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The early stages of the shock-driven explosion of liquid-water microdrops are studied
numerically with a high-resolution discretization of the axisymmetric Euler equations. A
level-set based conservative interface-interaction method is extended to allow for phase
transition. The method is applied to a configuration that has been investigated in recent
experiments [Stan et al., Nat. Phys. 12, 966 (2016); Stan et al., J. Phys. Chem. Lett. 7,
2055 (2016)]. The presented results show that the numerical model predicts the initial
stages of the violent liquid-drop explosion dynamics accurately. Our results indicate that
the deformation of the cylindrical vapor cavity within the droplet is not induced by a torus-
shaped negative-pressure wave as was implied from the experimental data. We rather find
that this torus-shaped wave is a shock wave, and that the observed vapor-cavity deformation
is caused by interaction with a negative-pressure region preceding the torus shock. The
simulation results show deviations from experimental results at later stages when the drop
deformation is dominated by off-center cavitation, i.e., by effects that require extension of
the underlying model to take into account generalized nucleation and recondensation.

DOI: 10.1103/PhysRevFluids.4.044003

I. INTRODUCTION

Breakup of liquid droplets plays an important role for a wide range of technological applications,
including coating, fuel combustion, or nanoparticle production. During secondary atomization
breakup is caused by strong velocity gradients due to ambient gas cross flow, e.g., resulting from
a shock wave hitting the droplet. This aerobreakup phenomenon is subject of intense experimental
and numerical investigations [1–5].

High-speed liquid-droplet breakup can also be induced by laser irradiation. The fundamental
process of the resulting breakup mechanism is still an open problem. In an opaque liquid most of the
laser energy is absorbed by a thin layer at the irradiated drop surface. This leads to local evaporation
and mass emission. The remaining liquid is accelerated and deformed by a recoil pressure which
eventually can cause full droplet breakup [6,7]. For a transparent liquid an optical laser pulse induces
a different breakup mechanism. The laser focuses due to optical effects such that the local intensity
can be sufficiently high to cause plasma formation [8]. As the plasma inside the drop absorbs the
remaining laser energy, explosive breakup can occur, which has been studied experimentally [9,10]
and numerically [11,12]. In recent years the availability of high-energy x-ray facilities gave rise to
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FIG. 1. Illustration of laser-induced drop explosion, motivated by Refs. [13,14].

new experiments. X-ray free-electron laser (XFEL) pulses lead to hydrodynamically simpler but
more violent breakup dynamics than optical lasers [13]. To our knowledge, no detailed numerical
studies on the underlying droplet-breakup mechanism have been performed yet.

In two recent publications, Stan et al. [13,14] investigated high-speed drop breakup due to energy
deposition by a high-energy XFEL. A femtosecond pulse initiates explosion of a water microdrop
by homogeneous deposition of energy in the liquid along its trajectory on a time scale much
smaller than that of any possible energy-redistribution effects inside the drop. A cylindrical water
filament with the diameter of the laser beam is instantaneously heated to a very high and uniformly
distributed internal energy density, equivalent to a pressure on the order of 100 GPa. This situation is
depicted in Fig. 1. The high pressure in the filament initiates a radially spreading shock wave and a
focusing expansion wave at the interface between filament and surrounding liquid which eventually
cause the drop to explode.

In the present work we employ a high-resolution numerical model to simulate shock-driven
water-drop explosions for the experimental configuration of Stan et al. [13,14]. A finite-volume
method using a level-set based conservative interface-interaction method [15] with a fifth-order
WENO scheme [16] is extended for phase transitions. For this purpose, a generalized Riemann
problem including evaporation across the phase interface is formulated and incorporated into the
interface-interaction method. Furthermore, we propose a surrogate model to initiate the rapid
formation of the core vapor cavity without need for a nucleation and growth model. We perform one-
and two-dimensional axisymmetric simulations to validate the numerical model and to investigate
in detail the early stages of droplet explosion, before the onset of significant deviations from
axisymmetry.

In Sec. II we introduce the basic equations governing the flow problem, and in Sec. III we present
the numerical model. The simulation setup and numerical results for the one-dimensional model
problem and the axisymmetric drop simulation are given in Sec. IV together with a comparison of
our results to the experiments of Stan et al. [13,14]. Conclusions are given in Sec. V.

II. GOVERNING EQUATIONS

For a perfectly spherical droplet and an XFEL pulse passing through its axis, early stages of
the flow evolution can be assumed to be axisymmetric as indicated in Fig. 1. For the dominating
rapid inertial processes considered in this paper, capillary and viscous effects can be neglected. To
reduce computational cost as compared to the fully three-dimensional treatment, we employ the
axisymmetric compressible Euler equations,

Ut + Fr + Hz = S, (1)

where r and z denote the radial and axial direction, respectively. U is the vector of conserved
variables and F and H are the corresponding radial and axial flux functions, respectively. The
transformation to cylindrical coordinates generates the source vector S [17]. These vectors are
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defined as

U =
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ρuw
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⎤
⎥⎦, (2)

where ρ is the mass density and p the pressure of the fluid. The velocities in r and z direction are
denoted by u and w, respectively. The total energy density E is calculated from the specific internal
energy e and the kinetic energy as

E = ρe + 1
2ρ(u2 + w2). (3)

To close the Euler equations, an equation of state (EOS) is used that relates pressure to density
and internal energy. We employ the stiffened-gas EOS [18],

p(ρ, e) = (γ − 1)ρe − γ pstiff ⇔ e(ρ, p) = p + γ pstiff

(γ − 1)ρ
, (4)

where γ is a model constant and pstiff accounts for a pre-compression of the fluid. For liquid water
we use γ = 4.4 and pstiff = 0.6 GPa as suggested by Hawker and Ventikos [19], who fitted the
parameters to experimental shock data [20] and isotherms [21] for shock problems with pressures up
to 100 GPa. The EOS parameters have been calibrated for the positive pressure range, accordingly
quantitative deviations from the correct pressure values, e.g., [22], occur in the negative range. In
the vapor phase we use γ = 1.33 and pstiff = 0. For the latter, Eq. (4) degenerates to the ideal-gas
EOS with the ratio of specific heats γ .

Another version of the ideal-gas EOS,

p(ρ, T ) = ρRT ⇔ T (ρ, p) = p

ρR
, (5)

relates pressure and density to the vapor temperature with the specific gas constant R =
461.52 J/(kgK). For the liquid water phase, Hawker and Ventikos [19] proposed an approximation
of the temperature as

p(ρ, T ) = ρR̃T − α(γ − 1)ργ − pstiff ⇔ T (ρ, p) = p + pstiff + α(γ − 1)ργ

ρR̃
. (6)

Here, R̃ = 1700 J(kg K) is a pseudogas constant and α = −1.8 × 10−6 J m10.2/(kg4.4) denotes a
thermal energy factor. Finally, the speed of sound c for the stiffened-gas EOS is given by

c =
√

γ (p + pstiff )

ρ
. (7)

Since the EOS does not predict cavitation, arbitrarily small densities in the liquid phase are
allowed. According to Eq. (4) pressure can reach −γ pstiff . However, Eq. (7) limits the maximum
negative pressure to −pstiff .

The chosen material model neglects supercritical states and states of ionization and dissociation,
which may arise within the filament for a very short period of time at the very beginning of the
experiment. We believe that these simplifications imply only small quantitative errors while the
overall qualitative behavior is not significantly affected, which is confirmed by our results shown
below.

III. METHODS

The cylindrical computational domain is represented by a two-dimensional Cartesian grid with
grid spacing Δr and Δz in radial and axial direction, respectively. To obtain a finite-volume
discretization of the Euler equations on the grid, the left-hand side of Eq. (1) is integrated over
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FIG. 2. Illustration of the conservative interface-interaction method with level set: (a) discretization of a
cut cell, (b) four-cell-wide narrow band (light gray) around cut cells (dark gray).

a single grid cell �i,k and time step [t n, t n+1]. Application of the divergence theorem to the flux
integral gives ∫ t n+1

t n

(∫
�i,k

Ut dr dz +
∫

∂�i,k

(Fnr + Hnz ) dr dz

)
dt = 0, (8)

where ∂�i,k denotes the boundary of the cell and nr and nz are the r and z component of the
outward-pointing normal vector n, respectively. Using an explicit first-order discretization in time,
Eq. (8) results in an evolution equation for Ui,k :

(Vi,kUi,k )n+1 = (Vi,kUi,k )n − Δt
∫

∂�i,k

(
Fnnr + Hnnz

)
dr dz. (9)

Here, Ui,k denotes the conserved variables averaged over the cell volume Vi,k (t ). Higher-order
Runge–Kutta schemes are obtained by considering Eq. (9) as building block for the sub-steps.

A multiresolution (MR) method is employed to improve computational efficiency. It creates
a hierarchy of nested Cartesian grids that represent the flow problem with different resolutions
depending on the locally most-demanding scales rather than the globally smallest scales. Discon-
tinuities such as shocks and phase boundaries are always captured on the finest resolution level.
For further information on the MR method in general and its present implementation the reader is
referred to Harten [23] and Han et al. [24], respectively.

A. Conservative interface-interaction method

At any time t the computational domain is filled with two different fluids separated into two
phases by a sharp interface �(t ). Cut cells contain segments of the interface and have two fractions
each containing one of the fluids. The discretization of a cut cell is illustrated in Fig. 2(a). The
volume fraction occupied by the first fluid is given by 0 < αi,k (t ) < 1. Consequently, for the second
fluid αi,k (t ) = 1 − αi,k (t ). The lengths of the segments in contact with the first fluid can be expressed
as Ai±1/2,k (t )Δz and Ai,k±1/2(t )Δr, i.e., by the so-called cell-face apertures A · , · (t ) ∈ [0; 1]. As
before, A · , · (t ) = 1 − A · , · (t ) holds for the second fluid, see Fig. 2(a). These segments, however, do
not form a closed surface around the volume occupied by each fluid. The segment of the interface
within the cut cell, Δ�, closes the surface. Its area can be approximated with the cell-face apertures
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as

Δ�i,k =
√

[(Ai−1/2,k − Ai+1/2,k )Δz]2 + [(Ai,k−1/2 − Ai,k+1/2)Δr]2. (10)

Applying the cut-cell relations to the finite-volume discretization Eq. (9) gives the discretized
evolution of the conserved variables in a cut cell

(αi,kUi,k )n+1 = (αi,kUi,k )n + Δt

Δr

(
An

i−1/2,kFn
i−1/2,k − An

i+1/2,kFn
i+1/2,k

)
+ Δt

Δz

(
An

i,k−1/2Hn
i,k−1/2 − An

i,k+1/2Hn
i,k+1/2

) + Δt

ΔrΔz
Δ�n

i,kXn
i,k . (11)

Note that this discretized form holds for each fluid individually with its respective volume fraction
and apertures. The last term on the right-hand side expresses the interaction of the two fluids
across the interface segment Δ� and originates from the closure of the surface integral. X is
called interface-exchange term and is determined by an interface-interaction model, which will be
discussed later. For the single fluid in a noncut cell, the volume fraction and cell-face apertures are
unity and there is no interface exchange. The finite-volume discretization for single-fluid cells thus
reduces to

Un+1
i,k = Un

i,k + Δt

Δr

(
Fn

i−1/2,k − Fn
i+1/2,k

) + Δt

Δz

(
Hn

i,k−1/2 − Hn
i,k+1/2

)
. (12)

B. Level-set function

The level-set function φ(r, z, t ) describes the signed distance from the phase interface, thus the
interface between the two fluids is given by the zero level set of this function,

�(t ) = { (r, z) | φ(r, z, t ) = 0 }. (13)

The motion of the interface is tracked via advection of the level-set field by

φt + ûφr + ŵφz = 0, (14)

where û and ŵ are the advection velocities in r and z direction, respectively. To maintain the signed-
distance property, the level-set function is reinitialized after each advection time step [15,25].

For efficiency, the level-set field φ is tracked only in a narrow band of cells along the interface.
As indicated in Fig. 2(b), we consider φ within cut cells and a band of four cells on each side of
the interface. In cut cells the interface velocity is determined from an interface Riemann problem
[26,27]. In narrow-band cells we set the level-set advection velocity by interpolating the interface
velocity from the closest cut cells.

C. Interface interaction

In cut cells, the interaction between both fluids is determined to calculate the interface velocity
and the interface-exchange term X required in Eq. (11). The interaction is assumed to be one-
dimensional and normal to the interface. With respect to the interface-normal vector N, which points
from the negative to the positive level-set region, Fig. 2(a), we denote the negative and positive fluid
as left and right fluid, respectively. The general form of the exchange term for each fluid is given
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by

XL/R = ±p∗
L/R

⎡
⎢⎢⎢⎣

0

Nr

Nz

u∗
L/R

⎤
⎥⎥⎥⎦ ± m

⎡
⎢⎢⎢⎣

1

Nru∗
L/R

Nzu∗
L/R

e∗
L/R + 1

2 (u∗
L/R)2

⎤
⎥⎥⎥⎦, (15)

where + and − apply for the left and right fluid, respectively. The first term on the right-hand side
is due to pressure forces acting on the interface and the second term corresponds to mass transfer.

The state variables p∗
L/R, u∗

L/R, e∗
L/R and the mass flow rate m are the results of an interface-

normal Riemann problem. Additionally, the interface velocity uI is calculated in the cut cell as
advection velocity for the level set. It should be noted that the interactions are formulated normal to
the interface. Thus, the fluid velocities are projected onto normal direction and back with the vector
N = [Nr Nz]

T.
If no mass transfer across the phase interface is considered, the solution of the interface Riemann

problem is similar to the single-phase solution. The phase interface corresponds to the contact
discontinuity, and on both sides either a shock or rarefaction wave propagates away from the
interface [17]. If phase transition is possible, however, mass transfer across the interface occurs
and needs to be taken into account in the Riemann solver.

In this work we consider evaporation only and develop an extended Riemann solver which
employs a transition model proposed by Ytrehus and Østmo [28]. The transition process takes place
in a finite vapor layer, called the Knudsen layer, adjacent to the surface of the condensed phase with
a thickness on the order of the molecular mean free path [28,29]. Considering vapor to be an ideal
gas, Ytrehus and Østmo [28] used kinetic theory and molecular conservation laws to find universal
jump conditions relating the saturation vapor state variables ( · )sat at the liquid temperature Tl to the
actual vapor state at the edge of the layer ( · )v. The resulting relations are given in Appendix A.

We approximate the saturation pressure, which is essential for finding the Knudsen-layer
solution, by the Clausius–Clapeyron relation as a function of temperature,

psat (T ) = pref exp

[
Lv

Rv

(
1

Tref
− 1

T

)]
, (16)

where Lv is the specific latent heat of vaporization, and ( · )ref denotes a known reference saturation
state. We apply the critical point, Tcrit = 647.096 K and pcrit = 22.064 MPa [21], as reference state
and use Lv = 2.26 kJ/kg [30].

Since the Knudsen layer has molecular length scale, it can be considered as a discontinuity
on the continuum scale called Knudsen front. Our modified Riemann solution scheme including
this additional discontinuity and its numerical solution by an iterative Newton–Raphson method is
detailed in Appendix B.

D. Cavity-formation model

Originally, the level-set approach [31] was used to model the evolution of two-phase flow starting
from an initial phase interface, e.g., Refs. [25,32–34]. The development of very small scales, i.e.,
filaments, bubbles or droplets, close to the interface requires high computational effort. To overcome
this problem, these scales are detected and treated in a special way. Depending on the model they
are either deleted, converted to Lagrangian particles [35] or transferred to the other phase [36,37].
Additionally, a subgrid representation of the level-set field might be used [38,39]. In contrast to
these approaches, we need to capture the development of small-scale two-phase regimes remote
from the existing phase interface. Instead of resolving these small scales exactly, we introduce a
model motivated from the considered flow problem and utilizing the level-set concept.

Due to cylindrical focusing, the strength of the inwards-running rarefaction wave, see Fig. 1,
increases with decreasing radius. As a consequence, tension tends to its theoretical maximum at the
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FIG. 3. Near-axis region with initial setup for cavity-formation model.

cylinder axis r = 0. Given the finite tensile strength of the real liquid and the high tension around
the axis, a core vapor cavity is expected to form around the axis of the axisymmetric problem.

The Knudsen-front model allows evaporation only across the liquid-vapor interface, i.e., no new
vapor regions can emerge spontaneously within the bulk liquid phase. To avoid the need for a full
nucleation model we propose a surrogate model for the formation of the core vapor cavity. It is
formulated as an interface interaction and is linked to a pre-initialized pseudointerface on the axis,
where cavity formation is to be expected for the considered problem. We assume the onset of cavity
formation as soon as pressure drops below zero at the pseudointerface.

Numerically, the initial pseudointerface is located in the cavity initialization zone, which is
formed by the second and third cell layer next to the axis, Fig. 3. It may not be located within the
first layer as this would require the definition of separate numerical level-set boundary conditions.
Thus, a small area of initially inactive vapor between the boundary and the interface exists. As long
as cavity formation has not started, the interface-exchange term X at the pseudointerface models the
symmetry boundary condition for the liquid phase which is not in contact with the actual boundary,

Xi,k =

⎡
⎢⎢⎢⎣

ρi,kui−1/2,k

ρi,ku2
i−1/2,k + pi,k

ρi,kui−1/2,kwi,k

ui−1/2,k (ρi,kei,k + 1
2ρi,ku2

i−1/2,k + pi,k )

⎤
⎥⎥⎥⎦, (17)

where ui−1/2,k is linearly interpolated from the cell velocity and the prescribed zero velocity at r = 0.
The full algorithm for cut-cell treatment is outlined in Appendix C. It requires a modified

Knudsen-front model to calculate a solution that solely depends on the current liquid state for
cut cells within the cavity initialization zone. To find this solution, we assume that the liquid is
compressed to its corresponding saturation pressure, pL′ = psat (TL), and that evaporation is critical,
Mv = 1; see Appendix A. Outside of the cavity initialization zone, i.e., after the pseudointerface
has turned into a real physical liquid-vapor interface, it is advected according to the Knudsen-front
interface-interaction method.

E. Numerical schemes

The intercell fluxes Fi±1/2,k and Hi,k±1/2 are approximated with a fifth-order weighted essentially
non-oscillatory (WENO) scheme [16] using characteristic decomposition with local Lax–Friedrichs
flux splitting [40] based on Roe averages [32,41]. The states of both fluids are extended across the
interface to fill so-called ghost cells [27]. This extension allows the use of the same high-order
WENO stencil in the vicinity of the phase interface.
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Both the flow variables and the level-set function are propagated in time using a strongly stable
explicit second-order Runge–Kutta scheme [42]. The time-step size Δt is chosen according to the
Courant–Friedrichs–Lewy (CFL) condition

Δt � CCFL

[
max

i,k

( |u| + |û| + c

Δr

)
+ max

i,k

( |w| + |ŵ| + c

Δz

)]−1

, (18)

where û and ŵ are nonzero in narrow-band cells only and CCFL = 0.6. As the CFL condition might
be violated in cut cells with small volume fractions, a mixing procedure [15,43] is employed for
stabilization.

IV. NUMERICAL SIMULATIONS

The water drop initially is perfectly spherical and centered on the laser beam. Figure 4 shows the
two-dimensional computational domain. Note that we impose rotational and axial symmetry with
respect to the z and r axis, respectively. Besides the symmetry conditions, zero-gradient boundary
conditions are applied at the remaining far-field boundaries. The cavity-formation model is activated
at the drop axis. The extent of the domain is three times the drop radius in both radial and axial
direction. This ensures that boundary effects do not distort the flow field in the vicinity of the drop
during the runtime of our simulations. Stan et al. [13,14] used drop diameters ranging from 32 μm
to 71 μm. For the present simulations, a diameter of 40 μm is chosen. The radius of the heated
filament is set as rf = 0.5 μm in accordance with the experimental parameters.

The computational domain is discretized with a Cartesian grid with equal spacing in radial
and axial direction. As a MR method is applied, the actual resolution is not uniform across the
domain and changes with time. The theoretical maximum resolution is 2048 cells per dimension at
the highest MR level and thus the smallest possible grid size is Δrmin = Δzmin ≈ 2.93 × 10−8 m.
The chosen resolution was checked for convergence by comparison of the results with a higher
resolution. At the given mesh size, all relevant flow structures were already present and well
resolved.

The level-set function is initialized to represent the liquid drop. For the pseudointerface of the
cavity-formation model, an additional zero level is initialized in the second cell layer at r = 4 ×
10−8m for 0 � z � R. Although slightly larger r do not significantly affect cavity dynamics, it
should be chosen as small as possible to minimize modeling errors.
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TABLE I. Initial conditions. Location names are with respect to Fig. 4.

Location Density ρ [kg/3m] Pressure p [Pa] Velocity u, w [m/s]

Filament 998.2 100 × 109 0
Drop 998.2 1 × 105 0
Ambient 0.74 1 × 105 0

Since we employ a two-phase approach, we assume the ambient gas to be atmospheric vapor
instead of pure air. We have performed simulations with different initial filament pressures between
50 and 400 GPa. As we observed only differences in the time scaling but not of the overall wave
and drop-breakup dynamics, however, we restrict the present study to initial filament pressures of
pf = 100 GPa. The initial conditions of the presented simulations are summarized in Table I.

A. Model analysis

In the following a one-dimensional model problem is considered to demonstrate the effects of the
cavity-formation model. As depicted in Fig. 4 the one-dimensional domain is equivalent to the radial
axis of the two-dimensional version. It represents an infinite water cylinder with a heated filament
at the axis. The model problem was simulated both with and without cavity-formation model to
analyze its influence.

In Fig. 5(a) the radial pressure profile is plotted for both simulations at time t = 8.1 ns, which
is approximately 0.05 ns before the pressure wave hits the drop interface for the first time. The
shock front is identical for both cases since it propagates prior to cavity formation. Without cavity-
formation model, an expansion in the post-shock fluid region decreases the pressure in large parts
of the drop below zero. In contrast, the pressure in the bulk fluid is mostly positive in case of
cavity formation. This shows that the cavity formation triggered by negative pressure in the liquid
counteracts the tension and results in positive pressure in the remaining nonevaporated water.

The evolution of the phase interface locations is presented in Fig. 6(a). The outer interface is
accelerated away from the axis as the shock wave impinges. The shock is reflected as negative-
pressure wave propagating towards the axis; see Fig. 5(b). As soon as the wave is fully developed
and detached from the the phase interface, the latter is affected by the pressure in the bulk fluid.
Therefore, the interface moves inwards again in the case without vapor cavity whereas its position
remains almost constant in the other case.
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FIG. 5. Profiles of the pressure waves (a) before and (b) after reflection at the drop interface. Solid line:
with cavity formation; dashed line: without cavity formation; dotted line: indicates zero pressure.
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FIG. 6. Evolution of inner and outer phase interface: (a) initial evolution in detail, (b) long-term evolution.
Solid line: with cavity formation; dashed line: without cavity formation, dotted line: initial position.

Figure 6(a) shows that the inner cavity starts to grow shortly after the simulation is started. Each
time the negative pressure front hits the cavity interface it is accelerated towards the liquid side,
e.g., at roughly 20 ns. Upper and lower plot of Fig. 6(a) illustrate that the pressure wave travels
between the inner and the outer interface and pushes the latter more and more away from the axis.
In contrast, if no vapor cavity is considered, the interface oscillates between its initial position and
a small displacement such that there is no residual increase of the cylinder radius; see the dashed
curve in Fig. 6(a). From these findings we can conclude that the formation of an inner cavity is
essential to allow an expansion of the liquid cylinder away from its axis. In that case the liquid
forms a hollow cylinder which keeps expanding as illustrated by the long-term evolution depicted
in Fig. 6(b).

B. Simulation results

A main difference between the full axisymmetric simulation and the simplified one-dimensional
model problem is the radial spreading of the spherical wave dynamics causing focusing and
attenuation. The following results show that this leads to a significantly different evolution.

Note, in all following contour plots we have scaled up the density gradient in the vapor phase by
a factor of 50 to facilitate legibility. Furthermore, the color maps of pressure do not reflect the actual
minimum and maximum values but are chosen to best illustrate all relevant features.

At the beginning of the simulation the ends of the heated filament are in contact with the drop
surface. There the interface is strongly accelerated in axial direction and the water reaches negative
pressures much faster than in the remaining filament. Figure 7 shows a close-up view of that region.
The main shock emerges from the edge of the filament and spreads radially. A secondary shock wave
forms at the expanding tip of the filament and propagates in axial direction towards the equatorial
plane; see Fig. 8. This shock wave is termed axial shock in the following.

While the main shock wave propagates in radial direction, it impinges obliquely on the drop
interface and deflects it outwards with a kink at the impingement point [44]. First, the main shock
is nearly perpendicular to the drop surface and an anomalous reflection (AR) occurs [45]. It causes
the shock to bend in the vicinity of the interface; see Fig. 7. With increasing distance from the axis
the angle of incidence decreases and the shock remains straight during reflection, Fig. 8(a). Due
to the interaction with the interface, the main shock is reflected as a Prandtl–Meyer expansion fan
(PME) [46]. Another expansion wave connects the PME with the deflected phase interface. Figure
8(a) shows both expansions as well as the zero density gradient (white line) separating them.
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FIG. 7. Close-up view of density gradient magnitude and pressure contour plot at t = 1 ns. For an overview
of the entire drop refer to Fig. 8. Solid line: phase interface; dashed line: initial drop surface.

Figure 8(b) shows the drop shortly after the main shock wave has reached the drop apex. The
curved negative-pressure wave resulting from the refraction collapses towards the equatorial plane,
which increases the tension. This is termed spherical focusing in contrast to cylindrical focusing.
According to theoretical considerations based on optics by Stan et al. [14] the focal point is located
at r = R

2 , which is indicated in Fig. 8(c).
When the axial shocks of both ends of the drop collide in the equatorial plane (at around

t = 16.1 ns), they coalesce into a stronger shock wave propagating in opposite direction; see
Figs. 9(a) and 9(b). This wave has a toroidal shape and is termed torus shock in the following.
Figure 10 shows the locations of the inner and outer interface along the radial axis. The kink
at t = 17.6 ns in the right plot indicates that the torus shock hits the drop surface accelerating it
outwards.

In the vicinity of the radial axis a negative pressure region is present between the cavity interface
and the torus shock; see Fig. 9(a). Due to this negative pressure the inner phase interface is bent
towards the liquid as indicated in Fig. 9(b) (red arrow) and Fig. 10(a). As soon as the torus shock
hits the cavity boundary it is accelerated towards the drop axis. This is evident from the kink in Fig.
10(a) at t = 19.8 ns. Since the interface already has small-scale perturbations prior to the impact,
the shock impingement causes Richtmyer–Meshkov instabilities to develop [47,48].

While the remainder of the torus shock propagates further towards the ends of the drop it interacts
with both the inner and the outer phase interface. Subsequently, several additional reflections occur.
The liquid is stretched in axial direction, which is evident from comparing Figs. 9(b) and 9(c).
However, due to the increasing distortion of the cavity boundary, the wave reflection patterns
become increasingly chaotic, Fig. 9(c), and there is no bulk movement of the remaining drop
observable anymore. Instead, instabilities grow along the entire interface. As these instabilities in
reality are no longer axisymmetric, our assumption of a two-dimensional axisymmetric evolution
ceases to be valid at later times.

C. Comparison with experimental results

In the experiments by Stan et al. [13,14] water drops were subjected to XFEL pulses. Shock-
driven explosions of the drops occurred due to the energy deposited by the laser pulse. Figure 11
reproduces experimental results of Stan et al. [14]. In their photographs, the spherical shape of
the water drop optically magnifies the interior of the drop but obscures the outer region. Since
the energy-pressure relation applied through the EOS, Eq. (4), is not strictly valid throughout the
experimental fluid states and the initial energy transfer to the fluid cannot be directly considered by
the employed continuum model, it is not possible to match directly a specific initial pulse energy to
the simulation settings.
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FIG. 8. Contour plot of density gradient magnitude and pressure at (a) t = 5 ns, (b) t = 8.2 ns, and (c) t =
15 ns. Solid line: phase interface; dashed line: initial drop surface.

In Fig. 11(a) the temporal evolution of the drop diameter in the equatorial plane is shown.
The first displacement upon shock arrival and the subsequent evolution is qualitatively in very
good agreement with the results from the present simulations, compare Figs. 6(a) and 10(b). The
experimental data show that the diameter appears to exhibit a transient reduction before a subsequent
increase. A similar although more pronounced evolution can be seen in the simulation results. This
observation is discussed in the following.
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FIG. 9. Contour plot of density gradient magnitude and pressure at (a) t = 18.5 ns, (b) t = 19.5 ns, and
(c) t = 40 ns. Solid line: phase interface, dashed line: initial drop surface.

The negative-pressure wave resulting from the reflection of the initial shock is apparent both in
the simulation and in the experiment, Fig. 11(b) (third picture, 15.5 ns). Due to spherical focusing,
the local tension in the liquid can become strong enough for it to rupture. Stan et al. [14] observed
this cavitation, which they name spallation, close to the focal point as bright and dark spots,
Fig. 11(b) (fourth picture, 24.25 ns). A toroidal vapor region appears, which partially reflects the
negative wave as a shock wave. It impinges onto the drop surface, see arrow in the right plot of
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FIG. 10. Evolution of (a) inner and (b) outer interface location in the equatorial plane. Vertical lines mark
t = 17.6 ns and t = 19.8 ns.

FIG. 11. Experimental results by Stan et al. [14] for water drops with 55 μm diameter. (a) Evolution of
the diameter, (b) snapshots of the experiment (XFEL pulse passing from the bottom), (c) wave propagating
(yellow) after spallation and inflecting the cavity boundary (blue), (d) detail of Fig. 9(b) for comparison.
Panels (a), (b), and (c) are adapted with permission from Stan et al. [14]. Copyright 2016 American Chemical
Society.
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(a) (b)

FIG. 12. Three-dimensional rendering of the phase interface at (a) t = 19.8 ns and (b) t = 20.2 ns. Note
the opposite bending of the cavity interface within the red circles.

Fig. 11(a), causing a faster increase of the drop diameter than in our results. Although the present
simulations are not able to model this spontaneous cavitation, they support the finding that very
strong tension occurs in the liquid near the focal point due to focusing of the negative-pressure
wave, see Fig. 8(c).

The torus shock that appeared in the present simulations looks similar to a pressure wave
observed in the experiment, compare Figs. 11(c) and 11(d). Stan et al. [14] found that the boundary
of the cavity bends towards this wave, see blue arrow in Fig. 11(c), and thus concluded that the entire
wave including the visible front is a negative-pressure wave [14]. Interestingly, the same behavior
of the cavity interface is observed in our results although the wave front belongs to a shock. Note
that in the experimental images the visible deformation is enlarged due to optical distortion. As
discussed above, the deformation is not caused by the torus wave itself but by the negative-pressure
region preceding it, which is in accordance with the situation depicted in Fig. 11(c). Moreover, we
believe that a slight bending of the cavity interface in opposite direction in Fig. 11(c) (fourth picture,
53.25 ns) and in Video 2 of Ref. [14] indicates the impact of the torus shock on the cavity. Figure 12
shows the deformation of the inner cavity right before and after the torus shock impinges in a
three-dimensional rendering of the drop interface. Figure 12(a) illustrates once more the similarity
to Fig. 11(c), while the inflection in Fig. 12(b) resembles the last panel of Fig. 11(b).

V. CONCLUSION

We extended an existing two-phase model based on a conservative interface-interaction method
with a Knudsen-front Riemann solver to allow for phase transition through rapid evaporation.
Additionally, we introduced a surrogate model that allows the creation of vapor cavities at the axis
of axisymmetric flow problems. This model is physically-motivated by the strong tension that can
occur in liquids around the axis due to radial focusing of expansion waves.

We applied our new model to the simulation of a laser-induced shock-driven explosion of an
isolated liquid drop and compare our results with observations from a recent experiment [14]. Our
simulated drop dynamics agree qualitatively very well with the experimental results. The formation
and growth of the cylindrical vapor cavity inside the drop cause a macroscopic deformation of the
liquid drop as in the experiments. Our results show that the cavity formation is essential to obtain a
considerable radial movement. Stan et al. [14] conclude from optical measurements that a reflected
negative-pressure wave causes a deformation of the inner cavity. Interestingly, we observe the same
deformation but related to a shock wave with similar shape as the negative-pressure wave which
was suggested from the experimental observations. In our simulation, the interface deformation is
actually caused by a negative-pressure region preceding the shock. At later times, the explosive
expansion of the drops in the experiment is driven by additional cavitation effects. These effects
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are not captured by the simulation which does not include a nucleation model. Therefore, the
experimental drop dynamics at later stages are not reproduced by the simulation.

Further research will concentrate on improving the formation of vapor cavities to allow cavitation
to occur at locations away from the drop axis. We expect to extend the good agreement between
simulation and experiment to late stages of drop deformation. Furthermore, the axisymmetric
formulation will be replaced by a fully three-dimensional model to allow for symmetry breaking
at later stages.
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APPENDIX A: KNUDSEN-LAYER SOLUTION

The Knudsen-layer solution by Ytrehus and Østmo [28] utilizes a universal velocity parameter

Z = uv√
2RvTv

, (A1)

which relates the vapor velocity at the edge of the layer to its temperature. The relevant thermody-
namic relations and the Mach number can be given with respect to Z as

pv

psat
= 1

2

(
F− +

√
Tv

Tl
G−

)
exp (Z2), (A2a)

Tv

Tl
=

(
−

√
π

8
Z +

√
1 + π

64
Z2

)2

, (A2b)

ρv

ρv,sat
= pvTl

psatTv
, (A2c)

2Mv =
√

2

γv
Z, (A2d)

where

F− = √
πZ (erf Z − 1) + exp(−Z2), G− = (2Z2 + 1)(1 − erf Z ) − 2√

π
Z exp(−Z2),

and erf is the error function. The subscripts ( · )v and ( · )l are used for the liquid or vapor state at
the edge of the Knudsen layer, respectively, while ( · )sat indicates the saturation state corresponding
to Tl. The terms on the right of Eqs. (A2) are monotonic functions of Z , thus each one can take on
the role of a nondimensional input parameter instead of Z . We should note that the solution is valid
only for subsonic evaporation Mv � 1, thus there is a critical vapor state corresponding to Mv = 1.

APPENDIX B: INTERFACE RIEMANN SOLVER

1. Modified Riemann solution

The Knudsen front enters the structure of the standard two-phase Riemann solution between the
contact wave and the shock or expansion in the liquid phase and corresponds to the phase interface;
see Fig. 13. On the left, the initial liquid state at the phase boundary (L) is compressed or expanded
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FIG. 13. Elementary-solution scheme of the interface Riemann problem at x = 0. Symbols in parentheses
refer to fluid states used in the text.

to an intermediate state (L′), from which the liquid evaporates across the Knudsen front. The initial
vapor state on the right (R) is also either compressed or expanded, such that the resulting state (∗R)
is in pressure and velocity equilibrium with the newly created vapor state (∗L) across the contact
discontinuity.

Applying the Knudsen-layer relations and momentum conservation across the Knudsen front as
well as continuity of pressure and velocity across the contact discontinuity, the Riemann solution is
fully determined. We use an iterative Newton–Raphson method to obtain the exact solution, which
is detailed below.

2. Exact iterative solver

An exact Riemann solver utilizes the fact that velocity u∗ and pressure p∗ are constant across the
contact discontinuity of the Riemann solution; see Fig. 13. Thus, we can find p∗ as the root of the
function

f (p∗) = u∗L(p∗) − u∗R(p∗) ≡ 0, (B1)

where u∗L and u∗R indicate the velocity u∗ calculated with respect to the left and right state,
respectively. Using a Newton–Raphson method to find the root, the pressure p∗ is iterated by

(p∗)n+1 = (p∗)n − f [(p∗)n]

f ′[(p∗)n]
, (B2)

where n is the number of iterations and f ′ the derivative of Eq. (B1) with respect to p∗. The iteration
is stopped as soon as the relative correction reaches a given threshold,∣∣∣∣ (p∗)n+1 − (p∗)n

(p∗)n+1 + (p∗)n

∣∣∣∣ < ε, (B3)

with ε = 10−6.
The velocity u∗R is calculated from the right state by considering the change in velocity due to

the right shock or expansion wave, fR(p∗), as

u∗R = uR + fR(p∗). (B4)

The function fR and its left counterpart fL are given later.
The state change from ( · )L to ( · )∗L is more complicated due to the additional intermediate state

(L′). Its velocity is determined by considering the velocity change across the leftmost wave, fL(pL′ ).
The additional change across the Knudsen front can be calculated from mass conservation and the
mass transfer rate per unit area m to yield,

u∗L = uL′ − m

(
1

ρL′
− 1

ρ∗L

)
= uL − fL(pL′ ) − m

(
1

ρL′
− 1

ρ∗L

)
. (B5)
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FIG. 14. Near-axis region with cavity-formation model: (a) initial situation, (b) cavity fully developed,
(c) cavity locally vanished.

Here, the intermediate pressure pL′ and density ρL′ are coupled to the left state of the contact wave,
( · )∗L. We obtain ( · )L′ after every update of Eq. (B2) via a fixed-point iteration based on momentum
conservation across the Knudsen front,

(pL′ )n,k+1 = p∗ − m2

(
1

(ρL′ )n,k
− 1

ρ∗L

)
. (B6)

Note that we update ρL′ on the right-hand side of Eq. (B6) after each inner iteration k according
to the new intermediate pressure, while all other variables are kept constant. The stopping criterion
for the inner iteration is the same as that for the outer iteration, Eq. (B3). The mass transfer rate m
in Eqs. (B5) and (B6) is determined via the pressure ratio p∗/psat (TL′ ) from the Knudsen solution
Eq. (A2) as

m = ρ∗LMvc∗L. (B7)

The velocity change across the outermost wave in Eqs. (B4) and (B5) is given by

fL/R(p) =
{

f shock (p, UL/R) if p > pL/R (shock),

f exp.(p, UL/R) if p � pL/R (expansion),
(B8)

where

f shock (p1, U0) = (p1 − p0)

(
a0

p1 + pstiff + b0

) 1
2

a0 = 2

(γ + 1)ρ0
, b0 = γ − 1

γ + 1
(p0 + pstiff ),

and

f exp.(p1, U0) = 2c0

γ − 1

[(
p1 + pstiff

p0 + pstiff

) γ−1
2γ

− 1

]

hold for shocks and expansion waves, respectively [49]. Furthermore, the respective density behind
the wave is calculated from

ρ1 =

⎧⎪⎨
⎪⎩

ρ0

(
γ−1
γ+1 + p1+pstiff

p0+pstiff

)(
(γ−1)(p1+pstiff )
(γ+1)(p0+pstiff ) + 1

)−1
(shock),

ρ0

(
p1+pstiff

p0+pstiff

) 1
γ

(expansion).
(B9)
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Our nested solution procedure is initialized with

(p∗)0 = pR, (p′
L)0,0 = psat (TL) (B10)

to start the outer iteration. In case of divergence or invalid converged solution, e.g., Mv > 1, our
algorithm falls back to a nonevaporative solution, meaning that the Knudsen front vanishes and (L′)
coincides with (∗L).

APPENDIX C: ALGORITHM FOR CAVITY FORMATION

In the following we present the core algorithm of our cavity-formation model. It requires a
variable for each axial cell index k, TAGk , which initially is set to [no cavity]. The radial location
of the initial pseudointerface is denoted as r0

interface and equals 4 × 10−8 m in our simulation setup.

for all cut cells (i, k) do
if (i, k) is first cut cell from axis at zk then

if i ∈ {2, 3} then � (i, k) is in cavity initialization zone (2nd and 3rd cell layer)
if TAGk = [cavity fully developed] then � cavity is shrinking

rinterface ← radial location of interface
if rinterface � r0

interface then � interface has reached its initial location
interface interaction: virtual symmetry boundary
TAGk ← [no cavity] � cavity has vanished at zk , Fig. 14(c)

else
interface interaction: standard Knudsen

end if
else if TAGk = [cavity initialized] then

interface interaction: modified Knudsen � cavity is developing
else

if pi,k < 0 then � criterion for cavity initialization
interface interaction: modified Knudsen � interface is advected
initialize vapor region with Knudsen solution
TAGk ← [cavity initialized]

else
interface interaction: virtual symmetry boundary

� interface is fixed, Fig. 14(a)
end if

end if
else [(i, k) is outside of cavity initialization zone]

interface interaction: standard Knudsen
TAGk ← [cavity fully developed] � Fig. 14(b)
end if

else [not first cut cell from axis]
interface interaction: standard Knudsen

end if
end for
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