
Research Paper

A massively parallel semi-Lagrangian
solver for the six-dimensional
Vlasov–Poisson equation

Katharina Kormann1 , Klaus Reuter2 and Markus Rampp2

Abstract
This article presents an optimized and scalable semi-Lagrangian solver for the Vlasov–Poisson system in six-dimensional
phase space. Grid-based solvers of the Vlasov equation are known to give accurate results. At the same time, these solvers
are challenged by the curse of dimensionality resulting in very high memory requirements, and moreover, requiring highly
efficient parallelization schemes. In this article, we consider the 6-D Vlasov–Poisson problem discretized by a split-step
semi-Lagrangian scheme, using successive 1-D interpolations on 1-D stripes of the 6-D domain. Two parallelization
paradigms are compared, a remapping scheme and a domain decomposition approach applied to the full 6-D problem.
From numerical experiments, the latter approach is found to be superior in the massively parallel case in various respects.
We address the challenge of artificial time step restrictions due to the decomposition of the domain by introducing a
blocked one-sided communication scheme for the purely electrostatic case and a rotating mesh for the case with a
constant magnetic field. In addition, we propose a pipelining scheme that enables to hide the costs for the halo com-
munication between neighbor processes efficiently behind useful computation. Parallel scalability on up to 65,536 pro-
cesses is demonstrated for benchmark problems on a supercomputer.

Keywords
Vlasov–Poisson, fully kinetic simulation, semi-Lagrangian method, high-dimensional domain decomposition, hybrid
parallelization

1. Introduction

Numerical simulations are of key importance for the

understanding of the behavior of plasmas in a nuclear

fusion device. The fundamental model in plasma physics

is a kinetic description by a distribution function in six-

dimensional (6-D) phase space solving the Vlasov–Maxwell

equation.

State-of-the-art kinetic simulations for magnetic con-

finement fusion are built upon the so-called gyrokinetic

model, a reduced model in a 5-D phase space. Since the

increase in parallel computing power renders the solution

of the fully kinetic Vlasov equation in 6-D phase space

possible, corresponding interest has arisen recently (cf.

e.g. Muñoz et al. (2015); Grošelj et al. (2017); Kuley

et al. (2015); Miecnikowski et al. (2018) for physical stud-

ies of the kinetic model with particle codes). For the

solution of the Vlasov equation, both grid-based and

particle-based methods are commonly used; however,

simulations in the full 6-D phase-space are as yet mostly

based on the particle-in-cell method. We distinguish two

classes of grid-based methods, Eulerian solvers based on

finite volume or discontinuous Galerkin on the one hand,

and, on the other hand, semi-Lagrangian methods that

update the solution by evolution along the characteristics

using interpolation. The latter class of methods has the

advantage that usually no time step restriction by a Cour-

ant–Friedrich–Levy (CFL) condition needs to be imposed.

Typically, particle-in-cell methods are used for high-

dimensional simulations due to their favorable scaling with

the dimensionality. Moreover, the particle pusher part is

embarrassingly parallel. Aspects of memory layout and

parallelization strategies for the 6-D kinetic model with the

particle-in-cell method have for instance been reported by

Hariri et al. (2016). On the other hand, particle-in-cell

methods suffer from numerical noise, and grid-based

1 Max Planck Institute for Plasma Physics, Garching, Germany &

Department of Mathematics, Technical University of Munich, Garching,

Germany
2 Max Planck Computing and Data Facility, Garching, Germany

Corresponding author:

Katharina Kormann, Max Planck Institute for Plasma Physics, Boltzmannstr

2, 85748 Garching, Germany.

Email: katharina.kormann@ipp.mpg.de

The International Journal of High
Performance Computing Applications
2019, Vol. 33(5) 924–947
ª The Author(s) 2019

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342019834644
journals.sagepub.com/home/hpc

https://orcid.org/0000-0003-1956-2073
https://orcid.org/0000-0003-1956-2073
mailto:katharina.kormann@ipp.mpg.de
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342019834644
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342019834644&domain=pdf&date_stamp=2019-03-27

methods are therefore an interesting alternative. Grid-based

solvers for the 6-D Vlasov equation have already been

considered in the space plasma community. In particular,

Yoshikawa, Yoshida, Umemura, and coworkers have pre-

sented Vlasov–Poisson and Vlasov–Maxwell solvers in 6-

D phase space based on semi-Lagrangian methods (Tanaka

et al., 2017; Yoshikawa et al., 2013). Another example is

the hybrid Vlasov–Maxwell (HVM) code based on finite

differences (Cerri et al., 2018). Scalability of these codes

on 5-D meshes have been reported in Umeda and Fukazawa

(2014) and Mangeney et al. (2002), respectively; however,

no detailed performance tuning has been reported. Another

area of active research is the development of grid-based

solvers with compression based on sparse grids (Guo and

Cheng, 2016; Kormann and Sonnendrücker, 2016) or low-

rank tensors (Ehrlacher and Lombardi, 2017; Einkemmer

and Lubich, 2018; Kormann, 2015). These techniques are

still experimental and require some structure in the under-

lying problem that allows for compression.

Kinetic simulation of fusion plasma is a very demand-

ing task. Numerical runs with the state-of-the-art semi-

Lagrangian solver GYSELA are typically performed on

1k–16k cores (cf. Latu et al. (2016)). However, these

simulations are limited to the core of the device, a sim-

plified model for the electrons, and a 5-D gyrokinetic

model. Simulations that include the edge and scrape-off

layer as well as a fully kinetic model will therefore require

exascale computing facilities. In this article, we focus on

efficient parallelization schemes for a semi-Lagrangian

discretization of the Vlasov–Poisson equation in 6-D

phase space. For a Vlasov–Poisson equation on a 4-D

phase space, two parallelization schemes have been dis-

cussed in the literature: a domain partitioning scheme with

patches of 4-D data blocks (Crouseilles et al., 2009) as

well as a remapping scheme (Coulaud et al., 1999). The

idea of the remapping scheme is to work with two differ-

ent domain partitions which both keep a partition of the

dimensions sequential on each processor. The latter strat-

egy is very well adapted to a semi-Lagrangian method

combined with dimensional splitting; however, its parallel

scalability is hampered by an all-to-all communication

pattern. While domain decomposition methods are well-

established for 2- and 3-D problems, higher dimensional

decompositions are less well studied.

This article addresses the particular technical challenges

posed by the high dimensionality and presents a number of

unique optimizations for tackling them in a 6-D domain

decomposition approach. Specifically, the surface-to-

volume ratio of a domain increases with the dimensionality,

and the number of grid points per dimension that can be

stored on a single compute node is dramatically reduced

compared to the low-dimensional case. For instance, work-

ing with a hypercube of only 32 points per dimension

already requires around 10 GB of memory in 6-D. Hence,

the key property of an implementation is its ability to use an

as-large-as-possible amount of distributed memory, and

weak scalability is the most relevant metric for the

efficiency of the application. As a consequence of the high

surface-to-volume ratio, the number of “halo” grid points

that need to be communicated between domains is large

compared to the number of inner points, an effect that is

aggravated in our application scenario since high-order

interpolation schemes are necessary due to accuracy

requirements of the semi-Langrangian method (as shall

be demonstrated in Section 6). To reduce the burden of the

high-volume data exchange, we propose a blocking scheme

to overlap communication and computations in the advec-

tion steps. In passing we note that concerning parallel scal-

ability, a fully kinetic description in 6-D is considerably

more challenging than the gyrokinetic model, as the latter

not only involves one dimension less but also the fifth

dimension of the gyrokinetic model acts merely as a para-

meter and thus communication is effectively restricted to

along four dimensions (cf. Grandgirard et al., 2016; Latu

et al., 2016). In principal, semi-Lagrangian methods allow

for delocalized interpolation stencils and hence for large

time steps. Such a delocalization is, however, problematic

in combination with a domain decomposition method and

typically time step restrictions need to be introduced (cf.

also Yoshikawa et al., 2013, section 2.4; Crouseilles et al.,

2009). We demonstrate that the restriction can be alleviated

by an asymmetric communication scheme. This problem is

particularly severe in simulations of magnetized plasmas in

a strong guide field where particles perform a fast gyromo-

tion around the magnetic field lines. To mitigate this prob-

lem, we propose the use of a rotating velocity grid.

The outline of the article is as follows: In the next

section, we introduce the physical model, the semi-

Lagrangian method including the rotating mesh for the

background magnetic field, and the parallelization

schemes. Moreover, in Section 3, we discuss the impact

of the parallelization on the interpolation step in the semi-

Lagrangian scheme. In Section 4, we describe our imple-

mentation of the domain partitioning scheme, followed by

Section 5 with a discussion of our performance optimiza-

tions. Section 6 compares Lagrange interpolation of var-

ious orders and demonstrates the effectiveness of the

rotating grid followed by a numerical demonstration of

the scalability of our new implementation in Section 7.

Finally, Section 8 concludes the article.

2. Algorithmic background

2.1. Vlasov–Poisson equation

The Vlasov–Poisson equation describes the motion of a

plasma in its self-consistent electric field for low-

frequency phenomena. The Vlasov equation for electrons

in dimensionless form is given as

@tf ðx; v; tÞ þ v�rxf ðx; v; tÞ
�ðEþ v� B0Þðx; tÞ � rvf ðx; v; tÞ ¼ 0

Kormann et al. 925

The self-consistent field for electrons in a neutralizing ion

background can be computed by the following Poisson

equation

�D�ðx; tÞ ¼ 1� rðx; tÞ; Eðx; tÞ ¼ �r�ðx; tÞ;

rðx; tÞ ¼
Z

f ðx; v; tÞdv
ð1Þ

Here, f denotes the probability density of a particle in phase

space defined by position x 2 D � R3 and velocity v 2 R3,

E denotes the electric field, � the electric potential, and r
the charge density. The magnetic field B0 is supposed to be

either zero or a constant background field aligned with the

x3 axis. Generally, the spatial domain is defined by the

geometry of a tokamak or a similar fusion device. In this

article, we restrict ourselves to common benchmark prob-

lems on a periodic box. The distribution has a Maxwellian

shape in velocity such that it follows an exponential decay

for large values of the velocity. We therefore truncate the

computational domain in velocity space to a box and close

the system with (artificial) periodic boundary conditions.

The characteristic curves of the Vlasov equation can be

defined by the following system of ordinary differential

equations (ODE)

dX

dt
¼ V;

dV

dt
¼ �

�
EðX; tÞ þ V� B0

�
ð2Þ

Let us denote by Xðt; x; v; sÞ;Vðt; x; v; sÞ the solution of

the characteristic equation (2) at time t with initial condi-

tions XðsÞ ¼ x and VðsÞ ¼ v. Given an initial distribution

f 0 at time t0, the solution at time s > 0 is given by

f ðx; v; sÞ ¼ f 0

�
Xðt0; x; v; sÞ;Vðt0; x; v; sÞ

�
ð3Þ

since the distribution function is constant along the char-

acteristic curves.

2.2. The semi-Lagrangian method for Vlasov–Poisson

To numerically compute the solution of the Vlasov equation,

we use the so-called semi-Lagrangian method. We introduce

a 6-D grid to discretize the phase space. In each time step,

the equations for the characteristics are solved for each grid

point backward in time from time tmþ1 to time tm with

Dt ¼ tmþ1 � tm small. Then equation (3) is used with

s ¼ tmþ1 and t0 ¼ tm to find the solution at time tmþ1 for

each grid point. Since f ðmÞ is only known on the grid points,

some interpolation method is needed to approximate the

value of f ðmÞ
�

Xðtm; x; v; tmþ1Þ;Vðtm; x; v; tmþ1Þ
�

. In this

general form, the solution with a semi-Lagrangian method

requires the solution of a system of ODE as well as

interpolation.

To efficiently solve the characteristic equations, Cheng

and Knorr (1976) proposed a splitting method for the Vla-

sov–Poisson equation (B0 ¼ 0) reduced to a 2-D (1x – 1v)

phase space that splits the x and v advections. This yields

the following algorithm: given f ðmÞ and EðmÞ at time tm, we

compute f ðmþ1Þ at time tm þ Dt for all grid points ðxi; vjÞ
as follows:

1. Solve @tf � EðmÞ � rvf ¼ 0 on half time step:

f ðm;�Þðxi; vjÞ ¼ f ðmÞ xi; vj þ E
ðmÞ
i

Dt

2

� �

2. Solve @tf þ v � rxf ¼ 0 on full time step:

f ðm;��Þðxi; vjÞ ¼ f ðm;�Þðxi � vjDt; vjÞ

3. Compute rðxiÞ and solve the Poisson equation

for Eðmþ1Þ

4. Solve @tf � Eðmþ1Þ � rxf ¼ 0 on half time step:

f ðmþ1Þðxi; vjÞ ¼ f ðm;��Þ xi; vj þ E
ðmþ1Þ
i

Dt

2

� �

Note that the electric field is constant for the v advection

step. Therefore, the advection coefficients are independent of

v for the v advection and independent of x for the x advection

and the characteristics are therefore given analytically.

To avoid 3-D interpolation, we use a cascade interpola-

tion scheme replacing the 3-D interpolation by three

successive 1-D interpolations. Moreover, we can use a

first-same-as-last implementation that clusters step 4 of

time step m with step 1 of time step mþ 1.

As a consequence the main building block of the split-

step semi-Lagrangian discretization of the Vlasov–Poisson

problem is 1-D interpolation on 1-D stripes of the 6-D

domain. Moreover, the interpolation step on the individual

stripes has a special form: The function needs to be inter-

polated at a shifted value of each grid point and the value of

this shift is constant for the whole stripe. For a stripe of

length n with grid points xi, i ¼ 1; . . . ; n, we compute

gðmþ1ÞðxiÞ ¼ gðmÞðxi þ aÞ; i ¼ 1; . . . ; n ð4Þ

Since a is independent of xi, the interpolation formula is

the same in each grid cell that can be exploited for vector-

ized implementation.

Advections can also be reduced to 1-D interpolation for

the Vlasov–Maxwell equation using the backward substitu-

tion method introduced by Schmitz and Grauer (2006). In

this article, we focus on the Vlasov–Poisson problem.

However, we include strong background magnetic fields

and discuss in the next section how they can be integrated

into the split-step semi-Lagrangian scheme.

2.3. Split-step semi-Lagrangian method
on a rotating mesh

In a magnetic confinement fusion device, the background

magnetic field is strong compared to the self-consistent

fields and causes a rapid motion around the field lines, the

so-called gyromotion. Often the time scale of the gyromo-

tion is the fastest so that we do not want to accurately

resolve this time scale. On the other hand, the rotation

around the magnetic axis (here the x3 axis) causes non-

locality in the perpendicular velocity plane (the ðv1; v2Þ

926 The International Journal of High Performance Computing Applications 33(5)

plane) which is difficult to handle when working with dis-

tributed grids.

We therefore propose the use of a rotating grid that

follows the circular motion of the characteristics given by

dV

dt
¼ V� B0 ð5Þ

Moving grids for Vlasov simulations have previously been

discussed by Sonnendrücker et al. (2004), however, not in

the context of parallelization.

To this end, we define a logical grid equivalent to the

physical grid at initial time. Let us define the rotation matrix

DðtÞ ¼
cos
�

Bðt � t0Þ
�

sin
�

Bðt � t0Þ
�

0

�sin
�

Bðt � t0Þ
�

cos
�

Bðt � t0Þ
�

0

0 0 1

0
BBB@

1
CCCA ð6Þ

where B0 ¼ Bx̂3. The logical grid then follows the fast

gyromotion with rotation frequency !c ¼ 2p
B

.

For a velocity w on the logical grid, the physical value of

the velocity at time tm is given by vðwÞ ¼ DðtmÞw. Further-

more, let us denote by f ðmÞ the distribution function on the

physical grid at time tm and by gðmÞ the distribution function

on the logical grid at time tm, that is

f ðmÞ
�

x;DðtmÞw
�
¼ gðmÞðx;wÞ ð7Þ

In the advection steps, we always solve the characteris-

tic equations in physical coordinates and then transform the

resulting velocity coordinates to the logical grid.

We again split the x and v advections. Then, the solution

at time t of the separate characteristic equations starting at

ðx; vÞ at time t0 is given as

X iðt; t0; x; vÞ ¼ xi þ ðt � t0Þvi; i ¼ 1; 2; 3; ð8Þ

Vðt; t0; vÞ ¼

cos
�
ðt � t0ÞB

�
sin
�
ðt � t0ÞB

�
0

�sin
�
ðt � t0ÞB

�
cos
�
ðt � t0ÞB

�
0

0 0 1

0
BBBB@

1
CCCCAvþ 1

B

sin
�
ðt � t0ÞB

�
1� cos

�
ðt � t0ÞB

�
0

cos
�
ðt � t0ÞB

�
� 1 sin

�
ðt � t0ÞB

�
0

0 0 Bðt � t0Þ

0
BBBB@

1
CCCCAEðx; tÞ

ð9Þ

This yields the following advection steps on the rotat-

ing grid:

v advection: Defining

AðtÞ¼ 1

B

sin
�
ðt� t0ÞB

�
1� cos

�
ðt� t0ÞB

�
0

cos
�
ðt� t0ÞB

�
� 1 sin

�
ðt� t0ÞB

�
0

0 0 Bðt� t0Þ

0
BBBB@

1
CCCCA
ð10Þ

for given v at time tmþ1 the origin of the characteristic (9) at

time tm is given by Vðtm; tmþ1; x; vÞ ¼ Dðtm � tmþ1Þvþ A

ðtm � tmþ1ÞE ¼ Dðtmþ1 � tmÞ�1vþ Aðtm � tmþ1ÞE. For the

v advection, we work with different physical grids at time tm

and tmþ1, namely

f ðmÞ
�

x;DðtmÞw
�
¼ gðmÞðx;wÞ;

f ðmþ1Þ
�

x;Dðtmþ1Þw
�
¼ gðmþ1Þðx;wÞ

ð11Þ

To find the representation of gðmþ1Þ at a point w of the

logical grid, we first transform to the representation on the

physical grid, use the characteristic equation to express it in

terms of the solution at time tm and finally transform back

to the logical grid at time tm

gðmþ1Þðx;wÞ ¼ f ðmþ1Þðx;Dðtmþ1ÞwÞ
¼ f ðmÞðx;Dðtmþ1 � tmÞ�1

Dðtmþ1Þwþ AEÞ
¼ gðmÞ

�
x;DðtmÞ�1

�
DðtmÞwþ AE

��

¼ gðmÞðx;wþ DðtmÞ�1
AEÞ:

ð12Þ

Note that the displacement DðtmÞ�1
AE on the logical grid

is not dependent on w. In our implementation, we compute

DðtmÞ�1
AE and then use successive 1-D interpolations along

the three velocity coordinates axes of the logical grid.

x advection: In this step, the transformation between

the physical and the logical grid does not change. We

therefore have

gðmþ1Þðx;wÞ ¼ f ðmþ1Þ
�

x;DðtmÞw
�

¼ f ðmÞ
�

x� DtDðtmÞw;DðtmÞw
�

¼ gðmÞ
�

x� DtDðtmÞw;w
� ð13Þ

Compared to the case with fixed grid, the displacements

in x1 and x2 are now dependent on both v1 and v2 and on

time. On the other hand, we still have displacements inde-

pendent of x, and we can use successive 1-D interpolations

along the three coordinate axes.

2.4. Domain partitioning

Due to the curse of dimensionality, the memory require-

ments of a grid in the 6-D phase space are rather high already

for coarse resolutions. Therefore, a distributed numerical

solution of the problem is inevitable. Two choices of domain

partitioning are considered in this article:

� Domain decomposition (Crouseilles et al., 2009): The

domain is decomposed into patches of 6-D data

Kormann et al. 927

blocks, each representing a separate part of the

domain. The patches are mapped to a 6-D logical grid

of processors. For interpolations next to the domain

boundary, halo cells with a width determined by the

interpolation stencil have to be introduced and filled in

advance with data from neighboring processors. This

classical approach is widely used in parallelizations of

lower dimensional physics and engineering problems,

e.g. 2-D or 3-D computational fluid dynamics.

� Remap (Coulaud et al., 1999): Two decompositions

of the domain are introduced, the first one distribut-

ing the domain only over the velocity dimensions

(keeping the spatial dimensions local to each proces-

sor) and the second one distributing the domain only

over the spatial dimensions (keeping the velocity

dimensions local to each processor). For x advection

steps, we use the first decomposition and for the v

advection steps the second. In between the steps, the

data are redistributed between the two decomposi-

tions using an all-to-all communication pattern.

The first strategy has the clear advantage over the remap

method that the complexity of the communication pattern is

reduced dramatically. On the other hand, the remap scheme

is very well adapted to the split-step semi-Lagrangian

method since the 1-D interpolations can be performed

locally once the remapping has been applied. For the

domain decomposition method, the 1-D stripes are usually

distributed over separate domains. This makes the imple-

mentation more complicated and introduces an artificial

time-step restriction (similar to a CFL condition) since the

interpolation needs information of the function around the

shifted data point xi þ a in equation (4).

2.5. Solution of Poisson’s equation

The focus of this article is on the distributed solution of the

6-D Vlasov equation. However, in addition, we need to

solve the 3-D Poisson problem (1). Since the problem is

only 3-D, the compute time spent on its solution is almost

negligible. For this reason, we use a pseudo-spectral solver

based on fast Fourier transforms (FFTs) for the solution of

the Poisson equation and remap the solution between

domain decompositions that are local along the direction

where FFTs are performed. In case a full 6-D domain

decomposition is used (i.e. when the widths of all dimen-

sions of the logical grid of processors are greater than 1),

there are several subgroups of processors that span the

whole x or v domain, respectively. As a first step, we com-

pute the charge density by a reduction along the velocity

dimension. This involves an all-to-all communication

among groups of Message Passing Interface (MPI) pro-

cesses of equal spatial domain. Then, the Poisson equation

is solved on each subgroup of processors that span the

whole x domain. By solving the same Poisson problem in

each subgroup, we avoid another communication step for

redistribution of the computed electric field.

Finally, we also include a diagnostic step in our stimu-

lations that computes scalar quantities like mass, momen-

tum, and energy, thus containing reduction steps over the

full 6-D array.

3. Interpolation on distributed domains

To compute the interpolated values, we can either use nodal

interpolation formulas like Lagrange interpolation or glo-

bal interpolants like spline interpolation. For simulations of

the Vlasov–Poisson problem, cubic spline interpolation is

most popular since it is well balanced between accuracy

and efficiency. In combination with a domain decomposi-

tion, we however have to deal with the fact that the stripes

are distributed between several processors, rendering a glo-

bal interpolant impractical due to the required data

exchange. Local splines as example considered for the 4-

D Vlasov–Poisson equation by Crouseilles et al. (2009) are

an interesting alternative. However, in this article, we focus

on local Lagrange interpolation.

Let us recall the special structure of the interpolation

task arising from our 1-D advections: The new value at

grid point xi is given by the interpolated value at xi þ a for

some displacement a that is constant over the whole stripe.

Let us decompose the displacement a into a multiple g 2 Z
of Dx and a remainder b 2 ½0; 1�, that is

a ¼ ðg þ bÞDx ð14Þ

Depending on the sign of a, the origin of the character-

istics for points close to the boundary of the local domain

are displaced into a part of the domain that is stored on a

neighboring process. Since the interpolation formula needs

to be centered around xi þ a, this yields an additional need

for halo data points on one side of the domain. To keep the

data transfer limited and regular, we need to impose a CFL-

like condition to restrict the displacement. The number of

additional halo points needs to be kept small since each

additional halo point requires the exchange of a 5-D facet

of the 6-D hyperrectangle.

3.1. Fixed-interval Lagrange interpolation

Lagrange interpolation with a stencil that is fixed around

the original data point xi is a very simple interpolation

formula for distributed domains. In this case, the interpola-

tion formula with an odd number q of points is given by

f ðxj þ aÞ 	
Xjþðq�1Þ=2

i¼j�ðq�1Þ=2

‘iðaÞf ðxiÞ ð15Þ

where ‘ið�Þ denotes the Lagrange polynomial centered at i.

Figure 1 illustrates on which data points a five-point stencil

is based. In this case, we have a static data exchange pattern

where q�1
2

points are needed from the processors on the left

and on the right. On the other hand, we need to require

jaj
 Dx for stability, that is, the scheme is rather restric-

tive on the time step.

928 The International Journal of High Performance Computing Applications 33(5)

3.2. Centered Lagrange interpolation

As an alternative, we consider the Lagrange interpolation

for an even number q centered around the displaced point

xj þ a. Then, the interpolated values are given as

f ðxj þ aÞ ¼ f ðxjþg þ bÞ ¼
Xjþgþq=2

i¼jþgþq=2�1

‘iðbÞf ðxiÞ ð16Þ

The choice of the data points for the interpolation sten-

cil is illustrated in Figure 2 for a four-point-formula. In

this case, we need to exchange a layer of maxðq
2
� g; 0Þ

points for the processor on the left and a layer of

maxðq
2
þ g � 1; 0Þ points to the right. As long as

1� q

2

 g
 q

2
, that is jaj
 q

2
Dx, the total number of points

that need to be exchanged per stripe is always qþ 1.

However, g changes depending on the value of the other

coordinates—and for v advections also with time. There-

fore, the communication pattern is different for different

stripes. On the other hand, for Vlasov–Poisson, the largest

displacements usually appear for the x advections on grid

points with high velocities. For an xd advection,

d ¼ 1; 2; 3, the displacement a ¼ Dtvd is very simple

and—for constant time steps—constant in time. In case

we require jaj
 q

2
Dx (to retain the minimal communica-

tion), the domain can be split in q blocks of different

ranges of vd with the same interpolation stencil and,

hence, the same data exchange pattern. This way, we can

relax the time step restriction but at the same time keep a

regular pattern of both data exchange and computations

for the advections. Note that this is only true for the case

without background magnetic field. The rotation of the

grid with the magnetic field changes the displacement of

the x advection steps on the logical mesh.

Having detailed on the mathematical background, we

now turn toward a discussion of the aspects and challenges

of an efficient implementation and parallelization.

4. Implementation and parallelization

Representing the 6-D distribution function on a grid

requires a large amount of memory. Thus, it is of primary

importance that an implementation can be efficiently dis-

tributed over a sufficiently large number of compute nodes

to make use of the aggregate memory provided by the

nodes. For the same reason, the problem is not very well

suited to be solved on GPUs due to their scarce memory

resources.

For our implementation, we use object-oriented Fortran

2008, the MPI for distributed-memory parallelism, and

OpenMP directives and runtime functions to add shared-

memory parallelism.1 The developments were made within

the framework of the library SeLaLib.2 The 6-D distribu-

tion function is discretized on a 6-D Fortran array. Since a

central idea of our method is dimensional splitting, the

advection algorithms exclusively work on 1-D stripes of

the 6-D data. Since these stripes are non-contiguous in

memory for any direction but the first dimension, non-

contiguous 1-D slices are copied from the 6-D array into

a contiguous buffer before the interpolated values are com-

puted. The performance of these strided memory accesses

can be greatly improved by cache blocking as is discussed

in Section 4.2.

For the domain-decomposition-based parallelization

approach, the 1-D stripes are distributed over multiple pro-

cesses. The following section discusses how the halo data

are stored to perform the interpolations.

4.1. Distributed-memory parallelism

The domain decomposition approach requires a layer of

halo cells around the processor-local data points to be able

to conveniently compute the interpolants. In the discussion

below as well as in our Fortran-based implementation, we

consider global indices used locally in each MPI process.

A straight-forward way to handle the halos would be to

include the cells into the 6-D array of the distribution func-

tion. Synonymously, this can be regarded as to work with

6-D arrays that overlap between neighboring processors.

Padding the 6-D array with the halo cells has the advantage

that the data are laid out contiguously in memory in the first

dimension stripe-by-stripe, that is, the interpolation rou-

tines can work directly on the array in this special case.

Stripes along higher dimensions are conveniently accessed

via Fortran-style linear indexing, however, one has to keep

in mind that the elements are laid out in memory in a

strided fashion. It is important to avoid Fortran array slicing

operators which cause temporary arrays to be used. Perfor-

mance can be improved dramatically by implementing a

cache blocking scheme using 2-D buffer arrays, see below.

Moreover, using halos, there is no need for special treat-

ment of periodic boundary conditions during the advection

step.

A second possibility is to allocate the halo cells sepa-

rately from the 6-D array of the distribution function, that

is, there is no index overlap on the 6-D array between

neighboring processes. Note that in this situation the halo

buffers are identical to the MPI receive buffers.

zj zj + α

Figure 2. Centered Lagrange interpolation based on a four-point
stencil. The red dots indicate the points necessary to calculate the
value at zj þ a.

zj zj + α

Figure 1. Fixed-interval Lagrange interpolation based on a five-
point stencil. The red dots indicate the points necessary to cal-
culate the value at zj þ a.

Kormann et al. 929

Figure 3 shows these two possibilities. In a 6-D array

which includes the halo cells, one also has to allocate the

corner points (displayed gray in Figure 3(a)) as well, even

though they are not used by any of the 1-D interpolators. As

is well-known, the volume of a hypercube mostly concen-

trates in the corners, therefore it is desirable to avoid mem-

ory allocation there. Moreover, in case the algorithm uses a

different number of halo cells on different blocks of data, the

6-D array has to include the maximum number of halo cells

in any direction. Therefore, we have chosen the second

approach, using halo cells allocated separately from the 6-

D array of the distribution function. It avoids the aforemen-

tioned disadvantages and is in particular superior with

respect to memory efficiency. Moreover, we can also exploit

the fact that we only need the halo cells along one dimension

at a time. Once allocated, the halo buffers can be reused.

If we assume a MPI-process-local grid of size N 6 and a

halo width of w cells on each side of the domain, the basic

memory requirements for the domain decomposition

scheme are N 6 þ 2wN 5 (for the core 6-D array and two

halo buffers of size wN 5 on each side). Note that an addi-

tional send buffer of the size of a single halo buffer is

needed. In a neighbor-to-neighbor communication, two

data blocks of size wN 5 need to be communicated for each

1-D advection step. For the remap scheme, on the other

hand, two copies of the local N 6 buffer are needed and,

in addition, MPI send and receive buffers. Between each

block of x and v advections, data blocks of size 1
p
N 6 have to

be communicated to each of the p� 1 other MPI processes,

that is, a total fraction of p�1
p

of the local data block is sent.

In practice, the actual memory requirements may be even

higher due to MPI-internal buffers.

Table 1 compares the theoretical memory requirements

for a typical process-local number of points per dimension

for the two memory layouts. Note that the remap paralleli-

zation uses two 6-D data arrays for the two remap data

layouts. The comparably low memory consumption of the

domain decomposition implementation is especially advan-

tageous on systems where fast memory is a scarce resource,

for example, on certain manycore chips.

Moreover, based on the numbers from Table 1, one can

give a straightforward estimate of the resolution possible on

a cutting-edge high-performance computing (HPC) system

with approximately 100 GB memory per two-socket node.

Considering the domain decomposition algorithm and put-

ting two MPI processes per node with 326 � 406 points

each, a grid size of 1286 � 1606 would fit on 2048 nodes.

Further increasing the resolution, for example, in velocity

space, the problems of size 1283 � 2563 � 1603 � 3203

would fit on 16,384 nodes.

4.2. Data access for 1-D interpolations

On the distributed domain, the advection along a dimension

takes the form shown in Algorithm 1 at the example of x3.

Note that for advections along the dimensions 2 to 6, we

have to deal with increasingly large strides when the 1-D

interpolation buffers are filled, causing a severe performance

penalty due to cache misses as confirmed by profiling.

p0 p1 p2

p3 p4 p5

p6 p7 p8

(a)

p0 p1 p2

p3 p4 p5

p6 p7 p8

(b)

Figure 3. Schematic diagram of a data layout example, simplified
to two dimensions and distributed over nine MPI processes
labeled p0 . . . p8. The square tiles represent the processor-local
parts, the blue and cyan blocks the halo data needed for the
advections along the first and the second dimension. The red
square shows the data array stored by processor p4 for the two
different data layouts. Layout (a) allocates the halo cells as part of
the data array. Layout (b) allocates the halos as independent
arrays. For layout (a), the gray blocks in the corners are unused.
(a) Local arrays with indices that overlap between different pro-
cesses and (b) local arrays with indices that do not overlap
between different processes. MPI: Message Passing Interface.

Table 1. Comparison of the theoretical minimum memory
requirements per MPI process for both algorithms under
consideration.a

Allocated mem. (GB) Communicated mem. (GB)

N remap d.d. remap d.d.

16 0.25 0.17 0.5 0.28
32 16.00 9.50 32.00 9.00
40 61.04 35.10 122.08 27.47
64 1024.00 560.00 2048.00 288.00

MPI: Message Passing Interface.
aA distribution function at a resolution of N6 local points is considered, in
addition we assume for the domain decomposition case (d.d.) two halo
buffers with a width w ¼ 3 points each. Note that additional buffers which
may be required, for example, by the MPI library, are not accounted for.
Moreover, the table shows for each resolution the data volume that is
communicated per time step per process (p!1 for remap).

930 The International Journal of High Performance Computing Applications 33(5)

The cache efficiency and the resulting performance can

be greatly improved by a cache-blocking scheme similar to

the schemes used to accelerate, for example, dense linear

algebra operations. The blocking is based on a 2-D buffer

array. Interpolations are performed along the first (contig-

uous) dimension. In the second dimension, the array is

large enough to store at least a cache line of data.

Algorithm 2 summarizes the loop rearrangements. A sim-

ilar blocking has been implemented for all advection steps.

For the advections along x2 to x6, we extract the 1-D stripes

in blocks along the first dimension.

4.3. Shared memory parallelization

Both implementations, remap and domain partitioning, are

carefully parallelized using OpenMP directives and run-

time functions to exploit the shared-memory architecture

of prevalent multicore CPUs using threads, in addition to

the distributed-memory parallelization which employs MPI

processes.

A significant advantage of introducing a hybrid paralle-

lization in addition to MPI is that it allows to reduce the

memory consumption and the communication volume sig-

nificantly. Instead of running one MPI process per avail-

able processor core, each allocating and exchanging halo

cells, it is superior to launch only one or two MPI processes

per socket, each with a proportionate number of threads

pinned to the cores of that socket. All threads thereby share

the halo cells.

Let us illustrate this effect by giving a simple numerical

example. Consider a 646 simulation using seven-point

Lagrange interpolation that shall be run on 64 compute

nodes with 64 cores each, implying a grid size of 326 points

per node. If a plain MPI setup is chosen, each node would

run 64 MPI processes with a local grid size of 166 points,

totaling up to 4096 MPI processes. On the other hand, we

might consider an (extreme) hybrid setup running only 1

MPI process per node with a local grid size of 326 points.

The 64 processes of the plain MPI setup would allocate 11

GB of memory per node for the distribution function and

the halo cells and communicate 36 GB per time step, 18 GB

of which beyond the node over the network. In contrast, the

hybrid setup would require 9.5 GB per node and commu-

nicate 18 GB over the network.

We conclude that, first, it may be advantageous to use as

few MPI processes as possible from the memory and com-

munication point of view. Second, while the hybrid setup

eliminates intra-node communication, the internode com-

munication volume stays the same compared to the plain

MPI case, with larger message sizes though.

A potential disadvantage of a naive hybrid approach is

due to the fact that a significant fraction of the threads

would be idle during the data-intense halo exchanges; how-

ever, by introducing an advanced pipelining scheme, we

are able to hide the communication times to a large extent

as is discussed in the following section.

5. Performance optimization

Performance optimization work aims at maximizing the

node-level performance simultaneously with the parallel

scalability that are conflicting goals to some degree. In the

Algorithm 1. Advection along x3 without cache blocking.

Algorithm 2. Advection along x3 with cache blocking.

Kormann et al. 931

scope of this article, we target recent x86_64 systems with

multicore or many-core CPUs as found in the vast majority

of today’s HPC systems. Details on the systems under

closer consideration are given in Table 2 in the following

section where performance results will be discussed.

5.1. Performance profile

Figure 4 shows a breakdown of the costs of the various

operations involved during a time step of the domain

decomposition solver running on a single core without any

parallelism. The profile is clearly dominated by the advec-

tion computations (“A”) including the Lagrange interpola-

tion. Going from the direction of the first to that of the sixth

dimension, the cost of the advection monotonically

increases. This effect is caused by the fact that memory

accesses become more and more strided. It is important

to note that the effects of the striding are already mitigated

by the cache blocking scheme that preserves a cache line,

once loaded. Moreover, the prefetch efficiency of the pro-

cessor appears to deteriorate with increasing strides. The

preparation of the halo buffers (“H”), which also involves

copies from strided into contiguous memory (however of

much less data compared to step “A”), is by far less time-

consuming. However, neighbor-to-neighbor MPI commu-

nication is included in “H” which becomes important when

the parallelization spans multiple nodes. Finally, the

Poisson-solve step and the diagnostics account for roughly

4% and 2% of the total runtime, respectively.

In addition to simple and lightweight timing facilities,

we used the tools Amplifier and Advisor from the Intel

Parallel Studio XE package to obtain low level information

on the performance and limitations of various parts of the

code. Based on that information, code improvements were

implemented, the most important of which are detailed

below.

5.2. Single-core performance

Without considering MPI communication, the major fac-

tors limiting performance of both the 6-D Vlasov imple-

mentations, the remap and the domain decomposition, are

due to the fact that the vast majority of the memory

accesses—except the ones along the first dimension—are

strided. A cache blocking scheme mitigates this issue sig-

nificantly, as illustrated by performance numbers below.

Nevertheless the code remains memory bound. The

increase in runtime from “A1” to “A6” in Figure 4 reflects

the aspect of the increasingly strided memory accesses.

In addition, single instruction, multiple data (SIMD) vec-

torization is a key factor to achieve performance on modern

CPUs. While in early days (SSE2) only a factor of two was

lost when vectorization was ignored for double-precision

operations, the potential loss has grown to a factor of 4

(AVX) or 8 (AVX512) on more recent CPU models. We

have implemented Lagrange interpolation routines such that

the compiler is able to generate vectorized code that we

verified carefully using compiler reports and performance

tools. Arrays are aligned to 64 byte boundaries, though the

large 6-D array of the distribution function is not padded in

order not to waste memory. In general, the compiler is able

to generate vectorized code for most of the loops.

Running 100 time steps of a 166 (326) case with seven-

point Lagrange interpolation on a single Skylake core, the

Table 2. Specification of the hardware used for performance evaluation.a

System SuperMUC DRACO KNL node Marconi-KNL

CPU Intel SandyBridge 2 �
Xeon E5-2680

Intel Haswell 2 �
Xeon E5-2698v3

Intel Knights Landing Xeon
Phi 7210

Intel Knights Landing Xeon
Phi 7250

Cores 2�8 2�16 64 68
Threads up to 2 per core up to 2 per core up to 4 per core up to 4 per core
Frequency 2.7 GHz 2.3 GHz 1.3 GHz 1.4 GHz
Memory 2 � 16 GB (50 GB/s) 2 � 64 GB (68 GB/s) 16 GB MCDRAM (450 GB/s) 16 GB MCDRAM

96 GB (90 GB/s) 96 GB of DDR4
SIMD AVX AVX2 AVX-512 AVX-512
Network Mellanox FDR10 (40 GB/s) M’x FDR14 (56 GB/s) — Intel OmniPath (100 GB/s)

aOn the KNL node, only the fast on-chip MCDRAM was used as indicated by the underline.

Figure 4. Profile of the domain decomposition implementation
running a 326 case with seven-point Lagrange interpolation on a
single Haswell core, where the letter “A” denotes advection, the
letter “H” denotes a halo-exchange operation, the letter “P”
denotes the Poisson solve operation, the letter “D” denotes the
diagnostic computation, and the direction is given by its number.

932 The International Journal of High Performance Computing Applications 33(5)

domain decomposition code achieves a floating point oper-

ation rate of 3:9 (2:8) GFLOP/s, which translates to 2:5
(2:5) GFLOP/s on the Haswell core. This value represents

about 6:8% of the Haswell core’s theoretical peak perfor-

mance. Note that the smaller setup is relatively faster on the

Skylake CPU. We measured the FLOP rates using perfor-

mance counters on Skylake and converted the result to

Haswell using the runtime ratio. Note that the measurement

covers the complete run including startup and shutdown

phases and includes inevitable memcopy operations that

do not perform any FLOPs at all. Around 90% of the float-

ing point instructions issued are vectorized. These numbers

once more illustrate the main performance challenge of 6-D

Vlasov codes resulting from memory boundedness due to

strided memory accesses in combination with a moderate

arithmetic intensity.

Finally, to quantify the effect of the cache blocking algo-

rithm, the aforementioned test runs with 100 time steps take

on the Haswell core in total about a factor of 2:4 longer for

both cases with the cache blocking disabled. The higher the

dimension to be interpolated along, the more effective and

important the cache blocking becomes in general, accelerat-

ing certain parts of the code such as the loop over x6 by up to

a factor of 20, as measured using performance profilers.

5.3. Node-level performance

A modern compute node provides several cores that are

organized in non-uniform memory access (NUMA)

domains such that groups of cores share L3 caches and

memory channels these cores can access fastest. Optimiz-

ing for the NUMA domains by careful process and thread

pinning at runtime turns out to be important. Typically,

MPI processes are pinned to sets of cores on sockets, and

threads are pinned to individual physical cores from these

sets. When overlapping communication and computation

as introduced in the following subsection, it turns out to be

advantageous only to pin the processes to constrain the

threads within NUMA domains, and in addition, to use

hyperthreads.

As the typical structure of the code are six-fold nested

loops, a standard loop-based OpenMP parallelization strat-

egy proved rather successful. From benchmark measure-

ments at various resolutions, it was concluded that the

runtime is minimized when the outer two loops are col-

lapsed into a single one to increase the granularity of the

parallel workload and when static loop iteration scheduling

is used. Each thread is able to benefit from cache blocking

and vectorization in the inner loops. Virtually any workload

in the code is parallelized using that technique. As a result,

the application scales well over a single node in pure

OpenMP as shown in Section 7.

5.4. Distributed-memory performance

Semi-Lagrangian 6-D Vlasov solvers are unavoidably

intense in terms of memory and data communication volume

(cf. Section 4.1). For the domain decomposition approach,

typical sizes of single MPI messages are in the range of

Oð0:1Þ–Oð1Þ GB, while modern interconnects achieve a

bandwidth of up to approximately 10 GB/s per node. It is

therefore important to mitigate the cost of the data transfers

as much as possible, firstly by careful planning of the pro-

cess grid, by overlapping communication and computation,

and in addition by means of data reduction.

As outlined in Algorithm 2, each advection step starts

with MPI communication to fill the halo buffers in the

neighbor processes, before the interpolations are per-

formed. We use standard blocking point-to-point MPI com-

munication, in particular the MPI_sendrecv() call, which

has proven to be fastest when compared to non-blocking

communication in early tests. For lower dimensional domain

decomposition codes, MPI 3 neighborhood collectives are

typically used to implement these halo exchanges efficiently,

in particular the MPI_Neighbor_alltoall() call. How-

ever, in 6-D, we cannot afford to allocate all the halo buffers

at the same time that would be necessary to use such neigh-

borhood collectives. In fact, as explained previously in Sec-

tion 4.1, we use dynamic halos that are reused for the

different directions, one at the time. Therefore, conventional

point-to-point communication is the preferred way to

exchange the data in 6-D.

In hybrid-parallel setups the initial MPI communication

would only keep a single thread busy while all the other

threads were idle. The trend toward systems with increas-

ingly more cores per socket suggests to use multiple threads

per MPI process to overlap (“pipeline”) the communication

with useful computation.

5.4.1. Simultaneous communication and computation. To

implement pipelining of communication and computation,

we block the data along a dimension different from the one

we intend to interpolate along and perform data exchange

blocki+1

blocki

interpolation

Figure 5. Blocking of a 2-D example grid, perpendicular to the
direction along which is to be interpolated.

Kormann et al. 933

and computation simultaneously on the resulting indepen-

dent blocks, as illustrated in Figure 5.

Here, we consider the Lagrange interpolation with fixed

interval because in this case we do not have to handle

additional blocking due to asymmetric data exchange.

Moreover, to avoid a second layer of blocking, we do not

consider blocks with different halo patterns. Anyway, the

overhead introduced by not minimizing the halo widths for

some blocks is less problematic when the communication is

overlapped with computations.

For each data block, the advection computation consists

of three steps: copy (generally non-contiguous 6-D) data

into coherent buffer (C); MPI_sendrecv() communica-

tion (M); and computation of interpolated values (I).

For each data block, these three steps need to be per-

formed in the given order, but there is no dependency

between different blocks. Nevertheless, we have to enforce

some ordering to avoid a capacity overload of resources

such as the maximum number of simultaneous hardware

threads. Given the three-fold structure of the advection, we

propose a straight forward pipelining scheme using three

lanes as shown in Figure 6.

To keep the overhead of the start-up and the final phase

as small as possible, we overlap communication and com-

putation of advections for different dimensions as well. To

give an example, let us start with the x1 advection. Once we

have reached the communication step (M) of its last block,

we can already start to copy (C) and communicate (M) the

data needed for the following x2 advection in the first data

block—provided that the x2 dimension is contiguous in

each block.

5.4.2. Implementation details on the pipelining scheme. Our

pipelining implementation relies on a thread-safe MPI

library and on OpenMP threads—requirements that are pro-

vided by most modern compilers and libraries. The steps C,

M, and I can be regarded as tasks with interdependencies.

In the following, we provide details on the implementa-

tion, referring to Algorithm 3. Initially, a list of all blocks is

built, where each list element contains metadata such as

block indices, the number of nested threads for the steps C

and I, and two OpenMP locks, one for the C step and one for

the M step. In the scheme proposed in the following, the

orchestration of the tasks is explicitly controlled using a

parallel region with a fixed number of three threads which

uses internal loops with static scheduling and a chunk size of

one such that the ordering is deterministic. For N blocks,

thread i, with i ¼ 0; 1; 2, manages the work on the blocks

‘ ¼ iþ 1þ 3k, k ¼ 0, . . . , N�i�1
3

, performing the steps C,

M, and I one after the other. In the steps C and M, we use

nested OpenMP parallelism to make use of all the available

threads. Apart from managing locks and calling the tasks, the

outer loop does nothing. To make best use of the network

resources, we ensure that the resources are dedicated to one

C and one M operation at a time, that is, only a single com-

munication M is allowed to take place at a time. Therefore,

thread i initially locks all the C and M operations of thread

mod(iþ 1, 3) and only releases the lock on M‘þ1/C‘þ1, when it

has finished M‘/C‘. As a result, the pipelining scheme with

overlapping tasks as shown in Figure 6 arises.

At runtime, we have to specify two parameters that

influence the performance of the implementation: the num-

ber of blocks and the number of threads used by each of the

C and I tasks. The smaller the blocks are chosen the shorter

the start-up and finishing phases become during which

communication and computation cannot be overlapped.

On the other hand, the blocks should not be chosen too

small to keep the overhead low. As the second parameter,

one needs to decide how to assign the available threads to

the C and I steps. Note that the first C and the last I step may

use more threads since they do not fully overlap with other

lane 2

lane 1

lane 0

time

C1 M1 I1 C4 M4 I4 C7 M7 I7

C2 M2 I2 C5 M5 I5 C8 M8 I8

C3 M3 I3 C6 M6 I6

Figure 6. Schematic showing the temporal overlap of the copy
operation (C), the MPI communication (M), and the interpolation
(I) for a single MPI process at the example of an eight-fold blocked
advection.

Algorithm 3. Control layer of the pipelining algorithm imple-
mented using OpenMP directives and runtime functions. The
symbol y indicates the use of nested parallelism in the worker
functions C and I.

934 The International Journal of High Performance Computing Applications 33(5)

operations. It turns out that the use of simultaneous multi-

threading (hyperthreading) is beneficial in concert with the

pipelining scheme. The implementation assures that not

more than the maximum available number of hardware

threads are used to avoid congestion. The cost induced by

the lock management is negligible compared to the compu-

tation, for example, for a typical number of four blocks per

direction as shown in Figure 15 for real run data. In partic-

ular, the benchmark numbers show that the pipelined code

is as fast as the non-pipelined code for small core numbers

(cf. Figure 13) and is strongly superior when going to larger

core numbers in a weak-scaling scenario (cf. Figure 14). A

detailed discussion including benchmark results is pre-

sented in Section 7.

An obvious choice for the advections in x is to block the

6-D distribution function along the 6th dimension v3 that

corresponds to the slowest varying loop index resulting in

blocks that are laid out contiguously in memory. Thus, our

pipelining scheme combines the three x advection steps

without any inner global synchronization point. In the same

way, the v advection block can be combined. Here, the

blocking of the data is performed along x3.

An alternative implementation based on OpenMP 4.0

tasks with an explicit dependency graph for the steps C,

M, and I, in combination with non-blocking MPI commu-

nication had also been evaluated. However, this line of

work was finally abandoned due to inferior performance.

The major issue with this implementation was that the tim-

ing of the execution of the tasks differed strongly between

different MPI processes, decided internally by the OpenMP

task runtime. Using the tightly controlled loop-based

scheme presented above, it was found that conventional

blocking MPI communication in dedicated threads pro-

vides superior performance, reproducibility, and, more-

over, has lower memory requirements.

5.4.3. Optimization of the halo-exchange communication. As

pointed out before, the 6-D Vlasov solver is a highly com-

munication intensive application, rendering good large-

scale parallel scalability a difficult goal to achieve. From

our experiments, we find that the implementation can scale

well even when spanning multiple islands on a HPC sys-

tem, if the process grid is laid out in an optimum way and

communication and computation are pipelined.

The HPC systems under consideration have the network

topology of a pruned fat tree. An island of the system is

designed such that each node of the left half of the island

is theoretically able to communicate with the corresponding

node of the right half of the island simultaneously at the

same bandwidth, termed the bisectional bandwidth. Going

beyond an island, the bisectional bandwidth is reduced.

Here, the blocking factor is decisive, which is, for example,

1:4 on a system used below, meaning that the interisland

bisectional bandwidth is only a quarter of the intraisland one.

We are therefore challenged with at least four levels of

interconnection speeds between MPI processes, namely

communication via shared memory on the same socket,

intra-node communication via shared memory between dif-

ferent sockets, intraisland and interisland communication via

the network.

In addition to the pruned fat tree topology, there are

other topologies, for example, high dimensional torus inter-

connects. We would expect the 6-D domain decomposition

algorithm to benefit highly from such networks because a

reduced bisectional bandwidth is avoided, whereas on a

pruned fat tree it turns out to be one of the major challenges

to scalability.

It is crucial to optimize the Vlasov solver and also

choose the problem setup for the network topology of the

machine as well as possible to prefer fast communication

paths for the largest messages, which is discussed in the

following.

5.4.4. Process grid optimization. The ordering of the 6-D pro-

cess grid can be chosen such that communication between

remote processes is kept as small as possible. A batch sys-

tem lays out the MPI processes in a certain pattern, often

placing the ranks consecutively on the nodes, one island

after the other. When constructing the 6-D process grid, the

MPI ranks are placed in row-major (C) order, indexing

processes p like p½i; j; k; l;m; n�, with n being the fastest

varying index. Consequently, the neighboring processes are

closest in x6, direction n, whereas they are separated

increasingly on the network when going to the x1, direction

i. Depending on the shape of the process-local part of the 6-

D grid and on the (potentially different) interpolation

orders along x and v, the process grid layout can be chosen

such that interisland communication is minimized. Despite

this optimization, certain directions still communicate

mainly between islands. In our experiments, it turned out

to be beneficial to transpose the grid such that neighboring

processes are closest in x1. In this case, the processor

groups that solve the Poisson problem are close. On the

other hand, the reductions over velocity to compute r com-

bine more remote processes. When overlapping communi-

cation and computations, this ordering is especially

advantageous since the communication is more expensive

the larger the stripe, that is, the longer it takes to gather the

data for the advection.

To go one step further, we have experimented with com-

munication patterns between islands that are more balanced

in the time dimension. This is done by mapping consecu-

tive MPI ranks onto blocks of 26 processes, that is, by

rearranging the 6-D process grid completely. Our imple-

mentation uses known hostname schemes of HPC systems

to perform the rearrangement. As the consequence of such

rearrangement, the advection in each direction would per-

form interisland communication to some fraction, which

would be useful to mitigate situations without rearrange-

ment when only one or few directions are communicated

between islands not hiding well behind computation. How-

ever, within the scope of this article, we did not enable such

blocking because it did not turn out beneficial, the reason

being that the per-process computational workload (the

Kormann et al. 935

local partition of the 6-D hypercube) was typically too

small in relation to the halos.

It is important to point out that these process grid opti-

mizations do not reduce the total amount of data that is to

be communicated. We will turn toward possibilities to

reduce the communicated data volume in the following

section.

5.4.5. Reduction of the communication volume. The MPI mes-

sages sent between neighbor processes to fill the halos use

by default 8 byte-wide double precision numbers. We have

implemented the option to halve the communication vol-

ume and time by sending these messages in single preci-

sion, leading to an improved parallel scalability especially

in interisland scenarios. However, one has to keep in mind

that an additional error is introduced into the computation

which requires careful validation. We therefore consider

single precision messages an experimental tool.

When running the pipelined code in a hybrid fashion it

turns out that—depending on the balance between threads

and processes—a fraction of the threads is idle waiting for

communication to finish. To continue along the lines of

single precision messages, we have therefore experimented

with floating point compression to further reduce the com-

munication volume and time while utilizing the threads that

would otherwise be idle. Naturally, a simple stream com-

pression algorithm is not suitable to compress floating

point data, rather a lossy algorithm tailored toward numer-

ical data is required. The ZFP floating point compression

algorithm, of which an implementation is freely available

as a library, compresses blocks of 64 double precision num-

bers, taking the desired precision as a parameter (Lind-

strom, 2014). The compression ratio achieved depends on

the similarity of the numbers in the blocks. Adjusting the

precision to match single precision, we typically observe a

compression factor of approximately 4 for the halo data,

improving parallel scalability over islands significantly. In

particular, the compression step is rather expensive as will

be shown briefly in the following. The compression option

might become more relevant in the future when the per-

node computational power continues to grow faster than

the network bandwidth.

In Section 7, we present performance studies, detailing

on the various challenges and the respective optimization

approaches to tackle them.

6. Numerical experiments

Before we benchmark our implementation and demonstrate

the scalability of the code, we consider representative test

problems with and without a background magnetic field

and discuss accuracy and time-step restrictions (CFL-like

conditions) for the various Lagrange interpolations on dis-

tributed grids. For the tests we look at the electric energy,

HeðtÞ :¼ 1
2
k E k2

2, and how it evolves over time. The errors

reported are absolute error, and we are only interested in

the qualitative behavior of the error of the integrators of

various order around the CFL-like condition. Testing the

accuracy of the various integrators at the CFL-like condi-

tion imposed by the domain-decomposition parallelization

scheme will demonstrate that relatively high-order is

needed to accomplish efficiency. However, this will cause

a relatively large halo cells which are challenging for the

distributed solution as we will see in the subsequent

section.

6.1. Vlasov–Poisson simulations

We first consider two test problems with no magnetic field,

weak Landau damping, where the chosen resolution yields

rather good accuracy, and a bump-on-tail instability with

larger phase-space error, and compare the accuracy of the

Lagrange interpolators of various order.

The initial value of the weak Landau damping problem

is given as

f 0ðx; vÞ ¼
1

ð2pÞ3=2
exp � jvj

2

2

0
@

1
A

�
1þ 0:01

X3

‘¼1

cosð0:5x‘Þ
� ð17Þ

The grid resolution is chosen to be 163 � 643, and we

consider the error in the electric energy in the time interval

½0; 30� compared to a reference simulation on a grid with

203 � 803 points and a time step of Dt ¼ 0:005 with

Lagrange interpolation of order 8 in space and 7 in velocity.

The bump-on-tail test case has the initial value

f 0ðx;vÞ ¼
1

ð2pÞ3=2
0:9exp � v2

1

2

0
@

1
Aþ 0:2exp

�
� 2ðv1� 4:5Þ2

�0
@

1
A

exp � ðv
2
2þ v2

3Þ
2

2

0
@

1
A�1þ 0:03

X3

‘¼1

cosð0:3x‘Þ
�

ð18Þ

and is solved on a mesh with 32 points per direction until

time 15. The reference solution is simulated on a mesh with

40 points per direction, a time step of Dt ¼ 0:0125, and

Lagrange interpolation of order 8 in space and 7 in velocity.

Figure 7 shows the error in the electric energy as a

function of the time step for various orders of the Lagrange

interpolator for the weak Landau damping example. Com-

paring the curves, we see that the error for the largest time

step Dt ¼ 0:3 is almost the same for all considered inter-

polation formulas, that is, the temporal error dominates.

Since we use a second-order Strang splitting method, the

error reduces proportional to Dt2 as we reduce the time step

until the interpolation error starts to dominate. The lower

the order of the interpolation stencil the earlier this hap-

pens. Note that, once we have reached a time step where

interpolation errors dominate, a further reduction of the

time step may even yield an increase of the error.

936 The International Journal of High Performance Computing Applications 33(5)

For this example, the displacement of the x advection

exceeds one cell size for a time step above 0:13. Therefore,

fixed Lagrange interpolation (odd order) is only stable for

time steps smaller than 0.13. On the other hand, centered

Lagrange interpolation shows good results for time steps

beyond this. The results also show that for accuracy reasons,

the time step should be chosen such that the displacement is

on the order of the cell size or a bit above. Hence, a combi-

nation of centered Lagrange interpolation with blocked com-

munication as described in Section 3.2 for the x advections

and fixed Lagrange interpolation for the v advection is an

efficient choice for the Vlasov–Poisson equation.

Figure 8 shows the results for the bump-on-tail test case.

In this case, the spatial error is larger which is why larger

time steps compared to the value of Dt 	 0:073 (which

corresponds to the maximum time step where the displace-

ment is bounded by one cell size) are advantageous. As in

the previous case, we see that order 5 does not give satis-

factory results and the use of Lagrange interpolation of

order 6 in x and 7 in v gives best results. Note also that the

absolute error is shown in the figure and the maximum

value of the electric field energy in the considered interval

½0; 15� is about 205.

Figure 9 shows the accuracy as a function of the wall

clock time for a simulation on a single node of the DRACO

cluster with 32 MPI processes for the Landau case. We can

see that the computing time increases with the order but the

increase is very small. On the other hand, the increasing

halo cells for increasing order will impact the performance

more strongly when MPI communication between nodes is

involved.

We conclude that the time step should be chosen around

the CFL-like condition or even somewhat above it (enabled

by the use of one-sided halo blocks as described in Section

3.2) and that an integrator of order five and below does not

yield the necessary accuracy at that temporal resolution.

6.2. Simulations with rotating mesh

As an example of a simulation with a strong background

magnetic field B0, let us consider a simulation with initial

value given as

f ðx; vÞ ¼
�

1þ acosðk ⊥ x1Þcosðkkx3Þ
�

exp � k vk2

2

� �
ð19Þ

In this case, the gyrofrequency is given by !c ¼ 2p
B

.

To understand the time-step restrictions of our distributed

memory parallelization with the rotating grid, we estimate

the maximum displacement in the various advection steps.

The displacement of an x1 advection at time t is given by

jDt
�

cosðBtÞv1 þ sinðBtÞv2

�
j

 Dt
�
jcosðBtÞjv1;maxj þ jsinðBtÞjv2;max

�

 Dt
ffiffiffi
2
p

maxðv1;max; v2;maxÞ:

ð20Þ

Here, we use vi;max to denote the (in modulus) largest value

of the velocity on the computational grid. For the displace-

ment of the x2 advection, the same estimate can be derived.

Figure 8. Bump-on-tail: error in electric energy as a function of
the time step for various interpolators. The numbers indicate the
stencil widths of the x and the v interpolations, respectively.

Figure 9. Landau damping: error in electric energy as a function
of the wall clock time for various interpolators. The numbers
indicate the stencil widths of the x and the v interpolations,
respectively.

Figure 7. Landau damping: error in electric energy as a function
of the time step for various interpolators. The numbers indicate
the stencil widths of the x and the v interpolations, respectively.

Kormann et al. 937

The displacement of the x3 advection is given by Dtv3 and

can thus be estimated by v3;maxDt.

The displacement of the velocity advections depends on

the electric field. The electric field induced by the initial

condition is given as

E ¼ � a
k2

⊥ þ k2
k

k ⊥ sinðk ⊥ x1Þcosðkkx3Þ
0

kkcosðk ⊥ x1Þsinðkkx3Þ

0
B@

1
CA ð21Þ

If the electric field is damped in time, we can estimate the

electric field by ak ⊥
k2

⊥þk2
k

for the perpendicular and akk
k2

⊥þk2
k

for the

parallel direction.

Let us consider the following parameters, B ¼ 20p
(!c ¼ 0:1), k ⊥ ¼ kk ¼ 0:5, a ¼ 0:01. Using 16 grid points

along each spatial dimension and 32 points along the velo-

city dimensions as well as a velocity domain limited to

½�6; 6�, the grid spacing takes the values of Dxi ¼ 4p
16
¼ p

4

and Dvi ¼ 12
32
¼ 0:375.

The maximum displacement along x1 and x2 direction is

given by Dt6
ffiffiffi
2
p

and hence the displacement is restricted to

one cell size if Dt
 9:256 � 10�2, that is, slightly below

one period of the gyration. On the other hand, the displace-

ment of the velocity advections is bounded by 0:01Dt such

that the displacement is smaller than the grid size for all

Dt
 37:5. Figure 10 shows the electric energy as a func-

tion of time from simulations with various time steps. In the

x advection steps, we use centered Lagrange interpolation

with six points and in the v advections a fixed seven-point

Lagrange interpolation formula. Note that we use sym-

metric halo cells of sufficient size for the x1; x2 directions

since a static blocking as in the pure Vlasov–Poisson case is

not possible on the rotating mesh. Comparing the evolution

of the electric energy for the various time step sizes, one

can see that deviations from the reference run with a tiny

time step at Dt ¼ !c=20 are rather small, that is, rather

good results can be obtained for time steps above the gyro-

frequency. In particular, we can use time steps close to

!c=2 that would yield a completely nonlocal stencil if we

would not rotate the mesh. However, the time step cannot

be a multiple of !c (as clearly visible in Figure 10) since

then the magnetic field cancels out in the propagator on the

rotating mesh, and the simulation completely neglects the

magnetic field.

7. Performance benchmarks

To systematically compare and evaluate the performance

and the scalability of the remap and the decomposition

implementations, a series of runs was performed, going

from a single compute node to a HPC cluster and further

up to multiple islands on a supercomputer. For most of our

basic tests and during iterative performance optimization

work, we used a two-socket Intel Haswell-type node, the

building block of the DRACO HPC cluster at MPCDF.3

Moreover, an Intel Xeon Phi KNL node was available,

running in “flat” mode with the 16 GB of MCDRAM avail-

able as a separate memory domain. All the runs performed

on the KNL used the fast MCDRAM exclusively. Finally,

we present large-scale runs performed on the SandyBridge

partition of the SuperMUC HPC system of the Leibnitz

Supercomputing Center, covering up to eight islands with

64k physical cores. Table 2 provides details on the speci-

fications of the compute nodes.

The Landau damping test case was chosen in each run.

We consider a seven-point Lagrange interpolation for both

x and v advections, since it proved to be a good choice in

terms of accuracy and flexibility according to the numerical

comparison presented in the previous section. Note that the

six-point centered Lagrange interpolation has the same halo

width and therefore shows a similar performance. Any wall

clock time given refers to the computation of five time

steps. The initial time step is excluded from the time mea-

surement to compensate for the initialization overhead of

the MPI library that can be significant.

To compile and link the code, recent versions (16 and

17) of the Intel compiler were used throughout this work,

with the optimization flags set to -O3 -xHost -ipo-

separate -qopenmp. On DRACO and on the Xeon Phi

node, Intel MPI is used whereas on SuperMUC, IBM PE is

used. We first look at the performance on a single node,

focusing on both process (MPI) and thread (OpenMP)

parallelism.

7.1. Node-level performance

To evaluate the performance of the OpenMP-based paral-

lelization in comparison to MPI, we present scalings on a

single compute node in this section.

Each run was repeated five times to average out small

variations between individual runs that were found to be on

the order of up to 5%. A problem size of 326 was chosen

since it is quadratic and represents a reasonable (though

moderately large) size for a per-socket workload on the

relevant systems, the net size of the distribution function

being 8 GB in double precision.

Figure 10. Simulation with rotating velocity grid: electric energy
as a function of time for various time steps (given in the legend).

938 The International Journal of High Performance Computing Applications 33(5)

Moreover, the simulation of a 326 hypercube fits com-

pletely into the high-bandwidth memory of the KNL node,

at least for the domain decomposition implementation con-

sidered mainly in this article. The same or a comparable

size for the per-socket workload will be used for the large-

scale runs presented below. The aim of this section is to

show that the domain decomposition implementation deli-

vers excellent parallel performance on a single node in

both MPI and OpenMP. This feature paves the way to

efficient hybrid-parallel large-scale simulations performed

on many-core distributed-memory HPC clusters. Bench-

mark runs will be discussed in the next section.

Figure 11 shows strong scalings on the Haswell-type node.

For both, the domain decomposition and the remap case, a

scan in the number of MPI tasks keeping the number of

threads fixed to 1, and for comparison, a scan in the number

of OpenMP threads with a single MPI process are shown.

For each series, the optimum pinning strategy is chosen,

which has been determined experimentally a priori. The MPI

processes are pinned in a round-robin fashion between the

two sockets. Doing so, the memory bandwidth of both sock-

ets is used as soon as more than one process is run. Only MPI

messages are transferred via the link between the sockets. On

the other hand, the threads for the OpenMP scan are pinned

in a compact fashion to physical cores, filling the first socket

completely before going to the second socket. The compact

OpenMP thread pinning strategy reduces the traffic over the

link between the two NUMA domains significantly. Note

that a thread-aware first-touch memory allocation and han-

dling is not possible when traversing the 6-D array of the

distribution function in all the six directions.

Figure 11 shows that for the domain decomposition

runs, both the MPI and OpenMP results are very similar

and scale virtually ideally up eight cores. They continue to

scale well up to the full 32 physical cores of the node.

Adding hyperthreads does not improve either case, the wall

clock times even rise marginally, indicating that the CPU

pipelines are already used efficiently.

The remap code performs significantly worse than the

domain decomposition implementation. Running on the

full node with 32 MPI processes, it is about a factor of

2:5 slower. Moreover, it scales worse, achieving a speedup

in MPI of about 11:2 compared to the speedup of about

18:8 for the domain decomposition code. In OpenMP, the

remap code does not scale well which is due to the simple

cause that the remap operation takes place within the MPI

library as a (trivial) all-to-all operation which is inherently

not threaded. To have a fair comparison, the latter finding is

one of the main reasons why we mostly present pure MPI or

only weakly-hybrid (using two hyperthreads per process,

for example) runs in the sections below on medium- and

large-scale runs when we compare the remap to the domain

decomposition codes.

For comparison and to include results from a many-core

platform, we show numbers based on the identical 326 test

case from domain decomposition runs performed on the

Xeon Phi node. As seen in Figure 12, the strong scaling

curves follow an ideal scaling up to 16 cores in both MPI

and OpenMP and continue to scale well going up to the 64

available physical cores. Scaling further into the hyper-

threading regime gives some benefit with two threads per

core, going further to four threads per core the performance

even deteriorates slightly. The speedups reported here are

approximately 33:0 for the best MPI case on 64 cores and

approximately 59:7 for the best OpenMP case running on

128 hyperthreads. Note at this point that the remap code

requires more than 16 GB of memory in the given setup and,

hence, could not be considered on the KNL node. Given the

result on the Haswell node, it is not likely to outperform the

domain decomposition code on the KNL. For similar rea-

sons, we could not run more than 64 MPI processes using

hyperthreads that does not make sense from a technical point

 1

 10

 100

 1000

 1 2 4 8 16 32 64

w
al

l c
lo

ck
 ti

m
e

[s
]

cores

dd, plain MPI
dd, plain OMP

remap, plain MPI
remap, plain OMP

ideal

Figure 11. Strong scaling in pure MPI and pure OpenMP on the
Haswell node, comparing the domain decomposition code with
the remap implementation, running five time steps of a 326 case
with seven-point Lagrange interpolation. The vertical line indi-
cates the transition to simultaneous multithreading. MPI: Message
Passing Interface.

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256

w
al

l c
lo

ck
 ti

m
e

[s
]

cores

dd, plain MPI
dd, plain OMP

ideal

Figure 12. Strong scaling in pure MPI and pure OpenMP on the
Xeon Phi node. For comparison, the same setup as the one used
for Figure 11 is run. The vertical line indicates the transition to
simultaneous multithreading. MPI: Message Passing Interface.

Kormann et al. 939

of view either. While the plain MPI and plain OpenMP

strong scalings are well-suited tools to probe the paralleliza-

tion efficiency individually, the HPC application user is

interested in the smallest time-to-solution that typically

requires to choose a mix of both the parallelization strategies

at runtime that we focus on next.

Table 3 compares the node-level performance of the

domain decomposition runs between the Haswell and the

Xeon Phi node. Merely based on the ranked timings,

the performance advantage of the KNL node relative to the

Haswell node is roughly 1:4. Comparing the fastest runs

with more than one MPI process—which would be a prac-

tically more relevant case—the advantage of the KNL

melts down to only a factor of 1:05.

In summary, both, the distributed-memory and the

shared-memory parallelization of the domain decomposi-

tion implementation were found to scale very well on a

single node. OpenMP threads and MPI processes can vir-

tually be used interchangeably when running the domain

decomposition implementation. This is an important find-

ing relevant to the larger setups on many compute nodes

that rely on hybrid parallelization, for example, running

one process per socket and keeping all the available cores

busy with threads, as presented in the following section.

However, in practice for a given setup, it may not be

beneficial to arbitrarily swap threads and processes due

to implicit changes in the partitioning of the numerical

grid and the process grid that may taint the performance

in some cases.

7.2. Parallel performance

7.2.1. Medium-scale runs. In this section, we focus on the

parallel performance of the 6-D Vlasov code on

distributed-memory HPC clusters. We mainly consider the

domain decomposition implementation but draw some

comparison to the remap code as well.

First, we discuss medium-sized scaling runs performed

on the DRACO HPC machine at MPCDF, mainly to

investigate the scalability of the hybrid implementation.

It consists of Haswell nodes as detailed in Table 2 in the

previous section. The nodes are grouped into islands of 32

machines and are connected via an FDR14 InfiniBand net-

work. The maximum job size is 32 nodes with 1024 phys-

ical cores in total, supporting up to 2048 simultaneously

active threads. Note that the minimum number of MPI

processes for which the domain decomposition implemen-

tation communicates with all the process neighbors via

MPI messages is 64 which is therefore taken as the baseline

for all scalings.

To be able to include the domain decomposition code

with pipelining, that is, overlapping of computation and

communication, into the comparisons in a fair way, we

allow each process to use two hyperthreads even in a plain

MPI run, since the pipelining scheme relies on having mul-

tiple active threads per process to work properly. For the

other two codes under consideration, the effect of the two

hyperthreads is negligible as shown in the previous section

on the single-node performance.

We now turn toward a strong scaling before the more

relevant weak scaling scenario is considered in greater

detail. Figure 13 shows strong scalings in plain MPI and

also for hybrid setups, going from 64 cores on two nodes up

to the full island size of 32 nodes. The test setup uses a

resolution of 324642, thereby following up on the resolu-

tion of 326 per CPU socket as previously used for the

single-node tests. The remap implementation is signifi-

cantly slower than both the domain decomposition codes,

at the same time it scales best by achieving a speedup of

about 8.6 of 16, closely followed by the domain decompo-

sition code at about 8.3. On the full island, that is, on 32

nodes, the domain decomposition code is faster by a factor

of about 2:8 compared to the remap code, a result very

similar to the outcome on the full node. Initially, starting

Table 3. Overview on the node-level performance by listing the
10 fastest runs on each platform.a

Haswell node Xeon Phi node

MPI OpenMP time (s) MPI OpenMP time (s)

1 32 10.84 1 *128 7.73
16 *4 11.13 1 *256 8.04
16 2 11.40 1 64 10.21
32 *2 11.51 2 *128 10.61
32 1 11.80 8 *32 11.11
8 *8 11.98 32 *8 11.22
8 4 12.05 16 *16 11.48
64 *1 12.59 64 *4 11.52
1 *64 12.81 4 *64 11.91
4 8 13.08 64 *2 12.06

MPI: Message Passing Interface.
aThe use of hyperthreading is indicated by an asterisk.

 1

 10

 100

 64 128 256 512 1024

w
al

l c
lo

ck
 ti

m
e

[s
]

cores

MPI, 2 OMP
MPI, 4 OMP
MPI, 8 OMP
ideal scaling

dd

dd-pipelining remap

Figure 13. Strong scaling on DRACO using seven-point Lagrange
interpolation, running a resolution of 324642, that is, starting at a
problem size of 326 points per CPU socket on two nodes. The
domain decomposition implementations with and without pipe-
lining are compared to the remap implementation. For the mea-
surement, five time steps are run, after discarding a first one to
avoid MPI initialization overhead. MPI: Message Passing Interface.

940 The International Journal of High Performance Computing Applications 33(5)

out at virtually the same wall clock time as the domain

decomposition case, the pipelining code scales worse, illus-

trating the overhead of the pipelining scheme when

decreasing the workload per MPI process.

The hybrid parallelization turns out to be efficient when

going beyond a single compute node as well. Figure 13

shows strong scalings for hybrid runs of the domain decom-

position codes in direct comparison to the MPI runs, reduc-

ing the number of MPI processes by a factor of 1/2 or 1/4

and increasing the number of threads by the inverse factor.

Note that hyperthreads are used in the example, that is, two

threads share the same physical core. As can be seen, the

hybrid curves follow the plain MPI curves very closely. For

the largest runs, the hybrid case with eight threads per MPI

process turns out to perform best for the domain decom-

position code without pipelining.

An important effect induced by the multidimensional

domain decomposition has to be recalled at this point to

explain the deterioration of the strong scaling. As the global

problem size is kept constant, the fraction of the distribu-

tion function that has to be communicated between neigh-

bors increases as the strong scaling is performed due to the

decrease in local grid size. This effect can be mitigated to

some degree by performing hybrid runs. On the other hand,

for the remap implementation, the total volume of commu-

nicated data stays constant, whereas the number of MPI

messages increases quadratically with the number of

processes.

These strong scaling curves are mainly given for reasons

of completeness. As high memory demands in combination

with low arithmetic intensity are the main challenges to be

tackled when dealing with the 6-D Vlasov–Poisson prob-

lem, we turn toward the weak scaling properties of the

codes that are more relevant to Physics simulations on large

grids.

Figure 14 shows a weak scaling, starting on two nodes

and keeping a workload of 326 points per CPU socket.

Looking at the plain MPI runs (with 2 hyperthreads per

process to enable comparison to the pipelining implemen-

tation), the remap code is significantly outperformed by the

domain decomposition codes, with the pipelining imple-

mentation being the fastest and scaling best. The parallel

efficiencies are approximately 0:88 for the pipelining

implementation, 0:79 for the non-pipelining one, and only

0:55 for the remap code. On the full island, the pipelining

code is about a factor of 4:6 faster than the remap code.

In addition to the plain MPI cases, the plot shows a

selection of hybrid cases, exchanging processes with

threads but operating on the same workload for compar-

ability. The graph yields the important finding that hybrid

setups running four or eight threads per process may be in

fact the best choice for the pipelining code, which is in this

situation able to utilize several threads for each the advec-

tion and the buffering tasks in parallel, while performing

MPI communication at the same time, thereby hiding parts

of the communication behind useful computation. As can

be seen in addition for the pipelining implementation, the

hybrid parallelization performs very well over a broad

range of configurations. Even running only two MPI pro-

cesses per socket (labeled “16 tpp”) turns out to be very

close to the case with one MPI process per physical core

(labeled “2 tpp”), less aggressive hybrid setups being

located in between. However, reducing further to only a

single process per socket (labeled “32 tpp”) causes the time

to solution increase significantly which is caused by the

fact that a single simultaneous MPI operation per socket

is not sufficient to saturate the network interface. Finally, it

has to be recalled that each hybrid configuration uses a

different, optimal, process grid on top of the same numer-

ical problem setup, which leads to different communication

patterns that contribute as well to the variation observed

between plain MPI and hybrid runs.

Concerning the weak scaling, the rise in the wall clock

time is attributed to a significant part to the fact that halos

in more and more spatial directions are communicated via

the network instead of being shared via the memory on the

node, as the system size is increased. An illustration and in-

depth explanation will be given in the following section

dealing with scalings on SuperMUC using a component-

wise breakdown of the runtime.

 10

 100

 64 128 256 512 1024

w
al

l c
lo

ck
 ti

m
e

[s
]

cores

MPI, 2 OMP
MPI, 4 OMP

MPI, 8 OMP
MPI, 16 OMP

MPI, 32 OMP
ideal

dd

dd-pipelining

remap

Figure 14. Weak scaling on DRACO using seven-point Lagrange
interpolation, keeping a local problem size of 326 points per CPU
socket. Note that the largest runs have a global problem size of

646 points for the distribution function.

 0

 1

 2

 10 15 20 25 30 35 40

buffer mpi_sendrecv() x-advection v-advection Poisson diagnostics

la
ne

time [s]

Figure 15. Timeline view on a hybrid pipelining case, running 64
MPI processes on 16 nodes, with two MPI processes and 16
hyperthreads per socket, picked from the runs shown in Figure
14. MPI: Message Passing Interface.

Kormann et al. 941

To illustrate the behavior and performance of the pipe-

line implementation, time traces in a task-style are pre-

sented in Figure 15. In Section 5.4, the pipelining scheme

was explained by means of the schematic Figure 6 which is

hereby complemented with timing data. The run under

consideration uses 64 MPI processes in total, employs two

processes per node, one per socket, and uses OpenMP

threads to keep all the cores busy. The plot shows timings

obtained from the control loop which implements the pipe-

lining scheme using three lightweight threads, indicated here

by three lanes. Temporal overlap is possible between the

lanes within the x advection and the v advection blocks

where the number of nested threads for each task is set such

that at most the number of available hardware threads is

utilized. As can be seen from Figure 15, the communication

operations shown in black overlap quite well with useful

computation being performed at the same time, though some

minor jitter is present. The fact that the v advections and the

x advections cannot be overlapped due to their blocking

along different dimensions becomes visible from empty

lanes when the transition from v (blue) to x (red) occurs.

The configuration of the process grid in this example is 26,

with a local numerical grid of 16 � 325 and a global grid of

32 � 645. This implies that there is more communication

going on along the first dimension that can be seen well from

the first four black blocks of each x advection phase in

Figure 15, which turns out to be wider than the rest. Overall,

the computations of the v advections (blue) are more expen-

sive than the computation of the x advections which is due to

strided memory accesses, as was already shown in Figure 4.

Note also that the time spent in the Poisson step is compar-

ably large and can vary quite a bit. The reason is that it

contains the reduction step which requires the synchroniza-

tion of comparably many processes and, hence, potential

imbalances due to system jitter during the advection steps

are included in the Poisson timing.

In the following section, we discuss runs on a super-

computer at large scale, also shedding more light on the

effects which limit the parallel scalability.

7.2.2. Large-scale runs. To further evaluate the performance

of the domain-decomposition-based solver, we present runs

performed on the SuperMUC HPC system of the Leibnitz

Supercomputing Center.4

On the so-called phase 1 partition of the SuperMUC

system, each node is equipped with two Intel E5-2680

CPUs (SandyBridge-EP) with eight physical cores, each

supporting two threads per core (cf. Table 2). There are

512 nodes per island, connected via an InfiniBand FDR10

network. The blocking factor of the network between

islands is 1:4. In total, 18 islands are available. In the fol-

lowing, we present scalings going up to eight islands with

64 k physical cores and 128 k hardware threads.

The resolution of the test case considered for the weak

scaling on SuperMUC is 324 � 162 per socket, which is

chosen—for reasons of the available memory per node—

a factor of four smaller than the size used per Haswell

socket on DRACO. Note that the setup implies a local

resolution of a 166 hypercube per process for plain MPI

runs with eight processes per eight-core socket, as shown

below in Figure 17 which details on the grid parameters

involved in the scaling. Starting from 64 processes on four

nodes guarantees that MPI communication takes place in

all the six dimensions initially.

Figure 16 shows weak scalings for the remap and the

two domain decomposition codes. There is one MPI pro-

cess per physical core with two hyperthreads each. These

extra hardware threads are enabled to include the pipelining

implementation into the comparison.

The results show that the domain decomposition codes

both scale quite well. The plain domain decomposition

implementation turns out to be faster than the pipelining

one up to 512 MPI processes when the latter takes over.

Going beyond the island boundaries leads to an increase in

the wall clock times which is moderate at two islands but

becomes more significant when going to four or eight

islands. When scaling up, the increase in the wall clock

time is mainly caused by the fact that an increasingly larger

fraction of the halo data is exchanged over the network

between nodes and finally between islands as the problem

size is increased. The SuperMUC system has a pruned tree

network with a blocking factor of 4 : 1 for the island inter-

connect, see Table 2 and the reference there. As a conse-

quence, the theoretical maximum bisectional bandwidth

between two nodes on different islands is only 10 GB/s,

which is the main reason to limit the parallel scaling when

crossing one or more island boundaries. A runtime analysis

of the building blocks of the code is discussed below and

sheds more light on this issue.

Compared to the domain decomposition codes, the

remap code is slower, as already known from the previous

 1

 10

 100

 64 256 1024 4096 16384 65536

w
al

l c
lo

ck
 ti

m
e

[s
]

cores

remap
dd

dd, 32bit halos
dd, zfp

dd-pipelining
dd-pipelining, 32bit halos

ideal

Figure 16. Weak scaling on SuperMUC comparing the domain
decomposition codes with and without pipelining to the remap
implementation, running one MPI process per physical core, with
two hyperthreads each. The transitions going from 1 to 2, 2 to 4,
and 4 to 8 islands are indicated by vertical lines. MPI: Message
Passing Interface.

942 The International Journal of High Performance Computing Applications 33(5)

tests. In addition, it scales slightly worse. More details on

its scalability limitations will be given below. Due to a

restriction in the implementation, the Poisson step currently

prevents to use more than 4 k MPI processes.

In addition, the weak scaling plot Figure 16 contains

data from two experiments aimed at increasing the parallel

scalability by reducing the size of the MPI halo messages.

The first experiment (labeled “32bit halos”) simply sends

the halo data in single precision, thereby halving the com-

munication volume. The wall clock time is significantly

reduced and also the scalability is improved to some

degree, especially when going from one to two islands. The

second experiment (labeled “zfp”) takes one step further by

applying a lossy compression to the halo data, thereby

effectively reducing it to about a quarter of its size while

preserving single precision accuracy. This comes at a sig-

nificant computational cost but at the same time leads to a

virtually flat scaling with nearly 100% parallel efficiency,

even when crossing island barriers. Interestingly, at 4096

MPI processes, the runtime of the remap code is already

very close to the one of the domain decomposition code

with ZFP compression enabled. As hardware standards

evolve, it is to be expected that the penalty of the ZFP

compression becomes less and less important for hybrid

runs on present and future systems with greater relative

compute power compared to the network bandwidth.

Hybrid setups, that is, swapping MPI processes in favor

of OpenMP threads for the domain decomposition code,

did not turn out to be better than plain MPI cases on

SuperMUC with its comparably small number of cores,

in contrast to DRACO as shown before. As argued already

for ZFP, the hybrid feature will become more important in

the future.

 0.1

 1

 10

 64 256 1024 4096 16384 65536

w
al

l c
lo

ck
 ti

m
e

[s
]

cores

A1+A2+A3
A4+A5+A6

D
H1

H2
H3
H4
H5

H6
PC
PF

Figure 17. Weak scaling of the building blocks of the imple-
mentation for the plain MPI domain decomposition run shown in
Figure 16, scanning from 64 up to 65,536 MPI processes. The
letter A indicates the advection computations whereas H indi-
cates the halo-exchange operations, for both of which the
dimension is given. The letter D represents the diagnostics and P
the Poisson solver. In particular, PC means the charge density
computation whereas PF means the field solver component,
respectively. The X advections and the V advections were
grouped together. The transitions going from 1 to 2, from 2 to 4,
and from 4 to 8 islands are indicated by vertical lines. MPI: Mes-
sage Passing Interface.

Table 4. Overview on the configurations of the various gridsa

involved in the domain decomposition setups of the weak scalings
shown in Figures 16 and 17.

Cores x1 x2 x3 x4 x5 x6

Global grid
64 32 32 32 32 32 32
128 32 32 32 32 32 64
256 32 32 32 32 64 64
512 32 32 32 64 64 64
1024 32 32 64 64 64 64
2048 32 64 64 64 64 64
4096 64 64 64 64 64 64
8192 64 64 64 64 64 128
16,384 64 64 64 64 128 128
32,768 64 64 64 128 128 128
65,536 64 64 128 128 128 128

Process grid
64 2 2 2 2 2 2
128 2 2 2 2 2 4
256 2 2 2 2 4 4
512 2 2 2 4 4 4
1024 2 2 4 4 4 4
2048 2 4 4 4 4 4
4096 4 4 4 4 4 4
8192 4 4 4 4 4 8
16,384 4 4 4 4 8 8
32,768 4 4 4 8 8 8
65,536 4 4 8 8 8 8

Local grid
Any 16 16 16 16 16 16

Distance in processes
64 1 2 4 8 16 32
128 1 2 4 8 16 32
256 1 2 4 8 16 64
512 1 2 4 8 32 128
1024 1 2 4 16 64 256
2048 1 2 8 32 128 512
4096 1 4 16 64 256 1024
8192 1 4 16 64 256 1024
16,384 1 4 16 64 256 2048
32,768 1 4 16 64 512 4096
65,536 1 4 16 128 1024 8192

Distance in nodes
64 0.1 0.1 0.3 0.5 1.0 2.0
128 0.1 0.1 0.3 0.5 1.0 2.0
256 0.1 0.1 0.3 0.5 1.0 4.0
512 0.1 0.1 0.3 0.5 2.0 8.0
1024 0.1 0.1 0.3 1.0 4.0 16.0
2048 0.1 0.1 0.5 2.0 8.0 32.0
4096 0.1 0.3 1.0 4.0 16.0 64.0
8192 0.1 0.3 1.0 4.0 16.0 64.0
16,384 0.1 0.3 1.0 4.0 16.0 128.0
32,768 0.1 0.3 1.0 4.0 32.0 256.0
65,536 0.1 0.3 1.0 8.0 64.0 512.0

MPI: Message Passing Interface.
aGlobal grid, MPI process grid, local grid, distances between neighboring
processes in units of processes and in units of nodes.

Kormann et al. 943

Let us now turn toward an in-depth analysis of the scal-

ing of the building blocks of the domain decomposition

code when performing the weak scaling. Figure 17 shows

a breakdown of the individual components of the imple-

mentation without overlap of communication and compu-

tation. Table 4 complements Figure 17 with information on

the grid configuration of the runs, essential for a better

understanding of the behavior.

The advection computations (A1–A6) scale virtually

ideally. However, from the communication-intensive oper-

ations such as the halo exchanges and the Poisson step, we

clearly see the effects of the network topology. In the runs

performed, the grid of MPI processes is laid out in column-

major order, that is, MPI processes are closest in the first

dimension and are farthest apart in the sixth dimension, as

shown in Table 4 for each problem size of the weak scaling.

In particular, the table gives information on how far pro-

cesses, that are neighbors in the process grid in a logical

sense, are separated on the machine in units of processes

and nodes, respectively. Note that on the machine and in

combination with the configuration we are considering,

there are 16 cores (and MPI processes) per node such that

any x1–x2 plane in any run discussed here fits into a node.

This means that halo exchanges in x1 or x2 direction take

place in shared memory via the MPI library. In Figure 17,

this fact is evident from the virtually ideal scaling of the H1

and H2 curves. The operation H2 is likely to be faster

because the batch system distributes the processes in a

round-robin fashion between the two sockets such that the

H1 communication is done via the link between the two

NUMA domains, whereas the H2 communication takes

place within the domain. On the contrary, neighbors in the

fifth and sixth dimension communicate exclusively over

the network for all the runs under consideration, causing

H5 and H6 to be a rather costly operation.

The communication in x6 is the main reason for the

slowdown when crossing island barriers. The fraction of

halo data communicated between islands rises from 25%
on two islands to 50% on four islands and finally to 100%
on eight islands, as the “distance in nodes” values in Table

4 indicate for the x6 communication. Considering the

blocking factor 4:1 of the pruned tree network of the Super-

MUC system, we would expect roughly an increase of the

wall clock time by a factor of four when comparing the cost

for H6 on one island (8192 cores) to eight islands (65,536

cores). Indeed, from the numbers in Figure 17, we find a

factor of 3.4. Note that the measured times include local

memcopy operations to fill, send, and receive buffers,

which are constant during the weak scaling and explain the

factor being slightly less than four. This observation shows

that the given machine topology poses a barrier to the scal-

ability. We would expect the code to benefit significantly

from fully connected networks. For completeness, the H3

and H4 curves show a similar behavior for the transition

from intra-node to internode communication, as the rise at

256 and 1024 cores, respectively, indicates.

The Poisson step is broken down in two parts, the reduc-

tion step (PC) and the actual solution of the Poisson prob-

lem (PF). The latter part PF is negligible and scales well

(except for some fluctuations especially visible in this step

due to the small numbers). The reduction step, on the other

hand, shows a similar increase as the v halo exchange steps

since it includes communication along all the velocity

dimensions. The diagnostics computation D is initially neg-

ligible; however, going to larger process counts, its signif-

icance rises, especially when crossing the island

boundaries. Note that the diagnostics is computed purely

local to a process and only in a final step an array of 12

double precision numbers is summed (reduced) globally to

rank 0 via MPI, causing the increase in time observed in

Figure 17. Finally, it should point out that the runs could be

performed only once, and hence, some fluctuations are to

be expected, for example, in the D curve at 1 k and 8 k in

Figure 17 (and not being present in the D curve in Figure 18

below, for comparison).

For comparison, Figure 18 shows the temporal break-

down of the building blocks of the remap code. Starting with

four nodes (64 MPI processes) at a resolution of 326 the

remap operations R1 and R2 dominate from the beginning

over the compute-intense advection computations, with their

runtime fraction steadily increasing in the following. The

advection computations A1–A6 scale ideally as to be

expected. The Poisson solve step turns out to take about the

same time as the x advection computation, whereas the diag-

nostics is negligible in the range under consideration.

7.2.3. Intel manycore. Finally, we have also run the same

experiment on the Intel KNL partition of the Marconi

 0.01

 0.1

 1

 10

 100

 64 128 256 512 1024 2048 4096

w
al

l c
lo

ck
 ti

m
e

[s
]

cores

A1+A2+A3
A4+A5+A6

D

PC
PF
R1

R2

Figure 18. Weak scaling of the building blocks of the imple-
mentation for the remap run shown in Fig. 16. The letter A
indicates the advection computations whereas R1 and R2 indicate
the remap operations involving all-to-all communication, with R1
mapping from the representation contiguous in V to the repre-
sentation contiguous in X, and R2 inversely. The letter D repre-
sents the diagnostics and P the Poisson solver. To improve the
clarity of the plot the X advections and the V advections were
grouped together.

944 The International Journal of High Performance Computing Applications 33(5)

Fusion cluster at CINECA. We report results from weak

scaling starting with a resolution of 326 points on a single

KNL node, distributed over 64 MPI processes and allowing

for 4 hyperthreads per MPI process. The configuration was

chosen such that the local grid is a regular hypercube of 166

points per MPI process. Figure 19 shows the wall clock

time for the weak scaling experiment, running the domain

decomposition code with and without pipelining. A break-

down of the timings for the various steps shows a similar

pattern as on SuperMUC with virtually flat curves for the

compute-only steps and increasing communication times

when intra-node communication is replaced by internode

communication. The H6 communication becomes expen-

sive starting at 32 nodes (2048 cores). At the same number

of nodes, the pipelining scheme becomes beneficial by

hiding communication partly behind computation.

8. Summary and conclusions

This article addresses the design, implementation, perfor-

mance optimization, and parallel scalability of a semi-

Lagrangian Vlasov–Poisson solver in 6-D phase space. The

numerical algorithm is based on dimensional splitting, that

is, consecutive interpolation along each of the dimensions.

Due to the high dimensionality of the problem, the number

of grid points per dimension that can be stored on a com-

pute node is comparably small and significantly limited by

memory constraints. For this reason, weak scaling is the

most relevant performance metric for this application.

We consider two parallelization schemes, first, a remap-

ping method, and, second, a domain decomposition imple-

mentation that parallelizes the grid in all six dimensions,

the latter replacing the all-to-all-type of communication of

the former with a peer-to-peer (next neighbor) communi-

cation pattern. Conventional MPI point-to-point communi-

cation is used for the halo exchanges and MPI alltoallv for

the remapping, respectively, both in combination with vec-

torized and OpenMP-based multithreaded interpolation.

We demonstrate by means of extensive performance

benchmarks going up to 64 k physical cores that the domain

decomposition method shows an excellent weak scaling,

only limited by the properties of the network interconnect

of the supercomputer, and is superior to the remap scheme

with respect to the memory efficiency as well as the parallel

performance, despite the fact that the boundary exchange

between domains in 6-D is a very communication-intense

operation due to dimensionality effects. It is demonstrated

that the communication cost can be mitigated by overlap-

ping the computation with communication in a pipelining.

We point out that the high efficiency of the hybrid paralle-

lization provides the necessary flexibility to optimally

choose the numbers of MPI processes and of OpenMP

threads according to the specific architecture of a compute

node. This is key for enabling large-scale simulations on

modern supercomputers consisting of nodes with ever-

growing core counts.

By design, the halo cells used by the domain decompo-

sition introduce restrictions on the time step for the semi-

Lagrangian scheme. However, these are mitigated in our

implementation using a one-sided blocked communication

scheme or a rotating mesh that follows a background mag-

netic field.

So far, we have only addressed Lagrange interpolation

that suits the distributed computations very well due to its

locality. In the future, local splines or discontinuous Galer-

kin interpolation schemes will also be considered. Further-

more, extensions to Vlasov–Maxwell and more complex

geometries are natural enhancements. Due to its high effi-

ciency and parallel scalability, the new code enables simu-

lations in 6-D phase space with grid sizes and resolutions

large enough for relevant physics cases and paves the way

to systematically compare gyrokinetic to fully kinetic

simulations.

Acknowledgements

The authors acknowledge discussions with Eric Sonnen-

drücker. This work has been carried out within the frame-

work of the EUROfusion Consortium and has received

funding from the Euratom research and training program

2014–2018. The views and opinions expressed herein do

not necessarily reflect those of the European Commission.

Parts of the results have been obtained on resources pro-

vided by the EUROfusion High Performance Computer

(Marconi-Fusion) through the project selavlas. The authors

gratefully acknowledge the Gauss Centre for Supercomput-

ing e.V. (www.gauss-centre.eu) for funding this project by

providing computing time on the GCS Supercomputer

SuperMUC at Leibniz Supercomputing Centre (LRZ,

www.lrz.de) through project id pr53ri.

Author contributions

Katharina Kormann and Klaus Reuter contributed equally

to this work.

Figure 19. Weak scaling on the Marconi KNL partition com-
paring the domain decomposition codes with and without pipe-
lining, running one MPI process per physical core with four
hyperthreads each. MPI: Message Passing Interface.

Kormann et al. 945

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) dislcosed receipt of following financial sup-

port for the research, authorship, and/or publication of this

article: This work has received funding from the Euratom

research and training programme 2014–2018 under grant

agreement no. 633053.

ORCID iD

Katharina Kormann https://orcid.org/0000-0003-1956-

2073

Notes

1. Fortran 2008, https://www.iso.org/standard/72320.

html

2. Selalib home, http://selalib.gforge.inria.fr/ (accessed 15

April 2018).

3. DRACO HPC extension, http://www.mpcdf.mpg.de/

services/computing/draco (accessed 13 December

2017).

4. SuperMUC Petascale System, https://www.lrz.de/ser

vices/compute/supermuc/systemdescription/ (accessed

5 October 2017).

References

Cerri SS, Kunz MW and Califano F (2018) Dual phase-space

cascades in 3d Hybrid-Vlasov–Maxwell turbulence. The

Astrophysical Journal Letters 856(1): L13.

Cheng CZ and Knorr G (1976) The integration of the Vlasov

equation in configuration space. Journal of Computational

Physics 22(3): 330–351.

Coulaud O, Sonnendrücker E, Dillon E, et al. (1999) Paralleliza-

tion of semi-Lagrangian Vlasov codes. Journal of Plasma

Physics 61(3): 435–448.

Crouseilles N, Latu G and Sonnendrücker E (2009) A parallel

Vlasov solver based on local cubic spline interpolation on

patches. Journal of Computational Physics 228(5):

1429–1446.

Ehrlacher V and Lombardi D (2017) A dynamical adaptive tensor

method for the vlasov–poisson system. Journal of Computa-

tional Physics 339: 285–306.

Einkemmer L and Lubich C (2018) A low-rank projector-splitting

integrator for the Vlasov-Poisson equation. SIAM Journal on

Scientific Computing 40: B1330–B1360.

Grandgirard V, Abiteboul J, Bigot J, et al. (2016) A 5D gyroki-

netic full-f global semi-Lagrangian code for flux-driven ion

turbulence simulations. Computer Physics Communications

207(suppl C): 35–68.

Grošelj D, Cerri SS, Navarro AB, et al. (2017) Fully kinetic versus

reduced-kinetic modeling of collisionless plasma turbulence.

The Astrophysical Journal 847(1): 28.

Guo W and Cheng Y (2016) A sparse grid discontinuous Galerkin

method for high-dimensional transport equations and its appli-

cation to kinetic simulations. SIAM Journal on Scientific Com-

puting 38(6): A3381–A3409.

Hariri F, Tran T, Jocksch A, et al. (2016) A portable platform for

accelerated PIC codes and its application to GPUs using open-

ACC. Computer Physics Communications 207: 69–82.

Kormann K (2015) A semi-Lagrangian Vlasov solver in tensor

train format. SIAM Journal on Scientific Computing 37(4):

B613–B632.

Kormann K and Sonnendrücker E (2016) Sparse grids for the

Vlasov–Poisson equation. In: Garcke J and Pflüger D (eds),

Sparse Grids and Applications - Stuttgart 2014. Cham:

Springer International, pp. 163–190.

Kuley A, Lin Z, Bao J, et al. (2015) Verification of nonlinear

particle simulation of radio frequency waves in tokamak. Phy-

sics of Plasmas 22(10): 102515.

Latu G, Bigot J, Bouzat N, et al. (2016) Benefits of SMT and of

parallel transpose algorithm for the large-scale GYSELA

application. In: Proceedings of the platform for advanced sci-

entific computing conference, PASC ‘16. New York, NY,

USA, pp. 10:1–10:10. ISBN 978-1-4503-4126-4; DOI: 10.

1145/2929908.2929912.

Lindstrom P (2014) Fixed-rate compressed floating-point arrays.

IEEE Transactions on Visualization and Computer Graphics

20(12): 2674–2683.

Mangeney A, Califano F, Cavazzoni C, et al. (2002) A numerical

scheme for the integration of the Vlasov–Maxwell system of

equations. Journal of Computational Physics 179(2): 495–538.

Miecnikowski MT, Sturdevant BJ, Chen Y, et al. (2018) Nonlinear

saturation of the slab ITG instability and zonal flow generation

with fully kinetic ions. Physics of Plasmas 25(5): 055901.

Muñoz PA, Told D, Kilian P, et al. (2015) Gyrokinetic and kinetic

particle-in-cell simulations of guide-field reconnection. I.

Macroscopic effects of the electron flows. Physics of Plasmas

22(8): 082110.

Schmitz H and Grauer R (2006) Comparison of time splitting and

backsubstitution methods for integrating Vlasov’s equation

with magnetic fields. Computer Physics Communications

175(2): 86–92.

Sonnendrücker E, Filbet F, Friedman A, et al. (2004) Vlasov

simulations of beams with a moving grid. Computer Physics

Communications 164(1–3): 390–395.

Tanaka S, Yoshikawa K, Minoshima T, et al. (2017) Multi-dimen-

sional Vlasov–Poisson simulations with high-order monotoni-

city- and positivity-preserving schemes. The Astrophysical

Journal 849: 76.

Umeda T and Fukazawa K (2014) In: Tanaka S, Hasegawa K, Xu

R, Sakamoto N and Turner SJ (eds), Performance Tuning of

Vlasov Code for Space Plasma on the K Computer. 2014.

Berlin; Heidelberg: Springer, pp. 127–138. AsiaSim. ISBN

978-3-662-45289-9, DOI: 10.1007/978-3-662-45289-9_12.

Yoshikawa K, Yoshida N and Umemura M (2013) Direct integra-

tion of the collisionless Boltzmann equation in six-dimensional

phase space: Self-gravitating systems. The Astrophysical Jour-

nal 762(2): 116.

946 The International Journal of High Performance Computing Applications 33(5)

https://orcid.org/0000-0003-1956-2073
https://orcid.org/0000-0003-1956-2073
https://orcid.org/0000-0003-1956-2073
https://orcid.org/0000-0003-1956-2073
https://www.iso.org/standard/72320.html
https://www.iso.org/standard/72320.html
http://selalib.gforge.inria.fr/
http://www.mpcdf.mpg.de/services/computing/draco
http://www.mpcdf.mpg.de/services/computing/draco
https://www.lrz.de/services/compute/supermuc/systemdescription/
https://www.lrz.de/services/compute/supermuc/systemdescription/

Author biographies

Katharina Kormann received her PhD in scientific comput-

ing from Uppsala University for her studies on the numerical

solution of the time-dependent Schrödinger equation. After a

PostDoc at Technical University of Munich, she joined the

group on Numerical Methods in Plasma Physics at the Max

Planck Institute for Plasma Physics. She works on the devel-

opment and analysis of algorithms for high-dimensional

problems, particularly in kinetic plasma physics, and their

high-performance implementation.

Klaus Reuter is a senior high-performance computing

(HPC) applications developer at the Max Planck Comput-

ing and Data Facility (MPCDF). He received a diploma in

econophysics (2006) from the University of Ulm, and a

PhD in Natural Sciences (2010) from the University of

Münster. He worked as a predoctoral researcher at the Max

Planck Institute for Plasma Physics between 2006 and

2010, before he joined the RZG (predecessor of the

MPCDF). He has been working in software development

and support for a plethora of HPC and visualization appli-

cations in the fields of plasma physics, materials science,

biophysics, and biology, among others.

Markus Rampp is the head of the high-performance comput-

ing (HPC) applications group of the Max Planck Computing

and Data Facility (MPCDF). He received a diploma in phy-

sics (1997) and a PhD in Natural Sciences (2000, awarded

with the Otto-Hahn medal of the Max Planck Society,

research area: computational astrophysics), both from the

Technical University of Munich. After working as a pre-

and postdoctoral researcher at the Max Planck Institute for

Astrophysics (1997–2003) he joined the RZG (predecessor

of the MPCDF), where he has been leading software devel-

opment and support for computational biology applications

(awarded with the Heinz-Billing award for the advancement

of scientific computation, 2004), scientific visualization

(since 2008), and HPC applications (since 2010).

Kormann et al. 947

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

