
Joint Decoding of Distribution Matching and Error

Control Codes
Patrick Schulte1, Wafa Labidi2, Gerhard Kramer1

1Institute for Communications Engineering, Technical University of Munich, 80333, Munich, Germany
2Institute of Theoretical Information Technology, Technical University of Munich, 80333, Munich, Germany

Abstract—An improved decoder for low-density parity-check
(LDPC) codes and for probabilistic amplitude shaping with con-
stant composition distribution matching (CCDM) is presented.
The decoder combines standard LDPC belief propagation with
a soft-input soft-output processor that exploits the constraints
imposed by CCDM and it gains up to 0.5 dB at a frame error
rate of 10

−4 for a block-length n = 192 5G code.

I. INTRODUCTION

Probabilistic amplitude shaping (PAS) [1] is a block based

probabilistic shaping (PS) technique that induces a non-

uniform distribution on a signal constellation. A distribution

matcher (DM) encodes a message into a non-linear set that

satisfies a constraint on the average symbol distribution. A

systematic forward error correction (FEC) encoder preserves

the distribution in the systematic part.

A constant composition distribution matcher (CCDM) [2]

is a DM that imposes a common empirical distribution on the

constellation points’ amplitudes within a block. The CCDM

thus introduces dependencies over all symbols in a block.

For very long blocks, the PAS rate is not affected by these

dependencies, but systems with short length DMs suffer in

transmission rate [3]. In [4]–[8], DMs with smaller rate-

loss are proposed. In [9] the dependencies introduced by

an extremely short 4-D shell mapping (SMDM) [4]–[6] are

resolved by a 4-D demodulator. The authors of [10] use polar

codes with list decoding and check if the codeword candidates

fulfill the constant composition (CC) constraint.

PAS uses a systematic FEC encoder in a manner similar

to the Bliss scheme [11] for constrained sequence coding. To

improve the Bliss scheme’s performance, [12] and [13] use

a supplementary soft input soft output (SISO) decoder and

iterate with the usual FEC decoder. We adopt this approach

for PAS and let a low-density parity-check (LDPC) decoder

iterate with a SISO CC code decoder based on the forward

backward (BCJR) algorithm to improve performance. For this

purpose, we introduce the trellis of a CC code. The resulting

decoder is a generalized LDPC (GLDPC) decoder [14] with

a non-linear constraint.

This paper is structured as follows. In Sec. II we introduce

notation and the basic components of PAS. In Sec. III we

introduce the interface of the BCJR algorithm and construct

a trellis for CC codes. In Sec. IV we show combinations of

BCJR and LDPC-belief propagation (BP) decoders. Simula-

tion results are presented in Sec. V. We draw conclusions in

Sec. VI.

II. PRELIMINARIES AND NOTATION

A. Notation

We write matrices in capital bold letters L, random variables

with uppercase sans-serif letters X, and their realizations with

lowercase letters x. Let A be a discrete random variable with

probability mass function (pmf) PA defined on the set A. The

entropy of a random variable A is

H (A) =
∑

a∈supp(PA)

−PA(a) log2 (PA(a)) (1)

where supp(PA) ⊆ A is the support of PA, i.e., the subset of

a in A with positive probability. We denote a length n vector

of random variables as An = A1A2 · · ·An with realization

an = a1a2 · · · an, and the number of occurrences of letter

α ∈ A in an as nα(a
n). Next, we describe the channel model

and the components of the PAS transceiver.

B. Channel Model

For transmission we consider M -amplitude shift keying

(ASK), i.e., transmission symbols X take on values in X =
{−M +1,−M +3, · · · ,M −3,M −1}. Each symbol can be

factored into a sign and amplitude

X = A · S. (2)

The corresponding amplitude set is

A = {α1, α2, · · · , αM/2} = {1, 3, · · · ,M − 1}. (3)

We consider additive white Gaussian noise (AWGN), i.e., the

output symbols of the channel are obtained via

Y = X+ Z (4)

where Z is a Gaussian random variable with zero mean and

variance σ2. The signal-to-noise ratio (SNR) is

SNR =
E
[
X2

]

σ2
. (5)

C. Probabilistic Amplitude Shaping

PAS [1] is a coded modulation scheme that can approach

the Shannon capacity for the AWGN channel [15], [16] and is

rate adaptive. An important building block is the DM which

encodes messages into sequences of amplitudes with a desired

average distribution. One can use any DM, and common

choices are CCDM and SMDM [6]. A systematic LDPC

encoder generates parity bits from a binary representation of

the amplitudes. The parities serve as signs for the amplitudes.

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

53

For high rate codes, additional source bits are encoded without

distribution matching. We refer to [1] for a detailed review of

PAS.

D. Labeling Function

An invertible labeling function β converts m bits to an M =
2m-ary symbol x ∈ X :

β(b1, · · · , bm) = x. (6)

The inverse function is

β−1(x) = [b1, · · · , bm]. (7)

We refer to the j-th bit of the label by β−1
j (x). We use a

binary reflected Gray code (BRGC) [17] where b1 decides the

symbol’s sign, i.e., we have

βA(b2, · · · , bm) = |β(0, b2, · · · , bm)| = |β(1, b2, · · · , bm)|.
(8)

The notation bi,j refers to the j-th bit of the i-th symbol xi.

We write B to refer to all bits bi,j , i = 1, 2, . . . , n, j =
1, 2, . . . ,m.

E. Demodulation

We consider a symbol-wise demodulator that is aware of

the signal statistics PA, PBj
. The log-likelihoods (LLs) L̃i(x)

of the i-th transmitted symbol are

L̃i(x) = log(pY|X(Yi|Xi = x) · PX(x)), ∀x ∈ X . (9)

The demodulator calculates the bit-wise LLs

L̃i,j(b) = log(pY|Bj
(Yi|Bi,j = b) ·PBj

(b)), ∀b ∈ {0, 1}. (10)

Thus, one symbol-channel splits into m parallel bit-

channels [1]. The log-likelihood ratio (LLR) of the j-th bit

in the i-th transmitted symbol is

Li,j = L̃i,j(0)− L̃i,j(1). (11)

For convenience, we collect LLs and LLRs in the matrices L̃

and L, respectively. The (i, j)-th entry of the LLR matrix L

corresponds to Li,j . The (i, j)-th entry of the LL matrix L̃

corresponds to L̃i(ξj), ξj ∈ X .

F. LDPC Codes and BP Decoding

A (n, k) LDPC code [18] is a binary linear block code

described by an r × n parity-check matrix H with entries

hi,j , i = 1, 2, . . . , r, j = 1, 2, . . . , n, where r ≥ n − k.

LDPC codes can be visualized through a bipartite graph

also known as the Tanner graph G. This graph consists of

a set V = {V1, V2, · · · , Vn} of n variable nodes, a set

C = {C1, C2, · · · , Cr} of r check nodes and a set E = {ej,i}
of edges. The check node Cj is connected to the variable node

Vi through the edge ej,i if the entry hi,j of the parity-check

matrix is one.

An LDPC BP decoder operates on LLRs [1]. Based on the

channel observations LCH, the LDPC decoder outputs the APP

LLRs:

L
APP = L

CH + L
E,LDPC (12)

where L
E,LDPC denotes the extrinsic information.

G. Constant Composition Distribution Matching

The type t of a sequences an expresses how many times

each letter α ∈ A appears in an, i.e., we have

t = (nα1
(an), nα2

(an), · · · , nα|A|
(an)). (13)

The set of sequences of type t is

Tt = {an ∈ An |nαi
(an) = ti , i = 1, · · · , |A|} (14)

where ti is the i-th entry of t. The cardinality is

|Tt| =
n!

∏|A|
i=1 ti!

. (15)

The CCDM is a function

fccdm,t : {0, 1}
k → Cccdm (16)

where Cccdm is a subset of Tt. Thus, all codewords of the

CCDM have the same type and therefore the same empirical

distribution. The dematcher f−1
ccdm,t implements the inverse

operation. For large n, the CCDM rate

Rccdm = k/n (17)

tends to H (PA) with PA(i) = ti
n [2], where H (PA) is the

entropy of a discrete memoryless source (DMS) with symbol

probabilities PA. The difference

Rloss = H (PA)−Rccdm (18)

is called the rate-loss Rloss [3]. In [19, Sec. IV] the CCDM

rate-loss is upper and lower bounded by O(log(n)/n) where

n is the block length. The rate-loss of a CCDM is negligible

for large blocks, but for short blocks the CC constraint adds

substantial redundancy. Consider a sequence an with a type

constraint. If we know all symbols except for one, we can

recover its value by counting how often each letter appears.

This holds for any constraint length n. We want to exploit the

redundancy of a CC code at the decoder.

III. FORWARD-BACKWARD ALGORITHM FOR CONSTANT

COMPOSITION CODES

The BCJR algorithm [20], also known as the forward-

backward algorithm, is a SISO algorithm that calculates the a

posteriori symbol probabilities

PAPP(ai) = P (ai|L̃) (19)

where L̃ are LLs and ai is the i-th transmitted symbol. From

these probabilities, we can compute the extrinsic LLs L̃E [20].

For binary codes, the input interface may be LLRs, because

we can convert easily from LLRs to LLs and vice versa.

The constant composition BCJR (CCBCJR) decoder builds

the code trellis from the type vector t, i.e. it is a function

CCBCJR : L̃× t 7→ L̃
E. (20)

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

54

α1

α2

α1
α3

α1

(0, 0, 0) (1, 0, 0)

(1, 1, 0)

(2, 1, 0)

(2, 1, 1) (3, 1, 1)

α1

α2 α3

Fig. 1. Constant composition code trellis for type t = (3, 1, 1). This
trellis consists of 16 states and 28 branches and represents 20 different CC
codewords, thus paths.

CCBCJR λ LDPC

λ−1

L
CH

t

L
E,k

L
APP,k

L̃
APP,k

Fig. 2. Symbol-based decoder.

A. CC Code Trellis

The construction of the CC trellis borrows ideas from [21].

The trellis states are tuples

S = {0, 1, · · · , nα1
}×{0, 1, · · · , nα2

}×· · · {0, 1, · · · , nα|A|
}.

(21)

The number of states in the trellis is

|S| =
∏

α∈A

(nα + 1) (22)

and the number of edges is

E =
∑

α∈A

nα

∏

α′ 6=α

(nα′ + 1). (23)

The initial and final states are (0, · · · , 0) and

(nα1
, · · · , nα|A|

), respectively. State s ∈ S is connected

to an earlier state s′ ∈ S via symbol αq if all entries are

identical except for the q-th entry of s that is augmented by

one.

Example 1. Consider a CC code on the alphabet A =
{α1, α2, α3} and with type t = (3, 1, 1). The trellis is depicted

in Fig. 1. It consists of |{0, 1, 2, 3}| · |{0, 1}| · |{0, 1}| =
16 states. The colored path corresponds to the sequence

(α1α2α1α3α1). It includes three increment-steps of α1, one

increment-step of α2, and one increment-step of α3, and

therefore matches the sequence type.

Note that an CCBCJR decoder assumes that that we may use

the complete set Tt of sequences of type t, however Cccdm is

usually only a subset [2].

IV. JOINT DECODING

We study how the decoder can exploit CC code properties

to decrease the error probability.

amplitude
bits

sign bits

+ + + + + +

CCBCJR2 CCBCJR3 CCBCJR4

Fig. 3. Tanner graph of a naive bit-based decoder for m = 4 and n = 3.
The amplitude bit variable nodes are connected to the respective BCJR node.
The sign bit variable nodes are not connected to a BCJR node.

A. Symbol-Based Decoder

The symbol-based decoder consists of a CCBCJR decoder

and a LDPC decoder that exchange messages iteratively, see

Fig. 2. The BCJR decoder has a symbol based interface, while

the LDPC decoder has a bit based interface. The demodulator

provides the LLs of the symbols and bit levels. The symbol-

wise LLs are passed to the CCBCJR decoder. The LDPC

decoder and the CCBCJR decoder iterate extrinsic information

L
E. We use functions λ and λ−1 to convert from symbol based

to bit based and vice versa. The function λ converts LL into

LLRs via

Li,j = ln








∑

x:β−1

j
(x)=0

exp
(

L̃i(x)
)

∑

x:β−1

j
(x)=1

exp
(

L̃i(x)
)








. (24)

The function λ−1 converts from bit-level to symbol-level.

For simplicity, we assume for a fixed i that the Bi,j , j =
1, 2, . . . ,m, are pairwise independent given Yi. The conver-

sion is then

L̃i(x) = log





m∏

j=2

exp(Li,j · (1− 2β−1
A,j(x)))

1 + exp(Li,j · (1− 2β−1
A,j(x)))



 . (25)

Note that 1− 2β−1
A,j(x) is 1 for the bit 0 and -1 for the bit 1.

B. Bit-Based Decoder

The number of states and edges of the CCBCJR decoder in-

creases exponentially with the alphabet size and polynomially

in n. One idea to decrease complexity is to replace one |A|-
ary CCBCJR decoder by log2 |A| binary CCBCJR decoders.

Additionally, the conversion functions λ, λ−1 become obso-

lete.

Consider a transmission sequence xn with type constraint

t on the amplitudes and its binary representation B ∈
{0, 1}n×m according to the labeling function β, where the

entry bi,j corresponds to the j-th bit of the i-th symbol. Let

b
|
j = b1,j , b2,j , · · · bn,j be the j-th column of B, i.e., the j-th

bit-level of the binary representation of the symbol sequence.

Since xn has a type t constraint on the amplitudes only, the

sign bits are unconstrained. All other bit levels j, 2 ≤ j ≤ m
are constrained. We derive the type constraint for each bit-level

depending on the type t of the sequence xn and the labeling

function β. The number of zeros in bit-level j is equal to

the number of amplitudes in the sequence xn whose binary

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

55

representation is zero in the j-th position, i.e., we have

nb(b
|
j) =

∑

α∈A, β−1

j
(α)=b

nα(amp(xn)) (26)

where amp(xn) is the element-wise absolute value of xn, b ∈
{0, 1}, and 2 ≤ j ≤ m. Thus for one amplitude type constraint

t, we obtain m−1 bit constraints t2, · · · , tm, where the index

denotes the respective bit-level with

tj =
[

n0(b
|
j), n1(b

|
j)
]

. (27)

Example 2. Consider a sequence xn with amplitude constraint

t = [37, 20, 6, 1] , i.e., 37 ones, 20 threes, 6 fives and 1 sevens,

and the BRGC labeling β shown below.

β(x)

x

111

-7

110

-5

100

-3

101

-1

001

1

000

3

010

5

011

7

We find n1(b
|
2) = 7 because the second bit of the labeling

β is ’1’ for amplitudes 5 and 7 and they appear 6 times and

once, respectively. The corresponding bit types t2 and t3 are

t2 = [57, 7] (28)

t3 = [26, 38] . (29)

For decoding, we add m−1 BCJR nodes into the Tanner graph,

as shown in Fig. 3. Note that the bit-based CCBCJR decoders

run independently. Their combined trellises allow sequences

that do not fulfill the type constraint t.

C. Improved Bit-Based Decoder

Each of the m−1 BCJR nodes is connected to n/m nodes.

This suggests that the girth, i.e., the shortest cycle in the graph,

is small. Loopy BP for small-girth was investigated in [22]

and leads to oscillations. There are two basic approaches to

deal with this issue. Firstly, we may filter the beliefs and thus

attenuate oscillations. Second, we could introduce multiple

short length CC constraints on a bit-level, i.e., introduce lower

degree CCBCJR nodes which increases both the girth and the

rate-loss. We consider only the first approach in this paper.

The LDPC decoder outputs the a posteriori LLRs L
APP
j .

Based on the channel observation, the type vector tj and

a posteriori information, the j-th BCJR decoder CCBCJRj

generates the extrinsic information L
E
j . The outputs of the

m − 1 CCBCJRs are collected in the matrix L
E. L and L

E

are then processed by the function

g
(

L
CH,LE,LAPP, k

)

≈ L
CH+

(

µ · LE,k−1 + (1− µ) · LE,k
)

︸ ︷︷ ︸

prior information

(30)

with k ≥ 1 and µ ∈ [0, 1]. After a number of iterations, the

LDPC decoder outputs new a posteriori information, which is

sent back to the CCBCJR decoders. The optimal parameter µ
is found by grid search.

D. Computational Complexity Comparison

For the computational complexity analysis, we focus on

the number of edges E in the code trellises, since the BCJR

complexity is Θ(E) [23]. This analysis depends on the trellis

representation of the CC code.

101 102 103

102

105

108

× 12.64

Codeword Length

N
u
m

b
er

o
f

E
d
g
es

symbol based BCJR

binary based BCJRs

(192,96)5G LPDC code

Fig. 4. Number of branches to compute for the bit-based and symbol-based
BCJR algorithms. The empirical distribution is [37, 20, 6, 1]/64. We interpret
(31) and (32) as continuous functions. At output length 64 symbols, the
symbol-based BCJR algorithm needs about 12.5 times more states than the
binary-based BCJR algorithm. We compare with the number of branches of
an iterative LDPC decoder using the BCJR algorithm.

1) Symbol-Based Decoder: For a type t = [n1, · · · , nM/2]
constraint, we have

Esymb =

M/2
∑

i=1

ni

∏

j 6=i

(nj + 1) (31)

branches. An increasing alphabet size even for the same

block-length may result in a large increase in the number

of states and therefore the computational complexity. For a

given empirical distribution, the number of states scales with

the power of the support of the empirical distribution.

2) Bit-Based Decoder: For the bit-based decoder, we split

one amplitude type constraint t into m − 1 bit constraints

t2, · · · , tm. The number of edges is then

Ebit =

m∑

j=2

2n0(b
|
j)n1(b

|
j) + n0(b

|
j) + n1(b

|
j). (32)

In Fig. 4 we show the number of branches vs. the codeword

length for the empirical distribution [37, 20, 6, 1]/64. We also

add the number of branches that are evaluated during one iter-

ation of LDPC decoding of an (192,96) 5G LDPC code, i.e.,

we compute the number of branches of all single parity check

and repetition nodes. Single parity check and repetition nodes

have 4 times and 2 times their degree edges, respectively.

V. SIMULATION RESULTS

We compare the performance of PAS with the bit-level

decoder proposed in [1] with the symbol-based and the heuris-

tically improved bit-based decoder with supplementary CC

constrained nodes. We target a spectral efficiency of 1.5 bits

per channel use with 8-ASK constellation.

For encoding, we use a DM with type t = [37, 20, 6, 1]
from Example 2 and a rate 3/4 code from the 5G eMBB

standard [25] with block length 192. The reference LDPC

decoder [1] is biased with the empirical distribution of the

FEC input. The symbol-based decoder uses t and the bit-based

decoder has two CCBCJRs with t2 = [7, 57] and t3 = [38, 26].
Simulation results in Fig. 5 show that the LDPC decoder

with a linear combination of L
E,LDPC,k−1 and L

E,k outper-

forms the LDPC decoder with L
E,k as prior information only.

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

56

11 11.5 12 12.5 13 13.5 14
10−5

10−4

10−3

10−2

10−1

100

SNR in dB

F
E

R

reference decoder [1]

symbol-based decoder

improved bit-based decoder, µ = 0.2

random coding bound [24]

(192,96) 5G code, uniform signaling

Fig. 5. FER of the different strategies for 24 outer-iterations and 100
inner-iterations. We collected 100 erroneous frames per simulation point. The
scheme is implemented by using 8−ASK with code rate 3/4 and block-length
n = 192. The rate-loss Rloss is about 0.145 bit/symbol.

We include the performance of a (192,96) 5G LDPC code

with an optimized interleaver as a non-shaped baseline with

the same spectral efficiency. The bit-based decoding strategy

gains 0.5 dB in the simulation setup as compared to the LDPC

decoder in [1].

VI. CONCLUSIONS AND OUTLOOK

A trellis structure for CC codes is introduced. Different

decoding strategies based on the combination of BCJR and

LDPC decoders are proposed that gain 0.5 dB in the considered

short length scenario at a frame error rate of 10−4. In future

work, we plan to investigate the design of LDPC codes

with CCBCJR nodes. This way long LDPC codes could be

combined with short block length DMs that run in parallel

during encoding and decoding.

VII. ACKNOWLEDGEMENTS

We would like to thank Georg Böcherer and Fabian Steiner

for continuous support and Gianluigi Liva for the initial idea.

Wafa Labidi was supported by the Bundesministerium für

Bildung und Forschung (BMBF) through Grant 16KIS1003.

REFERENCES

[1] G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and
rate-matched low-density parity-check coded modulation,” IEEE Trans.

Commun., vol. 63, no. 12, pp. 4651–4665, Dec 2015.
[2] P. Schulte and G. Böcherer, “Constant composition distribution mat-

ching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434, Jan 2016.
[3] G. Böcherer, P. Schulte, and F. Steiner, “High throughput proba-

bilistic shaping with product distribution matching,” arXiv preprint

arXiv:1702.07510, 2017.
[4] Y. C. Gültekin, F. M. J. Willems, W. J. van Houtum, and S. Şerbetli,

“Approximate enumerative sphere shaping,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), June 2018, pp. 676–680.
[5] Y. C. Gültekin, W. J. van Houtum, S. Şerbetli, and F. M. Willems,

“Constellation shaping for IEEE 802.11,” in IEEE Ann. Int. Symp. on

Personal, Indoor, and Mobile Radio Commun. (PIMRC). IEEE, 2017,
pp. 1–7.

[6] P. Schulte and F. Steiner, “Divergence-optimal fixed-to-fixed length
distribution matching with shell mapping,” IEEE Wireless Commun.

Lett., pp. 1–1, 2019.
[7] T. Fehenberger, D. S. Millar, T. Koike-Akino, K. Kojima, and K. Par-

sons, “Multiset-partition distribution matching,” IEEE Trans. Commun.,
pp. 1–1, 2018.

[8] M. Pikus and W. Xu, “Bit-level probabilistically shaped coded modula-
tion,” IEEE Commun. Lett., vol. 21, no. 9, pp. 1929–1932, Sep. 2017.

[9] F. Steiner, F. Da Ros, M. P. Yankov, G. Böcherer, P. Schulte, G. Kramer
et al., “Experimental verification of rate flexibility and probabilistic
shaping by 4D signaling,” in Proc. Optical Fiber Commun. Conf. IEEE,
2018, pp. 1–3.

[10] P. Yuan, G. Böcherer, P. Schulte, G. Kramer, R. Böhnke, and W. Xu,
“Error detection using symbol distribution in a system with distribution
matching and probabilistic amplitude shaping,” German WO Applica-
tion, 10 31, 2016.

[11] W. Bliss, “Circuitry for performing error correction calculations on
baseband encoded data to eliminate error propagation,” IBM Tech. Discl.

Bul., vol. 23, pp. 4633–4634, 1981.
[12] J. L. Fan and J. M. Cioffi, “Constrained coding techniques for soft

iterative decoders,” in IEEE Global Telecommun. Conf. (GLOBECOM),
vol. 1. IEEE, 1999, pp. 723–727.

[13] A. P. Hekstra, “Use of a d-constraint during LDPC decoding in a Bliss
scheme,” arXiv preprint arXiv:0707.3925, 2007.

[14] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.

Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.
[15] R. A. Amjad, “Information rates and error exponents for probabilistic

amplitude shaping,” in Proc. IEEE Inf. Theory Workshop (ITW), Nov.
2018.

[16] G. Böcherer, “Achievable rates for probabilistic shaping,” arXiv preprint

arXiv:1707.01134, 2017.
[17] F. Gray, “Pulse code communication,” US Patent 2632058, 1953.
[18] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,

vol. 8, no. 1, pp. 21–28, January 1962.
[19] P. Schulte and B. C. Geiger, “Divergence scaling of fixed-length, binary-

output, one-to-one distribution matching,” in Proc. IEEE Int. Symp. Inf.

Theory (ISIT). IEEE, 2017, pp. 3075–3079.
[20] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear

codes for minimizing symbol error rate (corresp.),” IEEE Trans. Inf.

Theory, vol. 20, no. 2, pp. 284–287, 1974.
[21] J. Schalkwijk, “An algorithm for source coding,” IEEE Trans. Inf.

Theory, vol. 18, no. 3, pp. 395–399, 1972.
[22] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation

for approximate inference: An empirical study,” in Proc. Conf. on

Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., 1999, pp. 467–475.

[23] R. J. McEliece, “On the bcjr trellis for linear block codes,” IEEE

Transactions on Information Theory, vol. 42, no. 4, pp. 1072–1092,
1996.

[24] G. Liva and F. Steiner, “pretty-good-codes.org: Online library of good
channel codes,” http://pretty-good-codes.org, Oct. 2017.

[25] T. Richardson and S. Kudekar, “Design of low-density parity check
codes for 5G new radio,” IEEE Commun. Mag., vol. 56, no. 3, pp.
28–34, Mar. 2018.

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

57

