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Abstract— This contribution proposes a semantic description
of vehicle behavior in urban environments in the form of
maneuvers. By detecting these maneuvers in recorded mea-
surement data of test drives, specific scenarios can be identified
and evaluated in regards to vehicle behavior on public roads.
Characteristics of extracted maneuvers can then in turn be used
to describe and differentiate the behavior of traffic participants
in test scenarios for automated driving systems. We extend an
earlier concept to be applicable for urban vehicular traffic.
Furthermore we analyze real-world measurement data of test
drives by identifying the maneuvers which are defined in this
contribution. We then show exemplary how classified vehicle
behavior can be used to formulate a Logical Scenario containing
parameter distributions. These distributions are then sampled
to obtain multiple Concrete Scenarios for use in simulation.
Finally, we discuss our results and possible future work.

I. INTRODUCTION

In the past years, several research projects have demon-
strated automated driving. Safety validation of automated
driving is inevitable to bridge the gap from development
to release and introduction of the systems on public roads.
Calculations such as from Winner et al. [1] have shown that
a distance-based validation for automated driving systems is
not feasible for economic reasons. Therefore, other methods
like scenario-based safety verification and validation are a
focus of current research, such as in the German national
project PEGASUS1. This approach seeks to make a safety
statement about an automated driving system by testing it in
a set of scenarios.

However, a challenge arises when trying to construct this
set of scenarios. When modeling the behavior of another
traffic participant in the form of a trajectory, there exists an
infinite number of possible permutations, since the temporal
and spatial parameters (t, x, y, z) are all continuous vari-
ables. As noted in [2], it is therefore difficult for validation
engineers to argue for the completeness of a given set of
scenarios, since there exists an infinite number of scenarios
that are not contained in it.

One possible argument for the use of a finite set of
scenarios can be made based on the exposure during the
operation of the automated driving system in the field. The
exposure is an essential component of the traditional risk
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assessment of electric and electronic systems [3]. Following
this definition, unsafe behavior in more frequently occurring
scenarios is considered to be of greater risk than in infrequent
scenarios. A part of the overall validation process should
therefore focus on scenarios with a high probability of
occurrence.

A scenario set could be considered to be suitable for
exposure-based testing when it covers an agreed upon per-
centage of urban traffic during field operation. This can be
verified stochastically through measurement data collected
during test drives.

In this work, we propose to make a stochastic statement of
this kind using maneuvers as a semantic description of urban
vehicular traffic. Defined maneuvers are used to recognize
recurring behavior of vehicles in recorded measurement
data and make statements about their characteristics. These
characteristics are expressed in the form of parameter distri-
butions which can then be sampled to obtain representative
scenarios for the test of automated driving systems.

II. RELATED WORK

In the past, there have been different contributions on the
topic of maneuver-based traffic descriptions and the testing
of automated driving systems. In the following, a selection
of previous publications is introduced.

Wachenfeld et al. [4] discuss how test-driving can not
only be used to test the developed automated driving system
itself. The collected data can also aid in modeling the
surrounding traffic for scenario-based testing.2 An example
for this approach is investigated in this work.

Bagschik et al. propose a layered approach [6] [7] to
describe traffic scenarios for the test and validation process
of automated vehicles. Recently, a 6th layer for this scenario
model has been proposed in [8] to incorporate digital infor-
mation as well. In this work, we focus on scenario layer 4, the
description of movable objects and their maneuvers during
the scenario.

Menzel et al. [9] introduce the terms of Functional, Log-
ical and Concrete Scenarios. Functional Scenarios contain
a semantic description and can be read and understood by
human experts. Logical Scenarios exhibit a greater level of
detail by modeling parameter ranges and probability distri-
butions, as well as dependencies between the parameters.
A Concrete Scenario can be derived by sampling these
distributions for the individual parameter values. To the best

2This work adopts the definitions of scene and scenario first published
by Ulbrich et al. [5]



of our knowledge, the conversion of Functional Scenarios
into Logical Scenarios has not yet been investigated for urban
traffic.

In order to model the behavior of movable objects in
Functional Scenarios, a semantic description in the form of
maneuvers can be used. Dickmanns [10] defines a maneuver
as the temporal progression of control signals that transfer a
system from one state to a new one. This definition is also
used by Schuldt et al. [11]. However, it does not cover state
preserving maneuvers such as Lane Following or Following
a lead vehicle, where a vehicle’s state does not change but
is preserved through control inputs.

Reschka [12] describes nine basic maneuvers that he
deems necessary to participate in urban vehicular traffic.
Namely, those are Driveaway, Following, Approach, Passing,
Lane Change, Turn, U-Turn, Parking and Safe Stop. Schuldt
et al. [11] describe a framework to recognize the occurrence
of basic maneuvers from measurement data on German
highways. Based on the definitions by Reschka [12], they
formulate a set of basic maneuvers for highway traffic.
Secondly, they implement classifiers for the maneuvers Halt,
Driveaway, Follow, Approach Leader, Passing, Lane Change
and Fall Behind. Since the focus of their work is the analysis
of highway traffic, the applicability of their framework for
urban vehicular traffic was not investigated.

Mauritz et al. [13] investigate the test of a lane change
assistant using an abstract semantic domain description.
Using this abstract domain, they are able to differentiate test
scenarios from each other and thereby estimate the achieved
test coverage over time. To the best of our knowledge, the
transfer of the methodology to urban vehicular traffic has not
been investigated up to date.

In a publication by Roesener et al. [14], they describe
how the extraction of semantic behavior elements, such as
lane changes, from measurement data can help to validate an
automated driving system. By classifying these elements in
time-series data, they compare the behavior of an automated
vehicle to the behavior of the recorded human drivers. In
this work, we do not make a comparison of the extracted
maneuvers to those performed by the automated driving
system. Instead, the data is used to establish a parameter
space from which test scenarios can be sampled, a Logical
Scenario.

Erdogan et al. [15] discuss the extraction of test sce-
narios for automated vehicles from measurement data by
using various classification methods. They compare rule-
based approaches to supervised and unsupervised machine
learning techniques. The data-driven modelling of driving
maneuvers for validation is purposes is also presented by
Krajewski et al. [16]. In their approach, they employ machine
learning techniques such as generative adversarial networks
(GANs) and variational autoencoders to model lane change
maneuvers previously recorded on highways.

Another approach for the classification of driving ma-
neuvers at intersections is presented in [17]. They aim to
recognize maneuvers for the purpose of scene understanding
and object prediction at intersections. The generation of

test scenarios is not a focus of their work. To this end,
Althoff [18] et al. presented a methodology for the automatic
generation of critical scenarios for an automated vehicle.
Their work focuses on safety critical test cases and is
not concerned with the representativeness of the generated
scenarios.

Past research has encompassed the definition of basic ma-
neuvers for vehicular traffic [12] [11]. While the feasibility of
recognizing basic maneuvers in highway measurement data
has been demonstrated, the application to urban traffic has
not been investigated to date. This work therefore aims to
transfer the methodology to urban traffic and evaluate its
applicability. Extending the previous work [11], the recog-
nized maneuvers are used to convert two selected Functional
Scenarios into Logical Scenarios by deriving its parameter
distributions from measurement data.

III. DEFINITIONS AND CONCEPT

Based on earlier definitions [11], we define a traffic
maneuver as follows.

Definition 1. Maneuver A maneuver is the intentional
transfer of a traffic participant from one defined state into
the next, which can also be identical.

This extends earlier maneuver definitions to include state
preservation, such as lane keeping or standstill, as well as
state changes. Maneuvers are defined as object movements
based on internal decisions. They can be used to specify
vehicle behavior for scenario-based testing in the form of
instructions. Using maneuvers as semantic labels for object
movements helps to reduce the complexity of traffic par-
ticipant behavior in large databases. By dividing time-series
data of object movements into discrete semantic units similar
behavior can be identified and compared.

Following this concept, we propose to structure urban
vehicular traffic into three distinct categories of basic ma-
neuvers. The categories and the maneuvers are described in
the following subsection.

A. Urban Vehicle Maneuver Catalog

The basic maneuvers are structured into three categories
of maneuvers regarding the vehicle state itself, maneuvers re-
garding the infrastructure and maneuvers regarding relations
to surrounding traffic participants. Vehicle State Maneuvers
describe changes or preservations of a vehicle’s velocity
state. At all times a vehicle is either performing an Ac-
celerate, Keep Velocity, Decelerate or Reversing maneuver.
Driveaway is a special case of Accelerate maneuvers and
is performed when a vehicle starts to move. Standstill is
a special case of Keep Velocity and describes the vehicle
while not moving at all. Halt is a special case of Decelerate
maneuvers and is performed when a vehicle comes to a halt
by braking.

Infrastructure Maneuvers denote state changes or preser-
vations with respect to the surrounding road infrastructure.
Maneuvers in this category can happen simultaneously with
maneuvers regarding a different infrastructure element. When



Layer 1: Vehicle State Maneuver

Accelerate

Driveaway

Keep Velocity

Standstill

Decelerate

Halt
Reversing

Layer 2: Infrastructure Maneuver

Follow lane Lane change {left,right}

Approach Junction Cross Junction Turn {left,right,U-}

Approach Crosswalk Cross Crosswalk

Park

Layer 3: Object-related Maneuver

Follow Object Approach Object Fall Behind

Passing

Fig. 1. Layered maneuver model for urban vehicular traffic

lanes are present, a vehicle is either performing a Follow
Lane maneuver or a Lane Change. Vehicles can approach
junctions (Approach Junction) and afterwards either cross
them (Cross Junction) or perform a Turn Left, U-Turn or
Turn Right maneuver. A crosswalk is approached at first
(Approach Crosswalk) and then crossed (Cross Crosswalk).
When a vehicle is parking, a Park maneuver is executed.
The maneuver set presented here regarding infrastructure
elements is not exhaustive as we do only consider lanes, junc-
tions, crosswalks and parking spaces as maneuver-relevant
infrastructure elements in this work.

Object-related maneuvers describe interactions with other
traffic participants. Regarding the existence of a lead ve-
hicle3, different cases are considered. When the referenced
vehicle is driving faster than its lead vehicle, the vehicle is
approaching it (Approach Object). When both vehicles are
driving with the same velocity, the referenced vehicle follows
its lead vehicle (Follow Object). A Fall behind maneuver is
performed when the referenced vehicle is driving slower than
its lead vehicle and is also decelerating. When a vehicle is
driving past another vehicle in a neighboring lane, a Passing
maneuver is executed.

The maneuvers are summarized in Fig. 1. At most, one
maneuver of a row (cf. Fig. 1) can be performed at a time
with the exception of Vehicle State maneuvers where exactly
one of the maneuvers is performed at any time. Thereby
not every combination of simultaneously executed maneuvers
can occur. Valid combinations of simultaneously executed
maneuvers are implicitly defined by the just mentioned logic
operations between the subsets. Such combinations can be
used to detect certain scenarios in test drives where each of
these maneuvers are classified.

3A lead vehicle is a vehicle driving in front of the referenced vehicle.

B. Maneuver Extraction

In order to parameterize the formulated maneuvers for
simulation or proving-ground tests of automated vehicles,
their occurrence is detected in real-world measurement data.
The database contains measurements of ego states, surround-
ing objects and map information. The process architecture for
the maneuver classification is shown in Fig. 2.

Trajectory Smoothing

Object Correction

Map Matching

Maneuver Classification

DB

Georeferenced
Map

Ego and Object Data

Classified
Maneuvers

Fig. 2. Process overview showing the classification of driving maneuvers
from a measurement database (DB)

After the ego and surrounding object data have been
extracted from the database (DB), they are first reprocessed
to improve the quality. This includes general smoothing
of sensor noise using a Gaussian4 filter, as well as object
classification and dimension estimation. By evaluating the
full history of classification and dimension measurements, it
is possible to improve the accuracy of the live recordings. Af-
terwards, object positions are matched onto a georeferenced
map for a subsequent classification of infrastructure-related
maneuvers such as lane changes. The map is also contained
in the same database as the object and ego data. Afterwards

4Carl Friedrich Gauß (1777-1855), German Mathematician and Physicist
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Fig. 3. Layers of analysis for traffic participants in an urban traffic scenario

a rule-based classification of the maneuvers from Fig. 1
is performed to recognize them in the data. The detected
maneuvers are then stored in the database as well, along
with a reference to the drive in which they occurred. After
the maneuvers have been classified, the resulting semantic
database can be analyzed on several levels to obtain sce-
narios from it, as shown in Fig. 3. For instance, it is then
possible to query the database for all Left Turn maneuvers
performed by the Ego vehicle. The introduced levels of
analysis can be used to gradually determine the exposure of
traffic scenarios. On the Traffic-Density-Level, the number
of other traffic participants in the scenario is analyzed. For
example, the average numbers of surrounding vehicles and
pedestrians during Left Turn maneuvers can be used to model
common urban traffic scenarios at junctions. The Behavior-
Level describes consecutive maneuvers that are carried out
by each object and their correlations. Common, recurring
maneuver sequences such as Lane Change and Passing are
identified on this level. In the testing process, they can
be applied to formulate common behavior patterns and the
associated exposure. Lastly, the parametric description of
each individual maneuver (such as the chosen velocity) is
taken into account on the Maneuver-Level. In this work,
we focus on extracting data about the Maneuver-Level,
while the number of traffic participants and their maneuver
sequences are defined by the chosen Functional Scenario.
For a seamless validation process, the exposure needs to be
considered on all three levels of analysis.

IV. INITIAL APPLICATION

In this section we examine the applicability of our pro-
posed concept and the maneuver extraction process. We show
how we extract maneuvers out of measurement data which
include captured vehicle movements and then subsequently
estimate distributions of defined parameters for the extracted
maneuvers.

In an exemplary application we focus on a scenario with
fixed infrastructure at the Volkswagen factory grounds in
Wolfsburg. In this scenario the vehicle under test (Ego) is
performing an unprotected left turn on a three way inter-
section. The behavior of oncoming vehicles can either be a
Right Turn onto the connecting road or the crossing of the
T-intersection (Cross Junction) and therefore staying on the
major road. For both cases we define a separate Functional

Functional Scenarios
’Left Turn I’ and ’Left Turn II’

Base road network:
Three-way intersection in urban area
Tempo limit of 30 km/h

Connecting road:
Two lanes in each direction
Crosswalk in front of intersection

Major road:
One lane in each direction
Crosswalk on one side of intersection

Movable objects:
Ego vehicle:

Left Turn (onto connecting road)
Oncoming vehicle:

I: Cross Junction (stays on major road)
OR

II: Right Turn (onto connecting road)

Fig. 4. Description of the Functional Scenarios ’Left Turn I’ and ’Left
Turn II’ on layer 1 and 4 following [6]

Scenario (cf. Fig. 4). A visualization of the two scenarios
can also be seen in Fig. 5.

Unprotected left turns pose a challenge for automated
vehicles in urban areas. The movement of oncoming vehicles
has to be correctly captured and possible future trajectories
have to be considered to ensure safe behavior by the sys-
tem [12]. Therefore there is great interest in testing such
scenarios with realistic and representative traffic participant
behavior.

Our initial application is structured into four parts. First,
all occurrences of both Functional Scenarios and their ma-
neuvers in our database are extracted. Then the parameters
for the basic maneuvers Right Turn and Cross Junction are
defined. Subsequently, by analyzing the extracted scenarios,
the parameter distributions for the defined parameters are
derived. Finally a set of Concrete Scenarios is sampled which
can be used to test automated driving systems.

A. Extraction of Scenarios and Maneuvers

The measurement data used as a basis for scenario and
maneuver extraction is captured during test drives at the
Volkswagen Factory Grounds. An OpenDRIVE [19] map is
used as a georeferenced map to correctly assign the ego
vehicle and surrounding vehicles to their respective lanes.
Based on the resulting scenario representation, we detect
executed basic maneuvers for every observed vehicle. To
extract all scenarios that fit to our Logical Scenario, we look
for left turns performed by the ego vehicle and subsequently
extract all simultaneous maneuvers from the surrounding
vehicles that performed a Right Turn or Cross Junction.
Both maneuvers are recognized by detecting the points in
time when a vehicle enters or exits a junction polygon
defined by OpenDRIVE [19]. For our examined junction,
a Cross Junction maneuver is defined as the vehicle entering
and exiting the junction with an absolute difference less
than a predefined threshold value in its global heading.
Accordingly, Right Turns and Left Turns are classified as



complementary maneuvers and differentiated based on the
sign of the heading difference. These thresholds should be
modified for different junctions as junction topology and
therefore the spatial course of Cross Junction and Turn can
vary. All detected occurrences are stored and form the basis
for our analysis process.

B. Definition of Parameters

When generating test scenarios for an unprotected Left
Turn at an intersection, the behavior of surrounding vehicles
which can lead to a conflict with the ego vehicle is focused.
Therefore, the maneuvers Right Turn and Cross Junction
are examined. First, we define the corresponding parameters
which can be diversified to generate an approximation of the
observed occurrences of these maneuvers. Both maneuvers
are modeled as Bézier5 curves. A Bézier curve is specified
by n control points which define the course of the curve
in a multidimensional space. Following Equation 1 where
n > 0 and the control points b0, b1, ..., bn describe a spatial
polygon.

b(t) =

n∑
i=0

(
n

i

)
ti(1− t)n−ibi, 0 ≤ t ≤ 1 (1)

We describe the spatio-temporal course of Right Turn
maneuvers at the examined junction as a Bézier curve of
third order. This curve is specified by four three-dimensional
control points which contain two-dimensional positions and a
velocity value. The first and last control point are defined by
starting position, starting velocity and end position and end
velocity of the vehicle executing the Right Turn. The two
inner control points enable the possibility to describe how
the right turn is executed in regards to the spatio-temporal
course. The Right Turn parameterization consists of four
control points (xri , yri , vri ), i ∈ [0, 3] which add up to twelve
values. As a 13th value, we include the timing and therefore
the start of the right turn maneuver. This is modeled relative
to the ego vehicle position by measuring the distance dEgo

from the ego vehicle to the lane center of the junction the
moment the maneuver of the oncoming vehicle starts. This
parameter can be directly used in OpenSCENARIO [20] to
create a distance trigger condition for the maneuver.
As with the Right Turn maneuver, the spatial course and
the velocity profile of the examined Cross Junction ma-
neuvers are modeled as a Bézier curve of third order. The
Cross Junction parameterization again consists of four three-
dimensional control points (xci ,yci ,vci ), i ∈ [0, 3] which
add up to twelve values. As with the Right Turn, another
parameter dEgo is added to model the timing of the oncoming
vehicle leading to a total of 13 parameters.

Both maneuver parameterizations are summarized in Fig. 5
and Fig. 6. As these models represent a first proposal for pa-
rameterizations of Right Turn and Cross Junction maneuvers
which are suitable for the examined junction, there might be
a need for modeling enhancements in the future to handle
more complex infrastructure.

5Pierre Bézier (1910-1999), French Engineer and Mathematician

— Cross Junction
(xc0 ,yc0 ): Position 0
(xc1 ,yc1 ): Position 1
(xc2 ,yc2 ): Position 2
(xc3 ,yc3 ): Position 3

— Right Turn
(xr0 ,yr0 ): Position 0
(xr1 ,yr1 ): Position 1
(xr2 ,yr2 ): Position 2
(xr3 ,yr3 ): Position 3

— Left Turn (Ego)
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(xr2 ,yr2 )
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Fig. 5. Spatial parameterizations of the maneuvers Cross Junction and
Right Turn. Satellite image is taken from OpenAerialMap [21].
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Fig. 6. Temporal parameterizations of the velocity v during the maneuvers
Cross Junction and Right Turn. vci and vri are control points of cubic
Bézier curves.

C. Estimation of Parameter Ranges

To generate a Logical Scenario, a distribution is calculated
for each introduced parameter. We assume the parameter val-
ues to adhere to a normal distribution defined by its mean µ
and the standard deviation σ. We detected 5 occurrences of
our functional scenario Left Turn I and 6 occurrences of our
functional scenario Left Turn II. Expectation values µ and
standard deviations σ for each parameter of both scenarios
are shown in Table I.

D. Sampling of Concrete Scenarios

In a next step Concrete Scenarios for the test of automated
vehicles are sampled based on the estimated parameter
ranges. These scenarios can then be executed in a simula-
tion environment or recreated on a proving ground. Since
the sample size of the observed maneuvers was too small
to obtain a meaningful covariance matrix, the correlations
between the parameters are not accounted for during this
initial application. To demonstrate the applicability of the
methodology, the calculated distributions of the Logical
Scenarios are sampled at random to obtain 100 Concrete
Scenarios for each of them. The 200 sampled trajectories



TABLE I
EXPECTATION VALUES AND STANDARD DEVIATIONS OF THE MANEUVER

PARAMETERS IN THE ANALYZED DATASET

Cross Junction

[m] µ σ [m] µ σ [m/s] µ σ

xc0 619787.4 0.22 yc0 5810521.4 1.10 vc0 10.91 1.29
xc1 619780.9 2.97 yc1 5810563.1 15.36 vc1 9.9 3.14
xc2 619781.3 2.97 yc2 5810564.5 6.29 vc2 3.0 8.71
xc3 619776.4 1.05 yc3 5810593.6 1.53 vc3 10.2 2.38
dEgo 53.1 21.97

Right Turn

[m] µ σ [m] µ σ [m/s] µ σ

xr0 619787.7 0.88 yr0 5810521.9 0.73 vr0 9.4 0.44
xr1 619789.7 3.09 yr1 5810549.1 3.70 vr1 8.9 1.47
xr2 619803.9 4.97 yr2 5810552.7 1.16 vr2 7.2 2.39
xr3 619822.2 1.67 yr3 5810559.8 0.85 vr3 8.1 2.23
dEgo 53.2 12.00

x (m)

y
(m

)

Fig. 7. Trajectories (black) sampled from the Logical Scenarios Left Turn
I and II and the original measured trajectories (randomized colors)

are shown in black in Fig. 7, with the recorded trajectories
overlayed in randomized colors.

In an additional step the sampled trajectories are converted
into OpenSCENARIO [20] files. To this end the trajectories
are implemented as an action that is triggered by the sampled
distance condition parameter dEgo. Fig. 8 shows the execu-
tion of one of these scenarios in a simulation environment
for automated driving systems.

V. DISCUSSION

As demonstrated, the process of maneuver classification
and subsequent parametrization can be used to obtain re-

Fig. 8. Simulation of a sampled scenario Left Turn I for the Cross Junction
maneuver of the oncoming vehicle. The vehicle displayed in green is the
ego vehicle, the oncoming vehicle is colored in black.

alistic test scenarios for automated vehicles. It is possible
to quantify the exposure of specific behavior on layer 4
of the scenario description model as the occurrence of
defined maneuvers. In contrast to replay approaches, where a
recorded trajectory is used to define simulated behavior, this
work abstracts from the raw data of positions and timestamps
by introducing parameterized maneuvers. Depending on the
sample rate, these maneuvers generally contain fewer pa-
rameters than the recorded trajectories and can facilitate the
systematic variation of a scenario during the testing process
of automated driving.

Another advantage of the resulting distributions in the
form of the Logical Scenarios is the fact that they allow
engineers to perform exposure-based testing. For example,
to arrive at a finite set of scenarios, only an agreed upon
confidence interval of the distribution could be taken into
account when sampling test scenarios. Engineers could also
decide to sample parameter intervals with high exposures
with a higher sampling rate and thereby increase testing
efforts for scenarios that are more likely to occur under real
world traffic conditions.

The analyzed Functional Scenarios of a Left Turn with
oncoming traffic were chosen for their apparent simplicity to
show a proof of concept of the methodology. The oncoming
vehicle only executes one defined maneuver in each of
the scenarios. In spite of that, the parameterized Logical
Scenarios contain 13 parameters respectively. This consti-
tutes a high-dimensional search space of possible Concrete
Scenarios that could be sampled from this distributions. In
order to limit this search space to a certain extent by focus-
ing on the most likely scenarios, the correlations between
different parameters should be taken into account. Strategies
for sampling and testing such a Logical Scenario were not a
focus in this work and should be investigated in the future.

The analyzed dataset was too small to obtain a robust,
statistically valid set of parameter distributions for each of
the investigated maneuvers. The presented values should
rather be viewed as a proof of concept of the overall
methodology. They are not expected to be representative for
vehicle behavior at this intersection in general, nor has their



applicability to other junction topologies been investigated.
The parameterization of the maneuvers as Bézier curves

constitutes a significant abstraction from the observed physi-
cal behavior. This abstraction was made to reduce the number
of variables in the resulting Logical Scenario and to obtain
a uniform set of parameters to model all occurrences of the
maneuver at the investigated junction. The reproduction of
the parameterized maneuvers in simulation and a quantifi-
cation of the deviation from the recorded behavior should
be investigated in detail in the future to verify the model
accuracy of the chosen parameter set.

Another subject of debate raised by the initial application
is the abstraction level of Functional Scenarios which is
also addressed in [9]. On one hand, when investigating a
narrow scenario as in this work, less parameters are needed
to model the observed behavior. For example, by focusing
on one intersection, the road curvature does not need to be
modeled as an influencing factor since it is constant for
all observed Right Turn maneuvers. On the other hand, in
datasets collected for general purposes, there will generally
be less data matching a narrow scenario description than
a coarse one. This can result in less reliable parameter
distributions being derived for the chosen Logical Scenario.
This fundamental tradeoff between many, narrowly defined
and fewer, more coarsely modeled Functional Scenarios will
be a key challenge to solve for the data-driven testing of
future automated driving systems.

VI. CONCLUSION AND FUTURE WORK

In this paper, a catalog of basic maneuvers for vehicular
traffic in urban environments is introduced. These maneuvers
are separated into three distinct categories which relate to the
vehicle state, the infrastructure and surrounding objects of the
vehicle, as can be seen in Fig. 1. We then demonstrate the
extraction of maneuvers from a measurement database for the
generation of representative scenarios for automated driving
systems. To that end, two Functional Scenarios are defined
which describe a Left Turn at a three-way intersection with
oncoming traffic. Occurrences of these Functional Scenarios
are detected in our database by recognizing the specified
combinations of maneuvers. In a next step, extracted ma-
neuvers are analyzed to generate Logical Scenarios with
parameter distributions. For this reason, we parameterize
the maneuvers Cross Junction and Right Turn. Ultimately,
we sample 200 test scenarios for an automated vehicle
based on the analysis that took place. In the future, we
would like to complete the maneuver catalog for urban
environments and show its applicability regarding the testing
of automated vehicles. This includes both the definition and
the parameterization of further traffic maneuvers which is
needed to diversify vehicle behavior. Another topic of future
research could be to consider all layers of analysis shown in
Fig. 3 to estimate the exposure of traffic scenarios.
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