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ABSTRACT

The upcoming Large Synoptic Survey Telescope (LSST) will detect many strongly lensed Type Ia supernovae (LSNe Ia) for time-
delay cosmography. This will provide an independent and direct way for measuring the Hubble constant H0, which is necessary
to address the current 4.4σ tension in H0 between the local distance ladder and the early Universe measurements. We present a
detailed analysis of different observing strategies (also referred to as cadence strategy) for the LSST, and quantify their impact on
time-delay measurement between multiple images of LSNe Ia. For this, we simulated observations by using mock LSNe Ia for which
we produced mock-LSST light curves that account for microlensing. Furthermore, we used the free-knot splines estimator from
the software PyCS to measure the time delay from the simulated observations. We find that using only LSST data for time-delay
cosmography is not ideal. Instead, we advocate using LSST as a discovery machine for LSNe Ia, enabling time delay measurements
from follow-up observations from other instruments in order to increase the number of systems by a factor of 2–16 depending on the
observing strategy. Furthermore, we find that LSST observing strategies, which provide a good sampling frequency (the mean inter-
night gap is around two days) and high cumulative season length (ten seasons with a season length of around 170 days per season),
are favored. Rolling cadences subdivide the survey and focus on different parts in different years; these observing strategies trade the
number of seasons for better sampling frequency. In our investigation, this leads to half the number of systems in comparison to the
best observing strategy. Therefore rolling cadences are disfavored because the gain from the increased sampling frequency cannot
compensate for the shortened cumulative season length. We anticipate that the sample of lensed SNe Ia from our preferred LSST
cadence strategies with rapid follow-up observations would yield an independent percent-level constraint on H0.

Key words. gravitational lensing: strong – gravitational lensing: micro – supernovae: general – surveys – cosmological parameters –
cosmology: observations

1. Introduction

The Hubble constant (H0) is one of the key parameters to describe
the Universe. Current observations of the cosmic microwave
background (CMB) imply H0 = 67.36 ± 0.54 km s−1 Mpc−1,
assuming a flat Λ cold dark matter (ΛCDM) cosmology and the
standard model of particle physics (Planck Collaboration I 2019).
This is in tension to H0 = 74.03 ± 1.42 km s−1 Mpc−1, which is
measured from the local distance ladder (Riess et al. 2016, 2018,

2019). In order to verify or refute this 4.4σ tension, independent
methods are needed.

One such method is lensing time-delay cosmography,
which can determine H0 in a single step. The basic idea
is to measure the time delays between multiple images of
a strongly lensed variable source (Refsdal 1964). This time
delay, in combination with reconstructions of the lens mass
distributions and line-of-sight mass structure, directly yields
a “time-delay distance” which is inversely proportional to H0
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(i.e., t ∝ D∆t ∝ H−1
0 ). While the time-delay distance pri-

marily constrains H0, it also provides information about other
cosmological parameters (e.g., Linder 2011; Jee et al. 2016;
Shajib et al. 2018; Grillo et al. 2018). Applying this method
to four lensed quasar systems, the H0LiCOW collaboration1

(Suyu et al. 2017) together with the COSMOGRAIL collabora-
tion2 (Eigenbrod et al. 2005; Courbin et al. 2018; Bonvin et al.
2018) measured H0 = 72.5+2.1

−2.3 km s−1 Mpc−1 in flat ΛCDM
(Birrer et al. 2019), which is in agreement with the measure-
ments using, a local distance ladder, but larger than CMB mea-
surements.

Another promising approach goes back to the initial idea
in Refsdal (1964) that uses lensed supernovae (LSNe) instead
of quasars for time-delay cosmography. So far only two LSNe
systems with resolved multiple images have been observed.
The first one, called SN “Refsdal” discovered by Kelly et al.
(2016a,b), was a 1987A-like Type II SN, which was strongly
lensed by the galaxy cluster MACS J1149.5+222.3. As shown in
Grillo et al. (2018), with SN Refsdal one can measure H0 with
a 1σ statistical error of 7%. The second LSNe with resolved
images is iPTF16geu reported by Goobar et al. (2017) from the
intermediate Palomar Transient Factory (iPTF). The system is a
SNe Ia at redshift 0.409 and strongly lensed by an intervening
galaxy at a redshift of 0.216. Strong lens mass models of the
system from More et al. (2017) yield SN image fluxes that are
discrepant with the observations, which might be partly an effect
of microlensing (Yahalomi et al. 2017; Foxley-Marrable et al.
2018; Dhawan et al. 2019). Additionally, Mörtsell et al. (2019)
show that the flux anomalies are within stellar microlensing pre-
dictions for certain values of the slope of the projected surface
density of the lens galaxy. The models in More et al. (2017) and
Goobar et al. (2017) also predict very short time delays (≈0.5 d)
that can thus be significantly biased by a microlensing time
delay (Bonvin et al. 2019a). Therefore it is important to include
microlensing in LSNe studies.

Even though the number of LSNe is a factor of approxi-
mately 60 (Oguri & Marshall 2010) lower than the number of
lensed quasars, there are important advantages in using LSNe
when measuring time delays. First, if they are observed before
the peak, the characteristic SN light curves make time-delay
measurements easier and possible on shorter time scales in com-
parison to stochastically varying quasars. Second, supernova
images fade away with time, which facilitates measurements
of lens stellar kinematics and therefore enables the combi-
nation of dynamics (Barnabè et al. 2011; Yıldırım et al. 2017;
Shajib et al. 2018) and lens mass modeling. This helps to over-
come degeneracies like the mass-sheet degeneracy (Falco et al.
1985; Schneider & Sluse 2014). The intrinsic luminosity of the
source can also be another way in avoiding mass-sheet degener-
acy. Since SNe Ia are standardizable candles, LSNe Ia are very
promising in breaking the model degeneracies in two indepen-
dent ways.

Even though only two LSNe with resolved images are cur-
rently known, the Large Synoptic Survey Telescope (LSST) will
play a key role in detecting many more LSNe. From inves-
tigations done by Oguri & Marshall (2010) assuming detec-
tions based on image multiplicity, we expect to find 45 LSNe
Ia over the ten year survey. A different approach, using
strong lensing magnification for detection (Goldstein & Nugent
2017; Goldstein et al. 2018), leads to 500−900 LSNe Ia in
ten years (see also Quimby et al. 2014). The differences in

1 http://h0licow.org
2 http://cosmograil.org

the expected number of LSNe Ia arise from different assump-
tions about the limiting magnitude and cumulative season
length, as pointed out by Wojtak et al. (2019). A remain-
ing question, however, is how many of the detected sys-
tems are valuable for measuring time delays and whether it
will be possible to measure time delays with just the LSST
data. The LSST cadence strategy (Marshall et al. 2017) will be
defined soon and the goal of this paper is to evaluate differ-
ent cadences for our science case of measuring time delays
in LSNe Ia. For this purpose, we have investigated 20 dif-
ferent observing strategies. We used mock LSNe Ia from the
Oguri and Marshall (OM10) catalog (Oguri & Marshall 2010)
to simulate observations, and produced the light curves for
the mock SNe images based on synthetic observables calcu-
lated with Applied Radiative Transfer In Supernovae (ARTIS;
Kromer & Sim 2009) for the spherically symmetric SN Ia model
W7 (Nomoto et al. 1984). Furthermore, we employed magnifi-
cations maps from GERLUMPH (Vernardos et al. 2015) to include
the effects of microlensing, similar to the approach followed
by Goldstein et al. (2018). We then simulated data points for
the light curves following the observational sequence from dif-
ferent cadences and uncertainties according to the LSST sci-
ence book (LSST Science Collaboration 2009). We used the
free-knot splines estimator from Python Curve Shifting (PyCS;
Tewes et al. 2013; Bonvin et al. 2016) to measure the time delay
from the simulated observation.

The structure of the paper is as follows. In Sect. 2 we
present a theoretical calculation of microlensing on LSNe Ia. In
Sect. 3 we introduce relevant information about LSST and dif-
ferent observing strategies investigated in this work. In Sect. 4,
mock light curves of LSNe Ia are simulated and the time-delay
measurement to quantify different LSST observing strategies is
described in Sect. 5. The results are presented in Sect. 6 before
we conclude in Sect. 7. Throughout this paper, magnitudes are
given in the AB system.

2. Microlensing on type Ia Supernovae

In this section we describe the calculation of microlensed SNe
Ia light curves combining magnifications maps and a theoret-
ical SNe Ia model. The relevance of microlensing on LSNe
Ia has been shown theoretically by Dobler & Keeton (2006),
Goldstein et al. (2018), and Bonvin et al. (2019a) and, as men-
tioned before, the first detected LSNe Ia shows discrepan-
cies between models and observation which might be partly
due to microlensing (More et al. 2017; Yahalomi et al. 2017;
Foxley-Marrable et al. 2018). Therefore to simulate more realis-
tic light curves of LSNe Ia we included microlensing in our stud-
ies. In Sect. 2.1 magnifications maps are described and Sect. 2.2
explains the radiative transfer code ARTIS used to calculate syn-
thetic observables. In addition the projection of the 3D simula-
tion output to 1D is discussed including the geometrical delay
as described by Bonvin et al. (2019a). In Sect. 2.3 a compre-
hensive derivation of microlensed light curves of SNe Ia is
presented.

2.1. Magnification maps for microlensing

Microlensing is the effect of additional magnification or demag-
nification caused by stars, or other compact objects with
comparable properties, of the lensing galaxy. We used mag-
nification maps based on GERLUMPH (Vernardos et al. 2015;
Chan et al., in prep.) to model the effect of microlensing on a
SN Ia. These maps are created using the inverse ray-shooting
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technique (e.g., Kayser et al. 1986; Wambsganss et al. 1992;
Vernardos & Fluke 2013) and are pixellated maps containing
magnification factors µ at the source plane. The three main
parameters for the maps are the convergence κ, the shear γ, and
the smooth matter component s which is defined as the ratio of
the smooth matter convergence κs to the total convergence κ. For
simplicity, we assumed s = 0.6 in our investigation. Estimated s
values at image positions of galaxy-scale lenses typically vary
between 0.3 and 0.8 (e.g., Schechter et al. 2014; Chen et al.
2018; Bonvin et al. 2019b) and therefore cover a much broader
range. Nevertheless Goldstein et al. (2018) investigated a few
different s values and found that the effect of microlensing on
LSNe Ia depends more on the spatial distribution of the radia-
tion than on the precise s value. Even though we over- or under-
estimate the microlensing effect slightly (depending on the mock
lens system) by fixing s in our work, this is done in the same way
for all cadence strategies investigated in this work, thus leaving
the overall message unchanged. A further investigation of dif-
ferent s values will be presented in Huber et al. (in prep.). The
Einstein radius REin is the characteristic scale of the map at the
source plane, defined as

REin =

√
4G〈M〉

c2

DsDds

Dd
· (1)

We assume a Salpeter initial mass function (IMF) with a
mean mass of the point mass microlenses of 〈M〉 = 0.35 M�.
Details of the IMF are not relevant for our studies (Chan et al., in
prep.). The angular diameter distances Ds, Dd, and Dds are mea-
sured from us to the source, from us to the lens, and between
the lens and the source, respectively. If we assume a flat ΛCDM
cosmology and neglect the contribution of radiation, we can cal-
culate the angular diameter distance via

DA =
c

H0(1 + z2)

∫ z2

z1

dz√
Ωm,0(1 + z)3 + ΩΛ,0

· (2)

Our maps have a resolution of 20 000×20 000 pixels and the
total size of the maps is set to 10REin×10REin. Therefore the size
of one square pixel of the magnification map is

∆dmag =
10REin

20 000
=

1
1000

√
G〈M〉

c2

DsDds

Dd
· (3)

For the simulated LSST LSNe Ia in Sect. 4, the size of these
microlensing maps ranges from 4.12 × 10−2 pc to 2.70 × 10−1 pc
with a median of 1.02 × 10−1 pc. As an example, a magnifica-
tion map for κ = 0.6 and γ = 0.6 is shown in Fig. 1, where
REin = 7.2 × 10−3 pc = 2.2 × 1016 cm assuming an iPTF16geu
like configuration.

2.2. Theoretical SNe Ia model and the 1D projection

To combine magnification maps with SNe Ia, we adopt a similar
approach as Goldstein et al. (2018) where the spherically sym-
metric W7 model (Nomoto et al. 1984) and the Monte Carlo-
based radiative transfer code SEDONA (Kasen et al. 2006) were
used.

For our analysis, we also rely on the W7 model, but cal-
culate synthetic observables with the radiative transfer code
ARTIS (Kromer & Sim 2009), which stands for Applied Radia-
tive Transfer In Supernovae and is a Monte Carlo based code
to solve the frequency and time-dependent radiative transfer
problem in 3D. Thus, ARTIS is not a deterministic solution

Fig. 1. Example magnification map for κ = 0.6, γ = 0.6 and s = 0.6.
The color scheme illustrates the different magnification factors µ at the
source plane depending on the x and y coordinate. Many micro “caus-
tics” are visible separating regions of high and low magnification.

technique, where the radiative transfer equation is discretized
and solved numerically, but a probabilistic approach in which
the radiative transfer process is simulated by a large number
of Monte Carlo packets, whose propagation is tracked based
on the methods developed by Lucy (1999, 2002, 2003, 2005).
In this procedure, γ-ray photon packets from the radioactive
decay of 56Ni to 56Co and the successive decay of 56Co to 56Fe
are converted into UVOIR (ultraviolet-optical-infrared radiation)
packets which are then treated with the full Monte Carlo radia-
tive transport procedure. In the propagation of UVOIR packets,
bound-free, free-free, and especially bound-bound processes are
taken into account. Once a packet escapes from the SN ejecta
and the computational domain (which we refer to as a simula-
tion box), the position x where it escapes the simulation box,
the time te when it leaves and the propagation direction n are
stored in addition to the energy and frequency. For the spheri-
cally symmetric ejecta the interaction of a photon packet stops
after leaving the ejecta surface so in general before hitting the
simulation box. For an illustration of two photon-packets leav-
ing the simulation box in the same direction, see Fig. 2.

Typically one is interested in spectra and light curves, to
compare observations to theoretical models. To get this infor-
mation from numerical simulations, all escaping packets have to
be binned in frequency and time, alongside the solid angle for
asymmetric models. Since the microlensing effect depends on
the location of the source as shown in Fig. 1, spatial informa-
tion of the SN is needed as well. Therefore, we have to project
the 3D SN onto a 2D plane perpendicular to the observer and
get the specific intensity as a function of wavelength, time, and
spatial coordinates x and y. Throughout this work, we assume
that SNe Ia can be treated with spherical symmetry and there-
fore no binning in solid angle is necessary. While this is exact for
an inherent 1D model like W7 and good for multi-dimensional
simulations that lead to nearly spherically symmetric ejecta
like some delayed detonations (Seitenzahl et al. 2013) and sub-
Chandrasekhar detonations (Sim et al. 2010), this approxima-
tion is questionable for models that lead to strongly asymmetric
ejecta like the violent merger (Pakmor et al. 2011, 2012).

In the 1D case, the spatial dependency of the specific inten-
sity reduces to the dependency on the impact parameter p, that
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Fig. 2. Slice through spherically symmetric SN enclosed in 3D simu-
lation box in order to explain 1D projection of SN and definition of
observer time defined in Eq. (5).

is, the projected distance from the ejecta center. To construct
this, we consider a plane containing the position x, where a
photon-packet has left the 3D simulation box, and the propaga-
tion direction n. This is illustrated in Fig. 2 for two packets leav-
ing at different positions but propagating in the same direction.
Because of the vast distance of the SN, the observer is defined
as a plane perpendicular to n. The radial coordinate where the
photon leaves the box is r =

√
x2, and the angle between the

position vector x and the propagation direction n is cos θ = x·n
|x||n| .

Then, the impact parameter is defined as

p = r sin θ = r
√

1 − cos2 θ, θ ∈ [0, π]. (4)

From Fig. 2 we see that different photon-packets, leaving the
box at different positions but at the same time after explosion te,
will reach the observer at different times. If we assume that the
orange packet from Fig. 2 reaches the observer at time t′ and the
blue packet at time t we can relate both times via t = t′ + d′−d

c ,
where d = r cos θ and d′ = |x′|. The time when the orange
packet reaches the observer can be expressed as t′ = te + C,
where C is a constant defining the distance from the observer
to the simulation box for the orange packet. From this we can
write t = te + C + d′−d

c . Since the comparison to real observa-
tions is always performed relative to a maximum in a chosen
band we are only interested in relative times. Therefore we can
simplify the equation for t by defining a reference plane at the
center of the SN perpendicular to the propagation direction n
(red dashed line). For this reference plane C = − d′

c which leads
to the observer time

t = te −
r cos θ

c
, (5)

as defined in Lucy (2005) which accounts for the geometrical
delay described in Bonvin et al. (2019a). We will refer to the
observer time t as the time since explosion. With the definition
of the time t and the impact parameter p, the energy is binned

Fig. 3. SN projected onto disk perpendicular to line of sight to observer.
The center of the disk with radius pS is placed at θp = 0 at an angular
diameter distance of DA from the observer.

in these two quantities3 as well as in wavelength λ. The emitted
specific intensity can then be calculated via

Iλ,e =
dE

4πdt dλ 2πp dp
, (6)

where the factor 4π is needed as a normalization over the unit
sphere.

2.3. Microlensed flux of SNe Ia

To calculate microlensed light curves, one has to first determine
the observed spectral flux for a SN, which can be calculated for
a source of angular size Ω0 on the sky as

Fλ,o =

∫
Ω0

Iλ,o cos θp dΩ. (7)

Here Iλ,o is the specific intensity at the position of the observer.
In Fig. 3 a spherical source (gray disk) is placed perpendicu-
lar to the line of sight at θp = 0. The disk represents the pro-
jected emitted SN specific intensity Iλ,e. Since the source size is
much smaller than the angular diameter distance to the source,
we use the approximation for small angles and get θp =

p
DA

and cos θp ≈ 1, which means that we assume parallel light rays.
Therefore dΩ = dφ dθp θp = 1

D2
A

dφ dp p and the spectral flux can
be expressed as

Fλ,o =
1

D2
A

∫ 2π

0
dφ
∫ pS

0
dp p Iλ,o, (8)

where pS is the source radius of the projected disk. The next step
is to relate the specific intensity at the observer’s position to the
source position. Hereby, we have to take into account that the
specific intensity is redshift dependent. According to Liouville’s
theorem Iν/ν3 is Lorentz invariant (Mihalas & Mihalas 1984,
p. 414) and therefore we have Iλ ∝ λ−5. Since the emitted wave-
length λe can be related to the observed one, λo, via λo = λe(1+ z)
we find that Iλ,o = Iλ,e/(1+z)5. Therefore by using DL = (1+z)2DA
the spectral flux reduces to

Fλ,o =
1

DL
2(1 + z)

∫ 2π

0
dφ
∫ pS

0
dp p Iλ,e. (9)

3 Technical detail: since the box expands with the SN over time, the
impact parameter p is a function of time. To eliminate this time depen-
dency, one can assume that the SN is homologously expanding (Roepke
2005) and therefore simply divide the impact parameter by the observer
time as in Goldstein et al. (2018). The unit of this new impact param-
eter is therefore cm s−1 instead of cm and the unit of the new specific
intensity is erg s cm−1 instead of erg s−1 cm−3.

A161, page 4 of 24

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935370&pdf_id=2
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935370&pdf_id=3


S. Huber et al.: Strongly lensed SNe Ia in the era of LSST

Fig. 4. Influence of microlensing on light curves g and z for two different positions (solid cyan and violet dashed) as shown in left panel at 21 days
after explosion for magnification map of Fig. 1 where REin = 7.2 × 10−3 pc. The case of no microlensing is shown as black dotted line in the
middle and right panels. We see that microlensing can cause distortion of light curves, shift the peaks and therefore add uncertainties to time-delay
measurements between images undergoing different microlensing.

To add the effect of microlensing Iλ,e has to be replaced with
µIλ,e, which is possible since lensing conserves surface bright-
ness. The value µ is the microlensing magnification4 as a func-
tion of φ and p. Therefore we get

Fλ,o =
1

DL
2(1 + z)

∫ 2π

0
dφ
∫ pS

0
dp p µ Iλ,e. (10)

We note that this equation is in agreement with Hogg et al.
(2002) and Goldstein et al. (2018), where in the latter the flux is
calculated in the supernova frame (Fλ,e) instead of the observer
frame (Fλ,o).

The projected specific intensity inferred from simulations is
a discrete function in time, wavelength, and impact parameter
and denoted as Iλ j,e(ti, pk). Because of the spherical symmetry
of W7, it has just a 1D radial dependency whereas the magnifi-
cation map is obtained on a 2D cartesian grid. To combine both
quantities as needed in Eq. (10), it is necessary to transform one
of both discrete quantities into the other coordinate system. We
choose to interpolate the specific intensity onto a 2D cartesian
grid:

Iλ j,e(ti, pk)→ Iλ j,e(ti, xl, ym). (11)

For this, we construct a cartesian grid with a pixel size ∆x =
∆y ≡ ∆dmag. To get accurate results, ∆p & ∆dmag is required but
to save computational memory we restrict ourselves to

∆p ≈ ∆dmag. (12)

As the SNe Ia ejecta expand, ∆p grows. Since ∆dmag is a fixed
quantity defined by Eq. (3), we interpolate the magnification map
to a finer or coarser grid to fulfill the criteria in Eq. (12) using the
Python library scipy5 (Jones et al. 2001). To get Iλ j,e(ti, xl, ym) for
a given time ti we interpolate Iλ j,e(ti, pk) in p and evaluate it for
all grid points (xl, ym). Therefore the spectral flux at time ti after
explosion can be calculated via

Fλ j ,o,cart(ti) =
1

DL
2(1 + z)

N−1∑
l=0

N−1∑
m=0

Iλ j ,e(ti, xl, ym) µ(xl, ym) ∆d2
mag. (13)

For the calculation of fluxes and light curves for astronomical
sources at redshift z we have

to = te (1 + z) and λo = λe (1 + z). (14)

4 We break here with the traditional nomenclature adopted in radiative
transfer, where µ stands for cos θ. Instead, µ denotes the magnification
factor throughout this work.
5 https://www.scipy.org/

To calculate microlensed light curves for the six LSST filters
(details about LSST in Sect. 3) we combine Eq. (13) with the
transmission function S X(λ) for LSST filter X. We calculate
AB-magnitudes as described by Bessell & Murphy (2012) such
that

mAB,X(ti) = −2.5 log10


∑Nλ−1

j=0 S X(λ j) Fλ j ,o,cart(ti) ∆λ j λ j∑Nλ−1
j=0 S X(λ j) c ∆λ j/λ j

×
cm2

erg

 − 48.6 (15)

for the magnitude at the ith time bin for filter X.
Light curves in absolute magnitudes are shown in Fig. 4

for the g and z bands. It is important to catch the light curve
peaks of different images of a LSNe Ia to measure time delays.
While we have a single peak for rest-frame light curves u and g
we find a secondary peak in the redder bands where we could
ideally catch both peaks for delay measurements. In addition
to the non microlensed case (dotted black), light curves with
microlensing (solid cyan and dashed violet) for two different
positions (see left panel) in the magnification map from Fig. 1
are shown. The microlensed light curves are highly distorted and
peaks are shifted, which adds large uncertainty to the time-delay
measurement between different images based on light curves that
undergo different microlensing.

A more detailed investigation of microlensing is presented
in Appendix A, where also spectra and color curves are dis-
cussed. We find from the investigated magnification map (Fig. 1)
an achromatic phase for some color curves up to approximately
25−30 days, as reported in Goldstein et al. (2018); however,
other color curves show a shorter or non-existent achromatic
phase. Our investigation also indicates that the achromatic phase
depends highly on the specific intensity profiles and therefore
the investigation of different explosion models is necessary to
explore this further (Huber et al., in prep.). Furthermore, some
color curves from ARTIS are different in shape from the ones of
SEDONA, which is important since features like peaks are nec-
essary to measure time delays. Even though color curves seem
to be more promising for measuring time delays (as suggested
by Goldstein et al. 2018, and discussed in Appendix A), we use
light curves instead for our further investigation because the
sparse sampling of LSST does not provide directly color curves.
Since color information is more easy to obtain with triggered
follow-up observations, it is promising to develop color curve
fitting methods in the future.

3. Large Synoptic Survey Telescope (LSST)

The LSST will target about 20 000 deg2 of the southern hemi-
sphere with a field of view of 9.6 deg2. Observations will be
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taken in six broad photometric bands ugrizy and each position
in the survey area will be repeatedly observed over time, where
each visit is composed of one or two back-to-back exposures
in the observing strategies currently under consideration. About
90% of the observing time will be spent on the 18 000 deg2 wide-
fast-deep survey (WFD), where the inter-night gap between vis-
its in any filter is about three days (LSST Science Collaboration
2009). The rest of the time will be used for other regions like
the northern Ecliptic, the south Celestial Pole, the Galactic Cen-
ter, and a few “deep drilling fields” (DDFs) where single fields
(9.6 deg2) will be observed to a greater depth in individual visits.

The scientific goals of LSST include exploring the nature
of dark energy and dark matter, exploring the outer regions of
the solar system, and completing the inventory of small bod-
ies in the solar system. These science goals restrict the cadence
strategy but still leave a certain amount of freedom. For exam-
ple, to detect fast-moving transients like asteroids, a revisit of an
observed field within an hour is usually necessary. Such a revisit
is planned if the first observation was taken in one of the bands g,
r, i, or z and is done in the same filter as the first observation for
most of the cadence strategies under investigation in this work.
For more details, see LSST Science Collaboration (2009).

As the LSST Project is in the process of finalizing the
cadence strategy, this paper investigates how different cadence
strategies will influence the possibility of measuring time delays
for LSNe Ia. We specifically look at what is termed as a “rolling
cadence”, where the overall idea is to subdivide the WFD and
focus on different subdivided parts in different years, with the
final ten-year static survey performance being the same as the
nominal ten-year survey. This strategy is one way to provide a
better sampling but it will reduce the number of seasons. A spe-
cific case for a rolling cadence is the one with two declination
bands, which subdivides the WFD (with a declination from 0 to
−60 deg) into a northern region covering declination from 0 to
−30 deg and a southern one with declination in −30 to −60 deg.
The idea is then to visit the northern part only in odd years (year
one, three, five, seven, and nine) and the southern part in even
years (year two, four, six, eight, and ten) or vice versa.

We investigate 20 different observing strategies which are
potential LSST cadences or of special interest for our science
case. In Sect. 3.1 we present the different observing strate-
gies. Readers who are more interested in the overall conclusions
instead of specific details about the cadence strategies might
directly jump to Sect. 3.2.

3.1. Specifications of observing strategies

Sixteen out of the 20 investigated cadence strategies are imple-
mented with the OpSim scheduler6 and the remaining four are
produced by alt_sched7 and the feature-based scheduler8.
Both the OpSim and feature-based schedulers use a greedy
algorithm, where the sky location of the next visit is determined
by optimizing different parameters such as seeing, time lapsed
since the last visit at the location, etc. In contrast, alt_sched
employs a non-greedy algorithm by observing at minimum air
mass and only relaxing on that to increase season length. The
following key points describe the different observing strategies
very briefly, where strategies with a capital letter have a larger

6 https://cadence-hackathon.readthedocs.io/en/latest/
current_runs.html and in addition pontus_2506 from Tiago
Ribeiro.
7 http://altsched.rothchild.me:8080/
8 https://github.com/yoachim/SLAIR_runs

than nominal 18 000 deg WFD footprint (the color scheme is
explained in Sect. 3.2)9:

– alt_sched: Non-greedy algorithm; revisits in the same
night in different filter; visits distributed in ugrizy as ∼(8.2,
11.0, 27.6, 18.1, 25.6, 9.5)%.

– alt_sched_rolling: Same as alt_sched but as a rolling
cadence with two declination bands.

– baseline2018a: Greedy algorithm like all following
cadences; official baseline; 2 × 15 s exposure; revisit within
an hour in the same filter and scattered visits over WFD, four
DDFs, northern Ecliptic, south Celestial Pole, and Galactic
Center; distribution of visits in WFD over ugrizy as ∼(6.8,
9.4, 21.5, 21.6, 20.2, 20.4)%. For all following cadences up
to pontus_2506 just the main differences with respect to
baseline2018a are listed.

– colossus_2664: WFD cadence over Galactic Plane.
– colossus_2665: Slightly expanded WFD.
– colossus_2667: Single visits instead of pair visits each

night.
– kraken_2026: Unofficial baseline with improved slew time.
– kraken_2035: Nine DDFs instead of four.
– kraken_2036: Standard WFD cadence in year one, two,

nine, and ten and a rolling cadence with three declination
bands in between.

– kraken_2042: Single 30 s exposure instead of 2×15 s expo-
sure.

– Kraken_2044: Very large WFD footprint of 24 700 deg2;
five DDFs; single visits instead of visits in pairs each night.

– mothra_2045: A rolling cadence in WFD (two Dec. bands).
– Mothra_2049: Similar to mothra_2045 but on a very large

WFD footprint (24 700 deg2).
– Nexus_2097: Similar to kraken_2036 but on a WFD foot-

print of 24 700 deg2.
– Pontus_2002: Very large WFD footprint (24 700 deg2) and

five DDFs.
– pontus_2489: 2 × 15 s visits replaced by 1 × 20 s in grizy

and 1 × 40 s in u band.
– pontus_2502: A rolling cadence (two dec. bands) in WFD

where the baseline cadence stays on at a reward level of 25%.
– pontus_2506: Revisits in the same night in different filter.
– rolling_10yrs_opsim: A rolling cadence (two dec.

bands) in WFD where the de-emphasized band is set to reach
25% of it’s usual number of visits in a year; paired visits in
g, r, and i.

– rolling_mix_10yrs_opsim: A rolling cadence similar to
rolling_10yrs_opsim but with revisits in different filters.

3.2. Categorization of observing strategies

From our investigation (in Sect. 6), we find that the main rele-
vant parameters for measuring time delays in LSNe Ia are the
cumulative season length (teff), mostly in terms of the total num-
ber of LSNe Ia, and the mean inter-night gap (tgap; also referred
as sampling frequency or sampling) concerning the quality of
the light curves. These two parameters are defined later in this
section. For categorizing different observing strategies tgap and

9 A discussion within the Dark Energy Science Collaboration revealed
that the three rolling cadences kraken_2036, mothra_2045, and
pontus_2502 seem to lack some observations. Nevertheless, we inves-
tigate those cadences as all others, because we are mainly interested
in the dependency on different parameters. Our statement about rolling
cadences would stay the same even if we remove these three strategies
from our investigation.
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teff are shown in Fig. 5 for 20 LSST observing strategies and
from this we can separate them into three different categories
with respect to the current LSST baseline cadence strategy
(baseline2018a):

– “baseline like”: baseline-like cadence strategies in terms of
sampling respectively cadence (tgap) and cumulative season
length (teff)

– “higher cadence and fewer seasons”: higher cadence but
shorter cumulative season length

– “higher cadence”: higher cadence and baseline-like cumula-
tive season

Readers interested in general properties of the strategies should
focus on these three categories which are highlighted by the cat-
egory names and their corresponding colors. Observing strate-
gies in blue “higher cadence and fewer seasons” are all rolling
cadences. The alternating observation pattern for different years
leads to a shorter cumulative season length and hence an improved
sampling. Magenta strategies “higher cadence” provide a better
mean inter-night gap than the baseline cadence by reducing the
exposure time, doing the revisits of the same field within an hour
in different filters or by just doing single visits of a field within a
night. For this reason, these strategies provide sampling similar to
rolling cadences but they leave the cumulative season length close
to the baseline cadence. Rolling cadences which keep the WFD
on a 25% reward level have a cumulative seasons length similar to
the baseline cadence but do not provide a better mean inter-night
gap and are therefore listed in category “baseline like”10.

The mean cumulative season length and mean inter-night gap
from a simulation of a given observing strategy are calculated by
taking the mean of all fields under consideration. We look at two
different cases. The first case considers 719 LSST fields from the
WFD survey11, which is shown as black solid line in Fig. 5, with
the shaded region marking 99% of the fields. In the second case we
consider for comparison all 5292 LSST fields covering the entire
sky. We only take into account those fields where observations
are taken, which is shown as blue dashed line. In the upper panel,
cadences with the black solid line below the black dot-dashed line
are those with a significantly better inter-night gap than the base-
line cadence (i.e., magenta “higher cadence” and blue “higher
cadence and fewer seasons” strategies), whereas the others are
baseline-like (orange “baseline like”). From the lower panel we
distinguish between strategies with a cumulative season length
similar to the baseline cadence (magenta “higher cadence” and
orange “baseline like”) and a significantly worse cumulative sea-
son length (blue “higher cadence and fewer seasons”). The area of
the WFD footprint is not plotted explicitly because relative differ-
ences in the area are smaller than those in the cumulative season
length. Nevertheless cadence strategies with a capital (small) let-
ter have a nominal WFD footprint of 24 700 (18 000) deg2.

The cumulative season length is the summed up season
length over all seasons. A season gap for an LSST field is defined
if no observation in any filter is taken for 85 days12. The mean
cumulative season length of all fields under consideration is
shown in the lower panel of Fig. 5. For the inter-night gap, shown
in the upper panel of Fig. 5, the revisits of a field within hours in
the same filter are summarized into a single visit. Since SNe do
not typically change over such a short time scale, the data points

10 Except forrolling_mix_10yrs_opsimwhere the revisit in different
filters improves the sampling frequency.
11 The 719 WFD fields contain all fields with Dec ∈ [−58,−2] deg and
RA ∈ [0, 120] ∪ [330, 360] deg, where all DDFs are excluded.
12 To avoid unrealistically long seasons, we split a season if the season
length is longer than 320 days at the biggest gap. Seasons with a season
length shorter than 10 days are removed from the simulations.

are combined into a single detection with reduced uncertainty.
For some of the observing strategies, the mean inter-night gap
between the picked WFD fields deviates significantly from the
consideration of all fields, which is due to time spent on other
surveys like northern hemisphere, the southern Celestial Pole,
and the Galactic Center.

4. Generating realistic LSST mock light curves
of LSNe Ia

The goal of this section is to describe how mock LSST
light curves for LSNe Ia are obtained for different cadence
strategies. We used mock LSNe Ia from the OM10 catalog
(Oguri & Marshall 2010), where we assumed the spherically
symmetric SN Ia W7 model (Nomoto et al. 1984) for each image
to simulate observations randomly. Synthetic light curves were
produced with the radiative transfer code ARTIS (Kromer & Sim
2009) where we included the effect of microlensing via mag-
nifications maps from GERLUMPH (Vernardos et al. 2015; Chan,
in prep.) following Sect. 2.3. We then simulated data points for
the light curves, following the observation pattern from different
cadences and uncertainties according to the LSST science book
(LSST Science Collaboration 2009). In Sect. 4.1 we describe the
OM10 mock catalog for strong lenses and Sect. 4.2 illustrates
how we simulated mock light curves for mock LSNe Ia from
OM10.

4.1. Mock LSNe Ia from the OM10 catalog

The OM10 catalog (Oguri & Marshall 2010) is a mock lens cat-
alog for strongly lensed quasars and supernovae for LSST. For
our purpose, we focus on the LSNe Ia in the catalog. We expect
about 45 spatially resolved LSNe Ia for the ten-year LSST sur-
vey, under the assumption of OM10, namely a survey area of
ΩOM10 = 20 000 deg2 and a season length of three months. Addi-
tionally, the 10σ point source limiting magnitude in the i band
for a single visit is assumed to be 23.3. The catalog contains
LSNe Ia with two images (doubles) and four images (quads),
but includes only those systems where the multiple images are
resolved (minimum image separation of 0.5 arcsec) and the peak
of the i-band magnitude (of the fainter image for a double or the
3rd brightest image for a quad) falls in an observing season and
is 0.7 mag brighter than the 10σ point source limiting magni-
tude. Since we used the W7 model for our mock light curves and
we got random microlensing magnification, we allowed auto-
matically for fainter systems up to 25 mag in i-band13, instead of
the sharp OM10 cut of 22.6 mag. Applying the cut as in OM10
is not necessary, because we used the 5σ depth from simula-
tions of the LSST observing strategies to create realistic light
curves with uncertainties. Therefore, systems which are too faint
will provide overall worse time-delay measurements than bright
ones, making it unnecessary to exclude them in advance. Fur-
thermore, applying no cut in magnitude allows us to draw con-
clusions about fainter systems not in the OM10 catalog, which
are also relevant for time-delay measurements.

The mock catalog assumes as a lens mass model a Singular
Isothermal Ellipsoid (SIE; Kormann et al. 1994) and the conver-
gence for the SIE is given in Oguri & Marshall (2010) via

κ(θ1, θ2) =
θEin
√

1 − e
2

λ(e)√
θ2

1 + (1 − e)2θ2
2

, (16)

13 98% brighter than 24.0 mag and 41% brighter than 22.6.
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Fig. 5. Mean inter-night gap (upper panel) and mean
cumulative season length (lower panel) for 20 different
observing strategies to define the three categories “higher
cadence and fewer seasons”, “higher cadence”, and “base-
line like” as described in Sect. 3.2.

where (θ1, θ2) are the lens coordinates, θEin is the Einstein
radius in arcsec, e is the ellipticity and λ(e) the dynamical
normalization defined in Oguri et al. (2012). The lens mass dis-
tribution is then rotated by its position angle.

The OM10 catalog is composed of two parts. The first part is
the input for the SIE model containing properties of the source
and the lens, such as redshift, velocity dispersion, source posi-
tions, and so on. This first part is used to calculate mock images
using GLAFIC (Oguri 2010) and therefore predict image posi-
tions, magnifications, and time delays, which is the second part
of the OM10 catalog. Furthermore, a microlensing map like
the one in Fig. 1 is needed to get the macro and microlens-
ing magnification for different images, and therefore κ and γ
have to be known for each of the mock images14. We calculated
these parameters analytically for the SIE model following equa-
tions from Kormann et al. (1994), Oguri & Marshall (2010), and
Oguri et al. (2012), and checked the consistency by comparing
to magnification factors predicted by GLAFIC.

The distribution of the source redshift and the time-delay of
all OM10 mock systems is shown in Fig. 6. For quad systems,
the maximum of the six possible time delays (between pair of
images) is shown. All 417 LSNe Ia from OM10 correspond to
the blue line. To reduce the computational effort for the inves-
tigations in Sect. 6 we restrict ourselves to a subsample of 202
mock LSNe Ia (101 mock quads and 101 mock doubles) which is
represented by the orange line. We find LSNe Ia for a source red-
shift of 0.2–1.4 where most of them are around 0.8. In terms of
time delays, most of the systems have a maximum delay shorter

14 In principle also the smooth matter fraction s but for simplicity we
assumed as before s = 0.6.

than 20 days. There are only a few systems with very long time
delays (greater than 80 days).

4.2. Sampling of the light curves for various LSST observing
strategies

To simulate observations, we randomly picked 202 mock LSNe
Ia from the OM10 catalog (see orange curves in Fig. 6) and
produced synthetic microlensed light curves for the mock SNe
images following Sect. 2.3. As an example a mock quad system
and the corresponding light curves (each image in a random posi-
tion in its corresponding microlensing map) is shown in Fig. 7.
Image A arrives first followed by C, D, and B. In the simulated
light curves of image D (red solid line), an ongoing microlens-
ing event is visible as additional brightening about 80 d after the
peak, which is not visible in the other three images.

To get simulated data points from the theoretical light curves
as shown in Fig. 7, we combined the light curves with an observ-
ing sequence of visits. This is illustrated for the baseline2018a
cadence in Fig. 8 where for one field in the WFD, all observa-
tions within the 10-year survey are shown. For this purpose, we
picked 10 fields in the WFD survey which are listed in Table 115.
That these ten fields are representative for the WFD survey is
shown in Fig. 9. Here the mean inter-night gap (top left panel),
mean cumulative season length (bottom left panel) and mean 5σ

15 We have not added dithering to observing strategies simulated with
the OpSim scheduler, which means that we underestimated the number
of visits slightly.
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Fig. 6. Source redshift (upper panel) and time-delay (lower panel) dis-
tribution of LSNe Ia from the OM10 catalog. The blue line shows the
whole catalog (417 mock systems). The orange line shows the sub-
sample of 202 mock systems (101 randomly picked quads and 101
randomly picked doubles) under investigations in Sect. 6. For the time-
delay distribution, the maximum time delay is shown (just relevant for
quads) and there are three systems not in the plot with time delays
greater than 140 days. The highest delay of a LSNe Ia in the OM10
catalog is 290 days.

depth for bands g (top right panel) and r (bottom right panel)
for our ten fields (orange), WFD fields (black) and all fields
(blue) are shown, while the shaded region encloses the 99th
percentile.

For each of the ten fields for a given cadence, we consid-
ered the following for each visit of the field: date (mjd), fil-
ter(s) observed, and 5σ point-source depth m5. The depth is
needed to calculate the photometric uncertainties σ1 according
to the LSST Science Collaboration (2009) (see Appendix B).
The magnitude for each data point can then be calculated via

mdata = mW7 + rnormσ1, (17)

where rnorm is a random number following the normal distribu-
tion and mW7 is the magnitude of the data point from the theo-
retical W7 model. By placing the synthetic light curves (shown
as solid lines in Fig. 7) randomly in one of the fields in Table 1,
randomly in time following the detection criteria from the OM10
catalog, and using Eq. (17), we created simulated data points as
illustrated in Fig. 7. If two or more data points are taken within
one hour in the same filter we combined them into a single mea-
surement, because SNe typically do not change on such time
scales. Specifically, two data points mdata,1 + σ1 and mdata,2 + σ2
observed at time t1 and t2, where t1 ≤ t2 ≤ t1 + 1 h, were com-
bined into a single one as

mcombined + σcombined, (18)

Fig. 7. Synthetic i-band light curves (lower panel) of a mock quad LSNe
Ia (upper panel) to illustrate simulated observations. The redshift of the
source is 0.71 and is taken into account. The observation sequence is
for a random field in the WFD survey for the baseline2018a cadence.

Fig. 8. Illustration of Modified Julian Date (MJD) and filters when
observations are taken over 10-year survey for field number four from
Table 1 for observing strategy baseline2018a. The y axis shows the
six LSST filters and the number of observations taken in that filter.

where

mcombined =
m1/σ

2
1 + m2/σ

2
2

1/σ2
1 + 1/σ2

2

, σcombined =

√
1

1/σ2
1 + 1/σ2

2

· (19)

We assigned to the combined data point the time tcombined =
(t1 + t2)/2.
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Table 1. Ten fields of WFD survey, where observational sequence for different cadences is considered, which is used to determine fraction of
systems with measured time delay as discussed in Sect. 6.

Field number 1 2 3 4 5 6 7 8 9 10

RA in deg 0.0 32.1 65.8 50.9 44.9 125.6 155.0 207.7 304.3 327.5
Dec in deg −7.4 −44.2 −7.2 −30.0 −50.9 −11.4 −25.6 −45.3 −55.2 −35.9

Notes. We investigate the observing sequence at the centers of the listed fields.

Fig. 9. Comparison of inter-night gap, cumulative season length, and 5σ depth of ten fields under investigation (orange) to sample of 719 WFD
(black) fields. In addition, all 5292 LSST fields where observations are taken (blue) are shown. The lines indicate the mean and the shaded area
includes everything up to the 99th percentile. We see that the ten chosen fields are representative for the WFD survey but not for the whole survey.

5. Time-delay measurements

In this section we describe how we estimate time-delays from the
simulated observations to quantify different observing strategies.
We investigate 202 mock LSNe Ia (already mentioned in Sect. 4)
for each cadence strategy to have sufficient statistics, where we
pick 50% doubles and 50% quads. We define a system with
“good” time delay measurement as a systems where the accuracy
is below 1% and the precision is below 5%. To estimate accuracy
and precision we investigate for each of the mock systems, 100
random starting configurations. A starting configuration corre-
sponds to a random position in the microlensing map and a ran-
dom field from Table 1, where it is placed randomly in one of
the observing seasons such that the peak of the i-band magni-
tude of the fainter image for a double or the 3rd brightest image
for a quad falls in the observing season. We used the same ran-
dom positions in the microlensing map for each mock image for
all observing strategies investigated here, to avoid uncertainties
due to different microlensing patterns. For each of these starting
configurations, we then draw 1000 different noise realizations of
light curves following Eq. (17). For each of these realizations we
have to estimate the time delay and compare it to the true value.

To get a measured time delay from the mock data we used the
free-knot splines estimator from PyCS (Python Curve Shifting;
Tewes et al. 2013; Bonvin et al. 2016). As a spline, a piecewise
polynomial function of degree three is used. The polynomial
pieces are connected by knots, where for the optimization pro-
cess, the initial number of knots has to be specified. The poly-
nomial coefficients and the knot positions are free variables to
optimize. To avoid clustering of the knots a minimum knot sepa-
ration is also defined in advance (Molinari et al. 2004). The basic
idea of the optimizer is to fit a single intrinsic spline to two light
curves from different images and shift the data iteratively in time
and magnitude, and modify the spline parameters, to get a time-
delay measurement. We show in Fig. 10 an example of the fitting
of the spline to two light curves, with one light curve time-shifted
by the time delay to increase overlap with the other. Both the
spline parameters and the time delay between the two curves
are optimized by reducing the residuals in the fit of the spline
to the two light curves. Even with noiseless data, we would get
a spread of delays from PyCS due to the range of splines that
could fit to the data equally well. Densely sampled light curves
with little microlensing would restrict the range of delays. We do
not explicitly include additional spline components to model the
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Fig. 10. Illustration of spline fitting technique for a double mock LSNe
Ia at redshift 0.27 for the i-band light curve. The black line corresponds
to the spline fit of the data (blue and orange), where the knots positions
(small vertical ticks on the black lines) as well as the magnitude and
time shifts have been iteratively optimized to minimize a chi-square
term, resulting in the measured delay indicated in the top-right.

microlensing variation. An analysis that models separately the
intrinsic and microlensing variability is deferred to future work.
PyCS was initially developed to measure time delays in

strongly lensed quasars, and is not yet optimized for LSNe Ia,
such as fitting simultaneously multiple filters and using SN tem-
plate light curves. Nonetheless, Rodney et al. (2016) used the
tools of PyCS to measure the time delays between the multi-
ple images of SN Refsdal as one of the approaches, and also
fit SN templates to the light curves as another approach. The
resulting delays from both approaches were consistent with
each other. While both methods did not explicitly include the
effects of microlensing, the residuals of the light curves of SN
Refsdal suggested that no major microlensing event occurred
in the case of SN Refsdal (Rodney et al. 2016). The template-
fitting approach was also used by Goldstein et al. (2018) to fit to
mock light curves and color curves, although in an idealized sce-
nario without noise and high-cadence sampling. Goldstein et al.
(2018) found the fitting of templates to light curves yielded time-
delay uncertainties of approximately 4%, limited by microlens-
ing distortion of light curves, whereas the fitting to color curves
in the achromatic phase provided approximately 1% uncertain-
ties in the delays. For our LSST light curves, we opt to use PyCS
on light curves given that (1) color curves are not available from
LSST data given the sampling cadence, and (2) there is cur-
rently no publicly available template-fitting software accounting
for microlensing, an effect that can significantly distort the light
curves as shown in Sect. 2.

Applying PyCS to individual filter’s light curves, we get a
single independent time delay for each filter. This means that
we have for the given LSST filter f , the jth starting configura-
tion and the k-th noise realization a deviation from the true time
delay:

τd, f , j,k =
∆tmeasured, f , j,k − ∆ttrue, f , j,k

∆ttrue, f , j,k
· (20)

For each observing strategy and double LSNe Ia, we have thus
1 (delay for the one pair of images) ×6 (filters) ×100 (starting
configurations) ×1000 (noise realisations) time-delay deviations
as in Eq. (20). For the six pairs of images for a quad system, we
have a sample of 6 × 6 × 100 × 1000.

To exclude starting configurations which are completely
wrong in comparison to most of the investigated systems we
calculated separately for each starting configuration the median
τd,50, f , j and the error as δ f , j = (τd,84, f , j−τd,16, f , j)/2, where τd,50, f , j,
τd,84, f , j and τd,16, f , j are the 50th, 84th, and 16th percentile from
the 1000 noise realizations. Furthermore, we combined the six
filters via the weighted mean into a single time-delay deviation
τd,50, j ± δ j, where

τd,50,j =

∑
f =ugrizy τd,50, f , j/δ

2
f , j∑

f =ugrizy 1/δ2
f , j

, δ j =

√
1∑

f =ugrizy 1/δ2
f , j

. (21)

This is possible since the distribution of the time-delay devi-
ation for each filter is approximately Gaussian. From this we
exclude “catastrophic failures” which are starting configurations
with δ j ≥ 2δ̄ j or |τd,50, j − τ̄d,50, j| ≥ 5δ j, which occur for about
10% of the starting configurations independent of the observing
strategy. The bar indicates the mean, that is,

δ̄ j =
1

100

100∑
j=1

δ j and τ̄d,50, j =
1

100

100∑
j=1

τd,50, j. (22)

The failures are likely due to a bad starting time of the supernova
in the season (such as at the beginning or end of season, where
some of the light curves of the multiple images would be incom-
plete due to seasonal gap) and strong microlensing distortions.
These effects could be easily identified in real lens systems, and
provide advance warning of potentially problematic delay infer-
ence. In addition, simulations of light curves mimicking those of
real lens systems could be used to identify catastrophic failures
of problematic systems and avoid the use of their time delays for
further analysis such as cosmography.

After excluding catastrophic failures we are left with about
90 of the 100 initial starting configurations leading to approxi-
mately 90× 1000 ≈ 90 000 time-delay deviations τd, f , j,k for each
filter f . From these we define accuracy as the median τd,50, f and
precision as δ f = (τd,84, f − τd,16, f )/2, where τd,84, f is the 84th
and τd,16, f the 16th percentile of the 90 000 starting configuration
and noise realizations, that is, over the j and k indexes. Since the
time-delay deviations from the six filters are independent, we
combined them into a single time-delay deviation. This means
that in the end, we have for one strategy and a mock LSNe Ia a
single τd,50 ± δ per pair of images, where

τd,50 =

∑
f =ugrizy τd,50, f /δ

2
f∑

f =ugrizy 1/δ2
f

, δ =

√
1∑

f =ugrizy 1/δ2
f

· (23)

To use the weighted mean here is possible since the time-delay
distributions for different filters are approximately Gaussian.

6. Results: cadence strategies for LSNe

In this section, we present the results of the investigation of
the different cadence strategies presented in Sect. 3. We distin-
guish between two different cases: (1) using LSST data only for
measuring time delays, and (2) using LSST just as a discovery
machine for LSNe Ia and getting the time delay(s) from follow-
up observations.

Given that H0 ∝ ∆t−1
true, where ∆ttrue is the time delay between

two images, we aim for accuracy (τd,50 in Eq. (23)) smaller than
1% and precision (δ in Eq. (23)) smaller than 5%. We refer to
systems fulfilling these requirements as systems with good time
delays. A quad system is counted as successful if at least one of
the six delays fulfills these demands. The accuracy requirement
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is needed for measuring H0 with 1% uncertainty, and the pre-
cision requirement ensures that the delay uncertainty does not
dominate the overall uncertainty on H0 given typical mass mod-
eling uncertainties of about 5% (e.g., Suyu et al. 2018).

6.1. Number of LSNe Ia

Before comparing cadence strategies based on the time-delay
measurements, we first estimate the total number of LSNe Ia for
different observing strategies. Since different observing strate-
gies have different survey areas and different cumulative season
lengths, the number of LSNe Ia deviates from the predicted num-
ber from OM10. We approximate the total number of LSNe Ia as

NLSNe Ia,cad ≈ NLSNe Ia,OM10
Ωcad

ΩOM10

t̄eff,cad

teff,OM10
, (24)

where NLSNe Ia,OM10 = 45.7, ΩOM10 = 20 000 deg2 and teff,OM10 =
2.5 yr from Oguri & Marshall (2010). The effective respectively
cumulative season length for a given cadence strategy is given
via t̄eff,cad, where we have averaged over the sample of 719 WFD
fields. The survey area for a given observing strategy is Ωcad.
Instead of taking the nominal values (24 700 deg2 for large foot-
print strategies and 18 000 deg2 for rest) we calculated the area
from fields represented by our study, which are the fields with
a mean cumulative season length and inter-night gap similar
or even better than the 719 WFD fields, that means, cumula-
tive season length (teff) longer than the lower 99th percentile
and inter-night gap (tgap) shorter than the upper 99th percentile.
Additionally we take into account the 5σ depth (m5), where we
consider only the main relevant bands g, r, i, and z. Here we con-
sider all fields with (m5 + 0.2mag) greater than the lower 99th
percentile of the 719 WFD fields. The relaxed 5σ depth is nec-
essary in order to represent the wider areas as suggested by the
nominal values16. The area can then be calculated from the num-
ber of fields fulfilling the above defined criteria (Ncad,criteria), mul-
tiplied with the field of view of 9.6 deg2, taking into account the
overlap factor of the fields:

Ωcad = foverlap · Ncad,criteria · 9.6 deg2, (25)

where

foverlap =
4π · (180 deg/π)2

5292 · 9.6 deg2 ≈ 0.812. (26)

The total number of fields is 5292, which cover the entire sky,
as noted in Sect. 3 and the numerator corresponds to the sur-
face area of a sphere in deg2. Therefore, Ωcad is equivalent to
4πNcad,criteria/5292 in units of rad2. The results from Eq. (24)
for the 20 investigated cadences are shown in Table 2. We find
that mainly the cumulative season length sets the order of the
table and therefore for rolling cadences with a lower number
of observing seasons (blue “higher cadence and fewer seasons”
strategies) many LSNe Ia will not be detected, because of the
alternating observation scheme.

16 This leads to a few percent overestimation of the total number of
LSNe Ia with good time delays for large footprints in comparison to
the 18 000 deg2. Nonetheless, since we find that the improvement due
to wider area is too small this is not a problem and does not affect the
overall conclusions of our work.

Table 2. Total number of LSNe Ia over 10-year survey calculated via
Eq. (24) where 69% are doubles and 31% are quads.

NLSNeIa,cad t̄eff,cad in yr Ωcad in deg2

Kraken_2044 101.9 4.64 24 010
Pontus_2002 86.0 4.11 22 926
colossus_2667 84.0 5.16 17 797
pontus_2489 81.1 5.00 17 758
rolling_10yrs_opsim 79.1 4.77 18 148
rolling_mix_10yrs_opsim 78.9 4.76 18 132
kraken_2042 78.0 4.79 17 828
colossus_2665 76.8 4.55 18 475
pontus_2502 76.3 4.74 17 602
colossus_2664 74.6 4.48 18 202
baseline2018a 73.4 4.64 17 306
kraken_2035 73.4 4.54 17 680
kraken_2026 72.4 4.63 17 119
pontus_2506 72.2 4.36 18 132
alt_sched 61.7 3.81 17 703
Nexus_2097 52.2 2.79 20 471
Mothra_2049 50.9 2.55 21 874
kraken_2036 45.2 2.79 17 719
alt_sched_rolling 37.9 2.03 20 463
mothra_2045 37.2 2.48 16 417

Notes. To understand the differences between the multiple strategies
also the cumulative season length t̄eff,cad and the survey area Ωcad are
shown. The total number depends on the selection criteria assumed in
Oguri & Marshall (2010). If we relax the criteria like the image sepa-
ration these numbers will be higher, but the order will be unchanged.
Since differences in t̄eff,cad are much larger than in Ωcad the cumulative
season length mostly sets the order of the table.

6.2. LSST data only

Here, we quantify the 20 investigated cadences for the case of
using LSST data only for measuring time delays. We have inves-
tigated 101 randomly picked quads and 101 randomly picked
doubles. The distribution of the source redshifts and time delays
are shown as orange lines in Fig. 6. The 202 systems are used to
determine the fraction fa of systems with good time delays:

fa =
N∆t,a

Na
a = double, quad, (27)

where N∆t,a is the number of systems with good time delays and
Na = 101 for a = double, quad. Since we have picked the same
amounts of doubles and quads, whereas the real ratio between
doubles and quads in the OM10 catalog is 69:31, the total frac-
tion can be calculated as

ftotal = 0.69 fdouble + 0.31 fquad. (28)

The fractions of doubles fdouble and quads fquad as well as
the total fraction ftotal are shown in Table 3. It becomes clear
that the fraction of systems with good delays depends mostly
on the inter-night gap, where strategies with better sampling
(blue “higher cadence and fewer seasons” and magenta “higher
cadence” strategies) provide higher fractions.

We determined the value of a given cadence strategy for
our science case, by combining Tables 2 and 3. The results for
the 10-year survey are shown in Fig. 11. One sees that the key
for obtaining a high number of LSNe Ia with good delays is
short inter-night gap while keeping the cumulative season length
baseline-like (magenta “higher cadence” strategies). Only for the
strategy alt_sched_rolling, the much better sampling can
compensate for the short cumulative season length.
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Table 3. Fraction of systems (in %) of 202 investigated mock systems
(101 doubles and 101 quads) where time delay has been measured with
accuracy smaller than 1% and precision smaller than 5% for using LSST
data only.

ftotal fdouble fquad

alt_sched_rolling 17.2 21.8 6.9
alt_sched 13.5 17.8 4.0
rolling_mix_10yrs_opsim 10.2 13.9 2.0
pontus_2506 9.1 11.9 3.0
colossus_2667 9.1 11.9 3.0
pontus_2489 7.4 9.9 2.0
rolling_10yrs_opsim 6.8 8.9 2.0
mothra_2045 6.1 7.9 2.0
Kraken_2044 5.8 7.9 1.0
kraken_2042 5.8 7.9 1.0
Nexus_2097 4.8 6.9 0.0
kraken_2026 4.8 6.9 0.0
Mothra_2049 4.7 5.9 2.0
kraken_2036 4.7 5.9 2.0
colossus_2665 3.7 5.0 1.0
baseline2018a 3.7 5.0 1.0
colossus_2664 3.4 5.0 0.0
kraken_2035 2.0 3.0 0.0
pontus_2502 1.4 2.0 0.0
Pontus_2002 1.4 2.0 0.0

Notes. The total fraction ftotal accounts for the expected 69:31 ratio of
doubles and quads from OM10 (see Eq. (28)). The investigation has
been done for the ten fields listed in Table 1. These are not the final
results as the total number of detected LSNe Ia is not taken into account.
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Fig. 11. Number of LSNe Ia for 10-year survey where time delay has
been measured with accuracy <1% and precision <5% for using only
LSST data.

From the upper panel of Fig. 12, it becomes clear that only
nearby systems (z . 0.9) with long time delays (∆t & 25 d)
are measured successfully. High redshift systems are overall
fainter and the larger photometric errors make delay measure-
ments more uncertain. Shorter time delays are not accessible
because of the sparse sampling and microlensing uncertainties.
Looking at the total number in Fig. 11, we find that even the best
strategies provide just a handful of systems and therefore using
just LSST data for measuring time delays is not ideal. Therefore
we investigate the prospects of using follow-up observations in
combination with LSST data.

Fig. 12. Time-delay and source-redshift distribution for 202 investigated
mock LSNe Ia for “LSST only” (upper panel) and “LSST + follow-up”
(lower panel) for observing strategy kraken_2044. For a quad system,
just a single delay is shown, either the first successful measured time-
delay or the maximum of the six possible time delays. The blue circles
show all 202 investigated systems and the orange filled dots correspond
to systems where the time delay has been measured with accuracy better
than 1% and precision better than 5%. Comparing the two panels we see
significant improvement going from “LSST only” to “LSST + follow-
up”, which we find for most of the observing strategies as suggested by
Table 4.

6.3. LSST and follow-up observation

Here, we investigate 20 different LSST observing strategies for
using LSST just as a discovery machine. For the time delay mea-
surement we assumed follow-up observation in the three filters
g, r, and i, going to a depth of m5,g = 24.6 mag, m5,r = 24.2 mag
and m5,i = 23.7 mag, which are similar to the depth of the base-
line cadence. These depths correspond to an observing time of
approximately 6 min per filter and night on a 2 m telescope,
which is despite diameter assumed to be identical to LSST (e.g.,
detector sensitivity). We adopt a realistic scenario where follow-
up starts two days after the third data point exceeds the 5σ depth
in any filter17. The follow-up is assumed to take place every sec-
ond night in all three filters. Alternative follow-up scenarios are
investigated in Sect. 6.4.

Assuming a 2-m telescope is a conservative assessment of
the follow-up resources. Observing with larger telescopes would
be quite reasonable, which would significantly reduce the expo-
sure time or enable greater depth. The prospects of deeper
follow-up will be discussed in Sect. 6.4.

The fraction of systems with well measured time delays is
calculated similar to Sect. 6.2 and summarized in Table 4 for

17 Goldstein et al. (2019) suggests that follow-up after three data points
might be optimistic, but we would like to point out that this relies on
the applied classification scheme (Goldstein et al. 2018) that does not
make use of all available lensing information which would help with
identification.
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Table 4. Fraction of systems (column two, three & four in %) of 202
investigated mock systems (101 doubles and 101 quads) where time
delay has been measured with accuracy smaller than 1% and precision
smaller than 5% for using LSST as a discovery machine and getting
time delays from follow-up observations.

ftotal fdouble fquad
ftotal,LSST+follow-up

ftotal,LSST only

alt_sched_rolling 34.4 43.6 13.9 2.0
alt_sched 32.1 41.6 10.9 2.4
colossus_2667 31.1 40.6 9.9 3.4
pontus_2506 27.0 34.7 9.9 3.0
mothra_2045 26.7 35.6 6.9 4.4
Kraken_2044 26.7 34.7 8.9 4.6
kraken_2042 25.0 32.7 7.9 4.3
kraken_2026 24.3 31.7 7.9 5.1
kraken_2036 24.0 31.7 6.9 5.1
pontus_2489 23.6 30.7 7.9 3.2
Mothra_2049 23.6 30.7 7.9 5.0
rolling_mix_10yrs_opsim 23.3 30.7 6.9 2.3
Nexus_2097 23.3 30.7 6.9 4.9
baseline2018a 23.3 30.7 6.9 6.3
Pontus_2002 22.0 28.7 6.9 16.1
kraken_2035 22.0 28.7 6.9 10.7
colossus_2665 22.0 28.7 6.9 5.9
colossus_2664 22.0 28.7 6.9 6.4
pontus_2502 20.3 26.7 5.9 14.8
rolling_10yrs_opsim 18.2 23.8 5.9 2.7

Notes. The investigation has been done for the ten fields listed in
Table 1. The 5th column shows how much better a cadence performs
in comparison to using LSST data only. This table is insufficient to rank
different cadence strategies because the total number of detected LSNe
Ia is not taken into account.

the 20 investigated observing strategies. Applying only the accu-
racy requirement (τd,50 < 1%) would yield for all cadence strate-
gies about 30% less systems from the 202 investigated ones with
a slight trend for more accurate systems for cadence strategies
with improved sampling. Since for the case of “LSST + follow-
up” accuracy is only weakly dependent on the cadence strat-
egy, the precision requirement (δ < 5%) sets mostly the order
of Table 4. Since blue (“higher cadence and fewer seasons”)
and magenta (“higher cadence”) strategies perform better than
orange (“baseline like”) strategies in Tables 3 and 4, we see that
for a good precision a short inter-night gap is important. Even
though the light curves for Table 4 are created via follow-up
resources, the better inter-night gap is still important to detect
systems earlier and get better sampled light curves, although it
is less important as for “LSST only” where the ratio between the
best and worst cadence strategy is about 12 instead of approxi-
mately 2 for LSST + follow-up. This makes clear that in terms
of the fraction of systems with good delays, the sampling of the
LSST observing strategy is still important but far less than if we
would rely on LSST data only. From Table 4 we see that we can
increase the fraction and therefore the number of LSNe Ia with
good delays for “LSST + follow-up” in comparison to using only
LSST data by a factor of 2–16, depending on the cadence strat-
egy. For a strategy like alt_sched_rolling, the effort of trig-
gering the above defined follow-up observation is questionable,
but for most other strategies the improvement is significant.

In practice it is important to pick systems with good accu-
racy for a final cosmological sample in order to determine H0.
We find that the reduction due to our accuracy requirement is
partly due to microlensing but also the quality of the light curve

Fig. 13. Duration distribution for all 707 possible time delays (blue)
and time delays with accuracy better than 1% (orange) from 202
investigated systems for “LSST + follow-up” and observing strategy
colossus_2667. Nearly all time delays are accurate for pairs of images
which yield a time delay greater than 20 days.

plays a role since follow-up with greater depth provide more sys-
tems with accurate time delays. The prospects of greater depth
are investigated in Sect. 6.4 and one way to mitigate the effect
of microlensing is the use of the color information as discussed
in Appendix A. From Fig. 13 we see that for “LSST + follow-
up” nearly all time delays greater than 20 days yield an accuracy
within one percent, whereas going for short delays is dangerous
in terms of adding bias to a final cosmological sample.

In the lower panel of Fig. 12, we see that similar to the case
of using only LSST data, we are limited to nearby systems (z .
0.9). In terms of time delays, we can reach lower values due to
the much better quality of the light curve, but still, most of the
short time delays are not accessible because of microlensing and
our cut on precision.

By combining Tables 2 and 4, we get the total amount of
LSNe Ia with good time delays as shown in Fig. 14. We note
that the presented results have errors within 10% due to uncer-
tainties in the calculated area and sampling. Another point is that
we do not apply the sharp OM10 cut of 22.6 mag as mentioned in
Sect. 4.1. We find that we are also able to get good time delays
for fainter systems (>22.6 mag) although in number they are a
factor of at least 1.7 fewer than for bright ones (≤22.6 mag). This
means that the numbers presented in Table 2 and therefore also
the numbers in Fig. 14 are a conservative estimate and in real-
ity we can expect even more systems with well measured time
delays. An overly optimistic version of Fig. 14 is presented in
Appendix C. While these sources of uncertainties might change
the ordering presented in Fig. 14 slightly, it does not influ-
ence our overall conclusions which will be presented in the
following.

We see that for the current baseline strategy we would expect
about 17 LSNe Ia with good delays over the 10-year survey. To
increase this number, the most promising strategies are those with
a baseline-like cumulative season length t̄eff,cad and an enhanced
sampling (magenta “higher cadence” strategies). To achieve this,
the most efficient way would be to get rid of the revisit within
the same night (compare colossus_2667 to baseline2018a).
Because this would make the science case of fast moving objects
impossible, we think a reasonable compromise is to do the revisit
within the same night in a different filter (Lochner et al. 2018).
This performs worse than doing single visits but still better than
doing the revisit in the same filter (compare pontus_2506 to
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Fig. 14. Number of LSNe Ia for 10-year survey where time delay has been measured with accuracy <1% and precision <5% by using LSST as
discovery machine in combination with follow-up observations for measuring time delays (black bars) and using only LSST data (gray bars, see
also Fig. 11). Follow-up is every second night in filters g, r, and i, starting two nights after third LSST detection (with brightness exceeding 5σ
depth in any filter). With follow-up observations, we get a substantial increase in the number of LSNe Ia systems with good measured delays.
The numbers shown in this figure are a conservative estimate. An optimistic approach is discussed in Appendix C, leading to the same overall
conclusion about the categories of cadence strategies (magenta, orange, and blue) but providing about 3.5 times more LSNe Ia with well-measured
delays.

colossus_2667 and baseline2018a). In terms of the cumula-
tive season length, it seems appropriate to stay with a baseline-like
season length of about 170 days and ten seasons. Further improve-
ment can be achieved by the replacement of the 2 × 15 s expo-
sure by 1× 30 s to improve efficiency (compare kraken_2042 to
baseline2018a).

Although our numbers for an extended WFD area by
6700 deg2 (compare Kraken_2044 and colossus_2667, and
Pontus_2002 and baseline2018a) are increased, we only find
this for “LSST + follow-up”. For “LSST only”, strategies with
a smaller WFD footprint perform better. Therefore we suggest
to stick with the WFD footprint of 18 000 deg2, as used for
16 of the 20 investigated observing strategies, but we are also
fine with 24 700deg2. Concerning the depth of the observing
strategy most of the investigated strategies provide a similar
5σ depth as the baseline cadence (see right panels of Fig. 9).
Those strategies with a slightly lower 5σ depth (alt_sched,
alt_sched_rolling and pontus_2489) show no significant
deviations in the results, which is related to their enhanced sam-
pling in comparison to the baseline cadence. Another interest-
ing scenario to investigate is the redistribution from visits in y
band to more useful bands for LSNe Ia as done in alt_sched.
This means going from a distribution of visits in ugrizy: (6.8,
9.4, 21.5, 21.6, 20.2, 20.4)% to (8.2, 11.0, 27.6, 18.1, 25.6,
9.5)%. Because of the many differences between alt_sched
and baseline2018a, a direct comparison is impossible but
we expect some improvement. A simulation implementing the

redistribution with the greedy algorithm used for baseline
2018a would be helpful to quantify this.

Furthermore, a very important result: most rolling cadence
strategies are disfavored for our LSNe Ia science case. For these
cadence strategies, the shortened cumulative season lengths
t̄eff,cad lead to an overall more negative impact on the number
of LSNe Ia with delays, compared to the gain from the increased
sampling frequency.

6.4. Different follow-up scenarios

In this section, the prospects of increasing the number of LSNe
Ia by assuming different follow-up scenarios are discussed. For
this purpose, we have investigated a sample of 100 mock LSNe
Ia (50 mock quads and 50 mock doubles). The result for the stan-
dard follow-up case is shown in Table 5 first row for the two
cadence strategies baseline2018a and alt_sched. To clar-
ify, the standard follow-up scenario assumes observations in the
three filters g, r, and i, going to a depth of m5,g = 24.6 mag,
m5,r = 24.2 mag and m5,i = 23.7 mag. Follow-up is assumed
every second night in all three filters two days after the third
data point exceeds the 5σ depth in any filter.

An alternative follow-up scenario would be to observe in
bands r, i, and z. The numbers in the second row are slightly
worse than those for following up in bands g, r, and i, even
though high redshift SNe are well visible in the z band. The rea-
son for this is that we have assumed a baseline like 5σ depth
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Table 5. Summary of different follow-up strategies and prospects of an
improved analysis technique concerning modeling of microlensing.

Row baseline2018a alt_sched

LSST + follow-up 1 16.5 (22.4%) 21.0 (33.9%)
Follow-up in bands riz 2 15.0 (20.4%) 20.2 (32.7%)
Follow-up after 2 data points 3 20.0 (27.2%) 23.0 (37.3%)
Daily follow-up 4 19.4 (26.4%) 23.3 (37.8%)
Follow-up every third day 5 13.5 (18.4%) 18.0 (29.2%)
Deeper follow-up (1 mag) 6 28.2 (38.4%) 27.0 (43.8%)
Deeper follow-up (2 mag) 7 37.1 (50.6%) 34.0 (55.0%)
Deeper follow-up (4 mag) 8 39.4 (53.7%) 37.6 (60.9%)
No microlensing 9 35.7 (48.6%) 33.3 (53.9%)
No microl., 1 mag deeper 10 48.4 (65.9%) 43.2 (69.9%)

Notes. For the two strategies baseline2018a and alt_sched, the
number of LSNe Ia with good quality time-delay measurements over
the 10-year survey are shown for each considered scenario, where 100
mock LSNe Ia have been investigated. The percentages in the brack-
ets show how many of the total numbers of LSNe Ia (73.4 for base-
line2018a and 61.7 for alt_sched from Table 2) have well measured time
delays. The exact definition of “LSST + follow-up” (row 1) is described
in the text and the scenarios from rows two to eight are alternative
follow-up scenarios detailed in the text. Rows nine and ten are hypo-
thetical numbers interesting for future improved analysis techniques of
microlensing.

for the follow-up observations, with m5,z = 22.8 mag which is
1.8 mag lower than the 5σ depth in the g band.

The more aggressive approach is to trigger follow-up after
the second data point exceeds the 5σ depth (see row 3). The
improvement of 10–21% might look promising, but also many
more false positives will be detected and therefore some observ-
ing time would likely be wasted on false positives.

Of further interest is also the cadence of the follow-up obser-
vation. Therefore we consider two additional cases where we
follow-up daily (see row 4) and every third day (see row 5),
instead of the standard follow-up of every second day. While
going down to observations every three days decreases the num-
ber of LSNe Ia with good delays by about 18%, daily visits
improve on a level of 11–18%. Going from a two-days to a sin-
gle day cadence increases the effort of follow-up significantly by
increasing the numbers of LSNe Ia only slightly.

A more promising approach is to keep the follow-up observa-
tions every two days but increase the depth. To go one magnitude
deeper (see row 6) than the average baseline depth a total observ-
ing time of approximately 45 min per night is needed for a 2 m
telescope as in Sect. 6.3, which is feasible. For alt_sched, this
leads to an improvement of 29% in comparison to the standard
follow-up scenario and therefore slightly better than the daily
follow-up case. For baseline2018a, the improvement is 71%
and therefore definitely worth considering the effort (compare
upper two panels in Fig. 15).

Another possibility is to go two magnitudes deeper but
therefore we have to observe approximately 2 h per night to get
observations in 3 filters. This seems only feasible for a two-
meter-telescope which can observe simultaneously in three fil-
ters or by a telescope with a larger diameter. For alt_sched, this
means an improvement in comparison to the standard follow-up
scenario of 62% and for baseline2018a an improvement of
125%. Going another two magnitudes deeper does not increase
the number of LSNe Ia significantly and therefore going beyond
two magnitudes is in our investigation not worth the effort (com-
pare rows seven and eight in Table 5).

A limiting factor of our analysis is the microlensing effect
which is not taken into account in our time-delay measurement
with PyCS and therefore we are not able to accurately mea-
sure short time delays (see Fig. 12 and the upper two panels of
Fig. 15) because we do not model the bias due to microlens-
ing magnification, which is an absolute bias in time, whereas the
accuracy is relative to the length of the delay. In rows nine and
ten of Table 5, we see that we could increase the number of LSNe
Ia with good delays by a factor of 60%–120% in the best case
scenario, where we imagine a perfect correction for microlens-
ing deviations. This would give us access to short time-delays as
visible in the comparison of the upper two panels and the lower
two panels of Fig. 15 and therefore encourages the use of color
curves instead of light curves to reduce the impact of microlens-
ing on the delay measurement as suggested by Goldstein et al.
(2018) and discussed in Appendix A. Also, the approach of using
SNe Ia templates to fit the intrinsic light curve shape includ-
ing effects of microlensing might be reasonable and produce
higher fraction of good delays. Some of these are currently being
explored (Pierel & Rodney 2019; Collett et al., in prep.; Collett,
priv. comm.).

7. Discussion and summary

In this work, we explored different LSST cadence strategies for
measuring time delays in strongly lensed SNe Ia. As illustrated
in Fig. 14, we have found that using LSST just as discovery
machine in combination with high cadence follow-up observa-
tion for the delay measurement is the best way to increase the
number of LSNe Ia with good time delays. In contrast, using
only LSST data is not ideal.

To estimate the resulting H0 constraint from a sample of
LSST LSNe Ia, we assume that each LSNe Ia system with good
delays yields typically an H0 measurement with approximately
5% uncertainty in flat ΛCDM (including all sources of uncertain-
ties such as the time-delay uncertainty investigated in this paper,
and lens mass mass modeling uncertainties). This is currently
achieved with the best lensed quasar systems of the H0LiCOW
sample, and serves as a reference given that we expect LSNe Ia
to yield similar or better constraints than that of lensed quasars.
While focussing only on LSNe Ia with good delays could poten-
tially introduce selection bias, we suspect such biases to be small
and, if present, could be corrected (e.g., Collett & Cunnington
2016). Thus, for a sample of N lenses, the uncertainty on H0
would scale approximately as 5%/sqrt(N), assuming Gaussian
uncertainties. With LSST data only, the number of lensed SNe
Ia from our investigation (Fig. 14) ranges from approximately
1−8, depending on the strategy. This would yield an H0 con-
straint with about 2−5% uncertainty from the sample. In the
case of LSST with follow-up, the number of lensed SNe increase
substantially, varying from approximately 10−28, translating to
an H0 constraint with about 1−2% uncertainty. Therefore, with
optimal LSST observing strategy and fast-response follow-up,
we would reach percent-level constraint on H0, which is a fac-
tor of two to five lower in uncertainty compared to the case of
LSST-only scenario.

From the investigated cadence strategies for the follow-
up scenario, we have found that observing strategies with an
improved sampling by keeping everything else baseline-like is,
in general, the best observing strategy for our science case. An
ideal strategy is presented in the following key points:

– Ten seasons with a season length of 170 days or longer;
– WFD footprint of 18 000 deg2 up to 24 700 deg2;
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Fig. 15. Time-delay and source-redshift distribution for 100 investigated
mock LSNe for baseline2018a, similar to Fig. 12. Upper two panels:
standard follow-up observation (first panel) and the option going one
magnitude deeper (second panel). Lower two panels: same follow-up
scenarios hypothetically without microlensing. The distributions vary
slightly because for a quad system just a single time delay is shown,
either the first successfully measured delay or the maximum of the six
possible delays.

– One revisit within a night in a different filter than the first
visit;

– Replacement of 2 × 15 s exposure by 1 × 30 s;
– Distribution of visits like alt_sched [ugrizy as ∼(8.2, 11.0,

27.6, 18.1, 25.6, 9.5)%].
Another very important point is that most of the suggested
rolling cadences are clearly disfavored for our science case
because many LSNe Ia will not even be detected due to the
reduced cumulative season length. The only rolling cadence
which performed well is rolling_mix_10yrs_opsim, but this
is most likely because the WFD stays on in the background and
additionally revisits are done in different filters, which can partly
compensate for the not ideal “rolling” feature.

We have assumed that follow-up observations starts two days
after the third LSST data point exceeds the 5σ depth. The follow
up is done every second night in three filters g, r, and i to a depth
of m5,g = 24.6 mag, m5,r = 24.2 mag and m5,i = 23.7 mag, which
is feasible with a 2-m telescope. To improve on that mainly a
greater depth is of interest. Follow-up observations going one
magnitude deeper than the baseline 5σ depth, or even two mag-
nitude deeper, if feasible, will increase the number of LSNe Ia
with good time-delays significantly. Going beyond two magni-
tude deeper is not worth the effort.

We would like to point out that we have only investigated
LSNe Ia. Although a single lensed Core-Collapse (CC) SN is
less valuable than a LSNe Ia (given the standardizable light
curves of SNe Ia) , the larger sample of lensed CC SNe, primarily
type IIn (Goldstein et al. 2019; Wojtak et al. 2019), which will
be detected by LSST makes them as well relevant for time-delay
cosmography. Due to the different light curve shapes and lumi-
nosities the optimal cadence strategy for measuring time delays
in CC SNe might be different from the one for LSNe Ia. At least
in terms of total number of lensed CC SNe the strategies will
be ordered in the same way as in Table 2 but the numbers will
be a factor of 1.8 higher (Oguri & Marshall 2010). In terms of
measuring time delays the improved sampling requested from
our investigation of LSNe Ia will be also helpful for the case of
CC SNe. To investigate the prospects of measuring time delays
in lensed CC SNe similar to the case of LSNe Ia the specific
intensity from a theoretical model is required.

In terms of analyzing the data it seems promising to find
ways to reduce the impact of microlensing. One possibility will
be the use of color curves instead of light curves. To do this,
it might be worth to implement SNe template fitting instead
of splines into PyCS. With the recent discovery of the very
first LSNe system and the expected sample from LSST, our
work demonstrates that time-delay cosmography as envisioned
by Refsdal (1964) has bright prospects in the LSST era.
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Appendix A: Case study

To illustrate the effect of microlensing on SNe Ia in detail we
calculated microlensed spectra and light curves. For this we
assumed an iPTF16geu-like (Goobar et al. 2017) configuration,
which means the source redshift zS = 0.409 and the lens red-
shift zL = 0.216. The redshifts are needed to calculate the
size of a pixel ∆dmag = 3.6 × 10−6 pc = 1.1 × 1013 cm of the
magnification map which corresponds to an Einstein radius of
REin = 7.2 × 10−3 pc = 2.2 × 1016 cm and an angular scale
of REin/Ds = 6.5 × 10−12 rad = 1.3 × 10−6 arcsec. Since we
only determined absolute magnitudes and rest-frame fluxes in
this section, we set z = 0 and DL = DA = 10 pc in Eq. (13)18 and
(14).

For this case study, we looked at two specific example real-
izations where we placed a SNe Ia in two different positions of
the magnification map from Fig. 1, corresponding to image A of
iPTF16geu (More et al. 2017).

First we considered the position (x, y) = (6.0, 4.3) REin
and compared the non-microlensed flux Fλ j,o,cart,µ=1(ti) with the
microlensed one Fλ j,o,cart(ti) for two different instances in time
as illustrated in Fig. A.1. Panels a–d correspond to t = 14.9 d
and e–h to t = 39.8 d. For both times, the zoomed-in magnifica-
tion map (panels a and e) from Fig. 1 is provided, with the posi-
tion and radius of the SN shown by a cyan circle. The radius is
defined via the area of the SN, which contains 99.9% of the total
projected specific intensity

∑
j,l,m Iλ j,e(ti, xl, ym). In addition, the

normalized specific intensity profiles (panels b and f) are shown,
where the vertical cyan line corresponds to the radius of the SN
and the dashed black line marks the distance between the cen-
ter of the SN and the caustic in the magnification map which
separates low and high magnification regions. The normalized
specific intensity of filter band X is defined as

IX,norm =
IX

max(IX)
, (A.1)

which corresponds to a radial radiation distribution for a given
filter X. Furthermore the fluxes for the cases with microlensing
and without (panels c and g) are shown together with their rela-
tive strength (panels d and h).

For t = 14.9 d, the SN is completely in a homogeneous
region of demagnification as shown in panel a of Fig. A.1 and
therefore the flux is demagnified by the same amount for all
wavelengths, as can be seen in panel c and more clearly in
panel d19 independent of the specific intensity profiles. For the
later time, t = 39.8 d, the SN has expanded further and crosses
over a caustic as visible in panel e, such that the outer region
of the SN is partly in a region of high magnification. From the
specific intensity profiles in panel f we see that the outer ejecta
region emits relatively stronger in the bluer bands (u and g) than
in the red ones (r, i, z, and y), because for later days most of
the Fe III has combined to Fe II, which is less transparent in
the bluer bands than in the red ones (Kasen & Woosley 2007;
Goldstein et al. 2018). This explains the overall trend that the
blue part of the spectrum is more magnified than the red part,
which is indeed seen in panels g and h.

For the case constructed in Fig. A.1 we see a significant
impact on the light curves due to microlensing as shown in red

18 ∆dmag = 1.1 × 1013 cm or the interpolated value to fulfill Eq. (12) is
used for ∆xl and ∆ym.
19 We note that the scale difference between panels d and h is a factor
of 600.

in Fig. A.2 where the light curves are highly distorted. For the
u − r color curve, the effect of microlensing cancels out up to
day 25. Afterward, the crossing of the micro caustics, separat-
ing regions of low and high magnification, in combination with
different spatial distributions of the radiation in u and r band
becomes important. This is an example for the so-called “achro-
matic phase” as reported by Goldstein et al. (2018), who find that
color curves up to day 20 after explosion are nearly independent
of microlensing. They claim this is due to the similar specific
intensity profiles for early days and more different ones at later
days, as we can also see for our case comparing panel b and f in
Fig. A.1.

For further investigation we construct another test case where
the caustic of the magnification map will be crossed during the
achromatic phase, as shown in Fig. A.3. Here the microlensing
effect is clearly visible in the flux ratio, although the specific
intensity profiles are more similar as for later days (compare pan-
els b and f of Fig. A.1). Also, the influence on the light curves
is visible earlier and more drastic as shown in Fig. A.4. The
light curves are highly distorted and peaks are shifted, which
adds large uncertainty to the time-delay measurement between
different images based on light curves that undergo different
microlensing. Even though the u − r color curve compensates
microlensing in early phases quite well and is therefore promis-
ing for measuring time delays, this is not true for all color curves
as shown for the case of g − z. Here, the microlensed and non-
microlensed curves deviate from each other even though they are
in the achromatic phase.

To explore this further, we consider a large sample of 10 000
random SN positions in the magnification map shown in Fig. 1.
For each position, we calculate the light curves using Eq. (15)
and then calculate the color curves. For each time bin ti, we cal-
culate from the sample the 50th percentile as well as the 1σ and
2σ spread. The results for all rest-frame LSST color curves are
shown in Figs. A.5 and A.6, where the vertical black line marks
the time when the 2σ spread is the first time beyond 0.1mag.
We find the general trend that the achromatic phase in the color
curves becomes shorter the further the different bands are apart.
As in Goldstein et al. (2018), we find an achromatic phase-like
behavior until 25–30 days after explosion, but only for rest-frame
color curves containing combinations of u, g, r, or i bands (except
u− i) or the color curve z− y (Fig. A.5). As soon as we combine
one of the bands u, g, r, or i with z or y we see the influence of
microlensing earlier (Fig. A.6). This behavior can be explained
by looking at the normalized specific intensity profiles for early
times as shown in panel b of Fig. A.1: The profiles for the outer
region (pixel 150–200) are similar for filters z and y, but different
from u, g, r, and i. Since the achromatic phase depends highly on
the specific intensity profiles, the investigation of different explo-
sion models is necessary to explore this further (Huber et al., in
prep.).

In addition to the different durations of the achromatic
phase for the various color curves, we note that some of our
color curves from ARTIS are different in shape from those of
SEDONA in Goldstein et al. (2018). It is also very important to
emphasize that our results in this section are for rest-frame color
curves, which means that different color curves will be more or
less useful depending on the redshift of the source.
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Fig. A.1. Effect of microlensing on rest-frame spectrum of SN Ia centered at (x, y) = (6.0, 4.3) REin in microlensing map from Fig. 1 for two
different rest-frame times since explosion t. The Einstein Radius defined in Eq. (1) is REin = 7.2 × 10−3 pc = 2.2 × 1016 cm. For a discussion see
Appendix A.
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Fig. A.2. Influence of microlensing on two light curves and corresponding color curve for the SN shown in Fig. A.1. As long as demagnification
due to microlensing is similar in u and r bands, it cancels out in the color curve.

Fig. A.3. Effect of microlensing on SN Ia spectrum at rest-frame time t = 14.9 d after explosion, similar as in Fig. A.1 but at slightly different
position of SN: (x, y) = (6, 4.25) REin, where REin = 7.2 × 10−3 pc = 2.2 × 1016 cm. For a better comparison, the case from Fig. A.1 is shown as
gray dashed line in the upper-left and lower-right panels.
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Fig. A.4. Influence of microlensing on light curves and color curves for SN shown in Fig. A.3. Whereas the light curves are highly influenced by
microlensing, the color curve u − r is very similar for the case of microlensing and non-microlensing. This is not the case for all color curves, as
shown for example by g − z.

Fig. A.5. Comparison of non-microlensed color curves (dotted black) to microlensed ones (with median in solid red, and 1σ and 2σ range in
different shades), for 10 000 random SNe positions in magnification map. The vertical black line indicates the first time the 2σ spread of the
microlensed color curves exceeds 0.1 magnitudes. The panels are all rest-frame LSST color curves for a saddle image (κ = 0.6, γ = 0.6, and
s = 0.6, see Fig. 1), which show an achromatic phase similar to the one reported by Goldstein et al. (2018), but we find the achromatic phase only
for combinations of the bands u, g, r, and i (except u − i) and for the color curve z − y up to approximately 25−30 days after explosion.
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Fig. A.6. Same as in Fig. A.5, except these colors curves exhibit a shorter or non-existing achromatic phase in comparison to those in Fig. A.5.
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Appendix B: Photometric uncertainty of LSST

The photometric uncertainty σ1 from Eq. (17) is defined as:

σ2
1 = σ2

sys + σ2
rand, where σsys = 0.05 (B.1)

and

σ2
rand = (0.04 − γc)x + γcx2(mag2). (B.2)

The parameter γc varies from 0.037 to 0.040 for different filters
and x = 104(m−m5), where m is the magnitude of the SN data
point and m5 is the 5σ point-source depth (for more details see
LSST Science Collaboration 2009, Sect. 3.5, p. 67).

Appendix C: Optimistic estimate of the number
of LSNe Ia

The numbers presented Table 2 are based on the prediction of
OM10 which depends on a sharp magnitude cut, allowing only
for systems where the i-band peak magnitude of the fainter
image for a double or the 3rd brightest image for a quad is
brighter than 22.6 mag. In our investigation, assuming the W7
model with random microlensing magnifications, we investi-
gated also fainter systems where we find that we can also get
well measured time delays for these systems although the frac-
tion is reduced by at least a factor of 1.7. This fraction for faint

systems is an overestimation, because bright systems yield better
time delay measurements than faint systems and our investigated
sample peaks around the cut applied in OM10 and therefore
we probe mostly the bright regime of the systems fainter than
22.6 mag.

However results presented by Wojtak et al. (2019) suggest
that we can find approximately 440 LSNe Ia over the 10 year
survey with the same approach as in OM10 but allowing also for
fainter systems. If we assign about 80 of those systems to bright
ones as suggested by Table 2, we expect to find 4.5 times more
faint (>22.6 mag) systems than the bright (≤22.6 mag) ones. Fur-
ther, we calculate with Eq. (28) the fraction of systems with well
measured delay, but separately for faint and bright systems, lead-
ing to ftotal,faint and ftotal,bright. Therefore an optimistic estimate of
the number of LSNe Ia with well measured time delay for a given
cadence can be calculated as

NGoodDelay,cad = NLSNe Ia,cad ftotal,bright + 4.5NLSNe Ia,cad ftotal,faint,

(C.1)

where NLSNe Ia,cad are the numbers from Table 2. The results are
shown in Fig. C.1. Despite the fact that the numbers are a fac-
tor of approximately 3.5 higher than in Fig. 14, we see the same
general trend for magenta, orange, and blue cadence strategies,
leaving the overall conclusions on cadence strategies unchanged.

Fig. C.1. Number of LSNe Ia with well measured time delay for 10-year survey including faint systems with i-band peak magnitude (of fainter
image in doubles, or third brightest image in quads) fainter than 22.6 mag (black bars), in comparison to results presented in Fig. 14 (gray bars).
We see that the optimistic (black bars) and conservative (gray bars) estimates show the same trend for magenta, orange and blue cadence strategies.
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