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Abstract
The identification of unknown dynamical systems using supervised learning enables model-based
control of systems that cannot be modeled based on first principles. While most control liter-
ature focuses on the analysis of a static dataset, online learning control, where data points are
added while the controller is running, has rarely been studied in depth. In this paper, we present
a data-efficient approach for online learning control based on Gaussian process models. To enable
real-time capability despite high computational loads with growing datasets, we propose a safe for-
getting mechanism. Using an entropy criterion, data points are selected based on their utility for
the future trajectory under consideration of the stability of the closed-loop system. The approach is
evaluated in a simulation and in a robotic experiment to demonstrate its computational efficiency.
Keywords: data-driven control, Gaussian processes, data-efficient learning, safe exploration, on-
line learning, safe forgetting

1. Introduction

Data-driven techniques are disrupting various fields in engineering as the cost for processing and
storing data is drastically decreasing. In control, supervised learning allows to identify unknown
dynamical systems which are difficult to model based on first principles. Safety concerns of self-
learning autonomous systems triggered the research on the stability of such systems (Koller et al.,
2018). While many supervised learning techniques deliver accurate identification results, only a few
are suitable for a rigorous analysis of safety. Gaussian processes (GPs) are preferred here due to
their flexible nonparametric nature, and the inherent uncertainty measure (Rasmussen and Williams,
2006). The latter allows to bound the model error (Lederer et al., 2019) and enables uncertainty-
aware control (Umlauft et al., 2018; Fanger et al., 2016). Most GP-based approaches separate the
learning stage (model is trained on fixed data set), from the control stage, where the model-based
control law is applied to the system (Beckers et al., 2019; Umlauft et al., 2017). However, to reduce
the dependency of the control performance on the data set, adapting the model during the operation
is promising (Chowdhary et al., 2015).

As nonparametric models store their information in the data points themselves, as opposed
to a fixed number of parameters, the computational load increases with the size of the data set.
This is not just challenging for all applications under real-time requirements (Nguyen-Tuong et al.,
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2009) but makes data selection inevitable for learning control systems (Gijsberts and Metta, 2013).
Event-triggered learning shows to be beneficial in such resource constraint learning control set-
tings (Solowjow et al., 2018). Alternatively, variants of GP models have been proposed (Meier
et al., 2016; Meier and Schaal, 2016; Snelson and Ghahramani, 2005) including sparse GPs with
pseudo inputs (Quinonero-Candela and Rasmussen, 2005). However, existing model error bounds
(Srinivas et al., 2012; Lederer et al., 2019) are not applicable to any of these variants.

This paper proposes an entropy-based forgetting rule for safe tracking control with an unknown
dynamical system. By building on an online learning control law proposed by Umlauft and Hirche
(2020), we improve the data set management by keeping only the most valuable data points consid-
ering the future desired trajectory. The approach guarantees asymptotic convergence of the tracking
error based on an event-triggered model update. A robotic experiment demonstrates that the novel
data set management reduces the computational complexity sufficiently and satisfies real-time con-
straints. The paper is organized as follows. Section 2 defines the problem setting and Sec. 3 reviews
the online learning controller. The safe data selection is proposed in Sec. 4 followed by the experi-
ments in Sec. 5.

2. Problem Formulation

We consider a nonlinear control-affine state feedback linearizable system1

ẋ1 = x2, ẋ2 = x3, · · · ẋn = f(x) + g(x)u, with x0 = x(0), (1)

with state x =
[
x1 x2 · · · xn

]ᵀ ∈ X ⊆ Rn and input u ∈ R under the following assumptions.

Assumption 1 The function f : X→ R is unknown but globally bounded and differentiable, whereas
the function g : X→ R is known, differentiable and strictly positive.

Differentiability and boundedness are assumptions which many physical systems satisfy naturally
because, e.g., in real-world settings most systems saturate. The positiveness of g(·) ensures a glob-
ally well defined relative degree of the system (Khalil and Grizzle, 1996). Knowing g(·) is often
assumed, e.g., for Lagrangian systems, where it corresponds to perfect knowledge of the generalized
inertia matrix (which must therefore be modeled analytically in practice).

Assumption 2 The state vector x(κ) = x(tκ) and a noisy version of the highest derivative

y(κ) = ẋn(tκ)− g(x(tκ))u+ ε(κ) = f(x(tκ)) + ε(κ), ε(κ) ∼ N (0,σ2
on) i.i.d. (2)

can be measured at arbitrary time instances tκ with κ ∈ N0. The dataset Dκ =
{
x(i), y(i)

}Nκ
i=1

, is
updated at time tκ, where Nκ ∈ N denotes the current number of data points.

Noise-free measurements are commonly assumed for state feedback control laws. The employed GP
framework allows noise in the output (here: ẋn) which might result from numerical differentiation.
The task is to track with state x1 a desired trajectory xd with the following property.

Assumption 3 The trajectory xd is bounded and at least n − 1 times differentiable, thus
xd =

[
xd ẋd · · · dn−1xd

dtn−1

]ᵀ
is continuous and dnxd

dtn is bounded.

1. Lower/upper case bold symbols denote vectors/matrices, R+,0,R+/N0,N real positive/natural numbers with/without
zero, In denotes a n×n identity matrix,N (µ,σ2) a Gaussian distribution and ‖·‖ the Euclidean norm.
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Figure 1: Online learning control framework with the proposed data selection in blue.

Using an online learned model f̂κ : X→ R for f(·), we utilize a feedback linearizing controller

uκ(x) =
1

g(x)

(
−f̂κ(x) + ν

)
, κ ∈ N0, (3)

where ν ∈ R is the input to the resulting approximately linearized system. Since the regression
model f̂(·) can be computationally expensive, real-time constraints might not be satisfied for arbi-
trarily large datasets Dκ. Hence, we restrict the number of utilized training data as follows.

Assumption 4 Considering computational constraints of the regression model f̂(·) for the un-
known function f(·) only N̄a ∈ N data points are allowed to be used in prediction, resulting in an
active data set Daκ ⊆ Dκ, such that |Daκ| ≤ N̄a.

The challenge is to find a selection of data which leads to a precise model (and thereby high tracking
performance) and guarantees stability of the closed-loop system. An overview is provided in Fig. 1.

3. Event-triggered Online Learning

3.1. Identification with Gaussian processes

Consider measurements y(i) = f
(
x(i)
)

+ ε(i), i = 1, . . . ,N of f(·) with ε ∼ N (0,σ2
on) and a

GP model fGP(x) ∼ GP (m(x), k(x,x′)) which is fully specified by a mean m : X → R and
covariance k : X × X → R function. For notational convenience, we concatenate the measure-
ments y =

[
y(1) · · · y(N)

]ᵀ
, denoteX = {x(1), . . . ,x(N)}, define the kernel matrixK ∈ RN×N

by Kij = k(x(i),x(j)) and set the prior mean function to zero m(x) = 0. By conditioning on the
data X , y, we obtain a posterior Gaussian distribution at each input x∗ given by

µDN (x∗) := kᵀ(K + σ2
onIN )−1y, σ2

DN (x∗) := k∗(x∗,x∗)− kᵀ(K + σ2
onIN )−1k, (4)

where the elements of the covariance vector k are given by ki = k(x(i),x∗). The kernel k(·, ·) is
specified with hyperparameters usually determined through a likelihood optimization (Rasmussen
and Williams, 2006). However, for the sake of focus, this paper considers hyperparameters to be
given and refers to the literature for a discussion of misspecified kernels (Beckers et al., 2018).

3.2. Feedback Linearizing Control law with Event-triggered Model Update

The input ν to the approximately linearized system uses the filtered state r =
[
λᵀ 1

]
e, where

the Hurwitz coefficient vector λ ∈ Rn−1 implies exponential convergence of e := x − xd → 0
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as r → 0 (Yesildirak and Lewis, 1995). In the filtered state dynamics ṙ = f(x) + g(x)u(x) + ρ,
where ρ = [e2 · · · en]λ− dnxd

dtn , the nonlinearity is canceled via state feedback linearization (3) and
the input ν = −kcr − ρ with kc ∈ R+ is applied to the approximately linearized system. Hence,

uκ(x) =
1

g(x)

(
−f̂κ(x)− kcr − ρ

)
, ∀t ∈ [tκ; tκ+1). (5)

The model f̂κ(·) = µDκ(·) is only updated when the uncertainty, given by σ2
Dκ(·), becomes too large

to ensure convergence of the tracking error. Thus, new training data is added in an event-triggered
fashion at time tκ+1 to ensure global uniform ultimate boundedness of the tracking error (Umlauft
and Hirche, 2020, Corollary 4).

Lemma 1 Under Assumptions 1-3, the system (1) controlled by (5) and model f̂κ(·) = µDκ(·),
which is updated according to the event-triggering law

tκ+1 := {t > tκ|βDκσDκ(x) ≥ kc|r| ∩ e /∈ Bσon}, (6)

is, with probability 1− δ, δ ∈ (0; 1), globally uniformly ultimately bounded. The ultimate bound is

Bσon =

{
e ∈ X̃

∣∣∣ ‖e‖ ≤ σonβDκ
kc‖
[
λᵀ 1

]
‖

}
, (7)

where βDκ ∈ R+ is a constant such that (Srinivas et al., 2012, Theorem 6) is satisfied, i.e.

P (|f(x)− µDκ(x)| ≥ βDκσDκ(x),∀x ∈ X̃,κ ∈ N0) ≤ δ. (8)

According to boundedness arguments in Umlauft and Hirche (2020, Corollary 1), the state con-
verges to a compact set X̃ ⊂ X as required for (8). So far, the model uses the full data set Dκ, which
grows unboundedly and therefore violates Assumption 4. The next section resolves this issue.

4. Efficient Data Selection

To ensure that at most N̄a data points are employed by the model f̂(·), we choose an active data
set Daκ to ensure high tracking performance while guaranteeing convergence. Given the inputs of
the full data set XDκ = {x(1),x(2), . . . ,x(Nκ)} ⊂ X, we select a subset XDaκ ⊂XDκ of size N̄a to
maximize prediction accuracy of our model f̂(·) at states of interest given by a finite set Xv ⊂ X.

4.1. Information value of data points

The output of our GP model fGP(x) at the states x ∈ Xv can be considered as random variables
with joint Gaussian distribution and the model quality can be measured by the associated entropy.
Let ΣXv denote the covariance matrix obtained from (4), the entropy is given byH(Xv) = 0.5 log (2π det(ΣXv)),
where H(Xv) := H

(
fGP

(
x(1)

)
, . . . , fGP

(
x(Nκ)

))
to simplify notation. The conditional entropy

H(Xv|XDaκ) := H(Xv,XDaκ) − H(XDaκ) quantifies the information about f(·) at Xv, when using
Daκ. Using this criterion, the most informative data set Daκ ⊂ Dκ with respect to the function values
at Xv is the solution of the optimization problem

Da
∗
κ = arg min

Daκ⊂Dκ, |Daκ|=N̄a

H(Xv|XDaκ). (9)
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4.2. Safe and optimal data selection

The conditional entropy criterion selects the optimal training set with respect to a set of states of
interest Xv. However, reducing the amount of data from Nκ to N̄a leads to higher uncertainties in
the model, which possibly violates the stability stated in Lemma 1. To ensure that the convergence
guarantee is maintained, we consider an additional constraint in the optimization in (9).

Theorem 2 Consider the system (1), the control law (3) and the event trigger (6). Furthermore,
consider Assumptions 1-4 and a data point selection

Da
∗
κ = arg min

Daκ⊂Dκ,|Daκ|=N̄a

H(Xv|XDaκ). s.t. βDaκσDaκ(x) < kc|r|, (10)

then, for any Xv, the tracking error is globally uniformly ultimately bounded to the set Bσon with
probability 1− δ, δ ∈ (0; 1), following the definitions in (7) and (8).

Proof Similar to the proof of Lemma 1, the triggering condition is defined such that a new mea-
surement is taken whenever the uncertainty becomes too large to possibly violate the decreasing
Lyapunov condition for V (x) = r2. The constraint βDaκσDaκ(x) < kc|r| ensures that this condition
still holds for the current state x after reducing the training data set. The analysis of the posterior
variance shows that σD(x) ≤ σ2

on as long as x ⊂ XD. This ensures feasibility of the optimization
problem (10), since for all x ∈ X \ Bσon there exists at least one Daκ (which contains the current
state x) such that the constrained is fulfilled.

Remark 3 To avoid the combinatorial problem (10), which is computationally very complex, a
greedy approximation can be employed as investigated by Krause et al. (2008). However, special
care must be taken to ensure the constraint in (10) is fulfilled to ensure the stability given by Theo-
rem 2. Algorithm 2 guarantees this by always including the current state in the training data set in
the initialization.

As shown by Theorem 2, the choice of the set Xv is not critical for the convergence but can affect
the number of triggered events or the modeling error |f̂(·) − f(·)| which has crucial impact on the
tracking precision. The optimization (10) minimizes this error by means of the following result.

Proposition 1 If Xv = {x}, there exists no set D̃ ⊂ Dκ,
∣∣∣D̃∣∣∣ = N̄a, for which the bound of the

model error at state x is smaller than for Da∗κ obtained by (10), hence βDa∗κ σDa∗κ (x) ≤ βD̃σD̃(x).

Proof As β only depends on the number of training data N̄a but not on their distribution, βD̃ = βDa∗κ
holds. Minimizing the conditional entropy H({x}|XDaκ) = 0.5 log(σ2

DN (x)) + 0.5(log(2π) + 1)

results in a minimal σ2
DN (x) due to the monotony, which yields the presented result.

In general, any choices for Xv, are possible as, e.g. uniform grids over the state space (Krause et al.,
2008), but, since our control law only requires an accurate model near the trajectory, we propose to
use a finite subset of the future desired trajectory xd(t), t ∈ [tκ;∞)

Xv = {xd(tκ),xd(tκ + ∆td), . . . ,xd(tκ +Nd∆td))} , (11)

where ∆td ∈ R+ and Nd ∈ N. This choice attempts to reduce the number of triggered events as
the uncertainty along the future trajectory is reduced, but a more depth analysis is outside the scope
of this paper. As Xv must be finite, it requires a discretization, but only a long a single dimension
(time) and not across the entire state space.
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Algorithm 1: Data-efficient online learning

initialize κ = 0, D0 = {}, f̂0 = 0
while simulation time not exceeded do

while βDκσDκ(x) ≥ kc|r| do
run controller uκ in (5)

end
set κ← κ+ 1 and measure x(κ) = x(tκ) and y(κ) = ẋn(tκ) + ε(κ)

add training point Dκ = Dκ−1 ∪
{(
x(κ), y(κ)

)}
set Xv based on (11) and select Daκ from Dκ by solving (10) (or set Daκ = Dκ if |Dκ| ≤ N̄a)
update f̂κ(·) and σDκ(·) based on Daκ

end

Algorithm 2: Greedy approximation to minimize the conditional entropy.

input: XDκ ,Xv, N̄a, x(tκ), output: X ∗Daκ
initialize X ∗Daκ =

{
x(tκ)

}
;

for n̄ = 1, . . . , N̄a − 1 do
X ∗Daκ ← X

∗
Daκ ∪ arg min

x(i)∈XDκ

H(Xv|X ∗Daκ ∪ x
(i));

end

5. Experiments

An overview of the overall control design is given in Algorithm 1. A simulation and a robotic
experiment are presented to illustrate and demonstrate the benefits of the proposed approach.

5.1. Simulation

Setup: The system to control is given by ẋ1 = x2, ẋ2 = 1 − sin(x1) + 0.5
1+exp(−x2/10) + u. An

upper limit of N̄a = 10 is imposed on the number of data points employed in the GP model. We
set Nd = 100 and ∆td = π/100 in (11) and take measurements with a noise level of σ2

on = 10−16.
The hyperparameters are fixed, i.e. no likelihood optimization during the simulation and βDκ = 7
is constant for all κ. For the sake of focus, we do not compute an exact value for βDκ but point to
related work, which provide methods to efficiently upper bound it (Srinivas et al., 2012). To avoid
any numeric difficulties, a lower bound on the filtered state is implemented |r| > 10−2.

To highlight the benefits of the proposed approach, we compare the data selection in Algorithm 2
with a selection based on a uniform grid, similarly to Krause et al. (2008). We choose a sinusoidal
reference trajectory with increasing amplitude xd(t) = 0.2t sin(t). Figure 2 shows the resulting
trajectories at t = 12 and the active set of training data. For the proposed entropy-based selection, it
is observed that data points near Xv are chosen, resulting in small values of σDκ(·) along the future
desired trajectory. This results in less events (36) compared to the grid-based data selection (63).
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Figure 2: Comparison between grid-based selection (left) and proposed selection method (right).
Black circles indicate all points Dκ, red asterisks the selected points Daκ, black solid line
illustrates the actual, the green dashed the desired trajectory. The colormap shows the
standard deviation σDaκ(·) after the last update (yellow indicates low, blue high values).

5.2. Robotic Experiment

Setup: For the evaluation in a robotic experiment, the two degrees of freedom (DoF) manipulator
CARBO, shown in Fig. 3, is used. With two rotational joints q =

[
q1 q2

]ᵀ∈ R2, its dynamics are

q̈ = −M rob(q)−1 (Crob(q, q̇)q̇ + grob(q))︸ ︷︷ ︸
f(x)

+M rob(q)−1︸ ︷︷ ︸
G(x)

u, (12)

where M rob : R2 → R2×2 is the inertia matrix, Crob : R2 × R2 → R2×2 is the Coriolis matrix
and grob : R2 → R2 is the gravity vector. The input u =

[
u1 u2

]ᵀ ∈ R2 is a vector of the applied
torques in each joint, the state is x =

[
q1 q2 q̇1 q̇2

]ᵀ. Since G(·) is assumed to be known, a
parametric model for the inertia matrix M rob(·) is employed (Murray, 2017) where the parameters
values for the moments of inertia I1, I2, the centers of mass l̃1, l̃2, the lengths of the links l1, l2
and the masses M1, M2 are provided in Table 1. The expressions for Crob(·, ·) and grob(·) are
considered unknown according to Assumption 1. The proposed online learning approach identi-
fies f(·), which includes all unknown components in the dynamics (e,g. external forces, friction)
which are challenging to model analytically. Since f(·) is two-dimensional, two independent GPs
are employed. The input data are for both the same measurements of the state x =

[
qᵀ q̇ᵀ

]ᵀ, the
output data are the rows of−M rob(q)−1 (Crob(q, q̇)q̇ + grob(q)), respectively. The even-triggering
law (6) is extended to multiple dimensions using a logical OR-operation to trigger whenever one of
the GPs has reached the threshold, thus tκ+1 := {t > tκ |β1,Dκσ1,Dκ(x) ≥ kc1|r1| ∨ β2,Dκσ2,Dκ(x) ≥ kc2|r2|} .
The hyperparameters of the GP models are set to fixed values (see Table 1) obtained from an offline
learning procedure along the same reference trajectories x1,d = π

6 cos(0.5t) and x2,d = π
6 cos(t)

for joint 1 and 2, respectively. The controller runs on an Ubuntu 14.04 real-time kernel in Mat-
lab/Simulink 2017 with a sample rate of 1 kHz. To keep the real-time constraint, the dataset is
limited Nκ ≤ 80, from which N̄a = 10 are selected based on Algorithm 2. The limit Nκ is not con-
sidered in the theoretic analysis, thus an additional mechanism (e.g. deleting the oldest data point)
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Figure 3: Left: The two DoF robotic manipulator CARBO used for evaluation of the proposed
event-triggered online learning approach. Right: Norm of the tracking error ‖e‖ for
the proposed entropy-based selection (black, RMSE: 0.010), a random selection (green,
RMSE: 0.028) and a model-free PD-controller (green, RMSE: 0.045).

ζ2f1 ζ2f2 `21...n,f1 `21...n,f2 β1,Dκ β2,Dκ kc1 kc2 λ1,λ2 l1,l2 l̃1 ,̃l2 I1,I2 M1,M2

39 80 [0.8 4.9 13 11] [13 3913 26 2.5] 29 21 4 3 10 0.3m 0.15m 1 kgm2 1.5 kg

Table 1: Parameters of the online learning controller in the robotic experiment.

is required to guarantee the stability. Furthermore, we chose Xv = x to minimize the computational
complexity for the optimization (9). Figure 3 shows the resulting tracking error for a model-free
PD-controller, randomly selected data and the proposed selection method. The significantly lower
RMSE of the proposed methods indicates the superiority to a random data selection.

6. Conclusion

This paper proposes an entropy-based forgetting strategy for data-efficient online learning. Based
on Gaussian processes, an optimal selection of the training set is performed with respect to the fu-
ture desired trajectory. Rather than striving for a global approximation, we aim for high precision of
the model in the region of interest. As a result, accurate inference on a reduced data set is achieved
solving the challenge of a high computational complexity of Gaussian process models. This enabled
us to apply the proposed control law under real-time constraint in a robotic experiment. The selec-
tion itself requires also computational resources, but only if an event occurs, which happens rarely
compared to the prediction (in our experiment approximately 102 times less often). Furthermore,
we have shown that the provided stability guarantees of the event-triggered online learning hold
despite the reduced data set making the approach applicable also in safety critical domains.

For future work, an online adaptation of the hyperparameters of the GP should be considered
since an initialization run as performed in the robotic experiment might not always be possible in
practice. New theoretical difficulties arise if the likelihood optimization cannot be completed within
the real-time constraint, but, e.g., runs at a lower update rate than the main control loop.
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