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Abstract

MR Spectroscopic Imaging (MRSI) is an advanced imaging method that
is based on the principle of nuclear magnetic resonance and supports the
non-invasive measurement of the in vivo metabolite levels in the tissues to be
examined by generating metabolic maps. These maps show the concentration
and distribution of the metabolites in the tissue sample to be examined
and their precise quantification is important for the diagnosis of diseases.
This modality has proven to be highly sensitive and specific in the detection
of tumors and other neurological disorders. Despite its advantages, the
widespread clinical use of MRSI was extremely limited due to computational
bottlenecks in acquisition, processing and data analysis. In this thesis, we
develop and implement data-driven methods to meet these challenges and
to accelerate and improve the analysis of MR spectra data. First we develop
a new denoising method based on frequency-phase non-local means (NLM)
to improve the spectral signal-to-noise ratio (SNR). Next, we develop a
machine learning architecture to quantify metabolites in the presence of noise
and artifacts while significantly reducing computation time. We validate
all of our methods on synthetic and human in vivo brain MRS data and
demonstrate the general improvements made to the processing and analysis
pipeline in MRSI.
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Zusammenfassung

MR Spectroscopic Imaging (MRSI) ist eine fortschrittliche bildgebende
Methode, die auf dem Prinzip der Kernspinresonanz basiert und die nichtin-
vasive Messung der in vivo-Metabolitenspiegel in den zu untersuchenden
Geweben durch Generierung von Stoffwechselkarten unterstützt. Diese Kar-
ten zeigen die Konzentration und Verteilung der Metaboliten in der zu
untersuchenden Gewebeprobe und deren genaue Quantifizierung ist wichtig
für die Diagnose von Krankheiten. Diese Modalität hat sich beim Nachweis
von Tumoren und anderen neurologischen Störungen als hochempfindlich
und spezifisch erwiesen. Trotz seiner Vorteile war der weit verbreitete kli-
nische Einsatz von MRSI aufgrund von rechnerischen Engpässen bei der
Erfassung, Verarbeitung und Datenanalyse äußerst begrenzt. In dieser Arbeit
entwickeln und implementieren wir datengetriebene Methoden, um diesen
Herausforderungen zu begegnen und die Analyse von MR-Spektrendaten zu
beschleunigen und zu verbessern. Zuerst entwickeln wir eine neue denoising
Methode, die auf frequency-phase non-local means (NLM) basiert, um das
spektrale signal-to-noise ratio (SNR) zu verbessern. Als Nächstes entwickeln
wir eine Architektur für maschinelles Lernen, um Metaboliten in Gegen-
wart von Rauschen und Artefakten zu quantifizieren und gleichzeitig die
Rechenzeit erheblich zu verkürzen. Wir validieren alle unsere Methoden auf
synthetischen und humanen In-vivo-Hirn-MRS-Daten und demonstrieren die
allgemeinen Verbesserungen, die an der Verarbeitungs- und Analyse-Pipeline
in MRSI vorgenommen wurden.
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1

Introduction

Magnetic Resonance Spectroscopic Imaging (MRSI), also known as chemical
shift imaging (CSI) is a clinical imaging modality for studying tissues in-
vivo to investigate and diagnose neurological diseases. More specifically,
this modality can be used in non-invasive diagnosis and characterization
of patho-physiological changes by measuring specific tissue metabolites in
the brain. It is based on the concept of nuclear magnetic resonance and
works by exploiting the resonance frequency of a molecule, which depends
on its chemical structure, to obtain information about the concentration of
a particular metabolite [1]. The time-domain complex signal of a nuclei is
given by:

S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗2 )dw (1.1)

.
The frequency-domain signal is given by S(ω), T ∗2 is the magnetization

decay in the transverse plane due to magnetic field inhomogeneity and
p(ω) comprises of Lorentzian absorption and dispersion line-shapes function
having the spectroscopic information about the sample. Φ represents the
phase, (ωt+ ω0), of the acquired signal where ωt is the time-varying phase
change and ω0 is the initial phase. For the acquired MRSI data, I, Φ
is unknown. This process allows generation of metabolic maps through
non-linear fitting to estimate concentration of metabolites such as N-acetyl-
aspartate (NAA), Creatine (Cr) and Choline (Cho).

Signal and metabolite quantitation [2] gives MRSI an increased advantage
over other forms of medical magnetic resonance imaging. The majority of
the other techniques produce high-resolution images with visible image
contrast differences that can be identified by a trained person. This enables
the detection of lesions or other anatomical abnormalities by only a visual
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1. Introduction

examination. MRSI, in addition to this, also provides a visual representation
of the metabolite information [3]. However, it also suffers from a number of
drawbacks which makes it difficult to use MRSI as the imaging modality of
choice in clinics.

Figure 1.1 shows an example of spectra in a healthy, human brain MRS
dataset.

Figure 1.1: Illustration an example healthy, human brain MRSI dataset. (A)
The simulated brain with the region of interest (red box). (B) Highlighted
regions corresponding to GM, WM and CSF (c) Corresponding spectrum of
GM, WM and CSF. Note that CSF has only water.

In the next section, we discuss the challenges in MRSI and outline
the two main applications of this thesis towards accelerating the analysis
and processing pipeline in MR Spectroscopic Imaging - using data driven
methods such as denoising algorithms and machine learning. Subsequently,
we summarize our main contributions in Section 1.2 and outline the remaining
manuscript in Section 1.3.

1.1 Challenges in MRSI

Figure 1.2 shows the challenges in MRSI acquisition and analysis. These
are discussed in detail in this section.

Low signal-to-noise ratio (SNR): The water signal- which are used
for proton images in conventional MRI- has a concentration which is ap-
proximately 10,000 times higher than the concentration of metabolites in a
typically acquired MRSI data leading to extremely low sensitivity.

Long acquisition times: Due to the low SNR challenge, multiple
signal averages are often acquired to improve the SNR in MRSI experiments.

2
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Figure 1.2: Example of the different challenges in MR Spectroscopic Imaging
(MRSI) acquisition and analysis such low signal-to-noise ratio (SNR), poor
resolution and high noise levels.

Furthermore, conventional MRSI methods mostly rely on very slow spatial
encoding schemes [2,15]. These approaches significantly prolong the data
acquisition time and serve as major deterrents for clinicians to use this
modality, especially for in vivo studies.

Poor spatial resolution and long acquistion times: Conventional
MRSI methods mostly rely on very slow spatial encoding schemes which
lead to long acquisition times and restrict the practical use of MRSI in
clinical applications. To overcome this drawback, existing MRSI methods
involve constrain the number of spatial encodings and data reconstructions
with large voxel sizes (on the order of 1 cm3) to ensure sufficient SNR. This
results in poor spatial resolution and low volume coverage make it difficult
to visually interpret the available information. As mentioned earlier, the
water signal, having a concentration which is approximately 10,000 times
higher than the concentration of metabolites, also adds to the difficulty in
obtain spatially-resolved spectra [4]. One approach to deal with this is to
acquire the data at long echo times (TE) as water signal decays with TE
more quickly than the metabolite signals [5][6]. However, this approach ends
up reducing the signal amplitude of the metabolites.

Noise-sensitive spectral fitting and metabolite quantification:
During acquisiton, the signals collected from the scanner consist of field

induction decays (FIDs) which are composed of several sinuosoidal compo-
nents oscillating at the resonance frequencies of the protons they represent.
Upon completion of acquisition, these FIDs are Fourier-transformed into
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frequency domain signals. In order to extract meaningful information about
the tissues being investigated, the next step in the MRSI pipeline is quantifi-
cation of the individual metabolites present in the spectra acquired. This, in
MRSI terminology,is referred to as “metabolite quantification” or “spectral
fitting”. A common model for describing the shape of proton resonance in a
magnetic field is the Lorentzian-Gaussian function as shown in Eq. 1.1. In
the frequency domain, the parameters for this function include: frequency,
amplitude, zero- and first-order phase, and two linewidth coefficients repre-
senting the combination of Lorentzian and Gaussian dampening. Algorithms
which model a spectrum as a combination of individual peak resonances are
referred to, appropriately, as “peak fitting” algorithms.

Mathematically, each metabolite has a corresponding ”basis set of sig-
nal” developed consisting of a combination of known Lorentzian-Gaussian
resonances known as ”multiplets”. In the MRSI domain, and for the work
in this thesis, the LCModel [7], a commercial model-fitting software tool, is
considered to be the gold standard model for spectral fitting [7]. a software
package developed by Stephen Provencher in 2001 that utilizes basis sets
to model spectra . This tool works on the same premise of using the basis
sets to iteratively fit to the acquired spectra (which serves as input) using
a non-linear least-squares fit and thereby quantify most of the metabolites
present in the input spectrum. However, the spectral fitting method pro-
duces high-error rates especially when metabolites have low concentration,
or have overlapping resonance peaks with other metabolites or spurious
signals such as lipids and macromolecules. The fitting tools also exhibits a
high-error rate if the spectrum has broadened peaks or a high amount of
noise leading to local minima [8]. An example of a typical LCModel fit has
been shown in 1.3.

There are also other algorithms being used with varying degrees of
success. These include the QUEST [9] method or ”quantitation based on
semi-parametric quantum estimation” which operates on time-domain signals
and applies singular value decomposition (SVD) to separate the metabolite
signals from the background signals and retain the important signal compo-
nents, including modeling the smooth components of the macromolecular
baselines. On the other hand, the TARQUIN [10] algorithm (Totally Auto-
matic Robust Quantitation in NMR) involves suppressing the water signal
in the acquired spectra the water signal using the Hankel SVD followed by a
non-linear least squares fitting for quantifying the metabolites. The MIDAS
software (Metabolite Imaging and Data Analysis System) has the FITT tool
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Figure 1.3: An example of the spectral fitting performed by the LCModel
[7]. The GUI displays the accuracy of fitting for a given spectra (the fit being
displayed in red) while a table is co-displayed indicating the concentration
estimates and fitting errors for the individual metabolites.

for spectral fitting which operates on frequency-domain spectra acquired
during MRSI scans using the accelerated EPSI sequence. It, again as the
other models, uses the Lorentzian-Gaussian model for fitting the the peak
components of an acquired spectrum, and smoothing splines for modeling
the macromolecular baseline.

A common thread running through the above fitting tools is the use of
common theme is the need for iterative fitting methods, such as non-linear
least squares or orthogonal matching pursuit among others, to decompose the
input spectra into its constituent metabolites through signal-peak extraction.
These algorithms involve a significant computational burden: the LCModel
(considered as a gold standard) can take upto 1 hour for fitting a whole-brain
MRSI data (as an example, we consider a short-TE scan having a size of
32x32 voxels with 256 spectral points). Additionally, the parameters need
to be manually-tuned for each dataset (depending on acquisiton parameters
and complexity of data) leading to issues in parallelization and scaling. This,
in addition, to the high-error rates due to high noise and peak-broadening
constitute a serious constraint on the practical implementation of this
technology in the research and clinical environments.

One way of improving the SNR of the signal is by using post-processing
methods such as denoising algorithms [11], apodization (Gaussian/Lorentzian),
filter-based smoothing and transform-based methods [12]. However, these
methods reduce resolution and remove important quantifiable information by
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averaging out the lower-concentration metabolites. Recently, data-dependent
approaches such as the Non-Local Means (NLM), which use the redundancy
inherent in periodic images, are being used extensively for denoising [12]
[13]. Other similar methods incorporate methods from machine learning
and pattern recognition (such as sub-space estimation, super-resolution,
dictionary learning) to improve the SNR and resolution of the MRSI data.

Spectral fitting, on the other hand, can be considerably improved by
adopting machine-learning methods for eliminating low-quality spectra and
performing metabolite quantification with robustness to noise and other
artifacts.

1.2 Summary of Contributions

This thesis is set in the context of the analysis and processing pipeline in
MR Spectroscopic Imaging. As highlighted in the previous section, we have
selected two major challenges in MRSI processing that, when addressed, can
significantly improve the processing pipeline for MRSI data and ensure a
successful transition towards the clinical use of this modality: First, the low
signal-to-noise ratio (SNR) of the MR spectra and the need for repeated ac-
quisitions for signal avergaing, and second, the quantification of metabolites
present in the spectra with a focus on improving the computational time
and robustness to noise and other artifacts.

In the following, we give a brief introduction to the setting of each
publication-based chapter and summarize its content and contributions.

Chapter 3: Spatially Adaptive Spectral Denoising for
MR Spectroscopic Imaging using Frequency-Phase
Non-local Means

MR Spectroscopy imaging protocols usually have long scanning times in
order to obtain spatially resolved spectra with an optimal signal-to-noise
ratio. This is mainly the due to abundance of clinically-relevant metabolites
which have a concentration which is approximately 10,000 times smaller
than water peak (used in conventional proton MR imaging). Furthermore,
from a processing perspective, an optimal SNR is essential for spectral fitting
or metabolite quantification as the non-linear voxel-wise fitting to noisy data
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leads to a high amount of local minima and noise amplification resulting in
poor spatial resolution[7].

Conventionally, post-processing methods such as denoising algorithms[14],
apodization (Gaussian/Lorentzian) [15], filter-based smoothing [16] and
transform-based methods [17] have been used to improve the SNR of MR
spectra. However, these methods tend to reduce resolution and remove
important quantifiable information as a result of over-smoothing the spectra
and thereby reducing the signal amplitude lower-concentration metabo-
lites. Recently, data-dependent approaches such as the Non-local Means
(NLM) [13], which use the redundancy inherent in periodic images, are being
used extensively for denoising [12]. In the case of MRSI, this periodicity
implies that the spectra (or a metabolite region of it) in a given voxel may
have similar spectra or metabolite region in other voxels of the same dataset
within its frequency-phase space. Therefore, the algorithm may, hypotheti-
cally, carry out a weighted average of the voxels within this frequency-phase
space, depending on the similarity of the spectral information of their
neighborhoods to the neighborhood of the voxel to be denoised.

We contribute a method for spectrally adaptive denoising of MRSI
spectra in the frequency-phase space based on the concept of Non-local
Means that incorporates the redundant information from the same, acquired
dataset thereby reducing the need for any additional prior information. To
address the the lack of arbitrary phase-information in the acquired spectra
we also implement a ”dephasing” approach on the spectral data which
increases the amount of redundant frequency-phase information within the
voxels of the MRSI data. This improves the effectiveness of the NLM
algorithm while a selection of modified, anisotropic patch sizes prevents over-
smoothing of metabolite peaks. We include experiments using simulated
brain data and healthy human in-vivo 2D MRSI datasets and show that
the proposed method increases the SNR of the data while retaining the
spatial resolution of the spectra. More importantly, the increase in SNR for
a single-scan compared to multiple-acquisition averages offers a alternative
to also accelerate MRSI imaging by acquiring fewer averages.
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Chapter 4: Quantification of Metabolites in Magnetic
Resonance Spectroscopic Imaging using Machine
Learning

Quantification of metabolites in the acquired spectra is a crucial part of the
MRSI analysis workflow. This gives the concentration of the metabolites
present in the underlying tissue being investigated and obtaining accurate
concentration estimates is imperative for detecting tumors and diagnosing
other metabolic diseases within the tissue. Conventionally, model-fitting
tools such as the LCModel are used for metabolite quantification. This
software tool uses a linear combina- tion of metabolite basis spectra set to
model the spectral measurement in the frequency domain and incorporates
the prior knowledge of the data while iteratively modeling the fit using a
non-linear optimisation. This ensures robustness in the model leading to
estimation of the spec- tral parameters such as concentration of metabo-
lites. Although it is the gold-standard fitting tool for MRSI data, it is
often hindered by its drawbacks such as: (1) computationally-intensive and
requirement of manual parameter tuning. (2) higher-quantification error for
low SNR and artifact-heavy spectra due to a high amount of local minima
generated during the non-linear voxel-wise fitting.

In this chapter, we propose a machine learning-based method as an
alternative to the model-fitting tool for metabolite quantification. We
implement the random-forest method to perform a multi-variate regression
on MR spectra and aim to estimate concentrations of the major metabolites
used in MRSI for brain tissue analysis. While prior work [18] has used
random forests for classfication and assessment of quality of spectra, this
work aims to break new ground in using random forests for improving
the quantification pipeline in MRSI while addressing the constraints of
long fitting times, manual parameter-tuning and lack of robustness to
noise and artifacts. We also simulate an extensive, representative training
set comprising of synthetic spectra with varying features using a physical
model and aim to generalize this learning to human in-vivo MRSI data.
Our experiments involve both single-voxel and 2D MRSI brain data from
healthy, human subjects, while our results show that the learning from the
synthetic data is successfully generalized to the invivo data thereby giving
the accurate metabolite concentration estimates. Moreover, these metabolite
concentration predictions are similar to the LCModel but are performed in
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a fraction of the time.

Chapter 5: Direct Estimation of Model Parameters in
MR Spectroscopic Imaging using Deep Neural
Networks

In this chapter, we build upon the work done in Chapter 4 and use a
more robust architecture in the form of a multi-layer perceptron (a type
of artificial neural network) to predict the metabolite concentrations from
healthy human in-vivo brain MRS data. We show a better prediction of the
concentrations along with robustness to noise and artifacts.

1.3 Organization

This a publication-based thesis with the following structure: Chapter 1 intro-
duced to the topic of magnetic resonance spectroscopic imaging along with
the current challenges involved with it, and summarized our contributions.
Chapter 2 gives a brief summary of relevant terminology and key concepts
from magnetic resonance imaging theory, data-driven methods and machine
learning, which are used throughout this manuscript.

Chapter 3 to 5 are composed of three publications [19, 20, 21] in their
original form. They have been published as peer-reviewed conference pro-
ceedings and abstracts, and are therefore self-contained. Each of these
chapters starts with a brief summary, containing the full citation of the
original publication, a short synopsis of the corresponding publications con-
tent and the thesis authors contributions. In order to improve the reader’s
experience, the text layout of the publications was harmonized and their
bibliographies have been merged into one single bibliography at the end of
this document.

Chapter 6 offers discussion and conclusions over the presented material
and suggest directions for future work. Appendix A and Appendix B
provide additional unpublished work which complement the work presented
in Chapter 4 and 5, respectively. Finally, a complete list of publications
that have been written during the time period of this doctoral thesis can be
found in Appendix C.
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Background

The overarching themes of this thesis include magnetic resonance imaging
theory including nuclear magnetic resonance, data-driven methods and
machine-learning. This chapter aims at giving a concise summary of key
concepts and notation used throughout this thesis, but it is not intended to
be a representative overview of the most important concepts of each field.
For a more complete and in-depth discussion on MRSI, please refer to [1], for
denoising [12, 13] and to [22, 23, 24, 25, 26] for topics of machine learning.

2.1 Magnetic Resonance Spectroscopic

Imaging (MRSI)

2.1.1 Nuclear Magnetic Resonance Spectroscopy

Most MRI experiments are only concerned with one type of spin present
within the same chemical environment (for example: protons on the water
molecules). In practice, however, the nuclei in a biological object are often
attached to different chemical environments. For example, the nuclei in
different molecules are surrounded by orbiting electrons, which produce
different magnetic fields that “locally” perturb the field felt by the nuclei
to various extents. This effect is known as the electron shielding effect. To
further simplify this, the nuclei in different chemical environments (thus
subject to different electron shielding effects) resonate at different frequencies.
This is desribed by,

ω = γB0(1− σ) (2.1)
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where B0 is the strength of the main magnetic field and σ is the shielding
constant. This frequency dispersion gives rise to the chemical shift phe-
nomenon and resonance peaks that constitutes the core foundation of the
field of NMR spectroscopy.

Due to the existence of spins resonating at different frequencies, an
intrinsic frequency dimension can be introduced to mathematically describe
the signal acquired in the free induction decay (FID) period (the period
after the RF pulse ends). This FID signal acquired can be modeled as:

s(t) =

∫

ωM

ρ(ω)e−t/T2(ω)e−iωtdw, (2.2)

where ρ(ω) defines a spectral density function characterizing the fre-
quency distribution and T2(ω) captures the relaxation effect. Based on
different assumptions for ρ(ω), different models can then be derived from Eq.
2.2 to analyze and extract information from the FID signal in spectroscopy
experiments [1]. Using NMR spectroscopy to study different chemical shift
frequencies and the spin densities associated with these frequencies has
far-reaching impacts in chemical and biological studies. For example, it
has been applied to determine the structures of various macromolecules, to
quantify metabolic signatures in biological tissue samples in order to detect,
diagnose and characterize pathological diseases, and to understand the basic
metabolic and physiological processes in the living bodies. However, for
in-vivo experiments, spectroscopy data acquired from a large volume of
interest, which is excited, is inherently limited by the lack of spatial speci-
ficity, which is crucial since the metabolic processes in the human body are
spatially dependent. Therefore, the concept of MR Spectroscopic Imaging
(MRSI) is introduced to address this problem.

2.1.2 MRSI

MRSI aims to generate spatially-resolved spectroscopic information from
the imaging object through combining the spectral encoding during the FID
period and spatial encoding using gradients. Since additional frequency
dimensions are introduced in MRSI experiments, the measured data s(·)
can then be modeled in a (k, t)-space as

s(km, tq) =

∫

V

∫

ωM

ρ̃(r, f)e−i2πf.tqe−iγ∆B(r)t1,qe−i2πkm·r df dr+ ξ(km, tq), (2.3)
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where ρ̃(r, f) is the spatiospectral function of interest (containing both
spatial and spectral variations), V denotes the excited volume of interest,
ωM the spectral bandwidth (determined by the range of chemical shift), γ
the gyromagnetic ratio, ∆(B)r the B0 field inhomogeneity distribution, t1
the first temporal dimension in t and ξ(·) the measurement noise (modeled
as white Gaussian). When integrated over the frequency domain, Eq. 2.3
can be simplified into

s(km, tq) =

∫

V

ρ(r, tq)e
−iγ∆B(r)tqe−i2πkm·r dr + ξ(km, tq), (2.4)

where ρ(r, t) is the Fourier counterpart of (̃ρ)(r, f),
km = (mx∆kx,my∆ky,mz∆kz) and tq = q∆t. mx,my,mz and q are the

sample indices along different spatial and spectral dimensions.
∆kx,∆ky,∆kzand∆t are the corresponding sampling intervals. With

the signal models in Eqs. 2.3 and 2.4, the imaging problem in MRSI is to
recover ρ̃(r, f) or ρ(r, t) from the set of (k, t)-space measurement s(km, tq).
The most common approach to produce the spatiospectral encodings for
MRSI is the chemical shift imaging (CSI) method that uses pulsed gradients
to encode the phase in all spatial dimensions after each excitation-step and
uses the complete period of the FID for the resulting encoding of spectra.
After each excitation step, all the encoding gradients end at the same time
after each excitation to ensure the same initial chemical shift state. However,
due to the slow spatial encoding fashion of CSI per excitation, only very
limited data can be acquired in practical clinical and research experiments.
This causes significant truncation artifacts, peak overlapping, interference by
lipids, macromolecular signals and, subsequently, poor spatial resolution. In
order to achieve high-resolution MRSI in a short imaging time, accelerated
data acquisition is needed. This has brought the need for different data-
driven methods to accelerate acquisition or, on the other hand, acquire less
data and accelerate the processing times.
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2.2 Acceleration in MRSI

A number of data-driven methods have been proposed for accelerating MRSI
acquistion, signal denoising and improving spectral fitting. Some of these
methods have been reviewed here.

2.2.1 Accelerated acquisition

A number of techniques have been developed to deal with these drawbacks
of MRSI and attempt to ensure its wider use among clinicians. Current
acquisition techniques such as Parallel Imaging [27] and Echo-Planar Spec-
troscopic Imaging [28] focus on accelerated scanning times combined with
advanced reconstruction techniques to improve the SNR of the data. Com-
pressed Sensing techniques have also been proposed by [29][30][31] though
computational complexity issues have prevented a wider, commercial use
of this method. Despite this, further accelerated acquisitions are desirable.
Signal averaging is a commonly used approach in MRSI to deal with the
noise present in the data. The noise level is often similar in magnitude
to the metabolite signals. Taking averages of the same signal causes the
signal to increase in proportion to the number of averages while the noise
increase in proportion to square root of the averages. Signal averaging may
be limited in case of substantial physiological motion while acquiring the
data which may lead to arbitrary variations in phase and frequency and
cause less than desired improvement in SNR.

2.2.2 Data-driven methods

One of the earliest data-driven methods used for accelerating MRSI acquis-
tion and analysis was compressed sensing. Compressed Sensing (CS) is based
on undersampling the data in a sparse domain (such as wavelet or DCT or
any other transform domain having a high amount of redundancy), followed
by reconstructing the data to obtain a denoised output [32]. However, with
MRSI data, the amount of redundancy in the spatial domain is low (given
the relatively small size of the voxels). One application of compressed sensing
to hyperpolarized 13-C flyback 3D-MRSI [30] involves using the high SNR
available from this hyperpolarization technique to obtain high-resolution
data. Spatial coverage and resolution is limited as only a limited number of
phase encodes can be fit into the short acquisition time for hyperpolarized
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MRSI. Compressed sensing resolves this issue by exploiting the sparsity in
the hyperpolarized 13-C spectra by under-sampling the spectral k-space
resulting in enhancement of the spatial resolution by a factor of 2. An-
other application of compressed sensing can be seen in a four-dimensional
echo-planar based J-resolved spectroscopic imaging sequence involving two
spatial and two spectral dimensions [31]. One spatially encoded dimension
kx and one temporal dimension t2 are simultaneously acquired using the
EPSI readout sequence. The remaining spatial and spectral dimensions (ky
and t1) are incrementally collected using non-uniform sampling(NUS) and
the missing data is reconstructed using compressed sensing coupled with the
split Bregman method- an l1-norm minimization algorithm. The CS-based
reconstruction also performs a data-dependent denoising to remove noise
from the original under-sampled data. This approach works favorably for
approximately 20− 25% of the original data implying an acceleration factor
of 4-5 times.

Wavelet based methods. Experiments on denoising MRS data were
conducted which involved automatic decomposition of MRS based on Prin-
cipal Component Analysis (PCA) and Independent Component Analysis
(ICA) [33]. Earlier work used PCA to project MRS into a subspace which
was coordinated by orthogonal principal components [34]. This method,
however, failed in the case of small data size and low SNR due to difficulty
in separating noise from MRS data in the orthogonal subspace. Moreover,
as the ICA method is highly noise-sensitive, the independent components
(ICs) extracted from small size data denoised using PCA (having complex
noise features) are of poor quality. As an improvement over this method,
wavelet was combined with PCA to eliminate noise of varying levels of
complexity. This involved using ICA to decompose MRS data into suitable
ICs having biochemical properties as corresponding features. This enabled
using ICA for classification purposes and subsequent tuning of the wavelet
packet parameters leading to removal of the higher-order noise from the
spectra.

Low-rank approximation methods. In general, low-rank approxi-
mation methods applied to spatial-spectral data incorporate low-rank ap-
proximations [11][35] in the k − t domain by assuming partial separability
(PS) between spatial and temporal variations at low orders. Additionally,
these methods are complemented by exploiting the low-rank of the spectral
signal due to its linear predictability.

Further improvements on this method involve extending the PS model to
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incorporate the tissue boundary constraints from the high-resolution MRSI
data to enable better low-rank filtering [36]. The boundary constraints
allow the classification of voxels having weak and/or localized metabolite
signals. Therefore, the local low-rank filtering ensures that these signals
can be protected from being smoothed or removed by global low-rank
approximation. In addition to this, the method further improves the low-
rank model by integrating B0 field inhomogeneity correction of MRSI data by
using the surrogate nuclear norm rank-minimization method. The method
significantly improves the SNR of the MRSI spectra though it is susceptible
to segmentation errors (while classifying low-rank and high-rank spectral
signals) which can degrade the denoising performance.

A new method known as SPICE (SPectroscopic Imaging by exploiting
spatiospectral CorrElation) [37][38] uses the sub-space model for both data
acquisition and image reconstruction while providing a better tradeoff for
SNR, resolution and speed. For the data acquisition, a hybrid echo-planar
spectroscopic imaging sequence for 2D MRSI is used which allows for an
extended (k,t)-space coverage in a short acquisition period [39][40][41]. The
B0 inhomogeneity field effects from the acquired data are removed by utilizing
an available high-resolution field map in a regularized super-resolution
reconstruction scheme. After determining the sub-space, the reconstruction
method then involves estimating the set of spatial coefficients (with a lower
number of degrees of freedom). A low-rank model and field inhomogeneity
correction method (as mentioned above) along with an edge-preserving
regularization are incorporated in a linear least-squares formulation. These
additional priors help in obtaining an improved reconstruction. The method
achieves fast acquisition of high-resolution data along with high SNR for
both phantom and in-vivo 2D and 3D MRSI data. From the acquisition side,
further optimization of the pulse sequences are desired. This is because the
proposed sequence is susceptible to chemical shift displacement and can have
only a limited range of echo times. Better pulse sequences would include
shorter TE times and reduced chemical shift displacement errors to improve
spatial localization. Additionally, integration of parallel imaging to the
SPICE framework can provide a better trade off between SNR, speed and
resolution allowing this method to be used for practical applications. From
the sampling and reconstruction side, optimal (k,t)-space sampling strategies,
such as compressed-sensing based sparse sampling schemes, can be explored
to improve speed and spatiospectral encoding. The reconstruction pipeline
requires a high computational load and the implementation time is quite
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high. This can be improved by incorporating better spatio-spectral/temporal
constraints and using hybrid data-sets for joint estimation of subspace
structure and spatial coefficients. Other developments in optimization
schemes could also improve computational efficiency of the method thereby
allowing for a faster reconstruction.

Denoising methods. This section deals with state-of-the-art recon-
struction and denoising techniques which have been applied to other imaging
tools such as dynamic MRI, perfusion MRI [42] and which can possibly be
adapted and applied to MRSI.

A number of methods have been proposed for better metabolite detection
and fitting of MRS images [9] [43]. Using a formulation based on combining
a Gaussian Markov random field (GMRF) prior with a frequency-domain
model for the free induction decay, spatial smoothness of selected param-
eter maps are assumed as spatial priors along with commonly used prior
knowledge [8]. The spatial smoothness prior can be modified for certain
image-specific parameters such as phase or line-width which allows for esti-
mation of parameters, such as amplitude of the signal and variance, which
may be of diagnostic relevance. This method of using spatial prior knowledge
shows considerable benefits such as low variance and improved details of
the estimated parameter maps, better resolution of the overlapping peaks of
the metabolites choline and creatine, and higher SNR of the data. Further
improvements to this method can be made by including multimodal spatial
information from morphological MR images (such as segmented tissue maps)
to adjust the coupling of neighboring voxels and provide a better spatial
fitting of MRSI data.

Another method focuses on improved concentration estimation of metabo-
lites such as Glutamate (Glu) and Glutamine (Gln) [43]. Glu and Gln occur
at very low concentrations with poor resolution between their peaks [43].
The LCModel [7] (the gold-standard basis fitting algorithm for MR spectra)
gives a combined estimate of Glu and Gln due to its inability to resolve the
two peaks. The high resolution spectral analysis method known as ’Spectral
Zooming’ estimates the unique power spectral density (PSD) which corre-
sponds to the maximum entropy solution of a zero-mean stationary Gaussian
process. this method then computes several PSDs of the metabolites from
a moving window of the measured data to give a separate estimate of Glu
and Gln. The method successfully gives separate concentration estimates
for both Glu and Gln (better than the LCModel estimates) and is validated
using 3 different phantom data-sets and 1 human in-vivo data. One area in
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which this method can be improved is in accounting for gray-white volume
fractions for proper estimation of the concentration at each voxel and also
providing absolute concentration values.

Other denoising methods from the computer vision and/or machine
learning domain, which have been applied to MRI [42] [13], offer the possi-
bility of being integrated in the post-processing pipeline of MRS Imaging.
The method of Non-local MRI upsampling [44] proposes a data-adaptive
patch-based reconstruction combined with a subsampling coherence con-
straint to upsample the acquired data to a higher resolution. This method
is partially similar to single image super-resolution (SR) techniques based
on self-similarity using a regularization expression. It involves a denoising
step based on an iterative reconstruction-correction scheme (constrained by
non-ideal sampling) followed by a patch-based non-local reconstruction to
take advantage of the local redundancy in MR images. The patch-based
approach prevents excessive blurring while preserving the edge-information.
The proposed method, though useful, exhibits a high computational burden
and can lead to loss of information of smaller features having a contrast
similar to noise levels. Another method reconstructs data using the kernel re-
gression along the temporal manifold structure of the undersampled k-space
MRI data [45]. This allows for fast reconstruction of dynamic MRI from
undersampled k-space data, thus leading to accelerated acquisition. The
manifold learning is facilitated by using Laplacian Eigenmaps which preserve
the data structure by ensuring that the data points (in the k-space samples)
which are closely located to each other in the high-dimensional space remain
close to each other in the low-dimensional sub-space as well. This method
achieves a significantly faster reconstruction of dynamic MRI data with
higher SNR as compared to the state-of-the-art compressed sensing schemes
though better sampling strategies can be chosen for increased robustness.
The kernel regression-based subspace approach is similar to the SPICE
method discussed earlier and can be extended to MRSI data as well.

Other patch-based approaches include the frequency-phase non-local
means (NLM) method [12] which has been applied to MRI data as well [13].
The NLM method exploits the redundancy inherent in periodic images such
as MRI slices to perform denoising. It does a full search across the data to
find voxels having intensity similar to the reference voxel following which it
performs a weighted averaging of all similar voxels to give a denoised reference
voxel - the weights are determined by the distance between the similar voxels
and the reference voxels. The method is widely used and can be suitably
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extended to MRSI by incorporating MRS features such as replacing intensity
comparison with spectral data comparison, frequency(ppm)-specific search
and phase-shift methods (to account for arbitrary phase and inhomogeneity
issues with MRSI data). The computational burden of such a method is high
and can be made better by using advanced dictionary learning techniques
and more powerful optimization schemes. A recent state-of the-art method
known as Filter Forests has been proposed for denoising MRI data. Filter
Forests is a linear, non-iterative forest-based predictor which performs signal
restoration by determining the optimal filtering kernels that can be applied
to each data point [46]. The kernels (size and value) can be determined
based on observation and learning the spatial or temporal context of the
data. The forest performs a recursive partition of the input signal such that
a simple convolution kernel can be used at each leaf after which the forest
is then trained to minimize the regularized least-squares error of the kernel
at the corresponding leaf. This method has been used for a variety of image
processing tasks such as image denoising, depth image refinement and 1D
signal magnitude estimation while achieving speed and accuracy significantly
higher than the state of the art. As this data-driven method uses the spatio-
temporal context of the continuous variables in the data while performing
regression analysis, it may be suitable for MR Spectroscopy as well where the
convolution kernel can be adapted to the spectra features and replacing the
’spatial-temporal’ feature of the variables with the ’spatial-spectral’ feature.
As a summary, MRSI reconstruction and post-processing is a challenging
problem and efficient artifact removal, denoising and accelerated acquisition
are the need of the hour. If this problem is viewed from the perspective of
data analysis, then the computer vision and machine learning domain in
general offers methods (some of which have been discussed in this review)
which can be attempted on spectral data while incorporating its specific
features and physical constraints [47].

2.3 Machine Learning

Machine learning is a broad field with overarching themes involving pattern
recognition, data mining, and statistical learning theory. It includes algo-
rithms that learn a mapping, such as classification or regression functions,
from a pool of observations, by making ”sense” of the underlying patterns
in the data. The Some of the more traditional and famous machine-learning

19



2. Background

algorithms include shallow algorithms such as the support vector machine
(SVM) [48], the random forest (RF) [49] or the neural network (NN) [50,
51]. As an example, random forest (RF) have been shown to be effective in
a wide range of classification and regression problems. These comprise of a
set of binary trees wherein splits are created in each tree based on a random
subsets of the feature variables on which the forests are subsequently trained.
Piece-wise linear regression is implemented by each tree over the input data
and, after seeking for the best prediction at every node, data points are sent
to the left or right branches based on feature selection by thresholding. This
process continues till it reaches the end of the tree and subsequently the
weighted average of the prediction from each tree is taken to give a single
output estimate. The randomness in the training process encourages the
trees to give independent estimates which can be combined to achieve an
accurate and robust result.

Newer variants employ the concepts of deep learning which learns the
deeper, more complex patterns in the data such as [52, 53, 54, 55, 26].
NN are systems of linear operations designed to have plasticity, or the
ability to update themselves iteratively based on the output and minimizing
the predictive errors, so-called because of their similarity to how the brain
works (in a simplified fashion). NNs are composed of nodes called neurons
which interact with each other by passing information. By combining many
inter-connected neurons across multiple, ”deeper” layers, dense non-linear
functions can be approximated by the simple linear combination of signals
as a result of which the network learns the mapping of more complex,
unstructured patterns in the observations. Mathematical operations such
as backpropagation are used to iteratively pass information between the
neurons in different layers eventually leading to the network to converge into
a steady-state. In recent years, machine learning techniques have played an
important role in accelerating progress across different field, especially in
medical image analysis. Applications include state-of-the-art methods for
segmenting brain tumors [56], liver tumors [57] or detecting stroke lesion [58]
- machine learning schemes are involved at some stage of the processing and
analysis workflow and have shown significant improvement in performance
over the traditional, deterministic and model-based approaches.

From the perspective of MRSI, machine learning tools have been used
only for specific tasks such as classification of spectra [59] and assessment
of spectral quality [60]. This opens up the possibility of using the recent
advances in machine learning to predict mr spectra parameters while ad-
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dressing the drawbacks of conventional fitting tools such as long computation
time and poor performance for data with some artifacts.
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Synopsis: This work discusses the denoising problem in MR Spectroscopic
Imaging (MRSI). We propose a novel frequency-phase non-local means
method which exploits the redundant spectra information within a dataset
and use this to denoise the acquired spectra. Our method is validated
on both simulated spectra and a healthy human 2D mrsi dataset showing
significant improvement in the acfsnr while retaining the spatial-spectral
resolution..
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Abstract

Magnetic resonance spectroscopic imaging (MRSI) is an imaging modal-
ity used for generating metabolic maps of the tissue in-vivo. These maps
show the concentration of metabolites in the sample being investigated
and their accurate quantification is important to diagnose diseases. How-
ever, the major roadblocks in accurate metabolite quantification are: low
spatial resolution, long scanning times, poor signal-to-noise ratio (SNR)
and the subsequent noise-sensitive non-linear model fitting. In this
work, we propose a frequency-phase spectral denoising method based
on the concept of non-local means (NLM) that improves the robustness
of data analysis and scanning times while potentially increasing spatial
resolution. We evaluate our method on simulated data sets as well as
on human in-vivo MRSI data. Our denoising method improves the SNR
while maintaining the spatial resolution of the spectra.

3.1 Introduction

Magnetic Resonance Spectroscopic imaging (MRSI), also known as chemical
shift imaging, is a clinical imaging modality for studying tissues in-vivo
to investigate and diagnose neurological diseases. More specifically, this
modality can be used in non-invasive diagnosis and characterization of patho-
physiological changes by measuring specific tissue metabolites in the brain.
Accurate metabolite quantification is a crucial requirement for effectively
using MRSI for diagnostic purposes. However, a major challenge with MRSI
is the long scanning time required to obtain spatially resolved spectra due to
abundance of metabolites that have a concentration which is approximately
10,000 times smaller than water. Current acquisition techniques such as
Parallel Imaging and Echo-Planar Spectroscopic Imaging [28] focus on
accelerated scanning times combined with reconstruction techniques to
improve the SNR of the spectral signal. Despite this, further accelerated
acquistions are desirable. Furthermore, an improved SNR is needed as the
non-linear voxel-wise fitting to noisy data leads to a high amount of local
minima and noise amplification resulting in poor spatial resolution [8].

The SNR of the signal can be improved by post-processing methods such
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as denoising algorithms [11], apodization (Gaussian/Lorentzian), filter-based
smoothing and transform-based methods [12]. However, these methods
reduce resolution and remove important quantifiable information by aver-
aging out the lower-concentration metabolites. Recently, data-dependent
approaches such as the Non-Local Means (NLM), which use the redundancy
inherent in periodic images, are being used extensively for denoising [12]. In
the case of MRS, this periodicity implies that the spectra in any voxel may
have similar spectra in other voxels in the frequency-phase space. Therefore,
it carries out a weighted average of the voxels in this space, depending
on the similarity of the spectral information of their neighborhoods to the
neighborhood of the voxel to be denoised.
Our Contribution. In this work, we propose a method for spectrally adap-
tive denoising of MRSI spectra in the frequency-phase space based on the
concept of Non-Local Means. Our method compensates for the lack of phase-
information in the acquired spectra by implementing a dephasing approach
on the spectral data. In the next section, we introduce the experimental
methods beginning with the concept of NLM in the frequency-phase space
followed by the spectral dephasing and rephasing approach. Our proposed
method is then validated quantitatively and qualitatively using simulated
brain data and human in-vivo MRSI data sets to show the improvements in
SNR and spatial-spectral resolution of MRSI data.

3.2 Methods

MR Spectroscopy. Magnetic resonance spectroscopy is based on the
concept of nuclear magnetic resonance (NMR). It exploits the resonance
frequency of a molecule, which depends on its chemical structure, to
obtain information about the concentration of a particular metabolite
[1]. The time-domain complex signal of a nuclei is given by: S(t) =∫

p(ω)exp(−iΦ)exp(−t/T ∗2 )dw. The frequency-domain signal is given by
S(ω), T ∗2 is the magnetization decay in the transverse plane due to magnetic
field inhomogeneity and p(ω) comprises of Lorentzian absorption and dis-
persion line-shapes function having the spectroscopic information about the
sample. Φ represents the phase, (ωt+ω0), of the acquired signal where ωt is
the time-varying phase change and ω0 is the initial phase. For the acquired
MRSI data, I, Φ is unknown. This process allows generation of metabolic
maps through non-linear fitting to estimate concentration of metabolites
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such as N-acetyl-aspartate (NAA), Creatine (Cr) and Choline (Cho).

3.2.1 Non-Local Means (NLM) in Frequency-Phase
space

As proposed by Buades et al. [12], the Non-Local Means (NLM) method
restores the intensity of voxel xij by computing a similarity-based weighted
average of all the voxels in a given image. In the following, we adapt NLM
to the MRSI data: let us suppose that we have complex data, I : Ω3 7−→
C of size M ×N and noisy spectra Sij(ω), where (xij|i ∈ [1,M ], j ∈ [1, N ])
and Ω3 is the frequency-phase grid. Using NLM for denoising, the restored
spectra Ŝij(ω) is computed as the weighted average of all other spectra in
the frequency-phase space defined as:

Ŝij(ω) =
∑

xkl∈Ω3

w(xij, xkl)Skl(ω) (3.1)

As a probabilistic interpretation, spectral data S11(ω), ..., SMN(ω) of voxels
x11, ....., xMN respectively are considered as MN random variables Xij and

the weighted average estimate Ŝij(ω) is the maximum likelihood estimate of
Sij(ω).

Nij = (2p+ 1)3, p ∈ N is the cubic neighborhood of voxel xij within the
search volume Vij = (2R + 1)3 around xij along the frequency, phase and
spatial directions. R ∈ N, where R is the radius of search centered at the
voxel xij. The weight w(xij, xkl) serves as a quantifiable similarity metric
between the neighborhoods Nij and Nkl of the voxels xij and xkl provided
w(xij, xkl) ∈ [0, 1] and

∑
w(xij, xkl) = 1. The Gaussian-weighted Euclidean

distance is computed between S(Nij) and S(Nkl) as shown below:

w(xij, xkl) =
1

Zij
e−
||S(Nij)−S(Nkl)||22

h2 (3.2)

where Zij serves as the normalization constant such that
∑

w(xij, xkl) = 1,
S(Nij) and S(Nkl) are vectors containing the spectra of neighborhoods Nij

and Nkl of voxels xij and xkl respectively and h serves as a smoothing
parameter [13].

To increase the robustness of our method for MRSI data, in the next
section we propose a dephasing approach tailored for use in the frequency-
phase NLM.
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3.2.2 Spectral Dephasing

For the acquired data I, as the spectral phase Φ(I) is unknown, the proba-
bility of finding a similar neighborhood spectra are very low. To counter this
effect, a dephasing step is performed to consider a wide range of possible
phase variations in the pattern analysis. For each voxel xij , the complex time-
domain signal Sij(t) is shifted by a set of phase angles Θ. This is given by
SΘ
ij (t) = Sij(t).e

−(iΘ), where Θ ∈ [−n1π, (n2 + 2)π], {n1, n2 ∈ R |n1, n2 ≥ 0}.
Θ here is defined to be the range of angles through which the spectrum can
be shifted. The dephased signal is transformed into the frequency-domain,

Sθij(t)
F−→ Sθij(ω), following which its real component, R(SΘ

ij (ω)), is taken to
generate a 2D spectral-phase matrix. Note that in this 2D matrix generated,
for each voxel xij, the imaginary part at a given Θ is I(Θ) = R(Θ + π/2).
This approach is illustrated in Fig. 3.1.

Repeating this step for all MN voxels gives us a 3-D dataset on which
the NLM is implemented to give the denoised spectra ŜΘ

ij (ω) ∈ R. Our
approach has 2 key innovations: the denoising method is (i) robust to phase
shifts as the range of angles considered varies from 0 to 2π periodically
for all spectral signals, and is (ii) adaptive to the imaging sequence as the
spectrum is denoised by relying on similar signals in the given data and not
on predefined prior assumptions.

A B

Figure 3.1: MRSI data dephasing shown here for a sample voxel: (A)
Changes in spectral pattern as it is shifted by different phase angles. (B)
Corresponding 2D frequency-phase image space generated for the voxel. A
sample patch (black box) is selected and then denoised by the NLM-based
matching in the frequency-phase space.
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3.2.3 Spectral Rephasing and Recombination

Post-NLM, ŜΘ
ij (ω) is rephased in order to generate the denoised complex

signal C(Ŝij(ω)). The complex spectral signal C(ŜΘ
ij (ω)) is re-generated ∀Θ

by combining R(ŜΘ
ij (ω)) and I(ŜΘ

ij (ω)) (= R(Ŝ
Θ+π/2
ij (ω))). The equivalent

time signal is obtained by C(ŜΘ
ij (ω))

F−1

−−→ C(ŜΘ
ij (t)). After this, C(ŜΘ

ij (t))
undergoes an inverse phase shift by −Θ to remove the dephasing effect as
given by C(Ŝ−Θ

ij (t)) = C(ŜΘ
ij (t)).e

(iΘ). This re-phased signal is transformed

back to the spectral domain to obtain C(Ŝ−Θ
ij (ω)). Thereafter, the C(Ŝ−Θ

ij (ω))

are averaged over all Θ to generate a single complex spectra C(Ŝij(ω)).

3.3 Experiments and Results

We performed two different experiments to test the improvement in SNR
and metabolite quantification using our proposed denoising method. In the
first experiment, we evaluate our method on the publicly available BrainWeb
database [61], while in the second experiment we use human in-vivo MRSI
data. The SNR of a metabolite was calculated by dividing the maximum
value of the metabolite peak by the standard deviation of the spectral region
having pure noise. For both experiments, we tested with different noise
levels against a ground-truth data to assess the improvement in SNR and
spatial-spectral resolution.

3.3.1 Data Acquisition

We used BrainWeb to simulate a brain MRSI image (size: 64x64 voxels,
slice thickness = 1mm, noise level = 3%) with segmented tissue types,
namely White Matter (WM), Grey Matter (GM) and Cerebro Spinal Fluid
(CSF) as shown in Fig. 4.1. In order to have a comparable spectrum with
the in-vivo data, water was added to the signal and the main metabolites-
NAA, Cho and Cr- were simulated using Priorset (Vespa) [62]. Metabolite
concentrations for WM, GM and CSF were based on commonly reported
literature values [2] [63]. Next, Gaussian noise of levels 2 and 3 times
the standard deviation, σ, of the original image data were added to the
ground-truth signal.
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Figure 3.2: Simulated brain MRSI dataset. (A) The simulated brain with
the region of interest (red box). (B) Highlighted regions corresponding to
GM, WM and CSF (c) Corresponding spectrum of GM, WM and CSF. Note
that CSF has only water.

In the case of in-vivo data, we acquired a 2D-MRSI data of the brain
of a healthy human volunteer using a 3T-HDxt system (GE-Healthcare).
PRESS localization [64], CHESS water suppression [65] and EPSI read-
out [28] were used as part of the sequence. The acquisition parameters
were: Field of view (FOV) =160x160x10 mm3, voxel size=10x10x10 mm3,
TE/TR=35/2000 ms and spectral bandwidth = 1 kHz. The dataset was
zero-filled and reconstructed to generate a grid of 32x32 voxels and 256
spectral points. 6 (ground truth), 3 and 1 averages were acquired with a
total scan duration of 33 minutes (5.5 minutes per average). Fig. 3.4 (A)
shows the in-vivo data acquired along with the entire field-of-view (white
grid) and the corresponding spectra of a voxel (red box).

3.3.2 Results

Simulated data: In Fig. 3.3, we show the SNR improvement for NAA for
data with noise levels 2σ and 3σ in a 32×32 region of interest. It is evident
that while the spectral SNR improves significantly, the spatial resolution
is preserved as the lower concentration metabolite peaks have only a small
amount of smoothing and there is no voxel bleeding in the CSF (containing
only water).

In-vivo data: Fig. 3.4 reports the SNR improvement in NAA for
the 3-averages and the 1-average data as compared to the ground-truth
6-averages data. The figure also presents the results from the LCModel [7]
which is the gold standard quantitation tool in MRS analysis. LCModel fits
the spectral signal S(ω) using a basis set of spectra of metabolites acquired
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Figure 3.3: NLM Denoising results in the simulated data. (From Top) Row
1 (L-R): Full SNR of NAA in – original data, with additive noise 2σ, and
noise 3σ (σ is the standard deviation of the original data). Row 2 & 3:
32×32 Region of Interest (ROI) for applying the frequency-phase NLM:
SNR of NAA in the original data, noise level 2σ, 3σ and the corresponding
spectra of reference WM voxel (red box). Row 4 & 5 (L-R): Denoised
SNR for noise level 2σ (SNR improvement = 2.9), for noise level 3σ (SNR
improvement = 2.2), and the corresponding denoised spectrum. The SNR
improves significantly while retaining the spatial-spectral resolution (seen
by no voxel bleeding in the CSF).

under identical acquisition conditions as the in-vivo data. As explained
earlier for noisy data, the non-linear fitting leads to poor spatial resolution.
Therefore, the LCModel can be used to assess the improvement in spatial
resolution through a better fit. Due to space constraints, we present the
results for NAA only and mention the SNR values for Cho and Cr. LCModel
quantification (Fig. 3.4) shows that the absolute concentration estimation
of NAA in the denoised data improves significantly. The Full-Width Half
Maximum (FWHM) shows information about the water peak – a narrow
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Figure 3.4: Denoising results for in-vivo data. (A) Original hu-
man in-vivo brain MRSI data with the excitation region shown
(white grid). (From Top) Row 1 & 2: SNR of NAA and the cor-
responding WM voxel spectra in: (B) 6-averages data (ground-
truth), (C) 3-averages data (original) and (D) denoised, (E) single-
scan data (original) and (F) denoised with corresponding spec-
tra. Row 3: LCModel based absolute concentration estimate of NAA in: 6-
averages data, 3-averages data (original) and denoised, 1-average data
(original) and denoised. The NAA concentration estimate and spectral SNR
improve considerably as seen in columns D (SNR = 23.29) and F (SNR =
11.38) against the ground-truth (SNR = 11.44).

peak gives a better spatial resolution. As shown in Table 3.1, the FWHM of
the denoised 1- and 3-averages data is lower than the 6-averages data while
the corresponding mean SNR improves considerably. Therefore, we observe
here that our method can accelerate MRSI data acquisition by almost 2
times by reducing the number of scans acquired.

3.4 Conclusion

In this work, we proposed a novel frequency-phase NLM-based denoising
method for MRS Imaging to improve the SNR and spatial resolution of the
metabolites. A spectral dephasing approach is promoted to compensate for
the unknown phase information of the acquired data. To the best of our
knowledge, this is a novel application of the concept of NLM and has been
validated on both simulated and in-vivo MRSI data.
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Table 3.1: SNR and LCM Quantification results for NAA, Cho and Cr
before and after using frequency-phase NLM on in-vivo MRSI data. Mean
SNR for the denoised data is comparable or better than the ground-truth
data while the FWHM of the water peak is lower than the ground-truth
data thereby preserving spatial-spectral resolution.

Data
Mean SNR

(NAA)

SNR
improvement

(NAA)

Mean SNR
(Cho)

SNR
improvement

(Cho)

Mean SNR
(Cr)

SNR
improvement

(Cr)
FWHM

1-average 5.70 - 3.74 - 4.04 - 0.125
3-averages 8.82 - 5.59 - 5.97 - 0.135
6-averages
(ground-truth)

11.44 - 6.96 - 7.61 - 0.135

Single scan (NLM) 11.38 1.98 6.89 1.82 7.78 1.90 0.130
3-averages (NLM) 23.29 2.63 14.08 2.48 15.59 2.57 0.134

In particular, we assessed the effect of our method on metabolites such
as NAA, Cho and Cr and obtained a visible improvement in SNR while
the spatial resolution was preserved which, subsequently, led to a better
estimation of the absolute concentration distribution of NAA. This has direct
benefits as it would accelerate data acquisition by taking fewer scan averages.
Future work would involve using a more robust metabolite-specific search in
the given dataset with less smoothing. This can be coupled with optimal
computational efficiency and better estimation of the in-vivo metabolites.

Acknowledgements. The research leading to these results has received
funding from the European Union’s H2020 Framework Programme (H2020-
MSCA-ITN-2014) under grant agreement n° 642685 MacSeNet.
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Synopsis: This work deals with the metabolite quantification problem in
MR Spectroscopic Imaging (MRSI). We propose a machine-learning method
using random-forests for estimating metabolite concentrations. IAdditionally,
we also create a pipeline for simulating synthetic training spectra having
similar features as short-TE human in-vivo brain spectra. Finally, we
evaluate our method on single-voxel and MRSI healthy human brain spectra
and benchmark these against the LCModel to evaluate improvement in
speed and prediction error..
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Abstract

Magnetic Resonance Spectroscopic Imaging (MRSI) is a clinical imaging
modality for measuring tissue metabolite levels in-vivo. An accurate
estimation of spectral data parameters allows for better assessment of
spectral quality and metabolite concentration levels. The current gold
standard quantification method is the LC Model. However, this fails
for spectra having poor signal-to-noise ratio (SNR) or a large number
of artifacts. This paper introduces a framework based on random
forest regression for accurate estimation of the output parameters of
a model based analysis of MR spectroscopy data. The goal of our
proposed framework is to learn the spectral features from a training
set comprising of different variations of both simulated and in-vivo
brain spectra and then use this learning for the subsequent metabolite
quantification. Experiments involve training and testing on simulated
and in-vivo human brain spectra. We estimate parameters such as
concentration of metabolites and compare our results with that from
the LCModel.

4.1 Introduction

Magnetic resonance spectroscopic imaging (MRSI) is an in-vivo clinical
imaging modality which detects nuclear magnetic resonance signals produced
by nuclei in living tissues. Quantification of this signal amplitude generates
metabolic maps which show the concentration of metabolites in the sample
being investigated. Accurate quantification of these metabolites is important
for diagnosis of brain tumor and other in-vivo diseases. For this purpose, a
common practice in the MRS community has been to use non-linear spectral
fitting tools such as the LCModel [7], TARQUIN [10], AMARES [9] and
ProFit amongst which the LCModel is regarded as the gold standard fitting
tool. In this study, we present an alternative to the non-linear model fitting
using a machine learning approach.

Non-linear model fitting. The LCModel software uses a linear combi-
nation of metabolite basis spectra set to model the spectral measurement in
the frequency domain. It also uses smoothing splines to model the baseline
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signals and subsequently fits the parameters of the basis set using a non-
linear optimisation. LCModel incorporates the prior knowledge of the data
while modeling the fit and this ensures robustness in the model leading to
estimation of the spectral parameters such as concentration of metabolites.
Some of the drawbacks of this non-linear fitting model are: (1) Metabolite
quantification can be time-consuming depending on the dataset size and
requires a lot of manual parameter tuning. (2) The error in estimating pa-
rameters is lower if high SNR spectra is used since the non-linear voxel-wise
fitting to noisy data leads to a high amount of local minima and subsequent
inaccuracy in quantification. [59][8].

Machine Learning. Machine learning methods such as decision forests,
random forests [66] are being extensively used in the medical imaging com-
munity for various tasks such as parameter estimation, diseases diagnostics,
segmentation, etc. In MRSI, machine learning tools have been used only for
specific tasks such as classification of spectra [59] and assessment of spectral
quality [60]. This opens up the possibility of using the recent advances in
machine learning to predict MRSI data parameters while addressing the
drawbacks of conventional fitting tools such as long computation time and
poor performance for data with some artifacts.

Our Contribution. In this work, we propose a simple yet effective
method using random forest regression for multi-parameter estimation in
MR Spectroscopic Imaging. We generate over 1 million simulated spectra
training-set having concentration magnitudes, linewidth effects, baseline and
lipid artifacts. We also use spectral data from 287 human subjects to create a
physical training model to be used in the regression framework (Sect. 4.3.1).
In the following we present our method adapting random forest regression
to MRSI (Sect. 4.2) followed by experiments in the aforementioned dataset.
Our proposed method is then validated quantitatively and qualitatively
using: (1) synthetic brain spectra, (2) human in-vivo single voxel spectra
having the same image acquisition protocol as the physical training model
and (3) independently acquired human in-vivo 2D MRS Images to perform
a blind test on the physical and synthetic models. We present the results
(Sect. 4.3.2) of our experiments followed by a summary and discussion (Sect.
5.4) on the future work in this domain. This is the first application- to the
best of our knowledge- of machine learning for determining MRS parameters
which were otherwise determined using basis fitting tools.
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4.2 Methods

MR Spectroscopy. Magnetic resonance spectroscopy, based on the concept
of nuclear magnetic resonance (NMR), exploits the resonance frequency of
a molecule, to obtain information about the concentration of a particular
metabolite [1]. The time-domain complex signal of a nuclei is given by:

S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗2 )dw. (4.1)

The frequency-domain signal is given by S(ω), T ∗2 is the magnetization
decay in the transverse plane due to magnetic field inhomogeneity and
p(ω) comprises of Lorentzian absorption and dispersion line-shapes function
having the spectroscopic information about the sample. Φ represents the
phase, (ωt+ ω0), of the acquired signal where ωt is the time-varying phase
change and ω0 is the initial phase. Non-linear fitting tools facilitate the
generation of metabolic maps to estimate concentration of metabolites such
as N-acetyl-aspartate (NAA), Creatine (Cr) and Choline (Cho). An example
of the spectra present in the brain has been shown in Fig. 4.1.

A B C

CSF

CSF
WM

WMGM

GMNAA

CrCho

NAA

Cr

Cho

Cr

Cr

Figure 4.1: Example brain 2D MRSI dataset. (A) The simulated brain with
the region of interest (red box). (B) Highlighted regions corresponding to
GM, WM and CSF (c) Corresponding spectrum of GM, WM and CSF.

Random Forest Regression. Random Forests [66] have been shown
to be effective in a wide range of classification and regression problems.
These comprise of a set of binary trees wherein splits are created in each
tree based on a random subsets of the feature variables on which the forests
are subsequently trained. Piecewise linear regression is implemented by each
tree over the input data and, after seeking for the best prediction at every
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node, data points are sent to the left or right branches based on feature
selection by thresholding. This process continues till it reaches the end
of the tree and subsequently the weighted average of the prediction from
each tree is taken to give a single output estimate. The randomness in the
training process encourages the trees to give independent estimates which
can be combined to achieve an accurate and robust result.

For MRSI, we adapt the random forest approach to have a training
dataset D = (Si, Yi) , i ∈ [1, N ], where N is the total number of training
spectra. Si represents the training spectral data while Yi represents the
corresponding multi-parameter training labels. For our model, we consider
the concentrations of NAA, Cho and Cr for simulated data, while for the real
data we additionally consider Myo-Inositol (mI) and Glutamate+Glutamine
(Glx). Therefore, for a given spectra Si, Yi = [ NAAi, Choi, Cri, mIi, Glxi ].

Running the random forest regression on this produces a training model
which can then be used to obtain parameter estimates Ŷj of test spectra
Sj having test labels Yj, j ∈ [1,M ] where M is the total number of test
spectra.

Error Calculation. For our experiments, given the estimate Ŷj and the
testing label Yj, the estimate error for the parameter Yj can be calculated
as,

Êj = ||Ŷj − Yj||./||Yj|| (4.2)

This method helps us to assess the change in parameter estimate over the
testing/ground-truth values.

4.3 Experiments and Results

4.3.1 Data

We perform 4 sets of experiments to assess our proposed method: (1) training
and testing on simulated spectra (Synthetic - Synthetic (Spectra)),
(2) training and testing on human in-vivo spectral data from different
subjects but having the same acquisition protocol (Real (Spectra) - Real
(Spectra)), (3) training and testing on human in-vivo spectral data from
different subjects with different acquisition protocol (Real (Spectra) -
Real (MRS Images)) and (4) using the simulated spectra model to test
on MRS images (Synthetic (Spectra) - Real (MRS Images)).
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Synthetic (Spectra). A metabolite basis set was generated by using
the data provided by the ISMRM MRS Fitting Challenge 2016. These were
then used to simulate over 1 million spectra. In order to ensure that the
simulated spectra was as close as possible to human in-vivo spectra, we in-
corporate the following features: variations in NAA, Cho, Cr concentrations,
macro-molecular baseline, lipids, t2 values (for changes in linewidth) and
signal-to-noise ratio (SNR) to account for changes in spectral quality. As a
preliminary case study, we only simulate the major metabolites (NAA, Cho
and Cr) as these are easily detected by the LCModel and would, therefore,
help us to evaluate the outcome of our approach and allow a suitable compar-
ison with the LCModel. A set of over 10,000 independent test spectra were
also simulated with varying combinations of the aforementioned features.
For both the training and testing sets, we used the basis-set metabolite
concentration values as our ground-truth.

Real (Spectra). To evaluate our method on in-vivo data, we utilize
LCModel-fitted single-voxel spectroscopy (SVS) data from 287 independent
human subjects. The data was obtained using the same standardized imaging
protocol with the following acquisition parameters: TE/TR = 35/2000 ms,
spectral width = 2500 Hz, number of points = 1024. We implement a K-fold
cross-validation with 10 folds along with the random-forest regression to
generate different training and testing sets having spectra from 259 and 28
subjects respectively. The metabolites assessed were: NAA, Cho, mI and
Glx.

Real (MRS Images). To further assess our approach, we acquire a
standard phase-encoded 2D brain MRSI data of a healthy human volunteer
on a 3T scanner using a point-resolved spin-echo localization sequence
(PRESS) with voxel size = 10x10x15 mm3, TE/TR=35/1000 ms, spectral
width = 2000 Hz, number of points = 400. For testing purposes, we use
96 spectra from the inner-region of the brain which serves as the region of
interest.

Due to the differences in acquisition parameters of the training and
testing set, both the resulting spectra vary in amplitude and metabolite
peak alignment. We perform a pre-processing spectral alignment step where
all the test spectra are cropped from 4.3 to 0.2 ppm and interpolated to the
same number of points as the training spectra to compensate for differences
in acquisition bandwidth. This is followed by normalizing the amplitude of
the test spectra using one of the training spectra as reference.
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4.3.2 Results

Synthetic - Synthetic (Spectra). We perform an initial experiment to
determine the out-of-bounds (OOB) error using different number of trees
and features on a set of 20,000 simulated train and test spectra. Based on
the results shown in Fig. 4.2, we proceed with the parameter estimation
experiment by identifying the appropriate number of trees and features
required to achieve convergence of the OOB error. For the regression error
estimates, we use metabolite concentration ratios with respect to Cr (used
as a standard assessment method in MRS as a means for calibration).
We obtain R scores of 0.968 and 0.962 for NAA/Cr and Cho/Cr values
respectively. The corresponding figures representing the linear regression
are shown in Fig.4.3 and the error plots in comparison with the LCModel
are shown in Fig.4.4.

Figure 4.2: Out-Of-Bound (OOB) Error for Simulated Spectra. The ex-
periment is performed for a varying number of features (from 1 to 256 as
shown in the legend) and each iteration is assessed for a varying number of
trees (as shown in the X-axis). The Y-axis represents the OOB Error rate.
The error rate is minimal for more 64 features and also converges when the
number of trees is close to 100.

Real (Spectra) - Real (Spectra). For the SVS dataset, we use
the LCModel concentration ratio estimates as the ground-truth. Table.??
indicates the mean metabolite concentration estimate error across the 10-
folds of the cross-validation process using the random forest regression
method. Median error for the NAA/Cr estimate is 0.068, 0.072 for the
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Figure 4.3: Regression Scores for the following parameters (from left to
right): NAA/Cr concentration estimate and Cho/Cr concentration estimate.
The X-axis represents the true values of the parameter while the y-axis
represents the estimated values. Both sets of values are plotted using linear
regression.

Figure 4.4: Synthetic-Synthetic (Spec): Estimation error for different
metabolite concentration ratios. Whiskers span the [min max] values. Me-
dian error values are represented by the red line and are as follows: NAA/Cr
Regression = 0.064, NAA/Cr LCModel = 0.077, Cho/Cr Regression = 0.043,
Cho/Cr LCModel = 0.070.

Cho/Cr estimate, 0.093 for the mI/Cr estimate and 0.070 for the Glx/Cr
estimate compared to the corresponding LCModel estimates. The difference
in error estimates is small and shows a similarity in assessment between
our proposed method and the LCModel. Moreover, the low-concentration
metabolites such as mI and Glx usually display a fitting error with the
LCModel and the estimation error for these metabolite ratio concentrations
is lower indicating that our model works well for these metabolites as well.
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Figure 4.5: Synthetic (Spec)-Real (MRS Images): Estimation error
for different metabolite concentration ratios. Whiskers span the [min max]
values. Median error values are represented by the red line and are as follows:
NAA/Cr = 0.024, Cho/Cr = 0.034.

Figure 4.6: NAA/Cr and Cho/Cr concentration distribution estimates
from random forest regression and non-linear model fit.

Synthetic (Spectra) - Real (Images). We test our synthetic spectra
training model on the 2D MRSI data and the results are shown in the
boxplot in Fig. 4.6 along with the resulting concentration distribution from
both the regression approach and the non-linear model fit. As our synthetic
model is trained for only NAA and Cho ratios, we show the errors for these
two only. Median estimate error for NAA/Cr is 0.24 using regression. For
Cho/Cr, the estimation error is 0.34. The corresponding concentration
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Naa/Cr Cho/Cr mI/Cr Glx/Cr

Real-Real (Spectra) 0.068 0.072 0.093 0.070
Real-Real (Images) 0.1 0.18 0.217 0.13

Table 4.1: Concentration-ratio estimate errors using random forest regression.
Results are for the experiments Real(spec)-Real(spec) and Real(spec)-
Real(images). The errors are calculated over the respective LCModel
estimates as per the formula given in Eq.A.2. The major metabolites (NAA
and Cr) show a low error while the smaller concentration metabolites (mI
and Glx) show a slightly higher error.

Relative error Naa PCh

MLP 10.4% 13.2%

Table 4.2: Concentration-ratio estimate errors using random forest regression.
Results are for the experiments Real(spec)-Real(spec) and Real(spec)-
Real(Images). The errors are calculated over the respective LCModel
estimates as per the formula given in Eq.A.2. The major metabolites (NAA
and Cr) show a low error while the smaller concentration metabolites (mI
and Glx) show a slightly higher error.

values estimated from the LCModel serves as our ground-truth.

Real (Spectra) - Real (Images). We perform a blind test with 96
2D MRSI spectra against the training model generated using the 287 SVS
spectra and the results are shown in Table. 4.1 and 4.2. Median estimate
error for NAA/Cr is 0.1, for Cho/Cr is 0.18, for mI/Cr is 0.217 and for
Glx/Cr is 0.13. Although we expect the errors to be higher in the blind
test due to difference in the acquisition protocols of the training and testing
dataset, the errors appear to be within a reasonable window. As expected,
the estimated errors are highest for mI/Cr while Glx/Cr surprisingly has a
lower error than Cho/Cr.

The Real Spectra training model provides a marginally better metabolite
concentration estimate than the Synthetic spectra model . We attribute
this to the presence of arbitrary scanning effects and artifacts in the real
spectra model as compared to the synthetic model. For future experiments,
this provides the scope for learning on a large synthetic spectral data-set
with similar additional arbitrary effects to have a robust classifier for real
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data (especially in the cases where annotating training data is expensive).

4.4 Conclusion

Machine learning techniques such as Random Forest-based regression provide
a new and faster way of metabolite quantification. Our synthetic training
model accounts for spectral features such as macro-molecular baseline, lipids,
linewidth and SNR variations in combination with different metabolite
concentrations. Additional features such as frequency and/or phase-shift
effects along with B0 inhomogeneity could be incorporated in the model to
improve robustness. For the human in-vivo data, we use training spectra
from different subjects and the random-forest regression provides a low
amount of estimation error over the LCModel fit even in the presence of
arbitrary scanning effects. Training times for the simulated spectra can
be considerable (around 5-6 hours) given that we generate over 1 million
spectra while it is only a few minutes for the in-vivo spectra. On the other
hand, testing and concentration estimation happens in only a few seconds
and is considerably faster than the non-linear model fitting. The machine
learning approach may be used directly, or indirectly by initializing LCModel
fits thereby improving their results in the presence of noise and speeding
up convergence. They can also be combined with global decisions about
spectral quality predicting whether a spectrum can or cannot be interpreted
by the physics model because of the presence of artifacts.

Future work would involve using a more robust approach such as deep-
learning based methods to improve the accuracy of parameter estimation.
Once a framework has been established, further work can be done on having
disease-based training models for parameter estimation to predict disease
progression and the corresponding metabolite maps.

Acknowledgements. The research leading to these results has received
funding from the European Union’s H2020 Framework Programme (H2020-
MSCA-ITN-2014) under grant agreement n° 642685 MacSeNet.
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Synopsis: This work deals with the metabolite quantification problem in
MR Spectroscopic Imaging (MRSI). We introduce a multi-layer perceptron
based architecture for performing regression on magnetic resonance spectra
for the purpose of estimating metabolite concentration levels. Our approach
is evaluatemrsi healthy human brain mr spectra and we benchmark these
results against the LCModel to evaluate improvement in speed and prediction
error..

Contributions of thesis author: algorithm design and implementation,
computational experiments and composition of manuscript.
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5.1 Abstract

We introduce a deep-learning based framework based on a multilayer per-
ceptron for estimation of the output parameters of a model-based analysis
of MR spectroscopy data. Our proposed framework: (1) learns the spectral
features from a training set comprising of different variations of synthetic
spectra; (2) uses this learning and performs non-linear regression for the sub-
sequent metabolite quantification. Experiments involve training and testing
on simulated and in-vivo human brain spectra. We estimate parameters
such as metabolite-concentration ratios and compare our results with that
from the LCModel.

5.2 Introduction

Quantification of MR Spectroscopy (MRS) signals generates metabolic maps
which show the concentration of metabolites in the sample being investigated.
Accurate quantification of these metabolites is important for diagnosis of
brain tumor and other in-vivo diseases. For this purpose, non-linear model-
fitting tools are widely used (such as the LCModel [7], TARQUIN [10],
AMARES [9] and ProFit). The LCModel is widely regarded as the gold-
standard fitting tool. However, some of its drawbacks include: (1) prior
knowledge-tuning and long fitting times, and (2) high estimation error for
noisy data. Prior work has also focused on using machine-learning for
metabolite-quantification [20]. In this study, we present an alternative to
the non-linear model fitting using a deep-learning approach.

5.3 Methods

A multilayer perceptron(MLP)[26] is a fully-connected, feedforward deep-
neural network comprising of three or more layers of non-linearly activated
nodes. The nodes in each layer are connected to the next layer with certain
weights and a supervised learning technique (backpropagation) [26] is used
for training. Weights are updated after each backward-pass and the error
(loss function) is computed after each iteration. Once the error reduces and
achieves convergence, the learning stops.
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In MRSI, The time-domain complex signal of a nucleus is given by:

S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗2 )dw. (5.1)

, and the corresponding frequency-domain spectrum is given by S(ω).
Using the MLP-framework, we perform the inverse signal modeling where

we have a training dataset D = (Si(ω), Yi) , i ∈ [1, N ], where N is the total
number of synthetic training spectra. Si(ω) represents the synthetic training
spectral data while Yi represents the corresponding multi-parameter training
labels. As a preliminary study, for our model, we consider the concentrations
(with respect to Creatine) for the major metabolites - NAA and Choline.
Therefore, for a given spectrum Si(ω), Yi = [ NAAi, Choi ].

A five-layered perceptron network was constructed to work as a regressor
mapping the Si(ω) to the Yi. Each layer consisted of 300 neurons with
rectified linear unit (ReLU) activation. The training data consisted of
N=1-million spectra with their corresponding parameters. The randomly
initialized network was trained to predict the parameters by iteratively min-
imizing the squared-error loss between the predicted and actual parameters
using gradient descent with a learning rate of 1e-3. For faster convergence,
Adam optimizer with a Nesterov’s momentum of 0.9 was employed. As the
data is mostly well-behaved, the ’early stopping’ convergence check was
utilized on 0.1

To check the ability of our network to predict the parameters, we use two
test-sets: synthetic and real CSI. The predicted concentrations are denoted
by Ŷj. The corresponding LCModel fitted concentration labels Yj serve as
the ground-truth, j ∈ [1,M ] where M is the total number of test spectra.

Error Calculation. For our experiments, given the estimate Ŷj and the
testing label Yj, the estimate error for the parameter Yj can be calculated
as,

Êj = ||Ŷj − Yj||./||Yj|| (5.2)

Data. A metabolite basis set was generated by using the data provided
by the ISMRM MRS Fitting Challenge 2016. An example has been shown
in A.2. Over 1 million spectra were simulated with variations in NAA,
Cho, Cr concentrations, macro-molecular baseline, lipids, t2 values (for
changes in linewidth) and signal-to-noise ratio (SNR) to account for changes
in spectral quality. For testing, we acquire a standard phase-encoded 2D
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Figure 5.1: An example spectra generated using the basis sets provided by
the ISMRM MRS Fitting Challenge 2016. Using the same basis sets, over 1
million spectra are generated with variations in NAA, Cho, Cr and other
metabolite concentrations along with changes in macro-molecular baseline,
lipids, linewidth (t2) and SNR.

brain MRSI data of a healthy human volunteer on a 3T scanner using
a point-resolved spin-echo localization sequence (PRESS) [67] with voxel
size = 10x10x15 mm3, TE/TR=35/1000 ms, spectral width = 2000 Hz,
number of points = 400. For testing purposes, we use 96 spectra from the
inner-region of the brain which serves as the region of interest. For peak
alignment, ppm-cropping and signal-normalization of the training and test
spectra, a pre-processing step is performed.

5.3.1 Results

As a direct comparison of both the MLP and LCModel methods,we use
the synthetic test dataset to generate the error distribution shown in Fig.
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Figure 5.2: Estimation error for different metabolite concentration ratios in
a synthetic spectra test-set. Whiskers span the [min max] values. Median
error values are represented by the red line and are as follows: NAA/Cr
MLP = 0.050, LCModel = 0.065, Cho/Cr MLP = 0.0505, LCModel = 0.050.

5.2. For both NAA/Cr and Cho/Cr, the MLP shows a lower median error
than the LCModel. Using the Bland-Altman method [68], we observe a
strong correlation between the LCModel and RF estimates for a sample
patient (Fig. A.3). Êj for the same sample patient are within the acceptable
range (especially for the major metabolites such as NAA, Choline and
Creatine). Fig. 5.4 shows the resulting concentration distribution from both
the MLP and LCModel methods for both NAA/Cr and Cho/Cr. The mean
relative errors over the LCModel for NAA/Cr and Cho/Cr are 0.31 and 0.12
respectively.

Speed: Training time for the synthetic data is 10 minutes using the
MLP. While the LCModel takes 10 minutes for the in-vivo metabolite
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Figure 5.3: Bland-Altman plots [68] representing LCModel and Multi-Layer
Perceptron (MLP) estimates of spectra for the real CSI dataset. The X-Axis
is the mean of the LCModel and MLP estimate, while the Y-Axis represents
the relative error of the MLP estimate over the LCModel. Bland-Altman
plots for: (Left): NAA and (Right)Choline. Both plots show a good
correlation with very few outliers.

quantification, our proposed network, after training, takes only 10 seconds
leading to a 60x improvement in speed.

5.4 Discussion and Conclusion

While the synthetic test-results gave a lower error compared to the LCModel,
the in-vivo testing gave a slightly higher relative error. A larger training
set with more training labels and a stronger network would solve this issue
by providing a robust classification of real data. In our proposed method,
testing and concentration estimation happens in only a few seconds and is
considerably faster than the LCModel fitting. The deep neural-networks may
be used directly, or indirectly by initializing LCModel fits thereby improving
their results in the presence of noise and speeding up convergence.

Future work would involve using a more diverse network with layer-
wise training of spectral features to improve the accuracy of parameter
estimation. Once a framework has been established, further work can be
done on combining these networks with global decisions about predicting
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Figure 5.4: NAA/Cr and Cho/Cr concentration distribution estimates from
(Left)LCModel fit and (Right) multi-layer perceptron (MLP). The mean
relative errors are 0.31 for NAA/Cr and 0.12 for Cho/Cr.

spectral quality especially in the presence of artifacts.
Acknowledgements. The research leading to these results has received

funding from the European Union’s H2020 Framework Programme (H2020-
MSCA-ITN-2014) under grant agreement n° 642685 MacSeNet.
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6

Concluding Remarks

MR Spectroscopic Imaging (MRSI) is a clinical imaging modality for study-
ing tissues in-vivo to investigate and diagnose neurological diseases. More
specifically, this modality can be used for measuring specific tissue metabo-
lites and thereby enable the non-invasive diagnosis and characterization of
patho-physiological changes in tissues, especially the brain, and help in early
detection of highly proliferative disease such as glioblastoma. While the
modality has been around for a long time dating back to the discovery of
nuclear magnetic resonance (NMR) imaging, its implementation clinically
has been severely limited due to several technical challenges. Over the
course of the last few decades it has been overtaken by proton MR imaging,
diffusion MRI and other imaging methodologies which facilitate ease-of-use
in a research and clinical environment.

Recent progress of advanced biomedical image analysis techniques facili-
tated by state-of-the-art computational methods offer an avenue for dealing
with these challenges and leveraging the diagnostic power of MRSI. In this
dissertation, we sought to provide computational solutions to two of the
major challenges while aiming to accelerate the analysis and processing
workflow for the MRS data by proposing advanced data-driven solutions.
Our contributions focus on tackling two prominent challenges - denoising
and metabolite quantification. Due to the publication-based nature of this
thesis, the Chapters 3 to 5 are self-contained and in their original form.
Appendix A and Appendix B provide additional, unpublished work which
may evolve in the future. This final chapter, therefore, provides an overview
of the preceding chapters as well as a general discussion of the application
and finally concluding with the directions for future research.

First, we have presented a novel denoising method specifically for MRSI
data in Chapter 3. This method addresses the issue of arbitrary phase,

53



6. Concluding Remarks

induced in the data during MRSI acquisition, by generating a frequency-
phase map for each spectra in the data. This involves a dephasing step
to incorporate a set of phase-shifts in the acquired spectra through a pre-
defined range thererby artifically inducing redundancy in the data even
in the presence of arbitrary, non-parametric phase thereby aiding in the
patch-based denoising method. There are a few remarks on this part of our
work. First, as with any denoising method based on patch-based averaging,
it is important to ensure that there is no over-smoothing induced in the data
which may lead to loss of important metabolite information. While we were
able to successfully demonstrate that our method retains the spatial-spectral
resolution while improving the SNR, this was evaluated on only the major
metabolites. Future work would also involve incorporating all the available
metabolites as part of the clinical pipeline (including those which have
overlapping resonance peaks) and thereby improve the signal quality. Our
method was also evaluated on short-TE spectra acquired from a 3T-scanner.
A more interesting direction may involve validating this approach on higher
resolution, spatially-resolved spectra acquired from scanners having a higher
magnetic field, such as 7T or 9.4T, which could overcome the issues of
overlapping resonance peaks and presence of artifacts.

In Chapter 4, we have proposed a machine-learning based regression
approach using random forests for metabolite quantification. The goal of
developing this architecture was to provide an alternative to the conventional,
model fitting tools which were being used by the MRS community. The key
challenges to address involved the long fitting times, the need for manual
parameter tuning and the high estimation error rates in the presence of
noisy artifacts and peak broadening. In hindsight, this wound up being one
of the first attempts to use a machine-learning approach for quantification
of metabolites in MR spectra and eventually paved the way for rapid
development in this aspect of MRSI processing and analysis. One of the
key innovations in this work involved generating a training set of over
1 million synthetic spectra with variations in metabolite concentrations,
frequency-phase shifts, noise levels and macromolecular baseline artifacts.
The fact that we used the individual metabolite basis sets in our simulation
model (based on NMR physics) allowed the generation of synthetic spectra
which was somewhat representative of human, in-vivo brain spectra. Our
proposed architecture not only gave comparable performance with the state-
of-the-art fitting tool, the LCModel, but also performed the quantification
in a fraction of the time. As a comparison, for a 32x32 healthy human
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brain MRS dataset with 256 spectral points, the LCModel took almost 1
hour to perform the fitting whereas our approach took about 10 seconds
after training while giving similar concentration estimates. In Appendix A
and Appendix B, we performed additional experiments on clinical datasets
involving patients with secondary-progressive multiple sclerosis and glioma
respectively, while also exploring other architectures such as the multi-
layer perceptron (MLP) and convolutional neural network (CNN). The
potential for this approach is exciting, however, a lot more work still needs
to be done. We have evaluated our method on only the major macro-
metabolites which are used for assessment and diagnosis of neurological
diseases. For this work to transition to a clinically usable tool, it would have
to involve quantification of all the metabolites (including the smaller ones)
in a conventional MRSI protocol. A visual representation of the metabolite
signals post-quantification along with the baseline signals would aid the
clinicians in interpreting the results of this tool.

As with many other fields, recent progress in machine learning has
strongly influenced the latest methods being developed in medical image
analysis. A quick look at the majority of methods used across popular
medical imaging challenges, such as the brain tumor segmentation challenge
(BRATS) [69] or the fastMRI challenge [70] employ deep-learning based
methods as part of their workflow. This has led to a drastic improvement in
the reconstruction and analysis of complex, medical imaging data especially
in the presence of artifacts or other abnormalities. Given the rapid pace
of progress in machine-learning theory and its application, one can expect
more developments in the coming years: adapting the next generation of
machine learning and computer vision methods for metabolite quantification
and spectral quality assessment especially for clinical conditions such as
glioblastoma, multiple sclerosis, among others, will most likely remain a main
direction of research that will only serve to benefit the clinical application
of MRSI.

Since the formulation of this thesis, there have been a few projects
done across multiple-sites which have explored CNN-based architectures to
integrate both the denoising of spectra and metabolite quantification. The
use of Generative Adversarial Networks (GAN) [26] for generating realistic
synthetic spectra, if successful, can drastically improve the training process
and lead to improved concentration prediction outcomes. Bayesian inference
and federated-learning methods are also being used for other applications
and, if applied to MRSI, can serve to improve the overall spectral acquistion
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and analysis pipeline. The eventual goal would be to develop an open-source,
easily accessible analysis suite for MRSI which would enable clinicians and
researchers to make better use of this modality for disease assessment and
diagnosis.

In conclusion, with this work, we have addressed some of the major
processing challenges that have hindered the widespread clinical use of
MRSI. With continued improvements aided by developments in the field
of computational approaches and more efficient data-driven methods, one
hopes that MRSI may become a part of the standard clinical workflow
and be integrated with other imaging methodologies to improve patient
outcomes.
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A

Metabolite Quantification of
1H MRSI spectra in Multiple

Sclerosis: A Machine Learning
Approach

Contributions of thesis author: Unpublished work presented as part of
the thesis.

A.1 Abstract

As an alternative to model-based spectral fitting tools, we introduce a
machine-learning framework for estimating metabolite concentrations in MR
spectra acquired from a homogeneous cohort of 42 patients with Secondary
Progressive Multiple Sclerosis. Our framework based on random-forest re-
gression performs a 42-fold cross validation on this dataset which involves (1)
learning the spectral features from this cohort; (2) estimating concentrations
and calculating relative error over the LCModel estimates. Compared to
the LCModel, our method, after training, gives a low estimation error and a
60-fold improvement in estimation speed per patient.

A.2 Purpose

Multiple Sclerosis (MS) is an inflammatory neurological diseases affecting
around 2.5 million people globally (www.mstrust.org.uk). Quantification
of metabolites can yield important diagnostic information about disease

59



A. Metabolite Quantification of 1H MRSI spectra in
Multiple Sclerosis: A Machine Learning Approach

progression for which model-based fitting tools such as the LCModel [7] are
widely used. Despite being the gold-standard, they require prior knowledge
tuning and can also be time-consuming. Prior work on healthy human brains
has shown Random-Forest regression to perform the same quantification but
at a faster speed [20]. The purpose of this work is to apply this method to a
clinical setup involving MS patients and address the limitations of parameter
tuning and speed of conventional fitting tools by validating on an extensive
1H MRSI-MS dataset.

A.3 Methods

Random Forests [66] have been shown to be effective in a wide range of
classification [60][59] and regression problems [20], including classification of
MS spectra [71]. These involve multiple forests comprising of a set of binary
trees. For training, splits are created in each tree based on random subsets
of the feature variables and piecewise linear regression is performed over the
input data [20]. The process involves seeking best prediction at every node
and using thresholding to further propagate data points till they reach the
end of the tree. Subsequently the weighted average of the prediction from
each tree is taken to give a single output estimate.

Figure A.1: Pipeline for Machine Learning based quantification of MS
spectra. Using the K-fold cross validation approach, this method is repeated
using each of the 42 patient MS-spectra as test spectra.
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A.3. Methods

In MRSI, The time-domain complex signal of a nucleus is given by:

S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗2 )dw. (A.1)

, and the corresponding frequency-domain spectrum is given by S(ω).

As shown in Fig. A.1, we aim to perform the inverse signal modeling
where we have a training dataset D = (Si(ω), Yi) , i ∈ [1, N ], where N is the
total number of MS training spectra from 41 patients. Si(ω) represents the
training spectral data while Yi represents the corresponding multi-parameter
training labels. For our model, we consider the absolute concentrations
of NAA, Cho, Cr, Myo-Inositol (mI) and Glutamate+Glutamine (Glx).
Therefore, for a given spectrum Si(ω), Yi = [ NAAi, Choi, Cri, mIi, Glxi ].

We run a K-Fold cross validation with 42 folds, number of trees = 100 and
mTry = 128 to generate training sets using spectra from 41 patients and test
on the spectra, Sj(ω), from the remaining patient to obtain concentration

estimates Ŷj. The corresponding LCModel fitted concentration labels Yj
serve as the ground-truth, j ∈ [1,M ] where M is the total number of test
spectra.

Error Calculation. For our experiments, given the estimate Ŷj and the
testing label Yj, the estimate error for the parameter Yj can be calculated
as,

Êj = ||Ŷj − Yj||./||Yj|| (A.2)

This method helps us to assess the absolute relative change in parameter
estimates over the ground-truth values.

Subjects 42 patients (age 55+/-8) with SPMS (EDSS score 6+/-0.7)
were recruited as part of the study. The patients underwent MRI examination
at 3T, including T1w, T2w and FLAIR scans and proton semi-LASER MRSI
with TR/TE of 2000/43 ms and 481 data points over spectral region-of-
interest. An example has been shown in Fig. A.2. Prior work provides
additional acquisition details [71]. The data was fitted using LCModel and
the voxels which did not pass the Cramer-Rao Lower Bound (CRLB) and
visual quality tests were discarded (e.g. distorted baselines). There are
no ’pure’ lesion or non-lesion voxels and therefore all spectra are of mixed
content. Total spectra per fold included approximately 4200 training and
100 test-spectra/patient respectively.
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1H CSI image and spectra from a patient

Figure A.2: MRSI data acquired from an SPMS patient and the correspond-
ing spectra after voxel-wise LCModel fitting [71].

A.4 Results

We aim to get an error Êj of < 15% for each of the metabolites per patient.
The mean absolute relative error plots for all patients are shown in Fig.
A.4. Using the Bland-Altman method [68], we observe a strong correlation
between the LCModel and RF estimates for a sample patient (Fig. A.3).
Êj for the same sample patient are within the acceptable range (especially
for the major metabolites such as NAA, Choline and Creatine) (Fig. A.5).
Speed: Training time per fold is 3 minutes. While the LCModel takes
10 minutes per patient for the metabolite quantification, our proposed
framework, after training, takes only 10 seconds leading to a 60x improvement
in speed.

A.5 Discussion

An outlier high-error spectrum for a test patient has been highlighted in
Fig. A.3 which corresponds to the outlier whisker in Fig. A.5. The peaks in
this spectrum are not well-defined and only few such spectra are present in
the training set. The machine learning algorithm is therefore insufficiently
trained on such spectra resulting in a high error.

Future work would involve using a more robust approach such as deep-
learning based methods to improve the accuracy of parameter estimation.
Once a framework has been established, further work can be done on
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A.5. Discussion

Figure A.3: Bland-Altman plots [68] representing LCModel and Random
Forest (RF) estimates of spectra from a sample MS patient dataset. The
X-Axis is the mean of the LCModel and RF estimate, while the Y-Axis
represents the relative error of the RF estimate over the LCModel. From
(L-R): Bland-Altman Plots for (Top row)- NAA, Choline and Creatine,
(Bottom row)- myo-Inositol and Glx and spectra plots of outlier spectrum
with high quantification error and one of the spectra with low quantification
error (these are marked in the Bland-Altman plots within a red traingle and
blue square respectively).

having a MS-specific simulated spectra model with wider variations in the
spectral peak for parameter estimation to predict disease progression and
the corresponding metabolite maps.

Acknowledgements. Spectral data were provided by the MS-SMART
consortium (www.ms-smart.org). The research leading to these results has
received funding from the European Union’s H2020 Framework Programme
(H2020-MSCA-ITN-2014) under grant agreement n° 642685 MacSeNet.
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Figure A.4: Absolute Relative Error box-plots for the entire 42-patient
spectra dataset. The mean relative errors (red line) are: Left NAA (5.4%),
Choline (10.4%), Creatine (10.5%), Right mI (15.7%), Glx (13.8%). 8
patients had an average error of > 15% per metabolite which contributed to
the slight increase in the mean error across all the patients.

Figure A.5: Absolute Relative Error box-plots for the sample patient spectra.
The mean relative errors (red line) are: (Left)NAA (13.4%), Choline (14.1%),
Creatine (11.5%), (Right) mI (11.5%), Glx (10.8%).
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Using Deep Neural Networks
for Metabolite Quantification

in Healthy and Glioma spectra

Contributions of thesis author: Unpublished work presented as part of
the thesis.

B.1 Abstract

Following the work presented in 5, we developed an architecture based
on 1D-convolutional neural network (CNN) for the purpose of metabolite
quantification using regression. The architecture was optimized for different
layers and kernel sizes and the quantification pipeline was validated on
healthy, human 2D MR Spectroscopic Imaging (MRSI) dataset and also
on 40 patients with different stages of glioma. Results were compared with
previous methods including random forest (RF) and multi-layer perceptron
(MLP).

B.2 Architecture design

The multi-layer perceptron (MLP) architecture comprised of 4 layers with
400 − 200 − 100 − 64 neurons. The input spectra length was 256 points
and the hypothesis was to have an initial layer with the number of neurons
being double than the number of spectral points in order to extract minor
features from the spectra. For the purpose of training, we used an Adam
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B. Using Deep Neural Networks for Metabolite
Quantification in Healthy and Glioma spectra

Optimizer with an initial learning rate of 0.0001. Adding an L2 regularizer
of 0.01 helped in improving our results without it.

The convolutional neural network (CNN) architecture was designed with
3 hidden layers (1d kernel spread=3, stride =2) and output channels of
8, 16 and 32. The final layer was an fully convolutional neural network
(FCN) comprising of 128 neurons. For training, we, again, used an Adam
Optimizer along with a leaky ReLU with static decay; average pooling of
2x2 was performed after each layer and dropout was also introduced at the
end of the third layer.

B.3 Data and Experiments

For the healthy human dataset, we trained on the previously defined synthetic
dataset comprising of 1 million short-TE training spectra and evaluated
on the healthy, human 2D CSI brain dataset comprising of 96 spectra. For
this study, we compared performance between the random forest (RF),
multi-layer perceptron (MLP) and our convolutional neural network (CNN)
architecture.

The glioma dataset comprised of long-TE brain spectra from 40 multi-
stage glioma patients. The data comprised of approximaely 400 fitted spectra
per patient with each spectra having 1024 points. Fig. B.1 shows an example
of glioma spectra from a sample patient. We performed a patient-wise K-fold
cross-validation using our convolutional neural network (CNN) architecture
and evaluated for absolute concentrations for the major metabolites (which
serve as indicators of glioma progression).

B.4 Results and Discussion

Results for the comparison study for the healthy subject are shown in Fig.
B.2. Testing time took approximately 10 seconds for the entire test dataset
for each of the architectures. While the multi-layer perceptron (MLP) per-
forms the best, the convolutional neural network (CNN) gives a comparable
performance though underestimating the metabolite concentration distribu-
tion for NAA. One of the key takeaways of this study is that for a synthetic
training set multi-layer perceptron (MLP) and random forest (RF) seem to
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B.4. Results and Discussion

Figure B.1: Example of long-TE glioma dataset from a sample patient.

generalize better to real data as compared to convolutional neural network
(CNN).

Figure B.2: Metabolite maps following quantification using 3 different
architectures. The MLP gives the better distribution out of all 3 while
the CNN comes close though it ends up underestimating the metabolite
concentration distribution for NAA.
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Architecture Choline Creatine Naa

Random Forest 13.7% 11.5% 14%
MLP 11.5% 9.2% 12%
CNN 10.1% 10.8% 12.3%

Table B.1: Concentration estimate errors using random forests, multi-layer
perceptrons and convolutional neural networks on 40 glioma patients. A
patient-wise K-fold cross validation was performed and the results shown
are averaged over all the folds. Overall, the cnn ends up out-performing the
other 2 architectures in terms of metabolite quantification.

This work can be further improved by using generative models (GANs)
which can help in generating realistic, synthetic dataset while also having
a broader training database comprising of short and long-TE healthy and
glioma spectra.

Acknowledgements. Spectral data were provided by Jason Crane
and Yan Li from the University of California-San Francisco (UCSF). The
research leading to these results has received funding from the European
Union’s H2020 Framework Programme (H2020-MSCA-ITN-2014) under
grant agreement n° 642685 MacSeNet.
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Abstract. Magnetic resonance spectroscopic imaging (MRSI) is an
imaging modality used for generating metabolic maps of the tissue in-
vivo. These maps show the concentration of metabolites in the sam-
ple being investigated and their accurate quantification is important to
diagnose diseases. However, the major roadblocks in accurate metabo-
lite quantification are: low spatial resolution, long scanning times, poor
signal-to-noise ratio (SNR) and the subsequent noise-sensitive non-linear
model fitting. In this work, we propose a frequency-phase spectral
denoising method based on the concept of non-local means (NLM) that
improves the robustness of data analysis and scanning times while poten-
tially increasing spatial resolution. We evaluate our method on simulated
data sets as well as on human in-vivo MRSI data. Our denoising method
improves the SNR while maintaining the spatial resolution of the spectra.

1 Introduction

Magnetic Resonance Spectroscopic imaging (MRSI), also known as chemical shift
imaging, is a clinical imaging modality for studying tissues in-vivo to investigate
and diagnose neurological diseases. More specifically, this modality can be used
in non-invasive diagnosis and characterization of patho-physiological changes by
measuring specific tissue metabolites in the brain. Accurate metabolite quan-
tification is a crucial requirement for effectively using MRSI for diagnostic pur-
poses. However, a major challenge with MRSI is the long scanning time required
to obtain spatially resolved spectra due to abundance of metabolites that have a
concentration which is approximately 10,000 times smaller than water. Current
acquisition techniques such as Parallel Imaging [13] and Echo-Planar Spectro-
scopic Imaging [9] focus on accelerated scanning times combined with recon-
struction techniques to improve the SNR of the spectral signal. Despite this,
further accelerated acquistions are desirable. Furthermore, an improved SNR is
needed as the non-linear voxel-wise fitting to noisy data leads to a high amount
of local minima and noise amplification resulting in poor spatial resolution [7].

c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-46726-9 69



Frequency-Phase NLM for MRSI 597

The SNR of the signal can be improved by post-processing methods such
as denoising algorithms [8], apodization (Gaussian/Lorentzian), filter-based
smoothing and transform-based methods [3]. However, these methods reduce
resolution and remove important quantifiable information by averaging out the
lower-concentration metabolites. Recently, data-dependent approaches such as
the Non-local Means (NLM), which use the redundancy inherent in periodic
images, are being used extensively for denoising [3]. In the case of MRS, this
periodicity implies that the spectra in any voxel may have similar spectra in
other voxels in the frequency-phase space. Therefore, it carries out a weighted
average of the voxels in this space, depending on the similarity of the spec-
tral information of their neighborhoods to the neighborhood of the voxel to be
denoised.

Our Contribution. In this work, we propose a method for spectrally adaptive
denoising of MRSI spectra in the frequency-phase space based on the concept of
Non-local Means. Our method compensates for the lack of phase-information in
the acquired spectra by implementing a dephasing approach on the spectral data.
In the next section, we introduce the experimental methods beginning with the
concept of NLM in the frequency-phase space followed by the spectral dephasing
and rephasing approach. Our proposed method is then validated quantitatively
and qualitatively using simulated brain data and human in-vivo MRSI data sets
to show the improvements in SNR and spatial-spectral resolution of MRSI data.

2 Methods

MR Spectroscopy. Magnetic resonance spectroscopy is based on the concept
of nuclear magnetic resonance (NMR). It exploits the resonance frequency of a
molecule, which depends on its chemical structure, to obtain information about
the concentration of a particular metabolite [12]. The time-domain complex sig-
nal of a nuclei is given by: S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗

2 )dw. The frequency-
domain signal is given by S(ω), T ∗

2 is the magnetization decay in the transverse
plane due to magnetic field inhomogeneity and p(ω) comprises of Lorentzian
absorption and dispersion line-shapes function having the spectroscopic infor-
mation about the sample. Φ represents the phase, (ωt + ω0), of the acquired
signal where ωt is the time-varying phase change and ω0 is the initial phase.
For the acquired MRSI data, I, Φ is unknown. This process allows generation of
metabolic maps through non-linear fitting to estimate concentration of metabo-
lites such as N-acetyl-aspartate (NAA), Creatine (Cr) and Choline (Cho).

2.1 Non-local Means (NLM) in Frequency-Phase Space

As proposed by Buades et al. [3], the Non-local Means (NLM) method restores
the intensity of voxel xij by computing a similarity-based weighted average of all
the voxels in a given image. In the following, we adapt NLM to the MRSI data:
let us suppose that we have complex data, I : Ω3 �−→ C of size M ×N and noisy
spectra Sij(ω), where (xij |i ∈ [1,M ], j ∈ [1, N ]) and Ω3 is the frequency-phase
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grid. Using NLM for denoising, the restored spectra Ŝij(ω) is computed as the
weighted average of all other spectra in the frequency-phase space defined as:

Ŝij(ω) =
∑

xkl∈Ω3

w(xij , xkl)Skl(ω) (1)

As a probabilistic interpretation, spectral data S11(ω), ..., SMN (ω) of voxels
x11, ....., xMN respectively are considered as MN random variables Xij and the

weighted average estimate Ŝij(ω) is the maximum likelihood estimate of Sij(ω).
Nij = (2p + 1)3, p ∈ N is the cubic neighborhood of voxel xij within the

search volume Vij = (2R+1)3 around xij along the frequency, phase and spatial
directions. R ∈ N, where R is the radius of search centered at the voxel xij .
The weight w(xij , xkl) serves as a quantifiable similarity metric between the
neighborhoods Nij and Nkl of the voxels xij and xkl provided w(xij , xkl) ∈ [0, 1]
and

∑
w(xij , xkl) = 1. The Gaussian-weighted Euclidean distance is computed

between S(Nij) and S(Nkl) as shown below:

w(xij , xkl) =
1

Zij
e− ||S(Nij)−S(Nkl)||22

h2 (2)

where Zij serves as the normalization constant such that
∑

j w(xij , xkl) = 1,
S(Nij) and S(Nkl) are vectors containing the spectra of neighborhoods Nij and
Nkl of voxels xij and xkl respectively and h serves as a smoothing parameter [5].

To increase the robustness of our method for MRSI data, in the next section
we propose a dephasing approach tailored for use in the frequency-phase NLM.

2.2 Spectral Dephasing

For the acquired data I, as the spectral phase Φ(I) is unknown, the probability
of finding a similar neighborhood spectra are very low. To counter this effect, a
dephasing step is performed to consider a wide range of possible phase variations
in the pattern analysis. For each voxel xij , the complex time-domain signal Sij(t)
is shifted by a set of phase angles Θ. This is given by SΘ

ij (t) = Sij(t).e
−(iΘ),

where Θ ∈ [−n1π, (n2 + 2)π], {n1, n2 ∈ R |n1, n2 ≥ 0}. Θ here is defined to be
the range of angles through which the spectrum can be shifted. The dephased

signal is transformed into the frequency-domain, SΘ
ij (t)

F−→ SΘ
ij (ω), following

which its real component, R(SΘ
ij (ω)), is taken to generate a 2D spectral-phase

matrix. Note that in this 2D matrix generated, for each voxel xij , the imaginary
part at a given Θ is I(Θ) = R(Θ + π/2). This approach is illustrated in Fig. 1.

Repeating this step for all MN voxels gives us a 3-D dataset on which the
NLM is implemented to give the denoised spectra ŜΘ

ij (ω) ∈ R. Our approach has
2 key innovations: the denoising method is (i) robust to phase shifts as the range
of angles considered varies from 0 to 2π periodically for all spectral signals, and
is (ii) adaptive to the imaging sequence as the spectrum is denoised by relying
on similar signals in the given data and not on predefined prior assumptions.
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Fig. 1. MRSI data dephasing shown here for a sample voxel: (A) Changes in spectral
pattern as it is shifted by different phase angles. (B) Corresponding 2D frequency-phase
image space generated for the voxel. A sample patch (black box) is selected and then
denoised by the NLM-based matching in the frequency-phase space.

Algorithm 1. Frequency-Phase NLM denoising for MRSI

MRSI Input I : Ω3 = (S(ω) × M × N) �−→ C
Define Phase Angle range Θ : [−n1π : (n2 + 1)π] {n1, n2 ∈ R | n1, n2 ≥ 0}
Spectral Dephasing:
Sij(t) = F−1(Sij(ω)) : for each voxel ij ∈ (M × N)
SΘ

ij(ω) = F(Sij(t).e
(−iΘ)) : Phase shift by Θ

NLM: Ŝij/
Θ(ω) = NLM [R(SΘ

ij(ω)) × MN ] : ∀ voxels
Spectral Rephasing:
C(ŜΘ

ij(t)) = F−1[R(ŜΘ
ij(ω)) + I(ŜΘ

ij(ω))]: Re-generate complex data for all Θ

C(Ŝ−Θ
ij (ω)) = F(C(ŜΘ

ij(t)).e
(iΘ)): Rephase by −Θ

Frequency-Phase NLM Output: C(Ŝij(ω)) = mean(C(Ŝ−Θ
ij (ω))) ∀ Θ

2.3 Spectral Rephasing and Recombination

Post-NLM, ŜΘ
ij (ω) is rephased in order to generate the denoised complex sig-

nal C(Ŝij(ω)). The complex spectral signal C(ŜΘ
ij (ω)) is re-generated ∀Θ by

combining R(ŜΘ
ij (ω)) and I(ŜΘ

ij (ω)) (= R(Ŝ
Θ+π/2
ij (ω))). The equivalent time

signal is obtained by C(ŜΘ
ij (ω))

F−1

−−−→ C(ŜΘ
ij (t)). After this, C(ŜΘ

ij (t)) under-
goes an inverse phase shift by −Θ to remove the dephasing effect as given by
C(Ŝ−Θ

ij (t)) = C(ŜΘ
ij (t)).e

(iΘ). This re-phased signal is transformed back to the

spectral domain to obtain C(Ŝ−Θ
ij (ω)). Thereafter, the C(Ŝ−Θ

ij (ω)) are averaged

over all Θ to generate a single complex spectra C(Ŝij(ω)). The entire pipeline
for dephasing and rephasing the spectra is shown in Algorithm 1.

3 Experiments and Results

We performed two different experiments to test the improvement in SNR and
metabolite quantification using our proposed denoising method. In the first exper-
iment, we evaluate our method on the publicly available BrainWeb database [4],
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while in the second experiment we use human in-vivo MRSI data. The SNR of a
metabolite was calculated by dividing the maximum value of the metabolite peak
by the standard deviation of the spectral region having pure noise. For both exper-
iments, we tested with different noise levels against a ground-truth data to assess
the improvement in SNR and spatial-spectral resolution.

3.1 Data Acquisition

We used BrainWeb to simulate a brain MRSI image (size: 64× 64 voxels, slice
thickness = 1 mm, noise level = 3 %) with segmented tissue types, namely White
Matter (WM), Grey Matter (GM) and Cerebro Spinal Fluid (CSF) as shown in
Fig. 2. In order to have a comparable spectrum with the in-vivo data, water was
added to the signal and the main metabolites- NAA, Cho and Cr- were simulated
using Priorset (Vespa) [1]. Metabolite concentrations for WM, GM and CSF were
based on commonly reported literature values [10,14]. Next, Gaussian noise of
levels 2 and 3 times the standard deviation, σ, of the original image data were
added to the ground-truth signal.

Fig. 2. Simulated brain MRSI dataset. (A) The simulated brain with the region of
interest (red box). (B) Highlighted regions corresponding to GM, WM and CSF (c)
Corresponding spectrum of GM, WM and CSF. Note that CSF has only water. (Color
figure online)

In the case of in-vivo data, we acquired a 2D-MRSI data of the brain of
a healthy human volunteer using a 3T-HDxt system (GE-Healthcare). PRESS
localization [2], CHESS water suppression [6] and EPSI readout [9] were used
as part of the sequence. The acquisition parameters were: Field of view (FOV)
= 160 × 160 × 10mm3, voxel size = 10 × 10 × 10mm3, TE/TR=35/2000 ms
and spectral bandwidth = 1 kHz. The dataset was zero-filled and reconstructed
to generate a grid of 32 × 32 voxels and 256 spectral points. 6 (ground truth),
3 and 1 averages were acquired with a total scan duration of 33 min (5.5 min
per average). Figure 4(A) shows the in-vivo data acquired along with the entire
field-of-view (white grid) and the corresponding spectra of a voxel (red box).
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Fig. 3. NLM Denoising results in the simulated data. (From Top) Row 1 (L-R): Full
SNR of NAA in – original data, with additive noise 2σ, and noise 3σ (σ is the standard
deviation of the original data). Row 2 & 3: 32×32 Region of Interest (ROI) for applying
the frequency-phase NLM: SNR of NAA in the original data, noise level 2σ, 3σ and the
corresponding spectra of reference WM voxel (red box). Row 4 & 5 (L-R): Denoised
SNR for noise level 2σ (SNR improvement = 2.9), for noise level 3σ (SNR improvement
= 2.2), and the corresponding denoised spectrum. The SNR improves significantly while
retaining the spatial-spectral resolution (seen by no voxel bleeding in the CSF). (Color
figure online)

3.2 Results

Simulated data: In Fig. 3, we show the SNR improvement for NAA for data
with noise levels 2σ and 3σ in a 32 × 32 region of interest. It is evident that while
the spectral SNR improves significantly, the spatial resolution is preserved as the
lower concentration metabolite peaks have only a small amount of smoothing
and there is no voxel bleeding in the CSF (containing only water).

In-vivo data: Figure 4 reports the SNR improvement in NAA for the 3-averages
and the 1-average data as compared to the ground-truth 6-averages data. The
figure also presents the results from the LCModel [11] which is the gold stan-
dard quantitation tool in MRS analysis. LCModel fits the spectral signal S(ω)
using a basis set of spectra of metabolites acquired under identical acquisition
conditions as the in-vivo data. As explained earlier for noisy data, the non-linear
fitting leads to poor spatial resolution. Therefore, the LCModel can be used to
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Fig. 4. Denoising results for in-vivo data. (A) Original human in-vivo brain MRSI data
with the excitation region shown (white grid). (From Top) Row 1 & 2: SNR of NAA
and the corresponding WM voxel spectra in: (B) 6-averages data (ground-truth),
(C) 3-averages data (original) and (D) denoised, (E) single-scan data (original) and
(F) denoised with corresponding spectra. Row 3: LCModel based absolute concentra-
tion estimate of NAA in: 6-averages data, 3-averages data (original) and denoised,
1-average data (original) and denoised. The NAA concentration estimate and spectral
SNR improve considerably as seen in columns D (SNR = 23.29) and F (SNR = 11.38)
against the ground-truth (SNR = 11.44).

Table 1. SNR and LCM Quantification results for NAA, Cho and Cr before and after
using frequency-phase NLM on in-vivo MRSI data. Mean SNR for the denoised data is
comparable or better than the ground-truth data while the FWHM of the water peak
is lower than the ground-truth data thereby preserving spatial-spectral resolution.

Data Mean SNR SNR Mean SNR SNR Mean SNR SNR FWHM

(NAA) improvement (Cho) (Cho) (Cr) improvement

(NAA) (Cr)

1-average 5.70 – 3.74 – 4.04 – 0.125

3-averages 8.82 – 5.59 – 5.97 – 0.135

6-averages 11.44 – 6.96 – 7.61 – 0.135

(ground-truth)

Single scan (NLM) 11.38 1.98 6.89 1.82 7.78 1.90 0.130

3-averages (NLM) 23.29 2.63 14.08 2.48 15.59 2.57 0.134

assess the improvement in spatial resolution through a better fit. Due to space
constraints, we present the results for NAA only and mention the SNR values
for Cho and Cr. LCModel quantification (Fig. 4) shows that the absolute con-
centration estimation of NAA in the denoised data improves significantly. The
Full-Width Half Maximum (FWHM) shows information about the water peak –
a narrow peak gives a better spatial resolution. As shown in Table 1, the FWHM
of the denoised 1- and 3-averages data is lower than the 6-averages data while
the corresponding mean SNR improves considerably. Therefore, we observe here
that our method can accelerate MRSI data acquisition by almost 2 times by
reducing the number of scans acquired.
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4 Conclusion

In this work, we proposed a novel frequency-phase NLM-based denoising method
for MRS Imaging to improve the SNR and spatial resolution of the metabolites. A
spectral dephasing approach is promoted to compensate for the unknown phase
information of the acquired data. To the best of our knowledge, this is a novel
application of the concept of NLM and has been validated on both simulated
and in-vivo MRSI data.

In particular, we assessed the effect of our method on metabolites such as
NAA, Cho and Cr and obtained a visible improvement in SNR while the spatial
resolution was preserved which, subsequently, led to a better estimation of the
absolute concentration distribution of NAA. This has direct benefits as it would
accelerate data acquisition by taking fewer scan averages. Future work would
involve using a more robust metabolite-specific search in the given dataset with
less smoothing. This can be coupled with optimal computational efficiency and
better estimation of the in-vivo metabolites.
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Abstract. Magnetic Resonance Spectroscopic Imaging (MRSI) is a clin-
ical imaging modality for measuring tissue metabolite levels in-vivo. An
accurate estimation of spectral parameters allows for better assessment
of spectral quality and metabolite concentration levels. The current gold
standard quantification method is the LCModel - a commercial fitting
tool. However, this fails for spectra having poor signal-to-noise ratio
(SNR) or a large number of artifacts. This paper introduces a frame-
work based on random forest regression for accurate estimation of the
output parameters of a model based analysis of MR spectroscopy data.
The goal of our proposed framework is to learn the spectral features
from a training set comprising of different variations of both simulated
and in-vivo brain spectra and then use this learning for the subsequent
metabolite quantification. Experiments involve training and testing on
simulated and in-vivo human brain spectra. We estimate parameters such
as concentration of metabolites and compare our results with that from
the LCModel.

1 Introduction

Magnetic resonance spectroscopic imaging (MRSI) is an in-vivo clinical imaging
modality which detects nuclear magnetic resonance signals produced by nuclei in
living tissues. Quantification of this signal amplitude generates metabolic maps
which show the concentration of metabolites in the sample being investigated.
Accurate quantification of these metabolites is important for diagnosis of brain
tumor and other in-vivo diseases. For this purpose, a common practice in the
MRS community has been to use non-linear spectral fitting tools such as the
LCModel [5], TARQUIN [9], AMARES [8] and ProFit [7] amongst which the
LCModel is regarded as the gold standard fitting tool. In this study, we present
an alternative to the non-linear model fitting using a machine learning approach.

Non-linear Model Fitting. The LCModel software uses a linear combination
of metabolite basis spectra set to model the spectral measurement in the fre-
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quency domain. It also uses smoothing splines to model the baseline signals and
subsequently fits the parameters of the basis set using a non-linear optimisa-
tion. LCModel incorporates the prior knowledge of the data while modeling the
fit and this ensures robustness in the model leading to estimation of the spec-
tral parameters such as concentration of metabolites. Some of the drawbacks
of this non-linear fitting model are: (1) Metabolite quantification can be time-
consuming depending on the dataset size and requires a lot of manual parameter
tuning. (2) The error in estimating parameters is lower if high SNR spectra are
used since the non-linear voxel-wise fitting to noisy data leads to a high amount
of local minima and subsequent inaccuracy in quantification [3,4].

Machine Learning. Machine learning methods such as decision forests, random
forests [2] are being extensively used in the medical imaging community for
tasks such as parameter estimation, diseases diagnosis, segmentation, etc. In
MRSI, machine learning tools have been used only for specific tasks such as
classification of spectra [4] and assessment of spectral quality [1]. This opens up
the possibility of using the recent advances in machine learning to predict MRSI
data parameters while addressing the drawbacks of conventional fitting tools
such as long computation time and poor performance for data with artifacts.

Our Contribution. In this work, we propose a simple yet effective method
using random forest regression for multi-parameter estimation in MR Spectro-
scopic Imaging. We generate over 1 million simulated spectra training-set having
concentration magnitudes, linewidth effects, baseline and lipid artifacts. We also
use spectral data from 287 human subjects to create a physical training model to
be used in the regression framework (Sect. 3.1). In the following we present our
method adapting random forest regression to MRSI (Sect. 2) followed by exper-
iments in the aforementioned dataset. Our proposed method is then validated
quantitatively and qualitatively using: (1) synthetic brain spectra, (2) human
in-vivo single voxel spectra having the same image acquisition protocol as the
physical training model and (3) independently acquired human in-vivo 2D MRS
Images to perform a blind test on the physical and synthetic models. We present
the results (Subsect. 3.2) of our experiments followed by a summary and discus-
sion (Sect. 4) on the future work in this domain. This is the first application- to
the best of our knowledge- of machine learning for determining MRS parameters
which were otherwise determined using basis fitting tools.

2 Methods

MR Spectroscopy. Magnetic resonance spectroscopy, based on the concept of
nuclear magnetic resonance (NMR), exploits the resonance frequency of a mole-
cule, to obtain information about the concentration of a particular metabolite
[6]. The time-domain complex signal of a nuclei is given by:

S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗

2 )dw. (1)
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The frequency-domain signal is given by S(ω), T ∗
2 is the magnetization decay in

the transverse plane due to magnetic field inhomogeneity and p(ω) comprises of
Lorentzian absorption and dispersion line-shapes function having the spectro-
scopic information about the sample. Φ represents the phase, (ωt + ω0), of the
acquired signal where ωt is the time-varying phase change and ω0 is the initial
phase. Non-linear fitting tools facilitate the generation of metabolic maps to esti-
mate concentration of metabolites such as N-acetyl-aspartate (NAA), Creatine
(Cr) and Choline (Cho). An example of the spectra present in the brain has been
shown in Fig. 1.

A B C

CSF

CSF
WM

WMGM

GMNAA

CrCho

NAA

Cr
Cho

Cr

Cr

Fig. 1. Example brain 2D MRSI dataset. (A) The simulated brain with the region of
interest (red box). (B) Highlighted regions corresponding to GM, WM and CSF (c)
Corresponding spectrum of GM, WM and CSF

Random Forest Regression. Random Forests [2] have been shown to be effec-
tive in a wide range of classification and regression problems. These comprise of
a set of binary trees wherein splits are created in each tree based on a random
subsets of the feature variables on which the forests are subsequently trained.
Piecewise linear regression is implemented by each tree over the input data and,
after seeking for the best prediction at every node, data points are sent to the
left or right branches based on feature selection by thresholding. This process
continues till it reaches the end of the tree and subsequently the weighted aver-
age of the prediction from each tree is taken to give a single output estimate.
The randomness in the training process encourages the trees to give independent
estimates which can be combined to achieve an accurate and robust result.

For MRSI, we adapt the random forest approach to have a training dataset
D = (Si(ω), Yi), i ∈ [1, N ], where N is the total number of training spectra.
Si(ω) represents the training spectral data while Yi represents the corresponding
multi-parameter training labels. For our model, we consider the concentrations
of NAA, Cho and Cr for simulated data, while for the real data we additionally
consider Myo-Inositol (mI) and Glutamate+Glutamine (Glx). Therefore, for a
given spectra Si(ω), Yi = [ NAAi, Choi, Cri, mIi, Glxi].

Running the random forest regression on this produces a training model
which can then be used to obtain parameter estimates Ŷj of test spectra Sj(ω)
having test labels Yj , j ∈ [1,M ] where M is the total number of test spectra.
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Error Calculation. For our experiments, given the estimate Ŷj and the testing
label Yj , the estimate error for the parameter Yj can be calculated as,

Êj = ||Ŷj − Yj ||./||Yj || (2)

This method helps us to assess the change in parameter estimate over the
testing/ground-truth values.

3 Experiments and Results

3.1 Data

We perform 4 sets of experiments to assess our proposed method: (1) training and
testing on simulated spectra (Synthetic - Synthetic (Spectra)), (2) training
and testing on human in-vivo spectral data from different subjects but having
the same acquisition protocol (Real (Spectra) - Real (Spectra)), (3) training
and testing on human in-vivo spectral data from different subjects with different
acquisition protocol (Real (Spectra) - Real (MRS Images)) and (4) using
the simulated spectra model to test on MRS images (Synthetic (Spectra) -
Real (MRS Images)).

Synthetic (Spectra). A metabolite basis set was generated by using the data
provided by the ISMRM MRS Fitting Challenge 2016. These were then used to
simulate over 1 million spectra. In order to ensure that the simulated spectra
was as close as possible to human in-vivo spectra, we incorporate the following
features: variations in NAA, Cho, Cr concentrations, macro-molecular baseline,
lipids, t2 values (for changes in linewidth) and signal-to-noise ratio (SNR) to
account for changes in spectral quality. As a preliminary case study, we only
simulate the major metabolites (NAA, Cho and Cr) as these are easily detected
by the LCModel and would, therefore, help us to evaluate the outcome of our
approach and allow a suitable comparison with the LCModel. A set of over
10,000 independent test spectra were also simulated with varying combinations
of the aforementioned features. For both the training and testing sets, we used
the basis-set metabolite concentration values as our ground-truth.

Real (Spectra). To evaluate our method on in-vivo data, we utilize LCModel-
fitted single-voxel spectroscopy (SVS) data from 287 independent human sub-
jects. The data was obtained using the same standardized imaging protocol
with the following acquisition parameters: TE/TR = 35/2000 ms, spectral width
= 2500 Hz, number of points = 1024. We implement a K-fold cross-validation
with 10 folds along with the random-forest regression to generate different train-
ing and testing sets having spectra from 259 and 28 subjects respectively. The
metabolites assessed were: NAA, Cho, mI and Glx.

Real (MRS Images). To further assess our approach, we acquire a standard
phase-encoded 2D brain MRSI data of a healthy human volunteer on a 3 T
scanner using a point-resolved spin-echo localization sequence (PRESS) with
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voxel size = 10× 10× 15 mm3, TE/TR = 35/1000 ms, spectral width = 2000 Hz,
number of points = 400. For testing purposes, we use 96 spectra from the inner-
region of the brain which serves as the region of interest.

Due to the differences in acquisition parameters of the training and testing
set, both the resulting spectra vary in amplitude and metabolite peak alignment.
We perform a pre-processing spectral alignment step where all the test spectra
are cropped from 4.3 to 0.2 ppm and interpolated to the same number of points
as the training spectra to compensate for differences in acquisition bandwidth.
This is followed by normalizing the amplitude of the test spectra using one of
the training spectra as reference.

3.2 Results

Synthetic - Synthetic (Spectra). We perform an initial experiment to deter-
mine the out-of-bag (OOB) error using different number of trees and features on
a set of 20,000 simulated train and test spectra. Based on the results shown in
Fig. 2, we proceed with the parameter estimation experiment by identifying the
appropriate number of trees and features required to achieve convergence of the
OOB error. For the regression error estimates, we use metabolite concentration
ratios with respect to Cr (used as a standard assessment method in MRS as
a means for calibration). We obtain R scores of 0.968 and 0.962 for NAA/Cr
and Cho/Cr values respectively. The corresponding figures representing the lin-
ear regression are shown in Fig. 3 and the error plots in comparison with the
LCModel are shown in Fig. 4.

Fig. 2. Out-Of-Bag (OOB) Error for Simulated Spectra. The experiment is performed
for a varying number of features (from 1 to 256 as shown in the legend) and each
iteration is assessed for a varying number of trees (as shown in the X-axis). The Y-axis
represents the OOB Error rate. The error rate is minimal for more than 64 features
and also converges when the number of trees is close to 100.
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Fig. 3. Regression Scores for the following parameters (from left to right): NAA/Cr
concentration estimate and Cho/Cr concentration estimate. The X-axis represents the
true values of the parameter while the y-axis represents the estimated values. Both sets
of values are plotted using linear regression.

Fig. 4. Synthetic-Synthetic (Spectra): Estimation error for different metabolite
concentration ratios in a given test-set. Whiskers span the [min max] values. Median
error values are represented by the red line and are as follows: NAA/Cr Regression
= 0.064, LCModel = 0.077, Cho/Cr Regression = 0.043, LCModel = 0.070.

Real (Spectra) - Real (Spectra). For the SVS dataset, we use the LCModel
concentration ratio estimates as the ground-truth. Table 1 indicates the mean
metabolite concentration estimate error across the 10-folds of the cross-validation
process using the random forest regression method. Median error for the
NAA/Cr estimate is 0.068, 0.072 for the Cho/Cr estimate, 0.093 for the mI/Cr
estimate and 0.070 for the Glx/Cr estimate compared to the corresponding
LCModel estimates. The difference in error estimates is small and shows a simi-
larity in assessment between our proposed method and the LCModel. Moreover,
the low-concentration metabolites such as mI and Glx usually display a fitting
error with the LCModel and the estimation error for these metabolite ratio con-
centrations is lower indicating that our model works well for these metabolites
as well.

Synthetic (Spectra) - Real (Images). We test our synthetic spectra training
model on the 2D MRSI data and the results are shown in the boxplot in Fig. 5
along with the resulting concentration distribution from both the regression
approach and the non-linear model fit. As our synthetic model is trained for only
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Table 1. Concentration-ratio estimate errors using random forest regression.
Results are for the experiments Real(spectra)-Real(spectra) and Real(spectra)-
Real(Images). The errors are calculated over the respective LCModel estimates as
per the formula given in Eq. 2. The major metabolites (NAA and Cr) show a low
error while the smaller concentration metabolites (mI and Glx) show a slightly higher
error.

Naa/Cr Cho/Cr mI/Cr Glx/Cr

Real-Real (Spectra) 0.068 0.072 0.093 0.070

Real-Real (Images) 0.1 0.18 0.217 0.13

Fig. 5. Left: Synthetic (Spectra)-Real (MRS Images): Estimation error for different
metabolite concentration ratios for the same test dataset. Whiskers span the [min max]
values. Median error values are represented by the red line and are as follows: NAA/Cr
= 0.024, Cho/Cr = 0.034. Right: NAA/Cr and Cho/Cr concentration distribution
estimates from random forest regression and non-linear model fit.

NAA and Cho ratios, we show the errors for these two only. Median estimate
error for NAA/Cr is 0.24 using regression. For Cho/Cr, the estimation error
is 0.34. The corresponding concentration values estimated from the LCModel
serves as our ground-truth.

Real (Spectra) - Real (Images). We perform a blind test with 96 2D MRSI
spectra against the training model generated using the 287 SVS spectra and
the results are shown in Table. 1. Median estimate error for NAA/Cr is 0.1, for
Cho/Cr is 0.18, for mI/Cr is 0.217 and for Glx/Cr is 0.13. Although we expect
the errors to be higher in the blind test due to difference in the acquisition
protocols of the training and testing dataset, the errors appear to be within
a reasonable window. As expected, the estimated errors are highest for mI/Cr
while Glx/Cr surprisingly has a lower error than Cho/Cr.

The Real Spectra training model provides a marginally better metabolite
concentration estimate than the Synthetic spectra model. We attribute this to
the presence of arbitrary scanning effects and artifacts in the real spectra model
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as compared to the synthetic model. For future experiments, this provides the
scope for learning on a large synthetic spectral data-set with similar additional
arbitrary effects to have a robust classifier for real data (especially in the cases
where annotating training data is expensive).

4 Conclusion

Machine learning techniques such as Random Forest-based regression provide a
new and faster way of metabolite quantification. Our synthetic training model
accounts for spectral features such as macro-molecular baseline, lipids, linewidth
and SNR variations in combination with different metabolite concentrations.
Additional features such as frequency and/or phase-shift effects along with B0
inhomogeneity could be incorporated in the model to improve robustness. For
the human in-vivo data, we use training spectra from different subjects and
the random-forest regression provides a low amount of estimation error over the
LCModel fit even in the presence of arbitrary scanning effects. Training times for
the simulated spectra can be considerable (around 5–6 h) given that we generate
over 1 million spectra while it is only a few minutes for the in-vivo spectra. On
the other hand, testing and concentration estimation happens in only a few sec-
onds and is considerably faster than the non-linear model fitting. The machine
learning approach may be used directly, or indirectly by initializing LCModel fits
thereby improving their results in the presence of noise and speeding up conver-
gence. They can also be combined with global decisions about spectral quality
predicting whether a spectrum can or cannot be interpreted by the physics model
because of the presence of artifacts.

Future work would involve using a more robust approach such as deep-
learning based methods to improve the accuracy of parameter estimation. Once
a framework has been established, further work can be done on having disease-
based training models for parameter estimation to predict disease progression
and the corresponding metabolite maps.
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Abstract. We introduce a deep-learning based framework based on a
multilayer perceptron for estimation of the output parameters of a model-
based analysis of MR spectroscopy data. Our proposed framework: (1)
learns the spectral features from a training set comprising of different
variations of synthetic spectra; (2) uses this learning and performs non-
linear regression for the subsequent metabolite quantification. Experi-
ments involve training and testing on simulated and in-vivo human brain
spectra. We estimate parameters such as metabolite-concentration ratios
and compare our results with that from the LCModel.

1 Introduction

Quantification of MR Spectroscopy (MRS) signals generates metabolic maps
which show the concentration of metabolites in the sample being investigated.
Accurate quantification of these metabolites is important for diagnosis of brain
tumor and other in-vivo diseases. For this purpose, non-linear model-fitting tools
are widely used (such as the LCModel [4], TARQUIN [8], AMARES [6] and
ProFit [5]). The LCModel is widely regarded as the gold-standard fitting tool.
However, some of its drawbacks include: (1) prior knowledge-tuning and long
fitting times, and (2) high estimation error for noisy data. Prior work has also
focused on using machine-learning for metabolite-quantification [2]. In this study,
we present an alternative to the non-linear model fitting using a deep-learning
approach.

2 Methods

A multilayer perceptron(MLP)[7] is a fully-connected, feedforward deep-neural
network comprising of three or more layers of non-linearly activated nodes. The
nodes in each layer are connected to the next layer with certain weights and a
supervised learning technique (backpropagation)[3] is used for training. Weights
are updated after each backward-pass and the error (loss function) is computed



after each iteration. Once the error reduces and achieves convergence, the learn-
ing stops.

In MRSI, The time-domain complex signal of a nucleus is given by:

S(t) =

∫
p(ω)exp(−iΦ)exp(−t/T ∗

2 )dw. (1)

, and the corresponding frequency-domain spectrum is given by S(ω).

Using the MLP-framework, we perform the inverse signal modeling where we
have a training dataset D = (Si(ω), Yi) , i ∈ [1, N ], where N is the total number
of synthetic training spectra. Si(ω) represents the synthetic training spectral
data while Yi represents the corresponding multi-parameter training labels. As a
preliminary study, for our model, we consider the concentrations (with respect to
Creatine) for the major metabolites - NAA and Choline. Therefore, for a given
spectrum Si(ω), Yi = [ NAAi, Choi ].

A five-layered perceptron network was constructed to work as a regressor
mapping the Si(ω) to the Yi. Each layer consisted of 300 neurons with rectified
linear unit (ReLU) activation. The training data consisted of N=1-million spec-
tra with their corresponding parameters. The randomly initialized network was
trained to predict the parameters by iteratively minimizing the squared-error
loss between the predicted and actual parameters using gradient descent with a
learning rate of 1e-3. For faster convergence, Adam optimizer with a Nesterov’s
momentum of 0.9 was employed. As the data is mostly well-behaved, the ’early
stopping’ convergence check was utilized on 0.1

To check the ability of our network to predict the parameters, we use two
test-sets: synthetic and real CSI. The predicted concentrations are denoted by Ŷj .
The corresponding LCModel fitted concentration labels Yj serve as the ground-
truth, j ∈ [1,M ] where M is the total number of test spectra.

Error Calculation. For our experiments, given the estimate Ŷj and the
testing label Yj , the estimate error for the parameter Yj can be calculated as,

Êj = ||Ŷj − Yj ||./||Yj || (2)

Data. A metabolite basis set was generated by using the data provided by the
ISMRM MRS Fitting Challenge 2016. An example has been shown in 1. Over 1
million spectra were simulated with variations in NAA, Cho, Cr concentrations,
macro-molecular baseline, lipids, t2 values (for changes in linewidth) and signal-
to-noise ratio (SNR) to account for changes in spectral quality. For testing, we
acquire a standard phase-encoded 2D brain MRSI data of a healthy human
volunteer on a 3T scanner using a point-resolved spin-echo localization sequence
(PRESS) with voxel size = 10x10x15 mm3, TE/TR=35/1000 ms, spectral width
= 2000 Hz, number of points = 400. For testing purposes, we use 96 spectra
from the inner-region of the brain which serves as the region of interest. For
peak alignment, ppm-cropping and signal-normalization of the training and test
spectra, a pre-processing step is performed.



Fig. 1. An example spectra generated using the basis sets provided by the ISMRM
MRS Fitting Challenge 2016. Using the same basis sets, over 1 million spectra are
generated with variations in NAA, Cho, Cr and other metabolite concentrations along
with changes in macro-molecular baseline, lipids, linewidth (t2) and SNR.

2.1 Results

As a direct comparison of both the MLP and LCModel methods,we use the
synthetic test dataset to generate the error distribution shown in Fig. 2. For
both NAA/Cr and Cho/Cr, the MLP shows a lower median error than the
LCModel. Using the Bland-Altman method [1], we observe a strong correlation
between the LCModel and RF estimates for a sample patient (Fig. 3). Êj for the
same sample patient are within the acceptable range (especially for the major
metabolites such as NAA, Choline and Creatine). Fig. 4 shows the resulting
concentration distribution from both the MLP and LCModel methods for both
NAA/Cr and Cho/Cr. The mean relative errors over the LCModel for NAA/Cr
and Cho/Cr are 0.31 and 0.12 respectively.

Speed: Training time for the synthetic data is 10 minutes using the MLP.
While the LCModel takes 10 minutes for the in-vivo metabolite quantification,
our proposed network, after training, takes only 10 seconds leading to a 60x
improvement in speed.



Fig. 2. Estimation error for different metabolite concentration ratios in a synthetic
spectra test-set. Whiskers span the [min max] values. Median error values are repre-
sented by the red line and are as follows: NAA/Cr MLP = 0.050, LCModel = 0.065,
Cho/Cr MLP = 0.0505, LCModel = 0.050.

3 Discussion and Conclusion

While the synthetic test-results gave a lower error compared to the LCModel,
the in-vivo testing gave a slightly higher relative error. A larger training set with
more training labels and a stronger network would solve this issue by providing
a robust classification of real data. In our proposed method, testing and con-
centration estimation happens in only a few seconds and is considerably faster
than the LCModel fitting. The deep neural-networks may be used directly, or
indirectly by initializing LCModel fits thereby improving their results in the
presence of noise and speeding up convergence.

Future work would involve using a more diverse network with layer-wise
training of spectral features to improve the accuracy of parameter estimation.
Once a framework has been established, further work can be done on combining
these networks with global decisions about predicting spectral quality especially
in the presence of artifacts.
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Fig. 3. Bland-Altman plots [1] representing LCModel and Multi-Layer Perceptron
(MLP) estimates of spectra for the real CSI dataset. The X-Axis is the mean of
the LCModel and MLP estimate, while the Y-Axis represents the relative error of
the MLP estimate over the LCModel. Bland-Altman plots for: (Left): NAA and
(Right)Choline. Both plots show a good correlation with very few outliers.
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