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Members of the 70 kDa stress protein family are found in nearly all subcellular

compartments of nucleated cells where they fulfil a number of chaperoning

functions. Heat shock protein 70 (HSP70), also termed HSPA1A, the major

stress-inducible member of this family is overexpressed in a large variety of

different tumour types. Apart from its intracellular localization, a tumour-

selective HSP70 membrane expression has been determined. A membrane

HSP70–positive tumour phenotype is associated with aggressiveness and

therapy resistance, but also serves as a recognition structure for targeted thera-

pies. Furthermore, membrane-bound and extracellularly residing HSP70

derived from tumour cells play pivotal roles in eliciting anti-tumour immune

responses. Herein, we want to shed light on the multiplicity of different activi-

ties of HSP70, depending on its intracellular, membrane and extracellular

localization with the goal to use membrane HSP70 as a target for novel

therapies including nanoparticle-based approaches for the treatment of cancer.

This article is part of the theme issue ‘Heat shock proteins as modulators

and therapeutic targets of chronic disease: an integrated perspective’.
1. Role of intracellular, membrane and extracellular heat shock
protein 70 in tumour cells

Members of the 70 kDa chaperone family are found in nearly all subcellular

compartments of nucleated cells [1], where they support folding of nascent

polypeptides, prevent protein aggregation and assist transport of proteins

across membranes [2,3]. The major stress-inducible HSP70, also termed

HSPA1A, is frequently overexpressed in a large variety of different tumour

types [4]. In comparison to other stress proteins of the HSP70 group, the synthesis

of HSP70 is more rapid, and HSP70 accumulates at higher levels in tumour cells

after exposure to environmental stress. High cytosolic HSP70 levels are known to

protect cancer cells from apoptotic cell death, promote tumour cell proliferation

and migration, mediate therapy resistance and thus contribute to an aggressive

tumour phenotype. Therefore, the reduction or inhibition of intracellular HSP70

levels by different methods such as shRNA, CRISPR/Cas9 knock-out technology,

aptamers or HSP70 inhibitors [5] provides a promising strategy to sensitize

tumour cells towards therapy by antagonizing apoptosis and inducing Bcl-2/

caspase-independent cell death [6–8]. However, due to redundancy of the

chaperone system in eukaryotic cells, other stress proteins can take over tasks

of HSP70 and thereby limit efficacy of HSP70-depleting approaches. Apart

from the cytosol, HSP70 also resides within lysosomal membranes of tumour

cells which in turn mediate resistance to cell death by membrane stabilization

[9]. Interference with the sphingolipid metabolism of lysosomal membranes has

shown promising results in breaking therapy resistance in tumour mouse
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models [10]. As to whether this strategy might be transferable

into the human system remains to be determined.

Global proteome profiling of plasma membrane–bound

proteins reveals an abundance of cytosolic chaperones, includ-

ing HSP70, on the surface of tumour cells [11]. Although most

cytosolic stress proteins typically lack a classical consensual

transmembrane sequence, a tumour-specific cell surface localiz-

ation of HSP70 could be determined by different methods,

including multi-parameter flow cytometry with an antibody

(cmHsp70.1) that specifically recognizes the membrane confor-

mation of HSP70 [12], and selective cell surface iodination

of membrane proteins [13]. Despite a membrane HSP70

positivity in many different tumour types, several questions

remain to be answered: how are cytosolic HSPs transported

from the cytosol to the plasma membrane, how are they

anchored in the plasma membrane, and why is this phenom-

enon restricted to malignantly transformed cells. As inhibition

of the post-Golgi membrane traffic by Brefeldin A (BFA), a

lacton antibiotic and monensin are unable to block the plasma

membrane transport of HSP70, a classical ER-Golgi transport

mechanism appears to be unlikely [14]. Currently, it is assumed

that HSP70 is transported to the plasma membrane via non-

classical mechanisms mediated by intracellular lipid vesicles.

As modification of extracellular salt concentration and pH

does not alter the membrane density of HSP70, it is not very

likely that membrane HSP70 interacts with proteineous surface

receptors [15]. Already in 1989, Hightower & Guidon [14]

suggested a direct association of HSP70 with lipid components.

This hypothesis is reasonable because HSP70 shows a high

affinity for hydrophobic/lipophilic regions of unfolded proteins.

At present, different mechanisms are discussed as to how

HSP70 might interact with lipid components of the plasma

membrane of tumour cells. As demonstrated by interaction

studies with artificial lipid nanovesicles, HSP70 was shown

to directly interact with tumour-specific lipids such as

globoyltriaosylceramide (Gb3) [15]. As Gb3 is a typical com-

ponent of cholesterol-rich microdomains, also termed lipid

rafts [16], it is assumed that HSP70 might reside in lipid

rafts of the plasma membrane of tumour cells. Lipid rafts

serve as assembly and sorting platforms for signal transduc-

tion and, therefore, the molecular chaperone HSP70 might be

required for supporting signalling and cross-talk between

different tumour cells [17]. This assumption has been sup-

ported by the finding that the destruction of lipid rafts by

cholesterol depletion using methyl-b-cyclodextrin results in

a loss of membrane HSP70 [15].

Although it is still a matter of debate whether membrane-

bound HSP70 exerts chaperoning activity for adjacent proteins,

such as receptors or signalling molecules, a membrane localiz-

ation of HSP70 has been associated with different diseases,

including neurotoxic prion disease [18], encephalitis viral

diseases [19], malaria-infected erythrocytes [20,21] and

glioblastomas [22].

Apart from Gb3, as one example for a potential interaction

partner for HSP70 in the plasma membrane, a physical

interaction of HSP70 also has been determined for phosphati-

dylserine (PS) a lipid that is not found in lipid rafts. Under

non-stressed conditions, PS is exclusively located in the inner

leaflet of the plasma membrane. The asymmetry of PS is main-

tained by the ATP-dependent aminophospholipid translocase

[23]. An activation of the Ca2þ-dependent phospholipid scram-

blase and by ATP depletion results in a loss of the PS lipid

asymmetry [24]. The appearance of PS in the outer membrane
leaflet is considered as an early marker of apoptosis [25] that

can trigger recognition of dying cells by macrophages [26].

However, CD8þ T cells undergoing antigen recognition have

been shown to present PS on their outer membrane leaflet with-

out undergoing apoptotic cell death [27]. In viable tumour

cells, PS also might be considered as an interacting partner

for HSP70 in the plasma membrane. In line with this hypoth-

esis, we and others have shown that HSP70 preferentially

inserts into artificial unilamellar lipid vesicles containing

high levels of PS [28,29]. This affinity of HSP70 to PS suggests

that HSP70 might travel from the inner to the outer membrane

leaflet through a translocation of PS. De Maio and co-workers

[30] suggested that several HSP70 proteins can form ion con-

ductance channels within artificial lipid bilayers containing

PS. This group also showed that HSP70 preferentially interacts

with negatively charged phospholipids within liposomes,

which enable not only the insertion of high molecular–

weight HSP70 complexes in lipid bilayer membranes, but

also enable an ER-Golgi–independent export of HSP70.

Along this line, our group demonstrated that exogenously

applied HSP70 protein preferentially interacts with PS on the

outer membrane leaflet. This interaction of HSP70 form outside

can promote tumour cell killing, especially under stress [29]. In

a pilot study with glioblastoma patients, an intra-tumoural

injection of HSP70 protein was found to trigger tumour cell

death [22]. Although the mode of action of this therapeutic

approach has not yet been elucidated, the interaction of exter-

nal HSP70 with the plasma membrane of tumour cells

appears to initiate this process. The authors of this pilot

study speculate about an involvement of immune effector

cells that might be able to recognize membrane HSP70.

Following therapeutic interventions such as radioche-

motherapy, the cell surface density of HSP70 is further

enhanced selectively on tumour cells [31,32]. Regarding this

finding, membrane HSP70 also might serve as a biomarker

for monitoring outcome and as a tumour-specific target for

the cytolytic attack of immune cells and tumour-specific target-

ing molecules. Membrane HSP70 on highly aggressive tumour

cells has been found to act as a trigger factor for CD56bright/

CD94þ natural killer (NK) cells in the presence of pro-inflam-

matory cytokines [33–35]. Incubation of human NK cells

with HSP70 protein or a peptide derived from the C-terminal

domain of HSP70 [36,37] in combination with pro-inflamma-

tory cytokines such as interleukin-2 (IL-2) or IL-15 has been

found to activate CD56bright/CD94þ NK cells that are able to

recognize and kill membrane HSP70–positive tumour cells

in vitro and in tumour mouse models [36,37]. Based on these

findings, a phase II clinical trial was initiated with the goal

to determine the efficacy of ex vivo HSP70 peptide plus IL-2

stimulated autologous NK cells in patients with inoperable

non-small cell lung cancer (NSCLC) in stage IIIA/B after radio-

chemotherapy [38,39]. It has been shown that HSP70-reactive

NK cells can be generated reproducible from leukapheresis

product of NSCLC patients and that the adoptive transfer of

these activated cells is well tolerated. Furthermore, NK cell

activity against membrane HSP70–positive tumour cells

which initially was found to be very low in all tumour patients

could be re-stimulated by an ex vivo stimulation with HSP70

peptide plus IL-2 as a growth factor. It is assumed that the

NSCLC tumours and the tumour microenvironment induces

an immunosuppressive milieu for immunocompetent effector

cells. Therefore, an ex vivo stimulation of NK cells might be

superior to a direct vaccination of patients with HSP70 peptide
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plus IL-2 to overcome the immunosuppressive milieu. It is

expected that reactivation of the cytolytic activity of NK

cells as the first line of defence is able to stimulate protective

anti-tumour immunity by T cells in a second step.

Although membrane-bound HSP70 can be considered as a

recognition structure for the innate immune system, tumour

cells presenting HSP70 on their cell surface show a higher resist-

ance to radiochemotherapy compared with their membrane

HSP70-negative counterparts [40]. Therefore, membrane

HSP70 as a tumour-specific target for immune cells has to be

considered with care. An upregulated membrane HSP70

expression on tumour cells might help NK cells to recognize

their target cells, however, also mediates resistance of tumour

cells towards standard therapies.

Lastly, an extracellular localization of free or lipid-bound

HSP70 has to be considered with respect to its functionality.

In general, serum HSP70 levels in patients with different

malignancies including tumours and infectious diseases are

higher than those of healthy individuals. It has been shown

that tumour patients exhibit significantly higher levels of

serum HSP70 than patients with infectious disease [41].

Free HSP70 is generally assumed to originate from dying

cells, whereas lipid-bound, vesicular HSP70 appears to be

actively released from viable tumour cells [28,42,43]. Phy-

sico-chemical analysis of these extracellular HSP70-bearing

lipid vesicles characterized them as exosomes. The exosomal

release is explained by an alternative lysosomal/endosomal

pathway which does not involve the ER-Golgi compartment.

Depending on the microRNA and protein composition which

is present in the lumen and on the surface, actively released

tumour exosomes either mediate stimulatory or inhibitory

anti-tumour immune responses. Exosomes with a diameter

of 40–100 nm and defined floating characteristics (1.17–

1.19 g ml21) are considered as soluble signalling platforms

that can promote tumour growth, migration and invasion

[43]. Apart from tumour cells [42,44], exosomes are also

released by a large variety of other cell types including anti-

gen-presenting cells [45], T cells, reticulocytes [46,47], B cells

[48,49], platelets [50] and glia cells [51]. HSP70 released by

normal human monocytes upon stimulation can prevent the

formation of gap-junctions and thus can hinder intercellular

communications. In turn, these complex interactions of exo-

somes with cells (tumour and immune cells) can also affect

inflammation and tumour growth [52].

Free HSP70 that predominantly originates from dying cells

also has been found to exert immunomodulatory activities,

especially if immunogenic peptides are bound to them. A

number of C-type lectin receptors such as LOX-1, SR-A SREC

have been proposed to be involved in the uptake of chaperone–

peptide complexes [53–57]. Following cross-presentation of

HSP70-chaperoned peptides on MHC class I molecules, a CD8þ

antigen-specific cytotoxic T cell response can be initiated [58–60].

The interaction of peptide-free HSP70 with CD14, a glyco-

phosphatidylinositol GPI-anchored receptor and or TLR2/4

on antigen-presenting cells has been found to initiate the

release of pro-inflammatory cytokines via NF-kB signalling

[52,61]. This process has been described as the ‘chaperokine’

effect. However, at present, this concept has not yet been

tested in preclinical and clinical trials.

Another mechanism, how extracellular HSP70 might affect

tumour cells is the complex formation of the innate immunity

protein Tag7 with HSP70 [62,63]. It has been shown that inter-

action of the Tag7–HSP70 complex with TNFR1 triggers the
activation of RIP1-kinase, an increase in intracellular

concentration of Ca2þ ions and an activation of calpains

which result in the permeabilization of lysosomal membranes

[63–66]. The lysosome-induced release of cathepsines B and D

can in turn depolarize mitochondrial membranes and induce

ROS production which might initiate tumour cell necroptosis.

As summarized in figure 1, depending on its localization

in the cytosol, on the membrane and outside of tumour cells,

HSP70 fulfils different functions that can impact on tumour

cell resistance, as well as on the stimulation of immune

responses against cancer. For future clinical applications, it

might be important not only to determine the total amount,

but also the subcellular or extracellular localization of HSP70.
2. Ferromagnetic and gold nanoparticle-based
therapies targeting membrane heat shock
protein 70

Nanoparticles provide unique multi-functional vehicles for

theranostic purposes in oncology because they can remotely

and non-invasively be used as imaging agents as well as

carriers for a targeted drug delivery (figure 2). Different formu-

lations, qualities and compositions of nanoparticles define their

physico-chemical properties as well as their potential appli-

cation in anti-cancer therapy. Magnetic nanoparticles (MNPs)

based on iron oxide are one of the most widespread formu-

lations [67]. For MNPs, several types of iron oxides, including

magnetite (Fe3O4), haematite (a-Fe2O3) and maghemite

(g-Fe2O3 and b-Fe2O3) are currently used [68]. Owing to their

unique magnetic and optical characteristics, such as high para-

magnetism, magnetic coercivity, magnetic susceptibility and

low Curie temperature, superparamagnetic iron oxide nanopar-

ticles (SPIONs) show superior characteristics compared with

other types of MNPs [69]. Previously, it was demonstrated

that SPIONs with a biocompatible surface coverage are well tol-

erated and thus can be applied for tumour targeting in vivo
(figure 2). The modulation of the surface of SPIONs is key for

a tumour-specific targeting and drug delivery, as well as for

biocompatibility and sustainability of MNPs in vivo. Recent

studies demonstrated that surface functionalization of nanopar-

ticles with proteins (i.e. IL-1Ra, EGF etc.) that are able to target

ligands which are frequently overexpressed on tumour cells sig-

nificantly increases their retention inside the tumour and

improves magnetic resonance imaging, especially in the case

of brain tumours [70–73]. HSP70, which is known to be

expressed selectively on the surface of tumour, but not

on corresponding normal cells [13,15], provides a promising

targeting structure for nanoparticle-based therapies. Thus,

decoration of MNPs with HSP70-targeting molecules (e.g. anti-

bodies, peptides, Fab fragments, anticalines, etc.) could

potentiate the tumour-targeting properties of these nanocar-

riers. Recently, it was demonstrated that the application of

cmHsp70.1 antibody–functionalized SPIONs significantly

increases the retention of nanoparticles in the tumour in a

model of intracranial C6 glioma in rodents [71]. A subsequent

ionizing irradiation that enhances the expression density of

HSP70 on the plasma membrane of glioma cells resulted in an

increased enrichment of HSP70-targeting particles inside the

tumour [74]. Owing to their smaller size and improved

biocompatibility, the application of smaller molecules such as

Hsp70-reactive peptides, Fab fragments or anticalines might
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be able to further improve the targeting abilities of MNPs.

Furthermore, application of alternating magnetic field (AMF)

could convert the diagnostic potential of nanoparticles into

theranostics. MNP-mediated hyperthermia (figure 2), which

is based on three independent mechanisms such as hysteresis

loss, Brownian and Néel relaxation, can result in thermal

energy upon a magnetic and heat stimulation [75].

Alternative to HSP70-targeting magnetite-based nanoparti-

cles, a multi-modal therapy concept could also be based on

gold nanomaterials, which are also widely used in cancer

therapy. Gold nanoparticles (AuNPs) show an excellent

biocompatibility, can be easily synthesized in a wide range of

different sizes and shapes, and their surfaces can be coated

with different ligands (figure 3). Therefore, AuNPs are available

in many different formulations, including nanoparticles, nanor-

ods, nanoclusters, nanoshells, nanocages, etc. [76]. Owing to the

relatively high costs of gold nanomaterials, these nanoparticles

are also produced as hybrids together with cheaper materials.

As an example Au–gelatin–NP hybrids can be easily changed

in size and thus show an improved tumour distribution and

penetration [77,78]. Another study tested branched palladium

nanostructures that were covered with gold, which in turn dis-

played a very good photothermal property in cancer therapy

[79]. Currently, gold nanomaterials are used for the delivery

of chemotherapeutics, proteins, genes [80–82], for photother-

mal [83,84] and photodynamic therapy [85], photoacoustic

imaging [86], computed tomography [87] and theranostic pur-

poses [77,78,81,86]. All these applications can be further

improved by coating nanoparticles with targeting reagents

such as HSP70 (figure 3). In our group, we could demonstrate

that coupling of the membrane HSP70–specific antibody
(cmHsp70.1) on AuNPs (AuNPs-HSP70) could significantly

enhance targeting and specific uptake of nanoparticles into

membrane HSP70–positive mouse colon carcinoma (CT26)

cells, in vitro [88]. Interestingly, HSP70-coated AuNPs are

found to be enriched in close proximity to the nucleus after

24 h, whereas AuNPs coated with an isoptype-matched control

antibody did enter tumour cells at lower numbers and showed

a more disperse intracellular distribution. This finding might be

of importance with respect to future combined therapeutic

approaches consisting of AuNPs and radiotherapy in the con-

text of radioenhancing effects induced by Auger electrons. In

an HSP70 knock-out mouse mammary carcinoma model, the

HSP70 specificity of the uptake of HSP70-targeting AuNPs

could be confirmed [88]. In summary, these data provide a

first hint that the enhanced cellular uptake of HSP70-targeting

AuNPs is attributed to membrane HSP70 on tumour cells.

It is well accepted that HSPs preferentially bind to denatured

proteins and unfolded intermediates to prevent their aggrega-

tion and trigger protein refolding, resulting in resistance to

heat-induced apoptosis [89,90]. It could be shown that plasmo-

nic photothermal therapy (PPTT) also initiates the expression of

HSPs including HSP70 [91]. Therefore, it was speculated that the

inhibition of HSP70 may improve outcome of photothermal

therapy despite the reduction in membrane HSP70 as a target-

ing structure for nanoparticles. Ali et al. [92] conjugated gold

nanorods with inhibitors directed against members of the

HSP70 family (Quercetin) to evaluate their potential in sensitiz-

ing tumours to PPTT. Incubation of tumour cell lines (HSC,

MCF-7) with AuNRs, PPTT displayed a low percentage of apop-

totic cells, which was comparable to that of control cells. This

disappointing result was attributed to high intracellular
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HSP70 levels that protect tumour cells from apoptosis. A knock-

down of HSP70 by siRNA resulted in a significantly increased

apoptotic cell death by PPTT. These results demonstrate a key

role for intracellular HSP70 in the development of resistance

of tumour cells to PPTT. Interestingly, even HSC cells that are

overexpressing HSP70 could be sensitized towards PPTT after

application of Quercetin-decorated AuNRs [92]. The results

clearly demonstrate that a combined approach consisting

of HSP70 targeting and inhibiting HSP70 function can

significantly improve outcome of PPTT.

Another possible application of AuNPs is the radiosensi-

tization of tumour cells [93] (figure 3). Owing to their high

X-ray absorption abilities, AuNPs could increase dose

deposition within target volumes even at relatively low con-

centrations [94]. A combination of HSP70-targeting AuNPs

with radiotherapy could significantly increase this latter effect.

In conclusion, approaches based on NPs that aim to target

membrane HSP70 on tumour cells might provide a promising

strategy to significantly increase the specificity of tumour

targeting and therapeutic potential. Furthermore, due to phy-

sico-chemical properties of the applied materials (i.e. Fe,

Au, etc.), NPs also can be used for multi-modal anti-cancer

therapy. Magnetite particles could be used in combination

with hyperthermia, while AuNPs could be implemented in

photothermal and radiation therapy. As demonstrated by

Cui et al. [95], an improved drug delivery could be achieved
by loading FE-containing functionalized magnetic particles

with chemotherapeutics.
3. Conclusion
Depending on its intracellular, membrane or extracellular localiz-

ation, HSP70 fulfils avarietyof different functions in tumourcells.

On the one hand, elevated cytosolic and membrane HSP70 levels

mediate therapy resistance and thus contribute to the aggressive-

ness of tumour cells. On the other hand, extracellular and

membrane HSP70 can stimulate the immune system and serve

as a tumour-specific target. In this study, different approaches

are discussed that use membrane HSP70 as a tumour-specific

target for HSP70-functionalized nanoparticles of different

qualities for imaging and combined anti-tumour therapies.
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