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Flood inundation forecasts using validation data

generated with the assistance of computer vision

Punit Kumar Bhola, Bhavana B. Nair, Jorge Leandro, Sethuraman N. Rao

and Markus Disse
ABSTRACT
Forecasting flood inundation in urban areas is challenging due to the lack of validation data. Recent

developments have led to new genres of data sources, such as images and videos from smartphones

and CCTV cameras. If the reference dimensions of objects, such as bridges or buildings, in images

are known, the images can be used to estimate water levels using computer vision algorithms. Such

algorithms employ deep learning and edge detection techniques to identify the water surface in an

image, which can be used as additional validation data for forecasting inundation. In this study, a

methodology is presented for flood inundation forecasting that integrates validation data generated

with the assistance of computer vision. Six equifinal models are run simultaneously, one of which is

selected for forecasting based on a goodness-of-fit (least error), estimated using the validation data.

Collection and processing of images is done offline on a regular basis or following a flood event.

The results show that the accuracy of inundation forecasting can be improved significantly using

additional validation data.
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INTRODUCTION
Forecasting real-time flood inundation is challenging due to

the lack of validation data and high-computational time

required by two-dimensional (2D) inundation models for

producing flood inundation maps. Thus, researchers have

focused on using alternatives to 2D inundation models. A

straightforward approach is to generate a large database of

inundation maps, using either 2D inundation models

(Disse et al. ) or historical satellite images (Bhatt et al.

), and create rules to select the most likely inundation

map, based on forecasted discharges or flood stages (Bhola

et al. ). However, the uncertainty associated with this
approach is too large (Henonin et al. ). Another alterna-

tive is the use of surrogate models (Bermúdez et al. ) that

replace expensive 2D inundation models with data-driven

models or more simplified model structures (Razavi et al.

).

Inundation models are available with various levels of

simplification (Néelz & Pender ; Bach et al. ).

A widely used model is a diffusive wave model that

simplifies full dynamic equations to reduce the compu-

tational time (Leandro et al. ). These models are

suitable when inertial terms are not important, which is

often the case for flood inundations in urban areas (Martins

et al. ). Inundation models are typically calibrated,

often using Manning’s coefficient, to reproduce a set of

observations, e.g. water levels, inundation extent. This
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coefficient represents the resistance to flood flows in the

model domain. Various studies point out that inundation

models can be very sensitive to these coefficients, which

leads to a higher degree of uncertainty (Oubennaceur

et al. ). Despite uncertainties, a single calibrated model

is used in operational forecast applications (Henonin et al.

) instead of using multiple models in forecasting mode.

Validation of the inundation forecasting is essential to

evaluate its accuracy and predictive capabilities. However,

spatial and temporal flood validation data in urban areas

are scarce (Leandro et al. ). Fortunately, recent develop-

ments in technology and crowdsourcing have led to new

sources of data. A few researchers have used remote sensing

data to validate inundation maps with satellite images (Poser

& Dransch ; McDougall ). There have also been

attempts to gather crowdsourced hydrological measure-

ments using smartphones and to develop a low-cost,

practical method of data collection that can be used to

predict floods (Kampf et al. ).

Computer vision algorithms, such as edge detection and

image segmentation, have been used to extract information

from images (Zhai et al. ) and have been applied to

many new areas of research (Uma et al. ). For instance,

Jaehyoung & Hernsoo () found the water level by

measuring the water surface height with reference to an

indicator (an invariant feature in the image). Techniques

such as Scale-Invariant Feature Transform (SIFT) and

automatic adaptive selection of region-of-interest have

been used to detect edges and water lines in an image

(Hies et al. ; Narayanan et al. ). In addition, Nair

& Rao () estimated flood depth by segmenting humans

from a flood scene and detected their face and gender

using deep learning algorithms.

Recent studies have integrated crowdsourced data in

the field of inundation modelling in which images and

video recordings from smartphones are used to investigate

hindcasted flood events (Triglav-Čekada & Radovan ;

Kutija et al. ; Dapeng et al. ). In another example,

Wang et al. () used a manual approach to detect objects

in images, such as lamp posts and pavement fences, to ident-

ify the boundary of the flood extent. Lowry & Fienen ()

encouraged citizen scientists to participate in capturing

stream flows and evaluated the accuracy of citizen measure-

ments. Although several applications of crowdsourced data
s://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
exist, they are limited to hindcasting the flood events.

Hence, there remains a need to use this validation data in

improving the forecasting and establishing a back communi-

cation from crowdsource to the inundation forecasts.

In this paper, we present a methodology that integrates

additional validation data, which are extracted from an

image with the assistance of a computer vision algorithm.

The main focus is to improve the accuracy of the inundation

forecasting by using water levels obtained from images,

which are collected on a regular basis or following a flood

event. The methodology is tested on three historical flood

events and is applied to the city of Kulmbach, Germany.
STUDY SITE AND DATA

Kulmbach

The present study is in the city of Kulmbach (Figure 1),

which is located in Upper Main river catchment in the

north-east of the Free State of Bavaria in Southern

Germany. The city has around 26,000 inhabitants. With a

population density of 280 inhabitants per km2 in an area

of 92.8 km², it is categorized as a great district city.

Traditionally, it has been a manufacturing base for the

food and beverage industry. On 28th May 2006, up to

80 L/m2 intense rainfall occurred and within a few hours

all the streams and rivers were filled (Tvo ). The incident

prompted decision makers to revisit the flood protection

measures for the city.

Hydrological data

Three hydrological events are used to assess the method-

ology. The hydrographs of the events upstream of the city

at gauges Ködnitz on the river White Main and Kauerndorf

on the river Schorgast are presented in Figure 2. Hydrologi-

cal measurement data for the events were collected by the

Bavarian Hydrological Services.

The winter flood in January 2011 (event I) was one of

the largest in terms of its magnitude and corresponded to

a discharge of 100-year return period at gauge Kauerndorf

and 10-year return period at gauge Ködnitz (Figure 2(a)).

Intense rainfall and snow melting in the Fichtel mountains



Figure 1 | The location and land use classes of the study area in the city of Kulmbach, Germany (Data source: Bavarian Environment Agency and Water Management Authority, Hof).

The river flows from east to west.
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caused floods in several rivers of Upper Franconia. Within 5

days, two peak discharges were recorded. The first one

occurred on 9th January and the second peak measured 5

days later on 14th January caused even higher discharges

and water levels. The maximum discharge of 92.5 m³/s

was recorded at gauge Kauerndorf and 75.3 m³/s at gauge

Ködnitz. Agricultural land and traffic routes were flooded,

but no serious damage was reported. In Kulmbach, a dyke

in the region of Burghaig was about to collapse due to

the large volume of water. The Water Management Auth-

ority opened the weir in Kulmbach which saved potential

damages (Hof ).

Events II and III that occurred on 13th April 2017 and

7th December 2017 respectively, were of relatively smaller

magnitudes as compared to event I and corresponded to

a discharge of the lowest value of a year (MNQ) and the

arithmetic mean (MQ) respectively (Figure 2(b) and 2(c)).

During these events, the water was contained well within

the floodplains and thus, no inundation was recorded in

the urban area.
om https://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
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Measured water levels and available images

The images and water levels were collected in three phases.

In the first phase (event I), the Water Management

Authority in Hof, Germany collected data during the

winter flood and recorded water levels at eight bridges in

Kulmbach. Figure 1 shows the location of bridges and

Figure 3 shows the images taken. Based on the locations,

the sites are categorized in four groups: sites 1, 2, and 3 at

the river White Main; site 4 at Dobrach canal in the

north; site 5 at a side canal; and sites 6, 7, and 8 at Mühl

canal. Reference dimensions of the bridges were taken

from a database, SIB-Bauwerke, that is developed by the

German Federal Highway Research Institute (Bundesanstalt

für Straßenwesen) (Bauwerke ). The database contains

the design and detailed measurements of the infrastructures.

The water levels were measured using a levelling instrument,

Ni 2 (Faig & Kahmen ). The instrument was used

due to its availability and high accuracy, therefore associ-

ated uncertainties were not evaluated in this study. The



Figure 2 | Discharge hydrographs at upstream gauges Ködnitz (in black) and Kauerndorf (in grey) for three events, (a) Event I on 14th January 2011, (b) Event II on 13th April 2017, and (c)

Event III on 7th December 2017 (Data source: Bavarian Hydrological Service, www.gkd.bayern.de, accessed 16 March 2018).

Figure 3 | Images taken during event I on 14th January 2011 for the eight sites (Source: Water Management Authority in Hof, Germany).
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event was used in calibrating the 2D inundation model

and identifying model parameter sets for the inundation

forecast.

For the second phase (event II), images were taken to

increase the computer vision data set (Figure 4). For the

third phase (event III), both images and water depths were

recorded (Figure 5). During the event, the water surface

heights were recorded using an electrical contact gauge,

which is a measuring tape connected to an electric sensor

used to detect water depth in tanks. The heights were

measured from the tops of the bridges and converted to

water levels using the reference dimensions of the bridges.

Event III was used in validating the 2D inundation model.
Topography and land use

The quality of inundation maps mainly depends on the

topography of the study area. Topography data for this
s://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
study were provided by the Water Management Authority,

Hof. In the digital elevation model, the terrain is determined

by airborne laser scanning and airborne photogrammetry,

whereas the river bed is mostly recorded by terrestrial

survey (Skublics ).

The land use of the model domain generally consists of

agricultural land, specifically floodplains and grasslands,

and covers up to 62% of the total model area. Water

bodies make up to 7% and include river channels and

lakes. The urban area covers around 26% and includes

industrial, residential areas and transport infrastructure,

whereas the forests form barely 5% of the total area.
METHODOLOGY

This section briefly describes the methodology used for

flood inundation forecasts, next the 2D inundation model

http://www.gkd.bayern.de


Figure 4 | Images taken during event II on 13th April 2017 for the eight sites.

Figure 5 | Images taken during event III on 7th December 2017 for the eight sites.
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HEC-RAS used for generating inundation maps, then the

computer vision algorithm used to extract the water level

from an image, and finally the goodness-of-fit used for

model calibration and performance analysis to accomplish

the objectives of this study.

Flood inundation forecasting

The conceptual flow chart of flood inundation forecasts inte-

grates the validation data obtained with the assistance of

computer vision algorithms (Figure 6). The methodology is

an extension of the FloodEvac tool (Leandro et al. ) in

which the discharges are forecasted in real-time at upstream
om https://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
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gauging stations. The calibrated inundation model (MCal),

determined based on a pre-selected event, is then run

based on the forecasted discharges as input boundary con-

ditions. The results of this model are forecasted as

inundation maps. The contribution here is the incorporation

of nþ 1 number of models as well as a computer vision

algorithm to improve the selection of flood inundation

maps. In real-time, n different model parameter sets are run

simultaneously with the calibrated model parameter set

(nþ 1). This is motivated by the concept of equifinality

(Beven & Binley ) in which far more models are used

as they represent the modelled system equally well. If an

image becomes available in the model domain, the computer



Figure 6 | Conceptual flow chart of flood inundation forecasts incorporating a computer

vision algorithm for nþ 1 models.
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vision methodology is applied. Goodness-of-fit is calculated

between nþ 1 model results and computer vision results.

The model that produces the least error is selected for inun-

dation forecasting. If no image is available, calibrated

model parameter results (MCal) are used as a default.
Table 1 | 2D Hydrodynamic model properties of the HEC-RAS 2D model

Data Value

Model area 11.5 km2

Total number of cells 430,485

Δt 20 s

Minimum cell area 6.8 m2

Maximum cell area 59.8 m2

Average cell area 24.8 m2

Downstream boundary condition slope 0.0096
2D Flood inundation model: HEC-RAS

The 2D flood inundation maps were generated using HEC-

RAS 2D. This is a non-commercial hydrodynamic model

developed by the U.S. Army Corps of Engineers and has

been used widely for various flood inundation applications

(Moya Quiroga et al. ; Patel et al. ; Bhola et al.

). The model employs an implicit finite difference

scheme to discretize time derivatives and hybrid approxi-

mations, combining finite differences and finite volumes to

discretize spatial derivatives. The implicit method allows for

larger computational time steps compared to an explicit

method. HEC-RAS solves either 2D Saint Venant or 2D

diffusion wave equations. The latter allows faster calculation

and has greater stability due to its complex numerical

schemes (Martins et al. ). Due to these advantages

and suitability for use in real-time inundation forecasts
s://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
(Henonin et al. ), we have used the diffusive wave

equations in this study. For the diffusive wave approximation,

it is assumed that the inertial terms are less than the gravity,

friction, and pressure terms. Flow movement is driven by

barotropic pressure gradient balanced by bottom friction

(Brunner ). The equations of mass and momentum

conservation are as follows:

@H
@t

þ @(hu)
@x

þ @(hv)
@y

þ q ¼ 0 (1)

g
@H
@x

þ cfu ¼ 0 (2)

g
@H
@y

þ cfv ¼ 0 (3)

cf ¼
gjV j

M2R4=3
(4)

whereH is the surface elevation (m); h is the water depth (m);

u and v are the velocity components in the x- and y-directions

respectively (ms�1); q is a source/sink term; g is the gravita-

tional acceleration (ms�2); cf is the bottom friction

coefficient (s�1); R is the hydraulic radius (m); |V| is the mag-

nitude of the velocity vector (ms�1); and M is the inverse of

Manning’s n (m(1/3) s�1).

The model was set up for the city of Kulmbach using the

gathered data and Table 1 summarizes the model properties

and the details of the mesh size in the model domain. The

model parameter consists of roughness coefficient Man-

ning’s M for five land use classes. Aronica et al. ()

suggested using extreme feasible upper and lower ranges

for the parameters because a simple model structure does

not reflect the true distribution of the parameters in the
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basin. Hence, literature-based extreme ranges of Manning’s

M are set as: 9.1–40.0 for agriculture, which covers a

range from short grass to medium-dense brush; 6.7–66.7

for water bodies, very weedy reaches to rough asphalt;

5.0–9.1 for forest, in dense trees (Chow ); 50.0–83.3

for transportation, firm soil to concrete; and 12.5–25.0 in

urban area, cotton fields to small boulders (Arcement &

Schneider ). Sensitivity analysis of the model was per-

formed using 1,000 uniformly distributed model parameter

sets for event I.
Computer vision

The work flow of the computer vision algorithm used to esti-

mate water level is shown in Figure 7. Input images consist

of reference and target images. The reference images are col-

lected over a period in known locations, and relevant

objects such as bridges and buildings are identified in the

images. The dimensions of the objects are marked in the

reference images using the SIB-Bauwerke database.

Target images are obtained as described in the section

Study site and data. Based on their locations, the target

images are compared with the reference images and the rel-

evant edges of the objects are mapped in them. The relevant

edges to be mapped from the reference image are two hori-

zontal edges corresponding to a known dimension of the

bridge and a vertical edge corresponding to a vertical railing

on the bridge (Figure 7). The water surface line in the target

image is then detected. In order to estimate the water levels,
Figure 7 | Work flow of water level estimation algorithm and annotated image of a flood scene

level (m asl), the thickness of the slab/object (a) in m, and the distance between w

om https://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
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the work flow steps include: (1) mapping the relevant edges

of the object from the reference image to the target image,

and identifying the water line in the target image; (2)

measuring the pixel distance between the relevant edges in

the target image; (3) correlating the pixel distance with the

real-world dimension of the object and calculating the

ratio; and (4) estimating the water surface height in metres

based on the ratio and conversion to water level in metres

above mean sea level (m asl). The procedure was fully

automatized except for step 1.

The image processing is performed using computer

vision, coded in the programming language Python using

OpenCV, which is a library of open-source codes that

solves real-time computer vision algorithms. One of the

key aspects of the algorithm is mapping pixel dimensions

to physical dimensions in the target image. This ratio

will be different for each target image and is obtained

using the known physical dimensions of the bridge, obtained

from the reference image, and the known reference dimen-

sions in pixels, obtained from the target image (see Figure 7).

To estimate the water level in an image, the parameters

marked in Figure 7: the thickness of the bridge slab (a) in m,

and the reference elevation of the bridge (b) in m asl were

used as input to the code. In order to reduce the perspective

distortion of the image, a vertical line was drawn to calculate

the ratio of pixels to the physical dimension. The line must

align with a vertical railing on the bridge to ensure that it

is perpendicular to the horizontal edges, even though

it may not appear perpendicular in the image due to the

perspective. The perspective distortion was reduced by
. The reference level (b) taken from the SIB-Bauwerke database in metres above mean sea

ater surface and reference level (c).
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restricting the drawn edges to coincide with the edges on the

bridge, both in horizontal and vertical directions. The dis-

tance between the water surface and reference level (c) in

m was obtained using Equation (5):

c ¼ c pixel
a pixel

�a (5)

where a_pixel and c_pixel are the pixel distances of the

bridge slab and water surface in the image. Their ratio was

calibrated for each image using many iterations by manually

detecting the edges. In this approach, ten iterations for each

image were used to calibrate the ratio. The water level in m

asl was calculated as the difference of b and c.

A set of requirements was developed to minimize the

error in estimating the water levels. A suitable input image

must meet the following three requirements: (1) the edges

of the bridge and the water line should be clearly visible in

the image; (2) the camera should be placed in front of the

bridge to capture the image such that the edges of the

bridge and water line appear as three parallel lines,

which is important to minimize the perspective distortion;

and (3) the image should be taken in proper lighting

conditions.
Evaluation metrics

Model selection

For the real-time forecasting, nþ 1 number of model par-

ameter sets were selected from 1,000 uniformly distributed

parameter sets based on the sum of the absolute error

between the simulated and the measured water levels at

eight sites (Figure 1). The goodness-of-fit (e) was calculated

using Equation (6), which returns an array of 1,000 values.

The values were sorted and nþ 1 least errors were selected

for the inundation forecast:

e(r) ¼
Xp
i¼1

jMi � Si(r)j, r ¼ 1, . . . , 1000 (6)

where r is the number of models, p is the number of sites, Mi

is the measured water level and Si(r) is the water level of the

rth model at the ith site.
s://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
Comparison of inundation maps comparison

For evaluating the performance between predicted and

reference inundation extents, Fit-Statistic (F) was used. It

is widely used for cell-based models (Moya Quiroga et al.

). It varies between 1 for a perfect fit and 0 when no

overlap exists. It is defined as in Equation (7):

F ¼ A0

Asel þAcal �A0
(7)

where Acal is the area of flooded cells in the calibrated

model (MCal), Asel is the area of flooded cells in the selected

model and A0 is the overlap of Acal and Asel. A cell is defined

as flooded if the water depth in it is more than 0.10 m

(Leandro et al. ). In our application, 1 depicts no differ-

ence by the introduction of computer vision, whereas 0

shows very large differences. The root-mean-square error

(RMSE) was also calculated for the assessment between

the selected and calibrated models. It is calculated using

Equation (8) for flooded cells:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼0 (mi � si)
2

n

s
(8)

where n is the number of flooded cells,mi and si are the water

depths in the calibrated and selected models, respectively.

Calibration and validation of the HEC-RAS 2D model

The water levels measured in event I were used to calibrate

the model parameters. Table 2 presents the measured and

simulated water levels, along with the maximum water

depth at the eight sites. The calibrated inundation model

results were in good agreement with the measured data.

The sites located at the river White Main (sites 1, 2, and 3)

showed a good match with a maximum difference of

0.13 m (measured water depth of 2.93 m) at site 3. A slight

over-prediction of 0.08 m (in 1.43 m) was observed at site 4

(Dobrach canal). The water level at site 5 (side canal) over-

predicted the water level by 0.16 m (in 1.75 m). Sites located

at the Mühl canal (6, 7, and 8) were under-predicted, with a

reasonable agreement of 0.15 m (in 2.31 m) and 0.14 m (in

2.36 m) at sites 7 and 8. However, significant under-predic-

tion of 0.24 m (in 0.89 m) was observed at site 6.



Table 2 | The performance of the calibration model parameter MCal for event I, on 14th January 2011, and event III, on 7th December 2017

Site no.

Event I, 14th January 2011 Event III, 7th December 2017

Time
Measured vs.
HEC-RAS 2D (m)

Measured
water depth (m) Time

Measured vs.
HEC-RAS 2D (m)

Measured
water depth (m)

1 14:09 �0.01 2.78 10:02 0.09 1.41

2 14:18 0.01 2.90 10:22 0.27 1.57

3 14:23 �0.13 2.93 10:58 0.40 2.03

4 14:26 �0.08 1.43 11:10 0.40 1.03

5 13:27 �0.16 1.75 11:43 �0.10 0.04

6 14:01 0.24 0.89 12:35 �0.01 0.60

7 14:35 0.15 2.31 13:02 – –

8 14:35 0.14 2.36 13:02 �0.02 0.96

The table shows the time at which the images were captured, measured water depth in m and the difference between measured and calibrated water levels in m. The positive values show

an under-prediction, whereas the negative values represent over-prediction of the water level by the model.
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Validation of the model was carried out using event III,

the non-flood event measured on 7th December 2017. Site 7

located at the Mühl canal was under construction, hence it

was not possible to gather the measured water level for that

site. Nevertheless, an exceptional agreement was observed

at two sites (6 and 8) at the Mühl canal. A reasonable agree-

ment was also observed at site 1 with an under-prediction of

0.09 m (in 1.41 m). However, substantial under-prediction of

0.27 m (in 1.57 m) and 0.40 m (in 2.03 m) was observed

downstream at sites 2 and 3, respectively. Under-prediction

of 0.40 m (in 1.03 m) was also observed at site 4. However,

at site 5 no inundation was measured (0.04 m water depth)

but it over-predicted the water levels by 0.10 m.

The maximum inundation focussed on the eight sites is

shown in Figure 8 for the three events. In event I, the flood-

plains were flooded but as mentioned before, no damage

was done as the flood did not overflow the side banks of

the White Main. The street, Theodor-Heuss-Allee, at site 5

was flooded as well as the motorway B 289, and the dykes

were at their full capacity.

In general, the inundation areas were predicted with

good precision. Most of the inundation areas were within

the flood plains and the inundation extent matched with

the observation images and on-field survey.

No inundation outside the main channel was observed

during non-flood events II and III (Figure 8(b) and 8(c)). As

mentioned before, the events were of smaller magnitude as

compared to event I (Figure 2(b) and 2(c)). The simulations
om https://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
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were in line with the measurements. Overall, considering

the simple model structure of the HEC-RAS 2D, which disre-

gards the sewer network and urban key features (Leandro

et al. ), the resultswere considered satisfactory. Inaddition,

they show the robustness of themodel as itwas able to simulate

both high and low events within acceptable limits.
RESULTS OF FLOOD INUNDATION FORECASTS
WITH COMPUTER VISION

This section presents the water levels extracted from the

images using computer vision and the models selected for

flood inundation forecasting.
Water levels obtained by computer vision

A computer vision algorithm was applied to the images

collected from three different events at eight sites in

the city of Kulmbach. The images that were suitable for

computer vision are shown in Figures 9–11. Images of

event II were used as the reference images and events I

and III as the target images. The water levels obtained

from the algorithm were compared with the measured

water levels.

A box plot of the pixel distance ratio – division of

the distance between the water surface and the height

of the referenced object in pixels (c_pixel), and the



Figure 8 | Maximum flood inundation maps for the three events.
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referenced dimension of the object in pixels (a_pixel) is

shown in Figure 12. The ratio was calculated using ten iter-

ations for each image by manually drawing the edges.

The figure also shows the mean and standard deviation
Figure 9 | Available sites for application of computer vision for event I on 14th January 2011.

s://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
(SD) of the iterations that indicates the error in estimating

the ratio.

The height of referenced objects (a) are same for

all three events: 0.43, 0.35, and 0.30 m for sites 2, 5, and 6



Figure 10 | Available sites for application of computer vision for event II on 13th April

2017.

Figure 11 | Available sites for application of computer vision for event III on 7th

December 2017.

Table 3 | Difference between the measured and the computer vision water levels pre-

dicted for events I and III

Event Site no.
Measured vs.
computer vision (m)

Measured water
depth (m)

I 2 �0.01 2.90

I 5 0.17 1.75

I 6 �0.07 0.89

III 2 0.04 1.57

III 6 0.12 0.60
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respectively. Thus, the water surface height (c) was calcu-

lated in m using Equation (5). Furthermore, the mean of

the c was converted to water level. The difference of the

water levels between the measured and predicted by compu-

ter vision for the seven images is shown in Table 3. As

mentioned before, no measurement was performed for

event II, hence the difference cannot be calculated.
Figure 12 | Box plot showing the pixel distance ratio of the distance between the water

surface and the referenced object in pixels (c_pixel) and the height of the

referenced object in pixels (a_pixel) for ten iterations.

om https://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
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Flood inundation forecasting

The total number of models to be simulated in real-time is

restricted by the computational resources. Given a large

infrastructure, a large number of models can be realized

with this methodology, however, in our case, existing

resources limited the number of models to six (1þ 5). To

conclude, out of 1,000 models, we selected six models that

produced the least error in the water levels. As mentioned

above, the sensitivity analysis was performed for a single

event (event I) based on pre-determined ranges of the 2D

inundation model parameter. Figure 13 presents the six

models that return the least error in the water levels at the

eight sites. The radar plot shows the variability of Manning’s

M for each land use class. It is evident from the figure that

the parameter space is different in each model, which results

in different output. The output of the models is presented in

Table 4, which shows the difference between the measured

and the simulated water levels resulted from the six

models for event I. A threshold value of± 0.15 m is used

for highlighting the differences in the model results.

To select the most suitable model out of the six, water

levels obtained using computer vision are used as the vali-

dation data. The goodness-of-fit (Equation (6)) is calculated

for the three events for the six models and one least error

model is selected for the real-time forecast for each event.

If there were no validation data, inundation maps of the cali-

brated model (MCal) would have been used as the final

forecast.

To assess the difference between the calibrated and

selected models, goodness-of-fit Fit-Statistic (F) in percentage

and root-mean-square error (RMSE) in m (Equations (8)

and (9)) is presented in Table 5. For events I and III, the



Figure 13 | Six model parameter sets for five land use classes. The figure shows Manning’s M in m(1/3)/s resulting from the sensitivity analysis of 1000 HEC-RAS 2D model runs.

Table 4 | Difference in water levels between measured and six HEC-RAS 2D models in m

Site no.
Measured
water depth (m)

Measured vs.
Mcal (m)

Measured vs.
M1 (m)

Measured
vs.M2 (m) Measured vs. M3 (m)

Measured vs.
M4 (m)

Measured vs.
M5 (m)

1 2.78 � 0.01 0.01 0.02 � 0.07 � 0.03 0.00

2 2.90 0.01 0.06 0.04 � 0.01 � 0.01 0.05

3 2.93 � 0.13 0.06 � 0.11 0.02 � 0.12 0.05

4 1.43 � 0.08 0.11 � 0.06 0.08 � 0.07 0.10

5 1.75 �0.16 0.08 � 0.15 0.09 � 0.13 0.08

6 0.89 0.24 0.44 0.23 0.45 0.28 0.44

7 2.31 0.15 0.60 0.16 0.62 0.21 0.57

8 2.36 0.14 0.58 0.14 0.60 0.19 0.56

The threshold value of up to ±0.15 m is italicized in the table.
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calibrated model was not the selected model, hence the

difference is reported. For event II, the calibrated model

produced the least error using the computer vision

water levels. Large differences were found in event I.

The spatial distribution of the error for event I is shown in

Figure 14.
s://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
DISCUSSION

Computer vision

For event I, only the images of sites 2, 5, and 6 were amen-

able for analysis using computer vision. The images from



Table 5 | Selected model and goodness-of-fit between the calibrated and the selected

model (Mcal) for the peak inundation time step

Event Model selected Fit-statistics (%) RMSE (m)

I M3 89 0.40

II MCal 100 0

III M4 99 0.03
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the other sites did not satisfy the specified requirements for

analysis (section Methodology – Computer vision): in

Figure 3(a) (site 1) the water line is not clearly visible on

the image; in Figure 3(d) and 3(g) (sites 4 and 7), the refer-

ence lines of the bridges are not visible; in Figure 3(c) and

3(h) (sites 3 and 8), the reference lines and the water line

are not parallel to each other, whereas in Figure 3(f) (site

6), the railings are right on top of the vertical embankment

of the river, so the three reference lines are practically in

the same vertical plane, thus it can be used for computer
Figure 14 | Difference in the water depths between the calibrated and the selected model us

om https://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
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vision. Furthermore, for events II and III, only the images

of Figure 4(b) and 4(f) and Figure 5(b) and 5(f) (sites 2

and 6) were deemed suitable for computer vision. The

water level is very low in Figure 4(e) and 5(e) (site 5) and

thus, the water line is not clearly visible. These examples

indicate that the local conditions may constrain the appli-

cation of computer vision and it should be ensured that

the requirements are met while capturing images.

Uncertainty was quantified based on the edge detection

in an image. We assumed an error of ±0.50 mm in the detec-

tion of each reference line, which results in an error of

±1 mm in the estimation of a reference dimension. The

images used have a high resolution of 300 dpi. Each

millimetre corresponds to 11.8 pixels. Based on the ratio

of pixels to physical dimensions (0.011 m per pixel), the

error in physical dimension was calculated to be 0.13 m.

Therefore, the uncertainty in the computer vision-based

water level was estimated at ±0.13 m. In some cases, the

side surface used as the reference for drawing the edges is
ing computer vision for event I (14th January 2011).
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not entirely vertical, as in site 6 (Figures 9(c), 10(b) and

11(b)), which could introduce additional errors since the

algorithm assumes the surface to be entirely vertical.

The calibrating parameter c_pixel/a_pixel and a were

used to estimate c for the ten iterations. The maximum

standard deviation of ±0.18 m in the value of c was

observed for Figure 10(a) (Event II: site 2) and ±0.11 m

for Figure 9(a) (Event I: site 2). The values of the mean

were converted to the water level in m asl. These values

compare well with the value of ±0.13 m estimated

previously.

A reasonable match was found in the measured and the

computer vision water levels on five images: sites 2, 5, and 6

in event I and sites 2 and 6 in event III. The water levels pre-

dicted from computer vision for event II (Figure 10(a) and

10(b)) were 1.12 and 0.92 m for sites 2 and 6, respectively.

In the absence of measured water levels, the calibrated

HEC-RAS model results at those sites, 1.2 and 0.65 m, can

be used as good estimates to evaluate the performance of

computer vision. The image for site 2 is more in line with

the requirements than the image for site 6. This has poten-

tially resulted in better results for site 2 than site 6. If the

images are captured as per the requirements, computer

vision has the potential to be a good validation tool for

flood inundation forecasting.

One of the limitations of these methodologies (as in

Wang et al. ) is the manual approach used to map

the edges from the reference images and to detect the

water surface line, which is not automatized. However,

this step would only be a crucial step if it had to be run

continuously in real-time. This is not the case in this study,

since the procedure for selecting the forecast model (section

Methodology – Flood inundation forecasting) can be per-

formed offline on a regular basis or following a flood

event. In our methodology, the model that produces the

least error is selected for inundation forecasting only if

images become available, otherwise the calibrated model

(MCal) is used as a default.

If locations that have not been referenced are included

in this procedure, it may be difficult to generate the refer-

ence elevation or measurements. The images would first

need to be referenced manually using the database and the

location can then be used as a target location in our method-

ology. The locations could include either hotspots in the city
s://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
or major bridges that are easily accessible and regularly

monitored via social media or CCTV cameras.

Flood inundation forecasting

It can be seen from the model parameter distribution

(Figure 13) that six different sets of parameters were selected

based on the least error. Equifinality can be observed from

Table 4 where multiple model parameter sets represent the

modelled system equally well and the six models can be

accepted. However, depending on the sites where computer

vision is applied (i.e. where images are available), equifinal-

ity will be reduced, because this will now become the main

criteria for the selection of the model used for forecasting

inundation. The additional validation will ensure that the

number of false alarms can be reduced significantly by the

forecasting framework. The error can be minimized using

back communication from computer vision to the inunda-

tion forecast. If no computer vision is available, the

calibrated model MCal is used.

Comparison between the 2D model and computer

vision was carried out on the available sites (see Table 4).

For event I, the model M3 was selected based on the least

error (Table 5). For event II, there was no change in the

selected model. Based on the comparison, the calibrated

model was selected. For event III, the selected model was

M4. To assess the differences in the forecasted inundation

extents between using or not using computer vision, the

Fit-Statistic (F) and root-mean-square error (RMSE) is used

(see section Evaluation metrics). Larger differences can be

observed in event I (Figure 14) since the F is 89% and

the RMSE is 0.40 m. The selected model generally had

higher water depths as compared to the calibrated model

as 24.7% of the total flooded cells contains higher water

depths (range of �0.10 to �0.50 m). Furthermore, 72.8%

of the flooded cells had a minimal difference in the

range of �0.10 to �0.10 m as compared to the calibrated

model. Very few cells showed water depths smaller than

the calibrated model.

For event III, the model selected using computer vision

was very similar to the calibrated model, hence the differ-

ences were minimal. This can be explained by the similar

Manning’s M values of MCal and M4 in the main channel

and the floodplain. As the discharges were considerably
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low in event III, the water did not leave the main channel

and hence not much difference was observed. In event II,

there was no change in the selected model by applying

computer vision.

These examples show that the inclusion of computer

vision can produce changes in the forecasted inundation

extent. In this study, we assumed that computer vision was

the prevailing source of accurate data.
CONCLUSIONS

We present a methodology for real-time flood inundation

forecasts incorporating additional crowd-sourced validation

data generated with the assistance of the computer vision

algorithm. Six 2D diffusive wave models (HEC-RAS 2D)

are run in parallel. The selection of models used for

the inundation forecasting is based on 1,000 models run

for a single event. In this study, validation of the method-

ology is carried out using three events on eight sites

located in the Kulmbach inner city. Model selection (one

out of six) for flood forecasting is based on the least error

using computer vision at available sites. The computer

vision algorithm is used to estimate the water levels of the

images that meet the requirements of the proposed guide-

lines. The algorithm uses specific features, such as bridges

and water surfaces, to estimate water levels in the images.

Since the procedure is not fully automated, we suggest col-

lecting images on a regular basis or following a flood

event for model selection.

The major advantage of the forecast framework is its fast

run-time and easy application to other study areas. The fra-

mework of the back communication from computer vision

to the forecasts shows how alternative data sources can

improve inundation forecasts. Furthermore, equifinality

can be reduced by employing computer vision validation

for the selection of the appropriate model for forecasting

inundations. The validation data can be in the form of

georeferenced images captured by citizens (Lowry &

Fienen ), security cameras or the fire fighters at refer-

enced locations.

The results obtained from computer vision can be used

as additional point source validation data and substantially

improve flood inundation forecasting. However, the
om https://iwaponline.com/jh/article-pdf/21/2/240/533816/jh0210240.pdf
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procedure is not yet entirely automated, requiring the user

to detect the edges manually. In future, edge detection

should be automatized using, for example, SIFT or image

segmentation algorithms as described by Narayanan et al.

(), Nair & Rao () and Geetha et al. (). Moreover,

the method should include image enhancement techniques,

such as power-law and logarithmic transformation (Maini &

Aggarwal ), to deal with the issue of poor lighting con-

ditions in an image. The enhancement will mitigate one of

the requirements concerning the proper lighting conditions

and allow more images to be processed. Furthermore, set-

ting up a network of pre-installed CCTV cameras that

fulfils the requirements should be explored.

The inundation model should be extended to simulate

urban pluvial flooding (Arnbjerg-Nielsen et al. ) in

future by including a 1D-2D sewer/overland flow coupled-

model structure. With ever-increasing computational per-

formance and the introduction of cloud computing, the

integration of more complex models will become feasible.

In addition, analysing additional model outputs, such as

flow velocities and hazards, should improve the existing fore-

casting framework by incorporating flood risk assessments.
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