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Abstract—Machine learning (ML) has demonstrated practical
impact in a variety of application domains. Software engineering
is a fertile domain where ML is helping in automating different
tasks. In this paper, our focus is the intersection of software
requirement engineering (RE) and ML. To obtain an overview
of how ML is helping RE and the research trends in this area,
we have surveyed a large number of research articles. We found
that the impact of ML can be observed in requirement elicitation,
analysis and specification, validation and management. Further-
more, in these categories, we discuss the specific problem solved
by ML, the features and ML algorithms used as well as datasets,
when available. We outline lessons learned and envision possible
future directions for the domain.

Index Terms—Requirements Engineering, Machine learning,
State of the art, Overview

I. INTRODUCTION
1 Machine learning algorithms have been shown to have

considerable practical importance in many application do-
mains. This is especially true of domains where large databases
are available and a need for exploring some kind of consis-
tency exists or, domains where a program needs to adapt itself
to changes [56]. Requirements engineering is a critical part of
software engineering and it seems appropriate to use machine
learning methods for requirements engineering tasks. Because
requirements specification documents are mainly given in
natural language, ML can be useful by emulating human
processing.
This paper aims to present a survey of how ML benefits exist-
ing RE approaches. More precisely, we pursue the following
research questions:
RQ1: What is the current state of the practice in ML &RE?
RQ2: What types of learning methods are used when ML is
applied to RE?
RQ3: Which are the RE problems that currently use ML
methods?
RQ4: Is using ML methods improving RE?

To reply to these research questions, we have performed a
literature review, split into data preparation, data collection,
and data analysis phase. First, a search string was prepared
based on the research questions, then a search was performed
over a predefined set of databases and all identified studies
were assessed by means of title and abstract. Our literature
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review is not meant to be an exhaustive study of the field –
rather we are offering a snapshot of the current state-of-the-
art by borrowing some techniques from Systematic Literature
Reviewing.
The major contributions of this article are as follows:

• We provide an overview of the current state of the art of
some of the challenges RE faces that may be handled
through ML techniques. We focus on two important
aspects:

– Providing an overview of the ML problem categories
(classification, regression, clustering, etc.) in use
for the support of RE tasks (elicitation, analysis,
validation and management).

– Providing an overview of the common ML mod-
els (decision tree, K-Nearest Neighbors, Naive
Bayesian, etc.) for tackling RE problems and the data
sets if available.

• We analyse the literature to discover trends and lessons
on the use of ML in RE.

The paper is organized as follows. The rest of this section
provides background information on ML and RE required to
understand the remaining of the paper. Section II provides an
overview of RE tasks where ML has been used. In section III
we summarize the major findings of our study. Finally, in
section IV we state the threats to the validity of our work
and section V concludes the paper.

A. Machine Learning

Machine-Learning (ML) [35] is a range of algorithms to
approximate discover patterns in data. Historically, models and
heuristics are human-built exhaustive prescriptions of how a
system should behave. ML is grounded on different premises:
rather than relying on humans to input all the possible cases
the system can handle, the field attempts to extrapolate patterns
from a representative set of examples that illustrates expected
behaviors. The way in which a learning algorithm operates
attempts to emulate the way in which humans learn: from a
set of examples, a general model for a behavior is induced.

Many learning algorithms exist, based on different visions
of how learning happens in practice [13]. All these algorithms
have in common the notion of features. Features correspond
to characteristics of what is being learned and provide the



grounds for the algorithm to abstract from the complexities of
the real world. Assume for example that an algorithm should
learn, based on a brain scan of a medical patient, to decide
whether that patient has brain cancer or not. A number of fea-
tures such as for example the “number of irregular objects in
the scan”, the “color of such objects”, the “disposition of such
objects” would be provided to the algorithm. Additionally, the
algorithm is provided with a number of brain scans together
with annotations that summarize decisions previously taken on
them (in our example cancer found / cancer not found). Such
datasets are called the training data. The learning algorithm
then undergoes a training phase. It attempts to find an internal
model that allows it to map the decisions to the brain scans,
given the training data. The model obtained from the training
step is useful if it performs well (generalizes) when applied
to new data from outside the training set – in our example,
when it can accurately diagnose brain cancer for new brain
scans. Such generalization is based on the premise that inputs
that are “closer”, in terms of the given features, should lead
to “closer” outputs.

The established literature in the domain (e.g. [35]) typically
considers three types of machine learning:

1) Supervised learning: consists of learning a function
using training data including annotations of the outcome
of the function to be learned (e.g. patient John Doe
with a certain number of physiological characteristics
was diagnosed with cancer). Supervised learning can be
roughly subdivided in two popular problems: classifica-
tion and regression. When the output of the function
being learned is composed of categorical values (i.e.
classes), then we have a classification problem. The goal
is to learn how to link instances or samples for a number
of parameters to a certain class of values (e.g. healthy
patient or unhealthy patient). However, if the co-domain
of the function being learned contains continuous values,
then we face a regression problem (e.g. predict the body
temperature of a patient given some clinical features of
the patient).

2) Unsupervised learning: In some cases, the output of the
function being learned is not given and we have to find
patterns in the training data “blindly.” This is called an
unsupervised learning problem. For instance, one may
want to cluster patients based on their symptoms.

3) Reinforcement Learning: can be seen as an intermedi-
ate problem the co-domain of the function being learned
is not given but the procedure is guided nevertheless. In
reinforcement learning, an agent has to find a sequence
of actions leading to a success. The fact that the se-
quence leads to a success is not known in advance, but
rewards are given to the agent in order for it to know if
it follows a path to success.

B. Requirements Engineering

Software systems are developed over millions of lines of
code, software modules and documents. The primary goal
of a software system is to satisfy its users by proposing

functionalities that can meet their needs and expectations.
This goal is achieved by applying different methodologies and
engineering techniques. One of the key factors to satisfy this
goal is to understand and identify the needs of users through
software requirements engineering. Software requirements en-
gineering is the process that helps in identifying software
requirements in a systematic manner in order to understand
what functionalities the targeted system should have in order
to fulfill the users’ needs.

Software requirements play a key role in the success of
a project. In the USA, a survey was conducted over 8380
projects by 350 companies to understand project failure rates.
The report’s results [47] showed that only 16.2% projects
were completed successfully while one-half (52.7%) of the
considered projects met with challenges and were only par-
tially completed, with time delays and over budget. Almost
31% of the projects were never completed. The main cause
for such failures as identified by executive managers was poor
requirements engineering. In detail, main culprits were lack
of user involvement (13%), incompleteness of requirements
(12%), changing requirements (11%), unrealistic expectations
(6%) and unclear objectives(5%).

Software requirements engineering has traditionally four
phases; requirements elicitation, requirements analysis, re-
quirements documentation and requirements verification [29].
Requirements elicitation [8], [57] helps to understand the
stakeholders needs, e.g. what features he/she wants in the
software. Requirements elicitation techniques are mostly de-
rived from the social sciences, organizational theory, knowl-
edge engineering and practical experience. For requirements
elicitation, different techniques exist in the literature such as
interviews, questionnaires or ethnography. The requirements
analysis [37] phase emphasizes checking for conflicts and
consistency of the requirements. It also makes sure that the
requirements are clear and complete. Additionally, the agreed
upon requirements are documented in the documentation
and verification phase. This documentation has a clear and
precise definition of the system functionalities that acts as
an agreement between stakeholders and developers. These
requirements are documented, usually as natural language,
diagrams or mathematically formulae. Such documents are
used and iterated upon until the end of the project.

System requirements are classified as business requirements,
user requirements, functional requirements (FR) and non-
functional requirements (NFR). FR are the system require-
ments that include the main features and characteristics of
the desired system. NFR are the system’s properties and
constraints [9], [19]. NFR set the criteria for judging the
operation of the system e.g. performance, availability or relia-
bility. Business requirements are specified to address business’
objectives, vision, and goals. They are defined at a high level of
abstraction to preserve the company’s proprietary information.
User requirements are the users’ wish list for the system – they
are valuable for ensuring that system performs as the users
wished it to.



C. Text Preparation

Requirements are written mostly in natural language. They
can appear in a variety of forms such as lists of individual
words, sentences, paragraphs, short texts potentially including
special characters, or others. Before applying a machine learn-
ing algorithm on such data, different steps are employed to
transform words into features – such as text mining or natural
language processing (NLP). This text preprocessing phase
relies majorly on pre-built dictionaries, databases and rules.
The common preprocessing steps in the literature we surveyed
include tokenization, capitalization, lemmatization, stop words
removal, stemming and part of speech (POS). Tokenization is
the process of splitting paragraphs into sentences, or sentences
into words. Capitalization brings all words in a text to lower
case for simplicity. Stop words removal removes connecting
words such as “and”, “the” or others by comparing the text
with a list of stopwords. POS takes text and assigns a part of
speech (e.g. a noun, a verb, an adjective, etc) to each word
that helps to build the understanding of a text. Stemming is a
process where words are reduced to a root by removing the
unnecessary suffixes – e.g. “eating” after stemming becomes
“eat”. Lemmatization is an alternative approach to stemming,
which is able to capture canonical forms based on a word’s
lemma. It uses part of speech and WordNet’s lexical database
of English for removing inflections. For example, applying
stemming to the word “better” fails to provide any lemma,
while applying lemmatization to the same word would result
in the word “good”.

Another way to extract features from a text is the bag of
words (BOW) technique. BOW categorizes documents based
on a dictionary and occurrences of words. A commonly used
BOW method is Vector Space Modeling (VSM). VSM is a way
to represent documents in a multidimensional space to allow
for information retrieval and classification and clustering of
documents. An example of using VSM is to query a corpus in
order to find relevant and interconnected (parts of) documents
related to specific query terms.

II. CONTRIBUTIONS

A. Requirements Elicitation and Discovery

The manual process of requirement elicitation is expensive
in terms of effort and resources. A project’s success ma-
jorly depends on the precise identification of stakeholder’s
expectations and requirements for their desired system. A
possibility to do requirements elicitation is to mine available
datasets, e.g. social media, requirement documents or Apple
Store reviews. This mining process is performed with help of
different techniques such as NLP and text mining [21] [14].
The latest trend for identifying user requirements is to mine
data obtained from platforms such as Twitter, Google Play
Store or the Apple Store, by applying ML techniques. While
user reviews are not structured requirements, they contain
useful information coupled with extra information and noise,
which makes manual requirement elicitation a challenging
task. Automated requirement elicitation is desirable in these

cases to significantly reduce time, effort, and cost. Elicitation
from external platforms is mainly a ML classification task:
given a set of information we wish to identify which parts are
it constitute requirements. In the literature we surveyed we
notice that also clustering is used in auxiliary tasks.

1) Elicitation of Requirements from External Sources:
Guzman et al. [20] proposed the ALERTme approach for
classifying, grouping and ranking tweets during software evo-
lution. Many users share their opinions about various software
on Twitter. The large amount of datasets makes it hard
to manually identify tweets that contain user requirements.
The proposed methodology classifies tweets as improvement
requests or not, using the Naive Bayes algorithm. To the best of
our knowledge, this is the first study of its kind. The classifier
was trained according to the following steps: 1) conversion
of the pre-processed tweets into a VSM model, 2) training
of a classifier on a set of manually annotated tweets, 3)
classifying tweets in categories by using the trained classifier.
Furthermore, improvement requests were considered during
tweet grouping, which helped in sorting and summarizing the
requests. The results of the summarization process contained
highly ranked tweets based on parameters such as the number
of “likes”, sentiment, number of shares, among others.

Williams et al. [53] operated a similar study on tweets
in order to classify them as user requirements. The authors
used basic pre-processing techniques and applied the VSM
technique on the data. For the learning process, manually
annotated (labelled) tweets and the Naive Bayes algorithm was
used for performing the classification. Based on the results, the
authors claim in their work that software tweets are neutral
in nature – meaning sentiment analysis did not influence
the outcome of the ML algorithm. Also, the work showed
improved results when compared to [20]. The study used 4000
randomly selected tweets from ten different software including
Microsoft Visual Studio, Google Chrome and Instagram.

Jiang et al. [24] mined user reviews from app stores
for discovering evolutionary requirements. The authors first
extracted opinions about software features from reviews. For
automated opinion identification, a syntactic relation-based
propagation approach was used for extracting targets and
sentiment words iteratively, using known and extracted words.
Afterwards, the authors applied k-mean clustering for opinion
categorization. The proposed system also helped developers
deciding on requirements related to software revenue, by
considering economic factors. The work used two datasets of
online reviews: one from the Karplersky internet security 2011
software package (from Amazon) with 380 reviews; the other
one comprising 461 reviews for the TuneIn Radio Pro V3.6
mobile app (from the app store).

Lange et al. [31] used an ML-based software requirement
elicitation process while extending an existing military tool
called skiweb. Different users posted and updated military
events and information using this tool. The goal of adding
learning capabilities to skiweb was mining information from
user posts. The proposed recommender system used the su-
pervised Naive Bayes algorithm to classify text documents in



order to find related requirements to the post. Furthermore, it
used topic modeling to identify the key stakeholders and sug-
gested them other requirements for further analysis according
to their interests. This study used an internal organizational
dataset Skiweb Data such as wiki and blogs.

Jha et al. [23] discovered user requirements by mining
app store reviews. The requests were classified into three
categories; bugs, features and junk. The methodology proposed
by the authors uses the Naive Bayes and SVM algorithms. The
distinction between types of sentences was identified by frame
semantics which, as the name indicates, performs a more
semantic classification than the typical syntactic-oriented text
classification methods. For each review frames were generated,
rather than for words. Due to the small number of features
required by frames, a lower dimensional model was produced
with enhanced prediction capabilities. The study combined
existing datasets from past studies and reviews for iOS apps
including CreditKarma, Fitbit and Gmail.

Maalej et al. presents in [36] a study on how to classify app
reviews as bug reports, feature requests, user experiences or
ratings. The authors used a Naive Bayes algorithm after com-
paring several algorithms for classification. They also highlight
that binary classifiers performed better than multi classifiers.
The work uses a metamodel to enhance the performance of
the classification, which includes ratings, tense or sentiment
scores. A dataset of 4400 manually annotated reviews from
Google Play Store and the Apple App Store were used.

Herrera et al. [5] built a recommender system to manage a
the participation of a number of stakeholders in the require-
ments elicitation and prioritization process. In this system,
stakeholders can work collaboratively to transform their needs
into sets of articulated and prioritized requirements. The
system automatically generates specialized topics for build-
ing forums for stakeholder collaboration and discussion. The
stakeholders’ interests are extracted from their user profiles,
which also helps in creating recommendations according to
the interest of a community of similar stakeholders. In order
to identify topics, an unsupervised agglomerative clustering
algorithm was applied to unstructured data. The proposed
system analyzed online datasets (in natural language) that
were gathered from stakeholders. The evaluation dataset was
a collection of 36 feature requests created by graduate-level
students for an Amazon-like student web-portal system.

B. Requirements Specification and Analysis

Software requirements specifications are usually stated in
informal, imprecise and ambiguous natural language, making
analyzing them a challenging task. The success of a sys-
tem does not solely depend on its functional requirements,
but also significantly relies on adherence to non-functional
requirements. The primary focus of requirements analysis is
generally towards the identification and specification of FRs.
NFRs are usually identified and specified in later development
stages, which can increase the risks of problems during the
development lifecycle. NFRs may not be mentioned explicitly
in a formal specification requirements documents, even though

they exist for all systems in freeform documents such as inter-
view notes or meeting minutes. All types of requirements are
analysed differently, and as such, it is useful to separate them.
This distinction helps in managing changes in requirements
as well as in precisely incorporating them in the development
of the system. Manual requirement division into FRs and
NFRs is difficult and time-consuming. Machine learning can
be useful in supporting analysts in the error-prone task of
manually discovering and classifying requirements, having in
mind easing further analyses tasks.

1) Identifying Non-Functional Requirements: This is a clas-
sification problem, as from a set of requirements we want to
decide whether or not requirements are NFRs.

In a study by Slankas et al. [46], the authors automatically
identify and classify sentences in natural language coming
from user agreements, install manuals, regulations, require-
ments specifications and user manuals into 14 different NFR
categories, among which Access Control, Audit, Availability or
Legal. The authors’ two-step process is as follows: 1) parsing
natural language; 2) classifying sentences into categories with
the k-nearest neighbor algorithm. This led the authors to
finding 20 keywords for each category of NFR which are then
used as features for their classifier. They subsequently trained
the NFR classifier with a wide variety of open and closed
source EHRs (Electronic Health Record), various industry
standards (HL7, CCHIT) and governmental regulations.

Cleland-Huang et al. [7] explored a similar approach and
used the k-nearest neighbor classifier for grouping NFRs e.g.
availability, look-and-feel or legal. For training their classifier,
the authors used 15 requirement specifications developed as
term projects by master students at DePaul University.

2) Identifying Functional Requirements: This is a classi-
fication problem as from a set of requirements we want to
decide whether or not requirements are FRs.

Wang et al. [51] applied a combination of ML, NLP and
semantic analysis to automatically extract functional require-
ments and classify them into different types, such as action,
objective, goal, temporal or constraints. Their framework em-
ployed techniques of semantic role labelling (which assigns a
role label for each word in the sentence). The authors trained
a variant of Recurrent Neural Network using a E-commerce
requirements dataset and tested it on the requirements from the
automotive industry. Their approach stemmed from analysing
the linguistic characterization of software requirement speci-
fications. The framework consists of 10 FR types and allows
capturing semantic information in natural language.

3) Distinguishing Functional from Non functional Require-
ments: This is a classification problem as from a set of
requirements we want to decide whether or not requirements
belong to a certain class.

Lu et al. [32] automatically classifies text from user reviews
for (app) stores into FRs or NFRs. The authors further classify
NFRs into four categories: reliability, usability, portability, and
performance. The approach used a supervised algorithm called
bagging. The sentences were augmented by several similar
words to the user reviews in the training set. The authors used



6696 raw user reviews from iBooks and 4400 raw user reviews
from WhatsApp.

Deoxadez et al. [11] use semi-supervised classification
techniques for automated classification of FR and NFR from
user reviews originally from the app store. This study deals
with two problems: 1) minimizing the annotation effort for
labelling a big dataset of user reviews, and 2) classification of
requirements into FR and NFR. The proposed solution to the
first problem used a semi-supervised self-labelling algorithm.
Self-labelling algorithms require small datasets to produce
results that are comparable to supervised techniques. Features
were obtained by applying standard pre-processing and the
BOW algorithm. The Naive Bayes classification algorithm was
used for the second problem. The authors used reviews coming
from the top-ranked 40 paid and free apps.

Kurtanovic et al. [30] analysed software requirements doc-
uments written in natural language in order to classify them
as FRs, NFRs and subcategories of NFRs. The authors used
the SVM algorithm for the classification. The dataset was
imbalanced in terms of FRs and NFRs. For avoiding this
problem user comments on software products coming from
Amazon were integrated into the main dataset. The study
used data from the open source tera PROMISE repository that
consists of 625 labeled natural language requirements (255 FR
[40.8%] and 370 NFR [59.2%]).

Abad et al. [1] targeted two similar problems: the first one is
the classification of comments on apps into FRs and NFRs, and
the second the classification of NFRs into categories. After pre-
processing they increased the weight of influential words in the
dataset using feature co-occurrence and regular expressions.
The authors then used the decision tree (DT) J.48 algorithm for
the classification. Additionally, Binarized Naive Bayes (BNB)
was used for sub-classification of NFRs. The study showed
that the treatment after the pre-processing approach positively
influenced the classification. The approach used reviews from
the 40 top-ranked paid and free apps.

Garzoli [17] proposed a system for the analysis of require-
ments that allowed identifying software functionalities within
large collections of requirements written in natural language.
It classified the large dataset into five types: FRs, NFRs, design
and construction constraints, operator requirements and per-
formance requirements. The goal of the study was to devise a
general architecture for large-scale and adaptive requirement
analysis. It used BOW together with text mining techniques
for inferring lexical and grammatical feature for information
retrieval. SVM was used for the classification of requirements.
The dataset contained 4,727 annotated requirements, related to
three different scenarios and was taken from a naval combat
management system.

Wieloch et al. presented in [52] Trace by Classification, an
ML approach in which a classifier is trained to identify and
classify requirements and/or other kinds of software artefacts
which occur relatively frequently across different projects. In
their research the authors call this process generating trace
links for software artefacts in their research. The first step
in the approach is to eliminate common stop words. Then,

in the training phase the authors identify a set of indicator
terms for each NFR category. The classifier is then trained
by the set of identified weighted indicator terms which is
then used to classify additional artefacts into functional or
non-functional requirements (e.g. look-and-feel, performance,
security, etc). A probability value represents the certainty
that the new requirement belongs to a certain artefact type,
computed as a function of the occurrence of indicator terms
of that type in the requirement.

4) Requirement Prioritization: Complex software systems
generally have thousands of requirements with multiple stake-
holders and customers. Each one of them has their own set
of requirements and opinions and wants their requirements
implementation accordingly. However, factors such as budget
or different opinions among stakeholders often make imple-
menting all the requirements a complicated task. Therefore,
it is important to make a proper decision for prioritizing re-
quirements considering all the factors that are important for the
success of the project. Different models exist in the literature
for prioritizing software requirements, among which analytical
hierarchical process (AHP) [45], Goal oriented [50] or the
cost value approach [27]. In these techniques, human input is
very important. Qaddoura et al. [40] reviewed prioritization
techniques and also shed light on the contribution of ML to
the topic. ML can be used for automated analysis of these
large set of software requirements prioritization, as well as in
helping to improve existing techniques.

Dhingra et al. [12] predicted from a portfolio of prioriti-
zation methods the most appropriate technique for software
requirement prioritization process. The input from the user was
taken as characteristic values (detect consistency, maintain in-
formation, not available, or both) for different attributes. These
attributes list included consistency, traceability, priority basis,
rigorous/systematic, distributed stakeholder, cognitive aspects,
and human experience. The output was the most appropriate
requirement prioritization method e.g. AGORA, AHP etc.
The framework proposed has three phases; training phase,
fuzzing inference process, and testing phase. The drawback of
fuzzy approach was the wrong prediction for boundary values,
which was resolved by adopting decision trees. DT learned
from datasets and predicted the most suitable prioritization
technique. Out of 45 test samples, the framework classified
43 instances accurately.

Avesani et al. presented in [3] a study that dealt with the
scalability problems that arise in managing the prioritization
of a large number of requirements when using the AHP
technique. The existing solution to scalability issues used
heuristics to decide when the pairwise elicitation process
should be stopped. The proposed framework outperformed
AHP by giving an accurate approximation of the final ranking
while restricting the elicitation effort. It used a rank-based
learning algorithm and produced a ranking of all requirements.
The input for the learning algorithm were a finite set of
requirements, the ranking criteria, initial user preferences and
a density function.

A similar study was performed in [4] by the same group [3]



for identifying decision-making issues related to the manage-
ment of risks in Open Source Software adoption in medium
and large organizations. A semi-automated system was pro-
posed that used case-based ranking classification algorithm.
The input was priority elicitation of goals by the decision
maker and a risk goal ranking function (predefined ranking
criteria ordering the goal). As output, it ranked the final risk-
based goals.

5) Security Requirements: Due to the orthogonal charac-
ter of their impact on a system, security requirements are
notoriously difficult to identify, objectify and quantify [41].
Also during requirement specification, it very often happens
that security requirements are masked by FRs (but can be
deduced from the context of the domain the system operates
in) [44]. Because of this, it often happens in practice that se-
curity requirements are only marginally tackled during system
construction, paving the way to potentially catastrophic conse-
quences. ML can be of use here by aiding in the identification
of segments of text that describe security requirements. This
is a classification problem: given a text, identify which parts
of it correspond to which type of security issues.

Jindalet al. [25] automatically learn decision trees that can
be used to classify security requirements as authentication,
access control, encryption or data integrity. Preprocessing of
the data is done by stemming relevant terms and the features
used are such terms.

Riaz and her colleagues [44] use the k-nearest neighbors
algorithm to classify sentences in requirements documents
as confidentiality, integrity, authentication, availability, ac-
countability or privacy requirements. In order to find ad-
equate sentences and provide context to the classifier, the
authors start by finding a type for each sentence among the
possibilities title, list start, list element or normal sentence.
For the classification, the authors use the number of word
transformations needed to go from one term in one sentence
to a term in another sentence. The classifier is trained using
requirement sentences from the healthcare domain that are
manually classified. A particularity of the approach is that
each security requirement type is associated to a template that
helps in translating the security requirements into functional
requirements in order to ease during the implementation of the
final system.

C. Requirements Validation

Validation is to meant to guarantee that requirements reflect
the stakeholders’ needs, confirm the quality of the system, its
consistency, and traceability.

1) Traceability: In requirements traceability, the emphasis
is on the ability to track the lifecycle of requirements and
their links with other artefacts. The main barrier to ensure
traceability is the effort required for building and maintaining
the links between those artefacts. Researchers have thus tried
to apply machine learning and automated tools for facilitating
the establishment of such links [18]. Traceability is tackled
in the research mainly through the use of machine learning
classification as well as reinforcement learning methods.

Gervasi et al. have investigated in [18] what can be learned
from links that are already established. They build classifiers
as a mean to develop models of tracing that can then be
interpreted by humans in order to understand how requirement
tracing is done in practice. Their purpose is to revise existing
models of hard-coded traceability tools such as VSM. They
used a publicly-available dataset of requirements including
traceability information, originally based on the CM-1 project
by the NASA Metrics Data Program. Their approach has the
following steps: apply preprocessing techniques and transfer
requirements into a vector of features, from which a set of
classification cases is derived by joining a high-level require-
ment and one low-level requirement. For every such pair a link
or nolink tag is added, based on whether that particular pair
was a true link in the original dataset or not. Finally, they use
use the dataset to train and test two different classifiers from
the WEKA collection: a Naive Bayesian classifier and the J48
decision-tree classifier.

Sultanov et al. [48] find traceability candidates from high-
level to low-level requirements by the use of reinforcement
learning. They use textual high and low-level requirements
documents as input and try to find the candidate traces. Their
technique demonstrated statistically significantly better results
than the Information Retrieval technique.

D. Requirements Management

1) Visualization: Natural language requirement documents
can be hard to comprehend and analyze. Stakeholders have to
review and understand requirements for large and complex
systems. In these scenarios, basic information visualization
techniques such as charts or graphs have been used in require-
ments engineering. These visualizations are usually applied
to textual requirements in order to summarize them. Summa-
rization combines large amounts of information into a single
representation for quick consumption by the stakeholders [43].
Machine learning is useful to visualize and to group of
large numbers of requirements. In our research, we surveyed
both clustering and classification methods were used for this
purpose.

The ReCVisu (Requirements Clustering Visualization) tool
is presented in [43]. ReCVisu, an exploration tool based
on quantitative visualizations helps requirements engineers in
understanding the nature of the requirements in a visual form.
In ReCVisu, the dependency graph consists of requirements
artefacts as nodes and the textual similarities as edges. The
automatic grouping of requirements into clusters can help in
areas such as uncovering the requirements structure, navigating
the requirements space, modularizing crosscutting concerns
and understanding requirements interactions and evolution.

Pinqui et al. [39] recognize that volume of requirements as
big data with which companies struggle to make strategic deci-
sions early on is very large. To aid in solving this problem, they
have built a complete visual framework to filter requirements
from stakeholders in such a way that architects can better
make insightful decisions. They suggest training a multi-class
SVM model from domain-specific (mechanics, electronics,



etc.) dictionaries and handbooks. Overall, the authors propose
a framework to go from management-oriented to architecture-
oriented requirements.

Lucassen et al. [33] introduced an automated method for vi-
sualizing requirements at different levels of granularity. Their
visualization method for user stories consists of the following
steps: 1) the generation of an overview which provides a
general context for understanding the dataset. The authors have
used Word2Vec and Ward’s clustering algorithm to build up
inter cluster relationship matrix of concepts from the dataset.
2) zooming in and out mechanisms; 3) filtering techniques
to reduce data complexity. Possible anticipated applications
of this visualization are: discovering missing relationships
between clusters that may result in further user stories; teach-
ing system functionality by exploring simplified manageable
chunks; and analyzing the expected system changes after new
sets of user stories.

2) Structuring Documents: Requirements for a system are
usually presented in natural language documents. These doc-
uments often require proper structuring for a better overall
understanding of the requirements. For this purpose, the doc-
ument should be organized in independent sections, where
each one contains conceptually connected requirements [16].
Moreover, technical reviews are typically used to guarantee
a certain level of quality in natural language specifications.
However, extensive and comprehensive specifications make it
problematic for reviewers to find defects, especially in what
regards consistency or completeness. Therefore, ML algo-
rithms can support reviewers in their work by automatically
classifying and clustering information that is spread over many
sections of many documents [38].

Duan et al. [15] used hierarchical clustering for detecting
cross-cutting concerns that are beneficial for the process of
requirements analysis and architectural design. The authors
reported experiments in their work were supported by two
tool sets: Poirot, a web-based tool designed to generate traces
between various software engineering artefacts which was
applied to compute similarity scores between requirements;
and a homegrown prototype tool, capable of reading structured
requirements specification and generated similarity scores and
then clustering requirements.

Winkler et al. [54] applied convolutional neural networks to
automatically classify the content elements of natural language
requirements specifications as “requirement” or “information”.
The authors claim their approach increases the quality of
requirements specifications as it distinguishes content that
is relevant for specific software construction activities. For
converting natural language into a vector representation the
word2vec method is used. A set of 10.000 content elements
extracted from 89 requirements specifications of an industry
partner were used for training the network through the use of
the Tensorflow library, using stochastic gradient descent.

Ferrari et al. [16] automatically recognize the sections in
a document that should be related or independent in order to
enhance the document’s structure. The authors have defined
a novel algorithm named Sliding Head-Tail Component (S-

HTC) for clustering the requirements according to their re-
latedness (the algorithm is based on known distances – the
Jaccard similarity metric, the Levenshtein distance, and the a
combination of both). The algorithm groups together similar
requirements that should appear contiguously in the document.
The effectiveness of the algorithm has been evaluated on a
case-study from the railway domain (583 requirements).

According to the work of Rauf et al. [42], software
specification documents usually contain instances of logical
structures, such as business rules, use cases and FRs. Auto-
mated identification and extraction of these instances benefits
requirements management in fields such as automated trace-
ability, template conformance checking and guided editing.
The authors have built a framework that, using requirements
documents as an input, attempts to build a template for
a general structure of the document. This is achieved by
specifying logical structures in terms of their content, textual
rendering and variability, and then extracting the instances of
such structures from rich-text documents.

Ott et al. [38] automatically classified and extracted require-
ments containing related information, which are spread over
many sections of many documents. For such a task, they use
the Multinomial Naive Bayes and Support Vector Machines
classification algorithms. As input for their studies, they have
used two requirements specifications from the automotive
domain which describe the functional and non-functional
requirements of a DOORS Closure Module. A specification
and its referenced documents often sum up to 3,000 pages
at Mercedes-Benz (the case-study provider). Their method
collects related requirements into classes, which the authors
call topic landscape. The authors have built a tool, ReCaRe
(Review with Categorized Requirements), an Eclipse-based
realization of the topic landscape, including a data connection
between IBM Rational and DOORS.

III. DISCUSSION

Our survey work implicitly points to a number of trends that
we will concretize and summarize in this section. In general,
this study aims to provide a state of the art of the use of
ML techniques on various RE tasks for giving an overview
to practitioners and act as an entry point to this field for
researchers. Note that while the pointers we provide here are
informed by the literature review we conducted, this survey
is not fully systematic (as described in section IV), meaning
our conclusions may be revised and/or extended by future
surveys of the domain. Moreover, addressing more details on
the specific tasks are out of the scope of this study.

Table I summarizes our findings. It provides partial answers
to RQ2 (“What types of learning methods are used when
ML is applied to RE?”) and RQ3 (“Which are the RE
problems that are currently using ML methods?”) in columns
ML Task and themes, respectively. The table also provides
partial responses to RQ1 (“What is the current state of the
practice in ML &RE?”) and RQ4 (“Is using ML methods
improving RE?”). The answer to RQ1 seems to be “at its
beginning”, given the prevalent lack of comparison with the



state of the art as can be observed in table I. The answer to
RQ4 is “unknown”, given that most of the studies read by
us were initial proposals with little academic or no industrial
validation in real software engineering tools or projects.

Note that table I provides additional information on which
types of algorithms are used for each kind of theme, as well
as datasets used for learning and which are available online.

It is obvious from our survey that NLP techniques are
heavily used throughout a majority of the research tacking
the application of ML to RE. This is not surprising and even
intuitive. RE is the area of software engineering where natural
language is employed more ubiquitously, as RE techniques
and tools play the role of interface between stakeholders
such as clients, certification entities, architects or developers.
Although many attempts have been done to bring formality
to requirements engineering (e.g. [34], [49]), the de facto
language between technical and non-technical stakeholders
for real-world projects continues being natural language – in
particular, English. The IBM Rational DOORS family [22]
of tools is an example of a natural-language based tool for
requirement engineering that has become the reference in
many domains. In the techniques we have observed, NLP is
heavily used for the preprocessing stages of natural language
in order to bring the data to a format that can be consumed
by a learning algorithm (see section I-C).

The authors of the articles we have processed in our survey
point to the idea that ML can potentially bring about enormous
benefits in terms of the processing of and taking decisions on
large amounts of imprecise and ambiguous data. In the real-
world of software engineering, parsing and summarizing re-
quirements is a very time-consuming activity. Also, decisions
taken by technical stakeholders are often based on imprecise,
incomplete and noisy information and are supported by rules-
of-thumb, experience and intuition. ML is by nature built to
handle and cope with such challenges – it based on data and
it’s main purpose is exactly to build model of patterns that
humans associate to rules-of-thumb, experience or intuitions.
Additionally, ML methods often provide a precise degree of
certainty regarding the correctness of decisions taking during
a software engineering project. Such measures, although only
valid regarding the quality of the learning process, allow
assessing the risk associated to certain steps in the course of
a project.

A large set of requirements datasets are available online.
We have identified a few of such datasets in table I. This
fact is a cornerstone for the domain, as most ML algorithms
existing nowadays are very data-intensive. One of the authors
of this survey has recently written a similar article on the
application of ML to formal verification [2], for which the
datasets available to learn from are typically very small and
almost never made public. The authors of the article recognize
that such scarceness of data is partly due to the niche nature
of the domain of formal verification, where the datasets are
mostly in the form of mathematical proofs. Nonetheless, and
in spite of the large body of work regarding the application of
ML to formal verification, the rareness of data poses a problem

not only to the automated learning, but also to the scientific
validation of such proposals. This is not the case in RE, where
many datasets are publicly available on which both learning
and validation can be done.

The majority of the articles we found on the topic of ML
and RE have to do with either the elicitation or the analysis
phases of RE. These findings are compatible with the idea
that parsing requirement texts and classifying the information
that is contained in them is strenuous for humans and thus
it is desirable that such tasks are as automatic as possible.
Moreover, we noticed that for requirement elicitation, all
the analyzed studies are acquire requirements datasets from
external sources (e.g. Twitter, app store, etc) rather internal
documents. The validation and management phases in RE also
imply tasks that can be automated as we have shown through
our survey, but the state of the art in the domain seems to
imply that the first two phases have priority for researchers
and practicioners.

Also, we have observed through our readings that while
classification is the most used ML task, clustering also plays
an important role in the domain of ML applied to RE. This
contradicts the results in [2], where clustering has almost no
expression in work that applied ML to formal verification.
We believe this provides support to the thesis that ML is
particularly appropriate to RE, given clustering is especially
useful when mining non-formal data such as free-form text.

IV. THREATS TO VALIDITY

The validity of our study might be affected by the coverage
of the search results, bias on the selection of studies, and
inaccuracy of data extraction.

Study Coverage: The study we present here is partial,
meaning relevant work could be missing due to inadequate
search strings or the list of databases not being complete. The
data preparation was based as much as possible on a systematic
method, which resulted on a map of the read articles and their
main features as relevant to our study.

Study Selection Bias: we understand that the assessment
might be biased by the interests of the involved researchers.
As such, the themes that we discuss in this article may be
influenced by the preferences of the involved researchers. To
mitigate for this threat, a set of include and exclude criteria
was predefined and researchers assessed the title and abstract
of the papers to steer the research. Many of the papers retrieved
by our queries apply NLP to requirements engineering but
involve no learning (e.g. [55], [10], [6], to cite a few). We have
explicitly excluded such papers from our survey: although NLP
tools do sometimes include ML algorithms, their functionality
is used in a black-box manner by RE researchers and as such
they were not taken into consideration.

Inaccuracy of Data Extraction: given the data extraction
process might be biased by researcher interest, the selection of
data items was strictly driven by the research questions. More-
over, reading assignments were marked by the researchers
depending on their confidence level. Low-confidence assign-



Themes Contributions ML Task ML Model Types Datasets Used
E

External [20](◦) [53](+) [24](+) Classification (Multinomial) Naı̈ve Bayes Online reviews for KIS 2011 (from Amazon)
[31](◦) [23](+) [5](◦) Clustering Support Vector Machines Skiweb data

S

Non-Functional [46](◦) [7](◦) Classification k-Nearest Neighbors Open Source PROMISE Datase2

Functional [51](◦) Classification Bi-Directional Long Short-Term Memory
Conditional Random Field Network -

Functional & [32](◦) [11](◦) [30](◦) Classification Bagging, Naı̈ve Bayes, SVM Open Source PROMISE Dataset
Non-Functional [1](◦) [17](◦) [52](◦) app-store reviews
Prioritization [12](◦) [3](+) [4](◦) Classification Case Based Ranking J.48 DT -
Security [25](◦) [44](◦) Classification Decision-Tree

k-Nearest Neighbors -

V

Traceability [18](◦) [48](◦) Classification Naı̈ve Bayes / J48 Decision-Tree Open Source CM-1 NASA project3

Reinforcement Learning Open Source Pine Dataset4

M

Visualization [43](◦) [39](◦) [33](◦) Classification Support Vector Machines
Clustering Ward’s method -

Structuring [15](◦) [54](◦) [42](◦) Classification Multinomial Naı̈ve Bayes International Union of Railways
[16](◦) [38](◦) Clustering Support Vector Machines (EIRENE Functional Requirements Specification5)

Convolutional Neural Networks Mercedes-Benz car development
Sliding Head-Tail Component Clustering
Hierarchical Clustering

Legend: (+) improves the state of the art; (-) comparable to or worse than state of the art; (◦) no information on how the approach relates to the state of the art

TABLE I: Contributions and ML tasks related to each theme within each RE approach.

ments were discussed between the authors until a consensus
was reached.

V. CONCLUSION

Through our bird’s eye view of ML applied to RE we have
observed that in the past couple of decades a good amount
of research has been done on how to bring these two worlds
together. The stakes are high: while requirements engineering
is currently a domain under intensive research, attempts to
address its challenges academically have translated into few
results in practice. Free-form text-based tools with light-
weight structuring capabilities such as DOORS are now the
norm in practice. Requirements elicitation, analysis, validation
and management keep on relying on human expertise and
talent. While academics often insist that better formalization
brings advantages, the languages in which requirements are
formalized do not match the need that stakeholders in the
RE process (technical and non-technical) have to communicate
through artifacts that are intelligible to all.

While not overstating the potential of ML, which is has its
own challenges to overcome such as coarseness of the learned
models, overfitting or hungriness for data, we have provided
in this article indications that ML might become a cornerstone
in RE. For now, it seems like the domain is undergoing a pre-
scientific phase: the studies we have analyzed seldom compare
themselves with the state-of-the-art (see tableI). This suggests
that the current body of research is composed of new ideas,
which have not yet been validated to its full extent by the
scientific or industrial communities. We thus call for a more
extensive survey to validate the preliminary conclusions we
present in this work.
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editors, Requirements Engineering: Foundation for Software Quality,
pages 273–287, Cham, 2017. Springer International Publishing.

[24] W. Jiang, H. Ruan, L. Zhang, P. Lew, and J. Jiang. For user-driven
software evolution: Requirements elicitation derived from mining online
reviews. In V. S. Tseng, T. B. Ho, Z.-H. Zhou, A. L. P. Chen, and H.-
Y. Kao, editors, Advances in Knowledge Discovery and Data Mining,
pages 584–595, Cham, 2014. Springer International Publishing.

[25] R. Jindal, R. Malhotra, and A. Jain. Automated classification of
security requirements. In 2016 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), pages 2027–
2033, Sept 2016.

[26] H. Kaiya, Y. Shimizu, H. Yasui, K. Kaijiri, and M. Saeki. Enhancing
domain knowledge for requirements elicitation with web mining. In
2010 Asia Pacific Software Engineering Conference, pages 3–12, Nov
2010.

[27] J. Karlsson and K. Ryan. A cost-value approach for prioritizing
requirements. IEEE Softw., 14(5):67–74, Sept. 1997.

[28] E. Knauss, S. Houmb, K. Schneider, S. Islam, and J. Jürjens. Supporting
requirements engineers in recognising security issues. In D. Berry
and X. Franch, editors, Requirements Engineering: Foundation for
Software Quality, pages 4–18, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[29] G. Kotonya and I. Sommerville. Requirements Engineering: Processes
and Techniques. Wiley Publishing, 1st edition, 1998.
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