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SUMMARY

In this paper, a fully aggregation-based algebraic multigrid strategy is developed for nonlinear contact
problems of saddle point type using a mortar finite element approach. While the idea of extending
multigrid methods to saddle point systems can already be found, e.g., in the context of Stokes and
Oseen equations in literature, the main contributions of this work are (i) the development and open-
source implementation of an interface aggregation strategy specifically suited for generating Lagrange
multiplier aggregates that are required for coupling structural equilibrium equations with contact
constraints and (ii) a review of saddle point smoothers in the context of constrained interface problems.
The new interface aggregation strategy perfectly fits into an aggregation-based multigrid framework
and can easily be combined with segregated transfer operators, which allow to preserve the saddle point
structure on the coarse levels. Further analysis provides insight into saddle point smoothers applied
to contact problems, while numerical experiments illustrate the robustness of the new method. We
have implemented the proposed algorithm within the MueLu package of the open-source Trilinos
project. Numerical examples demonstrate the robustness of the proposed method in complex dynamic
contact problems as well as its scalability up to 23.9 million unknowns on 480 MPI ranks.
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1. INTRODUCTION

Many engineering applications require the simulation of large-scale contact problems. Therefore, it
is not surprising that recent years have seen significant progress in modelling and simulation of
contact interaction and its associated phenomena, such as friction [28, 52, 66], wear [16, 24, 44, 48],
adhesion [45, 65], or multi-scale contact phenomena [10, 73]. This is particularly true with regard to
robust finite element based discretization techniques for finite deformations and efficient nonlinear
solution algorithms. Above all, mortar finite element methods — originally introduced in the context
of domain decomposition [6, 9] — are meanwhile well-established as a basis for state-of-the-art contact

∗Correspondence to: M. Mayr, Institute for Mathematics and Computer-Based Simulation, University
of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany, E-mail:
matthias.mayr@unibw.de
‡This work was partially performed while these authors were affiliated with the Institute for Computational
Mechanics, Technical University of Munich, Boltzmannstr. 15, D-85748 Garching, Germany.

ar
X

iv
:1

91
2.

09
05

6v
4 

 [
cs

.C
E

] 
 1

 A
pr

 2
02

1



2 T. A. WIESNER ET AL.

formulations and widely accepted among researchers as being superior to more classical discretization
techniques, such as the node-to-segment (NTS) method, the Gauss-point-to-segment (GPTS) method
and other collocation based approaches [21, 59, 60, 89, 93].

Nowadays, constraint enforcement in the context of mortar methods is often based on a regularized
Lagrange multiplier scheme or an augmented Lagrange method instead of a simple, yet often
insufficient penalty approach. Independent from the actual details of the constraint enforcement
implementation, the discrete Lagrange multipliers constitute an additional set of degrees of freedom in
the mortar finite element contact formulation. When using a dual mortar approach [33, 36, 37, 54, 57,
87, 88], the discrete Lagrange multiplier basis is chosen based on a biorthogonality condition with the
underlying finite element basis. This allows for the localization of the contact constraints and, thus,
from a more algebraic point of view, for the trivial condensation of the additional Lagrange multiplier
degrees of freedom from the final linearized systems of equations. If such a static condensation is
not desired or not feasible (e.g. when choosing a standard basis rather than dual basis functions for
the Lagrange multipliers, see e.g. [56, 88]), the linear system remains in its generalized saddle point
format arising from the contact constraint equations. Both the standard and the dual mortar approach
have become increasingly popular in recent years, with new contributions focusing for example on
higher-order finite element interpolation [55, 90], isogeometric mortar methods [20, 67, 69, 70, 94], or
improved robustness of the solution algorithms [25, 34, 58], to name only a few particularly active
research directions.

It is striking, however, that almost all current research endeavors concerned with mortar finite
element methods for contact mechanics focus exclusively on the modelling of various contact
phenomena. Yet, for large-scale and industrial applications the appropriate modelling of contact
problems is not sufficient. In fact, the demand for efficient solution strategies tailored to the specifics
of contact simulations is eminent in order to achieve optimal over-all performance. Whereas one could
use parallel direct solvers to solve the linear systems, they are not an option for very large problems.
Iterative solvers for sparse systems (e.g. [31, 63]) combined with good preconditioning strategies are
a far better choice with respect to computational resources. In particular, multigrid methods [32, 72]
are known to be among the most efficient solution and preconditioning strategies, at least for certain
classes of problems.

From the perspective of the linear solvers and multigrid-based preconditioners, the condensation
of the Lagrange multipliers seems to be very attractive, since it allows to circumvent the more-
sophisticated saddle point formulation. For contact problems though, we have experienced that the
resulting linear systems after condensation suffer from some challenging matrix properties which cause
severe convergence problems for standard preconditioning techniques. In particular, the matrices tend
to be non-diagonally dominant due to different (local) coordinate systems that are typically used for
the formulation of the structural equilibrium equations and the contact constraints. In our previous
work [85], we have developed multilevel preconditioners that address such issues and are specifically
tailored to contact problems using the dual mortar method in a condensed formulation.

On the other hand, multigrid methods already have been successfully applied to saddle point
problems as they arise from different applications (e.g. Stokes flow [38] or incompressible Navier-
Stokes problems [30, 46]) and even in the context of mortar finite element methods [83, 86]. The
multigrid theory for this particular class of saddle point problems has evolved starting from special
multigrid methods for mortar finite element methods (e.g. [12, 29, 41, 92]) to mortar finite element
methods in saddle point formulation (e.g., [13, 14]). Based on these ideas, specific multigrid methods
for contact problems in saddle point formulation have been developed in [82]. However, most of the
literature available on multigrid for mortar finite element methods and contact problems in saddle
point formulations is primarily on geometric multigrid methods with abundant work on saddle point
smoothers (cf. [97]). A first algebraic multigrid preconditioner for mortar-based contact problems
has been proposed by Adams [5], performing standard aggregation on the graph of an auxiliary
matrix imitating the Lagrange multipliers. Alternatively, multigrid methods for contact problems not
requiring an outer iteration loop or active set strategy have been developed in [40, 91].

In this paper, we address the case of mortar-based contact problems in saddle point formulation
and show how to tailor iterative solvers with algebraic multigrid preconditioners to such problems.
In contrast to geometric multigrid methods, algebraic multigrid methods (e.g. [68]) do not rely on
geometric user-provided mesh information, but use only purely algebraic information from the fine
level matrix. Since static condensation of Lagrange multiplier unknowns is not required, our approach
is applicable to mortar methods using both standard or dual shape functions. The proposed multigrid
method is based on the (smoothed) aggregation algebraic multigrid algorithms (cf. [64, 75, 76, 78, 79])
with special extensions for block matrices and some minor contact-specific adaptions. We propose a
novel aggregation strategy for the discrete Lagrange multiplier unknowns along the contact interface,
which we consider simpler to implement, computationally less expensive, and more intuitive for
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contact problems compared to the ideas from [5]. Inspired by our prior work on fluid-structure
interaction [27, 47], where we have investigated the beneficial effect of satisfying interface constraints
within the preconditioner, we will then use segregated transfer operators suitable for block matrices
to transfer and incorporate the contact constraints in all coarse levels. We analyze various Schur
complement block smoothers and assess their suitability for satisfying the contact constraints. Finally,
we demonstrate and assess the performance of the proposed preconditioner in several three-dimensional
examples.

The remainder of this paper is organized as follows: Section 2 provides a brief introduction to
mortar methods for finite deformation contact problems in saddle point formulation. After the basic
notation is introduced, we specifically present the resulting linear system that is arising if the discrete
Lagrange multipliers are explicitly included into the set of unknowns to be solved for. After a brief
introduction to the general idea of multigrid methods, Section 3 describes our strategy to tailor a
multigrid preconditioner to contact problems in saddle point formulation. It comprises the coarsening
of the mortar contact constraints as detailed in Section 4 as well as suitable block smoothers as
discussed in Section 5. Finally, Section 6 presents numerical examples that showcase the robustness,
scalability, and performance of the proposed multigrid preconditioners, before we close with some final
remarks.

2. MORTAR METHODS FOR FINITE DEFORMATION CONTACT

As this paper is concerned with preconditioning of the system of linear equations arising from contact
problems, just a brief summary to the contact formulation and discretization is given here. For a
detailed presentation, the reader is referred to our previous work [54].

2.1. Problem formulation and governing equations

We consider two solid bodies, which are represented by Ω
(1)
0 , Ω

(2)
0 ⊂ Rd with d ∈ {2, 3} in the

reference configuration. Their surfaces ∂Ω
(i)
0 , i ∈ {1, 2} are decomposed into three disjoint subsets Γ

(i)
D ,

Γ
(i)
N and Γ

(i)
c denoting the Dirichlet boundary, the Neumann boundary, and the potential contact

interface with unknown contact tractions t(i)c , respectively. The solid bodies themselves are governed
by nonlinear elasticity. Since we are only interested in the algebraic block structure of the final system
of equations after discretization and linearization, it is sufficient to discuss a quasi-static contact
problem with only two deformable bodies.

In order to describe the contact phenomenon, we state the Hertz-Signorini-Moreau conditions

gn ≥ 0 ∧ pn ≤ 0 ∧ gnpn = 0. (1)

Therein, gn defines a so-called gap function, which measures the distance of a point on the slave
interface γ(S)c to the projected corresponding point on the master side γ(M)

c of the contact interface
in the current configuration. Furthermore, pn denotes the normal contact traction. In the mathematical
formulation, one introduces the negative slave side contact traction t

(1)
c as Lagrange multiplier,

i.e., λ = −t(1)c . Using n to denote the outward unit normal vector, the normal part of the contact
stress can be denoted by λn := λTn and the tangential part by λτ := λ− λnn.

We employ the usual function spaces U(i) and V(i) for the displacement field u of the the solid
body and its weighting function v, respectively. Furthermore, a suitable function space M+ for the
Lagrange multiplier field λ and its weighting function µ is assumed. The weak form of the governing
equations then reads: Find

(
u,λ

)
∈ U ×M+ such that

−δWint,ext +

∫
γ
(S)
c

λ
(
v(1) − v(2)

)
dA = 0, ∀v ∈ V, (2a)∫

γ
(S)
c

(µn − λn) gndA ≥ 0, ∀µ ∈M+. (2b)

Herein, the internal and external virtual work contributions δWint,ext are defined as usual in nonlinear
solid mechanics (cf. [96] for example) and, thus, further details are omitted. The second term in (2a)
can be identified as contact virtual work δWc and the expression in (2b) as variational inequality
formulation of the contact constraints. An extension to frictional contact based on Coulomb’s law is
straightforward and can be found in our previous work [28] for example.
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Inner nodes with displacement degrees of freedom uN1 ∈ Ω
(1)
0 \ Γ

(1)
c and uN2 ∈ Ω

(2)
0 \ Γ

(2)
c

Nodes at slave contact interface Γ
(S)
c = Γ

(1)
c with displacement degrees of freedom uA and uI

and Lagrange multipliers λ
Nodes at master contact interface Γ

(M)
c = Γ

(2)
c with displacement degrees of freedom uM

N2 M
S N1

Figure 1. Schematic mesh illustrating interior, master and slave interface nodes.

2.2. Finite element discretization

For spatial discretization of the displacement field, either isoparametric finite elements with first-order
and second-order Lagrange interpolation or isogeometric analysis (IGA) with NURBS-based shape
functions are employed. After discretization, the discrete representation of displacement unkowns is
given by the nodal degrees of freedom (DOFs)

u =
[
uN1

,uS ,uM,uN2

]T
.

Therein, the uNi
, i ∈ {1, 2}, contain all degrees of freedom associated with the mesh nodes of the

corresponding solid body without the nodes at the contact interface, where we use the convention that
indices 1 and 2 denote the slave and master “body”, respectively. The degrees of freedom associated
with the contact interface on the slave and master side are represented by uS and uM, respectively.

Since (2) represents a mixed variational form, we also have to discretize the Lagrange multiplier
field λ. We choose to follow a mortar approach for its mathematical properties and its superiority
to other schemes [21, 59, 60, 89, 93]. As usual for mortar methods, the Lagrange multiplier field
is discretized on the slave side contact interface γ(S)c in the current configuration. We either use
standard ansatz functions, i.e. Lagrange polynomials with a trace space relation with the underlying
volume element, or dual shape functions. The latter satisfy a biorthogonality property and, thus, allow
for a computationally cheap condensation of the additional unknown Lagrange multipliers from the
final system of equations. For details on dual basis functions in the context of mortar-based contact
discretizations, we refer to [42, 55, 88]. Their interplay with preconditioners for iterative linear solvers
has been discussed in our previous work [85]. The vector of discrete Lagrange multipliers is now
referred to as λ. A schematic mesh illustrating interior, slave interface, and master interface nodes is
sketched in Figure 1.

The final spatially discretized formulation of the quasi-static frictionless problem (2) using the nodal
vector representation now emerges as

f int(u) + fco(u,λ) = fext, (3a)(
g̃n,h

)
j
≥ 0,

(
λn
)
j
≥ 0,

(
g̃n,h

)
j

(
λn
)
j

= 0, j = 1, . . . , n(S), (3b)(
λτ
)
j

= 0, j = 1, . . . , n(S). (3c)

The internal forces f int(u) and external forces fext are common in nonlinear finite element methods
and need no further explanation. The discrete vector of contact forces fco is computed based on two
mortar matrices D and M, arising from the integral over the slave interface γ(S)c in (2a), and the
discrete Lagrange multiplier vector λ. For details regarding the computation of D and M, see [54, 59]
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for example. Using
(
g̃n,h

)
j
to denote the discrete weighted gap function at node j, a closer look

at the discrete contact constraints reveals that (3b) basically represents a discrete version of the
Karush–Kuhn–Tucker (KKT) type conditions in (1) with an additional weighting based on the
Lagrange multiplier shape functions ψj , while the nodal enforcement of frictionless sliding in (3c)
is straightforward anyway.

Since the discrete contact constraints summarized in (3b) are still formulated as inequalities, an
active set strategy usually referred to as primal-dual active set strategy (PDASS) is needed in addition
to the usual nonlinear solution procedure to identify the currently active and inactive contact regionsA
and I = S \ A, respectively. It has been demonstrated in [17, 35, 61] that the PDASS can equivalently
be interpreted as a semi-smooth Newton method, thus allowing for an integrated treatment of all
nonlinearities (including the search for the active set) within one single Newton–Raphson type iteration
loop. Meanwhile, many successful applications to small and large deformation contact problems can
be found in the literature [28, 36, 37, 54].

2.3. Algebraic formulation of linear systems

For efficient iterative solution strategies based on multigrid methods for nonlinear contact problems,
one is primarily interested in the structure of the linear systems arising in each nonlinear iteration
step of the underlying Newton–Raphson scheme. For the sake of brevity, details on the linearization
process and on the Newton–Raphson procedure are omitted here and the interested reader is instead
referred to [54, 57].

Consistent linearization of (3) and a subsequent update of the active set A and inactive set I yields
the system

KN1N1
KN1M 0 0 0 0 0

KMN1
KMM KMI KMA 0 −MT

I −MT
A

0 KIM KII KIA KIN2
DT
II DT

IA
0 KAM KAI KAA KAN2

DT
AI DT

AA
0 0 KN2I KN2A KN2N2

0 0
0 0 0 0 0 I 0
0 NM NI NA 0 0 0
0 0 FI FA 0 0 TA





∆uN1

∆uM
∆uI
∆uA
∆uN2

∆λI
∆λA


= −



ruN1

ruM
ruI
ruA
ruN2

rλI
rλ,nA
rλ,τA


(4)

to be solved in every nonlinear iteration. The 2× 2 block matrix indicated by the dashed lines in (4)
describes a linear system with a typical generalized saddle point structure. The upper left block
consists of the entries of the tangential stiffness matrix (i.e. linearized internal forces) as well as
linearizations of contact forces w.r.t. displacement degrees of freedom u. The upper right block mirrors
the discrete contact operator C(u), i.e. basically the two mortar matrices D and M, representing
the linearizations of the contact forces w.r.t. the Lagrange multiplier unknowns λ. The kinematic
constraints are incorporated in the bottom left block. The very simple sixth block row emerges
from (3b) and (3c) for inactive nodes, while the last block row imposes frictionless sliding in the
directions tangential to the contact interface.

The distinct pattern of zero entries in the upper left block reveals that the two solid bodies (indices
N1 and N2) are indeed only coupled through the slave and master sides of the contact interface
(indices S andM). Even though formulated for two solid bodies, the generalization to n solid bodies
is straightforward and only a matter of notation.

In case of dual shape functions, the matrix D reduces to a diagonal matrix and, thus, allows for a
cheap condensation of the Lagrange multiplier unknowns. Algebraic multigrid preconditioners for this
type of condensed system have been proposed in our earlier paper [85]. Furthermore, matrices NM,
NI , and NA denote the linearizations of the weighted gap function of (3b) at all active contact nodes.
Finally, linearizations of the frictionless sliding condition (3c) are referred to by matrices FI , FA,
and TA, respectively.

Note that the given matrix has 8 block rows but only 7 block columns in our notation in order
to emphasize that the normal and tangential parts of the contact constraints for active nodes are
considered separately, i.e. these two rows contain consistent linearizations of the active branch of (3b)
and of (3c). Again, we point out that this separate notation is possible due to the fact that a local
convective coordinate system is employed for evaluating the contact constraints / Lagrange multiplier
weights µ, while the standard Cartesian frame is still applied for the discrete Lagrange multiplier
values λ as well as the displacement unknowns. Yet, of course, the system matrix remains a square
matrix with the total numbers of rows and columns being identical. The discrete vector gA contains
all weighted gap values

(
g̃n,h

)
j
associated with the active nodes at the contact interface.
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MGV(A(`), x, b, `):
if ` 6= `max

x← S ν1
` (A(`), x, b)

r ← b−A(`)x
c← 0

c← MGV(A(`+1), x`+1,R`+1r, `+ 1)
x← x+ P`+1c

x← S ν2
` (A(`), x, b)

else x← (A(`))−1b

(a) Recursive multigrid algorithm.

A (2)

[ ]
A (1)

[ ] A (1)

[ ]
A (0)

  A (0)

 S ν10

S ν11

S
2

S ν21

S ν20

R0→
1

R1→
2 P

2→
1

P
1→

0

(b) Multigrid V-cycle in a 3 level setting.

Figure 2. Multigrid algorithm and V-cycle.

For ease of notation, the following short block notation is used in the remainder of the manuscript:(
K CT

1
C2 −Z

)[
∆u
∆λ

]
= −

[
ru

rλ

]
. (5)

3. MULTIGRID SCHEME FOR CONTACT PROBLEMS IN SADDLE POINT FORMULATION

Although multigrid methods can be used as standalone solvers for linear systems, they are usually
incorporated into an iterative linear solver as a preconditioning method. Throughout this paper, we
use a preconditioned generalized minimal residual (GMRES) solver [62] with one multigrid V-cycle
sweep for preconditioning. A general introduction into the idea of preconditioning is beyond the scope
of this paper. The reader is referred to the literature, e.g. [7].

3.1. Algebraic multigrid methods in a nutshell

Multigrid methods are based on the finding that many well-known and computationally cheap iterative
methods (e.g. relaxation based iterative methods such as Jacobi or Gauss-Seidel methods) to solve
linear systems Ax = b effectively damp the high frequency part of an error vector but are less effective
in damping out the low frequency error modes. Multigrid methods heavily make use of this smoothing
property by applying such cheap smoothing methods on different coarsened representations of the
original fine level problem.

3.1.1. Basic multigrid cycle and algorithm The multigrid algorithm given in Figure 2a is briefly
described as follows: on each multigrid level `, a level smoothing algorithm S` performs ν1 pre-
smoothing sweeps before the residual vector r is transferred to the next coarser level `+ 1 using
the restriction operator R. After the coarse level problem has been solved on the coarsest level, the
correction c is then prolongated using the prolongation operator P and the solution vector is smoothed
using ν2 post-smoothing sweeps. Figure 2b illustrates this basic multigrid V-cycle, exemplifying a
three-level setting. As one can see from Figure 2b, applying a multigrid method basically means
applying level smoothers on coarse representations A` of the fine level problem A0.

3.1.2. Algebraic multigrid methods There are different strategies for defining the transfer operators P
and R which are necessary to generate coarse level matricesA` (` > 0). For algebraic multigrid (AMG),
the fine level operator A0 is sufficient to generate coarse level matrices A`. An important class of AMG
is given with the smoothed aggregation AMG which is based on so-called aggregates (see e.g. [75, 77]).
The fine-level nodes are agglomerated and put into aggregates, which then represent “supernodes" on
the next coarser level. The aggregation information together with the null space information of A0

is used to construct the corresponding tentative transfer operators R̂ (for restriction) and P̂ (for
prolongation). Transfer operators are used to restrict the fine level residual to the next coarser level
and to interpolate the coarse level correction to the next finer level via prolongation. For an efficient
multigrid method, the interaction of fine and coarse levels tackles those error modes, which appear
as low-frequency modes on the fine level and cannot effectively be reduced by iterative smoothing
methods on the fine level, but resemble high-frequency modes on a coarser level, such that iterative
smoothing methods are effective again. On the coarsest level, a direct solver can take care of the
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remaining error modes. For smoothed aggregation multigrid (cf. [26, 75]), the prolongation operator
is found by applying one smoothing sweep with a damped Jacobi iteration using

P = P̂− ωD−1AP̂ (6)

with D being the diagonal part of A and a damping parameter ω > 0. Depending on the symmetry of
the system matrix A, the restriction operator is either chosen as R = PT or smoothed independently
using, e.g. a Petrov-Galerkin approach (cf. [64]).

3.2. Algebraic multigrid methods for block matrices

Block matrices usually arise if multiple types of equations are coupled together. In the present context
of contact problems in saddle point formulation, two types of equations, namely the balances of linear
momentum of the solid bodies and the contact constraints, are connected via the off-diagonal blocks
in (5). Similarly, multiphysics problems also yield block matrices where the coupling between different
physical fields manifests itself in the off-diagonal blocks of the monolithic system matrix.

From a multigrid perspective, the most important question is where to consider the coupling between
the different equations within the overall solver layout. In general, there are only two possible strategies
to apply multigrid ideas to coupled block systems:

Nested multigrid approach: Multigrid methods can serve as local single field smoothers or solvers
within well-known block preconditioners such as the SIMPLE method (cf. [50]) and variants
for Schur complement based preconditioners or the block Gauss–Seidel (BGS) method. The
coupling of the different fields or variables is only considered on the finest level in the outer
(SIMPLE or BGS) iteration. This approach is well known in literature, e.g. for the Navier–
Stokes equations [30, 68], fluid-structure interaction [27, 71] or general n-field problems [80]. The
implementation is very easy and allows to use existing multigrid components in a standalone
fashion within the solver. A graphic representation of this approach is shown in Figure 3a.

Fully coupled multigrid approach: Truly monolithic algebraic multigrid methods aim at
coarsening the fully coupled fine level problem such that the block structure of the fine level
matrix is preserved and the coupling information is present on all coarser levels, cf. Figure 3b.
This is often achieved by using segregated transfer operators to preserve the characteristics of
the sparsity pattern across all levels. Then, each level utilizes block smoothers to address the
coupling. In [81], a coupled AMG method is developed and analyzed for a stabilized mixed finite
element discretization of the Oseen equations. Fully coupled multigrid methods for multiphysics
problems have been described in [27, 43, 80].

A
(3

)
00

A
(2

)
00

A
(1

)
00 A

(1
)
11

A 00

A 01

A 10

A 11

(a) Outer coupling iteration with nested
multigrid methods. Example with four and

two multigrid levels for A00 and A11.

A
(3

)
00

A
(3

)
10

A
(3

)
01

A
(3

)
11

A
(2

)
00

A
(2

)
10

A
(2

)
01

A
(2

)
11

A
(1

)
00

A
(1

)
10

A
(1

)
01

A
(1

)
11

A 00

A 10

A 01

A 11

(b) Multiphysics multigrid approach with
nested coupling iteration on all multigrid

levels.

Figure 3. Multigrid for block matrices.

While the nested multigrid approach is easier to implement, it also allows for a high degree of
modularity, since the multigrid hierarchies used to approximate the block inverses of the block
smoother on the fine level can easily by swapped by any other method, either another type of
multigrid algorithm, or another type of multi-level scheme (e.g. based on domain decomposition),
or even any single-level approach if the block is of moderate size and scalability is not deteriorated.
This flexibility is particularly useful if the coupled blocks differ a lot in size or if the user wants to
apply a highly optimized solver for an individual block. The fully coupled multigrid method does
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not offer such a degree of flexibility, yet it propagates the coupling conditions throughout the entire
preconditioner. Thus, one expects a stronger and more robust preconditioning effect, since the coarse
level corrections are aware of the coupling conditions. This expectation will later be confirmed in the
numerical experiments, where the number of iterations for the fully coupled scheme is lower and more
independent of the active contact nodes than for the nested multigrid approach.

3.3. Designing algebraic multigrid methods for contact problems

In the present context, we can interpret the mortar contact problem in saddle point formulation as
the coupling of two types of equations: the structural equations and the contact equations which serve
as constraint equations. Since the contact constraint equations are only defined along the contact
interface, we can further classify the mortar contact problem as an interface-coupled problem (in
contrast to volume-coupled problems). This information is important for the choice of coarsening
strategy. The contact constraint equations are also responsible for the characteristic saddle point
structure, which needs special attention when choosing an appropriate coupling algorithm between
the structural equations and the contact constraints. Considering the class of fully coupled AMG
schemes, the generalized saddle point problem (5) has to be preserved on all multigrid levels such
that the contact constraints are considered on all levels. Due to the constraints, this will require Schur
complement based level smoothers on all levels.

Alltogether, the key ingredients for designing an algebraic multigrid method for contact problems in
saddle point formulation are the coarsening strategy as proposed in Section 4 and the level smoother
and the coupling iteration as detailed in Section 5.

4. A COARSENING STRATEGY FOR MORTAR CONTACT CONSTRAINTS

4.1. Segregated transfer operators

To keep the characteristic saddle point block structure (5) on all multigrid levels, the common approach
is to use segregated transfer operators

P`+1 =

(
Pu 0

0 P̂
λ

)
`+1

and R`+1 =

(
Ru 0

0 R̂
λ

)
`+1

, (7)

as, e.g. introduced in [5, 11]. The segregated block transfer operators (7) are put together from
the transfer operator blocks for the different physical and mathematical fields. Here, Pu and Ru

describe the transfer operator blocks corresponding to the stiffness matrix block K in (5). The transfer

operators P̂
λ
and R̂

λ
define the level transfer for the Lagrange multipliers.

The block diagonal structure in (7) guarantees that the primary displacement variables and the
secondary Lagrange multipliers are not “mixed up" on the coarser levels. That is, the coarse level matrix
still has the same block structure with a clear distinction of momentum and constraint equations as
for the fine level problem since the columns and rows of the transfer operators P`+1 and R`+1 can
be interpreted as some kind of basis functions.

For many volume-coupled problems, for example in thermo-structure-interaction problems [19], it

is straightforward to generate P̂
λ

and R̂
λ

to be consistent with Pu and Ru. That is, in context of
smoothed aggregation algebraic multigrid we just use the same aggregates for building Pu and P̂

λ

(and the same for the restrictors, respectively).
For interface-coupled problems with interface constraints it is more difficult. Due to the saddle point

structure of (5), the nonzero pattern of the Z block is insufficient to generate valid aggregates for the
Lagrange multipliers. Consequently, we need a special routine for finding aggregates for the Lagrange
multipliers λ to be able to build the (non-smoothed) transfer operators P̂

λ
and R̂

λ
. Nevertheless

it seems natural to reflect the aggregation information of the structural equations along the contact
interface in the choice of the aggregates for the corresponding Lagrange multipliers λ.

4.2. Aggregation strategy for displacement variables

In order to preserve the physics of the fine level contact problem, it is important to keep the
two solid bodies separated in the matrix representation on all coarse levels. Therefore, we apply
the standard aggregation strategy to a modified K block from (5), where all off-diagonal entries
representing connections between the two solid bodies are dropped — in paricular the matrix
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Figure 4. Aggregation for contact example in saddle point formulation.

blocks KIM,KAM,KMI and KMA — in order to make sure that the resulting displacement
aggregates A`

u do not cross the contact interface (see Figure 4). Neglecting these blocks during
aggregation guarantees that the two solid bodies are not melted together in the coarse matrix
representation. We stress that the modified K is never formed explicitly, but rather the off-diagonal
entries are dropped on the fly during the aggregation process.

4.3. Aggregation strategy for Lagrange multipliers

In contrast to geometric multigrid methods, there is not so much literature on aggregation-based
AMG methods for contact problems in saddle point formulation. The only publication, the authors
are aware of covering all aspects of smoothed aggregation methods for structural contact problems in
saddle point formulation, is [5], which also discusses a special aggregation strategy for the Lagrange
multipliers. To find aggregates A`

λ for the Lagrange multipliers, Adams [5] proposes to apply the
standard aggregation algorithm to the graph of a suitable matrix representing the Lagrange multipliers.
However, this approach has some drawbacks: First, the graph used for the aggregation of the Lagrange
multipliers λ has to be built explicitly to serve as input for the standard aggregation algorithm.
Secondly, one has to run the aggregation algorithm sequentially both for the displacement degrees of
freedom and for the Lagrange multipliers. For the second run of the aggregation method, one might
have to use a different set of aggregation parameters to obtain optimal results, which further increases
the complexity for the user. Algorithmically, the resulting aggregates A`

λ for the Lagrange multipliers
are built independently from the displacement aggregates A`

u.
In this work, we propose a different approach to build aggregates A`

λ for the Lagrange multipliers,
which does not suffer from above drawbacks. Instead of explicitly building some helper matrix
for the aggregation routine, interface aggregates A`

λ for the Lagrange multipliers are directly
generated using the aggregation information of the displacement variables (see Figure 4). The resulting
interface aggregates for the Lagrange multipliers are by construction aligned with the corresponding
displacement aggregates.

The exact aggregation procedure is described in Algorithm 1. Assuming that the standard
aggregates A`

u for the displacement degrees of freedom are available, new aggregates A`
λ are built

by collecting the corresponding Lagrange multiplier degrees of freedom. Beside the displacement
aggregates A`

u, only the mortar matrix D is needed to algebraically reconstruct the contact interface
and find the associated Lagrange multipliers. The new aggregates A`

λ for the Lagrange multipliers
can be interpreted as the natural extension of the displacement aggregates A`

u at the interface.
This facilitates to keep the ratio of coarse level nodes at the slave contact interface and the coarse
Lagrange multipliers constant, which also balances the ratio of contact constraints and inner structural
displacement degrees of freedom over all multigrid levels.
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Algorithm 1: Aggregation algorithm for Lagrange multipliers.
Procedure LagMultAggregation(A`

u,D)

Initialize empty set and counter for aggregates A`
λ

A`
λ ← ∅, l← 0

Initialize empty mapping of displacement aggregates to Lagrange multiplier aggregates
d(k)← ∅ ∀k = 1, . . . ,mA`

u

Loop over slave displacement DOFs (rows of D)
for i ∈ DS do

Find displacement node nu id corresponding to displacement DOF i
nu ← n(i)

Find aggregate index k that contains displacement node nu

Find k with A`
(k) ∈ A`

u where nu ∈ A`
(k)

Loop over all Lagrange multipliers j
for j ∈ Dλ do

Check whether Lagrange multiplier j is coupled with row i
if Di,j 6= 0 then

Find pseudo node nλ for Lagrange multiplier j
nλ ← n(j)

Check whether to build a new Lagrange multiplier aggregate
if d(k) = ∅ then

Increment internal aggregation counter
l← l + 1

Build a new aggregate and add Lagrange multiplier node nλ

A`
(l) ← {nλ}

Associate displacement aggregate k with Lagrange multiplier aggregate l
d(k)← {l}
Add new aggregate to set of Lagrange multiplier aggregates A`

λ

A`
λ ← A`

λ ∪A`
(l)

else
Extend aggregate 0 ≤ d(k) ≤ l with pseudo node
A`

(d(k)) ← A`
(d(k)) ∪ {nλ}

end
end

end
end

Return aggregates for Lagrange multipliers
return A`

λ

The coarsening strategy outlined in Algorithm 1 as well as all other AMG components of the
presented saddle-point preconditioner for contact problems have been implemented in MueLu [8],
the next-generation multigrid package within the Trilinos project [3]. For further details on the
implementation, we refer to the MueLu User’s Guide [8] and the MueLu website [2].

5. BLOCK SMOOTHING METHODS FOR MORTAR CONTACT PROBLEMS

Using saddle point preserving aggregation and segregated transfer operators as outlined in Section 4
to generate a fully coupled AMG hierarchy (see Section 3.3), the coupling of structural equilibrium
equations and contact constraints on all levels of a fully coupled AMG hierarchy is now addressed
by block smoothing methods on each level. Schur complement based coupling iterations present
themselves as ideal candidates to deal with the saddle point structure resulting from the constraint-like
contact equations.
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Nevertheless, not all classical Schur complement based block smoothers for saddle point systems
behave the same way when applied to contact problems. Specifically, it is important that the block
smoothers account for the contact constraints in (5). While each iteration’s intermediate solution
itself is not of great interest, its satisfaction of the contact constraints impacts the overall number of
required iterations to reach convergence, since only an intermediate solution that satisfies the contact
constraints can then also be accepted as the final solution of the iterative process. While an exact
satisfaction of the contact constraints by the block smoothers is desirable, practical computations
require a compromise between the accuracy of the block smoothers and their computational effort in
order to obtain computationally competitive preconditioners.

In Section 5.1, we first revisit some classical smoothing methods for saddle point systems. Therefore,
we assume exact inverses for the predictor and corrector step of each smoother to focus on the
systematic error resulting from the specific block structure of the smoother. The assumption of exact
inverses allows to assess the behavior of each block smoother via an error matrix, such that the impact
of the block smoother on the contact constraints can be characterized. Afterwards, we introduce
computationally cheaper variants with inexact block inverses in the predictor and corrector step as a
compromise between accuracy and performance in Section 5.2, however preventing the discourse on
error matrices. While the approximations due to the block structure of a specific smoother originate
from the definition of the smoothing method, the quality of the approximate block inverses can fully
be controlled by the user. Finally, Section 5.3 discusses their application in the context of saddle point
systems for contact formulations.

5.1. Block smoothers for saddle point problems

Now, we study the systematic errors introduced by specific block smoothers and their impact
on the contact constraints. Therefore, we first assume exact mathematical block operations. To
carefully distinguish between systematic errors and errors stemming from practical Schur complement
approximations, we postpone the discussion of such approximations to Section 5.2.

The general block smoothing scheme can be written as[
∆uk+1

∆λk+1

]
=

[
∆uk

∆λk

]
+Q−1

([
rku
rkλ

]
−
(
K CT

1
C2 −Z

)[
∆uk

∆λk

])
(8)

where Q describes the 2× 2 block preconditioning matrix approximating the 2× 2 block operator
in (5). Typical block smoothers consist of an outer coupling iteration with nested subsolvers to build
the inverses of the diagonal blocks of Q in an algorithmic predictor-corrector scheme. In the following,
a few classical block smoothers from literature (e.g. [49]) are introduced, stating that this list is by
far not complete. All of them can be interpreted as block extensions of classical iterative smoothing
methods following the general block scheme (8), but depending on the definition of Q with a different
effect on the contact constraints by introducing certain systematic errors. In general, the better Q
approximates the block operator from (5), the lower the number of linear iterations will be when using
the block smoother within a multigrid preconditioner.

5.1.1. Uzawa smoother For the (inexact) Uzawa smoother, one chooses

QUZ :=
1

α

(
K 0

C2 −S̃

)
. (9)

The parameter α > 0 is a damping parameter and S̃ describes a cheap approximation of the Schur
complement S = Z + C2K

−1CT
1 . For a theoretical review of Uzawa like smoothers, the reader is referred

to [15, 23, 98].
With the off-diagonal coupling block C2 in (9), the smoother performs a one-way coupling in

the sense that the Lagrange multiplier increments now depend on the current increment of the
displacement degrees of freedom. Algorithm 2 represents the practical implementation as a predictor-
corrector method. In each smoothing iteration, one calculates a prediction for the displacement
increments δuk+1, which are taken into account when solving for the corresponding Lagrange
multiplier increments δλk+1.

Assuming the smoothing iteration has converged, the error matrix for the Uzawa smoother is given
as

EUZ := A−QUZ =

( (
1− 1

α

)
K CT

1(
1− 1

α

)
C2 −Z + 1

α S̃

)
. (10)
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Algorithm 2: Uzawa smoother.
Procedure Uzawa(α, kmax)

Apply kmax smoothing sweeps with the Uzawa algorithm
for k ← 0 to kmax − 1 do

Prediction step: solve for δuk+1

K δuk+1 = rku − K∆uk − CT
1 ∆λk

Correction step: solve for δλk+1

−S̃ δλk+1 = rkλ − C2∆uk + Z∆λk − C2 δu
k+1

Update step: update solution variables
∆uk+1 ← ∆uk + α δuk+1

∆λk+1 ← ∆λk + α δλk+1

end

Return smooth solution vector
return

(
∆ukmax ,∆λkmax

)

With α = 1, S̃ = Z + C2K̃
−1CT

1 being an approximation to the Schur complement, and K̃ denoting an
easy-to-invert approximation of K, e.g. the diagonal of K as a cheap variant for the approximation K̃,
i.e. K̃ = diag(K), it is easy to verify that the error matrix of the Uzawa smoother reduces to

EUZ =

(
0 CT

1

0 C2K̃
−1CT

1

)
. (11)

That is, since the second block row in the error matices (10) or (11) does not vanish, the Uzawa
smoother by definition cannot exactly fulfill the contact constraints, but adds a systematic error for
the contact constraints. This might have a negative impact on the overall performance of the iterative
linear solver.

5.1.2. Braess–Sarazin smoother Originally introduced for the Stokes problem in [11], the Braess–
Sarazin smoother belongs to the class of block approximate smoothers and is based on the choice

QBS :=

(
αK̃ CT

1
C2 −Z

)
(12)

for the block preconditioning matrix Q in (8). Again, the parameter α > 0 denotes a scaling parameter
and K̃ refers to an easy-to-invert approximation of K.

Algorithm 3: Braess–Sarazin smoother.
Procedure BraessSarazin(α, kmax)

Apply kmax smoothing sweeps with Braess–Sarazin algorithm
for k ← 0 to kmax − 1 do

Prediction step: determine prediction ∆uk+
1
2 by calculating

∆uk+
1
2 = ∆uk + 1

α K̃
−1(rku − K∆uk − CT

1 ∆λk
)

Correction step: solve for δλk+
1
2

−
(
Z + 1

αC2K̃
−1CT

1

)
δλk+

1
2 = rkλ + Z∆λk − C2∆uk+

1
2

Update step: update solution variables
∆λk+1 ← ∆λk + δλk+

1
2

∆uk+1 ← ∆uk+
1
2 − 1

α K̃
−1CT

1 δλk+
1
2

end

Return smooth solution vector
return

(
∆ukmax ,∆λkmax

)
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Assuming convergence of the smoother, the error matrix for the Braess–Sarazin smoother is given
as

EBS := A−QBS =

(
K− αK̃ 0

0 0

)
. (13)

With the second block row in the blocked operator (5) being retained in (12), the Braess–Sarazin
smoother seems to be a reasonable choice for dealing with contact constraints. The error matrix
in (13) reveals that the quality of the block smoother only depends on the choice of K̃.

The implementation as a predictor-corrector method is based on the splitting of (12) into(
αK̃ CT

1
C2 −Z

)
=

(
αK̃ 0

C2 −Z− 1
αC2K̃

−1CT
1

)(
I 1

α K̃
−1CT

1
0 I

)
. (14)

As one can easily see from Algorithm 3, the prediction step can be understood as one hard-coded sweep
with a (damped) Jacobi iteration. In other words, the quality of the prediction for the displacement
degrees of freedom must be considered rather poor. Exactly fulfilling contact constraints with respect to
a rather poor prediction of the displacement variables might not be optimal for the overall performance
of the preconditioner.

5.1.3. SIMPLE variants Originally introduced in [50, 51], the SIMPLE method is based on the
approximate block factorization

QSIMPLE :=

(
K 0

C2 −S̃

)(
I K̃−1CT

1

0 1
αI

)
=

(
K KK̃−1CT

1

C2

(
1− 1

α

)
C2K̃

−1CT
1 − 1

αZ

)
(15)

for the iterative method in (8). In (15), S̃ denotes an approximation of the Schur complement
S := Z + C2K

−1CT
1 with a cheap and easy-to-invert approximation K̃ of the block K. Algorithm 4

shows the implementation of the SIMPLE method using the predictor-corrector scheme (cf. [22]).

Algorithm 4: SIMPLE smoother.
Procedure SIMPLE(α, kmax)

Apply kmax smoothing sweeps with SIMPLE algorithm
for k ← 0 to kmax − 1 do

Prediction step: solve for ∆uk+
1
2

K∆uk+
1
2 = rku − CT

1 ∆λk

Correction step: solve for δλk+
1
2

−S̃ δλk+
1
2 = rkλ + Z∆λk − C2∆uk+

1
2

Update step: update solution variables
∆λk+1 ← ∆λk + α δλk+

1
2

∆uk+1 ← ∆uk+
1
2 − αK̃−1CT

1 δλk+
1
2

end

Return smooth solution vector
return

(
∆ukmax ,∆λkmax

)
For our applications, we found the diagonal matrix containing the row sums of

∣∣K∣∣ =(
|aij |)i,j=1,...,nK

to be a good approximation for block K. This corresponds to the SIMPLEC method
as introduced in [74]. That is, K̃ is defined as the diagonal lumping of

∣∣K∣∣ with
K̃ = diag

( nK∑
j=1

|aij |
)
, i = 1, . . . , nK. (16)

The default choice for S̃ is consequently S̃ = αZ + αC2K̃
−1CT

1 with K̃ as defined in (16). A
more theoretical discussion on the mathematical consequences of approximations for the Schur
complement S can be found in [97].
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For the SIMPLE preconditioner, the error matrix is calculated by

ESIMPLE := A−QSIMPLE =

(
0 CT

1 − KK̃−1CT
1

0 −Z− C2K̃
−1CT

1 + 1
α S̃

)
. (17)

As one can see from (17), SIMPLE perturbs the Lagrange multipliers, but it does not affect the
terms that operate on the primary displacement variables since the first block column in (17) is zero.
Choosing S̃ = αZ + αC2K̃

−1CT
1 , the error matrix reduces to

ESIMPLE =

(
0 CT

1 − KK̃−1CT
1

0 0

)
. (18)

That is, an appropriate approximation S̃ of the Schur complement S allows to exactly satisfy the
contact constraints within one smoothing sweep. Depending on the choice for the approximation K̃,
the SIMPLE method admits an error in the coupling between displacements and contact constraints.
However, compared to the Braess-Sarazin method from Section 5.1.2, we put more focus on a good
prediction for the displacements with a consistent update for fulfilling the contact constraints.

5.2. Cheap variants of block smoothers

As one can easily see from the Algorithms 2 to 4, all block smoothing methods internally require
inverses of the matrix blocks on the matrix diagonal and of the Schur complement operator S̃.
Specifically, there is one linear system to be solved in the prediction step and one during the correction
step. To keep the computational costs low in practical computations, one does not solve for the block
inverses exactly, but apply a cheap approximation, e.g. by using a fixed number of smoothing sweeps
with a relaxation-based smoothing method such as symmetric Gauss–Seidel or an ILU sweep. This
allows for more flexibility for finding a good compromise between quality and performance, as the
user can decide how much effort should be put on finding a good prediction and fulfilling the Schur
complement equation in the corrector step. While the systematic errors introduced by the choice of
the block smoother from Section 5.1 are fixed, the practitioner has full control over the quality of the
block inverses.

The numerical examples in Section 6 show that such an approximation leads to efficient and
computationally reasonable block smoothing methods. As a naming convention, the prefix “Cheap" is
added to the name of the block smoothing method to indicate the usage of a cheap approximation for
finding the inverse of the diagonal blocks in addition to the systematic approximations of building the
Schur complement operator as discussed in Section 5.1.

The block smoothing methods and their cheap variants are available in the Xpetra package of the
Trilinos project [3]. For further details on the implementation, we refer to the MueLu User’s Guide
[8] and the MueLu and Xpetra websites [2, 4], respectively.

5.3. Comparison of saddle point smoothing methods for contact problems

Considering the block scheme of (5), there are two main challenges for contact problems. First, we
have the two distinct sets of equations as described in Section 2.3: the structural equations formulated
in cartesian coordinates and the set of contact constraints formulated in normal-tangential coordinates
relative to the contact surface. Second, the coupling of those two distinct sets of structural equations
and contact constraint equations.

Algorithmically, the coupling of structural equations at the contact interface via the off-diagonal
blocks in (5) is only considered within the block smoothers from Section 5.1. Therefore, constraint
smoothers (cf. [39]) are the natural choice for contact problems, since the contact problem is implicitly
governed by the contact constraint equations. Only solutions that are in alignment with the contact
constraints are of interest.

Under certain preconditions as discussed in Section 5.1 and assuming sufficient smoother iterations
to reach convergence of the smoother, both the Braess–Sarazin method and the SIMPLE-based
methods would exactly fulfill the contact constraints as one can see from equations (13) or (18).
Therefore, with a systematic error in the lower-right block of (11), the Uzawa method seems to be
less promising for contact problems. In the Braess–Sarazin method, the approximation K̃ = diag(K)
is hard-coded with some scaling parameter α > 0 and consistently used within the approximate Schur
complement operator, which is defined by S̃ = Z + 1

αC2K̃
−1CT

1 .
In contrary to the Braess–Sarazin method, the SIMPLE based methods keep the full K block

whenever possible in the block factorization and use K̃ only where its inverse is required. Consequently,
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Figure 5. Two solid bodies example — Geometric configuration and parameters.

in “cheap" variants of the SIMPLE method, more elaborate smoothing strategies can be used for the K
block instead of a hard-coded Jacobi sweep. Therefore, one can think of the SIMPLE methods to allow
for a more balanced quality of approximations for the displacement degrees of freedom and Lagrange
multipliers for the contact constraints, whereas the Braess–Sarazin method exhibits an imbalance in
the sense that the computational effort spent for approximating the constraints is much higher than
for dealing with the displacement variables.

6. NUMERICAL EXAMPLES

For the numerical examples, we use our in-house code BACI [1] that internally uses various capabilities
from the Trilinos project [3]. The implementation of the multigrid algorithms is based on Trilinos’
MueLu package [8, 84]. In particular, all block smoothers from Section 5 as well as the contact
specific aggregation strategy for the Lagrange multiplier unknowns as described in Section 4 are
readily available in MueLu.

6.1. Two solid bodies example

With the first example, we want to study the effect of the block smoothers from Section 5 for contact
problems. Here, we not only compare different block smoothers, but also highlight the effect of varying
the quality of the sub-smoothing steps within the block smoother versus increasing the number of outer
coupling iterations.

Motivated by findings in our previous work [85], this example briefly revisits a detail that has been
problematic in the context of contact problems in condensed contact formulations. While the discrete
global unknowns (u,λ) are – as usual – formulated with respect to the global Cartesian frame, the
discrete Lagrange multiplier weights µ and therefore the contact constraint equations in (3b) and (3c)
are formulated with respect to a local convective coordinate system. This local system is defined at
each slave node j by a surface normal vector and two tangent vectors, i.e. by a triad of orthonormal
basis vectors (n)j , (τ ξ)j and (τη)j . Although it represents a quite intuitive and natural choice in
contact mechanics, this local constraint formulation may lead to non-diagonally dominant system
matrices and therefore poses a serious challenge to the development of iterative linear solvers as has
been elaborated in [85]. In the following, we will also investigate the susceptibility of the proposed
saddle point preconditioners to this phenomenon.

6.1.1. Geometrical setup Since we are interested in the solver behavior, by intention we choose
a simple 3D contact example as shown in Figure 5. There are two solid bodies with the same
material parameters using a Neo-Hookean material (density ρ0 = 0.1 kg

m3 , Young’s modulus E = 10
GPa, Poisson’s ratio ν = 0.3). The initial gap between the two solid bodies is 0.02 meters. The upper
solid body (size: 0.8m× 0.8m× 0.5m) is moving down with constant velocity along the normal to the
contact interface towards the lower fixed solid body (size: 1.0m× 1.0m× 1.0m).

6.1.2. Experimental setup To investigate a potential impact of the contact formulation in different
coordinate systems (cartesian coordinates for the structural degrees of freedom and normal-tangential
coordinates for the Lagrange multipliers) on the linear solver, we perform a similar experiment as
introduced in [85] and rotate the example setup around αy and αz as shown in Figure 6. We expect
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Figure 6. Two solid bodies example — Experimental setup to study independence of spatial orientation.

the number of linear iterations to be independent of the rotation angles αy and αz , since the underlying
physics do not change. Any dependency of the linear solver on αy and αz would be a result of purely
numerical effects and would turn out highly problematic for the iterative solution of large and complex
contact problems. For reasons of symmetry, it is sufficient to vary αy and αz within 0 ≤ αy, αz ≤ π

2 .

6.1.3. Discretization The spatial discretization is based on a 10× 10× 10 mesh for each solid block
with altogether 6000 displacement degrees of freedom and 300 Lagrange multipliers modeling the
contact coupling constraints for the 10× 10 slave nodes at the contact interface (see Figure 5). The
simulation runs for 40 time steps with a time step size of 0.01s on 4 processors. After 6 time steps
(t = 0.06s) both bodies come into contact and are deformed. We assume frictionless contact here. With
this example we reduce the contact-specific effects (such as the contact search based on an active set
strategy) to a minimum, such that one can focus on the linear solvers. That is, the contact zone is
not changing once the two solid bodies are in contact.

6.1.4. Stopping criteria The nonlinear iteration inside each time step stops if either ‖∆u‖e < 10−8

holds for the Newton increment of the displacement degrees of freedom, or alternatively, if the
conditions ∥∥rui ∥∥e < 10−6 ∧

∥∥∥rλi ∥∥∥
e
< 10−4 (19)

hold for the nonlinear residuals rui and rλi in (4) after applying i Newton iterations. Thereby, ‖•‖e
denotes the Euclidian vector norm. Those stopping criteria for the nonlinear solver are chosen to result
in the same number of nonlinear iterations in each time step for an easier comparison of the linear
solver behavior.

Within each Newton iteration, the saddle point system (4) is solved iteratively using a
preconditioned GMRES method with a 3-level AMG preconditioner as described in Section 3. The
iterative process for the linear system is considered to be converged, if it is∥∥∥∥rkr0

∥∥∥∥
e

< 10−8 (20)

for the full residual vector rk =

[
ru

rλ

]
in the linear iteration step k. Here, the subscript i for the

nonlinear Newton iteration is dropped.
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Table I. Two solid bodies example — Average (maximum) number of linear GMRES iterations per
nonlinear iteration (over all 40 time steps) for different combinations of rotation angles αy and αz .
As preconditioner, a 3 level AMG method (PA-AMG + PA-AMG, minimum aggregate size: 6 nodes)
is used with different level smoothers. Within the block smoothers on all multigrid levels, symmetric
Gauss–Seidel is used for the structural degrees of freedoms and ILU for the Lagrange multipliers.

(a) Level smoother: 3 CheapUzawa(0.7) with 1 SGS (0.7) + ILU(0)

αy

0 1
8π

1
4π

3
8π

1
2π

α
z

0 26.2 (30) 26.0 (30) 24.6 (29) 24.6 (30) 26.0 (29)
1
8π 26.8 (30) 25.8 (37) 25.3 (30) 24.7 (30) 27.3 (31)
1
4π 25.9 (31) 25.1 (32) 25.3 (30) 28.7 (40) 26.0 (31)
3
8π 25.9 (31) 25.0 (30) 24.9 (30) 25.5 (33) 25.3 (29)
1
2π 26.1 (30) 25.4 (32) 25.5 (30) 26.8 (31) 26.0 (30)

(b) Level smoother: 3 CheapBraessSarazin(1.9) with ILU(0))

αy

0 1
8π

1
4π

3
8π

1
2π

α
z

0 29.9 (37) 29.6 (36) 27.9 (33) 30.7 (38) 29.7 (37)
1
8π 41.2 (59) 43.1 (68) 42.0 (58) 43.6 (63) 41.4 (59)
1
4π 56.8 (82) 64.8 (86) 68.6 (95) 64.3 (86) 54.9 (75)
3
8π 40.9 (60) 55.5 (74) 73.1 (102) 111.1 (141) 41.3 (61)
1
2π 29.9 (37) 41.0 (55) 56.8 (79) 41.3 (61) 29.7 (36)

(c) Level smoother: 3 CheapSIMPLEC(0.7) with 1 SGS (0.7) + ILU(0)

αy

0 1
8π

1
4π

3
8π

1
2π

α
z

0 20.5 (26) 19.3 (21) 18.8 (23) 19.3 (26) 19.3 (20)
1
8π 20.1 (22) 19.7 (27) 20.0 (24) 19.8 (21) 21.2 (25)
1
4π 20.1 (25) 19.9 (23) 20.1 (23) 22.0 (26) 20.8 (30)
3
8π 19.7 (22) 19.8 (22) 19.8 (23) 20.0 (26) 19.7 (23)
1
2π 19.3 (20) 19.6 (22) 20.4 (27) 20.7 (25) 20.5 (28)

In this work, we focus on the behavior of the linear solver. Therefore, a fixed stopping criterion for
all tested variants is chosen in (20). This allows the comparison of different preconditioning techniques
including their effect on the linear solution strategy. For real world problems, and especially for coupled
multiphysics problems, the task of choosing appropriate stopping criteria for both the nonlinear and
linear solver turns out to be quite challenging. Usually, one would choose a combination of different
(length-scaled) norms for the partial vectors ru and rλ. In order to reduce the solver time in the
inner linear solver, it is recommended to adapt the linear (relative) solver tolerance according to the
residual norms of the outer nonlinear solver.

6.1.5. Results First, the effect of the different saddle point smoothers on the number of linear
iterations is explored. Table I summarizes the average number of linear iterations per time step for
different combinations of the rotation angles αy and αz . The numbers in brackets denote the maximum
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Table II. Two solid bodies example — Average (maximum) number of linear GMRES iterations per
nonlinear iteration (over all 40 time steps) for different rotation angles αy and αz . As preconditioner,
a 3 level AMG method (minimum aggregate size: 6 nodes) is used with different variants of
CheapSIMPLEC. Within the CheapSIMPLEC method on all multigrid levels, symmetric Gauss-Seidel

sweeps are used for the structural degrees of freedoms and ILU for the Lagrange multipliers.

(a) Level smoother: 1 CheapSIMPLEC(0.7) with 1 SGS (0.7) + ILU(0)

αy

0 1
8π

1
4π

3
8π

1
2π

α
z

0 37.5 (57) 35.6 (43) 35.2 (46) 36.1 (44) 35.7 (45)
1
8π 36.4 (45) 37.6 (44) 38.5 (47) 36.3 (43) 38.1 (53)
1
4π 39.1 (50) 37.8 (47) 37.0 (47) 39.2 (48) 37.0 (44)
3
8π 36.3 (43) 37.0 (48) 37.8 (46) 37.2 (51) 36.4 (43)
1
2π 36.2 (47) 38.0 (51) 39.8 (50) 36.9 (50) 36.6 (53)

(b) Level smoother: 1 CheapSIMPLEC(0.7) with 3 SGS (0.7) + ILU(0)

αy

0 1
8π

1
4π

3
8π

1
2π

α
z

0 29.5 (41) 27.5 (34) 28.4 (36) 28.5 (37) 27.1 (36)
1
8π 29.3 (37) 30.1 (40) 32.7 (40) 28.8 (35) 28.4 (38)
1
4π 30.0 (35) 29.6 (37) 28.5 (37) 31.1 (38) 29.2 (36)
3
8π 28.8 (36) 27.8 (34) 28.1 (34) 29.1 (39) 28.1 (34)
1
2π 28.5 (38) 28.4 (34) 29.7 (40) 27.9 (35) 27.1 (35)

(c) Level smoother: 3 CheapSIMPLEC(0.7) with 3 SGS (0.7) + ILU(0)

αy

0 1
8π

1
4π

3
8π

1
2π

α
z

0 15.5 (16) 17.0 (19) 16.9 (20) 15.3 (16) 15.2 (16)
1
8π 16.2 (17) 16.1 (17) 16.3 (17) 15.9 (17) 16.1 (17)
1
4π 16.0 (17) 16.0 (17) 16.0 (17) 15.6 (18) 15.6 (16)
3
8π 15.7 (17) 15.9 (17) 15.9 (17) 15.5 (19) 15.6 (16)
1
2π 15.6 (16) 15.8 (16) 15.7 (16) 15.4 (16) 15.1 (16)

number of linear iterations needed for solving one linear system during the full simulation, roughly
indicating the variation of the number of linear iterations within the simulation. For the CheapUzawa
smoother, the number of iterations does not show a dependence on the rotation angles αy and αz .
Comparing the numbers from Table Ia with the results for the CheapBraessSarazin smoother in Table
Ib, the CheapBraessSarazin smoother heavily suffers from the worse approximation of the displacement
degrees of freedom using one internal hard-coded Jacobi sweep (cf. Section 5.1.2). The resulting
iteration numbers show an obvious dependency on the rotation angles. With a CheapSIMPLEC block
smoother, the number of iterations is lower than for the CheapUzawa smoother and independent
from αy and αz when compared with the CheapBraessSarazin smoother (see Table Ic). So, the linear
solver has some benefit from the two-way coupling of displacements and Lagrange multipliers within
the AMG preconditioner. Compared to the Uzawa smoother, the additional computational costs for
the CheapSIMPLEC method are very low with only one additional matrix-vector product by K̃−1CT

1
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per iteration. Therefore, CheapSIMPLEC is the preferred level smoother for our further experiments
with some cheap approximations for the internal single fields using some sweeps with a (symmetric)
Gauss–Seidel (SGS) method for the structural block or incomplete LU factorization (ILU) for the
Lagrange multipliers.

Table II illustrates how the number of CheapSIMPLEC coupling iterations and the quality
of the single field smoothing methods within the CheapSIMPLEC smoother affect the number
of linear iterations. Improving the quality of the Schur complement approximations within
CheapSIMPLEC (see Tables IIa vs. IIb) as well as increasing the number of CheapSIMPLEC coupling
iterations (see Table IIc) unsurprisingly reduces the number of linear solver iterations. Aside from the
concrete parameter choices for the level smoother, one can even further reduce the number of linear
iterations with a reasonable transfer operator smoothing strategy for the displacement block, e.g. as
indicated in (6).

By intention, we do not report solver timings, since this example is too small to perform reasonable
time measurements, especially when using 4 processors for altogether only 6300 degrees of freedom.

The intention of this example is to compare typical saddle point smoothers within a fully coupled
AMG preconditioner. One can observe the expected behavior that increasing the number of smoothing
sweeps reduces the number of linear GMRES iterations. However, in practice, the variant with a
smaller number of GMRES iterations may not always be the fastest method. This example shows that
the proper choice of block level smoothing is essential for the overall performance of a saddle point
multigrid method. The particular choice of the block smoothing method gives the user full control
over the quality of the coupling with field-specific parameters and allows for fine-grained adaptions
and problem-specific optimizations.

With the experience from this example one can choose efficient level smoothers which provide results
independent from the exact geometric configuration.

6.2. Weak scaling behavior

To assess the behavior of the proposed multilevel preconditioner applied to large-scale examples, we
now report a weak scaling study. To exclude side effects (such as changes in the contact active set) and
to fully focus on the behavior of the preconditioner and iterative linear solver, we study a simplified
and linear contact problem.

6.2.1. Setup We consider a small block (dimensions 0.8m× 0.8m× 0.4m) and a slightly bigger block
(dimensions 1.0m× 1.0m× 0.5m), where contact will occur between the large faces of both blocks.
To reduce the complexity of the contact problem and to exclude nonlinearities due to changes in
the contact active set, the faces opposite to the contact interface are fixed with Dirichlet boundary
conditions, while the blocks initially penetrate each other at the contact interface by 0.001. The
smaller block acts as the slave side and its entire contact area is initialized as “active”. Application
of the contact algorithms will then result in a slight compression of both blocks, such that the initial
penetration vanishes. This problem setup allows to distill the performance of the AMG preconditioner
under uniform mesh refinement and weak scaling conditions.

Both blocks use a Neo–Hooke material with Young’s modulus E = 10 MPa and Poisson’s ratio
ν = 0.3. Denoting the mesh refinement factor with κ, both blocks are discretized with 2κ linear
hexahedral elements along their longer edges and κ elements along the shorter edges. The Lagrange
multiplier field is discretized with standard shape functions, i.e., linear Lagrange polynomials.

6.2.2. Solver and preconditioner settings As linear solver, a preconditioned GMRES method is used
with a fully coupled multigrid approach as described in Section 3.2. The convergence criterion for the
linear GMRES solver is set to ∥∥∥∥rkr0

∥∥∥∥
e

< 10−8 (21)

for the full residual vector rk =

[
ru

rλ

]
in the linear iteration step k. For the segregated block transfer

operator as introduced in (7), we combine smoothed aggregation (SA-AMG) with a prolongator
smoothing factor ω = 4/3 for the displacement aggregates and plain non-smoothed (PA-AMG) transfer
operators for the Lagrange multiplier aggregates. The restriction operators are built as the transposed
of the prolongation operators. Coarsening stops when the total number of rows in the saddle-point
system drops below 5000.

Following the guidance from Section 5.3 and the findings from Section 6.1.5, we apply 3 sweeps of
CheapSIMPLE(0.8) as a level smoother, where both the predictor and corrector step are approximated
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Table III. Weak scaling study — mesh refinement and hierarchy details

nproc κ nuDOF nλDOF ntotalDOF nuDOF/proc n` n
total(n`)
DOF CA

4 20 211806 5043 216849 52951.5 3 948 1.16
8 25 405756 7803 413559 50719.5 3 1275 1.18
16 32 836550 12675 849225 52284.4 3 2661 1.23
24 36 1183038 15987 1199025 49293.2 3 3426 1.24
48 46 2439018 25947 2464965 50812.9 4 393 1.26
72 52 3505950 33075 3539025 48693.8 4 570 1.27
96 58 4845906 41067 4886973 50478.2 4 762 1.28
144 66 7110978 53067 7164045 49381.8 4 1071 1.28
192 73 9594396 64827 9659223 49970.8 4 1401 1.29
240 79 12134880 75843 12210723 50562.0 4 1713 1.29
288 84 14566110 85683 14651793 50576.8 4 2103 1.30
336 88 16729686 93987 16823673 49790.7 4 2421 1.30
384 92 19097550 102675 19200225 49733.2 4 2709 1.30
432 96 21678918 111747 21790665 50182.7 4 3090 1.30
480 99 23760600 118803 23879403 49501.2 4 3884 1.30

by 1 sweep of SGS each. We use the same level smoother layout on all multigrid levels except
of the coarsest level. For the coarsest level, we compare two variants: a direct solver (marked as
“LU”, requiring an expensive merging of the block matrix into a regular sparse matrix format and a
subsequent LU factorization) vs. the CheapSIMPLE level smoother as on all other multigrid levels
(marked as “CheapSIMPLE”). We will study the impact of the coarse solver on scaling behavior,
iteration counts, as well as AMG setup and V-cycle timings.

6.2.3. Results For the weak scaling study, we target the load per rank to be 50k displacement DOFs.
A uniform mesh refinement as outlined in Table III is performed with the finest mesh consisting of
roughly 23.9 million unknowns in the saddle-point system. Therein, nproc denotes the number of MPI
ranks, κ the mesh refinement factor introduced in Section 6.2.1, nuDOF, n

λ
DOF, and n

total
DOF the overall

number of displacement, Lagrange multiplier, and total number of unknowns, nuDOF/proc the average
load per MPI rank. The mesh refinement factor κ is chosen such that the targeted average number of
displacement unknowns per MPI rank is met. The number of levels n`, the actual size of the coarse
level system n

total(n`)
DOF as well as the operator complexity CA (defined as the ratio of non-zero entries of

all multigrid level matrices A` with ` = 0, . . . , n` − 1 and the number of non-zeros on the finest level)
are reported in the last three columns of Table III. The operator complexity CA slightly increases with
larger problem sizes, but does not grow beyond CA ≈ 1.30.

The scaling study is run on our in-house cluster (20 nodes with 2x Intel Xeon Gold 5118 (Skylake-
SP) 12 core CPUs, 480 cores in total, Mellanox Infiniband Interconnect). Solver performance in terms
of the number of GMRES iterations as well as wall clock time spent in the AMG preconditioner
construction and its application (i.e. sweeping through the V-cycle once per GMRES iteration) are
summarized in Figure 7. With respect to iteration counts, both the direct solver as well as the block
smoother yield the GMRES iteration count to be fairly independent of the overall mesh size, especially
when taking the slight deviations of the load per core as detailed in Table III into account.

Using a direct solver on the coarsest multigrid level perfectly deals with all left-over error modes
that are not properly handled by the block smoothers on the finer multigrid levels. Therefore, the
“LU” variant results in a lower iteration count and is less sensitive to the actual size of the coarse level
system. In contrast, when using the CheapSIMPLE block smoother as coarse level solver, we observe a
somewhat higher iteration count together with an obvious impact of the number of multigrid levels on
the iteration count (e.g., when moving from a 3-level hierarchy on 24 MPI ranks to a 4-level hierarchy
on 48 MPI ranks). Increasing the number of multigrid levels helps to compensate the lack of coupling
of the CheapSIMPLE block smoother compared to a direct solve on the coarsest level.

We show the CheapSIMPLE variants for the coarse solve since this variant in practice might be
superior with respect to the overall performance: Regarding AMG setup time, the cost for the direct
coarse solver becomes more expensive with a growing coarse system size, since (i) more matrix entries
need to be moved from a block sparse matrix layout to a regular sparse matrix layout and (ii) a
larger matrix needs to be factorized. For the CheapSIMPLE block smoother as coarse level solver,
no additional communication is required on the coarsest level. Hence, the mild slope in the graph for
preconditioner setup time for the CheapSIMPLE coarse level solver originates only from the Galerkin
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Figure 7.Weak scaling study — Linear solver iterations and AMG setup and V-cycle timings
demonstrate proper weak scaling behavior. The type of coarse solver is indicated in parentheses.

product during hierarchy construction. In terms of preconditioner application, i.e. time spent in the
AMG V-cycle, both methods are almost identical and scale very well.

While proper weak scalability up to 23.9 million unknowns on 480 MPI ranks has been
demonstrated, the actual choice of the coarse solver in practical applications also depends on other
factors such as the frequency of rebuilding the AMG hierarchy or the balance of setup time, V-cycle
time, and cost of the additional GMRES iterations, which all together impact the overall time to
solution. In the next example, we will put attention on effects for the linear solver caused by changes
in the active set of contact nodes for larger problems.

6.3. 1000 deformable rings

Even though only a 2D example of moderate size, the 1000 rings example comes with frequent changes
in the contact active set and, thus, tests the robustness of the proposed multigrid methods. Particularly,
we are interested in the comparison of the fully coupled multigrid approach and the nested multigrid
apparoch as described in Section 3.2.

6.3.1. Setup This example consists of 1000 deformable rings (Neo-Hookean material with E = 210

GPa, ν = 0.3 and ρ0 = 7.83 · 10−6 kg
m3 ) arranged in a rectangle (see Figure 8). A gravitational force

is inducing an acceleration towards a rigid wall. The simulated time extends to 2.0s with a time step
size of ∆t = 0.0005s, yielding 4000 time steps in total. The full mesh consists 110000 nodes with 110
nodes for each deformable ring.

6.3.2. Stopping criteria In each time step, the nonlinear system is handled by a semi-smooth Newton
method. As convergence criteria, we have chosen

‖∆u‖e < 10−8 ∧
(∥∥rui ∥∥e < 10−8 ∧

∥∥∥rλi ∥∥∥
e
< 10−6

)
. (22)

Here, rui and rλi denote the nonlinear residual for the displacement and Lagrange multiplier
variables after i Newton iterations, respectively. Similarly, ∆u denotes the solution increment for
the displacement variables in the i-th Newton iteration.

For solving the linear systems arising during the simulation a GMRES solver is applied with different
variants of AMG preconditioners listed in Table IV. The relative tolerance of convergence for the

GMRES solver is set to
∥∥∥ rk

r0

∥∥∥
e
< 10−8 with rk =

[
ru

rλ

]
being the full residual vector in the linear

iteration step k. Here, the subscript i for the nonlinear Newton step is dropped.
The stopping criteria (22) for the nonlinear solver are carefully chosen in such a way that the

simulations with all the tested preconditioner variants shown in Table IV always result in the same
number of nonlinear iterations. This way we can directly compare the number of linear iterations of
all tested solver variants which allow to draw some conclusions on the multigrid preconditioners.

6.3.3. Results Table IV provides an overview of the chosen preconditioner parameters for the level
smoothers. For both the nested multigrid schemes and the fully coupled multigrid schemes we apply
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(a) Initial configuration with close-up view of the meshed deformable rings at t = 0.0s

(b) Configuration at t = 0.5s (c) Configuration at t = 2.0s

Figure 8. 1000 deformable rings — Characteristic stages at different times.

Table IV. 1000 deformable rings — Different AMG variants.

Preconditioner type
Full multigrid based methods Nested multigrid based methods

PA-AMG (CheapSIMPLE)
Transfer operators: PA-AMG
Level smoother: 1 CheapSIMPLEC(0.8)
− Pred. smoother: 3 SGS (0.8)
− Corr. smoother: ILU (0)

CheapSIMPLE (PA-AMG)
Block prec.: 1 CheapSIMPLEC(0.8)
− Pred. smoother: AMG
− Transfer op.: PA-AMG
− Level sm.: 1 SGS (0.8)

− Corr. smoother: KLU

Emin (CheapSIMPLE)
Transfer operators: Emin
Level smoother: 1 CheapSIMPLEC(0.8)
− Pred. smoother: 3 SGS (0.8)
− Corr. smoother: ILU (0)

CheapSIMPLE (SA-AMG)
Block prec.: 1 CheapSIMPLEC(0.8)
− Pred. smoother: AMG
− Transfer op.: SA-AMG (0.8)
− Level sm.: 1 SGS (0.8)

− Corr. smoother: KLU

the level smoother on all multigrid levels including the coarsest level. For each class of multigrid
preconditioners, only those variants are presented, that give the best overall timings and are able to
accomplish the all 4000 time steps of the full simulation.

The multigrid parameters are chosen to be the same for all preconditioner variants: the minimum
size of the aggregates is set to 6 nodes for the two-dimensional problem and the maximum coarse level
size is set to 1000 degrees of freedom, yielding a 3 level multigrid method.

For the fully coupled AMG variants, different transfer operator strategies are compared, namely
the non-smoothed (PA-AMG) transfer operators and the energy minimization approach with local
damping parameters for transfer operator smoothing denoted by Emin, cf. [64]. For the nested AMG
variants, we compare transfer operators based on PA-AMG and SA-AMG. All the simulations have
been run on 16 cores (spread over 2 Intel Xeon E5-2670 Octocore CPUs).

Figure 9a shows for each time step the overall number of linear iterations for all nonlinear iterations
stacked onto each other. Compared to the CheapSIMPLE based methods, the fully coupled AMG
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Table V. 1000 deformable rings — Exemplary timings in [s] of the different preconditioning variants
from Table IV for the full simulation (4000 time steps).

Method Setup costs Solver time Overall solver time
PA-AMG (CheapSIMPLE) 11870 10013 21883
Emin (CheapSIMPLE) 12820 8679 21499
CheapSIMPLE (PA-AMG) 11730 11103 22833
CheapSIMPLE (SA-AMG) 12300 10763 23063

variants need a significantly lower number of linear iterations to solve the problem in each time step.
This can be explained by the better approximation of the displacement degrees of freedom using
3 instead of 1 damped Gauss–Seidel sweeps. One can also see how the number of linear iterations
correlates with the number of active contact nodes. Obviously, the fully coupled AMG variants are
less sensitive to the changes in the number of active contact nodes than the CheapSIMPLE based
methods. In Figure 9b, the overall linear solver time is given for each time step. Again, the fully
coupled AMG variants perform better, although the difference is less pronounced due to the higher
computational effort of fully coupled AMG implementations. The number of nonlinear iterations per
time step is 2 for the initial phase without contact and then varies between 4 and 6, when contact is
active. It is the same for all preconditioner variants due to the particular choice of stopping criteria of
the nonlinear solver (see Section 6.3.2). Moreover, the number of nonlinear iterations is independent
of the size of the active set.

Finally, overall timings for the linear solver including preconditioner setup are reported in Table V.
The overall solver time only varies slightly for all given variants. The variants Emin (CheapSIMPLE)
and CheapSIMPLE (SA-AMG) need more setup time due to the additional effort of prolongator
smoothing. Emin (CheapSIMPLE) can fully amortize the additional setup cost during the solve phase
due to coarse grid corrections, that respect the contact constraints, while CheapSIMPLE (SA-AMG)
does not have this benefit and, thus, requires the largest overall solver time. To show a fair comparison,
the preconditioner has been rebuilt in every nonlinear iteration step. Of course, re-use strategies might
increase amortization of setup costs and reduce overall solver timings when solving actual problems.

6.4. Two tori impact example

Inspired by a similar analysis in [95], with the two tori impact example we test the proposed multigrid
variants from Section 3.2 on a complex 3D contact example with more than 1 million unknowns.
Please refer to [53] for the detailed problem setup of the two tori impact example with geometry and
load conditions.

6.4.1. Setup The example consists of two thin-walled tori with a Neo-Hookean material model
(E = 2250 GPa, ν = 0.3, ρ0 = 0.1 kg

m3 ) with a major and minor radius of 76m and 24m and a wall
thickness of 4.5m. The left torus in Figure 10 lies in the xy-plane with resting initial conditions. The
right torus has been rotated around the y-axis by 45 degrees and has an initial velocity of 1.0 m

s
directed towards the left torus. The simulated time is 10s divided into 200 time steps with a time
step size of 0.05s using a generalized-α time integration scheme [18]. The mesh consists of 284672
first-order hexahedral elements with 350208 nodes.

With the rather complex geometry and contact configuration, that heavily and frequently changes
over time, this example can be considered as a representative test for the robustness and efficiency of
the tested numerical methods.

6.4.2. Stopping criteria The stopping criteria for the semi-smooth Newton method are chosen as

‖∆u‖e < 10−7 ∧
(∥∥∥∥ruiru0

∥∥∥∥
e

< 10−8 ∧
∥∥∥rλi ∥∥∥

e
< 10−4

)
. (23)

Here, rui and rλi denote the (nonlinear) residual for the displacement variables and Lagrange multipliers
in the i-th Newton iteration, respectively. The quantity ∆u describes the solution increment for the
displacement variables only. Again, the stopping criteria in (23) for the nonlinear solver are specifically
chosen to produce the same number of nonlinear iterations for all tested solver variants. This allows
for an easy comparison of the number of linear iterations during the simulation.
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Figure 9. 1000 collapsing rings example — Results for different AMG preconditioner variants.

As linear solver a preconditioned GMRES method is used with the convergence criterion

∥∥∥∥rkr0
∥∥∥∥
e

< 10−8 (24)
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(a) t = 0.0s (b) t = 2.5s (c) t = 5.0s (d) t = 7.5s

Figure 10. Two tori impact example — Characteristic stages of deformation.

Table VI. Two tori impact example — Different AMG variants.

Full multigrid based methods SIMPLE based methods

PA-AMG (CheapSIMPLE)
Transfer operators: PA-AMG
Level smoother: 1 CheapSIMPLEC(0.8)
− Pred. smoother: 1 SGS (0.8)
− Corr. smoother: ILU (0)

CheapSIMPLE (SGS)
Transfer operators: −
Block prec.: 2 CheapSIMPLEC(0.8)
− Pred. smoother: 3 SGS (0.8)
− Corr. smoother: ILU (0)

SA-AMG (CheapSIMPLE)
Transfer operators: SA-AMG (0.4)
Level smoother: 1 CheapSIMPLEC(0.8)
− Pred. smoother: 1 SGS (0.8)
− Corr. smoother: ILU (0)

CheapSIMPLE (SA-AMG)
Block prec.: 2 CheapSIMPLEC(0.8)
− Pred. smoother: AMG
− Transfer op.: SA-AMG (0.4)
− Level sm.: 2 SGS (0.8)

− Corr. smoother: ILU (0)

for the full residual vector rk =

[
ru

rλ

]
in the linear iteration step k.

6.4.3. Results An overview of the different tested preconditioner variants is given in Table VI. We
study variants with the fully coupled multigrid approach, the nested multigrid approach, and a
SIMPLE based variant without multigrid at all. For the fully coupled AMG variants, the transfer
operators for the displacement blocks are varied. Particularly, non-smoothed transfer operators (PA-
AMG) are compared to smoothed aggregation transfer operators (SA-AMG). For the multigrid
schemes there is no special treatment of the coarsest level. For the fully coupled multigrid schemes
as well as for the nested multigrid method we apply the same level smoother on all multigrid levels
including the coarsest level. All the simulations have been run on 16 cores (spread over 2 Intel Xeon
E5-2670 Octocore CPUs).

Figure 11a shows the overall number of linear iterations performed to solve all nonlinear iterations
for each time step. All preconditioner variants require exactly the same number of nonlinear iterations
per time step due to the particular choice of stopping criteria in (23), ranging between 6 and 10
nonlinear iterations per time step, while also the number of nonlinear iterations is independent of
the size of the active set. Obviously, the SIMPLE based methods need more linear iterations than
the AMG based methods. In this example, there is nearly no difference between the non-smoothed
transfer operator variant PA-AMG (CheapSIMPLE) and the smoothed transfer operator variant SA-
AMG (CheapSIMPLE). Furthermore, there is no clear and obvious correlation between the number
of linear iterations and the number of active nodes. This indicates that the fully coupled multigrid
method is robust and efficient with regard to the increasing complexity of the contact configuration
over time, which is not the case for cheaper methods such as the SIMPLE based methods. Evidently,
one can see a significant drop in the linear iterations for the last 20 time steps of the simulation, which
may correspond to the small number of nodes in contact.

When looking at the corresponding solver timings over the time steps in Figure 11b, one
finds the CheapSIMPLE (SA-AMG) method to be very close to the AMG based methods PA-
AMG (CheapSIMPLE) and SA-AMG (CheapSIMPLE). For the AMG based methods, one sweep with
a CheapSIMPLEC method is applied on each level, which internally uses one sweep with a symmetric
Gauss–Seidel iteration for the primary variable and one ILU sweep for the constraint equation. That is,
quite a lot of time is invested in the coupling on all levels with the comparably expensive ILU method.
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Figure 11. Two tori impact example — Results for different saddle point preconditioner variants.

In contrast to the AMG based method, the CheapSIMPLE (SA-AMG) method uses 2 sweeps with a
CheapSIMPLE preconditioner for the coupling (on the finest level only). Internally, a 3 level AMG
multigrid is used with 2 symmetric Gauss–Seidel sweeps for the level smoother and an ILU sweep
for the constraint correction equation. These parameters have been found to result in a reasonably
low number of linear iterations. For this example the experiment shows that the CheapSIMPLE (SA-
AMG) method needs twice as many iterations as the SA-AMG (CheapSIMPLE) method, but the
costs per iteration are only half of the costs of the SA-AMG (CheapSIMPLE). Nevertheless, the AMG
based methods seem to have a small advantage, when the number of nodes in contact increases.

Last but not least, the overall timings for the linear solver are reported in Table VII. Except for the
CheapSIMPLE (SGS) variant, which is far away from the others, there is no clear winner. The setup
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Table VII. Two tori impact example — Exemplary timings in [s] of the different preconditioning
variants from Table VI for the full simulation over 200 time steps.

Method Setup costs Solver time Overall solver time
PA-AMG (CheapSIMPLE) 11630 4658 16288
SA-AMG (CheapSIMPLE) 12250 4564 16814
CheapSIMPLE (SA-AMG) 12130 4731 16861
CheapSIMPLE (SGS) 10270 9320 19590

costs are quite close, since the same transfer operators have to be built for all methods with only a
small difference for smoothed versus non-smoothed transfer operators. To show a fair comparison, the
preconditioner has been rebuilt in every nonlinear iteration step. Of course, re-use strategies might
increase amortization of setup costs and reduce overall solver timings when solving actual problems.

7. CONCLUSION

We have presented algebraic multigrid schemes designed for saddle point problems arising from contact
problems using mortar finite element methods. The new fully coupled multigrid scheme has the
advantage that the contact constraints are considered on all multigrid levels, which significantly reduces
the number of iterations. It gives the user full control over the coupling process by appropriately
choosing the solver parameters. Additionally, we have proposed a novel aggregation method for the
Lagrange multipliers, which reuses existing aggregation information at the contact interface. We have
demonstrated the robustness and efficiency of the overall multigrid method for large examples with
increasingly complex contact configurations over time as well as its weak scalability up to 23.9 million
unknowns on 480 MPI ranks.
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