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Isogeometric Analysis (IGA), which tries to bridge the gap between Computer Aided Engineering
(CAE) and Computer Aided Design (CAD), has been widely proposed in recent research. According
to the concept of IGA, this work develops a boundary element method (BEM) using non-Uniform
Rational B-Splines (NURBS) as basis functions for the 2D half-space acoustic problems with absorb-
ing boundary condition. Fast multipole method (FMM) is applied to accelerate the solution of an
isogeometric BEM (IGA-BEM). Several examples are tested and it is shown that this advancement
on isogeometric fast multipole boundary element method improves the accuracy of simulations.

Keywords: Isogeometric analysis; boundary element method; fast multipole method; half-space
acoustics.

1. Introduction

The BEM is a developing computational method for engineering and a commonly used
numerical method in different engineering fields, including fluid mechanics, acoustics, elec-
tromagnetics and fracture mechanics.1,2 As an alternative method to the finite element
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1850024-1

J.
 T

he
or

. C
om

p.
 A

co
ut

. 2
01

9.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

M
U

N
IC

H
 o

n 
02

/1
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://dx.doi.org/10.1142/S259172851850024X


June 6, 2019 16:30 WSPC/S2591-7285 130-JTCA 1850024

L. Chen et al.

method (FEM) and the finite difference method (FDM), the BEM has several advantages.
The most distinct feature is that it can reduce the two-dimensional problem down to a one-
dimensional boundary and a three-dimensional problem down to a two-dimensional surface.
Another advantage is that the BEM could gain the same level of accuracy with less num-
ber of elements compared with other methods when the fast multipole method (FMM) is
applied to accelerate the solution of matrix-vector.3–9

The BEM has been widely used to acoustic problems because it provides an excel-
lent accuracy and easy mesh generation.10–12 In particular, for exterior acoustic problems,
the Sommerfeld radiation condition at infinity is automatically satisfied. Actually, for the
BEM, the Helmholtz governing partial differential equation is first converted into an inte-
gral equation which can then be discretized through an appropriate basis and a suitable
discretization method. However, for the exterior acoustic problem, the use of conventional
single boundary integral equation can produce nonuniqueness problem. The Burton–Miller
method, which is obtained by combining the conventional boundary integral equation and
its normal derivative equation, can be used successfully to overcome this difficulty.13–15

Conventional numerical methods, such as the FEM and BEM, use Lagrangian polyno-
mials to approximate the geometry of the boundary, and, thus, may produce an additional
error. An alternative method is applying spline curve used in computer aided design (CAD)
software to represent the boundary shape, and applying the functions used to describe
the geometry in CAD software to approximate the unknown physics fields in numerical
simulations. This concept is called IGA.16–19

Recent work on the IGA-BEM has focused on improving the numerical computing accu-
racy by using spline curve to represent the boundary shape. In Ref. 16, the concept of iso-
geometric analysis (IGA) is proposed in detail and then applied into the FEM. The result
shows that the basis functions are complete with respect to affine transformations, and it
means that all rigid body motions and constant strain states can be exactly represented.16

Several early efforts applied B-spline to the BEM to solve Laplace problems.20–23 A spline
is a piecewise polynomial function and a spline with knots vector will represent parametric
curves with guaranteed continuity. A knot vector is a set of coordinates in the parametric
space. A B-spline is formed by a number of curve segments which can maintain continuity.
However, it is difficult for a low order B-spline to represent accurately circle, ellipse and
other complex structures. Using NonUniform Rational B-Splines (NURBS), designers can
obtain more control of the represented curve without increasing the number of control points
or increasing the curve degree. Several researchers24–26 applied the BEM and NURBS to 2D
elastostatic analysis, and Peng et al.27 applied the BEM and NURBS to 3D static fracture
and fatigue crack growth. Feischl et al.28 proposed adaptive 2D IGA-BEM. The result that
the proposed adaptive strategy leads to optimal convergence can also be found in Ref. 28.
Several researchers29 applied the IGA-BEM to 2D acoustic problems, and then extended
this method into 3D acoustic problems.30–34 Optimization algorithm based on IGA has
been widely applied to the optimization analysis for complex practical problems.35–42 The
previous research shows the high application potential and validity of the IGA-BEM for
practical problems.
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This research extends the IGA-BEM into the 2D half-space acoustic problems with
absorbing boundary condition. In order to improve the computing efficiency and decrease
the storage, isogeometric fast multipole boundary element method (IGA-FMBEM) obtained
by combining the IGA-BEM and FMM is applied for the 2D half-space acoustic problems
in this paper. Several examples are tested and it is shown that this advancement on the
IGA-FMBEM improves the accuracy of simulations.

2. Representation of Boundary

It is the key idea of IGA to bring together the fields of design and analysis into a uni-
fied framework by using parametric functions that are predominant in CAD. We focus on
describing NURBS functions which are used to represent geometries in CAD. B-splines and
NURBS can both describe the curves (or surfaces), and they are both parametric.

A single closed curve with B-spline basis functions of degree p is generated to represent
the boundary, where the parameter ξ ∈ [0, 1] along the curve to be generated is introduced.
A set of knots on the curve are given to generate a knot vector Ξ = [ξ0, ξ1, . . . , ξm], which
is a nondecreasing sequence of real numbers given in parameter space, where ξi ∈ R is the
ith knot, m is the length of the knot vector, m = n + p + 1, and n is the number of basic
functions. Turning attention toward B-spline and NURBS basis functions, the coordinate
at any point on the curve constructed can be expressed by

x(ξ) =
n∑

i=0

Ri,p(ξ)Pi, (1)

where vector Pi denotes the coordinate at the control points, Ri,p(ξ) are NURBS basis
functions, defined as

Ri,p(ξ) =
Ni,p(ξ)wi

W (ξ)
, (2)

with

W (ξ) =
n∑

i=0

wiNi,p(ξ), (3)

where wi denotes a weight associated with the control point Pi. B-spline basis functions
Ni,p(ξ) can be expressed as

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise ,
(4)

then, for p = 1, 2, 3, . . . .

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (5)

Actually, it is hard for B-spline with lower order to model complex objects. For example,
it is very difficult to model accurately circles and ellipses using low order B-spline. If we wish
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(a) Octagonal column (b) Eight blade column

Fig. 1. Complex structures represented by NURBS curve of degree 2 generated by 17 control points; the
knot vector Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8}/8.

to shift the curve closer or farther to the control point without introducing new control points
and changing the position of the existing control point and, of course, not losing continuity.
A good method to achieve the aim is to use rational B-splines that are also called NURBS.
Rational B-spline means the objects modeled by the spline can be expressed by rational
polynomials. The solution is to introduce homogeneous coordinates into the function of
spline. It associates a weight with each control point and we can change the curve by
changing the weight of the corresponding control point.

In Fig. 1, two complex structures, which are called octagonal column and eight blade
column respectively, are constructed to show the flexibility and applicability of NURBS
curves. Herein, the data about the control points and the associated weights are listed in
Table 1.

3. Conventional BEM

We propose a collocational boundary element method using linear and quadratic Lagrangian
functions for the Helmholtz equation in 2D. To make things simple, we focus on the acous-
tic scattering problem from noise barrier with absorbing material. The boundary integral
equation (BIE) and normal derivative equation (NDBIE) based on Helmholtz equation for
half-space problem can be expressed as, respectively

c(r)p(r, r0) = pi +
∫

S

[
∂G(rs, r)
∂n(rs)

− ikβ(rs)G(rs, r)
]
p(rs, r0)ds(rs), (6)

and

c(r)q(r, r0) =
∂pi

∂n(r)
+

∫
S

[
∂2G(rs, r)
∂n(rs)n(r)

− ikβ(rs)
∂G(rs, r)

∂n(r)

]
p(rs, r0)ds(rs), (7)
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Table 1. Data about control point and the associated weight for eight blade column and
octagonal column.

Eight Blade Column Octagonal Column

Control Point x y Weight w x y Weight w

P0 1.000 0.000 1.000 1.000 0.000 1.000
P1 1.848 0.765 0.707 0.000 0.000 0.707
P2 0.707 0.707 1.000 0.707 0.707 1.000
P3 0.765 1.848 0.707 0.000 0.000 0.707
P4 0.000 1.000 1.000 0.000 1.000 1.000
P5 −0.765 1.848 0.707 0.000 0.000 0.707
P6 −0.707 0.707 1.000 −0.707 0.707 1.000
P7 −1.848 0.765 0.707 0.000 0.000 0.707
P8 −1.000 0.000 1.000 −1.000 0.000 1.000
P9 −1.848 −0.765 0.707 0.000 0.000 0.707
P10 −0.707 −0.707 1.000 −0.707 −0.707 1.000
P11 −0.765 −1.848 0.707 0.000 0.000 0.707
P12 0.000 −1.000 1.000 0.000 −1.000 1.000
P13 0.765 −1.848 0.707 0.000 0.000 0.707
P14 0.707 −0.707 1.000 0.707 −0.707 1.000
P15 1.848 −0.765 0.707 0.000 0.000 0.707
P16 1.000 0.000 1.000 1.000 0.000 1.000

where the coefficient c(r) is determined by the boundary geometry at the source point r, rs

denotes the field point on the boundary, r0 = (x0, y0) is the acoustic source point outside
the boundary, β is the acoustic admittance, pi is the incident acoustic pressure. The Green
function G(r, r0) can be expressed as

G(r, r0) =
i

4
[H(1)

0 (k|r0 − r|) + H
(1)
0 (k|r̄0 − r|)], (8)

where r̄0 = (x0,−y0) is the mirror point of r0. In the conventional BEM, p(rs, r0) in every
discretized boundary element can be obtained by using Lagrangian interpolation function.

p(rs, r0) =
m∑

k=1

Φkp(rk, r0) (9)

where m denotes the number of interpolation nodes in every boundary element, Φ denotes
the Lagrangian interpolation function, rk denotes the kth nodal point. The Lagrangian
interpolation function Φ for constant, linear, and quadratic boundary element are given,
respectively10,43

(1) For constant element

m = 1 and Φ = 1

(2) For linear element

Φ1 =
1
2

(
1 − ξ

α

)
, Φ2 =

1
2

(
1 +

ξ

α

)
(10)
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where ξ means the local coordinate of the field point rs, and α denotes the position
of interpolation nodes on the discontinuous element. When α = 1, Eq. (10) denotes
expression of the interpolation functions for linear continuous element.

(3) For quadratic element.

Φ1 =
ξ

2α

(
ξ

α
− 1

)
, Φ2 = 1 − ξ2

α2
, Φ3 =

ξ

2α

(
ξ

α
+ 1

)
(11)

Similar as linear element, Eq. (11) denotes expression of the interpolation functions for
quadratic continuous element when α = 1.

Figure 2 presents distribution of nodal points and geometrical nodes for a set of con-
ventional boundary element based on Lagrangian interpolation function. The interpolation
shape functions for different types of boundary elements are shown in Figs. 3 and 4.

DBE21 DBE22 DBE33

CBE22 CBE33

geometrical node

interpolation node

-1 0 1 -1 -α α 1 -α 0 α 1-1

-1 1 -1 0 1

Fig. 2. Distribution of nodal points in any boundary element based on Lagrangian interpolation function. For
discontinuous boundary elements, interpolation nodes are located inside the elements and the expressions
of the interpolation functions are dependent on the position of the node inside the elements. The optional
nodal position is found at the zeroes orthogonal polynomials.43,44

-1.0 -0.5 0.0 0.5 1.0

-0.4

0.0

0.4

0.8

1.2

1.6

Φ
(ξ

)

ξ

Φ
1

Φ
2

Fig. 3. Lagrangian interpolation function for discontinuous linear boundary element. The parameter of
optimal nodal position is set as 0.5773.
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Fig. 4. Lagrangian interpolation function for discontinuous quadratic boundary element. The parameter of
optimal nodal position is set as 0.7746.

4. FMBEM for Half-Space Acoustic Problem with Absorbing Material

It is well-known that the conventional BEM generates a full coefficient matrix, which takes
N2 calculation operation for a problem with N degree of freedom. However, the use of the
FMM avoids the direct solution of the coefficient matrix, and reduces the computing opera-
tion from N2 to N or N log N , and so decreases significantly the required time of numerical
solution. Actually, three different procedures of the FMM can be found according to the
difference in the form of expansion of the Green’s function, see Refs. 45, 46 and 47. For the
full-space problem, only the tree structure containing the whole sound barrier structure is
produced for the FMM operation. However, for the half-space problem, due to the existence
of the mirrored domain, an extra tree structure needs to be produced in order to implement
the FMM operation used for the solution of the boundary integral in mirrored domain. The
boundary integrals in the two domains are solved separately. This method can be used suc-
cessfully for the solution of the half-space problem, but it brings extra computing operation
and increases the computational complexity. An alternative of this method is to create a
mirrored source point, but not a mirrored integral domain. That means the calculation for
the original boundary integral in the mirrored domain may be turned into the calculation
for the boundary integral with a mirrored source point in the real structure domain.

Implementation process of the FMM is introduced in brief. In a first step, the tree
structure is generated. A square containing the boundary S is introduced after discretization
of the boundary. This square is divided into four equally sized child squares. Keep dividing
a square in this way until the number of elements in that square is less than a specified
number. The second step is called upward pass to calculate the multipole moments of each
square. For this, the Green function is expanded as follows7,8:

G(rs, r) = − i

4

[ ∞∑
n=−∞

On(
−→
r1
sr)I−n(

−−→
r1
srs) +

∞∑
n=−∞

On(
−→
r1
s r̄)I−n(

−−→
r1
srs)

]
, (12)
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where r1
s is very close to rs and |r1

sr| � |r1
srs|. The functions On and In are expressed as

On(
−→
r1
sr) = inH(1)

n (kR1)einθ1 (13)

and

In(
−−→
r1
srs) = (−i)nJ (1)

n (kR2)einθ2 , (14)

where Jn is the nth Bessel function, and (R, θ) denotes the polar coordinates of a vector.
When r is far away from S0 which is a subset of the boundary S, the boundary integral in
Eqs. (6) and (7) can be rewritten as

A1 =
∫

S0

[
∂G(rs, r)
∂n(rs)

− ikβ(rs)G(rs, r)
]
p(rs, r0)ds(rs), (15)

and

B1 =
∫

S0

[
∂2G(rs, r)
∂n(rs)n(r)

− ikβ(rs)
∂G(rs, r)

∂n(r)

]
p(rs, r0)ds(rs). (16)

Substituting Eq. (12) into Eqs. (15) and (16), we obtain the following two equations:

A1 = − i

4

[ ∞∑
n=−∞

On(
−→
r1
sr) + On(

−→
r1
s r̄)

]
Mn(r1

s), (17)

B1 = − i

4

[ ∞∑
n=−∞

∂On(
−→
r1
sr)

∂n(r)
+

∂On(
−→
r1
s r̄)

∂n(r)

]
Mn(r1

s), (18)

where Mn denotes the coefficient of the multipole expansion and is expressed as

Mn(r1
s) =

∫
S0

[
∂I−n(

−−→
r1
srs)

∂n(rs)
− ikβI−n(

−−→
r1
srs)

]
p(rs, r0)ds(rs). (19)

Then, the multipole moment of the higher level square is obtained by using the transfer
operation of the multipole moment of the lower level square, that is called the M2M, as
follows

Mn(r2
s) =

+∞∑
m=−∞

I−n+m(
−−→
r2
sr

1
s)Mm(r1

s). (20)

After obtaining the multipole moments of all divided squares, we need to implement the
downward pass operation. The whole boundary integral is divided into two parts. One is
called the nearfield integral that is solved by using conventional boundary integral methods.
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The other one is called the far-field integral that is solved by using the M2L and L2L transfer
operation, as follows

Ln(r1) =
+∞∑

m=−∞
(−1)nOn−m(

−−→
r2
sr

1)M−m(r2
s), (21)

and

Ln(r2) =
+∞∑

m=−∞
In−m(

−−→
r2r1)Lm(r1), (22)

where r2
s is located close to S0, r1 and r2 close to r.

Finally, we can obtain the following new expressions for the boundary integrals

A1 =
∞∑

n=−∞

[
I−n(

−→
r2r)Ln(r2) + I−n(

−→
r3r̄)Ln(r3)

]
(23)

B1 =
∞∑

n=−∞

[
∂I−n(

−→
r2r)

∂n(r)
Ln(r2) +

∂I−n(
−→
r3r̄)

∂n(r)
Ln(r3)

]
, (24)

where r3 is close to r̄. For more details on this, the reader is referred to Refs. 7 and 8.

5. Isogeometric FMBEM

In the implementation process of the IGA-BEM, the sound pressure at the boundary is
interpolated by using the NURBS basis functions. Although a few geometric control points
can generate very accurately a simple curve by using NURBS basis functions, large errors
will be produced when the same number of control points is used for the approximation of
field variables. In order to overcome this problem, h-refinement operations via knot insertion
without changing the geometry are implemented. The insertion of a new knot ξ̄ ∈ [ξk, ξk+1]
leads to a modification of control points as

P̄i = αiPi + (1 − αi)Pi−1 (25)

with

αi =




1, ≤ i ≤ k − p,

ξ̄ − ξi

ξi+p − ξi
, k − p + 1 ≤ i ≤ k,

0, k + 1 ≤ i.

(26)

where P̄ stands for the added control points. The existing knot values may be repeated in
this algorithm, and the continuity of the basis will be decreased.16

After that, we obtain a new knot vector Ξf and a set of particular control points which
are used to approximate the field variable, where nf denotes the number of the new control
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points and is equal to the system’s degree of freedom after discretization. By using NURBS
basis functions for interpolation, we obtain the sound pressure around the boundary as
follows:

p(ξ) =
nf∑
i=0

Ri,pf
(ξ)Pi, (27)

where pi denotes the sound pressure at the new particular control point which may or may
not lie on the boundary, and pf is the order.

In the conventional BEM, the normal practice of collocation at nodal positions is valid.
However, this way is no longer valid in the IGA-BEM because the control points may not
lie on the boundary. To overcome this difficulty, we use the Greville abscissae definition to
define the position of collocation points in parameter space, as follows:

ξ̄j =
ξj+1 + ξj+2 + · · · + ξj+pf

pf
, j = 0, 1, . . . , nf . (28)

Using Eq. (27), we obtain the pressure at the collocation points. By substituting Eq. (27)
into Eqs. (6) and (7), we obtain the following boundary integral equation for IGA-BEM

c(r(ξ̄i))
nf∑
j=0

Rj,pf
(ξ̄i)Pj = G(r(ξ̄i), r0) +

Ne∑
e=1

nf∑
j=0

{∫ ξe+1

ξe

[
∂G(rs(ξ), r(ξ̄i))

∂n(rs(ξ))

− ikβ(rs(ξ))G(rs(ξ), r(ξ̄i))
]

Rj,pf
(ξ)J(ξ)dξ

}
pj (29)

and

ikβc(r(ξ̄i))
nf∑
j=0

Rj,pf
(ξ̄i)Pj =

∂G(r(ξ̄i), r0)
∂n(r(ξ̄i))

+
Ne∑
e=1

nf∑
j=0

{∫ ξe+1

ξe

[
∂2G(rs(ξ), r(ξ̄i))
∂n(rs(ξ))n(r(ξ̄i))

− ikβ(rs(ξ))
∂G(rs(ξ), r(ξ̄i))

∂n(r(ξ̄i))

]
Rj,pf

(ξ)J(ξ)dξ

}
pj (30)

where ∂p
∂n = ikβp, Ne is the number of NURBS element discretizing the boundary curve;

[ξe, ξe+1] denotes a NURBS element and is an interval between two consequent nonrepeating
knots in parameter space; J(ξ) stands for the Jacobian. Singular integrals exist in Eqs. (29)
and (30) when ξ̄i ∈ [ξe, ξe+1], and special treatment needs to be done to eliminate the
singular integrals, see Appendix A.

With the FMM applied to accelerate the solution of IGA-BEM, Eq. (19) is rewritten as

Mn(r1
s) =

N0∑
e=1

nf∑
j=0

∫ ξe+1

ξe

[
∂I−n(

−−→
r1
srs)

∂n(rs)
− ikβI−n(

−−→
r1
srs)

]
Rj,pf(ξ)pjJ(ξ)dξ, (31)

where the subset S0 contains N0 NURBS elements. Similar to the implementation process
of the conventional FMBEM, the IGA-FMBEM also needs operation of the M2M, M2L, and
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L2L. Finally, using Eqs. (23) and (24), we can obtain the solution of the far-field boundary
integral based on the NURBS basis functions.

6. Numerical Examples

In this example, we consider the acoustic scattering of a plane incident wave with a unit
amplitude on a rigid cylindrical shell with a radius a = 1 m centered at point (0, 0). The
medium in the domain is air with density ρ = 1.2 kg/m3. The wave speed is 340 m/sec.
The incident wave is traveling along positive x-axis. By comparing the numerical solution
with an analytical solution, we can demonstrate the validity and accuracy of the algorithm
proposed in this paper. This model can be simplified to be 2D acoustic problem with a circle
boundary. The analytical solution of the acoustic pressure at any point located at (r, θ) is
given as

φ(r, θ) = −
∞∑

n=0

εnin
J ′

n(ka)

H
(1)′
n (ka)

H(1)
n (kr) cos(nθ), (32)

where εn denotes the Neumann symbols, i.e. ε0 = 1; εn = 2 when n is greater than 0. ( )′

stands for the differentiation with respect to ka.
Figure 5 shows a comparison between analytical sound pressure and numerical solution

based on the IGA-FMBEM, where the test points are located uniformly on a circle with
a radius r = 4. Figures 5(a) and 5(b) show the real and the imaginary parts of the sound
pressure at test points, respectively. Figures 6 and 7 show the real and the imaginary parts of
the sound pressure at a point (4, 0) with frequency, respectively. By observing these figures,
we find that the numerical solution obtained using the IGA-FMBEM is in good agreement
with the analytical solution, and it confirms the correctness and validity of the algorithm
proposed in this paper.

Figure 8 shows a comparison of computing accuracy for different interpolation function
approximation. The boundary shape is represented by Lagrange linear, quadratic shape
function and NURBS curve of 2 degree, respectively. The approximation of physical quan-
tities is implemented by piecewise constant discretization with linear shape approxima-
tion (called Lagrange-DBE21), piecewise linear discretization with linear shape approxi-
mation (called Lagrange-DBE22), piecewise quadratic discretization with quadratic shape
approximation (called Lagrange-DBE33) and NURBS basis function discretization (called
NURBS-D2), respectively. Herein, the relative error denotes the surface error based on
Euclidean norm, see Ref. 43 for detailed content. A circle with a radius r = 2m is built.
Around 360 computing points distributed on the circle uniformly are used to discretize
the circle and compute the surface error. By observing this figure, we can find that: the
relative error decreases with increasing DOFs for all different types of the BEM; higher
order Lagrange function interpolation produces numerical solution with higher accuracy
than lower Lagrange function interpolation; NURBS basis function interpolation performs
better than Lagrange function interpolation with same order and DOFs by comparing
Lagrange-DBE33 with NURBS-D2. Figure 9 shows a comparison of computing accuracy
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(a) Real part
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(b) Imaginary part

Fig. 5. Sound pressure at test points distributed on a circle with a radius r = 4, at ka = 4π.

for different types of BEM with frequency, where the DOFs is set as 5000. The symbol
“CBIE” denotes the single boundary integral equation which is used for the solution of
the problem, and “BM” denotes the Burton–Miller method which is applied to solve the
problem. The result that NURBS interpolation element performs better than Lagrange
interpolation element can also be found in Fig. 9. On the other hand, we can find that
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Fig. 6. Real part of sound pressure at a test point located on (4, 0) with frequency.
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Fig. 7. Imaginary part of sound pressure at a test point located on (4, 0) with frequency.

the peaks originate from the spurious eigen-frequencies. But, Burton–Miller method can
be used successfully to overcome this problem by observing the results of NURBS-D2
(CBIE) and NURBS-D2 (BM), where the couple factor is chosen as i/k for k ≥ 1, but i for
k < 1.

A key point of this paper consists in applying the FMM into the IGA-BEM for 2D
acoustic problem to accelerate the solution of the IGA-BEM. Figure 10 shows that the use of
the FMM improves efficiently the computing performance of IGA-BEM, and it demonstrates
the high efficiency of the algorithm proposed in this paper. On the other hand, we can

1850024-13

J.
 T

he
or

. C
om

p.
 A

co
ut

. 2
01

9.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

M
U

N
IC

H
 o

n 
02

/1
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 6, 2019 16:30 WSPC/S2591-7285 130-JTCA 1850024

L. Chen et al.

1 2 3 4 5 6 7 8 9
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

×103

R
el

at
iv

e 
er

ro
r

DOFs

Lagrange-DBE21
Lagrange-DBE22
Lagrange-DBE33
NURBS-D2

Fig. 8. Comparison of computing accuracy for different types of BEM with DOFs: Lagrange functions and
NURBS basis function are used for the boundary shape approximation and physics field approximation,
respectively.
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Fig. 9. Comparison of computing accuracy for different types of BEM with frequency: the DOF is 5000.

find that the use of IGA consumes more computing time by comparing the results of the
IGA-FMBEM and the FMBEM. That is because the derived formulas for the NURBS basis
functions are recursive and takes much more computing time. Actually, in their current form,
the expressions of NURBS basis functions are more expensive than that of the conventional
polynomial basis function. The direct solution will reduce the computational efficiency.
However, there exist several efficient algorithms for their evaluation, such as the extraction

1850024-14

J.
 T

he
or

. C
om

p.
 A

co
ut

. 2
01

9.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

M
U

N
IC

H
 o

n 
02

/1
6/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 6, 2019 16:30 WSPC/S2591-7285 130-JTCA 1850024

Isogeometric FMBEM for 2D Half-Space Acoustic Problems

102 103 104 10510-1

100

101

102

103

C
P

U
 ti

m
e 

(s
)

DOFs

 FMBEM (BM)
 IGA-FMBEM (BM)
 IGA-CBEM (BM)

Fig. 10. Comparison of CPU time used to calculate the sound pressure at test point (4,0) with frequency
f = 2000 Hz.

(a) Single scatter (b) Four scatters

Fig. 11. Sound pressure contour plot for scattering of single and four cylinders with f = 1000 Hz.

operator,48 and the Cox-de-Boor algorithm.49 In spite of this, we still develop the applicable
of IGA because of its high accuracy and flexibility for shape change.

Figure 11 shows the sound pressure contour for scattering field for single and four cylin-
drical shells problems with f = 1000 Hz, respectively. Figure 12 shows the sound pressure
contour for scattering field for octagonal column and eight blade column with f = 1000 Hz,
respectively. These figures show the high applicability of the algorithm proposed in this
paper for complex problems.
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(a) Octagonal column (b) Eight blade column

Fig. 12. Sound pressure contour plot for scattering of octagonal column and eight blade column with f =
1000 Hz.
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Fig. 13. Cross-section of the noise barrier with curved top structure represented by NURBS of 2 degree with
13 control points: the knot vector Ξ = {0, 0, 0, 1/6, 1/6, 2/6, 2/6, 3/6, 3/6, 4/6, 4/6, 5/6, 5/6, 1, 1, 1}.

In order to demonstrate the high validity and efficiency of the algorithm proposed in
this paper for 2D half-space acoustic problems with absorbing material, an example of noise
barrier with curved top structure is tested, see Fig. 13. The data about the coordinate of
control points and the associated weight is listed in Table 2. Absorbing material is located
on the noise barrier, and the associated normalized surface admittance is set as 1. Figure 14
shows the SPL contour plot for scattering of noise barrier with curved top structure with
frequency f = 100 Hz.
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Table 2. Data about control point and the associated weight for noise barrier
with curved top structure.

Control Point Coordinate in X-Axis Coordinate in Y-Axis Weight w

P0 0.0 0.0 1.0
P1 0.1 0.0 1.0
P2 0.2 0.0 1.0
P3 0.2 2.0 1.0
P4 0.2 4.0 1.0

P5 0.2 5.0 1/
√

2
P6 −0.8 5.0 1.0
P7 −0.9 5.0 1.0
P8 −1.0 5.0 1.0

P9 0.0 5.0 1/
√

2
P10 0.0 4.0 1.0
P11 0.0 2.0 1.0
P12 0.0 0.0 1.0

Fig. 14. SPL contour plot for scattering of noise barrier with curved top structure based on IGA-FMBEM.

7. Conclusion

A novel algorithm based on the IGA-FMBEM is presented for the simulation of 2D half-
space acoustic scattering problems with admittance boundary conditions. The Burton and
Miller method is used to get correct solutions at all frequencies. A cylinder example for which
an analytical solution is available is chosen to demonstrate the correctness and validity of
the proposed algorithm, and the performance of different types of boundary elements is
presented. The result shows that the proposed method compares very favorably, exhibiting
a significantly higher accuracy than the conventional Lagrangian BEM with same degree of
freedom.

Future work will further extend the proposed algorithm into 2D acoustic optimization
analysis and 3D half-space acoustic problems. For 3D acoustic problems, one of the great-
est difficulties is to eliminate the singularity of the boundary integrals. we will focus on
overcoming this problem.
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Appendix A: Evaluation of Singular Boundary Integrals

The kernel functions in Eqs. (29) and (30) are expressed as

G =
i

4
H

(1)
0 (kr̄) +

i

4
H

(1)
0 (kr̂) = G1 + Ḡ1, (A.1)

∂G

∂n(rs)
= − ik

4
H

(1)
1 (kr̄)

∂r̄

∂n(rs)
− ik

4
H

(1)
1 (kr̂)

∂r̂

∂n(rs)
, (A.2)
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∂G

∂n(r)
= − ik

4
H

(1)
1 (kr̄)

∂r̄

∂n(r)
− ik

4
H

(1)
1 (kr̂)

∂r̂

∂n(r)
, (A.3)

∂2G

∂n(r)∂n(rs)
= G2 + Ḡ2, (A.4)

where H
(1)
n denotes the first hankel function of the nth order, r̄ = |r − rs|, and r̂ denotes

the distance between the mirror point of source point r and field point rs. G2 and Ḡ2 can
be expressed as

G2 =
ik

4r̄
H

(1)
1 (kr̄)nl(r)nl(rs) +

ik2

4
H

(1)
2 (kr̄)

∂r̄

∂n(r)
∂r̄

∂n(rs)
(A.5)

and

Ḡ2 =
ik

4r̂
H

(1)
1 (kr̂)nl(r)nl(rs) +

ik2

4
H

(1)
2 (kr̂)

∂r̂

∂n(r)
∂r̂

∂n(rs)
(A.6)

when r → 0, the singularity order of the kernel functions in Eqs. (29) and (30) are given as
follows

H
(1)
0 (r̄) ∼ 2i

π
ln(r̄), H

(1)
1 (r̄) ∼ − 2i

πr̄
, H

(1)
2 (r̄) ∼ − 4i

πr̄2
. (A.7)

Due to the same order of ∂r̄
∂n(r) ,

∂r̄
∂n(rs) and r̄, only the singular integrals for the kernel

functions G and ∂2G
∂n(r)∂n(rs) need to be evaluated. Herein, the Cauchy principal value and

the Hadamard finite part integral method are used to evaluate the singular integrals. Firstly,
the nonsingular integral expression for the kernel function G1 is derived by∫ ξe+1

ξe

G1Rj,pf
(ξ)J(ξ)dξ

=
i

4

∫ ξe+1

ξe

[
H

(1)
0 (kr̄)Rj,pf

(ξ)J(ξ)
2i
π

ln(k|ξ − ξ̄|J(ξ̄))Rj,pf
(ξ̄)J(ξ̄)

]
dξ

− 1
2π

∫ ξe+1

ξe

ln(k|ξ − ξ̄|J(ξ̄))Rj,pf
(ξ̄)J(ξ̄)dξ, (A.8)

where the first term in the right-hand side of the above equation is nonsingular and can be
solved by Gauss–Legendre integral method. The second term is weakly singular and can be
evaluated directly, as follows:

1
2π

∫ ξe+1

ξe

ln(k|ξ − ξ̄|J(ξ̄))Rj,pf
(ξ̄)J(ξ̄)dξ

=
1
2π

Rj,pf
(ξ̄)J(ξ̄)(ξe+1 − ξe) ln(kJ(ξ̄)) +

1
2π

Rj,pf
(ξ̄)J(ξ̄)[(ξ̄ − ξe) ln(ξ̄ − ξe)

+ (ξe+1 − ξ̄) ln(ξe+1 − ξ̄) − (ξe+1 − ξe)] (A.9)
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Replacing the source point r with its mirror point in Eqs. (A.8) and (A.9), we can obtain
the nonsingular integral expression for the kernel function Ḡ1.

Similarly, the nonsingular integral expression for the kernel function G2 is derived by

ik

4

∫ ξe+1

ξe

H
(1)
1 (kr̄)

r̄
nl(r)nl(rs)Rj,pf

(ξ)J(ξ)dξ

=
ik2

4

∫ ξe+1

ξe

[
H

(1)
1 (kr̄)
kr̄

nl(r)nl(rs)Rj,pf
(ξ)J(ξ)

+
(

2i
πk2(|ξ − ξ̄|J(ξ̄))2

− i

π
ln(k|ξ − ξ̄|J(ξ̄))

)
Rj,pf

(ξ̄)J(ξ̄)

]
dξ

− ik2

4

∫ ξe+1

ξe

[
2i

πk2(|ξ − ξ̄|J(ξ̄))2
− i

π
ln(k|ξ − ξ̄|J(ξ̄))

]
Rj,pf

(ξ̄)J(ξ̄)dξ (A.10)

where the first term in the right-hand side of the above equation is nonsingular and can
be solved by Gauss–Legendre integral method. The second term is singular and can be
evaluated directly, as follows:

ik2

4

∫ ξe+1

ξe

[
2i

πk2(|ξ − ξ̄|J(ξ̄))2
− i

π
ln(k|ξ − ξ̄|J(ξ̄))

]
Rj,pf

(ξ̄)J(ξ̄)dξ

= −Rj,pf
(ξ̄)

2πJ(ξ̄)

(
1

ξe − ξ̄
− 1

ξe+1 − ξ̄

)
+

k2

4π
Rj,pf

(ξ̄)J(ξ̄)(ξe+1 − ξe) ln(kJ(ξ̄))

+
k2

4π
Rj,pf

(ξ̄)J(ξ̄)[(ξ̄ − ξe) ln(ξ̄ − ξe) + (ξe+1 − ξ̄) ln(ξe+1 − ξ̄) − (ξe+1 − ξe)]

(A.11)

Replacing the source point r with its mirror point in Eq. (A.10), we can obtain the nonsin-
gular integral expression for the kernel function Ḡ2.
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