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Abstract

A better understanding of rain microstructure variation enables further improvements of
the quantitative estimation of rain intensity by remote sensing instruments. This task is
of tremendous importance due to the various applications relevant to water supply for
humans and natural ecosystems in addition to flood forecasting. Rain microstructure is
a product of many processes that influence the shape, size and velocity of drops before
reaching the ground. For example, the two rain types (stratiform and convective) are
characterized by distinct rain microstructure. This difference has been widely addressed.
However, the influence of large scale weather circulations (also types or patterns –
hereafter WTs) on rain microstructure has not been sufficiently considered. Especially
for central Europe, available studies fail to consider the combined effect of rain type and
WTs on rain microstructure.

In this PhD study, data from various measuring devices on the ground were used
to demonstrate the influence of WTs, especially the flow direction component, on
precipitation properties in central Europe. This involved demonstrating how the diurnal
cycle of precipitation, the proportion of convective rain, and the rain microstructure
vary with WTs. For this purpose, it was critical to assess and improve the rain type
classification methods. Advanced predictive models using machine learning have been
constructed for better classification performance. Finally, the potential to improve the
rain intensity retrieval algorithm Z = ARb was demonstrated by assigning A and b
values for each combination of weather type and rain type.

The key findings of this study demonstrate that southern circulations in central
Europe intensify convection, leading to a higher proportion of convective rain amount
and duration. Additionally, southern circulations are associated with a higher afternoon
precipitation peak in the diurnal cycle. On the contrary, northern circulations intensify
radiative cooling and suppress convection, resulting in a higher morning precipitation
peak. Western circulations represent the dominant source of humidity and contribute the
highest amount of precipitation. Rain under western circulations is characterized by the
highest intensity and the largest drops. Eastern circulations contribute the least to the
precipitation amount and duration, and are associated with small drops, low intensities,
and high drop concentrations. These distinct properties in rain microstructures lead to
significantly different values of the A and b, the rain intensity retrieval parameters.
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Zusammenfassung

Ein besseres Verständnis der Variation der Regenmikrostruktur ermöglicht weitere
Verbesserungen der quantitativen Abschätzung der Regenintensität durch Fernerkun-
dungsinstrumente. Diese Aufgabe ist aufgrund der verschiedenen Anwendungen, die
neben der Hochwasservorhersage auch für die Wasserversorgung von Menschen und
natürlichen Ökosystemen relevant sind, von größter Bedeutung. Die Regenmikrostruk-
tur entsteht in unterschiedlichen atmosphärischen Prozessen, die die Form, Größe
und Geschwindigkeit der Tropfen beeinflussen, bevor sie den Bodenerreichen. So
ist allgemein bekannt, das die beiden Regenarten (stratiform und konvektiv). durch
ihre ausgeprägte Regenmikrostruktur unterschieden werden kann. Der Einfluss von
Großwetterlagen (im Folgenden WTs genannt) auf die Regenmikrostruktur ist bisher
jedoch nicht ausreichend berücksichtigt worden. Insbesondere für Mitteleuropa wird
in den bisherigen Studien der kombinierte Einfluss von Regentypus und WTs auf die
Regenmikrostruktur nicht berücksichtigt.

In dieser Doktorarbeit wurden Daten von verschiedenen Messgeräten am Boden
verwendet, um den Einfluss von WTs, insbesondere der großräumigen Anströmrichtung,
auf die Niederschlagseigenschaften in Mitteleuropa zu demonstrieren. Dabei wurde
aufgezeigt, wie der Tagesgang des Niederschlags, der Anteil des konvektiven Regens
und der Regenmikrostruktur mit den unterschiedlichen WTs variieren. Hierzu wurden
Methoden zur Klassifizierung der Regenarten bewertet und zu verbessert. Um die
Klassifizierungsleistung zu verbessern wurden fortgeschrittene Vorhersagemodelle unter
Verwendung des maschinellen Lernens erstellt. Abschließend wurde das Potential zur
Verbesserung des Regenradaralgorithmus Z = ARb zur Bestimmung der Regenintensität
demonstriert, indem für jede Kombination von Großwetter- und Regentypus separate A-
und b-Werte zugewiesen wurden.

Die wichtigsten Ergebnisse dieser Studie zeigen, dass die südlichen Zirkulationen
in Mitteleuropa die Konvektion intensivieren, was zu einem höheren Anteil an kon-
vektiver Regenmenge und -dauer führt. Zusätzlich sind die südlichen Zirkulationen
mit einem höheren Nachmittagsniederschlagsmaximum im Tageszyklus verbunden. Im
Gegensatz dazu verstärken die nördlichen Zirkulationen die Strahlungsabkühlung und
unterdrücken die Konvektion, was zu einer höheren morgendlichen Niederschlagspeak
führt. Westliche Zirkulationen stellen die dominierende Feuchtigkeitsquelle dar und
tragen die höchste Niederschlagsmenge bei. Der Regen aus westlichen Zirkulationen
ist durch die höchste Intensität und die größten Tropfen gekennzeichnet. Östliche
Zirkulationen tragen am wenigsten zur Niederschlagsmenge und -dauer bei und sind
mit kleinen Tropfen, niedrigen Intensitäten und hohen Tropfenanzahl verbunden. Diese
ausgeprägten Eigenschaften in den Mikrostrukturen des Regens führen zu signifikant
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unterschiedlichen Werten der Regenradarparameter A und b.
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1 Introduction

This chapter contains a brief overview of the main concepts tackled throughout the
dissertation. These concepts are introduced starting with the largest scale “General
weather types”, followed by cloud types and precipitation formation processes. Addi-
tionally, rain observation devices are presented focusing on those able to measure rain
microstructure. The smallest scale of rain microstructure is presented along with its use
in classifying rain type and its influence on the radar rain retrieval algorithm. Finally a
brief statement of the research idea is provided.

1.1 General weather types

Large scale weather types (aka. synoptic types or patterns, hereafter WT) denote
atmospheric conditions that remain relatively stable for several days over a large area
(Brdossy and Caspary, 1990). These atmospheric conditions comprise elements such
as the distribution of high and low pressure systems, the extent and paths of frontal
zones, and the existence of cyclonic or anticyclonic situations (Baur et al., 1944). WTs are
clustered in such a way that similar conditions within each type are preserved while
clear dissimilarities between the different types are obtained. WT classification had been
a common practice in meteorology with the purpose of weather forecasting until the
rise of weather forecast models which took over in the last few decades (Huth et al.,
2008). However, WT classification remains an important part of statistical climatology
(Ramos et al., 2015; Huth et al., 2008).

WTs explain the variations in many local weather phenomena, especially because they
influence the thermal and humidity content of air masses and their movement. They are
linked to the variations of temperature and precipitation (Buishand and Brandsma, 1997;
Vallorani et al., 2018; Huth et al., 2016; Broderick and Fealy, 2015; Cortesi et al., 2013), and
the occurrence of extreme events and their magnitude (Cony et al., 2010; Cassano et al.,
2006; Nowosad and Stach, 2014; Maheras et al., 2018; Planchon et al., 2009). Indirectly,
they also influence stream flows (Steirou et al., 2017), floods (Petrow et al., 2007; Jacobeit
et al., 2003; Nied et al., 2014), debris-flow events (Nikolopoulos et al., 2015), forest fires
(Wastl et al., 2013; Kassomenos, 2010), air quality, and pollen distribution (Russo et al.,
2014; Nidzgorska-Lencewicz and Czarnecka, 2015; Grundström et al., 2017). They have
been used to assess the performance of global climate models in terms of reproducing
past weather conditions, comparing future scenarios, simulating precipitation on local
scales, and statistical downscaling of precipitation and extreme events (Sheridan and
Lee, 2010), which explains the continuing interest in WT classification.
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1 Introduction

The classification process of WTs consists usually of two steps, defining the types,
then assigning individual cases to corresponding types (Huth et al., 2008). The whole
procedure can be subjective when both steps are based on the expertise of trained
individuals such as in the classification of “Hess and Brezowsky” (Gerstengarbe et al.,
1993). It can be objective when specific algorithms are followed based on the input of
particular weather parameters, such as in the “Objective Weather Classification” run by
the German Meteorological Service (DWD, Deutscher Wetterdienst). WT classifications
have different performances in resolving precipitation. Some objective classifications ex-
plain the daily precipitation patterns better than all the manual classification procedures
(Schiemann and Frei, 2010). The performance differences depend on the season, the
location, and the number of classes in each classification procedure. These differences
might also be a result of the different rules in each classification regarding pressure field
height and the different time windows assumed for the consistent weather conditions
to prevail (Kyselý and Huth, 2006). However, WTs should be viewed as purposeful
simplifications of reality and there is no single true classification (Huth et al., 2008).

It is possible to track changes in WTs for long periods back in time, which makes
them suitable for climate change studies. The overall warming of central Europe was
linked to the changes in frequency of daily circulation patterns(Philipp et al., 2007).
Specifically in winter in the few decades until the 1990s (Van Oldenborgh and Van Ulden,
2003; Rebetez and Reinhard, 2008), the warming was associated with a strengthening
of the zonal flow (Kyselý and Huth, 2006), and a positive phase of the North Atlantic
Oscillation (Hurrell, 1995; Jones et al., 1999; Hurrell and van Loon, 1997). However,
changes in WTs fail to explain the climatic trends in the remaining seasons (Cahynová
and Huth, 2016). Additionally, different classification methods produce different results
(Huth, 2010; Beck and Philipp, 2010). In general, at least the frequencies of some WTs
are sensitive to some aspects of anthropogenic forcing (Corti et al., 1999). However,
linking trends in WT to climate change requires caution and the use of a large number of
circulation classifications in order to avoid a misinterpretation of results (Cahynová and
Huth, 2016). Another approach to avoid the differences emerging from using different
WT classification methods is to identify a specific classification that is suitable for the
particular region of interest (Beck and Philipp, 2010).

1.2 Cloud types

Clouds have different shapes and extents in the troposphere. The first attempts to
classify clouds based on ground observations were done by Jean Baptiste de Monet and
Lamarck Luke Howard (Ahrens, 2009, 2015). The current classification of clouds – cloud
genera (World Meteorological Organization, 1975) - includes the high altitude / level
clouds, usually above 7 km (cirrus, cirrocumulus, and cirrostratus), the mid-troposphere
clouds, between 2 – 7 km (altocumulus, altostratus, and nimbostratus), and the low
clouds below 2 km (stratocumulus, stratus, cumulus and cumulonimbus), bearing in
mind that cumulonimbus tops might extend to the upper troposphere (see Figure 1.1).

2



1.3 Cloud formation

Figure 1.1: Cloud genera shape and level range. Figure By Valentin de Bruyn (CC BY-SA
3.0) (Wikimedia Commons, 2018)

We are mostly interested in low clouds which are the precipitation sources. These
have usually two major types: stratiform clouds, including stratocumulus, stratus,
and nimbostratus, and the cumuliform (convective) clouds including cumulus and
cumulonimbus. In both cases, the formation of clouds is associated with air rising,
expanding and cooling. The main mechanisms behind this formation are the surface
heating and free convection, the topography, the convergence leading to wide spread
ascent, and the weather fronts leading to uplift (Ahrens, 2015).

1.3 Cloud formation

The dominant genera in stratiform clouds are stratus and stratocumulus. They are
usually characterized by their thin (less than 1 km) horizontal extent over a large area,
and they both cover over 30% of the surface of the earth. Such stratiform clouds form by
horizontal advection of warm fronts over cold air masses. Stratiform clouds may also
form by the radiative cooling process (Svensson and Jakob, 2002). Near the top of the
boundary layer, condensation may initiate when the temperature approaches the dew
point. The cooling continues especially during the night at the top of the thin cloud
layer (Twardosz, 2007). Other ways of stratiform clouds formation include ascending
of moist air near fronts or due to topography, or the advection of warm fronts over
cold areas (Wood, 2015). The balance between radiative cooling of these clouds and the
flux of energy and moisture controls the stability of stratiform clouds. Additionally,
precipitation has a major and complex influence on these fluxes, and therefore the
stability of the clouds.

3
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Cumulus and cumulonimbus clouds are the genera of convective clouds. They have
limited coverage except for the upper part of the cumulonimbus which takes the shape of
an anvil. Cumulus clouds form due to the conversion of air currents and the movement
of warm air upward where the temperature decreases rapidly (Rangno, 2015). These
clouds have the highest liquid concentration. Precipitating cumulus clouds have 1.5 – 3
km thickness over the ocean and around 3 km over land. Cumulonimbus clouds usually
are thicker and could reach a total depth of 20 km. They are also characterized by strong
rainshafts and lightning.

When moist air parcels ascend to higher elevations, they expand and cool down.
Consequently they become supersaturated with respect to liquid water. This initiates the
process of condensation and clouds start to become visible (Wallace and Hobbs, 2006).
Condensation starts on the surfaces of small particles called the cloud condensation
nuclei (CCN). Their concentration is higher in continental air near the earth’s surface
compared to the marine air (Hudson, 2002). However, different processes occur and
there should be a clear distinction between warm and cold clouds.

1.3.1 Cold clouds

Even well above the 0◦C isotherm, small droplets of water exist in the liquid form. It
takes very low temperatures to freeze very small droplets. Ice crystals may form in
such conditions when ice nuclei are available. These ice nuclei are rare compared to
the CCN and they are activated mostly in temperatures below -10◦C. There are some
uncertainties regarding the sources of ice nuclei. However, it is known that clay minerals,
some bacteria and decaying plant materials beside ice particles themselves act as ice
nuclei (Ahrens, 2009).

Ice particles in the clouds grow by three processes (Wallace and Hobbs, 2006; Houze,
2014); growth from vapor phase happens in clouds containing a mixture of supercooled
droplets and ice particles. Ice particles grow rapidly compared to the growth of droplets
and directly from the vapor phase. Growth by rimming happens when supercooled
droplets collide into the ice particles and freeze onto them. Growth by aggregation
occurs when ice particles collide into each other due to the different falling speed of the
particles caused by the variations in drop size and shape. As an ice particle becomes
larger, the rimming and aggregation contribute more to its growth and the ice particle
start descending. These particles start melting at a certain level. They become coated by
a thin film of liquid water. At this stage, a mixture of large volume of ice particles with
the coating of liquid water exists. The mixture of ice and water at this melting layer has
a higher ability to reflect radar signal. After complete melting, the rain drops have a
smaller volume and a higher velocity, which causes a decrease in the reflected radar
signal. The melting layer is detected by radars and referred to as the bright band.

4



1.4 Rain observation

1.3.2 Warm clouds

Warm clouds exist beneath the 0◦C isotherm. In such clouds, droplets may grow by
condensation, colliding and coalescing with other droplets. As the air parcel moves
upwards and becomes supersaturate, CCNs are activated and water vapor starts to
condensate on the surface of CCNs. Usually small droplets grow faster than larger
droplets due to the condensation process. As time passes, the size of droplets becomes
relatively uniform. This process is very slow in producing large drops with radii up to 1
mm. However, the growth of one droplet in a million is enough to initiate rain.

The terminal velocity of a droplet is correlated with its size. Consequently, droplets
which are larger than average in a cloud will have a higher than average terminal
velocity (Hudson, 2002). As they fall they collide with smaller droplets. Depending on
the size of the droplets, the velocities, the relative positions and the electrical charge,
two droplets may form one larger droplet, bounce, or breakup into several droplets.
Other processes which contribute in producing variations in droplet size include the
role of giant CCN, the turbulence within the cloud, the stochastic collection of droplets
(considering that collision-coalescence process has a probabilistic nature in time and
space), and the probability of raindrop breakup due to large size and the fraction with
air (Ahrens, 2009).

1.4 Rain observation

In situ measurement of rainfall properties remains an essential practice for scientific
research and practical applications such as monitoring water resources, agriculture,
erosion, and calibration of remote sensing instruments. Rain gauges continue to provide
rainfall intensities and accumulation. They are simple to use and inexpensive. However,
errors may occur due to the specific design and principle of measurement. Main sources
of error include the effect of wind, evaporation, wetting, splashing, bad choice of
location, and calibration issues (Testik and Gebremichael, 2010). Disdrometers provide
more details of rain microstructure including the size and velocity of the detected
meteors with a very high temporal resolution. This makes disdrometers especially
suitable for microphysical studies of precipitation, erosion, and improving remote
sensing algorithms for rain intensity estimation.

1.4.1 Automated disdrometers

Measuring rain drop size distribution started with some manual methods such as using
stain paper, flour pallets, oil immersion, and photography (Kathiravelu et al., 2016). One
of the most frequently used automated disdrometers is the Joss-Waldvogel Disdrometer
(Kinnell, 1976). In this impact disdrometer, a rain drop falls on a moving plate which
causes a displacement. This displacement is correlated with the size of the drop. One
major disadvantage of the Joss-Waldvogel disdrometer is that it is intrusive and alters

5



1 Introduction

the behavior of the falling rain drop. This limitation was overcome by the development
of optical disdrometers.

Optical disdrometers, such as PARSIVEL (see Figure 1.2) and Thies disdrometers,
generate a laser or light signal in one end of the device. This signal is received by a
detector at the other end. Whenever a drop passes this measurement area, the received
signal is reduced. The magnitude of this reduction corresponds to the size of the drop.
The velocity of the drop is also correlated with the time it needs to pass the measuring
area. Such disdrometers have high temporal resolutions which could exceed one minute.
The disdrometer output can be used to produce a wide range of precipitation parameters,
such as the rain intensity, kinetic energy, mean diameter, mean velocity, visibility and
type of precipitation. Disadvantages differ depending on the type of disdrometer used.
For example, PARSIVEL1 has an inhomogeneous laser source which affects the accuracy
of the device. This led to the second version of the device PARSIVEL2 (Tokay et al., 2014).
The disdrometer measuring area is commonly small (Tapiador et al., 2017). Additionally,
the measurement errors due to splashing, masking (when one drop is shadowed at least
partially by another), birds, pollen, insects and spider webs, need to be filtered away
(Friedrich et al., 2013).

Figure 1.2: The PARSIVEL disdrometr (front) and the micro rain radar inside its housing
(back) located in Das, north east of Spain. Photo by Ghada, Wael. (2019)
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1.4 Rain observation

1.4.2 Radar based disdrometers

Radar based disdrometers are vertically pointing radars such as micro rain radars
(MRR - see Figure 1.3) and wind profilers. They are able to retrieve the rain drop
size distribution (DSD) based on the assumption that vertical air velocity is absent. In
this case the terminal fall velocity of drops equals the Doppler radial velocity. These
instruments have a larger sampling volume compared to ground disdrometers. They
also provide the change in rain DSD as a function of elevation, which allows the study
of rain microstructure evolution. However, a main disadvantage especially in the case of
MRR is the signal attenuation (Testik and Gebremichael, 2010).

Figure 1.3: Micro rain radar (MRR) located in Das, north east of Spain. Photo by Ghada,
Wael. (2019)

1.4.3 Radar

Radio detection and ranging (Radar) has the advantage of wide coverage and reaching
areas which were not previously accessible. In these devices, a microwave signal
is transmitted by the radar into space. Fractions of this signal are scattered when
encountering a target. The scattered signal is received again in the radar and shown
on its screen as an echo. The distance to the target determines the time needed for the
signal to travel back and forth. Most radars have a wavelength in the range 0.8 - 10 cm.
A shorter wavelength (3 - 5 cm or less) enables the radar to detect small targets such
as droplets (Markowski and Richardson, 2010). However, attenuation for such short
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wavelengths is severe. In case of rain, the higher the intensity, the brighter the echo
detected (Ahrens, 2009).

1.5 Rain microstructure

The importance of rain microstructure lays in its ability to give an insight into the rain
formation processes behind. The practical applications of this knowledge include erosion
studies, telecommunication, and quantitative estimation of rain by remote sensing. Our
assumptions regarding rain microstructure play a decisive role in these applications,
especially considering the uncertainties in formation mechanisms which lead to the
broad distribution of the detected rain parameters that represent the rain DSD (Beard
and Ochs, 1993). Exponential distribution has been used widely to represent rain DSD
(Marshall and Palmer, 1948) in terms of concentration of raindrops N per diameter
interval D as:

N(D) = N0× exp(−Λ× D) (1.1)

where N0 is the intercept parameter, and −Λ is the slope parameter.
Gamma distribution alternatively represents the concentration of raindrops as:

N(D) = N0× Dµexp(−Λ× D) (1.2)

where µ is the shape parameter (Willis, 1984). The parameters of the fitted gamma
distribution have been used to demonstrate the variation in rain DSD with different rain
types, different meteorological conditions and different geographical locations (Wen
et al., 2019; Niu et al., 2010; Fernandez-Raga et al., 2017).

1.5.1 Rain type classification based on rain microstructure

Convective and stratiform rain have different formation processes which contribute to
the rain properties as observed on the ground. Classifying rain into these two categories
have been proven to improve quantitative estimation of precipitation (QPE) by radars
(Thompson et al., 2015). It also fosters the improvement of global climate and circulation
models (Steiner and Smith, 1998; Ferrier et al., 1995; Houze, 1997). To classify rain
type when cloud observations are absent, rain intensity and its variation have been
widely used. When the rain intensity itself or the standard deviation of rain intensity
exceeds a threshold, the corresponding interval is classified as convective rain (Bringi
et al., 2003; Tang et al., 2014; Marzano et al., 2010). However, when records of rain
DSD are available, it is possible to use the distinct microstructure for the classification
purpose. Most proposed methods to classify rain based on its microstructure use simply
a combination of two parameters. These combinations include for example the rain
rate with the intercept parameter (R-N0) (Tokay and Short, 1996), the slope with the
shape parameter (Λ–µ) (Caracciolo et al., 2006), the intercept with the slope parameter
(N0–Λ) (Caracciolo et al., 2008), or the median drop diameter with the log normalized
concentration (N0–logNw) (Bringi et al., 2009). All of these methods include drawing a
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line separating two regions in the space of the chosen parameters. This line is affected
by the chosen pre-classified cases. Applying any of these classification methods requires
careful consideration of the different geographical location (Caracciolo et al., 2006;
Uijlenhoet et al., 2003; You et al., 2016) and the used instrument to retrieve rain DSD
and its parameters (Bukovčić et al., 2015).

1.5.2 R-Z

As mentioned earlier, radars do not provide a direct measure of rain intensity. Instead
they provide measures such as the radar reflectivity Z which represents the efficiency of
the radar target in intercepting and returning radio energy (American Meteorological
Society, 2020). Z is assumed to have an exponential relation with rain intensity R.
The retrieval of rain intensity is based on the equation Z=ARb, where Z has the unit
mm6/m3, and R in mm h−1.

Marshall and Palmer (Marshall and Palmer, 1948) determined the values of A and b
to be 200 and 1.6 respectively. These values are still used widely despite the fact that
variations in A and b values have been found with respect to rain microstructure. The
reason behind this variation lays in the different sensitivity of Z and R to changes in rain
DSD. Z is the 6th moment of DSD which makes it more sensitive to changes in drop size.
On the other hand, R is more sensitive to the drop concentration since it is correlated
with the 3.67th moment of DSD. (Chen, 2004). In other words, the same amount of water
content distributed over large drops or small drops will result in different values of Z.
To determine the values of A and b, independent ground measurements of rain intensity
are required. This highlights the importance of combining radars with a network of
ground based devices such as rain gauges and disdrometers. These devices are essential
to calibrate the radar equations and validate measures over the long term.

1.6 Research Idea

Using different types of disdrometers leads to significant variations in rain microstruc-
ture and all bulk precipitation (Angulo-Martínez et al., 2018; Guyot et al., 2019). Similarly,
using different disdrometers result in different radar rain retrieval algorithms, which
in turn result in significant differences in the amount of accumulated rain measured,
especially on the event level (Adirosi et al., 2018). Considering that rain microstructure
parameters which are used to classify rain types are derived by different disdrometers
types raises the question about the suitability of such rain classification techniques and
their performance when using different devices.

Advection and convection are known to have different major precipitation formation
processes. These processes lead to distinct rain microstructures, which when considered,
can reduce the error in accumulated rain amount by up to 50% (Kirsch et al., 2019). How-
ever, weather types influence many aspects of the meteorological conditions. Especially
depending on the large-sale wind direction component, these weather types vary in their
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humidity, energy, and aerosols content. These distinct properties of the weather types
might explain further the variations observed in rain microstructure. Consequently,
we hypothesize that rain microstructure varies significantly between weather types
in both rain types. Therefore, distinct, weather-type-specific, radar algorithms could
be developed with the potential to improve the quantitative estimation of rain. This
improvement in particular is of great interest for many hydrological and environmental
applications.
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2 Outline

Large scale weather types represent a simplification of the meteorological conditions w.r.t.
centers of action prevailing over a large area. Especially the flow direction component
of these types have a large influence on the humidity and energy transport over the
area in focus. This influence is still overlooked when it comes to the variation of rain
properties despite the availability of precipitation and meteorological data in Central
Europe to address it. The potential impact of weather types on rain microstructure, and
consequently, on the remote sensing algorithms that retrieve rain intensity needs to be
investigated. This also requires a clear distinction between rain types into convective
and stratiform. Currently available rain type classification methods have questionable
performance because they were designed based on specific measuring devices. Even
when using the same device, performance may drop due to different climatic conditions
in different locations.

This work analyses the influence of large-scale weather types on rain properties,
namely diurnal cycle of precipitation and rain microstructure. It presents machine
learning classification of rain type using two types of devices. It also demonstrates the
potential influence of considering weather types on the rain intensity retrieval algorithms
which are used by radars as a direct practical application. This is organized in three
stages:

1. The influence of flow direction as a component of weather type on the diurnal
cycle has been addressed. Daily patterns of precipitation frequency and amount
and their variations were investigated under the combined effect of flow direction,
seasonality, locations and elevations in Germany. The research questions addressed
in this stage were:

• How do patterns of diurnal precipitation cycles vary with weather types over
Germany?

• How does seasonality and location within Germany influence such a varia-
tion?

2. The suitability of the available rain type classification methods for the instruments
available was questionable. Therefore, it was necessary to assess this performance
and reach a reliable classification procedure in order to move on to the next step
of investigating the effect of weather patterns on rain microstructure. With the
help of a pre-classification of rain based on cloud observations in Bavaria, several
classification methods have been assessed. The use of machine learning predictive
models was also investigated. In a follow up study in the north east of Spain, the
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suitability of machine learning classification models was investigated for two types
of devices. Both of these methodological papers discuss the questions:

• How do the performance of classification methods which are designed for
one type of instruments perform on different types of instruments?

• Is it possible to improve the performance of available simple, dual parameters
classification methods?

• How do machine learning classification models perform when applied in
different locations and using different instruments?

3. Finally, the main aim of the work was to investigate the variation of rain mi-
crostructure under the influence of large scale weather types. This has been done
in two locations; the first in Lausanne in Switzerland, and the second in Bavaria,
Germany. The main differences between the two studies were the time scale, the
spatial scale, the disdrometer types, and the rain type classification methods. Both
studies addressed the questions:

• Can we observe a consistent pattern of rain microstructure that is associated
with the different classes of large scale weather types?

• Can such a pattern influence the rain intensity retrieval algorithms which are
used in radars?
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A brief overview of the applied methodology is given in this section.

3.1 Sites and time scale

In total, 27 disdrometers in Germany, Switzerland and Spain, and one Micro Rain Radar
(MRR) in Spain were involved in studying rain microstructure within this work. Addi-
tionally, 136 stations containing a variety of rain collecting devices, mostly pluviometers,
were used to demonstrate the influence of weather types over the diurnal precipitation
patterns in Germany. These stations included hourly precipitation data for at least 15
years each. Figure 3.1 shows the measurement locations.

The studies of rain type classifications were performed at two sites in Bavaria and one
site in the north east of Spain. The sites in Bavaria included Thies measurement and
hourly cloud observations for one year in Fürstenzell and seven months in Regensburg.
The Spanish site included a PARSIVEL and an MRR with measurements for 27 months.

To demonstrate the influence on WTs on rain microstructure, 16 PARSIVEL disdrome-
ters in Lausanne, Switzerland, and 10 Thies disdrometers at 10 locations in Bavaria were
used. The disdrometer data from Switzerland were measured during the EPFL-LTE
campaign which spanned over 22 months. The Bavarian disdrometer data was provided
by the German Meteorological Service (DWD) and spanned over three full years.

3.2 Disdrometer data

Two types of disdrometers were involved in this study, Thies and PARSIVEL. Both
devices have the same measurement principle, but different sensitivities. Thies disdrom-
eters are able to detect drops with a diameter of 0.16 mm or larger (Thies Clima, 2007),
while PARSIVEL disdrometers detect drops starting with a diameter of 0.2 mm (OTT
Hydromet, 2020). Disdrometer data comprise drop counts for specific ranges (bins) of
diameters and velocities. The temporal resolution of all measures in this work was set
to an interval of one minute.

3.2.1 Retrieving rain parameters

From the disdrometer output, a large number of parameters can be extracted for each
one-minute interval. Therefore, only the most relevant ones for rain microstructure
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3 Overview of methods

Figure 3.1: Location of measuring devices over the study sites in Germany, Switzerland
and Spain. The site in Switzerland includes 16 disdrometers.

studies are presented in the following. The remaining parameters can be found in the
publications and the relevant references.

Rain intensity

Rain intensity (R in mm h-1) is defined by the equation (Chen et al., 2016a):

R = 60× 60× π ÷ (6× 1000000× ∆T)
nd

∑
i=1

nv

∑
j=1

(xi,j × D3 ÷ Ai) (3.1)

where
xi,j: Detected number of drops that fall in diameter range i and velocity range j.
nd: the total number of diameter ranges.
nv: the total number of velocity ranges.
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3.2 Disdrometer data

∆T (s): Temporal resolution = 60 s.
Ai (m2): Corrected detection area:

Ai = LA × (WA − Di/2)÷ 1000000

LA (mm): the length of the detection area.
WA (mm): the width of the detection area.
Di (mm): Mean diameter of drops that fall in diameter range i.

Reflectivity

Reflectivity (Z in mm6 m-3) is defined by the equation (Chen et al., 2016a):

Z =
nd

∑
i=1

nv

∑
j=1

xi,j × D6
i ÷ (Ai ×Vj × ∆T) (3.2)

where: Vj (m s-1): Mean velocity of drops in velocity range j.
The reflectivity is usually expressed in another unit (dBZ):

ZdBZ = 10× log10(Zmm6m−3) (3.3)

Rain microstructure parameters

The total drop concentration (N in m-3, i.e. the total number of drops per m3) is defined
by the equation (Chen et al., 2016a):

N =
nd

∑
i=1

nv

∑
j=1

(xi,j ÷ (Vi × ∆T ×Wi × Ai)) (3.4)

where:
Wi (mm): the Width of the diameter range i.
The Mass weighted diameter (Dm in mm) is defined by the equation (Marzuki et al.,

2010):

Dm =
nd

∑
i=1

nv

∑
j=1

(xi,j × D4)÷
nd

∑
i=1

nv

∑
j=1

(xi,j × D3) (3.5)

The median volume diameter (D0 in mm) is the diameter that divides the volume of
liquid water content in half (Kanofsky and Chilson, 2008):∫ D0

D=0
(xD × D3dD) =

∫ ∞

D=D0

(xD × D3dD) (3.6)

Kinetic energy

The kinetic energy (KE in J m-2 h-1) is defined by the equation (Petrů and Kalibová,
2018):

KE = 3600× π ÷ (12× 1000000× ∆T)
nd

∑
i=1

nv

∑
j=1

(xi,j × D3
j ×V2

i ÷ Ai) (3.7)
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Gamma distribution parameters

Gamma distribution parameters are especially of interest for the rain type classification.
Assuming that rain DSD follows a gamma distribution (Willis, 1984).

N(D) = N0× Dµ × exp(−Λ× D) (3.8)

where N0 (mm-1-mm-3) is the intercept parameter.
λ(mm-1) is the slope parameter
µ (non-dimensional) is the shape parameter
Gamma parameters were calculated using the moments method (Testud et al., 2001)

where The kth moment of rain DSD is:

Mk =
nd

∑
i=1

nv

∑
j=1

(xi,j × Dk
i ) = N0 × Γ(µ + k + 1)÷Λµ+k+1 (3.9)

Using the 3rd, 4th, and 6th moments, we can obtain the gamma parameters:

m = (11× G− 8 + (G× (G + 8))0.5)/(2× (1− G)) (3.10)

G = (M4)
3 ÷ ((M3)

2 ×M6) (3.11)

N0 = Λµ+4 ×M3 ÷ Γ(µ + 4) (3.12)

Λ = ((µ + 4)×M3 ÷M4 (3.13)

Where Dm = M3 ÷M4 is the Mass weighted diameter (Equation: 3.5). And G is the
third moment of the mass spectrum normalized by (Dm)3.

3.2.2 Filtering disdrometer data

Disdrometers provide records of size distribution for each interval regardless of the
nature of the object that passes the detection area. An important step in preparing the
raw disdrometer data is to identify and exclude non-rain intervals. Another challenge is
filtering out non-rain detected objects within rains intervals. The most important criteria
for this process is identifying the terminal velocity for each drop diameter range. The
filtering process of disdrometer data was based on the suggestions of Friedrich et al.
(2013) and adjusted for each disdrometer type. This included the removal of:

• Intervals associated with damaged laser signal,

• Intervals associated with snow, hail, frozen rain, and mixed precipitation as
reported by the disdrometer internal classification,

• Intervals with rain intensity below 0.1 mm.h-1,
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3.3 Micro rain radar (MRR)

• Intervals in which less than four drop diameter ranges were detected,

• Intervals where large drops with a low falling speed were detected as an indicator
of high wind speed,

• Drops with a diameter larger than 8 mm, and

• Drops outside the range of TV × (1± 60%) for each diameter range, considering
the terminal velocity TV (m/ sec) as a function of the drop diameter (mm) (Atlas
et al., 1973):

TV(D) = 9.65− 10.3× exp(−0.6× D) (3.14)

3.3 Micro rain radar (MRR)

MRR was used at one site in Spain in order to test and improve rain type classification
procedures. It is a low cost, K band (24 GHz) FM–CW Doppler radar profiler manu-
factured by METEK (Löffler-Mang et al., 1999). The device was set to provide records
with a temporal resolution of one minute for the vertical range between 100 m and 3000
m. The output was post-processed to provide values of the equivalent reflectivity (Z),
Doppler velocity (W), and spectral width (SW). The post processing was proposed by
Maahn and Kollias (2012) and explained in details by Gonzalez et al. (2019).

The existence of a bright band in radar records is considered to be a clear indicator
of the melting layer and stratiform rain type. Regardless of the existence of a melting
layer, the level with the highest increase in the Doppler velocity was identified for each
interval within the range between 500 m and 2900 m. This level was labeled as the
separation level (SL). A five minutes average temporal moving window was used to
reduce the noise in identifying SL. The same moving window was used to determine
the average values of Z, W, SW, and their standard deviations for the whole column,
for the region above the separation level, and for the region below the separation level.
The resulting 19 parameters were used as potential classifiers of rain type and were
provided as features for machine learning classification models.

3.4 Weather types

Two classifications of weather types were used in this work. Both classifications are
performed and provided on a daily basis by the DWD. The Hess and Brezowsky
classification includes 30 patterns. Each pattern is based on air mass movement and the
direction of rotation around centers of actions. They can be grouped further into five
main flow directions (see Table 3.1).

The objective weather type classification is based on the output of a numerical
weather analysis and forecast system run by the DWD (currently the operational global
model extended or GME). Each day is classified to one out of 40 possible classes of
weather types. Each class is a combination of a wind index, a cyclonality index, and
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Table 3.1: Summary of the Hess and Brezowsky classification of weather types (C.E.:
Central Europe)

Flow Direction GWL
WA Anticyclonic Westerly WS South-Shifted WesterlyW:

Westerly WZ Cyclonic Westerly WW Maritime Westerly

SWA
Anticyclonic

Southwesterly
SZ Cyclonic Southerly

SA Anticyclonic Southerly TB
Low over the British

Isles

SEA
Anticyclonic

Southeasterly
TRW

Trough over Western
Europe

S:
Southerly

SWZ Cyclonic Southwesterly SEZ Cyclonic Southeasterly

NWA
Anticyclonic

Northwesterly
NWZ Cyclonic Northwesterly

NA Anticyclonic Northerly NZ Cyclonic Northerly

HNA
Icelandic High, Ridge

C.E.
HNZ

Icelandic High, Trough
C.E.

NW–N:
Northwesterly, Northerly

HB
High over the British

Isles
TRM Trough over C.E.

HM High over C.E. BM Ridge across C.E.CE:
No specific prevailing direction TM Low (Cut-Off) over C.E.

NEA Anticyclonic Northeasterly NEZ Cyclonic Northeasterly

HFA
Scandinavian High, Ridge

C.E.
HFZ

Scandinavian High,
Trough C.E.NE–E:

Northeasterly, Easterly
HNFA

High
Scandinavia-Iceland, Ridge C.E.

HNFZ
High

Scandinavia-Iceland, Trough C.E.
- U Transitional

humidity index. We only focused on the wind index which takes one of five values: no
prevailing direction (XX), northeasterly (NE), southeasterly (SE), southwesterly (SW),
and northwesterly (NW).

3.5 Machine learning predictive models

3.5.1 Overview

Machine learning predictive models have been used in this work to classify rain type
into convective and stratiform based on disdrometer data or MRR data. The whole
process can be summarized by the flow chart in Figure 3.2.

3.5.2 Selecting Features

It is possible to build machine learning predictive models with many features. However,
a high number of features comes with high computational costs. Additionally, the
model performance might be influenced by the existence of non-informative parameters
(Kuhn and Johnson, 2016). This is why it is a common practice to reduce the number of
features for such models. In this work, feature selection was performed in two ways, in
a heuristic approach, and by forward stepwise selection.
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3.5 Machine learning predictive models

Figure 3.2: A summary of the machine learning model building process

In the heuristic approach, features were clustered based on their correlation coefficients.
Out of each group of highly correlated features, one feature was selected based on the
value of AUC (the area under the receiver operating characteristic curve), which is a
performance measure for each feature when used as a classifier of rain type.

The forward stepwise procedure starts with building predictive models (random
forest in this case). Each model uses only one feature out of the available features for
classification. The model which achieves the best performance indicates the first feature
to be selected. The process is repeated by adding one feature at a time to the model
which has been produced in the previous step, and again the added feature is chosen
which provides the greatest increase to the performance indicators.
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3.5.3 Stratified sampling

Stratified sampling was used to produce a balanced distribution of convective and
stratiform rain intervals in the subsets which were used to train and test the classification
models. In other words, the proportion of convective rain needs to be the same in the
subsets and in the original whole dataset. In most cases the dataset was split into 70%
training and 30% testing subsets. The sampling was repeated several hundred times to
demonstrate the stability of the results.

3.5.4 Choice of machine learning models

Only five simple machine learning methods were used for the classification of rain
types. These methods require no or a minimum amount of adjustment for the hyper
parameters. The chosen methods were Linear Discriminate Analysis (LDA), K nearest
neighbor (KNN), Naïve Bayes (NB), the Conditional Trees (Ctree), and Random Forests
(RF).

3.6 Retrieval of R-Z parameters

3.6.1 The traditional retrieval procedure

The radar reflectivity Z is assumed to be related to rain intensity R by the power low:

Z = A× Rb (3.15)

In this equation, Z is expressed in mm6m−3. By taking the log10 and multiplying by 10:

10× log10(Z) = 10× log10(A) + 10× b× log10(R) (3.16)

And based on Equation 3.3:

dBZ = 10× log10(A) + 10× b× log10(R) (3.17)

a linear model is fitted to the values of dBZ and log R which are calculated from the
rain DSD. The linear model has the equation:

dBZ = intercept + slope× log10(R) (3.18)

by linking equations 3.17 and 3.18:

slope = 10× b⇒ b = slope÷ 10 (3.19)

10× log10(A) = intercept⇒ A = 10intercept÷10 (3.20)
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3.6.2 The modified retrieval procedure

The traditional procedure is commonly used to retrieve the values of A and b. However,
the linear model in this case is fitted to minimize the errors on the vertical axis which is
dBZ. A more appropriate approach is assuming R as the dependent variable (Jaffrain
and Berne, 2012):

R = (1÷ A)1÷b × Z1÷b (3.21)

By taking the log10 of both sides:

log10(R) = (1÷ b)× log10(Z)− (1÷ b)× log10(A) (3.22)

log10(R) = dBZ÷ (10× b)− log10(A)÷ b (3.23)

The linear model assuming R as the dependent variable:

log10(R) = intercept + slope× dBZ (3.24)

by linking equations 3.23 and 3.24 :

b = 1÷ (10× slope) (3.25)

A = 10(−b×intercept) (3.26)

3.7 Measures of performance

The assessment of predictive models was based on performance indicators for two cases.

3.7.1 Performance indicators for classification models

When classifying rain into convective and stratiform, it is important to consider the
imbalance between the two classes. Since almost 90% of rain intervals are stratiform,
classification procedures could produce high accuracy simply by assigning all intervals
to stratiform. Thus, it was important to include beside accuracy additional performance
indicators such as the F-measure that focus on the model ability to correctly identify
the least occurring rain type. Both the accuracy and the F-measure are based on the
classification contingency (Table 3.2).

The accuracy is the percentage of correctly classified intervals out of the total number
of intervals:

accuracy = (TP + TN)÷ (TP + FP + FN + TN) (3.27)
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Table 3.2: Rain type classification contingency table

Model prediction of Rain Type Observed Rain Type (pre-classification)

Convective Stratiform

Convective True Positive (TP) False Positive (FP)

Stratiform False Negative (FN) True Negative (TN)

The F-measure is the harmonic average between the recall and the precision (Chinchor,
1992):

F−measure = (2× Recall × Precesion)÷ (Recall + Precesion) (3.28)

where recall is the number of correctly identified convective rain intervals divided by
the total number of actual convective rain intervals:

Recall = TP÷ (TP + FN) (3.29)

Precision is the number of correctly identified convective rain intervals divided by the
total number of convective rain intervals as predicted by the model:

Precision = TP÷ (TP + FP) (3.30)

3.7.2 Performance indicators for regression models

The mean absolute error (MAE) of the rain intensity (R) estimations of each model was
used as recommended by Willmott and Matsuura (2005). The R value based on Equation
3.1 is considered to be the accurate observed rain intensity, while the model outputs of
R based on Z (as in equations 3.15 and 3.21) was considered to be the prediction. MAE
is given as

MAE = n−1
n

∑
i=1
|ei| (3.31)

n is the number of observations,
ei is the model prediction error:

ei = Vmi −Voi (3.32)

Vmi is the model prediction value.
Voi is the observed value.
i is the observation index.

22



3.8 Software used

The relative error was also used to assess the overestimation (or underestimation) of
the total rain amount by both models for the entire dataset, as well as for each GWL-rain
type combination:

RE = ∑(ei)÷∑(Voi) (3.33)

3.8 Software used

For data handling, statistical analysis and visual representation of the results, R (R
Core Team, 2019) and RStudio (RStudio Team, 2018) were used, in addition to the
packages ggplot2 (Wickham, 2016), caret (Kuhn et al., 2018), e1071 (Meyer et al., 2018),
MASS (Venables and D., 2002), doSNOW (Microsoft Corporation and Weston, 2017),
zoo (Zeileis and Grothendieck, 2005), maptools (Bivand and Lewin-Koh, 2018), reshape2
(Wickham, 2007), dplyr (Wickham et al., 2018), lubridate (Grolemund and Wickham,
2011), IMProToo (Maahn and Kollias, 2012), and pROC (Robin et al., 2011).
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A summary of the results and details on the contributions are provided in the following
pages. In the contributions, authors are abbreviated with their initials, for example, Wael
Ghada as W.G. The five papers are attached to the end of the dissertation.
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4.1 Precipitation Diurnal Cycle in Germany Linked to
Large-Scale Weather Circulations

Ghada, W.; Yuan, Y.; Wastl, C.; Estrella, N.; Menzel, A.; Precipitation Diurnal Cycle in
Germany Linked to Large-Scale Weather Circulations. Atmosphere 2019, 10, 545.

Abstract

The precipitation diurnal cycle (PDC) varies with the season and location. Its link to
large-scale weather circulations has been studied in different regions. However, compara-
ble information is lacking for Central Europe. Two decades of hourly precipitation data
were combined with records of objective weather patterns over Germany, focusing on the
general atmospheric wind directions (WD). The PDC is characterized by the frequency
and the average amount of hourly precipitation. The precipitation frequency generally
has two peaks: one in the morning and the other in the afternoon. The morning peak of
the precipitation amount is small compared to that of the afternoon peak. Remarkably,
WD has a prominent influence on the PDC. Days with southwesterly WD have a high
afternoon peak and a lower morning peak, while days with northwesterly WD have a
high morning peak and a lower afternoon peak. Furthermore, the seasonal variations
of PDC are dominated by the seasonal frequency of WD classes. This study presents a
general overview of the PDC in Germany with regard to its variation with seasonality,
geographical location, elevation, and WD.

Contributions

W.G., N.E., and A.M. conceptualized the research idea. W.G. and Y.Y. processed
the data. W.G. wrote the original draft. W.G. and C.W. interpreted the results. A.M.
supervised the work. All coauthors contributed to reviewing and editing.
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4 Publications: Summaries and contributions

4.2 Machine Learning Approach to Classify Rain Type Based
on Thies Disdrometers and Cloud Observations

Ghada, W.; Estrella, N.; Menzel, A. Machine Learning Approach to Classify Rain Type
Based on Thies Disdrometers and Cloud Observations. Atmosphere 2019, 10, 251.

Abstract

Rain microstructure parameters assessed by disdrometers are commonly used to
classify rain into convective and stratiform. However, different types of disdrometer
result in different values for these parameters. This in turn potentially deteriorates
the quality of rain type classifications. Thies disdrometer measurements at two sites
in Bavaria in southern Germany were combined with cloud observations to construct
a set of clear convective and stratiform intervals. This reference dataset was used to
study the performance of classification methods from the literature based on the rain
microstructure. We also explored the possibility of improving the performance of these
methods by tuning the decision boundary. We further identified highly discriminant
rain microstructure parameters and used these parameters in five machine-learning
classification models. Our results confirm the potential of achieving high classification
performance by applying the concepts of machine learning compared to already available
methods. Machine-learning classification methods provide a concrete and flexible
procedure that is applicable regardless of the geographical location or the device.
The suggested procedure for classifying rain types is recommended prior to studying
rain microstructure variability or any attempts at improving radar estimations of rain
intensity.

Contributions

W.G. and A.M. conceptualized the research idea. W.G. processed the data and wrote
the original draft. A.M. supervised the work. All coauthors contributed to reviewing
and editing.
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4.3 Stratiform and convective rain classification using
machine-learning models and Micro Rain Radar and
PARSIVEL disdrometer data

Ghada, W.; Casellas, E.; Bech, J.; Estrella, N.; Menzel, A.; “Stratiform and convective
rain classification using machine-learning models and Micro Rain Radar and PARSIVEL
disdrometer data”. (under review) Remote Sensing of Environment.

Abstract

Rain type classification is an essential step required to improve quantitative rain
estimations by remote sensing instruments. It is also necessary to thoroughly understand
the mechanisms behind the observed rain microstructure. However, classification
procedures depend on the available rain observation instruments. A total of 20,979
min of rain data measured by a collocated PARSIVEL disdrometer and Micro Rain
Radar (MRR) at Das in Northeast Spain were used to build and compare five types
of machine-learning models for stratiform and convective rain type classification. The
feature selection process based on the PARSIVEL parameters yielded similar results to
that of a previous study in Bavaria in Southeast Germany using Thies disdrometers. The
random forest model performed better than the remaining machine-learning models
for both the MRR parameters and the PARSIVEL parameters. Models using PARSIVEL
parameters achieved better results than those using MRR parameters when compared
to previous simpler schemes of rain type classification. Several mixed rain events were
used to assess the agreement between the models based on the two instruments. While
only four parameters were sufficient in the case of PARSIVEL, six parameters were
needed in the case of MRR to reach a reasonable model performance.

Contributions

W.G. and J.B. conceptualized the research idea. W.G. and E.C. processed the data. W.G.
wrote the original draft. J.B. and A.M. supervised the work. All coauthors contributed
to reviewing and editing.
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4 Publications: Summaries and contributions

4.4 Rain Microstructure Parameters Vary with Large-Scale
Weather Conditions in Lausanne, Switzerland

Ghada, W.; Buras, A.; Lüpke, M.; Schunk, C.; Menzel, A.; Rain Microstructure Parameters
Vary with Large-Scale Weather Conditions in Lausanne, Switzerland. Remote Sensing.
2018, 10, 811.

Abstract

Rain properties vary spatially and temporally for several reasons. In particular,
rain types (convective and stratiform) affect the rain drop size distribution (DSD). It
has also been established that local weather conditions are influenced by large-scale
circulations. However, the effect of these circulations on rain microstructures has not
been sufficiently addressed. Based on DSD measurements from 16 disdrometers located
in Lausanne, Switzerland, we present evidence that rain DSD differs among general
weather patterns (GWLs). GWLs were successfully linked to significant variations in the
rain microstructure characterized by the most important rain properties: rain intensity
(R), mass weighted rain drop diameter (Dm), and rain drop concentration (N), as well
as Z = ARb parameters. Our results highlight the potential to improve radar-based
estimations of rain intensity, which is crucial for several hydrological and environmental
applications.

Contributions

W.G. and A.M. conceptualized the research idea. W.G. processed the data. A.B. and
M.L. supported the data processing. W.G. wrote the original draft. A.M. supervised the
work. All coauthors contributed to reviewing and editing.
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4.5 Weather Types Affect Rain Microstructure: Implications for
Quantitative Precipitation Estimates

Ghada, W; Bech, J.; Estrella, N.; Hamann, A.; Menzel, A.; Weather Types Affect Rain
Microstructure: Implications for Quantitative Precipitation Estimates. (submitted to
Remote Sensing)

Abstract

Quantitative precipitation estimation (QPE) through remote sensing has to take rain
microstructure into consideration, because it influences the relationship between radar
reflectivity Z and rain intensity R. For this reason, separate equations are used to esti-
mate rain intensity of convective and stratiform rain types. Here, we investigate whether
incorporating synoptic scale meteorology could yield further QPE improvements. De-
pending on large-scale weather types, variability in cloud condensation nuclei and the
humidity content may lead to variation in rain microstructure. In a case study for
Bavaria, we measured rain microstructure at ten locations with laser-based disdrometers,
covering a combined 18,600 hours of rain in a period of 36 months. Rain was classified
on a temporal scale of one minute into convective and stratiform based on a machine
learning model. Large-scale wind direction classes were on a daily scale to represent the
synoptic weather types. Significant variations in rain microstructure parameters were
evident not only for rain types, but also for wind direction classes. The main contrast
was observed between westerly and easterly circulations, with the latter characterized by
smaller average size of drops and a higher average concentration. This led to substantial
variation in the parameters of the radar rain intensity retrieval equation Z-R. The effect of
wind direction on Z-R parameters was more pronounced for stratiform than convective
rain types. We conclude that building separate Z-R retrieval equations for regional wind
direction classes should improve radar-based QPE, especially for stratiform rain events.

Contributions

W.G. and A.M. conceptualized the research idea. W.G. processed the data and wrote
the original draft. All coauthors contributed to reviewing and editing.
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5 Discussion

This chapter discusses the major outcomes of the five papers. The questions stated in the
introduction are addressed with respect to relevant and recent literature. Additionally,
suggestions for potential future research are provided.

5.1 Precipitation diurnal cycle (PDC) in Germany

Hourly precipitation over Germany has a diurnal cycle characterized by two peaks
in precipitation occurrence and amount. Those peaks happen near dawn (hereafter
morning peak) and in the late afternoon (afternoon peak). They have similar magnitudes
when it comes to precipitation frequency. However, the afternoon peak has a larger
magnitude when it comes to precipitation amount.

The most remarkable finding of this particular study is the strong variation in PDC
under the influence of weather types. This variation is clearly visible in the two most
occurring weather types, namely SW and NW. In the case of SW, the morning peak of
both precipitation frequency and amount is always smaller than the afternoon peak.
The exact opposite is evident in the case of NW, for which the morning peak is larger
than the afternoon peak. This finding is consistent regardless of the season and location
over Germany.

Two major processes contribute to the observed PDC, radiative cooling and convection.
Both processes are influenced by the energy content of moving air parcels. This energy
content is in turn dependent on the flow direction, especially NW (SW) circulation is
mostly influenced by the cold (warm) polar (subtropical) jet stream.

Radiative cooling is active in stratiform clouds over night when condensation initiates
and intensifies as temperatures drop. This intensification continues until dawn when the
solar energy suppresses it. The whole process intensifies in the case of NW circulations
when the incoming air parcels are cold. In contrast, when the incoming air parcels
are warm in the case of SW, the radiative cooling is not as efficient. The morning
precipitation peak was reported and discussed for locations in Asia (Li et al., 2008; Oki
and Musiake, 1994), North America (Landin and Bosart, 1989), and Europe (Jeong et al.,
2011; Twardosz, 2007; Svensson and Jakob, 2002) with focus on the seasonal and spatial
variations. Some studies attribute the morning peak to convection in areas adjacent to
water bodies (Zheng et al., 2019; Mori et al., 2004; Chen et al., 2016b) or topography
(Kubota and Nitta, 2001). Such processes cannot be the main reason for the morning
peak over Germany. A similar conclusion has been reported for Austria (Yaqub et al.,
2011). This suggests that stratiform precipitation and radiative cooling play the decisive
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role in the observed morning peak.
Convection requires sufficient energy input to heat air parcels forcing them to ascend.

This happens during the day when energy accumulates as long as the incoming solar
radiation is larger than the outgoing longwave radiation, which explains the afternoon
peak. Convection is intensified in the case of SW and suppressed in the case on NW
because of the energy content of air parcels carried along these circulations. Addition-
ally, cloud formation during the night by radiative cooling blocks solar energy in the
beginning of the day which further suppresses convection (Xiao et al., 2018). Such
influence might happen more often in NW circulations compared to SW.

The importance of weather circulations in controlling the PDC over Germany was
addressed for the first time in this study. However, and despite the fact that no
discrimination between convective and stratiform precipitation was performed, the
observations suggest a strong influence of the different formation processes associated
with both types. This also makes it crucial to classify rain into convective and stratiform
prior to addressing the rain microstructure.

5.2 Classification of rain type into convective and stratiform

Classifying rain into convective and stratiform based on the microstructure needs to
be adjusted for the variations that originate from using different measuring devices,
and the different regions. For example, Bringi et al. (Bringi et al., 2009) used the
normalized intercept parameter (NW) and the median volume diameter (D0) to classify
rain measured with a Joss disdrometer at Darwin, Australia. You et al. (You et al., 2016)
adjusted the separation scheme of Bringi et al. (Bringi et al., 2009) to be suitable for
PARSIVEL disdrometer in Korea.

With a few exceptions only, these simple dual classification schemes were designed
based on a limited number of events. A separation line was chosen to separate the con-
vective and stratiform regions somehow subjectively. Using a clear pre-classified dataset,
and a linear discriminant model, the performance indicators of available classification
schemes can be improved significantly. Out of the available simple dual parameters
classification schemes, the method of Bringi et al. (Bringi et al., 2009) achieved the
highest performance compared to the other simple classification schemes. The Bringi
method performed again best when using the linear discriminant model, which implies
the importance of the two parameters Nw and D0.

Only in one other case, four parameters were used to classify rain using the naïve
bays approach (Bukovčić et al., 2015). This model clearly gave a better classification in
comparison to all the other simple classification schemes. This was an indicator for the
potential of using machine learning predictive models to classify rain.

The top rain type classifiers in each of the two disdrometers were:

• For Thies: sd_N_10, sd_D0_10, sd_log10R_10, R.

• For PARSIVEL: R, sd_log10R_10, sd_Dm_10, sd_N_10.
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Apart from the order of the selected parameters, the only difference in the case of
PARSIVEL was choosing sd_Dm_10 instead of sd_D0_10. This difference is negligible,
especially because both parameters are highly correlated representations of the drop
size variation. Despite the consistency in feature selection for two different types of
disdrometers in two locations, this selection should not be taken for granted, especially
because it may highly depend on the pre-classification dataset. It might be appropriate
to use the same features to classify rain using the same device type for nearby locations.
However, a better practice would be to identify for each case the list of appropriate
classification parameters based on carefully selected pre-classified dataset, at least
until further research confirms the suitability and performance stability of the listed
parameters in other locations.

To classify rain based on MRR records, a common step would be to detect the bright
band as the echo of the melting layer which is in turn a strong indicator of stratiform
rain (White et al., 2003; Sarkar et al., 2015). A peak in Z value is not the only indicator for
the bright band, but spectral width (Cifelli et al., 2000) and Doppler velocity (Massmann
et al., 2017; Gil-de Vergara et al., 2018) can be used to detect it. However, this detection
should not be the sole criteria for classifying rain type. The classification in such cases
is based on the records in one interval (one minute in this case). This might produce
variations in the melting layer elevation in the adjacent intervals, which in turn allows
for subjective interpretation. For our work, the detection of bright band is replaced by
determination of a separation level (SL). This level is always available regardless of rain
type and represents the level where Doppler velocity increases the most. This separation
level was the key factor in generating 18 other parameters which represented the input
for the machine learning classification models. The list of the best six MRR parameters
to be used as classifiers include SW_upper, Z_lower, W_lower, SL, sd_Z, W_upper. No
comparable method could be found in the literature to be discussed here. However the
classification performance using these parameters in a random forest model was very
similar to the performance of the best classification model using disdrometer output.

The three machine learning models proposed in this work can be easily deployed
at the operational level. Each model needs to be trained once using a well-selected
pre-classified dataset. The progress in machine learning makes it very realistic to classify
rain using other remote sensors with a very high classification quality, especially by
applying image recognition techniques.

5.3 Rain microstructure

5.3.1 Rain DSD variation

This work highlighted the difference in rain microstructure between stratiform rain and
convective rain for two locations in Central Europe. Generally speaking, convective
rain has larger drops, more drops per cubic meter and higher intensities compared to
stratiform rain. The key finding in this work is that WTs have consistent patterns of
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rain microstructure for stratiform rain. These different patterns can be explained by the
variation of available humidity and condensation nuclei in the advecting air in different
WTs. However, in the case of convective rain, those patterns do not apply, which implies
the larger influence of local meteorological conditions during convective rain events.

Southwestern circulations were associated with a high average rain intensity, a high
average drop size and low average drop concentration. Eastern and northeastern
circulations had low rain intensities, small drop size, and a low drop concentration.
This contrast was evident at both locations in Bavaria and Lausanne. Similar contrasts
between southwesterly and northeasterly flows were reported in the Cévennes-Vivarais
region, France. (Hachani et al., 2017). Also for the Iberian Peninsula, western and
southwestern flows with air masses carrying humidity from the Atlantic cause rain
events with large drops, while northern flows tend to have small rain drops (Fernandez-
Raga et al., 2017).

To explain the contrast in rain microstructure among WTs, especially in drop size
and drop concentrations, we need to consider the variation in humidity and cloud
condensation nuclei (CCN) with flow direction. Westerly circulations in Central Europe
represent the major carrier of moisture which comes mainly from the Atlantic, in contrast
to the easterly circulations which are mainly of a continental dry origin (Van der Ent
et al., 2010). On the other hand, anthropogenic activities play a decisive role in the
variation of CCN. CCN availability is influenced by aerosols (Lohmann and Feichter,
2005), and especially in stratiform rain, drop concentration is significantly higher in
cases of polluted events (Zhang et al., 2019; Cecchini et al., 2014). High concentrations
of aerosols were reported at Melpitz, Saxonia, Germany for flows which pass over
Russia, Central Europe and Eastern Europe (Birmili et al., 2001). High particle number
concentrations in Lithuania were associated with flows over heavily industrialized areas
in Germany, the Czech Republic, and Poland (Byčenkienė et al., 2014).

In westerly and southwesterly flows, the smaller CCN numbers do not allow a high
drop concentration. However, the high water content in the clouds favor drops to grow
in size. In easterly flows, lower humidity makes the growth of drop sizes more difficult.
Additionally, the higher abundance of CCN means that the available water content is
distributed over a larger number of drops.

There is a complex interaction between rain formation processes and the available
energy, water content and CCN. Additionally, drops may undergo many other processes
which influence the microstructure as measured on the ground, such as drop breakup,
evaporation, and collision-coalescence. However, the provided explanation is a simple
overview of observed influence of WTs over rain microstructure in Central Europe.
These important findings are summarized in Table 1.

5.3.2 Optimizing retrieval algorithms for rain intensity

The parameters of rain intensity retrieval algorithm by radars Z=ARb depend on the
variability of rain DSD (Uijlenhoet and Pomeroy, 2001; Lee and Zawadzki, 2005). This in
turn means that A and b values vary with rain type, geographical location and season
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Table 5.1: Summary of the influence of WT on precipitation properties

Flow direction Drivers Observed impacts on rain properties

E High CCN
Higher drop concentration
Smaller drops

S Warm air parcels
Intensified convection, stronger afternoon peak
Suppressed radiative cooling, smaller morning peak

W High humidity
Higher rain intensities
Larger drops

N Cold air parcels
Intensified radiative cooling, stronger morning peak
Suppressed convection, smaller afternoon peak

(Jaffrain and Berne, 2012). We hypothesized in this work, because of the associated
variability in DSD, that A and b values differ between flow directions. The variation
in A and b values across rainfall regimes has been addressed only scarcely so far. For
example, distinct A and b values were found for the periods before, during and after
the monsoon season for the south China sea (Zeng et al., 2019). The variation in Z-R
relation parameters with WTs was also demonstrated for Cévennes-Vivarais, France.
(Hachani et al., 2017).

In this work, and following the classical procedure (see section 3.6.1.) A and b values
were obtained for Lausanne Switzerland with significant variation between WTs. This
variability was evident in both rain types. The variability of A and b values with WTs
exceeded the spatial variability which was reported previously for the same dataset
(Jaffrain and Berne, 2012). This is an indicator of the potential improvement in retrieving
R associated with considering separate equations for each WT. The improvement was
particularly high within some WTs, especially the most frequent. Only in one other
study in central Europe that Z-R relations were found to vary with WTs (Hachani et al.,
2017), however the combined effect of WTs and rain type was not addressed.

Similar conclusions were reached when using the classical and the modified retrieval
procedure for A and b for the ten locations in Bavaria (see section 3.6.2.). A and b values
which are acquired for each flow direction separately varied substantially. This variation
exceeds A and b spatial variation within the addressed regional scale in the case of
stratiform rain, and at least is similar to the spatial variation in the case of convective
rain. Jaffrain and Berne (Jaffrain and Berne, 2012) quantified an error range in the rain
measurement between −2% and +15% based on the subgrid (less than 1 km2) spatial
variability of rain microstructure. Generally, the spatial variability of rain microstructure
is expected to be higher for the addressed regional scale in Bavaria (more than 30,000
km2). Consequently, the potential for a large improvement in rain estimation when
accounting for rain microstructure variability with WD is expected to be high.

The results of both papers must be considered as an indicator for the potential
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improvement when considering WTs. A more precise estimation of this needs to be
based on actual Z values taken from radar measurements. Only in this case it would be
possible to provide a plausible judgement on the practical use of WT-specific R retrieval
algorithms. This issue has not been addressed in this work. However, it is the next
logical step to take.
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6 Conclusions

Precipitation properties vary under the influence of WTs. This variation manifests itself
in the precipitation diurnal cycle, the frequency of convective and stratiform rain, and
the rain microstructure.

Convection is intensified, and radiative cooling is suppressed in the case of southerly
flows, but suppressed, intensified in the northerly flows, respectively. This influences
the precipitation diurnal cycle by strengthening (weakening) the afternoon peak in
comparison with the morning peak.

WTs associated with southerly flows have higher proportions of convective rain in
comparison to northerly flows. The imbalance in convection frequency among WTs, if
not considered, may influence the detected variations in rain properties. Consequently,
it is essential to address the quality of the available rain type classification methods.

Simple dual parameter classification methods, which use rain microstructure param-
eters can be improved simply by an objective specification of the decision boundary.
However, machine learning models, specifically random forests, provide much higher
classification performance. This high performance is achieved regardless of the involved
measuring instrument (Thies disdrometer, PARSIVEL disdrometer, or MRR). The choice
of best rain microstructure parameters to be used as classifiers is suggested to be spatially
stable (Bavaria and northeastern Spain).

In stratiform rain, westerly and southwesterly flows are characterized by high rain
intensities and large drops on average because they represent the main direction of
humidity transport from the Atlantic and the Mediterranean to Central Europe. Easterly
flows have low rain intensities, small drops and high drop concentrations. This is
because the easterly flows are typically dry with high aerosol concentrations which act
as cloud condensation nuclei. Rain microstructure varies also for the case of convective
rain. However, this variation has a different pattern in comparison with stratiform rain,
and it is not spatially consistent which might indicate a higher influence of local weather
conditions.

The parameters in the rain intensity retrieval equation vary between WTs for both
rain types. This variation leads to improvements in rain retrieval performance at least
for the most frequent WTs. A plausible judgement on the practical use of WT-specific R
retrieval algorithms requires actual radar measurements to be used.

Understanding the influence of WTs on the precipitation diurnal cycle aids in the
development of numerical weather models, particularly because the accuracy of a climate
model on a daily scale reflects its quality in properly representing the physical processes
or in parameterizing them. Additionally, the rain microstructure variation with the
large-scale wind direction can be further utilized to investigate the variation in rain
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kinetic energy and its influence on soil erosion. Moreover, the potential improvement
of the rain retrieval algorithms is of great interest for hydrological and environmental
applications.
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7 Outlook

Future research may address the following points:

• Precipitation properties associated with advection of cold fronts and warm fronts
may carry further insight into the combined effect of precipitation type and WTs.
The formation processes controlling the potential variation between cold and warm
fronts could be investigated to enrich the knowledge regarding the development
of rain microstructure, and consequently the QPE by remote sensing.

• Heavy and extreme rain events are of special interest for flood studies. Inves-
tigating the PDC of such events might reveal different patterns opposed to the
ones shown in this work. WTs might be associated with distinct probabilities of
heavy-short rain events, and events with long durations.

• Additionally, heavy and extreme rain microstructure for each WT, and the spa-
tial and temporal variation of rain properties in such events require long-term
measurements using a dense network of devices. Such a dataset is not yet available.

• Machine learning and artificial intelligence are promising tools in the field of
meteorology. Rain type classification used in this thesis is one of the simplest
successful examples. Image recognition technique might be especially suitable for
radar and satellite outputs.

• Mostly, this work focused on the aspect of flow direction of WTs. However, WTs
carry further information such as the cyclonality index and humidity index in the
case of the objective weather type classification. These indices could have further
influence on rain microstructure and the QPE.

• Previous studies have already investigated the influence of climate change on
convective rainfall. Other studies tried to identify trends in the frequency of WTs
and in meteorological characteristics within each WT. Consideration of trends in
frequency and rain properties within each combination of weather type and rain
type remains to be clarified.
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Abstract 14 

Rain type classification is an essential step required to improve quantitative rain estimations by remote 15 

sensing instruments. It is also necessary to thoroughly understand the mechanisms behind the observed 16 

rain microstructure. However, classification procedures depend on the available rain observation 17 

instruments. A total of 20,979 min of rain data measured by a collocated PARSIVEL disdrometer and Micro 18 

Rain Radar (MRR) at Das in Northeast Spain were used to build and compare five types of machine-learning 19 

models for stratiform and convective rain type classification. The feature selection process based on the 20 

PARSIVEL parameters yielded similar results to that of a previous study in Bavaria in Southeast Germany 21 

using Thies disdrometers. The random forest model performed better than the remaining machine-22 
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learning models for both the MRR parameters and the PARSIVEL parameters. Models using PARSIVEL 23 

parameters achieved better results than those using MRR parameters when compared to previous simpler 24 

schemes of rain type classification. Several mixed rain events were used to assess the agreement between 25 

the models based on the two instruments. While only four parameters were sufficient in the case of 26 

PARSIVEL, six parameters were needed in the case of MRR to reach a reasonable model performance. 27 

Keywords: Micro Rain Radar; MRR; PARSIVEL; disdrometer; convective; stratiform; rain microstructure; 28 

classification; machine learning; random forest. 29 

 30 

Highlights 31 

 Four disdrometer parameters are enough to classify rain type using random forest. 32 

 The chosen parameters are identical for different disdrometer types and locations. 33 

 Six Micro Rain Radar parameters are needed to reach a comparable performance. 34 

 The disdrometer and Micro Rain Radar models agreed for 87% of the test dataset. 35 

 36 

1 Introduction 37 

Convective and stratiform rain formations result in different rain microstructures. This has been observed 38 

in different climatological regions (Dolan et al., 2018); however, the proportions of convective and 39 

stratiform rain depend on the season (Sreekanth et al., 2019; Wen et al., 2019) and the geographical 40 

location (Dai, 2001). Temporal changes in these proportions have recently been linked to global warming 41 

(Chernokulsky et al., 2019). Further, it is indispensable to take into account the differences between 42 

convective and stratiform rain when characterizing rain microstructure (Ghada et al., 2018). A better 43 

understanding of rain microstructure is needed for remote sensing data processing to improve 44 
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quantitative rain estimations (Arulraj and Barros, 2019; Kühnlein et al., 2014; Steiner and Houze, 1997; 45 

Thompson et al., 2015) which in turn are needed for water management, hydrology, flash flood warnings, 46 

and (extreme) precipitation forecasting and to improve the representation of precipitation processes in 47 

numerical weather and climate models. 48 

Rain type classification and the quality of the classification depend on the available instruments. Cloud 49 

observations have been used for classification (Berg et al., 2013; Langer and Reimer, 2007), where cumulus 50 

and cumulonimbus (stratus and nimbostratus) are considered to be the sources of convective (stratiform) 51 

rain. Combining rain intensity with rain duration provides another approach to classify rain events (Llasat, 52 

2001). However, different thresholds of and variations in the rain intensity are commonly used and a 53 

variety of precipitation measurement devices can be utilized for this purpose (Bringi et al., 2003; Testud 54 

et al., 2000). Satellite imagery and ground-based weather radar observations have the advantage of wider 55 

spatial coverage and consequently provide alternative methods to classify rain. This includes analyses of 56 

the vertical structure of the radar reflectivity (Z) and the hydrometeor fall speed, horizontal structure, and 57 

variation in Z, as well as the spatial extension of the cloud and the temporal variations in its structure. 58 

Micro Rain Radars (MRRs) provide vertical profiles of several precipitation parameters. MRRs are typically 59 

used to detect the melting layer, which is the atmospheric region where snow and ice particles melt into 60 

liquid raindrops as they fall toward the ground. This region is typically identified in radar observations by 61 

a local increase in the radar reflectivity, and is usually referred to as the bright band (BB). BB detection 62 

supports the classification of rain types because BBs usually appear in stratiform rain (Fabry and Zawadzki, 63 

1995), while turbulence and vertical motions, which are typically present in convective rain, do not allow 64 

BB formation or its clear detection. 65 

Williams et al. (1995) classified precipitation clouds by the existence of a melting layer signature, 66 

turbulence, and hydrometeors above the melting level. They also tested the sensitivity of the melting layer 67 

detection using different thresholds of the Doppler velocity gradients. Later, the vertical air motion 68 
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spectral width was found to be a better indicator than the local peak in Z (Cifelli et al., 2000). Rain events 69 

have also been classified into BB and non-BB depending on the presence of this feature in the precipitation 70 

column (White et al., 2003), which is indicated by a simultaneous decrease in the radar reflectivity and an 71 

increase in the Doppler velocity. However, the local maxima in the reflectivity are potentially affected by 72 

the use of attenuated radar frequencies (such as the K band), which justifies using only the change in the 73 

Doppler velocity as a signal of the BB (Gil-de-Vergara et al., 2018; Massmann et al., 2017). The existence 74 

of the BB has also been proposed as a simple criterion to classify rain into convective and stratiform types 75 

(Sarkar et al., 2015). In other cases, additional conditions have been taken into consideration, such as the 76 

BB sharpness (Cha et al., 2009), the depth of the atmosphere where the hydrometeors exist, and a high 77 

value of the signal-to-noise ratio (Kunhikrishnan et al., 2006), as well as the use of specific thresholds for 78 

the differences between the reflectivity at the BB and the reflectivity above and below it (Thurai et al., 79 

2016). 80 

For more than three decades, disdrometers have been used on the ground to observe the drop size 81 

distributions (DSDs) of rain and to classify rain based on different combinations of their retrieved 82 

parameters. This is possible because different rain microphysical formation processes lead to either 83 

stratiform or convective rain and consequently produce distinct DSDs (Dolan et al., 2018). Different 84 

combinations of rain DSD parameters have been applied as type classifiers (Bringi et al., 2009; Caracciolo 85 

et al., 2006; Caracciolo et al., 2008; Thurai et al., 2016; Tokay and Short, 1996). The majority of 86 

classification methods are based on only two parameters; however, a better classification performance 87 

has been achieved when using naïve Bayes and four parameters (Bukovčić et al., 2015). Other machine-88 

learning models, especially random forest, performed better with four parameters when using Thies 89 

disdrometers in Bavaria (Ghada et al., 2019). 90 

Rain type classification methods for both MRR and disdrometers have been widely reported in the 91 

literature. However, despite their identical goals of differentiating between convective and stratiform rain, 92 
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no systematic comparison of the performances of the two types of methods has yet been provided. When 93 

considering this comparison, it is important to take into account the differences between the instruments 94 

and, therefore, the potential inconsistencies in the measured parameters between MRRs and 95 

disdrometers, for example, during heavy rain conditions (Jash et al., 2019). Major sources of these 96 

inconsistencies are, in addition to the different measuring principles between the two instruments, the 97 

inhomogeneities in the disdrometer laser and the attenuation of the MRR signal. Methods that first 98 

identify the stratiform category and then assign the remainder to convective rain might misclassify 99 

stratiform rain within convective regions (Houze, 1997). In the case of disdrometers, single or dual 100 

separation methods may not be adequate, as discussed by Bukovčić et al. (2015). In addition, the choice 101 

of the best parameters as classifiers and, consequently, the classification performance might be influenced 102 

by the disdrometer type and the geographical location (Ghada et al., 2019). 103 

In this study, we use a collocated MRR and PARSIVEL disdrometer at Das in Northeast Spain to answer the 104 

following questions. 105 

 Which parameters perform best as rain type classifiers for the PARSIVEL disdrometer and the MRR? 106 

 Is there a machine-learning method that is suitable for both instruments? 107 

 Do MRR- and PARSIVEL-based models provide consistent and comparable classification 108 

performances? 109 

In this study, we build two types of machine-learning models, one based on MRR parameters and the other 110 

based on disdrometer parameters. For each type, we provide a list of the best parameters to use as rain 111 

type classifiers. We compare the performances of the best models in both cases. Building such machine-112 

learning models is a practical procedure, assuming that either an MRR or a disdrometer and a pre-classified 113 

dataset for the training phase are available. 114 

 115 
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2 Data and methods 116 

Precipitation was recorded using a PARSIVEL2 disdrometer and an MMR (model MRR-2), both located at 117 

the Das aerodrome at 42.386451° N 1.866562° E, 1100 m above sea level (a.s.l.), and approximately 110 118 

km north of Barcelona in Northeast Spain (Figure 1). The study area is relatively flat and surrounded by 119 

mountain ranges with elevations of up to 2900 m a.s.l.; see Udina et al. (2019) for more details. Previous 120 

disdrometric studies in Barcelona indicated the predominance of convective precipitation in the region 121 

(Cerro et al., 1997; Cerro et al., 1998). The precipitation records used in this study spanned from January 122 

2017 to March 2019 with a temporal resolution of 1 min. Rain events were defined as continuous records 123 

of at least 5 min where the disdrometer detected rain with an intensity greater than 0.1 mm/h. Events 124 

may contain dry periods but not exceeding 15 min; otherwise, a new event was recorded. We excluded 125 

events where no MRR data were available and non-rain events as detected by the disdrometer. The 126 

available dataset contained a total of 293 events spanning over 20,979 min. 127 

  

Figure 1: Measurement location at the Das aerodrome in Northeast Spain. 128 

 129 



7 
 

For data handling, calculations, feature selection, model training, performance estimation, and visual and 130 

statistical results analyses, we used R (R Core Team, 2019), RStudio (RStudio Team, 2018), and the reader 131 

(Cooper, 2017), reshape2 (Wickham, 2007), ggplot2 (Wickham, 2016), caret (Kuhn, 2018), e1071 (Meyer 132 

et al., 2018), zoo (Zeileis and Grothendieck, 2005), MASS (Venables and Ripley, 2002), IMProToo (Maahn 133 

and Kollias, 2012), and pROC (Robin et al., 2011) packages. 134 

 135 

2.1 PARSIVEL2 Disdrometer 136 

Disdrometers detect the number, size, and fall speed of hydrometeors that fall through the layer between 137 

the laser transmitter end and the receiver end of the disdrometer. The size measurement is based on the 138 

reduction of the received signal. The velocity of each particle corresponds to the time needed for the signal 139 

to pass the laser beam and the size of the particle (Löffler-Mang and Joss, 2000). This measurement may 140 

be affected by different sources of errors. Consequently, to correctly identify rain events, a filtering 141 

process is needed to remove high wind speed intervals, snow, hail, frozen rain, graupel, intervals with very 142 

low rain intensity periods, margin fallers, unrealistically large drops, and the splashing effect (Friedrich et 143 

al., 2013). We applied the filtering described by Ghada et al. (2018), which is primarily based on the 144 

procedure developed by Friedrich et al. (2013). 145 

Many parameters can be extracted from measurements of the raindrop size distribution. The PARSIVEL 146 

rain microstructure parameters included in this study are listed in Table 1 with their corresponding 147 

references. 148 

 149 

Table 1: Rain microstructure parameters from the PARSIVEL2 disdrometer. 150 

Abbreviation  Unit Parameter name  

R mm.h−1 Rain intensity (Chen et al., 2016) 
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LWC g.m−3 Liquid water content (Chen et al., 2016) 

Z dBZ Radar reflectivity (Chen et al., 2016) 

KE J.m−2.h−1 Kinetic energy (Jan and Jana, 2018) 

Dm mm Mass weighted diameter (Mizukami et al., 2013) 

D0 mm Median volume diameter (Marzuki et al., 2010) 

sd_D mm Instantaneous standard deviation in the drop size (Niu et al., 

2010) 

sd_V m.h−1 Instantaneous standard deviation in the drop velocity (Niu et al., 

2010) 

Nt drop.m−3 Total number of drops per cubic meter (Chen et al., 2016) 

Log_10_Nt - Log_10_Nt = log10(Nt)  

Nw_Tes mm−1.m−3 Normalized number of drops (Testud et al., 2001) 

Nw_Br mm−1.m−3 Normalized number of drops (Bringi et al., 2009) 

logNw Nw: mm−1.m−3 logNw = log10(NW_Br)  

Lambda_TS mm−1 Slope of the fitted gamma distribution (Tokay and Short, 1996) 

mu_TS - Shape of the fitted gamma distribution (Tokay and Short, 1996) 

N0_TS mm−1−mm−3 Intercept of the fitted gamma distribution (Tokay and Short, 

1996) 

Lambda_Ca06 mm−1 Slope of the fitted gamma distribution (Caracciolo et al., 2006) 

mu_Ca06 - Shape of the fitted gamma distribution (Caracciolo et al., 2006) 

N0_Ca06 mm−1−mm−3 Intercept of the fitted gamma distribution (Caracciolo et al., 

2006) 

A.St - The parameters of Z = A.Rb (Steiner et al., 2004) 

b.St - 

sd_Dm_10 mm 

 

sd_XX_YY: Standard deviations of XX over YY minutes 

(Bukovčić et al., 2015) 

sd_D0_10 mm 

sd_Nt_10 drop.m−3 

sd_log10(Nt)_10 - 

sd_log10(R)_10 - 

 151 
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2.2 MRR 152 

The MRR is a low-cost, K band (24 GHz) FM–CW Doppler radar profiler manufactured by METEK (Löffler-153 

Mang et al., 1999). For the purpose of this study, the MRR was set to provide records with a vertical 154 

resolution from 100 m to 3000 m above ground level (a.g.l.). The data were aggregated in one-minute 155 

intervals and post-processed according to Maahn and Kollias (2012) to provide values of the equivalent 156 

reflectivity, Doppler velocity, and spectral width, as explained by Gonzalez et al. (2019). 157 

Most rain type classification methods that use MRR contain a step detecting the melting layer level as an 158 

important feature for identifying the stratiform rain type. This level is considered to be the one with the 159 

highest increase in the Doppler velocity. However, the existence of vertical air motion and turbulence 160 

associated with convection does not allow a clear melting layer to form in convective rain profiles. In our 161 

approach, we call the level with the highest increase in the Doppler velocity the “separation level (SL)”. 162 

This level was identified for each interval within the range between 500 m and 2900 m. The second step 163 

consisted of moving a five-minute temporal window to detect the average height of SL. Then, within the 164 

same five-minute window, for the area above SL (the upper region), the area below it (the lower region), 165 

and the combination of the two (the entire column), the parameters radar reflectivity (Z), hydrometeor 166 

vertical velocity (W), spectral width (SW), and their standard deviations were calculated. These 18 167 

parameters and the height of SL in meters were used as the MRR parameters to classify the rain. The 168 

motivation behind seeking this separation level and splitting the column of MRR data is based on the 169 

assumption that the two regions have distinct properties in the cases of convective and stratiform rain. 170 

 171 

2.3 Pre-classification 172 

Two steps were used to create the pre-classified dataset. Each interval was classified based on the method 173 

of Bringi et al. (2003) hereafter BR_03. This method takes into account the rain intensity R and its standard 174 
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deviation over 10 min as measured by PARSIVEL. Each event was then visually classified into convective, 175 

stratiform, or mixed based on the values of Z, SW, and W from the MRR (Figure 2). We excluded events 176 

with stratiform rain where the melting layer was captured at the edges of the MRR measuring range 177 

(higher than 2800 m or lower than 500 m a.g.l.). For the interval to be included in the pre-classified dataset, 178 

it had to be either a stratiform interval within a stratiform event or a convective interval within a 179 

convective or mixed event. In other words, stratiform intervals detected within convective or mixed events 180 

were not included in the pre-classified dataset. The dataset after pre-classification contained 169 events 181 

and a total of 10,513 min of data. An additional four mixed events with a total of 494 min of data were 182 

used only to check the classification discrepancies between the final models. 183 

 184 
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Figure 2: Examples of radar reflectivity (Z, in dBZ, top row), hydrometeor vertical velocity (W, in m/s, second row), spectral width 185 

(SW, in m/s, third row), and rainfall rate (R, in mm/h, bottom row) derived from disdrometer records in pre-classified events: a 186 

stratiform event, a convective event, and a mixed event (from left to right). Only stratiform intervals in the stratiform events and 187 

convective intervals in the convective and mixed events were included in the pre-classified set. 188 

 189 

2.4 Machine-learning model selection 190 

A number of supervised machine-learning models are available for rain type classification. Based on a rain 191 

classification study using Thies disdrometer data by Ghada et al. (2019), where random forest proved to 192 

be the best of the tested models for classifying rain type, the random forest method was the only method 193 

used in the feature selection phase (see Section 2.6). 194 
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To achieve results comparable to those of Ghada et al. (2019), we used the same five suggested machine-195 

learning models: linear discriminate analysis (LDA), k-nearest neighbor (KNN), naïve Bayes (NB), 196 

conditional trees (Ctree), and random forest (RF). For each model, 200 repetitions of stratified sampling 197 

were performed. In each repetition, 70% randomly selected intervals of the pre-classified dataset were 198 

used to train the model and the remaining 30% were used to test the performance. 199 

With the aim of a better view of the performance, we trained the RF models using the entire pre-classified 200 

dataset and used the four best disdrometer parameters (PAR_4), the four best MRR parameters (MRR_4), 201 

and the six best MRR parameters (MRR_6). The models were then tested on four mixed events. We also 202 

included a classification method using the two parameters logNw and D0 based on the method of Thurai 203 

et al. (2010)), hereafter TH_10, which is a modified version of the method of Bringi et al. (2009). 204 

 205 

2.5 Indicators of the classification performance 206 

To assess the performance of the rain type classification models, a contingency table (confusion matrix) 207 

was built considering a dichotomous binary classification forecast of the convective and stratiform 208 

intervals and observations, the latter based on the pre-classification described above (Section 2.3). Table 209 

2 contains all four possible cases: true positive (TP), false positive (FP), false negative (FN), and true 210 

negative (TN). 211 

 212 

 213 

Table 2. Rain type classification contingency table. 214 

Prediction of Rain Type Observed Rain Type (according to the pre-classification) 

 Convective Stratiform 

Convective True Positive (TP) False Positive (FP) 
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Stratiform False Negative (FN) True Negative (TN) 

 215 

Two indicators, the accuracy and the F-measure, were used to assess and compare the performances of 216 

the models. The accuracy is easy to interpret as the percentage of correctly classified intervals out of the 217 

total number of intervals in the testing set: 218 

Accuracy =
𝑇P + TN 

TP + FP + FN + TN
.    (1) 219 

However, the accuracy is not sufficient on its own for unbalanced applications. A high accuracy might 220 

equally be achieved when a model classifies the entire testing set as stratiform, which justifies using the 221 

F-measure: 222 

F − measure =
2∗ Recall∗ Precision

Recall+Precision
,   (2) 223 

where the recall is the number of correctly detected convective rain intervals divided by the total number 224 

of actual convective rain intervals (according to the pre-classification): 225 

Recall =
TP

TP+FN
 .     (3) 226 

The precision is the number of correctly detected convective rain intervals divided by the total number of 227 

predicted convective rain intervals: 228 

Precision =
TP

TP+FP
.     (4) 229 

The F-measure is therefore the harmonic average between the recall and the precision (Eq. (2)). It 230 

guarantees a higher score for classification methods that increase both the recall and precision values 231 

compared to those that increase just one of the two values (Chinchor, 1992). 232 

 233 

2.6 Feature selection 234 
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For both the disdrometer and the MRR, several parameters were available to train the machine-learning 235 

models. It is a common practice to choose the smallest number of parameters that can achieve the desired 236 

level of performance. We built RF models for this purpose. Each model was trained on 70% of the pre-237 

classified dataset and tested on the remaining 30%. A total of 50 repetitions of stratified sampling were 238 

used for each model, with the final performance indicator being the average. We used the mean values of 239 

the accuracy and the F-measure as the performance indicators in the feature selection process. 240 

The step-forward selection algorithm was used to identify the best parameters. This algorithm starts with 241 

a model containing no parameters. In each subsequent step, the algorithm finds the parameter from the 242 

available parameter pool that, when added to the model, achieves the greatest increase in the 243 

performance indicator. This parameter is then added to the model and removed from the parameter pool. 244 

This process was repeated until we reached eight parameters. 245 

 246 

3 Results and discussion 247 

The total amount of rain as measured by the disdrometer was 527 mm over the entire 20,979 min. Based 248 

on the simple classification method, BR_03, 2364 of these minutes (11%) were convective and contributed 249 

246 mm (47%) of the rain amount. In comparison to this site in Northeast Spain, the convective rain 250 

duration (amount) proportion was reported to be 11% (40%) in Lausanne, Switzerland (Ghada et al., 2018), 251 

and 6% (55%) in Beijing, Northern China (Ji et al., 2019). These differences can be explained due to the 252 

different geographical locations and the different seasonal extents of the used datasets. A previous study 253 

in the Barcelona region reported that 59% of the annual rainfall amount is of a convective origin (Llasat 254 

and Puigcerver, 1997). However, in a later study covering Catalonia (Northeast Spain), convective rain was 255 

reported to form 35.5% of the total rain amount and 8% of the rain duration (Llasat et al., 2005). 256 

Considering the different methods of classifying rain and the different rain measurement devices, we 257 
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believe that the proportions of the convective rain duration and the rain amount in our study are 258 

reasonable. 259 

After applying the step-forward selection process, the best eight parameters for the MRR models were 260 

SW_upper, Z_lower, W_lower, SL, sd_Z, W_upper, SW_lower, and W. The best eight parameters in the 261 

case of the PARSIVEL models were R, sd_log10_R_10, sd_Dm_10, sd_N_10, sd_log10_N_10, sd_D0_10, 262 

V_avr, and N0.Ca06. We present the first four steps for selecting the MRR features and PARSIVEL features 263 

in Figures 3 and 4, respectively. To improve the readability, instead of showing the full list of 26 PARSIVEL 264 

features, we limited the number of parameters shown in Figures 4 to 8. 265 

 266 

 

Selected features: SW_upper. 

 

Selected features: SW_upper, Z_lower. 

A B 
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Selected features: SW_upper, Z_lower, W_lower. 

 

Selected features: SW_upper, Z_lower, W_lower, SL. 

C D 
Figure 3: Performance as mean values of the accuracy and F-measure for RF model classification using the MRR parameters. 267 

Each panel represents one stage of the step-forward feature selection process. The parameters in each step are ordered by their 268 

performance value. The selected features are reported in the panels up to and including the respective step. 269 

 270 
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Selected features: R. 

 

Selected features: R, sd_log10_R_10. 

A B 

 

Selected features: R, sd_log10_R_10, sd_Dm_10. 

 

 

Selected features: R, sd_log10_R_10, sd_Dm_10, 

sd_N_10. 

C D 
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Figure 4: Performance as mean values of the accuracy and F-measure for RF model classification using the PARSIVEL parameters. 271 

Each panel represents one stage of the step-forward feature selection process. The parameters in each step are ordered by their 272 

performance value. The selected features are reported in the panels up to and including the respective step. We only included the 273 

eight best parameters (out of the 26 available) in each step to improve the readability of the figure. 274 

 275 

Note that the range in the model performance decreased with each step of the feature selection 276 

procedure. This indicates that, after including a certain number of parameters, the improvement achieved 277 

in each additional step became marginal. Remarkably, the four best parameters in the case of the 278 

disdrometer were similar to those reported in Ghada et al. (2019); only sd_Dm_10 was replaced by 279 

sd_D0_10. These two parameters were highly correlated and appeared to have very similar effects on the 280 

performance of the RF model, as shown in Figure 4C. This result, in particular, emphasizes the suitability 281 

of the four disdrometer parameters for classifying the rain type despite the different disdrometer types 282 

and different geographical locations. 283 

When training and testing machine-learning models and increasing the number of parameters, RF models 284 

performed better than the remaining machine-learning models in nearly all cases, followed closely by KNN 285 

models (Figures 5 and 6). The worst performance was achieved by LDA in the case of disdrometer models 286 

and NB in the case of MRR models. The accuracies exceeded 90% even when using only two features in 287 

the case of the disdrometer and three features in the case of the MRR. The F-measure was also high and 288 

reached 90% close to the sixth parameter. The performance improvement was marginal after including 289 

the sixth parameter for both cases. Only in the case of the NB models did the performance drop when 290 

including particular parameters, most likely because NB models assume that the parameters included as 291 

classifiers are independent; however, this assumption is not true for most DSD parameters. 292 
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Figure 5: Performance indicators of the five machine-learning classification methods with different numbers of MRR parameters. 293 

 294 
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b 

Figure 6: Performance indicators of the five machine-learning classification methods with different numbers of PARSIVEL 295 
parameters. 296 

 297 

Of all the models in this comparison, RF proved to be the best choice when including three or more 298 

parameters as predictors. Four parameters were sufficient in the case of PARSIVEL; however, for MRR 299 

models, it was not clear whether a noticeable improvement could be achieved by including more 300 

parameters. To solve this issue, we present a comparison of the PAR_4, MRR_4, MRR_6, TH_10, and BR_03 301 
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models. The Z and W profiles from MRR are presented for the four selected mixed events in Figure 7, and 302 

the associated classification results are presented in Figure 8. The events are chronologically ordered in 303 

the figures from left to right. 304 

 305 

 

Figure 7: Radar reflectivity (Z, in dBZ) and the hydrometeor vertical velocity (W, in m/s) profiles as observed by MRR for a 306 
selection of four mixed events. 307 

 308 
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Figure 8: Classification of four mixed events based on the five different classification models. The color indicates the rain type. 309 

The date of each event is indicated at the top, and the classification method for the rain type is indicated on the right. 310 

 311 

Both the MRR 6 and PARSIVEL 4 models were able to capture the rain intensity peaks where the convective 312 

cells were noticeable while correctly classifying the stratiform phase of the events with only a few 313 

misclassified intervals. MRR 4 misclassified a number of points in the peak of the convective phase for the 314 

two events in September 2018. It also classified a large portion of the last event in March 2019 as 315 

convective, disagreeing with the other models. The TH_10 method gave a correct classification in most 316 
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cases despite its low sensitivity to convection, as seen in the last two events. In addition, it misclassified a 317 

portion of the stratiform intervals in the first event as convective. 318 

The agreement between the five classification methods is also shown in Table 3. The highest agreement 319 

appeared between the PARSIVEL model and the simple classification BR_03. There was also very high 320 

agreement between the TH_10 and PARSIVEL methods. MRR_4 has the lowest agreement with all the 321 

other models except MRR_6. This is to be expected because both models use MRR features, which 322 

designate the column above the ground as predictors; in addition, they shared four of these predictors. 323 

 324 

Table 3: Agreement between the classification methods. The numbers in brackets refer to the absolute number of intervals where 325 
the respective classification methods agree.  326 

 PAR_4 MRR_4 MRR_6 TH_10 BR_03 

PAR_4 100% (494)     

MRR_4 83% (410) 100% (494)    

MRR_6 87% (430) 89% (440) 100% (494)   

TH_10 89% (440) 77% (380) 82% (405) 100% (494)  

BR_03 95% (469) 84% (415) 88% (435) 85% (420) 100% (494) 

 327 

Based on this simple comparison of the model performance at the event level, it appears that using six 328 

parameters gives more stable and reasonable results compared to using four parameters in the case of 329 

MRR. The PAR_4 model appears to be the most reliable with only a few misclassification intervals. A few 330 

discrepancies between the MRR_6 and PAR_4 models are expected, especially when MRR observes 331 

precipitation and turbulence up to 3000 m a.g.l., which might or might not produce a signal detectable by 332 

the disdrometer on the ground. 333 

The advantage of using machine-learning models in comparison to other simple classification methods is 334 

their ability to use the increasing amount of available data and parameters in different forms, especially 335 

given further developments in machine-learning models and computational power. Special attention 336 
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needs to be paid to the selection of the training set and the initial evaluation to achieve a reasonable 337 

classification performance before moving such models to the operational phase. 338 

 339 

4. Conclusions 340 

Rain can be observed by a variety of instruments, which may provide complementary information about 341 

its characteristics and formation processes. We investigated the possibility of classifying rain into 342 

convective and stratiform using two types of instruments, a PARSIVEL disdrometer and an MRR. This led 343 

to the construction of a procedure for each instrument and the identification of the best parameters for 344 

rain type classification. 345 

Classifying rain type using disdrometers gave reasonable results even when the parameters used were 346 

limited to four, namely R, sd_log10_R_10, sd_Dm_10, and d_N_10. These parameters, in particular, have 347 

already been proven to be the best classifiers for rain type in a different location in central Europe using a 348 

different type of disdrometer. 349 

Machine-learning models were also able to classify rain based on the MRR output when including six 350 

parameters in the model: SW_upper, Z_lower, W_lower, SL, sd_Z, and W_upper. 351 

Few discrepancies were observed between the MRR- and PARSIVEL-based classification models. These 352 

differences, however, are expected, especially considering the differences in the measuring principles and 353 

the parameters used in these models. However, the overall classification performance supports the use of 354 

such models in the future. 355 

Further developments in the field of machine learning might provide better models for such classification 356 

problems. For example, it might be possible to use image classification algorithms to provide reliable 357 

performance. 358 
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Abstract:  16 

Quantitative precipitation estimation (QPE) through remote sensing has to take rain microstructure 17 
into consideration, because it influences the relationship between radar reflectivity Z and rain 18 
intensity R. For this reason, separate equations are used to estimate rain intensity of convective and 19 
stratiform rain types. Here, we investigate whether incorporating synoptic scale meteorology could 20 
yield further QPE improvements. Depending on large-scale weather types, variability in cloud 21 
condensation nuclei and the humidity content may lead to variation in rain microstructure. In a case 22 
study for Bavaria, we measured rain microstructure at ten locations with laser-based disdrometers, 23 
covering a combined 18,600 hours of rain in a period of 36 months. Rain was classified on a temporal 24 
scale of one minute into convective and stratiform based on a machine learning model. Large-scale 25 
wind direction classes were on a daily scale to represent the synoptic weather types. Significant 26 
variations in rain microstructure parameters were evident not only for rain types, but also for wind 27 
direction classes. The main contrast was observed between westerly and easterly circulations, with 28 
the latter characterized by smaller average size of drops and a higher average concentration. This 29 
led to substantial variation in the parameters of the radar rain intensity retrieval equation Z-R. The 30 
effect of wind direction on Z-R parameters was more pronounced for stratiform than convective 31 
rain types. We conclude that building separate Z-R retrieval equations for regional wind direction 32 
classes should improve radar-based QPE, especially for stratiform rain events. 33 

Keywords: Thies; disdrometer; weather circulations, convective; stratiform; rain spectra; radar 34 

reflectivity–rain rate relationship  35 
 36 

1. Introduction 37 

Understanding rain microstructure can provide us with an insight of the rain formation 38 
processes behind it. This understanding can be employed in improving quantitative estimation of 39 
rain intensity by remote sensing [1–3]. Furthermore, the parametrization of the microphysical 40 
processes in numerical weather and climate models can be improved [4,5]. The variation in rain 41 
microstructure has been reported on different spatial scales ranging from few meters [6], to few 42 
hundreds of meters [7], to regional [8] and global extents [9,10]. This variation also appears with 43 
seasons [11], rain types [12], and large-scale weather types [13–15].  44 
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A very clear example of the different rain formation processes leading to variations in rain drop 45 
size distribution is the discrepancy between convective and stratiform rain. This has been quantified 46 
in a number of studies [4,12,16,17]. The reason for the difference is the relative importance of cold 47 
and warm rain formation processes [18]. Stratiform rain forms primarily by processes involving ice 48 
crystals and interactions of ice with liquid water, while convective rain formation comprises both 49 
warm and cold processes. Factors and processes that influence the rain drop size distribution as 50 
observed on the ground include rimming and aggregation (above the 0°C isotherm), condensation 51 
(below the 0°C isotherm), collision, coalescence, turbulence, cloud thickness, electric field, 52 
evaporation, and drop fragmentation [19,20]. The difference in rain drop size distribution between 53 
convective rain and stratiform rain has been used for the classification of both rain types on the 54 
ground. Most of these methods use two rain drop size distribution parameters and a linear 55 
discrimination between the regions of rain types [16,21–24]. Recent methods employed machine 56 
learning and reached higher performance levels when using four rain drop size distribution 57 
parameters [25,26].  58 

Large-scale weather types denote atmospheric conditions such as the high and low pressure 59 
distribution, the position and paths of frontal zones, and the existence of cyclonic or anticyclonic 60 
circulation types over a sequence of days [27]. Indirectly, they also influence stream flows [28], floods 61 
[29,30], debris-flow events [31], forest fires [32,33], air quality, and pollen distribution [34–36]. 62 
Weather type classification is an important part of statistical climatology [37,38], because these types 63 
explain many local weather phenomena. Weather types influence local near-surface temperatures 64 
and precipitation [39–43]. They also affect the diurnal cycle of precipitation in terms of frequency and 65 
amount [44–46], and they impact the occurrence and the magnitude of meteorological extreme events 66 
[47–51]. Large-scale weather types may therefore also influence rain microstructure by different rain 67 
formation processes being more prevalent under different synoptic scale conditions.  68 

Quantifying rain microstructure under different large-scale weather types may have practical 69 
applications for radar based estimation of rain intensity. Quantitative precipitation estimation (QPE) 70 
has to take rain microstructure into consideration, because it influences the relationship between 71 
radar reflectivity Z and rain intensity R. For this reason, separate equations are used to estimate rain 72 
intensity of convective and stratiform rain type [8,52], instead of using one equation that fits both rain 73 
types. A similar improvement of the radar estimation of rain might be possible when considering 74 
specific Z-R relation for each weather type case. We previously reported weather type specific Z-R 75 
models with lower errors in estimating rain intensity in Lausanne, Switzerland [15]. However, 76 
parameterizing Z-R equations for many weather types requires large amounts of data to represent 77 
each class. Influence of weather types on Z-R relationships was also reported for the Cévennes-78 
Vivarais Region, France [14].  79 

Here, we contribute an analysis of the relationship between Z-R parameters and weather types 80 
in Central Europe, based on a comprehensive regional dataset of rain microstructure measurements 81 
at 10 sites in the province of Bavaria, Germany. We ask: (1) what is the effect and the relative 82 
importance of weather type and rain type on rain microstructure? and (2) is there consistent variation 83 
between the Z-R parameters between weather types that would imply opportunities to improve QPE 84 
with radar-based methods? To address these questions, we investigate disdrometer records under 85 
different large-scale wind direction patterns at a daily scale, and rain type classifications at one 86 
minute intervals over a period of three years.  87 

2. Materials and Methods  88 

2.1. Data sources and tools  89 

We obtained raw rain drop size distribution measurements from the German Meteorological 90 
Service (Deutscher Wetterdienst, DWD), operating a network of Thies disdrometers in Bavaria, in the 91 
southeast of Germany (Figure 1). We analyzed measurements at ten sites spanning a period of three 92 
years (Jan. 2014 – Dec. 2016) with a temporal resolution of one minute. The disdrometers locations 93 
cover a distance of 167 km from north to south and 185 km from east to west (Figure 1). Raw 94 
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disdrometer data requires some statistical data cleaning procedures to remove erroneous readings. 95 
We follow the filtering procedure of Friedrich et al. [53] and the additional steps of Ghada et al. [15] 96 
to remove unrealistically large particles, margin fallers, splashing effects, or readings of insect and 97 
spider webs. The filtering procedure also removes non-rain intervals, intervals indicating very high 98 
wind speed, and intervals with rain intensity lower than 0.1 mm/h. After filtering, the dataset 99 
contained a total of 21,705 mm of accumulated rain over a period of 18,633 hours.  100 

  101 

 

Figure 1. Disdrometer locations in Bavaria (SE Germany) that were used to measure rain 102 
microstructure, covering a combined 18,600 hours of rain in a period of 36 months. 103 

The DWD classifies large-scale synoptic weather patterns into 40 classes of weather types. The 104 
weather type is provided on a daily time scale, and is applicable to all of Germany and its 105 
surroundings. The classification is based on an operational numerical weather model that represents 106 
the geopotential, temperature, relative humidity, and the zonal and meridional components of the 107 
wind for several elevations [54]. In order to simplify the classification for the purpose of this study, 108 
we grouped all possible classes into according to their prevailing circulation patterns and wind 109 
directions. Five classes of wind direction are possible; northeasterly (NE), southeasterly (SE), 110 
southwesterly (SW), northwesterly (NW), and no prevailing direction (XX). A detailed explanation 111 
of the classification procedure is available online [54], and the full record of weather types is provided 112 
by the DWD [55].  113 

For data filtering, analysis, and production of visual and statistical results, we used R [56], 114 
RStudio [57], and the packages caret [58], e1071 [59], reshape2 [60], raster [61], Rmisc [62], ggplot2 115 
[63], and rnaturalearth [64]. 116 

2.2. Drop size distribution parameters 117 

Thies disdrometers are laser-based instruments that provide high temporal records of rain 118 
microstructure. When a precipitation particle passes between the transmitter and the receiver, the 119 
strength of the laser beam is reduced. Based on the magnitude and duration of this reduction, it is 120 
possible to estimate the size and velocity of the passing precipitation particle. The Thies disdrometers 121 
raw data output represents one-minute summaries of the number of particles in 22 non-linear size 122 
classes and 20 non-linear velocity classes. From the raw output, a number of parameters can be 123 
obtained. This study is focused particularly on rain intensity R, radar reflectivity Z, total number of 124 
drop concentration N, and median volume drop diameter D0. 125 

 126 
Rain rate R (mm/h) is given by: 127 
 128 
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where  129 
𝑥𝑖,𝑗: Detected number of drops that fall in diameter range i and velocity range j, 130 

∆𝑇 (s): Temporal resolution (60 s in this case), 131 

𝐴𝑖  (m2): Corrected detection area: 𝐴𝑖 = 228 × (20 −
𝐷𝑖

2
)/106, 132 

𝐷𝑖 (mm): Mean diameter of drops that fall in diameter range 𝑖. 133 
 134 
 The radar reflectivity Z (dBZ) is calculated with the following expression: 135 
 136 

𝑍 = 10 ∗ 𝑙𝑜𝑔
10

(∑ ∑ (𝑥𝑖,𝑗
𝐷𝑖

6

(𝐴𝑖 𝑉𝑗 ∆𝑇)
)

𝑗=20
𝑗=1

𝑖=22
𝑖=1 ), (2) 

 137 

where 𝑉𝑗(𝑚/𝑠): Mean velocity of drops that fall in the velocity range 𝑖. 138 

 139 
The total number of drops N (m-3) is computed according to: 140 
 141 

𝑁 = ∑ ∑ (
𝑥𝑖,𝑗

𝐴𝑖 𝑉𝑗 𝑊𝑖 ∆𝑇
)

𝑗=20
𝑗=1

𝑖=22
𝑖=1 , (3) 

where 𝑊𝑖 (mm): the width of the diameter range 𝑖. 142 
Finally, the median volume diameter D0 (mm) is calculated considering that the volume of all 143 

drops with diameters smaller than D0 equals the volume of all drops with a diameter greater than 144 
D0. It can be specified be solving the equation:  145 
 146 

∫ 𝐷3𝑁(𝐷)𝑑𝐷
𝐷=𝐷0

𝐷=0
= ∫ 𝐷3𝑁(𝐷)𝑑𝐷

𝐷=𝑖𝑛𝑓

𝐷=𝐷0
, (4) 

where 𝑁(𝐷) is the number of drops with the specific diameter D in 1 𝑚3. 147 

Additionally, the classification of rain type into convective and stratiform requires the use of the 148 
following parameters: sd_N_10, sd_D0_10, and sd_log10_R_10, where sd_XX_10 is the standard 149 
deviation of the values of XX (XX being N, D0 and R respectively) over a time window of 10 minutes. 150 

2.3. Rain type classification 151 

Rain type classification uses an ensemble classifier to predict stratiform versus convective rain 152 
based on cloud type, rain intensity and the standard deviation of rain intensity over a ten minute 153 
time interval.  154 

To create a training set for the machine learning model that classifies rain type into convective 155 
and stratiform, we obtained records of cloud genera from the DWD [65]. These ground observations 156 
were available between July 2013 and August 2014 at Fürstenzell and between July 2013 and January 157 
2014 at Regensburg. The cloud genera were used to create a training set for the machine learning 158 
model that classifies rain type into convective and stratiform.   159 

A random forest classification model was trained on the available data from two locations in this 160 
dataset. A combination of two criteria was used for the prior classification, the observation of cloud 161 
genus, and the values of R and its standard deviation over five minutes. The model was trained based 162 
on the intervals where the prior classification was feasible. It was then used to classify rain in the 163 
whole dataset. More details about the classification procedure are given by Ghada et al [26]. 164 

2.4. Retrieving the parameters of the Z–R Relation 165 

Weather radars usually provide the reflectivity Z which is transformed into rain intensity R 166 
using an exponential equation. In our case, R and Z are provided by the disdrometer, therefore it is 167 
possible to get the values of A and b by fitting a linear model to the values of log10(R) and Z.  168 

The radar reflectivity Z is assumed to be related to rain intensity R by the power low:  169 
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𝑍 = 𝐴 × 𝑅𝑏 (5) 

In this equation, Z is expressed in mm6m-3. However, Z is usually expressed in the unit decibel 170 
relative to Z (dBZ): 171 

𝑍[𝑑𝐵𝑍] = 10 × 𝑙𝑜𝑔10(𝑍[mm6 m−3]). (6) 

 By taking the log of equation (5) and multiplying by 10:  172 

10 ×  𝑙𝑜𝑔10(𝑍) = 10 ×  𝑙𝑜𝑔10(𝐴) + 10 ×  𝑏 ×  𝑙𝑜𝑔10(𝑅) (7) 

And based on equation (6): 173 

𝑑𝐵𝑍 = 10 ×  𝑙𝑜𝑔10(𝐴) + 10 ×  𝑏 × 𝑙𝑜𝑔10(𝑅) (8) 

a simple linear model is fitted to the values of dBZ and log R which are calculated from the rain drop 174 
size distribution. This linear model has the equation: 175 

𝑑𝐵𝑍 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 × 𝑙𝑜𝑔10(𝑅) (9) 

so by comparing equations (8) and (9) the A and b parameters can be readily found:  176 

𝑏 =
𝑠𝑙𝑜𝑝𝑒

10
 (10) 

𝐴 = 10
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

10  (11) 

Equations 5 – 11 represent the conventional way of retrieving A and b. An alternative method is 177 
to consider R as the dependent variable [66]. This method is more appropriate because the main 178 
purpose is to reduce errors in estimating R:  179 

𝑅 = (1/𝐴)1/𝑏 × 𝑍1/𝑏 (12) 

By taking the log10 of both sides of equation (12):  180 

𝑙𝑜𝑔10(𝑅) =
1

𝑏
× 𝑙𝑜𝑔10(𝑍) −  

1

𝑏
× 𝑙𝑜𝑔10(𝐴)  (13) 

𝑙𝑜𝑔10(𝑅) =
𝑑𝐵𝑍

10 × 𝑏
− 

𝑙𝑜𝑔10(𝐴)

𝑏
  (14) 

𝑙𝑜𝑔10(𝑅) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 × 𝑑𝐵𝑍  (15) 

by comparing equations (14) and (15):  181 

𝑏 =
1

𝑠𝑙𝑜𝑝𝑒 × 10
 (16) 

𝐴 = 10−𝑏 × 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (17) 

The values of A and b based on the conventional way are presented and discussed in the main 182 
body of the text. The values using the alternative method are provided in the Appendix. 183 

3. Results 184 

3.1. Duration and amount variation with rain type and wind direction  185 

Over the 1096 days included in the study period, rain was recorded at least at one station in 515 186 
days. The five wind directions had different frequencies and the most frequent wind directions were 187 
the westerly circulations SW and NW with a total of 739 days or two thirds of the time (Figure 2). 188 
More than half of these days included rain in at least one station. The easterly circulations accounted 189 
for less than 12% of the total number of days. SE had the lowest occurrence and the lowest percentage 190 
of rainy days. Each of XX and NE had more than 40% rainy days (Figure 2). 191 
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Figure 2. Frequency of rainy days under different wind direction classes that represent large-scale 193 
weather types. Rainy days are days where five minutes of rain with intensities exceeding 0.2 mm/h 194 
occurred at one station at least. Error bars represent the 95% confidence intervals. Percentages above 195 
the white columns represent the portion of each wind direction occurrence and percentages below 196 
the columns represent the portion of rainy days in the total number of days within a specific wind 197 
direction. The dashed line represents the mean number of rainy days per year. 198 

When examining the accumulated rain amount and duration, westerly circulations were the 199 
dominant wind directions with a contribution reaching 69% of the total rain duration (18633 h) and 200 
total rain amount (21705 mm) accumulated over all stations (Figure 3). Easterly circulations 201 
contributed less than 10% of both rain duration and amount. Convection contributed 36% of the total 202 
rain amount and occupied only 8.5% of rain duration. Southerly circulations had the highest 203 
proportion of convective rain with around 10% of the total rain duration and more than 40% of the 204 
total rain amount, while northerly, and especially northeasterly circulations had a low proportion of 205 
convective rain.  206 

 
(a) 

 
(b) 

Figure 3. Prevalence of convective and stratiform rain types. Accumulated rain duration (a), and rain 207 
amount (b) per wind direction averaged over the stations and years. Error bars represent the 95% 208 
confidence intervals. The percentages on top of each column represent the proportion of accumulated 209 
rain within the respective wind direction to the accumulated rain in the whole year. The percentages 210 
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below the columns represent the proportion of convective rain to total rain within the respective wind 211 
direction. 212 

3.2. Rain microstructure variation with rain type and wind direction  213 

Stratiform rain had smaller drops and lower concentration compared to convective rain (Figure 214 
4). The average D0 for stratiform rain was 0.77 mm compared to 1.24 mm in convective rain. Drop 215 
concentration in stratiform rain was slightly more than 600 drops m-3, while convective rain had an 216 
average of 1375 drops m-3. The overall average D0 (0.81 mm) and N (672 m-3) were closer to the values 217 
of stratiform rain since most rain intervals were of the stratiform type. 218 

 219 

 

Figure 4. Summary of rain microstructure for stratiform and convective rain. Each point represents 220 
the mean total concentrations N (y axis) and mean median diameter D0 (x axis) of rain drops per wind 221 
direction and rain type. Horizontal dashed blue (red) line represents the stratiform (convective) mean 222 
rain drop concentration regardless of wind direction. Vertical dashed blue (red) line represents the 223 
stratiform (convective) mean D0 regardless of wind direction. Error bars on the horizontal and vertical 224 
axis represent the 95% confidence intervals. 225 

For stratiform rain, westerly circulations had larger drops and lower drop concentration 226 
compared to easterly circulations. Especially SW had the largest mean of D0 and the least N. NE had 227 
clearly the smallest drops and the greatest N. The same pattern appears even when inspecting 228 
different classes of rain intensity within stratiform rain (Figure 5). As rain intensity increases, so does 229 
both D0 and N. For convective rain (Figure 6), only few differences in the previously described 230 
patterns appear especially when examining the rain microstructure for different ranges of rain 231 
intensities. The median diameter D0 was the largest for SW and decreased in values by XX, NW then 232 
NE while N increased in the same order for most cases. The highest range of rain intensities did not 233 
follow this pattern, possibly due to high stochasticity of rare extreme rain events. The wind direction 234 
SE also did not show a consistent pattern across the different rain intensity ranges. 235 
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Figure 5. Rain microstructure for different rain intensities in stratiform rain. Symbol on each colored 236 
line represent summary statistics for a wind direction. Each symbol represents the average median 237 
drop size and drop concentration for a rain intensity interval. The intervals were chosen to represent 238 
six equal sample sizes and were colored by mean rain intensity. Selected symbols that represent equal 239 
rain intensity were connected with black lines for comparison. 240 
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Figure 6. Rain microstructure for different rain intensities in convective rain. Symbol on each colored 241 
line represent summary statistics for a wind direction. Each symbol represents the average median 242 
drop size and drop concentration for a rain intensity interval. The intervals were chosen to represent 243 
six equal sample sizes and were colored by mean rain intensity.   244 

 245 
The mean stratiform rain intensity was 0.81 mm/h with only marginal variation with wind 246 

directions. On the other hand, convective rain intensity varied around the mean value of 5 mm/h. 247 
The highest mean intensity was associated with SE circulations and the lowest with the NW 248 
circulations. Statistical data for each wind direction and rain type including standard deviation (SD) 249 
and standard error (SE) are summarized in Table 1.  250 

 251 
Table 1. Summary of rain intensities for wind directions in convective and stratiform rain.  252 

Rain type Wind 

direction 

Duration 

(h) 

Mean R 

(mm/h) 

Median R 

(mm/h) 

SD 

(mm/h) 

SE 

(mm/h) 

Convective NE 82.5 4.51 3.65 4.90 0.070 

SE 50.7 6.23 4.83 6.41 0.116 

SW 645.6 5.11 3.72 6.09 0.031 

NW 538.1 4.33 3.36 4.89 0.027 

XX 269.6 5.80 4.54 5.79 0.046 

Stratiform NE 1191.9 0.79 0.50 0.79 0.003 

SE 486.2 0.80 0.46 0.92 0.005 

SW 5928.4 0.78 0.49 0.79 0.001 

NW 5740.0 0.83 0.54 0.80 0.001 

XX 3700.8 0.84 0.52 0.89 0.002 

 253 
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3.3. Z-R parameter variation with location, rain type and wind direction  254 

To demonstrate the influence of rain microstructure variability with wind direction on the rain 255 
intensity retrieval equation Z-R, the values of A and b were obtained for both rain types (the general 256 
model), then for the combinations of rain types and locations (the location model), then for rain types 257 
and wind directions (the wind direction model), and finally for the rain type, locations and wind 258 
direction combinations (the factorial model).  259 

The value of the prefactor A was clearly larger in convective rain (216) compared to its value in 260 
stratiform rain (243) for the general model, while the exponent b value (1.53) was similar for both rain 261 
types (Figure 7, white box). In the case of the location model (Figure 7, black points and grey area), A 262 
had a smaller range and values in stratiform rain (184-244) compared to convective rain (206-296). B 263 
on the other hand had similar average value but a smaller range in stratiform rain (1.51-1.56) 264 
compared to its values in convective rain (1.42-1.61).  265 

Remarkably for stratiform rain, the range of A values in the wind direction model (162-249, 266 
Figure 7.a colored circles) exceeded the range of A values for the location model (black points), with 267 
SW circulations scoring the highest A values, and the easterly circulations scoring the least. On the 268 
other hand, b values had a range in the wind direction model very close to the location model, with 269 
the smallest values associated with the three wind direction classes SW, NW and NE, and the highest 270 
values associated with XX and SE. A and b values in the factorial model had a similar pattern to the 271 
one observed in the wind direction model with a higher variability; A value is large for SW, close to 272 
the mean for NW and XX, and small for NE and SE, while b value is large for XX and SE, and small 273 
for SW, NW and NE.   274 

 275 
 276 

 
(a) 
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Figure 7. The parameters of the radar rain intensity retrieval equation (Z=ARb) for the general model 277 
(white square), the location model (black dots), the wind direction model (colored circles), and the 278 
factorial model (colored crosses) for stratiform rain (a) and convective rain (b). The grey area 279 
represents the range of A and b for the location model. 280 

In convective rain (Figure 7.b), the patterns of A and b for the wind direction model differed 281 
compared to the stratiform rain; A values were close to value of A for the general model, while SW 282 
had the largest and NE had the smallest values. All b values in the wind direction model were close 283 
to that in the general model except for NE circulations which had higher value. The same pattern 284 
appeared again with higher variability in the case of the factorial model, with the exception of SE 285 
circulation which did not follow a particular pattern in this case. 286 

4. Discussion 287 

Our data indicate high frequency and high contribution of westerly and especially SW 288 
circulations to the rainy days over Bavaria, Germany. Easterly circulations have the least frequency 289 
and especially SE has the lowest share of rainy days. This is in agreement with the frequency of wind 290 
directions and proportions of rainy days of long-term studies for Germany for the period between 291 
1995 and 2017 [44]. The high frequency and high contribution of westerly and southwesterly 292 
circulations to the number of rainy days is expected for this region since the main moisture flux is 293 
westerly [67]. 294 

Convection is responsible for 40% of rain amount in this region despite occupying only 10% of 295 
rain duration. Similar contributions of convective rain were reported in the Czech Republic [68] and 296 
in Switzerland [15]. Convective rain has typically higher rain rates and distinct microstructure 297 
compared to stratiform rain. This makes it essential to separate convective and stratiform rain prior 298 
to addressing rain microstructure, especially considering the variation in convective rain proportion 299 
with wind directions [15]. Southerly circulations generally have a higher proportion of convective 300 
rain compared to northerly circulations. A possible explanation is the strengthening and inhibition 301 
of convection and radiative cooling under different wind directions, which in turn has a major 302 
influence on the precipitation diurnal cycle over Germany [44]. Southerly circulations carry along 303 
warm air masses which intensify convection in the afternoon and inhibit radiative cooling in the 304 
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morning. Northerly circulations, in contrast, transport cold air masses and therefore suppress 305 
convection and intensify radiative cooling.  306 

Westerly circulations need special attention when addressing rain and microstructure, especially 307 
with the reported high contribution to rain duration and rain amount, and the expected increase in 308 
frequency over Europe [69,70]. Westerly circulations have larger rain drops than easterly circulations 309 
in stratiform rain, while easterly circulations have higher number of drops. This pattern is consistent 310 
for both stratiform and convective rain and across the ranges of rain intensity, except for SE 311 
circulations in convective rain, which was not well represented by data, accounting only for 0.6% of 312 
convective rain amount observed in this study.  313 

Rain microstructure dependence on synoptic weather patterns have previously been reported 314 
for other locations in Europe. Northerly circulations in Leon Spain were associated with smaller drop 315 
sizes, while westerly and southerly circulations have larger drops of rain [13]. This pattern was 316 
explained by the location of Leon to the south of the Cantabrian Mountains. Northerly circulation air 317 
masses precipitate prior to reaching Leon, leaving less humidity, lower rain intensities and smaller 318 
drops. Westerly and southerly circulations carry along higher humidity, leading to higher rain 319 
intensities and larger drops. For Cévennes-Vivarais region in France, easterly circulations were 320 
associated with lower number of rain drops and larger drop size while most of the westerly 321 
circulations had the opposite traits [14]. The associations of rain microstructure with large-scale 322 
weather patterns observed in this and other studies are therefore not generally consistent, but region-323 
specific. Different regions have different associated general air-mass characteristics, for example 324 
influenced by proximity to the sea or the presence of mountain massifs nearby. 325 

The rain microstructure patterns in Bavaria have more in common with the patterns reported 326 
for Lausanne, Switzerland. Despite using different disdrometer types, having different schemes for 327 
rain type classification, using different weather type classifications, and the geographical locations at 328 
different sides of the Alps, easterly circulations in both locations have higher number of drops per 329 
interval and smaller drop size compared to westerly circulations [15]. A plausible explanation for this 330 
is the variation of humidity and aerosol content in air masses between these wind direction clusters. 331 
Aerosols are particularly abundant in air masses which pass over Russia and Eastern Europe, 332 
especially heavy industrialized areas [71,72]. These aerosols act as cloud condensation nuclei [73]. 333 
High cloud condensation nuclei availability increases the number of rain drops in the case of 334 
stratiform rain, increases the size of drops in local convection, and have no significant influence on 335 
rain microstructure in organized convection [74].  336 

Differences in the load of cloud condensation nuclei under different circulations appear to be a 337 
plausible explanation for the rain microstructure differences observed in this study, especially in 338 
stratiform rain. The abundance on cloud condensation nuclei in easterly circulations in comparison 339 
with westerly circulations leads to higher number of rain drops. This in combination with the high 340 
(low) available humidity in westerly (easterly) circulations leads to larger (smaller) size of rain drops. 341 
For convective rain, easterly circulations are clustered in two wind directions, NE which has the 342 
smallest mean D0, and SE which has the largest mean D0 compared to the remaining wind directions. 343 
The rain type classification method used in this study does not differentiate local and organized 344 
convection, which makes it impossible to thoroughly compare with the findings of Cecchini et al. 345 
[74]. 346 

Regarding applications of our results for radar-based quantitative precipitation estimates (QPE), 347 
Jaffrain et al. [66] demonstrated that the variation of A and b values of the Z-R retrieval equation 348 
should be accounted for. In their case study for Lausanne, Switzerland, they showed that spatial 349 
subgrid variability of rain microstructure was present, and then assessed the influence of this 350 
variation on the quality of the estimation of rain rate. Using the same dataset, Ghada et al. [15] showed 351 
that the variability of A and b is larger than the subgrid spatial variability (in an area less than 1 km2) 352 
when weather types are considered. In this study, variation of rain microstructure parameters with 353 
wind directions in Bavaria led to significant variation in the values of Z-R parameters. The variation 354 
in the values of the prefactor A and the exponent b exceeds their spatial variation within the 355 
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addressed regional scale in the case of stratiform rain, and at least is similar to the spatial variation 356 
in the case of convective rain.  357 

Assessing potential benefits of accounting for variation in Z-R parameters, Jaffrain and Berne 358 
[66] concluded that the subgrid spatial variability in rain microstructure caused rain measurement 359 
errors estimated to fall between -2% and +15%. Variability due to large-scale weather patterns in Z-R 360 
parameters in our study was greater than the subgrid spatial variability of rain microstructure. 361 
Consequently, the potential for a large improvement in rain estimation when accounting for rain 362 
microstructure variability with wind direction is expected to be high. The next research step would 363 
be to assess improvements in quantitative estimation of rain by working directly with empirical data 364 
of radar-based rain intensity estimates validated by ground observations, and quantifying the 365 
accuracy improvements when taking the variability of Z-R parameters with wind directions into 366 
account. This is not possible with data from the current study. Disdrometers provide a direct 367 
measurement of rain microstructure, and then R and Z are calculated. These values are accurate if we 368 
assume an accurate measurement of rain microstructure. Actual radar reflectivity measurements are 369 
needed for an appropriate estimation of the improvement associated with using wind direction-370 
specific Z-R relations.  371 

5. Conclusions 372 

This research demonstrated that rain microstructure varies significantly between weather types 373 
in both rain types. Easterly circulations had the highest drop concentration and the smallest drop size 374 
while westerly circulations were associated with large drops and low drop concentration. A plausible 375 
explanation for these differences is the high humidity content in westerly circulations and high cloud 376 
condensation nuclei concentration in easterly circulation. This finding has potential applications for 377 
radar-based quantitative precipitation estimates. Z-R parameters vary substantially with synoptic 378 
weather patterns that can effectively be summarized by regional wind direction classes. The 379 
variability in Z-R parameters with wind direction exceeds their station-to-station spatial variability 380 
for stratiform, but not for convective rain. We therefore conclude that building separate Z-R retrieval 381 
equation for regional wind direction classes should improve radar-based QPE, especially for 382 
stratiform rain events. This approach should be feasible for forecasting on the operational level 383 
especially taking into account that daily weather types can be predicted with high accuracy several 384 
days in advance. 385 
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Appendix A 395 

Based on the alternative retrieval method [66], Figure A1 shows the prefactor A and the exponent 396 
b values corresponding with the four models (see section 2.4.). 397 
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Figure A1. The parameters of the radar rain intensity retrieval equation (Z=ARb) for the general model 398 
(white square), the location model (black dots), the wind direction model (colored circles), and the 399 
factorial model (colored crosses) for stratiform rain (a) and convective rain (b). The grey area 400 
represents the range of A and b for the location model, where A and b values are calculated using the 401 
alternative method (see section 2.4.). The grey area represents the range of A and b for the location 402 
model.  403 
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