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NAFLD is a common disease in Western society and ranges from steatosis to steatohepatitis and to end-stage liver
disease. The molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully
understood. One suggested mechanism involves the oxidation of biomolecules by mitochondrial ROS which
initiates a vicious cycle of exacerbated mitochondrial dysfunction and increased hepatocellular oxidative da-
mage. This may ultimately pave the way for hepatic inflammation and liver failure. This review updates our

current understanding of mitochondria-derived oxidative stress in the progression of NAFLD.

1. Introduction

Fat accumulation in the liver is pathognomonic for non-alcoholic
fatty liver disease (NAFLD) (see Box 1). This steatosis can progress to
inflammatory NASH, fibrosis, cirrhosis and hepatocellular carcinoma,
ultimately culminating in liver failure. Non-alcoholic steatohepatitis
(NASH) development may be negatively propagated by the predis-
position of individuals to genetic factors. In fact, several different ge-
netic loci, PNPLA3, NCAN, GCKR and LYPLAL1, have been identified as
determinants of steatosis (Mehta et al., 2016). Sedentary lifestyles,
dietary changes, epidemic obesity and type 2 diabetes further con-
tribute to the worldwide increase in NAFLD, which currently affects
25% of the worldwide population.

Hepatic mitochondria are structurally and molecularly altered in
NAFLD (Einer et al., 2017). As the cell powerhouse, a decline in mi-
tochondrial function, concomitant with structural and molecular al-
terations, may provoke metabolic disturbances and may potentially
contribute to NAFLD progression (Fig. 1A and B). However, the

sequence of events and signaling pathways that link mitochondrial re-
modeling and dysfunction to stages of NAFLD progression remain un-
clear.

2. Physiology and pathology of mitochondria in NAFLD
2.1. Changes in mitochondrial metabolism in NAFLD (Fig. 2A and B)

2.1.1. Steatosis

High-fat diets and the dysregulation of lipid metabolism cause the
accumulation of hepatic free fatty acids (FFAs) and triglycerides (TGs)
(Eccleston et al., 2011). Under these conditions, a metabolic shift is
induced to overcome the hepatic FFA burden. This shift includes en-
hanced mitochondrial fatty acid oxidation (FAO), tricarboxylic acid
(TCA) cycle induction and oxidative phosphorylation (OXPHOS) sti-
mulation (Sunny et al., 2011). These pathways appear to be regulated
by an increased expression of PPAR-a, which promotes FFA delivery to
the mitochondria via CPT-1. Additionally, AMPK, which acts as the
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Box 1
NAFLD and NASH facts.
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e NASH is diagnosed by liver biopsy.

® No drugs/therapies are approved for NAFLD treatment.

e In NAFLD 5% of the liver cells present micro- or macrovesicular steatosis.

e Obesity, diabetes, hyperlipidaemia and high blood pressure (features of metabolic syndrome) are NAFLD risk factors.
® 90% of NAFLD patients have at least one of the above mentioned features.

e There are no clinical symptoms associated to steatosis during the early development of NAFLD.

® 10-25% of NAFLD patients progress to inflammatory steatohepatitis (NASH).

e NASH features include macrosteatosis, hepatocyte ballooning and lobular inflammation.
® These lesions define the NAFLD activity score (NAS) used to classify NAFLD grading.

e Current treatment strategies for NAFLD patients aim at the amelioration of risk factors through lifestyle and dietary changes.

Normal Diet

12 weeks
feeding

24 weeks
feeding

Western Diet

12 weeks
feeding

Fig. 1. Electron microscopy of mitochondria isolated from livers of C57BL/6NCrl mice fed either a normal (A) or high-fat (45% kcal from fat), high-fructose (23.1 g/1 fructose, 18.9 g/1
glucose) “Western diet” (Einer et al., 2017) (B) for 12 or 24 weeks, respectively. Such isolated mitochondria appeared intact, i.e., without outer membrane disruptions. Mitochondria from
normal diet fed mice (A) appeared with regular and elongated cristae structures. In contrast, many mitochondria from Western diet fed mice (B) had ballooned or rounded cristae (arrow)
as well as condensed matrix structures (asterisk). These structural pecularities of the inner mitochondrial membrane may be accompanied by alterations in oxidative phosphorylation.
Mouse liver mitochondria were isolated as recently reported by Schulz S. et al. PMID:25820715). Crude mitochondrial fractions were further purified by density gradient centrifugation at
9000 x gusing an 18/30/60% PercollTM gradient system. The purified organelles were washed in isolation buffer without BSA and subsequently fixed with 2.5% glutaraldehyde (Science
Services GmbH, Germany), postfixed with 1% osmium tetroxide, dehydrated with ethanol, and embedded in Epon. Ultrathin sections were negative stained with uranyl acetate and lead

citrate and then analyzed by transmission electron microscopy.

cell’s energy status sensor, inhibits de novo lipogenesis and increases
FAO by decreasing malonyl-CoA levels and preventing CPT-1 inhibition
(Rolo et al., 2012). Enhanced CPT-1 activity has been reported to
protect NAFLD development. In fact, CPT-1 activation decreases serum
markers of liver damage (AST, ALT, bilirubin, mtDNA) in treated
NAFLD patients (Lim et al., 2010). Moreover, in early NAFLD, the up-
regulation of UCP2 may protect cells from increased ROS levels
(Serviddio et al., 2008). Therefore, increased mitochondrial activity
appears to protect hepatocytes from the deleterious effects of FFAs
deposition (Koliaki et al., 2015) .

2.1.2. NASH

Despite the attempts of the liver to recover from fat accumulation,
in the long run, mitochondrial adaptation is insufficient to prevent li-
potoxicity due to continuous FFAs deposition. This was demonstrated in
a choline-deficient NAFLD model, which exhibited an increase in
OXPHOS efficiency at 12 weeks but had lost capacity at 16 weeks
(Teodoro et al., 2008). At this later time point, the mitochondria pre-
sented with alterations in the ETC complexes and membrane potential
(Ayr), induced mitochondrial permeability transition (MPT) pore
opening and reduced ATP synthesis (Teodoro et al., 2008). Accordingly,
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the capacity of the mitochondria to overcome the increased FFAs con-
centration was lost in more advanced stages of the disease. In these
stages, disease progression was accelerated by CPT-1 downregulation,
impaired mitochondrial FAO (mtFAO), and chronic ATP depletion
caused by higher UCP2 expression in hepatocytes (Serviddio et al.,
2008).

2.2. Mitochondrial participation in NAFLD progression to NASH

2.2.1. Progression to NASH

NASH is characterized by an inflammatory state due to ROS and
RNS overproduction, lipotoxicity and an increase in pro-inflammatory
and profibrogenic cytokines. Oxidative stress and lipid peroxidation
activate NF-kB to induce pro-inflammatory cytokines, including TNF-a,
IL-1B, 1I-6 and IL-8 (Carter-Kent et al., 2008; Rodrigues et al., 2017).
Furthermore, circulating mitochondrial DNA (mtDNA) released from
damaged hepatocytes of mice fed a HFD, caused TLR9 activation,
triggering a pro-inflammatory cytokine response and ultimately liver
inflammation (Garcia-Martinez et al., 2016). The transition to NASH
can also be related to adiponectin levels. Lepr?®®® mice fed a HFD
develop NASH with concomitantly diminished hepatic adiponectin,



L.C.M. Simdes et al.

A

Model

FL83B
hepatocytes

HepG2"*

Cell line

primary mice
hepatocytes

TIr9*® and Lysm-
fl/fl
CreTIr9

C578BL/6)

C57BL/6

Wistar/C57BL/6)"

ciglox+neo/iox+neo;

Wistar/C57BL/6)"
ckalo¥/1ox i
Alb-Cre”
Wistar/C57BL/6)°
:kl/DX/,oX

Rodent

c578L/6)™°

B6SIL/129

B6.BKS(D)-
Leprdb“

Leptin-deficient
Ob/Ob

75% Balb/c and
25% B6D2F2

Leptin-deficient
Ob/Ob mice

Sprague-Dawley

OLETF

Wistar

Sprague-Dawley

C57BL/6)

Fig. 2. Mitochondrial metabolism and related mechanisms studied in the context of NAFLD. (A) — Studies using animals and in vitro models; (B) - Studies involving human subjects.
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Mitochondrial response

increased mitochondrial fusion

HSS gene protected the cells from OA-induced
lipotoxicity

mitochondrial fission plays a vital role in the
progression of nonalcoholic fatty liver disease.

increase in mtDNA.

increased mitochondrial fusion

BCAA (Branched-chain aminoacids) infusion
resulted in elevated rates of gluconeogenesis,
mitochondrial anaplerosis and pyruvate cycling

hepatic anaplerotic/cataplerotic pathway
induction in the liver might contribute to
oxidative stress and inflammation

increased in CPT-1 activity

mitochondrial fission plays a vital role in the
progression of nonalcoholic fatty liver disease.

adiponectin levels are related with the
development of NASH through impaired in

mitochondrial B-oxidation

mitochondrial dysfunction and upregulation in
the novo lipogenesis

enlarged mitochondrial was found in HF mice
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dysfunctional mitochondria

increased in liver mitochondrial biogenesis
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Mitochondrial response

increase in total DNA and mtDNA, but not nuclear DNA
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early stages of NAFLD show hepatic mitochondrial flexibility that is lost
in NASH

improvements in glucose and lipid metabolism

increased peripheral mitochondrial DNA copy number and reducing
tendency of internal oxidative stress
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18308829 2008 10 NASH oxygen electrode, TPP+ electrode, HPLC,

Western blot, RT-PCR, spectrofluorimetry

upregulation of UCP-2

Fig. 2. (continued)

which is associated with adipose tissue inflammation and hepatic mi-
tochondrial dysfunction (Handa et al., 2014). The increased levels of
cytokines activate Kupffer and stellate cells, which induce collagen
deposition and liver fibrosis (Yin et al., 2015). The subsequent activa-
tion of the caspase cascade helps establish a chronic injury that ulti-
mately results in end-stage liver disease and cell death (Handa et al.,
2014).

2.2.2. Mitochondrial involvement in NASH progression

Increased levels of the microRNA miR-21 have been reported in the
liver of NASH patients and in animal models of NASH, with a con-
comitant increase in caspase-2 levels (Rodrigues et al., 2017). Activa-
tion of miR-21 through the mTOR/NF-kB pathway inhibits PPAR-a and
exacerbates mitochondrial dysfunction and hepatocyte injury. In this
state, the cell death causing opening of the MPT pore seems to play a
critical role in hepatocyte cell death, as demonstrated using MPT in-
hibitors (Yin et al., 2015). Mitochondrial dysfunction in NASH de-
creases cellular ATP level, which may cause ER stress with the unfolded
protein response (UPR) activation. The UPR is linked to the activation
of de novo lipogenesis pathways and further aggravates steatosis (Lee
et al., 2017). Recent studies have shown that prolonged endoplasmic
reticulum (ER) stress or chronic activation of the UPR also induces
hepatocyte death and inflammation by the CHOP-dependent signaling
pathway (Willy et al., 2015). Alterations in the abundance and activity
of OXPHOS proteins (e.g., complex I, IIl and V) and antioxidant en-
zymes have been described during mitochondrial dysfunction in animal
models of NAFLD (Eccleston et al., 2011; Rector et al., 2010). In fact,
increased protein carbonylation has been observed in HFD-treated an-
imals and in NAFLD patients. At the cellular level, these modifications
may instigate the accumulation of misfolded proteins, thereby trig-
gering ER stress and the UPR response (Willy et al., 2015). Moreover,
incorrect protein folding, e.g., in apoB, an essential protein for very-low-
density lipoprotein (VLDL), may impair lipid export from the liver and
exacerbate steatosis in mice (Uchiyama et al., 2006).

Increased mitochondrial cholesterol accumulation is also related
with the progression of steatosis to steatohepatitis. In NASH patients,
the depletion of mitochondrial GSH (mtGSH) has been linked to the
higher accumulation of cholesterol (Gan et al., 2014). This may be
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caused by the impaired transport of mtGSH from the cytosol to the
mitochondria due to cholesterol-induced alterations in membrane per-
meability. High cholesterol has also been shown to sensitize ob/ob mice
hepatocytes to TNF- and Fas-induced apoptosis and to cause mi-
tochondrial GSH depletion (Mari et al., 2006).

2.3. Is mitochondria-related oxidative stress a key player in NAFLD
pathology?

2.3.1. Mitochondria and ROS in NAFLD (Fig. 3A and B)

In NAFLD, increased mitochondrial FAO and TCA cycle stimulation
results in the enhanced supply of reducing equivalents to the electron
transport chain (ETC). This over-reduction of the respiratory complexes
promotes superoxide production (Aharoni-Simon et al., 2011). While
complex I and III are considered major sites of superoxide, recent stu-
dies have suggested that other mitochondrial enzymes are also involved
in this potentially detrimental process. Both 2-oxoglutarate dehy-
drogenase and glycerol 3-phosphate dehydrogenase may be necessary
to maintain mitochondrial redox potential (Quinlan et al., 2013). Su-
peroxide is enzymatically converted to hydrogen peroxide, which may
cause mitochondrial damage and/or initiate signaling responses. To a
lesser extent, extra-mitochondrial reactions may contribute to the ele-
vated ROS/RNS production in NAFLD. The enzymes mediating these
reactions include NADPH oxidase, xanthine oxidase and inducible nitric
oxide synthase (iNOS) (Mantena et al., 2009). Collectively, these me-
chanisms may provoke a surplus of ROS (ie., oxidative stress) in
NAFLD. Under normal conditions cells efficiently counteract physiolo-
gical ROS formation through their antioxidant defense system and by
triggering metabolic adaptations that reduce substrate delivery to the
TCA cycle. In NAFLD, however, parallel to the increased mitochondrial
ROS production, the diminished expression and activity of ROS detox-
ification mechanisms (e.g., SOD2, catalase or GSH) have also been re-
ported from in vitro and in vivo experiments (Besse-Patin et al., 2017) .

Thus, a surplus of ROS/RNS and a reduced antioxidant defense
capacity may develop in NAFLD. Table 2 lists the most recent works in
cell culture, animal models or human patients that report on mi-
tochondrial ROS production and its causal role in the oxidative damage
of NAFLD. Notably, a pro-oxidative state appears to precede extensive
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Fig. 3. Mitochondrial ROS production and related mechanisms studied in the context of NAFLD. (A) — Studies using animals and in vitro models; (B) — Studies involving human subjects.
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Mitochondrial response
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less prevalent in NASH patients
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CYP2E1 activity (in NASH patients)

increased lipid peroxidation in all groups; increased ROS and 8-OH-deoxyguanosine levels in

NASH group; decreased activity of catalase in NASH group

Fig. 3. (continued)

mitochondrial damage and the subsequent mitochondrial impairment
in NAFLD pathology (Koliaki et al., 2015).

2.3.2. Oxidative damage in mitochondria in NAFLD

Aside from enzymatic inactivation, oxidative stress is also linked to
mtDNA alterations. MtDNA is sensitive to oxidative damage due to its
proximity to the sites of ROS production and lack of histones or DNA
repair systems. NAFLD is characterized by mtDNA depletion and in-
creased hepatic levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), a
marker of oxidized DNA (Koliaki et al.,, 2015). Moreover, oxidative
damage to nuclear DNA may also amplify mitochondrial impairment by
compromising the transcription of critical mitochondrial proteins. As a
result, the expression levels of key regulatory factors involved in mi-
tochondrial metabolism and organelle biogenesis, namely, PGC-1a,
TFAM and NRF-2, have been reported to be reduced in NAFLD
(Aharoni-Simon et al., 2011; Koliaki et al., 2015).

ROS can “attack” polyunsaturated fatty acids, leading to the pro-
duction of aldehyde by-products, namely, MDA and HNE (Yin et al.,
2015), that can diffuse from their site of origin, amplifying the effects of
oxidative stress. Importantly, cardiolipin, a specific inner mitochondrial
membrane phospholipid, is very susceptible to oxidative damage. In the
presence of oxidized cardiolipin, altered membrane fluidity is asso-
ciated with the destabilization and loss of ETC complex activity and the
induction of MPT pore opening (Li et al., 2010). Moreover, the release
of cytochrome c from cardiolipin into the cytosol can induce the cas-
pase-mediated apoptotic pathway and trigger cell death (Kagan et al.,
2005).

Finally, in NAFLD, ROS may be associated with ETC disruption,
outer mitochondrial membrane permeabilization, altered Ay, and
changes in mitochondrial structural integrity (Rector et al., 2010).
Oxidative stress increases protein oxidation and lipid peroxidation and
induces mitochondrial genome alterations. These mechanisms may
thereby cause vicious cycle of mitochondrial oxidative damage and
mitochondria-originating oxidative stress (Mantena et al., 2009).

2.3.3. Antioxidative treatment in NAFLD

Since the above studies have repeatedly reported oxidative mi-
tochondrial damage, it is of interest to determine whether antioxidative
treatments have a beneficial effect in NAFLD. In NAFLD animal models,
the administration of lipoic acid resulted in preventive, therapeutic
effects on hepatic steatosis by inhibiting de novo lipogenesis and by
promoting a reduction in oxidative stress. Increased antioxidant en-
zyme (SOD2, GPx, GSH) abundance, reduced ROS production and in-
creased mtDNA copy numbers have been reported (Geng et al., 2017;
Valdecantos et al., 2012). Antioxidant ginkgolide A (GA) treatment in
HFD mice increased the levels of anti-apoptotic Bcl-2, while a decrease
in Bax, phosphorylated JNK, and cleaved caspase-3 and —9 levels were
observed in the animal livers. Moreover, GA treatment also protected
hepatocytes from inflammation (Jeong et al., 2017). Oxidative stress
and lipid peroxidation are known factors that activate NF-xB to induce
the increased production of pro-inflammatory cytokines. These factors
contribute to the leukocyte recruitment, necro-inflammation, insulin
resistance (IR) and fibrogenic factor release that ultimately cause end-
stage liver disease (Rodrigues et al., 2017). Studies in various cell lines
have shown that phenolic compounds reduce ROS and, therefore, may
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slow the progression of steatosis to fibrosis by reducing inflammation
(decreased NF-kB phosphorylation) and endothelial cell migration
(decreased NO release) (Jeong et al., 2017; Vergani et al., 2017).

3. Future outlook

NAFLD prevalence has doubled over the last 20 years and now af-
fects approximately one-quarter of the worldwide population.
Unfortunately, the sequence of events observed in NAFLD progression is
still not clearly understood, which limits the development of efficient
therapies to counteract the spectrum of progressive liver disorders.
Since oxidative stress is considered a key pathological feature of NAFLD
progression, therapeutic approaches have focused on antioxidative
compounds to counteract ROS. Studies with NAFLD mice have shown
that HFD-induced effects, such as steatosis, early mitochondrial dys-
function and dysregulated oxidative balance, can be prevented in the
presence of phenolic compounds (Geng et al., 2017; Valdecantos et al.,
2012). Moreover, these types of compounds also limit pathological
features such as apoptosis, inflammation and cell migration, which are
typical for more advanced stages of NAFLD (Jeong et al., 2017; Vergani
et al., 2017). However, despite these promising results, there are cur-
rently no effective treatments for the pathological alterations in NAFLD
patients. Future studies are required to determine the efficacy of
pharmaceuticals that target mitochondrial dysfunction in NAFLD.
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