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Titel in deutscher Sprache
Bayes’sche Inferenz und Zuverlässigkeitsanalyse von Zufallsfeldern.

Zusammenfasung
Numerische Modelle in Technik und Wissenschaft werden durch Parameter gesteuert, deren
Werte in der Praxis oft nicht genau sind. Die damit verbundene Unsicherheit kann reduziert
werden, indem das Modell mit Messungen der Systemantwort kombiniert wird. Ein solches
inverses Problem kann durch Bayes’sche Inferenz gelöst werden, wobei Vorabinformationen
mit Beobachtungen verknüpft werden. Das daraus resultierende probabilistische Modell kann
verwendet werden, um Vorhersagen in Fällen zu treffen, in denen die Zuverlässigkeit des
Systems das Hauptanliegen ist. Die Zuverlässigkeit kann anhand der Wahrscheinlichkeit von
Versagensereignissen quantifiziert werden, für deren Schätzung spezielle Simulationsmethoden
verwendet werden.

Die Komplexität dieser Aufgaben nimmt zu, wenn die Modellparameter räumlich varia-
bel sind. Die mit räumlichen Variationen verbundene Unsicherheit wird durch Zufallsfelder
modelliert, die durch eine endliche, aber in der Regel große Anzahl von Zufallsvariablen dis-
kretisiert werden. Diese Arbeit trägt zu verschiedenen Aspekten der Bayes’schen Inferenz und
Zuverlässigkeitsanalyse im Kontext von Zufallsfeldern bei.

Zunächst werden Parameterstudien durchgeführt, um die Auswirkungen verschiedener Aus-
wahlmöglichkeiten im a-priori Zufallsfeldmodell auf die Lösung von Bayes’schen inversen Pro-
blemen zu analysieren. Der Schwerpunkt liegt auf der Karhunen–Loève (KL) Entwicklung von
Zufallsfeldern und dem Einfluss der Anzahl der Erweiterungsterme auf die a-posteriori Zufalls-
felddiskretisierung. Es wird gezeigt, dass für eine angemessene Genauigkeit der Darstellung des
a-posteriori-Zufallsfelds eine höhere Trunkierungsordnung erforderlich ist als für das a-priori
Zufallsfeld. Daher wird vorgeschlagen, im Rahmen der Bayes’schen Inferenz nicht nur die Expan-
sionskoeffizienten selbst, sondern auch deren Anzahl zu lernen. Dies motiviert die Entwicklung
eines sequentiellen Algorithmus namens trans-dimensional BUS. Der Ansatz erweitert die BUS
Methode (Bayesian Updating with Structural reliability methods) auf Probleme mit variablen
Dimensionen. Trans-dimensional BUS kann die a-posteriori Verteilung sowohl der Dimension in
der KL-Diskretisierung als auch der zugehörigen Zufallsfelder effizient abschätzen.

Darüber hinaus führen wir einen Vergleich verschiedener Simulationsmethoden zur Schät-
zung von Versagenswahrscheinlichkeiten in Anwendungen mit Zufallsfeldern durch. Wenn der
Eingabeparameterraum hochdimensional wird, ist es für diese Algorithmen im Allgemeinen
schwierig, die Wahrscheinlichkeit seltener Ereignisse hinreichend genau abzuschätzen. Daher wird
eine neuartige Technik vorgeschlagen, welche die intrinsische niedrigdimensionale Struktur von
Zuverlässigkeitsproblemen ausnutzt. Unsere Methode erstellt einen sogenannten failure-informed
subspace (FIS), um die Dimension des Zuverlässigkeitsproblems effektiv zu reduzieren. Dieser
Ansatz eignet sich besonders für importance sampling mit der cross-entropy Methode, da aus
dem FIS niedrigdimensionale Verteilungen abgeleitet werden können. Der Algorithmus ist in der
Lage, Versagenswahrscheinlichkeiten in hohen Dimensionen mit erheblich geringerer Variabilität
und Stichprobengröße im Vergleich zu Standardalgorithmen für die Zuverlässigkeitsanalyse
abzuschätzen.

i





Abstract
Computational models of physical systems in engineering and science are controlled by parameters
whose values are oftentimes known with imprecision. The associated uncertainty can be reduced
by coupling the model with measurements of the system response. This represents an inverse
problem that can be solved within the Bayesian statistical framework. The solution is given in
terms of an updated probabilistic model, obtained from the combination of prior probability
information with the computational model and the measurement data. The updated model can
be utilized to make predictions about the physical system, which is particularly relevant when
ensuring the reliability of the system is a main concern. The reliability is quantified in terms of
the probability of undesirable (rare) failure events that are estimated by rare event simulation
methods.

The complexity of the Bayesian inference and rare event simulation tasks increases when
the model parameters are spatially variable. The uncertainty associated with spatial variation
is modeled by random fields discretized into a finite, but oftentimes large, number of random
variables. In this work, several aspects of Bayesian and rare event analysis of random fields are
proposed and discussed.

Parameter studies are performed to investigate the implications of different choices in the
prior random field model on the solution of Bayesian inverse problems. Since the prior random
field is discretized with the Karhunen–Loève (KL) expansion, a major focus is the assessment of
the number of expansion terms in the posterior random field representation. The results show
that a larger truncation order is necessary to adequately represent the posterior field, compared
to the order required for the prior field approximation. As a result, learning the set of expansion
coefficients together with their dimension becomes a relevant task in the Bayesian analysis of
random fields. This motivates the development of a sequential algorithm called trans-dimensional
BUS. The method extends the BUS (Bayesian Updating with Structural reliability methods)
approach to variable-dimensional problems. Trans-dimensional BUS efficiently estimates the
posterior distribution of both, the truncation of the KL discretization and the associated random
field parameters.

Furthermore, a comparison of different simulation methods for the estimation of failure
probabilities in random field applications is carried out. In general, when the input parameter
space becomes high-dimensional, estimating the probability of rare events accurately is challenging
for the standard algorithms. Hence, a technique that exploits the intrinsic low-dimensional
structure of reliability problems is proposed. The method constructs a so-called failure-informed
subspace (FIS) to effectively reduce the dimension of the rare event simulation problem. This
framework especially fits within importance sampling (IS) with the cross-entropy method since
low-dimensional distribution models that operate on the FIS can be derived. The algorithm is
able to estimate rare event probabilities in high dimensions with considerably smaller variability
and sample size, compared to standard simulation algorithms.
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Chapter 1

Introduction

“The important thing in science is not so much
to obtain new facts as to discover new ways of
thinking about them”.

William H. Bragg, 1862-1942

1.1. Background and motivation

In engineering and science most physical phenomena are mathematically modeled by partial
differential equations (PDEs), subjected to initial and boundary conditions. Oftentimes, an-
alytical solutions of these equations are cumbersome to derive, due to the complexity and
particularity of engineering problems. Discretization methods, such as the finite element method
[118], are utilized to approach the problem numerically. The advent of high-speed computers
and easy-to-use software implementations have not only increased the range of applications, but
also have allowed efficient and accurate estimation of PDE solutions (see for example [156]).

Numerical approximations to PDEs require a proper description of the system inputs described
by initial and boundary conditions (e.g., restrictions, applied loads). The approximation also
requires information about the system parameters (e.g., material and geometric properties).
In practice, inputs and parameters are roughly defined (imperfect) or simply unknown. This
phenomenon is referred to as uncertainty. In order to appropriately evaluate and predict the
behavior of the system of interest, it is paramount to quantify such uncertainty.

Since the seminal work of Ghanem and Spanos [90], the area of uncertainty quantification
(UQ) has attracted considerable interest in recent years, as a way to characterize and manage
the randomness in engineering applications. The main purpose of UQ is to provide knowledge
about the sensitivity of the system response, after introducing uncertain information about the
system inputs and parameters into the numerical model. Depending on the type of application,
one might encounter different types of uncertainty; in general one can differentiate two particular
sources (after Helton [113]): aleatory uncertainty (or irreducible or inherent), related to the
impossibility of a deterministic description of the intrinsic variability of the phenomenon being
considered, and epistemic uncertainty (or reducible), related to the resulting lack of knowledge or
data about the phenomenon being observed. A detailed classification is described in [135], which
also discriminates the uncertainty in terms of the model parameters, the model inadequacy,
observation errors, numerical implementation, among others.

There exist several mathematical theories to represent and quantify uncertainty (see, e.g.,
[7, 212]). Probability theory [137, 182] has been the classical approach to deal with aleatory
uncertainty. This theory can also be employed to address epistemic uncertainty via the Bayesian
formalism (see, e.g., [72]). Alternatively, non-probabilistic methods can be utilized to model
epistemic uncertainty, including: fuzzy set theory [251], which enables representation of imprecise
concepts in terms of linguistic terms; Dempster–Shafer evidence theory [63, 205], which represents
epistemic knowledge on probability distributions propagated through multi-valued functions;
and random sets [134, 162], which is an extension of a probability theory to set-valued rather

1



Chapter 1. Introduction.

than point-valued functions and provides a generalization of many of the other methodologies [7,
8]. The distinction between aleatory and epistemic uncertainty, and specifically the methods
that are used to quantify them is usually a matter of debate (much in the same way to the
classical discussion between frequentist and Bayesian statistics). In general, the modeling choice
will depend on the type of problem, on the quality and type of information that is at hand,
and ultimately on the analyst preferences. In this work, we take a probabilistic view of all the
sources of uncertainty.

In probabilistic UQ, we can distinguish two fundamental tasks [227]: (i) forward uncertainty
propagation, dealing with the direct incorporation of the uncertain parameters through the
system of interest. The main purpose is to characterize the uncertainty of the system response
using for example stochastic finite elements [90]; and (ii) inverse uncertainty quantification,
dealing with the incorporation of observational data into the computational model to infer or
identify the uncertain parameters describing the system of interest. Specific modeling scenarios
might target different UQ objectives involving the combination of the previous fundamental
tasks. As a result, we usually encounter the following UQ sub-tasks:

� Rare event simulation, dealing with the estimation of failure/rare event probabilities of
the system of interest [45]. This task can be approached from both, forward and inverse
perspectives. In the inverse case, one is interested in updating the probability after the
computational model assimilates the observational data [224].

� Model surrogates, in which the aim is to construct functions that approximate the underlying
numerical model in an efficient manner. This area of UQ has connections with statistical
learning and artificial intelligence approaches [120, 32]. Some well-known techniques are:
polynomial chaos expansions [249, 90], pseudo-spectral approximations/sparse grids [52],
low-rank tensor approximations [95], response surfaces [44], artificial neural networks and
support vector machines [121, 120], Gaussian processes [190], deep neural networks [189,
188], among many others.

� Model reduction, including cases where dimension reduction techniques are applied to
identify the most important variables controlling the system behavior. Some techniques
include: sensitivity analysis [213, 200], projection and low-rank methods [57, 54], reduced
order models [247], model selection [85, 245], and manifold interpolation [46].

� Stochastic optimization, dealing with optimization settings where uncertain parameters are
part of the formulation, resulting in random objective functions and/or random constraints
[31]. This task arises for example in decision-making under uncertainty [136], policy
optimization problems [33], optimal experimental design [75, 81], along with others.

The complexity of UQ problems increases when the uncertain parameters fluctuate randomly
in space. Common examples occur in computational mechanics where material parameters are
spatially varying, such as Young’s modulus in elasticity theory [153], conduction and convection
coefficients in heat transfer problems [170], or permeability fields in hydraulic tomography
applications [168]. The uncertainty related to spatially varying properties is generally represented
by random fields which are understood as random variables that take values in a function space.
Discretization methods are required to define tractable finite-dimensional representations of
random fields. Several techniques have been proposed in the literature: spatial averaging
[240, 239], shape function method [154], basis random variable method [143], midpoint method
[65], Karhunen–Loève (KL) expansion [216], optimal linear estimation [145], orthogonal series
expansion [254], spectral representation [207], and others.

Most of random fields used in practice are defined by their first two central moments, as well
as their correlation kernel (so-called second-order fields). Monitoring and other observational data
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can be used in combination with the PDE model to obtain information on these parameters. This
is an inverse UQ task in which the interest is not only a point estimate of the parameters, but also
a probabilistic characterization of their uncertainty. Such problems can be approached within the
Bayesian statistical framework [131, 210, 193]. The idea is to combine prior information about
the parameters (encoded into a probability distribution) with a likelihood function that accounts
for the relation between the PDE model and the noisy data. The solution of the Bayesian
inverse problem is given in terms of a so-called posterior probability distribution. Closed-form
expressions of this posterior are only available in some particular cases; for instance, models
involving conjugate priors [210, 193] or non-Gaussian priors given by nonlinear transformations of
Gaussians [61]. Hence, Bayesian inverse problems are generally solved using: (i) sampling-based
methods that rely on Markov chain Monte Carlo (MCMC), such as sequential Monte Carlo [62],
sequential importance sampling [198], structural reliability methods [223]; or (ii) approximation
methods, such as transport maps [73], variational inference [80], and likelihood-free methods [209].
Sampling-based techniques usually explore the posterior distribution on-the-fly by constructing
a set of intermediate measures that converge to the full posterior. Particularly, the BUS
(Bayesian Updating with Structural reliability methods) approach proposed in [223] reformulates
a Bayesian inverse problem as a classical reliability analysis or rare event estimation problem.
This construction allows one to employ algorithms for rare event computation to sample from
the posterior. For an efficient and sequential solution of the inverse problem, BUS is typically
combined with subset simulation [15], although other rare event estimation methods can also be
employed (see, e.g., [224]).

The posterior solution is especially sensitive to the prior assumptions, when the uncertain
parameters are spatially varying and modeled by random fields. A common approach is to
impose a Gaussian process prior [190], whose second-order moment properties need to be defined.
The choice of the prior remains a challenge even for homogeneous Gaussian random fields
controlled only by the variance and correlation length. This is because the prior information
about the covariance kernel is usually vague and the data might not be sufficient to clearly
identify the spatial correlation structure. Therefore, the assumed prior has a large influence on
the posterior random field solution and subsequent predictions. We analyze this influence by
means of parameter studies on the prior random field model in [235]. Alternatively, hierarchical
Bayesian inference can be applied to make the posterior solution more robust to the prior
choices. The idea is to include hyperparameters in the specification of the covariance kernel of
the field. For instance, the work [161] applies the KL expansion with a hierarchical Gaussian
process prior using the mean and variance of the field as hyperparameters. The authors in [220]
include the correlation length of the field as a hyperparameter; they propose a parametrized
covariance function to reduce the computational cost associated to the repeated solution of the
eigenvalue problem, implied by the sample-based inference process. The work in [142] introduces
a Metropolis-within-Gibbs algorithm to infer jointly a parameterized Gaussian random field and
its correlation length; they applied a reduced basis algorithm to decrease the computational
cost of the simulation. Moreover, in [194], Cauchy and Gaussian hyperpriors are applied to the
correlation length of the field using non-homogeneous Matérn covariance kernels.

A fundamental parameter in Bayesian inverse problems related to random fields is the
dimension of the field discretization. As discussed before, series expansions are usually applied
to approximate random fields. In practice, it is common to truncate the expansion after a finite
number of terms based on some variance-representation criterion. This heuristic is generally
valid in prior situations when no information or observations about the field are available. In
the inversion case, the optimal number of terms in the series expansion is unknown and it is
controlled by the data [235]. The task of choosing an appropriate truncation for posterior random
fields is a problem of Bayesian model choice or selection, whereby model refers to the dimension
induced by the random field discretization. In this case, the prior distribution is hierarchically
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structured into a prior for the parameters conditioned on the dimension and a discrete prior for
the dimension itself. The estimation of the resulting joint posterior requires the exploration of a
discrete-continuous parameter space. This task can be performed by independently estimating
the normalizing constants of the posteriors at each particular dimension; an approach referred to
as within-model simulation (see, e.g., [85, 51]). For expensive PDE models this is computationally
prohibitive. Alternatively, simultaneous inference on both, dimension and parameters, can be
carried out using MCMC algorithms that explore the disjoint union space by moving between
different dimensions; this approach is called across-model simulation. The standard algorithm
for across-model simulation is the reversible jump MCMC algorithm [96, 97], which searches the
parameter space using proposals that allow jumps between different dimensions. In addition
to the reversible jump algorithm, the method proposed in [47] adapts the Gibbs sampler to
deal with model choice problems. Also, the work [184] presents an iterative jump-diffusion
algorithm to perform model comparison; the approach uses two steps to construct a Markov
process that generates samples from the joint posterior distribution, one jump step that makes
discrete transitions between models, and a diffusion step that draws parameter samples between
those jumps. In [222], the collection of models is expressed as a marked point process with each
point representing a model, afterwards an MCMC scheme implements a birth-death step to
determine the stationary distribution of the process. Moreover, the authors in [24] modify the
reversible jump MCMC, such that the parameter dimensions are fixed in a so-called product or
saturated space defined over all possible models and parameters. In the same direction, the work
[94] shows that the reversible jump MCMC can be derived as a classical Metropolis–Hastings
algorithm applied to the saturated space. Most of the efficient algorithms for Bayesian inversion
in fixed-dimensions proceed in a divide-and-conquer manner by splitting the inference process
into a sequence of tasks whose evolution converges towards the posterior. This idea has also
been translated to the variable-dimensional setting. In [9], the authors combine sequential
importance sampling with the reversible jump MCMC. The work in [123] develops a population-
based reversible jump MCMC that is able to estimate high- and trans-dimensional posterior
distributions. We propose an extension of the BUS formulation to spaces of varying dimension
for the KL expansion in [233].

Another essential task involving the treatment and modeling of uncertainty arises when the
satisfactory operation of the system under consideration needs to be guaranteed. This belongs
to the area of reliability analysis and rare event simulation. The objective is to estimate the
probability of undesirable rare events associated to failure. The performance of the system is
measured by a limit-state function (LSF) expressing the relation between extreme or maximum
system responses and predefined admissible thresholds. The system response is given in terms
of a quantity of interest (QoI), e.g., maximum stresses or displacements of a structural system.
In rare event simulation, the probability of failure represents the evaluation of a potentially
high-dimensional integral whose magnitude is very small. Specialized Monte Carlo algorithms
are utilized for its computation, e.g., directional and line sampling [69, 139], importance sampling
schemes [206, 76, 180, 198], and multilevel splitting methods [15, 48, 38, 232]. Observational
data can also be integrated into the rare event analysis to update the reliability of the system.
This corresponds to a combined inverse UQ and rare event simulation tasks, in which the aim is
to infer the probability of failure using the model and data. The resulting updated probability
of failure is used, for instance, in structural health monitoring, where continuous observational
data is available. It is also applied to the re-analysis of existing structures to identify potentially
unsafe systems. Several works have shown that the structural reliability computed before and
after the data can differ significantly due to the information gained about the structural condition.
We refer to [176, 127, 16] for some methods and structural health monitoring applications, and
also to [224, 181, 88, 235] for problems involving random fields.

When the underlying system parameters are modeled as random fields, estimating failure
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probabilities becomes a challenging task due to the presence of spatial correlations and the increase
in dimensionality of the reliability problem. Even if one applies random field discretization
techniques, the magnitude of the failure probability still depends on the discretization resolution.
Hence, choosing an insufficient number of terms in the random field expansion leads to inaccurate
probability estimates (underestimated spatial variability). The effects of spatial variation on the
reliability of different systems have been reported in several studies. We highlight the work in
[152], which discusses the influence of the finite element and random field discretization on the
failure probability estimate; the authors derive a formula to guide the refinement of the random
field mesh depending on the probability values. In [254], the impact of the truncation order of
the random field expansion is evaluated; the authors show that in their particular problem the
KL expansion converges from above (from unconservative estimates) to the target reliability
index. In [151], an importance sampling methodology is developed for the estimation of rare
event probabilities for elliptic PDEs with random field coefficients; asymptotic analysis of the
probability of failure and the effect of the finite element mesh is also investigated. We follow
and extend this idea in [235], where a study on the influence of the covariance kernel and the
truncation of the KL expansion on prior and posterior failure probabilities is performed. Several
other applications have been developed in geotechnical engineering; we mention the study [99],
where the influence of the spatial variation on the probability of failure of slopes is analyzed;
the authors show that the omission of the spatial variation leads to unconservative estimates of
the failure probability.

Figure 1.1: Schematic representation of inverse uncertainty quantification (red flow), forward rare event
simulation (blue flow), and inverse rare event simulation (red and green flows) of an engineering
model with random field parameters.

In addition to evaluating the influence of the spatial variation on the probability of failure,
several efforts have been oriented towards developing efficient reliability estimation algorithms
for random field applications. An approach is to combine the random field with the finite element
model and to use polynomial chaos to expand the system response (so-called spectral stochastic
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finite elements) [226, 5, 90]. The method in [18] uses a proper orthogonal decomposition to
approximate the random field; the coefficients of this expansion are utilized to train a support
vector machine that acts as a model surrogate during the failure probability estimation. In [128]
the active subspace method is applied to fit Gaussian processes surrogates on a low-dimensional
subspace; the surrogate is later employed in a Monte Carlo simulation to estimate the probability
of failure. Moreover, we propose in [236] a method that identifies the intrinsic low-dimensional
structure of reliability problems using dimension reduction techniques available in Bayesian
inverse problems [57, 253]. A main source of such structure is the smoothing effect of the forward
operator defining the LSF [253]. As a result, this function might vary predominantly along a
few directions of the input parameter space, while being essentially constant in the remaining
directions. The approach is developed in the context of the cross-entropy method [197, 179],
and allows one to derive efficient importance sampling distribution models.

We conclude this section by summarizing the previous discussion in Figure 1.1. For inverse
UQ, one aims at updating the random field after the inclusion of the observations (red flow).
In forward rare event simulation, the objective is to estimate the probability of failure based
on prior assumptions about the random field (blue flow). In inverse rare event simulation, the
goal is to perform an inversion task to update the random field parameters, and subsequently
estimate an updated probability of failure using the posterior random field (the combination of
red and green flows).

1.2. Scope

This thesis concentrates on inverse uncertainty quantification and rare event simulation in
engineering models with random field parameters. For the random field discretization, we focus
on series expansion methods, in particular on the KL expansion. The scope of this thesis evolves
around the reciprocal connection between Bayesian inversion and rare event simulation. These
links, which become clear in the upcoming chapters, are highlighted as follows:

πF (θ) = 1
pF
1F (θ)πpr(θ)︸ ︷︷ ︸

Posterior-failure density that chracterizes
rare event simulation

h(k,θk, υ) = υ − r · L(k,θk; ỹ) .︸ ︷︷ ︸
Limit-state function that chracterizes

Bayesian inversion in varying dimensions

(1.1)

Bayesian inverse problems

The Bayesian approach to inverse problems occurring in PDEs representing engineering systems
is discussed. We analyze analytically and numerically the effects of prior random field choices
on the posterior solution and on the updating of rare event probabilities. This is performed via
parameter studies on the truncation order of the KL expansion and the parameters defining
the covariance kernel of the field, such as correlation length and smoothing parameter. The
emphasis is on the dimension of the random field discretization, for which we derive an analytical
expression of the model evidence. In this case, model refers to the dimension of the KL expansion
coefficients.

When addressing the Bayesian inverse problem numerically, we utilize the BUS formulation
which connects Bayesian inversion with rare event simulation. Particularly, we combine BUS
with subset simulation, a method that performs well in high dimensions. An extension of
the BUS approach to variable-dimensional parameter spaces is proposed. We discuss several
trans-dimensional MCMC algorithms that can be combined with the proposed BUS extension,
and derive a prior for the dimension parameter. The resulting trans-dimensional BUS method is
able to identify not only the coefficients of the expansion, but also their dimension. This allows
one to perform model (dimension) selection and averaging in order to identify an appropriate
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truncation order of the KL expansion for the representation of the posterior random field.
Topics that are not in the scope are: inverse problems related to integral operators, e.g.,

image deblurring and reconstruction [108], non-Gaussian and non-additive noise models [36],
and data assimilation problems, such as Bayesian filtering or smoothing [228, 191].

Rare event simulation

We focus on simulation methods for the estimation of the probability of rare events in high
dimensions. A review of some advanced approaches is carried out, including: sequential
importance sampling, subset simulation, cross-entropy method, improved cross-entropy method.
The performance of the algorithms is tested with benchmark problems in high dimensions, and
also examples involving random fields.

We emphasize the connection between rare event simulation and Bayesian inversion. The
posterior in rare event simulation has a different interpretation, but it has a similar structure to
the posterior in Bayesian inversion. As a result, we can adapt dimension reduction techniques
from Bayesian analysis to find the low-dimensional structure of rare event simulation problems.
The construction of the resulting low-dimensional subspace involves computations of the LSF
gradient. Since the posterior is equivalent to the zero-variance biasing density in importance
sampling, we can derive efficient and effectively low-dimensional biasing distribution families.
This is exploited in the context of the cross-entropy method. The proposed methodology can
estimate small failure probabilities in high dimensions with small sample size and low coefficient
of variation, compared to standard simulation techniques.

Topics that are out of the scope include: the estimation of reliability indexes via approxi-
mation methods, such as the first and second order reliability methods [187], and system and
time-variant reliability analysis [144].

1.3. Organization

Chapter 2 starts with introductory topics on the theory of spatial variation and random fields.
We describe random fields in terms of finite-dimensional distributions and give some basic
insights on its measure theoretic definition. Fundamental properties of random fields are also
introduced including statistics, such as expectation and covariance, and structural properties
such as homogeneity. Several regularity conditions are also described, including continuity,
differentiability and smoothness. Later on, we introduce Gaussian random fields and the Matérn
class of covariance kernels. We also present the KL expansion of random fields, which is a
fundamental concept in the thesis. Several error measures used to quantify the quality of the
random field approximation are also presented. The chapter concludes with two numerical
applications in which we perform several parameter studies to assess the influence of the
covariance operator on the random field discretization, and subsequent estimation of response
quantities.

Chapter 3 discusses the rare event simulation problem and sampling methods for its solution
(blue flow in Figure 1.1). The Bayesian interpretation of the problem is also highlighted. We
begin with classic Monte Carlo simulation and importance sampling. Afterwards, advanced
sequential simulation schemes are presented. These include sequential importance sampling,
subset simulation, cross-entropy method, and improved cross-entropy method. We describe
some connections between these methodologies and evaluate their performance for the solution
of high-dimensional reliability problems, arising in random field applications.

Chapter 4 presents the Bayesian approach to inverse problems in the context of engineering
models (red flow in Figure 1.1). Some well-known summary statistics of the posterior distribution
are described. Afterwards, two MCMC methods are presented, the classical Metropolis–Hastings

7



Chapter 1. Introduction.

and the preconditioned Crank–Nicolson algorithm. Later, the BUS approach to Bayesian
inversion and its combination with subset simulation is introduced. Since Bayesian analysis
not only involves retrieving the uncertain parameters, but also rare event simulation tasks,
we present a short description on the updating of failure probabilities (red and green flows in
Figure 1.1). The new results described in this chapter start from section 4.5 with an analytical
study on the influence of the prior random field choices on the posterior random field and
predictions. In there, we derive updating rules for the random fields and KL coefficients and
provide a numerical error analysis. A major point here is the derivation of the model evidence
for the truncation order of the KL expansion. Analogous studies are performed numerically in
subsequent sections, where we also assess the influence of the prior assumption on the estimation
of posterior rare event probabilities.

Chapter 5 discusses a more general type of inference where finding the model is also part
of the objective. We begin with a description of the Bayesian model inference framework, and
the two most common tasks: model selection and model averaging. In our case, models are
equivalent to the dimension of the random field discretization, e.g., truncation order of the KL
expansion. Thereafter, we propose a discrete prior for the dimension parameter. To address
this type of inference problems, we employ across-model simulation algorithms that are able to
jump between dimensions. Therefore, some MCMC methods that operate in spaces of varying
dimension are described, including: the reversible jump MCMC and saturated space approaches
(Metropolis-within-Gibbs and step-wise samplers). Later on, we extend the BUS formulation to
deal with variable dimensional problems in a sequential manner. At the end of the chapter, we
test our algorithm on two engineering problems with random field parameters.

Chapter 6 deals with dimension reduction techniques for rare event simulation problems (blue
flow in Figure 1.1). First, a short review of the most common projection methods used to find
the low-dimensional structure of nonlinear Bayesian inverse problems is described. These include
the likelihood-informed subspace, active subspace and certified dimension reduction approaches.
We employ the latter to construct a subspace that defines the intrinsic low-dimensionality of
reliability problems. This is exploited in the context of importance sampling with the cross-
entropy methods, where efficient low-dimensional biasing distribution models can be derived.
The resulting method is assessed with four numerical examples: two standard high-dimensional
reliability benchmark problems and two random field applications.

Chapter 7 presents some final considerations, a summary of the main contributions of the
dissertation, and a pool of basic ideas that could be used for future research.

The thesis concludes with Appendix A, containing a short overview of measure theoretic
probability theory, which is fundamental for a better understanding of probabilistic UQ; and with
Appendix B, where introductory concepts of finite element analysis for 2D elasticity problems
are presented. In particular, we derive an adjoint method for the estimation of the LSF gradient
for the numerical example in subsection 6.4.4.

8



Chapter 2

Representing spatial variation with random fields

“A model must be of a simple and tangible type if
it is meant to convey a clear idea of what a
realization looks like... Needless to say, a model
must often be almost grotesquely oversimplified in
comparison with the actual phenomenon studied”.

Bertil Matérn, 1917-2007 [164, p.27].

Spatial variation is a common characteristic of uncertain phenomena occurring in several
areas of science; some examples include: the heterogeneous distribution of soils in an aquifer,
the micro/macroscopic patterns of material properties, the geometric imperfections of structural
elements after construction, the spatial structure of particles suspended in a fluid, the intensity
and texture distribution of a picture in image compression and restoration.

Oftentimes, the patterns or realizations of uncertain quantities induced by spatial variation
are significantly complex and one requires a probabilistic description for their analysis and
interpretation. The theory of stochastic processes provides a tool for studying random phenomena
that vary in time. This theory can be generalized to deal with models that vary randomly in
space. In this case, elements of the so-called index set of a stochastic process are no longer
related to time, but instead to spatial coordinates. This type of processes are referred to as
random fields.

Random fields can be roughly understood as an arranged set of random variables. The
arrangement is specified by the index set pointing to different spatial locations of some topological
space, which by definition is infinite-dimensional. In practice, one seeks a suitable finite-
dimensional representation of the random field. Most of the available techniques for random field
discretization require not only the specification of a set of spatial points, but also information
provided by the expectation and covariance. In general, the aim is that the random field
discretization “succeeds in capturing the essential features of a complex random phenomenon in
terms of a minimum number of physically meaningful and experimentally accessible parameters”
[239]. One can argue with the last part of this statement since parameters that are not necessarily
accessible can be retrieved within the framework of inverse problems (Chapters 4 and 5).

We start by reviewing important concepts on random field theory and the discretization
method that is used in our studies. We refer to Appendix A for a short discussion on probability
theory that supports the details presented in this chapter.

2.1. Definition of a random field

Consider the probability space (Ω,F ,P), together with a bounded index setD ⊆ Rn representing
a physical domain. Let G(n,d) := {g : D → R

d; d, n ∈ N>0} be the set of functions mapping from
D to Rd, and G (n,d) := {g ∈ G(n,d) : g(xj) ∈ Bj(Rd),xj ∈ D, j = 1, . . . , k} be an associated
σ-algebra, where Bj(Rd) are Borel sets on Rd (e.g., the smallest σ-algebra containing products
of half-open intervals in Rd), and k is an arbitrary index [2]. A (n, d)-dimensional random field
is a measurable function H from the space (Ω,F ) into the realization space (G(n,d),G (n,d)).
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From this definition, a random field can be understood as a random variable that takes values
in a function space.

Random fields are usually denoted by H(x, ω), meaning the value that a function in G(n,d)

takes at the location x for a given ω ∈ Ω. For fixed ωi, the Rd-valued function hi(x) = H(x, ωi)
is a realization or sample path of the random field. Conversely, for a fixed xj ∈ D, the function
Hj(ω) = H(xj , ω) is a random variable. This relation is explained graphically in Figure 2.1 for
a (1, d)-dimensional random field and in Figure 2.2 for a (2, d)-dimensional one. As mentioned
in [256], it is useful to think of x as “spatial coordinate” and of each ω as a “particle” or
“experiment”.

Figure 2.1: Evolution of marginal densities (represented as histograms) and realizations (gray lines) of
a 1D random field: for a fixed element of the sample space ωi ∈ Ω, the random field turns
into a realization hi(x) across the spatial domain D = [0, 1]. For a fixed spatial coordinate
xj ∈ D, the random field turns into a random variable Hj(ω).

Given a probability measure P on (Ω,F ), one can define a corresponding law or distri-
bution µ in the realization space (G(n,d),G (n,d)). This corresponds to µ(B1 × · · · × Bk) =
P[H(x1, ω) ∈ B1, . . . ,H(xk, ω) ∈ Bk], where each B denotes Borel sets in D. The associated
collection of k cumulative distribution functions (CDF) given by

FH1,...,Hk(y1, . . . , yk) = P[H(x1, ω) ≤ y1, . . . ,H(xk, ω) ≤ yk] = P[H1(ω) ≤ y1, . . . ,Hk(ω) ≤ yk] ,
(2.1)

with k ≤ d, is known as the family of finite-dimensional (fi-di) distributions of the random
field H [2]. For absolutely continuous fi-di CDFs, one can also define the corresponding set of
probability density functions (PDF) as

πH1,...,Hk(y1, . . . , yk) = ∂kFH1,...,Hk(y1, . . . , yk)
∂y1 · · · ∂yk

. (2.2)

Note that when k = d, one gets the full joint distribution of the field. Random fields can be
directly defined in terms of the family of fi-di distributions (2.1) provided they exist and satisfy
the consistency and symmetry conditions (see Kolmogorov’s extension theorem [256, p.11]):

(i) Consistency (projection invariance): marginal distributions can be generated from higher
dimensional ones, i.e., FH1,...,Hk,Hk+1,...,Hk+m(y1, . . . , yk,∞, . . . ,∞) = FH1,...,Hk(y1, . . . , yk)
[215].
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(ii) Symmetry (permutation invariance): FH1,...,Hk(y1, . . . , yk) is invariant under arbitrary
permutation of the indices j = 1, . . . , k (same permutation for both xj , yj).

The fi-di distributions of the random field uniquely define the probability measure µ associated
to the σ-algebra G (n,d) in the realization space. This makes the measure-theoretic and fi-di-based
definitions equivalent. Nevertheless, the characterization established by the fi-di distributions is
the most used in practice since it is more intuitive to think of a random field as a collection of
random variables representing uncertain values at each spatial coordinate in D (as it is seen in
Figures 2.1 and 2.2).

Note that if n = 1 and instead of indexing spatial coordinates one indexes time, the random
field reduces to a stochastic process. We also remark that the system of fi-di distributions does
not fully characterize the random field realizations, in the sense that two random fields can
share the same fi-di distributions but have completely different sample paths. This is because
fi-di distributions do not determine the continuity properties of the random field (see, e.g., [30,
p.482]).

Figure 2.2: Some marginal densities (represented as histograms) and realizations (gray surfaces) of a 2D
random field: as in Figure 2.1, for a fixed element of the sample space ωi ∈ Ω, the random
field turns into a realization hi(x1, x2) across the spatial domain D = [0, 1]× [0, 1]. For a fixed
spatial coordinate xj = [x(j)

1 , x
(j)
2 ] ∈ D, the random field turns into a random variable Hj(ω).

2.2. Fundamental random field properties
2.2.1. Statistical properties

Analogous to the analysis of random variables, some of the most important properties of random
fields are characterized by their statistical moments. Consider a second-order random field
expressed by the collection of random variables Hx = {H(x1, ω), . . . ,H(xj , ω), . . . ,H(xd, ω)}
with full joint fi-di distribution FHx and density πHx , where x = {x1, . . . ,xj , . . . ,xd : xj ∈ D}
is a countable set of spatial points.
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The expectation or mean of a random field is the Rd-valued function

µH(x) = E[H(x, ω)] =
ˆ

Ω
H(x, ω)P(dω) =

ˆ
Rn

y dFHx(y) =
ˆ
Rn

y πHx(y) dy, (2.3)

where y = [y1, . . . , yd]. The second moment or correlation of the random field H(x, ω) with
itself H(x′, ω) (i.e., the autocorrelation) is given by the Rd×d-valued function

RHH(x,x′) = E
[
H(x, ω)H(x′, ω)

]
=
ˆ
Rn

ˆ
Rn

y y′ πHx,Hx′
(
y,y′

)
dydy′, (2.4)

where πHx,Hx′ (y,y
′) represents the joint density of the random field with itself [1]. Similarly,

the covariance of the random field H(x, ω) with itself H(x′, ω) (i.e., the autocovariance) is the
R
d×d-valued function

CHH(x,x′) = Cov
[
H(x, ω), H(x′, ω)

]
= E

[
H(x, ω)H(x′, ω)

]
− µH(x)µH(x′) (2.5a)

= RHH(x,x′)− µH(x)µH(x′), (2.5b)

note that CHH(x,x′) = RHH(x,x′), if the random field is centered (the mean function is zero
for all x ∈ D). Moreover, the normalized covariance function

ρHH(x,x′) = CHH(x,x′)
σH(x)σH(x′) , (2.6)

is called the correlation coefficient function, where σH(x) corresponds to the standard deviation
of the field. If x = x′, the covariance becomes the variance function σ2

H(x) = CHH(x,x) =
RHH(x,x) − µ2

H(x), where RHH(x,x) = E
[
H2(x, ω)

]
is also known as the mean-squared

function.

A random field is strictly homogeneous or just homogeneous, if the distribution functions
(2.1) are invariant under arbitrary translations in space. That is, for all spatial coordinates
x′ ∈ D

P[H(x1, ω) ≤ y1, . . . ,H(xk, ω) ≤ yk] = P
[
H(x1 + x′, ω) ≤ y1, . . . ,H(xk + x′, ω) ≤ yk

]
, (2.7)

where each (xj+x′) ∈ D (with j = 1, . . . , k and k ≤ d). The random field is weakly homogeneous,
if the mean function is constant across D and the correlation function only depends on the
separation vector h = x− x′, that is

µH(x) = µH <∞ and RHH(x,x′) = RHH(h) = RHH(−h); (2.8)

under (2.8), the covariance function (2.5) reduces to CHH(h) = σ2
HρHH(h), since the variance

of a homogeneous field is also constant, σ2
H(x) = σ2

H <∞.

Furthermore, if the homogeneous correlation/covariance function is also independent of
the direction (rotations and reflections), the random field is called isotropic. In this case, the
covariance is only a function of the norm on D. Since in most cases D ⊂ Rn, we employ the
Euclidean norm ‖h‖2 = h and we write CHH(h) = CHH(h). Therefore, isotropic covariance
functions are a subclass of the homogeneous ones. One can also use a different norm to compute
the distances between the spatial coordinates. This provides more flexibility in the application
of homogeneous covariance functions. For instance, one can define an anisotropic random field
by considering the non-Euclidean norm h =

∥∥∥hTAh
∥∥∥

A
=
√
hTAh, where the matrix A ∈ Rn×n

must be positive semi-definite (xTAx ≥ 0 for all x ∈ D) in order to define a valid covariance
function. The norm ‖·‖A induces an ellipsoidal symmetry (at the iso-correlation surfaces) and
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2.2. Fundamental random field properties

as a result, the correlation/covariance functions are termed ellipsoidal [164].
The dependence structure of physical phenomena is oftentimes spatially varying [84]. This

requires the application of non-homogeneous random field models, which in some cases can
be derived from homogeneous ones. For instance, consider an isotropic random field H(x, ω),
with µH(x) = 0 and CHH(x,x′) = RHH(h). We can now define another random field as
Y (x, ω) = σ2

Y (x)H(x, ω), such that µY (x) = 0 and CY Y (x,x′) = σY (x)σY (x′)RHH(h). Since
the variance is no longer constant, the random field Y (x, ω) is non-homogeneous. Similarly, one
can define a random field Y (x, ω) = µY (x) +H(x, ω) that is also non-homogeneous since the
mean is spatially variable. Further combinations of isotropic/anisotropic random fields can also
be applied to generate non-homogeneity [1].

Finally, one can also define whether two random fields are considered equivalent or not. The
importance of this lies in the fact that even if two random fields share the same fi-di distributions,
they do not necessarily generate the same realizations. First, we say that two random fields
H(x, ω), Y (x, ω) are equivalent versions of each other if P[ω : H(x, ω) = Y (x, ω)] = 1 for any
x ∈ D. If the random fields are equivalent, they share the same fi-di distributions [1]. However,
as mentioned before, they are not necessarily identical in the sense that each field can have
different sample paths (see classical example in [2, p.14]). In order to avoid such “pathological”
cases and to employ fi-di distributions to also characterize the sample path properties of the
field, one typically imposes a regularity property on the random fields, which is separability.
Basically, this property considers that the index set D is a separable space1. The idea behind the
separability condition is to determine the properties of the random field based on a countable
set of points of the domain D. In practice, separability posses no further restrictions since the
discretized domain D itself satisfies the separability condition [70]. One always implicitly assumes
that the fields are separable and as a result, the fi-di distributions completely characterize the
random field.

2.2.2. Continuity, differentiability and smoothness

In practice, it is important that the realizations of a random field satisfy some regularity
properties. Adler [2, Ch.3] derives a set of conditions on the fi-di distributions ensuring that
the sample paths of random fields are equipped with these properties. The most fundamental
regularity condition one requires in practice is continuous differentiability, which is directly
related to the smoothness of the field. For example, Gaussian random fields are considered
regular, if they have sample function continuity and differentiability. We shall now comment
on some of these results, which must be taken into account when using random field theory to
represent uncertainty.

Continuity of random fields is associated to the convergence of sequences of random variables
{H(x1, ω), . . . ,H(xd, ω)} as d→∞. We say that a random field is continuous at x ∈ D, if for
every sequence of points {xd} for which ‖xd − x‖ → 0 as d→∞, then

P[ω : |H(xd, ω)−H(x, ω)| → 0, d→∞] = 1. (2.9)

Condition (2.9) is called almost-sure convergence, and it implies convergence in probability
and in distribution (see, e.g., [249]). If (2.9) is applicable at each point x ∈ D, the random field
has sample function continuity [2]. Moreover, the random field is mean-squared continuous in D,
if

E
[
(H(xd, ω)−H(x, ω))2

]
→ 0 as d→∞, ∀ x ∈ D. (2.10)

1A metric space D is separable, if it contains a countable everywhere dense subset D′. D′ is everywhere dense in
D, if [D′] = D, where [D′] denotes the closure of D′, meaning the set of all contact points of D′. A point
x ∈ D is a contact point of D′, if every neighborhood (open sphere) of x contains at least one point of D′ [138].
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Chapter 2. Representing spatial variation with random fields.

Despite the fact that mean-squared continuity does not imply continuous sample paths,
the condition (2.10) has an important relation with the covariance function. A random field
is mean-squared continuous at x ∈ D, if and only if CHH(x,x′) is continuous at x = x′, i.e.,
continuous variance (see [1]). Particularly, for homogeneous random fields the mean-squared
continuity holds, if and only if CHH(h) is continuous at h = 0.

Differentiability of random fields is another important regularity property. The gradient of a
random field is a space vector in D ⊂ Rn, denoted ∇H(x, ω) = [Ḣ1(x, ω), . . . , Ḣn(x, ω)]T. For
a fixed ω, each component is given by

Ḣi(x, ω) = ∂H(x, ω)
∂xi

. (2.11)

In practice, we are mainly interested in mean-squared differentiability since it has a simple
relation with the covariance function [1]. One says that a random field is mean-squared
differentiable, if for every sequence of points {xd} for which ‖xd − x‖ → 0 as d→∞, then

E

[(
Ḣi(xd, ω)− Ḣi(x, ω)

)2
]
→ 0 as d→∞, for i = 1, . . . , n and ∀ x ∈ D. (2.12)

For homogeneous random fields with covariance function CHH(h), mean-squared differentia-
bility (2.12) is specified by the covariance function. Specifically, if the derivative ∂2CHH(h)/∂h2

i

exists and is finite at h = 0, for all components i = 1, . . . , n, then the random field is mean-
squared differentiable [1]. This means that the smoothness of the covariance function defines
the smoothness of the random field. Note that continuity and differentiability is directly related
to the the behavior of CHH(h) in the proximity to 0. For homogeneous Gaussian random fields,
this property of the covariance function determines essentially the local behavior (continuity
and differentiability) of the random field realizations [2].

2.3. Gaussian and related fields

A Gaussian random field H(x, ω) is a random field whose fi-di distributions are all multivariate
Gaussian. In this case, the field is determined by the mean (2.3) and covariance (2.5) functions.
Gaussian fields are fundamental in the study of spatial variation, not only because they are
reasonable models in some applications, but also (and mainly) because they have a simple
construction that enables analytical tractability. The definition and properties of the multivariate
Gaussian distribution are presented next.

A random vectorX = [X1, . . . , Xd]T is multivariate Gaussian distributed, if theR-valued ran-
dom variable Y =

∑d
i=1 yiXi is Gaussian, for every {y1, . . . , yd}. The corresponding probability

density of X is

πX(x) = 1√
(2π)d det(ΣXX)

exp
(
−1

2
[
(x− µX)TΣ−1

XX(x− µX)
])
, (2.13)

where the mean vector µX ∈ Rd has elements E[Xi] = µ
(i)
X , and the covariance matrix ΣXX ∈

R
d×d has elements E[(Xi − µi)− (Xj − µj)] = Σ(ij)

XX .
Many important properties of multivariate Gaussian vectors relate to the individual distribu-

tions of their groupings. This is because any k-grouping of X is also Gaussian distributed, with
k = {1, . . . , d− 1} [239]. If one defines the partition X = [X1,X2], such that X1 = [X1, . . . , Xk]
and X2 = [Xk+1, . . . , Xd], the mean vector and covariance matrix can be divided in terms of
individual and crossed components associated to each grouping [239]
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2.3. Gaussian and related fields

µX =
[
µ1
µ2

]
ΣXX =

[
Σ11 Σ12
ΣT

21 Σ22

]
, (2.14)

this representation allows us to compute related marginal and conditional distributions, which
are paramount in Bayesian inference (cf. Chapter 4).

The fi-di distributions induced by the Gaussian assumption satisfy the conditions of con-
sistency and symmetry (see, e.g., [1, Sec. 1.4]). Thus, the main task for the definition of
Gaussian random fields is the specification of a proper correlation/covariance function. This is
because the sample path continuity of Gaussian field is basically controlled by this function. For
homogeneous Gaussian random fields, the sample path continuity can also be verified as [1]

E
[(
H(x, ω)−H(x′, ω)

)2] = 1− ρHH(‖h‖) ≤ c

|ln(‖h‖)|1+ε , (2.15)

for some finite c > 0 and ε > 0. One can check that the bound (2.15) is an increasing function of
‖h‖ and the curves (for different ε) approach 0 with large slope. Since almost every continuous
correlation function with an exponential decay complies with this condition, Abrahamsen [1,
p.20] states that “Gaussian random fields with continuous mean and covariance functions will
generate continuous sample paths”.

Other non-Gaussian random fields can be generated from Gaussian ones. The process usually
involves the application of nonlinear mappings that preserve probability in both underlying
spaces, so-called isoprobabilistic transformations. The theory of translation fields is based on
such transformations [102]. Consider a homogeneous Gaussian random field H(x, ω) with mean
zero and variance one, and the transformation T = F−1

Y ◦ Φ(·), where Φ(·) denotes the standard
Gaussian CDF. A translation field Y (x, ω) is defined as [101]

Y (x, ω) = T (H(x, ω)) = F−1
Y ◦ Φ(H(x, ω)), (2.16)

where the field Y (x, ω) is also homogeneous and has marginal distributions FY . Depending on
the distribution FY and the covariance function of the Gaussian field H(x, ω), one can employ
(2.16) to construct a non-Gaussian field. For instance, in [101], the idea is to define Y (x, ω)
using a polynomial chaos expansion of the Gaussian field in terms of Hermite polynomials. The
covariance function of Y (x, ω) is also derived from the polynomial chaos expansion. This scheme
is referred to as the direct problem since one employs (2.16) to establish the relation between
the Gaussian and non-Gaussian field. However, there are cases where translation model (2.16)
does not exist. This is called the inverse problem since one no longer employs the relation
(2.16), and only information about the marginals and covariance function is used. In this case,
there are three ways to approach the problem [101]: (i) match the marginal distributions and
approximate the covariance function, (ii) estimate the marginal distributions and match the
covariance function, or (iii) approximate both the marginal distributions and the covariance
functions. We refer to [100] for some examples and further discussion. We also point out that
copula theory can be applied to model different types of non-Gaussian correlation structures
(see, e.g., [243]).

A classical example of a non-Gaussian field is the χ2 field with parameter k, which is
defined as Y (x, ω) = [H(1)(x, ω)]2 + · · ·+ [H(k)(x, ω)]2, where each individual random field is
homogeneous and Gaussian with mean zero, and they all share the same covariance function
[2]. Another class of non-Gaussian random fields that has significant importance in engineering
practice is the lognormal random field. This is because material properties are always positive
quantities. Since the Gaussian and lognormal distributions are related to each other, one can
define a translation model (2.16) from a Gaussian to a lognormal field that is simple to apply.
Thus, a lognormal field realization Y (x, ω) can be constructed by a transformation of a Gaussian
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Chapter 2. Representing spatial variation with random fields.

field realization h(x, ω) as
Y (x, ω) = exp (H(x, ω)) . (2.17)

In our applications, we employ homogeneous and non-homogeneous random field models
that are either Gaussian or lognormal.

2.4. Covariance operators and kernels

Covariance kernels for random field modeling are empirical models used to define the particular
spatial correlation of a random field. Three essential properties of covariance functions that follow
from its definition are: (i) symmetry, CHH(x,x′) = CHH(x′,x), (ii) positive semi-definiteness,
i.e.,

∑d
i=1

∑d
j=1 cicjCHH(xi,xj) ≥ 0, for each {x1, . . . ,xd} ∈ D and c1, . . . , cd ∈ R, and (iii)

continuity. Moreover, covariance functions are close under addition, multiplication, limits and
integration [1, Thm. 3.1].

In general, covariance functions can be understood as kernels. Consider D ⊂ Rn be a
bounded domain. A function k : D ×D → R is called a Hilbert–Schmidt kernel if

ˆ
D

ˆ
D
|k(x, y)|2 dxdy <∞; (2.18)

the associated integral operator K : L2(D)→ L2(D), defined as

(Ku)(x) =
ˆ
D
k(x, y)u(y)dy ∀ u ∈ L2(D) (2.19)

is called a Hilbert–Schmidt operator. Here, K is understood as a linear operator in an infinite-
dimensional setting. In practice, a spatial discretization is imposed on D to define a finite
representation of such operator, this process generates a so-called Gram matrix. In the context
of covariance kernels, the resulting finite-dimensional operator is the covariance matrix.

Hilbert–Schmidt operators are in particular self-adjoint, this guarantees that covariance
matrices are Hermitian, and thus, they have a complete set of eigenvectors and real eigenvalues
[6] [138, p.248]. This is an important fact that allows one to invoke Mercer’s theorem [166]
to define the spectral representation of the covariance kernel. This is because homogeneous
correlation functions RHH : D → R are positive-semi-definite, if and only if they can represented
by the n-dimensional Fourier-Stieltjes integral:

RHH(h) =
ˆ
D

exp(iωh)dnΨ(ω), (2.20)

where Ψ(ω) is a real, non-decreasing and bounded function, called the spectral measure or
spectral distribution function. The representation (2.20) is due to Bochner’s theorem [35], and it
basically specifies that all positive-semi-definite functions have an unique spectral representation.

Different parametric families of covariance functions are available in the literature, these
include the Cauchy, Bessel and exponential families (several examples are reported in [1, 90,
219]). A well-known family in spatial statistics is the Matérn class.

2.4.1. Matérn covariance kernels

The Matérn kernel is defined by considering that for isotropic correlation functions the condition
(2.20) can be replaced by a one-dimensional Bessel transform [250, p.353]. The original Matérn
kernel is [164, p.18]

Cν(h) = σ2
H

2
Γ(ν)

(
bh

2

)ν
Kν (bh) , (2.21)
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where h = ‖x− x′‖2, Γ(·) is the gamma function, Kν(·) is the modified Bessel function of
the second kind, and the constants b, ν > 0. For ν = 1, the covariance function reduces to
C1(h) = σ2

H · (bhK1(bh)); this kernel is known as elementary and it represents the covariance of
a Markov field [164]. A similar model was proposed by Whittle [246]:

Cν(h) = σ2
H

1
Γ(ν + 1)

(
h

2b

)ν
Kν (bh) . (2.22)

Due to the similarities between (2.21) and (2.22), the kernels are sometimes grouped together
as the Whittle-Matérn class. However, Handcock and Stein [105] introduced the standard
Matérn family formulation which re-parameterizes (2.21) in terms of a scale parameter ` ∈ R>0
controlling the range of correlation (correlation length) and a smoothing parameter ν ∈ R>0
controlling the smoothness of the random field. In this case, the Matérn kernel is expressed as

Cν(h) = σ2
H

21−ν

Γ(ν) (bh)ν Kν (bh) (2.23)

where b = (
√

2νh)/`. A slightly different version of (2.23) is proposed in [106], where b =
(2
√
νh)/` is used. In general, there exist several parametrizations of the Matérn kernel each of

which have particular advantages in different fields (see for instance [221, p.31],[150, 83]). We
employ the following type of Matérn covariance kernel [190]

Cν(h) = σ2
H

21−ν

Γ(ν)

(√
2νh
`

)ν
Kν

(√
2νh
`

)
, (2.24)

since we can define the special case ν = 1/2 and limiting case ν →∞:

C1/2(h) = σ2
H exp

(
−h
`

)
and C∞(h) = σ2

H exp
(
− h

2

2`2

)
, (2.25)

which correspond to the non-differentiable exponential and infinite-differentiable squared expo-
nential (sometimes called Gaussian or radial basis function) covariance kernels, respectively. As
discussed in subsection 2.2.2, we can verify mean-squared differentiability of the random field by
evaluating the second derivative of (2.25)

C̈1/2(h) = σ2
H

[
exp (− |h| /`) sgn2(h)

`2
− 2δ(h)

`

]
and C̈∞(h) = σ2

H

exp(−h2/(2`2))(h2 − `2)
`4

,

(2.26)
at h = 0, where sgn(·) and δ(·) are the sign and Kronecker functions, respectively. In this case,
we have that C̈1/2(0) = −∞ and C̈1/2(0) = −σ2

H/`
2. The random field realizations produced by

an exponential covariance kernel are continuous but they are not mean-squared differentiable. A
modification of the exponential kernel that fixes the mean-squared differentiability is discussed
in [217]. Moreover, the squared exponential kernel produce ∞-times mean-squared differentiable
realizations as long as the field is of second-order (this can be verified in [1, p.24]).

The parameters of the Matérn model ` and ν can be fitted based on experimental measure-
ments [105]. The value of ν determines the smoothness of the random field, and it is usually a
fixed parameter since it is poorly identified in practical applications [150]; although in [109], a
framework for its estimation is proposed. In general the recommendation is to choose a smooth
kernel (as the squared exponential) for fitting smooth functions, while a non-differentiable kernel
(as the exponential) is a better option for approximating continuous but non-differentiable
functions.

17



Chapter 2. Representing spatial variation with random fields.

2.5. Representing random fields with the Karhunen–Loève expansion

The definition of a random field implies the construction of a fi-di distribution family with
d → ∞. Since it is not feasible to collect sufficient data to verify the assumed probabilistic
models, such a theoretical description is not used in practice. The process of representing a
continuous-parameter random field in terms of a finite set of random variables requires the
use of stochastic discretization algorithms [163]. We will briefly discuss a classification of such
representation techniques and focus on the Karhunen–Loève expansion of random fields.

2.5.1. General remarks on random field discretization

The efficiency in the approximation of a continuous random field H(x, ω) by a discretized
Ĥ(x, ω) is quantified by its ability to accurately represent the original field with as few random
variables as possible. Methods for random field representation can be classified into three main
categories:

(i) Point discretization methods, in which the random field is represented point-wise at each
spatial location of the discretization; the standard algorithm is the midpoint method [65].

(ii) Averaging discretization methods, in which the random field is expressed as weighted
integrals over the domain. Some approaches are, the spatial averaging method [240], the
shape function method [154] and the weighted integral method [64].

(iii) Series expansion methods, where the random field is represented as a truncated series
expansion of random variables and deterministic functions. Popular techniques are the
perturbation method [239], the Karhunen–Loève expansion [216], the expansion optimal
linear estimation [145], the orthogonal series expansion [254] and spectral representation
[207].

In the following, we focus on the Karhunen–Loève expansion which is probably the most
popular method for random field discretization in uncertainty quantification. One of the reasons
for its popularity is that the Karhunen–Loève expansion is optimal in the mean-squared error
sense as compared to any other spectral projection algorithm.
Remark 2.1. There exist alternative methods to generate Gaussian random field realizations
directly. This is the case of circulant embedding [67], which employs fast Fourier transform
to diagonalize a nested-block-circulant-matrix extension of a nested-block-Toeplitz covariance
matrix. Optimization methods can also be utilized to sample discretized Gaussian random fields;
in this case, sampling can be expressed as a randomized least squares problem [17]. Furthermore,
the work [150] (based on [246]) shows that the solution of the stochastic PDE

γ · (κ2 −∆)H(x) = W (x) x ∈ D, (2.27)

where W is a white noise process and ∆ is the Laplacian operator, is a homogeneous Gaussian
random field (under the Matérn kernel) whose correlation length and variance are controlled by
the constants κ > 0 and γ > 0, respectively. Neumann boundary conditions are usually applied
to solve (2.27) [150].

2.5.2. Karhunen–Loève expansion

The Karhunen–Loève (KL) expansion [155, 132] uses a linear combination of orthonormal
functions chosen as the eigenfunctions resulting from the spectral decomposition of the covariance
operator of the random field. The KL expansion is based on Mercer’s theorem [166], which
provides a series representation of symmetric positive-definite functions. In this case, there exists
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an orthonormal basis consisting of eigenfunctions {φi} : D → L2(D) of the covariance operator
Σ together with a sequence of corresponding eigenvalues {λi} ∈ [0,∞). The covariance kernel
CHH(x,x′) has a representation of the form

CHH(x,x′) =
∞∑
i=1

λiφi(x)φi(x′), ∀ x,x′ ∈ D (2.28)

where the eigenvalues are such that λk ≥ λk+1 and limk→∞ λk = 0, and the eigenfunctions
φk(x) ∈ L2(D). The series (2.28) is called a Mercer expansion.

Consider a square-integrable (second-order) random field H(x, ω) defined over a probability
space (Ω,F ,P), indexed over D, and equipped with a continuous covariance function CHH(x,x′).
We can employ the orthonormal basis consisting of the eigenfunctions of the covariance operator
together with the sequence of real and positive eigenvalues to represent a second-order random
field H(x, ω) as

H(x, ω) ≈ Ĥ(x; k,θ) := µH(x) +
∞∑
i=1
1(i ≤ k)

√
λiφi(x)θi(ω), (2.29)

where Ĥ(x; k,θ) is the approximated field, 1(·) denotes the indicator function, k is the truncation
order of the expansion, and θ = {θi(ω) : Ω → R} is a set of mutually uncorrelated random
variables with mean zero and unit variance, that is, E[θi] = 0 and E[θiθj ] = δij , ∀ i, j ∈ N (with
δ the Kronecker function). The series (2.29) is called the Karhunen–Loève expansion of the
random field. The KL expansion works as a dimension reduction technique, since instead of
directly using a countable set of spatial points (as d→∞), we are now defining the uncertainty
in terms of the KL coefficients θ ⊆ Rk.

For Gaussian random fields, the variables θi(ω) are independent and jointly Gaussian
distributed. In the general case, the distribution of θi(ω) is cumbersome to estimate since

θi(ω) = 1√
λi

ˆ
D
H(x, ω)φi(x)dx i = 1, 2, . . . , (2.30)

which requires the knowledge of random field structure for its computation. Non-Gaussian
random fields can be represented with the KL expansion through the definition of different basis
functions [115], or the application of a suitable isoprobabilistic transformation of an underlying
Gaussian field (e.g., translation fields [61, 101]), as we briefly commented in section 2.3.

The set of eigenpairs {λi, φi} are obtained through the solution of a homogeneous Fredholm
integral equation of the second kind [231, 90]

ˆ
D
CHH(x,x′)φi(x′)dx′ = λiφi(x), (2.31)

whose analytical solution exist only for specific cases of covariance functions (some examples are
provided in [90]). The main drawback of the KL expansion lies in the calculation of this integral
eigenvalue problem. Most of the numerical techniques result in a considerable computational
effort, since they often deal with the assembly of dense covariance matrices. For instance,
classical approaches to (2.31) estimate the eigenfunctions as a linear combination of a set of
complete basis functions, whose coefficients are obtained by minimizing the error arising from
this representation. This is the idea behind projection methods such as collocation and Galerkin
(see, e.g., [28]). Other techniques for computing (2.31) include, degenerate kernel methods
[14], which approximate the target kernel by a separable one given by the sum of a finite
number of products of functions; Nyström methods [186], which solve the integral equation
using Gaussian quadrature rules; and wavelet-Galerkin techniques [185], which try to “sparsify”
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the covariance matrix to improve efficiency. In general, one should be careful when solving
(2.31) using a numerical scheme since the positive definiteness of the covariance matrix can be
compromised. This is related to the estimation of the eigenvalues [186, Ch.19]. For instance,
negative eigenvalues might occur when a very fine discretization of D is employed, especially
when the random field is described by non-smooth covariance kernels or when it is weakly
correlated.

Finally, note that the only requirement for the set {φi(x)} in (2.29) is to be complete and
orthogonal. In principle, any other type of basis satisfying these conditions can be used in the
expansion. However, the KL expansion is usually preferred over other alternatives due to the
following properties [90]:

(i) Error minimizing property: the KL approximation (2.29) minimizes the mean-squared
error (MSE), such that [253]

E

[∥∥∥[H(x, ω)− µH(x)]− [Ĥ(x; k,θ)− µH(x)]
∥∥∥2

2

]
=

∞∑
i=k+1

λ2
i . (2.32)

(ii) Uniqueness of the expansion: the random variables θ = {θi(ω) : Ω→ R} in the expansion
are orthonormal, if and only if the orthonormal functions {φi} and the constants {λi} are
the eigenpairs of the covariance matrix of the field [90].

(iii) Spatial domain independence: the shape of the physical domain D of a random field does
not alter the realizations computed by the KL expansion [145]. This means that the first-
and second-order moments of a random field realization remain invariant to a change of
the physical domain, despite the individual KL terms being affected. As a result, the
original domain D can be replaced by a domain D′ in which the numerical solution of
(2.31) is easier and faster to obtain (offline cost). The process of changing the index set
leads to a non-optimal representation, since the inner products and thus, the eigenvalues
and eigenfunctions, are different for L2-functions on different spatial domains [133]. Even
though the generated random fields will differ only by a small amount, more terms in the
expansion will be required increasing the (online) computational cost.

2.6. Error measures for random field discretization

In the KL expansion, the number of terms to be included in the series is closely related to the
magnitudes of the eigenvalues of the covariance operator, which in turn strongly depend on the
correlation length and smoothness of the covariance function. Specifically, the quality of the
discretization is quantified with respect to the level of accuracy in the estimation of the exact
mean (bias) and variance (variability) functions of the random field.

One can define local point-wise error metrics for the mean and variance in terms of the
relative difference between the exact and approximated random fields:

εµ(x) =

∣∣∣∣∣∣
E[H(x, ω)]− E

[
Ĥ(x; k,θ)

]
E[H(x, ω)]

∣∣∣∣∣∣ εσ2(x) =

∣∣∣∣∣∣
V[H(x, ω)]−V

[
Ĥ(x; k,θ)

]
V[H(x, ω)]

∣∣∣∣∣∣ , (2.33)

here εµ and εσ2 are the relative errors in the mean and variance, respectively.
Global error metrics can also be applied to quantify the overall quality of the random field

representation. These are defined for the mean and variance, as their average values over the
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index set D of the random field [28]

ε̄µ = 1
|D|

ˆ
D
εµ(x)dx and εσ2 = 1

|D|

ˆ
D
εσ2(x)dx, (2.34)

where |D| =
´
D dx.

For the KL expansion, the mean can be represented exactly and thus εµ(x) = 0. However,
there is an underlying variance error induced by the representation. We can compute the variance
of the approximation as

V
[
Ĥ(x; k,θ)

]
=

k∑
i=1

λiφ
2
i (x) =

k∑
i=1

λi, (2.35)

since the eigenfunctions are orthonormal. Under (2.35), the local variance error reduces to

εσ2(x) = 1− 1
σ2
H

k∑
i=1

λi; (2.36)

this expression is commonly used to define the truncation order of the KL expansion.

2.7. Numerical applications

In this section, we analyze two engineering problems involving spatially varying properties. A
parameter study on the Matérn class of covariance kernels and its influence on the random field
representation is carried out. This also illustrates the KL expansion for the representation of
random fields.

2.7.1. Example 1: one-dimensional cantilever beam

We consider the second example in [223] dealing with the updating of the spatially variable
flexibility F (x) of a cantilever beam. The beam has length L = 5 m (i.e., the domain is the
interval D = [0, L]) and it is subjected to a deterministic point load P = 20 kN at the free end
as shown in Figure 2.3.

The flexibility is described by a homogeneous Gaussian random field. The Matérn class
(2.24) is considered as covariance function of the flexibility CFF (x, x′). The mean of the field is
µF = 1× 10−4 kN−1m−2 and the standard deviation is σF = 0.35 · µF kN−1m−2. A parameter
study on the correlation length ` and smoothing ν is performed.

Figure 2.3: Cantilever beam configuration.

From Euler–Bernoulli theory, the bending moment in the beam M(x) can be computed
from the ordinary differential equation (ODE) [41]:
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Chapter 2. Representing spatial variation with random fields.

M(x) = −E(x)I d2w(x)
dx2 =⇒ −M(x)F (x) = d2w(x)

dx2 , (2.37)

where w(x) is the deflection, E(x) is the elastic modulus, I is the moment of inertia, and
F (x) = (E(x)I)−1 is the flexibility of the beam (the inverse of the bending stiffness). Integrating
twice (2.37) and noting that the bending moment of a cantilever beam can be calculated explicitly
as M(x) = (L − x)P , the forward deflection response of the beam is obtained by solving the
equation

w(x) = −P
ˆ x

0

ˆ s

0
(L− t)F (t) dtds. (2.38)

We can express the forward operator in (2.38) in terms of the KL expansion of the flexibility
field as

ŵ(x; k,θ) = −P
ˆ x

0

ˆ s

0
(L− t)

[
µF (t) +

k∑
i=1

√
λiφi(t)θi

]
dtds (2.39a)

= −P
ˆ x

0

ˆ s

0
(L− t)µF (t) dtds− P

ˆ x

0

ˆ s

0
(L− t)

k∑
i=1

√
λiφi(t)θi dtds (2.39b)

= µw(x)−
k∑
i=1

Φi(x)
√
λiθi, where Φi(x) = P

ˆ x

0

ˆ s

0
(L− t)φi(t) dtds. (2.39c)

For a given domain discretization x = [0, . . . , xj , . . . , xd], (2.39c) can also be written in
matrix form as

ŵ = µw −ΦΛθ = µw −Aθ, (2.40)

where µw ∈ Rd is the prior mean deflection vector computed from (2.41), and ΦΛ = A ∈ Rd×k.
Here Φ ∈ Rd×k is a matrix obtained by evaluating Φi(x) in (2.39c) (that is, Φ(j,i) = Φi(xj),
for j = 1, . . . , d), and Λ = diag(

√
λ) ∈ Rk×k is a diagonal matrix with the square root of the

eigenvalues.
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Figure 2.4: Function Φi(x) in (2.39c) using an exponential kernel, for different correlation lengths and
first 5 terms in the KL expansion.

Observe that Φi(x) can be evaluated analytically given that the eigenpairs of the target
covariance kernel are available. Figure 2.4 plots the values of this function for the exponential
covariance kernel. The smoothing effect of the ODE is encoded in Φi(x) since it is integrating
the eigenfunctions over the domain. This effect can be explained by the Riemann–Lebesgue
lemma [107, p.8] since higher eigenfunctions (frequencies) are damped by the application of Φ
(cf., Figure 2.4 for i = {4, 5}), and as a result w will be smoother than F .

The mean and covariance functions of the deflection random field can be evaluated using the
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2.7. Numerical applications

prior information about the flexibility F and the forward ODE operator. Since F is a Gaussian
random field and w(x, F ) is a linear function of F , the prior distribution of the deflection is also
a Gaussian field. Therefore, an expression for the mean function of w can be obtained using µF
in (2.38) as

µw(x) = −P
ˆ x

0

ˆ s

0
(L− t)µF (t) dtds = −PµF6 x2(3L− x) (2.41)

and similarly, the covariance function of w can be deduced for a given CFF (x, x′) as

Cww(x, x′) = P 2
ˆ x′

0

ˆ x

0

ˆ s′

0

ˆ s

0
(L− t)(L− t′)CFF

(
t, t′
)

dtdt′dsds′. (2.42)

The computation of (2.42) involves multiple integration of the flexibility covariance function.
This task can be performed analytically or using a symbolic integration toolbox. However, we
provide integration formulas in order to facilitate the numerical implementation. The covariance
(2.42) can be estimated using a nGL-point Gauss–Legendre (GL) quadrature as

Cww(x, x′) ≈ P 2σ2
F

[
xx′

4

nGL∑
k=1

nGL∑
l=1

wkwl
xx′(ξl + 1)(ξk + 1)

16 ·

nGL∑
j=1

nGL∑
i=1

wjwi f1

(
x(ξl + 1)(ξi + 1)

4 ,
x′(ξk + 1)(ξj + 1)

4

)]
∀ x, x′ ∈ D,

where f1(t, t′) = (L− t)(L− t′)RFF (t, t′), RFF (t, t′) is the correlation function of the flexibility,
wk, wl, wj , wi are the weights of the quadrature, and the points ξk, ξl, ξj , ξi are the associated
zeros of the Legendre polynomial.

The Matérn kernel class (2.24) is utilized as covariance function of the flexibility random
field. This defines indirectly the covariance of the deflection field since it is propagated via
(2.42). We now perform a parameter study on the correlation length and smoothness defining
the covariance of the flexibility field (which in turn affect the deflection field). The smoothing
parameters are chosen as ν = {0.5, 2,∞} and we select the correlation lengths as a percentage
of the domain length ` = {0.05L, 0.5L, 2L}.
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Figure 2.5: Mean and standard deviation of the flexibility (1st row) and deflection (2nd row) random
fields. Different standard deviation functions are obtained for the deflection depending on
the correlation length and smoothing parameters (bottom right panel, ν = 0.5: blue, ν = 2:
green, and ν =∞: red) of the Matérn kernel used for the flexibility.
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Chapter 2. Representing spatial variation with random fields.

The mean and standard deviation functions of the flexibility and deflection fields are shown
in Figure 2.5. For the flexibility both functions are constant since the field is homogeneous. The
deflection field is non-homogeneous as a result of applying the ODE operator to the flexibility
field. The mean deflection is independent of the choice of the flexibility covariance and it is
computed by (2.41). On the contrary, the standard deviations change with the choice of the
Matérn kernel for the flexibility field, and one sees that as the correlation increases, the standard
deviation also increases. This is also true for increasing values of the smoothing parameter,
although its effect on the standard deviation is less significant compared to the correlation length
(Figure 2.5, zoom-in bottom right panel, ν = 0.5: blue, ν = 2: green, and ν =∞: red).

The correlation functions of the prior flexibility random field are shown in Figure 2.6. As
we decrease the correlation length, the resulting field becomes weakly correlated. In the limit
` → 0, the covariance matrix collapses to the diagonal and the spatial dependency vanishes
(the resulting field can be seen as a white noise process). Conversely, as the correlation length
increases, the field become strongly correlated; in the limit `→∞, the covariance values are all
equal to the variance and the resulting field becomes a single random variable. Note that the
effect of the correlation length is stronger than the action of the smoothing parameter.
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Figure 2.6: Correlation matrix of the flexibility random field associated to the Matérn kernel (2.24) for
different correlation lengths (rows) and smoothing parameters (cols).

We show an analogous plot for the correlation functions for the deflection field in Figure 2.7.
The correlation functions derive from the functional from induced by the Matérn kernel in
Figure 2.6, due to the application of the forward operator (2.38). The associated covariance
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2.7. Numerical applications

operators are still well-defined. Despite the influence of the correlation length is similar to the
flexibility field, there is an extra smoothing effect applied by the forward operator. As a result,
the corresponding deflection covariances converge faster to the fully-correlated (random variable)
case. The filtering/averaging influence of the forward response operator is usually neglected
in the engineering practice. However, this effect is important when defining the QoIs that are
relevant for the analysis of the structural system.
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Figure 2.7: Correlation matrix of the deflection random field associated to the Matérn kernel by application
of (2.42) for different correlation lengths (rows) and smoothing parameters (cols).

We now assess the error in the KL representation of the flexibility random field for the
different parameter settings in the Matérn kernel. The Nyström method [186] is used to obtain
the numerical solutions to the KL eigenvalue problem. The number of GL quadrature points in
Nyström is selected from nGL = {50, 100, 250, 500, 1000}. The reference global variance error is
computed from the analytical solution of the KL eigenvalue problem when ν = 0.5; for the other
smoothing parameters the reference is computed with a Nyström method with nGL = 2000.

Figure 2.8 shows the evolution of the global variance error (2.36) in the flexibility approxi-
mated by the KL expansion. This is shown for different parameters in the Matérn kernel and
number of GL quadrature points in the Nyström method. The error decays faster when the
random fields are smooth (increasing value of ν). In this case, Nyström also estimates the
target error decay only with a few number of quadrature points. The behavior is completely
different when the random fields are rougher (small values of ν), in those situations the Nyström
method requires a higher number of points for an accurate estimation of the eigenvalue problem.
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Chapter 2. Representing spatial variation with random fields.

A similar study can be performed for the deflection random field. In this case, the rate of
decay of the variance errors is faster in all parameter cases, due to the smoothing action of the
forward operator. This can be intuitively explained by the shapes of the correlation functions
in Figures 2.6 and 2.7. Hence, smaller truncation orders in the KL expansion are required to
represent smooth QoIs, as in the case of those computed by application of the smoothing forward
ODE equation.
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Figure 2.8: Evolution of the global variance error (2.36) for the flexibility random field with the KL
terms dKL = k: influence of the number of GL points on the solution of the KL eigenvalue
problem for different correlation lengths and smoothing parameters of the Matérn kernel. The
reference global variance error is shown in red.

We conclude the study on the KL expansion by showing some random field realizations for
all the investigated parameter cases. The truncation order for each case is chosen as the number
of KL terms that accounts for 95% of the flexibility random field variability (that is, by selecting
the truncation that yields 5% reference error in Figure 2.8). These values are shown in Table 2.1
for the flexibility and deflection random fields.

Table 2.1.: Truncation order of the KL expansion k that complies with 95% of the random field variability.
For the flexibility and deflection fields, shown as pairs (·, ·) for each case.

ν
0.5 2 ∞

`
0.05L (81,10) (18,4) (12,3)
0.5L (9,3) (2,1) (1,1)

2L (3,2) (1,1) (1,1)
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Figure 2.9: Flexibility random field realizations for different correlation lengths and smoothing parameters
of the Matérn kernel modeling the flexibility covariance.
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Figure 2.10: Deflection random field realizations for different correlation lengths and smoothing parameters
of the Matérn kernel modeling the flexibility covariance.
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Chapter 2. Representing spatial variation with random fields.

As before, finer KL discretizations are required for the flexibility field as compared to the
deflection. Figures 2.9 and 2.10 show 100 different realizations of the random fields for all the
parameter cases. The mean and standard deviation bounds are also plotted. For the smooth
flexibility random fields, the realizations are basically constant through the domain (random
variable case). For the rough flexibility fields, the sample paths change at each spatial point
in the domain (white noise case). Notice also that the smoother flexibility random fields yield
deflection responses with larger variability, as seen in Figure 2.5.

2.7.2. Example 2: two-dimensional plate with a hole

We consider a steel plate model defined by a square domain D ⊆ R2 with length 0.32 m,
thickness t = 0.01 m, and a hole of radius 0.02 m located at its center. Spatial coordinates are
denoted by x = [x1, x2] ∈ D. The displacement (u(x1, x2) = [ux1 , ux2 ]T) field is computed using
elasticity theory through a set of elliptic PDEs (see Cauchy–Navier equations in (B.4)) [129].
Due to the geometry of the plate, the PDEs can be simplified under the plane stress hypothesis
as

G(x)∇2u(x) + E(x)
2(1− ν)∇(∇ · u(x)) + b = 0, (2.43)

where G(x) := E(x)/(2(1 + ν)) is the shear modulus, ν = 0.29 is the Poisson ratio of the steel,
and b = [0,−ρg]T is the vector of body forces acting on the plate, with g denoting the standard
gravity and ρ = 7850 kg/m3 the density of the steel. We refer to Appendix B for further details
on the model (2.43).

A Dirichlet boundary condition is imposed at the left edge of the plate, u(x) = 0 for
x ∈ Γ1. Moreover, a random surface load q is applied at the right boundary Γ2. This action
is modeled as a Gaussian random variable with mean µq = 60 MPa and standard deviation
σq = 12 MPa. Equation (2.43) is solved with the finite element method using 282 eight-node
serendipity quadrilateral elements [175], as shown in Figure 2.11. The mesh is generated in the
finite element mesh generator tool Gmsh [86].

Figure 2.11: Plate with a hole. The red star marks a control point.

The Young’s modulus E(x) is assumed to be random and spatially variable. A lognormal
random field with mean value µE = 2× 105 MPa and standard deviation σE = 3× 104 MPa is
used for its representation. We select the Matérn kernel (2.24) to model the covariance function
of the underlying Gaussian field. The smoothing parameters are chosen as ν = {0.5, 2,∞} and
we select the correlation lengths as ` = {0.02, 0.16, 0.32} m. The truncated KL expansion (2.29)
of the Young’s modulus can be written as
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Ê(x;θ) := exp
[
µE′ +

k∑
i=1

√
λiφi(x)θi

]
, (2.44)

where the underlying Gaussian parameters µE′ = 26.011 and σE′ = 0.149, are computed from the
mean and standard deviation of the lognormal random field. The eigenpairs are estimated with
the Nyström method using 110 GL points in each direction. Realizations of the Young’s modulus
at the Gauss points of each element are evaluated using Nyström interpolation formula. We
remark that for the computations we employ a different unit system to avoid possible numerical
overflow (cm for length and ton/cm2 for stiffness and stress). The following results are shown in
this unit system.

Figure 2.12 plots the eigenvalues of the covariance operator for different values of the
smoothing parameters and correlation lengths. The eigenvalue decay is faster for smooth
covariance functions. This is analogous to the beam example where the eigenvalue decay can
be seen in terms of the global variance error decay (cf. Figure 2.8). Some corresponding
eigenfunctions are shown in Figure 2.13. Note that the hole modifies structure, especially for the
first eigenfunction where there is a decrease in the function values at the vicinity of the hole.
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Figure 2.12: Plate example: evolution of the eigenvalues of the Matérn covariance operator with the
truncation order of the KL expansion, for different smoothing parameters and correlation
lengths.

0 8 16 24 32
x1

0

8

16

24

32

x
2

φ1

0 8 16 24 32
x1

0

8

16

24

32

x
2

φ2

0 8 16 24 32
x1

0

8

16

24

32

x
2

φ3

0 8 16 24 32
x1

0

8

16

24

32

x
2

φ50

0 8 16 24 32
x1

0

8

16

24

32

x
2

φ1

0 8 16 24 32
x1

0

8

16

24

32

x
2

φ2

0 8 16 24 32
x1

0

8

16

24

32

x
2

φ3

0 8 16 24 32
x1

0

8

16

24

32

x
2

φ50

Figure 2.13: Plate example: selected eigenfunctions of the Matérn operator for ν = 0.5 and ` = 2. As a
comparison, we also illustrate the eigenfunctions when there is no hole in the plate.
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Chapter 2. Representing spatial variation with random fields.

In the beam example, it is possible to derive the covariance of the forward quantity analytically,
and thus, the truncation orders for the response field can be derived (Table 2.1). In this example
such computation is cumbersome to perform. A Monte Carlo approach is applied to obtain
samples (realizations) from the response field and estimate the local variance error from those
samples. This requires fixing the truncation order of the KL expansion to a large value to define
a reference variance. Thereafter, one can apply (2.33) for different truncation orders to obtain
the corresponding evolution of the global variance error (2.34). We carry out this approach
for the parameters cases ` = 2 and ν = {2,∞}. The reference variances of the random fields
are generated with a truncation order of {2300, 315} for ν = {2,∞}, respectively. These values
correspond to a 99.999% of the Young’s modulus field variability. Moreover, we evaluate the
global error not only for the Young’s modulus, but also for the horizontal displacement ux1 and
the principal stress σ1 fields (defined in (B.19a)). This is because we have seen that the spatial
variation has different effects depending on whether the QoI is averaged by the forward operator.

Figure 2.14 plots the evolution of the global variance error for different truncation orders
in the KL expansion. The error can be computed exactly for the Young’s modulus field
based on (2.36). For the σ1 stress and displacement fields, we employ 5000 load samples and
field realizations to approximate the variance. In this case, the computation is performed at
fixed truncation orders k = {10, 25, 50, 75, 100, 150, 200, 300}. The error decays faster for the
displacement field, since integration of the PDE operator is required for its computation. Such
an averaging process reduces the effect of the local fluctuations of the spatially varying material
parameter. The decay is less pronounced for the σ1 stress, since this QoI is computed from
the stress field which in turn is linearly dependent on the Young’s modulus (see Hooke’s law
in Appendix B.2.3). Thus, the local random variations of the Young’s modulus have a larger
influence on the σ1 stress. As discussed in the beam example, the smoothing effect is important
when defining the QoIs that are relevant for the analysis. For instance, if the system performance
depends on the displacements instead of the stresses, one can reduce the computational cost in
the random field approximation by employing a smaller truncation order. This also shows that
the smoothing effect of the forward operator typically induces a low-dimensional structure on
the input parameter space. This fact will be exploited to perform dimension reduction in rare
event simulation problems (cf. Chapter 6).
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Figure 2.14: Plate example: evolution of the global variance error (2.36) with the number of terms in
the KL expansion k. For the Young’s modulus, σ1 stress, and horizontal displacement fields.
Using a Matérn kernel with ` = 2 and ν = {2,∞}.

We conclude the random field representation studies by computing the mean and standard
deviation functions of the Young’s modulus and displacement fields. The smoothing parameter
is fixed to ν = 0.5 (exponential covariance) and we plot the function values for the investigated
correlation lengths. The truncation order for each parameter case is chosen as the number of
KL terms that accounts for 95% of the Young’s modulus random field variability. These values
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2.7. Numerical applications

are shown in Table 2.2. As a result, we employ truncation orders k = {3561, 135, 36} for each
correlation length.

Table 2.2.: Truncation order of the KL expansion k that complies with 95% of the Young’s modulus field
variability.

ν
0.5 2 ∞

`
2 3561 300 135

16 135 7 4
32 36 2 2

Figure 2.15 shows the mean and standard deviation functions. The values are estimated
from 1000 independent load samples and field realizations. The mean and standard deviations of
the Young’s modulus are constant since the field is homogeneous (2039.43 and 305.91 in ton/cm2

units, respectively). Nevertheless, the influence of correlation length is revealed by the patterns
of the spatial variation, varying from a rough to smooth behavior, as ` increases. Similar to the
beam example, the mean of the response quantity remains almost the same for all parameter
cases, and the variability tends to increase as the random field becomes smoother (note the
maximum values of the standard deviation for the displacement field).
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Figure 2.15: Plate example: mean and standard deviation fields estimated from 1000 realizations. Using
a Matérn covariance with ν = 0.5 and ` = 2 (1st row), ` = 16 (2nd row), ` = 32 (3rd row).
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Chapter 3

Reliability analysis and rare event simulation

“If uncertainty arises solely from the random
nature of the phenomena involved, it can be dealt
rationally by probabilistic reasoning; any
conceivable condition of a structure is associated
with a numerical measure of the probability of its
occurrence”.

Alfred M. Freudenthal, 1906-1977 [82, p.1].

The treatment and modeling of uncertainty is a fundamental task for the analysis and design
of physical systems. This is particularly relevant when ensuring satisfactory operation of the
system during its lifetime is the main concern. In such cases, the system performance is evaluated
in terms of the probability of system failure. The performance of the system is described by a
limit-state function specifying whether the system has failed or not. This is based on comparing
a critical predefined threshold with the system response generated by application of a forward
response operator (e.g., a PDE) on the uncertain input parameters.

A special challenge in structural reliability and rare event simulation involves the analysis of
extreme or rare events for which the associated probabilities are very small [45]. In this chapter,
we discuss advanced simulation methods for the estimation of failure probabilities arising in
engineering applications with random field parameters.

3.1. The rare event simulation problem

Consider the canonical probability space (Ω,F ,P) = (Rd,B(Rd),P), with B(Rd) denoting
Borel sets on Rd and P a probability measure [12]. The components of the uncertain parameter
vector are modeled as random variables, such that θ = θ(ω) = ω (identity map, cf. Appendix A),
with ω ∈ Ω and θ ∈ Θ ⊆ Rd. The distribution of θ is assumed to have a density πpr(θ) = dP/dλ
with respect to the Lebesgue measure λ on Rd; we call this the prior or nominal probability
density.

Different modes of failure can be grouped in a so-called limit-state function (LSF) g : Θ→ R,
usually defined as g(θ) = β −Q(θ). Here, β is a predefined maximum allowed threshold, and
Q(θ) : Θ → R is a forward response operator that maps the parameter θ to a quantity of
interest (QoI) describing the performance of the system. The failure hypersurface defined by
g(θ) = 0 splits the parameter space into the safe set S = {θ ∈ Θ : g(θ) > 0} and the failure set
F = {θ ∈ Θ : g(θ) ≤ 0}. The probability of F under the prior distribution, also known as the
probability of failure pF , is defined as

pF = P[F ] =
ˆ

Θ
1F (θ)πpr(θ) dθ = Eπpr [1F (θ)] , (3.1)

where 1F : Rd → {0, 1} stands for the indicator function, taking values 1F (θ) = 1 when θ ∈ F ,
and 1F (θ) = 0 otherwise. In rare event simulation, the probability of failure (3.1) represents
the solution of a potentially high-dimensional integral with a very small value (typically in the
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range 10−3 − 10−10).
From (3.1), one sees that the probability of failure is obtained by integrating the product of

the indicator function and the prior density over the input parameter space Θ. As it will be
seen in Chapter 4, this is analogous to the model evidence Z in the context of Bayes’ theorem
(4.2). The constant Z is computed similarly by integrating the product of a likelihood function
and the prior density. We can exploit this connection to formulate the rare event simulation
problem as a Bayesian inference task:

πF (θ) = 1
pF
1F (θ)πpr(θ), (3.2)

where the indicator function acts as a likelihood function, and πF can be interpreted as a
“posterior-failure” density of the parameters given the failure event F . Note that πF is not a
posterior density in the Bayesian inference sense, since there is no observational data entering
into the likelihood function (in [241] this density is referred to as “fictitious” posterior). In
this setting, πF can be seen as a density conditional on the failure domain with its normalizing
constant equal to the target probability of failure (see also [198, p.259]). We remark that the
formulation (3.2) is valid, if the integral (3.1) is finite and 1F (θ) is measurable, which is true if
and only if the failure set F is measurable (see, e.g., [201]).

Remark 3.1. Classical approaches for estimating (3.1) operate in the standard Gaussian space;
meaning that P is assumed to be a standard Gaussian measure on Rd. Several isoprobabilistic
transformations, such as the Knothe–Rosenblatt and Nataf constructions exist to perform this
“whitening” task (see, e.g., [144, Ch.4]). Therefore, we assume that the uncertain parameters are
distributed as θ ∼ πpr = N (µpr,Σpr), with µpr = 0 and Σpr = Id, where Id ∈ Rd×d denotes the
identity matrix.

Remark 3.2. Several smooth approximations of the indicator function f(θ; s) ≈ 1F (θ) are
available in the literature. Such functions become relevant in the context of importance sampling,
since they allow one to approach the rare event simulation problem sequentially. A comparison
of different approximations is reported in [140] in the context of sensitivity analysis. For instance,
we consider the approximations:

f log(θ; s) = 1
2

[
1 + tanh

(
−g(θ)

s

)]
and f erf(θ; s) = Φ

(
−g(θ)

s

)
, (3.3)

which correspond to the standard logistic function and the standard Gaussian CDF (error
function), respectively. In the limit, when the smoothing parameter s → 0, both functions
converge to the indicator function.

3.2. Simulation methods for the estimation of rare event probabilities

The estimation of failure probabilities essentially involves the exploration of tails of probability
distributions. In practice, a way to approach this problem is via (analytical) approximation
methods, such as the first-order [187] and second-order [79] reliability methods (FORM and
SORM). The idea in both algorithms is to represent the LSF using a truncated Taylor series
expansion around the point on the failure hypersurface that is closest to the origin of an
underlying standard Gaussian space. This poses an optimization task in which the objective is to
find the so-called design point, defining the minimum distance to the origin called the reliability
index and denoted β. In FORM, β is used to fully characterize the probability of failure via
pF ≈ Φ(−β). Particularly, FORM requires information on the value of the LSF function and its
gradient, while SORM needs an additional knowledge of second-order derivatives of the LSF. A
drawback of these approximations is that the accuracy decreases with increasing dimension of
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the parameter space and the nonlinearity of the failure hypersurface [114, 238].
Monte Carlo methods provide another way to estimate the rare event simulation problem.

The process involves the computation of statistical averages of response quantities, which are
formulated as probability integrals over the parameter space [174, 198]. In this section, we focus
on Monte Carlo-based algorithms for the estimation of pF .

3.2.1. Monte Carlo and importance sampling

Monte Carlo (MC) is a simulation procedure in which the quantity we want to compute,
typically an integral of a given response variable g(θ), is expressed as an expected value over the
distribution of θ. The idea is to directly replicate the underlying physical process by generating
independent and identically distributed (i.i.d.) samples {θ1,θ2, . . . ,θN} from the distribution of
the uncertain parameter θ, and compute their average. In an abuse of notation, the samples
are denoted as the variable itself; as a distinction, we oftentimes use an indexing subscript to
specifically refer to samples.

In the context of rare event simulation, the interest is in computing the expectation (3.1).
Hence, applying MC simulation amounts to

pF ≈ p̂ MC
F = 1

N

N∑
i=1
1F (θi), (3.4)

where {θi}Ni=1
i.i.d.∼ πpr. Two fundamental questions arise when using MC simulation: (i) how do

we sample from the distribution of θ?, and (ii) how close is the MC average to the actual value
of the expectation?

The first question is addressed by the theory of random variable generation. Classical methods
used to compute samples from probability distributions include: inverse transform, rejection
sampling [172], Box-Muller transform [42], polar method [158], Latin hypercube sampling [165]
and the ziggurat algorithm [159]. In turn these algorithms are based on pseudo-random number
generation schemes (uniform draws between 0 and 1), such as the linear congruential generator,
Mersenne twister, Xorshift, among others. We refer to [174] for details on these approaches.

For the second question, one needs to justify and characterize properties of the MC estimator.
This essentially requires application of the laws of large numbers [174]. Using the strong law of
large numbers (SLLN), one can show that the MC estimator converges almost surely to the exact
expectation, and also that the estimator is unbiased. We assume that the random variable 1F (θ)
has finite mean µ <∞ and variance σ2 <∞. Formally, for the mean of the MC estimator we
write

SLLN : p̂ MC
F

a.s.−→ pF and E
[
p̂ MC
F

]
= 1
N

N∑
i=1
E[1F (θi)] = pF . (3.5)

Note that the expected value of 1F (θ) is µ = pF and the variance is given by σ2 = pF (1−pF ).
By the central limit theorem (CLT), we characterize the variance of the MC estimator as

CLT : p̂
MC
F − pF
σ/
√
N

d−→ N (0, 1) and V
[
p̂ MC
F

]
= 1
N2

N∑
i=1
V[1F (θi)] = pF (1− pF )

N
; (3.6)

a useful measure of the accuracy for the MC estimator is given by the coefficient of variation

cv
(
p̂ MC
F

)
=

√
V
[
p̂ MC
F

]
E
[
p̂ MC
F

] =
√

1− pF
pFN

; (3.7)

oftentimes, the root-mean-squared error (RMSE) is also employed to characterize the failure
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probability estimate:

RMSE(p̂F ) =
√
E[(p̂F − pF )2] = 1

pF

√
(p̂F − pF )2 + (p̂F · cv(p̂F ))2. (3.8)

The variance (3.6) can also be calculated by noting that 1F (θ) is distributed according to a
Bernoulli random variable with probability pF . For small pF , the variance of the MC estimator
can be approximated as V[p̂ MC

F ] ≈ pF/N . In practice, we usually require that the coefficient of
variation of the MC estimator is proportional to a user-defined value δ > 0:

cv
(
p̂ MC
F

)
≈
√
pF/N

pF
= 1√

pFN
= δ then N ≈ 1

δ2pF
, (3.9)

as a result, the number of samples required to obtain a coefficient of variation equal to δ

is inversely proportional to the target failure probability. Therefore, in reliability problems
involving the computation of rare event probabilities (small pF), and/or cases where one can
only afford a small number of model evaluations (small N), the variability of p̂ MC

F becomes very
large.

Consequently, despite being robust to the type and dimension of the problem, the estimation
of (3.1) via (3.4) requires a large number of samples from the prior distribution to achieve
a suitable accuracy on p̂ MC

F . Variance reduction techniques can be applied to obtain MC
estimators with smaller variability (see [174] for an overview), some methods include: common
random numbers, antithetic variates, stratified sampling, control variates (including multilevel
MC), and importance sampling. We focus on the latter since it provides the foundations of
many efficient sequential algorithms utilized in rare event simulation.

The idea of importance sampling (IS) [130, 206] is to employ an auxiliary distribution that
allows one to obtain (rare) failure samples more frequently. Consider the following modified
version of (3.1)

pF =
ˆ

Θ

1F (θ)πpr(θ)
πbias(θ) πbias(θ)dθ = Eπbias

[
1F (θ)πpr(θ)
πbias(θ)

]
, (3.10)

where πbias is the importance or biasing density, satisfying the relation supp(1F (θ)πpr(θ))
⊆ supp(1F (θ)πbias(θ)) (this is required to satisfy the SLLN [45]). The purpose of the biasing
density is to make the occurrence of the rare event F more likely. Based on (3.10), the IS
estimate of the probability of failure (3.1) is

p̂ IS
F = 1

N

N∑
i=1
1F (θi)w(θi) with w(θi) = πpr(θi)

πbias(θi)
, (3.11)

where {θi}Ni=1
i.i.d.∼ πbias, and each value w(θi) represents a weight (or likelihood ratio) that

corrects for the use of the biasing density and ensures that the IS estimator remains unbiased.
Indeed, we can see that Eπbias

[
p̂ IS
F

]
= Eπpr [1F (θ)] = pF . Moreover, the variance of the IS

estimator is

Vπbias

[
p̂ IS
F

]
= 1
N

(
Eπbias

[
(1F (θ)w(θ)− pF )2

])
= 1
N

(ˆ
Θ

1F (θ)π2
pr(θ)

πbias(θ) − 2pF1F (θ)πpr(θ) + p2
Fπbias(θ)dθ

)

= 1
N

( ˆ
Θ

1F (θ)π2
pr(θ)

πbias(θ) dθ︸ ︷︷ ︸
Eπbias[(1F(θ)w(θ))2]

−p2
F

)
. (3.12)
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Since the aim is to reduce the variance (3.12), we require a biasing density πbias that
minimizes the term Eπbias

[
(1F (θ)w(θ))2], that is
π?bias(θ) = arg min

πbias
Eπbias

[
(1F (θ)w(θ))2

]
, (3.13)

where π?bias is the so-called optimal biasing density. The minimizer of (3.13) can be found by
applying Jensen’s inequality (under the assumption that 1F (θ)w(θ) is convex):

Eπbias

[
(1F (θ)w(θ))2

]
≥ (Eπbias [1F (θ)w(θ)])2 . (3.14)

The relation in (3.14) is strict if 1F (θ)w(θ) is almost everywhere constant [45]. Hence, the
optimal biasing density, generating a zero-variance estimate, is given by

π?bias(θ) ∝ Eπbias [1F (θ)w(θ)] = 1F (θ)πpr(θ)

= 1
pF
1F (θ)πpr(θ) = πF (θ). (3.15)

Note that the optimal biasing density is equivalent to the posterior-failure density defined in
(3.2) and its construction requires the knowledge of the target failure probability in advance.
However, even if π?bias in (3.15) is not usable in practice, it still provides a guideline on how to
build useful IS schemes. This is exploited, for instance, in sequential importance sampling and
the cross-entropy method. We point out that large deviation techniques can be employed to
derive asymptotic expansions of the optimal biasing distribution, such that they describe the
most probable path leading to the rare event (see, e.g., [13, 45]).

In some situations, one of the weights w(θi) can be considerably larger than all the others. In
this case, one has effectively only one sample contributing to the estimator. It is then convenient
to have a diagnostic that reveals whether the weights are showing this behavior or not. A
common metric is the effective sample size (NESS):

NESS =

(∑N
i=1w(θi)

)2

∑N
i=1(w(θi))2

=

(∑N
i=1wi

)2

∑N
i=1w

2
i

=
(
W̃
)2

W̃ 2
, (3.16)

where W̃ denotes the sum of the weights, W̃ 2 the sum of the squared weights, and 1 ≤ NESS ≤ N
(in an abuse of notation, we denote each weight as wi = w(θi)). The weights are all the same
when NESS = N . Conversely, if the weights are very unequal, the IS estimator is averaging only
with NESS � N samples and thus it is less accurate. Another way to express the NESS is via
the coefficient of variation of the weights [174]

NESS = N

1 + (cv(w))2 , (3.17)

where w = {wi}Ni=1 is the set of weights. The effective sample size is not always an optimal
diagnostic and different modifications have been proposed to improve it. A common approach is
to define NESS with respect to 1F (θ), since the effectiveness of IS depends also on this function
(see for example [174, Sec. 9.3]).

Finally, we remark that other specialized simulation algorithms are employed for the estima-
tion of (3.1), including: directional and line sampling [69, 114, 139], advanced IS schemes such
as, sequential importance sampling [180] and the cross-entropy method [197], and multilevel
splitting methods [48, 38, 242, 232], which include subset simulation [15].

We describe in the following sections some of these algorithms and compare them in the
context of random fields.
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3.2.2. Sequential importance sampling

Sequential importance sampling (SIS) [180] defines a parametrization of the optimal IS density
(3.15), such that it can be estimated in a sequential manner. Since the construction of (3.15) is
unfeasible, one can consider a sequence of intermediate biasing densities of the form

πbias(θ; sj) = 1
pj
f(θ; sj)πpr(θ), (3.18)

where pj is an intermediate failure probability or normalizing constant and j = 0, . . . , nlv is a
level index, with nlv denoting the total number of levels. The function f(θ; sj) is a smooth
approximation of the failure indicator function and it can be defined from (3.3). The intermediate
biasing densities are then parameterized via the smoothing parameters ∞ = s0 > s1 > · · · >
sj > · · · > snlv > 0. In the context of sequential MC [62], the elements of the set {sj}nlv

i=0 are
called temperatures and nlv is the number of tempering steps. To estimate the probability of
failure, SIS requires samples from the final biasing density πbias(θ; snlv) and the value of its
normalizing constant pnlv .

Starting at level j = 0 from an a biasing density πbias(θ; s0) = πpr(θ), we can estimate the
intermediate probabilities at subsequent levels as

pj+1 =
ˆ

Θ
f(θ; sj+1)πpr(θ)dθ =

ˆ
Θ
f(θ; sj+1)πpr(θ)πbias(θ; sj)

πbias(θ; sj)
dθ

= pj

ˆ
Θ

f(θ; sj+1)πpr(θ)
f(θ; sj)πpr(θ) πbias(θ; sj)dθ

= pj

ˆ
Θ

f(θ; sj+1)
f(θ; sj)︸ ︷︷ ︸
w(θ)

πbias(θ; sj)dθ = pj Eπbias,j [w(θ)] , (3.19)

with the notation πbias,j = πbias(θ; sj). Notice in (3.19) that the weights are given by the ratio
of subsequent smooth approximations of the indicator function. From (3.19), we can define an
IS estimator for the ratio of normalizing constants

Sj = pj+1
pj

= Eπbias,j [w(θ)] ≈ 1
N

N∑
i=1

w(θ(j)
i ) = Ŝj , (3.20)

where {θ(j)
i }Ni=1

i.i.d.∼ πbias,j , and we include a superscript to denote the set of samples at the j-th
level.

Given samples from πbias,j , we can obtain next level samples from πbias,j+1 by applying
a resampling-moving scheme [62]: (i) use a resampling method to remove the samples with
small weights since they barely contribute to the estimation of (3.20). This is performed by
selecting randomly with replacement from the samples {θ(j)

i }Ni=1, with probability assigned to
each sample proportional to their weights {w(θ(j)

i )}Ni=1; (ii) move the position of the resulting
samples to regions of high probability of the next intermediate biasing πbias,j . This is performed
by a MCMC algorithm that has stationary distribution πbias,j . We repeat this strategy until the
last level j = nlv is reached; at this stage the normalizing constant of the final biasing density is
estimated as

p̂nlv =
nlv∏
j=0

Ŝj . (3.21)

In order to obtain an accurate estimate of Ŝj in (3.20), one needs to ensure that each pair of
consecutive biasing densities do not change significantly. A way to guarantee a small variation

38



3.2. Simulation methods for the estimation of rare event probabilities

is by controlling the variance of the weights. The idea is to match the effective sampling size to
a target predefined value, as it is typically carried out in sequential MC approaches (e.g., [62]).
Such task can be equivalently performed by requiring that the sample coefficient of variation
of the weights at each level is equal to an user-defined target value δ? [180]. Therefore, the
smoothing parameters are updated at each level via the optimization problem

sj+1 = arg min
s∈(0,sj)

(
cv
(
f(θ(j), s)/f(θ(j), sj)

)
− δ?

)2
, (3.22)

which is solved without further evaluations of the LSF. A value of δ? = 1.5 is suggested in
[180]; in this case, the effective coefficient of variation of the failure probability estimate is
δ?/
√
N ≈ 0.047 using N = 103 samples per level.

Algorithm 1 SIS method.
Input : number of samples per level N , number of MCMC chains Nc, target coefficient of variation δ?,

LSF g(θ), smooth indicator f(θ; s), prior density πpr(θ), maximum iterations m
1 Generate N samples from the prior θ(0) ∼ πpr(·)
2 Evaluate LSF geval ← g(θ(0)), and indicator function deval ← geval ≤ 0 = 1F

(
θ(0))

3 Set initial smoothing parameter s0 ←∞
4 Initial level j ← 0
5 while True do
6 Evaluate smooth indicator function f (j)

eval ← f
(
θ(j); sj

)
7 Compute the coefficient of variation of the ratio between the indicator function and its smooth

approximation ĉv(j) ← cv(deval/f
(j)
eval)

8 if (ĉv(j) ≤ δ?) or (j > m) then
9 Break

10 end
/* Weighting: */

11 Use the level samples θ(j) to update the smoothing parameter sj+1 as per (3.22)
12 if j = 0 then
13 Compute the weights w(j) ← f

(j)
eval

14 else
15 Compute the weights w(j) ← f

(j)
eval/f

(j−1)
eval

16 end
17 Estimate the ratio of normalizing constants Ŝj ← 1

N

∑N
i=1 w

(j)
i

18 Normalize the weights w̃(j)

/* Resampling: */
19 Generate a set of samples θseed consisting of Nc particles randomly sampled with replacement from

θ(j), where the probabilities associated with each entry correspond to the normalized weights w̃(j)

/* Moving: */
20 Use θseed as seeds of for a MCMC algorithm to generate a new set of samples θ(j+1); this process

also returns the associated LSF evaluations geval ← g(θ(j+1)) and indicator deval ← geval ≤ 0
21 j ← j + 1
22 end
23 nlv ← j

24 Compute p̂nlv ←
∏nlv
i=0 Ŝi

25 Compute the IS estimator p̂F ←
p̂nlv

N

∑N
i=1 deval(i)/f (j)

eval(i)
Output : p̂F

The SIS algorithm proceeds until the coefficient of variation of the ratio between the indicator
function and its smooth approximation is smaller than the target δ?. At the final level j = nlv,
the N samples are used to approximate the probability of failure with an IS estimator
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p̂SIS
F = p̂nlv

N

N∑
i=1

1F (θi)
f(θi, snlv) . (3.23)

Algorithm 1 summarizes the SIS method. We refer to section 4.2 for some MCMC methods
that can be applied in the moving step within SIS.

3.2.3. Subset simulation

Subset simulation (SuS) [15] is especially designed for the estimation of rare event probabilities.
This method transforms a rare event simulation problem into a sequence of problems involving
more frequent events.

The process is carried out by expressing a very small probability of failure as the product
of larger conditional probabilities in the following way: the parameter space is divided into a
decreasing sequence of nested subsets (called intermediate failure domains) starting from the
whole space and narrowing down to the target failure set, i.e., Θ = F0 ⊃ F1 ⊃ · · · ⊃ Fnlv = F ,
such that F =

⋂nlv
j=0Fj . By the general product rule (or chain rule) of probability, the probability

of failure can be expressed as [15]

pF = P
[
∩nlv
j=0Fj

]
= P

[
Fnlv | ∩nlv−1

j=0 Fj
]
P
[
∩nlv−1
j=0 Fj

]
(3.24)

= P[Fnlv | Fnlv−1]P
[
∩nlv−1
j=0 Fj

]
(3.25)

=
nlv∏
j=1

P[Fj | Fj−1] , (3.26)

where P[Fj | Fj−1] represents the conditional probability at the (j−1)-th level. Each intermediate
failure domain is defined as the set Fj = {θ ∈ Θ : g(θ) ≤ τj}, where τ1 > · · · > τj > · · · >
τnlv = 0 forms a decreasing sequence of threshold levels. Note that the conditional probabilities
can be estimated by MC as,

P[Fj | Fj−1] ≈ p̂j = 1
N

N∑
i=1
1Fj

(
θ

(j−1)
i

)
, (3.27)

where {θ(j−1)
i }Ni=1 are samples distributed according to the conditional densities π(· | Fj−1).

The initial samples {θ(0)
i }Ni=1 are i.i.d., according to the prior. However, for the subsequent

intermediate levels, the calculation of P[Fj | Fj−1] , j = 1, ..., nlv is more complicated since it is
necessary to draw samples from the conditional densities. This task is performed by generating
Markov chains that sequentially populate the target failure domain F .

The intermediate threshold values are cumbersome to define in advance. One alternative is
to select them adaptively, such that the conditional failure probability of each level corresponds
to a common fixed value P[Fj | Fj−1] = p0. The recommended intermediate probability value is
p0 ∈ [0.1, 0.3] [255]. The adaptive selection implies that each threshold value τj is defined as the
N · (1− p0)-th order statistic (p0-quantile) of the set of LSF values g(θ(j−1)).

Provided that a suitable MCMC method is used for sampling the involved intermediate
conditional distributions, the SuS method proceeds as follows: at the initial MC stage, the
first intermediate level τ1 is selected as the p0-percentile of the LSF values g(θ(0)), by doing so,
Ns samples from θ(0) that lie in F1 will be distributed according to an intermediate density
π(· | F1). Those samples provide seeds to simulate Markov chains using a MCMC algorithm that
has π(· | F1) as stationary distribution; this process generates new samples {θ(1)

i }Ni=1. We repeat
this simulation strategy until the failure event F is reached. The failure probability estimate of
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the SuS method is given by,

p̂SuS
F =

nlv∏
j=1

p̂j = pnlv−1
0

1
N

N∑
i=1
1F
(
θnlv−1
i

)
︸ ︷︷ ︸

nF/N

, (3.28)

where the second term corresponds to the intermediate conditional probability at the last level
τnlv = 0 computed as the ratio between the number of samples that lie in F , denoted nF , and
the total number of samples per level N .

Remark 3.3. SuS is a splitting method [48] in which the intermediate levels are fixed a priori.
Adaptive strategies are also utilized in splitting algorithms to estimate the levels on-the-fly. In
this case, they proceed similarly to SuS by fixing the intermediate probabilities to a predefined
value and estimating the thresholds based on order-statistics; see, e.g., [38, 59].

A general procedure for the implementation of SuS is shown Algorithm 2. We refer to [177]
for a variety of MCMC methods that are used to sample the intermediate levels within SuS.

Algorithm 2 SuS method.
Input : number of samples per level N , prescribed intermediate probability p0, LSF g(θ),

maximum iterations m.
/* Initial MC */

1 Generate N samples from the prior θ(0) ∼ πpr(·)
2 Evaluate LSF geval ← g(θ(0))
3 Initial level j ← 0 and threshold τj ←∞

/* SuS steps */
4 while τj > 0 and j < m do
5 j ← j + 1

/* Update threshold */
6 Compute the indices resulting from the ascending sorting of LSF values, idx← sort(geval)
7 Sort the samples acording to the sort-key idx, θsort ← θ(j−1)(idx)
8 Set the intermediate threshold level τj as the p0-quantile of the LSF values in geval

9 Compute the number of failure samples in the level, nF ←
∑N
i=1(geval(i) ≤ max(τj , 0)))

10 if (τj ≤ 0) then
11 τj ← 0
12 p̂j ← nF/N

13 else
14 p̂j ← p0
15 end
16 Select nF seeds, θseed ← θsort(0 : nF )
17 Randomize the ordering of the seeds θseed

/* MCMC step */
18 Use θseed as seeds for an MCMC algorithm to generate a new set of samples θ(j); this process also

returns the associated LSF evaluations geval ← g(θ(j))
19 end
20 nlv ← j
21 Compute p̂F ←

∏nlv
i=1 p̂i

Output : p̂F

3.2.4. Cross-entropy method

The standard cross-entropy (CE) method [197] considers the problem of approximating π?bias(θ)
by a parametric biasing density πbias(θ;υ), with reference parameters υ. The approximation is
selected from a family of densities Π = {πbias(θ;υ) | υ ∈ Υ} designed to be of simpler form than
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π?bias. Thereafter, the objective is to find υ? ∈ Υ such that the distance between the optimal
and approximated biasing densities is minimal. The dissimilarity between these distributions is
measured by the cross-entropy or Kullback–Leibler divergence (KLD) [91]

DKL (π?bias||πbias) =
ˆ

Θ
ln
(

π?bias(θ)
πbias(θ;υ)

)
π?bias(θ)dθ

=
ˆ

Θ
ln π?bias(θ) π?bias(θ)dθ −

ˆ
Θ

ln πbias(θ;υ) π?bias(θ)dθ. (3.29)

The first term in (3.29) is invariant with respect to any choice of πbias and the problem
reduces to the optimization task:

υ? = arg max
υ∈Υ

Eπ?bias
[ln πbias(θ;υ)] , (3.30)

where υ? denotes the optimal reference parameters. We can substitute the optimal biasing
density (3.15) into (3.30) to express the optimization program as

υ? = arg max
υ∈Υ

Eπpr [ln πbias(θ;υ) 1F (θ)] . (3.31)

The expectation (3.31) can be estimated by MC using samples from the prior distribution.
However, this is impractical if F defines a rare event. In order to efficiently evaluate (3.31), we
apply IS with biasing distribution πbias(θ;υ′) ∈ Π (for reference parameters υ′ ∈ Υ):

υ? = arg max
υ∈Υ

Eπbias(·;υ′)
[
ln πbias(θ;υ) 1F (θ) w(θ;υ′)

]
with w(θ;υ′) = πpr(θ)

πbias(θ;υ′) .

(3.32)
We can further employ the IS estimator of the expectation (3.32) to define the stochastic

optimization problem:

υ? ≈ υ̂? = arg max
υ∈Υ

J (υ) with J (υ) = 1
N

N∑
i=1

ln πbias(θi;υ)1F (θi)w(θi;υ′), (3.33)

where {θi}Ni=1
i.i.d.∼ πbias(·;υ′). Under the assumption that J (υ) is convex and differentiable

with respect to υ, the solution to (3.33) can be computed by ∇υJ (υ) = 0 [197]. Moreover, if
the biasing distribution belongs to the natural exponential family, the solution of the stochastic
optimization problem can be computed analytically. For instance, if Π is a collection of Gaussian
densities, the parameter υ is selected from the space Υ containing mean vectors and covariance
matrices. In this case, the reference parameter estimator υ̂? has an explicit updating rule (see,
for instance [89]).

In principle, estimating the optimal reference parameters using πbias(θ;υ′) in (3.32) yields
better efficiency than using πpr(θ) in (3.31). However, one still requires a good initial choice of
υ′, such that a substantial number of samples from πbias(θ;υ′) lie in the failure domain. This
is addressed in the CE method by gradually approaching the target failure event. The idea
is to construct a sequence of intermediate sets Fj = {θ ∈ Θ : g(θ) ≤ γj}, with intermediate
thresholds γj ≥ 0.

The CE optimization (3.33) is now solved at each level with respect to an intermediate
optimal biasing density π?bias,j(θ) ∝ 1Fj (θ)πpr(θ) associated to a failure threshold γj . Starting
from an initial reference parameter estimate υ̂0, the sequential stochastic CE program reads

υ̂j+1 = arg max
υ∈Υ

1
N

N∑
i=1

ln πbias(θi;υ)w̃(j)
i with w̃

(j)
i = 1Fj (θi)

πpr(θi)
πbias(θi; υ̂j)

, (3.34)
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where {θi}Ni=1
i.i.d.∼ πbias(·; υ̂j), and the vector w̃(j) contains the j-th level weights computed with

respect to the failure indicator function. Each failure threshold γj is defined as the N · (1− ρ)-th
order statistic (ρ-quantile) of the sequence of LSF values {gi = g(θi)}Ni=1. The quantile value ρ
is chosen to ensure that a good portion of the samples from πbias(·; υ̂j) fall in the failure set Fj ,
usually ρ ∈ [0.01, 0.1] [198].

The CE algorithm proceeds until an intermediate threshold is such that γj ≤ 0, for which
at least N · ρ samples lie in the target failure set F . These final “elite” samples are used to
estimate the reference parameter of the approximated optimal biasing density, i.e., υ̂nlv = υ̂?,
where nlv denotes the total number of levels or iterations. Samples from the latter are then used
to compute the probability of failure via (3.11).

Note that if the prior and the biasing densities belong to the same parametric family, the
initial estimate of the reference parameters is typically selected as the parameters defining the
prior (e.g., υ̂0 = [µpr,Σpr]). Algorithm 3 summarizes the CE method.

Remark 3.4. The CE method can also be defined in a nonparametric way [196], where the order
in the KLD is exchanged, i.e., DKL(πbias||π?bias). Hence, the aim is to minimize the KLD to the
optimal biasing distribution from all possible distributions satisfying certain moment-matching
constraints; this is also the idea of the generalized CE method [39].

Algorithm 3 CE method.
Input : number of samples per level N , quantile value ρ, LSF g(θ), prior density πpr(θ),

maximum iterations m
1 Set the parametric family of biasing distributions πbias(θ;υ)
2 Set initial reference parameters υ̂0
3 Initial level j ← 0
4 while True do

/* Moving */
5 Generate N samples from the biasing distribution θ(j) ∼ πbias(·; υ̂j)
6 Evaluate LSF geval ← g(θ(j))
7 Set the intermediate threshold level γj as the ρ-quantile of the LSF values in geval
8 Evaluate the indicator function at the current level deval ← 1Fj

(
θ(j)) = geval ≤ γj

9 if (γj ≤ 0) or (j > m) then
10 γj ← 0

Break
11 end

/* Weigthing */
12 Compute the weights w(j) ← exp

(
ln πpr(θ(j))− ln πbias(θ(j); υ̂j)

)
13 Compute the weights associated to the indicator function w̃(j) ← deval ·w(j)

/* Optimization */
14 Find the next reference parameters υ̂j+1 by solving the stochastic optimization problem (3.34) or

using a closed-form update if available.
15 j ← j + 1
16 end
17 Compute the IS estimator p̂F ← 1

N

∑N
i=1 deval(i) · w(j)

i

Output : p̂F

3.2.5. Improved cross-entropy method

In the standard CE method, only N · ρ samples drawn from the intermediate biasing densities
contribute to the estimation of each υ̂j+1 in (3.34). This is due to the selection of the failure
thresholds γj and the shape of the intermediate optimal biasing densities. These are conditional
distributions that are defined at each intermediate failure event using an indicator function.
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Since the remaining N · (1− ρ) samples can potentially support the estimation of each reference
parameter υ̂j+1, it is ideal to use all samples.

The improved cross-entropy (iCE) method [179] re-defines the intermediate optimal biasing
densities using an approximation of the indicator function that guarantees a smooth transition
towards the optimal biasing density. This modification allows one to employ all the N samples
in the estimation of the reference parameters at each intermediate level.

After using any of the smooth approximations (3.3), the sequential CE optimization problem
(3.34) is now defined by the sequence {sj > 0}nlv

j=0, instead of the failure thresholds γj . The
new intermediate optimal biasing density associated with a smoothing parameter sj is defined
as π?bias,j(θ; sj) = 1/pj(f(θ; sj)πpr(θ)), where pj is the normalizing constant. Therefore, we can
re-formulate the sequential CE stochastic optimization problem (3.34) as

υ̂j+1 = arg max
υ∈Υ

1
N

N∑
i=1

ln πbias(θi;υ)w̃(j+1)
i with w̃

(j+1)
i = f(θi; sj+1) πpr(θi)

πbias(θi; υ̂j)
, (3.35)

where {θi}Ni=1
i.i.d.∼ πbias(·; υ̂j), and the vector w̃(j+1) contains the (j + 1)-th level weights

computed with respect to the smooth approximation of the indicator function at sj+1. The
objective function (3.35) is analogous to the CE stochastic optimization (3.34), and thus both
problems are solved identically.

Algorithm 4 iCE method.
Input : number of samples per level N , target coefficient of variation δ?, LSF g(θ),

smooth indicator f(θ; s), prior density πpr(θ), maximum iterations m
1 Set the parametric family of the biasing distributions πbias(θ;υ)
2 Set initial reference parameters υ̂0 and smoothing parameter s0 ←∞
3 Initial level j ← 0
4 while True do

/* Moving */
5 Generate N samples from the biasing distribution θ(j) ∼ πbias(·; υ̂j)
6 Evaluate LSF geval ← g(θ(j)), and indicator function deval ← geval ≤ 0 = 1F

(
θ(j))

7 Evaluate smooth indicator function feval ← f
(
θ(j); sj

)
8 Compute the coefficient of variation of the ratio between the indicator function and its smooth

approximation ĉv(j) ← cv(deval/feval)

9 if (ĉv(j) ≤ δ?) or (j > m) then
10 Break
11 end

/* Weighting */
12 Compute the weights w(j) ← exp

(
ln πpr(θ(j))− ln πbias(θ(j); υ̂j)

)
13 Use the level samples θ(j) to estimate the smoothing parameter sj+1 as per (3.36)
14 Update the smooth indicator values feval ← f

(
θ(j); sj+1

)
15 Compute the weights associated to the smooth indicator function w̃(j+1) ← w(j)feval

/* Optimization */
16 Find the next reference parameters υ̂j+1 by solving the stochastic optimization problem (3.35) or

using a closed-form update if available.
17 j ← j + 1
18 end
19 Compute the IS estimator p̂F ← 1

N

∑N
i=1 deval(i) · w(j)

i

Output : p̂F

Similarly to SIS, the smoothing parameters are chosen adaptively to ensure that each
consecutive pair of intermediate optimal biasing distributions do not differ significantly from
one another. The idea is to match the sample coefficient of variation of the weights cv

(
w̃(j)

)
at
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each level with a target value δ?. Therefore, the smoothing parameters are estimated via the
optimization

sj+1 = arg min
s∈(0,sj)

(
cv(f (θ; s)w(j))− δ?

)2
, (3.36)

where w(j) = {πpr(θi)/πbias(θi; υ̂j)}Ni=1. Notice that (3.36) is solved without further evaluations
of the LSF. The iCE algorithm proceeds until the cv of the ratio between the indicator function
and its smooth approximation is smaller than the target δ?. The final N samples are used to
approximate the probability of failure with the IS estimator (3.11). Algorithm 4 summarizes the
iCE method.

Remark 3.5. The reference parameters of the biasing distribution family in the CE and iCE
methods are usually computed by a closed-form expression. This is because the optimization
program is equivalent to fitting the parametric family to the set of weighted samples. In this case,
maximum likelihood estimation is employed to obtain the updating formulas of the reference
parameters. In this work, we employ the single Gaussian family, whose updating rule can be
found in [89], and the von Mises–Fisher–Nakagami family, whose updating formulae is derived
in [179].

Figure 3.1: Relationships between the sequential rare event simulation methods discussed in this section.

The previous simulation methods share similar properties between one and the other. In
particular, we highlight the following relations which are summarized in Figure 3.1:

(i) The intermediate distributions used within SuS can be regarded as optimal IS distributions
at each level. Both densities have the form π?bias,j(θ) ∝ 1Fj (θ)πpr(θ) = π(θ | Fj).
Therefore, SuS uses comparable optimal IS densities as the CE method. Even the
intermediate threshold levels are computed in a similar manner using order statistics of
the LSF values at a given level. However, to populate the next level, SuS uses equally
weighted seeds in a MCMC algorithm with stationary distribution π(θ | Fj), while CE
uses weighted elite samples to fit a parametric density that performs the sampling.

(ii) In contrast to SIS, SuS does not require resampling since all the sample seeds are defined
to have the same weights. However, the moving step in both algorithms is based on
MCMC. Traditionally for SuS, there is no burn-in period required since the seeds belong
to the domain of the intermediate distribution, and the MCMC method is modified to
always reject samples that do not belong in that domain. This is not the case for SIS,
where the seeds are selected from the samples with higher weights and standard MCMC
methods are applied. The differences in the moving steps for both algorithms also has
to do with the fact that the intermediate densities have a different functional form and
parametrization; one is based on the failure indicator function and the other one on its
smooth approximation.
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(iii) SIS and iCE employ the same intermediate optimal biasing densities, which are parameter-
ized in terms of smoothing parameters defining the approximation of the failure indicator
function.

Figure 3.2 illustrates the evolution of the simulation methods (by rows) presented in this
section at the first three intermediate levels (by columns). Python scripts of these algorithms
are available in a GitHub repository.
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Figure 3.2: Samples and contours of the intermediate optimal biasing densities at three initial simulation
levels for SIS, SuS, CE and iCE methods. The red solid line marks the target failure level
(defined by LSF (3.37) with d = 2) and the color in the samples accounts for the weight values.
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3.3. Numerical applications

3.3. Numerical applications

We illustrate the performance of the algorithms on two examples. One involving a quadratic
LSF that is independent of the dimension of the input parameter space and a second one dealing
with a diffusion equation with random field coefficient.

Since the problems are moderate to high-dimensional, the CE and iCE methods are imple-
mented with the von Mises–Fisher–Nakagami mixture, and the SIS and SuS algorithms employ
an adaptive preconditioned Crank–Nicolson as MCMC sampler (cf., section 4.2). For SIS, a
burn-in period of 0.1N is employed. When required, the target coefficient of variation of the
weights is δ? = 1.5.

3.3.1. Example 1: quadratic LSF in varying dimensions

We define the quadratic LSF [177]

g(θ) = β + κ

4 (θ1 − θ2)2 − 1√
d

d∑
i=1

θi, (3.37)

where β = 3.5 and the parameter κ = 3 defines the curvature of the LSF at the point in the
parameter space with the largest probability density (the larger the curvature, the smaller pF ).
The reference probability of failure is independent of the dimension and it can be computed
analytically as [68]

pF =
ˆ ∞
−∞

ˆ ∞
−∞

φ(−u+ v2(κ/2))φ(v) dudv, (3.38)

where φ denotes the standard Gaussian PDF. In this case, the target failure probability is
pF ≈ 6.518× 10−5, and different dimensions d = {2, 10, 25, 50, 100, 200, 500} are used to define
the LSF (3.37).

We assess the accuracy of the estimate by each method for different sample sizes N =
{500, 1000, 5000}. For each N , we perform Nsim = 100 independent runs of each algorithm. The
results are shown in Figure 3.3. As the sample size increases, the estimates concentrate around
the exact value of the failure probability. SIS and SuS can estimate the pF for all the dimensions.
CE and iCE methods can only estimate the failure probability in low dimensions when the
sample size is small. However, their performance improve as the sample size increases. Note that
iCE performs better than standard CE with respect to increasing dimension of the parameter
space; when N = 5000, CE works in dimensions up to 200, while iCE is able to estimate pF in
dimensions up to 500 (possibly more, since 500 is the maximum dimension used in the study).

101 102

d

6× 10−5

7× 10−5

p̂ F

N = 500

101 102

d

N = 1000

101 102

d

N = 5000

SIS
CE

iCE
SuS

Figure 3.3: Failure probability estimate obtained by each method: for increasing dimension of the
parameter space and number of samples per level. Estimated as an average of Nsim = 100
independent simulations. The solid red line marks the exact probability of failure.
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We also show the values of the RMSE (3.8) in Table 3.1 (values larger than 0.6 are not
included). The RMSE is controlled by the coefficient of variation of the failure probability
estimate since the bias is small (or zero) for all the methods. Note that the CE and iCE methods
yield smaller error when an appropriate sample size is employed. The difficulty for those methods
lies in the dimension of the parameter space. Despite we are employing a suitable parametric
family for sampling in high dimensions, a large number of samples per level is still required
to perform a good fitting as the dimension increases. Moreover, SIS and SuS generate larger
error values since they are based on MCMC sampling, which induces some sample correlation
especially for SuS. The error generated by SIS is smaller than the one produced by SuS at the
same sample sizes. This can be related to the extra burn-in period that the MCMC sampling
within SIS requires, and also to the different parametrization of the biasing densities at the
intermediate levels. As also seen for iCE, the application of the smooth failure indicator, which
allows one to use information from all samples, gives better performance. In this numerical
experiment, we found that the most efficient (in computational time) methods are CE and iCE,
while the one that requires more running time is SIS.

Table 3.1.: RMSE of failure probability estimates obtained by each method (average of Nsim = 100). For
SIS, extra 0.1N samples are used due to burn-in.

d N
500 1000 5000

SIS

50 0.26 0.24 0.10
100 0.31 0.19 0.09
200 0.32 0.24 0.10
500 0.33 0.25 0.09

CE

50 − 0.31 0.06
100 − − 0.06
200 − − 0.12
500 − − −

iCE

50 0.25 0.17 0.06
100 0.59 0.17 0.06
200 − − 0.07
500 − − 0.09

SuS

50 0.51 0.39 0.16
100 0.49 0.33 0.14
200 0.46 0.40 0.18
500 0.52 0.37 0.17

3.3.2. Example 2: one-dimensional diffusion problem

Consider the stochastic linear elliptic equation on a one-dimensional spatial domain D = [0, 1]:

d
dx

(
κ(x, ω)du(x, ω)

dx

)
= −J(x), (3.39)

with Dirichlet boundary condition at u(1, ω) = 1 and a random Neumann boundary condition
at x = 0:

κ(x, ω) du(x, ω)
dx

∣∣∣∣
x=0

= −F (ω), (3.40)

where the flux F is Gaussian distributed with mean µF = −2 and variance σ2
F = 0.5. This

example problem is taken from [160].
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The source term is defined as the superposition of four weighted Gaussian plumes with
standard width σJ = 0.05. The plumes have equal strengths w = 0.8 and they are centered at
locations µJ = [0.2, 0.4, 0.6, 0.8]:

J(x) = w
4∑
i=1
N (x; µJ(i), σ2

J). (3.41)

The hydraulic conductivity is represented with a lognormal random field, where the underlying
Gaussian field κ′ has mean µκ′ = 1 and variance σ2

κ′ = 0.3. The covariance kernel of the Gaussian
field is exponential with correlation lengths ` = {0.1, 0.9}. We employ the KL expansion to
represent the conductivity field using truncation orders k = {5, 50, 100, 200}. The source term,
integrated source term, and some random field realizations are shown in Figure 3.4.
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Figure 3.4: Source term, integrated source term, and some realizations of the hydraulic conductivity and
pressure head fields using an exponential kernel with ` = 0.1 (1st row) and ` = 0.9 (2nd row).

The boundary value problem (3.39) is solved semi-analytically as follows

d
dx

(
κ(x)du(x)

dx

)
= −J(x) (3.42a)

κ(x)du(x)
dx = −

ˆ x

0
J(t) dt+ c1 = −J̃(x) + c1 (3.42b)

u(x) =
ˆ x

0

[
−J̃(t) + c1

κ(t)

]
dt+ c2. (3.42c)

Applying the Neumann boundary condition (at x = 0) to (3.42b), we get c1 = −F . And
applying the Dirichlet boundary condition (at x = 1) to (3.42c), we obtain c2 = 1−

´ 1
0 (−J̃(t)−

F )/κ(t)dt, which can be solved numerically for a given realization of κ(t); here J̃(t) can also be
a numerical integration of (3.41). Hence, the following equation is used to compute the response
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pressure head:

u(x, ω) =
ˆ x

0

[
−J̃(t)− F
κ(t, ω)

]
dt+ 1−

ˆ 1

0

[
−J̃(t)− F
κ(t, ω)

]
dt. (3.43)

We define the LSF by considering that the failure of the system occurs when the maximum
pressure head exceeds a given admissible threshold u? = 2.7:

g(θ) = u? −max(u(x;θ)), (3.44)

where the uncertain parameter vector θ = [θ(F ),θ(KL)] ∈ Rk+1, accounts for the flux random
variable and the KL coefficients used for the conductivity random field representation.

The forward equation (3.43) is evaluated on the domain D, which is discretized into 501
equally-spaced points. The accuracy of the probability estimator by each simulation method is
evaluated at sample sizes N = {1000, 5000}. For each N , we perform Nsim = 50 independent
runs of each algorithm. As in the previous example, extra 0.1N samples are used for SIS due to
burn-in.

The failure probability estimates and associated coefficients of variation are shown in
Table 3.2, for the random field represented with the correlation length ` = 0.1. In this case, the
LSF (3.44) depends on the dimension of the input parameter space. The probability of failure
increases with the truncation order of the KL expansion. After representing sufficient variability
of the random field (around 98% with k = 101 terms), the rate at which the failure probability
increases is less pronounced. The performance of the methods is similar to the one obtained in
the example of subsection 3.3.1.

Table 3.2.: Statistics of the failure probability estimates using ` = 0.1 obtained by each method.
k p̂F cv

N = 1000 N = 5000 N = 1000 N = 5000

SIS

5 1.82× 10−5 1.71× 10−5 0.21 0.10
50 3.13× 10−5 3.28× 10−5 0.25 0.11

100 3.38× 10−5 3.41× 10−5 0.29 0.09
200 3.38× 10−5 3.36× 10−5 0.32 0.09

CE

5 1.61× 10−5 1.68× 10−5 0.16 0.05
50 3.03× 10−5 3.24× 10−5 0.22 0.07

100 − 3.34× 10−5 − 0.07
200 − 3.44× 10−5 − 0.10

iCE

5 1.71× 10−5 1.71× 10−5 0.07 0.04
50 3.21× 10−5 3.22× 10−5 0.12 0.03

100 3.36× 10−5 3.32× 10−5 0.11 0.05
200 3.33× 10−5 3.41× 10−5 0.21 0.05

SuS

5 1.64× 10−5 1.67× 10−5 0.33 0.14
50 3.09× 10−5 3.23× 10−5 0.30 0.13

100 3.69× 10−5 3.31× 10−5 0.39 0.15
200 3.29× 10−5 3.23× 10−5 0.31 0.13

Similar results are shown in Table 3.3 for the random field represented with a correlation
length ` = 0.9. Again, the probability of failure increases with the truncation order of the KL
expansion. However, the increment scales down faster than the case with small correlation length.
This is because less terms are required to fully represent the random field (98% with k = 11
terms). Note the effect of the correlation length on the magnitude of the failure probabilities. As
the correlation length increases the probability of failure becomes smaller; the order of magnitude
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changes from 10−5 to 10−3. In this case, the increase in spatial correlation drives most of the
prior probability mass towards the failure domain (i.e., the failure event is less rare).

Table 3.3.: Statistics of the failure probability estimates using ` = 0.9 obtained by each method.
k p̂F cv

N = 1000 N = 5000 N = 1000 N = 5000

SIS

5 1.67× 10−3 1.66× 10−3 0.126 0.079
50 1.69× 10−3 1.74× 10−3 0.169 0.086

100 1.74× 10−3 1.76× 10−3 0.202 0.077
200 1.73× 10−3 1.72× 10−3 0.176 0.077

CE

5 1.63× 10−3 1.65× 10−3 0.069 0.024
50 1.74× 10−3 1.73× 10−3 0.133 0.038

100 1.72× 10−3 1.74× 10−3 0.191 0.045
200 − 1.74× 10−3 − 0.054

iCE

5 1.64× 10−3 1.63× 10−3 0.047 0.022
50 1.72× 10−3 1.72× 10−3 0.061 0.024

100 1.73× 10−3 1.73× 10−3 0.081 0.030
200 1.74× 10−3 1.74× 10−3 0.079 0.027

SuS

5 1.62× 10−3 1.66× 10−3 0.194 0.102
50 1.66× 10−3 1.71× 10−3 0.211 0.099

100 1.70× 10−3 1.73× 10−3 0.177 0.099
200 1.60× 10−3 1.73× 10−3 0.203 0.094

We conclude by pointing out that the probability of failure can change significantly, if the
spatial correlation takes negative values (see for example [98]). Although it is possible to employ
kernel functions that allow for both, positive and negative correlation, in spatial variation it is
common to consider positive correlation. Such assumption is usually employed for homogeneous
material properties since there is an underlying uniformity in which the random field realizations
cannot be completely different at two spatial locations. For random heterogeneous media,
negative correlation models can be allowed, and in such situations the effect on the reliability of
the system can be certainly different. Another example where the correlation values change,
occurs when observational data is used to identify the random field. This is because the updating
process naturally modifies the correlation structure of the field, and as a result the associated
failure probabilities change. This type of analysis is called reliability updating and will be
discussed in Chapter 4.
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Chapter 4

Bayesian analysis of engineering models

“Bayes’ theorem is to the theory of probability
what Pythagoras’ theorem is to geometry”.

Harold Jeffreys, 1891-1989 [125, p.19].

Computational models of engineering systems require specification of both, system input
(e.g., boundary conditions and applied external actions) and system parameters (e.g., material
or geometric properties). These quantities are in practice inherently random or known with
imprecision. Hence, physical systems are typically subjected to uncertainty.

The integration of data into engineering models is key to reducing the uncertainty and
performing accurate predictions. The combination of the observations with the computational
model can provide information about the uncertain inputs and parameters. This represents an
inverse problem in which the idea is to discover from a set of observations, the causal elements
or parameters that generated them. The stability of the inverse problem is mainly controlled
by the dimension of the parameter space, the structure of the mathematical model and the
observations, which are in most cases limited and noisy. As a result, inverse problems are prone
to be ill-posed (according to Hadamard [103]). This means that different parameter values
are consistent with the data (uniqueness), or that the parameters cannot be identified at all
(existence), or that the solution is highly sensitive to small perturbations in the data (stability).

Classical regularization methods, such as Tikhonov [230], truncated singular value decom-
position [107], or total variation [122] are oftentimes used to solve inverse problems. These
methods are deterministic and incorporate regularizers or penalty functions as stabilization
procedure. In several cases, the solution is computed by optimization methods, or in more
standard scenarios the problem is expressed by a least-squares task. Another approach to
inverse problems is Bayesian statistical methods. They provide a tool to regularize the inverse
problem by incorporating a probabilistic description of the model parameters that combines
prior information with observations [20, 131]. One of the main advantages is that the potential
uncertainty in the parameter values can also be quantified.

We adopt the Bayesian approach for the solution of inverse problems and start this chapter
by summarizing fundamental concepts on this theory. Since a Bayesian analysis not only involves
retrieving the uncertain parameters, but also rare event simulation tasks, we also discuss the
updating of failure probabilities. Thereafter, we present some numerical methods for the solution
of Bayesian inverse problems. We wrap up with some numerical examples involving PDE models
with random field coefficients.

4.1. The Bayesian approach to inverse problems

Suppose that the goal is to perform inference about a random quantity in order to improve
the predictive capacity of a numerical model. For instance, the model can be a finite element
solution of a PDE representing the response of a structural system, and the associated random
parameters could be the Poisson ratio or the Young’s modulus of a constitutive material. We
want our model to learn the parameters using data or observations characterizing the system
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behavior. The task of updating the model using observation data represents an inverse problem.
We begin by considering the forward problem y = G(θ), where G is a solution operator

expressing the relationship between the uncertain input parameters θ ∈ Θ ⊆ Rd and the model
response y. Moreover, let the forward response operator be a function from the parameter
space Θ to the data space Y ⊆ Rm, i.e., G = O ◦ G : Θ → Y. The operator G is also called
parameter-to-observation map since it is defined as the composition of the solution operator G
with an observation operator O. Note that G provides a link between the parameter and data
spaces, and it describes how the observational data can be computed given the parameters θ.

The observed data ỹ ∈ Y frequently contains noise. In classical inverse problems, this is
usually modeled as additive and mutually independent from the uncertain parameters. Therefore,
the data can be represented as a perturbed evaluation of the forward response operator

ỹ := G(θtrue) + η, (4.1)

where θtrue ∈ Θ is the unknown and deterministic true parameter vector, η ∼ N (0,Σobs) is
the observation noise assumed to be Gaussian distributed with mean zero and non-singular
covariance matrix Σobs ∈ Rm×m. We remark that other types of noise models also exist in
practice; for example, a Poisson multiplicative noise is considered in image reconstruction [107].

As briefly mentioned in the chapter introduction, the inverse problem of finding the parameter
θtrue given the noisy relation (4.1) is generally ill-posed. Bayesian statistical methods offer a
framework that integrates the observations with prior information, providing a mechanism of
stabilization [131]. In this case, instead of inferring a deterministic θtrue, we assume that the
parameter is a random vector θ distributed according to an initial/prior probability distribution.
Thereafter, the idea is to update the (prior) probability distribution of the parameters by
including information about the numerical model and observed data (likelihood). Solving the
Bayesian inverse problem then amounts to estimate or characterize the updated (posterior)
distribution.

In engineering, we are typically interested in models where G implies the solution of a
stochastic PDE with random field coefficients. In principle, the solution operator is defined
as G : L2(D) → L2(D) since both, input and output, are required to be square-integrable
realizations of two different random fields defined on a physical domain D. The Bayes’ theorem
in this functional setting is interpreted as the Radon–Nikodym derivative of the posterior
probability measure with respect to the prior probability measure [225, 60]. Alternatively, we
can parameterize the random field using the KL expansion (2.29), such that the domain of
the solution operator is replaced by the finite-dimensional parameter space Θ ⊆ Rk. In this
case, the solution operator is a map G : Θ→ L2(D), and the observation operator is given as
O : L2(D)→ Y.

As in Chapter 3, we consider a canonical probability space (Rk,B(Rk),P), such that
θ ∈ Θ ⊆ Rk. The random vector θ is assumed to be distributed according to an initial prior
probability density πpr(θ) = dP/dλ with respect to the Lebesgue measure λ on Rk. Intuitively,
the role of the prior (as regularization) is to allocate lower probability to parameter values
that are not “expected”, and higher probability to parameters that are “expected”. It has been
shown that the prior must have sufficiently heavy tails to achieve stability in the Bayesian
inverse problem; the conditions are discussed in [115]. Moreover, consider a distribution on the
data space Y with well-defined probability density π(· | θ), conditioned on a realization θ of
the uncertain parameters. Such density follows from the statistical model of the observation
noise assumed in (4.1), linking the forward operator and data. The likelihood function is
defined from this conditional density with fixed argument equal to the measurement data, i.e.,
L(θ; ỹ) := π (ỹ | θ). The updated belief about θ is represented by the posterior probability
density πpos(θ | ỹ). Through Bayes’ theorem this conditional density is defined as [19, 141]
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πpos (θ | ỹ) = 1
Zỹ

L(θ; ỹ)πpr (θ) , (4.2)

where Zỹ =
´
Θ L(θ; ỹ)πpr (θ) dθ is the normalizing constant of πpos (θ | ỹ), called the marginal

likelihood or model evidence and it gives information about the plausibility of the assumed
model.

Since we are dealing with Gaussian or related random fields, the formulation considers
multivariate Gaussian priors θ ∼ N (µpr,Σpr), where µpr and Σpr are the prior mean and
covariance. Hence, the posterior (4.2) can be written as

πpos (θ | ỹ) ∝ exp
(
− 1

2

∥∥∥Σ−1/2
obs (ỹ − G(θ))

∥∥∥2

Y︸ ︷︷ ︸
Φ(θ;ỹ)

−1
2

∥∥∥Σ−1/2
pr (θ − µpr)

∥∥∥2

Θ

)
, (4.3)

where Φ(θ; ỹ) = − ln L(θ; ỹ) is the so-called potential (also data-misfit function or negative
log-likelihood), and it is often employed for numerical stability when performing the Bayesian
inversion.

Remark 4.1. We can use the KL expansion to further reduce (4.3), since the prior distribution
has mean and covariance are given by µpr = 0 and Σpr = Ik (Ik ∈ Rk×k denotes the identity
matrix); the dimension k is in this case the truncation order of the expansion. Note that
the information about the second-order properties of the random field (mean and covariance
structure) enters directly in the definition of the likelihood function via the forward response
operator.

Closed-form expressions for the posterior (4.2) are only available in some particular cases.
For instance, models involving conjugate priors [210, 193], or non-Gaussian priors given by
nonlinear transformations of Gaussians [61]. This class of priors can be considered as informative,
and oftentimes arise in engineering applications where there is potential information about the
parameters beforehand. Other non-conjugate models include priors that are non-informative
such as, Laplace, Jeffrey, and matching priors (see [193] for a discussion). Furthermore, extra
layers of prior models arise in Bayesian hierarchical applications. An advantage of this strategy
is that the posterior distribution becomes less sensitive to the prior choices as the parameter
hierarchies increase [193]. This is especially relevant in the context of random fields, where
several parameters control the field representation. Alternatively, one can also explore the effects
of the prior choices on the posterior solution by performing parameter studies. This allows one
to identify practical guidelines and relations that support prior specification for random fields.

The computation of the posterior (4.2) generally requires MC-based sampling procedures.
Obtaining samples from the posterior using standard MC techniques can be difficult, if the
normalizing factor Zỹ is cumbersome to compute. MCMC is another collection of methods that
do not require the knowledge of this normalizing constant. In this case, it is only necessary to
know the shape of the posterior distribution. In the next section, we describe two important
algorithms that are oftentimes the core of many sequential approaches used to perform a sample
characterization of the posterior.

We conclude this section by defining well-known summary statistics utilized in Bayesian
computations. The posterior predictive distribution is also included due to its relevance when
using the updated model to estimate future system states:

� The posterior mean (PM) is the optimal estimator of θtrue in the MSE sense [193]

θPM(ỹ) =
ˆ

Θ
θπpos(θ | ỹ)dθ. (4.4)
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� The maximum a posteriori estimator (MAP) is the Bayesian analogue of the frequentist
maximum likelihood estimator (MLE) [193]

θMAP(ỹ) = arg max
θ∈Θ

πpos(θ | ỹ); (4.5)

note that for (4.3), the MAP estimator is given by

θMAP(ỹ) = arg min
θ∈Θ

Φ(θ; ỹ) + 1
2

∥∥∥Σ−1/2
pr (θ − µpr)

∥∥∥2

Θ
, (4.6)

which can be seen as a classical regularization of the inverse problem (generalized Tikhonov)
with stabilization term given by the prior.

� Credible intervals, denoted CI(ỹ), where the unobserved parameter values belong to with
probability P[θ ∈ CI(ỹ) | ỹ] = 1− α. That is, the probability that the CI bounds contain
the true parameter is 1 − α, where α is an user-defined threshold. Credible intervals
support statements, such as “based on the data, there is a 1− α probability that the true
parameter value is in CI(ỹ)”.

� The posterior predictive density accounts for possible unobserved values ynew conditional
on the observed data ỹ,

πpred(ynew | ỹ) =
ˆ

Θ
π(ynew | θ, ỹ)πpos (θ | ỹ) dθ; (4.7)

under the assumption that the observed and unobserved data are conditional independent
given θ, the posterior predictive distribution can be further simplified as

πpred(ynew | ỹ) =
ˆ

Θ
L(θ;ynew)πpos(θ | ỹ)dθ. (4.8)

4.2. General comments on Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is essentially MC integration using Markov chains. MC
draws samples for the required distribution and then forms sample averages to approximate
expectations. MCMC draws these samples using a Markov chain that has the target posterior
distribution as its stationary distribution.

Let πpos(θ | ỹ) be the target distribution of interest. The purpose of a MCMC algorithm is
to generate a collection of states according to πpos(θ | ỹ). When the computation of the model
evidence is intractable, the posterior density is only known up to its scaling constant, that is
πpos (θ | ỹ) ∝ πpr(θ)L(θ; ỹ) = π(θ). We refer to π(θ) as the target function. MCMC generates a
Markov process that asymptotically reaches a unique stationary distribution π(θ) ∝ πpos(θ | ỹ).

A Markov process has a unique stationary (invariant) distribution π(θ) when is reversible
(equilibrium in probability/detailed balance) and ergodic (aperiodic and irreducible). Further-
more, Markov processes are uniquely defined by the transition kernel modeling the probability of
transitioning from any given state θ to any other θ′. Classical MCMC algorithms must satisfy
the detailed balance condition [87]

ˆ
A
π(θ)P (θ,θ′) dθ =

ˆ
B
π(θ′)P (θ′,θ) dθ′, (4.9)

where θ ∈ A, θ′ ∈ B, and A,B ⊂ Θ, and P (·, ·) denotes a Markov transition kernel. Different
approaches are proposed to generate kernels P that ensure (4.9). We discuss the standard
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Metropolis–Hastings and the preconditioned Crank–Nicolson algorithms.

Remark 4.2. There is an increasing interest in MCMC algorithms that are not reversible,
so-called non-reversible MCMC. The main idea is to design Markov chains that avoid transitions
that fall back to the state from which the chain just came, by incorporating a sense of direction.
As a result, these algorithms have better performance in terms of mixing behavior, convergence
rate and reduction of the asymptotic variance. These include for example the non-reversible
Metropolis–Hastings [29] and the Bouncy Particle Sampler [40].

4.2.1. Metropolis–Hastings

In Metropolis–Hastings (MH), the condition (4.9) is satisfied by separating the transition into
two stages: the proposal and the acceptance/rejection steps. These are represented respectively
by the proposal distribution q(θ | θ′) which accounts for the conditional probability of θ given
the proposed state θ′, and the acceptance distribution α(θ,θ′) which expresses the conditional
probability of accepting the proposed state θ′. The transition kernel can be written as a product
of them [87]

P (θ | θ′) =
ˆ
B
q(θ | θ′)α(θ,θ′) dθ′︸ ︷︷ ︸

acceptance

+1(θ ∈ B)
ˆ

Θ
q(θ | θ′)(1− α(θ,θ′)) dθ′︸ ︷︷ ︸

rejection

. (4.10)

Substituting (4.10) into (4.9), yields
ˆ
A
π(θ)

ˆ
B
q(θ | θ′)α(θ,θ′) dθ′dθ =

ˆ
B
π(θ′)

ˆ
A
q(θ′ | θ)α(θ′,θ) dθdθ′, (4.11)

which can be written in compact form as
ˆ
A×B

π(θ)q(θ | θ′)α(θ,θ′) dθ =
ˆ
A×B

π(θ′)q(θ′ | θ)α(θ′,θ) dθ′. (4.12)

The equality (4.12) holds if

π(θ)q(θ | θ′)α(θ,θ′) = π(θ′)q(θ′ | θ)α(θ′,θ) (4.13a)
q(θ | θ′)α(θ,θ′)
q(θ′ | θ)α(θ′,θ) = π(θ′)

π(θ) (4.13b)

α(θ,θ′)
α(θ′,θ) = π(θ′)q(θ′ | θ)

π(θ)q(θ | θ′) . (4.13c)

An acceptance mechanism that fulfills the condition in (4.13c) is proposed by Hastings [112]
(based on Metropolis et al. [167], which uses a symmetric proposal distribution)

α(θ,θ′) = min
(

1, π(θ′)q(θ′ | θ)
π(θ)q(θ | θ′)

)
. (4.14)

At each iteration t of the MH algorithm, the next state of the Markov chain θt+1 is chosen by
sampling a candidate point θ′ from the proposal distribution q(· | θt). The candidate point θ′ is
accepted when a standard uniform random number is less than or equal to the acceptance (4.14),
otherwise the candidate point is rejected. If the candidate is accepted, the next state becomes
θt+1 = θ′. If the candidate is rejected, the chain does not move and θt+1 = θt. Applying this
procedure, the entire collection of points form a Markov chain that represents a set of samples
from the target function π.

One of the difficulties with MH is the potentially strong dependence in the Markov chain
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states (samples). A standard way to reduce this effect is by running the Markov chain for
many iterations until the initial state value is forgotten. This requires discarding a considerable
amount of initial samples; the number of discarded samples is known as burn-in. Moreover, the
performance of MH deteriorates with increasing dimension of the parameter space. In this case,
the acceptance probability at each step becomes very small as the dimension increases, resulting
in slow convergence rates and a large number of repeated samples. Several algorithms have been
designed to improve the performance of MCMC in high dimensions; they are usually referred to
as dimension-independent MCMC algorithms. The standard technique is the preconditioned
Crank–Nicolson method [56, 199], which can also be seen as the conditional sampling algorithm
proposed in [177].

4.2.2. Preconditioned Crank–Nicolson (conditional sampling)

A main requirement for a MCMC algorithm to be dimension-independent is that of being
well-defined in the function spaces. Sampling from posterior distributions in high dimensions
can be achieved through path reconstructions of stochastic differential equations. These are
designed to be invariant with respect to reference (prior) or target (posterior) densities. Given
a target distribution proportional to the posterior π(θ) ∝ πpos(θ | ỹ) = exp (−Ψ(θ; ỹ)), the
overdamped Langevin dynamic equation [104, 71],

dθt
dt = −∇Ψ(θ; ỹ) +

√
2 dWt

dt with initial state θ0, (4.15)

has invariant distribution π(θ), i.e., if θ0 ∼ π(·) then θt ∼ π(·) for all t > 0 [60, p.382].
Furthermore, for a symmetric and positive semi-definite preconditioner P, (4.15) can be expressed
as

dθt
dt = −P∇Ψ(θ; ỹ) +

√
2P dWt

dt , (4.16)

where Wt is a standard Brownian motion process and Ψ(θ; ỹ) is the logarithm of the posterior
density:

Ψ(θ; ỹ) = 1
2

∥∥∥Σ−1/2
pr θ

∥∥∥2

Θ
+ Φ(θ; ỹ) + lnZỹ, (4.17a)

with gradient ∇Ψ(θ; ỹ) = Σ−1
pr θ +∇Φ(θ; ỹ). (4.17b)

Replacing the gradient in (4.17b) into (4.16) yields,

dθt
dt = −P

(
Σ−1

pr θ +∇Φ(θ; ỹ)
)

+
√

2P dWt

dt . (4.18)

Although Brownian motion paths are not differentiable, the derivative is interpreted in the
sense of distributions; in this case, the derivative of the process is a stationary white noise,
denoted ξ0 [102]. The preconditioned stochastic differential equation in (4.18) can be solved
using a numerical discretization algorithm. For instance, the Crank–Nicolson scheme [186]
computes the next location θ′ of the process after time ∆ > 0 through the formula,

θ′−θ =
(
−PΣ−1

pr

(
θ′ + θ

2

)
− γP∇Φ(θ; ỹ)

)
∆+
√

2P∆ ξ0 with ξ0 ∼ N (0, Id), (4.19)

here the Crank–Nicolson approximation is applied on the linear part of the drift, and the tuning
parameter γ ∈ [0, 1] is included in the nonlinear part to distinguish between random walk and
Langevin proposals [25]. Despite there is no effect of the preconditioner on the invariance property
of the simulated process, it influences the convergence to the target density [60]. Therefore, by
considering γ = 0 in the case when the preconditioner is equal to the prior covariance P = Σpr,
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the following proposal arise [56]:(
Id + ∆

2 Id
)
θ′ =

(
Id −

∆
2 Id

)
θ +

√
2Σpr∆ ξ0, (4.20)

and if we define ξ ∼ N (0,Σpr), the proposal step can be expressed as

θ′ = (2−∆)
(2 + ∆)θ +

√
8∆

(2 + ∆) ξ −→ θ′ =
√

1− β2 θ + βξ, (4.21)

where β =
√

8∆/ (2 + ∆). A common choice for the scaling is β ∈ (0, 1] for discretization steps
∆ ∈ (0, 2] (in general β → 0 as ∆ → ∞). The acceptance probability of the preconditioned
Crank–Nicolson (pCN) algorithm only requires the potential function and is given by [60]

α(θ,θ′) = min{1, exp
(
Φ(θ; ỹ)− Φ(θ′; ỹ)

)
}. (4.22)

The pCN algorithm proceeds in a similar manner to MH. Note that pCN is motivated for
Gaussian random functions. For non-Gaussian parameter settings, an isoprobabilistic mapping
is required to express them as a Gaussian. Finally, we remark that the pCN proposal coincides
with the conditional sampling proposal q(θ′ | θ) = N(θ′; ρ · θ, 1− ρ2) introduced in [177], where
the parametrization is in terms of a correlation coefficient parameter ρ =

√
1− β2.

MCMC algorithms are usually incorporated within sequential schemes to draw samples from
the posterior more efficiently. Some approaches include sequential MC, sequential IS [62], nested
sampling [211], or structural reliability methods [223]. The idea is to explore the posterior
on-the-fly by constructing a set of intermediate measures that converge to the full posterior. We
focus on the BUS approach [223], which allows expressing a Bayesian inverse problem as an
equivalent rare event simulation task.

4.3. The BUS approach to Bayesian inversion

Consider the target function π(θ) ∝ πpos(θ | ỹ). The posterior density can be characterized by
drawing samples from this unnormalized density. Particularly, the rejection sampling algorithm
generates samples from π(θ) using a proposal density q(θ). The proposal is selected such that it
dominates the target function; this means that q(θ) must have equal or heavier tails than those
of π(θ). Therefore, the proposal satisfies the relation

sup
θ∈Θ

(
π(θ)
q(θ)

)
≤ c̄ <∞ for some covering constant c̄ ∈ R>0 (4.23)

and supp (π(θ)) ⊆ supp (q(θ)). Thereafter, samples drawn from q(θ) are rejected strategically
to make the resulting accepted samples distributed according to π(θ).

A simple choice for the proposal density is the prior distribution πpr(θ). The acceptance
probability α in rejection sampling [174] becomes

α = π(θ)
c̄ · q(θ) = πpr (θ) L(θ; ỹ)

c̄ · πpr(θ) = c · L(θ; ỹ) , (4.24)

where c = 1/c̄ ∈ R>0 and the covering constant is selected such that c̄ ≥ Lmax = max(L(θ; ỹ)).
In this case, rejection sampling amounts to: (i) drawing a standard uniform random number
υ ∼ Unif[0, 1], (ii) sampling a candidate from the prior θ ∼ πpr(θ), and (iii) accepting the
candidate if υ ≤ α = c · L(θ; ỹ).
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This particular acceptance-rejection mechanism allows us to generate the space

H = {(θ, υ) ∈ X : h(θ, υ) ≤ 0} , where h(θ, υ) = υ − c · L(θ; ỹ) (4.25)

and X = [Θ,Υ] is an augmented parameter space with θ ∈ Θ and υ ∈ Υ ⊆ [0, 1]. Figure 4.1
illustrates the relation between rejection sampling and BUS.
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Figure 4.1: BUS as a rejection sampling algorithm. Left: standard rejection sampling with proposal
distribution based on the prior. Right: BUS incorporates an auxiliary standard uniform
random variable υ to express the Bayesian inverse problem as a rare event simulation task.

In the context of reliability analysis and rare event simulation, the space H defines a failure
domain with LSF h(θ, υ). If one is able to generate samples {(θ, υ)} ∈ X that fall into H, the
resulting parameter samples {θ} ∈ Θ will be distributed according to the posterior πpos (θ | ỹ).
The {υ} samples are auxiliary. This connection is the foundation of the BUS approach, since one
can employ existing methods from rare event simulation to perform Bayesian inference. Indeed,
the previous rejection sampling algorithm corresponds to applying standard MC simulation for
the solution of a rare event estimation problem defined by the LSF h(θ, υ).

Specifically, the posterior distribution in (4.2) is expressed in BUS by conditioning the joint
distribution of (θ, υ) ∈ X to the space H, and marginalizing over the auxiliary uniform random
variable υ, that is

πpos(θ | ỹ) =πpr(θ)
Zθ

ˆ 1

0
1H(θ, υ)dυ (4.26a)

with Zθ =
ˆ

Θ

ˆ 1

0
1H(θ, υ)πpr(θ)dυdθ, (4.26b)

where the indicator function is such that 1H(θ, υ) = 1 when (θ, υ) ∈ H, and 1H(θ, υ) = 0
otherwise.

Note that the application of BUS requires the knowledge of the constant c = 1/c̄. From
(4.24), it is seen that the covering constant is optimally chosen as the maximum of the likelihood
function c̄ = Lmax. If c̄ < Lmax, the resulting samples will be distributed according to a truncated
posterior distribution [27]. Conversely, if c̄ > Lmax, the efficiency of BUS decreases because the
value of pH will be small and more samples are required for its estimation. Since in many cases
Lmax is not known in advance and its computation poses an additional cost, we can employ the
adaptive strategy introduced in [27], for which the constant c is computed at each step of the
simulation.

Recall from Chapter 3 that the main objective in rare event simulation is the estimation of
the probability of failure. When employing the BUS framework, the estimator of the failure
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4.3. The BUS approach to Bayesian inversion

probability p̂H is related to the probability that the samples belong to the domain H, i.e.,
pH = P[H] = P[h(θ, υ) ≤ 0]. This probability, which is obtained as a by-product of BUS, is
used to approximate the model evidence as [223]

Zỹ ≈ Ẑỹ = p̂H
c

= c̄ · p̂H. (4.27)

4.3.1. BUS with subset simulation

In order to efficiently compute samples from the posterior distribution, BUS is often combined
with subset simulation (subsection 3.2.3). The combination of BUS with SuS (termed BUS-SuS),
performs Bayesian inversion sequentially. This is because SuS transforms the task of estimating
the rare event {h(θ, υ) ≤ 0} into a sequence of problems involving more frequent events.

In BUS-SuS, the parameter space X is divided into a decreasing sequence of nested subsets
or intermediate levels, starting from the whole space and narrowing down to the target posterior
space, i.e., X = H0 ⊃ H1 ⊃ · · · ⊃ Hnlv = H, such that H =

⋂nlv
j=0Hj , where nlv is the number

of intermediate levels. The probability that the prior samples fall into the posterior space, pH is
given by

pH =
nlv∏
j=1

P[Hj | Hj−1] , (4.28)

where P[Hj | Hj−1] represents the conditional probability at level (j − 1). Each intermediate
level is defined as the set Hj = {(θ, υ) ∈ X : h(θ, υ) ≤ τj}, where ∞ = τ0 > τ1 > · · · > τj >

· · · > τnlv = 0, is a decreasing sequence of threshold levels (cf. Figure 4.1).
Recall from SuS (subsection 3.2.3) that the probability pH is computed as p̂H = pnlv−1

0 · p̂nlv ,
where p̂nlv is the conditional probability at the last level, estimated by MC as the ratio of
the number of samples that lie in H and the number of samples per level N . The probability
estimate p̂H can be used to compute the model evidence via (4.27). At the last simulation level
of BUS-SuS, the p̂nlv ·N samples that lie in H are used as seeds to generate the final batch of N
samples conditional on H. The resulting samples are uniformly weighted but correlated samples
of the posterior distribution.
Remark 4.3. Reliability problems are generally solved in the standard Gaussian space (cf.
Remark 3.1). Due to the BUS-SuS formulation, this also translates to the Bayesian inversion.
Hence, a new standard Gaussian parameter vector ϑ = [θ, θυ]T ∈ Rk+1 can be defined by
combining the parameter vector θ and the transformed auxiliary variable θυ = Φ−1(υ), where
Φ(·) denotes the standard Gaussian CDF.
Remark 4.4. In order to guarantee a smooth transition between the intermediate levels, as well
as for numerical stability, the LSF (4.25) is expressed in terms of the log-likelihood. Applying
the natural logarithm to each term of h(θ, υ) in (4.25) yields [66]

hln(ϑ) = ln(Φ(θυ))− ln(c · L(θ; ỹ)) = ln(Φ(θυ)) + ln(c̄)− ln L(θ; ỹ) . (4.29)

Remark 4.5. BUS-SuS can be seen as a sequential auxiliary variable MCMC method [149,
Ch.4], in which one augments the parameter space by adding the standard uniform random
variable υ. As a result, BUS-SuS shares some similarities with the slice sampler [171], and
especially, with the nested sampling algorithm [211], which is a popular method in statistical
physics for the estimation of normalizing constants. The connections of BUS-SuS with nested
sampling are highlighted in [26, p.191].

The BUS-SuS method in the standard Gaussian space is shown in Algorithm 5, which follows
from the SuS Algorithm 2. For consistency, we assume that the log-likelihood function includes
the transformation from the standard Gaussian parameters to the original space. Moreover, we
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refer to [177] for a variety of MCMC methods that can be used for BUS-SuS, which require
some modifications of the algorithms described in section 4.2.

Algorithm 5 BUS-SuS in the standard Gaussian space.
Input : number of samples per level N , conditional probability p0, covering constant c̄, log-likelihood

function ln L(·; ỹ), maximum iterations m
/* Initial MC */

1 Draw N samples from the standard Gaussian, ϑ0 = [θ0, θυ,0] ∼ N (0, Id+1)
2 Compute initial log-likelihood function values, Leval ← ln L(θ0; ỹ)
3 Set j ← 0 and τ0 ←∞

/* BUS-SuS steps */
4 while τj > 0 and j < m do
5 Increase intermediate level counter, j ← j + 1

/* Update threshold */
6 Compute LSF values, heval ← ln(Φ(θυ,j−1)) + ln(c̄)− Leval
7 Sort heval in ascending order and create a vector idx to store the indices of this sorting
8 Create ϑsort as the parameter samples ϑj−1 sorted according to idx
9 Set the intermediate threshold level τj as the p0-percentile of the values in heval

10 Compute the number of samples in the j-th intermediate level, NHj ←
∑N
i=1(h(i)

eval ≤ max(0, τj))
11 if τj > 0 then
12 p̂j−1 ← p0
13 else
14 τj ← 0 and p̂j−1 ← NHj

/N
15 end
16 Select seeds for the MCMC step, ϑseed ← {ϑ(i)

sort}
NHj

i=1
17 Randomize the ordering of the seeds

/* MCMC step */

18 Generate next level values {ϑ(i)
j , L

(i)
eval}Ni=1 from the randomized seeds (ϑseed) and intermediate level

τj using an MCMC algorithm. Here, each seed is used to construct a chain with Nc = floor(N/Ns)
states, where Ns = NHj is the number of seeds

19 end
20 nlv ← j
21 Estimate p̂H =

∏nlv
i=0 p̂i

22 Estimate the model evidence Ẑỹ = p̂H · c̄
Output : posterior parameter samples {ϑ(i)

nlv}Ni=1 and model evidence Ẑỹ.

Illustration 1. Consider the 1D diffusion example in subsection 3.3.2, we are interested in
finding the hydraulic conductivity using m = 10 noisy pressure observations. The noise is
Gaussian with mean zero and standard deviation σobs = 0.01. This setting is adapted from [160].

Recall that the hydraulic conductivity is represented with a lognormal random field. In this
case, the covariance kernel is exponential with correlation length ` = 0.1 and the truncation
of the KL expansion is fixed to k = 5. The BUS-SuS algorithm is applied to solve this inverse
problem. The dimension of the parameter space is d = 7, including the flux and standard uniform
random variables; the parameter vector is grouped as θ = [F,θ(KL), υ]. We use N = 1 × 104

samples per level and Nsim = 50 independent simulation runs; the conditional probability is set
to p0 = 0.1. The covering constant is found by optimization and is equal to ln(c̄) ≈ 33.29; we
utilize the LSF (4.29). An adaptive pCN algorithm is used as the MCMC within BUS-SuS to
keep a constant acceptance rate; this algorithm follows from [10, 177].

The BUS-SuS solution takes in average 5 simulation levels to reach the posterior. The
pCN parameter β is set to 0.6 at the initial level and scales down to 0.035 (in average) at the
final level, after performing the adaptation steps. The posterior mean and standard deviation,
computed from the complete sample pool, are µpos = [−0.806,−0.480,−0.149,−0.047,−1.463,
0.487, 0.120] and σpos = [0.101, 0.409, 0.573, 0.504, 0.569, 0.638, 0.101], respectively. Moreover,
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4.4. Updating of rare event probabilities

the estimated model evidence (average of the 50 simulations) is equal to Ẑ = 5.658× 109 with
a coefficient of variation of 0.335. Finally, the evolution of the prior to posterior update is
illustrated in Figure 4.2 (without the auxiliary parameter υ). We plot the prior and posterior
marginals of the uncertain parameter. Note that in the posterior case, the marginals exhibit
large correlations.

F
θ 1

θ 2
θ 3

θ 4
θ 5

F θ1 θ2 θ3 θ4 θ5

Figure 4.2: BUS-SuS algorithm: prior (blue) and posterior (light green) samples characterizing the 1D
and 2D marginal distributions.

4.4. Updating of rare event probabilities

In the context of rare event simulation, it is also possible to evaluate failure probabilities
conditional on the observational data. The updated probability of failure arises in many
engineering applications, where data are collected to enhance the prediction of the probability
of high-consequence events, e.g., the exceedance of a critical stress or displacement thresholds.
This setting, which involves a combined Bayesian inversion and rare event estimation task, is
referred to as reliability updating [176].
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The information provided by measured or observed data can be incorporated into the analysis
to improve the probability of failure estimate (3.1). This implies the computation of failure
probabilities conditional on the observations ỹ. The updated probability of failure P[F | ỹ] can
be estimated using the posterior of the model parameters as

P[F | ỹ] :=
ˆ

Θ
1F (θ)πpos (θ | ỹ) dθ = 1

Z(ỹ)

ˆ
Θ
1F (θ)πpr (θ) L(θ; ỹ) dθ. (4.30)

The evaluation of the integral (4.30) is a more challenging task than (3.1), since in principle
it requires sampling from the tails of the posterior distribution. Several strategies are proposed
in the literature to estimate this posterior failure probability, see for example [176, 127, 88].

In BUS, the reliability updating problem can be re-expressed in terms of two rare event
estimation tasks [224]. The resulting posterior failure probability is obtained by replacing the
posterior density of (4.26a) into (4.30)

P[F | ỹ] =
´
Θ 1F (θ)

´ 1
0 1H(θ, υ)πpr (θ) dυ dθ´

Θ
´ 1

0 1H(θ, υ)πpr (θ) dυ dθ
(4.31a)

=
´
g(θ)≤0∩h(θ,υ)≤0 πpr (θ) dυ dθ´

h(θ,υ)≤0 πpr (θ) dυ dθ = P[g(θ) ≤ 0 ∩ h(θ, υ) ≤ 0]
P[h(θ, υ) ≤ 0] , (4.31b)

which implies the computation of a so-called system reliability problem for the numerator and a
component reliability problem for the denominator.

If the Bayesian inverse problem is solved with BUS-SuS (or any other sampling method),
samples from the posterior distribution are available and they can be used to assist the estimation
of the posterior probability of failure P[F | ỹ]. This is because the posterior samples belong to
the domain H associated to the LSF h(θ, υ), and they can be used to estimate the probability
in the denominator of (4.31b). Therefore, the reliability updating task reduces to the estimation
of the failure probability in the numerator, P[g(θ) ≤ 0 ∩ h(θ, υ) ≤ 0].

Particularly, the BUS-SuS algorithm can be modified to compute the updated failure
probability in (4.31b). The idea is to employ the LSF describing the posterior h(θ, υ) (with fixed
covering c̄), the LSF describing the failure g(θ), and the estimated posterior samples {θpos}
to perform a last SuS run. This final SuS method requires some modifications of Algorithm 2,
which read as follows:

(i) Initial Monte Carlo samples in SuS : at the MC simulation level, we employ the estimated
posterior samples θpos to evaluate the LSF (cf. Line 1, Algorithm 2).

(ii) Acceptance/rejection MCMC criterion: in the MCMC algorithm used within SuS at a given
intermediate threshold level τ , the candidate sample needs to satisfy both, g(θ) ≤ τ and
h(θ, υ) ≤ 0; in this way the generated MCMC samples always belong to the intermediate
failure domain, and at the same time, they remain in the space H defining the posterior
(cf. Line 18, Algorithm 2).

After this modified steps, the standard SuS algorithm continues until reaching the target
failure domain intersected with the space of posterior samples F ∩H, for which g(θ) ≤ 0 and
h(θ, υ) ≤ 0. Details of this approach are given in [224], and we show an schematic representation
of the problem in Figure 4.3.

One difficulty of this approach is that the coefficients of variation of the failure probability
estimates become very large when the underlying probabilities of failure are very small. As
an illustration, we show in Figure 4.4 the behavior of the simulation process for increasing
dimension of the parameter space, in this case truncation orders of the KL expansion. This is a
modified version of the example discussed later in section 4.6. It considers the updating of the
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4.4. Updating of rare event probabilities

Figure 4.3: Schematic representation of SuS adapted for reliability updating: after obtaining posterior
samples that belong to H, SuS is used to “move” them to the failure set F . During the entire
simulation, the samples must lie in H such that they always account for the observed data.
Hence, the objective is to reach the set F ∩H.

Young’s modulus of the plate example in subsection 2.7.2 using measurements of the horizontal
deformation only. The prior failure probability pF is shown in solid black line estimated as
the mean of several SuS runs. The application of BUS-SuS for the inference of the posterior
parameters yields a probability pH (shown in blue for the different simulation runs and their
mean in dashed line); up to that point BUS-SuS requires on average 4 (inference) intermediate
levels to obtain the posterior parameter samples. Thereafter, these samples are used to perform
a final SuS run that computes the posterior probability of failure P[F | ỹ] (shown in red for the
different simulation runs and their mean in dashed line); for this SuS additionally requires on
average 7 (failure) intermediate levels. Hence, at the end of the reliability updating computation,
we effectively obtained 11 intermediate levels. Since the inherent correlation of the MCMC
samples is being propagated from one level to the other, the updated probability estimates
have large variability, as seen by the spread of the samples in Figure 4.4. This behavior will be
discussed with further detail in section 4.6.
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Figure 4.4: Probability of the domain H together with the prior and posterior failure probabilities for 35
simulation runs of the SuS algorithm, and increasing terms in the KL expansion k (columns).

In the following, we discuss two examples that illustrate the Bayesian approach to inverse
problems in the context of random fields: one for which it is possible to compute all the posterior
quantities analytically, and a second one that requires the use of sampling-based approaches to
estimate the posterior quantities. The idea is to explore the implications of different parameter
choices for the prior random field modeling on the solution of the Bayesian inverse problem. We
aim at showing these effects by carrying out several parameter studies.
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4.5. Analytical example: one-dimensional cantilever beam

Consider the one-dimensional cantilever beam in subsection 2.7.1. We are now interested in
inferring the flexibility random field using observations of the deflection response.

The observation noise is modeled as additive and mutually independent from the uncertain
flexibility. The noise is described by a joint Gaussian distribution with mean zero and covariance
matrix Σobs. The noise covariance is computed by assuming that the measurements are correlated
with an exponential kernel, with standard deviation σobs = 1 × 10−3 and correlation length
`obs = 1 m. This results in the following likelihood function

L(F ; ỹ) = 1√
(2π)m det(Σobs)

exp
(
−1

2[ỹ − w(x̃,F )]TΣ−1
obs[ỹ − w(x̃,F )]

)
, (4.32)

here the parameter F denotes a realization of the flexibility random field, w(x̃,F ) is the forward
response operator defined via (2.38) and ỹ is a set of m deflection observations measured at
equally spaced points x̃ of the domain (Figure 4.5).

Figure 4.5: Cantilever beam: true values and two sets of deflection observations.

The observations are generated by simulation, assuming a true (but in real applications
unknown) deflection of the beam. The underlying true flexibility is a realization of a random
field modeled with an exponential kernel and `true = 2 m. To avoid a so-called inverse crime
[131, p.5], the numerical integration for obtaining the true displacements is performed on a finer
grid (compared to the one used for the Bayesian inversion). The process involves evaluating the
prior mean and covariance on the finer grid to compute a realization1.

In the parameter studies, we consider the following random field settings:

� The number of terms in the KL expansion is k ∈ {5, 10, 20};

� the correlation length of the prior flexibility varied among ` ∈ {0.5, 2.5, 4.5} m;

� two different sets of measurements are assumed with m ∈ {10, 40} points (Figure 4.5); and
1We remark that in [235] there is a typo in the value of the prior standard deviation of the flexibility. The
correct value used in the studies is σF = 0.35µF = 3.5× 10−5, as we specified in subsection 2.7.1
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4.5. Analytical example: one-dimensional cantilever beam

� for each of these settings, the two covariance functions in (2.25) are used to represent the
prior flexibility.

4.5.1. Analytical posterior

Since the prior and likelihood are Gaussian, the posterior distribution is also Gaussian [193].
We introduce the (joint) random vector F ′ = [F , w̃], comprised of the random vectors F =
F (x, ·) ∈ Rn, representing the flexibility field discretized at spatial locations x = [x1, . . . , xn]
(the dimension becomes d = n), and w̃ ∈ Rm a random vector in the data space of deflections.
The mean vector and covariance matrix of F ′ can be partitioned accordingly;

µF ′ =
[
µF
µw̃

]
ΣF ′F ′ =

[
ΣFF ΣFw̃

ΣT
Fw̃ Σw̃w̃

]
. (4.33)

For a given deflection data set ỹ, the n-th order fi-di posterior distribution of the flexibility
random field πpos (F | ỹ) can be obtained analytically from direct application of Bayes’ theorem
(see, e.g., [131, Sec. 3.4]). The resulting conditional density is given by

πpos (F | ỹ) = 1√
(2π)n det(ΣFF |ỹ)

exp
(
−1

2
[
F − µF |ỹ

]T
Σ−1
FF |ỹ

[
F − µF |ỹ

])
. (4.34)

An analogous expression can be obtained for the posterior distribution of the deflection
πpos (w | ỹ). Those multivariate distributions are characterized by the conditional mean vectors
µF |ỹ, µw|ỹ and the conditional covariance matrices ΣFF |ỹ, Σww|ỹ, which are respectively given
by [239]

µF |ỹ = µF + ΣFw̃Σ−1
w̃w̃ (ỹ − µw̃) , ΣFF |ỹ = ΣFF −ΣFw̃Σ−1

w̃w̃ΣT
Fw̃, (4.35a)

µw|ỹ = µw + Σww̃Σ−1
w̃w̃ (ỹ − µw̃) , Σww|ỹ = Σww −Σww̃Σ−1

w̃w̃ΣT
ww̃. (4.35b)

All quantities in (4.35) are known from the prior random fields or can be computed analytically
since the inverse problem follows the additive relation w̃ = w + η. For instance, µw̃ is given
by the evaluation of (2.41) at the measurement locations x̃, since E[w̃] = E[w + η] = E[w].
Moreover, Σw̃w̃ = Σww +Σobs, where Σww is computed by evaluating (2.42) at the measurement
locations.

The mean, standard deviation and correlation functions of the posterior flexibility and
deflection random fields are plotted in Figure 4.6, for the Matérn kernels with ν = {0.5,∞} and
` = (0.5L) = 2.5 m. The structure of such parameters changes completely by the inclusion of
data and the resulting posterior fields become non-homogeneous. Compare to the prior flexibility
and deflection cases in Figures 2.5 to 2.7. Note that the standard deviation of the flexibility field
changes considerably depending on whether one uses the exponential or squared-exponential
kernel. When using smooth kernels there is higher correlation between the spatial points, and
thus the information influences the updating in a more global manner. Notice also that this
behavior does not appear for the deflection, where the smoothing action of the forward operator
dominates.

4.5.2. Approximation of the posterior

When dealing with random fields, the Bayesian inference process involves analysis in infinite-
dimensional spaces. In such cases, the uncertain function is typically represented by a suitable
parametrization. We use the KL expansion to discretize the prior flexibility random field.

The approximated posterior random field can be subsequently computed following the ideas
in subsection 4.5.1. In this case, however, it is applied to the random vector of KL coefficients
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|ỹ

(x
)

[1
/(

kN
·m

2
)]

×10−4 Mean flexibility

Exponential kernel
Sq. Exponential kernel

0 1 2 3 4 5
x [m]

0.1

0.6

1.1

1.6

2.1

2.6

3.1

σ
F
|ỹ
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Figure 4.6: Mean, standard deviation and correlation function of the posterior flexibility (rows 1-2)
and deflection (rows 3-4) random fields (from (4.35)). Using the exponential and squared
exponential kernels in (2.25) to model CFF (with ` = 2.5 and m = 10).

θ ∈ Rk (the dimension becomes d = k � n). We assume a Gaussian random vector composed by
θ and w̃. The posterior distribution can be calculated as the conditional PDF of θ given a data
set ỹ. This posterior random field can be represented as a multivariate Gaussian distribution
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with conditional mean vector µθ|ỹ and conditional covariance matrix Σθθ|ỹ given by

µθ|ỹ = µθ + Σθw̃Σ−1
w̃w̃ (ỹ − µw̃) and Σθθ|ỹ = Σθθ −Σθw̃Σ−1

w̃w̃ΣT
θw̃, (4.36)

where µθ = E[θ] = 0, Σθθ = Ik (Ik ∈ Rk×k is the identity matrix). From (4.36), one sees that
the posterior mean and covariance are respectively positive and negative updates of the prior
counterparts. The remaining covariance terms in (4.36) can be derived analytically from the
approximated model (2.40), i.e., w̃ = (µw −Aθ) + η. For example,

Cov [θ, w̃] = E
[
(θ − µθ)(w̃ − µw̃)T

]
(4.37a)

= E
[
θ(−Aθ + η)T

]
= −AT + E

[
ηT
]

︸ ︷︷ ︸
=0

=⇒ Σθw̃ = −AT (4.37b)

Cov [w̃, w̃] = E
[
(w̃ − µw̃)(w̃ − µw̃)T

]
(4.37c)

= E
[
(−Aθ + η)(−Aθ + η)T

]
=⇒ Σw̃w̃ = AAT + Σobs. (4.37d)

After deriving each term in (4.36), the mean vector and covariance matrix of the posterior
distribution of θ can be written as

µθ|ỹ = −AT
(
AAT + Σobs

)−1
(ỹ − µw̃) and Σθθ|ỹ = I−AT

(
AAT + Σobs

)−1
A. (4.38)

The posterior random fields of the flexibility and deflection after using the KL approximation
can be obtained from the posterior of θ. In this case, both random fields are also represented
by multivariate Gaussian distributions described by the following approximated mean and
covariance functions:

µ̂F |ỹ(x) = µF (x) +
k∑
i=1

√
λiφi(x)µ(i)

θ|ỹ, ĈFF |ỹ(x, x′) =
k∑
i=1

k∑
j=1

√
λiλjφi(x)φj(x′)Σ(i,j)

θθ|ỹ ,

(4.39a)

µ̂w|ỹ(x) = µw(x) + P
k∑
i=1

√
λiΦi(x)µ(i)

θ|ỹ, Ĉww|ỹ(x, x′) = P 2
k∑
i=1

k∑
j=1

√
λiλjΦi(x)Φj(x′)Σ(i,j)

θθ|ỹ ,

(4.39b)

where the superscripts in the vector µ(i)
θ|ỹ and matrix Σ(i,j)

θθ|ỹ refer to element indexing. Recall from
subsection 2.7.1 that {λi, φi}ki=1 are the eigenpairs of the covariance operator and Φi(x) denotes
the components of the integrated eigenfunction defined in (2.40) and plotted in Figure 2.4.

Evaluating the posterior approximation

The analytical posterior random field expressions (4.35) and the associated KL approximations
(4.39) allow an assessment of the influence of different prior random field assumptions on the
posterior solution. Note that the reference posterior random field is constructed with a covariance
matrix with rank n (number of points in the domain discretization), since we employ closed-form
expressions. For the KL representations, each of the posterior random field approximations is
built with covariance matrices whose rank is defined by the truncation order of the expansion.
Therefore, we are comparing low-dimensional k-rank approximations against the full n-rank
reference.

The approximation of the posterior flexibility random field using an exponential kernel as
the underlying prior flexibility covariance is illustrated in Figure 4.7. We show the 95% CI of
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the analytical solution (shaded area) and the KL approximations as a function of the number
of terms in the expansion for increasing correlation length. Those intervals are represented
as the region between the 0.025 and 0.975 quantiles of the posterior. The complete set of KL
representations are located inside the analytical CI, and they converge to this solution as the
number of terms increases. For small correlation lengths, the posterior random field is more
difficult to capture since one is learning a random field that has larger variability. Nevertheless,
already k = 10 terms in the expansion are enough to have a good approximation of the posterior
flexibility random field. Comparing the results from both sets of measurements, the number of
data points controls the width of the CI bounds and it narrows as more information is available.
Furthermore, the flexibility random field is no longer weakly homogeneous since the posterior
mean vary through the domain (cf. Figure 4.6).
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Figure 4.7: Posterior flexibility using an exponential kernel for the prior: 95% CI for different terms
in the KL expansion, number of measurements (rows), and correlation lengths of the prior
flexibility (columns). The shaded area corresponds to the analytical CI given by (4.35a).

Figure 4.8 presents the approximation of the posterior deflection random field with underlying
exponential covariance for the prior flexibility. In order to better illustrate the solutions, the
95% CIs of a differential deflection are shown. They are computed as the difference between
the prior mean of the random field and the 95% posterior CIs. In contrast to the posterior
flexibility, the influence of the correlation length in the KL approximation of the posterior
deflection is small. For all cases, the KL expansion represents the posterior deflection almost as
exact as the analytical case, even when using a small number of terms in the expansion. The
reason for this is that the posterior deflection is computed by averaging the KL expansion of the
flexibility random field over the domain (see (2.39a)). As a result, the influence of the higher
KL eigenfunctions becomes negligible, and mainly the first modes have a contribution to the
random field representation.

Finally, the approximation of the posterior flexibility and deflection random fields assuming
a squared exponential covariance function for the prior flexibility is shown in Figure 4.9. Here,
only the results for the set of measurements with m = 10 points are shown. Even for small
correlation lengths and KL expansions with at least k = 10 terms, the difference between the
posterior flexibility random field and the analytical solution is negligible. As the correlation
length increases, the inverse problem solution can be computed accurately with even a smaller
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Figure 4.8: Differential posterior deflection using an exponential kernel for the prior: 95% CI for different
terms in the KL expansion, number of measurements (rows), and correlation lengths of the
prior flexibility (columns). The shaded area corresponds to the analytical CI given by (4.35b).
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Figure 4.9: Posterior flexibility and differential posterior deflection using a squared exponential kernel
for the prior: 95% CI for different terms in the KL expansion and correlation lengths of the
prior flexibility. The shaded area corresponds to the analytical CI.

number of terms in the expansion (k = 5). We point out that the eigenvalue decay is stronger
for the squared exponential kernel as compared to the exponential, which yields to a lower
number of terms in the KL representation. Moreover, the true underlying flexibility is generated
assuming an exponential kernel. This is reflected in the inverse problem solution, since sample
paths generated from a random field with a squared exponential covariance smooth out faster.
The resulting posterior approximation is not able to capture the true flexibility field with high
confidence at all spatial points of the domain when the correlation length is large. Note that this
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is not the case for the deflection field, which is always well-captured independent of the choice
of the covariance kernel and correlation length. This is again due to the smoothing action of
the forward operator. The combination of the squared exponential model with large correlation
lengths leads to random fields that are too smooth and they are good at approximating the
deflection field. However, this is not the case for the flexibility random field since smoothing
oftentimes leads to loss of information that cannot be retrieved in an inverse operation; as a
result the solution of the inverse problem is typically dominated by the prior.
Remark 4.6. Since the true solution is unknown in practice, there is no exact way to verify
how well the approximations capture the truth. A possible way to proceed is via hypothesis
testing [93, Ch. 6], which aims at retrieving the truth based on the data. Otherwise, the assumed
models can be validated using Bayesian model selection or averaging [21].

Evaluating the error in the approximation

The error measures (2.34) discussed in section 2.6 can be evaluated for the prior and posterior
flexibility and deflection random fields. The averaged relative mean error ε̄µ(k) associated to
the posterior flexibility and deflection random field representation is shown in Figure 4.10. For
the prior random field, the error in the mean approximation is zero since the KL expansion
represents the mean exactly. However, the KL discretization induces an error in the mean of the
posterior random field. In all cases, this error is very small even when the truncation order in
the expansion is small. The basis coefficients of a Gaussian posterior mean decay exponentially
fast due to its smoothness (see [237] for a discussion). This indicates that most of the inference
effort is necessary for representing the variability of the posterior field, rather than its mean.
Moreover, the results show that the posterior mean error is about one order of magnitude higher
for the flexibility than for the deflection, at the largest value of the KL truncation.
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Figure 4.10: Averaged relative error mean in the posterior random fields using an exponential kernel
for the prior: for the flexibility and deflection, number of measurements, different terms in
the KL expansion and correlation lengths.

Figure 4.11 presents the averaged relative variance error ε̄σ2(k) associated to the prior and
posterior flexibility and deflection random field representation. The influence of the correlation
length in the prior random field is larger compared to the posterior random field solution (the
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Figure 4.11: Averaged relative error variance in the prior and posterior random fields using an exponential
kernel for the prior: for the flexibility and deflection (rows), number of measurements, different
terms in the KL expansion, and correlation lengths.

error gap between correlation lengths is tighter in the posterior case). Moreover, the number of
terms in the KL expansion required to attain a given variability of the random field is larger
for the posterior case. This means that the use of a higher-order KL discretization is necessary
when dealing with Bayesian inverse problems, compared to forward uncertainty propagation
problems.

Furthermore, it is seen that more terms in the KL expansion are required in the posterior
flexibility to obtain the same variance error magnitudes of the posterior deflection. This behavior
is again a consequence of the deflection being computed as averaging of the KL expansion of the
flexibility over the domain.

4.5.3. Model evidence

Consider a finite collection of possible models {M1,M2, . . . ,Mk, . . . ,Mkmax}, where k ∈
[1, kmax] is a model indicator index. Each particular model Mk has an associated vector
of uncertain parameters θ ∈ Rk, where the dimension k vary between different models. In the
context of the KL discretization, these models correspond to the dimension of the stochastic
space discretized by the truncated series, i.e., the number of terms in the KL expansion.

A closed-form expression for the model evidence can be derived for this example. The
process involves a marginalization of the likelihood function over the parameters (integration);
alternatively it can be computed as the product of prior with likelihood divided by the posterior.
Following the latter approach, the natural logarithm of the model evidence in (4.2) is given by

lnZ (ỹ | k) = ln πpr (θ | k) + ln L(θ; ỹ, k)− ln πpos (θ | ỹ, k) , (4.40)

where the log-prior, log-likelihood and log-posterior conditional on the truncation are

ln πpr (θ | k) = −k2 ln(2π)− 1
2θ

Tθ (4.41a)

ln L(θ; ỹ, k) = −m2 ln(2π)− 1
2 ln (det(Σobs))−

1
2
(
[ỹ − (µw −Aθ)]T Σ−1

obs [ỹ − (µw −Aθ)]
)

(4.41b)
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ln πpos (θ | ỹ, k) = −k2 ln(2π)− 1
2 ln

(
det(Σθθ|ỹ)

)
− 1

2

([
θ − µθ|ỹ

]T
Σ−1
θθ|ỹ

[
θ − µθ|ỹ

])
. (4.41c)

The model evidence is calculated by inserting (4.41a)–(4.41c) into (4.40),

lnZ (ỹ | k) = −m2 ln(2π)− 1
2 ln

(
det(Σobs)
det(Σθθ|ỹ)

)

− 1
2
(
θTθ + [ỹ − (µw −Aθ)]T Σ−1

obs [ỹ − (µw −Aθ)]

−
[
θ − µθ|ỹ

]T
Σ−1
θθ|ỹ

[
θ − µθ|ỹ

] )
= −m2 ln(2π)− 1

2 ln
(

det(Σobs)
det(Σθθ|ỹ)

)
− 1

2(ỹ − µw)TΣ−1
obs(ỹ − µw)

− 1
2
(
θTθ + ỹTΣ−1

obsAθ − µ
T
wΣ−1

obsAθ + θTATΣ−1
obsỹ − θ

TATΣ−1
obsµw

+ θTATΣ−1
obsAθ − θ

TΣ−1
θθ|ỹθ + θTΣ−1

θθ|ỹµθ|ỹ + µT
θ|ỹΣ

−1
θθ|ỹθ − µ

T
θ|ỹΣ

−1
θθ|ỹµθ|ỹ

)
.

We use two of the Searle identities in [204, p.151] to re-write the posterior mean and
covariance of the KL coefficients in (4.38). For the posterior covariance, we employ the identity(
B + CCT

)−1
C = B−1C

(
I + CTB−1C

)−1
, with B = Σobs and C = A. For the posterior

mean, we use the identity (D + B)−1 = D−1 −D−1B
(
I + D−1B

)−1 D−1, with B = Σobs and
D = AAT. The resulting expressions are

Σθθ|ỹ = Ik −AT
(
Σobs + AAT

)−1
A

= Ik −ATΣ−1
obsA

(
Ik + ATΣ−1

obsA
)−1

=
(
Ik + ATΣ−1

obsA
)−1

(4.43a)

µθ|ỹ = −AT
(
AAT + Σobs

)−1
(ỹ − µw)

= −
(
Ik + ATΣ−1

obsA
)−1

ATΣ−1
obs (ỹ − µw) = −Σθθ|ỹATΣ−1

obs (ỹ − µw) ; (4.43b)

we remark that ATΣ−1
obsA in (4.43a) is the Hessian of the negative log-likelihood parameterized

by the KL expansion (compare to [218]). The natural logarithm of the model evidence is then
computed as

lnZ (ỹ | k) = −m2 ln(2π)− 1
2 ln

(
det(Σobs)
det(Σθθ|ỹ)

)
− 1

2(ỹ − µw)TΣ−1
obs(ỹ − µw) + 1

2µ
T
θ|ỹΣ

−1
θθ|ỹµθ|ỹ

− 1
2
(
θTθ + ỹTΣ−1

obsAθ − µ
T
wΣ−1

obsAθ + θTATΣ−1
obsỹ − θ

TATΣ−1
obsµw

+ θTATΣ−1
obsAθ − θ

T
(
Ik + ATΣ−1

obsA
)
θ − θTATΣ−1

obs (ỹ − µw)

− (ỹ − µw)T Σ−1
obsAθ

)
= −m2 ln(2π)− 1

2 ln
(

det(Σobs)
det(Σθθ|ỹ)

)
− 1

2(ỹ − µw)TΣ−1
obs(ỹ − µw) + 1

2µ
T
θ|ỹΣ

−1
θθ|ỹµθ|ỹ

− 1
2
(
θTθ + θTATΣ−1

obsAθ − θ
T
(
Ik + ATΣ−1

obsA
)
θ︸ ︷︷ ︸

=0

+ỹTΣ−1
obsAθ − µ

T
wΣ−1

obsAθ − (ỹ − µw)T Σ−1
obsAθ︸ ︷︷ ︸

=0
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+θTATΣ−1
obsỹ − θ

TATΣ−1
obsµw − θ

TATΣ−1
obs (ỹ − µw)︸ ︷︷ ︸

=0

)
, (4.44a)

where the terms depending on θ cancel out, leaving only the expression:

lnZ (ỹ | k) = −1
2

(
m ln(2π) + ln

(
det(Σobs)
det(Σθθ|ỹ)

)
+ (ỹ − µw)TΣ−1

obs(ỹ − µw)− µT
θ|ỹΣ

−1
θθ|ỹµθ|ỹ

)
.

(4.45)
We employ the model evidence of (4.45) to perform model comparison between the investi-

gated prior correlation lengths and truncation orders of the KL expansion. The dimension with
the highest value of the model evidence is regarded as the best model, meaning that it gives an
optimum balance between predictability and quality of the data fit [21].

Figure 4.12 shows the model evidence for different KL expansion terms, where the exponential
kernel is used as the covariance of the prior flexibility. The “best” models are highlighted by a
solid red line. Notice that different choices in the parameters of the prior random field lead to
different optimal truncation orders in the KL expansion. As it is also evident in the posterior
approximation results, random fields described by small correlation lengths require a larger
number of terms in the expansion for their discretization. In particular, the information gained
by the inclusion of additional terms is negligible once the best dimension is achieved, and it
is lower than the penalty for the increased model complexity. Furthermore, the inclusion of
more data points leads to a larger model evidence, which requires more KL parameters for an
optimal random field representation. For both sets of measurements, the smaller correlation
length yields the higher model evidence. We also evaluate the model evidence using a squared
exponential covariance kernel for the prior flexibility (the plots are omitted). The results based
on this assumption yield smaller model evidence values as compared to the exponential case.
This agrees with the fact that the underlying true covariance is of the exponential type.
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Figure 4.12: Model evidence using an exponential kernel for the prior for different number of mea-
surements (rows) and correlation lengths of the prior flexibility (columns). The solid line
corresponds to the best model.

Since the solution of the inverse problem is typically affected by changes in data, different
measurements will yield different model evidence factors. In order to assess the overall contri-
bution of the number of terms in the KL discretization, it is relevant to compute the model
evidence without considering the measurement data. Therefore, the model evidence can be
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marginalized with respect to the observational data as

Eỹ [Z (ỹ | k)] =
ˆ
ỹ
Z (ỹ | k)πdata(ỹ) dỹ, (4.46)

where πdata(ỹ) denotes the density used to generate the synthetic data. The value of (4.46)
is shown in Figure 4.13 for different number of measurements and correlation lengths of the
prior flexibility. The expected model evidence is also computed for the assumed true correlation
length (` = 2 m), since such value yields the highest model evidence.
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Figure 4.13: Expected model evidence using an exponential kernel as prior covariance with different
number of data points (columns) and correlation lengths of the prior flexibility.

For the particular sets of measurements used during the inference process, the results in
Figure 4.12 show that the random field modeled with the smaller correlation length has larger
model evidence. However, if the observational data is averaged out, the smaller ` actually yields
lower model evidence. In this case, the resulting random field generates sample paths with
larger variability. This can be regarded as an increase in the model complexity, which in turn
augments the penalization within the Bayesian framework. Moreover, note that the increasing
number of data points has a positive scaling effect on the model evidence.

Remark 4.7. The natural logarithm of the model evidence can also be written as

lnZ (ỹ | k) =
ˆ

Θ
ln
[
πpr (θ | k) L(θ; ỹ, k)

πpos (θ | ỹ, k)

]
πpos (θ | ỹ, k) dθ

=
ˆ

Θ
ln L(θ; ỹ, k)πpos (θ | ỹ, k) dθ −

ˆ
Θ

ln
[
πpos (θ | ỹ, k)
πpr (θ | k)

]
πpos (θ | ỹ, k) dθ

= Eπpos [ln L(θ; ỹ, k)]︸ ︷︷ ︸
average data fit

−Eπpos

[
ln
(
πpos (θ | ỹ, k)
πpr (θ | k)

)]
︸ ︷︷ ︸

KLD

, (4.47)

where the KLD can also be computed analytically as [32]

DKL (πpos (θ | ỹ, k) ||πpr (θ)) = 1
2
(
ln
(
det(Σθθ|ỹ)−1

)
− k + tr(Σθθ|ỹ) + µT

θ|ỹµθ|ỹ
)
. (4.48)

As pointed out in [21], the data-fit term increases with the complexity of the models (in
our case increasing KL terms), which often leads to over-fitting of the data. However, we see in
(4.47) that the KLD term acts as a penalization to the data-fit. As a result, Bayesian inference
at the model level has an incorporated penalty against more complex models. We will discuss
this further in Chapter 5.
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Remark 4.8. As shown in (4.47), Bayesian inference has an integrated penalization against
complex models, which is expressed in terms of the KLD. This can be seen for instance in model
selection applied to regression, where large polynomial orders are penalized since they cause
over-fitting. Therefore, it seems counter-intuitive that the model evidence keeps increasing with
the number of terms in the KL expansion. This particular behavior is related to the fact that the
KL terms contribute to the representation of the field variability, and the more we add the better
KL will represent the posterior covariance. However, from some order in the discretization, the
inclusion of extra terms does not significantly improves the variance approximation. As a result,
the “penalization” in the KL case is expressed by a plateau where only small increments in the
model evidence occur.

Consider for example the results in Figure 4.14, where we compare the model evidence, data
misfit and KLD for increasing correlation lengths in the prior random field, ` = {0.1, 0.15, 0.2,
0.25, 0.5}. The prior covariance kernel is exponential and the number of data points is m = 10.
For correlation length values ` < 0.2, the KLD penalizes small number of KL terms since they
are not sufficient for a proper representation of the random field variability. After roughly 10
terms, the KLD stabilizes giving same penalization to all KL terms. The same stable behavior
is observed for the remainder correlation length values.
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Figure 4.14: Model evidence, average data fit and KLD for increasing correlation lengths ` =
{0.1, 0.15, 0.2, 0.25, 0.5}.

4.6. Numerical example: two-dimensional plate with a hole

Consider the two-dimensional plate in subsection 2.7.2. We are now interested in inferring
the Young’s modulus using deformation measurements. The idea is also to update the failure
probability of the plate structure after identifying the posterior Young’s modulus field.

As in subsection 2.7.2, a lognormal random field with mean value µE = 2× 105 MPa and
standard deviation σE = 3 × 104 MPa is used to represent the Young’s modulus E(x). We
select the isotropic exponential kernel (2.25) to model the covariance function of the underlying
Gaussian field. The prior for the Young’s modulus is described in terms of the KL expansion of
the form (2.44). The solution of the eigenvalue problem (2.31) is computed with the Nyström
method using 160 GL points in each direction.

Strain sensing gauges are used to measure the deformation of the plate. These measured
signals are affected by noise due to the misalignment of the strain gauges, temperature conditions,
and other factors. The measurement error is modeled as additive and mutually independent
from the uncertain quantities by a joint Gaussian density with mean zero and exponential
covariance function. The standard deviation is σobs = 1 × 10−4, and the correlation length
is `obs = 0.08 m. The resulting likelihood function is a 2m-dimensional Gaussian since there
are two strain components (horizontal x1 and vertical x2 directions) per sensor location. The
measurement noises at the same location in the two directions have correlation coefficient 0.25,
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and measurement noises at different locations are independent.
The set of m = 20 axial strain observations ỹ = [εx1(x̃), εx2(x̃)]T is generated by simulation

at hot-spots locations of the plate x̃ (Figure 4.15). The observations are computed by solving
the forward problem using a finer mesh (779 elements). This mesh is also generated in Gmsh
[86]. The underlying true Young’s modulus is generated using the full covariance information,
assuming an exponential kernel with `true = 0.10 m and applying the same noise used for the
likelihood.

Figure 4.15: Thin plate: structural configuration, finite element mesh, sensor locations, observations, and
true fields. Note that a finer mesh is used to generate the “truth” (and hence the data), and
a coarser mesh is used for the Bayesian inversion.

4.6.1. Approximated posterior

The associated forward quantities (deformation components) are estimated after including the
KL expansion (2.44) into the model PDE in (2.43). This represents a standard stochastic
forward problem that is solved using a Monte Carlo-based stochastic finite element method [90].
The posterior random field is estimated by fixing the distributed load as q = 1.6µq. This value
guarantees that the model response lies in the linear range, i.e., the maximum principal stress
σ1 (defined in (B.19a)) is lower than the yield limit of the material.

Since closed-form expressions are cumbersome to derive in this case, the target posterior
random field is explored through samples. This task is carried out using the BUS-SuS method
as described in subsection 4.3.1. In the following, 25 independent simulations of the BUS-SuS
method with N = 104 samples per level, and intermediate level probability of 0.1 are employed.
The results are shown as the average of those simulations. The value of the constant c is
estimated beforehand by optimization for each particular setting. This is to ensure that we are
solving the same inference and reliability updating problems at each simulation.

The following parameter cases are considered:

� The number of terms in the KL expansion is chosen as k ∈ {5, 10, 50, 100, 500}; and

� the correlation length of the prior flexibility from ` ∈ {0.02, 0.16, 0.30} m.
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4.6. Numerical example: two-dimensional plate with a hole

The reference solution is computed using a KL expansion with kref ∈ {5311, 2609, 833} terms,
for the correlation lengths ` ∈ {0.02, 0.16, 0.30}, respectively. The values are selected based on
the averaged relative variance error in the prior random field, such that they represent the 95%
of the variability for ` = 0.02, and the 99% of the variability for ` ∈ {0.16, 0.30}. We choose
a lower precision for the smaller correlation length to reduce the computational cost of the
simulation. Note that the reference values shown in Table 2.2 are different, since in this study
we employ a finer GL grid for the solution of the KL eigenvalue problem.

Evaluating the posterior approximation

For different number of terms in the KL expansion and correlation lengths, we plot in Figure 4.16
the posterior mean random field. The posterior mean more closely resembles the reference
solution with increasing number of terms in the KL expansion (Figure 4.15). We also evaluate
the standard deviation fields (the plots are omitted); the magnitude of the standard deviation
is larger in the vicinity of the boundaries of the domain (in the order of 0.7× 105 MPa), and
smaller at the measurement locations (in the order of 0.1× 105 MPa), especially at the upper
part of the hole where there is high stress concentration and two sensors are used to collect
the strain data. We observe that for correlation lengths larger than the underlying true `, the
posterior mean estimates are smoother across the domain even at the measurement locations.
These estimates should be used carefully when making predictions since they might lead to
overconfident results.
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Figure 4.16: Posterior mean of the Young’s modulus for different terms in the KL expansion (columns),
and prior correlation lengths (rows).

In Figure 4.17, we plot the 95% CI of the posterior Young’s modulus random field approx-
imation. The reference solution is illustrated by the shaded area together with various KL
approximations. The results are plotted at two different half cuts of the domain (i.e., fixing
x1 = 0.16 and x2 = 0.16). As shown for the example in section 4.5, the KL representations are
contained in the reference CI, and they converge to this solution as the truncation order increases.
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For the correlation length ` = 0.02, an accurate representation of the posterior random field is
considerably more difficult to achieve. In this case, more than k = 500 terms are necessary for
an accurate approximation of the reference solution.
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Figure 4.17: Posterior Young’s modulus E(x1, x2): cuts at x2 = 0.16 m (1st row) and x1 = 0.16 m (2nd
row); 95% CI for different terms in the KL expansion and correlation lengths (columns) of
the prior Young’s modulus. The shaded area corresponds to the reference CI.
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Figure 4.18: Posterior stress σ1(x1, x2): cuts at x2 = 0.16 m (1st row) and x1 = 0.16 m (2nd row); 95%
CI for different terms in the KL expansion and correlation lengths (columns) of the prior
Young’s modulus. The shaded area corresponds to the reference CI.

The plots in Figure 4.18 present the approximation of the posterior σ1 stress random field.
Again, the results are shown at the vertical and horizontal half cuts of the domain. We select the
principal stress (defined in (B.19a)), as a QoI since the stress field of a plate is highly dependent
on the local values of material properties. Therefore, it is expected that the solution of the

80



4.6. Numerical example: two-dimensional plate with a hole

Bayesian inverse problem (Young’s modulus) will affect directly the values of the σ1 stress. For
larger correlation lengths, the KL expansion represents the posterior σ1 stress almost as exact
as the reference solution, even when using an small number of terms in the expansion. However,
for the smaller correlation length, a large truncation order in the KL expansion is required.
The situation is different for the displacements CIs (the plots are omitted) since the smoothing
influence of the forward operator is larger on this QoI, generating accurate representations
with very low number of terms in the KL expansion (similar to the example in section 4.5). A
higher-order KL discretization is still necessary for the σ1 stress given the strong dependence of
the stress field on the local fluctuations of the Young’s modulus.

Furthermore, the natural logarithm of the model evidence associated to each parameter
setting is reported in Table 4.1. We represent the variability of the BUS approach in terms of
the standard deviation of the natural logarithm of model evidence estimate. It is seen that the
case ` = 0.02 and k = 500 terms in the KL expansion yields the largest model evidence.

Evaluating the error in the approximation

The error measures (2.34) are computed for the prior and posterior random fields of the Young’s
modulus, principal stress σ1, and displacement in the horizontal direction ux1 . Figure 4.19
presents the averaged relative variance error ε̄σ2(k) associated to the prior and posterior random
field representations of those quantities. The averaged relative mean error ε̄µ(k) in the posterior
is also shown in the third column.
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Figure 4.19: Averaged relative error variance in the prior and posterior random fields for the underlying
Gaussian Young’s modulus E′ (1st row), σ1 stress field (2nd row), and horizontal displacement
ux1 (3rd row), using different terms in the KL expansion and correlation lengths. The averaged
relative error mean for the posterior random fields is also shown in the 3rd column.
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Similar to the example in section 4.5, the errors in the posterior mean approximation are
smaller than those associated to the posterior variance. Again, we observe that the variance
errors in the prior are smaller than in the posterior. For ` = 0.02 there is no substantial difference,
which is attributed to the precision of the reference solution used in the computation of the
errors. Since there is still a percentage of the variability that is not represented by the reference,
it is expected that the error gap between prior and posterior will increase as the accuracy
of the reference solution improves. Compare with the results of example in subsection 2.7.2;
in Figure 2.14 the prior variance errors are shown for Matérn kernels with ν ∈ {2,∞} and
correlation length ` = 0.02. The prior errors shown in the first column of Figure 4.19 are different
since we use in this study ν = 0.5 and the number of GL points for the solution of the KL
eigenvalue problem is considerably larger. Nevertheless, we can see a similar trend between both
solutions and also the presence of the smoothing action of the forward operator.

Different error values are obtained depending on the smoothing influence of the PDE on a
given QoI. For instance, due to the Hooke’s law in elasticity theory, stress values are linearly
dependent on the Young’s modulus. Since this parameter represents the inverse quantity, its
local random variations will affect the values of the σ1 stress. However, this does not hold
when the forward operator has a “filtering/smoothing” effect on the QoI. This is the case of the
displacement solution, for which integration of the PDE operator is required for its computation.
Such an averaging process reduces the effect of the local fluctuations of the spatially varying
material parameter, and thus the error decay for the σ1 stress becomes slower as compared to the
error decay for the ux1 displacement. Consequently, if we are interested in posterior predictions
that are based on displacements, the truncation order of the expansion is not required to be as
high as the one required for the representation of the Young’s modulus and stresses. We further
note that there is a decrease in the accuracy of the computation of the integrals associated to
the error measures with increasing dimension (also due to the quality of the reference solution
for ` = 0.02). This is seen for the values of the averaged relative mean error, which should
decrease linearly (in the log-log scale) with the number of terms in the KL expansion (as shown
for the example in section 4.5).

4.6.2. Reliability updating

This chapter concludes with a study on the influence of the random field discretization on the
estimation of prior and posterior (updated) rare event probabilities.

We consider that the failure of the plate occurs when the maximum principal stress σ1(x1, x2)
exceeds the yield tensile strength of the steel (320 MPa); hence the LSF is defined as

g(ϑ) = 320−max (σ1(ϑ;x1, x2)) , (4.49)

where ϑ = [θ, q] ∈ Rk+1 is an augmented random vector that includes the random surface load
acting on the plate (Figure 4.15), and θ is the random vector of KL expansion coefficients. Here,
σ1(ϑ;x1, x2) stands for the principal stress σ1 in (B.19a), obtained after solving the stochastic
PDE in (2.43) for a given realization of the augmented uncertain parameter ϑ.

The prior random field is used for the reliability analysis (a similar study is presented in
[5], with the field assumed to be Gaussian). The estimation of the failure probability in (3.1) is
performed using the SuS method. In this case, N = 104 samples per level are employed with
25 independent simulations. The results are reported in Table 4.1 for increasing number of
terms in the KL expansion and correlation lengths. The values of the coefficient of variation
(ĉv) are also included and they are computed from the averaged simulation results. For the
failure mode defined in (4.49), the probability of failure increases with the number of terms in
the KL expansion. This is because a higher-order random field discretization leads to a larger
variability in the spatially varying Young’s modulus, which in turn leads to a higher uncertainty
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Table 4.1.: Prior and posterior probability of failure using ` = {0.02, 0.16, 0.30} as correlation lengths
of the prior Young’s modulus (mean and coefficient of variation estimates). The natural
logarithm of the model evidence computed by BUS-SuS is also reported (mean and standard
deviation estimates).

k
` = 0.02

Prior BUS-SuS inference Posterior
p̂F ĉv lnZỹ Std. P[F | ỹ] ĉv

5 4.192× 10−5 0.056 151.86 0.0298 3.832× 10−5 0.312
10 5.575× 10−5 0.105 152.15 0.0611 3.209× 10−5 0.319
50 1.362× 10−4 0.087 152.75 0.0781 3.473× 10−5 0.443
100 2.051× 10−4 0.081 153.13 0.1329 6.313× 10−5 0.462
500 3.993× 10−4 0.084 153.74 0.1369 5.237× 10−5 0.236

k
` = 0.16

Prior BUS-SuS inference Posterior
p̂F ĉv lnZỹ Std. P[F | ỹ] ĉv

5 5.208× 10−5 0.087 151.45 0.0546 2.592× 10−5 0.318
10 6.601× 10−5 0.072 151.59 0.1079 1.941× 10−5 0.437
50 1.033× 10−4 0.105 151.78 0.1418 2.211× 10−5 0.541
100 1.196× 10−4 0.118 151.93 0.2184 1.441× 10−5 0.651
500 1.321× 10−4 0.047 152.13 0.1132 1.150× 10−4 0.590

k
` = 0.30

Prior BUS-SuS inference Posterior
p̂F ĉv lnZỹ Std. P[F | ỹ] ĉv

5 4.554× 10−5 0.088 151.36 0.0479 1.935× 10−5 0.305
10 5.067× 10−5 0.119 151.46 0.1558 2.597× 10−5 0.518
50 7.600× 10−5 0.093 151.53 0.0778 2.398× 10−5 0.413
100 7.643× 10−5 0.073 151.63 0.2340 1.095× 10−5 0.766
500 8.656× 10−5 0.085 151.65 0.1401 1.059× 10−5 0.608

in the principal stress σ1 (similar effects are observed in [254]). The magnitude of this effect
can change if other types of failure are considered. However, as the truncation order tends to
infinity, the contribution of additional terms in the KL expansion becomes insignificant (as also
shown in the Bayesian inversion results). In this case, the failure probability converges to a
target value that no longer depends on the KL order.

We also address the reliability updating problem in (4.30) using the posterior random
field results from subsection 4.6.1. The rare event estimation associated to the LSF g(ϑ) is
estimated with the SuS method after applying the modifications described in section 4.4. During
the simulation, the N = 104 posterior samples computed from the 25 independent BUS-SuS
simulations are used. The results are shown in Table 4.1 together with the coefficient of variation
from the averaged simulations results. Recall that the updated failure probabilities are obtained
as a result of two steps, one at which the BUS-SuS approach is used to estimate the Bayesian
inverse problem solution, and other one that uses the resulting (correlated) posterior samples
from the SuS algorithm to compute the updated probabilities of failure. Consequently, the
variability associated to the rare event estimation process is propagated from one step to the
other, increasing the coefficient of variation in the updated probabilities (cf. Figure 4.4). The
lack of accuracy in the estimates complicates a definite assessment of the posterior failure
probabilities. Nevertheless, in this particular example, the posterior failure probabilities tend
to be smaller than those computed at the prior level, and thus the updating of the Young’s
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modulus random field leads to an increase in the reliability estimate of the plate.

In this chapter, we reviewed the theory of Bayesian inverse problems in the context of
engineering models. The title of this chapter uses the term Bayesian analysis to highlight a more
general presentation—the Bayesian approach is not only applied to classical inverse problems,
but also to the updating of rare event probabilities. Our main focus was to show the effects of
the prior random field choices on the posterior solution. Despite more optimal strategies can be
utilized, we opted for a parametric approach in which the studies are performed step by step.
This is common practice in engineering applications, where the analyst might be interested in
the definition of modeling guidelines, rather than the application of optimal algorithms.
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Chapter 5

Bayesian inference of random fields:
dimension selection and averaging

“... a scientist must also be concerned with a
bigger problem: how to decide between different
models when both seem able to account for the
facts. Indeed, the progress of science requires
comparison of different conceivable models; a
false premise built into a model that is never
questioned cannot be removed by any amount of
new data”.

Edwin Thompson Jaynes, 1922-1998 [124, p.601].

Chapter 4 discussed computational approaches for the reduction of parameter uncertainties
in numerical models using measurements of the physical system. This represents an inverse
problem that is solved by the Bayesian inference framework.

This chapter presents a more general type of inference arising in model choice situations,
whereby the model itself needs to be selected from a predefined collection of models. Each
model in the set can have different parameters or can be based on particular mathematical
assumptions. The Bayesian inference process consists of estimating the conditional posterior
distribution induced by the model class, and determining the plausibility of each individual
model class. Model selection also arises in Bayesian non-parametric settings where the models
are associated to different dimensions of the parameter space. The dimension becomes part of
the inference process, and as a result, we are dealing with problems where “the number of things
you don’t know is one of the things you don’t know” [111]. This imposes an additional difficulty
since in order to estimate the posterior, standard sampling algorithms used to solve the Bayesian
inverse problem need to be able to jump between parameter spaces of different dimension.

We start by defining the Bayesian framework for inverse problems when the dimension of the
parameter space is variable-dimensional. This is particularized to random field applications where
the KL expansion is employed for the discretization. We also suggest a prior for the dimension
parameter that penalizes increasing number of terms in the expansion. Thereafter, an overview of
the methods that are commonly used to perform this type of inferences is presented. Finally, we
propose a method that extends the applicability of the BUS formulation to variable-dimensional
settings, and illustrate its applicability and limitations with two engineering examples involving
random fields.

5.1. Mathematical framework

Consider an inference setting in which the set of observed data ỹ is associated not only with
one, but with a finite collection of plausible models {M1, . . . ,Mk, . . . ,Mkmax}, where k ∈ K is
a model indicator index, K is the set of model indices under consideration, and kmax <∞ is a
prescribed limit on the collection. The associated discrete-continuous parameter space can be
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written as
X =∪k∈KXk =∪k∈K ({k} ×Θk) , (5.1)

where each Xk is a parameter subspace related to the model Mk. Observe that there exist
different uncertain parameter vectors θk ∈ Θk := Rk for each particular model k, and thus, the
goal is to extract information from the data to infer jointly the pairs (k,θk) ∈ X . For the sake
of simplicity in notation, we shall henceforth use the model indicator index k to denote the
modelMk.

Let πpr(θk | k) be a first-level prior density imposed on the parameter θk given the model k,
and πpr(k) a second-level discrete prior mass specified over the models k (we use the notation π
to indicate probability mass functions). Here, level is meant in a hierarchical sense. The joint
posterior density over both, model and parameters, is computed using Bayes’ theorem as [85,
126]

πpos(k,θk | ỹ) = 1
Z ỹ

πpr(k)πpr(θk | k)L(k,θk; ỹ) , (5.2)

wherein the evidence is given by the theorem of total probability [193]:

Z ỹ =
∑
k′∈K

πpr(k′)Zỹ(k′) =
∑
k′∈K

πpr(k′)
ˆ

Θk′

πpr(θk′ | k′)L
(
k′,θk′ ; ỹ

)
dθk′ (5.3)

and Zỹ(k) is the evidence of the individual model class k (i.e., the expression in (4.45)). The
posterior density of the models is obtained by integrating out the parameters in (5.2) as

πpos(k | ỹ) =
πpr(k)

´
Θk

πpr(θk | k)L(k,θk; ỹ) dθk∑
k′∈K πpr(k′)

´
Θk′

πpr(θk′ | k′)L(k′,θk′ ; ỹ) dθk′
= πpr(k)Zỹ(k)

Z ỹ
. (5.4)

In model selection, the posterior (5.4) can be used to perform the following tasks [245]:

� Model choice or selection, which requires the computation of the MAP estimator, kMAP =
arg maxk∈K πpos(k | ỹ). Model choice is used as indicator of model complexity, i.e., the
model that provides the best alignment with the observed data should be preferred over
unnecessarily complicated ones. Furthermore, two different modelsMk andMl can be
compared using Bayes’ factors [193]:

πpos(k | ỹ)
πpos(l | ỹ) = πpr(k)

πpr(l)︸ ︷︷ ︸
model prior

´
Θk

πpr(θk | k)L(k,θk; ỹ)dθk´
Θl
πpr(θl | l)L(l,θl; ỹ)dθl︸ ︷︷ ︸

Bayes factor: Bk,l

. (5.5)

� Model mixing or averaging, which requires the consideration of the whole collection of
parameters weighted by πpos(k | ỹ). The model mixing solution can be seen as a model
posterior predictive distribution at the model level (recall the standard definition (4.7)). In
this case, all the collection of models is used for future decisions and the underestimation
of uncertainty resulting from choosing only a single model is avoided. Since this process
leads to a higher computational cost, only models that are sufficiently likely compared
to the MAP estimator may be considered in the analysis. Occam’s window and Bayes’
factors are used to perform such a model reduction ([193, p.368]).

A common approach in model choice is to use methods that are based on the likelihood
function of individual models, including Akaike information, deviance information, Bayesian
information, Hannan–Quinn information (fundamental methods are discussed in [203, 245, 22,
193, 148]). Some of these criteria approximate the logarithm of the model evidence such that
the penalty term for model complexity (i.e., the KLD (4.48)) depends only on the number of
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uncertain parameters [21]. In several cases, this simplification deviates considerably from the
actual KLD (see for instance [169]).

Another flexible way to approach the model choice problem is via sampling methods. In
this case, the characterization of the posterior requires the exploration of a discrete-continuous
space. This task can be performed by performing several independent runs for each particular
model; an approach referred to as within-model simulation. Several methods are described in
the seminal work [85]; we also point out the work [51], where a post-processing step of the MH
algorithm to estimate the model evidence is discussed. Alternatively, simultaneous inference on
both, model and parameters, is performed by MCMC algorithms that explore the disjoint union
space; this approach is called across-model simulation. The standard technique is the reversible
jump MCMC algorithm [96, 97].

The formulations in (5.2) and (5.4) are also applicable to Bayesian non-parametric settings
where in fact there exists only a single mathematical model, but one with variable-dimension
parameter [111]. Some examples include, mixture models with an unknown number of components
[192], polynomial regression where the degree of the polynomial is variable [198], object recognition
where the image being analyzed is composed by an unknown number of shapes [184], or general
functional representations that use series expansions for which the number of terms is unknown.
In this context, the MCMC algorithms are also referred to as trans-dimensional MCMC [97].

The variable-dimensional setting is of particular relevance in the context of learning random
fields. Series representations are typically applied in order to project the random field to a
finite-dimensional space, e.g., the KL representation. It is common practice to truncate the KL
expansion after a finite number of terms based on some variance-representation criterion. This
heuristic is generally valid in prior situations when no information or observations about the
field are available. In the inversion case, the optimal number of terms in the series expansion is
unknown and it is controlled by the data [235].

In the KL expansion, the set of models can be defined by the model indicator indices
K = {1, 2, . . . , k, . . . kmax}, where each element defines a truncation order. This truncation order
specifies the dimensionality of the standard Gaussian random coefficients of the expansion. Thus,
each particular model/dimension k involves a vector of uncertain parameters θk ∈ Θk := R

k.
The aim is to perform simultaneous inference on the discrete random variable k (dimension),
and the associated random vector θk (coefficients) of the KL expansion. In the following, we
often use the terms model and dimension interchangeably.

5.1.1. Selection of the prior distribution for the dimension

We address the specification of the model/dimension prior by defining a discrete distribution
that penalizes increasing dimensionality of the parameter space. In model choice problems,
imposing a penalty to complicated models is necessary (see [126, 22, 208] for a discussion). A
model with more parameters usually fits the data better than a model with less parameters
(recall the definition of the model evidence in (4.47)). However, the actual improvement might
be negligible or possible over-fitting of the data can arise [22].

In the KL expansion, we have shown numerically that the information gained by the inclusion
of additional terms becomes imperceptible once an optimal truncation is achieved [235] (cf.
Figures 4.12 and 4.14, and remark 4.8). See also the work [74]. This behavior is described by
small increments in the model evidence as the number of terms in the expansion increases. We
conjecture that this result is related to the representation of the posterior covariance since its
approximation improves as k →∞; however, a rigorous proof is still to be derived.

Based on this observation, we define a prior for the dimension parameter k that penalizes
increasing dimensionality. The dimension prior is defined based on the geometry of the parameter
space and prior information about the random fields. Our choice is the truncated geometric
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distribution:
πpr(k) = (1− p)k−1p

1− (1− p)kmax
, k = 1, . . . , kmax, (5.6)

where kmax is the upper truncation level, and the success probability p ∈ (0, 1) marks the decay
rate of the probability mass. This parameter allows us to control the shape of the distribution.
In practice the parameter space is bounded, and typically some prior knowledge about these
bounds is available. We select the parameter p by regulating the behavior of the distribution at
the tails, such that P[k ≤ kmin] = F pr(kmin; p) = α, where kmin is a prescribed bound, α is the
probability associated to that event, and F pr(kmin; p) is the cumulative distribution function
associated to (5.6) (as function of p). This defines a nonlinear equation that is solved for p,
given values of kmin, kmax and α.

Based on our experiments, kmin is chosen as the number of terms in the KL expansion that
retains 50% of the variability in the prior random field, and we assign to the event {k ≤ kmin} a
probability of α = 0.10. Furthermore, the truncation value kmax is selected as the number of
terms in the expansion that retains 99% of the variability. By doing so, approximately 90% of
the probability mass is concentrated on truncation orders higher than those yielding the 50%
variability and smaller that those producing the 99% variability. We found that this heuristic
produces a decay p that does not excessively penalize high-order KL terms.

The prior defined in (5.6) fits well into the concept of penalized complexity (PC) priors
proposed in [208]. Let us consider a base prior model πpr(θ | k = 1) and a flexible prior model
πpr(θ | k), where k > 1 is a flexibility parameter that accounts here for the dimension. A PC
prior is defined by applying the following propositions [208]:

(i) Based on Occam’s razor principle, a simpler model is preferred until there is enough
support for a more complex model. The simplest model is defined in terms of the base
prior πpr(θ | k = 1).

(ii) A measure of increasing complexity is defined as the distance between the flexible and
base models, d(k) = K(DKL (πpr(θ | k)||πpr(θ | k = 1))), where DKL (·||·) is the KLD [91]
from the base to the flexible model and K is an increasing function, with K(0) = 0.

(iii) A constant rate penalization is applied to deviations from the base model. This implies
an exponential prior distribution on the distance scale, πpr(d(k)) = a · exp (−a · d(k)).
The prior of the flexibility parameter k is derived from πpr(d(k)) as, πpr(k) ∝ a ·
exp (−a · d(k)) |∂d(k)/∂k|, where the last term corresponds to the determinant of the
Jacobian of the transformation from d to k.

(iv) The user is able to define the scaling of the prior by controlling its mass at the tail, such
that a can be selected by considering P[k ≤ kmin] = α.

Through this construction a PC prior combines prior beliefs with the geometry of the
parameter space [208]. The prior for the dimension in (5.6) can be seen as a PC prior in the
discrete variable setting of the KL expansion. We derive a proof of this connection in [233].
Finally, we point out that different PC priors have been proposed in the context of random
fields, e.g., for different values of a re-parameterized Matérn kernel [83], and an exponential
prior with fixed decay rate for the truncation order in the KL expansion in [56].

In the remainder of this chapter, we discuss different MCMC-based methods for the solution
of the Bayesian model choice problem (5.4). Recall that in section 4.2 we introduced two
MCMC algorithms to sample from arbitrary distributions. MCMC can also be extended to the
variable-dimensional context, as it is described next.
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5.2. MCMC in varying dimensions

MCMC algorithms are also utilized to sample parameter spaces of varying dimensions associated
to the joint posterior in (5.2). Since it is ideal to simultaneously infer the models/dimensions
and parameters, we now discuss some methods that operate across the set of candidate models.
These algorithms infer jointly models and parameters in a single simulation. In particular, we
describe the reversible jump MCMC and saturated space algorithms.

5.2.1. Reversible jump MCMC

The idea of the reversible jump Markov chain Monte Carlo (RJMCMC) method [96] is to generate
a Markov chain that is able to jump between parameter spaces of different dimension. If the
current and proposed states have the same dimension, the proposal move explores different
locations within the same parameter subspace, which yields a standard MCMC. If the current
and proposed dimensions are different, the detailed balance holds by defining a proposal move
that satisfies a dimension matching condition. This is achieved by constructing a one-to-one
deterministic transformation (jumping function), ensuring that the image and the domain of the
transformation have the same dimension.

Assume that for each dimension k, there exists a target density over Rk. Excluding the
move that implies staying in the same dimension, a particular move type j consists of both the
forward and reverse moves [87]:

� forward move (k′ > k), from x = (k,θk) to x′ = (k′,θ′k′): using rj = k′ − k, generate
a random vector u ∈ Rrj from a known density qj . The proposed state of the chain
θ′k′ ∈ Rk′ is constructed by a deterministic transformation Tj : Rk ×Rrj → R

k′ ×Rr′j ,
such that (θ′k,u′) = Tj(θk,u). Here, u′ ∈ Rr′j is a random vector generated from a known
density q′j , needed in case the next move is backward;

� backward/reverse move (k′ < k), from x′ = (k′,θ′k′) to x = (k,θk): using a random vector
u′ ∈ Rr′j generated from q′j , the proposed state of the chain θk ∈ Rk is constructed by the
inverse of the transformation T −1

j : Rk′×Rr′j → R
k×Rrj , such that (θk,u) = T −1

j (θ′k,u′).
Here, u ∈ Rrj is needed in case the next move is forward.

The jumping function or transformation T needs to be a diffeomorphism1. The absolute
value of the Jacobian determinant (henceforth called Jacobian) at a given point, provides the
factor by which the transformation expands or shrinks areas near that point:

dθ′du′ =
∣∣∣J(θ,u)

∣∣∣ dθdu where J(θ,u) = ∂(k′,θ′k′)
∂(k,θk)

. (5.7)

One needs to guarantee that the image and the domain of the transformation have the same
dimension. Such condition can be achieved by the relation

k + rj = k′ + r′j , (5.8)

which is referred to as dimension matching condition. If this equality fails, the transformation
and its inverse may not be both differentiable [111]. Following the detailed balance condition
(4.12) and considering the probabilities of each move type [111],

ˆ
A×B

π(θ)ρjqj(u)αj(θ | θ′) dθdu =
ˆ
A×B

π(θ′)ρ′jq′j(u′)αj(θ′ | θ) dθ′du′, (5.9)

1an invertible function that maps one space to another, such that both, the function and its inverse are
continuously differentiable.
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where ρj denotes the probability of the move j to a given model. The complete transition kernel
is obtained by summing over all the possible moves j in (5.9) [111]. As a result, it is sufficient to
ensure that for each type of move j, the detailed balance is satisfied. The acceptance probability
αj associated with move type j is given by [96],

αj(k,θk; k′,θ′k′) = min
(

1,
π(k′,θ′k′)ρj(k′)q′j(u′)
π(k,θk)ρj(k)qj(u)

∣∣∣J(θ,u)

∣∣∣) , (5.10)

where the target density is π(k,θk) = πpr(k)πpr(θk | k)L(k,θk; ỹ), ρj(k′) is the probability of
the move to model k′, and the final term is the Jacobian of the jumping function. Hastie [110]
points out that the Jacobian associated to the move type j, arises from the change of variables
and not from the actual dimension jump.

The RJMCMC can suffer from poor sampling performance associated to the definition of the
jumping function and the proposal distribution. The potential inefficiency of the method has
motivated a considerable amount of tuning step procedures, such as controlling the acceptance
probabilities of the jumps and saturated space approaches [43], using additional Markov chains to
improve the acceptance rate of RJMCMC [4], marginal density estimators to construct jumping
functions [77], hierarchical centering [173], among others. To conclude this subsection, we present
a simple illustration of RJMCMC.

Illustration 2 (from [111]). The objective is to find the likelihood model that yields a better
representation of a data set ỹ consisting of m = 1140 values (Figure 5.1). Two models are
defined:

(Model 1: Poisson) L(ỹ | λ) =
m∏
i=1

λỹi

ỹi!
exp(−λ). (5.11a)

(Model 2: Neg. Bin.) L(ỹ | λ, κ) =
m∏
i=1

λỹi

ỹi!
Γ(1/κ+ ỹi)

Γ(1/κ)(1/κ+ λ)ỹi
(1 + κλ)−1/κ. (5.11b)

Consider the parameter θ = [θ1, θ2] = [λ, κ]. For k = 1 we have that ỹi ∼ Poisson(θ1), and
for k = 2 we have ỹi ∼ NegBin(θ1, θ2). We define the priors as follows:

(Gamma) πpr(θ1 | k = 1) = gamma(θ1;αλ, βλ) (5.12a)
(Gamma) πpr(θ1, θ2 | k = 2) = gamma(θ1;αλ, βλ)× gamma(θ2;ακ, βκ) (5.12b)
(Discrete uniform) πpr(k) = Unif(a, b) (5.12c)

with fixed hyperparameters αλ = 25, βλ = 10; βκ = 1, βκ = 10; and for the model prior
a = 1, b = 2. The MCMC sampler needs to jump between models 1 and 2. Since these are
related to parameter spaces of different dimensions, we employ the RJMCMC. In this case, the
algorithm is tuned as follows:

� Definition of the jumping function: let us consider the forward move (from model 1 to 2).
In this case, r = 1 and we consider the following mapping:

(θ′, u′) = T (θ, u) = T ([θ1, ∅], u) =

[θ′1 = θ1, θ
′
2 = c · exp(u)]︸ ︷︷ ︸
θ′∈R2

, ∅︸︷︷︸
u′∈R0

 , (5.13)

the Jacobian of this forward move is given by:
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∣∣∣J(θ,u)

∣∣∣ =

∣∣∣∣∣∣∣∣∣
∂θ′1
∂θ1

∂θ′1
∂u

∂θ′2
∂θ1

∂θ′2
∂u

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0

0 c · exp(u)

∣∣∣∣∣∣ = c · exp(u); (5.14)

for the reverse move (from model 2 to 1), r′ = 0 and thus:

(θ, u) = T −1(θ′, u′) = T −1([θ′1, θ′2], u′) =

θ1 = θ′1︸ ︷︷ ︸
θ∈R1

, ln(θ′2/c)︸ ︷︷ ︸
u∈R1

 , (5.15)

and the associated Jacobian is
∣∣∣J(θ′,u′)

∣∣∣ = 1/θ′2. Note that this choice satisfies the dimension
matching (5.8).

� Definition of the proposal densities: we generate the auxiliary random variable u from a
Gaussian q(u) = N (u; 0, σ2

q ). In this example, u′ is not required and hence, the proposal
q′ is not necessary.

� Definition of the jump/move probabilities: we restrict the dimension jumps only between
consecutive models and give the same probability to them. Thus, each ρj′ = ρ1→2 =
ρ2→1 = ρj is obtained from an discrete uniform law induced by a stochastic matrix
Q ∈ Rkmax×kmax (kmax = 2), defined as

Q =
(

1/2 1/2
1/2 1/2

)
. (5.16)

We run the RJMCMC with N = 5× 104 samples, applying a burn-in period of Nb = 0.1N .
The standard deviation of the proposal for the auxiliary parameters is chosen as σq = 1.5.
Moreover, the free parameter included in the jumping function is selected as c = 0.015. The
initial state of the Markov chain is defined at the model 1, such that x0 = (k, θk) = (1, 2.5).
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0.0

0.8

1.6

2.4

3.2

4.0×102

Figure 5.1: RJMCMC results: the histogram of the data set is shown in the 1st row. The posterior of the
models and parameters in dimension 1 and 2 are shown in the 2nd row.

The results of a single simulation of the RJMCMC are shown in Figure 5.1. The individual
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posterior masses are given by πpos(k = 1 | ỹ) = 0.749, and πpos(k = 1 | ỹ) = 0.251; this indicates
via model choice that the most appropriate model to represent the data set is given by the
Poisson likelihood function. From the RJMCMC simulation, one can also obtain samples of the
parameter posterior for each dimension; we also plot those densities which are constructed from
the posterior samples via kernel density estimation.

5.2.2. Saturated space methods

Another class of algorithms for model choice problems are the saturated space (also referred to
as product or composite space) approaches ([47, 24, 94, 43]). The main characteristic is that the
parameter space is not particularized to a given dimension k, instead the parameters lie in a
space whose dimension contains all dimensions of interest, say kmax. The joint posterior in the
saturated space is expressed as [94]

πpos(k,θ | ỹ) = 1
Z ỹ

πpr(k)πpr(θk | k)πpr(θ∼k | k,θk)L(k,θk; ỹ) , (5.17)

where θ = [θk,θ∼k], and the additional component πpr(θ∼k | k,θk) is the so-called linking
density or pseudo-prior, where the θ∼k denotes the parameters that are not used by the model
k. This formulation allows one to employ standard MCMC procedures to variable-dimensional
problems. We now motivate these techniques from the viewpoint of nested models.

Nested and variable selection models

For problems involving nested models, the parameters of the model k have the same interpretation
as the first k parameters of the model k+ 1. These type of models can also be related to variable
selection models, where the dimension change amounts to switch on and off components in the
parameter vector, i.e., exclusion of a component is equivalent to setting a parameter to zero. In
these cases, the parameters associated to different models have a similar meaning, since they
are not representing completely different mathematical models. Some examples of these classes
include the KL expansion and polynomial regression.

Note that under the KL expansion, the likelihood in (5.2) is independent of θi when i > k,
and the prior of parameter vector θ in the saturated space becomes independent of k. Therefore,
the (saturated) joint posterior in (5.17) can be written as

πpos(k,θ | ỹ) ∝ πpr(k)πpr(θ)L(k,θ; ỹ) , (5.18)

with πpr(θ) denoting the prior of the parameters in the saturated space Θ ⊆ Rkmax .
The saturated space is oftentimes high-dimensional when dealing with random field applica-

tions. In order to avoid convergence deterioration, dimension-independent MCMC algorithms
are applied. As discussed in subsection 4.2.2, the standard algorithm is pCN [56, 199]. Given
the high-dimensional nature of random fields and the structure of the KL expansion, we focus on
saturated space approaches that are based on the pCN algorithm, namely: the Metropolis-within-
Gibbs and step-wise samplers. We particularize these methods to model inference problems
where the variables of the different models have a nested structure.

Metropolis-within-Gibbs sampler

The Metropolis-within-Gibbs (MwG) algorithm [92, 3] updates the KL coefficients θ and the
dimension k in an alternating manner. In the saturated space context, MwG explores the
joint posterior (5.17) with a Gibbs sampling version of the Carlin and Chib [47] algorithm,
after including MH steps (details are provided in [94]). The algorithm can also be derived by
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5.2. MCMC in varying dimensions

expressing the joint posterior (5.18) as the product of the model posterior and the model specific
parameter posterior [96]

πpos(k,θ | ỹ) = π(k | ỹ)π(θ | k, ỹ). (5.19)

In general Bayesian inference cases, the densities π(θ | k, ỹ) may differ abruptly for small
changes in the variable k, and thus, the chain can always remain at a given state. However,
under the KL formulation (2.29), the coefficients and the dimension are independent a priori.
This property alleviates potential poor mixing properties in MwG [50].

The idea of MwG is to sample each conditional density in (5.19) by applying two different
steps. In the first step, we fix the parameter θ and sample the conditional distribution π(k | ·)
using a standard Metropolis–Hastings sampler to propose a candidate dimension k?. In the
second step, we fix the variable k (accepted in the first step), and sample the conditional
distribution π(θ | ·) to obtain a candidate parameter θ? using the pCN proposal in (4.21). The
state update in MwG is formally described in Algorithm 6. Observe that this approach requires
two likelihood model evaluations for the generation of one state of the chain.

Since k is a discrete variable, the proposal distribution in the standard MH algorithm is
replaced by a proposal matrix Q ∈ Rkmax×kmax . This proposal is a right stochastic matrix
containing the probabilities of the moves [149]. Such probabilities are assigned using a discrete
probability law that is controlled by a parameter 1 ≤ ρ ≤ kmax defining the spread or jump
lengths of the proposal.

Algorithm 6 State update in the MwG sampler.
Input :Let (k,θ) be the current state of the Markov chain
/* Step 1: for fixed θ, sample the conditional distribution π(k | ỹ) */

1 Sample the dimension, k? ∼ Q(k, :)
2 Compute the acceptance probability

αk ← min
{

1, L(k?,θ; ỹ)
L(k,θ; ỹ) ·

πpr(k?) Q(k?, k)
πpr(k) Q(k, k?)

}
3 Sample, Uk ∼ Unif(0, 1)
4 if Uk < αk then
5 knext ← k?

6 else
7 knext ← k
8 end

/* Step 2: for fixed knext, sample the conditional distribution π(θ | knext, ỹ) */

9 Sample the coefficients θ? ←
√

1− β2 θ + βξ, where ξ ∼ N(0,Σpr)
10 Compute the acceptance probability αθ ← min {1, L(knext,θ

?; ỹ) /L(knext,θ; ỹ) }
11 Sample, Uθ ∼ Unif(0, 1)
12 if Uθ < αθ then
13 θnext ← θ?

14 else
15 θnext ← θ
16 end

Output : (knext,θnext)

Step-wise sampler

We now construct a step-wise sampler based on the pCN proposal that only requires one
acceptance probability step for both, dimension and parameters. The foundations and converge
properties of this sampler follow from [24, 94]. It can also be connected to auxiliary variable
MCMC algorithms, such as the Møller sampler [149, Ch.4].

Following the posterior (5.18), we can define a proposal distribution q(k,θ) = q1(k) q2(θ).
This constitutes a joint proposal across the full state space that accounts for the proposal of the
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dimension move q1(k) = Q(k, :) and the proposal of the parameters in the saturated space q2(θ).
Under these assumptions, the acceptance probability of the standard MH algorithm becomes
[94]

α(k,θ; k?,θ?) = min
{

1, q1(k?) q2(θ?) π(k?,θ? | ỹ)
q1(k) q2(θ) π(k,θ | ỹ)

}
. (5.20)

We utilize the pCN proposal for the parameter vector θ in the saturated space. In this case,
the proposal q2(θ) cancels out with the saturated parameter prior in the target posterior. The
resulting acceptance probability simplifies to

α(k,θ; k?,θ?) = min
{

1, L(k?,θ?; ỹ)
L(k,θ; ỹ) ·

πpr(k?) Q(k?, k)
πpr(k) Q(k, k?)

}
. (5.21)

This MH implementation in the saturated space proceeds in a “step-wise” fashion as follows:
in the first step of the simulation, a candidate dimension k? is proposed according to the proposal
matrix Q. In the second step, a candidate parameter θ? is proposed using the pCN proposal in
(4.21). Afterwards, the candidate pair (k?,θ?) is rejected or accepted jointly according to the
probability (5.21). Algorithm 7 describes the procedure in detail.

Algorithm 7 State update in the step-wise sampler.
Input :Let (k,θ) be the current state of the Markov chain
/* Step 1: sample the dimension */

1 Draw a candidate dimension k? ∼ Q(k, :)
/* Step 2: sample the coefficients using pCN */

2 Draw candidate coefficients θ? ←
√

1− β2 θ + βξ, where ξ ∼ N(0,Σpr)
3 Compute the acceptance probability

αk,θ ← min
{

1, L(k?,θ?; ỹ)
L(k,θ; ỹ) ·

πpr(k?) Q(k?, k)
πpr(k) Q(k, k?)

}
4 Sample, Uk,θ ∼ Unif(0, 1)
5 if Uk,θ < αk,θ then
6 knext ← k? and θnext ← θ?

7 else
8 knext ← k and θnext ← θ
9 end

Output : (knext,θnext)

We remark that the jumps in the step-wise sampler take place between nested models. From
the RJMCMC viewpoint, a natural jumping function linking the parameter spaces is the identity;
this makes the determinant of the Jacobian of the jumping function (5.10) equal to one (see,
e.g., [94, 43]).

Illustration 3 (Polynomial regression). We conclude this section by illustrating the performance
of the previous MCMC samplers with a simple example (a modified version of Example 6.10 in
[198]). The problem setup corresponds to inferring the polynomial degree and coefficients of a
regression model using observations of a model response. The relationship between the input x̃
and output ỹ is modeled as

ỹi =
k∑
j=0

θj x̃
j
i + ηi, i = 1, . . . ,m, (5.22)

where m is the number of data points, and each ηi is a Gaussian distributed error with mean
zero and variance σ2

obs = 1. The model (5.22) can be expressed in matrix form as, ỹ = X̃θ + η,
where ỹ is the data vector, X̃ is the design (Vandermonde) matrix, θ the parameter vector, and
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η the vector of random errors. A set of m = 101 data points ỹ is generated from the relation
(5.22) assuming a quadratic polynomial model with coefficients θ = [1.0, 0.3,−0.2]T. The design
matrix is constructed at points x̃i = (i− 1)/20, i = 1, 2, . . . ,m.

The dimension of the problem is controlled by the polynomial degree in the regression. In
order to evaluate which degree better fits the data, we employ the MCMC algorithms discussed
in this section. The following settings are considered: (i) the dimension k is supported on the set
{1, 2, 3}, thus we impose on k a discrete uniform distribution between 1 and 3; (ii) the parameters
θ are assumed to be Gaussian distributed with mean zero and covariance Σpr = σ2

prI3; the prior
variance is σ2

pr = 4; and (iii) the jumping proposal matrix Q is constructed such that all the
dimensions are equally possible (i.e., with probability 1/3).

We run Nsim = 50 independent simulations of the MwG and step-wise algorithms. At each
simulation, the length of the Markov chains is N = 1× 105 and a burn-in period of Nb = 0.2N
is applied. For this illustration, the scaling of the pCN proposal is fixed as β = 0.25 for both
algorithms. In MwG, this choice of β yields an average acceptance probability of 0.334 for the
dimension step and 9.949× 10−3 for the parameter step. In the step-wise sampler, the average
joint acceptance probability is 3.019× 10−3.

The results of the simulation are shown in Figure 5.2 for MwG in the first row, and the
step-wise algorithm in the second row. The values of the data-misfit function are plotted for
the N samples of a single simulation; the sharp jumps in the values are due to the change in
dimension. The regression solution is shown in terms of the mean and 95% credible intervals
(shaded areas) for the two dimensions that give the highest model posterior (linear and quadratic
models). The mean value of the parameters computed by MwG is [1.652,−0.650] for the linear,
and [0.916, 0.247,−0.180] for the quadratic model; in the step-wise approach these values are
respectively, [1.651,−0.650] and [0.924, 0.243,−0.179]. The model posterior computed as the
average from the Nsim independent simulations indicates that the quadratic model gives the best
fit. We also show the mean and 95% CIs of the cumulative mean µ̂(kt) = E[k1:t], computed from
Nsim independent simulations. Here, k1:t indicates the first t states of the dimension chain.
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Figure 5.2: Comparison between MwG (1st row) and step-wise sampler (2nd row) algorithms. The
evolution of the potential function is shown for a single simulation. The mean and quantile
estimators in the remaining plots are computed from 50 independent simulations.

Most of the disadvantages of standard MCMC samplers, such as convergence rate deteriora-
tion with increasing dimensions and burn-in/thinning periods requirements, are also present in
the MCMC samplers used for Bayesian inference in varying dimensions [78]. In fixed-dimensional
cases, specialized sequential algorithms that gradually approach the posterior distribution allevi-
ate some of the issues [174, 198]. These algorithms have been adapted to variable-dimensional
settings, including the sequential MCMC approach proposed in [9] and the population-based
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Chapter 5. Bayesian inference of random fields: dimension selection and averaging.

RJMCMC presented in [123]. Following this direction, we propose an extension of the classical
BUS methodology that is able to perform inference in parameter spaces of different dimension.
The idea is to exploit the sequential structure of the BUS-SuS approach to develop an efficient
algorithm for Bayesian model choice problems.

5.3. Trans-dimensional BUS formulation

The BUS approach expresses a Bayesian inverse problem as a classical rare event estimation
setting (cf., section 4.3). This construction allows us to employ efficient reliability estimation
algorithms to sample from the posterior. In this section, we propose an extension of BUS to
variable-dimensional inference problems [233]. The basic idea is to re-augment the parameter
space by including the discrete dimension variable, which requires minor modifications of the
target LSF. We denote this trans-dimensional extension of BUS as tBUS.

Consider the general Bayesian inverse problem (5.2). The rejection sampling algorithm in
Section 4.3 can be reformulated accordingly. The joint posterior distribution is characterized
by a target function in a discrete-continuous space, π(k,θk) = πpr(k)πpr(θk | k)L(k,θk; ỹ) ∝
πpos (k,θk | ỹ). We choose the proposal distribution to be equal to the joint prior q(k,θk) =
πpr(k)πpr(θk | k). The acceptance probability in rejection sampling becomes

α = π(k,θk)
r · q(k,θk)

= πpr(k)πpr(θk | k)L(k,θk; ỹ)
r · πpr(k)πpr(θk | k) = r · L(k,θk; ỹ) , (5.23)

where r = 1/r ∈ R>0. By analogy with the fixed-dimensional setting, the covering constant r
can be optimally chosen as Lmax,all = max(L(k,θk; ỹ)), i.e., as the maximum of the likelihood
function across different dimensions. Note that in terms of the individual BUS covering constants,
the tBUS covering factor is r = Lmax,all = max(c1, . . . , ck, . . . , ckmax) (see Figure 5.3).

Figure 5.3: Schematic representation of tBUS for nested models. We show the marginal densities of the
likelihood at each dimension The maximum likelihood increases with the dimension of the
parameter space.

Thereafter, samples drawn from the priors k ∼ πpr(k) and θk ∼ πpr(θk | k) are accepted if
υ ≤ α = r ·L(k,θk; ỹ), otherwise they are rejected. In this case, the LSF in (4.25) and associated
H-space are re-defined as

h(k,θk, υ) = υ − r · L(k,θk; ỹ) , H =
{

(k,θk, υ) ∈ X : h(k,θk, υ) ≤ 0
}
, (5.24)

where X = [K,Θk,Υ] is the re-augmented discrete-continuous parameter space (k ∈ K ⊆ Z>0,
θk ∈ Θk ⊆ Rk and υ ∈ Υ ⊆ [0, 1]).
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5.3. Trans-dimensional BUS formulation

Since we work in a saturated space, the parameter vector is such that θ ∈ Θ ⊆ Rkmax ,
and thus, we re-define X = [K,Θ,Υ]. Moreover, the maximum of the likelihood function
across different dimensions Lmax,all will correspond to the maximum likelihood associated to the
dimension kmax (see Figure 5.3).

The posterior distribution in (5.2) can be equivalently computed in tBUS by conditioning
the joint discrete-continuous distribution of (k,θ, υ) ∈ X on the discrete-continuous space H
and marginalizing over the auxiliary uniform random variable υ, that is

πpos(k,θ | ỹ) =πpr(k)πpr(θ | k)
Zk,θ

ˆ 1

0
1H(k,θ, υ)dυ (5.25a)

with Zk,θ =
∑
k∈K

πpr(k)
ˆ

Θ

ˆ 1

0
1H(k,θ, υ)πpr(θ | k)dυdθ, (5.25b)

where the indicator function is defined as 1H(k,θ, υ) = 1 when (k,θ, υ) ∈ H and 1H(k,θ, υ) = 0
otherwise.

As commented in remarks 4.3 and 4.4, we also solve the inverse problem in a standard
Gaussian space, and express LSF (5.24) in terms of the log-likelihood to achieve numerical
stability. This results in the variable-dimensional extension of the LSF in (4.29), given by

hln(k,ϑ) = ln(Φ(θυ)) + r − ln L(k,θ; ỹ) , (5.26)

where ϑ = [θ, θυ]T ∈ Rkmax+1, and r = ln(r) is optimally the maximum of the log-likelihood
function across the different dimensions. In order to efficiently solve the Bayesian model choice
problem associated to (5.26), the BUS-SuS algorithm in subsection 4.3.1 can also be extended
to the variable-dimensional setting. This is described next.

5.3.1. Trans-dimensional BUS with subset simulation

The extension of BUS-SuS to varying dimensions requires the application of trans-dimensional
MCMC algorithms to sample the intermediate conditional densities. We denote the trans-
dimensional BUS-SuS methodology as tBUS-SuS.

In tBUS-SuS, each intermediate domain is defined as the set Hj = {(k,θ, υ) ∈ X :
h(k,θ, υ) ≤ τj}, with the threshold level sequence {τj}nlv

j=0 adaptively selected as in the fixed-
dimensional case (cf., subsection 3.2.3). Furthermore, under the LSF (5.26), the standard
MCMC algorithms used within BUS-SuS are no longer suitable. In order to sample the interme-
diate densities π(k,θ, υ | Hj), trans-dimensional MCMC methods, such as those discussed in
subsection 5.2.2 are required.

When the MwG and step-wise samplers are applied within tBUS-SuS, the acceptance proba-
bilities need to be modified to sample intermediate measures defined by the sequence of threshold
levels {τj}nlv

j=0. In this case, for either Algorithm 6 or Algorithm 7, the target function is equal
to an intermediate density conditional on Hj , i.e., π(k,θ, υ | Hj) = 1Hj (k,θ, υ)πpr(k)πpr(θ | k).
This implies substituting the likelihood function, for the indicator function in the acceptance
probabilities of the two algorithms. For instance, in the step-wise sampler the modification reads
as follows:

αk,θ ←min
{

1,1Hj (k?,θ?)
πpr(k?) Q(k?, k)
πpr(k) Q(k, k?)

}
= 1Hj (k?,θ?) min

{
1, πpr(k?) Q(k?, k)
πpr(k) Q(k, k?)

}
︸ ︷︷ ︸

(∗)

;

(5.27)

for the implementation purposes, we use the right term of (5.27): first, a model k? is proposed
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which is accepted with probability (∗); then θ? is drawn from a pCN proposal; finally the pair
(k?,θ?) is accepted, if it lies in the domain Hj . The modification is analogous for each acceptance
rate in MwG. The resulting tBUS-SuS method is summarized in Algorithm 8.

Algorithm 8 tBUS-SuS.
Input : number of samples per level N , conditional probability p0, covering constant r , maximum

dimension kmax, log-likelihood function ln L(·, ·; ỹ), dimension prior πpr(k)
1 Draw N samples from the dimension prior, k0 ∼ πpr(k)
2 Draw N samples from the standard Gaussian, ϑ0 = [θ0, θυ,0] ∼ N (0, Ikmax+1)
3 Compute initial log-likelihood function values, Leval ← ln L(k0,θ0; ỹ)
4 Set j ← 0 and τ0 ←∞
5 while τj > 0 do
6 Increase intermediate level counter, j ← j + 1
7 Compute LSF values, heval ← ln(Φ(θυ,j−1)) + r − Leval
8 Sort heval in ascending order and create a vector idx to store the indices of this sorting
9 Create ksort,ϑsort as the dimension and parameter samples kj−1,ϑj−1 sorted according to idx

10 Set the intermediate threshold level τj as the p0-percentile of the values in heval

11 Compute the number of samples in the j-th intermediate level, NHj
←
∑N
i=1(h(i)

eval ≤ max(0, τj))
12 if τj > 0 then
13 pHj−1 ← p0
14 else
15 τj ← 0 and pHj−1 ← NHj/N
16 end
17 Select seeds for the MCMC step, (kseed,ϑseed)← {k(i)

sort,ϑ
(i)
sort}

NHj

i=1
18 Randomize the ordering of the seeds
19 Generate next level values {k(i)

j ,ϑ
(i)
j , L

(i)
eval}Ni=1 from the randomized seeds (kseed,ϑseed) and interme-

diate level τj using a trans-dimensional MCMC algorithm (e.g., Algorithms 6 and 7 with likelihood
set equal to the indicator function as in (5.27)). Here, each seed is used to construct a chain with
Nc = floor(N/Ns) states, where Ns = NHj

is the number of seeds
20 end
21 Set the posterior samples, kpos ← kj and ϑpos ← ϑj
22 for k ← 1 to kmax do
23 Find the number of posterior samples that lie in dimension k, Nk ←

∑N
i=1(k(i)

pos = k) Estimate the
model posterior, π̂(k)

pos ← Nk/N

24 end
Output : sequence of posterior dimension samples {k(i)

pos}Ni=1 and parameter samples {ϑ(i)
pos}Ni=1, and

model posterior π̂pos.

Since finding the constant r = ln(r) poses an additional computational cost, it is convenient
to introduce a tBUS-SuS algorithm for which the covering constant r is not required as an
input. We employ the adaptive BUS-SuS methodology proposed in [27]. The covering constant
is updated at each level, leading to a set of values {rj}nlv

j=0. In order to guarantee the nestedness
of the intermediate domains, the threshold levels τj are corrected after updating the value rj .
First note that from (5.26), a j-th intermediate domain is defined as the set

Hj = {(k,ϑ) : ln(Φ(θυ)) + r j − ln L(k,θ; ỹ) ≤ τj}, (5.28)

where r j = ln(rj) is the maximum of the log-likelihood function observed up to the j-th
intermediate level. The event Hj associated with the log-scaling constant r j and the threshold
τj can be equivalently expressed by a scaling r ′j and a modified threshold τ ′j selected as
τ ′j = τj − r j + r ′j . We can sequentially update the covering constant r j to a new value r ′j ,
without compromising the distribution of the samples. This is because adjusting the threshold
value from τj to τ ′j (after updating the scaling from r j for r ′j) still defines the same intermediate
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domain, as Hj =
{

(k,ϑ) : ln(Φ(θυ)) ≤ τ ′j − r ′j + ln L(k,θ; ỹ)
}
which is equivalent to (5.28). In

principle, τ ′j corrects the level τj using the residual of maximum log-likelihood values observed
at different levels. At the last simulation level when r ′j = r j , the covering reaches a value that
is close or equal to the actual maximum log-likelihood, i.e., r nlv ≤ ln(Lmax,all). In the limit
N →∞, the value r nlv converges to ln(Lmax,all). Despite the fact that r nlv is likely to be smaller
than ln(Lmax,all), the samples generated by the algorithm follow the posterior distribution; this
is shown experimentally in [27, Fig. 4]. The adaptive tBUS-SuS method is summarized in
Algorithm 9.

Algorithm 9 Adaptive tBUS-SuS.
Input : number of samples per level N , conditional probability p0, maximum dimension kmax

log-likelihood function ln L(·, ·; ỹ), dimension prior πpr(k)
1 Repeat Lines 1-3 of Algorithm 8
2 Compute the initial maximum log-likelihood, r 0 ← max(Leval)
3 Set j ← 0 and τ0 ←∞
4 while τj > 0 do
5 Increase intermediate level counter, j ← j + 1
6 Compute LSF values, heval ← ln(Φ(θυ,j−1)) + r j − Leval
7 Repeat Lines 8-19 of Algorithm 8
8 Compute a new value of the maximum log-likelihood, r ′j ← max

(
r j , {L(i)

eval}Ni=1

)
9 Compute the modified intermediate threshold level, τj ← τj − r j + r ′j , and update r j ← r ′j

10 end
11 Repeat Lines 21-25 and Output of Algorithm 8

5.3.2. Efficiency metrics for BUS-SuS and tBUS-SuS

In practice, a comparison between within-model BUS-SuS and across-model tBUS-SuS runs is
useful to see the advantages of the trans-dimensional formulation. To match both alternatives,
we derive two equivalent efficiency metrics.

Consider a collection of samples of a random variable Q representing a monitored QoI. A set
of realizations of Q, {Q(j)

i , j = 1, . . . , Nsim, i = 1, . . . , N} can be obtained for Nsim independent
simulation runs. Note that each element Q(j) contains N samples of the QoI. The MCMC steps
within tBUS-SuS induce some correlation in the resulting posterior samples. We estimate the
effective number of independent samples of Q in the set of all N ·Nsim samples as [174]

Neff(Q) = Nsim · V[Q]/V̂[µ̂
Q(j) ] (5.29)

where V[Q] is the true variance of the QoI and µ̂Q(j) denotes the sample mean of the QoI
obtained at the j-th simulation.

In addition to the value Neff , we also take into account the computational cost. The number
of model calls in BUS-SuS, is equal to N (j)

call = N + (N −Ns)(n(j)
lv − 1), where Ns = p0 ·N is the

number of seeds used in the MCMC steps, and n(j)
lv is the number of levels obtained at the j-th

simulation. In tBUS-SuS, the number of model calls depends on the utilized trans-dimensional
MCMC algorithm. If we use the step-wise sampler, the number of model calls per simulation
run is, N (j)

call,a = N + (N −Ns)(n(j)
lv − 1). If we employ the MwG algorithm, the number of model

calls is N (j)
call,b = N + 2(N −Ns)(n(j)

lv − 1) since the likelihood function is evaluated twice at the
MCMC steps. We define the efficiency metrics as follows:

effBUS(Q) =
N

(k)
eff,BUS(Q)

N
(k)
call,BUS

and efftBUS(Q) =
N

(k)
eff,tBUS(Q)

N call,tBUS · π̂pos(k | ỹ)
, (5.30)
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where N (k)
eff,BUS(Q) and N (k)

eff,tBUS(Q) are the effective number of independent samples of the QoI
obtained at each dimension k for each method. Furthermore, in BUS-SuS the total number
of calls is given by N

(k)
call,BUS =

∑Nsim
j=1 N

(j)
call. These values are obtained per dimension since

Nsim runs of BUS-SuS are performed at each specific k = 1, . . . , kmax. In tBUS-SuS, the total
number of calls using the step-wise sampler is N call,tBUS =

∑Nsim
j=1 N

(j)
call,a, or with MwG is

N call,tBUS =
∑Nsim
j=1 N

(j)
call,b. Since this cost is associated to the whole dimension spectrum and not

to each individual k, the value is approximately distributed among dimensions by application of
the estimated dimension posterior π̂pos(k | ỹ).

5.4. Numerical applications

We test the proposed method on two examples. The first problem allows analytical verification
of the approximations performed by tBUS-SuS. In the second example, we compute several
posterior dimension snapshots using a within-model BUS-SuS approach to verify the solution
estimated by tBUS-SuS. In all cases, the conditional probabilities are fixed at p0 = 0.1.

5.4.1. Example 1: one-dimensional cantilever beam

The first example involves the cantilever beam problem discussed in section 4.5.
From section 4.5, we know that the solution of the Bayesian inverse problem can be derived

analytically. Recall also that the flexibility is modeled by a Gaussian random field prior
N (µpr,Σpr), with constant mean vector µpr = 1 × 10−4 (kN−1m−2) and covariance matrix
Σpr defined through a exponential kernel (2.25). We set the prior standard deviation to
σpr = 3.5× 10−5 (kN−1m−2) and perform a parameter study on the correlation length `.

We use the data set with m = 10 point (cf. Figure 4.5). This generates a measurement
vector ỹ ∈ Rm with additive and spatially correlated error described by a Gaussian PDF,
η ∼ N (0,Σobs), where the covariance structure of the error is constructed from an exponential
kernel with standard deviation σobs = 1× 10−3 and correlation length `obs = 1 m.

We consider different correlation lengths to evaluate its influence on the model posterior
estimation. Each correlation length also defines different dimension priors (5.6) as follows:

� for ` = 0.1, kmin = 17 and kmax = 1014; this yields p = 6.166× 10−3.

� for ` = 0.5, kmin = 4 and kmax = 204; this yields p = 2.586× 10−2.

� for ` = 0.9, kmin = 2 and kmax = 114; this yields p = 5.118× 10−2;

recall that the success probability p is computed by solving a nonlinear equation, given the
truncation parameters kmin, kmax (see subsection 5.1.1).
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|ỹ

)

0 20 40
0.00

0.02

0.04

ℓ = 0.1 ℓ = 0.5 ℓ = 0.9

Figure 5.4: Closed-form solutions for different correlation lengths in the prior flexibility random field.
Left: model evidence. Center: Model/dimension prior. Right: model/dimension posterior.
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For this example, closed-form expressions of the model evidence for each dimension k are
available (see subsection 4.5.3), this allows derivation of the model posterior analytically. The
priors together with the analytical model posterior and evidence are shown in Figure 5.4. We
employ these closed-form solutions as reference to test the performance of tBUS-SuS.

We initially perform parameter studies on the proposal scalings of the trans-dimensional
MCMC methods. This allows finding near-optimal parameter settings that are subsequently
fixed in the solution of Bayesian model choice problem. Later, we perform a comparison between
within-model BUS-SuS runs and across-model tBUS-SuS. This is carried out by the efficiency
metric derived in subsection 5.3.2, which is approximately equivalent for both approaches. At
the end of this section, we use tBUS-SuS to estimate the posteriors of the dimension and random
fields.

Influence of the proposal scaling

We first evaluate the performance of the tBUS-SuS algorithm for different proposal scalings, this
includes the parameter ρ of the jump proposal Q and the parameter β of the pCN proposal. The
numerical studies are performed for a fixed prior correlation length ` = 0.5 and for each MCMC
sampler presented in subsection 5.2.2. The results are shown for an average of Nsim = 100
independent simulations using N = 104 samples per level.

In this example, the constant r can be computed by optimization or from initial log-
likelihood function evaluations at the largest dimension kmax. Therefore, the parameter studies
are performed using standard tBUS-SuS without adaptation of r . The performance of the
algorithm is measured in terms of the RMSE in the estimation of a target QoI

RMSE(k) =
√
E

[(
Q̂(k)−Q

)2
]
, (5.31)

where Q̂(k) is the approximated QoI using a KL expansion with k terms, and Q denotes the
reference QoI value.

We monitor three posterior QoIs, namely, the dimension parameter k, the flexibility random
field at the middle of the beam Fmid, and the deflection random field at the tip of the beam wtip.
For the evaluation of (5.31), we employ the closed-form model posterior as reference value for
dimension QoI, and for the remaining random fields QoIs we use closed-form posterior means,
µFmid = 1.1114× 10−4 and µwtip = −6.9346× 10−2, as reference values.

Study 1 (Jump length ρ). The pCN proposal scaling is fixed to β = 0.2 and we esti-
mate the RMSE of the QoIs for different jump lengths ρ ∈ {1, [0.1, 0.25, 0.5, 1.0] · kmax} =
{1, 20, 51, 102, 204}. The jump proposal matrix Q is constructed from a discrete triangular
distribution with mode equal to a given sample k, and lower and upper limits defined by k ± ρ.
Alternatively, we also evaluate an independent-sampler-like setting in the dimension sampling
steps, that is, instead of drawing samples from Q, the variable k is sampled directly from the
dimension prior πpr(k).

Figure 5.5 shows the acceptance rates obtained in the initial and last levels of tBUS-SuS
with step-wise (jointly for k and θ) and MwG (separately for θ and k). The acceptance rate in
the step-wise sampler is almost insensitive to the jump length ρ, since the parameters are jointly
accepted or rejected with the dimension, and the pCN proposal is dominating the acceptance
rate. Similar values are obtained for the acceptance rate of the parameter θ in MwG. From the
first to the last level of tBUS-SuS, there is a decrease of the acceptance rate since the samples
in the posterior region are more concentrated and the scaling β remains fixed. Moreover, it is
seen that for increasing values of the jump length ρ, the acceptance rate of k decreases since the
spread of the jump proposal becomes larger.
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Figure 5.5: Parameter study on the jump length ρ: acceptance rates in the MCMC algorithms.

In Figure 5.6, we plot the evolution of the RMSE with the number of terms in the KL
expansion, for each investigated QoI. The MwG sampler yields slightly better approximation
of the model posterior as compared to the step-wise sampler. Note that the errors are larger
around the model index that yields the largest value of the model posterior; the tBUS-SuS
estimates become more accurate after exceeding this truncation level. There are no considerable
differences between model posterior approximations obtained by sampling from the dimension
prior or using the jumping proposal with an appropriate jump length ρ. Still, we observe that
sampling from the prior produces smaller errors in the estimation of the model posterior. If we
employ the jumping proposal Q, it is seen that ρ = (0.25kmax) = 51 is preferable for the MwG
sampler, whereas intermediate to smaller jumps are more suitable for the step-wise sampler
(ρ ∈ [0.1kmax, 0.25kmax] = [20, 51]). For this example, taking dimension samples from the prior
appears to be the most appropriate choice, which is related to the model prior and posterior
being close to each other (Figure 5.4). Based on these results, we henceforth choose to sample
directly from the prior πpr(k) at the dimension proposal step of both MCMC samplers.
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Figure 5.6: Parameter study on the jump length ρ: RMSE of the investigated QoIs using the MwG
sampler (1st row) and the step-wise sampler (2nd row).

Study 2 (Scaling of pCN β). The dimension prior is used to sample k and we estimate the
RMSE for different pCN proposal scalings β ∈ {0.01, 0.1, 0.2, 0.3, 0.4}. As in the previous study,
we initially show in Figure 5.7 the acceptance rates obtained at the initial and last levels of
tBUS-SuS using step-wise (jointly for k and θ) and MwG (separately for θ and k) methods.
The acceptance rates obtained for the parameter θ are comparable in both MCMC samplers. In
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this case, the scaling β has no effect on the acceptance of the dimension samples k of the MwG
method.
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Figure 5.7: Parameter study on the pCN scaling β: acceptance rates in the MCMC algorithms.

The evolution of the RMSE with the truncation of the KL expansion for the investigated
QoIs and for different β is shown in Figure 5.8. The MwG sampler yields a better estimation of
the model posterior than the step-wise sampler. In this case, the scaling β has less effect on
the approximation as compared to the jump length ρ. There are only minor differences in the
RMSE values generated from the investigated proposal scaling. For the step-wise sampler, the
differences in the error magnitudes for different β values are more noticeable compared to MwG.
In both methods, the errors in the QoIs corresponding to the random fields are almost the same
for all cases.

Note however, that for β = 0.01 the RMSE associated to the model posterior estimate is
higher, and for the same value, the RMSE in the deflection wtip is lower. To keep a balance
between both approximations, scaling values β ∈ [0.1, 0.2] are preferable for which the acceptance
rate for the step-wise (jointly for k and θ) and for the MwG (for θ) ranges in [0.2, 0.4], at the
final simulation level (cf. Figure 5.7). Based on these results, we suggest to adapt the pCN
scaling β, such that a target acceptance rate value of α ∈ [0.2, 0.4] is maintained through the
simulation. We employ α = 0.4 to keep a good approximation error in both, the monitored
random field QoIs and the dimension. One could also increase the target α to obtain a smaller
pCN scaling, which is beneficial to reduce the RMSE of QoIs, especially for the deflection.
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Figure 5.8: Parameter study on the pCN scaling β: RMSE of the investigated QoIs using the MwG
sampler (1st row) and the step-wise sampler (2nd row).
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Chapter 5. Bayesian inference of random fields: dimension selection and averaging.

Computational efficiency

We investigate the computational gain of using the across-model tBUS-SuS, compared to
individual within-model runs of BUS-SuS. The objective is twofold: (i) identify the number
of effective independent samples in the resulting set of posterior samples, and (ii) compare
within-model and across-model simulation using the metric (5.30). In the following studies, the
results are computed for an average of Nsim = 100 independent runs of the algorithms.

For each correlation length {0.1, 0.5, 0.9}, we use the reference variances of the QoIs for the
estimation of the effective number of samples in (5.29):

� σ2
k ∈ {24161.22, 1250.80, 328.56} for the dimension,

� σ2
Fmid
∈ {1.143× 10−9, 7.484× 10−10, 5.364× 10−10} for the flexibility, and

� σ2
wtip ∈ {8.446× 10−7, 9.042× 10−7, 9.159× 10−7} for the deflection.

Study 3 (Standard tBUS-SuS vs. Adaptive tBUS-SuS). Before computing the efficiencies in
the estimation of the QoIs related to the random fields, we compare the approximation of the
model posterior between standard tBUS-SuS (with pre-defined constant r , Algorithm 8) and
adaptive tBUS-SuS (Algorithm 9). We employ N = 104 samples per level.

The adaptive version is a more general method since it is not always possible to define
the constant r a priori. Moreover, it can produce similar or better results than the standard
tBUS-SuS depending on the accuracy of the constant r in standard tBUS-SuS, as shown in
Table 5.1.

Table 5.1.: Efficiency metrics (5.30) of the dimension parameter k for adaptive and standard tBUS-SuS.

`
adaptive: efftBUS(k) standard: efftBUS(k)
MwG step-wise MwG step-wise

0.1 8.01× 10−2 4.24× 10−2 4.00× 10−2 1.79× 10−2

0.5 5.49× 10−2 2.38× 10−2 6.13× 10−3 1.85× 10−2

0.9 3.59× 10−2 2.41× 10−2 4.03× 10−3 2.08× 10−3

Recall that the efficiencies are defined as the number of effective samples normalized by the
average number of forward model calls. Small efficiency values either indicate that the samples
are potentially highly correlated, or that the forward model is evaluated many times. Thus,
large efficiencies hint a better sampling method. The results show overall that the efficiency of
adaptive tBUS-SuS is larger or comparable to the efficiency provided by standard tBUS-SuS.

We remark that the efficiency of adaptive tBUS-SuS is even larger since we did not account
for the extra model evaluations required to find the constant r = ln(r) in the standard algorithm.
This constant is chosen a priori as the maximum of 105 independent log-likelihood evaluations;
this value is also increased by 25% in an effort to make sure that r ≥ Lmax,all. It is possible this
way of selecting r is too conservative (r � Lmax,all) and more levels in tBUS-SuS are required
to estimate the solution. This is not an issue of the method, but of course leads to a reduced
efficiency since more model evaluations are required. In the remainder of the studies, we employ
the adaptive tBUS-SuS algorithm for the solution of the Bayesian model choice problem.

Study 4 (Within-model BUS-SuS vs. Across model tBUS-SuS). We compare the efficiencies
in the estimation of the QoIs related to the random fields produced by within-model runs of
adaptive BUS-SuS and adaptive tBUS-SuS. The number of samples per level used in BUS-SuS
and tBUS-SuS are N = 5× 103 and N = 104, respectively.

Figure 5.9 shows the efficiencies computed with individual adaptive BUS-SuS runs (1st
column) and adaptive tBUS-SuS using the two trans-dimensional MCMC algorithms (2nd
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5.4. Numerical applications

and 3rd columns). In the first row, we plot the total number of calls per dimension. In the
fixed-dimensional BUS-SuS, the cost increases with the dimension since more intermediate levels
are required to reach the posterior. Conversely, the cost is a single value for all the dimensions
in across-model tBUS-SuS, and thus we need to distribute it according to the model posterior
(cf., subsection 5.3.2). Note in the first row of Figure 5.9 that the total number of calls in
within-model BUS-SuS is larger than tBUS-SuS, even when using a larger number of samples per
level in tBUS-SuS; also tBUS-SuS with MwG almost doubles the cost compared to tBUS-SuS
with the step-wise sampler. In the second and third rows of Figure 5.9, the efficiencies of the
random field QoIs are shown per dimension, since different KL truncation orders yield different
random field approximations. We remark that the number of effective samples obtained with
MwG is larger than using the step-wise method. Nevertheless, the efficiencies in both approaches
are similar. This is because the computational cost normalizes the number of effective number
of samples in the efficiency metric (5.30), and MwG has almost twice the cost of the step-wise
sampler. Finally, we clearly see the advantage of employing across-model simulation algorithms
for the solution of Bayesian model choice problems, as compared to single model runs.
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Figure 5.9: Comparison between within-model BUS-SuS and across-model tBUS-SuS: number of model
calls and efficiency metrics (5.30) for different correlation lengths and random field QoIs µFmid

and µwtip . Adaptive BUS-SuS (1st col), adaptive tBUS with MwG sampler (2nd col) and
adaptive tBUS with step-wise sampler (3rd col).

Study 5 (Number of samples per level). The influence of the number of sampler per level has
been assessed for the adaptive BUS-SuS method in [27]. We perform an analogous study for
adaptive tBUS-SuS, but focusing on the estimation of the dimension posterior statistics. For
simplicity, we select MwG as the MCMC sampler, and fix the correlation length to ` = 0.5.

Since analytical solutions are available, we compute a normalized RMSE of the approximation
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Chapter 5. Bayesian inference of random fields: dimension selection and averaging.

of the model posterior, as N increases. This metric is computed pointwise for each dimension as,
RMSE?(k) =

√
E[(π̂pos(k | ỹ)− πpos(k | ỹ))2]/πpos(k | ỹ), where π̂pos(k) denotes the estimated

posterior. To obtain a global metric for each sample size, these normalized pointwise errors are
averaged through all dimensions. The results are shown in Figure 5.10. We also plot the absolute
bias and standard deviation components of the RMSE. Note that the standard deviation tends
to dominate the RMSE. As expected, the approximation of the dimension posterior improves
for increasing N .
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Figure 5.10: Influence of the number of samples per level on tBUS-SuS. Left: RMSE. Center: absolute
bias. Right: standard deviation. These quantities are normalized by the exact solution and
then averaged through dimensions to obtain a point estimate for each sample size.

We remark that the accuracy in the approximation of the quantities of interest in tBUS-SuS
depends mostly on the correlation of the resulting MCMC chains. This correlation tends to
increase with the number of levels in tBUS-SuS (a property inherited from SuS). Since this value
is always problem specific, a recommendation is to increase N when the resulting number of
intermediate levels becoming large.

Approximation of the dimension and random field posteriors

Based on the settings discussed in the previous parameter studies, we utilize the adaptive version
of tBUS-SuS for the estimation of the model and random field posteriors. Again, the solution is
computed as an average of Nsim = 100 simulations, using N = 104 samples per level.

The approximated model posteriors are shown in Figure 5.11 using the MwG and step-wise
samplers. In this case, we plot the mean and standard deviation bounds of the approximation.
The shape of the reference model posterior is well-captured for all investigated correlation length
cases. The variability of the approximation using the MwG sampler is smaller than the one
computed by the step-wise algorithm. Note that the differences in both samplers are larger for
smaller correlation lengths. The tBUS-SuS simulations require in average nlv = 5 intermediate
levels to reach the posterior for all the investigated correlation lengths.

We also estimate the posterior flexibility and deflection random fields for different correlation
lengths. We use as reference the closed-form expressions of the posterior random fields [235].
Figure 5.12 shows the model choice and model mixing solutions in terms of the posterior mean
and posterior 95% CI. For the deflection response field, we compute the difference between the
prior mean and the 95% posterior CIs (termed differential deflection), in order to differentiate
the approximations.

The model choice estimate is given by the truncation order that yields the maximum model
posterior (Figure 5.11), in this case kbest = {10, 3, 3} for the correlation lengths {0.1, 0.5, 0.9},
respectively. The model mixing estimate takes into account the whole dimension spectrum (up
to kmax). Note that the reference CIs agree closely with the model mixing estimates since we
use all the KL expansions associated to the model posterior for the random field representation.
For the larger correlation length, the model choice solution fails to capture the assumed true
flexibility in different intervals of the domain.
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Figure 5.11: Estimation of the model posterior using adaptive tBUS-SuS for different correlation lengths
in the prior flexibility random field: MwG (1st row); step-wise (2nd row).
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Figure 5.12: Posterior flexibility and deflection random fields for different correlation lengths in the prior
flexibility field: estimated mean and 95% CI of the best model (model choice) and the
averaging of models (model mixing) using adaptive tBUS-SuS with MwG. The reference
95% CI is highlighted in gray.

Moreover, Figure 5.13 plots the distribution of the KL coefficient samples for k = kbest = 3.
These plot shows the one- and two-dimensional prior and posterior marginals of the KL coefficients.
Significant correlations are apparent among the inferred posterior coefficients.

We conclude this subsection by illustrating the evolution of the samples in tBUS-SuS and its
relation to the model posterior. The results are shown for the prior correlation length ` = 0.5.
Figure 5.14 shows the prior, second intermediate level, and posterior samples obtained from a
single simulation of adaptive tBUS-SuS with MwG.
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Figure 5.13: KL coefficient samples computed by tBUS-SuS at dimension kbest = 3 (` = 0.5): prior
(orange) and posterior (blue).
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Figure 5.14: tBUS-SuS samples of the KL coefficients at dimensions k = 1 (left) and k = 2 (right). For
k = 1, the posterior region is highlighted in gray. For k = 2, the contours of the log-likelihood
function are also plotted.

The process of sequentially approximating the posterior is shown by the distribution of
the samples, starting from the prior and narrowing down to the target posterior. For k = 1,
we plot the samples that contribute to the model posterior at the first dimension, i.e, the
one-dimensional KL coefficient against the auxiliary standard uniform random variable. The
tBUS-SuS simulation required nlv = 5 levels to reach the posterior region (highlighted in gray),
τ = [14.74, 5.04, 2.67, 0.31, 0]. Note that the value of the model posterior at k = 1 is almost
zero (Figure 5.4), and hence the amount of samples is considerably reduced as the algorithm
evolves from the prior to the posterior measure. Moreover, the maximum log-likelihood at
dimension kmax = 204 is c204 = 68.170, and at dimension k = 1 it is c1 = 56.529. Due to the
nested structure of the KL expansion, the constant r = ln(r) in the LSF (5.26) is equal to the
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maximum log-likelihood at the largest dimension. In this case, the scaling r is significantly larger
than the value of the covering constant at dimension 1. Thus, we observe that the posterior
samples at k = 1 are located in a small region of the two-dimensional parameter space. This
occurs mainly at lower dimensions, since there exist significant differences between lower- and
higher-dimensional likelihood values. We remark that there is an associated reduction of the
efficiency, but this does not prevent the algorithm from computing accurate posterior samples.
Moreover, with increasing k the values of ck are closer to r and the efficiency loss becomes
negligible. For k = 2, Figure 5.14 plots the components of the two-dimensional KL coefficients;
we also show the contours of the log-likelihood function with fixed dimension k = 2. In this case,
the reduction in the number of samples when updating from prior to posterior is smaller than at
dimension k = 1. Note that the value of the model posterior at k = 2 is larger than zero, and
the difference in the probability mass between prior and posterior at k = 2 is less substantial
(Figure 5.4).

5.4.2. Example 2: two-dimensional diffusion (groundwater flow)

We consider inference of the hydraulic conductivity field of an aquifer using observations of
the hydraulic head measured at specific boreholes (see [161, 58]). We define the aquifer on the
square domain D = [0, 1]× [0, 1] km2 with boundary ∂D. Spatial coordinates are denoted by
x = [x1, x2] ∈ D. The steady-state Fick’s second law of diffusion is used to describe the spatial
variation of the hydraulic head inside the aquifer. Hence, for a given hydraulic conductivity of
the soil κ(x, ω) and sink or source terms J(x), the hydraulic head u(x) follows the elliptic PDE

−∇ · [κ(x, ω) ∇u(x)] = J(x), (5.32)

with Dirichlet boundary condition, u(x) = 0 for x ∈ ∂D.
The source terms are defined as the superposition of nine weighted Gaussian plumes with

standard width σJ = 1 × 10−3 km. The plumes have equal and unitary strengths, and are
centered at locations µJ = [0.25 · i, 0.25 · j] with i, j = 1, . . . , 3, that is

J(x) =
9∑
i=1
N (x; µ(i)

J , σ
2
JI2). (5.33)

We employ the finite element method to solve the PDE (5.32) using piecewise linear triangular
elements on a regular mesh of 80× 80 square blocks (each divided into two triangles). Hence, the
total number of elements is 2× 802 = 1.28× 104. This selection is based on parameter studies
showing that this mesh is sufficiently fine to account for the random field variability associated
to the smallest correlation length used in our experiments.

The prior hydraulic conductivity field is modeled as a lognormal random field, κ(x) :=
exp(κ′(x)). The underlying Gaussian field κ′(x) has mean zero and standard deviation σκ′ =
1 km/day. The covariance operator of the Gaussian field is constructed from a Matérn kernel
(2.24). We set the smoothing parameter to ν = 1.5. The solution of the eigenvalue problem is
computed with the Nyström method using 100 GL points in each direction. Bear in mind that
the KL eigenvalue problem is solved only once for kmax terms. This means that the problem is
not re-computed for each k since we work on a saturated space where the KL coefficients have a
nested structure.

The true conductivity κ(x) is a realization of a random field with characteristics similar to
the prior. In this case, we set the Matérn kernel parameters as νtrue = 2.0 and `true = 0.1. The
truncation of the KL expansion used to generate this realization is 312, which captures 99% of
the prior variance. The hydraulic head observations ỹ are obtained at m = 12 sensor locations.
They are computed from a PDE evaluation of the true conductivity field using a finer finite
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element mesh. The measurement error is modeled as additive and mutually independent from
the random field. It is defined by a joint Gaussian PDF with mean zero and noise covariance
matrix Σobs = σ2

obsIm. The variance of the measurement noise is prescribed such that the
observations have a signal-to-noise ratio V[ỹ] /σ2

obs = 120. The true hydraulic conductivity
and hydraulic head fields, together with the source terms and the synthetic data are shown in
Figure 5.15.
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Figure 5.15: Groundwater flow problem: true hydraulic conductivity, true hydrostatic pressure with
measurement locations, source term, measured and true (noise-free) hydraulic head.

In this example, we evaluate the posterior for different correlation lengths ` ∈ {0.1, 0.2, 0.3}.
Each correlation length defines a dimension prior as follows:

� for ` = 0.1, we obtain kmin = 16 and kmax = 520; this yields p = 6.307× 10−3.

� for ` = 0.2, we obtain kmin = 5 and kmax = 138; this yields p = 1.939× 10−2.

� for ` = 0.3, we obtain kmin = 3 and kmax = 65; this yields p = 2.939× 10−2.

We employ the same proposal scaling settings investigated in the previous example. However,
in this case the dimension posterior differs significantly from the dimension prior. Therefore,
additional to sampling k directly from the prior, the proposal Q is used. The jump proposal
matrix is constructed from a discrete triangular distribution with jump length ρ = 0.25 · kmax,
which appears to be a good choice for both MCMC algorithms (cf., subsection 5.4.1).
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Approximation of the posterior for the dimension and the random field

The adaptive tBUS-SuS is used to estimate the posterior of the dimension and the random
field. The results are shown for an average of Nsim = 60 independent simulation runs using
N = 1.5 × 104 samples per level. To compare the tBUS-SuS approximations, we compute
the reference solution from model evidences estimated by within-model runs of adaptive BUS-
SuS using N = 5 × 103 samples per level and averaged over Nsim = 90 simulations. For
this example, it is not feasible to compute the full reference solution for the posterior of the
dimension by means of within-model simulation algorithms. Thus, we estimate the reference
at 6 dimension snapshots for each correlation length: ksnap ∈ {40, 45, 50, 55, 60, 70} for ` = 0.1,
ksnap ∈ {20, 30, 35, 40, 50, 60} for ` = 0.2, and ksnap ∈ {20, 25, 30, 32, 35, 40} for ` = 0.3. Since
the reference solutions are given in terms of the model evidences Zỹ(ksnap), we transform them
to model posteriors using (5.4). This requires the knowledge of the evidence of all model classes,
which is cumbersome to compute in this case. Instead, we apply the normalization

πpos(ksnap | ỹ) = πpr(ksnap)Zỹ(ksnap)∑
k∈ksnap πpr(k)Zỹ(k)

∑
k∈ksnap

π̂pos(k | ỹ), (5.34)

such that the sum of the reference πpos(ksnap | ỹ) match the sum of the tBUS-SuS-estimated
model posteriors π̂pos(ksnap | ỹ) at the given snapshots. Using this approach, the reference
solution is limited to the tBUS-SuS solution. Nevertheless, it allows us to check that the
algorithm is following the correct shape of the dimension posterior.
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Figure 5.16: Diffusion example: model posterior using adaptive tBUS-SuS with MwG sampler, sampling
k from the prior (1st row) and from proposal Q (2nd row).

The dimension posteriors estimated by adaptive tBUS-SuS with MwG are shown in Fig-
ure 5.16. We plot the mean and standard deviation bounds of the approximations. The solutions
are computed when the dimension is sampled from the prior (1st row) and when it is sampled
from the proposal Q (2nd row). Both alternatives yield comparable results. In general, we
observe an increase in the variability around the MAP estimate. Note also that in this example,
the dimension posteriors have several modes which can be related to the nonuniform distribution
of the measurement locations together with the symmetry of the KL eigenfunctions. For instance,
when using ` = 0.3 there is a jump in the values of the probability mass after the 15-th dimension,
every 5 dimensions until the MAP estimate. Furthermore, as an indicative of the algorithm
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performance, tBUS-SuS requires on average nlv = 12 intermediate levels and the proposal scaling
β changes from 0.75 in the first level, to 0.09 in the last level (for the correlation length ` = 0.1
and sampling from the prior).

The approximated dimension posteriors using adaptive tBUS-SuS with the step-wise sampler
are shown in Figure 5.17. In this case, the step-wise sampler is more sensitive to the selection of
the dimension proposal than MwG. We observed that the dimension prior is not a good proposal
choice to sample the dimensions (the results are omitted). The main issue is that the resulting
posterior samples are highly correlated since the values of the scaling β at the last level of the
simulation are in the order of 10−4. Therefore, instead of showing a comparison between the
dimension proposal schemes, we employ the proposal matrix Q with two different settings: using
N samples per level, and using 2N samples per level. In both MCMC algorithms, increasing the
number of samples per level considerably improves the variability of the estimates. Particularly,
using 2N samples per level in the step-wise sampler yields comparable results to those of MwG,
since we are evaluating the PDE model approximately the same number of times. The resulting
dimension posteriors are able to capture the trend of the reference solutions.
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Figure 5.17: Diffusion example: model posterior using adaptive tBUS-SuS with step-wise sampler and
sampling k from proposal Q. Using N and 2N samples per level.

Finally, we estimate the posterior hydraulic conductivity and head random fields. Figure 5.18
shows the model choice and model mixing solutions in terms of the posterior mean and standard
deviation of the hydraulic conductivity. The model choice estimate is given by the truncation
order that yields the maximum model posterior, in this case kbest ∈ {43, 43, 33} for the correlation
lengths {0.1, 0.2, 0.3} (Figure 5.17, 2nd row). The model mixing estimate takes into account the
whole dimension spectrum. Note that the values in the posterior mean are smaller than those of
the assumed truth. In this case, most of the measurements are concentrated in the lower left
corner of the aquifer. In this area, the values of the true hydraulic conductivity are very small,
and they are influencing the posterior solution. Nevertheless, the statistics are revealing the
locations of lower and higher permeability values. The field modeled with the smaller correlation
length is able to represent the small fluctuations better than those with larger correlation lengths,
for which the resulting random field realizations are smoother. In contrast to the hydraulic
conductivity field, the differences in the model choice and mixing solutions for the hydraulic
head random field are minimal (Figure 5.19). This quantity is computed by integrating the PDE
model, an averaging operation that reduces the effect of the spatial variability.
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Figure 5.18: Diffusion example: posterior mean (1st and 3rd cols) and standard deviation (2nd and
4th cols) of the hydraulic conductivity random field using adaptive tBUS-SuS with the
step-wise sampler for different prior correlation lengths (rows).
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Figure 5.19: Diffusion example: posterior mean (1st and 3rd cols) and standard deviation (2nd and 4th
cols) of the hydrostatic pressure random field using adaptive tBUS-SuS with the step-wise
sampler for different prior correlation lengths (rows).
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Chapter 5. Bayesian inference of random fields: dimension selection and averaging.

In this chapter, we have seen that the model evidence associated to the dimensions of the KL
discretization does not reveal the Bayesian penalization that one sees for example in regression
models, where increasing the polynomial order might cause over-fitting. As we comment in
remark 4.8, increasing the KL terms contributes to a better representation of the posterior
covariance, and the model evidence keeps increasing as one augments the KL truncation. This
is the main reason for including a penalizing prior for the number of KL terms.

Due to this behavior, one could argue that performing model choice or mixing is not
fundamentally necessary. Instead, one can fix the number of KL terms as kmax to perform a
standard within-model Bayesian inversion. However, one of the advantages of the methods
developed in this chapter lies in the reduction of the computational cost. The value of kmax can
be in principle very large, whereas a smaller value (or a set of smaller values) could be sufficient
for an appropriate posterior field representation. This is of course relevant in modeling scenarios
where the PDE model is expensive to evaluate or that require gradient computations. In those
situations, finding a solution in a parameter space with dimension kmax could be potentially
unfeasible.
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Chapter 6

Rare event simulation of random fields:
dimension reduction

“... the determination of this maximum is quite
definitely not routine when the number of
variables is large. All this may be subsumed
under the heading the curse of dimensionality.
Since this is a curse which has hung over the
head of the physicist and astronomer for many
years, there is no need to feel discouraged about
the possibility of obtaining significant results
despite it”.

Richard Ernest Bellman, 1920-1984 [23, p.ix].

When the rare event of interest is expressed in terms of a computationally costly numerical
model, finding the probability of failure accurately becomes a cumbersome task for the standard
simulation methods discussed in Chapter 3. IS with the CE method is an efficient way to address
this type of problems provided that a suitable parametric family of biasing densities is employed.
Despite some existing distribution families are designed to sample efficiently in high dimensions
(see, e.g., [244, 179]), their applicability within the CE method is limited to problems with
dimension of O(102). Some extended works involve the construction of surrogate models [146],
the use of kernel mixture distributions [37], or application of multi-fidelity methods [183] to
increase the range of applications of the CE method. Although these algorithms can estimate
small probabilities of failure, the studied applications still involve parameter spaces with low to
moderate dimensions.

In this chapter, we develop a method that uses a different strategy. Rather than identifying
sampling densities that are effective in high dimensions, we focus on finding the intrinsic
low-dimensional structure of the rare event simulation problem. To this end, we exploit the
connection between rare event simulation and Bayesian inversion shown in (3.2). The resulting
posterior failure distribution coincides in particular with the optimal zero-variance distribution
of IS (3.15). This allows one to adapt dimension reduction techniques from Bayesian inference to
construct effective low-dimensional biasing distribution models within IS with the CE method.

We start by summarizing well-known dimension reduction techniques in Bayesian inverse
problems. Then, we use the link between Bayesian inversion and rare event estimation to build
the so-called failure-informed subspace, where efficient biasing densities for the CE method are
defined. We illustrate the proposed method by means of high-dimensional numerical examples;
two of them are related to random fields.

6.1. General comments on dimension reduction

Dimension reduction can be defined as the action of mapping the input parameters from the
original space to a low-dimensional subspace. Such a subspace is usually defined by directions
in the original space in which the model response changes the most. One can roughly group
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dimension reduction strategies into three classes: (i) manifold embedding techniques, (ii)
sensitivity analysis, and (iii) projection methods.

A classical method in manifold embedding is multidimensional scaling [46]. The idea is to use
a measure of dissimilarity between each pair of elements in the parameter space. Thereafter, one
seeks a transformation of the dissimilarities onto a low-dimensional Euclidean space, such that
the transformed pairwise dissimilarities become squared distances. The resulting low-dimensional
parameters can be used to build response surfaces. Other manifold modeling methods include,
locally linear embedding, Laplacian eigenmaps, spectral clustering, along with others (see, [46] for
a review). Nonlinear transformations of the input parameter space can also be applied to perform
dimension reduction. For example, in the context of rare event simulation, a polar coordinate
transformation to express the reliability problem in a two-dimensional space is proposed in [119].

In global sensitivity analysis, the objective is to determine the input parameters that have
the most influence on the model response. Classical methods employ high-dimensional model
representation (i.e., a finite expansion for the multivariate function of interest) to perform
variance decomposition of the model output [200, 174]. For instance, consider the model
y = f(θ) (e.g., a likelihood function in Bayesian inference, or a LSF in rare event simulation),
where the parameter vector has independent components θ = [θ1, . . . , θi, . . . , θd]. In variance-
based sensitivity analysis, one wants to determine how much uncertainty in the output y can
be attributed to each input θi. This provides a ranking of the inputs that can be expressed
in terms of Sobol indices [213]. One can use this information to build a response surface that
concentrates the approximation on the most important input parameters. Note that this type of
dimension reduction acts along the coordinate system imposed by the input parameters.

Ideas on dimension reduction using projection methods probably trace back to principal
component analysis [116], which utilizes an orthogonal operator to map a set of data points into a
set of linearly uncorrelated variables (principal components). The construction of the projection
requires the assembly of a covariance matrix of the data set and its eigenvalue decomposition.
In the context of random fields, principal component analysis is equivalent to the KL expansion
(2.29). A strong decay of the spectrum of the covariance operator of the field guarantees that
the mean-squared error of the KL approximation is small for a suitable truncation k (see (2.32)).
In Bayesian inference, the dimension reduction associated to the KL expansion typically relies
only on the prior. This means that the low-dimensional structure induced by the computational
model is not exploited. However, note that the modeling strategy used for the KL expansion
in Chapter 5, considers both prior and model to identify the dimensions that yield the best
representation of the posterior. In this sense, Bayesian model inference can also be considered a
dimension reduction technique.

In this chapter, we focus on projection techniques that have the following properties: (i) they
consider both, the prior and the potential low-dimensional structure induced by the mathematical
model, to perform the dimension reduction (in contrast to the standard KL expansion); and
(ii) they exploit the fact that the underlying mathematical model oftentimes varies most, along
directions of the parameter space that are not aligned with the coordinate system (in contrast to
sensitivity analysis). In the following, we present a short summary of methods used for dimension
reduction in nonlinear Bayesian inverse problems. This is because they can be adapted to the
rare event context via the connection (3.2), which (again) expresses a rare event simulation
problem as a Bayesian inversion task.

6.1.1. Likelihood-informed subspace

A nonlinear extension of the optimal low-rank approximations derived in [218] for linear Bayesian
inverse problems is proposed in [57]. The idea is to identify a subspace of the parameter space
that is likelihood-informed, by describing the relative influences of the prior and likelihood over
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the support of the posterior distribution.
The posterior distribution is approximated as the product of a low-dimensional posterior (on

the likelihood-informed directions) and the marginalization of the prior onto the complementary
directions. The discovery of the new coordinate system requires gradient information.

In contrast to [218], the Hessian of the negative log-likelihood is no longer constant since the
forward model is nonlinear. A linearization of the forward operator G(θ) is employed to build a
local Gauss-Newton approximation of the Hessian, which is averaged over the posterior support
[49, 57]:

H(θ) = Eπpos

[
(∇G(θ))TΣ−1

obs(∇G(θ))
]
. (6.1)

A MC estimator is used in practice to compute this expectation. The likelihood-informed
directions are identified from the generalized eigenvalue problem associated to the matrix pair
(H(θ),Σ−1

pr ), that is:
LTH(θ)Lφi = λiφi, (6.2)

where LLT = Σpr is a symmetric decomposition of the prior covariance matrix and {λi,φi}di=1
are the generalized eigenpairs. The first r eigenvectors (grouped into a matrix Φr ∈ Rd×r)
associated to the first r leading eigenvalues, are used to build a projector onto the likelihood-
informed subspace (LIS). This operator can be written as Pr = LΦrΦT

r L−1. In this setting,
the subspace Θr = Im(Pr) defines the LIS and Θ⊥ = Im(Id −Pr) defines the complementary
subspace.

Cui et al. [57] also discuss a local LIS approach in which the LIS basis Φr is used instead of
the projector. The local LIS has similarities to the coordinate transformation applied by the
active subspace method, which is described next.

6.1.2. Active subspace

In the active subspace (AS) method applied to Bayesian inverse problems [55], one seeks a
low-rank approximation of the potential or data-misfit function f(θ) = Φ(θ; ỹ) = − ln L(θ; ỹ)
(see, e.g., (4.3)). If f is such that the products of its partial derivatives are square integrable,
then one can define the matrix [53]:

H = Eπpr

[
∇f(θ)∇f(θ)T

]
, (6.3)

which can be seen as the covariance of the gradient vector. Notice that in LIS the expectation is
with respect to the posterior. In practice, H is approximated using MC as

H ≈ Ĥ =
N∑
i=1
∇f(θi)∇f(θi)T, (6.4)

where {θi}Ni=1 ∼ πpr. A heuristic relation used to define the number of samples required to
estimate Ĥ is N = α ·r ln(d), where r ≤ d is the rank and α ∈ [2, 10] is the so-called oversampling
factor [54].

Note that the matrix H admits the spectral decomposition, H = ΦΛΦT, where Φ ∈ Rd×d

contains the eigenvectors and Λ ∈ Rd×d the eigenvalues of H. The eigenvectors define a basis
for the input parameter space Θ. The idea is to separate the components of the coordinate
system induced by Φ, such that one groups the directions carrying most of the variation (larger
eigenvalues) and those corresponding to almost no variation (smaller eigenvalues):

Λ =
[

Λr

Λ⊥

]
and Φ = [Φr,Φ⊥] , (6.5)
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where Λr = diag(λ1, . . . , λr) and Φr ∈ Rd×r. One can employ the resulting bases, Φr and Φ⊥,
to project the parameter vector into two subspaces; the transformation reads as follows:

θ̃r = ΦT
r θ and θ̃⊥ = ΦT

⊥θ, (6.6)

where θ̃r ∈ Rr and θ̃⊥ ∈ Rd−r. Based on the previous decomposition, AS approximates the
d-dimensional function f by a function of fewer variables r (on the “active” coordinates). For a
fixed θ̃r, the optimal (in the mean-squared sense) approximation of f given θ̃r is the conditional
expectation [54]

f(θ) ≈ h(ΦT
r θ) = h(θ̃r) =

ˆ
Rd−r

f(Φrθ̃r + Φ⊥θ̃⊥)π(θ̃⊥ | θ̃r)dθ̃⊥ = Eπpr [f(θ) | Φr] ; (6.7)

similar to the computation of the matrix H, a MC estimator is also used to compute this
expectation.

We remark that the authors in [229] found a theoretical inconsistency in the AS method.
They argue that there exist unbounded constants in the probabilistic Poincaré inequalities
that are used to derive the methodology. This affects the application of AS to log-concave
distributions, which includes the exponential family. They propose a framework that enables
the derivation of generalized estimates in an attempt to address the issue.

6.1.3. Certified dimension reduction

Certified dimension reduction (CDR) [253] is a generalization of the previous approaches to
nonlinear and non-Gaussian Bayesian inverse problems. In principle, the framework can be
applied to any type of measurable likelihood function, as long as the gradient of its logarithm is
square integrable. In contrast to the previous methods, the posterior approximation in CDR is
derived with certified error bounds in the sense of the KLD. As a result, the approximation can be
controlled by some user-defined threshold bounding the KLD from the exact to the approximated
posterior. In our framework, we employ CDR as the dimension reduction technique. Thus, we
skip the details on CDR here and leave them for section 6.2.

We conclude the short presentation in this section by summarizing in Table 6.1 the main
ingredients and differences between the discussed dimension reduction methods.

Table 6.1.: Summary of some approaches for dimension reduction in Bayesian inverse problems.
Posterior approximation Matrix H

LIS πpos(θ) ∝ L(Prθ + P⊥µpr)πpr(θ)
´
Θ

(
∇G(θ)TΣ−1

obs∇G(θ)
)
πpos(θ)dθ

AS πpos(θ) ∝ exp
(
Eπpr [ln L(θ) | Pr]

)
πpr(θ)

´
Θ

(
∇ ln L(θ)∇ ln L(θ)T

)
πpr(θ)dθ

CDR πpos(θ) ∝ Eπpr [L(θ) | Pr]πpr(θ)
´
Θ

(
∇ ln L(θ)∇ ln L(θ)T

)
πpos(θ)dθ

6.2. Construction of the failure-informed subspace

We build on the ideas of [253] to construct low-dimensional approximations of the posterior-
failure distribution (3.2). By analogy to the Bayesian inversion setting, we refer to the resulting
low-dimensional failure subspace as the failure-informed subspace.

6.2.1. Rare event simulation as a Bayesian inversion

Recall from Chapter 3 that the probability of failure pF and indicator function 1F (θ) are
analogous to the model evidence and likelihood function in Bayesian inference (compare (3.2)
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with (4.2)). The resulting posterior density is equivalent to the prior (nominal) density censored
on the failure set F . As a result, the rare event simulation setting can be interpreted as a
nonlinear Bayesian inverse problem.

The indicator function 1F (θ) is upper semi-continuous and does not provide sufficient
regularity to construct the certified approximation (∇ ln1F (θ) is not square-integrable). Hence,
we employ one of the smooth representations f(θ; s) ≈ 1F (θ) in (3.3). The posterior-failure
density πF ∝ 1F (θ)πpr(θ) is retrieved as the smoothing parameter goes to zero; thus, we write
πF in terms of the smooth approximation:

πF (θ) = 1
pF
f(θ; s)πpr(θ) as s→ 0. (6.8)

Our objective is to find a low-dimensional approximation of (6.8), denoted π(r)
F such that

π
(r)
F (θ) ∝ (h ◦Pr)(θ)πpr(θ) ≈ πF (θ), (6.9)

where h : Rd → R>0 is a profile function and the projector Pr ∈ Rd×d is a linear transformation
such that P2

r = Pr, but not necessarily PT
r = Pr; we can also define the complementary projector

to Pr as the matrix P⊥ = Id −Pr, which satisfies Im(P⊥) = Ker(Pr).
The profile function in (6.9) depends only on Prθ = θr, which is defined on the failure-

informed subspace (FIS) Θr = Im(Pr), and it is essentially constant along the complementary
subspace (CS) Θ⊥ = Ker(Pr). As a result, if r � d, the goal of the approximation (6.9) is to
replace the high-dimensional smooth indicator by a function of fewer variables.

Following the CDR framework [253], we now describe how the optimal profile function and
projector are derived.

6.2.2. Optimal profile function

For a fixed projector Pr, f(θ; s) can be approximated by its average over all values of θ that
map to θr = Prθ [195]. This is the conditional expectation of the smooth indicator given the
projector under the prior distribution [253]

Eπpr [f(θ; s) | Prθ] =
ˆ

Θ̃⊥
f(Prθ + Φ⊥ξ⊥; s) πpr(Prθ + Φ⊥ξ⊥)´

Θ̃⊥
πpr(Prθ + Φ⊥ξ′⊥)dξ′⊥︸ ︷︷ ︸

π(ξ⊥ | Prθ)

dξ⊥, (6.10)

where Θ̃⊥ ⊆ Rd−r, ξ⊥ ∈ Θ̃⊥, and the columns of Φ⊥ ∈ Rd×d−r form a basis for Ker(Pr).
The optimal profile function h? is obtained by minimizing the KLD between the exact πF

and approximated π(r)
F densities. We can use the conditional expectation (6.10) to define the

density
π

(r)?
F ∝ Eπpr [f(θ; s) | Prθ]︸ ︷︷ ︸

(h?◦Pr)(θ)

πpr(θ), (6.11)

for which the relation, DKL(πF ||π(r)
F )−DKL(πF ||π(r)?

F ) = DKL(π(r)?
F ||π(r)

F ) ≥ 0 holds (see [253]).
In particular, DKL(πF ||π(r)

F ) ≥ DKL(πF ||π(r)?
F ), and hence a profile function of the form

(h? ◦Pr)(θ) = Eπpr [f(θ; s) | Prθ] (6.12)

is a minimizer of DKL(πF ||π(r)
F ).
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6.2.3. Optimal projector

Consider a Gaussian prior density πpr(θ) ∝ exp(−V (θ)), where the function V (θ) = 1
2(θ −

µpr)TΣ−1
pr (θ − µpr) is twice differentiable and satisfies ∇2V (θ) = Σ−1

pr � c · Id, with c > 0.
Theorem 1 in [253] shows that, for any continuously differentiable function h : Rd → R, such
that Eπpr [‖∇h(θ)‖2Σpr

] <∞, the following subspace logarithmic Sobolev inequality holds

Eπpr

[
h2(θ) ln

(
h2(θ)

Eπpr [h2(θ) | Prθ]

)]
≤ 2Eπpr

[∥∥∥(Id −PT
r )∇h(θ)

∥∥∥2

Σpr

]
, (6.13)

with the notation ‖∇h(θ)‖2Σpr
= ∇h(θ)TΣpr∇h(θ). The inequality (6.13) allows one to bound

DKL(πF ||π(r)?
F ), which in turn provides a way to characterize the optimal projector in the

approximation π
(r)?
F written in (6.11). Roughly speaking, the original logarithmic Sobolev

inequality states that the entropy of h2 is bounded, up to scaling, by its Fisher information [34].
Let h2(θ) be equal to the normalized smooth indicator function f(θ; s)/p, such that ∇h(θ) =

1
2(f(θ; s)/p)1/2∇ ln f(θ; s), then (6.13) can be written as

Eπpr

[
f(θ; s)
p

ln
(

f(θ; s)/p
Eπpr [f(θ; s) | Prθ] /pF

)]
≤ 1

2 Eπpr

[
f(θ; s)
p

∥∥∥(Id −PT
r )∇ ln f(θ; s)

∥∥∥2

Σpr

]
.

(6.14)

The left-hand side in (6.14) is equal to DKL(πF ||π(r)?
F ); hence we can obtain the bound

DKL
(
πF ||π(r)?

F

)
≤ 1

2 EπF
[∥∥∥(Id −PT

r )∇ ln f(θ; s)
∥∥∥2

Σpr

]
≤ 1

2 EπF
[
tr
(
Σpr(Id −PT

r )∇ ln f(θ; s)∇ ln f(θ; s)T(Id −Pr)
)]

≤ 1
2 tr

(
Σpr(Id −PT

r ) H (Id −Pr)
)

=: 1
2 R(Pr,H), (6.15)

where R(Pr,H) is the mean-squared error of the approximation of ∇ ln f(θ; s) by PT
r∇ ln f(θ; s)

(with the parameter θ ∼ πF), and H ∈ Rd×d is the symmetric and positive-definite second
moment matrix of the gradient of the log-smooth indicator function [253]

H =
ˆ

Θ
∇ ln f(θ; s)∇ ln f(θ; s)TπF (θ)dθ = EπF

[
∇ ln f(θ; s)∇ ln f(θ; s)T

]
. (6.16)

As in the LIS and AS methods, analytical evaluation of this equation is typically unfeasible
and MC estimators are used in practice. Note from (6.15) that the mean-squared error is
quadratic in Pr. Therefore, we can minimize the upper bound in (6.15) over the collection of
r-rank projectors to find an optimal projector:

Pr = arg min
P′r∈Rd×d

R(P′r,H). (6.17)

As shown by Proposition 2 in [253] (see also Proposition 2.6 in [252]), a solution to (6.17) is

Pr =
(

r∑
i=1
φiφ

T
i

)
Σ−1

pr and min (R(Pr,H)) =
d∑

i=r+1
λi, (6.18)

where the eigenpairs (λi,φi) correspond to the solution of the generalized eigenvalue problem
Hφi = λiΣ−1

pr φi, i = 1, . . . , d. Hence, if πpr satisfies the inequality (6.13) and Pr is defined as
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in (6.18), the approximation π(r)?
F in (6.11) can be controlled by a desired tolerance ε ≥ 0 as

DKL
(
πF ||π(r)?

F

)
≤ 1

2

d∑
i=r+1

λi ≤ ε. (6.19)

In this case, bounding DKL(πF ||π(r)?
F ) amounts to select the rank r as the smallest integer,

such that the left-hand side of (6.19) is below a prescribed ε, i.e.,

r = min

r′ : 1
2

d∑
i=r′+1

λi ≤ ε

 . (6.20)

Note that along with the prior, the second-moment matrix of the log-smooth indicator
function H reveals the effective low dimension of the posterior-failure distribution. A sharp decay
in the generalized spectrum of (H,Σ−1

pr ) guarantees the existence of a low-rank approximation
r � d.

Remark 6.1. The computational evaluation of the “optimal” conditional expectation (6.10) is
demanding since the π(ξ⊥ | Prθ) depends also on the parameter θ. Therefore, following [253],
we employ a “practical” conditional expectation

Eπpr [f(θ; s) | Prθ] ≈
ˆ

Θ
f(Prθ + P⊥ξ; s) πpr(ξ) dξ, (6.21)

where ξ is a random variable distributed according to πpr. Proposition 6 in [253] shows that if
πpr is Gaussian, the KL divergence from the exact to the approximation constructed with (6.21)
instead of (6.10) can still be controlled by the mean-squared error as in (6.19).

6.3. Failure-informed cross-entropy-based importance sampling

The optimal IS biasing density π?bias is equivalent to the posterior-failure density πF . Hence, we
can employ the theory of section 6.2 to derive low-dimensional biasing distributions that extend
the application of the iCE method to high-dimensional parameter spaces that have an intrinsic
low-dimensional structure.

Recall that the goal is to represent (6.8), written now as the optimal biasing density:

πF (θ) = π?bias(θ) = 1
pF
f(θ; s)πpr(θ) as s→ 0, (6.22)

on the FIS using the certified approximation (6.11).

6.3.1. Formulation

We assume that the prior πpr(θ) is standard Gaussian, or that at least an isoprobabilistic
transformation can be applied to define such prior. The solution of the generalized eigenvalue
problem (H,Σ−1

pr ) required for the construction of Pr in (6.18), reduces to a standard eigenvalue
problem for H. As a result, the projector can be written as Pr = ΦrΦT

r , where Φr ∈ Rd×r

contains the first r eigenvectors that define a basis for the FIS. Similarly, the complementary
projector can be obtained as P⊥ = Φ⊥ΦT

⊥, where Φ⊥ ∈ Rd×d−r is defined by the remaining
eigenvectors, generating a basis for the CS.

The projector Pr is orthogonal with respect to the prior precision matrix Σ−1
pr = Id, and

thus, it satisfies θTΣ−1
pr θ = ‖θ‖2Σ−1

pr
= ‖Prθ‖2Σ−1

pr
+ ‖P⊥θ‖2Σ−1

pr
, for all θ ∈ Θ. This induces a

decomposition of the parameter space as the direct sum Θ = Θr ⊕Θ⊥, where any element of Θ
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can be uniquely represented as
θ = θr + θ⊥, (6.23)

where θr = Prθ ∈ Θr and θ⊥ = P⊥θ ∈ Θ⊥. Moreover, we can use the operators Φr and Φ⊥ to
map the parameters onto a local FIS Θ̃r ⊆ Rr and local CS Θ̃⊥ ⊆ Rd−r, respectively. In this
case, the parameter vector can be written as

θ = Φrθ̃r + Φ⊥θ̃⊥, (6.24)

where θ̃ = [θ̃r, θ̃⊥] has components θ̃r = ΦT
r θ ∈ Θ̃r and θ̃⊥ = ΦT

⊥θ ∈ Θ̃⊥. Figure 6.1 illustrates
the relation between the global and local FIS together with the action of the projectors and
basis.

Figure 6.1: Schematic representation of a parameter θ ∈ R3 projected onto the FIS with r = 2 (in blue):
global θr ∈ Rd, local θ̃r ∈ Rr (adapted from [57]).

From the discussion above, we see that the prior distribution can be factorized as πpr(θ̃) =
π

(r)
pr (θ̃r)π(⊥)

pr (θ̃⊥), where π(r)
pr (θ̃r) and π(⊥)

pr (θ̃⊥) are densities on the local FIS and CS, respectively
[57]. This choice, together with the certified approximation in (6.11), allows us to define the
optimal low-dimensional biasing density:

π
(r)?
F (θ̃) = π?bias(θ̃) ∝ Eπpr

[
f(θ; s) | Φrθ̃r

]
π(r)

pr (θ̃r)︸ ︷︷ ︸
reduced optimal biasing

π(⊥)
pr (θ̃⊥).︸ ︷︷ ︸

complementary prior

(6.25)

We select the parametric biasing distribution from a Gaussian family that decomposes as:

πbias(θ̃;υr) = π
(r)
bias(θ̃r;υr) π

(⊥)
pr (θ̃⊥); (6.26)

this family is allowed to have a general Gaussian form on the local FIS, where υr ∈ Υr represents
the mean and covariance matrix of this r-dimensional Gaussian, and is equal to the prior in the
complementary directions.

Aiming at the optimal biasing density (6.25) using biasing densities in the form (6.26), the
CE optimization problem can be re-defined on a low-dimensional space. The KLD between
(6.25) and (6.26) reads

DKL (π?bias||πbias) = Eπ?bias

ln

p−1
F Eπpr

[
f(θ; s) | Φrθ̃r

]
π

(r)
pr (θ̃r)

π
(r)
bias(θ̃r;υr)

 . (6.27)
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Similarly to subsection 3.2.4, minimizing DKL(π?bias||πbias) is equivalent to the maximization:

υ?r = arg max
υr∈Υr

Eπ?
bias

[
ln π(r)

bias(θ̃r;υr)
]

= arg max
υr∈Υr

ˆ
Θ̃r

ˆ
Θ̃⊥

ln π(r)
bias(θ̃r;υr)Eπpr

[
f(θ; s) | Φrθ̃r

]
π(r)

pr (θ̃r)π(⊥)
pr (θ̃⊥)dθ̃⊥dθ̃r

= arg max
υr∈Υr

ˆ
Θ̃r

ˆ
Θ̃⊥

ln π(r)
bias(θ̃r;υr)

[ˆ
Θ̃⊥

f(Φrθ̃r + Φ⊥ξ̃⊥; s)π(⊥)
pr (ξ̃⊥)dξ̃⊥

]
π(r)

pr (θ̃r)π(⊥)
pr (θ̃⊥)dθ̃⊥dθ̃r

= arg max
υr∈Υr

ˆ
Θ̃r

[ˆ
Θ̃⊥

f(Φrθ̃r + Φ⊥ξ̃⊥; s) π(⊥)
pr (ξ̃⊥)dξ̃⊥

]
ln π(r)

bias(θ̃r;υr)π
(r)
pr (θ̃r)dθ̃r

= arg max
υr∈Υr

Eπpr

[
f(Φrθ̃r + Φ⊥θ̃⊥; s) ln π(r)

bias(θ̃r;υr)
]
. (6.28)

Note that in this CE formulation there is no need for evaluating the conditional expectation
in (6.25), as it is normally the case when applying sequential IS in the Bayesian inference setting
where MCMC techniques are required to draw samples from (6.25) (see, e.g., [57, 253]). Indeed,
the expectation is with respect to the full prior density, thus alleviating computational demands
associated with double-loop procedures.

Instead of taking the expectation with respect to the prior in (6.28), we apply IS with biasing
distribution πbias(θ̃;υ′r) in (6.26):

υ?r = arg max
υr∈Υr

Eπbias(·;υ′r)

[
f(Φrθ̃r + Φ⊥θ̃⊥; s) ln π(r)

bias(θ̃r;υr)
πpr(θ̃)

πbias(θ̃;υ′r)

]
, (6.29)

for reference parameters υ′r. We apply the IS estimator of the expectation (6.29) to define the
stochastic optimization problem:

υ?r ≈ υ̂?r = arg max
υr∈Υr

1
N

N∑
i=1

f
(
Φrθ̃r,i + Φ⊥θ̃⊥,i; s

)
ln π(r)

bias

(
θ̃r,i;υr

)
w
(
θ̃i;υ′r

)
, (6.30)

where {θ̃i = [θ̃r,i, θ̃⊥,i]}Ni=1
i.i.d.∼ πbias(·;υ′r) and w(θ̃i;υ′r) = πpr(θ̃)/πbias(θ̃;υ′r). As in the iCE

method, the optimization (6.30) is performed sequentially by introducing a set of smoothing
parameters {sj > 0}nlv

j=0.
Starting from the full-dimensional space at level j = 0, the iCE method applied to the

FIS requires two main steps: (i) finding the projector and associated basis operators, and (ii)
updating the reduced reference parameters υ̂(j+1)

r of the next intermediate biasing density. To
achieve both steps, we use samples from the current biasing density πbias(·; υ̂(j)

r ). In the following,
we slightly abuse the notation to define θ(j) ∈ Rd×N as the matrix containing the full set of
samples, such that θ(j) = {θi}Ni=1 ∼ πbias(·; υ̂(j)

r ) for each sample θi ∈ Rd.

� For the first step, we approximate the matrix H in (6.16) at each level by the self-normalized
IS estimator:

H(j+1) ≈ Ĥ(j+1) = 1
W̃ (j+1)

N∑
i=1

w̃
(j+1)
i

[
∇ ln f(θ(j)

i ; sj+1)
] [
∇ ln f(θ(j)

i ; sj+1)
]T
, (6.31)

where w̃(j+1) = f(θ(j); sj+1)w(j) represents the weight vector computed with respect to
the smooth indicator and W̃ (j+1) =

∑N
i=1 w̃

(j)
i is the sum of the weights.

Thereafter, we compute the eigenpairs of the estimator (6.31) to construct Φ(j+1)
r ,Φ(j+1)

⊥ ,
and each basis is used to project the full set of samples θ(j) onto the local FIS and CS as
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θ̃(j+1) = [θ̃(j+1)
r , θ̃

(j+1)
⊥ ] = [Φ(j+1),T

r ,Φ(j+1),T
⊥ ] · θ(j), (6.32)

with the notation θ̃(j+1)
r ∈ Rr×N and θ̃(j+1)

⊥ ∈ Rd−r×N .

� For the second step, we update the reference parameters at each level solving the iCE
stochastic optimization problem (6.30) in the reduced coordinate system

υ̂(j+1)
r = arg max

υr∈Υr

1
N

N∑
i=1

ln π(r)
bias

(
θ̃

(j+1)
r,i ;υr

)
w

(j+1)
i , (6.33a)

with w
(j+1)
i = f(θ(j)

i ; sj+1) πpr(θ̃(j+1)
i )

πbias(θ̃(j+1)
i ;υ(j+1))

. (6.33b)

where w(j+1) = {w(j+1)
i }Ni=1 denotes adjusted weights. This correction is required because

the parametric biasing density is evaluated on samples that belong to the new basis, but
it is defined with reference parameters estimated at the previous level. Therefore, υ̂(j)

r

(computed using the basis Φ(j)
r ) needs to be expressed in the coordinate system induced

by Φ(j+1)
r ,Φ(j+1)

⊥ . Since we employ the Gaussian parametric family and the coordinate
transformation is linear, the corrected mean and covariance is computed as

E
[
θ̃(j+1)

]
=
[
Φ(j+1),T
r , Φ(j+1),T

⊥

]
· µ (6.34a)

Cov
[
θ̃(j+1), θ̃(j+1)

]
=
[
Φ(j+1),T
r Σ1Φ(j+1)

r + Φ(j+1),T
r Σ2Φ(j+1)

r Φ(j+1),T
r Σ1Φ(j+1)

⊥ + Φ(j+1),T
r Σ2Φ(j+1)

⊥
Φ(j+1),T
⊥ Σ1Φ(j+1)

r + Φ(j+1),T
⊥ Σ2Φ(j+1)

r Φ(j+1),T
⊥ Σ1Φ(j+1)

⊥ + Φ(j+1),T
⊥ Σ2Φ(j+1)

⊥

]
,

(6.34b)

where µ = Φ(j)
r µ

(j)
r , Σ1 = Φ(j)

r Σ(j)
r Φ(j),T

r , Σ2 = Φ(j)
⊥ Φ(j),T

⊥ , and the parameters µ(j)
r and

Σ(j)
r constitute the reference parameter υ̂(j)

r estimated at level j. The components of the
adjusted reference parameter υ(j+1) used for the computation of the adjusted weights are
then given by (6.34).

Note that the full covariance (6.34b) has correlated components. Hence, the biasing
density used for the computation of the adjusted weights w(j+1)

i does not necessarily
admits the decomposition (6.26). In this case, πbias becomes a d-dimensional Gaussian
with parameters given by (6.34). This is only required to compute the corrected weights,
the optimization problem in (6.33b) is still performed in the reduced space.

The complete procedure of the improved cross-entropy method with failure-informed dimen-
sion reduction (called iCEred), is summarized in Algorithm 10.

Remark 6.2. A key question for iCEred is how large N must be for an accurate MC approx-
imation of Ĥ. At least d evaluations are necessary to approximate a full rank H. However,
the number of samples needed for accurate approximation is related to the effective rank of
H [54]. The heuristic rule N = α · r ln(d) provides some intuition about the required sample
size; here α ∈ [2, 10] is an oversampling factor (see, e.g., [54, p.35]). As a result, we can modify
Algorithm 10 such that we employ two types of sample sizes, one NLSF associated to LSF
evaluations and another Ngrad related to the gradient evaluations. The value of Ngrad can be
adapted using the heuristic rule at each intermediate level of iCEred. This suggested adaption
strategy is left for future study.
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Algorithm 10 iCEred: iCE method with failure-informed dimension reduction.
Input :LSF g(θ), smooth indicator function f(θ; s), gradient ∇ ln f(θ; s), number of samples per level

N , tolerance in the approximation ε, target coefficient of variation δ?, maximum iterations tmax

1 Set the standard Gaussian prior density πpr(θ)
2 Set the parametric family of standard Gaussian biasing densities πbias(θ;υ)
3 Set initial reference parameters υ̂(0) from the prior parameters, and the smoothing parameter s0 ←∞
4 Initial level j ← 0
5 while True do
6 if j = 0 then
7 Generate N samples from the biasing distribution θ(j) ∼ πbias(·; υ̂(j))
8 Since υ̂(0) are selected from the prior, the weights w(j) are equal to one
9 else

10 Generate N samples from the reduced biasing distribution θ̃(j)
r ∼ πbias(·; υ̂(j)

r )
11 Compute the weights w(j) ← exp

(
ln π(r)

pr (θ̃(j)
r )− ln π(r)

bias(θ̃
(j)
r ; υ̂(j)

r )
)

12 Construct the full set of parameters θ(j) ← Φ(j)
r θ̃

(j)
r + Φ(j)

⊥ θ̃
(j)
⊥

13 end
14 Evaluate LSF geval ← g(θ(j)) and indicator function deval ← geval ≤ 0 = 1F

(
θ(j))

15 Evaluate smooth indicator function feval ← f
(
θ(j); sj

)
16 Compute the coefficient of variation of the ratio between the indicator function and its smooth

approximation
ĉv(j) =

√
V̂ [deval/feval]

Ê[deval/feval]
17 if (ĉv(j) ≤ δ?) or (j ≥ tmax) then
18 Break
19 end
20 Use the samples θ(j) and the smooth indicator function to compute sj+1 as per (3.36)
21 Update the smooth indicator values feval ← f

(
θ(j); sj+1

)
22 Compute the weights associated to the smooth indicator w̃(j+1) ← w(j) · feval and its sum W̃

23 Compute the gradient of the log-smooth indicator function, ∇ ln f(θ(j); sj+1)
24 Use ∇ ln f(θ(j); sj+1) to compute the estimator Ĥ as per (6.31) and solve the eigenvalue problem

ĤΦ = ΛΦ
25 Use the tolerance ε to find the rank r as per (6.20)
26 Construct the FIS basis Φ(j+1)

r ← Φ1:r, and the CS basis Φ(j+1)
⊥ ← Φr+1:d

27 Project the samples to the local FIS and CS, θ̃r ← Φ(j+1),T
r θ(j), θ̃⊥ ← Φ(j+1),T

⊥ θ(j)

28 if j > 0 then
29 Samples in the new coordinates θ̃ = [θ̃r, θ̃⊥]
30 Compute the corrected reference parameters υ using the mean and covariance in (6.34)
31 Compute the adjusted weights w ← feval · exp

(
ln πpr(θ̃)− ln πbias(θ̃;υ)

)
32 Find the next reference parameters υ̂(j+1)

r by solving the stochastic optimization problem (6.33b)
using samples θ̃r and weights w.

33 j ← j + 1
34 end
35 Compute the IS estimator p̂F ← 1

N

∑N
i=1 deval(i) · w(j)

i

Output : p̂F

6.3.2. Refinement step

Computational approaches such as adjoint methods [11, 53] and automatic differentiation [157]
can be used to calculate efficiently the gradient of the log-smooth indicator function in (6.31).
However, when direct application of any of these tools is unfeasible, gradient evaluations are a
computationally demanding task.
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This motivates the definition of a refinement step for the iCEred method that allows
improving the failure probability estimate, keeping the number of gradient evaluation fixed. The
idea is to employ the reference parameters of the low-dimensional biasing density at the last level,
to draw additional samples from the fitted parametric density. Such strategy has been applied
to the standard CE method in [244]. This complementary step to iCEred adaptively increases
the LSF evaluations but it does not involve additional gradient computations. The sample size
is augmented at each iteration to obtain new LSF evaluations that will improve the IS estimate.
The coefficient of variation of the updated failure probability estimate ĉv(p̂F ) is then monitored
until it reaches a predefined threshold δ. Since the value of ĉv(p̂F ) at each iteration is typically
noisy, we control its mean from a set of previous iteration values. Algorithm 11 describes in
detail this optional “post-processing” procedure.

Algorithm 11 Refinement step for iCEred.
Input : target coefficient of variation δ, number of coefficient of variation checks m, sample size

increment M . Last iCEred iteration values of: reference parameters υ̂r, indicator function
deval, IS weights w, and bases Φr,Φ⊥

1 k = 1
2 while True do
3 Compute IS estimator p̂F ← 1

N

∑N
i=1 deval(i) · wi

4 Estimate the variance of the IS estimator V̂[p̂F ]← 1
N−1

[
1
N

∑N
i=1 deval(i) · w2

i − p̂2
F

]
5 Estimate the coefficient of variation ĉv(k)←

√
V̂[p̂F ]/p̂F

6 if k mod m = 0 then
7 Compute the mean of the previous m values stored in ĉv, µcv
8 if µcv ≤ δ then
9 Break

10 end
11 else
12 Generate M samples from the biasing density in the local FIS θ̃r ∼ π(r)

bias(·; υ̂r)
13 Generate M samples from the prior density in the local CS θ̃⊥ ∼ π(⊥)

pr (·)
14 Contruct the full set of parameter samples θ ← Φrθ̃r + Φ⊥θ̃⊥
15 Evaluate LSF geval ← g(θ) and indicator function dextra ← geval ≤ 0 = 1F (θ)
16 Compute the weights wextra ← exp

(
ln π(r)

pr (θ̃r)− ln π(r)
bias(θ̃r; υ̂r)

)
17 Append the extra indicator function and weight values deval ← [deval,dextra] and w ← [w,wextra]
18 k ← k + 1 and N ← N +M

19 end
20 end

Output : p̂F

We conclude this section by illustrating the evolution of the iCEred method for two different
examples. For both problems, the dimension of the parameter space is d = 2 and we select the
approximation tolerance as ε = 0.01. The first row of Figure 6.2 shows the results for a linear
LSF problem that has a clear direction in which the parameter space varies the most; the rank
of the projector is found to be r = 1 < d. The second row of Figure 6.2 plots the solution for a
quadratic LSF in which the parameter space does not have a low-dimensional structure; the rank
of the projector is r = 2 = d and the iCEred algorithm reduces to the standard iCE method.

6.4. Numerical applications

We test the proposed method on four examples. For the first two experiments, the gradient of
the LSF is available analytically and the failure probabilities are independent of the dimension
of the input parameter space. This allows us to perform several parameter studies to validate
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Figure 6.2: Evolution of the iCEred method for problems with (top r = 1 < d) and without (bottom
r = 2 = d) intrinsic low-dimensional structure of the parameter space. The arrows show the
values of ∇ ln f(θ; sj) and the color in the samples accounts for the smooth indicator values.

the applicability and accuracy of the iCEred method. In the final examples, we consider models
involving spatially variable parameters modeled as random fields. For the latter example, the
LSF gradient is computed using the adjoint method, which is derived in Appendix B.3.1 for this
particular problem.

Moreover, we consider the gradients of the natural logarithm of the smooth indicators (3.3)

∇ ln f log(θ; s) = −∇g(θ)
s

[
1 + tanh

(
g(θ)
s

)]
, ∇ ln f erf(θ; s) = −∇g(θ)

s
·
φ

(
−g(θ)

s

)
Φ
(
−g(θ)

s

) ,
(6.35)

for the computation of the estimator Ĥ in (6.31).
We note that the cost of the eigenvalue problem associated to Ĥ at each iteration is negligible

compared to the LSF/gradient evaluations. The dimension d needs to be considerably large
(O(104)) to make a significant contribution to the computational cost of iCEred. Moreover,
the parametric family of biasing densities is chosen as single Gaussian densities, i.e., Π =
{πbias(θ;υ) = N (θ;υ) | υ = [µ,Σ] ∈ Υ}.

The inputs to iCEred are studied/selected as follows: (i). The choice of the smooth indicator
function and its gradient is analyzed in the first example; (ii). The influence of the number
of sampler per level N is studied in all examples; (iii). The target coefficient of variation for
the iCEred method is fix to δ? = 1.5. This is based on the studies [180, 179], which directly
translate to the iCEred framework. This value yields a probability estimate whose coefficient of
variation is around δ?/

√
N = 0.047 (using N = 103 samples); and (iv). Based on [253], we fix

the tolerance of the certified approximation as ε = 0.01.
Unless specified, the inputs to the refinement step are: (i). The target coefficient of variation

of the failure probability estimate is δ = 0.05; (ii). We use m = 10 to explore the coefficient
of variation throughout iterations. Since the value of ĉv(p̂F ) is typically noisy, we control its
average every m iterations. This is not a crucial parameter in the refinement step because the
variability of ĉv decreases as the iterations evolve; and (iii). The increment in the sample size is
M = 50. Using larger M implies more LSF evaluations, which in turn helps to obtain a better
estimate of ĉv and the refinement step potentially finishes faster. However, if M is too large, one
can perform unnecessary LSF evaluations. As a result, it is recommended to define an M � N
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and let the refinement step iterate until it matches the target δ.
Finally, we provide Python scripts for the first two examples in a GitHub repository.

6.4.1. Example 1: linear LSF in varying dimensions

We consider a LSF expressed as a linear combination of d independent standard Gaussian
random variables [76]:

g(θ) = β − 1√
d

d∑
i=1

θi with gradient ∇g(θ) =
[
− 1√

d
· 1d

]T
, (6.36)

where β is a given maximum threshold, and 1d denotes a d-dimensional vector containing ones.
The probability of failure is independent of the dimension d and it can be computed analytically
as pF = Φ(−β), with Φ(·) denoting the standard Gaussian CDF.

We initially test the two smooth approximations of the log-indicator gradient (6.35) used
within the iCEred method. In this case, the refinement step of the algorithm is not implemented.
This is to evaluate the standalone performance of the method. Ten different values of decreasing
target failure probabilities are fixed as pF = [1 × 10−1, 1 × 10−2, . . . , 1 × 10−10], which have
an associated list of thresholds β = −Φ−1(pF) ≈ [1.282, 2.326, . . . , 6.361]. Moreover, for each
threshold β, three different dimensions d ∈ {2, 358, 1000} are employed to define the LSF
(6.36). These allows us to test the method for low- and high-dimensional settings. A parameter
study on the number of samples per level is also performed and we choose this value from
N ∈ {100, 250, 500, 1000}. In this example, there exists a clear low-dimensional structure of the
parameter space and the rank of the projector Pr is r = 1 for all parameter cases.

Figure 6.3 shows the coefficient of variation of the failure probability estimates, computed
as an average of 100 independent iCEred runs. One observes that under the LSF (6.36), the
performance of the iCEred method is independent of the dimension and magnitude of the failure
probability. As the number of samples increases, the smooth approximations yield similar results.
However, when the number of samples per level is small, the smooth approximation f erf which
is based on the standard Gaussian CDF produces larger ĉv(p̂F ) values. Note in (6.35) that
the standard Gaussian CDF is evaluated in the denominator. As the number of iCEred levels
increases, the smoothing parameter s→ 0. For very small values of s, Φ(−g(θ)/s) takes values
close to zero, and hence the value of ∇ ln f(θ; s) is not defined. When this occurs, the matrix
Ĥ cannot be estimated and the basis of the previous level is used. Although this problem
is inherent to any approximation of the indicator function, it appears that f log based on the
logistic function is more robust than f erf . This is probably because f erf involves numerical
approximation of the error function. As a result, f log yields more stable results for sample size
N = 100. Nevertheless, under the LSF (6.36), we observe that the performance of the iCEred
method is independent of the dimension and magnitude of the failure probability estimate.

We now fix the smooth approximation of the indicator function to f log and the threshold to
β = 3.5 (pF ≈ 2.33× 10−4). In Figure 6.4, we plot a comparison between the iCEred method
(without refinement) with the standard CE and iCE methods for increasing dimension of the
parameter space and number of samples per level N ∈ {250, 1000, 2500}. The CE method
is implemented with ρ = 0.1 (cf., subsection 3.2.4) and the iCE method with δ? = 1.5 (cf.,
subsection 3.2.5); for both approaches the biasing distribution family consist of single Gaussian
densities. We observe that the performance of standard CE and iCE methods deteriorates with
increasing dimension of the parameter space, and that augmenting the sample size improves
the accuracy in the estimation of the target failure probability. This is related to the solution
of the stochastic optimization problem required in both approaches, which amounts to fitting
high-dimensional Gaussian densities. The number of samples required to properly perform this
step depends on the rank of the covariance matrix of the Gaussian biasing density, and it roughly
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Figure 6.3: Coefficient of variation of the failure probability estimate for example 6.4.1 using different
target probabilities of failure, number of samples, smooth indicators (rows), and increasing
dimension (columns).

scales quadratically with the dimension. Although the results can improve if other parametric
families of biasing densities are employed (as those proposed in [244, 179]), under the Gaussian
parametric family the standard methods are inadequate to perform reliability analysis in high
dimensions. The iCEred method estimates consistently the target failure probability for all the
dimensions and even at small sample size. Since the rank of the projector is r = 1, the updating
of reference parameters in iCEred amounts to fitting one-dimensional Gaussian densities for all
the dimension cases.
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Figure 6.4: Failure probability estimate for example 6.4.1 using the CE, iCE, and iCEred methods (with
single Gaussian parametric family) for increasing dimension of the parameter space and
different number of samples per level (columns).

We conclude this example by showing the advantage of the refinement step for iCEred. In this
case, the number of samples per level is selected from the set N ∈ {100, 250, 500, 1000, 2500, 5000}.
Figure 6.5 shows the number of LSF and gradient calls, together with the coefficient of variation
of the failure probability estimate (again, as an average of 100 independent simulations). Note
that for sample sizes 100, 250 and 500, there is an increase in the number of LSF evaluations, due
to the refinement. This is because small values of N are not sufficient to compute a probability of
failure estimate that has ĉv(p̂F ) smaller than the value of δ. Therefore, extra LSF computations
are performed in the refinement algorithm to reduce the ĉv(p̂F ) to δ. For large sample sizes,
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this step has no effect since the ĉv(p̂F ) obtained from iCEred is already below the predefined δ.
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Figure 6.5: iCEred with refinement for example 6.4.1: number of LSF and gradient calls for different
number of samples, and dimensions (columns). The ĉv of the failure probability estimate is
also shown (in red).

6.4.2. Example 2: quadratic LSF in varying dimensions

We employ the LSF discussed in subsection 3.3.1, which has the structure of the LSF in
example 6.4.1 but adding a quadratic term:

g(θ) = β + κ

4 (θ1 − θ2)2 − 1√
d

d∑
i=1

θi with gradient (6.37a)

∇g(θ) =
[
κ

2 (θ1 − θ2)− 1√
d
,
κ

2 (θ2 − θ1)− 1√
d
, − 1√

d
· 1d−2

]T
, (6.37b)

where β = 4 and the parameter κ defines the curvature of the LSF at the point in the
parameter space with the largest probability density (the larger the curvature, the smaller pF ).
The reference probability of failure is independent of the dimension and it can be computed
analytically using (3.38) [68, 177]. We employ the iCEred method with adaptation to estimate
the probability of failure associated to the LSF (6.37a). The target failure probabilities are
pF ≈ {6.62× 10−6, 4.73× 10−6} for curvature values κ = {5, 10}. Three different dimensions
d = {2, 334, 1000} are also employed to define the LSF.

In Figure 6.6, we plot the eigenvalue decay and first two eigenvectors of the estimator Ĥ, for
different number of samples per level N ∈ {100, 500, 1000} and a fixed curvature κ = 5. The
results are illustrative since they correspond to a single iCEred simulation. We note that these
eigenpairs correspond to the eigendecomposition of Ĥ at the last iCEred iteration. The rank of
the projector is r = 2 and it is constant through all the iCEred levels. As in example 6.4.1, this
is a problem with a clear low-dimensional structure since only the parameter components θ1 and
θ2 define the geometry of the LSF; the remaining components represent a linear extrusion in the
complementary directions. Thus, the rank remains unchanged even when using small number of
samples per level. Note also that for d = 2 there is no associated dimension reduction and the
iCEred method reduces to standard iCE (as seen in Figure 6.2).

Figure 6.7 shows the number of calls of the LSF and its gradient, together with the coefficient
of variation of the failure probability estimates; the number of samples per level is now chosen as
N ∈ {100, 250, 500, 1000, 2500, 5000}. The results are computed as an average of 100 independent
simulation runs. Since we perform refinement, all ĉv(p̂F ) values are close to the predefined δ
for sample size smaller than N = 1000. This behavior is similar for all studied dimension cases.
Although the curvature parameter increases the nonlinearity of the problem, the performance of
iCEred remains insensitive to this value. For instance, when using N = 1000 samples per level,
the failure probability estimates are p̂F ≈ [6.61× 10−6, 4.74× 10−6].
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Figure 6.6: Eigenvalue decay (1st row) and first two eigenvectors (2nd row) of the matrix Ĥ corresponding
to example 6.4.2 with κ = 5, for sample size and increasing dimension (columns).
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Figure 6.7: iCEred with refinement for example 6.4.2: number of LSF and gradient calls for different sample
size, curvature values (rows) and dimensions (columns). The ĉv of the failure probability
estimate is also shown (in red).

6.4.3. Example 3: one-dimensional diffusion

We consider the stochastic linear elliptic equation defined in subsection 3.3.2. In this case, the
covariance kernel of the Gaussian field is exponential with correlation length ` = 0.1. We employ
the KL expansion to represent the conductivity field using truncation orders k = 200. The
dimension of the parameter space is d = 201 after including the flux random variable.

Recall that the failure of the system occurs when the maximum pressure head exceeds a
given admissible threshold. The LSF is defined in (3.44). The forward problem has an analytical
solution (3.43), and the gradient of the LSF is estimated by finite differences. The reference value
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of the probability of failure is estimated with N = 5000 samples per level using SIS, CE, iCE
and SuS methods in subsection 3.3.2. The values are listed in Table 3.2, which are respectively
for each method, pF = {3.36, 3.44, 3.41, 3.23} × 10−5. The value with the smallest coefficient of
variation is given by standard iCE, which is pF = 3.41× 10−5.

We assess the accuracy and performance of iCEred employing sample sizesN = {100, 250, 500,
1000}. For each N , we perform Nsim = 50 independent runs of the algorithm. The logistic
function is chosen as the smooth approximation of the failure indicator function. In the refinement
step, the target coefficient of variation is set to δ = 0.07, and the increment in the sample size is
M = 100.

Table 6.2 shows for different sample sizes the failure probability estimates, together with
the number of LSF and LSF gradient calls, denoted gcall and (∇g)call, respectively. For each of
the sample sizes, the average number of levels obtained in iCEred is nlv = {6, 5, 5, 4}, and the
average final ranks are r = {8, 10, 10, 10}. The mean value of the probability of failure computed
by repeated runs of iCEred is close to the reference, whereas the coefficient of variation of the
estimate by the methods in Chapter 3 are significantly larger than the one of iCEred (under
same sample size). The iCEred method requires considerably less number of LSF evaluations. In
this example, iCEred proves to be more efficient than the standard methods since the gradient
computations are easy to compute.

However, from Table 6.2 it is seen that N = 100 is not sufficient to obtain an accurate
estimator of the probability of failure. This has to do with the MC approximation of the second
moment matrix of the log-smooth indicator function gradient. The final rank of the projector is
approximately r = 10. If we follow the heuristic rule to determine the sample size provided by
AS in subsection 6.1.2, the number of samples required to estimate r = 10 eigenvalues using
the limiting oversampling factors α = {2, 10}, is N = {103, 530}. In this example, α = 2 is not
sufficient to get a stable solution of the eigenvalues of Ĥ.

Table 6.2.: Failure probability estimates by iCEred of the example in subsection 6.4.3: the iCEred results
are shown as an average of 50 simulations.

N gcall (∇g)call p̂F ĉv(pF )

100 15178 582 2.94× 10−5 0.279
250 4098 1340 3.39× 10−5 0.077
500 3992 2260 3.42× 10−5 0.057
1000 6226 4160 3.40× 10−5 0.049

This can also be seen in Figure 6.8. In the first row, we plot the evolution of the rank with
the smoothing parameters for the investigated sample sizes and the 50 independent simulations.
Using N = 100, the relation between rank and smoothing parameter is more noisy compared to
the results with increasing N . In the second row, we plot the evolution of the iCEred iterations
and the rank for 50 independent simulations. One requires in average more levels to estimate the
failure probability when using small sample sizes. As we increase the sample size, the relation
between the intermediate levels in iCEred and the rank seems to be linear.

Note also the effect of the parametrization induced by the smoothing parameters: at initial
levels when s > 0, the rank of the projector is small since the approximation is still close to the
prior; as we approach the posterior with s→ 0, the rank of the projector increases to estimate
the appropriate low-dimensional approximation.

6.4.4. Example 4: two-dimensional plate with a hole

We consider the steel plate model used subsection 2.7.2. The Young’s modulus is a random field
modeled with the isotropic exponential kernel and correlation length ` = 0.04 m. In this case,
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Figure 6.8: Evolution of the rank for different simulation runs and N = {100, 250, 500, 1000}. 1st row:
rank and smoothing parameters. 2nd row: iCEred iterations and rank. The star marks the
final value of the rank at the given run.

the body forces in (2.43) are assumed to be approximately zero. The number of terms in the
expansion is fixed to k = 868, which accounts for 92.5% of the spatial average of the variance of
the Gaussian random field lnE. The eigenpairs are estimated with the Nyström method using
107 GL points in each direction.

As in subsection 4.6.2, we select the principal stress σ1 as the target QoI. Recall that this
quantity depends on the stress field of the plate σ(x) := [σx1(x), σx2(x), τx1x2(x)]T, which
is computed after obtaining the displacement field via (2.43) and applying Hooke’s law for
continuous media. The failure of the plate occurs when the value of σ1 at a control point
xctr = [0.16, 0.18] (see Figure 2.11), exceeds a yield tensile strength of 320 MPa; the LSF is
defined as

g(θ) = 320− σ1(σ(xctr;θ)); (6.38)

we remark that for computational reasons the σ1 stress defining the LSF is evaluated at the GL
point of the element closest to the control node xctr. The gradient of the LSF is computed by
the adjoint method derived in Appendix B.3.1.

The uncertain parameter vector is given by θ = [θ(q),θ(KL)] to account for both, the load
random variable and Young’s modulus random field. Here, θ(q) is also a standard Gaussian
random variable since we apply the transformation θ(q) = (q−µq)/σq. As a result, the stochastic
dimension of the problem is d = K + 1 = 869. This example cannot be solved efficiently using
standard CE or iCE, since a large number of effective samples per level are required for fitting
high-dimensional parametric densities. Therefore, to compare the results of iCEred, we estimate
the failure probability by an average of 100 independent runs of SuS (cf., subsection 3.2.3) using
N = 3000 samples per level.

We apply the iCEred method with number of samples per level selected from the set
N ∈ {100, 250, 500}. Table 6.3 shows the results as an average of 40 independent simulations.
Note that the coefficient of variation of the failure probabilities are close to the target δ. This is
also reflected in the averaged number of LSF and gradient calls, denoted respectively as gcall
and (∇g)call. Both number of evaluations are the same when refinement is not required, and
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the values are closer to each other when number of required iterations in the refinement step
is small. As seen also in the previous examples, the value of gcall increases considerably at a
small value of N in order to match δ. However, there is a trade-off between the computational
cost of the extra LSF and the LSF gradient calls. If the gradient is expensive to evaluate, a
small number of samples is recommended since the value of the probability estimate is later
improved by the refinement. On the contrary, if an efficient way to compute the LSF gradient
is available, the extra LSF evaluations in the refinement might exceed the cost of the gradient
computations; in this case using a large sample size is recommended. Note also in Table 6.3
that the mean value of the probability of failure computed by repeated runs of SuS is close to
the values estimated by repeated runs of iCEred, whereas the coefficient of variation of the SuS
estimate is significantly higher than the one of iCEred. Moreover, the iCEred method requires
considerably fewer LSF evaluations, and thus can be much more efficient than SuS provided an
effective gradient computation is feasible.

Table 6.3.: Failure probability estimates for the example 6.4.4: the iCEred results are shown as an average
of 40 simulations; the SuS estimate is computed as an average of 100 simulations.

iCEred SuS
N gcall (∇g)call p̂F ĉv(pF ) N nlv gcall p̂F ĉv(pF )

100 2396 675 3.57× 10−6 0.050
3000 6 1.62× 104 3.75× 10−6 0.215250 2416 1612 3.60× 10−6 0.046

500 3685 3037 3.62× 10−6 0.043
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Figure 6.9: Evolution of the rank with the iCEred iterations for several simulation runs and N ∈
{100, 250, 500} (columns). The star marks the final value of the rank at the given simulation
run.

We plot in Figure 6.9 the evolution of the rank with the iCEred iterations (intermediate
levels). The results are shown for different sample sizes and independent simulation runs. As N
increases, the number of iterations becomes smaller; on average, for each of the employed sample
sizes, the number of levels are nlv = [5.75, 5.45, 5.08]. For the investigated number of samples
per level, the maximum observed ranks across the 40 independent simulations are r = [8, 9, 12];
however, the final rank is on average r = 3 for N = 100, and r = 4 for N = [250, 500]. We
also observe that the value of the smoothing parameters at the final iteration are on average
snlv = [0.098, 0.084, 0.051], which shows that s reaches values closer to zero for larger sample sizes.
Note in (6.35) that the gradient of the log-smooth indicator is essentially driven by the gradient
of the LSF; the smoothing parameter indirectly determines the locations at which the gradient
is evaluated. In this example, the increment in the rank with the number of intermediate levels
seems to be related to the LSF gradient discovering a larger FIS as the samples move towards
the failure domain where the nonlinearity of the LSF increases. Moreover, in contrast to the
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previous example, N = 100 samples yields an appropriate estimate of the probability of failure.
In this case, the AS rule gives a required number of samples of N ≈ [54, 271], for each of the
oversampling factor α ∈ {2, 10} and r = 4.

Finally, Figure 6.10 shows the evolution of the probability of failure for increasing terms in the
KL expansion (2.44). Different failure probabilities are computed by SuS for truncation orders
K ∈ {25, 100, 500, 868}; the iCEred method is only evaluated for K = 868. In both approaches,
the estimators are given as average of 40 independent simulations. Note the difference between
the failure probabilities computed by reducing the number of input dimensions (KL terms) and
those estimated by identifying the FIS. Solving the rare event simulation problem on the FIS is
not equivalent to truncating the parameter space, as in the latter case, there is an associated
loss of information (e.g., random field variability). The effective dimension of the local FIS in
this example is on average r = 4 (when using N = 500 samples), and thus the iCEred method
can compute the failure probability associated with an input dimension of K = 868 efficiently
and with a very small coefficient of variation.
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Figure 6.10: Probability of failure estimated by SuS for increasing number of terms in the KL expansion,
and probability of failure estimated by iCEred at 868 KL terms.

In this chapter, we discussed a dimension reduction technique that enables the construction
of a so-called failure-informed subspace. This subspace allows the definition of a CE-based IS
algorithm that can be used to approach high-dimensional reliability problems; especially those
involving random field parameters. The method, called iCEred, is able to effectively estimate
rare event probabilities in high dimensions with considerably smaller variability and sample size
compared to standard simulation approaches (cf. Chapter 3). This applies to cases where an
efficient gradient computation is feasible. In other circumstances, there is a trade-off between
the computational cost of LSF evaluations and their gradient counterparts. As a result, we also
defined a refinement step that can be used to improve the failure probability estimate without
further increasing the number of gradient evaluations. We remark that in applications where
there is no significant dimension reduction associated to the reliability problem, iCEred can be
combined with more general parametric distribution models (see, e.g., [179]).
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Chapter 7

Conclusions and outlook

“If a man will begin with certainties, he shall end
in doubts; but if he will be content to begin with
doubts he shall end in certainties”.

Francis Bacon, 1561-1626.

7.1. Conclusions

The uncertainty related to spatially varying parameters of engineering models is represented
by random fields, which are discretized into a finite (but typically large) number of random
variables. We study the influence of different parameter choices in the prior random field on
the updated posterior solution, especially the effect of the number of terms in the random field
discretization. The analysis is also performed for the evaluation of rare event probabilities. This
initial study motivated the development of two algorithms, one for Bayesian inference and the
other for rare event simulation. The methods are particularly useful and efficient to address
engineering models involving random fields.

The main contributions of this thesis are listed in the following.

Bayesian analysis of engineering models with random fields

Bayesian inference is a popular framework for identifying spatially varying parameters modeled
as random fields. The definition of an appropriate prior for the covariance kernel of the random
field is often challenging. An arbitrary choice of the prior distribution and its parameters can
have a significant impact on the posterior solution and predictions. To assess the influence of
the prior random field model, we investigated two examples, one for which we derived analytical
solutions (section 4.5) and another one that is approached numerically (section 4.6). For the
latter, we also evaluated the influence of the random field discretization on the estimation of
prior and posterior rare event probabilities. The main findings of this study are:

� Oftentimes in engineering applications, the same truncation order in the prior and posterior
random field representations is employed (see, e.g., [202]). However, when dealing with
Bayesian inverse problems, a larger number of terms in the KL expansion is required for
an accurate approximation, compared to the prior random field. The common choice for
the KL truncation order to retain a given percentage (typically the 90% or 95%) of the
spatially averaged variability of the prior random field is not generally sufficient to obtain
the same error levels in the posterior solution.

� We observe that after including the observations, the reduction in the uncertainty is more
significant for random field models that use priors with smooth correlation kernels, such
as the squared exponential (cf. Figure 4.6). The smoother the kernel, the more correlated
the spatial points are, and thus the information impacts the inference in a more global
manner. However, one should be careful when using those type of priors since the posterior
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fields can be too smooth to explain the observed data (cf. Figure 4.9). In general, the
application non-smooth kernels for prior modeling generate more conservative results. This
is also seen in the values of the failure probabilities, which are larger compared to those
resulting from utilizing smooth kernels (cf. Table 4.1).

� The solution of Bayesian inverse problems is highly influenced by the smoothing action of
the forward operator. The smoothing effect appears oftentimes in inverse problems where
the forward operator involves integration of the inverse quantity, and it can be explained by
the Riemann-Lebesgue lemma (see, e.g., [107, p.8]). Specifically, QoIs that are computed
by integration of the forward model operator yield smaller errors in the mean and variance
of the random field, as compared to those obtained for QoIs depending locally on the
fluctuations of the posterior random field. This information can support the selection of the
QoIs that are relevant for the analysis (e.g., when performing posterior predictions, such
as the estimation of rare events), in order to avoid unnecessary computations when solving
the Bayesian inverse problem. Moreover, the smoothing effect of the forward operator
typically induces a low-dimensional structure on the input parameter space, which can be
exploited to improve the efficiency of standard Bayesian inversion algorithms (see, e.g.,
[218, 53, 57, 253]).

� An additional effect of the Bayesian inversion is the modification of the homogeneous prior
random field structure. The resulting posterior fields are no longer homogeneous, since the
posterior mean is variable in space and the covariance is anisotropic (cf. Figure 4.6). The
KL modes associated to the posterior non-homogeneous random fields decay more slowly,
and hence, more terms in the expansion are required than in the prior (homogeneous)
fields.

� We derived a closed-form expression for the model evidence in the context of the KL
expansion of random field (subsection 4.5.3). This quantity reaches a plateau at a relatively
small number of KL terms (for our numerical experiments) and it does not increase
substantially with further addition of terms. The model choice/selection solution is
generally not sufficient to represent the whole variability of the posterior random field. For
instance, Figure 4.11 shows that for the smaller correlation length one requires at least 30
terms in the KL expansion to explain 90% of the posterior variability. If one performs
model selection (Figure 4.12), only 8 terms in the expansion are enough to reach the
maximum value of the model evidence. However, this solution is only able to represent 60%
of the variability. A better strategy when dealing with random fields is to perform model
mixing/averaging, in which one employs all the collection of models for future decisions.

� At the prior level, the probability of failure increases with the number of terms in the
KL expansion. This is due to the investigated type of failure mode in the example of
section 4.6, which is local in the sense that the σ1 stress is highly dependent on the
local spatial fluctuations of the Young’s modulus field. In this case, increasing the KL
terms contributes to a better representation the stress field variability. However, if the
failure mode is global, e.g., LSF based on displacements, only a few terms are required
for representing the variability of the displacement field, and as a result the probability
of failure will remain almost constant with increasing KL terms (see also the study in
[89]). Nevertheless, as the truncation order tends to infinity, the probabilities converge to
a target value corresponding to the probability of failure defined by the fully-represented
random field. Since in practice it is not possible to account for the total uncertainty of the
field, one is typically estimating a bound of the target failure probability when applying
the KL discretization. This is because the approximate variance from the truncated KL
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expansion is always smaller than the exact variance, underestimating the variability of the
random field.

� At the posterior level, the example in section 4.6 shows that the probability of failure
decreases due to the inclusion of information. This is not always the case, e.g., if the
measurements indicate a much weaker material than assumed in the prior, the posterior
probability of failure can increase. The values of the updated/posterior probabilities depend
on the quality of the information, the accuracy of the random field representation, the LSF
and the numerical method used for the estimation. Due to the two-step approach that is
used in the method presented in section 4.4, the variability of the posterior probability
estimates generated by the SuS algorithm is large; especially when the likelihood function
is strongly peaked and the failure probabilities are very small. In those cases, the sequential
exploration of small probability regions in the posterior requires several intermediate levels,
which accumulates the variability of the updated probability estimate. Hence, either a
different sampling strategy, or an extension of the SuS method is required when dealing
with the updating of rare event probabilities involving random fields.

Dimension selection and averaging: trans-dimensional BUS

We introduced a sequential methodology for the solution of Bayesian model choice problems
in section 5.3. The method (termed tBUS-SuS) is a variable-dimensional extension of the
classical BUS formulation when used in combination with the SuS algorithm. Our applications
involved problems where the KL expansion is used to represent random fields. Hence, the
truncation/dimension of the KL discretization is also a part of the inference. The main ideas
behind our method are: (i) the re-definition of the parameter space to account for the discrete
dimension random variable, and (ii) the application of trans-dimensional MCMC algorithms
to sample the resulting sequence of intermediate discrete-continuous distributions. In the first
case, we proposed a dimension prior that penalizes increasing model complexity. In the second
case, two MCMC algorithms that work in a saturated space where the dimensions are fixed
were discussed. Particularly, we derived a step-wise sampler based on a simplification of the
RJMCMC algorithm in the saturated space. The main conclusions from this study are:

� The inclusion of a prior that penalizes models with increased number of parameters is
beneficial in the context of the KL expansion. Note that if we employ a uniform prior for
the dimension, the individual model evidences define the model posterior. In this case,
visits to models with high complexity have the same probability of occurrence despite the
contribution of both models is almost the same (cf. Figure 5.4). We use the proposed
dimension prior precisely to avoid such situations, since it allows us to emphasize dimensions
with the largest model evidence, and at the same time, to alleviate the computational cost
since the evaluation of unnecessarily complicated models is significantly reduced. This
prior is tailored to random field models parameterized with the KL expansion.

� The choice of the dimension proposal of the MCMC samplers plays an important role in
the estimation of the model posterior. In general, we observed that the step-wise sampler is
more sensitive to this tuning step. Particularly, if the change from model prior to posterior
is minimal, drawing samples from the prior itself gives the best results. However, using
a proposal matrix to control the dimension moves is beneficial when the changes in the
prior-posterior update are significant. Moreover, from the examples in section 5.4, we see
that using a jump length between 10% and 50% of the maximum truncation order yields
good results.
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� We found that in the context of random fields, the model choice solution is not guaranteed
to produce the best representation. It can be seen as a “point” estimate of the dimension
posterior which in some cases can fail to approximate the variability of the underlying
random field. As a result, we recommend the model mixing solution (or a subset of it) in
this type of applications.

� The computational cost of tBUS-SuS seems elevated since a large number of samples per
level N is required (cf. Figure 5.10). However, this cost is small compared to those of
standard within-model simulation approaches, trans-dimensional MCMC algorithms that
are not used in combination with a sequential approach, or other sequential algorithms used
to solve Bayesian model choice problems. For instance, the work in [9] uses N = 5× 104

particles per level, and in [123] the algorithm is executed for N = 106 states, storing every
500-th sample.

� The proposed step-wise sampler is a simplification of the RJMCMC sampler in the saturated
or composite space. This produces a tBUS-SuS algorithm that is more “automatic” in its
definition, since the tuning of a jumping function is not required. In more general model
choice situations (other than nested/variable-selection models), the inclusion of a jumping
function can be necessary to satisfy the detailed balance condition, and to improve the
efficiency of the algorithm.

� The variability in the dimension posterior estimate is larger when employing the step-wise
sampler. However, recall that MwG evaluates the joint posterior in two levels, one at
which we fix the parameters and sample the dimension, and another one for which the fix
the dimension and sample the parameters. This mechanism requires twice the number of
PDE model evaluations as compared to the step-wise algorithm, which uses a single joint
acceptance step. We have seen that under the same computational cost, both algorithms
have comparable performance.

Dimension reduction: failure-informed cross-entropy-based importance sampling

We developed a computational framework for solving high-dimensional and numerically intensive
rare event simulation problems. This includes settings where the underlying system properties are
spatially variable and random field models are required for their representation. The approach
(termed iCEred) is an extension of importance sampling with the CE method that enhances
its efficiency in high dimensions. The main idea is to adapt dimension reduction techniques
developed for Bayesian inference through expressing the rare event simulation problem as a
Bayesian inversion problem. This enables the identification of the potential low-dimensional
structure of the rare event simulation problem. As a result, we construct a so-called failure-
informed subspace (FIS), where efficient low-dimensional biasing distributions can be defined.
This process ultimately requires the evaluation of the LSF gradient. From this study, we can
outline the following:

� The iCEred method is able to effectively compute rare event probability estimators in
high dimensions that have a considerably smaller variability compared to the standard
approaches that typically rely on MCMC simulation. This is also true, even in cases where
a considerably small number of samples per level is employed. Although the sample size
will depend on the effective rank of the projector.

� As the rank increases, more samples per level are required to obtain a good fitting of the
single Gaussian parametric densities. Hence, in applications where there is no significant
dimension reduction, iCEred can be coupled with more general parametric distribution
models, such as the von Mises–Fisher–Nakagami mixture [179].
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� iCEred applies mostly to cases where an efficient gradient computation is feasible. In other
circumstances, there is a trade-off between the computational cost of LSF evaluations
and their gradient counterparts. The suggested refinement step helps to address these
situations by improving the failure probability estimate without performing extra gradient
calls.

� The rank of the projectors that map the parameters to the FIS increases as one approaches
the final iterations of the algorithm when the LSF is highly nonlinear. Note in (6.35)
that the gradient of the log-smooth indicator is essentially driven by the gradient of the
LSF; the smoothing parameter indirectly determines the locations at which the gradient is
evaluated. The increment in the rank with the number of intermediate levels seems to be
related to the LSF gradient discovering a larger FIS, as the samples move towards the
failure domain where the potential nonlinearity of the LSF increases.

� In iCEred, the tolerance value ε is used to control the KLD between the exact and
approximated optimal biasing densities. However, if we instead choose to bound the MSE,
the values of the rank in the plate example of subsection 6.4.4 are half in magnitude.
It might be sufficient for the iCEred method to define the controlled approximation in
terms of the MSE instead of the KLD. This is because the main objective in rare event
simulation is to provide an estimate for the failure probability (normalizing constant)
and not the reconstruction of the optimal biasing distribution itself. Further studies are
required to formally analyze the approximation in this case. Specifically, an investigation
on the user-defined tolerance ε is necessary to assess its influence on the performance of
iCEred and the accuracy of the probability estimate.

� When dealing with problems that have multiple failure points (multi-modal failure hyper-
surface), mixture distributions can also be adapted within the iCEred framework.

7.2. Outlook

The following is a list of ideas that could inspire new research.

Bayesian analysis of random fields

The analysis of random fields requires the specification of several parameters, e.g., the smooth-
ing parameter and correlation length of the Matérn covariance kernel, the dimension of the
discretization, and the mean and variance of the field. Such quantities can also be modeled in a
probabilistic manner. Our focus was on the dimension of the random field discretization in the
context of the KL expansion. However, a fully hierarchical framework that imposes priors on
each of random field parameters is still to be developed. Such a robust Bayesian setting can
be addressed by the careful combination and adaptation of several exiting methodologies (as
those described in the Introduction, e.g., [161, 220, 142, 194]). The tBUS methodology can be
combined with those approaches to further expand the hierarchies in the Bayesian inversion.

The computational machinery needs to be further developed for problems dealing with the
updating of rare events in the context of random fields, i.e., exploring tails of high-dimensional
posterior distributions. We have observed that the KL modes of the posterior covariance operator
are almost the same as those of the prior covariance, for large components of the expansion.
Dimension reduction techniques that exist in Bayesian inverse problems (section 6.1) can be used
to find this potential low-dimensional structure. Thereafter, the MCMC algorithm within SuS
can replaced for instance, by the DILI (dimension-independent likelihood-informed) algorithm
developed in [58]. Such application can potentially increase the efficiency of the SuS method
and improve its accuracy.
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In order to perform a particular UQ task (whether is forward propagation or inversion),
further studies can address the following questions: (i) in which sense the optimal approximations
should be defined, and (ii) how precise the resulting optimal representation needs to be. In
this direction, exploring the relation between the error metrics (2.33), which are standard in
engineering practice, and theoretical bounds on probability distances, such as those in [91, 225,
147, 115, 117], can be relevant to define optimal decision tools in the specification of random
field approximations. This holds in particular when one requires a precise representation of the
distribution tails, and not only of the mean and variance. Recent developments in goal-oriented
UQ can be used in this case.

Improvements and extensions for tBUS

One possible improvement of tBUS is to use the covering constants {c̄1, . . . , c̄kmax} of each
particular dimension in the LSF (5.24), instead of the single constant r̄ = max(c̄k|kmax

k=1 ). The
value r̄ can be considerably larger than the magnitude of the maximum log-likelihood at the
lower dimensions, inducing a loss of sampling efficiency in those dimensions. One can design the
algorithm such that one keeps track of the dimensions that are being evaluated, and define the
LSF (5.26) as a function of the individual c̄k. This will also require the definition of multiple
intermediate levels, since every dimension variable defines a particular posterior domain.

The exploration of more general model choice settings is still to be addressed by tBUS.
This includes cases where the uncertain parameters associated to different dimensions have a
complete different meaning. For example, in cases where several PDE models are considered to
represent a given physical process. The saturated space methods discussed in subsection 5.2.2
are potentially no longer valid when there is no nested structure in the models.

Improvements and extensions for iCEred

The FIS concept provides a new perspective in high-dimensional rare event simulation. Different
simulation algorithms, such as [180, 241], can be adapted to work on the FIS in order to improve
their performance and accuracy in high dimensions.

Furthermore, several improvements and adaptations can be performed on iCEred. The
following suggestions could potentially save significant computational demands related to gradient
evaluations in iCEred:

� a clear direction is to employ gradient-free methods to construct the FIS—partial least
squares [178] might be useful to accomplish such task;

� another idea is to define a measure to assess whether or not the second moment matrix
of the gradient of the log-smooth indicator function needs to be computed at a given
iCEred level. Since the main interest is the failure probability computation and not the
construction of the optimal biasing distribution itself, it might be sufficient to build the
FIS at the first one or two iterations, and continue with the standard methodology in the
remainder levels. This requires a study on the influence of the user-defined tolerance ε;
and

� a potential extension is to employ two different sample sizes, one for the LSF evaluations
and another one for the gradient computations. The number of samples per level required
to evaluate the gradient can be adapted based on the value of the rank at the given
intermediate level.

Finally, the iCEred method can also be adapted to perform reliability updating. One
can for instance employ the standard CDR approach [253], which uses SIS to obtain samples

142



7.2. Outlook

from the posterior parameters, and then employ iCEred to estimate the posterior failure
probability. Alternatively, one can utilize the BUS formulation to solve the inverse problem,
but in combination with the iCEred method. This requires evaluating the gradient of the LSF
hln(ϑ) in (4.29)

∂hln(ϑ)
∂ϑ

=
[
∂hln(ϑ)
∂θυ

,
∂hln(ϑ)
∂θ

]T
, (7.1)

where each component is given by:

∂hln(ϑ)
∂θυ

= ∂

∂θυ
ln(Φ(θυ)) =

√
2
π

exp
(
−θ

2
υ

2

)

erf
(√

2θυ
2

)
+ 1

,
∂hln(ϑ)
∂θ

= − ∂

∂θ
ln L(θ; ỹ) . (7.2)

Ultimately, one obtains a framework that fully works on the underlying low-dimensional
subspaces and that requires the gradients of both, the likelihood function for the Bayesian
inversion and the LSF for the reliability updating.
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Appendix A

Fundamentals on probability theory

The properties and characterization of random fields follow from the theory of stochastic
processes, which is rooted in the study of probability spaces and random variables. In this
Appendix, we review some introductory concepts on probability theory.

A.1. Setting a probabilistic framework

We define a probability space [137] as the triple (Ω,F ,P), where

� the sample space Ω is a non-empty set containing the outcomes of a random experiment
(elementary events),

� the σ-algebra F is a collection of subsets of Ω, satisfying: (i) F contains the empty set
and the sample space, i.e., ∅ ∈ F and Ω ∈ F , (ii) A ∈ F implies that Ac ∈ F , and (iii)
A1, A2, ... ∈ F implies that ∪∞i=1Ai ∈ F (this also holds for countable intersections). The
elements of F are called events (or measurable sets), and

� the probability measure P is a mapping P : F → [0, 1], such that (i) P is real and non-
negative, (ii) P is σ-additive, i.e., P[∪∞i=1Ai] =

∑∞
i=1P[Ai], for mutually disjoint events

Ai, and (iii) P[∅] = 0 and P[Ω] = 1.

Remark A.1. There are some practicalities underlying the previous definition. For instance,
it is important for F to be closed under set operations, since this allows us to take limits and
define asymptotic expansions when applying probability theory [195]. Moreover, F must be a
σ-algebra since we are only interested in “nice” events, meaning those that can be measured
(so-called Borel sets1). Non-measurable sets typically lead to some paradoxes in mathematics.
Therefore, any subset of the sample space not belonging to F has non-defined probability
measure.
Remark A.2. Another point about σ-algebras is that they are strictly necessary only when the
sample space is not countable, say all possible subsets of the interval [0, 1]. In such cases, the
Carathéodory’s extension theorem (see [12, p.19]) enables one to define valid probability spaces.
As a result, one can specify for example the probability space (Ω,F ,P), where Ω = [0, 1], F
contains all intervals in [0,1], and for any interval I ∈ F the probability measure P[I] is equal
to the length of the interval. This triple defines an uniform distribution on [0, 1], or a so-called
Lebesgue measure on [0, 1] (see [195, p.15] for a formal construction).

Probability theory is mainly concerned with the study of random variables. Intuitively, a
random variable is a quantity that is measured in a random experiment. Formally, given a
probability space (Ω,F ,P), a real-valued random variable is a function X : Ω→ R, such that
{X(ω) ≤ x} ∈ F , with ω ∈ Ω and x ∈ R (i.e., random variables are F -measurable or just
measurable functions).

A class of random variables which have finite range and discrete support, are the so-called
simple or discrete. A simple random variable can be expressed in terms of the series expansion

1A Borel set is any set in a topological space that can be formed from open/closed sets through the operations
of countable union/intersection, and relative complement.
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X =
∑n
i=1 xi1Ai , where x1, x2, . . . , xn are elements of its range, the sets Ai = {ω ∈ Ω;X(ω) =

xi} = X−1({xi}) form a finite partition of the sample space Ω, and 1Ai is the indicator function
for some event Ai (it is equal to one, if xi ∈ Ai and zero otherwise). Random variables are
usually described in terms of statistics, the most fundamental being the expected value (or
expectation or mean). For a simple random variable X, the expected value, denoted E[X] or
µX , is defined as [195]

E[X] = E

[
n∑
i=1

xi1Ai

]
=

n∑
i=1

xiP[Ai] , where each Ai is a finite partition of Ω. (A.1)

Consider the random variables X,Y and scalars a, b, then the following statements about the
expectation operator hold [195]: (i). The expectation is linear, E[aX + bY ] = aE[X]+bE[Y ], (ii).
The expectation is order-preserving, if X ≤ Y , then E[X] ≤ E[Y ], (iii). The expectation follows
the triangle inequality, |E[X]| ≤ E[|X|], (iv). If f : R → R is any function and X is simple,
then f(X) =

∑n
i=1 f(xi)1Ai is also simple with expected value E[f(X)] =

∑n
i=1 f(xi)P[Ai], (v).

If X and Y are independent, then E[XY ] = E[X]E[Y ].
Besides the expected value, another useful concept in probability arises by considering

E[f(X)] with f(X) = (X − E[X])2. This is the second central moment or variance of the
random variable X, denoted V[X] or σ2

X . This function gives information about the variation of
a random variable X and it is defined as V[X] = E

[
(X − E[X])2]. Some immediate properties

of the variance include [195]: (i). 0 ≤ V[X] ≤ E
[
X2], (ii). V[aX + bY ] = a2V[X] + b2V[Y ] +

2ab Cov [X,Y ], where Cov [X,Y ] = E[(X − µX)(Y − µY )] is the covariance between X and
Y , (iii). If X and Y are independent, then V[X + Y ] = V[X] +V[Y ], (iv). If V[X] > 0 and
V[Y ] > 0, then the correlation between X and Y is Corr [X,Y ] = Cov [X,Y ] /

√
V[X]V[Y ], (v).

The positive square root σX =
√
V[X] is called the standard deviation of X.

In general continuous settings, the expectation is given by integration of the random variable
with respect to the associated probability measure:

E[X] :=
ˆ

Ω
XdP =

ˆ
Ω
X(ω)P(dω). (A.2)

In many cases, the expectation still exists for random variables that are defined in a probability
space with a Lebesgue probability measure, despite they are not Riemmann integrable (see [195,
p.51] for an example). This is because the latter is only applicable to continuous functions, or
at least to functions that do not have too many points of discontinuity [138, p.293]. Therefore,
definition (A.2) is more flexible since it is applicable to any type of random variable. The
expected value in (A.2) can be understood as the Lebesgue integral of the random variable X.
If E[|X|] <∞, X is integrable, and if E[|X|2] <∞, we call X square-integrable.

A.2. Distributions of random variables

In probability theory, one is particularly interested in computing probabilities of events associated
to a random variable X, defined on a probability space (Ω,F ,P). Such probabilities are specified
by the law or distribution of X

µ(B) := P[ω : X(ω) ∈ B] = P[X ∈ B] = P
[
X−1(B)

]
, (A.3)

where B ∈ B, and B is the collection of Borel sets on R. Furthermore, the cumulative
distribution function (CDF) of X is defined as

FX(x) := P[ω : X(ω) ≤ x] = P[X ≤ x] , (A.4)
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the map FX : R → [0, 1] is increasing (a ≤ b =⇒ FX(a) ≤ FX(b)), right-continuous
(limx→x+

0
FX(x) = FX(x0)), and satisfies limx→−∞ FX(x) = 0, limx→∞ FX(x) = 1. There is a

pivotal connection between the CDF FX and the law µ. By definition of the CDF, the probability
that X lies in the semi-closed interval (a, b], where a ≤ b, is [12]

P[ω : a < X(ω) ≤ b] = P[a < X ≤ b] = FX(b)− FX(a) = µ ((a, b]) , (A.5)

this is because the intervals (a, b] are in particular Borel sets on R. The measure of arbitrary
intervals can also be expressed in terms of the CDF (see [12, p.25]). Due to (A.5), the law µ is
completely determined by FX , and in this case we say that µ is the Lebesgue-Stieltjes measure
corresponding to FX (see [12, p.22]).

Remark A.3. It is common in practice to define uncertain quantities via the following statement:
“Let X be a random variable with distribution function FX”, that is, without any reference to
the probability space characterizing the uncertainty. In principle this is not an issue since the
main interest is on computing the probability of all events involving X, and of course FX itself
determines the probability law µ, which in turn determines probability values. Despite the
nature of the underlying probability space seems to become irrelevant, one still needs to check
whether there exist at least one (Ω,F ,P) on which X ∼ FX can be specified.

Remark A.4. There exists a canonical way of constructing a probability space, which is by
defining Ω = R, F = B(R), P = µ equal to the Lebesgue measure corresponding to FX , and
writing the random variable as X(ω) = ω, which is the so-called identity map [12, p.174]. In
most engineering applications, for example when performing simulation, one usually forgets
about Ω and F , and use samples to build probability distributions. However, it is not always
clear how to reconstruct the random variable itself, meaning the function that connects the
sample space with values on the real numbers, which is ultimately the quantity we want to define.
The identity map implicitly fills such void, since elements of the sample space are completely
determined by values of the random variable.

One can further specify a property of distribution functions that yield another important
function employed in probability theory:

FX(x) = P[X ≤ x] = P[−∞ ≤ X ≤ x] =
ˆ x

−∞
πX(x)λ(dx), (A.6)

where πX is a positive Lebesgue-integrable function called the probability density function (PDF)
of X, and λ denotes the Lebesgue measure on R. The PDF is such that

´∞
−∞ πX(x)λ(dx) = 1.

We remark that for discrete random variables the PDF is called the probability mass function,
which is a density with respect to the counting measure over Z.

In general, (A.6) also expresses the connection between the PDF and the law µ. Note that
one can also write (A.6) in terms of the law as µ(B) =

´
B πX(x)λ(dx). This can also be written

as the differentials dµ = πXdλ. Therefore, πX = dµ/dλ corresponds to the Radon–Nikodym
derivative of µ with respect to λ. Since λ is the Lebesgue measure on R, one usually says
that πX is the density of µ, or analogously of FX [12]. A classical example is the Gaussian
distribution, denoted N (µX , σ2

X) which has probability law

µ(B) =
ˆ ∞
−∞

1
σX

φ

(
x− µX
σX

)
1B(x)λ(dx) =

ˆ
B

1
σX

φ

(
x− µX
σX

)
λ(dx), (A.7a)

where φ(x) = 1√
2π exp(−x2/2) is the standard Gaussian PDF, denoted N (0, 1). It is common to

drop the notation λ and one simply writes λ(dx) = dx.
The expected value (A.2) can also be defined in terms of the distribution of the random

147



Chapter A. Fundamentals on probability theory.

variable. Consider a random variable X ∼ µ. For any Lebesgue-integrable function g : R→ R:

EP[g(X)] =
ˆ

Ω
g(X(ω))P(dω) =

ˆ ∞
−∞

g(x)µ(dx) = Eµ[g] ; (A.8)

this result is called the change of variable theorem (see [195, p.67]) and shows that distributions
completely specify expectations. This means that the expectation of a random variable g(X)
with respect to the probability measure P on Ω, is equal to the expectation of the function g
with respect to the distribution µ on R. Moreover, assuming that µ has a density with respect
to the Lebesgue measure then (A.8) becomes

Eµ[g] =
ˆ ∞
−∞

g(x)µ(dx) =
ˆ ∞
−∞

g(x)πX(x) dx; (A.9)

hence, we can either compute the expectation by integrating the function with respect to the
distribution µ as in (A.8), or by integrating the function times the density with respect to the
Lebesgue measure λ as in (A.9).

A.3. Conditioning

The previous concepts generalize to settings where we consider collections of random variables.
In this case, the canonical probability space takes the form Ω = Rd, F = B(Rd), and P requires
the extension of Lebesgue measures on R to Rd, where d is the number of random variables.
We skip many of the details that imply such an extension (and refer to [12] for the details).
Nevertheless, we discuss important concepts in probability that arise when dealing with multiple
random variables.

Consider a d-dimensional random vector on a probability space (Ω,F ,P) is the function
X : Ω → R

d. Random vectors can be regarded as d-tuples of random variables, i.e., X =
[X1, . . . , Xi, . . . , Xd], where each Xi if the projection of X onto the i-th coordinate space. The
joint CDF of the random vector X is defined analogously from (A.6) as

FX(x) = P[ω : Xi(ω) ≤ xi, i = 1, . . . , d] = P[X1 ≤ x1 ∩X2 ≤ x2 ∩ · · · ∩Xd ≤ xd] , (A.10)

where x = [x1, x2, . . . , xd] ∈ Rd. The associated joint PDF can be obtained as

πX(x) = ∂dFX(x1, x2, . . . , xd)
∂x1∂x2 · · · ∂xd

. (A.11)

Two important classes of functions are obtained by manipulating (A.11). The first ones
are the marginal probability distributions, which give the probabilities for any of the individual
variables without reference to the values of the other ones; and the second ones are the conditional
probability distributions, which give the probabilities for any grouping of the random variables,
conditional on particular values of the remaining ones. The conditional PDF between two
random variables, say Xj given the occurrence of a value xi of Xi, is given by

πXj |Xi(xj | xi) =
πXiXj (xi, xj)
πXi(xi)

for any i, j = 1, . . . , d, (A.12)

where each πXi(xi) represents the marginal PDF of the random variable Xi, which is computed
by integration (marginalization) of the joint πXiXj (xi, xj) with respect to Xj .

Note that the joint, conditional and marginal PDFs are related as πXiXj (xi, xj) = πXj |Xi(xj | xi)
πXi(xi) = πXi|Xj (xi | xj)πXj (xj). The conditional PDF πXj |Xi(xj | xi) can be interpreted as
a normalized profile function. For a fixed xi = c, the function πXiXj (c, xj) is a profile of the
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joint PDF, since it equals the intersection of the surface πXiXj (xi, xj) by the plane xi = c.
The conditional density is the distribution of this profile, normalized by πXi(xi). Figure A.1
illustrates the relation between joint, marginals and conditional distributions, for d = 2. Without
loss of generality the functions are represented via histograms.
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Figure A.1: Joint, marginal and conditional densities. Samples from a banana-shaped distribution are
generated to represent the joint PDF. Lines along which the profiles are taken are also shown.
The marginals are depicted by histograms at each side of the 2D plot. Three conditionals
of x1 given x2 = [0.5, 1.0, 1.5] are shown in green. The associated conditionals for x2 given
x1 = [0.5, 1.0, 1.5] are shown on purple.

Now, consider the Hilbert space of second-order random variables (with finite second moment)
L2(Ω,F ,P), with the inner product defined via the expectation operator (A.9). For two random
variables X,Y ∈ L2(Rd,P), the conditional expectation of X given Y is a random variable
Z = E[X | Y ], such that for a fixed value Y (ω) = y, we obtain Z(ω) = E[X | Y = y] [248].

Figure A.2: Simple illustration of the conditional expectation as the best least squares projector in the
Hilbert space of second-order random variables.

Conditional expectations are widely used in cases where one needs to estimate a random
variable X using observations of another Y . For instance, given Y one can be interested in a
function f(Y ) that acts as a predictor for X. Typically, the complexity of finding such predictor
is reduced by choosing f from a class of functions that minimize the MSE of the predictor. This
is the idea in least-squares, where one tries to find the f(Y ) that is closest to X in the MSE
sense, i.e., such that E

[
(f(Y )−X)2] is minimized. The solution to this problem is an optimal

predictor that is equal to the conditional expectation f(Y ) = E[X | Y ] [248, p.85]. Therefore,
f(Y ) is basically the orthogonal projection of X onto the linear subspace functions that can
be computed from the available information encoded in Y (cf. Figure A.2; note that this figure
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motivates the epigraph of Chapter 4). Moreover, for every measurable function g, we can write

f(y) = E[g(X) | Y = y] =
ˆ ∞
−∞

g(x)πX|Y (x | y) dx, (A.13)

one can see that for a fixed Y = y, the best approximation of g is its average over all values of
X that map to Y = y. We remark that the so-called “modern” probability theory is based on
the concept of conditional expectation (see fundamental theorem in [248, p.84]).
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Appendix B

Finite element method for 2D elasticity problems

We present a brief introduction to some key points on the theory of linear continuum models
and the finite element method applied to basic structural systems (this overview follows from
[234]). We also discuss the case where the underlying system properties are random and spatially
variable; the resulting random field is then incorporated into the finite element formulation.
Moreover, the adjoint method used to efficiently compute the gradient of the LSF (6.38) in the
example of subsection 6.4.4 is also derived.

B.1. Fundamental equations

In engineering mechanics, the theory of elasticity provides a way to describe the behavior of
homogeneous isotropic elastic bodies. This theory formulates a set of PDEs representing the
stress, deformation and displacement fields of a structure subjected to certain kind of forces and
boundary and initial conditions [41].

Several problems in 3D spatial elasticity can be treated in a 2D domain. This kind of
model reduction alleviates the computational cost generated during the simulation of complex
structures, without affecting the accuracy of the results. Based on the dimensions of the structure
and the arrangement of the applied loads, there exists two general model reduction cases: (i) the
plane stress model can be used when the thickness of the structure is much smaller compared to
the other two dimensions; in this case the structure is only subjected to load forces that act
parallel to it (e.g., thin plates); (ii) the plane strain model can be used when the length of the
structure is much larger compared to the other two dimensions; in this case only uniformly
distributed forces act along the length of the structure (e.g., tunnels).

Consider an homogeneous isotropic elastic body in equilibrium under the assumption of
plane stress. It is defined by a bounded domain D ∈ R2, with thickness t and boundaries Γ1
and Γ2. The solid is fixed along boundary Γ1 and it is subjected to volume or body forces b,
surface forces s and external point loads pi, i = 1, ..., n, along the boundary Γ2 (Figure B.1).

Figure B.1: Boundary and body forces acting on a body in equilibrium. Global and local domains of a
four-noded finite element.
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Chapter B. Finite element method for 2D elasticity problems.

Under the forces b, p and s, the objective is to determine the displacement, deformation
and stress fields of the structure. For plane stress, such fields are defined as:

� The displacement field is u(x1, x2) = [u(x1), v(x2)]T, with w(x3) := 0,

� the symmetric deformation tensor ε = [εij ] given by:

ε11 = εx1 = ∂u

∂x1
ε12 = γx1x2 = ∂u

∂x2
+ ∂v

∂x1
(B.1a)

ε22 = εx2 = ∂v

∂x2
ε13 = γx1x3 = ∂u

∂x3
+ ∂w

∂x1
:= 0 (B.1b)

ε33 = εx3 = ∂w

∂x3
ε23 = γx2x3 = ∂v

∂x3
+ ∂w

∂x2
:= 0, (B.1c)

� the symmetric stress tensor σ = [σij ], with σii representing the normal stresses and
σij , i 6= j the shear stresses. Assuming that the displacements of the solid are small,
the stresses and deformations of an isotropic elastic material can be computed by the
generalized Hooke’s law:

σ11 = σx1 = E

1− ν2 (εx1 + νεx2) σ13 = τx1x3 := 0 (B.2a)

σ12 = τx1x2 = Gγx1x2 σ33 = σx3 := 0 (B.2b)

σ22 = σx2 = E

1− ν2 (εx2 + νεx1) σ23 = τx2x3 := 0, (B.2c)

which can be expressed in matrix form as σx1

σx2

τx1x2

 = E

1− ν2

1 ν 0
ν 1 0
0 0 (1−ν)

2


︸ ︷︷ ︸

D

 εx1

εx2

γx1x2

 , (B.3)

where G := E/2(1 + ν) is the shear modulus, E is the Young’s modulus, ν is the Poisson ratio
of the elastic solid. The symmetric matrix D is called the constitutive matrix.

The 2D elasticity problem can be formally stated from two different but equivalent viewpoints.
In both cases, we are given body forces b = [bx1 , bx2 ]T, surface forces s = [sx1 , sx2 ]T and external
point loads pi = [px1(i), px2(i)]T.

The first choice is formulated through a set of elliptic PDEs called the Cauchy–Navier
equations (or elastostatic equations). The task is to find u(x) = u(x1, x2) = [u(x1), v(x2)]T such
that,

G(x)∇2u(x) + E(x)
2(1− ν)∇(∇ · u(x)) + b = 0. (B.4)

Alternatively, one can formulate the problem through the virtual work principle. In this
case, the task is to find u = [u, v]T such that,

t

¨
D
δεT σ dA = t

¨
D
δuT b dA+ t

˛
Γ2

δuT s ds+
n∑
i=1

δuT
i pi, (B.5)

where σ = [σx1 , σx2 , τx1x2 ]T are the stresses, δε = [δεx1 , δεx2 , δγx1x2 ]T are the associated virtual
deformation components, and δu = [δu, δv]T are the virtual displacements. It can be shown
that (B.4) and (B.5) are equivalent and also that the solution u is unique [118, 129].
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B.2. Finite element formulation

B.2. Finite element formulation

In order to define a suitable finite-dimensional vector space of solutions, the physical domain D
of a structure is divided into a set of nfe elements:

D =
nfe⋃
e=1

re = r1 ∪ r2 ∪ · · · ∪ rnfe , (B.6)

which are defined such that they cannot overlap, the element nodal points cannot be located
on the side of an adjacent element, and each element nodal point must coincide between the
elements.

A number of finite elements are available in the literature. They can be identified by their
number of nodes, their shape, the type of interpolation and continuity requirements. In general,
finite elements can be characterized by their shape or test functions, which must satisfy certain
convergence requirements: smoothness over the element interior, continuity across each element
boundary, and completeness, so that the element interpolation function is able to represent an
arbitrary polynomial at the degrees of freedom (dof) of the element nodes. In the following, we
employ the bilinear (four-noded) quadrilateral element to make the explanation more clear.

The isoparametric formulation is applied in order to make use of the same shape interpolation
functions of the element coordinates and the displacements. Hence, a point in the local domain
(ξ, η) is related to a point (x1, x2) in the global domain by mappings of the form

x1(ξ, η) =
4∑
i=1

Ni(ξ, η)x(e)
1 (i) x2(ξ, η) =

4∑
i=1

Ni(ξ, η)x(e)
2 (i), (B.7)

where (ξ, η) are called the natural coordinates and Ni are element shape functions. An important
relationship between the derivatives of the shape functions with respect to the Cartesian and
the natural coordinates is given by the chain rule of derivation

∂Ni

∂ξ

∂Ni

∂η

 =


∂x1
∂ξ

∂x2
∂ξ

∂x1
∂η

∂x2
∂η


︸ ︷︷ ︸

J(e)


∂Ni

∂x1
∂Ni

∂x2

 , (B.8)

where J(e) is the Jacobian matrix of the transformation of the derivatives of the shape functions
in the natural and Cartesian axes. Moreover,

∂Ni

∂x1
∂Ni

∂x2

 =
[
J(e)

]−1


∂Ni

∂ξ

∂Ni

∂η

 = 1∣∣J(e)
∣∣

∂x2
∂η

−∂x2
∂ξ

−∂x1
∂η

∂x1
∂ξ



∂Ni

∂ξ

∂Ni

∂η

 , (B.9)

where the determinant of the Jacobian matrix relates the differential of area in the two coordinate
systems, i.e., dx1dx2 =

∣∣∣J(e)
∣∣∣dξdη. In case of the four-noded quadrilateral element, the shape

functions are obtained by assuming a bilinear expansion of the form

x1(ξ, η) = a0 + a1ξ + a2η + a3ξη (B.10a)
x2(ξ, η) = b0 + b1ξ + b2η + b3ξη, (B.10b)

where the coefficients a’s and b’s need to be determined. The expressions (B.10) satisfy the
conditions, x1(ξi, ηi) = x

(e)
1 (i) and x2(ξi, ηi) = x

(e)
2 (i). The values of the (ξi, ηi) coordinates in the
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Chapter B. Finite element method for 2D elasticity problems.

local domain are shown in Figure B.1. After imposing these restrictions on (B.7), two different
system of equations are obtained that are solved for the coefficients a’s and b’s, respectively.
These values are then back-substituted into (B.7) to obtain the corresponding shape functions
of the bilinear quadrilateral element:

N1(ξ, η) = ((η − 1)(ξ − 1))/4 N2(ξ, η) = −((η − 1)(ξ + 1))/4 (B.11a)
N3(ξ, η) = ((η + 1)(ξ + 1))/4 N4(ξ, η) = −((η + 1)(ξ − 1))/4. (B.11b)

B.2.1. Discretization of the displacement field

The displacements can be expressed in the x1, x2 directions at the interior of an element e as a
function of its nodal displacements as

u(e) = u
(e)
1 N

(e)
1 + u

(e)
2 N

(e)
2 + u

(e)
3 N

(e)
3 + u

(e)
4 N

(e)
4 (B.12a)

v(e) = v
(e)
1 N

(e)
1 + v

(e)
2 N

(e)
2 + v

(e)
3 N

(e)
3 + v

(e)
4 N

(e)
4 , (B.12b)

or in matrix form

[
u(e)

v(e)

]
︸ ︷︷ ︸
u(e)

=

N (e)
1 0

... N
(e)
2 0

... N
(e)
3 0

... N
(e)
4 0

0 N
(e)
1

... 0 N
(e)
2

... 0 N
(e)
3

... 0 N
(e)
4


︸ ︷︷ ︸

N(e)



u
(e)
1

v
(e)
1

u
(e)
2

v
(e)
2

u
(e)
3

v
(e)
3

u
(e)
4

v
(e)
4


︸ ︷︷ ︸

a(e)

, (B.13)

where the matrix N(e) can be represented in blocks as

N(e) =
[
N(e)

1 N(e)
2 N(e)

3 N(e)
4

]
, with N(e)

i =

N (e)
i 0
0 N

(e)
i

 ; (B.14)

here N(e) is the shape function matrix of the element e, and N(e)
i denotes the shape function

matrix of the element e at node i. Analogously, the displacement vector u(e) can be represented
as

u(e) =
[
u

(e)
1 u

(e)
2 u

(e)
3 u

(e)
4

]T
, where u

(e)
i =

[
u

(e)
i v

(e)
i

]T
(B.15)

and u(e) is the nodal displacement vector of the element e and u(e)
i denotes the nodal displacement

vector of the element e at node i.

B.2.2. Discretization of the deformation field

From the definition of each component of the deformation field, they can be interpolated as

ε(e)
x1 = ∂u(e)

∂x1
=∂N

(e)
1

∂x1
u

(e)
1 + ∂N

(e)
2

∂x1
u

(e)
2 + ∂N

(e)
3

∂x1
u

(e)
3 + ∂N

(e)
4

∂x1
u

(e)
4 (B.16a)

ε(e)
x2 = ∂v(e)

∂x2
=∂N

(e)
1

∂x2
v

(e)
1 + ∂N

(e)
2

∂x2
v

(e)
2 + ∂N

(e)
3

∂x2
v

(e)
3 + ∂N

(e)
4

∂x2
v

(e)
4 (B.16b)
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B.2. Finite element formulation

γ(e)
x1x2 = ∂u(e)

∂x2
+ ∂v(e)

∂x1
=∂N

(e)
1

∂x2
u

(e)
1 + ∂N

(e)
1

∂x1
v

(e)
1 + ∂N

(e)
2

∂x2
u

(e)
2 + ∂N

(e)
2

∂x1
v

(e)
2 + (B.16c)

∂N
(e)
3

∂x2
u

(e)
3 + ∂N

(e)
3

∂x1
v

(e)
3 + ∂N

(e)
4

∂x2
u

(e)
4 + ∂N

(e)
4

∂x1
v

(e)
4 , (B.16d)

which can be written in matrix form as



∂u(e)

∂x1

∂u(e)

∂x2

∂u(e)

∂x2
+ ∂v(e)

∂x1


︸ ︷︷ ︸

ε(e)

=



∂N
(e)
1

∂x1
0

... ∂N
(e)
2

∂x1
0

... ∂N
(e)
3

∂x1
0

... ∂N
(e)
4

∂x1
0

0 ∂N
(e)
1

∂x2

... 0 ∂N
(e)
2

∂x2

... 0 ∂N
(e)
3

∂x2

... 0 ∂N
(e)
4

∂x2

∂N
(e)
1

∂x2

∂N
(e)
1

∂x1

... ∂N
(e)
2

∂x2

∂N
(e)
2

∂x1

... ∂N
(e)
3

∂x2

∂N
(e)
3

∂x1

... ∂N
(e)
4

∂x2

∂N
(e)
4

∂x1


︸ ︷︷ ︸

B(e)



u
(e)
1

v
(e)
1

u
(e)
2

v
(e)
2

u
(e)
3

v
(e)
3

u
(e)
4

v
(e)
4


;

︸ ︷︷ ︸
a(e)

note that the matrix B(e) can be represented in blocks as

B(e) =
[
B(e)

1 B(e)
2 B(e)

3 B(e)
4

]
with B(e)

i =



∂N
(e)
i

∂x1
0

0 ∂N
(e)
i

∂x2

∂N
(e)
i

∂x2

∂N
(e)
i

∂x1


; (B.17)

here B(e) is the deformation matrix of the element e and B(e)
i denotes the deformation matrix

of the element e at node i.

B.2.3. Discretization of the stress field

From Hooke’s law, the stress field at the element level is given by [214]

σ(e) = Dε(e) = DB(e)u(e). (B.18)

This relation represents the discretization of the stress field inside a given element. However,
since the constitutive matrix D and the deformation matrix B(e) are constant, the deformations
and stresses of an element are also constant in the whole element. This requires the use of a
refined mesh in order to obtain a better approximation of the deformation and stresses of the
solid, especially in regions of high stress gradients.

At each point in an elastic body there exist principal planes where the stress vector is
perpendicular [214, 41]. The associated stresses normal to these principal planes in 2D are given
by

σ1 = 1
2 (σx1 + σx2) +

√(1
2 (σx1 − σx2)

)2
+ τ2

x1x2 (B.19a)

σ2 = 1
2 (σx1 + σx2)−

√(1
2 (σx1 − σx2)

)2
+ τ2

x1x2 . (B.19b)

In practice, one is especially interested in the principal stresses and their directions, since
these are directly related to the maximum allowed critical stress of the elastic body.
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Chapter B. Finite element method for 2D elasticity problems.

B.2.4. Stiffness matrix and force vector

The equilibrium of forces acting on an element is only enforced at the nodes. Therefore,
equilibrium nodal forces qi = [qxi , qyi ]T, which balance the external and internal forces due to
the element deformation, can be obtained by applying the virtual work principle (B.5) to an
individual element. For a four-noded element with domain D(e):

t

¨
D(e)

δεT σ dA− t
¨
D(e)

δuT b dA− t
˛

Γ(e)
2

δuT s ds−
[
δu(e)

]T
p(e) =

[
δu(e)

]T
q(e),

where δu(e) = [δu(e)
1 , δv

(e)
1 , δu

(e)
2 , δv

(e)
2 , δu

(e)
3 , δv

(e)
3 , δu

(e)
4 , δv

(e)
4 ]T are the virtual nodal displace-

ments of the element, and q(e) = [qx1(1), qx2(1), qx1(2), qx2(2), qx1(3), qx2(3), qx1(4), qx2(4)]T are the
equilibrium nodal forces of the element.

Using the discretization of the displacement and deformation fields, δuT =
[
δu(e)

]T
NT and

δεT =
[
δu(e)

]T
BT. Then, (B.20) can be expressed as

[
δu(e)

]T(
t

¨
D(e)

BTσ dA− t
¨
D(e)

NTb dA− t
˛

Γ(e)
2

NTs ds− p(e)
)

= q(e). (B.20)

Since by definition the functional [δu]T represents the field of all possible displacements, it
cannot be equal to zero. Thus, the residual in (B.20) holds if

t

¨
D(e)

BTσ dA− t
¨
D(e)

NTb dA− t
˛

Γ(e)
2

NTs ds− p(e) = q(e). (B.21)

Equation (B.21) expresses the equilibrium between the element deformation forces, element
volume forces, element distributed forces, element point loads and element nodal equilibrium
forces. Substituting the expression for the stress field (B.18) into (B.21) yields

t

¨
D(e)

BT(DBu(e)) dA− t
¨
D(e)

NTb dA− t
˛

Γ(e)
2

NTs ds− p(e) = q(e), (B.22)

which is equivalent to(
t

¨
D(e)

BTDB dA
)
u(e) − t

¨
D(e)

NTb dA− t
˛

Γ(e)
2

NTs ds− p(e) = q(e). (B.23)

Equation (B.23) can be expressed in matrix form as,

K(e)u(e) − f (e) = q(e), (B.24)

where the so-called element stiffness matrix is given by

K(e) = t

¨
D(e)

BT D B dA (B.25)

and the element equivalent nodal force vector by

f (e) = t

¨
D(e)

NT b dA+ t

˛
Γ2

NTs ds+ p(e). (B.26)

Numerical integration quadratures are used for the computation of integrals (B.25) and
(B.26). A coordinate transformation is performed such that the domain of integration is changed
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B.2. Finite element formulation

from Cartesian coordinates to natural coordinates (as shown in Figure B.1). In this way, the
integration can be performed over the region [−1, 1]× [−1, 1]. Hence, (B.25) expressed as

K(e) = t

ˆ 1

−1

ˆ 1

−1
BT(ξ, η) D B(ξ, η)

∣∣∣J(e)(ξ, η)
∣∣∣ dξdη, (B.27)

where
∣∣∣J(e)

∣∣∣ is the determinant of the Jacobian matrix, which arises from the coordinate
transformation (B.7). Therefore, the element stiffness matrix in (B.27) can be evaluated using a
GL quadrature with nGP points

K(e) =
nGP∑
p=1

nGP∑
q=1

BT(ξp, ηq) D B(ξp, ηq) t
∣∣∣J(e)(ξp, ηq)

∣∣∣ wp wq, (B.28)

where wp and wq are the weights of quadrature rule and the points ξp and ηq are the associated
abscissas of the Legendre polynomial. The quadrature points nGP are chosen based on the fact
that a nGP-order quadrature integrates exactly a polynomial of degree 2nGP − 1 or less [118].
An analogous procedure applies to the force vector components in (B.26). Finally, after each
element stiffness and force components are computed, the contributions are assembled in order
to obtain the global stiffness matrix and force vector [118]. This assembly procedure leads to
the well-known system of equations

K u− f = q. (B.29)

B.2.5. The random field case: spatially variable Young’s modulus

Oftentimes, material properties of structural system are subjected to spatial variation. If the
Young’s modulus is spatially variable and modeled by a random field, one can employ the KL
expansion to represent the associated uncertainty. In this case, the constitutive matrix is no
longer constant through the finite element formulation and it will depend on the values of the
Young’s modulus E(θ). Under the plane stress assumption, the resulting matrix is written as

D(θ) = E(θ)
1− ν2


1 ν 0
ν 1 0
0 0 (1−ν)

2

 = E(θ)D0, (B.30)

where D0 ∈ R3×3 is a constant matrix.
The KL expansion is incorporated in the finite element solution, such that the eigenfunctions

of the covariance operator are interpolated at the GL points of the finite element mesh using
Nyström formula [186]. Therefore, for a nGP-point spatial discretization, the KL representation
of the Young’s modulus truncated at the k-th term is expressed in matrix form as

Ê = exp
[
µE′ + Aθ(KL)

]
, (B.31)

where µE′ is the mean of the underlying Gaussian random field, ΦΛ = A ∈ RnGP×k, Λ =
diag(

√
λ) ∈ Rk×k is a diagonal matrix with the square root of the eigenvalues of the covariance

operator, Φ ∈ RnGP×k is a matrix containing the associated eigenfunctions evaluated at the GL
points, and θ(KL) ∈ Rk is the standard Gaussian random vector of KL coefficients.

One can also consider cases where the applied load to the structure is also random. We
can assume that a random variable θ(q) represents this uncertainty. As a result, the stress field
(B.32) at the element level is now given by

σ(e)(θ) = D(e)(θ)ε(e) = D(e)(θ)B(e)u(e)(θ). (B.32)
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Chapter B. Finite element method for 2D elasticity problems.

The uncertainty parameter vector is given by θ = [θ(q),θ(KL)] ∈ Rk+1. The finite element
formulation (B.29) is then expressed as the global matrix equilibrium equation in function of a
given parameter vector realization

K(θ)u(θ) = f(θ), (B.33)

where K ∈ Rndof×ndof is the stiffness matrix, f ∈ Rndof is the force vector, and u ∈ Rndof is the
vector of displacements; ndof denotes the total number of degrees of freedom.

B.3. Adjoint differentiation for plane stress problems

The following derivative elements are computed at the GL point closest to the control node (cf.
Figure 2.11).

B.3.1. Adjoint for the rare event simulation setting

We consider the case where the LSF is defined by the principal stress σ1. The stress field
(Appendix B.2.3) evaluated at a specific GL point can be computed as

σ?(θ) = (D?(θ) B? M)u(θ), (B.34)

where the constitutive matrix D? ∈ R3×3 and deformation matrix B? ∈ R3×neq are those
evaluated at the GL point closest to the control point. The value neq represents the number of
finite element equations per element (e.g., number of element nodes times number of element
dofs). Note that in (B.34), we employ a matrix M ∈ Rneq×ndof to activate the dofs corresponding
to the nodes of the element that has the control point as one of its nodes.

Our aim is to compute directly the gradient of the principal stress σ1(σ?(D(θ),u(θ))) with
respect to θ. We consider the total derivative

dσ1
dθ = dσ1

dσ?
( dσ?

dD?

dD?

dθ + dσ?

du
du
dθ
)
. (B.35)

The multiplicative term in (B.35) is obtained from the definition of the σ1 stress

dσ1
dσ? =

[
1
2

(
1 +

σ?x − σ?y
2e

)
,
1
2

(
1−

σ?x − σ?y
2e

)
,
τ?xy
e

]
, e =

√(
σ?x − σ?y

2

)2
+ τ?xy

2. (B.36)

To compute the first term inside the parenthesis (B.35), we use the fact that the element
constitutive matrix can be factored as Ê ·D0 = D (plane stress assumption), and that the
derivative of the KL expansion of a lognormal field is ÊA = Ê′ ∈ RnGP×K . Hence,

dσ?

dD?
= (B?M)u and dD?

dθ = dD?

dÊ
dÊ

dθ(KL) = D0Ê
′? (B.37)

where Ê′? ∈ RK is the KL expansion derivative at the GL point closest to the control node.
Moreover, the second term inside the parenthesis in (B.35) is

dσ?

du = D?B?M and du
dθ = K−1

( df
dθ(q) −

dK
dθ(KL)u

)
, (B.38)

and the components of the derivative du
dθ are obtained from the finite element formulation as

df
θ(q) = df

dq
dq

dθ(q) = c · σq and dK
dθ(KL) =

⋃
e

ˆ
A(e)

B(e),T
(
D0Ê

′(e)
)

B(e) t dA(e),
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B.3. Adjoint differentiation for plane stress problems

where c ∈ Rndof is a constant vector that maps the surface load q to equivalent nodal forces,
⋃
e

denotes assembly procedure over all elements, t is the thickness of the plate, and the integration is
performed over the area of each element A(e). The term dK

dθ(KL) is a rank-3 tensor with dimensions
K × ndof × ndof , and its assembly is in general the most computationally intensive part of the
adjoint method.

The idea of the adjoint method [11] is to expand and re-organize the terms in (B.35) to
avoid the computation of expensive matrix operations. Specifically consider the term

dσ1
dσ?

dσ?

du
du
dθ = dσ1

dσ?
dσ?

du

(
K−1

( df
dθ(q) −

dK
dθ(KL)u

))
= dσ1

dσ?
dσ?

du K−1︸ ︷︷ ︸
λ

( df
dθ(q) −

dK
dθ(KL)u

)
︸ ︷︷ ︸

dp
dθ

,

where p = Ku − f , and the adjoint multiplier λ ∈ Rndof is computed by solving the adjoint
equation

KTλ =
[ dσ1

dσ?
dσ?

du

]T
, (B.39)

we remark that the boundary conditions defining the finite element problem also need to be
imposed on (B.39). Therefore, finding the gradient

dσ1
dθ =

[ dσ1
dθ(q) ,

dσ1
dθ(KL)

]
(B.40)

amounts to

dσ1
dθ(q) = λT df

dθ(q) and dσ1
dθ(KL) = dσ1

dσ?
dσ?

dD?

dD?

dθ + λT
(
− dK

dθ(KL)u

)
. (B.41)

Figure B.2 shows a comparison between the gradient of the LSF (6.38) estimated by finite
differences and the adjoint (B.41) at 6 different parameter realizations.
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Figure B.2: Gradient of the LSF ∇g(θ) (6.38): comparison between finite differences (blue) and the
adjoint method (red) for 6 different samples θ. We plot the first 50 components of the
gradient vector.
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Chapter B. Finite element method for 2D elasticity problems.

B.3.2. Adjoint for the Bayesian inversion setting

We consider the case where the likelihood function is defined by deformation measurements
εx1 (as in section 4.6). In this case, the derivation of the adjoint for the PDE forward model
defining the Bayesian inversion is easier to obtain compared to the one required for the rare
event simulation. The deformation field (Appendix B.2.2) evaluated at a specific node can be
computed at,

ε?(θ) = (B? M)u(θ). (B.42)

In this case, we need to compute the gradient:

dεx1

dθ(KL) = dεx1

du
du

dθ(KL) . (B.43)

where each term is given by:

dεx1

du = B?M and du
dθ(KL) = K−1

(
− dK

dθ(KL)u

)
, (B.44)

here deformation matrix B? ∈ R3×neq are those evaluated at the GL point closest to the
measurement locations. Therefore, similar to the previous section:

dεx1

du
du

dθ(KL) = dεx1

du K−1︸ ︷︷ ︸
λ

(
− dK

dθ(KL)u

)
︸ ︷︷ ︸

dp
dθ

,

and the adjoint multiplier λ ∈ Rndof is computed by solving the adjoint equation

KTλ =
[dεx1

du

]T
, (B.45)

from which the gradient can be computed as

dεx1

dθ(KL) = λT
(
− dK

dθ(KL)u

)
. (B.46)
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