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The impact of mixing on biochemical reactions is of high importance in anaerobic digestion (AD). In 

this paper, a novel 2D fully Lagrangian computational model for the integration of mixing and biochem- 

ical reactions in AD is developed and presented. The mixing-induced fluid flow is modeled by smoothed 

particle hydrodynamics (SPH). The computational domain is discretized by SPH particles, each of which 

carries the information of biologically active compounds and follows the flow field. In this natural way, 

advection is reproduced, which is the main advantage of SPH for this type of problems. A mathematical 

model that governs the biochemical reactions is integrated in time for each particle, which allows to spa- 

tially resolve the biological concentrations. Mass transfer interactions between particles are reproduced 

by the diffusion equation to directly link mixing to biochemical reactions. The total biogas production is 

obtained by integrating over all the particles. Both SPH and biochemical models are verified against exist- 

ing data in the literature and the integrated model is then applied to a real world anaerobic digester. The 

application of a novel fully Lagrangian method to AD is a stepping stone to future possible developments. 

However, in the simulation of such problems, SPH is still uncompetitive if compared to other mainstream 

methods and industrial application of the model depends on the computational efficiency of future SPH 

solvers. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Anaerobic digestion (AD) is a widely applied technology for ad-

vanced treatment of biodegradable materials. Due to the biochem-

ical processes in AD, biogas is ultimately formed under anaerobic

conditions from the biological residues, subsequently utilized to

generate energy. Although the environmental and economic advan-

tages of AD are undisputed, the net energy yield of AD is not over-

whelming compared to other renewable energy sources and hence

the AD energy consumption needs to be optimized [1] . 

The performance of AD depends on several physical and bio-

chemical parameters, mainly including biomass characteristics,

feeding patterns, temperature, pH, hydraulic retention time (HRT)

and mixing. The individual steps of the AD process have been sub-
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ect of considerable research activity in recent decades. Compre-

ensive mathematical models have evolved for the biochemical re-

ction kinetics [2–4] , while a large number of studies have been

edicated to investigate flow patterns and mixing. Early experi-

ental studies on mixing methods in AD are limited to tracer in-

estigations [see e.g. [5–7] ], where a chemical material is injected

nto the digester and its evolution is investigated over time. The

ate and the pattern of this evolution reveals the mixing effects in

 simplified manner. Non-invasive experimental methods like com-

uter automated radioactive particle tracking (CARPT) and com-

uter tomography (CT) have also been employed to characterize

he flow pattern inside lab-scale digesters [8] . However, experi-

ental techniques are costly, resource-intensive and not applicable

or all full-scale digesters. 

Thanks to modern high performance computers, computational

uid dynamics (CFD) methods have emerged as promising tools

o study the fluid flow in bioenergy systems [9] . Vesvikar and Al-

ahhan [10] performed a steady state CFD simulation of a lab-scale

as-lift digester, resolving water, air and the lifting gas as separate
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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edia. CFD has been also used to simulate circular and egg-shaped

igesters with regard to various real-life experimental cases to cal-

ulate velocity fields, particle trajectories, dead zones and turbu-

ence impacts [11] . Lab-scale digesters have been also studied by

ridgeman [12] using CFD, through which new findings for the ve-

ocity distribution and the biogas yield are achieved. Full-scale di-

esters are also studied using CFD [13,14] . Due to the importance

f turbulent mixing in AD, Coughtrie et al. [15] compared different

urbulence models for a bench scale gas-lift digester. They simpli-

ed the effects of the gas phase by an empirical velocity formula-

ion. CFD has been also used for optimization of wastewater diges-

ion by Hurtado et al. [16] . They studied the sludge flow behavior

nder steady and non-steady conditions and determined an inter-

ittent operating regime with a high mixing quality. Zhang et al.

17] used CFD to investigate the mixing mode and power consump-

ion in an unbaffled stirred tank bioreactor. Recently, CFD has been

lso employed to assess mixing quality in full-scale biogas-mixed

naerobic digestion [18] . 

Despite the remarkable improvements in design and optimiza-

ion of AD offered by the aforementioned studies on either physi-

al or biochemical compartments, the intrinsic connection between

he flow patterns (mixing) and the biochemical reactions is still

oorly studied [9] . As an energy-intensive factor of AD, mixing

hould be optimized in order to maximize the net energy yield

19] . The direct impact of mixing on the biogas production has to

e known to achieve an optimized process. Therefore, a fully inte-

rated model is required to study the relation between mixing and

he biochemical reactions. However, to our knowledge, only Wu

nd Chen [20] and Wu [21] have addressed this topic with a com-

utational model. The former propose a model, which calculates

he biomass resident time for each computational cell by solving

 scalar transport equation based on a fully converged hydrody-

amics solution and expresses the methane yield rate as a linear

unction of temperature. The latter similarly calculates first the res-

dent time and accordingly solves the detailed biokinetic mathe-

atical equations for the determined resident time to ultimately

ompute the total methane yield. Wu [21] validated the computa-

ionally predicted methane yield against experimental data. How-

ver, the proposed model therein is constrained by the fixed Eu-

erian grid points, which restricts the extension of the model to

ncompass the multi-phase nature and inherent heterogeneities of

he biomass fed into digesters. 

Since meshless Lagrangian computational methods show more

ccurate field-scale predictions of reactive transport processes [22] ,

n the present study smoothed particle hydrodynamics (SPH), as

he most advanced member of this category, is considered as the

deal choice for being coupled to the biological model. SPH has al-

eady been employed to introduce integrated models for wastew-

ter treatment by coupling hydrodynamics and biokinetics [23] .

owever, to our best knowledge, this is the first-ever application

f a fully Lagrangian method to couple mixing and biochemical re-

ctions in AD. There exist Euler–Lagrange CFD models in the lit-

rature, which have benefited from a Lagrangian approach to sim-

late the multi-phase medium of gas mixing in AD [18,19] . Very

ecently, Dapelo et al. [24] also used the Euler–Lagrange approach

n a Lattice Boltzmann framework, which considerably accelerates

he computations. 

In this paper we propose a direct link between SPH as the

ydrodynamics model and the versatile AD models [2,3] govern-

ng the biochemical reaction. The concentrations of biological com-

ounds are assigned to SPH particles, which follow the flow field.

n the presented 2D model, the biochemical reactions are solved

or every single particle such that each particle behaves as an indi-

idual bioreactor. In order to realize the local mass transfer inter-

ctions, the diffusion equation is discretized and solved over the

articles by SPH, thereby the spatial interactions between differ-
nt compounds are taken into account. Finally, the overall biogas

roduction is obtained by integrating over all the particles. 

Another decisive factor in the performance analysis of AD is

edimentation. As such, the overachieving goal must be develop-

ng a model capable of mimicking multiple physical phases. The

eshless nature of SPH is a proven advantage in the simulation of

ulti-phase flows [25,26] . In contrast to mesh-based Eulerian com-

utational methods, like finite volume method (FVM), SPH needs

o specific algorithm to identify the multi-phase interface, since

ifferent phases are naturally distinguished by particles. However,

n multi-phase problems characterized by large density differences,

hich are not present in our study, the numerical instabilities

aused by abrupt density discontinuities across the interface need

o be overcome by special interface treatments [27–29] . The men-

ioned beneficial features of SPH make it possible to develop the

pproach further towards a fully integrated numerical model of

he AD process including sedimentation effects. This is an asset to

PH, which is not found in previous numerical simulations of AD

y mesh-based methods [21] . It is worth noting that the dissipa-

ive viscosity treatments in traditional SPH [30] impact turbulence

uantities that may be important in mixing over the time scales of

D. SPH is also regarded to be well suited for fee-surface gravity

ominated flows. However, the aforementioned assets still nomi-

ate SPH as an attractive method to study the AD process. Overall

he advantages of using SPH in this type of processes can be sum-

arized here as 

1. Advection is reproduced in a natural way. 

2. Reactive transport processes are predicted more accurately in

comparison to mesh-bashed methods [22] . 

3. The Lagrangian nature allows to naturally couple mixing to bio-

chemical reactions. 

4. Carrying the biological information on SPH particles spatially

resolves the biological concentrations. 

5. SPH allows to develop models capable of mimicking multiple

physical phases (viz. flocculant and sedimenting matter) by nat-

urally realizing multi-phase interfaces. 

Despite the opening above-mentioned peculiarities offer with

egard to future developments, industrial application of the pro-

osed model depends on computational efficiency of the fu-

ure SPH solvers. It is generally observed that 3D simulations of

D are of importance due to turbulence and rheological effects,

hich are costly prohibitive within SPH with the lengthy AD pro-

esses in mind. Nevertheless, extending the present model to non-

ewtonian flows with the consideration of heat transfer in 2D is

ur ongoing work for more in-depth studies. We showed a first at-

empt in [31] . 

The paper is organized as follows: Section 2 describes the ba-

ic principles of SPH together with the mathematical models for

oth the fluid flow and the biological processes. The employed

umerical scheme to solve the time-dependent models is then

ummarized in Section 3 . Section 4 includes the validation of

he mathematical models, mesh convergence studies and the SPH

imulations of a real life anaerobic digester in comparison with

VM-based CFD simulations. Finally, the concluding remarks of the

resent study are highlighted in Section 5 . 

. Mathematical model 

.1. Fundamentals of SPH 

SPH is a fully Lagrangian method which describes the fluid

ow by a finite number of particles. The particles carry the infor-

ation regarding mass and other physical parameters and follow

he flow field, while they are mathematically considered as inter-

olation points. The main idea of SPH is to interpolate physical
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quantities over the neighboring particles of a particle of interest

using a weighting function W . According to this principle, any ar-

bitrary function f ( r ) at position r in space is approximated by an

integral formulation [32] 

f (r ) ≈ 〈 f (r ) 〉 ≡
∫ 
�

f (r ′ ) W (r − r ′ , h ) δV + O(h 

2 ) , (1)

where angle brackets denote the approximation of f ( r ) obtained

from using the weighting function instead of the Dirac delta func-

tion, δ(r − r ′ ) , h is the smoothing length, � is the support do-

main of W , and δV is the differential volume of the particles. The

weighting function, which in SPH literature is called as smooth-

ing kernel, has to satisfy the normalization condition, 
∫ 
� W (r −

r ′ , h ) δV = 1 and the symmetry condition. In addition, it should

approach the Dirac delta function as the support domain tends

to zero, lim h → 0 W (r − r ′ , h ) = δ(r − r ′ ) . Representing the computa-

tional domain by particles and considering a set of particles inside

the support domain of the particle i , one can write the discrete

approximation of Eq. (1) 

〈 f (r i ) 〉 = 

∑ 

j 

f (r i ) W i j δV j , (2)

where for the sake of simplicity W (r i − r j , h ) is substituted by W ij .

There are various smoothing kernels in literature and throughout

the present work the Wendland kernel [33] is used for all numer-

ical calculations. A smoothing length of h = 2 dx is used, where dx

is the initial particle spacing. 

2.2. Governing equations 

The continuity equation relates the change of density to the ad-

vection of the continuum 

dρ

dt 
= −ρ∇ · v (3)

and is discretized in SPH form as 

dρi 

dt 
= ρi 

∑ 

j 

m j 

ρ j 

v i j · ∇ i W i j (4)

where t, ρ and m represent the time, density and mass, respec-

tively and v i j = v i − v j is the relative velocity between particle i

and j . 

The momentum conservation equation in a Lagrangian frame-

work has the following form 

ρ
D v 

Dt 
= −∇p + F (ν) + ρg (5)

and is discretized using the formulation presented by Adami et al.

[34] as 

dv i 
dt 

= − 1 

m i 

∑ 

j 

(
V 

2 
i + V 

2 
j 

)ρ j p i + ρi p j 

ρi + ρ j 

∇ i W i j 

−
∑ 

j 

m j αh i j c i j 

v i j · r i j 

ρi j ( 
∣∣r i j 

∣∣2 + εh 

2 
i j 
) 
∇ i W i j 

+ 

1 

m i 

∑ 

j 

2 ηi η j 

ηi + η j 

(
V 

2 
i + V 

2 
j 

)v i j 

r i j 

∂W 

∂r i j 

(6)

where r i j = r i − r j , r i j = 

∣∣r i j 

∣∣ and 

∂W 

∂r i j 
= ∇ i W i j · e i j . The coefficients

h ij , c ij and ρ ij are the averages of the smoothing length, speed of

sound and density between the two particles. Variables V i and ηi 

represent the volume and dynamic viscosity of particle i , the pa-

rameter ε = 0 . 01 is included to ensure a non-zero denominator

and the constant α is chosen such that the solution is not affected

by the artificial viscosity. 
.3. Advection-diffusion equation 

Diffusion is the only method of transporting material from the

iomass particles into the bulk medium in a laminar flow [35] . In

rder to resolve the mass transfer interactions at a particle level, in

he present work the advection-diffusion equation is solved over

he particles. The original form of this equation includes Fickian

iffusion and the advection term 

dC 

dt 
= D∇ 

2 C − ∇ · (v C) (7)

here C is the concentration of a compound, D is the diffusion co-

fficient, and v is the velocity field. There are several formulations

n the SPH literature to discretize Eq. (7) [see e.g. [32,36,37] ]. The

ccuracy analysis of Aristodemo et al. [37] shows that their formu-

ation leads to more accurate results. For this reason, here we use

he formulation proposed in [37] to discretize Eq. (7) in the SPH

orm 

dC i 
dt 

= 

∑ 

j 

˜ D 

m j (ρ j + ρi ) 

ρi ρ j 

r i j · ∇ i W i j 

r 2 
i j 

+ ε2 
C i j 

−
∑ 

j 

m j 

C i 
ρi 

v i j · ∇ i W i j (8)

here ˜ D = 

4 D i D j 
D i + D j . It should be noted that since the velocity fields

n the herein considered problems are not strong, we can neglect

he advection term of the Eq. (8) . The concentrations are natu-

ally advected with the particles due to the Lagrangian nature of

he SPH method. This characteristic is another advantage of the

PH method for the simulation of processes dealing with reaction-

iffusion phenomena like AD. 

.4. Anaerobic digestion model 

The anaerobic digestion model No. 1 (ADM1) [4] has been re-

orted as the most comprehensive mathematical model for the

D process. However, as also mentioned in [38] and [21] , because

f the large number of constants and coefficients in this model

t is nearly impossible to validate the model according to any of

he available experimental data sets. On the other hand, ADM1 is

ased on a completely stirred reactor with a constant input and

utput stream for the whole reactor. The constant input and output

ates together with the total volume of the reactor are included in

ll the biochemical mass balance equations, including the methane

roduction rate, which is not compatible with our particle-based

escription of the system. In our approach, the input and output

treams are emulated by the SPH particles, where at each time in-

tant a number of particles are allowed to leave/enter the reactor

uch that their occupied volume is equal to the desired volumet-

ic flow rate. Moreover, in order to couple the biochemical reac-

ions to the physical processes we need to solve the biochemical

ass balance equations locally for each particle and reproduce the

ass transfer interactions between particles by the diffusion equa-

ion. With the above considerations in mind, we use the model

roposed in [2] and [3] , but adopting the total input/output flow

ates and the total volume. 

The employed model herein includes four processes: hydrol-

sis of particulate substrate, acidogenesis (consumption of solu-

le substrates by acidogenic bacteria), acetogenesis (consumption

f volatile fatty acids and formation of acetate by propionate and

utyrate degrading acetogenic bacteria), and finally methanogesis

consumption of acetate and methane generation by methanogenic

acteria). These biological reactions are modeled as a system of or-

inary differential equations (ODEs). Since the rates of change of

ifferent active biological compounds differ significantly, this sys-

em of ODEs is denoted stiff in mathematical terms. It is thus
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Fig. 1. SPH particles i describing the biomass flow while carrying the information regarding the biological concentrations, C i,bio . The biochemical equations of AD are solved 

for each particle and the spatial mass transfer interactions are taken into account by solving the diffusion equation over the neighboring particles j . 
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�

roposed to reduce the stiffness by approximating the rate of

hange of the cation of hydrogen ( H 

+ , a very quickly changing con-

entration) as an algebraic non-linear equation [2] . 

In the present work, as illustrated in Fig. 1 , SPH particles de-

cribe the biomass flow while carrying the information regarding

he biological concentrations, C i . For each particle of interest, i , the

ydrodynamic equations along with the diffusion equation are dis-

retized using the smoothing kernel and solved over the neighbor-

ng particles which lie within the support domain, W ij (described

n Section 2 ). The radius of the support domain is κh where h is

he smoothing length and κ is a constant, which for the Wendland

ernel is equal to 2. At each time step, for each particle, the sys-

em of ODEs is solved using an Euler forward integration and the

on-linear algebraic equation for H 

+ is iteratively solved using the

ewton–Raphson method, such that each particle is performing as

n individual reactor. Having determined the concentration of H 

+ ,
he pH value for each particle is calculated as pH = −log 10 (H 

+ ) .
n order to take the effects of hydrodynamics into account and

chieve a coupled model, the local mass transfer interactions be-

ween each particle and its neighboring particles are considered

y solving the diffusion equation. 

The aforementioned asset of SPH to simulate the multi-phase

edium of AD is also better comprehensible in Fig 1 . In contrast

o mesh-based Eulerian methods, the Lagrangian framework of SPH

ets the particles follow the flow field without the constraint of

xed computational grid points. Each SPH particle can mimic ei-

her a soluble, an inert or any non-degradable material (e.g. metal,

lass, etc.). This is an advantageous feature of SPH in computa-

ional studies of AD, which makes it better suited to include the

ffects of sedimentation, non-degradable materials, etc. 

. Numerical scheme 

The gpuSPHASE software [39] is used here as the computational

ramework in which the time integration is based on the velocity-

erlet scheme. In order to calculate the local pH value for each

article, at the beginning of each time step, the non-linear alge-

raic equation is solved as a function of the local concentrations

f the biological compounds. In addition, to take the biochemi-

al reactions into account the system of ODEs are solved for each

article at each time step. With the newly predicted concentra-

ions from the biochemical reactions at the beginning of each time

tep, the predictor-corrector scheme is used for the diffusion equa-

ion [36] . This form of time integration introduces a hybrid time-
cheme with the use of Verlet and predictor-corrector algorithms,

ogether with an iterative solver to calculate pH values. Simplifying

he solver of the system of ODEs by an explicit Euler integration,

he time stepping scheme takes the following form 

H 

n +1 = −log 10 [ f ( pH 

n ) = 0] (9)

 

n +1 
i,bio 

= C n i + �t f bio (C, pH 

n +1 ) (10)

˜ 
 

n + 1 2 

i 
= C n +1 

i,bio 
+ 

1 

2 

�t f 0 C (11) 

 

n + 1 2 

i 
= v n i + 

�t 

2 

(
dv i 
dt 

)n 

(12) 

 

n + 1 2 

i 
= r n i + 

�t 

2 

v 
n + 1 2 

i 
(13)

 

n + 1 2 

i 
= C n +1 

i,bio 
+ 

1 

2 

�t f C ( ̃  C 
n + 1 2 

i 
, r 

n + 1 2 

i 
) (14)

n +1 
i 

= ρn 
i + �t 

dρ
n + 1 2 

i 

dt 
(15) 

 

n +1 
i 

= r 
n + 1 2 

i 
+ 

�t 

2 

v 
n + 1 2 

i 
(16) 

 

n +1 
i 

= v 
n + 1 2 

i 
+ 

�t 

2 

(
dv i 
dt 

)n +1 

(17) 

 

n +1 
i 

= 2 C 
n + 1 2 

i 
− C n +1 

i,bio 
, (18)

here f (pH) is the non-linear equation of pH, C i,bio is the calcu-

ated concentration according to the biochemical reactions, f bio is

he general form of the ODEs and f C is the rate of change of con-

entrations in time, obtained from Eq. (8) . Since the continuity

quation Eq. (15) and the force calculations Eq. (17) are compu-

ationally expensive, they are performed only once per step [34] . 

To maintain the stability of the numerical algorithm, the time

tep size is restricted by several conditions including the Courant-

riedrichs-Levy (CFL) condition [32] , the conditions imposed by

iscous and gravitational forces, and the diffusion condition 

t = min 

( 

C CF L 
h 

max i (c i + | v i | ) , 
h 

2 

8 ν
, 

(
h 

16 | g | 
) 1 

2 

, 
h 

2 

8 D 

) 

, (19) 
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Fig. 3. Comparison of the concentration distribution between the SPH simulation 

and the analytical solution [41] for constant initial concentration. 
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where 0 < C CFL < 1 is the CFL number, which in the present work is

set equal to 0.25 and c is the speed of sound. In the weakly com-

pressible SPH (WCSPH) scheme employed herein, the fluid is as-

sumed to be weakly compressible and an equation of state is used

to calculate pressure at each time step. The speed of sound c is a

decisive parameter in the equation of state and is suitably chosen

to limit the density fluctuations to 1 %, thereby ensuring the in-

compressibility constraint. gpuSPHASE utilizes graphics processing

units (GPU) in order to accelerate the calculations. All the simu-

lations presented herein are performed in parallel using a Nvidia

GeForce GTX TITAN X (Pascal architecture) graphics card installed

on a workstation with 16GB RAM main memory and an Intel(R)

Xeon(R) CPU E5-1620 v3 CPU with 8 cores. 

4. Discussion 

4.1. Validation of the diffusion equation 

It is due to the nature of large scale anaerobic digester instal-

lations that a detailed, 3D and dynamic monitoring scheme is not

feasible. As real world data for full model validation do not ex-

ist, the novel submodules of the presented Lagrangian-biokinetic

model are validated individually in the following. 

The gpuSPHASE framework has already been validated against

several experimental, analytical and numerical fluid flow bench-

mark cases [39] and thus the implementation of SPH code is as-

sumed to be tested and correct. In order to validate the novel

diffusion term, the analytical benchmark case for a 1D diffu-

sion is chosen which is previously used by several SPH studies

[see e.g. [36,37,40] ]. The schematic of the problem is depicted

in Fig. 2 . In this case, a 0.4 × 1 m rectangle is filled with wa-

ter ( ρ = 10 0 0 kg . m 

−3 ) and a finite horizontal band of pollutant

( ρ = 10 0 0 kg . m 

−3 ) is located at the middle of the rectangle con-

fined to the region z 1 ≤ z ≤ z 2 . The initial concentration of the pol-

lutant is equal to C 0 = 1 kg . m 

−3 in the band and zero elsewhere.

The diffusion coefficient is equal to 10 −4 m 

2 . s −1 . 

For the above test case, an analytical solution is proposed in

[41] as follows 

(z, t) = 

C 0 
2 

erfc 

(
z 1 − z √ 

4 Dt 

)
for z ≤ z 0 

(z, t) = 

C 0 
2 

erfc 

(
z − z 2 √ 

4 Dt 

)
for z > z 0 (20)
Fig. 2. Schematic illustration of the diffusion test case with constant initial distri- 

bution of the pollutant concentration. 
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here based on the configuration of this problem z 0 = 0 . 5 m , z 1 =
 . 45 m and z 2 = 0 . 55 m . 

The SPH numerical predictions of the concentration at t = 1 . 0 s

s shown in Fig. 3 . The evolution of the concentration is well pre-

icted and the bell shaped distribution of the concentration is in

greement with the analytical solution. This simulation was also

erformed with the drift-kick-drift [42] and the Verlet [43] time

tepping schemes. The best results were obtained using our hybrid

cheme. 

This problem is further investigated with an exponential initial

istribution of the pollutant all over the rectangle height. The ini-

ial distribution of the concentration has the following form, which

eaches its maximum at the middle of the rectangle ( z 0 = 0 . 5 m ) 

(z, t = 0) = exp 

[
− (z − z 0 ) 

2 

4 Dt 0 

]
(21)

nd the analytical solution for this problem proposed in [41] is as

ollows 

(z, t) = 

c 0 √ 

t + t 0 
exp 

[
− (z − z 0 ) 

2 

4 D(t + t 0 ) 

]
(22)

here t 0 = 1 s , c 0 = 1 kg . s 1 / 2 . m 

−3 and D = 10 −4 m 

2 . s −1 . 

Fig. 4 illustrates the comparison of the SPH numerical predic-

ions of the concentration distribution against the analytical solu-

ion for the exponential initial distribution at t = 1 s . As for the

rst case with a constant initial distribution, this case was also

erformed with the drift-kick-drift [42] and the Verlet [43] time

tepping schemes. The best results were also in this case obtained

sing our hybrid scheme. The convergence of the concentration

istributions with increasing resolution are also shown in Figs. 3

nd 4 . 

In order to quantify the convergence rate of the SPH method,

he L 2 norm of error [44] for the 1D diffusion test case with two

ifferent initial distributions is plotted in Fig. 5 . Four particle reso-

utions are used, namely, dx = 0.005, 0.01, 0.02 and 0.03 m. A near

ptimum rate of convergence is demonstrated in both cases with

onstant and exponential initial distribution. Evidently, the accu-

acy of the SPH scheme improves with increasing particle resolu-

ions and the scheme converges faster with constant initial con-

entration distribution. 

.2. Validation of the AD model 

As mentioned in Section 2.4 , the AD model used in the present

ork consists of a system of ODEs and a non-linear algebraic
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Fig. 4. Comparison of the concentration distribution between the SPH simulation 

and the analytical solution [41] for exponential initial concentration. 

Fig. 5. Rate of convergence of the SPH model conducted for a 1D diffusion test case 

with constant and exponetial initial distributions. 
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Fig. 6. Comparison of the computationally predicted methane yield against the ex- 

perimental results [45] . 
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quation. At each time step the system of ODEs is solved using the

orward Euler integration and the non-linear equation for the con-

entration of H 

+ is iteratively solved using the Newton-Raphson

ethod. 

In order to validate the AD model implementation, the experi-

ental data reported by Mackie and Bryant [45] are used. A lab-

cale digester with a volume of 0.003 m 

3 in a mesophilic tempera-

ure environment (40 °C) is used in [45] . The digester has different

eeding patterns according to the HRT. It has been fed in a semi-

ontinuous way twice a day for the shortest HRT (5 day) and once

 day at the longer HRTs (13, 10 and 9 days). The initial concentra-

ions are computed using the mathematical expressions proposed

n [21] and are summarized in Table 1 where X A , X AP , X AB , X M 

, C Is ,

 S , C Ac , C Pr , C But , C Am 

, C CO 2 
and C CH 4 

denote the concentration of

cidogenic bacteria, propionate degrading acetogenic bacteria, bu-
Table 1 

The initial concentrations (kg.m 

−3 ) of the biologica

of ODEs. 

X 0 
A 

X 0 
AP 

X 0 
AB 

X 0 M C 0 Is C 0 S C

0.13 0.005 0.005 0.06 2.7 0.3 0
yric degrading acetogenic bacteria, methanogenic bacteria, insolu-

le substrate, soluble substrate, acetate, propionate, butyrate, am-

onium, carbon dioxide, and methane, respectively. 

Fig. 6 depicts the computationally predicted methane produc-

ion compared with the experimental results of [45] for different

rganic loading rates (OLR). These methane yield values are ob-

ained after a 24 h simulation of the AD model in a continuously

tirred-tank reactor (CSTR). As it is shown, a fairly good agreement

s achieved between the experimental results and the numerical

redictions according to the mathematical model. 

.3. Geometry layout 

In order to compare the velocity profiles between SPH and AN-

YS Fluent in Section 4.4 , and also as a case study in Section 4.6 ,

n this paper we investigate an egg-shaped anaerobic digester of a

eal-life waste water treatment plant (WWTP). The schematic con-

guration of the digester is shown in Fig. 7 . The WWTP of the

chental-Inntal-Zillertal wastewater management association (AIZ) 

s located in the community of Strass (Austria). The AIZ treatment

lant is designed for 167,0 0 0 population equivalents. The AD pro-

ess is realized by two identical egg-shaped digesters with a vol-

me of 2500 m 

3 each. The digesters are operated at a temperature

f 35 °C. The mixing is realized by a mechanical draft tube, which

s vertically located at the middle of the digester. The mixing ef-

ects are enhanced with the recirculation of the biomass. The flow

ate in the recirculation stream is 105 m 

3 . day −1 . Further details

bout the technical and operating data of the digester are found

n [46] . In the subsequent analysis, the actual operating conditions

f the AIZ digester are adopted. 

.4. Comparison of the velocity profiles between SPH and 2D ANSYS 

While the SPH code implementation is already validated else-

here (see Section 4.1 ), this section verifies the resulting ve-

ocity field in a real world anaerobic digester. Detailed 3D CFD
lly active compounds for solving the system 

 

0 
Ac 

C 0 Pr C 0 But C 0 
Am 

C 0 CO 2 
C 0 CH 4 

.09 0.01 0.01 0.02 0.0 0.0 
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Fig. 7. Schematic illustration of the real-life egg-shaped anaerobic digester 

equipped with a mechanical draft tube mixer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison of vertical velocity profiles 6 m above the digester bottom 

(TS = 12.1%). 
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analysis of the mixing in the real anaerobic digester described in

Section 4.3 (also considered as case study in Section 4.6 ), has been

conducted by applying FVM-based simulation in [46] . However, the

comparison between 2D and 3D models is difficult for a number

of reasons. At first, the egg-shaped form of the digester induces a

higher dissipation of the velocity of the fluid in a 3D simulation,

resulting in steeper velocity gradients and thus a slower average

flow velocity in the body of the digester. Second, the third dimen-

sion is required to model axial rotation produced by an impeller.

Third, the 2D plane obtained by cutting through an asymmetric 3D

model can vary substantially according to the chosen cutting po-

sition, as is the case in the digester because of the inlet and out-

let pipes. Thus, the numerical results obtained from the simulation

of a custom-made 2D model using the commercial CFD package

ANSYS Fluent are used to verify the hydrodynamic features of the

Lagrangian model proposed herein. 

The vertical velocity profile predicted by the time dynamic SPH-

based model is compared against the FVM steady state solution

shown in Fig. 8 . Single-frame snapshots of the SPH simulation

showed high fluctuations in the particlewise velocity values, mean-

ing that a snapshot of the velocity is not representative. We at-

tribute this to the small time step size between each SPH step.

Therefore, after letting the simulation run for 120 seconds, the

average velocity of 10 0 0 frames at an interval of 0.015 seconds

was taken in order to smooth out these fluctuations. The result-

ing velocity profiles are plotted for a horizontal section of the egg-

shaped digester 6 m above the digester bottom with a total solid

concentration (TS) of 12.1%. It can be observed that the velocity
alues predicted by the SPH method are in good agreement with

he ANSYS Fluent results. These differences can be attributed to

he different nature of the simulations, but the existing discrepan-

ies do not influence the overall biomass flow. The ANSYS Fluent

esults are obtained from a fully converged steady-state solution,

hile the SPH results are presented for a short time interval. For

his reason, the ANSYS Fluent simulation yields a smoother veloc-

ty profile. 

Contours of the velocity fields are compared in Fig. 9 . A good

greement is observed between the two simulations, especially in

he top and bottom areas. The contours of the fluid flow in the

iddle region of the digester are less pronounced in the SPH sim-

lation, which can be attributed to the fluctuations and the subse-

uent averaging described above. The recirculation stream between

he inlet and the outlet (see Fig. 7 for details of the SPH simula-

ion) is implemented using a periodic boundary condition, which

s a well-established treatment in SPH to emulate infinite flows

47] . In the SPH simulations presented herein, particles leave the

igester from the outlet, with their velocity being controlled by a

ackward force field. When they enter the digester from the inlet

gain, their physical and biochemical properties are set equal to

hose of newly added biomass. 

.5. Mesh convergence study and GCI of the 2D ANSYS model 

We generate 2D quadrilateral meshes inside the digester using

NSYS meshing application (version 19.0) with a 4 core Intel Xeon

5-1620 v3 CPU @ 3.50 GHz and 16GB of RAM. By setting the maxi-

um allowed face size of a cell we can control how coarse the re-

ulting grid should be. The iterative solution algorithm converges

iven an error bound for the residuals and runs in parallel using

n NVIDIA GeForce GTX TITAN X. For a description of the three

ifferent meshes we used for the refinement study as well as the

orresponding computation times see Table 2 . 

Given the meshes in Table 2 , we compute the grid convergence

ndex (GCI) according to the procedure presented in [48] . The pa-

ameter we are interested in is the pumping rate measured inside

he draft tube of the digester denoted by φj for mesh j ∈ {1, 2, 3},

espectively. 
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Fig. 9. Contours of the velocity field predicted by (a) SPH and (b) 2D ANSYS Fluent for the real life egg-shaped anaerobic digester. 

Table 2 

Specifications of mesh generated in Fluent. 

Mesh resolution Nodes Elements Max face size [m] Computation time [s] 

Low (#3) 12,414 12,296 0.25 5.874 

Medium (#2) 18,234 18,065 0.15 14.160 

High (#1) 26,481 26,242 0.11 30.503 

Table 3 

Differences in pumping rate depending on mesh resolution. 

Mesh Pumping rate [m 

3 /s] Difference [m 

3 /s] Grid refinement ratio 

#3 φ3 = 3 . 688 · 10 −1 

#2 φ2 = 3 . 715 · 10 −1 ε32 = −0 . 027 · 10 −1 r 32 = 1 . 667 

#1 φ1 = 3 . 755 · 10 −1 ε21 = −0 . 040 · 10 −1 r 21 = 1 . 364 
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Solving the following equation with fixed-point iteration 

p = 

∣∣ ln | ε32 /ε21 | + ln 

(
(r p 

21 
− 1) / (r p 

32 
− 1) 

)∣∣
ln r 21 

(23) 

ields an order of convergence of about p = 5 . 020 . The approxi-

ate relative error between high- and medium-resolution mesh is

iven by 

 

21 
a = 

∣∣∣φ1 − φ2 

φ1 

∣∣∣ = 1 . 065% . (24)

ogether with a safety margin of 25% we compute the GCI via 

CI 21 = 

1 . 25 e 21 
a 

r p 
21 

− 1 

= 0 . 356% , (25)

nd estimate the converged solution of the pumping rate with the

xtrapolated values from 

21 
ext = 

r p 
21 

φ1 − φ2 

r p 
21 

− 1 

= 3 . 766 · 10 

−1 m 

3 s −1 . (26)

In summary, our results show that the value of the GCI for the

umping flow rate measured inside the draft tube is very low, thus

onfirming a robust model setup and a well chosen mesh resolu-

ion ( Table 3 ). 

g  
.6. Full-scale anaerobic digester 

To demonstrate the capability of the proposed model for the

imulation of full-scale reactors, here we consider the real-life

naerobic digester described in Section 4.3 . In our numerical

odel, the fluid flow is induced using a force field inside the draft

ube to accelerate the biomass to the desired velocity, which is

nown from the actual operation of the AIZ treatment plant. The

o-slip boundary condition is applied on all solid walls of the di-

ester and the draft tube. A periodic boundary condition is applied

t the inlet and outlet of the recirculation flow. In order to con-

rol the recirculation flow rate a backward force field is applied at

he outlet to damp down the high velocity field caused by the hy-

rostatic pressure at the bottom of the digester. The initial con-

entration of the biologically active compounds are summarized

n Table 4 . These concentrations are obtained after a 4 h simula-

ion of the AD model in a CSTR. Concentrations at the inlet are

he same as the initial conditions summarized in Table 1 . Both

he fluid phase and the solid walls of the egg-shaped anaerobic

igester are discretized by the SPH particles. The particles are ini-

ially placed on a regular grid of points with an initial distance of

.05 m. This configuration leads to a number of 103,868 particles

or the whole computational domain (described in Section 2.1 ). 

The number of created particles for a 2D SPH simulation of a

ull-scale digester is noteworthy. With the well known heavy com-

utational demand of Lagrangian methods [49,50] in mind, the

implification of the AD process to two dimensions is nearly in-

vitable, although this affects turbulence quantities and mixing be-

omes highly directionally biased in 2D. With the extension of the

imulations to three dimensions the number of particles drasti-

ally increases, which renders the computational cost prohibitive

or real world applications. Therefore, the simulations presented

erein are simplified to two dimensions and for this reason, the

puSPHASE framework which has been developed and optimized
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Table 4 

The initial concentrations (kg.m 

−3 ) of the biologically active compounds for solving the system of ODEs for the AIZ anaerobic 

digester. 

X 0 
A 

X 0 
AP 

X 0 
AB 

X 0 M C 0 Is C 0 S C 0 
Ac 

C 0 Pr C 0 But C 0 
Am 

C 0 CO 2 
C 0 CH 4 

0.0 0 0738 0.008621 0.01233 0.0461 0.0 0 014 0.0011 0.0205 0.2385 0.1712 0.07165 0.0 0.0 

Fig. 10. Methane production values for six different mixing velocities within the 

mechanical draft tube. 
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for the simulation of 2D long-running hydraulic phenomena is em-

ployed [39] . 

Simulations of the AIZ digester were run with six different mix-

ing intensities within the draft tube. We started the numerical sim-

ulations with a velocity of 1.5 m . s −1 within the draft tube, which

is the value actually used in the AIZ WWTP. In order to investi-

gate the effect of hydrodynamics on the biochemical AD reactions,

five more simulations have been carried out with different values

for the mixing velocity within the draft tube, namely 0.5, 1.0, 2.0,

2.5 and 3.0 m . s −1 . The mixing velocity at the recirculation flow

is chosen equal to 0.95 m . s −1 for all the cases, as actually used

in the AIZ WWTP. The methane production values are plotted in

Fig. 10 for the six hydrodynamically different configurations. The
Fig. 11. Distribution of methane concentration after (a) 10 0 0 and (b) 360 0 s of p
ethane production amounts are calculated by integrating over all

he SPH particles; each of which acting as an individual bioreac-

or and having the mass transfer interactions with the neighboring

articles by the diffusion equation. Evidently, the methane produc-

ion is subject to the mixing velocity, with a defined optimum at

bout 2 m . s −1 . 

A very important advantage of the proposed integrated model

s that the direct link between hydrodynamics and the biochem-

cal AD reactions makes it possible to optimize the mixing in-

ensity of the process, thereby enhance the net energy yield. As

hown in Fig. 10 , the optimum mixing intensity of the consid-

red egg-shaped digester occurs at a mixing velocity of 2 . 0 m . s −1 

ithin the draft tube. It can be observed that the methane pro-

uction increases until the optimum point ( 2 . 0 m . s −1 ) and de-

reases afterwards. The methane yield drops to an almost con-

tant value ( 0 . 631 kg . m 

−3 ) and does not increase with higher mix-

ng velocities (from 2 . 0 m . s −1 on). The methane yield fall after

he optimum mixing intensity is mainly attributed to the exces-

ive mixing impact on the biomass, which as demonstrated in

51] causes the particles leave the digester as residual-undegraded

iomass and consequently leads to a lower amount of produced

ethane. 

Fig. 11 (a) shows the distribution of methane concentration af-

er 10 0 0 s of physical simulation time with a mixing velocity of

 . 5 m . s −1 . This spatial illustration makes it possible to observe that

he concentration of methane increases with time and reaches to

ts maximum ( 5 . 171 × 10 −4 kg . m 

−3 ) at points far from the new

iomass entrance. Furthermore, the non-mixed dead zones of the

igester are seen at the regions close to the solid walls which

re far from the mechanical draft tube as well as the inlet/outlet

reas. These observations are insightful to improve and to opti-

ize the mixing methods in AD. The same parameter of the same

igester is depicted in Fig. 11 (b) after a longer simulation time

at t = 3600 s ). Evidently, the methane concentration has increased
hysical simulation time with a velocity of 1.5 m . s −1 within the draft tube. 
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Fig. 12. Distribution of methane concentration after 10 0 0 s of physical simulation 

time with a velocity of 3.0 m . s −1 within the draft tube. 
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Fig. 13. Pointwise methane production rates after 10 0 0 s of physical simulation 

time with a velocity of 3.0 m . s −1 within the draft tube. 

Fig. 14. pH value distribution after 10 0 0 s of physical simulation time with a ve- 

locity of 3.0 m . s −1 within the draft tube. 
ith time and the maximum concentration in this figure meets

 . 191 × 10 −3 kg . m 

−3 . Moreover, because of the longer simulation

ime and established mixing effects, the dead-zones have dimin-

shed. 

The distribution of methane concentration after 10 0 0 s of phys-

cal simulation time with a mixing intensity of 3 . 0 m . s −1 is shown

n Fig. 12 . As it is observed, with the higher mixing velocity the

iomass is better mixed within the digester. There are smaller non-

ixed areas close to the walls and the diffusion effects are more

omogeneous over the whole volume. Furthermore, the higher

ixing intensity leads to higher concentration peaks for methane

nd consequently to higher methane production rates (see Fig. 10 ).

he proposed integrated model is able to predict the effects of

ixing intensities, which is the most energy consuming part of the

rocess. Being complementary to the quantitative analyses (e.g. in

ig. 10 ), these qualitative analyses lead to optimal design of the AD

rocess. 

Another important feature of the AD process is the methane

roduction potential of the biomass through time and space, which

s also influenced by hydrodynamics of the process. A thorough in-

estigation of the effect of mixing on the local methane produc-

ion rates is necessary to improve the net energy yield. Fig. 13 il-

ustrates the pointwise methane production rates throughout the

hole volume of the digester. As it is shown, methane production

s in its highest rate where the undegraded biomass is entering

he digester. This rate decreases with time as the biomass parti-

les move downward and is in its lowest rate at the bottom of

he digester. In addition, at regions close to the solid walls this

ate is lower than other regions. It is worth noting that optimiza-

ion studies (see e.g. Fig. 10 ) can be carried out also for the local

ethane production rates according to different hydrodynamic cir-

umstances, which for the sake of brevity are not reported here. 

The pH value is a crucial parameter in the AD process. The

cidity of the digester environment directly affects growth and de-
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cay of the anaerobic bacteria, and consequently the overall per-

formance of the process. The pH value distribution is depicted in

Fig. 14 . In a similar pattern as the methane production rate, the

pH value decreases as the particles settle down. As expected, the

methane production rate changes faster than the pH value and for

this reason, pH values show more uniform distribution. The rate

of change of pH values is higher in the regions far from the solid

walls. 

5. Conclusions 

Whilst many studies investigated digester mixing or biochem-

ical processes of AD, the important link between hydrodynamics

and biokinetics has gone largely unaddressed. In this paper a novel

model has been developed based on SPH to create a direct link

between mixing and biochemical processes. The computational re-

sults show that the integrated model makes it possible to directly

study the impact of mixing on biogas production and opens future

possible developments in AD studies. 

It is shown that the biological concentrations can be spatially

resolved due to the particle-based disrcretization of the computa-

tional domain. The peculiarities of SPH in dealing with multi-phase

problems facilitate the description of the biokinetics. 

Both SPH and biological models are validated against existing

analytical or experimental results, showing reasonable agreements.

Through application of the model to a real world egg-shaped

anaerobic digester, it has been shown that the model could suc-

cessfully replicate both mixing and biochemical processes. How-

ever, industrial application of the proposed model depends on

computational efficiency of the future SPH solvers. Concerning the

next developments, this work is a stepping stone to develop a

fully integrated model, which couples the mixing and biochemical

processes of AD and encompasses the sedimentation effects, non-

Newtonian flows and heat transfer. In the long term, it is envisaged

that the presented Lagrangian assets of SPH can improve the com-

putational investigations of AD. 
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