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Abstract
Detail synthesis has been an appealing but challenging research topic in areas of com-
puter vision and graphics for a long time. Despite rapid developments in physically-based
simulation, rendering, and image editing, we still lack powerful tools to synthesize an-
imations and videos that match both users’ intentions and the realism exhibited by
real-world phenomena. In this dissertation, we first focus on detailed flow effects. Then,
we also investigate video generation tasks with conditional inputs, e.g. video super-
resolution and translation. The central goal of our work is to employ deep-learning
algorithms for fluids and videos to understand their complex temporal evolution and to
synthesize coherent details that are realistic and appealing.

For fluid simulations, fine details usually require high resolutions and tiny time-steps to
reduce numerical viscosity. While these operations are costly and unintuitive to tune, we
propose to pre-compute space-time fluid data as a repository and to synthesize new vol-
umes by matching feature descriptors learned by neural networks. In this way, users can
quickly tune coarse simulations, and networks can encode local information into descrip-
tors to efficiently retrieve suitable detailed regions from the repository. When training,
our goal is not only to encode space-time fluid data but also to establish correspondences
between simulations with different numerical viscosity. We advect deformable patches
to track flow regions stably. Consequently, the large-scale temporal evolution in the syn-
thesized flow comes from the advection and deformation of patches, while the detailed
motion is re-used from the repository. We will demonstrate that these appealing details
and small-scale motions can naturally integrate into the underlying coarse flow due to
flow-aware descriptors encoding both densities and the curl of flow velocities.

While velocity fields contain temporal information for fluids, videos usually have com-
plex temporal relationships without ground-truth motion. Although deep learning is ex-
tremely successful in representing natural images and other data distributions, directly
applying them in sequence generation leads to strong temporal artifacts. Hence, we
propose temporal self-supervisions for conditional GAN-based video generation tasks.
For video super-resolution and unpaired video translation, despite their substantially
different challenges, our spatio-temporal adversarial learning achieves coherent solutions
without sacrificing spatial detail. We also propose a Ping-Pong loss to improve long-term
consistency, which is potentially beneficial for other recurrent networks.

By using neural networks to learn the temporal aspects, our methods can synthesize
realistic and coherent fluids and videos. The results presented in this thesis demonstrate
that data-driven and deep-learning-based synthesis are promising directions and provide
powerful tools. For physically-based animations, shape deformations, video synthesis
and many others, efficient and stable algorithms with intuitive user interactions are
in high demand. We hope that our methods can provide insights into these sequence
generation tasks with convenient user controls.
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Zusammenfassung

Die Synthese von Details ist seit langem ein attraktives aber auch herausforderndes
Forschungsthema in den Bereichen Computervision und Computergraphics. Trotz ras-
anter Entwicklungen von physikalisch-basierten Simulationen, Rendering und Bildbear-
beitung fehlt noch immer leistungsstarke Software zur Synthese von Animationen und
Videos, die sowohl die Absichten des Nutzers umsetzt als auch realistische Ergebnisse
erzeugt. Im ersten Teil dieser Dissertation liegt der Fokus auf detaillierten Strömungseffek-
ten. Anschließend wird die Generierung von Videos aus gegebenen Inputs, wie zum
Beispiel Superresolution- und Transferverfahren, untersucht. Das Hauptziel dieser Ar-
beit ist mithilfe von Deep-Learning Algorithmen die komplexe Entwicklung von Fluiden
und Videos zu verstehen und zeitlich zusammenhängende Details zu synthetisieren, die
realistisch und ansprechend sind.

Bei Fluidsimulationen sind kleine Details normalerweise mit hohen Auflösungen und
kleinen Zeitschritten verbunden, um die numerische Viskosität zu verringern. Da diese
Methoden rechenaufwändig und wenig intuitive sind, berechnen wir ein Repository aus
Raum-Zeit-Fluiddaten vorab und gleichen Feature-Deskriptoren die von neuronalen Net-
zen gelernt werden damit ab um neue Volumina zu synthetisieren. Auf diese Weise
können Nutzer die Grobjustierung der Simulationen schnell durchführen und das neu-
ronale Netz codiert die lokalen Informationen in Deskriptoren, um geeignete Detailbere-
iche effizient aus dem Repository abzurufen. Beim Training des Netzwerks ist das Ziel
nicht nur Raum-Zeit-Fluiddaten zu codieren, sondern auch Übereinstimmungen zwischen
Simulationen mit unterschiedlicher numerischer Viskosität herzustellen. Verformbare
Simulationsbereiche werden advektiert, um die Strömungsregionen zeitlich stabil zu ver-
folgen. Deswegen beruht die hauptsächliche Bewegung der synthetisierten Strömungen
auf der Advektion und Verformung der Simulationsbereiche, während die detaillierte
Bewegung wird aus dem Repository wiederverwendet wird. Es wird dargelegt, dass
sich diese Details und kleinen Bewegungen natürlich in die hauptsächliche Strömung
integrieren, da die Flussdeskriptoren sowohl die Dichte als auch die Krümmung der
Strömungsgeschwindigkeit codieren.

Während das Geschwindigkeitsfeld einer Fluidsimulation bereits zeitliche Informa-
tionen enthält, haben Videos komplexe zeitliche Beziehungen, für die es keine direkte
Referenz gibt. Obwohl Deep-Learning bereits erfolgreich für die Darstellung von Bildern
und anderen komplexen Datenverteilungen verwendet wird, führt eine direkte Anwen-
dung bei der Sequenzgenerierung zu starken zeitlichen Artefakten. Daher wird in dieser
Arbeit zeitliche Eigenüberwachung für die Videogenerierung mit conditional GANs ver-
wendet. Trotz abweichender Anforderungen erziehlt unser räumlich-zeitliches Lernen
kohärente Ergebnisse für Superresolution und alleinstehende Videotransferverfahren,
ohne räumliche Details einzubüßen. Zusätzlich verwenden wir eine Ping-Pong Verlust-
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funktion um die langfristige Beständigkeit zu verbessern, welche möglicherweise auch für
andere rückgekoppelte Netzwerke von Vorteil ist.

Durch die Anwendung neuronaler Netze zum Erlernen zeitlicher Aspekte kann un-
sere Methode realistische und kohärente Details für Fluidsimulationen und Videos syn-
thetisieren. Die Ergebnisse dieser Arbeit zeigen, dass die Synthese mit datenbasierten
Deep-Learning Methoden eine vielversprechende Forschungsrichtung ist und leistungsstarke
Werkzeuge bietet. Es gibt eine starke Nachfrage nach effizienten und stabilen Al-
gorithmen mit intuitiver Nutzerinteraktion für physikalisch-basierten Animation, For-
mdeformation, Videosynthese und ähnlichen Themen. Wir hoffen, dass unsere Metho-
den durch praktische Nutzerinteraktion Einblicke in diese Sequenzgenerierungsaufgaben
ermöglichen können.
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Introduction





“The difference between something good
and something great is attention to detail.”

–– Charles R. Swindoll

1 Introduction

The ultimate goal of computer graphics is to allow people to express themselves with
natural images that are indistinguishable from real-world scenes. Despite the rapid
developments of physics-based algorithms, producing photo-realistic results with regard
to user requirements remains highly challenging due to the intrinsic complexity of real
physics. Approaching this goal, detail synthesis offers a different perspective. Instead of
constructing virtual scenes entirely in a physics-based manner, detail synthesis provides
a convenient mechanism for users to perform rough edits and enhances the realism of
the results by adding fine details. Examples are given in Fig. 1.1. Through intuitive
user interactions, in-depth information about the properties of the objects, such as the
material of the cloth and the physical state of the fluid, is delivered by the illuminated
textures [1] and turbulent vortices [2].

Besides effectively improving visual experiences, detail synthesis is also a convenient
tool for remote usage. With advancements of high-speed networks, live streaming and
cloud gaming have expanded to ordinary Internet users since 2010s [3, 4]. While a few
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Part I. Introduction

(a) Cartoon animations generated from sketches
and textures using TexToons [1]

(b) High-resolution fluid synthesis using wavelet tur-
bulence [2]

Figure 1.1: With detail synthesis methods, users can design with interactive controls, e.g.
strokes and coarse fluid simulations shown on the left of a) and b), and achieve
high-quality results with rich details shown on the right.

games are available on Google Stadia, as shown on the left of Fig. 1.2, the network
latency due to large image transmission is still a major complain from consumers. In
addition to entertainment such as games and videos, remote visualization services have
become an essential part of business for solving increasingly complex computational
tasks. Although it is possible to view simple information such as near real-time global
temperatures on NASA’s Eyes, as shown on the right of Fig. 1.2, there is still a long
way to go for complex remote tasks such as monitoring natural disasters. In such a
circumstance, there is an urgent demand for technologies to reduce bandwidth across
all areas of remote applications. From this point of view, detail synthesis methods
have attracted more and more attention. With a decent visual quality maintained by
synthesizing details on client computers, data can be transmitted using compressed
representations and more operations are allowed interactively.

Being a very important direction of research for computer graphics and vision, detail
synthesis technologies develop rapidly. Traditionally, detail for images usually comes
from exemplars describing Markov random fields [7, 8], while in physics-based problems,
detail can be inferred from physical models such as fine-scale simulations [9]. In recent
years, the increasing computational power and data storage capacity have brought us into
the Big Data era. With a large amount of data available from virtual simulations to real
captures, data-driven methods and machine-learning algorithms show their advantages
in a variety of tasks. Methods including Generative Adversarial Networks (GANs) [10]
achieve state-of-the-art performances in understanding and generating complex distribu-
tions such as natural images. While new opportunities are offered by these techniques,
applying them to detail synthesis is a challenging task for a number of reasons. Since
visual continuity plays a vital role in a good user experience, realistic temporal evolu-

4 Chapter 1. Introduction
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Figure 1.2: Remote usage of visual content has expended to ordinary users, e.g. the game
streaming service from Google Stadia [5] and the weather and climate information
showing on NASA’s Eyes [6]. Detail synthesis methods help to preserve perceptual
quality with reduced bandwidth for these remote applications.

tion becomes one of the key issues. Compared to the success of modeling static data
distributions, people have just begun to explore the temporal relationships in sequential
data-sets. As listed in Fig. 1.3, well-established data-sets [11] initiated rapid develop-
ments of deep-learning algorithms, from classification tasks to generation tasks, from
static distributions to spatio-temporal distributions. Since 2018, an increasing number
of work start to explore on sequential data-sets. Among them, this dissertation focuses
on temporally coherent detail synthesis and employs deep-learning algorithms for ef-
ficient synthesis of various visual sequences including flow effects, natural videos and
rendering sequences. The explorations on data distributions from different domains help
to reveal the ability and the generality of the proposed learning methods.

2000 2005

LeNet-5

Image
Analogies

Texture
Optimization

Wavelet
Turbulence

Lazyfluids

2010 2015 2020

ImageNet
Data-set AlexNet

VAE

GAN

Lazyfluids

VGG,
ResNet

Neural
Style

CycleGAN,
Pix2Pix

BigGAN,Vid2Vid,DeepFluids,
RecycleGAN,TempoGAN

ScalarFlow
Data-set

Figure 1.3: Deep-learning-based methods [12, 13, 14, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23],
shown in blue points, and traditional detail synthesis methods [7, 8, 2, 24], shown in
orange points. Based on established data-sets [11, 25] (shown in green), technologies
develop from classification tasks to generation tasks, from specialized images (e.g.
MINST) to natural images and sequential data-sets (e.g. fluids and videos).
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1.1 Dissertation Overview

Deep-learning algorithms for detail synthesis

Conclusion(Part IV)Algorithms
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isosurfaces renderingsGANs (Part III)

TecoGAN for
UVT (Chap. 6)

TecoGAN for
VSR (Chap. 5)

DRR for Real-Time
Renderings

TempoGAN
for fluids
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GAN for fluids
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Data-Driven Synthesis
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Introduction(Part I)

Evaluations (Chap. 7)

Figure 1.4: An overview of methods discussed in the dissertation.

In this dissertation, we introduce the motivation for detail synthesis in Part I. After
that, we explore discriminative and generative modelings for fluids simulations (Part II)
and natural videos (Part III) in detail. A discussion in Part IV is then provided on
the connections and differences among various data domains, i.e, fluids, natural videos,
and renderings. The teaser image at the beginning of this chapter shows a preview of
the quality that can be achieved using methods proposed in the following parts of this
dissertation.

Flow effects in computer graphics vary from basic phenomena, e.g. smoke in the
air and water in a cup, to eye-catching scenes with impressive detail like tornado and
tsunami in games and movies. While traditional technologies require tedious tuning on
simulation and rendering with long turn-around time, we present a data-driven algorithm
for fluid synthesis in Chap. 3 and 4. Using a large collection of pre-computed space-time
fluid regions as a fluid repository, our method can synthesize new high-resolution vol-
umes based on coarse input flows efficiently. Given that Convolutional Neural Networks
(CNNs) are particularly popular in learning image similarity, our work bridges the gap
between machine-learning and numerical simulations and learns physical descriptors for
density and velocity functions of fluid simulations. Besides learning similarity for fluid in
different resolutions, the descriptors are also trained to establish correspondences where
the amount of numerical viscosity changes. While the spatial and temporal continuity
of the synthesized flow is partially guaranteed by the physical descriptor, a deformation
limiting patch advection method is beneficial for tracking deformable fluid regions ro-
bustly. In the later part of Chap. 4, we use several examples to demonstrate that our
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method yields non-dissipating small scale details that are naturally integrated into the
motions of the underlying flow.

In Chap. 5 and 6, we focus on video generation tasks, e.g. video super-resolution
(VSR) and unpaired video translation (UVT). For natural images, GAN-based methods
surpass other generative models with results following data distributions of the target
domain even for multi-modal training data-sets. However, state-of-the-art VSR methods
still favor simpler norm losses such as L2 over adversarial training. Since the averaging
nature of these losses can easily leads to temporally smooth results with an undesirable
lack of spatial detail, we propose a temporally self-supervised algorithm for GAN-based
video generation tasks. With detailed analysis on the results of VSR and UVT shown
in Chap. 5 and 6 respectively, we demonstrate that temporal adversarial learning is
key to achieving temporally coherent solutions without sacrificing spatial detail. While
spatio-temporal discriminators supervise short-term temporal coherence, a bi-directional
Ping-Pong loss is used to improve the long-term temporal consistency. It effectively
prevents recurrent networks from accumulating artifacts temporally without depressing
detailed features. Together, the proposed temporal self-supervision leads to models that
outperform previous work in terms of temporally-coherent detail.

While the visual results are important quality indicators for algorithms in computer
graphics and vision, quantitative evaluations across larger numbers of samples are indis-
pensable for identifying advantages and disadvantages of the proposed methods. With a
focus on the temporal aspects of sequential data, we present temporal metrics for video
evaluations in Chap. 7. When evaluating images, both pixel-wise differences and percep-
tual similarity are widely used. Although the proposed temporal metrics are not perfect,
we believe it is the right time to consider pixel-wise differences and perceptual changes
together for temporal evaluations as well. With a series of user studies conducted for
VSR and UVT tasks, we confirm that these metrics closely correspond to the rankings
achieved in user studies.

Besides spatial-temporal adversarial learning for videos, we train GAN models for
fluid simulations and rendered sequences as well. A discussion is given in Chap. 8
on their connections and differences in order to gain an in-depth understanding of the
spatial-temporal learning for visual content in general. Furthermore, we summarize
contributions, open questions and future directions in the last part of this dissertation.

1.2 Publication List

This dissertation explains and concludes researches from the following manuscripts:

Publications:

1. M. Chu and N. Thuerey, “Data-driven synthesis of smoke flows with CNN-based
feature descriptors,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 69,
2017
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2. Y. Xie*, E. Franz*, M. Chu*, and N. Thuerey, “tempoGAN: A temporally co-
herent, volumetric GAN for super-resolution fluid flow,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, p. 95, 2018

3. M. Werhahn, Y. Xie, M. Chu, and N. Thuerey, “A multi-pass GAN for fluid flow
super-resolution,” Proc. ACM Comput. Graph. Interact. Tech., vol. 2, no. 2, Jul.
2019

4. M. Chu*, Y. Xie*, J. Mayer, L. Leal-Taixé, and N. Thuerey, “Learning temporal
coherence via self-supervision for GAN-based video generation,” ACM Transac-
tions on Graphics (TOG), vol. 39, no. 4, p. 75, 2020

5. S. Weiss, M. Chu, N. Thuerey, and R. Westermann, “Volumetric Isosurface Ren-
dering with Deep Learning-Based Super-Resolution,” IEEE Transactions on Vi-
sualization and Computer Graphics, 2019

Pre-prints:

1. N. Thuerey, Y. Xie, M. Chu, S. Wiewel, and L. Prantl, “Physics-Based Deep
Learning for Fluid Flow,” NeurIPS Workshop, Modeling the Physical World, 2018

Patents:

1. N. Kang, M. Chu, N. Thuerey, H. E. Lee, and D. Sagong, Method and apparatus
for modeling smoke turbulence based on patch, 2017

*: These authors contributed equally to the paper
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argmax
θ

Ex∼pdata

log pmodel(x | θ)

∂u
∂t +u · ∇u =

−∇p+ ν∆u+ g

“What I cannot create, I do not understand.”

–– Richard Feynman

2 Fundamentals

Presenting complex and believable details relies on an understanding of the missing
content in the first place. Compared to the real-world data with infinite space and con-
tinuous time, synthetic and captured data have different limitations. As an example
of the former case, fluid simulations usually suffer from numerical dissipation. Videos,
on the other hand, are projections in image-space that is limited by the sensitivity of
capture devices. In this chapter, we first outline the fundamentals and related work for
fluid simulations. Given that machine learning algorithms are widely used in computer
vision tasks, we then introduce the development of these methods with a focus on image
and video generation tasks. In the end, we discuss the latest findings in image and video
evaluation.

2.1 Fluid Simulations

Fluid simulations for animation purposes are typically governed by the incompressible
Navier-Stokes equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇ · ∇u + g (the momentum equation) ,

∇ · u = 0 (the incompressibility condition) ,

(2.1)
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where u, p and g denote velocity, pressure, and acceleration due to external forces re-
spectively. Focusing on the single-phase inviscid flow, we drop out the viscosity term
and deal with the Euler equations in this dissertation:

Du/Dt = −1

ρ
∇p+ g ,

∇ · u = 0 .
(2.2)

In Eq. 2.1 and 2.2, the first row is derived from Newton’s second law while the second
row preserves the volume of the flow.

Solving these partial differential equations, fluid simulations have a long history in
computer graphics [26]. In general, these numerical fluids solvers can be divided into
Lagrangian methods with the observers following an individual fluid parcel as it moves,
Eulerian methods that observe flow field on specific locations such as a uniform grid,
and Hybrid methods involving both.

2.1.1 Eulerian Methods and Numerical Dissipation

For every time step, a typical Eulerian fluid solver splits the mathematical problem into
three parts, i.e. the advection part, the body forces part, and pressure projection part.

Du

Dt
= 0 (advection) ,

∂u

∂t
= g (body forces) ,

∂u

∂t
= −1

ρ
∇p, s.t. ∇ · u = 0 (pressure projection) .

(2.3)

The advection step computes the changes in the grid due to the transportation. Veloc-
ity changes caused by extra forces including gravity is considered in the second step.
The pressure projection step makes the velocity field divergence-free under appropri-
ate boundary conditions. With a divergence-free velocity field, the fluid stays mass-
preserving and incompressible. Among these three typical steps, the pressure step is
usually the most time-consuming one, while most of the numerical dissipation is intro-
duced in the advection step. In the following, we outline related work that accelerate the
pressure projection step and methods that reduce numerical dissipation. Our discussion
is restricted to the case of single-phase flows. For an overview of fluid simulations in
computer graphics, we recommend the book written by R. Bridson [27].

Accelerating the Pressure Solve Assuming that the intermediate velocity field before
pressure solving is u∗, the pressure solving step in Eq. 2.3 transforms into the Poisson
equation:

∇ · ∇p =
ρ

∆t
∇ · u∗. (2.4)

The problem is then equivalent to solving Ap = b, where A, sometimes referred to as the
Laplacian matrix, is large, sparse and symmetric. Linear systems with this type of matrix
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Figure 2.1: The computational cost of conjugated gradient solvers increases with the grid reso-
lution. Numbers are from McAdams et al. [32] and are shown in logarithmic axes.

are usually solved using preconditioned conjugate gradient (PCG) algorithms. It is an
iterative method providing approximations that converge to the exact solution. During
the iteration, the approximation error is monotonically decreasing until the required
tolerance is reached. However, the PCG solver scales poorly with grid resolution, as
shown in Fig. 2.1. When the spatial resolution grows, the time-step length should be
reduced for accuracy and the pressure solving step becomes the bottleneck for the whole
simulation step.

Different methods have been proposed to speed up the necessary calculations there,
e.g., coarse projections [28], lower-dimensional approximations [29], or most recently,
deep-learning based approximations [30, 31, 21]. While algorithms for reducing algo-
rithmic complexity are vital for fast solvers, the choice of data-structures is likewise
important. Among others, recent work have proposed ways to solve the Poisson equa-
tion on multigrid schemes [32], highly efficient tree structures [33], and power diagram
typologies [34].

Numerical Dissipation Reduction Solving the advection step, semi-Lagrangian inte-
gration approaches has been very popular in the atmospheric sciences community and
is introduced to graphics in 1999 [35]. The name of “semi-Lagrangian” comes from the
Lagrangian viewpoint that is used in a regular grid, i.e., new values at grid locations
x = i, j, k are taken from their backward trajectories calculated using the velocity field.
This scheme is preferred over the forward Euler method because it is unconditionally
stable for any choice of the time step and thus, allows for large time steps when modeling
large scale flows. However, numerical dissipation arises from re-sampling with spatial
interpolations and accumulates for every time step. So far, it is impossible to quantify
this viscosity-like error with closed form expressions. While the viscosity of water and
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Semi-Lag [35] BFECC [36] MacCormack [37] FLIP [38]

APIC [39] PolyPIC [40] Advection-
Reflection [41] BiMocq2 [42]

Figure 2.2: Computer graphics has a a long-history fighting against the numerical dissipation
of the advection step. The comparison is presented by Qu et al. [42].

air is close to zero on human scales, the numerical dissipation always easily smooth out
turbulent details and lead to unnaturally viscous motions for practical resolutions. As
complex flow motion is an important component for movies and games, reducing the
numerical dissipation remains a challenging problem for computer graphics.

In order to achieve natural fluid motion with non-dissipative vortices, many algo-
rithms have been proposed to improve the advection step including the back-and-forth
error compensation and correction (BFECC) method [36], the MacCormack advection
method [37] which is second-order accurate and unconditionally stable, the advection-
reflection scheme [41] involving a energy-preserving reflection operator, and most recently
the BiMocq2 method [42] that reduces re-sampling operations by saving mapping func-
tions. Fig. 2.2 shows a visual comparison of these methods in together with some hybrid
methods that will be explained below.

There are also methods that directly improving vortices to combat dissipation, e.g.
algorithms that amplify existing vorticity [43, 44], research on modeling boundary layer
effects [45] anisotropic vortices [46], or buoyant turbulence effects [47], and turbulence
synthesis models based on numerical procedures [2, 48] or exemplar velocity fields [49].

2.1.2 Lagrangian and Hybrid Methods

Smoothed-particle hydrodynamics (SPH) is one of the most popular Lagrangian fluid
simulation techniques. Compared to Eulerian methods, the standard SPH method [50]
has the advantage to conserve linear and angular momentum but its incompressibility
and stability are limited by the local computation of pressure values. Many variants are
then proposed to improve these properties, e.g. the weakly-compressible SPH [51] and
the implicit incompressible SPH [52] methods.
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Hybrid methods have been proposed to couple particles with grid-based techniques.
Usually, kinematic steps are done on particles, dynamic steps are done on the grid, and
necessary information is transferred between them. These methods include Particle-In-
Cell (PIC) [53], Fluid Implicit Particle (FLIP) [38], Affine PIC (APIC) [39] and material
point method (MPM) [54] algorithms. With whole particle information obtained from
grids, PIC is found to be stable but dissipative. FLIP preserves some information with
particles and offers more turbulent motions with less stability. Transferring affine velocity
information, APIC is less dissipative and stable. PolyPIC [40] further generalized APIC
using polynomial representations. By saving and calculating material information on
particles, e.g. deformation gradients and volumes, MPM methods [54, 55, 56] become
popular for continuum material simulations including solids and fluids.

For Lagrangian and hybrid methods, previous work has likewise proposed algorithms
to generate appealing results and detailed features at a moderate computational cost.
Ihmsen et al. apply secondary particles to simulate spray, foam and air bubbles [57]. A
surface wave simulation using surface points is proposed by Mercier et al. [58]. Ferstl et
al. present a method that only uses FLIP particles within a narrow band of the liquid
surface [59]. More recently, machine learning techniques are applied on fluid simulations
for similar purpose, which will be discussed below.

2.1.3 Machine Learning Methods for Fluid Simulations

While machine learning achieves remarkable success in computer vision, there is less
work so far that combines machine learning algorithms with animating fluids. As first
steps in this direction, some machine-learning methods are proposed to approximate
physical solutions with reduced computational cost. E.g., a regression-forest-based ap-
proach is proposed for SPH [60] and convolutional networks are trained to solve Poisson
equations for Eulerian fluid simulation [30, 61]. Learning the temporal evolution is
another research direction with growing interest. Among them, an LSTM-based method
learns to predict pressure fields for multiple subsequent time-steps [31] and a hybrid
deep learning framework with multilevel spectral decomposition is proposed for turbu-
lent flow [62]. Generative models for fluids are likewise studied. While proper deforma-
tion can be learned by networks to transform signed distance functions in a parameter
space [63], divergence-free velocity fields can also be directly generated from a set of
reduced parameters [21]. Most recently, reinforcement learning [64] and differentiable
fluid solvers [65, 66] are being explored for fluid control.

For detail synthesis, machine learning algorithms are proposed as well. Um et al.
propose to learn liquid splashes from SPH simulation to FLIP simulation [67]. Inspired
by image style transfer [16], Kim et al. transfer features from natural images to volu-
metric smoke densities through differentiable rendering [68]. In the dissertation, we will
introduce both discriminative and generative learning methods to synthesize details for
smoke simulations in Part II and Part IV. While in this section, we briefly introduced
machine-learning-based methods for fluid simulations, the fundamentals about machine
learning will be introduced in the next section, in together with related work on image
and video generation tasks.
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Figure 2.3: A 1D fully connected network and a 2D convolutional network.

2.2 Deep Learning Methods for Images and Videos

With more and more data available every day, deep learning algorithms are developed to
learn representations through large data-sets using artificial neural networks. Mapping
data samples from the source domain A to the target domain B, the parametric functions
being learned can be summarized as:

fθ : A→ B (2.5)

where θ is the learned function parameters. We can further classify these learning tasks
as discriminative and generative learning problems. E.g., image classification is usually
solved with discriminative learning, where the target domain B contains k possible
categories and networks learn the conditional probability of each category for a given
image sample in the source domain Rw×h×c. On the other hand, generative learning is
usually considered for tasks such as image generation. From a latent code in domain A,
networks learn to generate an image sample so that these generated results follow the
data distribution of target domain Rw×h×c. To train a discriminative model, it is usually
possible to get supervised training data with input and output pairs as {(ai, bi)|a ∈ A, b ∈
B} though automatic or human labeling. Generative models on the other hand are
usually trained to reproduce the training data by explicitly or implicitly maximizing the
likelihood of the data-set. A common learning objective is to maximize the log-likelihood
of a training data-set, which is equivalent to minimizing the KL divergence between the
model and the data distributions. In this section, we first introduce the fundamentals for
both discriminative and generative learning methods. We then introduce an important
approach to generative model, the Generative Adversarial Network (GAN). After that,
we give a review on generation and evaluation methods for images and videos.
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2.2.1 Neural Networks and CNNs

Neural networks are constructed by layers of neurons. While the first layer contains the
input and the last layer forms the output, inner layers can be described as:

y = σ(Wx+ b) , (2.6)

where x comes from the previous layer, W and b are trainable weights and biases, and
y is the output of this layer. While Wx + b is a linear function, the non-linearity is
introduced by activation functions σ, e.g. the sigmoid function σS(z) = 1

1+e−z and the
ReLU function σReLU (z) = max(0, z). In this way, networks are capable to compute all
logical functions.

While the feed-forward pass stands for the modeling of a neural network, the weights
and biases are trained by loss functions using gradient backpropagation. Loss functions
measure differences between ground-truth solutions and network outputs. Backprop-
agation algorithms compute gradients of loss functions with respect to weights using
the chain rule. While the gradient decent method directly reduces weights with their
gradients weighted by a learning rate, momentum is considered and learning rates are
updated dynamically in Adam and other optimization methods. Thus, they are more
reliable for cases with noisy or sparse gradients. Through training, the total loss can be
reduced and a local minimum can be achieved. However, since the underlying problem
is usually non-convex, a global optimal solution is not guaranteed. While we present a
brief introduction for the fundamentals, we refer readers to two books for details from
Goodfellow et al. [69] and Nielsen [70].

For Eulerian representations including images and videos, convolutional operations are
found to be useful. Important information can be extracted by their local-wise kernels,
e.g. the approximation of derivatives by finite differences and a low-pass filter using
Gaussian blur. By using convolutions in place of the general matrix multiplication in
Eq. 2.6, Convolutional Neural Networks (CNNs) can be considered as networks with
specialized weight sharing. These convolutional layers are commonly combined with
pooling layers which reduce the size of a layer by applying a function, such as the max-
imum, over a small spatial region. Effectively, this down-samples the spatially arranged
output of a layer, in order to decrease the dimensionality of the problem for the next
layer [13]. Fig. 2.3 shows examples for a 1D fully conneted network and a 2D CNN.
With the weight sharing, CNNs benefit from translation invariance and have a reduced
risk of over-fitting, resulting in a powerful architecture that is widely used for image and
video applications.

2.2.2 GANs

Based on the fundamentals of neural networks, we now explain one of the most important
generative models, GANs [10]. As shown in Fig. 2.4, in order to reproduce the training
data, GAN pose the training process as a game between two separate networks. There
is a generator using input from a latent space to synthesize data samples. A discriminor
is trained to classify them as either following the true data distribution or a different
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Figure 2.4: GANs learn to reproduce the distribution of the training data-set using a game between
generators and discriminators. While discriminators are trained to classify true data
samples (in yellow) of Domain B from generated ones (in orange), generators are trained
to map the data from Domain A to a model distribution that can fool discriminators. The
gradients from discriminators (in green) can help generators to reduce the difference in
distributions.

model distribution. During training, the discriminator discovers the differences between
the two distributions and the generator adjusts its weights accordingly to reduce the
difference. Theoretically, the training converges when two networks reach a equilibrium
and the discriminator couldn’t separate the two distributions.

Several loss functions have been proposed for the GAN training. In its most basic form,
a GAN uses a cross entropy loss to train the classification task of the discriminator and
the generator uses an opposite one as the loss function, i.e.:

LD = −Eb∼pb(b)[logD(b)]− Ea∼pa(a)[log(1−D(G(a))] ,

LG = Ea∼pa(a)[log(1−D(G(a)))] ,

θG = arg max
θG

min
θD
LD .

(2.7)

This loss is interesting theoretically as it is equivalent to minimizing the Jensen-Shannon
divergence between two distributions and an equilibrium can be reached when optimizing
in function space. In practice, there is a saturation problem, i.e. the generator’s gradient
will vanish when LD is small, which makes it hard for the generator to improve. Many
variants are proposed to solve this problem, e.g. a non-saturating loss{

LD = −Eb∼pb(b)[logD(b)]− Ea∼pa(a)[log(1−D(G(a))]

LG = −Ea∼pa(a)[log(D(G(a)))]
, (2.8)

a least-square GAN loss [71]{
LD = Eb∼pb(b)[D(b)− 1]2 + Ea∼pa(a)[D(G(a))]2

LG = Ea∼pa(a)[D(G(a))− 1]2
, (2.9)
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a Wasserstein GAN loss with gradient-penalty [72]
LD = −Eb∼pb(b)[D(b)] + Ea∼pa(a)[D(G(a))] + λEb̂∼pb̂(b̂)[(∇D(b̂)− 1)2]

LG = −Ea∼pa(a)[D(G(a))]

b̂ = εb+ (1− ε)G(a)

, (2.10)

and a relativistic average GAN loss [73]
LD = −Eb∼pb(b)[logR(b)]− Ea∼pa(a)[log(1−R(G(a))]

LG = −Ea∼pa(a)[log(R(G(a)))]− Eb∼pb(b)[log(1−R(b))]

R(b) = σ(D(b)− Ea∼pa(a)D(G(a)))

R(a) = σ(D(G(a))− Eb∼pb(b))

. (2.11)

Note that the vanilla and non-saturating GANs apply the Sigmoid activation on output
neuron of the discriminator, while there should be no activation for the least-square,
Wasserstein, and relativistic GANs. So far, the GAN training still depends heavily on
the training data-sets. Thus, there is no clear conclusion if there is a best loss across all
data domains.

Despite all the different variants, GAN shows state-of-the-art performance on gen-
erating data samples in multi-modal domains. The problem of multi-modality is very
common but difficult for generative models. When using normal losses, data samples in
different modalities may offer conflicted gradients and results in an “averaged” distri-
bution that is largely different to the training data. GAN achieves better performance
because discriminators are trained to identify the distribution difference. For detailed
explanations, we recommend the tutorial of GANs [74].

At the same time, new difficulties arise with the adversarial training of two networks.
First of all, it is very hard to get a balanced training that converges with simultane-
ous gradient descent. As an adversarial game, the reproduciblity is not as good as
supervised training. Finally, mode collapse occurs sometimes. Facing these difficulties,
advanced training strategies are developed along with the aforementioned improvements
on loss functions. ProGAN [75] achieves stable training by increasing the spatial reso-
lution progressively. styleGAN [76] benefits from the separation of the latent input into
multiple spatial scales. SAGAN [77] uses self-attention layers in together with spectral
normalization, while BigGAN [19] suggest using orthogonal regularization.

While generative model is a wide and interesting topic, conditional generation is par-
ticularly important for computer graphics, because it allows for user controls and inter-
actions by using a conditional input. In the following, we introduce the development on
conditional generation for images and videos.

2.2.3 Conditional Generation for Images and Videos

Natural images and videos represent very complex data distributions. They contain
large amount of details with a wide span of diversity. Being able to understand and
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recreate complex data distributions, deep learning show advantages with the help of
large data-sets.

For conditional image generation tasks, deep learning has made great progress. While
regular losses such as L2 [78, 79] offer good performance for image super-resolution
(SR) tasks in terms of mean square errors, adversarial training can significantly improve
the perceptual quality in multi-modal settings such as image colorization [80], super-
resolution [81], and translation [17, 18] tasks.

Sequential generation tasks additionally require the generation of realistic content to
change naturally over time [23, 68]. It is especially important for conditional video
generation tasks [82, 83, 84, 85], where specific correlations between the input and the
generated spatio-temporal evolution are required when ground-truth motions are not
provided. Hence, motion estimation [86, 87] and compensation become crucial. The
compensation can take various forms, e.g. explicitly using variants of optical flow net-
works [88, 89, 90] and implicitly using deformable convolution layers [91, 92] or dynamic
up-sampling [93].

Based on the motion compensation, different architectures are used for conditional
video generation. Recent work on VSR either uses multiple low-resolution (LR) frames
as inputs [93, 94, 95] or use previously estimated outputs recurrently [90] to improve the
spatial detail and temporal coherence in the results. In general, adversarial learning is
less explored for VSR due to the temporal coherence requirement, even though it is a
multi-modal problem. In video translation tasks, GANs are more commonly used and
discriminators are used to supervise the spatial content. E.g., Zhu et al. [17] focuses on
images without temporal constrains and generators can fail to learn the temporal cycle-
consistency for videos. In order to learn temporal dynamics, RecycleGAN [22] proposes
to use a prediction network in addition to a generator, while MocycleGAN [96] chose to
learn motion translation in addition to the spatial content translation.

Regarding temporal constrains for videos, L2 temporal losses based on warping are
generally used in video style transfer [97, 98] and UVT [99] work. However, it leads
to an undesirable smooth over spatial detail and temporal changes in outputs. The
vid2vid [20] method proposes adversarial temporal losses to achieve time consistency for
paired video translation tasks.

The fast development of image and video generation methods leads to a high demand
on advanced evaluation methods. Below, we summarize evaluation methods for them.

2.2.4 Image and Video Evaluations

Quality assessment is an important part of research. Regarding images, classic pixel-
wise measurements, e.g. Mean Square Error (MSE) and Peak Signal-to-Noise Ratio
(PSNR) have been used for decades. In practice, these shallow functions are insufficient
for assessing structured data such as images and their assessment usually differs from
human judgments. A well-known case is the blurring operation which is considered as
a small distortion by these metrics, but can cause large perceptual errors for humans.
Thus, lots of metrics have been proposed with a perceptual motivation e.g. SSIM [100]
and MSSIM [101]. Besides metrics calculated with regard to references, no-reference
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metrics are also proposed, e.g. NIQE [102]. Recently, machine learning techniques are
applied to learn metrics from user studies, e.g. a non-reference metric from Ma et al. [103]
and the LPIPS metric using references [104]. With the help of large user study data-sets,
machine-learning-based metrics managed to match human perceptions closely.

Perception
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Impossible

Possible

Less distortion

Be
tte

r q
ua
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y

Alg.

Alg.

Alg.

High PSNR/SSIM

High perceptual 
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Figure 2.5: For image restoration, there is an inherent trade-off between the perception quality
and the pixel-wise distortion [105]. The theory (conceptually illustrated on the
left) agrees with the performance measured from all submissions of the 2018 PIRM
Challenge [106](show on the right).

Studying across classic shallow metrics and perceptual metrics, researchers find that it
is impossible for algorithms to reduce both pixel-wise differences and the perceptual dis-
similarity. As shown in Fig. 2.5, this observation is named as the perceptual-distortion
trade-off [105]. Methods with high perceptual quality usually have larger pixel-wise er-
rors and stay at the bottom right of the figure. The top left part of the figure then
contains methods with low pixel-wise errors and high perceptual errors. Unfortunately,
the bottom left region is empty due to the impossibility of achieving both goals si-
multaneously. Thus, it is important to evaluate image generation methods using the
perception-distortion plane and models stay close to the perception-distortion bound
are considered as dominating others. This theory agrees with the result of the 2018
PIRM Image SR Challenge [106].

While per-frame quality of videos can be measured using image metrics above, natural
temporal evolution should be considered for video assessments. Similar to the spatial
shallow metrics such as PSNR, the L2 temporal metric based on warping represents
a sub-optimal way to quantify temporal coherence. The situation is worse when the
ground-truth motion is not available. Similar to the Fréchet Inception Distance (FID)
measuring the perceptual difference of two distributions [107], Fréchet Video Distance
(FVD) is proposed to measure the model distribution of a video generation method [108].
However, this metric considers the whole model distribution and perceptual metrics
that evaluate natural temporal changes with regard to specific ground-truth sequences
are unavailable up to now. It is worth mentioning that in addition to images and
videos, researchers have explored user studies and perceptual metrics to evaluate physical
problems including fluid simulations as well [67, 109, 110].

In this chapter, we have introduced the fundamentals for fluids and neural networks.
Related work is included for fluid simulations and conditional generations of images and
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videos. We also looked into evaluation methods for images and videos. Based on the
background knowledge above, we propose methods to synthesize coherent details for
sequential data-sets including fluids and videos, in the rest of this dissertation.
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Part II. Detail Synthesis for Fluids

In this part, we introduce a data-driven method for smoke synthe-

sis. As discussed in Sec. 2.1, numerical dissipation results in a lack

of natural detail in fluid simulations and a variety of powerful meth-

ods have been developed to resolve the problem. Instead of relying

on more accurate but costly physical simulations during run-time, a

different perspective is taken as a data-driven method: we synthesize

new high-resolution volumes from a large collection of pre-computed

space-time regions for smoke flows. in the following, we call these

localized flow regions as patches and the pre-computed collection is

called as a fluid repository.

When re-using patches from a large repository with complex fluid

information and fine discretization, it is important that appropriate

ones can be efficiently and accurately retrieved according to the flow

similarity. With machine learning techniques, we are allowed to con-

sider physical similarities and other properties when building corre-

spondences. In the following, we will first explain the key concept of

flow similarity. A CNN-based method is then presented to establish

the desired correspondence. Afterwards, we explain how to synthe-

size high-resolution volumes using the retrieved fluid data. Finally,

results and comparisons are presented.
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3 Learning Flow Similarity

Figure 3.1: Stream lines are shown for a lid driven cavity simulation without (left) and with
viscosity (right). The orange lines indicate the correct position of the center vor-
tex [111]. In this case, the graphics approach commonly used to leave out viscosity
leads to a very different vortex shape.

In general, we assume that flow simulations of the same physical problem should be
similar to each other in regardless of their simulation methods and discretization levels.
Vice versa, flow simulations for different phenomena are then considered as dissimilar.
Specifically, given a spatial region Ω and two numerical representations of flow effects in
it, our goal is to compute a dissimilarity score s for the two representations. Considering
two simulations, one being a coarse approximation and the other one being a more
accurate version, e.g. based on a finer spatial discretization, the score s tells us how
likely that the phenomena they describe are different. We use functions Fc and Ff for
the coarse and fine flow, respectively, where F could be a scalar value such as smoke
density, or alternatively could also include the velocity, i.e., F ∈ R3 → R4. We will
revisit which properties to include in F in Sec. 3.5, but for now we can assume without
loss of generality that F is a scalar function.

In order to compute similarity, we need to extract enough information from a region
of the flow such that s can infer similarity from it. We will sample the flow functions
in a regular grid within Ω, assuming that F is sufficiently smooth to be represented by
point samples. All point samples from this grid are then combined into an input vector
xc and xf for coarse and fine simulations, respectively. Given these inputs, we aim for
computing s(xc,xf ) for Ω such that s approaches zero if the pair is actually one that
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corresponds to the same phenomenon being represented on the coarse and fine scales.
For increasing dissimilarity of the flows, s should increase. This dissimilarity can, e.g.,
result from considering different regions Ω in the fine and coarse simulations, or when
the two are offset in time.

A first guess would be to use an L2 distance to compute s as
∫
Ω ‖xf − xc‖2dx.

This turns out to be a sub-optimal choice, as even small translations can quickly lead
to undesirably large distance values. The presence of numerical viscosity makes the
situation worse that different resolutions for Fc and Ff can quickly lead to significantly
different velocity and density values even when they should represent the same fluid flow
and thus should be considered as similar. Fig. 3.1 illustrates how strongly viscosity can
influence the outcome of a simulation. Instead of manually trying to find heuristics or
approximations of how these numerical errors might propagate and influence solutions,
we transfer this task to a machine learning algorithm.

Our goal is not only to measure the distance between two inputs, but rather, given a
new coarse input, we want to find the best match from a large collection of pre-computed
data sets. Within the repository, the best match should give us a fine representation
of the phenomena that is most similar to the coarse input. Thus, we propose to use
neural networks to map the correspondence problem into a feature space. In such a
space, distances computed with a simple distance metric, e.g. Euclidean distance, should
correspond to the desired dissimilarity score s.

More specifically, we use CNNs to encode non-linear fluid information. They were
shown to be powerful tools to predict the similarity of image pairs [112, 113]. We
leverage the regressive capabilities of these CNNs to train networks that learn to encode
very small, yet expressive flow descriptors, d(x) ∈ Rm, with m as small as possible.
These descriptors will encode correspondences in the face of numerical approximation
errors and at the same time allow for very efficient retrievals of suitable space-time data-
sets from a repository. Given a coarse flow region Fc we can then retrieve the best match
from a set of fine regions Ff by minimizing ||d(xf )− d(xc)||2.

In the following, we will first describe the CNN architecture used for learning and
explain the choice of loss functions. Details for data generation is presented after that.
Finally, we provide an evaluation of fluid descriptors based on CNNs and traditional
object detection methods.

3.1 CNN Architecture

Our neural networks consist of a typical stack of convolution layers which translate
spatially arranged data into an increasing number of feature signals with lower spatial
resolution. A visual summary of the network is given in Fig. 3.2. As our network
compares two inputs, it initially has two branches which contain a duplicated stack of
convolutional layers with shared weights. Networks with this kind of architecture are
usually called as siamese neural networks [114]. Taking two different inputs at the same
time, each branch acts separately on one of them and reduces its dimensionality. The
outputs of the last convolutional layer of each branch (Conv4 in our case) are fully
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Figure 3.2: Our CNN architecture with two convolution stacks and shared weights, followed by
a feature and an optional decision layer. Names for each layer can be found on the
top of the figure.

connected into a serial vector (Full1) which later forms the desired feature descriptor.
While descriptors are the learning targets in our project, more layers can be added if
networks are required to give a single dissimilarity score as its final output. For such
a case, we first concatenate the feature descriptors from the two branch together, then
add another fully connected layer (Full2), and finally use an output layer with a single
node to compute the final dissimilarity score. However, these two layers are optional for
our case. When training with the hinge embedding loss, Eq. 3.3 explained below, we
omit these two layers.

We will use the following abbreviations to specify the network structure: convolutional
layer (CL), max pooling layer (MP), and fully connected layer (FC). We start with
inputs of size 36 × 36 in 2D. The input from a low-resolution simulation is linearly
up-scaled to this resolution. Typically, an original resolution of 9 × 9 is used for the
coarse simulation. One convolutional branch of our network yields a serial layer with
128 values (Full1). These 128 outputs are vectorized as the final feature descriptor dw
with normalization. For three dimensional inputs, we extend the spatial dimension in
each layer correspondingly. Hence, the first layer has a resolution of 363 in 3D, and the
spatial resolution for Conv4 is 23 samples with 32 features. Accordingly, our feature
descriptor in 3D, Dw, has dimension of 256.
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3.2 Loss Functions
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Figure 3.3: Both positive and negative data pairs are important to train a network for similarity.

When computing our flow similarity metric, a first learning approach could be for-
mulated as s = fs(x1,x2,w), where fs is the function learned by neural networks with
weights w, x1 and x2 represent a pair of input data extracted from two simulations, and
s is the output indicating the dissimilarity of the input pair. In a supervised learning, we
should label our data to train the value of s. As the inputs for our regression problems
stem from a chaotic process, i.e. turbulent flow, the inputs (x1,x2) look “noisy” from a
regression standpoint and the training data-set {(x1,x2)}n is usually not linearly sepa-
rable. When labeling such a non-linear data-set, only showing similar data pairs are not
enough and it is impossible to offer exact values as desired dissimilarity scores for nega-
tive data pairs. It is also crucial that the learning process is not supervised to encodes
some notions such as Euclidean distance of the two inputs, but learns to non-linearly
map the data into a continuous latent space where physically similar data entries are
close to each other and different ones are far apart. In such training runs, a proper
learning objective based on positively and negatively labeled data pairs, i.e. similar and
dissimilar data pairs, is crucial for establishing robust similarity between inputs.

Many loss functions have been explored for the problem of learning similarity, which
usually takes an input pair with a generated label y identifying whether the pair is
similar (y = 1) or not (y = −1), as illustrated in Fig. 3.3. While a naive L2 loss to
learn exactly these labels is clearly insufficient, a slightly improved loss function could
be formulated as

ln(x1,x2) =

{
−fs(x1,x2,w)) , y = 1
+fs(x1,x2,w)) , y = −1

(3.1)

In this case, the network would be rewarded to give a very small dissimilarity score for
positive pairs and a very large one for negative ones, but due to the lack of any limit,
the learned values would diverge wildly and it is hard to get a stable training [115].
Instead, it is crucial to have a loss function that does not unnecessarily constrain the
regressor, and at the same time gives it the freedom to push correctly classified pairs
apart as much as necessary. The established loss function in this setting is the so called
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Figure 3.4: Regarding a coarse input (the black point), there is a positive sample (the blue
point) and several negative samples (pink and yellow points). Since some of latter
(e.g. the yellow one) are similar to the positive one, the ln loss, shown in the middle,
will not be able to converge due to their conflict. The le loss with margins, shown
on the right, is able to handle these problems.

hinge loss, which can be computed with:

lh(x1,x2) =

{
max(0, 1− fs(x1,x2,w)) , y = 1
max(0, 1 + fs(x1,x2,w)) , y = −1

(3.2)

This loss function typically leads to significant improvements over the naive loss functions
outlined above. When using a network in conjunction with the loss function of Eq. 3.2,
a feature descriptor can be extracted by using the outputs of the last fully connected
layer with normalization [113].

While this approach works, we will demonstrate that it is even better to embed the
L2 distance of the descriptors directly into the hinge loss [112]. As we later build search
data structures for our repository according to the L2 distances of their descriptors, it is
important to guide the network towards encoding discriminative distances based on the
feature descriptors themselves, instead of only optimizing for a final dissimilarity score s.
In order to do this, we can re-formulate the learning problem to generate the descriptor
itself, directly using the descriptor distance as the dissimilarity. In the following we will
denote the outputs of a specific descriptor layer of our network with dw(x), where x is
the input for which to compute the descriptor. Based on these descriptors, we change
the regression problem to fe(x1,x2,w) = β−α||dw(x1)−dw(x2)||, α > 0. Here we have
introduced the parameters α and β to fine tune the onset and steepness of the function.
Using fe to replace fs in Eq. 3.2 yields

le(x1,x2) =

{
max(0, αp + ||dw(x1)− dw(x2)||) , y = 1
max(0, αn − ||dw(x1)− dw(x2)||) , y = −1 ,

(3.3)

where α, β parameters are replaced by αp,n which can be used to fine tune the margins
individually for positive and negative pairs, as we will discuss below. Note that the
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descriptors dw are normalized before the loss calculation. This significantly improves
convergence, and supports learning distributions of components, rather than absolute
values in the descriptor.

In order to offer more insight of the difference between ln and le, we illustrate concept
figures for the normalized descriptor space in Fig. 3.4 with some examples. Given a
coarse input x1, a positive pair can be formed with a similar input x2, but there can be
many negative pairs and some of them may have certain similarities regarding the one
labeled as positive. Using the ln loss, these similar but negative samples will conflict
with the positive sample. When using the le loss, the margin αp and αn offer more
freedom to the network and stable training runs can be achieved. We will demonstrate
that the loss function le outperforms the other alternatives, after describing the details
of the training data.

3.3 Data Generation

Figure 3.5: Examples of our data generation for training, in both 2D (left) and 3D (front, left
and top views). The coarse simulation (with blue outline) is synchronized with the
high resolution data in intervals tr.

For machine learning approaches, it is crucial to have good training data sets. Specif-
ically, the challenge in our settings is to create a controlled environment for simulations
with differing discretizations and therefore different numerical viscosity. Without special
care, the coarse and fine versions will deviate over time, and due to their non-linearity,
initial small differences will quickly lead to completely different flows. In the following,
we consider flow similarity within a chosen time horizon tr. Note that this parameter
depends on the setup under consideration, e.g., for very smooth and slow motions, larger
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values are suitable, while violent and fast motions mean flows diverge faster. We will
discuss the implications of choosing tr in more detail below.

We use randomized initial conditions to create our training data. Given an initial
condition, we set up two parallel simulations, one with a coarse resolution of rc cells per
axis, and we typically use a four times higher resolution rf = 4rc for the fine version.
While it would be possible to simply run a large number of simulations for a time tr, we
found that it is preferable to instead synchronize the simulation in intervals of length
tr. Here, we give priority to the high resolution, assuming that with lower numerical
viscosity, it is closer to the true solution. We thus re-initialize the coarse simulation in
intervals of length tr with a low-pass filtered version of the fine simulation.

This synchronization leads to a variety of interesting and diverse flow configurations
over time, which we would otherwise have to recreate manually with different initial
conditions. For our data generation, we found buoyant flows to be problematic in rect-
angular domains due to their rising motion. Using tall domains would of course work,
but typically wastes a significant amount of space. Instead, we compute a center of mass
for the smoke densities during each time step. We then add a correction vector during
the semi-Lagrange advection for all quantities to relocate the center of mass to the grid
center. Along with the data generation, we seed patches throughout the volume, and
track them with the same algorithm we use for synthesis later on. Thus, distortion is
reduced, which we describe in detail in Sec. 4.3.1. For each patch region, we record the
full coarse and fine velocity and density functions within each deforming patch region
for each time step. Currently, we advect the patches with the fine simulation, and use
the same spatial region in the coarse simulation. An interesting improvement would
be tracking another set of patches in the coarse one, and synchronize them in intervals
likewise.

The recorded pairs of spatial regions for the same time step give us the set of positive
pairs for training. Note that coarse and fine data in these regions may have diverged
up to the duration tr. To create negative pairs, we assign a random fine data sample
to each coarse input. Two samples from a negative pair are either recorded by different
patches, or recorded by the same patch, but in different time steps. Therefore, for any
coarse feature example x1 in our training and evaluation data-sets, there is only one fine
feature example x2 marked as relevant.

In this way, we have created several combined simulations in both 2D and 3D, with
tr = 20 and tr = 40, to generate training data-sets as well as evaluation data-sets.
These tr are selected so that the resulting training data have a maximum discriminative
capabilities. For smaller intervals, the network presumably only sees very similar inputs,
and hence cannot generate expressive descriptors. When the interval becomes too large,
inputs can become too dissimilar for the network. In general, tr is negatively correlated
to the time step, kinetic energy and resolution difference. We currently select the tr
manually through comparisons.

Several images of our data generation in 2D and 3D can be found in Fig. 3.5. The
detailed simulations have a 4 times higher resolution. For training, we generated 18,449
positive pairs for 2D and 16,033 pairs in total for 3D. In 2D, every training batch contains
1:1 positive and negative pairs. The latter ones are randomly generated from all positive
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ones while training. While a ratio of 1:1 was sufficient in 2D, training with this ratio
turned out to be slow in 3D. When the number of negative pairs is increased, we found
that networks converge faster and the influence on the converged state is negligible.
Thus, we use a ratio of 1:7 for 3D training runs.

For our evaluations below, data-sets with tr = 20 and tr = 40 give consistent results.
Since the latter one shows a clearer differences between the methods, in Sec. 3.4, we will
focus our evaluations on the dataset with tr = 40 , which has 5440 and 5449 positive
pairs in 2D and 3D respectively.

3.4 Evaluation

In order to evaluate and compare the performance of different approaches, it would be
straight forward to compute descriptors with a chosen method for a coarse input i, and
then find the best match from a large collection of fine pairs. If the best match is the
one originally corresponding to i, we can count this as a success, and a failure otherwise.
In this way, we can easily compute a percentage of successfully retrieved pairs. However,
this metric would not represent our application setting well. Our goal is to employ the
descriptors for patches in new simulations, that don’t have a perfectly corresponding
one in the repository. For these we want to robustly retrieve the closest available match.
Thus, rather than counting the perfect matches, we want to evaluate how reliably our
networks have learned to encode the similarity of the flow in the descriptor space. To
quantify this reliability, we will in the following measure the true positive rate, which is
typically called recall, over the cut-off rank k.

The recall over a cut-off rank is commonly employed in the information retrieval field
to evaluate ranked retrieval results [116]. Recall stands for the percentage of correctly
retrieved data sets over all given related ones. The rank in this case indicates the
number of nearest neighbors that are retrieved from the repository for a given input. In
particular, for our evaluation dataset with N pairs, with a given cut-off k, we evaluate the
recall for all N coarse features, and thus kN pairs are retrieved in total per evaluation.
In these retrieved pairs, if r pairs are correctly labeled as related, the recall at cut-off
k would be r/N . In such a case, a perfect method, would yield 100% for the recall at
k = 1, and then be constant for larger k. In practice, methods will slowly approach 100%
for increasing k, and even the worst methods will achieve a recall of 100% for k = N .
Thus, especially the first range of small k values is interesting to evaluate how reliably
a method has managed to group similar data in the Euclidean space of descriptors.

We first compare two CNN-based descriptors created with the two loss functions
explained above, and the popular hand-crafted HOG descriptor in 2D. The latter is
a commonly employed, and very successful feature descriptor based on histograms of
gradients of a local region. As can be seen in Fig. 3.6, the HOG descriptor fares worst
in this setting. Beyond a rank of 6, it’s recall is clearly below that of the regular hinge
loss lh CNN descriptor. The hinge embedded loss function le yields the best descriptor,
which in this case is consistently more than 10% better from rank 10 on. The high recall
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Figure 3.6: Recall over rank for HOG (blue), CNN trained with lh on similarity output node
(gray), and CNN trained with le on descriptors directly (orange).

rates show that our CNN successfully learns to extract discriminative features, and its
descriptors have a higher accuracy than conventional descriptors.

We also investigate the influence of the threshold αp and αn in the loss function le in
Eq. 3.3. As the parametrization [0.0, 0.7] has a slightly higher accuracy among others, we
will use these parameters in the following. We found that it is not necessary to have any
margin on the positive side of the loss function le, but on the negative side, a relatively
large margin gives our CNN the ability to better learn the dissimilarities of pairs.

(a) True Positive (b) False Positive

(c) True Negative (d) False Negative

Figure 3.7: Top-ranking density pairs matched by our CNN.

Fig. 3.7 shows some of the top ranking true and false correspondences made by our
CNN for the smoke density pairs. Correct positive and negative pairs are shown on the
left. False negative pairs are related ones, for which the CNN descriptors still have a
large difference, while the false positive ones are mistakenly matched pairs which were
not related. In practice, the false negative pair have no effects on the synthesized results,
in contrast to the false positives. However, we notice that these false positives typically
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contain visually very similar data. As such, these data sets will be unlikely to introduce
visual artifacts in the final volume. Some of these false positives actually stem from
the same tracked patch region during data generation, and were only classified wrongly
in terms of their matched time distance. These pairs are marked with blue borders in
Fig. 3.7(b).

3.5 Descriptors for Flow Motions
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Figure 3.8: Using curl as well as density descriptors improves matching performance.

Up to now we have only considered smoke densities for establishing correspondences,
however, in the fluid simulation context we also have velocity information. The velocities
strongly determine the smoke motion over time and as such, they are likewise important
for making correspondences between the data of a new simulation and the data-sets in
the repository.

To arrive at a method that also takes the flow motion into account, we use two
networks: one is trained specifically for density descriptors, while we train the second
one specifically for the motion. This yields two descriptors, dden and dmot, which we
concatenate into a single descriptor vector for our repository lookups with

d(x) =
1√

1 + w2
m

[
dden(x)

wmdmot(x)

]
. (3.4)

Note that the separate calculation of density and motion descriptor mean that we can
easily re-scale the two halves to put more emphasis on one or the other. Especially when
synthesizing new simulations results, we put more emphasis on the density content with
wm = 0.6.

For the motion descriptor, we use the vorticity as input, i.e., ω = ∇ × u. During
the synthesis step, motion descriptors generated from vorticity offer significantly better
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Figure 3.9: A visual comparison on the curl of velocity fields. From left to right, we show the input
simulation, the synthesized simulation using density descriptors and the one using both
density and motion descriptors.
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Figure 3.10: In 3D, using curl as well as density descriptors improves matching performance.

look-ups than the ones trained with u, as the vorticity better reflects local changes in
the flow field. Due to our scale separation with patch motion and content, our goal
is to represent local, relative motions with our descriptors, instead of, e.g., large scale
translations or stretching effects. Using a combined density and curl descriptor improves
the recall rate even further. A comparison with our 2D data set is shown in Fig. 3.8, e.g.,
at rank 11, the recall improves by ca. 35%, and we see similar gains in three dimensions
(shown in Fig. 3.10). Note that these two figures use a weight of wm = 1.0 for the
curl descriptor. Based on the descriptors, a fluid synthesis method is introduced in the
next chapter. Fig. 3.9 shows a visual comparison on synthesized curl fields using such
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a method with and without motion descriptors. With motion descriptors, the method
successfully retrieves patches that has similar motion to the input.

Due to the aforementioned improvements in matching accuracy, this approach rep-
resents our final method. In the following we will use a double network, one trained
for densities and a second one for the curl to compute our descriptors. Till now, we
have described our approach for learning flow descriptors with CNNs. In the next chap-
ter, we will use these descriptors to retrieve patches and synthesize high-resolution fluid
volumes.

36 Chapter 3. Learning Flow Similarity



4 Fluid Synthesis Based on Similarity

Fluid repository

...

Volumetric Synthesis

Deformation-limiting advection

Descriptor learning

CNN

CNN

Figure 4.1: An overview of the data-driven method for smoke synthesis. The method employs
a pre-computed fluid flow repository, uses CNNs to encodes fluid descriptors, and
synthesizes high-resolution smoke volume by matching descriptors and applying
patches from the repository.

An overview of the method is given in Fig. 4.1. In the pre-computational stage, a
fluid repository is prepared using high-resolution fluid simulations. It contains a large
number of spatio-temporal patches with fine discretization and little numerical viscosity.
When tracking and recording the raw density and velocity information of patches, a
deformation-limiting advection method is used, which can be considered as a deforming
Lagrangian frame. Taking the raw information as inputs, the CNN-based algorithm
explained in the previous chapter is used to encode flow-aware feature descriptors. In
this way, we can efficiently find the best match from this repository. In Sec. 3.5, we
show that in the learned feature space, the L2 distances for patches correspond to their
differences in terms of fluid density as well as flow motion. Although our method does
not explicitly reduces the numerical viscosity for low-resolution simulations, the influ-
ence of discretization on the patch correspondence is automatically considered during
the supervised training. In the run-time, coarse patches are sampled and advected for
simulations with arbitrary resolutions. An algorithm is proposed for volumetric synthesis
using matched patches from the repository.

Compared to static or rigid regions, tracking information with deforming patches
has the advantage that small features stored in the repository do not inadvertently
dissipate. By reusing repository patches, we side-step the strict time step restrictions
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that fine spatial discretization usually impose. On the other hand, we have to make
sure the regions do not become too ill-shaped over time. For this, an anticipation step
is used in the patch advection scheme when synthesizing high-resolution flow volumes.
Motivated by the fractal nature of turbulence and the pre-dominantly uni-directional
energy transfer towards small scales in Richardson’s energy cascade [117], we match and
track each patch independently. This results in a very efficient method, as it allows us
to perform all patch-based computations in parallel.

In combination, the whole method make it possible to very efficiently synthesize highly
detailed flow volumes with the help of a re-usable space-time flow repository. Starting
from existing technologies on fluid texture synthesis, the following part will explain our
methods for patch advection and volume synthesis. Then results and comparisons are
presented.

4.1 Texture Synthesis for Fluid Simulations

Flow motion & Textures

Stylized result Original density & motion Density result & Textures

Figure 4.2: Most of texture synthesis methods for fluid simulations focus on stylization in image
space, e.g. Lazyfluids [24] on the left. The density result of a motion stylization
method [118] is shown on the right.

Applying textures to fluid simulations has been an active area of research, e.g. ex-
amples in Fig. 4.2. There are methods focusing on the problem of applying textures
on fluid surfaces for liquid simulations [119, 120, 121] and algorithms that synthesize
two-dimensional fluid textures [8, 24]. Ma et al. [118] extend these texture synthesis
techniques to flow velocities. Notably, this was the only work performing the synthe-
sis in three dimensions back then, as the cost for synthesizing 3D volumes is typically
significant even for moderate sizes. In movie productions, the stamping approach [122]
is widely used. Instead of textures, small regions from existing simulations are reused,
which usually move rigidly and therefore, do not keep aligned with new simulations.

In our project, we focus on re-using high-resolution simulation data with complex fluid
information. In such a case, it is important that appropriate data can be efficiently and
accurately retrieved from a large repository according to the flow similarity. Meanwhile,
a controllable deformation is crucial for such a Lagrangian representation with com-
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plex neighborhoods. A similar idea on texture deformation was explored for animating
two-dimensional flows with frequency controlled textures [123]. While their algorithm
measures the amount of deformation and blends in un-deformed content, a controllable
deformed state is explicitly computed for our patches to follow the flow transportation
without undesirable distortion. This leads to increased life time of patches and reduces
blending operations.

Before going into details of deformation-aware patch tracking, we want to show the
result of a neural-network-based direct density synthesis method first. Trained on L2

losses, it has blurry results and motivated us to use the data-driven approach based on
deformable patches.

4.2 Direct Density Synthesis

Figure 4.3: Directly trying to synthesize densities with CNNs yields blurred results that lack
structures (left). Our algorithm computes highly detailed flows for the same input
(right).

Seeing the generative capabilities of modern neural networks, we found it interesting
to explore how far these networks could be pushed in the context of high-resolution flows.
Instead of aiming for the calculation of a low-dimensional descriptor, the network can
also be given the task to directly regress a high resolution patch of smoke densities. An
established network structure for this goal is a stack of convolutional layers to reduce
the input region to a smaller set of feature response functions, which then drive the
generation of the output with stack of convolution-transpose layers [13].

Using L2 losses, we ran an extensive series of tests, and the best results we could
achieve for a direct density synthesis are shown in Fig. 4.3. In this case, the network
receives a region of 16x16 density values, and produces outputs of four times higher
resolution (64 × 64) with the help of two convolutional layers, a fully connected layer,
and four deconvolutional layers. While we could ensure convergence of the networks
without over-fitting, and relatively good temporal stability, the synthesized densities
lack any detailed structures. This lack of detail arises despite the fact that this network
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has a significantly larger number of weights than our descriptor network, and had more
training data at its disposal.

This test illustrates that the chaotic details of turbulent smoke flows represent an
extremely challenging task. When trying to avoid over-fitting with a sufficiently large
number of inputs, the turbulent motions seem like noise to the networks. As a conse-
quence, the network learns an averaged behavior that smooths out detailed structures.

In Part III and IV, methods based on GANs are explored to solve similar problems.
While the spatial adversarial learning managed to improve visual detail in the generated
results, it brings temporal problems. Part III will discuss and tackle those difficult
problems. In this project, we propose to combine advantages from texture synthesis and
neural networks. By synthesizing detail from a pre-computed repository, we side-step
the difficulties of learning and generating details directly. Compared to a generative
learning task, encoding the distance between flow regions is a discrminative learning
that can be well fulfilled more easily with smaller amount of weights and training data.
Searching with the encoded descriptors, the best matched details in our flow repository
can be supplied at render time efficiently.

4.3 Patch Motion and Synthesis

In this section, we explain methods for deformation-limiting advection of patches and
volumetric synthesis of smoke volumes.

4.3.1 Deformation-limiting Motion

Figure 4.4: Naive patch advection (left) quickly leads to distorted regions. Our deformation
limiting advection (right) can keep stable regions while following the fluid motion.

Even simple flows exhibit large amounts of rotational motion that quickly lead to very
undesirable stretching and inversion artifacts. An example can be seen on the left side
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Figure 4.5: An example of patch cage with n = 3. The deformation error is accumulated from
every cell, as shown on the right. The distance between a target position v3 and
the advected position v′3 yields the deformation error. v3 is expressed in terms of
v0,1,2 and their center point vc.

of Fig. 4.4. Thus, when advecting the Lagrangian patch regions through a velocity field,
we are facing the challenge to avoid overly strong distortions while making the patch
follow the pre-scribed motion.

The result on the right side of Fig. 4.4 is achieved by using a local grid to track and
control the motion for each patch. These grids are called as cages in the following, to
distinguish them from the Cartesian grids of the fluid simulations, and we will denote
the number of subdivision per spatial axis with ncage, with a resulting cell size ∆xcage.
Below, we describe our approach to limit excessive deformation of these cages.

Inspired by previous work on as-rigid-as-possible deformations [124, 125], we express
our Lagrangian cages in terms of differential coordinates, and minimize an energy func-
tional in the least-squares sense to retrieve a configuration that limits deformation while
adhering to the flow motion.

For the differential coordinates, we span an imaginary tetrahedron between an arbi-
trary vertex v3, and its three neighboring vertices v0,1,2, as shown in Fig. 4.5. For the
un-deformed state of a cell, the position of v3 can be expressed with rotations of the
tetrahedron edges as

v3 = vc + (Re1,0ep,2 +Re2,1ep,0 +Re0,2ep,1)/3
√

2 . (4.1)

Here ei,j denotes the edge between points i and j, and Rv is the the 3x3 rotation matrix
that rotates by 90 degrees around axis v. vc is the geometric center of the triangle
spanned the three neighbors, i.e., vc = (v0 + v1 + v2)/3.

We can rewrite Eq. 4.1 as v3 = Av0 +Bv1 + Cv2, where

A = I/3 + (Re0,2 +Re1,0 − 2Re2,1)/9
√

2

B = I/3 + (Re1,0 +Re2,1 − 2Re0,2)/9
√

2

C = I/3 + (Re2,1 +Re0,2 − 2Re1,0)/9
√

2 .
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For a new position of v′3, e.g. later during a simulation run, we can measure the squared
error with

E{v′3} = ‖Av′0 +Bv′1 + Cv′2 − v′3‖2. (4.2)

Correspondingly, we can compute an overall deformation error for the whole cage with
m = (n+ 1)3 new positions v′ using the equation:

Edefo(v
′) =

1

n3

n3∑
i=0

8∑
j=0

E{v′ij}/(
1

n
)2 =

v′TGv′

n
. (4.3)

For a whole patch cage with n3 cells, we accumulate the deformation energy for the eight
corners in each cell. The energy for a single vertex is given by E{v′ij} above, where i and j

are the index of the cell and its corner respectively. The right side of Eq. 4.3 is a shortened
notation, where G is a 3m× 3m matrix containing the accumulated contributions for all
points of a cage. Since every vertex has at most 6 connected neighbors, every row vector
in G has at most 19 entries, corresponding to the x, y and z positions of its neighbors,
and a diagonal entry for itself. Minimizing this quadratic form directly will lead to a
trival solution of zero, so it is necessary to solve this problem with suitable constrains.
In practice we want the solution to respect the advected positions. For this we add
an additional advection error ‖v − v′‖2 that pulls the vertices towards the advected
positions, i.e., v′. Thus, the total energy we minimize is:

E(v) = λ0
vTGv

n
+

1

m

∑
‖v − v′‖2 , (4.4)

where v′ is the advected position, m = (n+1)3 is the number of vertices in the grid, and
λ0 controls the balance between advection and deformation. Note that in the original
formulation, Rv, and thus also G, are expressed in terms of v, making the whole problem
non-linear. Under the assumption that the advected coordinates do not deform too
strongly within a single step, which we found to be a valid assumption even for the large
CFL numbers used in graphics, we linearize the optimization problem by computing G′

using v′ in Eq. 4.1. The full minimization problem is now given by

∂E(v)

∂v
= 0 ≈ 2[(λG′ + I)v − v′], λ =

m

n
λ0 , (4.5)

where we have introduced a scaling factor m
n , that makes the system independent of the

chosen cage resolution.

Solving the linear system of v∗ = (λG′ + I)−1v′, we get a good set of positions
considering the deformation and fluid motion. However, we haven’t take the scale of
cages into account yet. Similar to Eq. 4.3, an error for the scale can be likewise calculated
to keep the original length, ∆xcage, for every edge, i.e.

Escale(v) =
1

n3

n3∑ ei,j∑
‖ei,j −

∆xcagee
∗

‖e∗‖
‖2 =

1

n3

n3∑ ei,j∑
‖vj − vi −

∆xcage(v
∗
j − v∗i )

‖v∗j − v∗i ‖
‖2 . (4.6)
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In this equation, vj and vi are the unknowns and v∗j and v∗i are the solution of the last
step. Minimizing Eq. 4.6, we get

∂Escale(v)

∂v
= 0 ⇒ ∂{vTHv + f(v∗)v + c}

∂v
= 0 ⇒ v = −H−1f(v∗) . (4.7)

This time, H is a constant matrix and f(v∗) is calculated from v∗, resulting in a very
efficient scaling step. Combining Eq. 4.5 and 4.7, the final set of positions on a patch cage
is achieved considering the flow advection, deformation and scaling. Note that all these
calculations are relatively small. The most expensive step is the inverse of (λG′ + I),
which is a symmetry and sparse matrix in size of 3m× 3m. Hence, it can be solved very
efficiently with a few steps of a conjugate gradient solver, independently for all patches.

As our goal is to track large scale motions with our patches, we have to respect the
different spatial scales merged in the flow field. To reduce the effects of small scale
perturbations in the flow, we advect the patches with a low-pass filtered version of the
velocity, where the filter is chosen according to the cage cell size ∆xcage.

Figure 4.6: While patches are faded in normally on the left, the patch anticipation strategy is
applied for the middle. For the region in blue, the right part shows a zoom-in of
the normally version on top and the anticipation version on the bottom.

Anticipation To prevent abrupt changes of densities, we fade patches in and out over a
time interval tf for rendering (see below). For our examples, we use a tf of 40 time steps.
Unfortunately, this temporal fading means that when patches are fully visible, they are
typically already strongly deformed due to the swirling flow motions. In Fig. 4.6, when
patches fade in normally, the result has a lot less details because ill-shaped patches are
removed. We can circumvent this problem by letting the patches anticipate the flow
motion. I.e., for a new patch at time t, we back-track its motion and deformation to the
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previous time t− tf . This leads to completely un-deformed patch configurations exactly
at the point in time when they are fully visible. The result therefore contains much more
details as shown in the middle of Fig. 4.6. On the right part, the difference for the blue
region is clear.

Initialization When seeding a new, un-deformed patch at a given position, we found
that having axis-aligned cages is not the best option. Inspired by classic image feature
descriptors, we initialize the orientations of our cages according to the gradient of the
density field. Specifically, we calculate gradient histograms in the cage region Ω, and
use the top ranked directions as main directions. The solid angle bins of 3D gradient
histograms can be defined using meridians and parallels [126]. We evenly divide az-
imuth θi and polar angle φj with step sizes ∆θ = ∆φ = π/nb, resulting in 2nb and
nb subdivisions for the azimuth and the polar angle, respectively. 3D vectors are then
specified as (r, θ, φ), where r denotes the radius. The unit sphere is divided into a set
of bins {bij}, 0 ≤ i < 2nb, 0 ≤ j < nb, where bij = (1, θi − ∆θ/2, φj − ∆φ/2) denotes
the normalized central direction of the bin in the spherical coordinate system. Based on
these bins, histograms are calculated as:

hij =
1

Aij

∑
o∈Ω

w

(∣∣∣∣φo − φj∆φ
+

1

2

∣∣∣∣)w(∣∣∣∣θo − θi∆θ
+

1

2

∣∣∣∣)G ((x− o)2
)
ro , (4.8)

where o is the position of a sample point in region Ω with density gradient (ro, θo, φo),
w(d) = max(0, 1 − d), Aij represents the solid angle of bij , and G denotes a Gaussian
kernel.

At the position x of a new patch, we compute the gradient histogram for the smoke
density ds as outlined above. The histogram has a subdivision of nb = 16, and the
region Ω is defined as a 93 grid around x. We choose the main direction of the patch
as bk, where k denotes the histogram bin with k = arg maxi,j(hij). For the secondary
direction, we recompute the histogram with gradient vectors in the tangent plane. Thus,
instead of ∇ds we use (∇ds − (∇ds · bx)bx). The initial orientation of the patch is then
defined in terms of (bx, by, bx × by). This ”gradient-aware” initialization narrows down
the potential descriptor space, which simplifies the learning problem, and leads to more
robust descriptors.

Discussion While as-rigid-as-possible deformations have widely been used for geomet-
ric processing task, our results show that they are also highly useful to track fluid
regions while limiting deformation. In contrast to typical mesh deformation tasks, we
do not have handles as constraints, but instead an additional penalty term that keeps
the deformed configuration close to the one pre-scribed by the flow motion. The di-
rect comparison between a regular advection, and our cage deformations is shown in
Fig. 4.4. It is obvious that a direct advection is unusable in practice, while our defor-
mation limiting successfully lets the cages follow the flow, while preventing undesirable
deformations. The anticipation step above induces a certain storage overhead, but we
found that it greatly reduces the overall deformation, and hence increases the quality of
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synthesized densities. In practice, we found the induced memory and storage overheads
to be negligible.

4.3.2 Synthesis and Rendering

In the following, we will outline our two-pass synthesis algorithm, as well as the steps
necessary for generating the final volumes for rendering. A pseudo-code summary of the
synthesis step is given in Alg. 1.

In the forward pass for flow synthesis, new patches are seeded and advected step
by step, and are finally faded out. To seed new patches, a random seeding grid with
spacing sp/2 is used, sp = n∆xcage being the size of a patch. In addition, we make use of
a patch weighting grid ws. It uses the native resolution of the simulation, and acts as a
threshold to avoid new patches being seeded too closely to existed ones. ws accumulates
the spatial weights of patches, i.e., spherical kernels centered at the centroids of each
patch cage with a radius of sp/2. A linear falloff is applied for the last two-thirds of its
radius, ramping from one to zero. At simulation time, we typically accumulate the patch
weights in ws without applying the patch deformations. This is in contrast to render
time, where we deform the patch kernels. The high-resolution weight grid with deformed
patch weights for rendering will be denoted wr to distinguish it from the low-resolution
version ws. As ws is only used for thresholding the creation of new particles, we found
that using un-deformed kernels gives very good results with reduced runtimes.

New patches will not be introduced at a sampling position xn unless ws(xn)<0.5. In
practice, this means the distance to the closest patch is larger than sp/3. For each newly
assigned patch, we compute its initial gradient-aligned frame of reference with Eq. 4.8,
calculate the CNN inputs at this location, and let both CNNs generate the feature
descriptors. Based on the descriptors, we look-up the closest matches from our repository
with a pre-computed kd-tree. For successfully matched patches, our deformation limiting
advection is performed over their lifetime. The maximal lifetimes are determined by the
data-set lengths of matched repository patches, which are typically around 100 frames.
We remove ill-suited patches, whose re-evaluated descriptor distance is too large for the
current flow configuration, or whose deformation energy in Eq. 4.3 exceeds a threshold.
In practice, we found a threshold of 0.15s2

p to work well for all our examples. After
the forward pass, matched patches anticipate the motion of the target simulation in a
backward pass. Here we move backwards through time, and advect all newly created
patches backward over the course of the fade in interval. Finally, for each frame we store
the coarse simulation densities, as well as patch vertex positions v, together with their
repository IDs and temporal fading weights. This data is all that is necessary for the
rendering stage.

During synthesis the deformation limiting patch advection effectively yields the large
motions which conform to the input flow, while small scale motion is automatically
retrieved from the repository frame by frame when we render an image. Note that
we only work with the low-dimensional feature descriptors when synthesizing a new
simulation result, none of the high-resolution data is required at this stage.
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Flow quantities:

density grid d, velocity grid u, weight grid ws, patch cages cj , scalar weights wj .

Pre-computation:

for t = 0 to tend,e do
Run exemplar simulation, update de,ue

PatchAdvection(ue)
SeedNewPatches(ws)
Compute CNN descriptors d from de,ue

Save d, and high-resolution de in patch regions to disk
Accumulate patch spacial weights in ws

end

Runtime synthesis:

G = load descriptors from repository
// forward pass:
for t = 0 to tend,t do

Run source simulation, update ds,us

PatchAdvection(us, c)
SeedNewPatches(ws)
Compute CNN descriptors d from ds,us

for j = 1 to νpatches do
if Patch j unassigned then

Find closest descriptor to dj in G
end
else

Update and check quality of dj

LimitDeformation(cj)
Update patch fading weights wj (fade out)
Store j, cj , wj for frame t

end

end
Store patches at time t , ds,us

Accumulate patch spacial weights in ws

end
// backward pass:
for t = tend,t to 0 do

Load ds,us , patches at time t
for j = 1 to νpatches do

if Anticipation active for Patch j then
PatchAdvection(−us, c)
Store j, cj , wj for frame t
Update wj (fade in)

end

end

end

Algorithm 1: Pseudo-code for our algorithm.
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Table 4.1: Details of our animation setups and repository data generation.

Scenes, Fig. Base res. Base patch res. Avg. patches Time

PlumeX, Fig. 4.7 108× 60× 60 153 388 5.3s
Obstacle, Fig. 4.10 76× 64× 64 123 362 3.9s

Jets, Fig. 4.11 90× 60× 60 123 486 4.0s

Comp. L2, Fig. 4.9 50× 80× 50 93 682 2.23s
Comp. Wlt, Fig. 4.12 50× 80× 50 93 647 2.42s

Res. Patch res. Patch no. Patch storage
Repo. 4403 723 14894 5.1GB densities, 30 MB descriptors

At render time we synthesize the final high-resolution volume. To prepare this volume,
we also need to consider spatial transitions between the patches amongst each other, and
transitions from the patch data to the original simulation. For this, we again accumu-
late the deformed spherical patch kernels into a new grid wr with the final rendering
resolution, to spatially weight the density data.

Then, the high-resolution density contained in the matched patches is weighted with
the spherical kernel and accumulated together to render the high-resolution volume.
As our repository contains densities that are normalized to [0..1] and our descriptor
is invariant to scaling and offset transformations, we map the repository content to
the min-max range of the densities in the target region. To blend the contributions
of overlapping patches, we normalize the accumulated high resolution density by wr.
Additionally, we use a blurred version of the original coarse densities as a mask. We
noticed that patches can sometimes drift outside of the main volume while moving with
the flow. The density mask effectively prevents patches from contributing densities away
from the original volume.

4.4 Results and Discussion

We will now demonstrate that our approach can efficiently synthesize high-resolution
volumes for a variety of different flows. Typically, we run a single time step per frame
All run-times in the following are given as the average per frame.

As a first example, we have simulated a simple rising plume example, shown in Fig. 4.7.
Note that gravity acts along the x-axis in our setup. In this case, the resolution of the
original simulation was 108 × 60 × 60, and on average, 388 patches were active over
the course of the simulation. Our approach is able to synthesize a large amount of
clearly-defined detail to the input flow that does not dissipate over time. Details of this
simulation setup, as well as for the other examples, can be found in Table 4.1.

A second example is shown in Fig. 4.10. Here we add an additional obstacle, which
diverts the flow. For the patch motion, we simply extend flow velocities into the ob-
stacles, and add a slight correction along the gradient of the obstacle’s signed distance
function if a patch vertex inadvertently ends up inside the obstacle. Our deformation
limiting advection smoothly guides the patches around the obstacle region.
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Figure 4.7: A horizontal plume simulation.
The top three images show the input, the bottom
three the high-resolution densities generated with
our method. On average, 388 patches were active
per timestep.

Figure 4.8: Descriptor comparisons.
Our algorithm with simple descriptors (left) results
in overly regular structures (blue) and sub-optimal
matches (purple). Chances for such cases are reduced
with the CNN-based descriptors (right).

Figure 4.9: More comparisons.
On an input with 50×80×50 cells (center), the wavelet
turbulence method (left) takes 2.75s/frame for a vol-
umes with 150 × 240 × 150 cells. Our method (right)
yields effective resolutions of 400 × 640 × 400 with
2.23s/frame.

A different flow configuration with colliding jets of smoke is shown in Fig. 4.11. For
this setup, on average 486 patches were active. Note that our patches contain 723 cells
in this case. Thus, the effective resolution for this simulation was ca 560 × 360 × 360
cells. The whole simulation took only 4.0s/frame, which is very efficient given the high
effective resolution.

For the three examples above, we use ws accumulated from deformed patch kernels.
By considering the deformation, ws better represents the coverage of the patches. How-
ever, since we limit deformations, we found that using un-deformed kernels generates
equivalent visual results with reduced calculation times. Besides, there is still significant
room left for accelerating our implementation further. E.g., we run the fluid solve on
the CPU, and we only use GPUs for the CNN descriptor calculations.

Evaluations: The CNN descriptors not only increase the recall rate, but also improve
the visual quality by retrieving patches that better adhere to the input flow. This can
be seen in Fig. 4.8, where our result is shown on the right, while the left hand side
uses our full pipeline with a simplified distance calculation, i.e., without the use of a
CNN. Instead, we use an L2 distance of down-sampled versions of ds and the curl of
us. These values are normalized and used as descriptors directly. Specifically, we down-
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Figure 4.10: Our method applied to the flow around a cylindrical obstacle. The resolution of
the underlying simulation is only 76× 64× 64.

Figure 4.11: Two colliding jets of smoke simulated with our approach. The whole simulation
including descriptor calculations, look-up, and patch advection took only 4.0 sec-
onds per frame on average.

sampled ds to a resolution of 73, and the curl to 53, resulting in a combined descriptor
with (343 + 375) entries. This is similar to the size of our CNN-based descriptors.
Since CNN descriptors have a good understanding of correlation between different fluid
resolutions, they offer results with small-scale vortices and vivid structures that fit the
target well, while the simple descriptors sometimes offer plain and noisy structures (the
blue regions in Fig. 4.8). Additionally, the simple descriptors can introduce un-plausible
motions, which becomes apparent in the regions marked in purple in Fig. 4.8. There,
we know from theory that the baroclinic contribution to vorticity should be along the
cross product of density and pressure gradient. Thus, the vertical structures caused by
the simple descriptors are not plausible for the buoyancy driven input simulation.

Based on the setup from Fig. 4.8, we further compare our approach to the wavelet
turbulence method [2] as a representative from the class of up-res methods. In order
to make the approaches comparable, we consider their performance given a limited and
equivalent computational budget. For our simulation, this setup used the ws field with
un-deformed kernel evaluations. Apart from the difference in detail, the wavelet turbu-
lence version exhibits a noticeable deviation from the input flow in the lower part of the
volume. Here numerical diffusion accumulates to cause significant drift over time, while
our method continues to closely conform to the input.

Finally, we compare our method to a regular simulation with doubled resolution. As
expected, this version results in a different large scale motion, and in order to compare the
outputs, we applied our CNN based synthesis method to a down-sampled version of the
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Figure 4.12: In order to compare a full simulation of 100 × 160 × 100 (the left two) with our
approach, we downsample the full simulation to 50× 80× 50, and then apply our
algorithm (the right two). The latter spends 2.42s/frame, while the full simulation
requires 2.51s/frame.

high resolution simulation. While the regular high resolution scene spends 2.5s/frame,
our method takes only 2.42s, but offers fine details, as shown in Fig. 4.12.

Limitations and Discussion: One limitation of our approach is that we cannot guaran-
tee fully divergence-free motions on small scales. For larger scales, our outputs conform
to the original, divergence-free motion. The small scale motions contained in repository
patches are likewise recorded from fully divergence-free flows, but as our patches deform
slightly, the resulting motions are not guaranteed to be divergence-free. Additionally,
spatial blending can introduce regions with divergent motions. Our algorithm shares
this behavior with other synthesis approaches, e.g., texture synthesis. However, as we
do not need to compute an advection step based on these motions, our method avoids
accmuluating mass losses (or gains) over time.

There are many avenues for smaller improvements of our neural network approach, e.g.,
applying techniques such as batch normalization, or specialized techniques for construct-
ing the training set. However, we believe that our current approach already demonstrates
that deforming Lagrangian patch regions are an excellent basis for CNNs in conjunction
with fluid flows. It effectively makes our learning approach invariant to large scale mo-
tions. Removing these invariants for machine learning problems is an important topic,
as mentioned e.g. by Ladicky et al. [60]. Apart from motion invariance, we arrive at
an algorithm that can easily applied to any source resolution. For other CNN-based
approaches this is typically very difficult to achieve, as networks are specifically trained
for a fixed input and output size [30].

Due to its data-driven nature, our method requires more hard-disk space than pro-
cedural methods. As shown in Table 4.1, the density data of the patches in our 3D
repository takes up ca. 5.1GB of disk space. Fortunately, we only load the descriptors
at simulation time: ca. 15MB for density descriptors, and another 15MB for curl de-
scriptors. At render time, we have to load ca. 400 data sets per frame, i.e. ca. 137MB
in total.
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Another consequence of our machine-learning approach is that our network is specif-
ically adapted to a set of algorithmic choices. Thus, for a different solver, it will be
advantageous to re-train the network with a suitable data set and adapted interval tr.
It will be an interesting area of future work whether a sufficiently deep CNN can learn
to compute descriptors for larger classes of solvers.

4.5 Conclusions

In Chap. 3, we have presented a novel CNN-based method to learn the flow similarity.
Based on that, Chap. 4 introduced a practical data-driven workflow for smoke synthesis.
Re-using a flow repository of space-time data-sets to synthesize high-resolution results,
the approach only takes a few seconds of run-time per frame. The main contribution of
this work is to demonstrate the usefulness of descriptor learning in the context of fluids
flows, and we have shown that it lets us establish correspondences between different
simulations in the presence of numerical viscosity. As our approach is a data-driven one,
it can be used for any choice of Navier-Stokes solver, as long as enough input data is
available. Additionally, the localized descriptors make our approach independent of the
simulation resolution.

While this method successfully achieved spatial details and temporal coherence for
smoke simulations with the help of velocity fields, the motion information is usually not
available for other sequential data-set, e.g. natural videos. Applying existing image
generation methods to videos often results in temporal artifacts. In the next part, we
will focus on the temporally coherent detail synthesis for videos using generative learning
methods.
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In Part III, we explore temporal coherence for GAN-based video

generation tasks. While the discriminative learning is used to re-

trieve appropriate details from a fluid repository in Part II, genera-

tive learning can be used to synthesize details directly. Although the

generation for multi-modal data-sets is very difficult to learn, adver-

sarial learning is found to be successful for these cases. E.g., it can

generate large amount of details for images. However, GANs without

temporal constrains bring new difficulties on the temporal aspect of

sequantial data generation. In the following, we improve the learn-

ing objectives and propose methods to generate temporally coherent

videos for video super-resolution and unpaired video translation.
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5 Temporally Coherent Video
Super-Resolution

Figure 5.1: Our temporally coherent VSR GAN generates realistic results. The low-resolution
inputs, our results and the HR ground truth images for the Tears of Steel [127]
room scene are shown from top to bottom.

VSR is a conditional video generation task where algorithms take the low resolution
(LR) image sequence as inputs and generate high resolution (HR) sequence as outputs.
This kind of learning problems are very challenging because networks should not only
learn to represent the static data distribution of the target domain but also learn to
correlate the output distribution over time with conditional inputs. Without ground-
truth motion information, their central difficulty is to faithfully reproduce the temporal
dynamics of the target domain and not resort to trivial solutions such as features that
arbitrarily appear and disappear over time.

As introduced in Sec. 2.2.3, state-of-the-art VSR methods often favor simpler norm
losses such as L2 over adversarial training. For a multi-modal training problem, these
simple losses result in averaging different modalities, thus easily lead to temporally
smooth results with an undesirable lack of spatial detail. In this chapter, our goal
is to properly apply GANs to improve the learning objective with a spatio-temporal
adversarial learning in together with a long-term temporal constraint. These temporal
self-supervision techniques allow us to generate high quality contents regarding spatial
details as well as temporal coherence. One example is shown in Fig. 5.1. In the following,
we first introduce the network architecture and learning objectives step by step. Then
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we devote ablation studies, comparisons and results for an in-depth understanding of
the approach.

5.1 Network Architectures and Temporal Self-Supervisions

Based on GANs introduced in Sec. 2.2.2, our VSR network architecture consists of three
components: a recurrent generator, a flow estimation network, and a spatio-temporal
discriminator. The generator G is used to recurrently generate HR video frames from
LR inputs. The flow estimation network F learns the motion compensation between
frames to aid both generator as well as the spatio-temporal discriminator Ds,t. During
the training, the generator and the flow estimator are trained together to fool the spatio-
temporal discriminator Ds,t. Taking spatial as well as temporal aspects into account,
this discriminator is the central component of our temporal self-supervision. It has the
ability to penalize unrealistic temporal discontinuities in the results without excessively
smoothing the image content. In this way, G is required to generate coherent and high-
frequency details according to previous frames. Once trained, the additional complexity
of Ds,t does not play a role, as only the trained models of G and F are required to
infer new super-resolution video outputs. In the following subsections, we describe the
generative network and temporal supervisions one by one.

5.1.1 Generative Network

௧ିଵ

௧ିଵ

௧

Motion Compensation

 𝑤 (𝑔௧ିଵ, 𝑣௧)

௧

Frame-recurrent Input

௧

 𝑎௧
Conditional

Input

+

Figure 5.2: The frame-recurrent VSR generator based on motion compensation.

Our generator networks produce image sequences in a frame-recurrent manner with
the help of a recurrent generator G and a flow estimator F . We follow previous work [90],
where G produces output gt in the target HR domain from a conditional input frame at
in the input LR domain, and recursively uses the previous generated output gt−1. This
frame-recurrent structure has the advantage to re-use high-frequency details over time.

Specifically, F is trained to estimate the motion vt between at−1 and at, Although
estimated from low-resolution data, vt can be re-sized and is then used as a motion
compensation that aligns high-resolution gt−1 to the current frame. Based on the input
of at and warped gt−1, we propose to train our generator to learn the residual content,
which we then add to the bi-cubic interpolated low-resolution input. This procedure,
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also shown in Fig. 5.2, can be summarized as:

gt = G(at,W (gt−1, vt)) + BicubicResize(at) ,where

vt = F(at−1, at)
(5.1)

and W is the warping operation. In line with methods for single image processing [78],
we find that learning the residual content only makes the training more stable. A ResNet
architecture is used for the generator G, while an encoder-decoder structure is applied
to the F . We intentionally keep generators simple and in line with previous work, in
order to demonstrate advantages of the temporal self-supervision that we will explain in
the following paragraphs.

5.1.2 Spatio-Temporal Adversarial Supervision

The central building block of our approach is a novel spatio-temporal discriminator Ds,t

that receives triplets of frames. This contrasts with typically used spatial discriminators
which supervise only a single image. By concatenating multiple adjacent frames along
the channel dimension, the frame triplets form an important building block for learning
because they can provide networks with gradient information regarding the realism of
spatial structures as well as short-term temporal information, such as first- and second-
order time derivatives.

VSR 𝐷௦,௧

0/1

Conditional LR Triplet 𝐼௔

 𝑎௧ିଵ  𝑎௧  𝑎௧ାଵ

+

Original Triplet 𝐼௕

 𝑏௧ିଵ  𝑏௧  𝑏௧ାଵ

Warped Triplet 𝐼௪௕

 𝑏௧
 𝑏௧ିଵ

 𝑤
 𝑏௧ାଵ

 𝑤+
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 𝑔௧ିଵ  𝑔௧  𝑔௧ାଵ
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Figure 5.3: Conditional VSR Ds,t. Taking LR triplet Ia as a conditional input, the spatio-
temporal discriminator supervise the generated triplets (Ig and Iwg) according to
the ground-truth triplets (Ib and Iwb).

We propose a Ds,t architecture, illustrated in Fig. 5.3, that supervises two types of
triplets, three adjacent frames and the corresponding warped ones, on condition of the
three low-resolution frames from the input domain. In this way, Ds,t can guide the
generator to learn the correlation between LR inputs and HR targets. In the warped
triplets, we warp later frames backward and previous ones forward. While original frames
contain the full spatio-temporal information, warped frames more easily yield temporal
information with their aligned content. For the input variants we use the following
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notations:

Ig = {gt−1, gt, gt+1}, Ib = {bt−1, bt, bt+1};
Iwg = {W (gt−1, vt), gt,W (gt+1, v

′
t)}, Iwb = {W (bt−1, vt), bt,W (bt+1, v

′
t)};

Ia = {at−1, at, at+1}.
(5.2)

Here, a subscript of a denotes the input low-resolution domain, while a subscript of b
denotes the target high-resolution domain.

The input of Ds,t can be summarized as Ibs,t = {Ib, Iwb, Ia} labeled as real and the
generated inputs Igs,t = {Ig, Iwg, Ia} labeled as fake. In this way, the conditional Ds,t

will penalize G if Ig contains less spatial details or unrealistic artifacts in comparison to
Ia, Ib. At the same time, temporal relationships between the generated images Iwg and
those of the ground truth Iwb should match. With our setup, the discriminator profits
from the warped frames to classify realistic and unnatural temporal changes, and for
situations where the motion estimation is less accurate, the discriminator can fall back
to the original, i.e. not warped, images.

Compared to non-adversarial training which typically employs loss formulations with
static goals, the GAN training yields dynamic goals due to discriminative networks
discovering the learning objectives over the course of the training run. Therefore, their
inputs have strong influence on the training process and the final results. Modifying their
inputs in a controlled manner can lead to different results and substantial improvements
with correct settings, as will be shown in Sec. 5.3. Although the concatenation of several
frames is a simple operation that has been used in a variety of projects, it is important
and allows discriminators to understand spatio-temporal data distributions. Below, we
will show that it can effectively reduce temporal problems encountered by spatial GANs.

While L2−based temporal losses are widely used in the field of video generation,
the spatio-temporal adversarial loss is crucial for preventing the inference of blurred
structures in multi-modal data-sets. Compared to GANs using multiple discriminators,
the single Ds,t network can learn to balance the spatial and temporal aspects from
the reference data and avoid inconsistent sharpness as well as overly smooth results.
Additionally, by extracting shared spatio-temporal features, it allows for smaller network
sizes.

5.1.3 Long-Term Temporal Supervision

When relying on a previous output as input, i.e., for frame-recurrent architectures, gener-
ated structures easily accumulate frame by frame. In an adversarial training, generators
learn to heavily rely on previously generated frames and can easily converge towards
strongly reinforcing spatial features over longer periods of time. For videos, this espe-
cially occurs along directions of motion, and these solutions can be seen as a special
form of temporal mode collapse. We have noticed this issue in a variety of recurrent
architectures, examples are shown in Fig. 5.4(a),While this issue could be alleviated by
training with longer sequences, we generally want generators to be able to work with
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Figure 5.4: a) Result without PP loss. The VSR network is trained with a recurrent frame-length
of 10. When inference on long sequences, frame 15 and latter frames of the foliage scene
show the drifting artifacts. b) Result trained with PP loss. These artifacts are removed
successfully for the latter. c) With our PP loss, the L2 distance between gt and g′t is
minimized to remove drifting artifacts and improve temporal coherence.

sequences of arbitrary length for inference. To address this inherent problem of recurrent
generators, we propose a new bi-directional “Ping-Pong(PP)” loss.

For natural videos, a sequence with forward order as well as its reversed counterpart
offer valid information. Thus, from any input of length n, we can construct a symmetric
PP sequence in form of a0, ...an−1, an, an−1, ...a0 as shown in Fig. 5.4. When inferring
this in a frame-recurrent manner, the generated result should not strengthen any invalid
features from frame to frame. Rather, the result should stay close to valid information
and be symmetric, i.e., the forward result gt = G(at, gt−1) and the one generated from
the reversed part, g′t = G(at, g

′
t+1), should be identical. Based on this observation, we

train our networks with extended PP sequences and constrain the generated outputs
from both passes to be the same using the loss:

Lpp =

n−1∑
t=1

∥∥gt − gt′∥∥2
. (5.3)

Note that in contrast to the generator loss, the L2 norm is a correct choice here: We are
not faced with multi-modal data where an L2 norm would lead to undesirable averaging,
but rather aim to constrain the recurrent generator to its own, unique version over time.
The PP terms provide constraints for short-term consistency via ‖gn−1 − gn−1

′‖2, while
terms such as ‖g1 − g1

′‖2 prevent long-term drifts of the results. The first frame g0 is
ignored because a black image is used as its recurrent input and it usually contains less
details comparing to other frames. As shown in Fig. 5.4(b), this PP loss successfully
removes drifting artifacts while appropriate high-frequency details are preserved. In
addition, it effectively extends the training data set, and as such represents a useful
form of data augmentation.
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A test in Sec. 5.3.2 disentangles effects of this PP-sequence augmentation and the PP
temporal constrains. The results show that the temporal constraint is the key to reliably
suppressing the temporal accumulation of artifacts, achieving consistency, and allowing
models to infer much longer sequences than seen during training.

5.2 Training and Loss Summary

We now explain the setups for the VSR training and losses for all networks. For the
training data-set, we download 250 short videos with 120 frames each from Vimeo.com.
In line with other VSR projects, we down-sample these frames by a factor of 2 to get
the ground-truth HR frames. Corresponding LR frames are achieved by applying a
Gaussian blur and sampling every fourth pixel. A Gaussian blur step is important to
mimic the information loss due to the camera sensibility in a real-life capturing scenario.
Although the information loss is complex and not unified, a Gaussian kernel with a
standard deviation of 1.5 is commonly used for a super-resolution factor of 4.

As an adversarial learning, we use a standard cross-entropy loss for the Ds,t:

LDs,t = −Eb∼pb(b)[logD(Ibs,t)]− Ea∼pa(a)[log(1−D(Igs,t))] . (5.4)

Correspondingly, a non-saturated Ladv, listed in Eq. 5.6, is used for the G and F of
VSR. Compared to the original saturated adversarial loss [10], the non-saturated one
can prevent the gradient vanishing problem.

To improve the perceptual quality for image generation tasks, both pre-trained NNs [128,
129] and GANs’ discriminators [23] were successfully used as perceptual losses in previ-
ous work. Here, we choose to use feature maps from a pre-trained VGG-19 network [15]
as well as Ds,t itself. We can encourage the generator to produce features similar to the
ground truth ones by increasing the cosine similarity between their feature maps. Note
that the feature maps of Ds,t contain both spatial and temporal information, and hence
are especially well suited for the perceptual loss.

To summarize, the total loss for G and F contains a L2 content loss, the adversarial
loss, the PP loss, perceptual losses and a warping loss to align frames, i.e.:

LG,F = λcLcontent + λaLadv + λpLPP + λφLφ + λwLwarp ,where (5.5)

Lcontent = ‖gt − bt‖2 ,

Ladv =− Ea∼pa(a)[logDs,t(I
g
s,t)] ,

LPP =

n−1∑
t=1

‖gt − gt′‖2 ,

Lφ =1.0−
Φ(Igs,t) · Φ(Ibs,t)∥∥Φ(Igs,t)

∥∥ · ∥∥∥Φ(Ibs,t)
∥∥∥ ,

Lwarp =
∑
‖at −W (at−1,F(at−1, at))‖2 .

(5.6)
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Figure 5.5: In VSR of the foliage scene, adversarial models (ENet, DsOnly, DsDt, DsDtPP,
TecoGAN�and TecoGAN) yield better perceptual quality than methods using L2 loss
(FRVSR and DUF). In temporal profiles on the right, DsDt, DsDtPP and TecoGAN show
significantly less temporal discontinuities compared to ENet and DsOnly. The temporal
information of our discriminators successfully suppresses these artifacts.

Again g, b and Φ stand for generated samples, ground truth images and feature maps
of VGG or Ds,t. Training with the total loss, we refer to our full model as TecoGAN
below. In the following, ablation studies are offered to reveal the effect of each loss term
and training details including parameters are given in Appendix A.2.

5.3 Learning Objectives Analysis

We will first illustrate the effects of temporal supervision, i.e. Ladv and LPP, using
models trained with ablated loss functions. Then, we focus on LPP and activate the PP
augmentation separately to compare to full TecoGAN models.

5.3.1 Loss Ablation Study

Below, we compare variants of our TecoGAN model to EnhanceNet (ENet) [130], FRVSR [90],
and DUF [93] for VSR. While ENet represents state-of-the-art single-image adversarial
model without temporal information, FRVSR and DUF are state-of-the-art VSR meth-
ods without adversarial losses.

For TecoGAN variants, we first train a DsOnly model with a frame-recurrent G, the
F , a VGG loss and the regular spatial-only discriminator. Compared to ENet, which
exhibits strong incoherence due to the lack of temporal information, DsOnly improves
temporal coherence thanks to the frame-recurrent connection, but there are noticeable
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Figure 5.6: VSR temporal profile comparisons of the calendar scene (time shown along y-axis),
TecoGAN models lead to natural temporal progressions, and our final model closely
matches the desired ground truth behavior over time.

high-frequency changes between frames. The temporal profiles of DsOnly in Fig. 5.5
and 5.6, correspondingly contain sharp and broken lines. When adding a temporal dis-
criminator in addition to the spatial one, this DsDt version generates more coherent
results, and its temporal profiles are sharp and coherent. However, DsDt often produces
the drifting artifacts discussed in Sec. 5.1.3, as the generator learns to reinforce existing
details from previous frames to fool Ds with sharpness, and satisfying Dt with good tem-
poral coherence in the form of persistent detail. While this strategy works for generating
short sequences during training, the strengthening effect can lead to very undesirable
artifacts for long-sequence inferences. By adding the self-supervision for long-term tem-
poral consistency Lpp, we arrive at the DsDtPP model, which effectively suppresses these
drifting artifacts with an improved temporal coherence. In Fig. 5.5 and Fig. 5.6, Ds-
DtPP results in continuous yet detailed temporal profiles without streaks from temporal
drifting. Although DsDtPP generates good results, it is difficult in practice to balance
the generator and the two discriminators. The results shown here were achieved only
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after numerous runs manually tuning the weights of the different loss terms. By using
the proposed Ds,t discriminator instead, we get a first complete model for our method,
denoted as TecoGAN�. This network is trained with a discriminator that achieves an
excellent quality with an effectively halved discriminative network size, as illustrated
on the right of Fig. 7.1. The single discriminator correspondingly leads to a significant
reduction in resource usage. Using two discriminators requires ca. 70% more GPU mem-
ory, and leads to a reduced training performance by ca. 20%. The TecoGAN�model
yields similar perceptual and temporal quality to DsDtPP with a significantly faster and
more stable training.

Since the TecoGAN�model requires less training resources, we also trained a larger
generator with 50% more weights. In the Sec. 5.4, we will focus on this larger single-
discriminator architecture with PP loss as our full TecoGAN model for VSR. Compared
to the TecoGAN�model, it can generate more details, and the training process is more
stable, indicating that the larger generator and Ds,t are more evenly balanced. Result
images and temporal profiles are shown in Fig. 5.5 and Fig. 5.6.

5.3.2 Data Augmentation and Temporal Constrains in the PP loss

Since training with sequences of arbitrary length is not possible with current hardware,
problems such as the “streaking artifacts” discussed above generally arise for recurrent
models. In the proposed PP loss, both the Ping-Pong data augmentation and the tem-
poral consistency constraint contribute to solving these problems. In order to show their
separated contributions, we trained another TecoGAN variant that only employs the
data augmentation without the constraint (i.e., λp = 0 in Eq. 5.5). Denoted as “PP-
Augment”, we show its results in comparison with the DsDt and TecoGAN�models in
Fig. 5.7.

DsDt PP-Augment TecoGAN�

Figure 5.7: 1st & 2nd row: Frame 15 & 40 of the Foliage scene. While DsDt leads to strong
recurrent artifacts early on, PP-Augment shows similar artifacts later in time (2nd
row, middle). TecoGAN� model successfully removes these artifacts.
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During training, the generator of DsDt receives 10 frames, and generators of PP-
Augment and TecoGAN� see 19 frames. While DsDt shows strong recurrent accumula-
tion artifacts early on, the PP-Augment version slightly reduces the artifacts. In Fig. 5.7,
it works well for frame 15, but shows artifacts from frame 32 on. Only our regular model
(TecoGAN�) successfully avoids temporal accumulation for all 40 frames. Hence, with
the PP constraint, the model avoids recurrent accumulation of artifacts and works well
for sequences that are substantially longer than the training length. Among others, we
have tested our model with sequences in length of 150, 166 and 233. For all of these
sequences, the TecoGAN model successfully avoids temporal accumulation or streaking
artifacts.

5.4 Results and Performance

Our model is tested on a wide range of video data, including the widely used Vid4 data-
set shown in Fig. 5.5, 5.6 and 5.8, detailed scenes from the movie Tears of Steel (ToS,
2011) shown in Fig. 5.8, and others shown in Fig. 5.10. As mentioned in Sec. 5.2,
our model is trained with down-sampled inputs and it can similarly work with original
images that were not down-sampled or filtered, such as a data-set of real-world photos.
In Fig. 5.9, we compared our results to two other methods [131, 94] that have used
the same data-set. With the help of adversarial learning, our model is able to generate
improved and realistic details in down-sampled as well as captured images.

While generator and discriminator are trained together, we only need the trained
generator network for the inference of new outputs after training, i.e., the whole dis-
criminator network can be discarded. Evaluated on a Nvidia GeForce GTX 1080Ti
GPU with 11G memory, the resulting VSR performance is given below. Numbers are
averaged over 500 images up-scaled from 320× 134 to 1280× 536.

The TecoGAN� model and FRVSR have the same number of weights (843587 in the
SRNet, i.e. generator network, and 1.7M in F), and thus show very similar performance
characteristics with around 37 ms spent for one frame. The larger TecoGAN model with
1286723 weights in the generator is slightly slower than TecoGAN�, spending 42 ms per
frame. However, compared with the DUF model, which has more than 6 million weights
in total and spends 942 ms per frame, the TecoGAN performance significantly better
thanks to its reduced size.

5.5 Limitations and Conclusions

Using the proposed discriminator architecture and PP loss, we find it is possible to
learn stable temporal functions with GANs. We have shown that these temporal self-
supervisions yield coherent and sharp details for VSR problems that go beyond what
can be achieved with direct supervision.

While our method generates very realistic results for a wide range of natural images,
it can lead to temporally coherent yet sub-optimal details in certain cases such as under-
resolved faces and text. This is a typical problem for GANs and is usually resolved by
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Figure 5.8: Detail views of the VSR results of ToS scenes (first three columns) and Vid4
scenes (last two columns) generated with methods from top to bottom: ENet,
FRVSR, DUF, TecoGAN, and the ground truth.

[131] Ours [131] Ours [94] Ours

Figure 5.9: VSR results on captured images comparing to previous work [131, 94].
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Figure 5.10: Additional VSR comparisons, generated with methods from left to right: ENet,
FRVSR, DUF, TecoGAN, and the ground truth. TecoGAN generates sharp details
in both scenes.

introducing prior information for the content of the video. Also, the interplay of the
different loss terms in the non-linear training procedure does not provide a guarantee
that all goals are fully reached every time. However, we found our method to be stable
over a large number of training runs, and we anticipate that it will provide a very useful
basis for wide range of conditional video generation tasks. As an example, in the next
chapter, we will apply these temporal supervisions to the UVT task and demonstrate
that temporal cycle consistency can be established through self supervisions.
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Temporal Self-Supervisions

Figure 6.1: Being able to establish the correct temporal cycle-consistency between domains,
our method generates correct blinking and speaking motions for eyes and mouths
with nice details (video courtesy of the White House, public domain).

While Chap. 5 focuses on the video super-resolution tasks, in this chapter, we look at
another conditional video generation task, video translation, which also requires natural
temporal evolution. Different to the VSR task where paired LR and HR videos are
available, it is usually hard to get training data-sets with one-to-one assignments when
translating content from one video domain to another. As discussed in Sec. 2.2.3, meth-
ods have been proposed to establish spatial cycle consistency [17] as well as temporal
cycle consistency [22] between two domains.

In the following, we show that instead of working on the generative networks, the
temporal cycle consistency can be likewise established through temporal self-supervision.
With the proposed spatio-temporal adversarial training and the Ping-Pong constraint,
we achieve translations with impressive details and natural temporal evolution. Some
examples are shown in Fig. 6.1, where a video of Trump is translated from a video of
Obama with desired blinking and speaking motions. Below, we introduce the network
architectures and learning objectives. Again, we offer ablation studies and comparisons
to present a careful analysis on learning objectives.

69



Part III. Detail Synthesis for Videos

6.1 Network Architectures

CycleGAN establishes the spatial cycle consistency for unpaired image-to-image trans-
lation using two generators and two discriminators [17]. Extending to video data, our
UVT method contains two frame-recurrent generators translating between domain A
and B, a motion estimator F and two spatio-temporal discriminators supervising in do-
mian A and B respectively. While the spatial cycle consistency is likewise established
through forward-and-backward translations from one domain to the other explicitly, we
will show that temporal cycle consistency can be guaranteed through our temporal su-
pervisions. In the following, we will describe the generative and discriminative network
architectures.

6.1.1 Frame-Recurrent Generative Network
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Figure 6.2: Frame-recurrent generators based on motion compensation and cycle consistency.

While we use one generator to map data from domain A to B for the VSR task,
unpaired generation tasks requires a second generator to establish the spatial cycle con-
sistency. For the UVT task, we use two recurrent generators, mapping from domain A
to B and back. As shown in Fig. 6.2, given ga→bt = Gab(at,W (ga→bt−1 , vt)), we can use at
as the labeled data of ga→b→at = Gba(ga→bt ,W (ga→b→at−1 , vt)) to enforce consistency. Like-
wise, bt can be used as the labeled data of gb→a→bt = Gba(gb→at ,W (gb→a→bt−1 , vt)), which is
not shown in the figure. This time, an encoder-decoder structure is applied to both the
generators and F and generators should learn the entire translation instead of a residual
content as in VSR.

In Sec. 6.2.1, we will show that using this generative network in together with two
spatial discriminator, it is possible to get a sequence of translated frames. Each of them
will contain spatial features of the target domain, but the temporal evolution cannot
be correctly transferred. This lead us to the proposed temporal self-supervisions using
spatio-temporal discirminators and the PP constraint.
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6.1.2 Spatio-Temporal Discriminative Network
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Figure 6.3: Conditional UVT Ds,t.

Being orthogonal to previous work which focuses on the generative networks to form
spatio-temporal cycle links, we will demonstrate that the supervision using unconditional
spatio-temporal discriminators has the ability to establish the temporal cycle-consistency
between different domains. As an improved learning objective, this actually yields better
results, as we will show in Sec. 6.3.

Extending the input frames from static ones to triplets, the UVT discriminator Ds,t

can provide spatio-temporal supervision to resemble the target domain. As illustrated in
Fig. 6.3, three types of triplets are supervised, denoted as static triplets, warped triplets
and the original triplets:

Isg = {gt, gt, gt}, Isb = {bt, bt, bt};
Iwg = {W (gt−1, vt), gt,W (gt+1, v

′
t)}, Iwb = {W (bt−1, vt), bt,W (bt+1, v

′
t)};

Ig = {gt−1, gt, gt+1}, Ib = {bt−1, bt, bt+1}.
(6.1)

Again, subscript of a and b denotes the input and target domains respectively and the
warping is performed via F .

Since the training data is unpaired, we train unconditional discriminators. Thus, Ds,t

is not designed to supervise the correlation between conditional inputs and the outputs.
On the contrary, it should first ensure that generators learn reasonable spatial features
and based on them, it can supervise the temporal continuity as well as the correlation
between spatial features and temporal motion. For example, when translating a face from
one person to another, the Ds,t should first teach the generator to learn spatial features
including eyes, hairs, and so on. Then, it should penalize G for temporal discontinuity
such as high frequency jitters. At last, it should understand spatio-temporal correlations,
e.g. there is a high possibility for mouths or eyes to open and close, while it is less likely
for parts like shoulders and noses to move a lot. In practice, we found it crucial to
ensure that the Ds,t supervision starts from spatial features and temporal information
is considered gradually.
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Therefore, different to the Ds,t of VST that always receives 3 concatenated triplets
as an input, the unconditional Ds,t of UVT only takes one triplet at a time. Taking
the generated data as the example, the input for a single batch can either be a static
triplet of Isg the warped triplet Iwg, or the original triplet Ig. The same holds for the
reference data of the target domain. With sufficient but complex information contained
in these triplets, transition techniques are applied so that the network can consider the
spatio-temporal information step by step, i.e., we initially start with 100% static triplets
Isg as the input. Then, over the course of training, 25% of them transit to Iwg triplets
with simpler temporal information, and another 25% transit to Ig afterwards, leading
to a (50%,25%,25%) distribution of triplets. The transitions of the warped triplets are
computed with linear interpolation: (1 − α)Icg + αIwg, with α growing form 0 to 1.
For the original triplets, we additionally fade the “warping” operation out by using
(1−α)Icg +α{W (gt−1, vt ∗β), gt,W (gt+1, v

′
t ∗β)}, again with α growing form 0 to 1 and

β decreasing from 1 to 0. These smooth transitions are important for discriminators
to learn spatio-temporal data distributions in a gradual and stable manner. A detailed
analysis on different discriminator inputs will be given in Sec. 6.2.2.

6.2 Losses and Analysis

While a spatio-temporal adversarial learning based on the proposed networks offers
reasonable video translation results for short sequences, the long-term PP constraint LPP

is necessary to avoid temporal accumulation of artifacts in longer sequences. In addition,
we use a perceptual loss Lφ based on discriminators to accelerate the convergence of the
training. Without paired ground truth data, LPP is calculated with feature correlations
measured by the Gram matrix, similar to the style loss used for traditional style transfer
tasks [128]. It helps the generators to match the distribution of features in the target
domain.

To summarize, the loss we use for the UVT Ds,t is

LDs,t = Eb∼p(b)[D(Ibs,t)− 1]2 + Ea∼p(a)[D(Igs,t)]
2 (6.2)

and the generators are trained with the content loss Lcontent based on the spatial cycle
consistency, adversarial losses Ladv , perceptual losses Lφ, and the PP loss LPP , i.e.:

LG,F = λcLcontent + λaLadv + λpLPP + λφLφ ,where (6.3)

Lcontent =
∥∥∥ga )b )at − at

∥∥∥
2

+
∥∥∥gb )a )bt − bt

∥∥∥
2
,

Ladv =− Ea∼pa(a)[D
b
s,t(I

ga→b

s,t )− 1]2 ,

LPP =
n−1∑
t=1

∥∥gt − gt′∥∥2
,

Lφ =
∥∥∥GM(Φ(Igs,t))−GM(Φ(Ibs,t))

∥∥∥
2
.

(6.4)
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Notations g, b and Φ stand for generated samples, ground truth images and feature
maps of Ds,t. We only show losses for the mapping from A to B, as the backward
mapping simply mirrors the terms. Note that we train least-square GANs [71] to avoid
the vanishing gradients of the vanilla GANs. To simplify the adversarial training, we load
a pre-trained model as F and the loss function Lwarp =

∑
‖at −W (at−1,F(at−1, at))‖2

was used in the pre-training stage.

The UVT data-sets are obtained from previous work [22] and each data domain has
around 2400 to 3600 unpaired frames. Again, we refer to our full model as TecoGAN and
analyze learning objectives using ablation studies below. Training details and parameters
are given in Appendix A.2.

6.2.1 Loss Ablation Study

Similar to the ablation study shown for the VSR task, we train TecoGAN variants
to evaluate the effect of each loss terms. Again, we start from a single-image GAN-
based model, a CycleGAN variant which already has two pairs of spatial generators and
discriminators. Then, we train the DsOnly variant by adding flow estimation via F
and extending the spatial generators to frame-recurrent ones. By augmenting the two
discriminators to use the triplet inputs proposed in Sec. 6.1.2, we arrive at the Dst model
with spatio-temporal discriminators, which does not yet use the PP loss. Although UVT
tasks are substantially different from VSR tasks, the comparisons in Fig. 6.4 yield similar
conclusions. In these tests, we use renderings of 3D fluid simulations of rising smoke as
our unpaired training data. These simulations are generated with randomized numerical
simulations using a resolution of 643 for domain A and 2563 for domain B, and both are
visualized with images of size 2562. Therefore, video translation from domain A to B is
a tough task, as the latter contains significantly more turbulent and small-scale motions.
With no temporal information available, the CycleGAN variant generates HR smoke that
strongly flickers. The DsOnly model offers better temporal coherence by relying on its
frame-recurrent input, but it learns a solution that largely ignores the current input and
fails to keep reasonable spatio-temporal cycle-consistency links between the two domains.
On the contrary, our Ds,t enables the Dst model to learn the correlation between the
spatial and temporal aspects, thus improving the cycle-consistency. However, without
Lpp, the Dst model (like the DsDt model of VSR) reinforces detail over time in an
undesirable way. This manifests itself as inappropriate smoke density in empty regions.
Using our full TecoGAN model which includes Lpp, yields the best results, with detailed
smoke structures and correct spatio-temporal cycle-consistency.

For comparison, a DsDtPP model involving a larger number of separate networks,
i.e. four discriminators and two frame-recurrent generators, are trained. By weighting
the temporal adversarial losses from Dt with 0.3 and the spatial ones from Ds with 0.5,
we arrived at a balanced training run. Although this model performs similarly to the
TecoGAN model on the smoke dataset, the proposed spatio-temporal Ds,t architecture
represents a more preferable choice in practice, as it learns a natural balance of temporal
and spatial components by itself, and requires fewer resources. Continuing along this
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Input CycleGAN DsOnly Dst TecoGAN

Figure 6.4: In every two rows, we show translations on top and the bottom row contains three adjacent
frames as RGB channels, thus fully aligned triplets would be gray. When learning a mapping from
renderings of LR smoke volumes to HR ones, CycleGAN gives good spatial features, but is temporally
incoherent. It generates triplets with strong colors while the input one only shows color around smoke
surfaces. DsOnly relies too much on the recurrent input and diverges from the conditional input. Dst
generates smoke in originally empty regions. TecoGAN outperforms other variants with desired results.
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Input CycleGAN DsOnly RecycleGAN TecoGAN

Figure 6.5: When learning a mapping from Trump to Obama, CycleGAN gives good spatial
features but collapses to essentially static Obama outputs. It manages to transfer
expressions back to Trump using tiny differences encoded in its Obama outputs,
without understanding the cycle-consistency between two domains. DsOnly also
fails and generates weird motions. Being able to establish the correct temporal
cycle-consistency, ours and RecycleGAN generate correct blinking motions, while
ours contains more coherent details.

direction, an interesting future work is to evaluate variants, such as a shared Ds,t for
both domains, i.e. a multi-class classifier network.

Besides the smoke dataset, an ablation study for the Obama and Trump translation
in Fig. 6.5 shows a very similar behavior.

6.2.2 Spatio-temporal Adversarial Equilibriums

Our evaluation so far highlights that temporal adversarial learning is crucial for genera-
tors to learn the spatio-temporal correlation between domains. Next, we will shed light
on the complex spatio-temporal adversarial learning objectives by varying the informa-
tion provided to the discriminator network. In the following tests, shown in Fig. 6.6,
Ds,t networks are identical apart from changing inputs, and we focus on the smoke
translation.

In order to learn the spatial and temporal features of the target domain as well as
their correlation, the simplest input for Ds,t consists of only the original, unwarped
triplets, i.e. {Ig or Ib}. Using these, we train a baseline model, which yields a sub-
optimal quality: it lacks sharp spatial structures, and contains coherent but dull motions.
Despite containing the full information, these input triplets prevent Ds,t from providing
the desired supervision. For paired video translation tasks, the vid2vid network achieves
improved temporal coherence by using a video discriminator to supervise the output
sequence conditioned with the motion estimated from a paired ground-truth sequence.
With no paired data available, we train a vid2vid variant by using the estimated motions
and original triplets, i.e {Ig + F (gt−1, gt) + F (gt+1, gt) or Ib + F (bt−1, bt) + F (bt+1, bt)},
as the input for Ds,t. However, the result do not significantly improve. The motions are
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Input Baseline Vid2vid Concat TecoGAN

Figure 6.6: Adversarial training arrives at different equilibriums with different discriminator inputs.
The baseline model (supervised on original triplets) and the vid2vid variant (supervised on original
triplets and estimated motions) fail to learn the complex temporal dynamics of a high-resolution smoke.
The warped triplets improve the result of the concat model and the full TecoGAN model performs better
spatio-temporally.
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Figure 6.7: Results of UVT tasks on different data-sets.

only partially reliable, and hence cannot help for the difficult unpaired translation task.
Therefore, the discriminator still fails to fully correlate spatial and temporal features.

We then train a third model, concat, using the original triplets and the warped ones, i.e.
{Ig +Iwg or Ib+Iwb}. In this case, the model learns to generate more spatial details with
a more vivid motion. I.e., the improved temporal information from the warped triplets
gives the discriminator important cues. However, the motion still does not fully resemble
the target domain. We arrive at our final TecoGAN model for UVT by controlling the
composition of the input data: as outlined above, we first provide only static triplets
{Isg or Isb}, and then apply the transitions of warped triplets {Iwg or Iwb}, and original
triplets {Ig or Ib} over the course of training. In this way, the network can first learn
to extract spatial features, and build on them to establish temporal features. Finally,
discriminators learn features about the correlation of spatial and temporal content by
analyzing the original triplets, and provide gradients such that the generators learn to use
the motion information from the input and establish a correlation between the motions
in the two unpaired domains. Consequently, the discriminator, despite receiving only a
single triplet at once, can guide the generator to produce detailed structures that move
coherently.

6.3 Results and Conclusions

Using the same loss function and hyper parameters, we train models for the following
video translation tasks: Obama and Trump translations, LR- and HR- smoke simulation
translations, as well as translations between smoke simulations and real-smoke captures.
While smoke simulations usually contain strong numerical viscosity with details limited
by the simulation resolution, the real smoke from Eckert et al. [132], contains vivid fluid
motions with many vortices and high-frequency details. As shown in Fig. 6.7, our method
can be used to narrow the gap between simulations and the real-world phenomena.
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Thanks to the proposed temporal self-supervisions, TecoGAN outperforms previous
work on the Obama and Trump data-set with sharp spatial features and coherent motion,
as shown in Fig. 6.5. It achieves good temporal coherence on par with RecycleGAN and
its spatial detail is on par with CycleGAN. While we achieve very realistic results on
these translation tasks, TecoGAN may generate sub-optimal results when the motion
of two domains strongly differs. For this case, it would be interesting to apply both
our method and motion translation from MocycleGAN [96] which learns the motion
translations in addition to image translations. This can make it easier for the generator
to learn from our temporal self supervision.

In the previous and this chapters, we show that for both VSR and UVT tasks, the
proposed temporal supervision provides results with natural temporal evolution and
realistic details. In the next chapter, we will apply existing spatial metrics and propose
temporal metrics to quantify the spatio-temporal quality of video results. User studies
are also conducted, which confirms the metric evaluations.
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Figure 7.1: Visual summary of VSR models with LPIPS (X-axis) measuring spatial detail and
temporal coherence measured by tLP (y-axis) & tOF (bubble size with smaller as
better). The right graph zooms in the red-dashed-box region on the left, containing
models in our VSR ablation study.

While the visual results discussed in previous chapters provide a first indicator of the
quality TecoGAN achieves, quantitative evaluations are crucial for automated qualifica-
tion across larger numbers of samples. Below we consider both VSR and UVT tasks, but
focus more on the former task where ground-truth data is available. We evaluate models
discussed above using established spatial metrics. Then, we motivate and propose two
novel temporal metrics to quantify temporal coherence. A visual summary of the spatial
and temporal metrics on the Vid4 data-set is shown in Fig. 7.1, where TecoGAN out-
performs previous methods spatio-temporally. In addition to the spatio-temporal metric
evaluations, we conduct user studies and the resulting scores confirm the conclusion of
evaluations.

7.1 Evaluations Using Spatial Metrics

For evaluating images, Blau and Michaeli [105] demonstrated that there is an inherent
trade-off between the perceptual quality and the distortion measured with vector norms
or low-level structures such as PSNR and SSIM. On the other hand, metrics based on
deep feature maps such as LPIPS [104] can capture more semantic similarities. Therefore,
we evaluate all VSR methods discussed above with the purely spatial metrics PSNR
together with the human-calibrated LPIPS metric. While higher PSNR values indicate
a better pixel-wise accuracy, lower LPIPS values represent better perceptual quality and
closer semantic similarity. Note that both metrics are agnostic to changes over time,
and hence do not suffice to fully evaluate video data.
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Table 7.1: Metrics evaluated for the VSR Vid4 scenes.

PSNR↑ BIC ENet FRVSR DUF TecoGAN TecoGAN� DsOnly DsDt DsDtPP

calendar 20.27 19.85 23.86 24.07 23.21 23.35 22.23 22.76 22.95
foliage 23.57 21.15 26.35 26.45 24.26 25.13 22.33 22.73 25.00
city 24.82 23.36 27.71 28.25 26.78 26.94 25.86 26.52 27.03
walk 25.84 24.90 29.56 30.58 28.11 28.14 26.49 27.37 28.14
average 23.66 22.31 26.91 27.38 25.57 25.89 24.14 24.75 25.77

LPIPS ↓×10 BIC ENet FRVSR DUF TecoGAN TecoGAN� DsOnly DsDt DsDtPP

calendar 5.935 2.191 2.989 3.086 1.511 2.142 1.532 2.111 2.112
foliage 5.338 2.663 3.242 3.492 1.902 1.984 2.113 2.092 1.902
city 5.451 3.431 2.429 2.447 2.084 1.940 2.120 1.889 1.989
walk 3.655 1.794 1.374 1.380 1.106 1.011 1.215 1.057 1.051
average 5.036 2.458 2.506 2.607 1.623 1.743 1.727 1.770 1.733

tOF ↓×10 BIC ENet FRVSR DUF TecoGAN TecoGAN� DsOnly DsDt DsDtPP

calendar 4.956 3.450 1.537 1.134 1.342 1.403 1.609 1.683 1.583
foliage 4.922 3.775 1.489 1.356 1.238 1.444 1.543 1.562 1.373
city 7.967 6.225 2.992 1.724 2.612 2.905 2.920 2.936 3.062
walk 5.150 3.203 2.569 2.127 2.571 2.765 2.745 2.796 2.649
average 5.578 4.009 2.090 1.588 1.897 2.082 2.157 2.198 2.103

tLP ↓×100 BIC ENet FRVSR DUF TecoGAN TecoGAN� DsOnly DsDt DsDtPP

calendar 3.258 2.957 1.067 1.603 0.165 1.087 0.872 0.764 0.670
foliage 2.434 6.372 1.644 2.034 0.894 0.740 3.422 0.493 0.454
city 2.193 7.953 0.752 1.399 0.974 0.347 2.660 0.490 0.140
walk 0.851 2.729 0.286 0.307 0.653 0.635 1.596 0.697 0.613
average 2.144 4.848 0.957 1.329 0.668 0.718 2.160 0.614 0.489

T-diff ↓×100 BIC ENet FRVSR DUF TecoGANTecoGAN� DsOnlyDsDtDsDtPP GT

calendar 2.271 9.153 3.212 2.750 4.663 3.496 6.287 4.347 4.167 6.478
foliage 3.74511.997 3.478 3.115 5.674 4.179 8.961 6.068 4.548 4.396
city 1.974 7.788 2.452 2.244 3.528 2.965 4.929 3.525 2.991 4.282
walk 4.101 7.576 5.028 4.687 5.460 5.234 6.454 5.714 5.305 5.525
average 3.152 9.281 3.648 3.298 4.961 4.076 6.852 5.071 4.369 5.184

Evaluation results on the Vid4 scenes [133] are shown on the top of Table 7.1 and
LPIPS scores are used as the values of the X-axis in Fig. 7.1. Specifically, trained
with direct vector norms losses, FRVSR and DUF achieve high PSNR scores. However,
the undesirable smoothing induced by these losses manifests themselves in larger LPIPS
distances. ENet, on the other hand, with no information from neighboring frames, yields
the lowest PSNR and achieves an LPIPS score that is only slightly better than DUF
and FRVSR. The TecoGAN model with adversarial training achieves an excellent LPIPS
score, with a PSNR decrease of less than 2dB over DUF which has twice the model size
of ours. This is very reasonable, since PSNR and perceptual quality were shown to be
anti-correlated [105], especially in regions where PSNR is very high. Based on good
perceptual quality and reasonable pixel-wise accuracy, TecoGAN outperforms all other
methods by more than 40% for LPIPS.

So far, we compared the VSR TecoGAN model with published models of ENet, DUF
and FRVSR. All these methods are trained and evaluated on LR images generated from
Gaussian-blur and down-sampling steps. However, we have not directly compared to
methods from the NTIRE19 VSR challenges [134], as these models are trained on linear-
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Table 7.2: Metrics evaluated for VSR of ToS scenes.
PSNR↑ BIC ENet FRVSR DUF TecoGAN tOF ↓×10 BIC ENet FRVSR DUF TecoGAN

room 26.90 25.22 29.80 30.85 29.31 room 1.735 1.625 0.861 0.901 0.737
bridge 28.34 26.40 32.56 33.02 30.81 bridge 5.485 4.037 1.614 1.348 1.492

face 33.75 32.17 39.94 40.23 38.60 face 4.302 2.255 1.782 1.577 1.667
average 29.58 27.82 34.04 34.60 32.75 average 4.110 2.845 1.460 1.296 1.340

LPIPS ↓×10 BIC ENet FRVSR DUF TecoGAN tLP ↓×100 BIC ENet FRVSR DUF TecoGAN
room 5.167 2.427 1.917 1.987 1.358 room 1.320 2.491 0.366 0.307 0.590

bridge 4.897 2.807 1.761 1.684 1.263 bridge 2.237 6.241 0.821 0.526 0.912
face 2.241 1.784 0.586 0.517 0.590 face 1.270 1.613 0.290 0.314 0.379

average 4.169 2.395 1.449 1.414 1.086 average 1.696 3.827 0.537 0.403 0.664

interpolated LR images. When applied to inputs with linear-interpolation, the winning
method, EDVR [92], produces results on par with DUF and FRVSR with filtered, down-
sampled inputs: On the Vid4 dataset, EDVR gets a PSNR of 27.35 and an LPIPS of
0.233, while the DUF method has a PSNR of 27.38 and an LPIPS of 0.261. Thus, the
performance of EDVR is close to DUF, which our TecoGAN model clearly outperforms.

7.2 Temporal Metrics and Evaluations

For both VSR and UVT, evaluating temporal coherence without ground-truth motion is
very challenging. While traditional temporal metrics based on vector norm differences
of warped frames, e.g. T-diff = ‖gt −W (gt−1, vt)‖1 [98], can be easily deceived by
very blurry results, e.g. bi-cubic interpolated ones, we propose to use a tandem of two
new metrics, tOF and tLP, to measure the consistence over time. tOF measures the
pixel-wise difference of motions estimated from sequences, and tLP measures perceptual
changes over time using deep feature maps:

tOF = ‖OF (bt−1, bt)−OF (gt−1, gt)‖1 and

tLP = ‖LP (bt−1, bt)− LP (gt−1, gt)‖1 .
(7.1)

OF represents an optical flow estimation with Lucas-Kanade [135] and LP is the percep-
tual LPIPS metric. In tLP, the behavior of the reference is considered, as natural videos
exhibit a certain degree of change over time. In conjunction, both pixel-wise differences
and perceptual changes are crucial for quantifying realistic temporal coherence. While
they could be combined into a single score, we list both measurements separately, as
their relative importance could vary in different application settings. While tLP scores
are used as values of Y-axis in Fig. 7.1, the tOF is displayed by bubble sizes.

For comparison, the T-diff numbers are given at the bottom of Table 7.1. Due to its
local nature, is easily deceived by blurry method and can not correlate well with visual
assessments of coherence. By using the proposed metrics, i.e. measuring the pixel-wise
motion differences using tOF together with the perceptual changes over time using tLP,
a more nuanced evaluation can be achieved, as shown for the VSR task in the middle of
Table 7.1.
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TecoGAN�

Figure 7.2: Bar graphs of temporal metrics for Vid4.

Figure 7.3: Vid4 spatial
metrics.

Figure 7.4: Metrics for ToS.

Not surprisingly, the results of ENet show larger errors for all metrics due to their
strongly flickering content. Bi-cubic up-sampling, DUF, and FRVSR achieve very low
T-diff errors due to their smooth results, representing an easy, but undesirable avenue
for achieving coherency. However, the overly smooth changes of the former two are
identified by the tLP scores.While our DsOnly model generates sharper results at the
expense of temporal coherence, it still outperforms ENet there. By adding temporal
information to discriminators, our DsDt, DsDtPP, TecoGAN�and TecoGAN improve in
terms of temporal metrics.

In conclusion, all temporal adversarial models outperform spatial adversarial ones,
and the full TecoGAN model performs very well: With a large amount of spatial detail,
it still achieves good temporal coherence, on par with non-adversarial methods such
as DUF and FRVSR. As shown in Fig. 7.1, with good spatial and temporal scores,
TecoGAN model locates at the bottom left part of the figure with a small bubble size.
These results are also visualized in Fig. 7.2 and 7.3.

Besides the previously evaluated the Vid4 dataset, we also get similar evaluation
results on the Tears of Steel data-sets (room, bridge, and face, in the following referred
to as ToS scenes) and corresponding results are shown in Table 7.2 and Fig. 7.4. In
all tests, we follow the procedures of previous work [93, 90] to make the outputs of all
methods comparable, i.e., for all result images, we first exclude spatial borders with a
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Table 7.3: For the Obama&Trump dataset, the averaged tLP and tOF evaluations closely corre-
spond to our user studies. The table below summarizes user preferences as Bradley-
Terry scores. Details are given in Sec. 7.3.

UVT scenes Trump→Obama Obama→Trump AVG User Studies ↑, ref. to

metrics tLP↓ tOF↓ tLP↓ tOF↓ tLP↓ tOF↓ original
input

arbitrary
target

CycleGAN 0.0176 0.7727 0.0277 1.1841 0.0234 0.9784 0.0 0.0

RecycleGAN 0.0111 0.8705 0.0248 1.1237 0.0179 0.9971 0.994 0.202

TecoGAN 0.0120 0.6155 0.0191 0.7670 0.0156 0.6913 1.817 0.822

distance of 8 pixels to the image sides, then further shrink borders such that the LR
input image is divisible by 8 and for spatial metrics, we ignore the first two and the last
two frames, while for temporal metrics, we ignore first three and last two frames, as an
additional previous frame is required for inference.

For the UVT tasks, where no ground-truth data is available, we can still evaluate tOF
and tLP metrics by comparing the motion and the perceptual changes of the output
data w.r.t. the ones from the input data , i.e.,

tOF =
∥∥∥OF (at−1, at)−OF (ga→bt−1 , g

a→b
t )

∥∥∥
1

and

tLP =
∥∥∥LP (at−1, at)− LP (ga→bt−1 , g

a→b
t )

∥∥∥
1
.

(7.2)

With sharp spatial features and coherent motion, TecoGAN outperforms previous work
on the Obama&Trump dataset, as shown in Table 7.3, although it is worth pointing
out that tOF is less informative in this case, as the motion in the target domain is not
necessarily pixel-wise aligned with the input.

Similar to spatial evaluations where both pixel-wise metrics (e.g. PSNR) and percep-
tual metrics (e.g. LPIPS) are considered, tOF and tLP are proposed to describe different
aspects for the temporal coherence. Specifically, we found that our formulation of tLP
is a general concept that can work reliably with different perceptual metrics: When
repeating the tLP evaluation with the PieAPP metric [136] instead of LP , i.e., tPieP =
‖f(bt−1, bt)− f(gt−1, gt)‖1, where f(·) indicates the perceptual error function of PieAPP,
we get close to identical results, as shown in Fig. 7.5. The conclusions from tPieP
also closely match the LPIPS-based evaluation: our network architecture can generate
realistic and temporally coherent detail, and the metrics we propose allow for a stable,
automated evaluation of the temporal perception of a generated video sequence. On
the other hand, as a pixel-wise metric, tOF is more robust than T-diff as it compares
motions instead of image content. In Fig. 7.6, we visualize the motion difference and it
can well reflect the visual inconsistencies.

While spatial metrics are not sufficient to evaluate video data, good temporal metrics
should be able to capture user preferences more, since temporal evolution is part of the
core information in sequential data-sets. Thus, we conduct user studies are as perceptual
evaluations for both VSR and UVT tasks, in addition to the spatial metrics and tem-
poral metrics above. Across all of them, we find that the majority of the participants
considered TecoGAN results to be closest to the ground truth. The right column of
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PieAPP (error) 
←

ENet FRVSR DUF TecoGAN

tPieP↓ cal. fol. city walk

BIC 0.091 0.155 0.136 0.064

ENet 0.194 0.276 0.286 0.155

FRVSR 0.023 0.040 0.025 0.072

DUF 0.028 0.037 0.028 0.042

TecoGAN 0.021 0.036 0.027 0.060

Figure 7.5: On the right, we show tables and visualization of perceptual metrics computed with
PieAPP [136] (instead of LPIPS used in Fig. 7.1 previously, which is repeated on
the left) on ENet, FRVSR, DUF and TecoGAN for the VSR of Vid4. Bubble size
indicates the tOF score.

Figure 7.6: Optical flow (left two columns) and tOF (right column) visualization of the armor
scene. While the optical flow of ENet is very noisy, the results of DUF and TecoGAN
are closer to the ground truth (GT). The per-pixel differences shown on the right
indicate that DUF has larger errors on the chest. Values are shown in HSV color
space, with H representing directions, S being a constant one, and V representing
the l1 vector norm.

Table 7.3 shows user-study scores for UVT tasks. More details about user studies and
perceptual evaluation for VSR tasks can be found in Sec. 7.3.

7.3 User Studies

We conducted several user studies for the VSR task comparing five different methods:
bi-cubic interpolation, ENet, FRVSR, DUF and TecoGAN. The established 2AFC de-
sign [137, 138] is applied, i.e., participants have a pair-wise choice, with the ground-truth
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Figure 7.7: A sample setup of user study.

video shown as reference. One example setup can be seen in Fig. 7.7. The videos are
synchronized and looped until participants make the final decision. With no control to
stop videos, users cannot stop or influence the playback, and hence can focus more on
the whole video, instead of specific spatial details. Videos positions (left/A or right/B)
are randomized.

After collecting 1000 votes from 50 users for every scene, i.e. twice for all possible
pairs (5 × 4/2 = 10 pairs), we follow common procedure and compute scores for all
models with the Bradley-Terry model (1952). The outcomes for the Vid4 scenes can be
seen in Fig. 7.8 and overall scores are listed in Table 7.4.

From the Bradley-Terry scores for the Vid4 scenes we can see that the TecoGAN
model performs very well, and achieves the first place in three cases, as well as a second
place in the walk scene. The latter is most likely caused by the overall slightly smoother
images of the walk scene, in conjunction with the presence of several human faces, where
our model can lead to the generation of unexpected details. However, overall the user
study shows that users preferred the TecoGAN output over the other two deep-learning
methods with a 63.5% probability.

By comparing the user study results and the metric breakdowns shown in Table 7.1
and Table 7.3, we find our metrics to reliably capture the human temporal perception.
In Table 7.1, while TecoGAN achieves spatial (LPIPS) improvements in all scenes, DUF
and FRVSR are not far behind in the walk scene. In terms of temporal metrics tOF
and tLP, TecoGAN achieves similar or lower scores compared to FRVSR and DUF for
calendar, foliage and city scenes. The lower performance of our model for the walk scene
is likewise captured by higher tOF and tLP scores. Overall, the metrics confirm the
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Methods
The Bradley-Terry scores (standard error)

calendar foliage city walk

Bi-cubic 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

ENet 1.834 (0.228) 1.634 (0.180) 1.282 (0.205) 1.773 (0.197)
FRVSR 3.043 (0.246) 2.177 (0.186) 3.173 (0.240) 2.424 (0.204)

DUF 3.468 (0.252) 2.243 (0.186) 3.302 (0.242) 3.175 (0.214)
TecoGAN 4.091 (0.262) 2.769 (0.194) 4.052 (0.255) 2.693 (0.207)
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Figure 7.8: Tables and bar graphs of Bradley-Terry scores and standard errors for Vid4 VSR.

performance of our TecoGAN approach and match the results of the user studies, which
indicate that our proposed temporal metrics successfully capture important temporal
aspects of human perception.

For UVT tasks which have no ground-truth data, we carried out two sets of user stud-
ies: One uses an arbitrary sample from the target domain as the reference and the other
uses the actual input from the source domain as the reference. On the Obama&Trump
data-sets, we evaluate results from CycleGAN, RecycleGAN, and TecoGAN following
the same modality, i.e. a 2AFC design with 50 users for each run. E.g., on the top
left of Fig. 7.9, users evaluate the generated Obama in reference with the input Trump
on the y-axis, while an arbitrary Obama video is shown as the reference on the x-axis.
Ultimately, the Y-axis is more important than the X-axis as it indicates whether the
translated result preserves the original expression. A consistent ranking of TecoGAN
> RecycleGAN > CycleGAN is shown on the Y-axis with clear separations, i.e. stan-
dard errors don’t overlap. The X-axis indicates whether the inferred result matches the
general spatio-temporal content of the target domain. Our TecoGAN model also receives
the highest scores here, although the responses are slightly more spread out. On the
bottom of Fig. 7.9, we summarize both studies in a single graph highlighting that the
TecoGAN model is consistently preferred by the participants of our user studies.

Fig. 7.10 shows user-study scores along X-axis and normalized scores of tLP and tOF
are added up and displayed along Y-axis. From this figure, we can see that evaluations
using proposed temporal metrics correlate well with user studies.
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Figure 7.9: Tables and graphs of Bradley-Terry scores and standard errors for Obama&Trump UVT.
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Figure 7.10: Evaluations using proposed temporal metrics correlate well to the user-study
scores for both VSR and UVT tasks.

7.4 Discussion and Conclusions

Although temporal metrics and perceptual scores correlate well with each other in our
tests, temporal metrics can still trivially be reduced for blurry image content. Thus,
we found it important to evaluate results with a combination of spatial and temporal
metrics for an automatic qualification. As can be seen in Fig. 7.1 at the begining
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Table 7.4: Averaged VSR metric evaluations for the Vid4 data set with the following metrics,
PSNR: pixel-wise accuracy. LPIPS (AlexNet): perceptual distance to the ground
truth. T-diff: pixel-wise differences of warped frames. tOF: pixel-wise distance
of estimated motions. tLP: perceptual distance between consecutive frames. User
study: Bradley-Terry scores [139]. Performance is averaged over 500 images up-
scaled from 320x134 to 1280x536.

Methods PSNR↑ LPIPS↓
×10

T-diff↓
×100

tOF↓
×10

tLP↓
×100

User
Study ↑ Model

Size(M) ↓
Processing
Time(ms/frame) ↓

DsOnly 24.14 1.727 6.852 2.157 2.160 - - -

DsDt 24.75 1.770 5.071 2.198 0.614 - - -

DsDtPP 25.77 1.733 4.369 2.103 0.489 - - -

TecoGAN� 25.89 1.743 4.076 2.082 0.718 - 0.8(G)+1.7(F) 37.07

TecoGAN 25.57 1.623 4.961 1.897 0.668 3.258 1.3(G)+1.7(F) 41.92

ENet 22.31 2.458 9.281 4.009 4.848 1.616 - -

FRVSR 26.91 2.506 3.648 2.090 0.957 2.600 0.8(SRNet)+1.7(F) 36.95

DUF 27.38 2.607 3.298 1.588 1.329 2.933 6.2 942.21

Bi-cubic 23.66 5.036 3.152 5.578 2.144 0.0 - -

of this chapter, TecoGAN clearly outperforms previous methods on the Vid4 data-set
considering both the spatial and temporal quality. Interestingly, all TecoGAN variants
except the DsOnly model are located close to each other in the region highlighted with a
red dashed box. This indicates that the spatio-temporal adversarial training offers better
learning objectives and is the key to temporally coherent results with good spatial details.
In Table 7.4, we summarize all VSR methods using the spatial and temporal metrics,
user-study scores, model sizes in terms of weight numbers, and the performance. Using
relatively short processing time, TecoGAN manages to generate good results in terms of
temporal coherence and perceptual quality.

Based on established spatial metrics and proposed temporal metrics, we have evalu-
ated the VSR and UVT results discussed in the previous chapters. These evaluations are
consistent and match with the user studies. Given that perceptual metrics are already
widely used for image evaluations, we believe it is the right time to consider perceptual
changes in temporal evaluations, as we did with our proposed temporal coherence met-
rics. Although not perfect, they are not as easily deceived as simpler metrics. While
there is still a large room to improve, we anticipate that these metrics will provide useful
insights into reliable temporal evaluations for sequential data-sets.
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“La vie est mouvement.”

–– Voltaire

8 Coherent Details for Sequential Data

While it is not easy to add proper details to a static object, it is much harder to generate
realistic details that move coherently with dynamic objects. In Part II, we have presented
a smoke synthesis method based on discriminative learning. In order to achieve coherent
details, we first select details according to fluid similarity considering both density and
motion information and then we move them using patches that deform with the under-
lying fluid. In Part III, we propose temporal self-supervisions for generative learning
methods and produce coherent video results. Compared to the generative methods, a
discriminative model is less flexible, therefore requires several other modules to cooper-
ate together. Generative learning, on the other hand, is more applicable to similar tasks
with modifications. In this chapter, we look into the generation of different sequential
data-sets using generative learning methods.

Besides the aforementioned discriminative method, the goal of detail synthesis for flu-
ids can be likewise achieved using a fluid super-resolution method based on generative
learning. We now consider the Eulerian representation because it can generalize more
easily to other sequential data. Allowing for local-wise operations e.g. difference approx-
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imations of derivatives and convolutional filters, the Eulerian grid is a good candidate to
combine physics-based simulations with neural-network methods. In practice, memory
becomes the bottleneck for volumetric super-resolution of fluid sequences. For VSR, a
frame-recurrent generator is necessary because a image only contain a 2D projection
of the 3D space and information from the current frame is usually not enough due to
occlusions. Thankfully, for fluid simulations, we can input full volumetric density and
velocity fields of the current time-step, while historical information is less important.
The motion estimation network F can also be replaced by pre-computed velocity fields.
Thus, by using a single-frame generator, a spatial discriminator, and a temporal discrim-
inator, the spatio-temporal adversarial training produces a coherent generative model
addressing the SR problem for fluid flows. Processing every frame of the LR smoke
separately, a sequence of HR smoke volumes can be generated in parallel. On the top
left of the teaser image, we show one frame of the rendered LR input. Three frames of
the rendered results are shown on the bottom left, top right and bottom right.

While the method above managed to increase the resolution of 3D fluids by a factor of
4, larger factors such as 8 are very hard since the number of weights required in a neural
network makes the adversarial training extremely difficult. Instead of fulfilling the goal
within one pass, we propose to decompose the problem of generating a Cartesian field
function into two orthogonal passes. As shown on the left of Fig. 8.1, two separate GANs
are used, where the first one up-scales slices in XY-plane and the second one refines the
whole volume along the Z-axis. Since these sub-problems can be learned more efficiently,
a generative model with a SR factor of eight is achieved for the first time. Considering
all dimensions, the multi-pass GAN can increase the degrees of freedom by 512. A result
is shown on the right of Fig. 8.1. From an input in resolution of 503, a coherent HR
smoke is generated in resolution of 4003.

Besides fluids and videos, we have likewise studied the generation of rendering se-
quences for iso-surfaces and strongly aliased video games. Restricted to iso-surfaces, we
found that regular losses behave reasonably well and adversarial training is not necessary
since the multi-modality is reduced. Instead of working on RGB colors, a SR of the nor-
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Figure 8.1: A multi-pass GAN. The workflow on the left is drawn for a super-resolution factor of 4.
With the help of progressive growing [75], we can increase the SR factor to 8 and a result
is shown on the right. The input on the top left corner has a resolution of 503.
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Figure 8.2: SR for rendering sequences of iso-surfaces (the left two) and video games(the right
two). From left to right, we show a direct illumination of a LR iso-surface as input,
the generated HR iso-surface rendering with AO, a strongly aliased video game
input, and the generated SR result.

mal and depth fields in image space leads to a large improvement on the results. Along
with the SR of normal and depth fields for direct illuminations, the network managed
to learn the ambient occlusion (AO) simultaneously from the geometry information for
global illumination, even though the LR AO is not provided as an input. Together, the
network has demonstrated its potential for real-time rendering applications, e.g. remote
visualization tasks. For video games, the computation required for photo-realistic ren-
dering of complex scenes is still blocking remote applications including cloud gaming.
Taking strongly aliased LR images from a rasterization-based real-time renderer as in-
puts, it is very difficult to generate coherent super-resolution results with realistic details.
While there is a large variety of objects in games, the fact that only one sample is traced
for one pixel results in increased multi-modality. Based on the frame-recurrent generator
and a spatio-temporal discriminator, we add recurrent connections on the internal state
of the generator’s residual blocks. After warping, these depth-recurrent residuals allow
the network to re-use deep features from historical frames and result in better percep-
tual quality and temporal coherence. We also found that it is better to remove the LR
images as the conditional input for the discriminator. Otherwise, it is too difficult for
the generator to find a coherent solution that can correlate with the noisy input well.
Results of the two projects are shown Fig. 8.2.

Across videos, fluids, iso-surface and real-time renderings, we have presented gen-
erative learning methods to synthesize detailed and coherent sequential results. The
exploration across different data domains allow us to understand the capability of spatio-
temporal learning algorithms better. In the next chapter, we will conclude all methods
presented in the dissertation, draw connections and discuss on promising future direc-
tions.
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“In an increasingly Virtual world, audience interaction, not content, is King!”

–– Clyde DeSouza

9 Conclusions and Future Work

In this dissertation, we focus on detail synthesis for sequential data-sets using deep-
learning-based algorithms. In the following, we will summarize all methods discussed in
previous chapters. Afterwards, limitations and future directions are presented.

9.1 Method Summary

In previous chapters, we have presented a discriminative-learning method for data-driven
synthesis of smoke flows and several generative methods for fluids, videos and renderings.
Based on supervised learning, a discriminative model usually requires smaller sets of
weights and training data. When synthesizing details for fluids, the aforementioned
discriminative method relies on other modules such as the deformable patch advection.
This, however, makes it hard to generalize to other sequential data-sets. In our projects,
we demonstrate that generative models can be successfully applied to different data-sets.

In Fig. 9.1, we summarize the aforementioned generative models. From these projects,
we obtain the following practical experiences. While regular losses should be considered
for specific data-sets, e.g. the iso-surface renderings, adversarial learning behaves better
for data-sets with strong multi-modality. When using GANs for sequential data gener-
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Generative models for fluid,
video and rendering sequences

Super-resolution of
isosurfaces renderings

(Fig. 8.2)

GANs
(Part III)

TecoGAN for
UVT (Chap. 6)

TecoGAN for
VSR (Chap. 5)

DRR for Real-Time
Renderings
(Fig. 8.2)

TempoGAN for fluids
(Chap. 8’s teaser image)

A multi-pass
GAN for fluids

(Fig. 8.1)

Figure 9.1: The connections of generative methods for fluids, videos and renderings, repeated
from Fig. 1.4. Algorithms for videos, fluids and renderings are highlighted in green,
blue, and purple respectively.

ation, spatio-temporal adversarial learning surpasses normal temporal losses based on
low-level metrics: It can offer coherent solutions without reducing spatial realism. In this
case, the input of a spatio-temporal discriminator should be carefully considered since
the learning objectives are dynamically explored from them. In practice, we find that
curriculum learning, progressive growing, and dynamic update rules contribute to sta-
ble GAN training. While curriculum learning helps to break down the overall learning
objective into smaller sub-problems, the progressive growing strategy works similarly
by introducing the spatial complexity step by step. By using dynamic update rules,
generators and discriminators are updated differently in order to keep a good balance.
While Heusel et al. propose to use different learning rates for generators and discrimi-
nators [107], we choose to update discriminators only when necessary. Details for this
update rule is introduced in Appendix A.2.2. In general, our work demonstrates that
deep learning algorithms have great potential in learning spatio-temporal representa-
tions. Given that deep learning has been extremely successful at learning complex static
distributions, we anticipate more and more exploration on temporal evolution.

9.2 Future Work

To conclude, we have motivated and introduced the detail synthesis for computer graph-
ics and vision tasks. Focusing on the sequential data-sets, we developed discriminative
and generative learning methods for fluid and video synthesis. These methods suc-
cessfully generate sharp details with coherent motions. By applying the temporally
coherent GAN to the generation of fluid, video, and rendering sequences, we show that
spatio-temporal learning is capable to represent sequential data with realistic temporal
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evolution. We also studied images and video evaluation methods. With the proposed
temporal metrics, we call attention to the perceptual evaluation of temporal changes.
While achieving realistic results, we are aware of the limitations including unstable GAN
training, sub-optimal results on samples different to the training data-set, and the large
amount of resources required for training.

Despite these drawbacks, it is still amazing what deep learning methods have achieved.
If we consider books as the beginning of a virtual world created by a human, deep-
learning-based techniques in computer graphics and vision have started to bring visual
content into the virtual world for everyone and they are greatly enriching the way we
express and communicate. Along this direction, we still lack powerful tools to synthesize
realistic sequential content according to users’ intentions. While it is interesting to learn
from large data-sets for synthesis and other computer graphic problems, one promising
direction for vision tasks is to use prior knowledge such as physical rules to enhance the
understanding. From both areas, we believe that combining the advantages of physical
simulations and machine learning is a promising direction. In the future, we will continue
working in this direction and conduct further research to solve many more challenging
temporal synthesis problems, such as temporal super-resolution of sequential data-sets
and physical simulations with intuitive user controls.

Temporal Super-resolution While we have been working on spatial super-resolution
tasks for both fluid and video data, temporal super-resolution requires more understand-
ing of the temporal evolution. In previous work, Super Slomo [140] focuses on the motion
estimation between input video frames and assumes in-between frames are linear inter-
polations of warped frames. Up to now, how to learn the non-linear temporal evolution is
still an open question. While adversarial learning is important for multi-modal problems
like this, a spatio-temporal discriminator could be applied to achieve good performance
on both spatial and temporal aspects. Still, there are large differences between different
sequential data domains, e.g. fluid and video. It is beneficial to focusing on different
data-sets to form a better understanding on general temporal learning problems.

Conditional Generation for Fluid Motion It is always a difficult task to synthesize
fluid motion with considerations on user control as well as physically-based fluid behav-
ior. While there are previous work using primal-dual optimization [141] and procedural
turbulence [2], new technologies on differentiable tools for simulation [65, 66] and render-
ing [142] opens up new possibilities for intuitive user interactions including videos [143]
and sketches [144, 145]. Besides convenient user controls, these technologies provide
new connections between real-world captures and physics simulations, which could fur-
ther our physical understandings of the captured natural phenomena from a data-driven
perspective.

Overall, sequential data-sets are vital components of human lives. To understand and
generate the temporal evolution represented in these data-sets, it is interesting and
important to work at the interface between deep learning and physically-based rendering
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and simulations. The results presented in this dissertation demonstrate that data-driven
and deep-learning-based synthesis are promising directions. They provide powerful tools
with state-of-the-art performances. With many more open problems beyond what have
been discussed above, we hope that our methods can provide insights into a wide variety
of sequential generation tasks.
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A Technical Details for Video Generation

In the following, we give details of network architectures and training parameters used
for the VSR and UVT tasks in Part III.

A.1 Network Architecture

In this section, we use the following notation to specify all network architectures we
proposed: conc() represents the concatenation of two tensors along the channel dimen-
sion; C/CT (input, kernel size, output channel, stride size) stands for the convolution
and transposed convolution operation, respectively; “+” denotes element-wise addition;
BilinearUp2 up-samples input tensors by a factor of 2 using bi-linear interpolation; Bicu-
bicResize4(input) increases the resolution of the input tensor to 4 times higher via bi-
cubic up-sampling; Dense(input, output size) is a densely-connected layer, which uses
Xavier initialization for the kernel weights.

The architecture of our VSR generator G is:

conc(at,W (gt−1, vt))→ lin ; C(lin, 3, 64, 1),ReLU→ l0;
ResidualBlock(li)→ li+1 with i = 0, ..., n− 1;

CT (ln, 3, 64, 2),ReLU→ lup2; CT (lup2, 3, 64, 2),ReLU→ lup4;
C(lup4, 3, 3, 1),ReLU→ lres; BicubicResize4(at) + lres → gt .

In TecoGAN�, there are 10 sequential residual blocks in the generator ( ln = l10 ), while
the TecoGAN generator has 16 residual blocks ( ln = l16 ). Each ResidualBlock(li)
contains the following operations: C(li, 3, 64, 1), ReLU → ri; C(ri, 3, 64, 1) + li → li+1.

The VSR Ds,t’s architecture is:

Igs,t or Ibs,t → lin; C(lin, 3, 64, 1),Leaky ReLU→ l0;
C(l0, 4, 64, 2),BatchNorm,Leaky ReLU→ l1;
C(l1, 4, 64, 2),BatchNorm,Leaky ReLU→ l2;
C(l2, 4, 128, 2),BatchNorm,Leaky ReLU→ l3;
C(l3, 4, 256, 2),BatchNorm,Leaky ReLU→ l4;

Dense(l4, 1), sigmoid→ lout .

VSR discriminators used in our variant models, DsDt, DsDtPP and DsOnly, have a the
same architecture as Ds,t. They only differ in terms of their inputs.

The flow estimation network F has the following architecture:

conc(at, at−1)→ lin; C(lin, 3, 32, 1),Leaky ReLU→ l0;
C(l0, 3, 32, 1),Leaky ReLU,MaxPooling→ l1; C(l1, 3, 64, 1),Leaky ReLU→ l2;
C(l2, 3, 64, 1),Leaky ReLU,MaxPooling→ l3; C(l3, 3, 128, 1),Leaky ReLU→ l4;
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C(l4, 3, 128, 1),Leaky ReLU,MaxPooling→ l5; C(l5, 3, 256, 1),Leaky ReLU→ l6;
C(l6, 3, 256, 1),Leaky ReLU,BilinearUp2→ l7; C(l7, 3, 128, 1),Leaky ReLU→ l8;
C(l8, 3, 128, 1),Leaky ReLU,BilinearUp2→ l9; C(l9, 3, 64, 1),Leaky ReLU→ l10;
C(l10, 3, 64, 1),Leaky ReLU,BilinearUp2→ l11; C(l11, 3, 32, 1),Leaky ReLU→ l12;

C(l12, 3, 2, 1), tanh→ lout; lout ∗MaxVel→ vt .

Here, MaxVel is a constant vector, which scales the network output to the normal velocity
range.

With the same motion estimator F, generators in UVT tasks have an encoder-decoder
structure:

conc(at,W (gt−1, vt))→ lin ; C(lin, 7, 32, 1), InstanceNorm,ReLU→ l0;
C(l0, 3, 64, 2), InstanceNorm,ReLU→ l1;
C(l1, 3, 128, 2), InstanceNorm,ReLU→ l2;

ResidualBlock(l2 + i)→ l3+i with i = 0, ..., n− 1;
CT (ln+2, 3, 64, 2), InstanceNorm,ReLU→ ln+3;
CT (ln+3, 3, 32, 2), InstanceNorm,ReLU→ ln+4;

CT (ln+4, 7, 3, 1), tanh→ lout

ResidualBlock(l2+i) contains the following operations: C(l2+i, 3, 128, 1), InstanceNorm,
ReLU → t2+i ;C(t2+i, 3, 128, 1), InstanceNorm → r2+i; r2+i + l2+i → l3+i. We use 10
residual blocks for all UVT generators.

Since UVT generators are larger than the VSR generator, we also use a larger Ds,t

architecture:

Igs,t or Ibs,t → lin; C(lin, 4, 64, 24),ReLU→ l0;
C(l0, 4, 128, 2), InstanceNorm,Leaky ReLU→ l1;
C(l1, 4, 256, 2), InstanceNorm,Leaky ReLU→ l2;

C(l2, 4, 512, 2), InstanceNorm,Leaky ReLU→ l3; Dense(l3, 1)→ lout .

Again, all ablation studies use the same architecture and only differ in terms of their
inputs.

A.2 Training Details

A.2.1 Technical Details of the Spatio-Temporal Discriminator in VSR

In Iwg and Iwb, F is used to warp frames. While contents are better aligned most of the
time, at the boundary of images, the output of F is usually less accurate due to the lack
of reliable neighborhood information. There is a higher chance that objects move into
the field of view, or leave suddenly, which significantly affects the images warped with
the inferred motion. An example is shown in Fig. A.1. This increases the difficulty for
Ds,t, as it cannot fully rely on the images being aligned via warping. To alleviate this
problem, we only use the center region of Iwg and Iwb as the input of the discriminator,
and we reset a boundary of 16 pixels. Thus, for an input resolution of Iwg and Iwb of
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bt−1 W (bt−1, vt) ‖W (bt−1, vt)− bt‖1

Figure A.1: Near image boundaries, flow estimation is less accurate and warping often fails to
align content. The first two columns show original and warped frames, the third
one shows differences after warping (ideally all black). The top row shows that
structures moving into the view can cause problems, visible at the bottom of the
images, while the second row has no such prolems (the objects are moving out of
the view).

128× 128 for the VSR task, the inner part in size of 96× 96 is left untouched, while the
border regions are overwritten with zeros.

The flow estimation network F with the loss LG,F should only be trained to support
G in reaching the output quality as determined by Ds,t, but not the other way around.
The latter could lead to F networks that confuse Ds,t with strong distortions of Iwg and
Iwb. In order to avoid the this undesirable case, we stop the gradient back propagation
from Iwg and Iwb to F. In this way, gradients from Ds,t to F are only back propagated
through the generated samples gt−1, gt and gt+1 into the generator network. As such,
Ds,t can guide G to improve the image content, and F learns to warp the previous frame
in accordance with the detail that G can synthesize. However, F does not adjust the
motion estimation only to reduce the adversarial loss.

A.2.2 Training Details for VSR and UVT

In the adversarial training of VSR and UVT, We employ a dynamic discriminator up-
dating strategy, i.e. discriminators are not updated when there is a large difference
between D(Igs,t) and D(Ibs,t). While our training runs are generally very stable, the
training process could potentially be further improved with modern GAN algorithms,
e.g. Wasserstein GAN [72].

To improve the stability of the adversarial training for the VSR task, we pre-train
G and F together with a simple L2 loss of E ‖gt − bt‖2 +λwLwarp for 500k batches.
Based on the pre-trained models, we use 900k batches for the proposed spatio-temporal
adversarial training stage. Our training sequences has a length of 10 and a batch size
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of 4. A black image is used as the first previous frame of each video sequence. I.e., one
batch contains 40 frames and with the PP loss formulation, the NN receives gradients
from 76 frames in total for every training iteration.

Table A.1: Training parameters

VSR ParamDsOnlyDsDt DsDtPP TecoGAN� TecoGAN

λa 1e-3 Ds: 1e-3, Dt: 3e-4 1e-3 1e-3

λp 0.0 0.0 0.5

λφ 0.2 for VGG and 1.0 for Discriminator

λω, λc 1.0, 1.0
learning-
rate 5e-5 5e-5 for Ds. 1.5e-5 for Dt.

5e-5 for G, F. 5e-5 5e-5

UVT Param DsOnly Dst DsDtPP TecoGAN

λa 0.5 Ds: 0.5
Dt: 0.3 0.5

λp 0.0 0.0 100.0

λφ from 106 decays to 0.0

λω 0.0, a pre-trained F is used for UST tasks

λc 10.0

In the pre-training stage of VSR, we train the F and a generator with 10 residual
blocks. An ADAM optimizer with β = 0.9 is used throughout. The learning rate starts
from 10−4 and decays by 50% every 50k batches until it reaches 2.5 ∗ 10−5. This pre-
trained model is then used for all TecoGAN variants as initial state. In the adversarial
training stage of VSR, all TecoGAN variants are trained with a fixed learning rate of
5 ∗ 10−5. The generators in DsOnly, DsDt, DsDtPP and TecoGAN� have 10 residual
blocks, whereas the TecoGAN model has 6 additional residual blocks in its generator.
Therefore, after loading 10 residual blocks from the pre-trained model, these additional
residual blocks are faded in smoothly with a factor of 2.5 ∗ 10−5. We found this growing
training methodology [75], to be stable and efficient in our tests. When training the
VSR DsDt and DsDtPP, extra parameters are used to balance the two cooperating
discriminators properly. Through experiments, we found Dt to be stronger. Therefore,
we reduce the learning rate of Dt to 1.5 ∗ 10−5 in order to keep both discriminators
balanced. At the same time, a factor of 0.0003 is used on the temporal adversarial loss
to the generator, while the spatial adversarial loss has a factor of 0.001. During the VSR
training, input LR video frames are cropped to a size of 32 × 32. In all VSR models,
the Leaky ReLU operation uses a tangent of 0.2 for the negative half space. Additional
training parameters are listed in Table A.1.

For the UVT task, a pre-training is not necessary for generators and discriminators
since temporal triplets are gradually faded in. Only a pre-trained F model is reused.
Trained on specialized data-sets, we found UVT models to converge well with 100k
batches of sequences in length of 6 and batch size of 1.

For all UVT tasks, we use a learning rate of 10−4 to train the first 90k batches and
the last 10k batches are trained with the learning rate decay from 10−4 to 0. Images of
the input domain are cropped into a size of 256 × 256 when training, the original size
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being 288 × 288. The additional training parameters are also listed in Table A.1. For
UVT, Lcontent and Lφ are only used to improve the convergence of the training process.
We fade out the Lcontent in the first 10k batches and the Lφ is used for the first 80k and
faded out in last 20k.

A. Technical Details for Video Generation 117


	Acknowledgement
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Acronyms
	I Introduction
	1 Introduction
	1.1 Dissertation Overview
	1.2 Publication List

	2 Fundamentals
	2.1 Fluid Simulations
	2.1.1 Eulerian Methods and Numerical Dissipation
	2.1.2 Lagrangian and Hybrid Methods
	2.1.3 Machine Learning Methods for Fluid Simulations

	2.2 Deep Learning Methods for Images and Videos
	2.2.1 Neural Networks and CNNs
	2.2.2 GANs
	2.2.3 Conditional Generation for Images and Videos
	2.2.4 Image and Video Evaluations



	II Detail Synthesis for Fluids
	3 Learning Flow Similarity
	3.1 CNN Architecture
	3.2 Loss Functions
	3.3 Data Generation
	3.4 Evaluation
	3.5 Descriptors for Flow Motions

	4 Fluid Synthesis Based on Similarity
	4.1 Texture Synthesis for Fluid Simulations
	4.2 Direct Density Synthesis
	4.3 Patch Motion and Synthesis
	4.3.1 Deformation-limiting Motion
	4.3.2 Synthesis and Rendering

	4.4 Results and Discussion
	4.5 Conclusions


	III Detail Synthesis for Videos
	5 Temporally Coherent Video Super-Resolution
	5.1 Network Architectures and Temporal Self-Supervisions
	5.1.1 Generative Network
	5.1.2 Spatio-Temporal Adversarial Supervision
	5.1.3 Long-Term Temporal Supervision

	5.2 Training and Loss Summary 
	5.3 Learning Objectives Analysis
	5.3.1 Loss Ablation Study
	5.3.2 Data Augmentation and Temporal Constrains in the PP loss

	5.4 Results and Performance
	5.5 Limitations and Conclusions

	6 Unpaired Video Translation with Temporal Self-Supervisions
	6.1 Network Architectures
	6.1.1 Frame-Recurrent Generative Network
	6.1.2 Spatio-Temporal Discriminative Network

	6.2 Losses and Analysis
	6.2.1 Loss Ablation Study
	6.2.2 Spatio-temporal Adversarial Equilibriums

	6.3 Results and Conclusions

	7 Spatio-Temporal Evaluations for Videos
	7.1 Evaluations Using Spatial Metrics
	7.2 Temporal Metrics and Evaluations
	7.3 User Studies
	7.4 Discussion and Conclusions


	IV Conclusions of Detail Synthesis for Sequential Data
	8 Coherent Details for Sequential Data
	9 Conclusions and Future Work
	9.1 Method Summary
	9.2 Future Work

	Bibliography

	Appendix
	A Technical Details for Video Generation
	A.1 Network Architecture
	A.2 Training Details
	A.2.1 Technical Details of the Spatio-Temporal Discriminator in VSR
	A.2.2 Training Details for VSR and UVT




