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We present high-precision results from lattice QCD for the mass splittings of the low-lying charmonium
states. For the valence charm quark, the calculation usesWilson-clover quarks in the Fermilab interpretation.
The gauge-field ensembles are generated in the presence of up, down, and strange sea quarks, based on the
improved staggered (asqtad) action, and gluon fields, based on the one-loop, tadpole-improved gauge
action.We use five lattice spacings and two values of the light sea-quark mass to extrapolate the results to the
physical point. An enlarged set of interpolating operators is used for a variational analysis to improve the
determination of the energies of the ground states in each channel. We present and implement a continuum
extrapolation within the Fermilab interpretation, based on power-counting arguments, and thoroughly
discuss all sources of systematic uncertainty. We compare our results for various mass splittings with their
experimental values, namely, the 1S hyperfine splitting, the 1P-1S splitting and the P-wave spin-orbit and
tensor splittings. Given the uncertainty related to the width of the resonances, we find excellent agreement
between our results and the mass splittings derived from the hadron masses measured in the laboratory.
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I. INTRODUCTION

Over the past decade, the experimental study of the
products of B-meson decays has led to the discovery of a
wealth of excited charmonium states. Many of them present
interesting challenges for theoretical interpretation. Because
lattice quantum chromodynamics (QCD) is an ab initio
method for studying hadron spectroscopy, in principle, it
should provide a guide to the interpretation of these states
[1–16]. To address these questions with confidence, it is
important that lattice discretization (cutoff) effects be under
control. The more limited objective of the present work is
to carry out a high-precision study of the splittings of the
low-lying charmonium states—particularly the 1S and 1P
states—and, thus, lay the foundation for further calculations

of excited states. Spin-dependent mass splittings are
expected to be extremely sensitive to the charm-quark mass
and to heavy-quark discretization effects. Reproducing these
delicate splittings can therefore serve as another demon-
stration that systematic uncertainties are under excellent
control.
Our effort follows a previous analysis campaign on the

same gauge configurations [2]. Preliminary results have
been reported [17] and some additional details about our
quark sources can be found in Ref. [18]. Our new results
supersede the results in those publications. Although other
groups have reported partial results for the low-lying
charmonium spectrum [1,19–22], there are no systematic,
high-precision studies for any action. Thus, to our knowl-
edge, our campaign is the first that includes precise tuning
of the charm-quark mass, precise determination of the
lattice scale, and a controlled extrapolation to physical light
sea-quark masses and zero lattice spacing. Our paper is
organized as follows. In Sec. II, we further describe the
objectives of our current work, while we describe our lattice
setup in detail in Sec. III. Section IV shows our results for
the splittings among low-lying charmonium states includ-
ing a chiral and continuum extrapolation of results and a
full error budget. We summarize our findings in Sec. V
where we also provide a brief outlook.
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II. THEORETICAL BACKGROUND

In this paper, our main objective is the QCD determi-
nation of the masses of the 1S and 1P states in the
charmonium spectrum. From the ground state masses in
the quantum number channels corresponding to the 1S and
1P states, we calculate the hyperfine splitting between the
1S triplet and singlet states,

ΔMHF ¼ MJ=ψ −Mηc ; ð2:1Þ

the spin-averaged 1P-1S splitting,

ΔM1P-1S ¼ M1P −M1S; ð2:2Þ

M1P ¼ 1

9
ðMχc0 þ 3Mχc1 þ 5Mχc2Þ; ð2:3Þ

M1S ¼ 1

4
ðMηc þ 3MJ=ψÞ; ð2:4Þ

and the spin-orbit, tensor, and 1P hyperfine splittings
among the P-wave states,

ΔMspin-orbit ¼
1

9
ð5Mχc2 − 3Mχc1 − 2Mχc0Þ; ð2:5Þ

ΔMtensor ¼
1

9
ð3Mχc1 −Mχc2 − 2Mχc0Þ; ð2:6Þ

ΔM1PHF ¼ M1P −Mhc: ð2:7Þ

It is these splittings, extrapolated to zero lattice spacing and
physical sea-quark masses, that we compare with their
experimental values.
These combinations are of phenomenological interest in

constructing the heavy quarkonium potential, since they
correspond to separate terms in the potential derived from
the heavy-quark limit [23–26]:

V tot¼VðrÞþVSðrÞSQ ·SQþVTðrÞS12þVLSðrÞL ·SQ;
ð2:8Þ

S12 ¼ 3ðSQ · r̂ÞðSQ · r̂Þ − SQ · SQ: ð2:9Þ

Thus, their dependence on the lattice spacing provides
useful information about discretization effects in each of
the relevant terms, as discussed in detail in Ref. [2].
Table I lists the 1S and 1P states along with their masses

and widths, as determined from experiment [27]. While
some of these states are extremely narrow, both the ηc and
χc0 have a non-negligible hadronic decay width, resulting
from charm-anticharm annihilation. In lattice QCD, this
effect comes from disconnected diagrams, which our
current simulation omits. That is, we treat all low-lying
charmonium states as stable. It is therefore not a priori clear

whether we will obtain good agreement with the ηc and χc0
masses. This shortcoming complicates the comparison with
experiment, in particular for the 1S hyperfine splitting.1 We
further comment on this issue when comparing our results
with previous results in Sec. IV F.

III. METHODOLOGY

This section presents the methodology for the lattice
determination of the charmonium masses described in
Sec. IV. In addition to our lattice setup, our procedures
to deal with uncertainties from the mistuning of the charm-
quark mass, our strategy for the chiral-continuum fits, and
the systematic uncertainty arising from the determination of
the lattice spacing are discussed in this section.

A. Gauge configurations

We use the (2þ 1)-flavor gauge configurations gener-
ated by the MILC collaboration [30] with the asqtad
fermion action for sea quarks. The ensembles used in this
work are listed in Table II. The use of five different lattice
spacings a and two different light sea-quark masses (given
in the table as a fraction of the strange quark mass in the
simulation) enables us to perform a controlled chiral-
continuum extrapolation. Four source time slices per gauge
configuration are used, for a total of approximately 2000 to
4000 sources per ensemble. We use the Fermilab prescrip-
tion [31] for the charm quarks, which suppresses heavy-
quark discretization effects in mass splittings [32]. The
charm-quark hopping parameter κc has been tuned by
demanding that theDs kinetic mass be equal to the physical
Ds meson mass in the way described in Ref. [33]. The
resulting κc and the (sometimes slightly different) simu-
lation value κ0c are also given in Table II. Note that we refer
to the quark masses used in the simulation as m0

l and m0
s

while we denote the physical light- and strange-quark
masses by ml and ms. When calculating observables, we
need to take into account this difference in our chiral-
continuum extrapolations.

TABLE I. Experimental averages of the masses and widths of
the 1S and 1P low-lying charmonium states [27].

Meson Mass [MeV] Width

ηc 2983.9(5) 32.0(8) MeV
J=ψ 3096.900(6) 92.9(2.8) keV
χc0 3414.71(30) 10.8(6) MeV
χc1 3510.67(5) 0.84(4) MeV
χc2 3556.17(7) 1.97(9) MeV
hc 3525.38(11) 0.7(4) MeV

1Historically, the asymmetric line shape of the ηc resonance
also complicated the extraction of the hyperfine splitting from
experiment data. This issue no longer arises with modern, high-
statistics data (see, for example, Refs. [28,29]).
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B. Calculation of observables

We calculate a matrix of correlators CðtÞ using quark-
antiquark interpolators with the JPC quantum numbers of
the states in question, where J is the total spin and P and C
are parity and charge conjugation quantum numbers. We
opt for a basis built from interpolators with derivatives and
use interpolating operators similar to those suggested by
Liao and Manke [48], which have also been used by Dudek
et al. [1]. A subset of similar interpolators has also been
used in Ref. [49] and similar interpolators using displace-
ments or full plaquettes rather than derivatives have
previously been considered in Ref. [50]. Disconnected
contributions, where a valence charm-anticharm-quark pair
annihilates, are omitted when calculating the correlators.
Our operators are constructed fromstochasticwall sources,

including covariant Gaussian smearing. Stochastic sources
consist of a four-component-spinor field on a single time slice
with random color orientation, but definite spin:

Srβðx; a; αÞ ¼ ηraðxÞδαβ; ð3:1Þ

where r labels the stochastic source, β its spin, anda andα are
the 12 Dirac color and spin components. Averaged over a
sufficiently large number of stochastic sources Nr, we have

lim
Nr→∞

1

Nr

XNr

r¼1

ηr�a ðxÞηrbðyÞ ¼ δabδxy: ð3:2Þ

With both charm and anticharm quarks originating from the
same source, or with one source modified by Gaussian
smearing, the stochastic average gives the effect of charmo-
nium sources composed of local or smeared bilinears of the
form

OiðxÞ ¼ ψ̄ðxÞOiψðxÞ; ð3:3Þ

where the smearing operators are included in the definition of
Oi. All links appearing in the Gaussian smearing operators

and in the covariant derivatives below are smeared with a
fixed number of APE-smearing [51] steps. Gaussian smear-
ing is implemented by acting with a smearing operatorM on
the stochastic sources S to obtain Gaussian sources:

G ¼ MS ¼ N
�
1þ σ2

4a2N
Δ
�

N

S; ð3:4aÞ

Δðx; yÞ ¼
X3

i¼1

½Uiðx; 0Þδðxþ aı̂; yÞ

þUiðx − aı̂; 0Þ†δðx − aı̂; yÞ� − 6δxy; ð3:4bÞ

where Δ is a covariant 3D Laplacian, N is just a normali-
zation factor, and σ=a and N are chosen such that M
approximates a Gaussian with (physical) standard deviation
σ in coordinate space. Thus,

lim
N→∞

M ¼ eσ
2Δ=4a2 ; ð3:5Þ

because limN→∞ð1þ b=NÞN ¼ eb. Table III lists the smear-
ing parameters for both the gauge link smearing and for the
Gaussian quark sources.
In the constructions discussed in Appendix A, we use the

following operators:

∇i ¼ MPiS; ð3:6aÞ
Bi ¼ εijkMPjPkS; ð3:6bÞ

Di ¼ jεijkjMPjPkS: ð3:6cÞ

Here M is the Gaussian smearing operator defined in
Eq. (3.4a), and Pi is a derivative-type operator on a given
time slice t,

Piðx; yÞ ¼
1

2
½Wiðx; t; xþ rı̂; tÞδðxþ rı̂; yÞ

−Wiðx − rı̂; t; x; tÞδðx − rı̂; yÞ�; ð3:7Þ

TABLE II. Parameters of the MILC ensembles used in this study. Listed are the lattice spacing a, the ratio of the sea-quark masses
m0

l=m
0
s used in the simulation, and the lattice size L3 × T, Also included are the number of source time slices used in the calculation Nsrc,

the tuned charm-quark hopping parameter κc, the charm-quark hopping parameter of our simulation, κ0c, and a citation for the ensemble.
The first uncertainty in κc is statistical, and the second is from the uncertainty in the lattice scale.

≈a [fm] m0
l=m

0
s Size Nsrc κc κ0c Ref.

0.14 0.2 163 × 48 2524 0.12237(26)(20) 0.1221 [34]
0.14 0.1 203 × 48 2416 0.12231(26)(20) 0.1221 [35]
0.114 0.2 203 × 64 4800 0.12423(15)(16) 0.12423 [36,37]
0.114 0.1 243 × 64 3328 0.12423(15)(16) 0.1220, 0.1245, 0.1280 [38]
0.082 0.2 283 × 96 1904 0.12722(9)(14) 0.12722 [39,40]
0.082 0.1 403 × 96 4060 0.12714(9)(14) 0.12714 [41,42]
0.058 0.2 483 × 144 2604 0.12960(4)(11) 0.1298 [43,44]
0.058 0.1 643 × 144 1984 0.12955(4)(11) 0.1296 [45,46]
0.043 0.2 643 × 192 3204 0.130921(16)(70) 0.1310 [47]
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where r is kept of roughly the same length in physical
units andWiðx; t; xþ rı̂; tÞ denotes the shortest Wilson line
connecting ðx; tÞ and ðxþ rı̂; tÞ. In Eq. (3.6), the Pi act to
the right. The continuum version of operator Bi has a
relation to the chromomagnetic parts of the field strength
tensor

Bcont
i ¼ −

i
2
εijkFjk: ð3:8Þ

To avoid an (anti)symmetrization of the derivatives, which
would require more sources, we first apply derivatives and
then the Gaussian smearing. A detailed discussion of this
approach can be found in Ref. [52].
We use the variational method [53–56], solving the

generalized eigenvalue problem

CðtÞψ⃗ ðkÞ ¼ λðkÞðtÞCðt0Þψ⃗ ðkÞ; ð3:9Þ

λðkÞðtÞ ∝ e−tEkð1þ Oðe−tΔEkÞÞ; ð3:10Þ

with reference time slice t0. The ground state mass can be
extracted from the large time behavior of the largest
eigenvalue. For this we use (multi)exponential fits to the
eigenvalues in the interval ½tmin; tmax�, taking into account
correlations in time separation. At fixed t0, ΔEk is formally
given by

ΔEk ¼ min jEm − Enj; m ≠ n; ð3:11Þ

while for the special case of t ≤ 2t0 and a basis of N
correlators [57] ΔEk is given by

ΔEk ¼ ENþ1 − En: ð3:12Þ

We investigate the dependence of our results on t0 and
find that in practice a rather small value of t0 provides the
best compromise between excited-state contaminations and

statistical uncertainty. An illustration of the effect of the
choice of t0 on the extraction of the ground state energy
using two-exponential fits is shown in Fig. 9 for the J=ψ
bound state on the finest lattice. Here and elsewhere, the
statistical uncertainties are computed from a single-elimi-
nation jackknife. In our analysis, the reference time t0 and
the lower boundary of the fit window tmin are kept roughly
constant in fm for the 1S and 1P states respectively.2 The
upper boundary of the fit-window tmax is chosen such that
the eigenvectors ψ⃗ ðkÞ remain stable within statistics in the
whole fit range, which in some cases results in a somewhat
shorter fit window than just considering plateaus in the
effective masses. For the P-wave states on the coarsest
lattice spacing, where the tuning of the quark smearing was
performed, remaining excited-state contaminations are
extremely small, and we need to use loose priors on the
mass splittings between the ground state and the lowest
excitations in order to avoid clearly unphysical fit results
with two almost mass-degenerate ground states.
In some cases increasing the size of the basis used in the

variational method leads to no improvement in the ground
state but adds statistical noise. For our final results we
therefore opted to suitably prune the interpolator basis, and
we list our choices of basis in Appendix A.

C. Charm-quark-mass corrections

For some of the ensembles listed in Table II the charm-
quark hopping parameter of the simulation κ0c differs
slightly from the physical charm-quark hopping parameter
κc. The raw splittings on these ensembles have to be
corrected for this mistuning. To determine the needed
correction, we compute the derivative of each mass splitting
with respect to κc on one ensemble, namely the one with
a ¼ 0.114 fm and ml=mh ¼ 0.1 [38]. We assume that once
the slope is expressed in terms of physical quantities, it
remains the same for that mass splitting for all ensembles.
Since the adjustments are small, any residual lattice spacing
dependence in the slopes should be negligible.
To be explicit, for mass splitting ΔMi, we assume that

the following derivative is the same for all ensembles:

Ri ¼
dΔMi

dm2

; ð3:13Þ

where m2ðκcÞ is the kinetic mass of the charm quark. For a
given κc we estimate that mass from the ensemble’s critical
hopping parameter κcrit and tadpole factor u0 using the tree-
level expressions [Eq. (4.9) of [31]]:

TABLE III. Table of gauge link and quark smearing parameters.
For the gauge link smearing NAPE steps of APE smearing with
smearing parameter c [51] have been applied. For the quark
smearing detailed above, the standard deviation σ is kept fixed at
roughly 0.31 fm while the number of smearing steps N is chosen
suitably.

≈a [fm] m0
l=m

0
s NAPE c σ=a N

0.14 0.2 15 0.1 2.2 20
0.14 0.1 15 0.1 2.2 20
0.114 0.2 15 0.1 2.6 40
0.114 0.1 15 0.1 2.8 20
0.082 0.2 15 0.1 3.7 20
0.082 0.1 15 0.1 3.7 50
0.058 0.2 15 0.1 5.5 80
0.058 0.1 15 0.1 5.5 80
0.043 0.2 15 0.1 7.0 100

2For one of the ensembles at lattice spacing a ¼ 0.082 fm, one
of the multiexponential fits is not stable with our usual value of
tmin, so we choose a smaller tmin ¼ 0.25 fm. We stress that the
results on this ensemble are fully compatible with single-
exponential fits at large time separations, and that our final
results are not affected by this choice.
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am0 ¼
1

2u0

�
1

κc
−

1

κcrit

�
; ð3:14Þ

1

am2

¼ 2

am0ð2þ am0Þ
þ 1

1þ am0

: ð3:15Þ

The correction to the mass splitting, resulting from a shift
dκc is then given in r1 units [58] by

r1dΔMi ¼ RiAdκc; ð3:16Þ

where

A ¼ dam2

dκc

r1
a
: ð3:17Þ

Values of κcrit, u0, and A for each ensemble are listed in
Table IV. A quantitative estimate for the uncertainty from
this procedure is provided in Sec. IV E.

D. Chiral and continuum fits

We perform a combined extrapolation to the continuum
values and to physical light- and strange-quark masses.
Our data indicate a clear sea-quark mass dependence for
some of the observables,3 which means that we also need
to take into account the effect of mistuned strange sea-
quark masses. Our model for the lattice spacing depend-
ence is based on the Oktay-Kronfeld [59] analysis of the
Fermilab prescription, which provides nonrelativistic QCD
(NRQCD) power-counting [60] estimates of various heavy-
quark discretization effects in quarkonium. They are para-
metrized as mass mismatches, leading to functions fiðaÞ of
the lattice spacing that are determined separately for each
observable. In addition to the terms for the heavy-quark

discretization effects, we also add a term linear in αsa2 as
appropriate for the asqtad sea quarks. For our combined
sea-quark mass and continuum fit we use the Ansatz

M ¼ M0 þ bð2xl þ xsÞ þ c0f1ða; αsÞ þ c1f2ða; αsÞ þ � � � ;
ð3:18Þ

xl ¼
m0

l −ml

ms
; ð3:19Þ

xs ¼
m0

s −ms

ms
ð3:20Þ

as our fit model. The values form0
l,ml,m0

s andms are given
in Table V along with the values of the renormalized
coupling in the V scheme [61] αs at scale 2=a used in the
analysis of discretization effects. For each observable we
determine the most important mass mismatches arising at
Oðv4Þ and/or Oðv6Þ in NRQCD power counting. Figure 1
shows the expected discretization uncertainties from power
counting estimates for the splitting indicated in the respec-
tive figure. The plotted curves correspond to ci ¼ 1. For the
1P-1S splitting, this includes a term from rotational
symmetry breaking (w4 term). In our default fits we use
Bayesian priors centered around 0 with a prior uncertainty
of 1 as a constraint for all terms originating from heavy-
quark discretization effects. As part of our systematic
variations described in Sec. IV E, this prior uncertainty
is varied. In addition to these terms we also allow for a
generic αsa2 term (without prior) characteristic of light-
quark discretization effects. We discuss the relevant mass
mismatches for a given splitting when we present our
results in Sec. IV. For each observable we compare
continuum extrapolations with just two terms (αsa2 and
the leading heavy-quark discretization term) and with three
terms (the αsa2 term and the leading and subleading heavy-
quark discretization terms). We further check the variation
from replacing the αsa2 term by an a2 term. While a single
leading shape is usually enough to get a good fit of the data,
including further possible shapes leads to a larger and more

TABLE IV. Values used to correct for charm-quark-mass
mistunings for each of the ensembles in this study. Shown are
the approximate ensemble lattice spacing, the ratio of simulation
sea-quark masses, the critical κ value, the tadpole factor, and the
factor A from Eq. (3.17).

≈a [fm] m0
l=m

0
s κcrit u0 A

0.14 0.2 0.142432 0.8604 71.54
0.14 0.1 0.14236 0.8602 71.15
0.114 0.2 0.14091 0.8677 85.06
0.114 0.1 0.14096 0.8678 85.04
0.082 0.2 0.139119 0.8782 112.42
0.082 0.1 0.139173 0.8779 111.51
0.058 0.2 0.137632 0.88788 155.40
0.058 0.1 0.137678 0.88764 154.10
0.043 0.2 0.13664 0.89511 208.69

TABLE V. Simulation light and heavy sea-quark masses
compared with physical light and strange quark masses for each
ensemble.

≈a [fm] am0
l am0

s aml ams αsð2=aÞ
0.14 0.0097 0.0484 0.0015079 0.04185 0.35885
0.14 0.0048 0.0484 0.0015180 0.04213 0.36042
0.114 0.01 0.05 0.0012150 0.03357 0.31054
0.114 0.005 0.05 0.0012150 0.03357 0.31035
0.082 0.0062 0.031 0.0008923 0.02446 0.26062
0.082 0.0031 0.031 0.0009004 0.02468 0.26177
0.058 0.0036 0.018 0.0006401 0.01751 0.22451
0.058 0.0018 0.018 0.0006456 0.01766 0.22531
0.043 0.0024 0.014 0.0004742 0.01298 0.20131

3This effect is particularly noticeable in the sea-quark-mass-
independent renormalization scheme [30], which we have
adopted here.
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realistic uncertainty estimate. The fit variations described
above are among the fit variations shown in Sec. IV E,
where our error budget is also discussed.

E. Scale-setting uncertainty

For the figures presented in Sec. IV, we use MILC’s
version of the Sommer scale, r1 [58]. The values of r1=a for
the asqtad ensembles and an explanation for our value r1 ¼
0.31174ð216Þ fm can be found in Ref. [62]. This value was
determined in the “mass-independent” scale-setting scheme,
the one adopted here. To estimate the scale-setting error, for
each observable we first determine the result using the
central value for both r1 and κc and then repeat the
procedure, shifting r1 by one standard deviation while
simultaneously shifting the tuned κc by an amount that
results from the same shift in r1. The scale-setting uncer-
tainty for each observable is discussed in Sec. IV E and
tabulated in Table VII.

IV. RESULTS

In this section, results for the mass splittings from Sec. II
are presented. After discussing each splitting in turn, the

systematic uncertainties associated with the determination
are quantified and the resulting values are compared with
the results from previous determinations.

A. 1S hyperfine splitting

Like all spin-dependent splittings, the 1S hyperfine
splitting is highly sensitive to heavy-quark discretization
and charm-quark tuning effects. As such, it is an important
benchmark quantity for lattice-QCD calculations of the
charmonium spectrum.
For the 1S hyperfine splitting, autocorrelations in the

Markov chain of gauge configurations are significant and
need to be taken into account. To do so, we estimate the
integrated autocorrelation time using two methods. Method
one is to determine the autocorrelation time from the
jackknife sample using the method and software of
Wolff [63]. An alternative consists of constructing binned
data from the jackknife estimates of the unbinned set and
extrapolating the results for bins of sizes 1 to 5 to infinite
binsize using the expected scaling. We determined the
integrated autocorrelation time using both methods and
check the results for consistency. The two methods agree
excellently and, as the uncertainty estimate on different
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FIG. 1. Shapes and size of the expected heavy-quark discretization uncertainties for charmonium splittings (NRQCD power counting
[60]) in the Fermilab approach (using v2 ¼ 0.3 and mv2 ≈ 420 MeV ≈ 1P-1S splitting). These are as in Figs. 3 and 4 of Ref. [59], and
the notation for the terms follows that reference. Values of αs consistent with those in Table V have been used. The terms arising from
mass mismatches are denoted in the plot by the masses in the short-distance coefficients. In addition a rotational symmetry breaking term
(with coefficient w4) is important for the 1P-1S splitting. Expressions for the short-distance coefficients can be found in Ref. [59].
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ensembles is independent, we use the second method to
inflate the statistical uncertainties on a single ensemble
appropriately.4

Figure 2 shows the results for the 1S hyperfine splitting,
along with a chiral-continuum extrapolation of the results.
Where needed, the data have already been shifted for
mistuning of the charm-quark hopping parameter, as out-
lined in Sec. III C. Note that significant contributions
from charm-annihilation diagrams to this observable are
expected [64]. When comparing our final results with the
experimental value in Table IX we use the determination of
−1.5 to −4 MeV from Ref. [64] as an estimate for the
uncertainty from neglecting disconnected contributions.
The leading heavy-quark discretization effects contrib-

uting to the hyperfine splittings come from mismatches of
mB and m2. Following Ref. [59], we use NRQCD power
counting with v2 ¼ 0.3 and mc ¼ 1400 MeV along with
the tree level formulas from Ref. [31] to estimate the
expected size of all heavy-quark discretization effects. The
relevant formula for mB is Eq. (4.22) of Ref. [59], and
the shape of the resulting mismatch is plotted in the first
panel of Fig. 1. Note that our fermion action includes a
clover term [65] with the tadpole-improved tree-level value
cB ¼ cE ¼ u−30 , where u0 is the average link from the
plaquette. This contribution is therefore suppressed relative

tomcv2 (the kinetic energy of the meson) by a factor 1
2
αsv2c.

The sign of the contribution is, however, not known.
The next largest heavy-quark discretization effects

come from mismatches of mB0 and m2, where the relevant
formula for mB0 is given by Eq. (4.23) of Ref. [59]. Again,
the resulting estimate of discretization effects from the
mismatch is plotted in the first panel of Fig. 1. Note that at
tree level and with only terms up to dimension 5 in the
action, this mismatch is the same as the one from the
difference between m4 and m2 (see below) but it is of a
higher order in the NRQCD power counting and therefore
suppressed by 1

8
v4 with respect to the kinetic energy. For

our final fits we use both of these mass mismatches with
priors for the coefficients ci from Eq. (3.18) given by 0� 1

as well as an unconstrained αsa2 term. The expected shapes
for the mismatches are plotted in Fig. 1.
Finally, the stability of results with regard to systematic

variations of the chiral-continuum fit needs to be assessed.
Table VI describes a number of important fit variations
(A–G), and their effect on the 1S hyperfine splitting can be
seen in the first panel of Fig. 7. One of these variations (D)
consists of limiting the continuum extrapolations to just
two shapes (leading heavy-quark mismatch and sea-quark
term). From the difference between the default value and D
it can be seen that the central value is largely unaffected
while the uncertainty estimate from the fit with leading and
subleading shapes is more conservative. Note also that the
fit results are stable when the default prior widths are
doubled (variation F in Table VI and Fig. 7). While the
results are stable when omitting the finest lattice spacing
(variation C) there is a somewhat significant shift when
excluding the coarsest lattice spacing (variation B).
Therefore we take the difference between B and the default
fit model as an additional systematic uncertainty. For our
final uncertainty estimate provided in Table VII the
uncertainties from the scale determination (direct and
through the uncertainty in the charm-quark mass) and
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FIG. 2. Chiral and continuum fit for the 1S hyperfine splitting.
The black circles denote the lattice data. Curves for physical
(black), 0.1ms (red), and 0.2ms (blue) light-quark masses are
plotted. Due to the mistuning of the strange quark in the sea,
which differs from ensemble to ensemble, the data points appear
away from the curves. To illustrate that the data are well described
by the fit, the black crosses show the fit results evaluated at the
lattice parameters of the gauge ensemble. The magenta symbol
indicates the result in the combined chiral and continuum limit.

TABLE VI. Description of the variations in the chiral-
continuum fit plotted in Fig. 6.

A Same as “default” but using sea-quark
discretization effects of order a2 rather than αsa2

B Results when omitting the lattice data at
the coarsest lattice spacing

C Results when omitting the lattice data
at the finest lattice spacing

D Result using just terms of order αsa2 and
a single shape for the heavy-quark

discretization effects
E Heavy-quark discretization effects with

priors for ci half of the default width (0� 0.5)
F Heavy-quark discretization effects with

priors for ci double the default width (0� 2)
G 1σ variation of the κc slope used to

shift data to physical κc

4Note that the fit results in Table XI in Appendix B are the
uninflated results from the plateau fits. The corresponding
χ2=d:o:f: reflects the non-negligible autocorrelations.
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from the correction of the data for simulation at unphysical
charm-quark mass are non-negligible.

B. 1P-1S splitting

Figure 3 shows our result for the splitting between the
spin-averaged P- and S-wave states ΔM1P-1S. As in the 1S
hyperfine splitting, significant effects from mistuned
strange-quark masses are visible in our data. Unlike the
hyperfine splitting, there is no statistically significant
autocorrelation in the Monte Carlo chain, and we therefore
treat the data as uncorrelated. In this case, we find large
discretization effects, emphasizing the need for several
lattice spacings.
Having normalized the kinetic energy correctly, we

expect leading heavy-quark discretization effects of order
v4 in NRQCD power counting and we plot the expected
shapes of the discretization effects in Fig. 1. The terms from

the mismatch of m4 and m2 and the rotational symmetry
breaking term arising at order p4 are of about equal size.
The relevant formulas for w4 and m4 are Eqs. (4.4)
and (4.5) of Ref. [59]. We also consider the discretization
effects from the mismatch ofmE andm2, wheremE is given
by Eq. (4.17) of Ref. [59], and we evaluate mE for
cE ¼ cB ¼ 1. Again we use Bayesian priors with default
value 0� 1 for the coefficients ci in Eq. (3.18) associated
with heavy-quark discretization effects.
The chiral-continuum fits are stable under all variations

shown in Table VI. The effect of these variations is
illustrated in the second panel of Fig. 7. In particular the
central values do not change when the prior width is
increased. As for all other splittings, our final result based
on the default fit model also takes into account possible
discretization effects of order αsa2. The largest variation
with respect to this fit model occurs when replacing this
term by an a2 term, which is not motivated by the sea-quark
action used.

C. Spin-dependent P-wave splittings

The P-wave spin-orbit splitting—shown in Fig. 4—
exhibits only small discretization uncertainties. The leading
heavy-quark discretization effects come from the mismatch
of mE and m2 and are of order v4 in NRQCD power
counting. Subleading effects of order v6 come from the
mismatch of mEE and m2 and from terms of mass-
dimension eight not considered in Ref. [59]. Our default
fit employs Bayesian priors given by 0� 1 for all relevant
shapes from Fig. 1.
The results for the spin-orbit splitting are very stable with

respect to the variations of the chiral-continuum fit in
Table VI. The results of this variation are shown in the third
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FIG. 3. Chiral and continuum fit for the 1P-1S splitting. The
black circles denote the lattice data. Curves for physical (black),
0.1ms (red), and 0.2ms (blue) light-quark masses are plotted. The
black crosses show the fit results evaluated at the lattice
parameters of the gauge ensemble. The magenta symbol indicates
the result in the combined chiral and continuum limit.
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FIG. 4. Chiral and continuum fit for the 1P spin-orbit splitting.
The black circles denote the lattice data. Curves for physical
(black), 0.1ms, (red) and 0.2ms (blue) light-quark masses are
plotted. The black crosses show the fit results evaluated at the
lattice parameters of the gauge ensemble. The magenta symbol
indicates the result in the combined chiral and continuum limit.

TABLE VII. Systematic uncertainties on the mass splittings in
MeV. An asterisk (*) indicates that the corresponding uncertainty
is small compared with the statistical uncertainty of the chiral-
continuum fit and can therefore be neglected in quantifying the
total uncertainty. For the total systematic uncertainty we add the
single values in quadrature. Recall that our simulation omits
charm-anticharm annihilation.

Source 1P-1S
1S

hyperfine
1P spin-
orbit

1P
tensor

1P
hyperfine

Slope in κc 0.2 0.2 0.1 0.2 (*)
Chiral-continuum
fit shape

(*) 1.5 (*) 1.6 (*)

Lattice scale 3.3 1.6 0.9 0.1 (*)
Total 3.3 2.2 0.9 1.6 <0.1
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panel of Fig. 7. The P-wave tensor splitting (Fig. 5) receives
heavy-quark discretization effects from the same mass
mismatches as the 1S hyperfine splitting, and the observed
total discretization effects in the 1P tensor splitting are of
the same absolute size as those in the 1S hyperfine splitting.
Variations of our fit model are displayed in the fourth panel
of Fig. 7. As in the case of the hyperfine splitting, we take
the difference between variation B (omitting the coarsest
ensembles) and the default fit model as an additional
systematic uncertainty.
The 1P hyperfine splitting defined in Eq. (2.7) is

expected to be very small [66] and, indeed, experiments
measure a value compatible with zero. Our results are
shown in Fig. 6. Our data for this quantity are rather noisy.
We find a central value slightly more than 1σ away from
zero, but we do not believe this extrapolation to be fully
under control, and the strong cancellation may make this
combination sensitive to charm-anticharm annihilation.

D. 2S-1S splitting

Beyond the mesons listed in Table I, the only known
charmonia below the D̄D threshold are the ψð2SÞ and
ηcð2SÞ. With our interpolator basis these states are not well
determined. Furthermore, we do not include the D̄D
scattering states in our basis and the threshold states
therefore cannot be cleanly separated from the close-to-
threshold 2S bound states. As a result, the energy values we
obtain depend strongly on the lower boundary tmin of the fit
range, as demonstrated previously in [17]. This issue is not
seen in a recent simulation of the ψð3770Þ resonance using
a more sophisticated basis of both quark-antiquark and D̄D
interpolators [13], where the QCD bound state correspond-
ing to the ψð2SÞ can be obtained to a good statistical

precision. Note, however, that Ref. [13] was limited to just
two sets of gauge configurations, so that the chiral and
continuum limits could not be taken.

E. Uncertainty estimates

To obtain final best estimates for the calculated mass
splittings, we need to assess the relevant systematic
uncertainties associated with our procedures. In total,
we consider uncertainties arising from correlator fits, from
the charm-quark mass tuning procedure, from the correc-
tion to physical charm-quark mass described in Sec. III C,
from the chiral-continuum fit, and from our limited
knowledge of the lattice scale. For the charm-quark tuning
procedure, the main uncertainty in the continuum limit
arises from the effect of the lattice-scale determination on
the charm-quark tuning. We account for this uncertainty as
part of our scale-setting uncertainty below. All relevant
uncertainties are tabulated in Table VII. We now discuss
them in turn.

1. Variations of the correlator fits

We have investigated many variations of the correlator
fits, including correlator basis variations, variations of the
fit interval, fit shape, etc., and found that our results are
stable under sensible variations of the fitting procedure.
Our final choices, which are displayed in full in Tables XI
and XII are reasonably conservative and encompass almost
all stable fit choices with a reasonable goodness of fit.
For our final uncertainty estimate, we therefore do not
include an additional uncertainty for these variations in
correlator fits.
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FIG. 5. Chiral and continuum fit for the 1P tensor splitting. The
black circles denote the lattice data. Curves for physical (black),
0.1ms, (red) and 0.2ms (blue) light-quark masses are plotted. The
black crosses show the fit results evaluated at the lattice
parameters of the gauge ensemble. The magenta symbol indicates
the result in the combined chiral and continuum limit.
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FIG. 6. Chiral and continuum fit for the P-wave hyperfine
splitting. The black circles denote the lattice data. Curves for
physical (black), 0.1ms (red), and 0.2ms (blue) light-quark
masses are plotted. The black crosses show the fit results
evaluated at the lattice parameters of the gauge ensemble. The
magenta symbol indicates the result in the combined chiral and
continuum limit.
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2. Uncertainty from the determination of the slope in κc
Variation “G” from Table VI illustrates the results when

the slope in κc used for the charm-quark mass corrections is
varied by one standard deviation. This variation is small
and straightforward to quantify.

3. Variations of the chiral-continuum fits

Beyond our default fit results, Table VI lists several
variations of the chiral-continuum fit we performed. The
results associated with these variations are shown together
with our default results in Fig. 7. Among these, variations
A–D vary the fit forms used, while variations E and F test
whether the results are sensitive to the prior widths selected
for the coefficients of the heavy-quark-discretization shapes
from Fig. 1. In general the variations among the different
fits are rather mild. Significant variations have been
discussed for each observable in the previous subsections.
For the S-wave hyperfine splitting and the P-wave tensor

splitting, we assess the systematic uncertainty of the chiral-
continuum fit by taking the difference between the default
fit and variation “B,” which results from omitting our data
at the coarsest lattice spacing. For all other splittings, the

variations are insignificant compared with the statistical
uncertainty of the fit. While wider priors lead to a slightly
increased uncertainty estimate, there is no significant
variation in our best estimates for the splittings.

4. Uncertainty from the determination of the lattice scale

The procedure for our determination of the scale-setting
uncertainty is described above in Sec. III E. For the 1S
hyperfine and 1P-1S splittings this uncertainty is of the
same size as the statistical uncertainty from the chiral-
continuum fit. In particular, the indirect uncertainty stem-
ming from the uncertainty of the determination of the
charm-quark hopping parameter κc on the scale setting is
quite large and this uncertainty has been neglected in some
of the literature. For the spin-orbit splitting the uncertainty
from scale setting is somewhat smaller than the statistical
uncertainty after extrapolation to the physical point. The
scale-setting uncertainties for the other splittings are small
(see Table VII) compared with the total uncertainty, as seen
in Table VIII.

F. Comparison with previous calculations

The Fermilab Lattice and MILC collaborations have
previously reported results for the mass splittings in the
low-lying charmonium spectrum [2]. Our current results use
the same library of gauge configurations. Comparedwith the
previous studywemake use of finer lattice spacings, a better
determination of the physical quark masses (in particular an
improved determination of the charm-quark hopping param-
eter κc [33]) and of the lattice spacings used in the simulation
[62]. All these ingredients allowed us to perform a more
sophisticated chiral-continuum extrapolation. The new
results supersede those of Ref. [2].
Table VIII shows a direct comparison of the previous

results from [2] with our new results. With the exception of
the 1P tensor splitting all the new results are quite a bit more
precise. For the 1P tensor splitting ourmore elaborate chiral-
continuumextrapolation leads to a significant increase in the
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FIG. 7. Systematic variation of the charmonium mass splittings
when varying the details of the chiral-continuum extrapolation.
The label “default” indicates our final result described in detail
for each splitting in Sec. IV. The variations (letters A to G) are
described in Table VI.

TABLE VIII. Charmonium mass splittings obtained in this
paper compared with the calculation on the same library of
gauge-field configurations from [2]. For an explanation of
differences between the two calculations please refer to the text.
The quoted uncertainties are statistical and systematic; the third
uncertainty on the 1S hyperfine splitting is the estimate for the
downward shift due to disconnected contributions from Ref. [64].

Mass difference This analysis [MeV] Ref. [2] [MeV]

1S hyperfine 116.2� 1.1� 2.2−1.5−4.0 116.0� 7.4þ2.6
−0

1P-1S splitting 462.2� 4.5� 3.3 473� 12þ10
−0

1P spin-orbit 46.6� 3.0� 0.9 43.3� 6.6þ1.0
−0

1P tensor 17.0� 2.3� 1.6 15.0� 2.3þ0.3
−0

1P hyperfine −6.1� 4.2� 0.1 � � �
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estimate of the associated uncertainty; the previously quoted
uncertainty was probably underestimated.
For the 1S hyperfine splitting, several lattice calculations

have aimed at a full control of the systematic uncertainties
in the connected contribution to the hyperfine splitting. In
particular, several papers quote results for physical sea-
quark masses in the continuum limit [2,20,21,67,68].
Figure 8 compares these calculations together with two
recent preliminary results [22,69], showing very good
consistency. Unfortunately, all these results neglect effects
from annihilation of the valence charm quarks. These have
previously been estimated from lattice QCD [64] and from
perturbation theory [67]. Note that these results disagree in
the sign of the annihilation effects.
More importantly, charm-anticharm annihilation in the

physical system results in a substantial total hadronic width
of the ηc, dominating the total width of 32.0(8) MeV [27].
The PDG lists many decays both into hadronic resonances
and into stable final states [27]. While lattice QCD studies
of hadronic resonances using Lüscher’s finite volume
method [70,71] are continuing to make considerable
progress (for a review see Ref. [72]) and are now being
applied to states close to double open charm thresholds
[11–13,16], a rigorous study of the ηc on the lattice is
currently out of reach.5 In our current calculation, the

uncertainty from neglecting disconnected contributions is
now the largest uncertainty in the error budget for the 1S
hyperfine splitting.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have presented results for the splittings
of low-lying charmonium states. Table IX shows a com-
parison of our results with the experimental values [27].
Within our uncertainty estimates, which are described in
detail in Sec. IV E, the lattice QCD postdictions are in
excellent agreement with experiment, demonstrating that
heavy-quark discretization effects for charmonium are
well controlled in our setup. Our results improve upon
previous results by the Fermilab Lattice and MILC
collaborations presented in Ref. [2], which are now
superseded.
While our determination of the 1S hyperfine splitting

uses the estimate for the charm-annihilation contribution
from Ref. [64], all current lattice determination including
the results presented here neglect effects from charm-
anticharm annihilation. For the 1S hyperfine splitting
this is now the largest source of uncertainty. A possible
direction of further research in this context would be a
precision study and prediction of spin splittings in the Bc
system, where the contributions from annihilation diagrams
are absent. Note that the hyperfine splitting between the B�

c
and Bc mesons has already been predicted from lattice
QCD in [74–76], while the B�

c has not yet been seen in
experiment.
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APPENDIX A: TABLES OF INTERPOLATORS

Table X provides the interpolators in each irreducible representation of the (lattice) cubic group, parity P, and charge
conjugation C quantum numbers. Entries correspond to the Oi in Eqs. (3.3), and the smearing types ∇i, Di, and Bi are
defined in Eqs. (3.6).

APPENDIX B: GROUND-STATE ENERGY LEVELS

Tables XI and XII list the determined ground state masses for each ensemble and quantum number combination along
with the interpolator basis, reference time slice t0 of the variational method, fit range and fit type used to obtain the result.

TABLE X. Schematic of interpolators for each lattice irreducible representation. Repeated indices are summed over.
Interpolators without derivatives are used with both stochastic Gaussian-smeared (G) and stochastic point (P) sources and sinks,
as detailed in Sec. III B. γt denotes the γ matrix in time direction, and the Clebsch-Gordan coefficientsQijk are given in Ref. [1]. Table I
in the same reference tabulates the lowest continuum spins J contributing to the lattice irreducible representations.

A−þ
1 Aþþ

1
T−−
1 Tþ−

1 Tþþ
1 Tþþ

2 Eþþ

γ5 (G) 1 (G) γi (G) γtγ5γi (G) γ5γi (G) jεijkjγj∇k Qijkγj∇k

γ5 (P) 1 (P) γi (P) γtγ5γi (P) γ5γi (P) jεijkjγtγj∇k Qijkγtγj∇k

γtγ5 (G) γi∇i γtγi (G) γ5∇i εijkγj∇k Di Qijkγ5γjDk

γtγ5 (P) γtγi∇i γtγi (P) γtγ5∇i εijkγtγj∇k jεijkjγtγ5γjBk Qijkγtγ5γjBk

γtγ5γi∇i γtγ5γiBi ∇i jεijkjγtγ5γjDk jεijkjγ5γjDk

γiBi εijkγ5γj∇k Bi γtBi

γtγiBi jεijkjγjDk εijkγ5γjBk εijkγtγ5γjBk

jεijkjγtγjDk

γ5Bi

γtγ5Bi

TABLE XI. Mass aM for the 1S states on all ensembles. The ensembles are labeled by their lattice spacing a and ratio of sea-quark
masses m0

l=m
0
s. The basis of interpolators is labeled according to the rows of Table X. All fits are two-exponential fits in the specified fit

range. As we only analyze the autocorrelation within the Monte Carlo chain for the mass splittings the printed χ2 per degree of freedom
is somewhat larger than 1. For our final results autocorrelations have been taken into account where necessary.

≈a [fm] m0
l=m

0
s κsim JPC t0 Basis Fit range aM χ2=d:o:f:

0.14 0.2 0.1221 0−þ 2 1,2,3,4,5 2–20 1.67622(15) 0.84
0.14 0.1 0.1221 0−þ 2 1,2,3,4,5 2–20 1.67746(10) 2.35
0.114 0.2 0.12423 0−þ 2 1,2,3,4,5 3–27 1.46897(8) 1.50
0.114 0.1 0.1220 0−þ 2 1,2,3,4,5 3–27 1.58055(7) 0.88
0.114 0.1 0.1245 0−þ 2 1,2,3,4,5 3–27 1.45278(8) 1.06
0.114 0.1 0.1280 0−þ 2 1,2,3,4,5 3–27 1.26162(9) 1.70

(Table continued)
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TABLE XII. Mass aM for the 1P states on all ensembles. The ensembles are labeled by their lattice spacing a and ratio of sea-quark
masses m0

l=m
0
s. For JPC ¼ 2þþ results from two lattice irreducible representations (T2 and E) are listed. Our final results are from a

sample-by-sample average of the results from the two irreps, and do not differ significantly from choosing either of the two single irreps
alone. For further comments see Table XI.

≈a [fm] m0
l=m

0
s κsim JPC t0 Basis Fit range aM χ2=d:o:f:

0.14 0.2 0.1221 0þþ 3 1,2,3,4 3–10 2.0436(31) 0.22
0.14 0.1 0.1221 0þþ 3 1,2,3,4 3–10 2.0368(35) 0.33
0.114 0.2 0.12423 0þþ 3 1,2,3,4 3–16 1.7556(33) 0.65
0.114 0.1 0.1220 0þþ 3 1,2,3,4 3–12 1.8651(13) 0.11
0.114 0.1 0.1245 0þþ 3 1,2,3,4 3–12 1.7390(15) 0.72
0.114 0.1 0.1280 0þþ 3 1,2,3,4 3–12 1.5220(928) 0.87
0.082 0.2 0.12722 0þþ 3 1,2,3,4 3–19 1.3421(13) 0.23
0.082 0.1 0.12714 0þþ 3 1,2,3,4 3–19 1.3481(7) 0.45
0.058 0.2 0.1298 0þþ 5 1,2,3,4 6–28 0.9646(10) 0.77
0.058 0.1 0.1296 0þþ 5 1,2,3,4 6–30 0.9807(10) 0.57
0.043 0.2 0.1310 0þþ 6 1,2,3,4 7–31 0.7349(8) 0.98
0.14 0.2 0.1221 1þþ 3 1,2,3,4,5 3–10 2.0896(28) 0.20
0.14 0.1 0.1221 1þþ 3 1,2,3,4,5 3–10 2.0854(22) 0.55
0.114 0.2 0.12423 1þþ 3 1,2,3,4,5 3–16 1.8017(31) 0.69
0.114 0.1 0.1220 1þþ 3 1,2,3,4,5 3–12 1.9039(18) 0.61
0.114 0.1 0.1245 1þþ 3 1,2,3,4,5 3–17 1.7800(29) 0.45
0.114 0.1 0.1280 1þþ 3 1,2,3,4,5 6–14 1.5898(338) 0.20
0.082 0.2 0.12722 1þþ 3 1,2,3,4,5 3–23 1.3783(24) 1.29
0.082 0.1 0.12714 1þþ 3 1,2,3,4,5 3–24 1.3843(8) 1.14
0.058 0.2 0.1298 1þþ 5 1,2,3,4,5 6–24 0.9930(12) 0.93
0.058 0.1 0.1296 1þþ 5 1,2,3,4,5 6–32 1.0070(11) 0.81
0.043 0.2 0.1310 1þþ 6 1,2,3,4,5 7–41 0.7542(10) 0.68
0.14 0.2 0.1221 2þþðT2Þ 3 1,2,3,4 3–10 2.1243(39) 0.31
0.14 0.1 0.1221 2þþðT2Þ 3 1,2,3,4 3–10 2.1193(36) 1.34
0.114 0.2 0.12423 2þþðT2Þ 3 1,2,3,4 3–16 1.8304(24) 0.64
0.114 0.1 0.1220 2þþðT2Þ 3 1,2,3,4 3–19 1.9291(23) 0.48
0.114 0.1 0.1245 2þþðT2Þ 3 1,2,3,4 3–18 1.8100(23) 0.24
0.114 0.1 0.1280 2þþðT2Þ 3 1,2,3,4 3–17 1.5045(707) 0.64
0.082 0.2 0.12722 2þþðT2Þ 3 1,2,3,4 3–19 1.4006(25) 0.79
0.082 0.1 0.12714 2þþðT2Þ 3 1,2,3,4 3–23 1.4045(11) 0.79

(Table continued)

TABLE XI. (Continued)

≈a [fm] m0
l=m

0
s κsim JPC t0 Basis Fit range aM χ2=d:o:f:

0.082 0.2 0.12722 0−þ 3 1,2,3,4,5 4–42 1.14427(8) 1.20
0.082 0.1 0.12714 0−þ 3 1,2,3,4,5 4–42 1.15211(4) 1.31
0.058 0.2 0.1298 0−þ 5 1,2,3,4,5 6–64 0.83119(4) 1.32
0.058 0.1 0.1296 0−þ 5 1,2,3,4,5 6–64 0.84756(2) 1.08
0.043 0.2 0.1310 0−þ 6 1,2,3,4,5 8–81 0.63519(3) 1.60
0.14 0.2 0.1221 1−− 2 1,2,5,6,7,8 2–20 1.75238(22) 0.51
0.14 0.1 0.1221 1−− 2 1,2,5,6,7,8 2–20 1.75324(16) 1.64
0.114 0.2 0.12423 1−− 2 1,2,5,6,7,8 3–27 1.53353(14) 1.46
0.114 0.1 0.1220 1−− 2 1,2,5,6,7,8 3–27 1.63834(13) 0.92
0.114 0.1 0.1245 1−− 2 1,2,5,6,7,8 3–27 1.51690(13) 1.06
0.114 0.1 0.1280 1−− 2 1,2,5,6,7,8 3–27 1.33715(18) 1.31
0.082 0.2 0.12722 1−− 3 1,2,5,6,7,8 4–42 1.19131(20) 1.53
0.082 0.1 0.12714 1−− 3 1,2,5,6,7,8 4–42 1.19873(7) 1.01
0.058 0.2 0.1298 1−− 5 1,2,5,6,7,8 6–64 0.86508(9) 1.32
0.058 0.1 0.1296 1−− 5 1,2,5,6,7,8 6–64 0.88092(5) 1.18
0.043 0.2 0.1310 1−− 6 1,2,5,6,7,8 8–81 0.66053(6) 1.66
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APPENDIX C: DEPENDENCE OF THE ENERGY VALUES ON THE VARIATIONAL METHOD t0

Figure 9 illustrates the t0 dependence of the energy levels on the example of one of the 1S states.

TABLE XII. (Continued)

≈a [fm] m0
l=m

0
s κsim JPC t0 Basis Fit range aM χ2=d:o:f:

0.058 0.2 0.1298 2þþðT2Þ 5 1,2,3,4 6–25 1.0082(19) 0.92
0.058 0.1 0.1296 2þþðT2Þ 5 1,2,3,4 6–29 1.0176(42) 1.05
0.043 0.2 0.1310 2þþðT2Þ 6 1,2,3,4 7–31 0.7644(20) 0.81
0.14 0.2 0.1221 2þþðEÞ 3 1,2,3,4 3–10 2.1259(37) 0.12
0.14 0.1 0.1221 2þþðEÞ 3 1,2,3,4 3–10 2.1190(39) 1.50
0.114 0.2 0.12423 2þþðEÞ 3 1,2,3,4 3–13 1.8289(38) 0.23
0.114 0.1 0.1220 2þþðEÞ 3 1,2,3,4 3–17 1.9289(24) 0.70
0.114 0.1 0.1245 2þþðEÞ 3 1,2,3,4 3–15 1.8115(20) 0.23
0.114 0.1 0.1280 2þþðEÞ 3 1,2,3,4 3–17 1.5935(437) 0.67
0.082 0.2 0.12722 2þþðEÞ 3 1,2,3,4 3–19 1.4018(20) 0.98
0.082 0.1 0.12714 2þþðEÞ 3 1,2,3,4 3–23 1.4051(11) 0.87
0.058 0.2 0.1298 2þþðEÞ 5 1,2,3,4 6–29 1.0081(21) 0.89
0.058 0.1 0.1296 2þþðEÞ 5 1,2,3,4 6–24 1.0201(35) 1.57
0.043 0.2 0.1310 2þþðEÞ 6 1,2,3,4 7–31 0.7633(26) 0.84
0.14 0.2 0.1221 1þ− 3 1,2,3,4,5 3–10 2.0986(33) 0.08
0.14 0.1 0.1221 1þ− 3 1,2,3,4,5 3–10 2.0970(27) 1.25
0.114 0.2 0.12423 1þ− 3 1,2,3,4,5 3–16 1.8093(35) 0.22
0.114 0.1 0.1220 1þ− 3 1,2,3,4,5 3–16 1.9116(23) 0.52
0.114 0.1 0.1245 1þ− 3 1,2,3,4,5 3–16 1.7903(23) 0.58
0.114 0.1 0.1280 1þ− 3 1,2,3,4,5 3–17 1.5965(102) 0.43
0.082 0.2 0.12722 1þ− 3 1,2,3,4,5 3–21 1.3856(29) 1.96
0.082 0.1 0.12714 1þ− 3 1,2,3,4,5 3–21 1.3917(8) 0.78
0.058 0.2 0.1298 1þ− 5 1,2,3,4,5 6–35 0.9985(19) 0.87
0.058 0.1 0.1296 1þ− 5 1,2,3,4,5 6–35 1.0115(13) 0.84
0.043 0.2 0.1310 1þ− 6 1,2,3,4,5 7–42 0.7585(11) 1.21

0 2 4 6 8 10 12
Variational method t

0
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FIG. 9. Sample plot of the t0 dependence for the J=ψ bound state on the finest lattice. The actual dependence for our choice of fit range
is shown in red with square symbols (slightly displaced on the x axis; the value used for the final results is highlighted magenta). The
black circles result from artificially emphasizing residual excited-state contaminations due to the choice of t0 by truncating the (upper) fit
range. While a clear t0 dependence is visible in this artificial case, this small effect is insignificant for all P-wave states (where the fit
plateaus are short) and tends to get further canceled in energy differences.
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