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Abstract

For many of our everyday activities vision is the most important sense and eye

movements form a significant part of it. Therefore the research of eye movements

allows us to better understand many functions of our visual system and offers us a

window to the corresponding brain functionality. People understood the significance

of eye movements a long time ago and they have been systematically studied for

more than 100 years. As new technologies are invented and commercialized new

opportunities arise for more thorough research of eye movements in closer to natural

environments. But these new environments pose new challenges that did not exist

with the experimental setups of the early days.

In this thesis we provide the foundation for the automatic analysis of eye move-

ment functionality in more unconstrained scenarios that are closer to our natural

environment and include videos of everyday scenes presented either on a moni-

tor or a head-mounted display. More specifically, we provide three hand-labeled

ground-truth eye movement data sets that span many hours, contrary to minutes,

which had been so far the standard. Then we improve the quality of automatic eye

movement detection by providing two new algorithms that work with monitor-based

experiments and achieve state-of-the-art performance. We also extend the field of

application of many pre-existing algorithms to work with head-mounted displays

and we propose a new algorithm too. At the end we conclude with two applications

of our infrastructure in new domains. The first offers a better understanding of the

relationship between the brain and smooth pursuit eye movements and the second

investigates how transferable results are across different experiments with varying

levels of naturalness.
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Abstrakt

Augenbewegungen formen einen zentralen Bestandteil des menschlichen Sehens, das

wohl der wichtigste Sinn für viele unserer Alltagsaktivitäten ist. Die Forschung zu

Augenbewegungen ermöglicht uns daher ein besseres Verständnis des Sehens und

damit auch allgemein der Hirnfunktion. Schon seit über 100 Jahren werden Au-

genbewegungen deswegen systematisch untersucht, doch erst kürzlich wurden neue

Technologien entwickelt und kommerziell zur Verfügung gestellt, die Studien unter

weitgehend natürlichen Bedingungen ermöglichen. Diese neuen Technologien erzeu-

gen wiederum eigene Herausforderungen bei der Datenaufnahme und -analyse.

In der vorliegenden Arbeit legen wir die Grundlagen für die automatische Analyse

von mit natürlichem Bildmaterial aufgenommenen Blickrichtungsdaten. Die Stimuli

umfassten dabei Videos von Alltagsszenen, die auf einem Monitor oder in einem

kopfgetragenen Display angezeigt wurden. Wir erstellten drei “ground truth” Da-

tensätze, die von Experten manuell annotiert wurden und die statt weniger Mi-

nuten, wie bisher üblich, mehrere Stunden an Material umfassen. Darauf aufbau-

end verbesserten wir die Güte automatischer Klassifikation von Blickrichtungsda-

ten durch die Entwicklung zweier neuer Algorithmen für monitor-basierte Experi-

mentaldaten. Für Daten, die mithilfe von kopfgetragenen Displays aufgenommen

wurden, entwickelten wir neben einem gänzlich neuen Algorithmus auch Verfah-

ren, wie bereits für monitor-basierte Experimente existierende Algorithmen opti-

mal auf diesen neuen Datentyp angewendet werden können. Zum Schluss stellen

wir beispielhaft zwei Anwendungsfälle für unsere entwickelten Methoden vor. In

einer ersten Studie untersuchten wir den Zusammenhang von MRT-gemessener Ak-

tivität in verschiedenen Hirnarealen mit dem Vorliegen verschiedener Augenbewe-

gungstypen. In einer zweiten Studie variierten wir den Komplexitätsgrad von ty-

pischerweise in Psychophysik-Studien verwendeten Stimuli hin zu einem höheren

Natürlichkeitsgrad, um die öklogische Validität von unter Laborbedingungen gefun-

denen Resultaten zu untersuchen.
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Part I

Setting the scene
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Chapter 1

Introduction

In our everyday life we continuously explore our visual environment by shifting

our point of regard several times per second. This behavior creates the percept

of a high-resolution world based only on a very small area of the retina with high

photoreceptor density, the fovea. The constant movement of the eyes creates a

path, the gaze trace, that represents the areas of our surroundings that have been

attended. Even though the gaze trace in itself can offer rich information about

the functioning of the human visual system, its segmentation into eye movements

offers even richer information. Eye movements enable us to better understand the

fundamentals of visual processing, to relate the different visual areas of the brain,

and additionally to perform more detailed analyses. For example raw gaze traces are

enough for creating attention maps (also called saliency maps) but the constituent

eye movements enable us to understand how the attention is allocated, along with

the timing of events preceding a gaze shift to a target.

The eye movement behavior has been so far mainly studied in experimental setups

that have varying degrees of fidelity to the natural everyday viewing behavior. The

most common constraint is the use of a monitor as a presentation medium where

the experiment’s participants are placed in front of it. This setup either allows for a

small amount of head motion or restricts it by stabilizing the head with a chin rest.

This choice simplifies the experiment and its subsequent analysis but it excludes

head motion, which forms a significant aspect of natural viewing behavior. Another

constraint is the use of computer-generated stimuli that mostly contain up to a

couple of artificial potential targets, such as dots. Again this choice allows for the

accurate measurement of specific eye movement characteristics, such as their latency,

but it provides an uncluttered environment that is not reminiscent of the rich visual

environment that we live in. Finally, the majority of the experiments are constrained
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4 Chapter 1. Introduction

to static stimuli in the form of natural or computer-generated images. When static

stimuli are used only saccadic and fixational eye movements are performed and

they have almost linearly separable speed profiles. Also, these eye movements are

performed in isolation without any interactions with all the other eye movement

types that we utilize in our everyday visual behavior (for all the eye movement

types that are mentioned in this thesis refer to Section 2.2.1).

In this thesis, we tackle many of the challenges that are associated with the use of

more natural and unstructured stimuli in eye movement research and demonstrate

in practical applications how such technical solutions can open up new avenues to

answering research questions about neuroscientific phenomena and the generaliz-

ability of research outcomes in new domains. One of the biggest challenges for eye

movement research in natural scenes is the difficulty of defining a “ground-truth”

against which things can be compared. Our contribution towards this problem is

the creation of three large eye movement data sets that contain hand-labeled eye

movements based on clear definitions. The data sets span a diverse set of viewing

conditions that include free viewing of dynamic everyday natural scenes (ex. cars

driving on a street) and Hollywood videos on a monitor screen as well as free viewing

of 360-degree content in a head-mounted display (HMD) that allows for free head

motion. In all data sets apart from the usual fixational and saccadic eye movements

we also labeled the smooth pursuit eye movement type, which has been often over-

looked due to the technical challenges that its analysis is posing. In the 360-degree

data set apart from the previously mentioned eye movements we also account for

“eye movements” that arose due to free head motion and provide a formal taxonomy

for all of these. Overall the data sets comprise around 7 hours of recordings, which

are the biggest to date and allow for the development and evaluation of machine

learning and more importantly deep learning applications.

Another challenge is automatic labeling of eye movements when working with dy-

namic natural environments because (i) most of the pre-existing algorithms classify

fixations and saccades only, and (ii) most of them were developed for monitor-based

experiments. Firstly, we developed two new algorithms for eye movement classifi-

cation in monitor-based experiments that include the smooth pursuit label, which

is more challenging since its characteristics overlap with those of fixations and sac-

cades. Secondly, we converted five popular pre-existing eye movement classification

algorithms in order to work with HMD gathered data, provided a method for using

pre-existing algorithms without any modifications with HMDs by converting the

underlying data instead of the algorithms, and finally we have developed a new

algorithm that combines eye and head motion together to return richer labels.
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1.1 Thesis organization

The thesis is organized into five main parts and here we will describe in more detail

the content of each part. In Part I we set the scene and we provide information about

the state of eye movement research with a higher emphasis towards smooth pursuit

and the challenge of head-mounted eye tracking, which allows gaze recordings with

unrestrained head motion.

In Part II we talk about the scaffolding that we built in order to be able to research

eye movements in more “natural” conditions. We start with Chapter 3 where we

present our tool for manual eye movement labeling, which can handle gaze data

recorded both in monitor-based and HMD-based experiments. In Chapter 4 we

describe in detail the process that was followed during the hand-labeling of eye

movements in three large data sets. The first data set comprises of the complete

annotation of eye movements for the naturalistic free viewing GazeCom [Dorr et al.,

2010] data set. Apart from the more common fixations and saccades our annotation

also includes labeled smooth pursuit, which can occur in the presence of motion. The

second data set is a partial annotation of the Hollywood2 [Mathe and Sminchisescu,

2012] data set and includes the same eye movement labels. The last data set consists

of 360-degree content that allowed for unconstrained head motion. Because no

publicly available gaze data sets existed we designed a new HMD experiment, we

collected gaze data, and manually annotated part of it. Here special care was given

to the different frames of reference, which can either be world-fixed or head-fixed,

and based on which one is chosen the gaze signal demonstrates different patterns.

To overcome this we (i) expanded our labeling tool in order to be able to display the

same information for both frames of reference and (ii) we used a two label scheme

to characterize each gaze sample.

In Part III we move from manual to automatic eye movement labeling and we

present new algorithms that achieve state-of-the-art performance both for monitor-

and HMD-based experiments. Chapter 5 contains algorithms that were designed for

experiments that present the stimulus on a monitor. In Section 5.1 we present a

tool that automatically detects fixations, saccades and smooth pursuits. Its fixation

and saccade detectors are based on literature algorithms but its SP detector is

based on the clustering effect of gaze samples towards salient moving objects when

multiple observers watch the same video clip. By taking advantage of the clustering

effect our tool can detect SP with high precision. Then we further improve the eye

movement detection performance for all three eye movement types by using a deep

neural network architecture, which is explained in Section 5.2. In Chapter 6 we
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move towards more immersive scenarios and in Section 6.1 we convert 5 popular

eye movement detection algorithms in order to work correctly with gaze recordings

that come from HMD experiments with equirectangular stimuli. Because such a

conversion is not always feasible, in the same section, we present an alternative that

converts the equirectangular data into an almost linear space where the original

algorithms can be applied with minimal artifacts. All of the so far presented 360-

degree algorithms do not account for the presence of the two different frames of

reference. For this reason in Section 6.2 we design a new algorithm that detects

eye movements based on both the field-of-view and eye+head frames of reference.

This algorithm uses simple speed thresholds that were optimized based on the hand-

labeled part of the 360-degree data set and can detect all eye movement types that

are used for information retrieval and head movement compensation.

Based on the rich content of the hand-labeled data sets and the automatic detection

algorithms, in Part IV we present the application of these in two different domains.

Chapter 7 investigates which areas of the brain are activated during SP while hu-

mans are free-viewing the Hollywood movie ‘Forrest Gump’ and Chapter 8 examines

how the saccade-SP initiation interactions are influenced by different experimental

complexities that vary from simple moving dots to free viewing of naturalistic scenes.

Finally, we conclude this thesis in Chapter 9.

1.1.1 Previous publications

The work presented in this thesis has been published in 9 conference and journal

papers. At the beginning of each part we reference the relevant papers that the

subsequent content is based on and we acknowledge the respective co-authors when

their work is used.



Chapter 2

Basics

In this chapter we will talk about the role of eye movements and why they exist in

the first place. We will then present the eye movement types that were studied in

the context of this thesis and we will analyze in more detail the smooth pursuit eye

movement because it is more challenging both to define and detect. Then we will

move towards wearable eye tracking and how different frames of reference influence

the gaze signal and the detection characteristics.

2.1 The role of eye movements

Eye movements exist in order to direct the point of regard to the most interesting

areas and therefore maximize the information gain. From the physiological perspec-

tive they arise from the structure of our eyes, which is visualized in Figure 2.1. The

light enters through the cornea at the front of the eye and is focused through the lens

onto the retina at the back of the eye. The retina is lined with photoreceptor cells

that absorb light at different wavelengths and emit signals that are transferred to

the brain through the optic nerve [Findlay and Gilchrist, 2003]. The photoreceptor

cells are divided into rods and cones with each category having different characteris-

tics. Rods are achromatic cells, which can function in low light conditions and form

the majority of photoreceptors (approx. 90 million) [Curcio et al., 1990]. Cones are

larger than rods and function in well-lit conditions. They can be divided in S, M,

and L types with each type being sensitive to different wavelengths and because of

this humans have color vision. Even though their count is low (∼5 million) they are

concentrated in a very small area of the retina, which is called fovea (Figure 2.1).

The fovea is the area of our retina with the highest resolution and therefore when we

7



8 Chapter 2. Basics

need to acquire detailed information about an object we rotate our eyes in unison

to align the object projection through the lens onto the fovea.

Figure 2.1: Physiology of the human eye. Courtesy of Wikimedia.

2.2 Eye movement types

The quantitative study of eye movements started more than a century ago when

a French ophthalmologist observed through a mirror the human eye movements

during reading [Javal, 1878]. [Huey, 1908] provided a review of the eye movement

literature of the time, which mostly consisted of reading research. He also reviewed

the methods that were used for measuring eye movement characteristics at this time

with some of them being fairly intrusive (e.g. Figure 1, page 26 of the original paper).

However the translation in English of the seminal work of Yarbus [Yarbus, 1967]

reheated the interest of the scientific community in eye movements by presenting

new recording methods (i.e. suction cups) and by demonstrating that eye movements

are task dependent. All of the previous researchers along with many researchers of

their time used static images or written texts in their work and they only observed

two types of eye movements: fixations and saccades. They observed that the eyes

moved very fast 2-3 times per second in order to reorient the point of regard and

theses “jumps” are now called saccades with the time of relative ocular stability

between saccades being called fixations. Fixations comprise the majority of the

viewing time because the information processing happens during these periods.

The constraint of the eye movement research into fixations and saccades only arises



2.2. Eye movement types 9

from the use of static stimuli, which have some very strong advantages: (i) ease of

data analysis due to simpler stimuli and the simple criteria (e.g. speed threshold)

that can separate fixations from saccades (ii) the ability to precisely measure oculo-

motor functions (e.g. delays in an antisaccade test). But these experiments have a

significant disadvantage: they cannot model the dynamic environment that humans

have evolved to live in.

To overcome the previous problem researchers have used videos instead of static

stimuli. Because videos introduce motion they also evoke smooth pursuit eye move-

ments in order to follow moving targets and comprehend the environment. Moreover,

if the head is allowed to move freely, as we do in our everyday life, the eyes start to

perform other functions such as compensatory movements (e.g. vestibulo-ocular re-

flex). These compensatory movements have the effect of changing the gaze signal in

HMD-based experiments and thus making not only the analysis but also the defini-

tion of eye movements more challenging. Below we tackle this problem by providing

clear definitions of all the eye movement types that are used in this thesis [Startsev

et al., 2019b, Agtzidis et al., 2019].

2.2.1 Eye movement types definitions

Because this thesis provides data sets with hand-labeled eye movements and algo-

rithms that automate the labeling process it is of paramount importance to clearly

define each term that we use. This becomes even more important because the eye

movement community seems to disagree about the definitions of eye movements

even when we talk about the most common fixations and saccades [Hessels et al.,

2018]. Our eye movement definitions are based on two of our previously published

manuscripts [Startsev et al., 2019b, Agtzidis et al., 2019] and below is the full list

of those that are mentioned in this thesis.

Fixation: A period of time where no movement of the eye inside the head is trig-

gered by retinal input. This can include reflexive eye motions that compensate

for head motion or slow gaze signal drifts that arise from changes in pupil dila-

tion [Drewes et al., 2014].

Saccade: High-speed ballistic movement of the eye to shift the point of regard,

thus bringing a new (part of an) object onto the fovea (including adjusting the

gaze position to match the tracked object via catch-up saccades during pursuit, or

similar).

Post-saccadic oscillations (PSOs): As the name suggests they appear at the end
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of saccades and their shape varies depending on the amplitude of the saccade [Hooge

et al., 2015]. Also people have argued that PSOs are not an actual eye movement

but a relative movement of the pupil inside the iris that is detected by video-based

eye trackers [Nyström et al., 2013]. Therefore in the context of this work we are not

treating PSOs as a separate eye movement but as part of the saccades.

Smooth pursuit: A period of time during which the eyes are in motion inside the

head and a moving (in world coordinates, relative to the observer) target is being

foveated. The motion of the target can either arise due to its own movement or

camera motion.

Noise: Even though noise is not an actual eye movement type, we accumulate

blinks, drifts, tracking loss, and physiologically implausible gaze signals under this

one name.

Vestibulo-ocular reflex (VOR): A period of time when the eyes are compensating

for head motion and stabilizing the foveated area.

Optokinetic nystagmus (OKN) or nystagmus: Sawtooth-like eye movement

patterns, composed of fast saccadic parts alternating with slow stabilization parts.

We labeled all such patterns as OKN, though it has to be noted that some of these

labels correspond to nystagmus, e.g. when a person is observing a blank part of the

synthetic stimulus while simultaneously turning the head, so the reflexive movement

is not actually triggered by the visual input.

OKN+VOR: This is a combination of the two previous categories: The eye signal

exhibits a sawtooth pattern during head rotation.

Head pursuit: A period of time where a pursuit of a moving target is performed

only via head motion, with the gaze direction within the head relatively constant.

Throughout this thesis the first five eye movements (fixation to noise) are often

mentioned as primary because they can be performed if the head moves freely or if

it is fixed. The rest of the eye movements (last four) are mentioned as secondary

because they require free head motion and the purpose of the eye movements is to

compensate or to counteract the head movement.

2.3 Smooth pursuit

Even though we have presented what smooth pursuit means in the context of this

thesis, it is worth providing a more extensive overview. Smooth pursuit started to be
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investigated more than a century ago and roughly at the same time as fixations and

saccades [Dodge, 1904]. Also people realized very early that smooth eye movements

are important for the perception of motion [Dodge, 1904, Lord and Wright, 1949]

and started to investigate its characteristics [Westheimer, 1954, Robinson, 1965]

and its interplay with other oculomotor functions [Fox and Dodge, 1929, Dodge

et al., 1930, Rashbass, 1961]. The study of the relationship between brain areas

and the dynamics of smooth pursuit also started at a relatively early point [Sharpe

et al., 1979, Katsanis and Iacono, 1991] and became more thorough as new imaging

techniques became available [Petit and Haxby, 1999, Lencer and Trillenberg, 2008].

As personal computers started to become ubiquitous at the turn of the century re-

searchers started to investigate ways that could make the analysis of gaze data eas-

ier. By this time eye movement research was dominated by static stimuli (including

reading) and thus the engineers of the time did not notice SP or considered its anal-

ysis as something niche. Therefore the first algorithms for automatic eye movement

classification did not detect SP at all [Sauter et al., 1991, Goldberg and Schryver,

1995, Salvucci and Anderson, 1998, Salvucci and Goldberg, 2000]. Oftentimes when

dynamic natural scenes were used there was no distinction between fixations and SP

because either SP was defined as a fixation on a moving target [Steil et al., 2018] or

they were implicitly grouped together [Mathe and Sminchisescu, 2012, Wang et al.,

2018] assuming that SP constituted a small fraction of the overall viewing time.

However, both of these assumptions are not valid because the SP percentage is on

average high and varies from 10 to 24 % depending on the stimulus type (for more

details see the basic statistics of Chapter 4) and because different neural mechanisms

drive different eye movements [Luna et al., 1998, Beauchamp et al., 2001, Kimmig

et al., 2008].

When SP was specifically analyzed more often than not the input modality was arti-

ficially created stimuli where up to a couple of moving targets were present [Heinen

and Watamaniuk, 1998, Schütz et al., 2011]. This type of stimuli apart from allowing

to investigate specific eye movement attributes, such as the delay of attending a new

moving object, does not require per se the detection of SP in the signal since a sim-

ple distance-based metric would suffice for identifying the followed target. However,

the biggest shortcoming of the previous approach is the diminished “naturalness”

of the experiment, which excludes the decision making and planning processes in-

volved in the gazing of objects of interest in dynamic natural scenes. To overcome

this shortcoming researchers recently have used videos of natural scenes [Dorr et al.,

2010, Mital et al., 2011], head-mounted eye trackers [Martens and Fox, 2007, Gi-

annopoulos et al., 2015], as well as head-mounted displays (HMD) [David et al.,
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2018, Sitzmann et al., 2018]. However, in these dynamic environments SP is much

more challenging to detect both manually but also algorithmically. For monitor-

based experiments the algorithms that detect SP based on simple criteria such as

velocity or dispersion [Komogortsev and Karpov, 2013] usually return poor results

(see Section 5.3.3) due to SP’s overlapping characteristics with fixations and sac-

cades (see Sections 4.1.5, 4.2.5, and 4.3.3). More elaborate algorithms have been

developed [Berg et al., 2009, Larsson et al., 2015, Dar et al., 2019], which perform

very well on average but their SP detection performance has a much larger room for

improvement in comparison to fixation and saccade detection. In this thesis (Chap-

ter 5) we present two new eye movement classification algorithms that become the

new state-of-the-art in automatic eye movement labeling. Finally, the data sets for

the evaluation of these algorithms under naturalistic conditions are very few and

they only span a couple of minutes [Larsson et al., 2013, Andersson et al., 2017].

To overcome this limitation in Sections 4.1 and 4.2 we present two large monitor-

based ground-truth data sets that span in total more than 6 hours of recordings. In

Section 4.3 we present a new data set that was recorded in an HMD and allowed

free head motion together with a hand-labeled ground-truth subset of it that spans

roughly 30 minutes.

2.4 Head-mounted eye tracking

In recent years due to the dramatic decrease in price and set-up complexity of

remote gaze tracking hardware1, eye tracking has been increasingly applied in more

challenging domains. Currently, eye tracking is being integrated into consumer-

oriented virtual and augmented reality (VR/AR) devices2,3,4 and should be widely

available in the following years. Previously we mentioned that head-mounted eye

tracking can provide an almost uninterrupted viewing experience and thus a better

representation of natural eye movement behavior. But before being widely applied in

research many of the intricacies that arise from the transition to free head movement

have to be handled.

The biggest source of confusion when free head motion is allowed arises from the

different frames of reference where data can be reported. These frames of reference

are summarized in Figure 2.2. In the simplest and most widespread experimental

1https://gaming.tobii.com/product/tobii-eye-tracker-4c/
2https://www.vive.com/eu/pro-eye/
3https://www.getfove.com/
4https://www.microsoft.com/en-us/hololens/hardware

https://gaming.tobii.com/product/tobii-eye-tracker-4c/
https://www.vive.com/eu/pro-eye/
https://www.getfove.com/
https://www.microsoft.com/en-us/hololens/hardware
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setup a monitor is used for the stimulus presentation and the head is either fixed

(e.g. with a chin rest) or allowed to move freely, usually within a limited bounding

box because a remote eye tracker is utilized. The lack of confusion here arises

from the coincidence of the stimulus coordinate system with that of the monitor,

which simplifies both the understanding and the analysis of the data. Therefore any

potential head motion is disregarded and a pair of x, y values suffices to describe

the state of the experiment, since the monitor is a 2D plane.

In the most liberal scenario the participant wears a pair of (AR) eye-tracking glasses

and moves in the real world, or wears a VR headset and moves in a virtual world. In

this scenario two 3D coordinate systems are needed to describe the experiment: (i) a

world coordinate system that is fixed permanently at a location in the world and (ii)

a coordinate system that is attached to the participant’s head with its origin usually

placed in the midpoint between the two eyes. Then the location of the participant

in space and the head’s orientation can be described through the translation and

rotation of the head coordinate system in relation to the world coordinate system.

In this type of experiments the eye tracker is attached to the participant’s head

and reports the gaze vectors in head coordinates. Because of this the gaze signal

contains eye movements such as VOR that compensate for head motion. But if the

gaze vectors are then reported in the world coordinate system through the head to

world transformation the signal is now a combination of eye and head motion and

therefore different than before. Due to this difference, the combination of these two

different signals can be used for the assignment of primary (fixation, saccade, SP)

and secondary (VOR, OKN, head pursuit) labels to each gaze sample.

X

Y

Monitor coordinate system

X

Y

Z

X

Y

Z

World coordinate system

Head coordinate system

Figure 2.2: Visualization of the different frames of reference that are present in eye
tracking experiments.

In the context of this thesis as a first step towards completely unconstrained eye

movement analysis we exclude the translation component from the previous setup
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and make the origin of the head and world coordinate systems to coincide. We also

use as stimulus monoptic 360-degree videos displayed in an HMD, which allows for

a simplified data representation. The world gaze vectors can be represented in the

stimulus coordinate system (equirectangular video) just with a pair of values and

can be directly visualized with pre-existing tools. Similarly the head orientation can

be represented with a pair of values in the stimulus space together with a third value

representing the roll component. The combination of the head orientation together

with the world gaze representation lets us compute the gaze representation in the

head coordinate system, which is equivalent to the rotation of eye ball within its

socket. This process is described in more detail in Section 6.1.

2.5 Evaluation metrics

In the past many algorithms have been developed for the automatic segmentation of

the gaze trace into eye movements and have achieved some kind of state-of-the-art

performance. In this thesis we also develop algorithms for eye movement classifi-

cation and diverse ground-truth data sets for the evaluation of these algorithms.

When we report the performance of an algorithm we provide a number that is de-

rived from an “objective” evaluation function that compares the algorithmic output

against the ground truth. The objective function can rely on a single metric or a

combination of metrics, but there exists no single metric that is globally acceptable

and can describe all aspects of an algorithm. For example the MIT300 [Bylinskii

et al., 2016] saliency benchmark uses 8 different metrics to evaluate the performance

of the submitted algorithms.

The eye-tracking community is no different from any other scientific field and many

different evaluation metrics have been proposed. For example, [Komogortsev and

Karpov, 2013] have proposed behavior metrics but they are oftentimes difficult to

apply and interpret when dynamic natural stimuli are used. The easiest to under-

stand evaluation metrics are based on sample level statistics due to the discrete

nature of the eye-tracking signal that arises from the sampling frequency of the eye

tracker. Some of the most commonly used statistics are precision, recall, and Co-

hen’s Kappa [Cohen, 1960]. Precision (Equation 2.1) represents the proportion of

correctly labeled samples among all retrieved samples. Recall (Equation 2.2) is the

proportion of correctly retrieved samples among all samples of the same category.

A balanced representation of these two is the F1 score (Equation 2.3), which is

their harmonic mean. Cohen’s Kappa measures the agreement between raters by

accounting for the chance agreement between the two (introduced in Equation 6.9).
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precision =
TP

TP + FP
(2.1) recall =

TP

TP + FN
(2.2)

where TP = true positives, FP = false positives, FN = false negatives

Fβ = (1 + β2)
precision ∗ recall

β2 ∗ precision+ recall
(2.3)

for β = 1 we get the F1 score

The previous statistics can use “events” instead of independent samples but then

their application is not always straightforward. First, the term “event” and secondly,

the criteria for event matching have to be defined. Throughout this thesis we use

the terms “event”and “episode” interchangeably and both refer to a period of time

where all the gaze sample class labels (either in human annotations or in the output

of an algorithmic detector) are identical. Thus, any gaze recording is subdivided into

non-overlapping eye movement events (episodes). [Hoppe and Bulling, 2016] were

matching a ground truth event to the majority vote of the algorithm’s samples within

the temporal window of the earlier. [Hooge et al., 2017] were matching an event

in the ground truth with the earliest algorithmically detected event that intersects

with it and only one-to-one matching was allowed. [Zemblys et al., 2018a] changed

the matching criterion and the intervals with the longest intersection were matched.

[Startsev et al., 2019a] further controlled the quality of matching by specifically

defining the minimum amount of overlap between two intervals. For this purpose

they used the intersection over union [Everingham et al., 2010, Everingham et al.,

2015] with a standard value of 0.5.

A more recent approach [Startsev et al., 2019c] uses all the previous metrics during

evaluation but not each one independently. Instead, it creates different baselines

that are either randomly drawn from an event pool or are based on the similarity

between subjects and compares the algorithm against them. As the authors report

often times the “oblivious” baselines return higher scores than the classification

algorithms, which indicates the weak generalization ability of the latter.

In this thesis we will use the F1 score to report the performance of the algorithms

since it encompasses both precision and recall in one number and it is easier to
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interpret than Cohen’s kappa. Together with sample-level F1 scores for each eye

movement we will also report event-level F1 scores that are matched with the scheme

of [Hooge et al., 2017].



Part II

Foundational data sets
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The objective of this thesis is to work towards an understanding of eye movements

as they are performed in unconstrained environments. However, the majority of the

publicly available information about eye movements regards either static stimuli or

dynamic stimuli in the form of moving dots. Therefore, here we provide the largest

set to date of hand-annotated eye movements in many diverse scenarios.

In Chapter 3 we present the tool that was used for the manual annotation of eye

movements. Its initial version could handle monitor based stimuli only and was

presented in [Agtzidis et al., 2016a]. A significantly expanded version of this tool

with improved performance and the ability to handle head-free experiments with

360-degree equirectangular input was published in [Agtzidis et al., 2019]. This tool

is used in Chapter 4 in order to hand annotate three large dynamic natural data

sets.

The first data set contains the labeled eye movements of the 50 participants as they

were watching the GazeCom data set [Dorr et al., 2010] that contains short clips of

everyday scenes and its full details have been published in [Startsev et al., 2019b].

The second data set comprises the eye movements of 16 participants as they were

watching Hollywood movie excerpts [Mathe and Sminchisescu, 2012] and its details

have been published in [Agtzidis et al., 2020b]. The last data set contains the labeled

eye movements of 13 participants as they were watching clips of everyday scenes in a

head-mounted display that allowed free head motion and was presented in [Agtzidis

et al., 2019].



Chapter 3

Labeling tool

Before presenting the hand-labeled eye movement data sets we will explain in this

chapter the infrastructure that was developed and used during labeling. We will

start with the presentation of the used format for data representation and then

explain the structure of the labeling interface and the labeling process. At the

end we explain how the tool handles data recorded with 360-degree equirectangular

stimuli.

3.1 Data format

For the data representation we used an extendable data file format, which has been

used extensively in the data mining community and more specifically was introduced

and used in WEKA [Hall et al., 2009]. The ARFF (Attribute-Relation File Format)

file is a text file that describes a list of instances sharing a set of attributes.

In ARFF, all keywords start with a “@” symbol and the following names are case-

insensitive; all lines starting with “%” are considered comments. Any file comprises

two sections for a header and the data. The header starts with “@relation”, which

defines the relation name. After this, the attributes can be declared through the

“@attribute” keyword followed by the name and type of the attribute.

The data section starts with the “@data” keyword. The further lines describe the

instances with one instance per line and comma-separated attributes. The attributes

should follow the same order used for their declaration in the header section.

In our implementation, we introduce minor deviations from the regular ARFF for-

mat, but we maintain compatibility with the standard. Since an eye-tracking experi-
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ment require extra information about the experimental setup, we introduce “special”

comments (maintaining ARFF compatibility) starting with the “%@metadata” key-

word and followed by a key-value pair.

An example ARFF file is provided in Listing 3.1. At the beginning the relation

describes the data present in the file. In this example the data was recorded in a

360-degree headset. Then follow the metadata that explain the experimental setup

with regard to the used headset and the video stimuli. The following attributes

explain the gathered data, which include two types of labels from a hand-labeler.

Listing 3.1: Sample ARFF file.

@RELATION gaze_360

% @METADATA distance_mm 0.00
% @METADATA fov_height_deg 100.00
% @METADATA fov_height_px 1440
% @METADATA fov_width_deg 100.00
% @METADATA fov_width_px 1280
% @METADATA height_mm 0.00
% @METADATA height_px 1920
% @METADATA width_mm 0.00
% @METADATA width_px 3840

@ATTRIBUTE time INTEGER
@ATTRIBUTE x NUMERIC
@ATTRIBUTE y NUMERIC
@ATTRIBUTE confidence NUMERIC
@ATTRIBUTE x_head NUMERIC
@ATTRIBUTE y_head NUMERIC
@ATTRIBUTE angle_deg_head NUMERIC
@ATTRIBUTE handlabeler_1_pl {unassigned ,fixation ,saccade ,SP ,noise}
@ATTRIBUTE handlabeler_1_sl {unassigned ,OKN ,VOR ,OKN+VOR ,noise ,

head_pursuit }

@DATA
0 ,2012.91 ,1192.18 ,1.00 ,1899.00 ,1060.30 ,1.49 , fixation , unassigned
8000 ,2012.87 ,1192.16 ,1.00 ,1899.01 ,1060.35 ,1.49 , fixation , unassigned
...
553000 ,1928.15 ,1038.05 ,1.00 ,1895.76 ,1058.68 ,1.43 , saccade , unassigned
564000 ,1916.92 ,1029.23 ,1.00 ,1895.36 ,1058.45 ,1.41 , saccade , unassigned
571000 ,1910.23 ,1019.49 ,1.00 ,1895.06 ,1058.26 ,1.40 , saccade , unassigned
578000 ,1909.20 ,1019.19 ,1.00 ,1894.69 ,1058.02 ,1.39 , fixation ,VOR
587000 ,1907.08 ,1019.64 ,1.00 ,1894.25 ,1057.72 ,1.38 , fixation ,VOR
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3.2 Labeling interface

The labeling interface was developed in C++ with Qt 5 providing the graphical

interface. It has been tested in Ubuntu 18.04 and the source code is publicly available

under an open-source license1. As its name suggests the tool can be used for the

visualization and labeling of eye-tracking data and does not contain eye movement

classification functionality. If the output of an algorithm needs to be visualized, the

algorithm has to be run in advance and its output is added as an extra attribute in

the ARFF file.

The labeling interface provides the necessary information through four panels and an

example is provided in Figure 3.1. The top-left panel displays the video itself overlaid

with the gaze samples from a 200 ms temporal window centered at the current time

(red circles represent past samples and gray circles future samples). The two right

panels display the x and y coordinates of the gaze data and the bottom-left panel its

speed. The speed panel applies low-pass smoothing in the computed speed because

without smoothing it usually returns noisy results. The smoothing is achieved by

computing the speed between consecutive samples that span 100 ms in time but

the temporal window can be changed by the user. Moreover, the background of all

three panels is color-coded based on the visualized attribute. When the attribute is

of nominal type then the nominal values are displayed in the top-left corner of the

panels, otherwise a set of default values is used as in the example screenshot below.

Also the three panels handle most of the user interaction with regard to the color-

coded panels. The following actions can be performed through the panels:

• Right-clicking and dragging moves the current position in time (backwards or

forwards according to the direction of the mouse movement).

• Scrolling the mouse wheel changes the temporal scale, i.e. increases or de-

creases (according to the scroll direction) the temporal window represented by

the plots on the right and bottom-left panels.

• Left-clicking and dragging a border expands or shrinks the adjacent intervals.

If a border is moved further than the interval duration then the interval is

deleted.

• Holding the left-click on an interval and pressing a number on the keyboard

changes the label of the interval. The legend provides information on the

correspondence between numbers and the assigned labels.

1https://gin.g-node.org/ioannis.agtzidis/gta-vi

https://gin.g-node.org/ioannis.agtzidis/gta-vi
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A

B

C

D

Figure 3.1: Screenshot of the labeling tool. The video with overlaid gaze traces
is playing in the top left (panel A), while x- and y-coordinates are plotted as a
function of time on the right (panels C, D). The bottom left panel (B) displays the
gaze speed in the same time window as the gaze panels. The longer duration of high
speed values during saccades in the speed panel is due to the low-pass filtering.

• The sequence of a left-click, a number key press and finally pressing the Insert

key inserts a new interval of the selected type spanning a temporal window

of +/- 40 ms around the current time; this interval can then be adjusted as

above.

• The sequence of a left-click and pressing the Delete key unassigns the label of

the selected interval.

The interaction is completed with some standard keyboard shortcuts:

• Pressing Space key starts playing or pauses the video.

• Pressing Ctrl-Z reverts the last change.

• Pressing Ctrl-Shift-Z acts as “redo” (reapplies the last canceled change).

3.3 Handling of 360-degree data

In order to be able to label 360-degree data with our tool we had to make some

changes regarding the labeling process and how the different coordinate systems

(head-fixed and world) of Section 2.4 could be handled. For the different coordinate
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systems we provide two modes of operation that we call field of view and eye+head

and for both of these we provide the option to assign secondary labels.

In the field of view (FOV) mode (Figure 3.2a), the annotator is presented with the

view of the scene that is defined by the corresponding head rotation of the subject

(the size of the visualized video patch roughly corresponds to the field of view that

the participant had in the VR headset). This view corresponds to the frame of

reference that moves together with the participant’s head and allows us to see the

actual visual stimulus that was perceived by the participant and to analyze the

eye-within-head gaze behavior.

In the eye+head (E+H) mode (Figure 3.2b), the full equirectangular video frame

is presented to the annotator. Visualizing gaze locations in this view enables the

annotator to see the combination of the head and eye movement, which corresponds

to the overall gaze in the frame of reference of the world (or the 360-degree camera,

to be more precise).

In both operation modes the x and y gaze coordinates as well as the gaze speed

are plotted over time as before. However, the coordinate systems used for these

plots differ between the two modes: In the FOV mode, the gaze coordinates and

the speed of gaze are reported in the head -centered coordinate system, whereas in

the E+H mode, the coordinates and the speed are reported in the world coordi-

nate system. This way, the FOV representation provides the annotator with the

eye motion information within the eye socket, while the E+H representation is re-

sponsible for highlighting the absolute movement of the foveated objects, which is

necessary for determining the precise label type, e.g. distinguishing between fixa-

tions and pursuits. The difference between the two modes is evident in the marked

areas of Figure 3.2.
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Eye-in-head speed (black), head speed (red), and
colour-coded primary labels

X coordinates of the eye-in-head gaze and
colour-coded primary labels

Field of View (FOV) video feed and eye-in-head gaze

Colour-coded secondary labels

Y coordinates of the eye-in-head gaze and
colour-coded primary labels

A B

A

B

Colour-coded secondary labels

(a) FOV mode

Eye-in-world speed (black), head speed (red), and
colour-coded primary labels

X coordinates of the eye-in-world gaze and
colour-coded primary labels

Equirectangular video feed and eye-in-world gaze

Colour-coded secondary labels

Y coordinates of the eye-in-world gaze and
colour-coded primary labels

A B

A

B

Colour-coded secondary labels

(b) E+H mode

Figure 3.2: Schematic of field-of-view (a) and eye+head (b) operation modes of the
hand-labeling tool together with panel description. Colored intervals correspond
to different primary (on three large panels) and secondary (bottom panels) labels.
Differences in gaze coordinates and speed patterns (e.g. intervals A and B) allow for
improved annotation.
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For 360-degree data we also display the head speed (red line in the speed panel) and

two more panels at the bottom of the interface for the visualization of the secondary

labels, which are used for the description of the gaze samples in more detail (e.g.

fixation together with VOR). The secondary panels have the same behavior as the

interactive panels (explained in the previous section) but they can also add a new

interval that temporally matches the respective primary interval by double left-

clicking on the mouse. The value of the added interval is again here selected through

a number key press.





Chapter 4

Hand-labeled data sets

With the labeling tool of the previous chapter and by using the eye movement

definitions of Section 2.2.1 we have hand-labeled three large eye movement data sets

that span approx. 7 hours of recordings. Two of the labeled data sets represent

monitor-based experiments and they are based on previously published gaze data

sets. The last data set represents an HMD-based experiment that was recorded and

labeled in the context of this thesis. All the data presented in this chapter are made

publicly available with an open-source license1,2,3.

4.1 GazeCom data set

4.1.1 Data set description

Because the GazeCom [Dorr et al., 2010] data set is one of the three data sets

on which we built our work, we briefly describe its set-up and provide some basic

information here. The data set comprises 18 short naturalistic video clips (20 s each),

depicting everyday scenes. These include beach scenes, pedestrian and car-filled

streets, boats, animals, etc. There is little to no camera motion in the recorded clips

(11 out of 18 clips lack it completely, four have slow panning camera motion, and the

camera was slightly shaking in the other three), and the scenes themselves contain

both rigid (e.g. cars) and non-rigid (e.g. human or animal) motion at a variety of

speeds. These clips thereby form a set of dynamic and relatively naturalistic stimuli.

1https://gin.g-node.org/ioannis.agtzidis/gazecom_annotations
2https://gin.g-node.org/ioannis.agtzidis/hollywood2_em
3https://gin.g-node.org/ioannis.agtzidis/360_em_dataset
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All video clips were presented at 1280 × 720 pixels, 29.97 frames per second, at a

distance of 45 cm from the observers. The frames covered an area of 48× 27 degrees

of visual angle. The gaze of 54 participants was recorded at 250 Hz with an SR

Research EyeLink II eye tracker. Even though the eye tracker allowed for small head

motion, a chin rest was used to stabilize the participants’ heads. Some recordings

were discarded by the authors of the data set due to frequent (over 5%) tracking loss,

leaving 844 recordings in the published data set (46.9 per clip on average). These

data total 4.5 h of gaze tracking recordings, all of which we annotate and analyze in

the context of this work.

4.1.2 Labeling procedure

Before the annotators started labeling the data set the gaze samples were automat-

ically pre-labeled using our implementation of the saccade and fixation detection

algorithms of [Dorr et al., 2010] and an early version of the clustering algorithm

of [Agtzidis et al., 2016b] for the annotation of SP. The purpose of pre-labeling the

samples was to speed-up the labeling process since the annotators would mainly

have to adjust the borders and change the labels of the already present intervals

instead of adding all the intervals manually4.

The algorithmic labeling of the gaze samples prior to manual annotation allowed us

to roughly double the speed of the labeling process: For an expert annotator, the

labeling time decreased from ca. 10 to ca. 4 mins on average per single ca. 20 s record-

ing. This speed-up becomes more important considering that the GazeCom data

set comprises of 4.5 h of gaze recordings and that multiple passes were performed

during its labeling.

The labeling procedure involved novice and expert annotators. The novice annota-

tors were undergraduate students of the Technical University of Munich and they

were compensated for their work. Initially they received information about the

different types of eye movements that they were going to label along with some

representative examples. Throughout the duration of their work they were free to

ask for clarifications about ambiguous cases. In the first pass they were presented

with the pre-labeled suggestions and they were instructed to change them accord-

ingly. As an added quality assurance measure some of their first annotations were

visually inspected and feedback was provided for cases where the eye movement

4An evaluation of this method showed that the manual annotators were not biased by the
suggested intervals and this is specifically evident in the contribution of different eye movements
in the final SP amount (Figure 4.1).
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definitions of Section 2.2.1 were violated. Because their level of expertise and un-

derstanding of eye movements had changed at the end of the first annotation round

the novice annotators performed a second annotation pass. In the second pass they

were presented with their own annotations and they were instructed to change them

wherever they felt it was needed. The third (expert) annotator (the author of this

thesis) re-examined all the recordings in the data set and his main purpose was

to resolve disagreements between the first two annotators but he was also able to

change the labels wherever he felt it was appropriate.

4.1.3 Inter-rater agreement

In Table 4.1 we present how well the labels of the three annotators agreed in terms

of sample-level F1 scores. The event-level F1 scores are omitted because they are

quantitatively similar to the ones presented here. We can see the annotation of

fixations and saccades returns high agreement scores among annotators and different

passes of the same annotator. However, the agreement scores for SP are substantially

lower across the board. The final annotator, who was resolving conflicts between

the two final passes of the novice annotators, tended to agree the most with the

first of the two. Interestingly, the SP agreement scores between the two passes of

the novices are similar to the inter-rater agreement (excluding the 1final vs. final).

These low scores demonstrate the difficulty of labeling smooth pursuit in naturalistic

stimuli even when clear definitions are provided.

Table 4.1: Agreement between the initial (1ini and 2ini) and final (1final and 2final)
annotations of the two non-expert annotators, and all annotator pairs in the form
of sample-level F1 scores. The “final” label refers to the annotations of the third
(expert) rater, who consolidated the labels of 1fianl and 2final.

EM type
1ini vs.
1final

2ini vs.
2final

1final vs.
2final

1final vs.
final

2final vs.
final

Fixation 0.950 0.977 0.933 0.975 0.949
Saccade 0.904 0.951 0.863 0.937 0.883
SP 0.787 0.796 0.629 0.904 0.697

4.1.4 Hand labeling statistics

Labeling the full Gazecom data set lasted the equivalent of several months of full-

time work (including the two passes through the whole data set for each of the
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two novice annotators). On average for all three annotators, labeling one GazeCom

recording (usually ca. 20 s) took between 5 and 6 minutes, which is equivalent to

a labeling time of 15–18 s for each second of the recorded gaze signal. The labeling

process also benefited from pre-labeling the gaze signal, which more than doubled

the labeling speed.

Figure 4.1 visualizes the changes in labels between the suggested (algorithmically

pre-labeled) and the final hand-labeled eye movement samples, in the form of a con-

fusion matrix. The matrix cells sum to 1.0 and therefore each individual cell contains

the overall share (e.g. 6.5% of the samples were suggested as part of a fixation but

were changed to SP). The colors in the matrix (see color bar of the figure) represent

how much each suggested label contributed to the final “ground-truth” label, i.e.

the color values are normalized per column and if the suggestions were perfect only

the diagonal would be brightly colored. We observe that the majority of the sam-

ples for fixations and saccades were correctly suggested by the algorithms (over 90%

of final labels came from the corresponding cell in the suggestions). However, ca.

59% of the final SP labels were suggested as fixations and only 27% was correctly

suggested. Also for the noise label most of the final labels were initially unassigned

and around 30% came from saccades that were forming part of blinks but the eye

tracker returned a signal similar to a rapid eye movement because video-oculography

[Holmqvist et al., 2011, p. 177] was used for the recording of the GazeCom data set.

Figure 4.1: Confusion matrix for the pre-labeled and manually annotated eye move-
ment samples. Rows correspond to the suggested eye movement labels, columns –
to the final hand-labeled classes. The color bar on the right does not match the
numbers in the cells because cell color reflects the share of samples in the final
hand-labeling that were originally pre-labeled as the respective suggested classes
(i.e. per-column normalization is employed; cf. the color bar on the right).
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Figure 4.1 already reflects the proportions of samples that each eye movement type

was allocated during the pre-labeling or manual labeling phase (these numbers can

be obtained by summing either the matrix rows or columns, respectively). In Ta-

ble 4.2 we provide these numbers together with the corresponding number of episodes

(periods of time where consecutive samples have the same label). From the table we

see that the percentages and number of episodes for fixations and saccades have not

changed substantially. On the contrary, the percentage of SP has increased more

than threefold (from 3.3% to 11%) and the corresponding number of episodes from

ca. 3000 to ca. 4500. To conclude, we can say that the suggested labels were changed

substantially and most of the changes appeared in the SP and noise labels.

Table 4.2: The overall percentage of gaze samples and number of episodes of all eye
movement types in the algorithmically suggested (“pre-labeled”) labels and the final
set of labels produced in our annotation procedure.

EM type Suggested label Final expert label
Share Episodes Share Episodes

Fixation 76.2% 39,293 72.6% 38,629
Saccade 10.7% 40,233 10.5% 39,217
SP 3.3% 2879 11% 4631
Noise 2.5% 6319 5.9% 3493
Unassigned 7.3% 27,165 0% 0

4.1.5 Basic statistics

Overall, the hand-labeled GazeCom data set contains 38,629 fixations, 39,217 sac-

cades, and 4631 SP episodes (Table 4.2). While the number of SP episodes may

seem small there are more pursuit than saccade samples (11% vs. 10.5%).

Further down we visualize some basic and commonly used (e.g. [Salvucci and Gold-

berg, 2000, Komogortsev and Karpov, 2013, Santini et al., 2016, Zemblys et al.,

2018b, Startsev et al., 2019a]) statistics of the ground-truth fixations, saccades, and

pursuits.

Figure 4.2a visualizes the distribution of the overall speed, duration, and amplitude

of the events of each eye movement class. Notably, some average saccade speeds

(Figure 4.2a) were very low due to the inclusion of PSOs in our definition, but

overall very fast compared to the other two classes. Smooth pursuits, on the other

hand, are expectedly faster than fixations on average, but there is a substantial

overlap between the two classes in terms of their average speed, as it is evident
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from the quartile lines (vertical dashed lines) in the figure. This overlap makes the

distinction between drifting fixations and SP more challenging, at least when purely

speed-based thresholding is concerned.

Examining event durations (Figure 4.2b), saccades are again clearly separable from

the other two types as their maximum duration does not exceed 100 ms. By contrast,

75% of fixation and SP intervals lasted longer than 200 ms, and their overall duration

distributions almost perfectly overlap.

Finally, the amplitude distributions of the three eye movement types (related to

the dispersion feature used by classifiers) is presented in Figure 4.2c. Here, a fair

separation between fixations and saccades would be possible with a single threshold,

but the distribution of SP amplitudes in this data set significantly overlaps with both

of the other distributions.
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Figure 4.2: Overall per-episode speed, duration, and amplitude distributions for
fixations, saccades, and smooth pursuits. These are the (normalized) histograms,
which were computed for each eye movement type independently with 50 equal-sized
bins covering each respective speed range. These were then plotted here in log-scale
(see x-axis), with the y-axis representing the share of episodes in each of the bins.
The dashed vertical lines visualize the quartiles (first and third) of the respective
distributions. Note that since the horizontal axis is in log-scale, it is difficult to
visually compare the areas under different parts of the curves. For example, for
fixations (red solid line), 50% of the labeled episodes (between the first and third
quartile lines) had an overall speed between 1 and 3◦, as indicated by the left and
right vertical red lines, respectively.

Figure 4.3 visualizes the angular deviation of the sample-to-sample gaze direction
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Fixation direction distribution
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Smooth pursuit direction distribution
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Saccade direction distribution
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Figure 4.3: Directional deviation distributions for fixations (a), pursuits (b), and
saccades (c) presented as circular histograms. To decrease the effect of noisy record-
ings we compute the directional deviation in 16 ms windows that move one sample
at a time. The height of each bar represents the share of the velocity vectors with
the given angular deviation from the overall direction of their corresponding episode.
Zero deviation angle means perfect alignment with the overall direction of the re-
spective episode.

from the overall episode direction in the form of a circular histogram. Values close to

zero mean that the gaze course in the given movement is almost co-directional with

the overall episode direction. From the figure we observe that each eye movement

type has a distinctly different pattern from the other two. Fixations are the most

evenly distributed (Figure 4.3a) but they are not exactly uniform around the circle

due to the fact that minuscule gaze shifts or eye-tracking drifts would result in

biasing the distribution. SPs (Figure 4.3b) have a more pronounced peak around

zero and this is to be expected due to the existence of a pursued moving target.

Finally, saccades (Figure 4.3c) have the most pronounced peak and the majority of

the values are found in the two bins around zero. These distinct directional patterns

among fixations, saccades, and SPs demonstrate that they are valid features for eye

movement classification and researchers have already demonstrated this [Larsson

et al., 2016, Startsev et al., 2019a].

4.2 Hollywood2 data set

4.2.1 Data set description

The second hand-labeled data set is based on the gaze recordings of the Hollywood2

data set [Mathe and Sminchisescu, 2012] and provides the labels for a subset of it
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(approx. 130 minutes). The Hollywood2 data set was recorded, as its name sug-

gests, with Hollywood movies (movie excerpts, to be precise) as stimuli. It contains

ca. 20 hours of gaze recordings. The purpose of the data set was action recognition

through eye movements, and the pool of 16 eye-tracking experiment participants

was split into two groups. The task of the “active” subgroup (12 subjects) was to

assign one of the 12 action classes to each video clip while their eye movements were

recorded. The “free viewing” subgroup (4 subjects) had no task and was simply

watching the video clips. The participants’ head was stabilized with a chin rest and

the eye movements were recorded monocularly for the dominant eye at 500 Hz with

an SMI iView X HiSpeed 1250 eye tracker. A relatively high eye tracking accuracy

of 0.75 degrees was achieved via a 13-point calibration procedure at the beginning

of each recording block, plus a validation step at the end – if the validation accuracy

fell outside these limits, the data were discarded.

4.2.2 Labeling procedure

Again, here we used the labeling tool of Chapter 3 for the labeling of eye move-

ments. On each gaze recording two human annotators worked sequentially. The first

labeler was a paid student at the Technical University of Munich, working part-time

(8 h/week for 22 weeks). She obtained basic knowledge about eye movements from

following a relevant course and additional clarifications from the authors. She was

also provided with representative examples for the eye movement definitions from

the previous section in action in the context of the labeling interface. During the

full duration of the labeling process, experts were available to answer any of her

questions. Randomly chosen annotated files were periodically visually inspected by

the authors, and feedback was provided.

To speed up the annotation process, the gaze files were pre-segmented with the

I-VVT algorithm [Komogortsev and Karpov, 2013] with default parameters before

being processed by the first annotator. By providing the automatically detected

intervals, even if those were poorly aligned with the actual eye movements, the

task of the annotator was simplified to mainly merging intervals and correcting

their temporal location, instead of constantly adding new intervals one by one and

then correcting their borders. By using the I-VVT algorithm instead of a more

elaborate approach (see Section 5.3), the labeler could not leave the suggested labels

uncorrected: The outputs of I-VVT on our data were very noisy, meaning that the

first annotator had to carefully inspect the full file, thus decreasing the potential of

labels being biased by the algorithmic pre-segmentation. For the amount of changed
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samples per eye movement type see Table 4.4.

The second annotator (the author of this thesis) then performed the final pass over

all the gaze files. The second labeler could freely modify the gaze event intervals

wherever it was deemed necessary. The labels yielded by this labeler we consider as

final.

4.2.3 Inter-rater agreement

We here report the agreement between the novice and expert annotators similarly

to Section 4.1.3. We can see that the agreement between the two annotators is very

high, with the final annotator making only minor changes. These agreement levels

are roughly the same as those between the first and final annotator of the GazeCom

data set.

Table 4.3: Agreement between the first and final annotations corresponding to the
novice and expert annotators. Values correspond to sample-level F1 scores.

EM type 1 vs. final

Fixation 0.943
Saccade 0.911
SP 0.890

4.2.4 Hand labeling statistics

The hand-labeling process required approximately 230 hours of labor for labeling

130 minutes of gaze data. The time was roughly split into 170 hours for the novice

labeler and 60 for the expert. Based on these durations each second of gaze record-

ing required 106 s of human time to label. This value is higher than the number

reported in GazeCom (Section 4.1.4: 15 to 18 s) even when we consider all five la-

beling passes. This discrepancy can be attributed to two main factors. First, for

the pre-labeling of Hollywood2 we used a much simpler algorithm and the annotator

had to change more samples (Figure 4.4) in comparison to GazeCom (Figure 4.1).

Second, in Hollywood movies camera motion is very common and can follow very

complex patterns (combination of panning and zooming), which makes the distinc-

tion between fixations and SP more challenging than in the GazeCom data set where

camera motion is very limited.
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Figure 4.4: Confusion matrix for the pre-labeled and manually annotated eye move-
ment samples. Rows correspond to the suggested eye movement labels, columns –
to the final hand-labeled classes. The color bar on the right does not match the
numbers in the cells because cell color reflects the share of samples in the final
hand-labeling that were originally pre-labeled as the respective suggested classes
(i.e. per-column normalization is employed; cf. the color bar on the right).

Table 4.4: The overall percentage of gaze samples and number of episodes of all eye
movement types in the algorithmically suggested (“pre-labeled”) labels and the final
set of labels produced in our annotation procedure.

EM type Suggested label Final expert label
Share Episodes Share Episodes

Fixation 80.2% 96,643 62.4% 14,643
Saccade 5.6% 19,807 9.1% 15,082
SP 6.4% 99,460 24.2% 5649
Noise 7.7% 21,708 4.3% 1045
Unassigned 0% 0 0% 0

In Table 4.4 we provide the percentages of the suggested and final labels, which is

equivalent to the summation of Figure 4.4 row and column-wise. As can be seen

the annotators had to change the provided suggestions substantially and especially

for SP, which increased from 6.4 % to 24.2 %. Also we can observe that the I-VVT

algorithm is very prone to return very short intervals as it is evidenced by the second

column of the table. These results are in stark contrast with Table 4.2, where a more

elaborate suggestion algorithm was used.
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4.2.5 Basic statistics

Overall, the hand-labeled subset of the Hollywood2 data set contains 14,643 fixa-

tions, 15,082 saccades, 5649 SP episodes. Here, the number of SP episodes is lower

than the other two eye movement classes, as in GazeCom, but here its overall per-

centage is much higher than in Gazecom (24.2 % vs. 11 %). Based on the negligible

difference in the SP share between the “active” and the “free viewing” groups in

the current data set (24% vs. 24.3%), the difference in the amount of SP between

the GazeCom and Hollywood2 data sets likely originates from the different stimuli

types (Hollywood movie clips vs. naturalistic videos), and not from the task of the

observers (free-viewing vs. action recognition).

In Figure 4.5 we visualize again the distribution of speed, duration, and amplitude

for each eye movement class in Hollywood2. These distributions are almost identical

to the equivalent distributions of the GazeCom data set (Figure 4.2). The directional

deviation of Figure 4.6 also follows a similar as before.
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Figure 4.5: Overall per-episode speed, duration, and amplitude distributions for
fixations, saccades, and smooth pursuits. These are the (normalized) histograms,
which were computed for each eye movement type independently with 50 equal-sized
bins covering each respective speed range. These were then plotted here in log-scale
(see x-axis), with the y-axis representing the share of episodes in each of the bins.
The dashed vertical lines visualize the quartiles (first and third) of the respective
distributions. Note that since the horizontal axis is in log-scale, it is difficult to
visually compare the areas under different parts of the curves.
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Fixation direction distribution
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Saccade direction distribution
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Figure 4.6: Directional deviation distributions for fixations (a), pursuits (b), and
saccades (c) presented as circular histograms. To decrease the effect of noisy record-
ings we compute the directional deviation in 16 ms windows that move one sample
at a time. The height of each bar represents the share of the velocity vectors with
the given angular deviation from the overall direction of their corresponding episode.
Zero deviation angle means perfect alignment with the overall direction of the re-
spective episode.

4.3 360-degree data set

The previous two data sets provided us with ground-truth eye movement labels for a

diverse set of stimuli that were displayed on a monitor. Here we move a step closer

to full immersion by hand-labeling the eye movements in a free viewing data set

that was recorded in an HMD with monocular 360-degree equirectangular videos as

stimuli.

4.3.1 Data set collection

Here, we had to gather our own data set because so-far the publicly available 360-

degree video-based gaze data sets provide only scanpaths. The scanpaths comprise

of a time series where each point represents many gaze samples (usually spanning

100 ms) of the gaze signal. However, gathering a data set of eye-tracking recordings

for 360-degree videos differs from the common monitor-based experiments. The

experimental set-up, the selection criteria for the used stimuli, as well as the way

drifts are handled during recordings are all influenced by the new stimulus type. Our

choices and the full data collection procedure are described in more detail below.
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Hardware and software

For data gathering we used the FOVE5 virtual reality headset with an integrated

120 Hz eye tracker. For video presentation we used the integrated media player of

SteamVR6, which supports 360-degree content including the equirectangular video

format. A small custom C++ program was used to handle the eye-tracking record-

ings and store them to disk. The data that we stored for each recording include

(i) x and y coordinates of the gaze point on the full 360-degree video surface in

equirectangular coordinates, (ii) the same x and y coordinates of the head direction,

as well as its tilt. This allowed us to disentangle the eye motion from the head

motion (computing the eye-in-head motion) and to reconstruct the gaze position in

each participant’s field of view. We also stored (as metadata) the dimensions of the

headset’s field of view (in degrees and in pixels).

In order to make a recording, the experimenter would start the C++ program from

the command line with the size of the equirectangular video as parameters. After

this the video was loaded in the SteamVR media player and was moved to its first

frame after pausing it. All this time our program waits for the Ctrl-A keyboard

shortcut to start recording. When it detects the shortcut it emits a play signal to

the Steam VR media player and at the same time it starts polling the FOVE SDK

for new eye and head data. After the end of the video the same shortcut stops

recording.

For the presented videos we kept their original sound. In all clips but two it corre-

sponded to the environment noises (the two exceptions had silence and an overlaid

soundtrack). Sound has a bearing on eye movements during monitor-based video

viewing [Coutrot et al., 2012], and should affect the viewers even more in virtual

environments as noises may induce head rotation towards video regions that would

otherwise never be in the field of view.

In our experimental set-up the participants were sitting on a swivel chair with the

headset and headphone cables suspended from a hook above the subject’s head (Fig-

ure 4.7). This allowed the subjects to swivel on the chair freely, without interference

from the cords, which could have otherwise led them to avoid head rotation. In

addition to the discomfort of feeling the attached cables, unless those are suspended

from above, their stiffness would have likely caused the displacement of the headset

relative to the observer’s head during the experiment, thus lowering the quality of

eye-tracking recordings. The experimenter was sitting in front of the participant with

5https://www.getfove.com
6https://store.steampowered.com/steamvr

https://www.getfove.com
https://store.steampowered.com/steamvr
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the computer monitor turned towards the experimenter so that the HMD tracking

quality and eye camera feeds could be controlled throughout the experiment.

Figure 4.7: Experimental setup for 360-degree gaze recordings.

Stimuli

The assembled video collection includes 14 naturalistic clips from YouTube and

one synthetically generated video. All the naturalistic data are licensed under the

Creative Commons license7. We give attribution to the original creators of the

content by providing the YouTube IDs of the original videos together with our

data set. The selected clips represent a diverse set of different categories of scene

content and context, e.g. static camera, walking, cycling, or driving, as well as

such properties as the content representing an indoors or an outdoors scene, the

environment being crowded or empty, urban or mostly natural. Representative

sample scenes are provided in Figure 4.8. The duration of the complete videos varied

greatly, and we decided to use a maximum of one minute per stimulus. For each of

these clips, we extracted a continuous part of the original recording that contained

no scene cuts to preserve the immersion. The details for each video (name, scene

categories, duration) are listed in Table 4.5.

In addition, we generated one stimulus clip synthetically for a more controlled sce-

nario. The circular gaze target we used for this part of the experiment followed the

recommendations of [Thaler et al., 2013] in order to improve fixation stability. It

7https://creativecommons.org/licenses/by/3.0/legalcode

https://creativecommons.org/licenses/by/3.0/legalcode
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Figure 4.8: Sample scenes taken from our 360-degree data set. They are presented
in their original equirectangular format and on the top-left corner of each scene we
display the name of the video that it was taken from. The full list of the videos is
presented in Table 4.5.

measured two degrees of visual angle in diameter and was displayed in white on a

black background. For simplicity, we neglected the idiosyncrasies of the equirectan-

gular format for the stimulus generation here, as the target always stayed close to

the equator of the video, meaning that shape distortions would be negligible.

The synthetic clip we generated consisted of five phases. Each phase started with

a short instruction set (displayed for ca. 7 s), after which the fixation gaze target

appeared. The first four phases lasted 10 s after the stimulus appeared and were

designed (together with their respective instructions) to induce (i) eye movements

that are typically seen in controlled lab settings: fixations, saccades, and smooth

pursuits, all without excessive head motion, (ii) VOR with voluntary head motion

while maintaining a fixation on a stationary target, (iii) “natural” long pursuit,

without any additional instructions (an arbitrary combination of body or head ro-

tation, VOR, and smooth pursuit), where the target moved with a constant speed

of 15◦, covering 150◦, and (iv) a special combination of VOR and smooth pursuit,

when the eyes are relatively stationary inside the head, but the gaze keeps track

of a moving target. We refer to the latter type of eye-head coordination as “head
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Table 4.5: Used Video Stimuli

Video Name Categories Duration

01 park static camera, nature, empty 1:00
02 festival static camera, urban, busy 1:00
03 drone drone flight, urban, very high 1:00
04 turtle rescue static camera, nature, busy 0:38
05 cycling cycling, urban, busy 1:00
06 forest walking, nature, empty 1:00
07 football static camera, nature, busy 1:00
08 courtyard static camera, urban, busy 1:00
09 expo static camera, indoors, busy 1:00
10 eiffel tower static camera, urban, busy 0:57
11 chicago walking, urban, busy 1:00
12 driving car driving, urban, busy 1:00
13 drone low drone flight, urban, empty 1:00
14 cats static camera, urban, busy 0:43
15 synthetic moving dot 1:25

pursuit”. During the fifth phase, OKN was induced by targets rapidly moving for a

short period of time (at 50 degrees symmetrically around the center of the video),

disappearing, and then repeating the motion, covering 25◦ on each pass. Both left-

to-right and right-to-left moving targets were displayed with a 2.5 s pause between

the sequences of same-direction target movement (5 s each).

Experimental procedure

In order to be able to detect and potentially compensate for eye tracking quality

degradation, we added a stationary fixation target at the beginning (for 2 s) and the

end (for 5 s) of each video clip. Overall, the 15 videos had a cumulative duration

of ca. 17 minutes including these fixation targets. The recording process was split

into three sessions for each participant. During the first and the second sessions,

7 naturalistic videos were presented in succession. The last session only included

the synthetic video. The participants could have an arbitrary-length break between

the sessions. The eye tracker was calibrated through the headset’s built-in routine

shortly before every recording session. We then empirically and informally validated

the calibration using the FOVE sample Unity project8 where the participant’s gaze

is visualized. If the quality was deemed insufficient, the calibration procedure was re-

peated. We accounted for eye-tracking drifts between recordings of the same session

8https://github.com/FoveHMD/FoveUnitySample

https://github.com/FoveHMD/FoveUnitySample
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by performing a one-point re-calibration with the fixation target at the beginning

of each video.

The naturalistic videos were presented in a pseudo-random order (same for all sub-

jects); the synthetic clip was presented last not to prompt the observers to think

about the way they moved their eyes before it was necessary. If the participant

at any point was feeling unwell, the recording was interrupted. Afterwards, a new

calibration was performed, the unfinished video was skipped, and the recording

procedure was continued from the next clip.

Overall, we recorded gaze data of 13 subjects (10 m / 3 f; 27.2 ± 4.6 y; for optical

correction status see the data set). The number of recordings per stimulus video

clip was between 11 and 13 (12.3 on average) because two of the participants felt

unwell at different points during the experiment. Overall, our recordings amount to

ca. 3.5 h of eye-tracking data in total.

4.3.2 Manual annotation

When working with 360-degree equirectangular videos, the natural visualization of

the recording space is the camera (or the observer’s head) placed at the center of

a sphere that is covered by the video frame pixels. Computationally, this directly

matches the equirectangular video representation, where the x and y coordinates

on the video surface are linearly mapped to the spherical coordinates of this sphere

(longitude and latitude, respectively). Since the field of view is limited (up to 100◦

in our HMD), the observers will use head rotation (as in everyday life) to explore

their surroundings, so this aspect of the viewing behavior needs to be accounted for

both in the definitions of the eye movements and the annotation procedure.

Definitions

In order to fully describe the interplay of the movement of the head and the eyes,

we cannot assign just a single eye movement label to every gaze sample, since the

underlying process may differ when eye-head coordination is involved. Therefore,

we used two labels for each gaze sample, which we refer as primary and secondary

labels. Following the recommendations of [Hessels et al., 2018], we defined the

eye movements that we annotated in Section 2.2.1 to avoid potential confusion in

terminology. We did not include post-saccadic oscillations or microsaccades in our
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annotations as the headset’s eye tracker frequency and precision did not permit their

confident localization by the annotator.

The primary label was necessarily assigned to all gaze samples and characterized

fixations, saccades, SP, and noise.

The secondary label was not assigned to all the gaze samples and was used to de-

scribe in more detail how the primary eye movements were executed and were mostly

a consequence of head motion (except for OKN). The secondary label could take

one of the following values: vestibulo-ocular reflex (VOR), optokinetic nystagmus

(OKN) or nystagmus, VOR + OKN, head pursuit, unassigned.

Labeling procedure

To thoroughly describe the labeling process, we focus primarily on the information

that was available to the manual annotator during this process. At first, we used

a two-stage annotation pipeline, with stages corresponding to different frames of

reference (for the visualized gaze speed and coordinates), sets of assigned labels,

and projections used for the scene content display. We refer to these stages (or

modes of operation) as field of view and eye+head.

In the field of view (FOV) mode, the annotator is presented with the view of the

scene that is defined by the corresponding head rotation of the subject (the size of the

visualized video patch roughly corresponds to the field of view that the participant

had in the VR headset). This view corresponds to the frame of reference that

moves together with the participant’s head and allows us to see the actual visual

stimulus that was perceived by the participant and to analyze the eye-within-head

gaze behavior.

In the eye+head (E+H) mode, the full equirectangular video frame is presented to

the annotator. Visualizing gaze locations in this view enables the annotator to see

the combination of the head and eye movement, which corresponds to the overall

gaze in the frame of reference of the world (or the 360-degree camera, to be more

precise).

In both operation modes, the currently considered gaze sample as well as previous

and future gaze locations (up to 100 ms) are overlaid onto the displayed video surface.

In addition, the plots of the x and y gaze coordinates over time, as well as the plot

of both the eye and the head speeds are presented (see Figure 3.2a and 3.2b for

the FOV and E+H mode examples). The coordinate systems used for these plots,
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however, differ between the two modes: In the FOV mode, the gaze coordinates

and the speed of gaze are reported in the head -centered coordinate system, whereas

in the E+H mode, the coordinates and the speed in the world coordinate system

are visualized. Figure 2.2 visualizes and summarizes these two coordinates systems

with the only difference in this data set being that their start coincides. This way,

the FOV representation provides the annotator with the eye motion information

within the eye socket, while the E+H representation is responsible for highlighting

the absolute movement of the foveated objects, which is necessary for determining

the precise label type, e.g. distinguishing between fixations and pursuits.

The manual annotator began (i.e. the first stage) with the FOV operation mode and

assigned all primary eye movement labels without taking head motion into account:

Ballistic eye-in-head motion would correspond to saccades, relatively stationary (in

the coordinate system of the head) gaze direction – to fixations, smoothly shifting

gaze position – to pursuits (provided that a correspondingly moving target existed

in the scene), etc. To speed up the process, we pre-labeled saccades with the I-VT

algorithm of [Salvucci and Goldberg, 2000], applied in the FOV coordinates (instead

of the coordinates of the full equirectangular video) with a speed threshold of 140◦.

The labeler then went through each recording, correcting saccade limits or inserting

missed ones, assigning fixation, SP, and noise labels, inserting new events where

necessary. OKN was labeled in this stage as well because the sawtooth pattern of

the eye coordinates was more visible without the head motion effects.

After the annotator felt confident about the first labeling stage results, the second

stage would begin: The annotator went through the video again, this time – in

the E+H operation mode. On the second pass, the previously assigned primary

labels were visible and needed to be re-examined in the context of the eye-head

coordination, with respective additions of the secondary labels:

• SP to fixation: If the primary SP label of the first stage corresponded to the

foveation of a stationary (in world coordinates) target, the label was changed to

fixation, and a matching VOR episode was added to the secondary labels. If the

SP episode in question belonged to an OKN episode, the respective part of the

latter was re-assigned to the OKN+VOR class.

• Fixation + head pursuit : If the primary fixation label of the first stage (i.e. little

to no movement of the eye within its socket) corresponded to following a moving

(in world coordinates) target, the secondary “head pursuit” label was added.

• If the primary SP label was maintained in the second stage in the presence of

head motion, a VOR episode was added to the secondary labels.
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The annotation was performed by the author of this thesis, who first annotated

five minutes of pilot data in order to familiarize himself with the procedure and

the interface. Labeling a single recording (of about a minute of gaze data) took

between 45 min and 1 h. In total, our annotations cover about 16% of the data (two

recordings per stimulus clip) and amount to ca. 33 min.

4.3.3 Basic statistics

Overall, the hand-labeled part contains 33 min of manually annotated data that

are split into a training and a test set in order to enable easier development and

evaluation of automatic labeling algorithms. Each set consists of 15 recordings with

one hand-labeled recording for each of the data set videos (for all the included videos

see Table 4.5). To further make the two sets more separable the recordings in each

one of these come from unique non-shared subjects (subjects 2 to 9 in the training

set; subjects 10 to 14 in the test set). In the collected data set (train and test

sets together) 75.2% of the samples are labeled as fixations (4035 events), 10.4%

as saccades (3837 events), 9.8% as SP (518 events), and 4.6% as noise (524 events)

for the primary eye movement classes. These percentages are very close to the

percentages of the GazeCom data set (Section 4.1.5), which is a free viewing data

set too, and demonstrate that SP is a vital eye movement for the comprehension

of our environment even when the head is allowed to move freely. The secondary

eye movement labels include 27.6% VOR (1728 events), 15.8% of a combination

of OKN+VOR (286 events), 0.8% OKN without VOR (19 events), and 1.5% head

pursuit (52 events) with the rest being left unassigned. It is worth mentioning that

the head pursuits did not occur only during the synthetic clip viewing, where in

one of its tasks the participants were instructed to follow a target with their head

while trying to hold their eyes steady, but also during the free viewing of naturalistic

stimuli. Also 48 % of the time the head was moving with more than 10◦/s and due

to its almost continuous movement we observe the high percentage of VOR, which

counteracts the head movement and stabilizes the point of regard.

4.3.4 Discussion

In Figure 4.9 we visualize the speed, duration, and amplitude distributions for the

primary eye movement types as they appear in the E+H mode, which is equivalent

to their projection in the world coordinate systems. The E+H mode representation

enables us to visualize the eye movements without the influence of the head motion,
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which is not possible in the FOV mode. Here, the relationship among the eye

movements is no different than their relationship in the other two monitor-based

data sets (Figures 4.2 and 4.5), bare for the noisier plot lines that appear sometimes

due to the lower event count. But differences start to appear when we compare a

specific eye movement type across the three data sets.

The amplitude and speed of saccades, which are linearly dependent on one another

with the so-called “main sequence” [Bahill et al., 1975], are much higher in this data

set than in the other two. From the vertical green lines in Figure 4.9a we can see the

first speed quartile for this data set has roughly the same value as the third quartile

in Figures 4.2a and 4.5a. Similarly, here the saccade amplitudes are substantially

larger than in the other two data sets with their durations being comparable among

the three. These differences can be partially attributed to the much wider field of

view in the HMD (roughly double), which allows for bigger gaze shifts. Also, smooth

pursuits exhibit on average higher speeds and amplitudes in the current data set too.

But this difference most probably can be attributed to the video content and not to

the different experimental conditions because our SP definition requires a moving

target to be followed. For fixations the differences among the three data sets are

located in the amplitude and speed plots and in the current data set fixation intervals

with mean speed of a couple of degrees per second are not uncommon (first quartile

at 2◦/s).

As before in Figure 4.10 we present the deviation of samples in each interval from

the overall interval direction. Here the pattern is the same as in Figures 4.3 and 4.6

with the fixation deviation being more spread, the saccade deviation being very

concentrated around zero, and SP falling somewhere in between.
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Figure 4.9: Overall per-episode speed, duration, and amplitude distributions for
fixations, saccades, and smooth pursuits. These are the (normalized) histograms,
which were computed for each eye movement type independently with 50 equal-sized
bins covering each respective speed range. These were then plotted here in log-scale
(see x-axis), with the y-axis representing the share of episodes in each of the bins.
The dashed vertical lines visualize the quartiles (first and third) of the respective
distributions. Note that since the horizontal axis is in log-scale, it is difficult to
visually compare the areas under different parts of the curves. Additionally the
presented amplitudes were computed in the 3D space based on the equations of
Section 6.1.2.
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Figure 4.10: Directional deviation distributions for fixations (a), pursuits (b), and
saccades (c) presented as circular histograms. To decrease the effect of noisy record-
ings we compute the directional deviation in 16 ms windows that move one sample
at a time. The height of each bar represents the share of the velocity vectors with
the given angular deviation from the overall direction of their corresponding episode.
Zero deviation angle means perfect alignment with the overall direction of the re-
spective episode.
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In this part of the thesis we move from the tedious process of manually annotating

eye movements to algorithmically detecting them. In Chapter 5 we propose two

new algorithms that achieve state-of-the-art performance for monitor-based experi-

ments. The first algorithms detects smooth pursuit by using a clustering algorithm

and was published in [Agtzidis et al., 2016b] with its open-source implementation

developed by Mikhail Startsev [Startsev et al., 2019b]. The second algorithm uses

a deep network architecture for the detection of fixations and saccades along with

smooth pursuit and was published in [Startsev et al., 2019a]. The development of

the network architecture was the work of Mikhail Startsev.

Then Chapter 6 moves towards automatic eye movement detection in 360-degree

content. This chapter contains techniques that allow for the conversion of pre-

existing algorithms in the 360-degree domain together with techniques that allow

for the conversion of the gaze data instead of the algorithms. These techniques have

been published in [Agtzidis and Dorr, 2019]. Then we introduce a new algorithm

that was developed specifically for content that allows free head motion [Agtzidis

et al., 2019].



Chapter 5

Eye movement segmentation in

monitor-based experiments

5.1 Smooth pursuit detection based on multiple

observers

As people explore their surroundings they tend to attend to the same areas. This ob-

servation allows predicting the gaze behavior of future participants from previously

recorded gaze patterns through computational saliency models both in static [Itti

and Koch, 2000, Kienzle et al., 2009, Kümmerer et al., 2016] and dynamic stim-

uli [Zhong et al., 2013, Startsev and Dorr, 2018]. Also this shared behavior can be

influenced either by a given task [Yarbus, 1967, Rothkopf et al., 2007] or the scene’s

content [Võ et al., 2019, Healey and Enns, 2011].

Our algorithm takes advantage of the similar behavior among multiple observers

when they watch the same scene, which is common in eye-tracking experiments, in

order to improve the detection of SP. In brief it first removes fixations and saccades

from the gaze recordings with the remaining samples being considered as SP can-

didates. Then the SP candidates across all observers are handled together and a

portion of these is marked as actual SP based on a clustering method that works as

proxy to gaze trace similarity. We will refer to this algorithm as “sp tool”, which is

the name of its publicly available implementation1.

1https://github.com/MikhailStartsev/sp_tool
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5.1.1 Prefiltering

The separation of fixations and saccades from other eye movements can reach high

quality levels, as will be demonstrated in Section 5.3, even with relatively simple

algorithms. The easier separability arises from their well separated basic statistics

that have already been presented in Sections 4.1.5, 4.2.5, and 4.3.3. Therefore, in

the prefiltering step we remove confidently detected saccades, blinks, and fixations.

The prefiltering starts by detecting saccades with the detector of [Dorr et al., 2010]

that utilizes two speed thresholds and returns high quality results. Then we process

intervals of tracking loss and expand them to include saccades that start or end

within 25 ms of their border. Then the expanded intervals (including the saccades)

are marked as blinks. Fixations are processed in the intersaccadic space. If the gaze

shift within the intersaccadic interval is below 1.41◦ the whole interval is marked

as fixation. If not, a sliding with a duration of 100 ms is applied and fixations are

detected when the mean gaze speed falls below 2◦/s.

5.1.2 Clustering

After the pre-filtering step, all the remaining gaze samples from all the observers are

pooled together and are considered as pursuit candidates. Our algorithm processes

these candidates and creates clusters with a variation of the DBSCAN clustering

algorithm [Ester et al., 1996]. It is worth mentioning that this step differs from the

pre-filtering step, which processes the gaze trace of each observer independently.

The algorithm finds clusters of a predefined density and does not assume any shape

for the cluster (e.g. Gaussian mixture models) nor searches for a representative point

in the form of a centroid (e.g. k-means [MacQueen, 1967]). This particular attribute

is very appealing for our use case because pursued targets in dynamic natural scenes

can move at arbitrary directions with varying speeds.

More specifically DBSCAN divides the pursuit candidates into three categories based

on the number of neighbors that each point has within a user defined distance

(parameter ε). (i) Core points are the points that have at least a certain number of

neighbors (parameter minPts, user defined) within their neighborhood. (ii) Border

points are the points that are not core points but have at least one core point as

neighbor. (iii) Outliers are the points that do not fulfill any of the previous criteria

and are marked as noise by our algorithm. The core and border points are considered

as pursuit samples.
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An intricate point in applying DBSCAN in the eye movement domain is finding

a way to compare distances in time and space. Our solution modifies the original

algorithm and uses two distance thresholds for the neighborhood definition. The x

and y parameters are grouped together and a threshold εxy = 4◦ of visual angle is

used. Time t is considered independently with a threshold εt = 80ms. The net effect

of these two parameters is a neighborhood that has the shape of a cylinder with its

axis spanning the time domain. The number of neighbors threshold minPts was set

to 160. All the parameter values presented were optimized with the GazeCom data

set (Section 5.3.2).
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Figure 5.1: Visualization of clustering-based pursuit classification in one video of
our data set (ducks boat). Data points for all observers are presented. Correctly
detected smooth pursuit samples (in green) as well as detection errors (in red – false
detections, in blue – missed samples) of our SP detection algorithm in the sp tool
framework.

Figure 5.1 visualizes the SP detection results of our algorithm in the ducks boat clip

of the GazeCom data set. In this clip two ducks are flying across a lake as well

as across the camera field of view and appear in the gaze recordings as the two

big (predominantly green) clusters in the figure. Here, the green points represent

SP gaze samples that were detected by our algorithm (true positives) while the red

points represent other eye movements labeled as SP (false positives) and the blue

points represent missed SP samples (false negatives). We can see that most of the

pursuit intervals were correctly detected by our algorithm although some weaknesses

appear. Samples at the edge of the big clusters are missed due to a drop in cluster

density. Also the two small clusters at the bottom of the figure were wrongly labeled



56 Chapter 5. Eye movement segmentation in monitor-based experiments

as SP because a dense group of non-SP samples passed through the prefiltering step.

The elongated blue line at the top of the figure represents a single observer following

a target who was missed by our algorithm.

5.2 Deep learning eye movement segmentation

The basic eye movement characteristics of the hand-labeled data sets have already

demonstrated that high quality separation of all three eye movement types with sim-

ple thresholds is not feasible. Because of this, a deep learning approach would be

able to learn the more complex relationships among the different gaze features that

each eye movement type contains. This algorithm utilizes a series of 1D convolu-

tional layers followed by a one layer bidirectional long short-term memory network

(see Figure 5.2). Another defining point of this algorithm is the classification of

bigger gaze intervals instead of single samples [Hoppe and Bulling, 2016, Zemblys

et al., 2018a].

Features for classification

Because of the small size of the used architecture the network could not learn the

complex relationships between the raw x and y coordinates and therefore we pro-

vided it with additional pre-computed features. These features included speed,

acceleration, and direction of gaze on five different temporal scales (4, 8, 16, 32,

and 64 ms) in order to make them noise robust and let the network use the most

efficient combination of them. The use of speed as a classification feature has been

used extensively in other algorithms [Sauter et al., 1991, Salvucci and Goldberg,

2000, Komogortsev et al., 2010, Komogortsev and Karpov, 2013] and its usefulness

was demonstrated with the basic characteristics of our data sets. Acceleration has

also been used in literature [Collewijn and Tamminga, 1984, Nyström and Holmqvist,

2010, Behrens et al., 2010, Larsson et al., 2013] contrary to the gaze direction. Gaze

direction can aid in eye movement classification because SP is performed mostly

on the horizontal plane while drifts predominantly on the vertical plane [Ko et al.,

2016].

Additionally we conducted experiments with different feature combinations in order

to further enhance performance.
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Figure 5.2: The architecture of our 1D CNN-BLSTM network. Courtesy of [Startsev
et al., 2019a].

Network architecture

For the eye movement classification network a simple architecture consisting of one-

dimensional temporal convolution layers together with a Bidirectional LSTM was

used. The network is able to label fixations, saccades, SP, noise, and “unknown”.

Since we are labeling 1D time sequence the parameter count is relatively low (ca.

100000) in comparison with other deep architectures that are used for processing

images or videos. As can be seen from Figure 5.2 the network contains three convo-

lutional layers followed by a fully-connected layer. No pooling is used because the

network labels chunks of the gaze signal that contain many samples. Then a fully

connected layer follows before a final BLSTM layer.

5.3 Algorithm evaluation

In this section we present the evaluation results of the two proposed algorithms

along with 12 literature algorithms. All the algorithms were compared against the

two monitor-based hand-labeled data sets of Chapter 4. Our algorithms together

with three literature algorithms were optimized for the GazeCom data set and were

then tested in the Hollywood2 data set in order to obtain more objective perfor-

mance estimations. Here we start with the presentation of the literature algorithms,

followed by the optimization procedure, and finally with the evaluation results.

5.3.1 Literature algorithms

Several eye movement classification algorithms have been proposed throughout the

years with varying degrees of complexity. The majority of these do not provide a

publicly available implementation that would enable easier evaluation and compari-

son with newly proposed algorithms. But some algorithms have a publicly available
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implementation that is provided either by the original authors or other researchers

and here we are going to present 12 of these.

Eight of the evaluated algorithms are included in the publicly available and open-

source toolbox of [Komogortsev, 2014]. The toolbox is implemented in Matlab

and contains five algorithms that detect fixations and saccades only (I-VT, I-DT,

I-HMM, I-KF, I-MST) with rest detecting SP too (I-VVT, I-VDT, I-VMP). This

toolbox along with other implementations use the term velocity when they actually

use the length of the velocity vector. Therefore in this thesis we refrain from using

the term velocity and we use the more accurate speed. I-VT and I-DT [Salvucci and

Goldberg, 2000] are the simplest algorithms in the toolbox and they use a simple

speed or dispersion threshold for eye movement classification. Saccades are detected

when the measured characteristic is above threshold with the rest of the samples

labeled as fixations. I-HMM [Salvucci and Anderson, 1998] uses the transition prob-

abilities among the different eye movements via a Hidden Markov Model to improve

upon the I-VT. I-KF [Sauter et al., 1991, Komogortsev et al., 2010] uses a single

threshold but the used statistics are more elaborate. Initially the gaze speed is pre-

dicted with a Kalman filter, which is then compared to the actual eye speed through

a Chi-square test. A threshold on this test is used for the separation of fixations

from saccades. I-MST [Goldberg and Schryver, 1995] requires the user to provide

the maximum saccade duration, which is then used for the creation of a spanning

tree. Based on the point-to-point distances fixations are separated from saccades

based on a simple threshold.

The rest of the algorithms in the toolbox were developed for dynamic stimuli and

can also detect smooth pursuit. The I-VVT algorithm is an extension of the I-VT

algorithm and uses two speed thresholds instead of one. The samples above the

high speed threshold are marked as saccades, the samples between the thresholds

as SP, and those below the low threshold as fixations. I-VDT [San Agustin, 2010]

is a combination of the I-VVT and I-DT algorithms and it replaces the low speed

threshold of the earlier with the dispersion threshold of the latter. I-VMP [Ko-

mogortsev and Karpov, 2013] detects saccades with a high speed threshold similar

to the previous two algorithms. Then a window-based approach is used for the sep-

aration of fixations from SP with a threshold that uses motion characteristics such

as the magnitude and direction of movement.

[Dorr et al., 2010] provides two algorithms for fixation and saccade detection in

dynamic contexts. For saccade detection it employs two speed thresholds. The

high speed threshold is used for the initiation of a saccade, which is then expanded

forwards and backwards in time until the low speed threshold is reached. For the
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fixation detection it takes the dynamic nature of the content into account and tries

to avoid mistakenly label SP as part of it. Fixations are detected with a sliding

window that combines a dispersion and a speed threshold. When the requirements

are not fulfilled the samples are left unassigned because there existed too much

motion in the gaze signal. In our evaluation further down we consider these samples

as SP.

The toolbox of [Walther and Koch, 2006] contains the implementation of the algo-

rithms by [Berg et al., 2009], which were designed for dynamic stimuli. It initially

low-pass filters the gaze signal and then it computes its principal components (PCA)

in different temporal scales. The combination of the ratio of the principal axes to-

gether with the gaze speed are used for the separation of saccades from SP. The rest

of the samples are finally labeled as fixations.

[Larsson et al., 2015] proposed an algorithm that works in the intersaccadic space

and separates fixations from saccades. A publicly available re-implementation of it

was developed as part of this thesis2 and in order to provide a complete toolbox

the saccade detector of [Dorr et al., 2010] was included in it. In the intersaccadic

space a sliding window is used for the classification of fixations and SP based on

four criteria. Samples are labeled as fixations when none of the criteria are fulfilled

and SP when all the criteria are fulfilled. In cases where one to three criteria are

fulfilled the window is labeled based on its similarity with its neighboring already

labeled windows.

[Dar et al., 2019] proposed the REMoDNaV algorithm, which is an elaborate speed-

based detection algorithm and an extension of [Nyström and Holmqvist, 2010]. It

uses a multistep preprocessing pipeline with the aim of suppressing the recording

noise. Then the gaze trace is split into chunks that are separated by periods of

high gaze speed. These periods of high gaze speed together with detected saccades

as returned from the algorithm of [Nyström and Holmqvist, 2010] are marked as

saccades. At the end the intersaccadic intervals are low passed filtered and again an

adaptive speed threshold is utilized for the separation of fixations from SP.

5.3.2 Algorithm Optimization

Out of the 14 evaluated algorithms we optimized the two proposed algorithms of this

thesis together with the I-VDT, I-VVT, and I-VMP as provided from the toolbox

of [Komogortsev, 2014]. All the algorithms were optimized with the ground-truth

2https://www.michaeldorr.de/smoothpursuit/larsson_reimplementation.zip

https://www.michaeldorr.de/smoothpursuit/larsson_reimplementation.zip
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labels of the GazeCom data set and never saw the labels Hollywood2, which acted

as the test set.

For the clustering algorithm we randomly sampled the multi-dimensional parameter

space of our fixation and pursuit detectors, which enabled us to understand the

performance range of our detector and pick the values that returned the best average

F1 score by considering both the sample- and event-level F1 scores across all eye

movements types (fixations, saccades, SP). For more detailed information about the

used metrics refer to Section 2.5. The optimal parameters were presented together

with the algorithm in Section 5.1.

For the deep learning algorithm we ran experiments with different feature sets and

context sizes in order to identify the best architecture and most informative features.

The optimization was performed on the GazeCom data set, from which we sampled

50,000 windows with replacement after splitting it into training (90 %) and validation

(10 %) sets. The model that achieved the highest average F1 score had a context

size of 257 samples and used only the speed and direction features.

The I-VDT, I-VVT, and I-VMP were optimized through a grid search for all of

their parameters. Overall, the best parameter set for I-VDT was 80◦/s for the

speed threshold and 0.7◦ for the dispersion threshold. For I-VVT, the low speed

threshold of 80◦/s and the high threshold of 90◦/s were chosen. For I-VMP, the

high speed threshold parameter was fixed to the same value as in the best parameter

combination of I-VVT (90◦/s), and the best parameters for the window duration

and the “magnitude of motion” thresholds were 400 ms and 0.6 respectively.

5.3.3 Results

Evaluation on GazeCom

In Table 5.1 we display the scores of the 14 evaluated algorithms in descending

average F1 score order. From this table some interesting observations can be made.

Our algorithms occupy the first two spots with the 1D CNN-BLSTM algorithm

achieving the highest scores for five out of the six metrics. As expected the older

and simpler eye movement detection algorithms that do not detect SP occupy the

last spots. One exception is the I-VVT algorithm, which was designed to detect SP,

but during the optimization process attained the highest average score when it did

not detect it. This is evident by the almost zero sample- and event-level F1 scores
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but also from its two optimal “velocity” thresholds that are very close together at

80◦/s and 90◦/s respectively.

Table 5.1: GazeCom evaluation results as F1 scores for sample-level and episode-level detection (sorted
by the average of all columns). Table adapted from [Startsev et al., 2019a].

Sample-level F1 Event-level F1
Model average F1 Fixation Saccade SP Fixation Saccade SP

1D CNN-BLSTM+∗∗ (ours) 0.830 0.939 0.893 0.703 0.898 0.947 0.596

sp tool∗∗ (ours) 0.769 0.886 0.864 0.646 0.810 0.884 0.527
[Larsson et al., 2015] 0.730 0.912 0.861 0.459 0.873 0.884 0.392
I-VMP∗∗ 0.718 0.909 0.680 0.581 0.792 0.815 0.531
[Berg et al., 2009] 0.695 0.883 0.697 0.422 0.886 0.856 0.424
REMoDNaV 0.690 0.823 0.692 0.480 0.858 0.898 0.391
[Dorr et al., 2010] 0.680 0.919 0.829 0.381∗ 0.902 0.854 0.193∗

I-VDT∗∗ 0.606 0.882 0.676 0.321 0.823 0.781 0.152
I-KF 0.563 0.892 0.736 – 0.877 0.876 –
I-HMM 0.546 0.891 0.712 – 0.817 0.857 –
I-VVT∗∗ 0.531 0.890 0.686 0.000 0.778 0.816 0.013
I-VT 0.528 0.891 0.705 – 0.761 0.810 –
I-MST 0.497 0.875 0.570 – 0.767 0.773 –
I-DT 0.480 0.877 0.478 – 0.759 0.765 –

CNN-BLSTM results marked with + are for context window size of with 1 s (257 samples) and speed and direction
features. The ∗ signs mark the numbers where the label was assumed from context and not actually assigned by the
algorithm. Performance estimates for models marked with ∗∗ can be potentially optimistic because they were either
trained or optimized for this data set. In each column, the highest value is boldified.

The newer algorithms that can detect SP occupy the higher places in the table. On

average all of them can detect fixations very well and can achieve almost human-

level agreement with the final hand-labeler based on the comparison between the

scores in the current table with the hand-labeler agreement scores of Tables 4.1

and 4.3. Also for saccades they can reach human-level agreement based on the

event-level F1 score but they tend to not identify well the beginning and the end of

the saccadic intervals, which appears on the table as lower sample-level F1 scores.

This discrepancy can potentially arise from the difficulty in defining PSOs [Hooge

et al., 2015] and whether they are included in the saccadic intervals or not. Contrary

the SP detection performance is substantially lower in comparison to the other

two eye movement types both in sample and event-level terms. On this front our

algorithms significantly improve the detection of SP in comparison with the state-of-

the-art algorithms and the deep learning algorithm starts to approach human-level

performance.

However, we should mention that some of the algorithms presented in Table 5.1

(including ours) might have an unfair advantage in comparison to the rest of the

algorithms due to their training or optimization with the GazeCom data set (see

previous section). In order to get a more objective performance estimate we apply

again these algorithms on the previously unseen Hollywood2 data set and the results
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are presented below.

Evaluation on Hollywood2

Table 5.2 contains the evaluation results for the Hollywood2 data set. The overall

pattern for the eye movement detection quality stays the same as before with the

fixations being the best detected followed by saccades and then by SP. The GazeCom

optimized algorithms drop in performance with the most notable being the I-VMP

algorithm, which drops from 71.8 % to 46.7 % average F1 score and it is a clear

example of overfitting. The other previously optimized algorithms achieve a couple

of percentage lower average F1 scores with our algorithms’ performance decreasing

by 4.3 % and 6.6 % respectively. This small drop indicates that they have avoided

overfitting and can generalize well in new unseen contexts.

Table 5.2: Hollywood2 evaluation results as F1 scores for sample-level and episode-level detection
(sorted by the average of all columns).

Sample-level F1 Event-level F1
Model average F1 Fixation Saccade SP Fixation Saccade SP

1D CNN-BLSTM+∗∗ (ours) 0.787 0.872 0.827 0.680 0.808 0.946 0.588
REMoDNaV 0.748 0.779 0.755 0.622 0.784 0.931 0.615
sp tool∗∗ (ours) 0.703 0.819 0.815 0.616 0.587 0.900 0.483
[Dorr et al., 2010] 0.685 0.832 0.796 0.373∗ 0.821 0.884 0.403∗

[Larsson et al., 2015] 0.647 0.796 0.803 0.317 0.807 0.886 0.274
[Berg et al., 2009] 0.601 0.824 0.729 0.137 0.845 0.826 0.243
I-VDT∗∗ 0.570 0.828 0.665 0.412 0.657 0.601 0.258
I-KF 0.523 0.816 0.770 – 0.748 0.803 –
I-HMM 0.480 0.811 0.720 – 0.646 0.700 –
I-DT 0.473 0.803 0.486 – 0.744 0.802 –
I-VMP∗∗ 0.467 0.811 0.672 0.045 0.586 0.624 0.067
I-VVT∗∗ 0.448 0.809 0.672 0.002 0.536 0.622 0.050
I-VT 0.432 0.810 0.705 – 0.520 0.555 –
I-MST 0.385 0.793 0.349 – 0.590 0.576 –

CNN-BLSTM results marked with + are for context window size of 257 samples and speed and direction features.
The ∗ signs mark the numbers where the label was assumed from context and not actually assigned by the algorithm.
Algorithms marked with ∗∗ were trained or optimized for the GazeCom data set and tested independently here. In
each column, the highest value is boldified.

The 1D CNN-BLST algorithm still achieves the top performance in the Hollywood2

data set but the sp tool algorithm drops in the third position behind REMoDNaV.

The drop of the sp tool in the third position can be attributed to the increased

performance of REMoDNaV in this data set, but also to an inherent weakness

of our algorithm: the segmentation of long intervals into shorter ones. This last

attribute can be observed by its substantially lower fixation and SP event-level

scores in comparison to sample-level scores in both Tables 5.1 and 5.2 and from

Figure 5.1. In this figure we can observe that many short duration intervals appear
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mostly next to the two flying ducks (predominantly green clusters) but also in the

wrongly detected cluster (pure red clusters).





Chapter 6

Eye movement detection with

360-degree stimuli

In the previous chapter we presented two new algorithms for eye movement de-

tection and we evaluated them against 12 publicly available literature algorithms,

which all together form a small part of the multitude of all the proposed eye move-

ment detection algorithms. The caveat of all the aforementioned algorithms is that

they cannot be applied directly to 360-degree equirectangularly projected spaces

because they were developed by assuming monitor-based experiments (visualized in

Figure 2.2). But this important assumption simplified the overall algorithm design

in several aspects, and we are going to explain some of these simplifications here.

The video coordinate system and the monitor coordinate system coincide and they

are usually placed at the top-left corner of the monitor, as can be seen in Figure 2.2.

By having a single frame of reference we avoid difficult to understand conversions

between different frames of reference. The area of application is almost uniform with

nearly the same pixels per degree density for the whole monitor even though there

is a small deviation between its edges and its center. The last and most important

factor that makes understanding and visualization easier is the fact that we work in

the 2D Cartesian space.

As we move towards the 360-degree equirectangular space things become more com-

plicated and the previous assumptions do not apply anymore. In the new space

the experiment coordinate system differs from the video coordinate system. The

participant lives inside a sphere surrounded by the video and as can be seen from

Figures 6.1a and 6.1b the correspondence between the equirectangular coordinates

and the experiment coordinates is not trivial. Also the frame of reference of the

experiment can be either fixed or can move together with the participant’s head.

65



66 Chapter 6. Eye movement detection with 360-degree stimuli

Moreover, the 2D equirectangular plane that is used for the data representation

does not have uniform pixel to sphere surface density (Table 6.1 and Figure 6.3)

and distortions start to appear as we move away from the horizontal midline. How-

ever, if we use the 3D Cartesian space of Figure 6.2 the previous limitations can be

overcome but understanding and visualization of concepts become more difficult.

Thus, in this chapter we are going to tackle the previous problems by presenting the

different frames of reference and the correspondence between the equirectangular

and the 3D spaces. Based on these we are going to present algorithms that work

directly in the 3D Cartesian space but we will also demonstrate a method that allows

using monitor-based algorithms on converted equirectangular data.

6.1 Conversion of monitor-based algorithms

In this section we provide information on how we converted 5 popular algorithms

(a subset of the evaluation algorithms of Section 5.3), namely the I-VT, I-DT, the

saccade and fixation detectors of [Dorr et al., 2010], and the algorithm of [Larsson

et al., 2015], in order to work in the equirectangular space. Because the conversion

of pre-existing algorithms is not always possible we also provide a method that

converts the data instead of the algorithm, which then can be used as input to the

original monitor-based algorithms.

6.1.1 Equirectangular to Cartesian space

Before moving to the actual algorithm conversion we have to understand the con-

nection between the equirectangular frame of reference and the 3D Cartesian frame

of reference. As already mentioned, when we display the video in the HMD en-

vironment we live inside a sphere surrounded by the video. If we cut the sphere

horizontally in the middle and look at it from the top we get Figure 6.1a with the

Y axis pointing towards us. The xeq equirectangular coordinate is the equivalent of

angle φ in spherical coordinates and varies from 0◦ to 360◦. Consequently, the 3D

vector (1, 0, 0) is the point where the left and right sides of the video meet; this is

usually behind the participant at start time. The vector (−1, 0, 0) represents the

center of the video and the initial viewing position.

Now if we cut the previous figure along the Z - Y plane and look at it from the right

we get the view of Figure 6.1b with the X axis pointing away from us. Here, the
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Figure 6.1: (a) Top view of 3D Cartesian coordinate system of reference for the
HMD experiment with the Y axis pointing towards us. The surrounding circle
visualizes the intersection of the sphere of the 360-degree video with the X-Z plane.
The 3D Cartesian X axis points to the left with the middle of the video represented
by the red dot at (−1, 0, 0). The xeq equirectangular coordinate represents the angle
of the projected unit vector on the X-Z plane with the X axis. (b) Side view of
the 3D Cartesian coordinate system with the X axis pointing away from us. The
yeq coordinate represents the angle of a unit vector with the Y axis with the angle
ranging from [0, π] and is visualized through a half circle. The top and bottom of
the equirectangular projection are at the (0, 1, 0) and (0,−1, 0) respectively.

yeq equirectangular coordinate is equivalent to the angle θ in spherical coordinates

and varies from 0◦ to 180◦; hence, we have a half circle.

With the definition of xeq and yeq coordinates in place we can now define the con-

versions between equirectangular, spherical, and 3D Cartesian coordinates in the

following manner.

Equirectangular to spherical:

φ = xeq ∗ 2π/widtheq

θ = yeq ∗ π/heighteq
(6.1)

Spherical to Cartesian:

x = sin θ ∗ cosφ
y = cos θ

z = sin θ ∗ sinφ

(6.2)
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6.1.2 Application to existing algorithms

For the actual algorithm conversion we can now use the 3D Cartesian unit vectors

from equation 6.2 for calculating the angular distance, speed, and dispersion, which

are the basic building blocks for all five algorithms that we want to convert. The

angular distance and speed are calculated between two unit vectors in the same

fashion as in [Diaz et al., 2013, Duchowski et al., 2002].

distance(~v1, ~v2) = arccos(~v1 · ~v2) (6.3)

speed(~v1, ~v2) =
distance(~v1, ~v2)

t2 − t1
(6.4)

In the literature the dispersion typically is defined as a function of the size of the

bounding box of the sample set defined on the video coordinate system [Salvucci

and Goldberg, 2000, Larsson et al., 2015]. In the 360-degree scenario, however, this

definition loses its meaning since the two principal axes of the dispersion can be

in any position and orientation on the sphere. Therefore we define the dispersion

as the angle of the cone that starts from the center of the coordinate system and

contains all the data points at its intersection with the sphere. This is visualized

in Figure 6.2 and is defined below. A similar approach to ours is followed by the

PUPIL headset in its fixation detector [Barz, 2015].

dispersion(A) = {argmax
i,j

{distance(~vi, ~vj)} | i, j ∈ A}

where A = {1, 2, ..., n}
(6.5)

By using equation 6.4 we can now directly convert the I-VT algorithm [Komogort-

sev et al., 2010], which uses a single threshold for velocity (or more specifically, its

absolute magnitude, speed) to the 360-degree equirectangular video domain. The

original algorithm labels saccades when the gaze speed is above threshold and fix-

ations when it is below threshold. Because we have free head movement often the

eyes will perform compensatory eye movements at intermediate speeds. Therefore,

in the 360-degree video domain the algorithm is only reliable for saccade detection

and all the samples below the velocity threshold are left unassigned.

The saccade detector described in [Dorr et al., 2010] is more elaborate than I-VT
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and uses two speed thresholds. A saccade detection is initiated when the speed

is above the high threshold and is then expanded forward and backwards in time

until the speed reaches the lower threshold. With this approach, it avoids erroneous

detection of saccadic samples especially in 360-degree videos where the head can

move freely and reach high angular speeds without performing a saccade. To convert

this algorithm we again use the definition of speed from equation 6.4.

The I-DT fixation detector from [Salvucci and Goldberg, 2000] calculates the disper-

sion of gaze samples in windows of fixed length. If the dispersion is below threshold

the samples within the window are labeled as part of a fixation otherwise the window

moves to the next gaze sample. Here, we use the dispersion definition of equation 6.5

for 360-degree videos as a replacement for the original definition.

Our second fixation detector is described in [Dorr et al., 2010] and uses a combi-

nation of dispersion and speed thresholds. Initially it starts from a fixed duration

window and checks whether the dispersion and mean speed are below their respec-

tive thresholds. If both criteria hold true the window duration is extended forward

in time and the dispersion threshold increases logarithmically in relation to the

new window duration. The expansion phase stops when one of the conditions be-

comes false. At this point all the samples within the previously valid window are

labeled as fixations. The conversion of this algorithm is straightforward and uses

equations 6.4 and 6.5 for speed and dispersion calculation in the new domain.

Distance between 
two vectors/gaze 
points

Dispersion represented 
by the cone

Figure 6.2: Visualization of the 3D Cartesian coordinate system within the HMD
presentation sphere. The angle between two vectors represents the distance in the 3D
space. The angle of the cone that contains a gaze segment represent the dispersion
in the 3D space. The path length is the sum of distances between consecutive gaze
points.

The algorithm described in [Larsson et al., 2015] works on windows in intersaccadic

intervals and labels fixations and smooth pursuit (SP). The algorithm uses four cri-
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teria, namely dispersion, consistent direction, positional displacement and spatial

range for the classification of eye movements. When none of the previous criteria

are satisfied the window samples are labeled as fixations. Contrary to fixations, the

window samples are labeled as SP when all the criteria are fulfilled. For the remain-

ing cases where between one and three criteria are satisfied the algorithm looks at

other labeled segments in the same intersaccadic interval to make its decision.

A publicly available implementation of this algorithm [Larsson et al., 2015] was

developed as part of this thesis1 and includes the saccade detector from [Dorr et al.,

2010] that we have already described above. For the conversion of this algorithm

apart from using equations 6.3 and 6.5 we have to define the sample-to-sample

direction, which is used in the preliminary segmentation described in section 2.2 of

the original paper [Larsson et al., 2015]. The sample-to-sample direction within a

window in the 3D Cartesian space is defined as

~di = ~vi+1 − ~vi
where i = {1, 2, . . . , N − 1}

(6.6)

with the rest of the calculations for the Rayleigh test staying the same.

In the evaluation of spatial features described in section 2.3 of the original pa-

per [Larsson et al., 2015], the parameter pD represents the dispersion within each

segment and is calculated as the ratio between the explained variance of the second

and first principal components. In the 3D space we keep it as is. The parameter pCD

is a measure for the consistency of movement direction and is calculated as the ratio

between dED and the length of the first principal axis, where dED is the distance

of the first and last samples of the segment. In the 3D Cartesian space dED is the

angular distance of the first and last vectors of an interval as defined in equation 6.3.

In the 3D Cartesian space the length of the first principal axis is equivalent to the

maximum dispersion of the segment and is taken from equation 6.5. The positional

displacement parameter pPD is the fraction of dED to dTL with dTL being the gaze

path length. The gaze path length is calculated as the sum of consecutive vector

distances within a window by using equation 6.3. The parameter pR is the spatial

range, which in the original algorithm is the length of the diagonal of the bounding

box for all the sample of a window. In the 3D Cartesian space it is equivalent to

the dispersion of the segment and is calculated through equation 6.5.

1https://www.michaeldorr.de/smoothpursuit/larsson_reimplementation.zip

https://www.michaeldorr.de/smoothpursuit/larsson_reimplementation.zip
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The last modification to the [Larsson et al., 2015] algorithm comes in section 2.4 of

the original paper for the classification of eye movements when between 1-3 criteria

are satisfied and criterion 3 is true. In this case we use the mean gaze direction

between two segments, which in the 3D Cartesian space is calculated as the angle

(equation 6.3) between the mean direction vectors of each segment after vector

normalization.

6.1.3 Conversion of data

The approach to convert an algorithm to the 3D Cartesian space as described above

may be either deemed too time consuming in comparison to the amount of data

that we want to process or impossible due to closed source or very convoluted code.

Because of these limitations we describe here a method of how to transform equirect-

angular gaze recordings to a new space where the original algorithms can be applied

without any modification.

Cartesian to equirectangular space

Before presenting the reprojection process we first have to understand how we can

move from the 3D Cartesian space back to equirectangular space. First we convert

a normal vector ~v = (x, y, z) to its spherical representation with equation 6.7, which

is the inverse of equation 6.2.

φ = arctan2(z, x)

if(φ < 0) : φ = φ+ 2π

θ = arccos(y)

(6.7)

The two spherical angles are directly connected to the equirectangular coordinates

and are calculated from equation 6.8, which is the inverse of equation 6.1.

xeq = widtheq ∗ φ/2π
yeq = heighteq ∗ θ/π

(6.8)
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Gaze data reprojection

As we have already mentioned the equirectangular projection for video and gaze

representation comes with the drawback of higher distortions as we move away from

the equatorial line (horizontal line passing through the middle of the video). We

visualize these distortions by projecting the intersection of a cone with the sphere

(Figure 6.2) to the equirectangular representation of Figure 6.3. The angle of the

cone is 20◦ and it is centered at 0◦, 22.5◦, 45◦, 67.5◦, and 90◦ away from the equatorial

line. The gray area represents the equirectangularly projected cone with the black

circle representing a hypothetical undistorted cone.

Table 6.1: Distortions of equirectangular projection increase exponentially the fur-
ther away we move from the equator. Distortions are zero at the equator and infinite
at the top and bottom of the projection.

Distance from equator Distortion

0◦ 0.00
22.5◦ 0.08
45◦ 0.41

67.5◦ 1.61
90◦ Inf

Table 6.1 summarizes the distortions at different distances from the equatorial line.

The distortions represent how much longer a line segment appears in the equirect-

angular projection than in the HMD. For example if a horizontal line segment at 45

degrees from the equator covers 10 degrees of visual angle in the headset it would be

represented by a projected line segment of 14.1 degrees on the equirectangular space.

From the table we see that the equirectangular representation has no distortions in

the middle and infinite distortions at the top and bottom. The infinite distortions

arise from the fact that a single vector on the Y axis, which covers zero degrees in

the 3D Cartesian space, acquires a whole line of pixels (360◦) in the equirectangular

representation. From this observation, it becomes obvious that pre-existing algo-

rithms would fail close to the top and bottom areas of Figure 6.3. Intuitively these

algorithms should not experience significant detection quality deterioration in the

areas close to the equator.

If we do not want to change the algorithms as we did in the previous section we

can take advantage of the central area of 45◦ vertically that has low distortions

of no more than 8%. Therefore if all the gaze samples for a given period of time

are exclusively within this horizontal stripe we can then use all the pre-existing

algorithms in their original forms. We can achieve those preconditions by splitting
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Figure 6.3: Visualization of distortions at the points of Table 6.1. The gray areas
are the projection of the intersection of a cone with the presentation sphere. The
black circles visualize a hypothetical undistorted circle.

the gaze input into time periods of no more than 45◦ vertical spread, which can then

be moved to the central part.

During the centering of gaze samples we have to be careful not to simply displace

vertically the gaze coordinates in the equirectangular representation because we will

keep all the distortions, but to perform a rotation in the 3D Cartesian space. Another

point of attention should be the limitation of monitor-based algorithms to handle

movement along the vertical edges of the equirectangular video, which are seamlessly

presented during the HMD viewing. These transition cannot be efficiently processed

and therefore we choose to move samples not only vertically but also horizontally

to the middle of the video. By doing so the possibility of the gaze moving along the

vertical edges of the equirectangular frame decreases dramatically.

For the rotation matrix computation we use the extrinsic Y-Z-X Tait-Bryan angles

of the mean gaze vector to the coordinate system of reference. The Y rotation is

computed with the right-hand rule from the projected vector on the X-Z plane of

Figure 6.1a and is equivalent to φ in equation 6.7. Then the Z rotation is computed

similarly to the angle of Figure 6.1b but with the X and Z axes exchanged and this

is equivalent to θ in equation 6.7. The rotation around the X axis is provided as

head tilt in the recorded data. Then we find the rotation matrix between the middle

of the equirectangular video, which is represented by the (−1, 0, 0) vector, to the

coordinate system of reference in the same fashion. The combination of these two

rotation matrices gives us the overall rotation from the mean gaze vector to the

center of the video. In the last step we apply the already calculated rotation matrix

to all of the gaze samples and project them back to the equirectangular space by

using equations 6.7, 6.8. Now the transformed data is ready to be handled by any

algorithm that was developed for monitor-based experiments.
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6.1.4 Conversion evaluation

For the evaluation of the conversion methods we used the full 360-degree data set

of Section 4.3 and not only the hand-labeled part of it. The evaluation on the non-

labeled gaze recordings was not a limiting factor because we wanted to assess how the

algorithms fared with different levels of distortion. For that reason, we evaluated the

original algorithm, its converted version, and the original algorithm with converted

input data in the eye+head scenario (i.e. overall gaze). During testing we split the

input space into four pairs of distinct areas, which represent horizontal stripes in

the equirectangular video of 22.5◦ height. These pairs were placed symmetrically

on both sides of the equator line, and depending on its distance from this line, each

pair represented a different level of distortion.

Table 6.2: Percentage of samples for the four areas representing different distortion
levels.

Range % Samples

{67.5◦, 112.5◦} 84.97
{45◦, 67.5◦} ∪ {112.5◦,135◦} 10.29
{22.5◦, 45◦} ∪ {135◦, 157.5◦} 3.58
{0◦, 22.5◦} ∪ {157.5◦, 180◦} 1.16

We evaluated the algorithm proposed by [Larsson et al., 2015] (with the saccade

detector by [Dorr et al., 2010]) because it is the most complete package by providing

labels for fixations, saccades, SP, and noise, which includes blinks (with a separate

algorithm). Here, for the evaluation we deviate from the so far used F1 metrics

because we are interested in the overall sample-level agreement between the differ-

ent versions of the algorithm and we use Cohen’s Kappa as defined in equation 6.9.

Each of the four eye movements is evaluated separately in a binary classification

problem with positive labels for the detection of the given eye movement. Po repre-

sents the proportion of agreement between the two versions of the algorithm and Pc

the proportion of chance agreement. Kappa ranges from [−1, 1] with higher scores

representing higher agreement.

K =
Po − Pc
1− Pc

(6.9)

For the evaluation of the two versions of the algorithm we kept all the parameters

(16 in total) the same but ηmaxFix. The last parameter represents the dispersion of

the interval, which is measured as the diagonal of the bounding box containing the
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Table 6.3: Cohen’s Kappa scores for four different areas with varying distortion
levels. Evaluating the original algorithm against the converted algorithm against
the original algorithm with converted data.

Cohen’s Kappa between original
and converted algorithms

Range Fix. Sacc. SP Noise

{67.5◦, 112.5◦} 0.817 0.794 0.714 0.468
{45◦, 67.5◦} ∪ {112.5◦,135◦} 0.802 0.796 0.638 0.557
{22.5◦, 45◦} ∪ {135◦, 157.5◦} 0.753 0.763 0.558 0.479
{0◦, 22.5◦} ∪ {157.5◦, 180◦} 0.325 0.416 0.084 0.355

Cohen’s Kappa between original
and converted data

Range Fix. Sacc. SP Noise

{67.5◦, 112.5◦} 0.976 0.975 0.959 0.934
{45◦, 67.5◦} ∪ {112.5◦,135◦} 0.915 0.938 0.800 0.881
{22.5◦, 45◦} ∪ {135◦, 157.5◦} 0.817 0.883 0.638 0.788
{0◦, 22.5◦} ∪ {157.5◦, 180◦} 0.361 0.451 0.099 0.431

Cohen’s Kappa between converted
algorithm and converted data

Range Fix. Sacc. SP Noise

{67.5◦, 112.5◦} 0.815 0.778 0.705 0.387
{45◦, 67.5◦} ∪ {112.5◦,135◦} 0.810 0.780 0.635 0.453
{22.5◦, 45◦} ∪ {135◦, 157.5◦} 0.830 0.792 0.654 0.426
{0◦, 22.5◦} ∪ {157.5◦, 180◦} 0.816 0.789 0.627 0.357

interval samples in the original algorithm. In the converted algorithm the dispersion

is calculated from equation 6.5 as the angle of a cone. The maximum difference

between these two definitions of dispersion is achieved for a square bounding box

where its diagonal is
√

2 times bigger than the radius of the circle that is tangent

to all of its sides. Therefore we used an ηmaxFix of 2.7◦ for the original version and

1.9◦ for the converted version.

Table 6.2 reports the percentage of time spent in each of the four areas, with Ta-

ble 6.3 reporting the Kappa values for agreement between three different combina-

tions of algorithms and data for each eye movement type. These combinations use

the original version of the algorithm with the original data, the converted version of

the algorithm with the original data, and the original algorithm on converted data.

When we compare the two versions of the algorithm applied to the original data,
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we see that the highest agreement is achieved in the middle part of the video that

spans the 67.5◦ to 112.5◦ range and holds roughly 85% of all samples. In this

area the Kappa scores are 0.82 for fixations, 0.79 for saccades, and 0.73 for smooth

pursuit. Even though these scores are high, we do not reach 1, which represents

perfect agreement. The not perfect agreement may be attributed in part to the

small distortions that appear at the borders of the middle area. More importantly,

though, there is also no perfect agreement between the initial and converted criteria

(16 in total) such as the slightly different definitions of dispersion. These two factors

become more obvious for the SP detection, which is more sensitive to disturbances

because often its characteristics (such as speed and dispersion) overlap with those

of fixations and saccades. For now we will not comment on noise and leave its

explanation for later.

The second area, which spans from 45◦ to 67.5◦ and from 112.5◦ to 135◦ from the

top of the video, accounts for roughly 11% of the total samples. In this area distor-

tions range from 8% to 45%, which is not enough to influence the overall detection

quality for fixations and saccades since their Kappa scores remain static. The flat

Kappa scores are probably the result of the clear separation for the characteristics

of fixations and saccades, but we see a substantial drop in the agreement for SP.

In the third area, which spans from 22.5◦ to 45◦ and from 135◦ to 157.5◦, we have

roughly 4% of the total gaze sample. Here we have high distortions that range

from 41% to 161% and therefore the uncorrected artifacts of the original algorithms

lead to a strongly reduced agreement between algorithms for all three detected eye

movement types.

In the last area, which covers the top and the bottom areas of the equirectangular

projection, its extreme distortions result in a significant drop in the agreement for

fixations and saccades with almost no agreement (at chance level) for SP detection.

However, this area holds only a small share of the overall samples (1%).

Now when we look at the results of applying the original algorithm on the original

and converted data we see that the agreement is almost perfect for the middle area.

Still the small deviation can be attributed to the small distortions at the border of

this area and the temporal border effects that are introduced by the segment-wise

data conversion. As expected, the higher distortions for the off-center areas in the

original data lead to roughly the same disagreement scores at the top and bottom,

meaning that the approach of converting the data also reduces artifacts.

When we compare the two proposed distortion-aware methods (bottom panel of Ta-

ble 6.3) we see that the agreement between them stays roughly the same throughout
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the equirectangular projection. As before, the Kappa scores do not reach a perfect

agreement due to subtle changes in algorithm criteria, but they are very close to the

results of the middle area (which has the least distortions) between the original al-

gorithm with original data and the converted algorithm. The constant Kappa scores

further prove the correspondence between our two proposed conversion methods.

Noise Kappa scores are more erratic between the three different comparison cases.

For the results between the original and converted data the noise scores fall in line

with the other eye movements and monotonically decrease as we move away from

the middle line. For the other two cases, the noise Kappa score hovers around

0.4 in all four areas. The almost flat noise scores may be attributed to the blink

detector that is included in our re-implementation of [Larsson et al., 2015]. The

blink detection algorithm first detects saccades by using the algorithm of [Dorr

et al., 2010] (explained in Section 6.1.2). It then searches on both sides of an area

with eye-tracking loss and if it detects a saccade close in time it labels all the samples

(including the saccade) as noise. Also before and after a blink the video-oculography

based eye trackers tend to report a shift in gaze. In the case of the initial algorithm

the probability of finding a saccade is higher because it does not compensate for

the high distortions close to the top and bottom that result in erroneously detecting

higher speeds and therefore more saccades.

To summarize, we have shown that the highest agreement between the original and

converted versions occurs in the middle (least distorted) part of the equirectangular

projection with high Kappa scores. As we move further away from the middle region

the agreement for all three eye movement types drops with SP being the most influ-

enced. Especially in the areas with the highest distortions at the top and bottom of

the equirectangular projection the eye movement classification becomes completely

unreliable with the initial algorithm. As expected the performance between the con-

verted algorithms and converted data is not influenced by the distortions and stays

constant throughout the whole area of the equirectangular projection. To conclude,

the high Kappa scores for the middle area confirm experimentally the plausibility

of both the algorithm conversion and the gaze reprojection methods.

6.2 I-S5T algorithm

Apart from converting pre-existing algorithms we also developed a rule-based eye

movement classifier for 360-degree stimuli that is almost a direct formalization of the

eye movement definitions we consider in Section 2.2.1. It assigns primary and, po-
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tentially, secondary labels to every gaze sample by analyzing the same gaze and head

movement information that was available to the manual annotator (Section 3.3).

We first detected the saccades by analyzing the E+H speeds with the dual-threshold

algorithm of [Dorr et al., 2010], which avoids false detections while maintaining high

recall by requiring each saccade to have a peak gaze speed of at least 150◦/s, but

all surrounding samples with speeds above 35◦/s are also added to the detected

episode (thresholds determined by a grid-search optimization on the training part

of the annotated 360-degree data set of Section 4.3.3). We did not use the FOV

speed of gaze as it is influenced by head motion and can easily reach speeds above

100◦/s when the eyes compensate for fast large-amplitude head rotations.

Afterwards, blinks were detected by finding the periods of lost tracking and extend-

ing them to include saccades that were detected just prior to or just after these

periods, as long as the saccades were not farther than 40 ms from the samples with

lost tracking.

We then split the remaining intersaccadic intervals into non-overlapping windows of

100 ms and classified each such interval independently. For this, we calculated the

speeds of the head and the eye (relative to the head and the world) as the distance

covered from the beginning to the end of the window divided by its duration.

To formalize the concepts of “stationary” and “moving” head cases, we used a speed

threshold of 7◦/s. For the gaze speeds, we applied the low and the high thresholds of

10◦/s and 65◦/s, respectively (both for the eye-in-head and the eye-in-world speeds)

in order to distinguish slow, medium, and fast movements. These were chosen via

a grid-search optimization procedure as well. As gaze stability decreases with head

motion [Ferman et al., 1987], we scaled the gaze speed thresholds according to the

speed of the head: thdscaled = (1 + vhead/60) ∗ thd, where 60◦/s is the “reference”

speed of the head. This means that if the head was moving at e.g. 30◦/s, the gaze

speed thresholds were increased by 50%.

A fixation was always labeled when the E+H speed was below the low gaze speed

threshold. If the head speed was above the corresponding low threshold, a secondary

VOR label was assigned.

Pursuit-type eye movement labels were assigned when the E+H speed was between

the low and the high gaze speed thresholds, unless the eye-in-head speed was above

the high threshold (in which case, a noise label was assigned). However, there are

different label combinations possible here: (i) head pursuit in combination with the

primary label of fixation was assigned when the FOV (eye-in-head) speed was below
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Table 6.4: Threshold Values

Name Used for Threshold Optimized

θlowsacc saccades 35◦/s X

θhighsacc saccades 150◦/s X

θlowgaze fix., SP, VOR, head purs. 10◦/s X

θhighgaze fix., SP, VOR, head purs. 65◦/s X

θlowhead VOR, head purs. 7◦/s -

θhighhead scaling θ
{low,high}
gaze 60◦/s -

the low threshold and the head speed was above its own low threshold; otherwise,

(ii) smooth pursuit in combination with VOR was detected when the head speed was

above the low threshold, which implied that the head and the eyes were working

in tandem (presumably, to follow a moving object); (iii) smooth pursuit without

any secondary eye movement type was assigned when the head speed was below

its low threshold, meaning that the eyes did not have to compensate for the head

movement.

For the samples that did not fall into any of the previously listed categories it was

then known that they had very high speed but were assumed not to be a part of

any saccade (since saccades were detected already). Consequently, the noise label

was assigned.

Overall, our approach uses five speed thresholds (plus a scaling parameter), and

thus we refer to our algorithm as I-S5T, identification by five speed thresholds. An

overview of its parameters is given in Table 6.4: two thresholds for saccade detection,

two to quantize eye speeds (scaled by head speed), and one to determine if the head

was moving sufficiently to justify a potential VOR label. The first four of these

thresholds were optimized via grid-search on half of the annotated data set, while

the other half was used for testing.

We also implemented an algorithm for detecting OKN (or nystagmus), with its

sawtooth pattern of gaze coordinates. This pattern is easier to detect in the FOV

gaze data as it often occurred during high-amplitude head motion in our data. The

idea behind our detector is similar to [Turuwhenua et al., 2014], but uses the already

detected saccades for segmenting the recordings into slow and fast phases, instead

of finding the maxima and minima in the speed signal. An OKN is detected when

the overall direction of gaze movement during an intersaccadic interval is roughly

opposite (angle ≥ 90◦) to the direction of the adjacent saccades, whereas the two
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neighboring saccades are roughly collinear (angle ≤ 70◦). In case of an already

assigned VOR label, OKN+VOR is labeled instead.

6.3 Overall evaluation

Evaluation of different frames of reference

To evaluate the performance of our algorithmic event detection as well as to explain

the benefits of utilizing the data from both the eye and the head tracking, we

compared the performance of our algorithmic detector I-S5T against two versions of

the same algorithm: one that only uses the speed of the eye within the head (e.g.

directly applicable to mobile eye-tracking data), the other – E+H gaze data (e.g. in

HMD recordings, if additional data were discarded) instead of a combination of all

available movement readouts. For all algorithm versions, we selected the gaze speed

thresholds (i.e. head speed threshold was not optimized) with a similar grid-search

optimization procedure on the training set of the 360-degree data set – first, the

two thresholds for saccade detection were jointly optimized, then the remaining two

gaze speed thresholds.

We refer to the algorithm versions as (i) combined for the “main” proposed version

– the I-S5T algorithm – that uses both the eye-in-head and eye-in-world speeds, as

well as head speed for threshold scaling, (ii) FOV for the version that uses the eye-

in-head gaze speed only, and (iii) E+H for the one that only uses the eye-in-world

speeds. Of course, the FOV and E+H versions do not detect the combinations of

head and eye movements, so the secondary labels of VOR and head pursuit were

not assigned. OKN detection is possible, however. Since there was much more

OKN+VOR than pure OKN in our data, whenever OKN was detected based on the

FOV or E+H algorithm versions, an OKN+VOR label was assigned.

We evaluated all three algorithm versions on the manually labeled test set of the 360-

degree data set. Table 6.5 contains the sample- and event-level evaluation measures

(in the form of F1 scores) for our approaches.

All three algorithms achieve relatively high F1 scores for fixation and saccade de-

tection, with the FOV version yielding substantially lower scores, however. This

indicates that saccades can be easily confused with the eyes compensating for the

head movement. The difference is even more pronounced for SP detection, with the

FOV version of the algorithm lagging far behind. The differences between the E+H

version and the “combined” version are generally very small for the primary eye



6.3. Overall evaluation 81

Table 6.5: Classification Performance on the Test Set

Sample F1 Event F1

EM type Comb. FOV E+H Comb. FOV E+H

P
ri

m
ar

y Fixation 0.911 0.867 0.900 0.897 0.808 0.890
Saccade 0.813 0.737 0.813 0.899 0.865 0.899
SP 0.381 0.128 0.362 0.288 0.153 0.293
Noise 0.758 0.743 0.758 0.744 0.729 0.742

Average 0.716 0.619 0.708 0.707 0.639 0.706

S
ec

on
da

ry OKN 0.205 – – 0.085 – –
VOR 0.600 – – 0.636 – –
OKN+VOR 0.664 0.614 0.647 0.577 0.626 0.620
Head Purs. 0.546 – – 0.204 – –

Where marked with “–”, the respective eye movement is impossible to clas-
sify with the respective algorithm version.

movement classes (fixations, saccades, SP, and noise), with the combined variant

achieving marginally higher scores. For the secondary labels, only the version that

combined eye-in-head and eye-in-world speeds can detect the full spectrum of the

defined eye movements, as most of the secondary labels require the knowledge of

both the eye and the head movement information. OKN detection was comparable

across the board.

These results demonstrate that eye movement classification algorithms could benefit

from using all the available information about head and gaze in every frame of

reference. This is especially important for distinguishing eye movements driven by

the retinal input (e.g. smooth pursuit) and other sensory intakes (e.g. VOR), which

is supported by the definitions of the eye movement types that we introduced in

Section 2.2.1. However, when only one frame of reference has to be used choosing the

E+H offers significant improvements in comparison to the FOV frame of reference.

Evaluation of algorithms

In Table 6.6 we provide a comparison between our proposed algorithm and the

algorithms that have been converted to the 360-degree domain. The earlier uses

both the E+H and FOV frames of reference while the latter are applied in the E+H

frame of reference. Therefore, we can only compare the detection quality of the

primary eye movements among the 6 algorithms.

The I-S5T algorithm results are repeated from Table 6.5 and are presented here
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Table 6.6: Evaluation results for the 6 algorithms that work in the equirectangular space.
Results are presented as F1 scores for sample- and event-level detection.

Sample-level F1 Event-level F1
Model Fixation Saccade SP Fixation Saccade SP

Combined I-S5T∗ (ours) 0.911 0.813 0.381 0.897 0.899 0.288
[Larsson et al., 2015]∗ 0.922 0.813 0.429 0.889 0.899 0.395
Saccade by [Dorr et al., 2010]∗ – 0.757 – – 0.847 –
Fixation by [Dorr et al., 2010] 0.791 – – 0.765 – –
I–VT – 0.710 – – 0.679 –
I–DT 0.893 – – 0.815 – –

Models marked with ∗ have been at least partially optimized on the training set of the 360-degree data
set. Cells marked with “–” identify eye movements that were not detected by the specific algorithm. In
each column, the highest value is boldified.

as a reference. The algorithm of [Larsson et al., 2015] uses the algorithm of [Dorr

et al., 2010] for saccade detection with the previously optimized speed thresholds

and therefore achieves the best results together with our proposed algorithm. For

fixation detection it reaches human-level performance and surpasses I-S5T in the

sample-level F1 score without any prior optimization. Even though its SP detection

performance lags significantly behind the other two eye movement types it offers

a substantial improvement over the I-S5T algorithm, which is rather expected due

to the utilization of more complex classification criteria instead of simple speed

thresholds. Also the SP score in the current data set is between the scores of

the two monitor-based data sets (Tables 5.1 and 5.2), which were computed with

the original version of the algorithm before conversion to the 360-degree domain.

But these improvements come with the shortcoming of assigning only primary eye

movements. Secondary eye movements could be potentially detected by combining

the outputs of the algorithm for the two different frames of reference in an approach

similar to the transitions described in Section 4.3.2.

The saccade detector of [Dorr et al., 2010] uses the optimized thresholds of the previ-

ous section but it does not reach the performance levels of the I-S5T and the [Larsson

et al., 2015] algorithms because it does not utilize a blink detector. This results in

the mislabeling of blinks as valid saccades with the effect of diminished overall per-

formance. The performance of the I-VT algorithm [Salvucci and Goldberg, 2000] is

markedly lower, especially regarding sample-level F1 score, due to the utilization of

a single speed threshold.

Finally, for fixation detection the algorithm of [Dorr et al., 2010] returns the lowest

scores with the I-DT algorithm returning higher scores, which are higher than its

non-converted version scores (Tables 5.1 and 5.2).



Part IV

Applications in dynamic natural

contexts
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In the third part of the thesis we use the data sets and the algorithms that we

developed in the previous two parts in new fields of application that help us to

better understand different aspects of eye movements. In Chapter 7 we investigate

the relationship between different brain areas and smooth pursuit while people were

watching a Hollywood movie as an approximation to dynamic natural scene viewing.

Eye movements were automatically detected with the sp tool and they were then

used in our fMRI analysis pipeline. The analysis and the results contained in this

part have been published in [Agtzidis et al., 2020a].

Then in Chapter 8 we investigate how well eye movement characteristics observed

through simple stimuli (i.e. dots moving on a screen) transfer to more complex

scenarios that are a better approximation of natural gaze behavior. For this purpose

we investigated the relationship between SP and the saccades that preceded it with

regard to their relative angle and we measure some statistics (e.g. saccade position

error) in three different scenarios of varying complexity or similarity to a natural

viewing scenario. For the most complex scenario, we used the hand-labeled eye

movements of the GazeCom data set. Then we created two new conditions with

reduced levels of naturalness and new eye-tracking data were gathered by Alexander

Goettker. The content of this chapter has been published in [Goettker et al., 2020].



Chapter 7

Understanding smooth pursuit

brain activations in dynamic

natural scenes

Humans along with other animals with foveal vision use eye movements to explore

their surrounding space. The decisions about attending to an object together with

the type of the performed eye movement are driven by a multitude of brain processes,

which can be driven by either low-level or high-level features. Consequently, the

neural implementation of gaze behavior is an active research topic. In particular,

functional magnetic resonance imaging (fMRI) has been previously used along with

eye tracking in order to identify brain areas (i.e. BOLD-responses) and networks

related to specific eye movements such as fixations and saccades [Luna et al., 1998,

Beauchamp et al., 2001, Sestieri et al., 2008, Ettinger et al., 2007, Lukasova et al.,

2018]. However, brain areas subserving smooth pursuit (SP) eye movements have

been studied to a lesser extent only [Petit and Haxby, 1999, Lencer et al., 2004,

Kimmig et al., 2008], possibly due to technical challenges in the analysis of dynamic

setups.

When segmented eye-tracking data are directly related to brain activation, the

majority of experiments use specifically designed synthetic stimuli [Lencer et al.,

2004, Kimmig et al., 2008]. Such stimuli can take the form of fixation crosses that

change position when saccades are studied, or of linearly or sinusoidally moving dots

when smooth pursuit is investigated. The biggest advantage of synthetic stimuli is

that their properties are well defined and can explicitly represent specific features,

which simplifies the analysis of both the eye-tracking and BOLD signals. But this

simplicity comes at the cost of using a paradigm that is not representative of normal
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human vision because ecologically valid visual input is much more complex and real-

world SP does not occur in isolation but within sequences of saccades and fixations.

Therefore, the use of synthetic stimuli moving on a uniform background ignores the

possible influence of background information [Brenner and Smeets, 2015], crowding

effects [Sanocki et al., 2015], and the overall eye movement planning process [Gold

and Shadlen, 2007, Tatler et al., 2017]. Another important limitation is that follow-

ing a uniform synthetic stimulus over a longer time interval can result in reduced

maintenance of attention [Tagliazucchi and Laufs, 2014, Vanderwal et al., 2015].

Because of the increased complexity of naturalistic stimuli, some studies have re-

stricted themselves to the presentation of static naturalistic scenes, i.e. images [Kay

et al., 2011, Mannion, 2015]. However, significant improvements in both vigilance

and head motion by attaining the participant’s attention were achieved by [Van-

derwal et al., 2015], who used an abstract dynamic pattern together with fMRI

resting-state analysis. An even better approximation to unconstrained human vision

are fully naturalistic dynamic stimuli, and both the neuroimaging and eye-tracking

communities have recently started to explore the possibilities of more immersive

experiments [Hasson et al., 2004, Lahnakoski et al., 2012, Nardo et al., 2014, An-

dric et al., 2016, Marsman et al., 2016]. Some recorded data sets of naturalistic

fMRI [Hanke et al., 2016] have even become publicly available.

In this chapter, we analyze the studyforrest fMRI data set [Hanke et al., 2016]

with our smooth pursuit detection tool (sp tool) of Section 5.1 and two different

motion estimation algorithms [Barth, 2000, Revaud et al., 2015] with the aim of

correlating brain activations with SP in dynamic natural scene viewing. The full

analysis pipeline is made available online1.

7.1 Methods

7.1.1 Data set

For our analysis we used the publicly available studyforrest data set as an approxi-

mation to a complex natural environment; for full experimental details, we refer to

the paper presenting the original data set [Hanke et al., 2016]. Briefly, this data set

includes 15 participants who watched the Hollywood movie “Forrest Gump” while

their gaze was tracked in an fMRI scanner and another 15 participants with in-lab

gaze only recordings (that we used here only to improve the automatic detection of

1https://gin.g-node.org/ioannis.agtzidis/studyforrest_analysis

https://gin.g-node.org/ioannis.agtzidis/studyforrest_analysis
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smooth pursuit events, see below). The stimulus was presented to the in-scanner

participants through an LCD projector in combination with a front-reflective mirror

and to the in-lab participants through an LCD monitor. The gaze data were recorded

with a high-frequency eye tracker (EyeLink 1000, set to 1000 Hz sampling rate with

a telephoto lens attached for the fMRI recordings) and a 13-point calibration was

performed at the beginning of each session. The fMRI recordings were acquired with

a 3 T scanner ( Philips Achieva dStream MRI scanner) with a repetition time (TR)

of 2 seconds and 3× 3× 3mm3 voxel size.

7.1.2 Motion estimation in the stimulus

Because smooth pursuit behavior is tightly linked to moving targets, we estimated

the overall motion per video frame with computer vision techniques. Despite all

recent advances, such algorithms can still yield noisy outputs, so we used two dif-

ferent algorithms for additional robustness. The first algorithm computed motion

based on the minors of the structure tensor as described by [Barth, 2000] with the

aim to provide a sparse optic flow field by estimating motion only at points that

are not susceptible to the aperture problem, i.e. corners. Initially, the input video

was spatially subsampled by a factor of two, and then a spatio-temporal Gaussian

pyramid with five spatial and two temporal levels was created. For each level of this

multiscale representation, velocity per pixel was computed. These velocity estimates

were normalized relative to the original video resolution and combined in a proce-

dure similar to pyramid synthesis described by [Adelson and Burt, 1980]; higher

speed values were clipped to the 90th percentile speed. The second algorithm uses

edge-preserving interpolation of correspondences for optical flow (EpicFlow) com-

putation as described by [Revaud et al., 2015]. The algorithm in the first step uses

dense matching with edge-preserving interpolation followed by an energy minimiza-

tion step. An example of content motion computation of the EpicFlow algorithm

is provided in Figure 7.1b. For both algorithms, finally, the mean length of pixel

displacements was computed per video frame.

7.1.3 Eye movement classification

From the provided data we created a quadruplet of values for each gaze sample

that comprised time, x and y coordinates on the monitor coordinate system, and a

confidence estimation of the eye tracking quality. Since the data set used monocular

eye tracking, a confidence value of 1 meant good tracking of the eye and a value of 0
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(a) Data set frame (b) Frame’s flow

Figure 7.1: (a) Example frame from the studyforrest data set with superimposed
gaze traces (over a 400 ms period; one color per subject) from the in-scanner par-
ticipants. Smooth pursuit is evidenced by the elongated point clouds. (b) Optic
flow computed by the EpicFlow algorithm. The estimated motion corresponds well
with the actual motion in the video. Black lines indicate the sp tool output, i.e.
automatically detected smooth pursuit segments (in the 400 ms window).

meant tracking loss. After inspection of the data, lost tracking varied from 1.2 % to

16.7 % among subjects with the notable exception of subjects 05 and 20. For these

two subjects the lost tracking was 86.7 % and 39.0 %, respectively, and they were

excluded from all subsequent analyses. The remaining gaze traces were segmented

into eye movements with the sp tool.

Since the sp tool was optimized for the GazeCom data set (Section 5.1), some pa-

rameters were adjusted (see parameters file on the online repository for full details).

We further improved the SP detection by using both in-lab and in-scanner recordings

together because the SP detection algorithm improves with an increasing number

of gaze traces. Despite the different stimulus sizes, we used the same pixel-space

for both sets of recordings by scaling the pixel-per-degree values for the (less noisy)

in-lab recordings; the agreement in detected SP episodes for the two sets was high

(r2 of 0.84 for the share of SP in 2-second intervals).

7.1.4 fMRI analysis

The fMRI data analysis was performed with SPM12 using Matlab 9.2. We initially

followed a standard preprocessing pipeline for each recording [Poldrack et al., 2011].

The process comprised realigning the functional data to the mean image of each

session (without slice timing correction), coregistering them to the anatomical T1

scan, normalizing them to the MNI template and resampling them into 3×3×3mm3

voxels. Finally, we applied smoothing with a Gaussian kernel of 8mm at full width

half maximum (FWHM).
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During the recording of the studyforrest data set its authors split the movie stimulus

into 8 different segments of approximately 15 minutes each with each one displayed

separately in the scanner. In the first level analysis we combined all 8 recording

sessions into one design matrix in order to model the full Forrest Gump movie. For

each session in the design matrix we fitted an SP, a saccade, and movie motion

regressor when needed. In order to account for variations in the onset and width

of the hemodynamic response among subjects we used the canonical hemodynamic

response function (HRF) along with its time and dispersion derivatives. Apart from

the previous regressors we also used the six head movement components that were

returned from the realignment step during preprocessing as nuisance regressors.

The eye movement and motion regressors were modeled as event time series with

events placed 2 seconds apart, which by design coincides with the scanner’s TR and

therefore each event was representing the regressor variance between scans. The

amplitude of each event was modulated by the prevalence of the corresponding eye

movement or the amount of motion in the 2-second window and was having a value

of 0 when it was the same as the overall mean and was linearly increasing up to

a maximum value of 1. A detailed description of the regressor modeling procedure

is given in the next section. As it becomes evident from how the regressors were

modeled it would have been impossible to model both fixations and SPs with this

process without creating strong (negative) correlations between the two. To make

this interdependence more clear let’s consider that a subject starts pursuing a target.

Then consequently the amplitude of the SP regressor would increase with the fixation

amplitude decreasing proportionally.

After fitting the GLM to the data of each subject independently we used the ampli-

tude component of the HRF of each regressor that spanned 8 recording sessions in

order to compute the contrasts of interest. These contrasts included the main effect

of the eye movements and motion, the comparison between SP and saccades, and

the comparison of the eye movements to motion. Finally, at the second level of the

fMRI analysis we performed a one-sample t-test for each of the previous contrasts

for the 13 valid subjects. The resulting clusters (p < 0.05 Family Wise Error [FWE]

corrected with an initial threshold of p < 0.001) were overlaid on a three-dimensional

brain and are presented in the results section.

Regressor modeling

As outlined above, our regressors were not modeling each eye movement event in-

dependently but were placed in 2-second intervals, which were modulated by the
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amount of the respective eye movement in that window. For the experiments that

were taking movie motion into account this was modeled through the mean movie

motion and as before in consecutive 2-second windows.

More specifically, the computation of the magnitude of the eye movement modula-

tion parameters was taking into account three main factors. (i) The first factor was

capturing the changes in eye movements between different naturalistic stimuli and

was represented by the mean percentage of each eye movement type of each subject

and is equivalent to the mean viewing behavior. (ii) The second factor was capturing

the differences in prevalence and variance between different eye movement types and

it was a constant value with the modulation parameter being inversely proportional

to it. The value of this factor was chosen from the data in order to bring approx-

imately 95 % of the modulated values below 1 (for a visualization, see Figure 7.2).

Therefore it was set to modulationSacc = 1.5 for saccades due to their small vari-

ance in relation to different input stimuli. For SP it was set to modulationSP = 5

in order to reflect the large variance of the eye movement, which cannot occur in

the absence of a moving target but can be continuously performed for long periods

of time when a salient moving object exists. (iii) The third factor was capturing the

variance among subjects. This subject-specific factor was based on the observation

that the prevalence of each eye movement type varies among subjects and it may

directly or indirectly relate to the differences in brain connectivity [Mueller et al.,

2013, Vanderwal et al., 2017]. In the case of the studyforrest data set saccades var-

ied from 5.8 % to 12.4 % and SPs from 11.5 % to 19.3 % among the subjects and it

becomes obvious that if the overall mean was used the relevant activations in some

subjects would be suppressed and in some would be amplified.

As an illustrative example, consider a hypothetical subject which has an overall

mean SP percentage of overallSP = 15 % and performed SP clipSP = 10 % of the

time in a given clip. Now in a particular 2-second window windowSP = 85 % of

its duration was labeled as SP. The modulation magnitude will be (windowSP −
clipSP )/(modulationSP ∗ overallSP ) = (85 − 10)/(5 ∗ 15) = 1. After computing

the modulation parameters across all 2-second intervals of the data set according to

the previous formula we found that the SP and saccade regressors were uncorrelated

(Pearson correlation r = 0.02), which is a good indication of no shared variability

between the two.

For the magnitude of the motion estimation modulation parameters we followed

a similar process as with the modeling of eye movement parameters. Again, here

the steady state was captured through the mean content motion for each stimulus

independently. The resulting value was normalized with the 90th percentile of the
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motion values across all clips and was bound to a maximum value of 1 in order to

limit the influence of the outliers.

7.1.5 Additional validation regressors

Apart from the eye movement regressors of SP and saccade we also used a motion

regressor, which in the nominal case was modeling the global motion in the video.

We further explored two variations of it. In the first variation of motion modeling we

used a window around the gaze position to get a local estimation of the motion and

in the second variation we subtracted the smooth pursuit velocity from the mean

content velocity in the same window with the aim of approximating the retinal

motion. Since the results with local motion were subpar in comparison to global

motion we do not present them in the results section but we only discuss them later

on.

To further understand what drives eye movements we also ran models that included

scene complexity and edge density estimation as additional regressors with their

values being modeled identically to motion regressor as explained in the previous

section. The scene complexity was computed as the entropy of the saliency of each

frame using a standard saliency model [Itti et al., 1998]. Similar to the entropy of

image saliency, we calculated edge density as the per-frame entropy of the absolute

pixel values on the third level of a Laplacian pyramid (which represents edges in

the spatial frequency range of approximately 3-6 cycles per degree, i.e. close to the

peak of the human contrast sensitivity function). Again these results are discussed

later on.

7.2 Results

The presented functional group results of this section were mapped to the three-

dimensional cortical template of the “Population-Average, Landmark- and Surface-

based” Atlas (PALS) [Van Essen, 2005] with the metric-enclosing-voxel algorithm in

Caret (version 5.65) [Van Essen et al., 2001]. When needed the provided coordinates

are reported in the Montreal Neurological Institute (MNI) coordinate system.
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7.2.1 Eye movement statistics

Overall, in the valid in-scanner subjects the algorithm classified 53 % of gaze sam-

ples as fixations, 8.4 % as saccades, and 14.8 % as SP with the rest being labeled as

noise (tracking loss, blinks, cluster noise, etc.). Because we here were interested in

separating e.g. saccades and SP as cleanly as possible, this relatively high noise level

was acceptable. Fixations showed the highest absolute variation among participants

(std: 10.1 %), which is to be expected since the fixation detection is very sensitive

to eye-tracking noise and our objective was not to model this type of eye movement.

Saccades (std: 2.5 %) and SP (std: 3 %) had lower absolute variance but very high

relative variations among participants. This relatively high between-subject vari-

ability was captured by the subject-specific modulation factor during the first level

analysis.

(a) Saccade ratio distribution (b) SP ratio distribution

Figure 7.2: Probability distribution of saccade (a) and smooth pursuit (b) ratios
as detected in the 2-second windows that were used during the event-related 1st
level analysis, normalized so that 1 corresponds to each subject’s mean. A wide
distribution indicates high variability across subjects and time. Saccades (red) have
lower variability and are centered around 1. SP ratios (blue) are more variable and
the peak close to 0 represents the absence of SP (e.g. no SP target is moving in the
scene).

Apart from the between-subject variability there exists within-subject variability,

which varies for different eye movements. In Figure 7.2 we visualize the probability

distributions of the ratios in 2-second windows of saccades and SP per subject in

relation to the same subject’s overall mean. Because the range of the distributions

differed between eye movement types we chose the eye movement specific modulation

factors of Section 7.1.4 with the aim of normalizing them into comparable ranges.

Here, a value of 1 indicates that the share of each eye movement type in a given
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interval is equal to the overall subject mean. A value of 0 denotes that the respective

eye movement does not occur in that interval and values above 1 mean that we

have above-average occurrence. As can be seen from Figure 2, saccades show lower

within-subject variability and are centered around the mean ratio of 1. On the other

hand, the occurrence of SP shows higher variability with a peak close to 0, which

represents the absence of SP when no moving target is present in the stimulus, i.e.

movie.

7.2.2 SP- and saccade-related activations

The mean effects of SP- and saccade-related BOLD-responses are given in Figure 3,

where we present clusters at pFWE < 0.05 using an initial threshold of p < 0.001.

This procedure yielded three clusters related to SP (SP1-SP3) and two clusters re-

lated to saccades (Sac1-Sac2), see Table 7.1. The notable difference between the

SP1 and Sac1 clusters is the strong activation within the middle temporal gyrus,

presumably visual motion area MT+/V5 in SP1 but not Sac1, which is to be ex-

pected since this area is associated both with SP and motion processing. The second

large cluster marked as SP2 mainly covers parts of the middle cingulate cortex and

the precuneus. Also there exists a much smaller saccade-related cluster that covers

part of the precuneus and is marked as Sac2. Finally, a small SP-specific cluster

related to the right temporoparietal junction (rTPJ) is marked as SP3.

4.0 7.0
t - Value

SP1

SP1

SP2

SP3

(a) SP baseline activations

Sac1

Sac2

Sac1

4.0 7.0
t - Value

(b) Saccade baseline activations

Figure 7.3: (a) SP-related activity with pFWE < 0.05 with initial threshold of p <
0.001. Activations span bilaterally the visual areas of the brain (SP1: kE = 7647,
including the SP-related MT+/V5), bilaterally the middle cingulate expanding to
the precuneus (SP2: kE = 2048), and the right temporoparietal junction (SP3:
kE = 109). (b) Saccade-related activity with pFWE < 0.05 with initial threshold
of p < 0.001. Activations span bilaterally the visual areas of the brain (Sac1:
kE = 6437) and the precuneus (Sac2: kE = 245). For a detailed list of the subareas
refer to Table 7.2
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Table 7.1: List of clusters with peak activation t-value
and location along with cluster level FWE-corrected p-
values that are related to SP and saccadic eye move-
ments.

Cluster
name

Peak
activation

Cluster
size

pFWE−corr
Peak

t-value
x y z

SP1 -3 -91 14 7647 < 0.001 15.11
SP2 6 -43 56 2048 < 0.001 8.48
SP3 57 -40 17 109 0.011 6.49
Sac1 -9 -82 17 6437 < 0.001 16.84
Sac2 -6 -52 56 245 < 0.001 6.25

Table 7.2 lists a more detailed description of anatomical and functional areas in-

cluded in the identified clusters SP1-SP3 and Sac1-Sac2, respectively. Anatomical

areas were parcellated with the automated anatomical atlas [Tzourio-Mazoyer et al.,

2002, Rolls et al., 2015]. In order to avoid cluttering the table with anatomical ar-

eas that are represented by relatively few voxels, we applied a cutoff threshold as a

percentage of the total voxel count in each cluster. For the two biggest clusters of

Table 7.1 the threshold was set at ∼ 2 % and for the rest at 5 %.

7.2.3 SP-saccade related activations

In the way that we structured our analysis, saccades were used as a proxy to represent

the steady-state condition of our visual system, because of their lower variability,

with smooth pursuits being the eye movement of interest. Hence we were interested

in the specific differences between SP- and saccade-related brain activations during

natural viewing. These contrasts with pFWE < 0.05 and initial threshold of p <

0.001 are visualized in Figure 7.4.

This procedure identified three areas with stronger activation during SP compared

to saccades. In Figure 7.4a the first area has bilateral activations of the motion

processing and SP-related area MT+/V5 (right: kE = 169, left: kE = 89), with

the second area containing the middle cingulate and extending to precuneus (kE =

655). Lastly, the third area comprises of an activation in the right temporo-parietal

junction (rTPJ; kE = 158). Figure 7.4b shows that the saccade > SP contrast has

significant activations in V2 (right: kE = 91). The full list of anatomical areas that

are part of these clusters is provided in Table 7.3.
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Table 7.2: List of brain areas involved in both SP- and saccade-related clusters and areas that are unique to SP. The
threshold for visualization was chosen at ∼ 2 % for the big clusters and 5 % for the smaller clusters of Table 7.1. Therefore
the values do not sum up to the total number of voxels in each cluster.

Anatomical
Area

Brodmann
area

(functional
region)

SP activations Saccade activations
Peak

activation
Part

of
Num. of
voxels

Peak
t-value

Peak
activation

Part
of

Num. of
voxels

Peak
t-value

x y z x y z

L Lingual 17, 18 -15 -76 2 SP1 528 12.04 -18 -79 2 Sac1 522 14.00
R Lingual 17, 18 12 -85 13 SP1 578 8.59 9 -85 -13 Sac1 599 10.73
L Calcarine 17, 18, 30 -3 -91 14 SP1 505 15.11 -9 -79 14 Sac1 503 15.94
R Calcarine 17, 18, 30 12 -85 8 SP1 447 11.32 12 -79 14 Sac1 309 15.01
L Cuneus 18, 19 -3 -91 17 SP1 368 13.33 -9 -82 17 Sac1 329 16.84
R Cuneus 18, 19 12 -94 14 SP1 405 10.72 12 -79 17 Sac1 309 11.75
L Occipital Sup 18, 19 -15 -97 23 SP1 273 12.51 -15 -82 11 Sac1 255 12.49
R Occipital Sup 18, 19 15 -97 17 SP1 219 10.42 18 -94 5 Sac1 164 8.04
L Occipital Mid 19, 37 (V5) -48 -73 5 SP1 532 10.47 -15 -10 8 Sac1 555 7.18
R Occipital Mid 19, 37 27 -88 14 SP1 303 8.09 36 -67 29 Sac1 291 6.45
L Occipital Inf 18 -27 -82 -10 SP1 142 8.30 -27 -70 -10 Sac1 131 7.36
L Fusiform 18, 19 -24 -79 -10 SP1 347 8.44 -33 -49 -10 Sac1 352 11.90
R Fusiform 18, 19 33 -79 -16 SP1 415 11.09 27 -82 -16 Sac1 365 12.03
L Cerebellum 6 – -6 -73 -16 SP1 181 8.14 -18 -73 -16 Sac1 185 9.41
R Cerebellum 6 – 15 -85 -16 SP1 214 9.76 24 -82 -19 Sac1 187 11.86
L Precuneus 5, 7 -9 -49 47 SP2 325 8.20 -6 -52 56 Sac2 100 6.25
R Precuneus 5, 7 6 -43 56 SP2 278 8.48 6 -52 53 Sac2 69 5.30
L Temporal Mid 19, 39 (V5) -48 -70 8 SP1 122 8.61 – – – – – –
R Temporal Mid 19, 39 (V5) 41 -64 8 SP1 223 11.16 – – – – – –
R Temporal Inf 37 (V5) 48 -46 -25 SP1 101 8.02 – – – – – –
L Cingulate Mid 23, 24, 31 -9 -22 44 SP2 184 7.55 – – – – – –
R Cingulate Mid 23, 24, 31 12 -25 44 SP2 177 6.32 – – – – – –
R Paracentral
Lobule

5 12 -40 56 SP2 111 6.63 – – – – – –

R Temporal Sup 40 57 -40 13 SP3 55 6.94 – – – – – –
R Supramarginal 40 51 -40 23 SP3 45 6.57 – – – – – –

7.2.4 Accounting for movie motion

To differentiate SP from content motion-related brain activations we added an ad-

ditional motion regressor during the first level analysis, which was again modeled as

time-series with its values computed in a process similar to eye movement modula-

tion of Section 7.1.4. Here, we present the results using the EpicFlow algorithm and

whole frame mean motion modeling (results for the algorithm based on the minors

of the structure tensor were qualitatively similar, data not shown). The resulting

motion regressor was uncorrelated with the saccade regressor (Pearson r = −0.11)

and the same held true for the SP regressor (Pearson r = 0.18). The mean effects

of SP-, saccade-, and motion-related BOLD-responses are visualized in Figure 7.5.

As can be seen from Figures 7.5a and 7.5b the activations for SP and saccades are

qualitatively very close to the activations of Figure 7.3 but with reduced size and in-

tensity for SP when motion was included in the model (Figure 7.5a). This reduction

in SP-related activations followed by strong positive motion-related (Figure 7.5c)

activations in roughly the same areas as the SP-related activations shown in Fig-

ure 7.3a. Moreover, the activity in the cortex lining the superior temporal sulcus
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Figure 7.4: (a) Activations for SP > saccade at pFWE < 0.05 with an initial thresh-
old of 0.001. Activations in bilateral MT+/V5 (right: kE = 169, left: kE = 89),
in the middle cingulate extending to precuneus (kE = 665), and in the right tem-
poroparietal junction (rTPJ) (kE = 158). (b) Activations for saccade > SP con-
trast with pFWE < 0.05 with initial threshold of 0.001. Activation in V2 (right:
kE = 91).

(STS) and in the supplementary motor area including the supplementary eye field

(SEF) was negatively correlated with our motion regressor.
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(a) SP baseline activations
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Figure 7.5: (a) Activations for SP > saccade at pFWE < 0.05 with an initial thresh-
old of 0.001. Activations in bilateral MT+/V5 (right: kE = 169, left: kE = 89),
in the middle cingulate extending to precuneus (kE = 665), and in the right tem-
poroparietal junction (rTPJ) (kE = 158). (b) Activations for saccade > SP con-
trast with pFWE < 0.05 with initial threshold of 0.001. Activation in V2 (right:
kE = 91).

Following this model, the contrast SP > saccade yielded significant activations

only in the middle cingulate (kE = 106) and rTPJ (kE = 104) areas (not shown

graphically). The MT+/V5 and precuneus activations of Figure 7.4a 4a did not

reach the significance threshold of 0.05FWE.

The SP > motion contrast (Figure 7.6) revealed bilateral activations in the cortex

lining the superior temporal sulcus (STS; right: kE = 536, left: kE = 194), the pre-

cuneus (kE = 102), and the supplementary motor area including the supplementary

eye field (SEF; kE = 177). To the contrary, the saccade > motion contrast did not

reveal any significantly activated areas
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Table 7.3: List of areas involved in SP > saccade and in the saccade >
SP contrasts. The threshold for visualization was set to 15 voxels for
all clusters and they do not sum up to the total voxel number for each
cluster.

Anatomical
area

Peak
activation Part of

Number of
voxels

Peak
t-value

x y z

R Temporal Sup 60 -31 20 cluster 1 73 5.95
R Supramarginal 60 -34 23 cluster 1 36 5.83
L Temporal Mid -51 -73 8 cluster 2 23 5.79
R Temporal Mid 51 -70 -1 cluster 2 103 10.11
L Occipital Mid -48 -76 5 cluster 2 89 7.46
L Cingulate Mid -9 -31 44 cluster 3 157 10.18
R Cingulate Mid 9 -22 44 cluster 3 145 8.01
L Precuneus -12 -44 44 cluster 3 30 5.63
R Precuneus 12 -52 58 cluster 3 92 6.72
R Paracentral Lobule 12 -37 47 cluster 3 32 6.36
R Postcentral 15 -49 68 cluster 3 32 6.77
R Parietal Sup 18 -49 68 cluster 3 26 6.06
R Occipital Inf 24 -97 -7 cluster 4 42 7.32
R Occipital Mid 39 -88 -1 cluster 4 18 7.11
R Lingual 24 -91 -4 cluster 4 15 5.64

7.3 Discussion

The aim of applying our algorithms and analyzing the studyforrest data set was to

investigate brain activations related to SP and saccades in complex dynamic natu-

ralistic scenes. To this end, we presented methods based on off-the-shelf algorithms

and modeling techniques that can handle the noisy and unstructured nature of mo-

tion and eye-tracking data coming from scanner recordings when dynamic natural

scenes are used as stimuli. Our main results are in line with previous studies showing

activations in the MT+/V5 area during SP when SP and saccades were modeled

separately. When an additional regressor representing motion content of the stimu-

lus was included in the model, specific attention-related areas were identified while

some other brain areas (including MT+/V5) fell below the significance threshold

due to the similar SP and motion BOLD mean effects.

Validity of eye movement classification

To ensure that the sp tool returned high quality output in the studyforrest data set,

we manually tuned its parameters based on visual inspection of a small portion of

the results. A full manual annotation of a data set as big as the studyforrest (ca.

30 hours) was not feasible given the fact that it takes approximately 15 to 75 s for

one annotator to label one second of gaze and multiple annotators are needed for

best results.
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Figure 7.6: Activations for SP > motion contrast with the motion regressor com-
puted with EpicFlow and pFWE < 0.05 with initial threshold of 0.001. Activations
appear in the right superior and middle temporal gyri (posterior and anterior STS)
(kE = 536, peak xyz : 60,−55, 26) and in the left middle temporal gyrus (posterior
STS) (kE = 194, peak xyz : −60,−28, 11), bilaterally in the precuneus (kE = 102,
peak xyz : 6,−58, 35), and bilaterally in the supplementary eye field (kE = 177,
peak xyz : −6, 11, 62).

Validity of algorithms defining motion content

A potential weak point in using motion estimation algorithms to define the motion

content of a stimulus is the fact, that they tend to give noisy results. For that

reason, we validated the presented results by using two different motion estimation

algorithms [Barth, 2000, Revaud et al., 2015]. In both cases the identified brain

activations were comparable, underlining the validity of our approach. In the second

analysis of our study, we were interested in specifically identifying what drives SP

in humans in the presence of motion. To this end, we used the mean frame motion

as an approximation to background motion. However, there exist many other ways

of modeling motion and we investigated two of them in more detail. In the first

approach we modeled motion in a five degree window around each gaze position.

In the second approach we aimed at decorrelating the two regressors by modeling

retinal motion. For this purpose, we subtracted the SP velocity (speed and direction)

from the motion velocity in the same window and then used the magnitude of the

resulting vector in our model. The resulting activations, while qualitatively similar,

were weaker for both approaches in their extent and intensity. This can be partially

attributed to the fact that in both of these approaches the correlation between the

motion and SP regressors was higher than when only mean frame motion was used

(window r = 0.21, window - SP velocity r = 0.51 vs. mean frame r = 0.18). The

changes in the correlation values can be attributed to many factors. Generally the

noisy results of motion estimation algorithms may become even noisier as we use

the mean of a smaller window instead of the full frame. Also the reported gaze can

be noisy and oftentimes has spatial offsets, which can result in missing completely

or partially the moving target in the motion computation. As a result, SP velocity
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disproportionately influences the result of its subtraction from the window motion

and thus returns higher correlation values. A similar effect appears with targets of

very small size. It should be noted that the reported gaze position from the eye

tracker was much noisier in the scanner than in the lab: the median dispersion of

25 ms windows of gaze data was 31 pixels in the scanner vs. 10 pixels in the lab for

the studyforrest data set.

Brain areas related to variance in smooth pursuit

The contrast of SP > saccade with only the SP and saccade regressors included in

the first level design matrix revealed activations in the middle cingulate and pre-

cuneus, which have been previously associated with SP eye movement control [Tan-

abe et al., 2002, Kimmig et al., 2008] and visuo-spatial processing [Berman et al.,

1999, Cavanna and Trimble, 2006]. Additionally, this contrast yielded higher ac-

tivation during SP related to the rTPJ, an area that is involved in guidance to-

wards unattended areas [Corbetta et al., 2000, Wu et al., 2015, Marsman et al.,

2016]. Most importantly, this contrast revealed bilateral activations related to area

MT+/V5, which is regarded as a core motion processing area and has been associ-

ated with SP eye movements in previous studies [Petit and Haxby, 1999, Kimmig

et al., 2008, Lencer and Trillenberg, 2008, Ohlendorf et al., 2010, Marsman et al.,

2016]. Notably, the MT+/V5 area became non-significant in the same contrast

when a third regressor modeling the overall stimulus motion was added. This may

be best explained by the fact that the variance of the BOLD response in this area

was now shared between two regressors (SP and motion) instead of one [Ohlendorf

et al., 2010] as can be seen from the mean effect of SP and motion in Figures 7.5a

and 7.5c. This demonstrates the difficulty in finding a single source of activation

in natural scenes where many different factors may provoke activation of a specific

area and a complete disentanglement of such confounds may prove elusive.

Benefits of considering motion content in the model

Adding motion as a regressor to the model allowed us to identify SP-related activa-

tions that were not per se driven by the overall motion of the stimulus (Figure 7.5a).

Interestingly, motion itself additionally resulted in negative effects related to STS

and SEF areas. Thus, when directly contrasting SP > motion, these two areas to-

gether with the precuneus occurred as being significantly stronger activated during

SP than by motion content alone (Figure 7.6). STS is considered a hub for informa-

tion processing including the processing of biological motion [Saygin, 2007, Jastorff



100Chapter 7. Understanding smooth pursuit brain activations in dynamic natural scenes

and Orban, 2009, Grossman et al., 2010] as well as the processing of faces in sit-

uations requiring social cognition [Allison et al., 2000, Lahnakoski et al., 2012].

In line with this model, inhibiting STS activity by transcranial magnetic stimula-

tion (TMS) resulted in difficulties perceiving biological motion [Grossman et al.,

2005]. Also, reduced activity in the STS has been associated with difficulties in un-

derstanding biological motion and emotional content in autism spectrum disorder

patients [Alaerts et al., 2013, Nackaerts et al., 2012]. SEF activations have been

associated with anticipatory eye movements, even in situations with invisible tar-

gets, reflecting cognitive input to smooth pursuit planning independent from visual

input [Lencer et al., 2004, Ohlendorf et al., 2010].

When interpreting our finding related to motion content it should be considered

that our motion regressor was based on a low-level account of pixel-wise motion

energy, which might have failed to capture the semantic properties of natural scenes.

Thus, high values of motion content from our analyses were related to background

and camera motion (Figure 7.7), which are both extensively used in professionally

shot cinematic videos [Cutting et al., 2011]. In contrast, moving mid-sized objects,

i.e. socially meaningful targets, were linked to low motion content values. Thus,

irrelevant motion modeled by our motion content regressor may have led to the

observed negative activations bilaterally in the STS and the SEF unless SP to a

meaningful target was performed.

Given the current rapid pace of progress in computer vision algorithms for high-level

scene segmentation and understanding, more complex modeling of the semantics of

different types of motion information might enable a more fine-grained analysis of

such effects in the future.

Considering additional possible confounds

To at least partially alleviate the potential confounds of the motion energy analysis,

we included additional regressors modeling basic video characteristics. In two control

experiments, we modeled scene complexity based on saliency and edge density as

attention-grabbing parameters in order to test whether these parameters interfere

with the activations related to SP and motion content. In both cases the mean effect

of the validation regressor showed significant activations in some very small clusters

(approx. 150-300 voxels overall in the posterior part of the brain and mostly in the

visual cortex) and did not influence the activations regarding the main contrasts

of interest. From these observations we conclude that the eye movement planning

process is predominantly driven by the underlying motion based on the way we
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Figure 7.7: Visualization of 15 example frames and their motion content. Each of
the three main columns (separated with red lines) represents different levels of frame
motion (low, medium, high). Within each supercell we display the randomly chosen
frame (top left), the progress of the movie 5 frames later (bottom left), the optic
flow of the random frame (top right), and the 2 pixel absolute motion thresholded
optic flow (bottom right). As we move towards higher motion content the amount of
pixels above threshold increases, which indicates that our motion regressor returns
higher values for background and camera motion.

modeled each characteristic. However, a more exhaustive search of all the potential

parameters and modeling techniques may be required in future studies of SP in

dynamic natural scenes.

Lack of associations with frontal eye fields under natural viewing condi-

tions

We did not identify any activations related to the frontal eye fields (FEF), which

have been described to be involved in the planning and execution of both SP and

saccades [MacAvoy et al., 1991, Berman et al., 1999, Gagnon et al., 2006, Kimmig

et al., 2008]. One possible explanation might be that in typical experiments partic-

ipants switch between baseline periods of prolonged fixation and e.g. dot following
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or scene viewing. Instead, in the data set used here, participants were likely to

constantly engage in some form of eye movement planning during continuous movie

viewing, which is more representative of real-world viewing behavior. Therefore,

the variance of e.g. saccades in consecutive 2-second windows may not have been

sufficient to identify all saccade-related activations, including FEF. Another limit-

ing factor may be the small size of the FEF regions and the big variance in their

reported location [Vernet et al., 2014] along with their activation being dependent

on specific experimental conditions and instructions [Lencer et al., 2004].

7.4 Chapter conclusion

In this study, we demonstrated brain networks specifically related to the often-

overlooked smooth pursuit eye movements in complex dynamic naturalistic scenes.

Our findings underline the notion that special care has to be taken to model vari-

ance across subjects, within subjects, and for different eye movement types. We also

identified some of the confounds which arise from the semantic variation in movie

content and which cannot be captured by a low-level image-based analysis alone.

Nevertheless, our results show that findings from previous research with impover-

ished synthetic scenes can be qualitatively confirmed for highly complex, ecologically

valid naturalistic stimuli.



Chapter 8

Saccade and smooth pursuit

initiation interactions

Generally, eye-tracking experiments can be characterized by many attributes, but

the most important distinctions are the stimulus dynamics: static versus dynamic,

and the elaborateness of the stimulus: highly controlled, simple stimuli versus eco-

logically relevant natural stimuli in everyday scenes of different complexity. While

static stimuli mainly evoke saccades and fixations, dynamic stimuli can also evoke

sequences of slow smooth pursuit eye movements (for reviews, see [Schütz et al.,

2011, Kowler, 2011, Lisberger, 2015]). Synthetic motion stimuli such as dynamic

random dot patterns allow the control of the different attributes under test, i.e.

strength of motion signal versus noise, size, and direction of dot displacement, but

they come at the cost of potentially diminished ecological validity [Heinen and Wata-

maniuk, 1998, Schütz et al., 2010]. Naturalistic stimuli such as photographs or videos

of everyday scenes provide more ecologically valid targets in their natural environ-

ment, but they come at the cost of little control because of the complexity of natural

images and the many relevant factors that might influence and modify the response

behavior of observers.

Synthetic stimuli have been used to measure, under controlled conditions and with

high precision, eye movement characteristics such as latency and accuracy of sac-

cades [Saslow, 1967, Munoz et al., 1998]. They can also be used to study more

abstract concepts such as neural response times [Eagle et al., 2007], and cognitive

states [Heuer et al., 2013]. Static naturalistic stimuli have been used to investigate

how instructions change saccadic eye movements [Mills et al., 2011], as Yarbus stud-

ied this already in his classical experiments [Yarbus, 1967, p. 174], working memory

[Wolfe et al., 2011], reading comprehension [Jacobson and Dodwell, 1979], and the

103
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prediction of future gaze locations through different saliency models [Itti and Koch,

2000, Kümmerer et al., 2016].

A significantly smaller number of studies have used dynamic stimuli. Dynamic

synthetic stimuli have been used to investigate smooth pursuit eye movement char-

acteristics [Tychsen and Lisberger, 1986] (for a review see [Lisberger, 2015]) and

their neural correlates [Gellman and Carl, 1991, Pack and Born, 2001, Nagel et al.,

2006]. Dynamic natural stimuli have been used to understand eye movement behav-

ior in everyday scenarios and tasks [Land and Hayhoe, 2001, Dorr et al., 2010, Tatler

et al., 2011]; for a review see[Hayhoe, 2017], but these studies are rare.

The important question remains whether and how the results of studies with syn-

thetic stimuli transfer to the relatively underexplored dynamic natural environ-

ments. Some studies have investigated the transferability of such results by using

paradigms that presented stimuli at different levels of complexity. [Foulsham and

Kingstone, 2010] used static images and investigated how saccade directional asym-

metries changed between computer-generated images and natural scenes. [Martens

and Fox, 2007] investigated how fixation patterns changed with the familiarity of a

scene across two levels of naturalness. For this purpose they taped videos and eye

movements during repetitive driving under real conditions and compared them with

repetitive viewing of a prerecorded driving clip.

In the present study we wanted to compare voluntary tracking behavior (in terms of

saccadic and pursuit latency and errors of both movements) in response to synthetic

and naturalistic dynamic targets and to test for generalizability between them. To

bridge the large gap between free-viewing of natural scenes and controlled lab con-

ditions with a single synthetic stimulus, we created two experiments. The starting

point of our experiments was the GazeCom data set. Based on this, we determined

a set of targets (the baseline) that were followed by a large number of observers

with smooth pursuit eye movements (Figure 8.4). We then used this baseline and

the corresponding video parts for our new experiments to measure eye movements

to targets moving along the same trajectories as in the baseline. In both experi-

ments, eye movements always started from the same position, but the trajectory

was either represented by a video clip containing the target of interest (naturalistic

experiment), or by a Gaussian blob that moved in the same pattern as the original

target (synthetic experiment) (Figure 8.2).
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8.1 Methods

8.1.1 Selection of baseline trajectories

The two new experiments together with the free-viewing analysis relied on the Gaze-

Com data set. For the design of our experiments (as summarized in Figure 8.2) and

the measured statistics (e.g. interaction between smooth pursuits and targets) eye

movements alone were not sufficient and we needed the accurate trajectory of the

targets in the natural videos of the data set’s videos. Contrary to experiments with

synthetic stimuli, it is very challenging to obtain accurate target trajectories in dy-

namic natural contexts. Even though many automated algorithms exist for motion

estimation and optical flow extraction they would have been too noisy for our use

case. For this reason we manually labeled target trajectories: We selected 45 tar-

gets1 based on the longest-duration smooth pursuit clusters (from 0.8 to 5.9 sec) as

detected by an initial version of the sp tool and manually labeled a representative

point of each target (e.g. nose of a walking person) in each video frame.
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Figure 8.1: Free-viewing condition and selected trajectories.(a) A Still shot from
one video clip of the GazeCom data set. Over the course of the video, a duck is
flying by (orange trajectory in panel B) that many observers follow with smooth
pursuit. (b) Hand-labeled trajectories of 8 different targets from 8 different video
clips (different colors) that were used in the two new experiments. The horizontal,
up-, and downward tilted line segments represent the three possible positions of the
fixation point at the beginning of each trial as well as their distance (5 deg) from
the initial position of the subsequent target. The different frames depict the size of
the experimental monitor and the size of the presented videos. (c) Speed profiles
of the 8 selected targets as presented in the synthetic and naturalistic experiments.
Shown is the average speed in a 100 ms time window, with the error bars showing
the standard deviation of the labeling induced by the labeling of the target. The
colors correspond to the trajectories shown in panel b.

1https://gin.g-node.org/ioannis.agtzidis/gazecom_annotations/src/master/

targets_arff

https://gin.g-node.org/ioannis.agtzidis/gazecom_annotations/src/master/targets_arff
https://gin.g-node.org/ioannis.agtzidis/gazecom_annotations/src/master/targets_arff
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Baseline trajectories for data collection

For the synthetic and naturalistic experiments we chose 8 of the hand-labeled tra-

jectories from the GazeCom data set. We based our choice on the duration of the

target movements (> 3 sec) and on a pilot study, where we tested whether partic-

ipants were making a saccade to the relevant targets from the initially presented

fixation dot. The trajectories of the 8 selected targets and their speed profiles are

shown in Figure 8.1b and 8.1c.

Baseline trajectories for validation

To investigate how well our results generalize to the fully unconstrained free-viewing

condition, we analyzed SP responses to all 45 targets comprising about 3000 SP

intervals (about 7 % of the total GazeCom viewing time) for the baseline targets.

In the synthetic and naturalistic experiments, we varied the relative angle between

saccade and smooth pursuit to collinear and +/− 30 deg, and our analyses were

based on at least 150 ms of post-saccadic smooth pursuit. From the GazeCom hand-

labeled ground truth [Startsev et al., 2019b], we selected only SP intervals that were

within the previous criteria and obtained 238 saccade-SP pairs (down/collinear/up

in 30 deg wide bins: 69/114/55).

8.1.2 Experimental design

Every single trial in both experiments started with a fixation cross, which was placed

based on the initial direction and position of the upcoming target trajectory. The

initial direction of the natural trajectories was defined based on the slope of the line

between the first position of the target and the position of the target after 250 ms.

The fixation cross could appear collinear with the motion direction at 5 deg from the

initial target position or at 5 deg distance but rotated by 30 deg up- or downwards.

Participants looked at the fixation cross and pressed a button to start the trial. We

used the button press to perform a drift correction at the fixation location. After

the button press a red dot replaced the fixation cross and stayed there for a random

duration between 1 and 1.5 sec (see Figure 8.2). After the dot disappeared, the two

experiments presented different types of stimuli. In the experiment with synthetic

stimuli a target appeared and directly started to move. The target was a white

Gaussian blob (SD = 0.5 deg, max contrast = 0.5) on a uniform gray background

and its movement was following one of the eight hand-labeled target trajectories.
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In the naturalistic experiment the part of the respective scene that contained the

actual hand-labeled target motion was shown.

Participants randomly started with either of the two experiments and each experi-

ment contained 4 blocks of 72 trials each (8 scenes ∗ 3 orientations of the starting

position ∗ 3 repetitions). One block lasted approximately 15 minutes with partici-

pants taking breaks between blocks and typically performing 3 blocks per session. In

our analysis, we included only trials where the saccade started from within 2.5 deg

of the initial fixation position and the position error measured between the saccade

end position and target position was below 3 deg. The second criterion made sure

that participants were tracking the correct target, which was especially relevant in

the naturalistic experiment, where multiple potential targets may have been present.

Overall, 6077 out of 7488 trials (81 %) were included in the analysis. As the target

was more clearly defined in the synthetic condition we only had to exclude 390 trials

in comparison to 1021 trials in the naturalistic experiment. There were some small

differences in the exclusion rate for the individual scenes, as in some scenes there

was more additional information that attracted the gaze as well.

5 deg

Experiment 1 - Synthetic

(a)

Experiment 2 - Natural

(b)

Figure 8.2: Depiction of the two new experiments. After an initial fixation, in ex-
periment 1 (synthetic) participants saw a white Gaussian blob moving on a uniform
gray background along the same trajectory as the duck (or other hand-labeled ob-
jects in the natural videos). In experiment 2 (natural) participants initially fixated
at the same position, but then saw the part of the natural video that included the
moving target. The trajectory of the flying duck corresponds to the orange line in
Figure 8.1b.
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8.1.3 Experimental setup

Participants sat at a table facing a 32 in monitor (Display ++, LDC; Cambridge

Research Systems Ltd) in a dimly illuminated room. We used a chin and forehead

rest to stabilize the participant’s head and minimize its movement. In this setup

the eyes of the participants were approximately at the height of the screen center

and at a distance of 90 cm from it. We recorded eye movements from the right eye

with a desk-mounted eye tracker (EyeLink 1000 Plus, SR Research) with a sampling

frequency of 1000 Hz. The experiments were programmed in MATLAB using the

Psychtoolbox [Kleiner et al., 2007]. Before each block we used a 9-point calibration

to align the gaze data with the screen.

As the temporal and spatial resolution of the stimulus as well as the viewing distance

used to collect the GazeCom data (30 Hz, 1280 ∗ 720 pixels, 45 cm) were different

from the ones used for the semi-controlled stimuli (120 Hz, 1920 ∗ 1280 pixels, 90 cm)

we had to perform some transformations. To account for the different temporal

resolution between the original monitor and that of experiment 1 (synthetic presen-

tation), we resampled the x and y pixel values from the hand-labeled trajectories to

120 Hz with linear interpolation. In experiment 2 (natural scene presentation) the

videos were still presented at 30 Hz by just updating the monitor’s content every

fourth frame. Regarding the difference in spatial resolution, we decided not to resize

the presented scenes or the position of the labeled targets to the new monitor size

but we instead decided to present them in the central 1280 ∗ 720 pixels of the larger

monitor. This choice led to differences in the visual field between our experiments

(30 ∗ 17 deg) and the GazeCom recordings (48 ∗ 28 deg) but this decision was driven

by two factors: First, rescaling the scenes may have led to blur. Second, and more

importantly, for our two new experiments we wanted to control the initial fixation

position of the participants. By presenting the smaller target trajectories or scenes

in the center of the screen, we were able to present a fixation dot 5 deg from the

target starting position (Figure 8.2). This would not have been possible if we had

used the full size of the monitor to present the stimuli.

8.1.4 Participants

For our experiments we recorded the eye movements of 13 volunteers (mean = 23.5

years old, SD = 3.5; 11 females). All of the participants were näıve to the purpose

of the study and had not seen any of the videos before. They were mainly students

of Giessen University and had normal or corrected-to-normal vision. Before the
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start of the experiments they gave informed consent (Declaration of Helsinki) and

all experiments were approved by the local ethics committee (LEK FB06 2017-08).

Participants received 8 Euro per hour as monetary compensation.

8.1.5 Data analysis

For each subject we quantified the characteristics of initial saccades and smooth

pursuit and tested for differences with respect to the stimulus complexity and the

relative angle between both consecutive eye movements. We examined these inter-

actions for saccade latencies and saccade position errors as well as for pursuit gain

and pursuit directional accuracy. Below, we describe how each measurement and

statistic was calculated and mention potential differences or limitations for each type

of experiment.

For the synthetic and naturalistic experiments we calculated the saccade latencies

as the difference between the start of the target movement and the onset of the

first saccade. For the (GazeCom) free-viewing validation data such latencies are not

defined, because of the continuous presentation. The saccade position error was de-

fined as the Euclidean distance between the saccade landing position and the labeled

target position. For pursuit parameters, we analyzed the interval between 50 ms and

150 ms after the saccade completion. This choice excluded post-saccadic oscillations

from our calculations and thus returned more robust results while limiting the influ-

ence of additional new retinal information after the end of the saccade. Specifically,

pursuit gain was defined as the mean of the ratio between pursuit and target speeds.

Since the targets were not moving linearly we projected the sample-to-sample gaze

direction onto the linearly interpolated target direction at each moment in time.

The gain was computed as the average ratio of the projected gaze speed and the

target speed during the relevant interval. Pursuit accuracy was defined as the pur-

suit angular error, which is calculated as the absolute difference between the pursuit

direction and the target direction, calculated between the first and the last point

during the pursuit interval. We also computed the pursuit precision for each scene,

which was defined as the width of a Gaussian distribution fitted to all available seg-

ments of the signed pursuit direction error across participants. These included the

direction errors measured in the 50 to 150 ms interval, but we additionally included

segments after this interval if the eye stayed closer than 3 deg to the target and had

less than 45 deg of direction error, as here the participants were presumably still

tracking the target. We used a sliding window of 100 ms in 10 ms intervals to find

these new segments.
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To test for systematic influences on these statistics we used repeated measures

ANOVA with factors relative to angle (down, collinear, up) and stimulus complexity

(synthetic vs. natural scene).

8.2 Results

Here we present the results of different eye movement parameters for the synthetic

and naturalistic experiments that represent different levels of stimulus complexity.

Where possible, and in order to better bridge the gap to complete free viewing of

naturalistic scenes we also present the equivalent statistics from the original Gaze-

Com data set.

8.2.1 Saccadic eye movements

The latency of initiating saccades towards a target can function as an indicator for

the processing time that is required for the programming and execution of target-

directed saccades. Our experiments (Figure 8.3a) contain two stimulus conditions

and three different saccade-target angles (down, collinear, up), which were used as

factors in a repeated measures ANOVA that tested for significant influences on the

saccade latencies. We observed significant main effects both for the stimulus com-

plexity (F (1, 12) = 89.745, p < .001) and relative angle (F (2, 24) = 6.137, p = .006)

but no significant interaction between the two. The simpler stimuli that comprised

of a single Gaussian blob moving on a uniform background had saccade latencies

of 183 ms on average, which was significantly lower than the 235 ms for the natural

targets. Moreover, saccades had lower latency when they were collinear with the

subsequent pursuit target across both stimulus complexities (synthetic: 177 ms vs.

186 ms, t(12) = 4.21, p = .001, natural: 231 ms vs. 237 ms, t(12) = 2.06, p = .06).

Figure 8.3b illustrates the saccade accuracy with regard to the different stimulus

complexities and different directions. The saccade accuracy was defined as the

saccade position error between the endpoint of the saccade and the starting position

of the target and was computed per subject as the average error across the 8 different

scenes. In a similar procedure as before we ran a repeated measures ANOVA,

which revealed a significant effect of relative angle (F (2, 24) = 5.446, p = .011) and

stimulus complexity (F (1, 12) = 109.262, p < .001) and no significant interaction

between the two (F (2, 24) = 2.489, p = .104). Saccade position error was lower in

the synthetic condition and also displayed lower variance. Also in Figure 8.3b we
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display the saccade position error for the GazeCom data set, which is on average

closer to the natural experiment. But overall the errors in the free-viewing condition

follow a similar pattern as with the two new experiments with saccades been more

accurate in the collinear condition.
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Figure 8.3: Comparison of initial saccades across experiments. (a) Stimulus com-
plexity strongly influenced saccadic latency. The relative angle between the initial
saccade and the upcoming pursuit had a much smaller but significant effect. The two
dashed horizontal lines represent saccadic latency in the collinear case for synthetic
(red) or natural (black) targets. Error bars depict the standard error of the mean
(panels a and b). (b) Saccade position errors, defined as average Euclidean distance
between saccade endpoints and target positions, are shown for the synthetic (red)
and for the natural (black) condition. For comparison, saccade position errors from
GazeCom free viewing validation data are plotted (light gray). The graph shows
that the saccade position errors are larger by about 0.5 deg for targets in natural
scenes. (c) Saccade error as a function of the deviation of the saccade direction
from the horizontal axis. The three symbols represent the different relative angles
between initial saccades and pursuit for the synthetic (red) and the natural (black)
experiments. The solid lines represent a linear regression fitted to the data.

We found that the stimulus complexity has a strong effect on initial saccades; in

natural scenes initial saccades to moving objects had significantly longer latencies

and larger position errors. However, there is a confound we need to clarify because

the saccade error is closely related to object size. For a small object, such as a

duck flying in the distance, a single point may be sufficient to describe it; for larger

targets, such as a moving child or a car close to the camera, however, a single dot

is not enough to represent the target. The problem of object size is evident in the

end positions of saccades starting from different locations as shown in Figure 8.4

for two target positions chosen for two objects of different sizes: the beak of the

flying duck on the left and the nose of the moving child on the right. For the

duck the saccades from all three positions land on it while for the child the landing

position is sometimes dependent on the starting position. Saccades starting at the

top position almost always land on the child’s face (the marked representative point)

but as we move downwards the saccade landing position start to deviate more often
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towards the center of the child’s body. As a result, when only one target location

is used for the representation of a larger object saccade position errors will most

probably increase because observers will attend different parts of the same object.

In Section 8.3.3 and Figure 8.6a we discuss this observation in more detail.

(a) (b)

Figure 8.4: Saccades to moving targets of different sizes. The images in the back-
ground are cutouts of the two natural videos: Flying duck on the left and Walking
child on the right. The colors of the trajectories correspond to the colors of the
target trajectories in Figure 8.1b. Overlaid are the averages of saccade trajectories
starting from three different fixation locations to two targets of different sizes. Note
that for the flying duck scene the black and red curves obscure each other. The
shaded areas depict the standard area of the mean of the trajectories. Note how
the saccade landing positions depend on the starting positions and the target size.
When moving objects are small like the duck, deviations of the trajectories and
landing locations are very small and comparable to the synthetic experiment; when
target objects are large like the child, saccades sometimes aim at different locations
of the same object, either at the center of the body when starting from the lower
fixation dot or towards the center of the face when fixating the central or upper
fixation dot.

8.2.2 Pursuit eye movements

For pursuit gain as well as the pursuit direction error we only analyzed the pursuit

in the interval close to the end of the saccade (50 to 150 ms after saccade end) to

minimize the influence of post-saccadic oscillations and of any new retinal informa-

tion after the saccade. We again computed a repeated measurement ANOVA with

the factors relative angle (down, collinear, up) and stimulus complexity (synthetic

vs. natural). For pursuit gain (Figure 8.5a) we observed a significant main effect

of the relative angle (F (2, 24) = 11.365, p < .001), while there was no influence of
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stimulus complexity (F (1, 12) = 0.028, p = .870).

Down Collinear Up

P
ur

su
it 

G
ai

n

0.5

0.6

0.7

0.8

0.9

1

1.1

Synthetic
Natural
Free Viewing

Relative Angle

(a)
Pu

rs
ui

t A
cc

ur
ac

y 
[d

eg
]

Down Collinear Up
5

10

15

20

Synthetic
Natural
Free Viewing

Relative Angle

(b)

Pursuit Precision Synthetic [deg]
12 13 14 15 16

Pu
rs

ui
t P

re
ci

si
on

 N
at

ur
al

 [d
eg

]

12

13

14

15

16 Individual Subjects

(c)

Figure 8.5: Pursuit behavior. (a) The average pursuit gain depended on the relative
angle between the direction of the initial saccade and the upcoming pursuit and
on the stimulus complexity. The dashed horizontal lines depict the value of the
collinear condition. (b) The absolute pursuit direction errors depended on the
relative angle between the direction of initial saccade and the upcoming pursuit and
on the stimulus complexity. As in panel a the dashed horizontal lines depict the
value of the collinear condition. (c) Comparison between the standard deviation
of the pursuit direction errors for the synthetic and naturalistic experiments. Each
black dot represents a single subject, the open black square the average. All error
bars depict the standard error of the mean.

Despite the qualitatively similar results we still observed one significant benefit of

the natural and richer information when watching the video. When we analyzed

and compared pursuit accuracy (Figure 8.5b), we found a significant main effect of

stimulus complexity (F (1, 12) = 20.715p < .001), with lower error when tracking a

natural moving target in the video. This benefit was highly consistent across our

observers and the different targets/scenes (Figure 8.5c; t(12) = 4.311, p = .001),

indicating that the additional information led to an improved tracking performance

in natural scenes.

8.2.3 Effect of object size

In order to better understand the observed effects in the naturalistic experiment, we

compared them against the different object sizes. The object size for each target was

estimated by manually fitting a bounding box on a representative frame and was kept

constant under the assumption that each target’s shape did not change substantially

during its presentation (50 to 150i ms). Even though none of the measured statistics

was significantly correlated with the size of the pursued object, below we present

some results of interest. Initially we correlated the saccade position error against
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the object size because the definition of the earlier becomes more ambiguous with

larger objects. Here we did not observe a relationship between the two (Figure 8.6a:

r(8) = −0.11, p = .8) suggesting that higher position errors in the naturalistic

experiment were not purely driven by the larger object sizes. Additionally, we

present the correlation between pursuit accuracy and object size in Figure 8.6b.

With our limited sample size of only 8 different scenes, which correspond to 8 targets,

we found a correlation of r(8) = −0.6(p = .12).
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Figure 8.6: Role of object size. (a) Saccade position error as a function of target
size. The eight video scenes are depicted with different colors as in Figure 8.1b.
The black solid line depicts a linear regression fitted to the data. (b) Comparison
of pursuit direction error between the synthetic and naturalistic experiments. The
relative pursuit error for the eight video scenes is depicted in the same colors as
in panel a and negative values indicate an improved performance for the natural
condition. The black solid line depicts a linear regression fitted to the data. The
black dashed line depicts zero. All data were first averaged across the different
relative angles and then across participants. The error bars depict the standard
error of the mean across participants.

8.3 Discussion

These experiments tried to tackle whether eye movement behavior differs for natural

moving objects, such as a duck flying across a river in a park, and a simple Gaussian

blob moving across a gray monitor screen.

To answer this question we performed two experiments to investigate the general-

izability of results gained in eye movement studies with highly controlled, simple

laboratory stimuli and more complex animate objects in natural scenes. To enable
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a direct comparison, we used the trajectory of a real object from a natural video

(such as a flying duck) for simple Gaussian blob targets so that they moved exactly

along the same path and at the same velocity. Overall, we observed qualitatively

comparable results, suggesting that one can generalize between eye movement per-

formance under highly controlled conditions with simple stimuli to eye movement

behavior when watching natural video scenes. For pursuit, we observed that the

gain was comparable for synthetic or natural targets and both conditions showed a

significant benefit of collinear saccadic and pursuit eye movements. However, there

were also interesting differences: latencies of initial saccades to moving Gaussian

blob targets were significantly lower compared to saccades to moving objects in

video scenes, and pursuit accuracy in video scenes was significantly higher.

8.3.1 Effect of scene complexity on saccadic eye movements

Comparative studies of eye movement properties in response to the same target

shown in different contexts, i.e. uniform backgrounds versus naturalistic scenes

are rare. However, most results revealed that the characteristic properties of eye

movements are quite similar [Foulsham et al., 2011, Henderson et al., 2013, Walshe

and Nuthmann, 2015]. We contrasted eye tracking responses across two conditions

with moving stimuli, either a Gaussian blob or objects in video scenes, and also found

similar eye movement behavior. Initial saccades rapidly aligned the gaze with the

moving peripheral target, which in our study was either a simple blob or a complex

natural object. While we kept the starting position and the movement trajectory

the same we were able to compare the effects of backgrounds, which consisted of a

uniform monitor screen or the natural scene. Doing so we made two observations:

(i) latencies were shorter for saccades to synthetic stimuli, (ii) the position error was

higher for the natural stimuli, despite having a qualitatively similar pattern.

The latency difference seems to be based on the fact that in real-world scenes the

selection of a target object is potentially hard if one thinks of the target selection in

some kind of a race model [Gold and Shadlen, 2007, Tatler et al., 2017]. Computa-

tional saliency models used to predict gaze behavior [Itti and Koch, 2000, Einhäuser

et al., 2008, Kümmerer et al., 2016] produce more variance for naturalistic com-

plex scenes in comparison to the clearly defined simple targets in synthetic scenes.

An indication for this higher demand with respect to selection and decision is the

overall increase in saccade latency by 52 ms for the natural background compared

to the uniform blank screen (see Figure 8.3a). Higher saccadic latencies were also

reported by [Walshe and Nuthmann, 2015] for initial targets in their uniform con-
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dition (203 ms) versus their scene condition (214 ms). Thus, while it is possible to

use less complex scenes as a proxy for naturalistic images, there seem to be some

additional caveats that one needs to take into account [Foulsham and Kingstone,

2010]: saccade parameters like the position error are qualitatively comparable be-

tween varying stimulus complexities, but the conditions are less clearly defined with

respect to the target and saccades have different latencies.

Even though saccadic position error was significantly lower in the synthetic experi-

ment, the position error for the complex videos was still within roughly 1.5 deg from

the target and far from being inaccurate. The way we defined the position error was

more suitable for the blob condition, as here the target was symmetrical around the

labeled target position. For the video conditions, as only one point on the object

was labeled, trials in which a participant looked at the relevant object, but not

on the labeled position (see for example Figure 8.4), were assigned a high position

error. This probably led to an overestimation of the position error in the video

conditions, as we did not ask participants to look at the labeled part of the object,

but they could freely choose their gaze position. The preferred landing position of

saccades in the natural condition seemed also to depend on the former fixation po-

sition since observers directed their saccades to different parts of larger objects after

fixations on higher or lower positions as found for the child shown in Figure 8.4b.

This seems to be in line with the analysis of saccade landing positions when animals

were shown in natural scenes, where the landing position also revealed a preference

toward the head of the animal as well as the center of gravity [Drewes et al., 2011].

Also other studies comparing fixation patterns across different stimulus complexi-

ties found changing gaze patterns [Martens and Fox, 2007, Foulsham et al., 2011].

Foulsham and colleagues compared the gaze behavior in people in the real world

walking outside to buy coffee with that of people watching in the lab videos that

were taped during the walk. They found that during actions in the real world the

allocation of gaze depended much more on the current task requirements compared

to free viewing conditions of the same video sequences in the laboratory.

Interestingly, based on these reasons one could assume that this should lead to higher

position errors in the video conditions, especially for larger objects. However, if we

compare the size of the target object in the video conditions, there seems to be no

relationship with the magnitude of error (Figure 8.6a), indicating that there might

be idiosyncratic differences in where people look for certain objects [de Haas et al.,

2019] and for which objects these differences happen.
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8.3.2 Saccade pursuit interaction

We have observed that when the saccade and subsequent pursuit are collinear the

saccade position error is reduced and pursuit gain is closer to 1 (optimal). Because we

measured the pursuit gain immediately after the saccade completion (50 to 150 ms)

the increase in pursuit gain is unlikely to be the result of new retinal input. Up

to 150 ms is often considered as the open-loop interval [Rasche and Gegenfurtner,

2009, Buonocore et al., 2019], where due to processing delays no new incoming

retinal information is affecting the pursuit response. The benefit in pursuit gain

could potentially be explained by muscle synergies, as for collinear eye movements

the eye simply can keep moving in the same direction, whereas for the other two

conditions the eye needs to decelerate more in order to change direction.

On the other hand, the increased saccade accuracy in the collinear case cannot

be explained by muscle synergies or the saccade orientation (see Figure 8.3c). A

possible explanation can be provided by early interactions between the saccadic and

pursuit systems [Goettker et al., 2019], in which the saccade landing position is

influenced by the subsequent pursuit direction. This interaction points to a shared

network between the two [Deravet et al., 2018, Goettker et al., 2019] that increases

the tracking performance during the transition phase from saccade to pursuit.

8.3.3 Effect of scene complexity on pursuit eye movements

Across the different levels of scene complexity we observed no significant differences

with regard to pursuit gain, which suggests that results obtained with lab stimuli

can be extrapolated to natural videos. A similar effect was observed across stimuli

complexities between the relative angle of the initial and the subsequent pursuit.

Also this similarity in pursuit gain suggests that the reported differences in the sac-

cade position errors were probably affected by the larger object sizes in the natural

experiments, which allowed the participants to target different areas of the same

object.

Interestingly, we observed a clear benefit in terms of the pursuit direction error

and its variability for the more complex scenes. This suggests that participants

actually could make use of the additional information and the embedded context to

improve their tracking performance. This is in line with recent evidence, showing

that during tracking of a flying ball oculomotor control system is integrating the

physical properties of the scene into its planning and it is adversely affected when

some of these properties are artificially changed [Delle Monache et al., 2019]. Certain
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expectations can also drive anticipatory pursuit [Kowler, 1989] and there is also

evidence that prior knowledge is incorporated in the planning process [Darlington

et al., 2017, Deravet et al., 2018]. Thus, our results suggest that prior knowledge of

the constraints and behavior of physical objects allows for a better pursuit tracking

in comparison to the tracking of an artificial Gaussian blob, which lacks any meaning

and could move at seemingly random patterns.

One additional interesting suggestion is that larger objects lead to an increased pur-

suit performance and fewer catch-up saccades [Heinen et al., 2015]. In Figure 8.6b

we visualize how the size of our 8 different targets is benefiting the pursuit accu-

racy. The negative error values indicate that the target tracking is more accurate

in the naturalistic experiment than in the synthetic experiment and a positive value

the opposite. Although not significant with our 8 scenes there seems to be a trend

towards a benefit for the larger stimuli in the natural condition. Thus, the observed

benefit to pursuit accuracy when tracking targets in natural videos seems to based

on better motion integration due to larger object size and the use of prior knowl-

edge [Watamaniuk and Heinen, 2015], which results in better prediction of the target

motion.

8.4 Chapter conclusion

Thus taken it all together, we found that it is possible to compare and generalize

oculomotor behavior across different stimulus complexities. However, some intrica-

cies have to be noted: (i) Different levels of complexity lead to latency differences

depending on how easily identifiable the targets are. (ii) It is difficult to measure

positional accuracy for ill-defined and asymmetrical natural targets. (iii) Pursuit

eye movements become more accurate for larger targets or if context information

allows a better prediction of the target movement.
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Conclusion

Eye movements in dynamic natural contexts have been relatively underexplored in

comparison to static scenes. Even when dynamic stimuli are used they are predom-

inantly synthetic targets that usually translate in space and not videos of natural

scenes presented on a monitor or a head-mounted display. Also oftentimes the eye

movements that account for the dynamic nature of the content are disregarded and

binned together with other eye movements. For example, researchers have defined

SP as a fixation on a moving target by potentially assuming that SP comprises a

negligible part of the overall gaze signal. Also a similar approach of detecting fixa-

tions and saccades only was followed by some of the first algorithms because they

were either assuming static stimuli or they were intentionally merging SP with the

other two. Only in recent years, algorithms that detect dynamic eye movements

have been developed with varying levels of success.

To tackle the previous shortcomings, in this thesis we provide new data sets, algo-

rithms, and new innovative applications of these. Our eye movement data sets are

the largest to date hand-labeled data sets that span from videos of everyday scenes

and Hollywood movies to immersive 360-degree content. We find that SP can be

performed up to a quarter of the time on average across subjects. This observation

shows the importance of separately labeling SP from fixations and saccades but

also our results demonstrate the challenge of doing this automatically with simple

thresholds due to the overlapping basic characteristics among the three. However,

the large size of our data sets enabled us to develop and optimize more elaborate

algorithms that achieved state-of-the-art performance across all eye movement types

that were used in this thesis including SP, which is much more challenging to ro-

bustly detect in comparison to fixations and saccades. These algorithms reached

human-level performance for fixation and saccade detection and overall high-quality

119
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results for SP detection. Taken together our algorithms allow for robust annotation

of eye movements without the need for tedious and time-consuming hand labeling.

More specifically, with our algorithms we were able to analyze the large studyfor-

rest data set and to correlate SP with brain areas in a naturalistic free viewing

experiment, which would have been very difficult and almost unattainable other-

wise. Moreover, our labelings of the GazeCom data set together with new controlled

recordings formed the basis for understanding the interactions between saccades and

SP during the initiation phase of the latter across different modalities. To conclude,

the infrastructure presented in this thesis (data sets, tools, algorithms) provides the

foundation for a better understanding of human eye movements in naturalistic con-

ditions since they enable the automatic analysis of large amounts of data recorded

in more complex and ecologically valid environments.
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Valero-Cabré, A. (2014). Frontal eye field, where are thou? Anatomy, func-

tion, and non-invasive manipulation of frontal regions involved in eye movements

and associated cognitive operations. Frontiers in Integrative Neuroscience, 8:88.
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[Wolfe et al., 2011] Wolfe, J. M., Võ, M. L.-H., Evans, K. K., and Greene, M. R.

(2011). Visual search in scenes involves selective and nonselective pathways.

Trends in Cognitive Sciences, 15(2):77–84.

[Wu et al., 2015] Wu, Q., Chang, C.-F., Xi, S., Huang, I.-W., Liu, Z., Juan, C.-

H., Wu, Y., and Fan, J. (2015). A critical role of temporoparietal junction in

the integration of top-down and bottom-up attentional control. Human Brain

Mapping, 36(11):4317–4333.

[Yarbus, 1967] Yarbus, A. L. (1967). Eye movements during perception of complex

objects. In Eye Movements and Vision, pages 171–211. Springer.

[Zemblys et al., 2018a] Zemblys, R., Niehorster, D. C., and Holmqvist, K. (2018a).

gazeNet: End-to-end eye-movement event detection with deep neural networks.

Behavior Research Methods, 51(2):840–863.



BIBLIOGRAPHY 137

[Zemblys et al., 2018b] Zemblys, R., Niehorster, D. C., Komogortsev, O., and

Holmqvist, K. (2018b). Using machine learning to detect events in eye-tracking

data. Behavior Research Methods, 50(1):160–181.

[Zhong et al., 2013] Zhong, S.-h., Liu, Y., Ren, F., Zhang, J., and Ren, T. (2013).

Video saliency detection via dynamic consistent spatio-temporal attention mod-

elling. In Twenty-seventh AAAI Conference on Artificial Intelligence, pages 1063–

1069.


	Abstract
	Abstrakt
	Acknowledgements
	I Setting the scene
	Introduction
	Thesis organization
	Previous publications


	Basics
	The role of eye movements
	Eye movement types
	Eye movement types definitions

	Smooth pursuit
	Head-mounted eye tracking
	Evaluation metrics


	II Foundational data sets
	Labeling tool
	Data format
	Labeling interface
	Handling of 360-degree data

	Hand-labeled data sets
	GazeCom data set
	Data set description
	Labeling procedure
	Inter-rater agreement
	Hand labeling statistics
	Basic statistics

	Hollywood2 data set
	Data set description
	Labeling procedure
	Inter-rater agreement
	Hand labeling statistics
	Basic statistics

	360-degree data set
	Data set collection
	Manual annotation
	Basic statistics
	Discussion



	III Improving automated gaze trace segmentation in unstructured environments
	Eye movement segmentation in monitor-based experiments
	Smooth pursuit detection based on multiple observers
	Prefiltering
	Clustering

	Deep learning eye movement segmentation
	Algorithm evaluation
	Literature algorithms
	Algorithm Optimization
	Results


	Eye movement detection with 360-degree stimuli
	Conversion of monitor-based algorithms
	Equirectangular to Cartesian space
	Application to existing algorithms
	Conversion of data
	Conversion evaluation

	I-S5T algorithm
	Overall evaluation


	IV Applications in dynamic natural contexts
	Understanding smooth pursuit brain activations in dynamic natural scenes
	Methods
	Data set
	Motion estimation in the stimulus
	Eye movement classification
	fMRI analysis
	Additional validation regressors

	Results
	Eye movement statistics
	SP- and saccade-related activations
	SP-saccade related activations
	Accounting for movie motion

	Discussion
	Chapter conclusion

	Saccade and smooth pursuit initiation interactions
	Methods
	Selection of baseline trajectories
	Experimental design
	Experimental setup
	Participants
	Data analysis

	Results
	Saccadic eye movements
	Pursuit eye movements
	Effect of object size

	Discussion
	Effect of scene complexity on saccadic eye movements
	Saccade pursuit interaction
	Effect of scene complexity on pursuit eye movements

	Chapter conclusion

	Conclusion
	Bibliography


