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We present a measurement of the atmospheric neutrino oscillation parameters using three years of data
from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables
the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth’s
atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino
disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L=Eν as

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

PHYSICAL REVIEW LETTERS 120, 071801 (2018)

071801-2

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.071801&domain=pdf&date_stamp=2018-02-13
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos
from the full sky with reconstructed energies from 5.6 to 56 GeV. We measureΔm2

32¼2.31þ0.11
−0.13 ×10−3 eV2

and sin2 θ23 ¼ 0.51þ0.07
−0.09 , assuming normal neutrino mass ordering. These results are consistent with, and of

similar precision to, those from accelerator- and reactor-based experiments.

DOI: 10.1103/PhysRevLett.120.071801

Introduction.—It is well established that the neutrino
mass eigenstates do not correspond to the neutrino flavor
eigenstates, leading to flavor oscillations as neutrinos
propagate through space [1,2]. After traveling a distance
L, a neutrino of energy E may be detected with a different
flavor than it was produced with. In particular, the muon
neutrino survival probability is described approximately by

Pðνμ → νμÞ ≈ 1–4jUμ3j2ð1 − jUμ3j2Þsin2
�
Δm2

32L
4E

�
; ð1Þ

where Uμ3 ¼ sin θ23 cos θ13 is one element of the
Pontecorvo-Maki-Nakagawa-Sakata [3,4] matrix U
expressed in terms of the mixing angles θ23 and θ13, and
Δm2

32 ¼ m2
3 −m2

2 is the splitting of the second and third
neutrino mass states that drives oscillation on the length and
energy scales relevant to this analysis. In addition to the
parameters shown in Eq. (1), neutrino oscillations also
depend on the parameters θ12, Δm2

21, and δCP, but these
have a negligible effect on the data presented in this paper.
Interactions of cosmic rays in the atmosphere [5–7]

provide a large flux of neutrinos traveling distances
ranging from L ∼ 20 km (vertically down-going) to L ∼
1.3 × 104 km (vertically up-going) to a detector near the
Earth’s surface. For up-going neutrinos, there is complete
muon neutrino disappearance at energies as high as
∼25 GeV. Given the density of material traversed by these
neutrinos, matter effects alter Eq. (1) slightly and must be
taken into account [8–11].
In this Letter, we report our measurement of θ23 and

Δm2
32, using the IceCube Observatory to observe oscilla-

tion-induced patterns in the atmospheric neutrino flux
coming from all directions between 5.6 GeV and
56 GeV. The results presented here complement other
leading experiments [12–16] in two ways. Long-baseline
experiments with baselines of a few hundred kilometers
and Super-Kamiokande observe much lower-energy events
[primarily charged-current quasielastic (CCQE) and reso-
nant scattering], while our measurement relies on higher-
energy deep inelastic scattering events and is thus subject to
different sources of systematic uncertainty [17]. In addi-
tion, the higher-energy range of IceCube neutrinos provides
complementary constraints on potential new physics in the
neutrino sector [18–27].
The IceCube detector was fully commissioned in 2011,

and we previously reported results [28] using data from
May 2011 through April 2014. Those results were obtained

using reconstruction tools that relied on unscattered
Cherenkov photons and therefore were less susceptible
to detector noise. The results presented here use a new
reconstruction that includes scattered photons and retains
an order of magnitude more events per year. Because
the detector’s noise rates were still stabilizing during the
first year of operation, and the new reconstruction is more
susceptible to noise, we chose before unblinding to use data
from April 2012 through May 2015.
The IceCube DeepCore detector.—The IceCube In-Ice

Array [29] is composed of 5160 downward-looking 10 in.
photomultiplier tubes (PMTs) embedded in a 1 km3 vol-
ume of the South Pole glacial ice at depths between 1.45
and 2.45 km. The PMTs and associated electronics are
enclosed in glass pressure spheres to form digital optical
modules (DOMs) [30,31]. The DOMs are deployed on 86
vertical strings of 60 modules each. Of these strings, 78 are
deployed in a triangular grid with horizontal spacing of
about 125 m between strings. These DOMs are used
primarily as an active veto to reject atmospheric muon
events in this analysis. The remaining eight strings fill a
more densely instrumented ∼107 m3 volume of ice in the
bottom center of the detector, called DeepCore, enabling
detection of neutrinos with energies down to ∼5 GeV [32].
Neutrino interactions in DeepCore are simulated with

GENIE [33]. Hadrons produced in these interactions are
simulated using GEANT4 [34], as are electromagnetic
showers below 100 MeV. At higher energies, shower-to-
shower variation is small enough to permit the use of
standardized light emission templates [35] based on
GEANT4 simulations to reduce computation time. Muons’
energy losses in the ice are simulated using the PROPOSAL

package [36]. Cherenkov photons produced by showers
and muons are tracked individually using GPU-based
software to simulate scattering and absorption [37].
Reconstruction and event selection.—The event

reconstruction used in this analysis models the scattering
of Cherenkov photons in the ice surrounding our DOMs
[38] to calculate the likelihood of the observed photo-
electrons as a function of the neutrino interaction position,
direction, and energy. Given the complexity of this like-
lihood space, the MultiNest algorithm [39] is used to find
the global maximum. This reconstruction is run under two
different event hypotheses: first with a νμ charged-current
(CC) interaction comprising a hadronic shower and col-
linear muon track emerging from the interaction vertex,
and then with only a shower at the vertex (i.e., a nested
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hypothesis with zero muon track length). The latter model
incorporates νe and most ντ CC interactions as well as
neutral current (NC) interactions, as we do not attempt to
separate electromagnetic showers produced by a leading
lepton from hadronic showers produced by the disrupted
nucleus.
The νμ CC reconstruction is used to estimate the

direction and energy of the neutrino. The difference in
best-fit likelihoods between the two hypotheses is used to
classify our events as “track-like,” if inclusion of a muon
track improves the fit substantially, or “cascade-like,” if the
event is equally well fit without a muon. The reconstructed
neutrino energy (Ereco) distributions of events in each of
these categories after final selection are shown in Fig. 1,
along with the corresponding predicted distributions bro-
ken down by event type. The track-like sample is enriched
in νμ CC events (68% of sample), especially at higher
energies where muons are more likely detected, while the
cascade-like sample is evenly divided between νμ CC and
interactions without a muon in the final state. The angular
and energy resolutions provided by the reconstruction are
energy dependent, with median resolutions of 10° (16°) in
zenith angle and 24% (29%) in neutrino energy for track-
like (cascade-like) events at Eν ¼ 20 GeV.
The event selection in this analysis uses the DOMs

surrounding theDeepCore region toveto atmosphericmuons.
The first criteria remove accidental triggers caused by dark
noise by demanding a minimum amount of light detected
in the DeepCore volume, with timing and spatial scale
consistent with a particle emitting Cherenkov radiation.
Events in which photons are observed outside the

DeepCore volume before the light detected inside
DeepCore, in a time window consistent with atmospheric
muons penetrating to the fiducial volume, are then rejected.
These are followed by a boosted decision tree (BDT) [40]
which further reduces the background of atmosphericmuons.
The BDT uses the timing and spatial scale of the detected
photoelectrons to select events with substantial charge dep-
osition at the beginning of the event, indicative of a neutrino
interaction vertex. It also considers how close the event is to
the border of the DeepCore volume and the results of several
fast directional reconstructions [41] in determining whether
the event may be an atmospheric muon. Finally, we demand
that the interaction vertex reconstructed by the likelihood fit
described above be contained within DeepCore and that the
end of the reconstructed muon be within the first row of
DOMsoutsideDeepCore, which further reduces atmospheric
muon contamination and improves reconstruction accuracy.
As these selection criteria reduce the atmospheric muon

rate by a factor of approximately 108, it is challenging to
simulate enough atmospheric muons to obtain a reliable
prediction for the distribution of the remaining muons,
especially in the presence of systematic uncertainties. We
instead use a data-driven estimate of the shape of the muon
background distributions, with the normalization free to
float. This approach is based on tagging events that would
have been accepted except for a small number of photons
detected in the veto region, similar to the procedure in
Ref. [28]. The uncertainty in the background shape is
estimated using two different criteria for tagging these
events, and was compared to the currently available muon
Monte Carlo simulations. This uncertainty is added in
quadrature to the statistical uncertainties in the tagged
background event sample and the neutrino Monte Carlo
simulations, to provide the total uncorrelated statistical
uncertainty ðσuncorνþμatmÞ in the expected distribution shown
in Fig. 1.
Analysis.—The final fit of the data is done using an

8 × 8 × 2 binned histogram, with eight bins in log10 Ereco,
eight bins in the cosine of the reconstructed neutrino zenith
direction (cos θz;reco), one track-like bin, and one cascade-
like bin. The bins are equally spaced with cos θz;reco ∈
½−1; 1� and log10 Ereco ∈ ½0.75; 1.75�. The fit assumes
three-flavor oscillations with Δm2

21 ¼ 7.53 × 10−5 eV2,
sin2 θ12 ¼ 0.304, sin2 θ13 ¼ 2.17 × 10−2, and δCP ¼ 0°.
We use MINUIT2 [42] to minimize a function

χ2¼
X

i∈fbinsg

ðnνþμatm
i −ndatai Þ2

ðσdatai Þ2þðσuncorνþμatm;i
Þ2þ

X
j∈fsystg

ðsj− ŝjÞ2
σ̂2sj

; ð2Þ

where nνþμatm
i is the number of events expected in the ith

bin, which is the sum of neutrino events weighted to the
desired oscillation parameters using PROB3++ [43] and
the atmospheric muon background. The number of events
observed in the ith bin is ndatai , with Poisson uncertainty

FIG. 1. Reconstructed energy distributions observed in data
(points) and predicted by interaction type at our best-fit point for
oscillations (stacked). In addition to each separate component, the
uncorrelated statistical uncertainty associated with the expect-
ation ðσuncorνþμatmÞ is shown in a shaded band. The track-like sample is
peaked at higher energy due to the rising probability of tagging νμ
CC events. The bottom plots show the ratio of the data to the
fitted prediction.
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σdatai ¼
ffiffiffiffiffiffiffiffiffi
ndatai

p
, and σuncorνþμatm;i

is the uncertainty in the
prediction of the number of events of the ith bin. σuncorνþμatm
includes both effects of finite MC statistics and uncertain-
ties in our data-driven muon background estimate. The
second term of Eq. (2) is a penalty term for our nuisance
parameters, where sj is the value of the jth systematic, ŝj is
the central value, and σ̂2sj is the Gaussian width of the jth
systematic prior.
The analysis includes 11 nuisance parameters describing

our systematic uncertainties, summarized in Table I. Seven
of these are related to systematic uncertainties in the
atmospheric neutrino flux and interaction cross sections.
Since only the event rate is observed directly, some
uncertainties in flux and cross section have similar effects
on the data. In these cases, the degenerate effects are
combined into a single parameter. Because analytical models
of these effects are available, these parameters can be varied
continuously by reweighting simulated events.
The first nuisanceparameter is the overall normalization of

the event rate. It is affectedbyuncertainties in the atmospheric
neutrino flux and the neutrino interaction cross section, and
by the possibility of accidentally vetoing neutrino events due
to unrelated atmospheric muons detected in the veto volume.
This last effect is expected to reduce the neutrino rate by
several percent, but it is not included in the present simu-
lations. Because of this and the fact that it encompasses
several effects, no prior is used for this parameter.

A second parameter allows an energy-dependent shift in
the event rate. This can arise from uncertainties in either
the spectral index of the atmospheric flux (nominally
γ ¼ −2.66 at the relevant energies in our neutrino flux
model [7]) or the deep inelastic scattering (DIS) cross
section. A prior of σ̂s ¼ 0.10 is placed on the spectral index
to describe the range of these uncertainties.
Several uncertainties on the DIS cross section were

implemented in the fit, but found either to have negligible
impact or to be highly degenerate with the normalization
and spectral index parameters over the energy range of this
analysis. These include values of parameters of the Bodek-
Yang model [44] used in GENIE, uncertainties in the
differential DIS cross section, and hadronization uncertain-
ties for high-W DIS events [45]. As these effects are
captured by the first two nuisance parameters, the addi-
tional parameters were not used.
One neutrino cross-section uncertainty was not well

described by these parameters: the uncertainty of the axial
mass form factor for resonant events. The default value of
1.12 GeV and prior of 0.22 GeV were taken from GENIE

[33]. Uncertainties in CCQE interactions were also inves-
tigated but had no impact on the analysis due to the small
percentage of CCQE events at these energies.
The normalizations of νe þ ν̄e events and NC events,

defined relative to νμ þ ν̄μ CC events, are both assigned an
uncertainty of 20%. Uncertainties in hadron production
(especially pions and kaons) in air showers affect the
predicted flux—in particular, the ratio of neutrinos to
antineutrinos. We model these hadronic flux effects with
two parameters, one dependent on neutrino energy and the
other on the zenith angle, chosen to reproduce the uncer-
tainties estimated in Ref. [46]. Their total uncertainty varies
from 3% to 10% depending on the energy and zenith angle,
so the fit result is given in units of σ as calculated by Barr
et al. Uncertainties in the relative cross section of neutrinos
versus antineutrinos are degenerate with the flux uncer-
tainty in this energy range.
Systematics related to the response of the detector itself,

including photon propagation through the ice and the
anisotropic sensitivity of the DOMs, have the largest
impact on this analysis. Their effects are estimated by
Monte Carlo simulation at discrete values, with the contents
of each bin in the (energy, direction, track or cascade)
analysis histogram determined by linear interpolation
between the discrete simulated models, following the
approach of Refs. [27,28].
Uncertainties in the efficiency of photon detection are

driven by the formation of bubbles in the refrozen ice
columns in the holes where the IceCube strings were
deployed. A prior with a width of 10% was applied to
the overall photon collection efficiency [29], parametrized
using seven MC data sets ranging from 88% to 112% of the
nominal optical efficiency. In addition to modifying the
absolute efficiency, these bubbles can scatter Cherenkov

TABLE I. Table of nuisance parameters along with their
associated priors, if applicable. The two rightmost columns show
the results from our best fit for normal mass ordering and inverted
mass ordering, respectively.

Best fit

Parameters Priors NO IO

Flux and cross-section parameters

Neutrino event rate [% of nominal] No prior 85 85
Δγ (spectral index) 0.00� 0.10 −0.02 −0.02
MA (resonance) [GeV] 1.12� 0.22 0.92 0.93
νe þ ν̄e relative normalization [%] 100� 20 125 125
NC relative normalization [%] 100� 20 106 106
Hadronic flux, energy
dependent [σ]

0.00� 1.00 −0.56 −0.59

Hadronic flux, zenith
dependent [σ]

0.00� 1.00 −0.55 −0.57

Detector parameters
Overall optical efficiency [%] 100� 10 102 102
Relative optical efficiency,
lateral [σ]

0.0� 1.0 0.2 0.2

Relative optical efficiency,
head-on [a.u.]

No prior −0.72 −0.66

Background
Atm. μ contamination
[% of sample]

No prior 5.5 5.6
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photons near the DOMs, modulating the relative optical
efficiency as a function of the incident photon angle. The
effect of the refrozen ice column is modeled by two
effective parameters controlling the shape of the DOM
angular acceptance curve.
The first parameter controls the lateral angular accep-

tance (i.e., relative sensitivity to photons traveling roughly
20° above versus below the horizontal) and is fairly well
constrained by LED calibration data. Five MC data sets
were generated covering the −1σ to þ1σ uncertainty from
the LED calibration, and were parametrized in the same
way as the overall optical efficiency described above. A
Gaussian prior based on the LED data is used.
The second parameter controls sensitivity to photons

traveling vertically upward and striking the DOMs head
on, which is not well constrained by string-to-string LED
calibration. That effect is modeled using a dimensionless
parameter ranging from −5 (corresponding to a bubble
column completely obscuring the DOM face for vertically
incident photons) to 2.5 (noobscuration). Zero corresponds to
constant sensitivity for angles of incidence from0° to 30° from
vertical. Six MC sets covering the range from −5 to 2 were
used to parametrize this effect. No prior is applied to this
parameter due to lack of information from calibration data.
The last nuisance parameter controls the level of atmos-

pheric muon contamination in the final sample. As
described above, the shape of this background in the
analysis histogram, including binwise uncertainties, is
derived from data. Since the absolute efficiency for tagging
background events with this method is unknown, the
normalization of the muon contribution is left free in the fit.
An illustration of how these nuisance parameters are

constrained in the fit is provided as Supplemental Material
[47]to this Letter. In addition to the systematic uncertainties
discussed above, we have considered the impact of seed
dependence in our event reconstruction, different optical
models for both the undisturbed ice and the refrozen ice
columns, and an improved detector calibration currently
being prepared. In all these cases the impact on the final
result was found to be minor, and they were thus omitted
from the fit and the error estimate.
Results and conclusion.—The analysis procedure

described above gives a best fit of Δm2
32 ¼ 2.31þ0.11

−0.13 ×
10−3 eV2 and sin2 θ23 ¼ 0.51þ0.07

−0.09 , assuming normal neu-
trino mass ordering (NO). For the inverted mass ordering
(IO), the best fit shifts to Δm2

32 ¼ −2.32 × 10−3 eV2 and
sin2 θ23 ¼ 0.51. The pulls on the nuisance parameters are
shown in Table I. Though IceCube’s current sensitivity to
the mass ordering is low, dedicated analyses are underway
to measure this.
The data agree well with the best-fit MC data set, with

χ2 ¼ 117.4 for both neutrino mass orderings. This corre-
sponds to a p value of 0.52 given the 119 effective degrees
of freedom estimated via toy MCs, following the procedure
described in Ref. [27].

To better visualize the fit, Fig. 2 shows the results of the
fit projected onto a single L=E axis, for both the track-like
and cascade-like events. The two peaks in each distribution
correspond to down-going and up-going neutrino trajecto-
ries. Up-going νμ þ ν̄μ are strongly suppressed in the
track-like channel due to oscillations. Some suppression
of up-going cascade-like data is also visible, due to the
disappearance of lower-energy νμ which are not tagged as
track-like by our reconstruction.
Figure 3 shows the region of sin2 θ23 and Δm2

32 allowed
by our analysis at 90% C.L., along with our best fit and
several other leading measurements of these parameters
[12–14,16]. The contours are calculated using the
approach of Feldman and Cousins [48] to ensure proper
coverage.
Our results are consistent with those from other experi-

ments [12–16], but using significantly higher-energy neu-
trinos and subject to a different set of systematic
uncertainties. Our data prefer maximal mixing, similar to
the result from T2K [13]. The best-fit values from the
NOνA experiment [14] are disfavored by Δχ2 ¼ 8.9 (first
octant) or Δχ2 ¼ 8.8 (second octant), corresponding to a
significance of 2.6σ using the method of Feldman and
Cousins, although there is considerable overlap in the
90% confidence regions of the two measurements.
Further improvements to our analysis are underway,
including the incorporation of additional years of data,
extensions of our event selections, and improved calibra-
tion of the detector response.

FIG. 2. Data projected onto L=E for illustration. The black dots
indicate the data along with their corresponding statistical errors.
The dotted line shows the expectation in the absence of neutrino
oscillations. The stacked hatched histograms are the predicted
counts given the best-fit values of all parameters in the fit for each
component. The bottom plots show the ratio of the data to the
fitted prediction. The bars indicate statistical uncertainties, and
the shaded region corresponds to the σuncorνþμatm uncertainty in the
expectation, as defined in Eq. (2), which is dominated by the
uncertainty in μatm.
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