed throughout the farm.

Note that REWS obtained from power curve lookup is inherently normalized by the constant
reference air density of the power curve. If such REWS is used as ambient wind speed in the
model simulations, it matches simulated to measured free-stream power exactly, provided that
the same constant reference density ρref = 1.225 kg/m3 and power curves are used. Remaining
power deviations occur only on waked turbines and are caused by inaccurate predictions of the
wake model.

A measure for ambient turbulence is derived from turbine power fluctuations in control
region II, similarly to the method proposed by Mittelmeier et al. [12]. In the present case,
no 10 min power standard deviation is available in the SCADA data, so that the 10 min extreme
values Pmin and Pmax are used to define the turbulence measure TIP:

TIP ··=
Pmax − Pmin

P
. (1)

The data set was split in two equal parts, according to measurements recorded below or above
the median turbulence intensity, herein called low TI and high TI, respectively.

In case of a wind farm with turbines of different hub height, it is also possible to estimate the
vertical wind shear profile. In fact, using simultaneously the free-stream turbine anemometer
wind speed measurements at two or more different hub heights, the average power law
exponent [15] can be identified. In this work, SCADA measurements of turbines with 64 m
and 135.4 m hub height are available, and therefore a yearly average power law exponent of
α ≈ 0.3 could be identified by choosing 64 m as the reference height. This value is used in all
model simulations.

3. Results
3.1. Validation
The main purpose of the wind farm flow model is to correctly predict power losses due to wake
impingement on downstream turbines. Such wake losses are evaluated with respect to the power
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available in the undisturbed inflow, which is here determined from the free-stream turbines.
At least one such reference turbine must be available for a given wind direction to enable the
determination of power deficits.

To utilize the determined reference power directly —without the need of correcting for turbine
type and wind shear (hub height)—, only the set of six identical E-70 turbines with a 64 m hub
height is used for validation. For this cluster, due to the large number of surrounding turbines,
no free-stream reference turbines are available for 38 % of the data points in the cleaned data
set.

Furthermore, measured ambient wind speed and direction must be available to feed the wind
farm model. The method presented in section 2.3 does not allow one to infer REWS in control
region III (full power). Therefore, the validation has to be limited to conditions in which at least
one reference turbine operates below rated wind speed, discarding an additional 0.5 % of the
cleaned data points.

The model is simulated for time series of measured ambient wind speed and direction with
a constant shear and air density. To increase computational efficiency, the power of all wind
turbines is pre-calculated on a grid of discrete wind speeds V∞ = [1, 2, . . . , 25 m s−1] and
directions Γ∞ = [0, 5, . . . , 355◦]. This grid is then used to extract time series of simulated power
as function of measured wind speed and direction via linear interpolation.

Time series of both simulated and measured normalized power are then binned over wind
directions, thereby inherently considering the statistical distribution of the data points. The
power ratio assigned to each 5◦-wide wind direction bin is calculated via the median, as this is
more robust against outliers in the scattered data. To base the validation on as many data points
as possible —and thereby increase the confidence in the results—, no additional restrictions are
imposed on the evaluated range of wind speeds.

In figure 4, the measured power over wind direction is shown, both point-wise as well as
by the binwise median for each of the six turbines. The latter case is calculated from low
and high-turbulent measurements separately, and it is shown by the blue and red solid lines,
respectively. The black solid line illustrates the corresponding simulation results, also generated
by binning time series of power ratio into 5◦-wide wind direction bins. Errorbars visualize the
binwise standard deviation of simulated power deficits caused by the described wind speed
dependency. Different turbulence levels are not considered in the simulations, as only one fixed
set of parameters is used. In the figure, a histogram represents the total time of available
measurements for each wind direction bin and turbulence group.

The results show a good overall agreement between model-predicted and measured normalized
power. However, for southern and western wind directions, simulated P/Pref tends to be too
large, as can be observed very distinctly for GD094 and also by looking at the wind farm
efficiency in figure 5. This effect likely originates from upwind turbines that are not considered
in the simulation (cf. figure 2), but whose influence is seen in the measurements. Furthermore,
non-physical peaks P/Pref > 1 can be noticed in the measurements, for example for GD121 over
the entire range of wind directions. In those cases the reference power Pref used for normalization
is smaller than the turbine power P , possibly due to noise in the measurements or unmodeled
flow effects in the determination of the reference turbines. Generally speaking, normalized power
can be affected by inaccurate estimates of reference power, which could in fact be another source
for the mentioned deviations with southern and western winds. At these wind directions, low
confidence can be placed on the reference power that is determined from only one single free-
stream turbine.

The measured low-turbulent power deficits tend to be deeper and narrower due to reduced
wake mixing and lower wind direction uncertainty [16]. These effects of turbulence on apparent
wake expansion and decay could potentially be modeled by adapting the FLORIS wake
expansion parameter ke. The simulation results correlate slightly better to the low-turbulence

212 Chapter 15. Paper 13: Study of wind farm control potential based on SCADA data



7

1234567890 ‘’“”

The Science of Making Torque from Wind (TORQUE 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1037 (2018) 032012  doi :10.1088/1742-6596/1037/3/032012

measurements, which is in accordance with the fact that wake parameters were originally
identified for low ambient turbulence. Further improvements are to be expected if the model
parameters are calibrated explicitly for the specific site and turbines.

GD094

3.0D

3.6D

6.0D

6.8D

PD410

PD420

PD240

PD429

10min data:

Low TI

High TI

Simulation

GD096

3.1D

5.1D

6.1D

PD330

PD120

PD180

GD101

3.1D

4.2D

5.5D

5.6D

6.0D

6.5D

6.7D

PD240

PD410

PD429

GD088

PD115

EA103

PD420

GD112

3.1D

3.8D

5.4D

6.4D

6.9D

PD240

GD118

PD210

PD410

PD115

10min data:

Low TI

High TI

Simulation

GD118

3.7D

3.8D

5.5D

6.4D

6.9D

PD210

GD112

PD240

GD121

PD115

GD121

3.4D

6.4DPD210

GD118

Figure 4: Simulated and measured E-70 power ratio for the year 2016. The 10 min SCADA
measurements are given both directly and by their binwise median, which is split according
to TIP. The simulations are given by their binwise medians, vertical bars illustrating the
standard deviation due to wind speed dependency within each bin. Vertical lines indicate
waking turbines for normalized distances < 7 D. The histogram represents the total time of
available measurements for each wind direction bin and turbulence group.

As for the individual turbines, the combined power ratio of the six turbines is evaluated
in figure 5 in terms of wind farm efficiency ηWF, defined as

ηWF =

∑NT
i=1 Pi

NTPref
, (2)

where Pi is the power of wind turbine i, Pref is the free-stream reference power, and NT is the
total number of considered wind turbines. As for the individual turbines, the simulated wake
losses correspond well with the measurements.

By integrating time series of power over time, the measured and simulated AEP can be
computed for the considered turbines, as summarized in table 3. The six turbines together lose
circa 11 % of the energy available in the ambient inflow due to wake interactions. The wind
farm model predicts the actual wind farm AEP with 1.38 % accuracy, although deviations of
almost 7 % occur for the individual machines.

Note that the parameters kd, related to the wake deflection, and pP, describing power
reduction in yawed operation, could not be validated using the available set of measurements.
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10min data:

Low TI

High TI

Simulation

Figure 5: Combined efficiency of the six E-
70s, in analogy to figure 4.

Table 3: Measured and simulated wind
turbine AEP [GWh].

Turbine AEP AEP AEP Error
ID meas,ref meas sim [%]

GD094 1.27 1.07 1.15 +6.72
GD096 1.27 1.11 1.14 +2.56
GD101 1.27 1.03 1.09 +6.37
GD112 1.27 1.15 1.17 +1.51
GD118 1.27 1.17 1.12 −3.83
GD121 1.27 1.25 1.20 −3.62

Wind farm 7.64 6.77 6.87 +1.38

3.2. Analysis of wake steering potential
Next, the wind farm model is used to estimate the potential increase in power and AEP by wake
steering. Therefore, the yaw angles ~γ = (γ1, γ2, . . . , γNT

) of the NT = 12 considered turbines are
optimized to maximize total wind farm power, by solving the following problem:

max
~γ

NT∑

i=1

Pi(V∞,Γ∞, ~γ). (3)

The yaw misalignments ∆γi = γi − Γ∞ with respect to the wind direction Γ∞ are constrained
to ±30◦ as in [9].

The optimization problem is solved using the Matlab global-optimization patternsearch
solver [17]. In contrast to gradient-based optimization algorithms, this direct-search solver can
handle the discontinuities in calculated wind farm power originating from the discrete wake
velocity profiles.

For an exemplary turbine (GD118) of the wind farm under consideration, figure 6 shows
the computed optimum yaw misalignments obtained for discrete combinations of ambient wind
directions Γ∞ and speeds V∞. Such look-up tables could be used to control the wind farm
in open-loop, providing optimum turbine misalignments based on the ambient wind speed and
direction identified from free-stream turbines. Figure 7 shows the relative wind farm power gains
∆P/Pbaseline corresponding to the optimum yaw misalignments.

The results show that, as expected and according to intuition, wake steering is most effective
for wind directions with several aligned turbines and for wind speeds in region II of the power
curve. In fact, no losses can be mitigated and no power gains are possible if no wake losses
occur in the first place. This can be either because no wake interactions take place for certain
wind directions, or because wake interactions do not have an effect when the wind speed is
sufficiently high for all turbines to operate at rated power. The latter phenomenon occurs towards
the typical rated wind speed V ≈ 12 m s−1, when upwind turbines limited to rated power
leave more and more power in the flow for downwind machines. The power gains achievable
by wake steering diminish, and so do the proposed optimum upwind turbine misalignments.
This wind speed dependency emerges solely from the underlying turbine performance curves,
and it is not a threshold imposed by the authors. Figure 7 shows that the largest power gain
∆P/Pbaseline = 1.2 MW/7 MW ≈ 17 % occurs at Γ∞ = 205◦ and V∞ = 4 m s−1. The flow
field around the 12 optimized turbines before and after optimization is shown in figure 8 for
Γ∞ = 205◦ and V∞ = 8 m s−1. The figure clearly illustrates how wakes are steered away from
downwind turbines.
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GD118

5.2D3.8D 7.8D6.4D
PD210GD112 PD240GD121

Figure 6: Optimum yaw misalignments
∆γopt for an exemplary turbine (GD118) as
functions of ambient wind direction Γ∞ and
speed V∞. Relative directions and distances
(< 9 D) of power-maximized downwind
turbines are displayed.

Optimized for:

Figure 7: Relative power gain for the 12
measurement turbines as function of ambient
wind direction Γ∞ and speed V∞.

Figure 8: Velocity field around the 12 optimized turbines, before (left) and after (right)
optimization for Γ∞ = 205◦ and V∞ = 8 m/s, visualized on a horizontal plane at z = 64 m.
The wakes of some turbines of different hub height are only partially visible. Wakes of
surrounding turbines are also visible.

To determine the potential increase in wind farm AEP using the proposed look-up table for
advanced sector management, the distributions of ambient wind speed and direction at the given
site should be known. As shown in the previous section, for several wind directions all evaluated
turbines are waked by upstream turbines for which no data is available. To avoid loosing too
many measurement points, it was decided to ignore wake effects and compute the yearly wind
speed distribution based on all six E-70 nacelle anemometer measurements. Clearly, the average
wind speed and therefore the absolute AEP will be underestimated, but the relative increase in
AEP should not be significantly affected. The ambient wind direction is obtained as discussed
in section 2.3. The resulting wind speed distribution and wind rose are shown in figure 9.

The wind farm efficiency can be determined as a function of wind direction, by evaluating
the wind farm model for the identified ambient wind conditions without (baseline) and with
(optimized) wake steering, as shown in figure 10. Even though the wind farm efficiency increases
over the entire range of wind directions, it is important to note that the surrounding 33
turbines are not optimized. Larger improvements are to be expected by including them into
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Weibull Fit:

scale A=6.59

shape B=2.82

Mean: 5.87 m/s

StdDev: 2.16 m/s

Figure 9: Measured and Weibull-fitted wind speed distribution (left) and wind rose (right)
for the year 2016.

the optimization.
Accumulating over all measurements, an AEP increase

∆AEP/AEP baseline = 0.64 GWh/38.03 GWh ≈ 1.7 %

is predicted by the wind farm model when wake steering is implemented on the cluster of 12
turbines.

If the yaw angles are only optimized for the constant site average wind speed, the resulting
look-up table is only a function of wind direction and therefore possibly simpler to implement.
In such case, the estimated AEP gain decreases to 1.3 %. This is less than the stated 1.7 %
achieved with a wind speed and direction dependent look-up table, as power curve effects are
not considered.

The underlying distribution of yaw misalignments shown in figure 11 reveals that, statistically,
the majority of the proposed optimum misalignments is rather small, as also observed in [18].
In the present case, almost 80 % of the misalignments are smaller than 5◦ and the misalignment
threshold is rarely reached. Therefore, limiting the maximum allowed misalignment angles to
the above stated ±30◦ will only have a small influence on the AEP gain as demonstrated by [18],
but might increase turbine lifetime by limiting turbine loading [19]. The given distribution of
yaw misalignments could be used to trade off the costs associated with wake steering against
the energy gains, to ultimately minimize the cost of energy. Employing damage models [20] and
performing such an analysis could be the subject of further research beyond the scope of the
present work.

4. Conclusions and outlook
This work presented the application of the FLORIS wake model to an operational on-shore
wind farm, with two main goals: validating model predictions against SCADA measurements,
and estimating the potential of wake steering for a given set of turbines.

Firstly, it was shown that ambient wind direction and free-stream flow properties can be
estimated solely from turbine SCADA data, without additional instrumentation.

Secondly, statistical comparisons have shown that the model-predicted wind turbine power
deficits and wind farm efficiency are in good agreement with field measurements.

Finally, the wind farm model was employed to find optimum turbine yaw misalignments that
maximize wind farm power by yaw-induced wake steering. For each turbine, a look-up table of
optimum yaw misalignment as a function of wind direction and speed is obtained that could be
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Baseline

Optimized

Figure 10: Simulated baseline and optimized
wind farm efficiency at measured wind direc-
tion and speed. Additionally, the distribution
of measured wind directions (operating time)
is displayed at the bottom of the plot.

Figure 11: Distribution of the optimum yaw
misalignments, shown for |∆γopt| > 1◦.

used to implement open-loop wake steering in the field. For the studied cluster of 12 turbines,
a maximum power gain of 17 % is predicted for southward wind directions at low wind speeds.
Based on one year of site-specific wind conditions, a 1.7 % AEP gain can be expected. The
necessary yaw misalignments were limited to ±30◦, about 80 % of them being smaller than 5◦.
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[6] Jiménez A, Crespo A and Migoya E 2010 Wind Energy 13 559–572 ISSN 10954244
[7] Katic I, Højstrup J and Jensen N O 1986 A simple model for cluster efficiency European Wind Energy

Association Conference and Exhibition p 407–410
[8] Storm R and Doekemeijer B An exhaustive matlab implementation of the steady-state floris wind farm model

URL https://github.com/TUDelft-DataDrivenControl/FLORISSE M

[9] Gebraad P, Thomas J J, Ning A, Fleming P and Dykes K 2017 Wind Energy 20(1) 97–107 ISSN 10954244
[10] Hansen K S, Barthelmie R J, Jensen L E and Sommer A 2012 Wind Energy 15(1) 183–196 ISSN 10954244
[11] Infield D and Zorzi G 2017 Journal of Physics: Conference Series 854 012024 ISSN 1742-6588
[12] Mittelmeier N, Allin J, Blodau T, Trabucchi D, Steinfeld G, Rott A and Kühn M 2017 Wind Energy Science
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CHAPTER 16

Discussion and Conclusion

This dissertation presents new methods to improve wind condition awareness on turbine and farm
level. The new techniques are tested and applied within the field of wind farm control.

First, a novel method to estimate the local wind speed at a turbine rotor is described. The method
provides additional information on the wind conditions, which are unknown to most turbines today.
Second, it is shown that such information can be used to improve wind farm models and to detect
wakes within a wind farm. Last, as one of the many possible applications, the methods are employed
for wind farm control. Apart from a significantly increased wind farm power production when using
wake steering, it has been also shown that a superior control performance can indeed be reached with
improved wind and wake condition awareness.

In this work, numerical simulations have been used to develop, test and improve various methods
and models. To confirm and verify the various approaches and their technical feasibility, scaled
wind tunnel tests have been performed in a controlled environment. Thereby, a clear highlight of
this dissertation has been reached: the successful wind tunnel demonstration of model-based wind
farm control. Full-scale tests and real turbine data have been used as much as possible to prove and
demonstrate the final application of the developed methods. Results have been shown that include a
full-scale test of the wind sensing and wake detection method, as well as the demonstration of model
improvements using historical SCADA data of a 43-turbine wind farm.

Four core results are summarized as follows:

• A novel method to estimate the local wind speed within the rotor disc of a wind turbine by
analysis of blade bending moments, that are available on many modern turbines, has been
developed. Different from methods presented in the literature [63, 64, 66], local wind estimates
that give estimations for different parts of the rotor disc are be obtained. A further advantage is
that the method does not rely on an extensive set of measurements for model tuning. Instead a
standard numerical turbine model, which is typically already used for turbine certification, is
sufficient. The wind sensing method has been successfully tested in field experiments.

• The wind sensing method has been employed to detect wind turbine wakes within a wind
farm and to improve wind farm flow models. The method developed exploits the distinct
fingerprint a wake leaves on a downstream turbine. The information can be exploited to correct
wind farm models or to trigger sector management and wind farm control. Solutions for wake
detection presented in literature base on remote sensing technologies that rely on additional
hardware [20, 21], whereas the newly presented method can be installed as software update on
turbines with blade load sensors. The wake detection method has been successfully tested in
field experiments.

• Wind farm models have been parameterized and improved by learning from historical data. The
method developed recognizes that any wind farm model has always only a limited prediction
accuracy. Therefore, a baseline model is improved by extra terms designed to correct some of
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its presumed specific deficiencies. The method can be seen as an integration of data-driven
approaches [74] into state-of-the-art wind farm models [27, 28]. Thereby, the model accuracy
is gradually improved by learning from SCADA data. The method also allows the usage and
inclusion of dedicated wind sensing. The modeling improvement has been successfully demon-
strated and verified in wind tunnel experiments and using historic SCADA data of a full-scale
wind farm.

• A model-based wind farm control algorithm has been developed with the goal of maximizing
the total wind farm power production—also applying the improved wind farm models. Even
though a variety of simulation studies [37] and even some first field tests have been executed
already [45–47], the first wake deflection control during dynamic wind direction changes within
a scaled testing facility has been presented in this thesis, providing additional insight and
confidence. Within the successful tests it has been shown that damage equivalent loads can be
reduced as a side-product of power maximization. Additionally, an improved model accuracy,
obtained by the developed learning method, increases the control performance.

16.1 Outlook

Within this thesis, a load-based wind sensing method has been successfully tested and validated in
field experiments. However, additional validations, ideally using a met-mast reaching total turbine
height or even high resolution LiDAR inflow measurements, can increase trust in the estimates and
bring the method closer to deployment, possibly even as a standard product of turbines that are
anyways equipped with load sensors.

In addition to the simple method presented in this work, further and more sophisticated methods,
following the rotor-as-a-sensor concept, are currently in development. Those make use of additional
load sensors, accelerometers or whatever signals are available to extract additional inflow information,
possibly also wind direction and wind veer. However, such sophisticated methods typically rely on
training data, which is difficult to obtain in the field. The presented wind sensing method, which
shows good results without training, can for example be linked to provide horizontal and vertical shear
information. Thereby less sophisticated installations would be necessary to acquire the remaining
training data.

The main application for wind sensing presented in this work is wake detection and wind farm
control. For wake detection, a rather simple application is sector management. Here, the wake
detection can trigger the turbine shutdown as soon as the wake impinges on the turbine rotor. Thereby,
large energy losses, which are often faced when using conservative wind direction sectors, can be
reduced without the risk of operating within the damage causing wake for a long period.

For wind farm control, a compulsory next step is a solid field demonstration of wake steering
control for increased energy capture. Thereby, the wake detection methods presented can help to
verify proper wake steering and can finally be used for closing the control loop. Also, the development
of models and methods to quantify the atmospheric stability as well as turbulence intensity, employing
the rotor-effective shear and turbulence estimates, can help in reducing uncertainties in wind farm
control. In addition, the wind farm model improvements and the learning method based on SCADA
data can be used to ensure a very accurate model prediction, which is of crucial importance for a
successful deployment.

The use of wind sensing goes beyond wind farm control. If turbine loads have been recorded, it is
possible to reconstruct detailed historic wind condition time series. Those can be compared to turbine
design wind conditions and used, for example, to assess consumed and estimate remaining turbine
lifetime, which is of great interest today as many turbines reach the end of their design lifetime. Even
more, for new installations the knowledge of wind conditions allows for example the development of
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digital twins of wind turbines and farms. Thereby new possibilities are created, including prediction
and optimization capabilities, predictive maintenance as well as risk mitigation strategies.
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