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Endothelial cells (EC) along the vascular tree exhibit organ-specific angiodiversity. Compared to most
other ECs, liver sinusoidal endothelial cells (LSEC) that constitute the organ-specific microvasculature of
the liver are morphologically and functionally unique. Previously, we showed that transcription factor
Gatad acts as a master regulator controlling LSEC differentiation. Upon analysis of the molecular
signature of LSEC, we identified GPR182 as a potential LSEC-specific orphan G-protein coupled receptor
(GPCR). Here, we demonstrate that GPR182 is expressed by LSEC and by EC with sinusoidal differenti-
ation in spleen, lymph node and bone marrow in healthy human tissues. In a tissue microarray analysis
of human hepatocellular carcinoma (HCC) samples, endothelial GPR182 expression was significantly
reduced in tumor samples compared to peritumoral liver tissue samples (p = 0.0105). Loss of endothelial
GPR182 expression was also seen in fibrotic and cirrhotic liver tissues. In vitro, GPR182 differentially
regulated canonical GPCR signaling pathways as shown using reporter luciferase assays in HEK293T cells.
Whereas ERK and RhoA signaling were inhibited, CREB and Calcium signaling were activated by ectopic
GPR182 overexpression. Our data demonstrate that GPR182 is an endothelial subtype-specific marker for
human sinusoidal EC of the liver, spleen, lymph node and bone marrow. In addition, we provide evidence
for GPR182-dependent downstream signaling via ERK and SRF pathways that may be involved in
regulating endothelial subtype-specific sinusoidal differentiation and sinusoidal functions such as
permeability.
© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Endothelial cells (EC) along the vascular tree exhibit organ-

specific angiodiversity which has led to the classification of
continuous, fenestrated and sinusoidal endothelium. Sinusoidal
endothelial cells represent a highly specific type of microvascular
endothelium with a unique morphology such as fenestrations
without diaphragms and lack of a basement membrane and they

Abbreviations: EC, endothelial cells; LSEC, liver sinusoidal endothelial cells;
GPCR, G protein coupled receptor; HCC, hepatocellular carcinoma; LMEC, lung
microvascular endothelial cells; ISC, intestinal stem cells; TMA, tissue microarray;
RFP, red fluorescent protein.
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are found in liver, spleen, bone marrow, lymphoid tissue and
endocrine organs [1]. Liver sinusoidal endothelial cells (LSEC) that
constitute the microvasculature of the liver exert important regu-
latory functions on local and systemic levels such as scavenger
functions [2], the regulation of the portal blood pressure and the
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induction of immune tolerance [3]. Just recently, we identified
Gata4 as a master regulator of hepatic microvascular specification
[4]. In liver fibrosis and cirrhosis, but also during hepatocarcino-
genesis or in liver metastases, LSEC lose their unique morphology
and expression pattern by undergoing a process called “capillari-
zation” [5,6].

Through comparative gene expression profiling of LSEC and lung
microvascular endothelial cells (LMEC), we identified GPR182 as a
potential LSEC-specific molecule [7]. Independent comparative
gene expression profiling from mouse liver, lung and brain EC also
showed enriched levels for GPR182 mRNA in liver EC [8]. Notably,
GPR182 was down-regulated in the livers of our mice with LSEC-
specific loss of Gata4 [4].

G protein-coupled receptor (GPR182) 182 is a Class A G protein-
coupled receptor (GPCR) that belongs to the subgroup of chemokine
receptors [9]. GPCRs are membrane-bound surface molecules that
translate external signals into intracellular signaling, and are thereby
involved in a multitude of biological processes. Due to their physio-
logical relevance, GPCRs represent promising targets for pharmaco-
logical treatment [10]. Notably, up to 40% of all drugs in clinical use
exert their functions via GPCRs [11]. The predicted structure of
GPR182 is typical of GPCRs featuring an extracellular N terminus, an
intracellular C terminus, and seven transmembrane helices [12].
Adrenomedullin (ADM) had been suggested to be a potential ligand
for GPR182, however, this hypothesis was not confirmed [ 13,14]. Thus,
GPR182 has remained an orphan GPCR so far. GPR182 expression was
found in human heart, skeletal muscle, immune system, adrenal
gland and liver using Northern Blot analysis [15]. Furthermore,
vascular endothelial cells of zebra fish embryos and developing
mouse endothelial cells have been found to express GPR182 [16,17].

Recently, Kechele and colleagues systematically investigated
GPR182 expression during development and adulthood using
GPR182 reporter mice [18]. In the adult mouse, GPR182 lacZ
expression was seen in endothelial cells of heart, lung, liver, spleen
and lymph node. Moreover, GPR182 was expressed in podocytes of
the kidney, spermatocytes and in intestinal stem cells (ISCs)
throughout the intestine. In the intestine, GPR182 acts as negative
regulator of proliferation during regeneration and adenoma for-
mation by inhibiting ERK signaling.

In human tissues, expression of GPR182 has not yet been
comprehensively studied. In addition, the endothelial functions of
this orphan GPCR have hitherto remained elusive.

2. Methods
2.1. Patients and controls

Healthy and tumorous tissue samples were retrieved from the
Institute of Pathology, University Medical Center Mannheim. All
experiments were approved by the institutional ethics board
(Medical Ethics Board II, University Medical Center Mannheim,
Heidelberg University, Germany; approval 2015-868R-MA). All ex-
periments were carried out in accordance with the Declaration of
Helsinki.

Healthy and pathological liver samples (liver fibrosis, liver
cirrhosis, HCC) were provided by the tissue bank of the National
Center for Tumor Diseases (NCT, Heidelberg, Germany) in accor-
dance with the regulations of the tissue bank and the approval of
the ethics committee of Heidelberg University.

2.2. Antibodies, immunohistochemistry, immunofluorescence and
microscopy

First antibodies used in this study are listed in Table S1.
Formalin-fixed paraffin-embedded (FFPE) human tissues were cut

(1-5um), sections were deparaffinized and rehydrated according to
standard protocols. Antigen retrieval (pH6) was performed at 95 °C
in a water bath for 1h. Sections were blocked with 10% BSA,
incubated with first antibodies diluted in 0.5% BSA, followed by
incubation with appropriate secondary antibodies. Secondary an-
tibodies are listed in Table S2.

Immunoperoxidase specimens were analyzed using Nikon
Eclipse Ni microscope and Nikon DS-Ril camera (Nikon In-
struments, Tokyo, Japan). Immunofluorescent specimens were
analyzed using an inverted Leica SP5 Mid Multi-Photon system
(Leica Microsystems, Mannheim, Germany). Excitation and detec-
tion wave lengths for confocal microscopy were as follows: 488 nm
excitation and 518 nm emission maximum for AF488, 543 nm
excitation and 570 nm emission maximum for Cy3, 642 nm exci-
tation and 661 nm emission maximum for TO-PRO-3-lodide. Im-
ages were acquired in a sequential mode. Contrast of images was
adjusted using Fiji software [19].

2.3. Tissue microarray analysis

Tissue microarrays (TMA) were assembled as previously
described [20]. The two tissue microarrays included 126 samples of
tumorous and peritumoral regions. Immunoperoxidase staining
was carried out as previously described using an anti-GPR182
antibody (HPA027037). Tissue dots were analyzed by light micro-
scopy differentiating between positive and negative staining
together with a board-certified pathologist.

2.4. Expression and reporter plasmids

Human and murine GPR182 cDNA was purchased from Sour-
cebioscience (human GPR182: IRATp970E0545D, Clone ID:
5185932; murine GPR182: IRCKp5014A034Q, Clone ID: 40129794,
Cambridge, UK). Human and murine GPR182 genes were cloned
into a lentiviral vector (pLADR3) containing a RFP reporter gene.
Clones were sequenced without any mistakes by LGC Genomics
(Berlin, Germany). The following reporter luciferase plasmids were
purchased from Promega: pGL4.29[luc2P/CRE/Hygro], pGL4.30
[luc2P/NFAT-RE/Hygro], pGLA4.33[luc2P/SRE/Hygro] Vector,
pGL4.34[luc2P/SRF-RE/Hygro] Vector. Plasmids were multiplied
using DH5a™ Competent Cells (Thermo Fisher, Waltham, USA) and
Qiagen Mini and Maxi Prep Kit (Qiagen, Venlo, Netherlands).

2.5. Cell culture

HEK293T cells were grown in Dulbecco's modified Eagle's me-
dium supplemented with 10% carbon absorption foetal bovine
serum (FCS) and 1% Penicillin and Streptomycin (Merck, Darmstadlt,
Germany). All cells were grown at 37 °C and in an atmosphere of 5%
Co2.

2.6. Cell transfection

HEK293T cells were seeded in 96-well plates and grown for 24 h
to approximately 75% confluency. X-tremeGENE™ 9 DNA Trans-
fection Reagent (Roche, Mannheim, Germany) was used for trans-
fection according to the manufacturer's instructions.

2.7. Reporter luciferase assay

Bright-Glo™ Luciferase Assay System (Promega, Madison, USA)
and Glo Lysis Buffer (Promega, Madison, USA) were used according
to the manufacturer's instructions.

Approximately 30 h (CRE, SRE, SRF-RE) or 48 h (NFAT-RE) post
transfection, cells were washed with PBS and incubated with Glo Lysis
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Buffer. RFP fluorescence was measured using a microplate reader
(Tecan, Mannedorf, Switzerland) set to 548 nm excitation, 610 nm
emission, 20 s integration, 25 flashes and gain of 170%. After adding
Bright-Glo™ Reagent, Luminescence was measured in a microplate
reader (Tecan, Mannedorf, Switzerland). All fluorescence and lumi-
nescence values were background corrected. Finally, luminescence
values were normalized to corresponding RFP fluorescence signal.

For downstream stimulation, 24 h (CRE, SRF-RE, SRE) or 32 h
(NFAT-RE) post transfection, cells were washed twice with PBS and
culture medium was replaced with stimulation medium. Stimula-
tion media were prepared as follows: 3 uM forskolin (Sigma-
Aldrich, Darmstadt, Germany) in 10% FCS for CRE reporter cells,
1 uM Ionomycin (Sigma-Aldrich, Darmstadt, Germany) + 1 ng/ml
PMA (Sigma-Aldrich, Darmstadt, Germany) in 10% FCS for NFAT-RE
reporter cells, 10 ng/ml PMA in 20% FCS for SRE reporter cells, 20%
FCS for SRF-RE reporter cells.

2.8. Statistical analysis

Qualitative values were presented as percentage for categorical
variables or means for normally distributed values (luciferase
assay). Statistical differences between groups were analyzed by
unpaired two-sample t-test. To analyze associations between cat-
egorical variables Chi-square test was performed. Two-tailed P
values below .05 were considered significant. Statistical analysis
was carried out using JMP®, Version 11. SAS Institute Inc., Cary, NC,
1989—-2007.

3. Results and discussion

3.1. Endothelial GPR182 is restricted to EC with sinusoidal
endothelial differentiation

Previous work by us and others reported high GPR182 expres-
sion levels in mouse and rat LSEC [7,8,18]. To analyze cell-type-

Fig. 1. LSEC express GPR182 in healthy liver tissue.

specific expression of GPR182 in human liver sinusoidal endothe-
lial cells, we used healthy samples from human liver for immuno-
peroxidase and immunofluorescence staining with a commercially
available antibody against human GPR182. The specificity of the
antibody was confirmed by Western Blotting and immunocyto-
chemistry (ICC) of HEK293T cells transfected with human GPR182
in comparison to empty vector (EV)-transfected HEK293T cells
devoid of GPR182 expression (Fig. S1). In healthy human liver tis-
sue, we observed a strictly sinusoidal endothelial expression
pattern for GPR182, as analyzed by immunohistochemistry and co-
immunofluorescence with LSEC marker CD32b and Kupffer cell
marker CD68 (Fig. 1A—F). Regarding zonal endothelial marker
expression in the liver, GPR182 expression was predominantly seen
in the mid-zonal area. GPR182 was neither expressed in EC of the
central vein nor in EC of the hepatic artery and portal vein
(Fig. 1A-D).

A broader screening for human organs containing EC with si-
nusoidal endothelial differentiation revealed a similar expression
pattern of GPR182 restricted to sinusoidal EC in human spleen,
lymph node and bone marrow (Fig. 2A—]). We confirmed the si-
nusoidal endothelial expression of GPR182 by co-staining with
CD31 (continuous endothelium), Meca79 (high endothelial ve-
nules), CD68 (macrophages) and STAB2 (sinusoidal endothelium)
(Fig. 2A—]). In contrast, continuous EC in the lungs, heart, kidney
and the skeletal muscle did not express GPR182 (Fig. S2).

The sinusoidal endothelial expression pattern demonstrated
here for GPR182 is similar to other known LSEC markers such as
STAB2 or CD32b [21]. In general, the molecular similarity of liver,
spleen and bone marrow EC is well-known [22]. In our analysis, the
strongest sinusoidal endothelial expression of GPR182 was found in
the spleen as analyzed by immunohistochemistry which is in line
with mRNA data from Expression Atlas [23]. Interestingly, recently
published data demonstrated that GPR182 knockout mice show a
significantly increased splenic weight [18]. Unfortunately, no
further investigation of this phenotype was performed by these

(A) Representative IHC of GPR182 in healthy human liver (n=5) and higher magnification of the periportal zone (B), midzonal area (C) and pericentral zone (D). (E) GPR182 co-
immunofluorescence (IF) with LSEC marker CD32b and nuclear marker TOTO-3 in healthy human liver (n =4). (F) GPR182 co-IF with Kupffer cell marker CD68 and nuclear marker

TOTO-3 in healthy human liver (n = 3). Scale bars: 100 um.
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Fig. 2. Sinusoidal endothelial GPR182 expression in human spleen, lymph node and bone marrow.

Representative IHC of GPR182 in healthy human spleen (n = 4) (A), lymph node (n = 14) (D) and bone marrow (n =

3) (G). GPR182 co-IF with sinusoidal endothelial cell markers

STAB2 (B) and CD32b (H), high endothelial venules marker Meca79 (E), continuous endothelial cell marker CD31 (C, F), and macrophage marker CD68 (J) in healthy human spleen,
lymph node and bone marrow. At least three specimens each were analyzed. Scale bars: 100 pm.

authors. As splenomegaly is typically seen because of ineffective
bone marrow hematopoiesis and subsequent extramedullary he-
matopoiesis in myelofibrosis, it may be hypothesized that endo-
thelial GPR182 might be required for proper hematopoiesis [24].

3.2. Loss of endothelial GPR182 in hepatocellular carcinoma (HCC)

The loss of organ-specific endothelial differentiation in the liver,
i.e. sinusoidal capillarization, is involved in metabolic and fibrotic
liver diseases and in liver cancer [5,25—27]. Therefore, a human
hepatocellular carcinoma (HCC) tissue microarray (TMA) contain-
ing 68 tumorous and 58 peritumoral samples was analyzed for
GPR182 expression. Immunohistochemistry revealed a significant
downregulation of endothelial GPR182 in tumorous versus peri-
tumoral tissues (p = 0.0105) (Fig. 3A—E). However, only a minority
of peritumoral samples displayed endothelial GPR182 expression
(9/58) (Fig. 3E). As HCC most frequently arises in fibrotic and
cirrhotic liver tissue [28], we analyzed human tissues of fibrotic and
cirrhotic livers for GPR182 expression. As expected, reduced
endothelial GPR182 expression was also found in tissues with liver
fibrosis and cirrhosis (Fig. 3F—L).

The loss of organ-specific EC marker expression in HCC was
previously reported by us. LSEC markers such as Stabilin-2, Lyvel
and CD32b were found to be down-regulated and the continuous EC
marker CD31 was upregulated in tumorous tissues indicating that
endothelial transdifferentiation is an important event in HCC
development and that organotypic endothelial differentiation is

required for proper organ function [5]. Interestingly, altered GPCR
signaling has been implicated in diseases initiation and progression
in various cancers [29]. Peritumoral fibrosis or cirrhosis could be a
reason for low GPR182 expression and consequently low number of
positive samples in the peritumoral TMA samples [28]. Analysis of
fibrotic and cirrhotic liver tissues confirmed this assumption
showing loss of GPR182 in both, liver fibrosis and cirrhosis. Recent
work by our group identified transcription factor Gata4 as master
regulator of organ-specific endothelial differentiation in the liver [4].
Liver endothelial cell-specific deficiency of Gata4 did not only result
in embryonic capillarization of the liver sinusoids and fibrosis, but
also caused downregulation of GPR182 mRNA in the liver supporting
a role of GPR182 in organ-specific EC differentiation.

3.3. GPR182 differentially regulates canonical GPCR signal
transduction in vitro

As suggested by Kechele and colleagues, GPR182 is involved in
MAPK/ERK-signaling and thereby regulates the proliferative ca-
pacity of the intestine. However, other GPR182-dependent down-
stream signaling pathways have not been characterized yet. To
elucidate the involvement of GPR182 in canonical GPCR signaling
pathways, we combined ectopic GPR182 overexpression in
HEK293T cells with a luciferase reporter assay system. This biolu-
minescent reporter assays system detects activity of various
response elements, namely CRE, NFAT-RE, SRE, and SRF-RE [30].
Thereby, GPR182-dependent activation or inhibition of the four
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Fig. 3. GPR182 is downregulated in liver fibrosis, liver cirrhosis and HCC on protein level.

Healthy liver

Liver fibrosis

Liver cirrhosis

(A-D) Representative IHC of GPR182 in tumorous (A, C) and peritumoral HCC samples (B, D) of the tissue microarray used in this study. (E) Statistical analysis of GPR182 expression
in tumorous versus peritumoral samples (p = 0.0105). IHC of GPR182 in healthy liver (F, G), liver fibrosis (n=4) (H, J) and liver cirrhosis (n=>5) (K, L). Scale bars: 100 um.

GPCR canonical pathways was analyzed: cAMP-RE (CRE) for G
protein alpha or cAMP signaling, NFAT-RE for G protein q or Cal-
cium signaling, SRE for G protein i or ERK signaling and SRF-RE for
G protein 12 or RhoA signaling.

GPR182-overexpressing HEK293T cells exhibited significantly
increased activity for CRE and NFAT-RE reporter luciferases. A 2.9-
fold increase of CRE activity was measured (p =0.0009) (Fig. 4A),
while the increase of NFAT-RE was 3.5-fold (p < 0.0001) (Fig. 4A). In
contrast, GPR182 significantly diminished the activity of SRE and
SRF-RE reporter luciferases (Fig. 4A). The reporter activity for SRE
and SRF-RE was decreased by 79% (p = 0.0097) and 78% (p < 0.0001),
respectively. Thereby, we demonstrate in vitro that GPR182 signals
via the classical pathways known for GPCRs. GPR182 overexpression
activated cAMP and calcium signaling, whereas ERK and RhoA
signaling was inhibited in HEK293T cells without stimulation.

Ligand—independent, “constitutive” signaling is a well-known
mechanism of action for GPCRs. Martin and Co-workers demon-
strated, for example, that constitutive activity of some GPCRs activates
the cAMP signaling pathway, while it inhibits the same pathway upon
downstream stimulation using forskolin [31]. We therefore analyzed
the effects of GPR182-overexpression upon pathway stimulation
downstream of the receptor. The following downstream stimulants
were used: forskolin (CRE), PMA and lonomycin (NFAT-RE), lon-
omycin and 20% FCS (SRE), 20% FCS (SRF-RE). GPR182-overexpressing
cells revealed significantly less CAMP pathway activity upon forskolin
stimulation compared to EV-control (p=0.0005) (Fig. 4B). Thus,
GPR182 stimulated cAMP pathway baseline activity while inhibiting
the same pathway upon forced downstream stimulation by forskolin.
On the contrary, GPR182 had no significant effect upon downstream
stimulation of the constitutively activated NFAT pathway (p = 0.5670)

(Fig. 4B). Moreover, downstream stimulation of the SRE and SRF
pathways did not alter GPR182-mediated baseline inhibition of these
pathways (Fig. 4B).

Our results corroborate the in vivo findings of Kechele et al.
showing that increased ERK activity is found in colon stem cells of
GPR182 KO mice in comparison to controls [18]. ERK signaling in
endothelial cells promotes arterial and lymphatic EC specification
downstream of VEGF [32]. Considering GPR182 as a protein specific
for LSEC differentiation, inhibitory effects of GPR182 on ERK-
signaling might prevent EC-subtype differentiation into either an
arterial or lymphatic phenotype. RhoA signaling is also associated
with endothelial differentiation and function regulating vascular
hyperpermeability [33].

In addition, Ras/ERK and Rho/actin cascades lead to cell prolif-
eration and differentiation via immediate early genes controlled by
transcription factor SRF [34]. SRF acts as regulator in embryonic,
adult and pathological angiogenesis by controlling tip cell behavior
during sprouting angiogenesis and by regulating genes which are
important for cell migration including Myl9 [35]. Regarding organ-
specific microvascular endothelial cells, SRF is essential for main-
tenance of cerebral small vessel integrity. Hence, endothelial SRF
knock-out mice suffer from loss of blood-brain-barrier integrity and
intracerebral hemorrhage [36]. In the liver, GPR182 may maintain
the high permeability of LSEC by inhibiting SRF.

Vascular homeostasis depends on a balanced maintenance of
the endothelial barrier. While RhoA signaling is responsible for
hyperpermeability, endothelial cAMP signaling is well known to
improve barrier function in ECs [37]. In HUVEC, cAMP promotes VE-
cadherin dependent EC cell adhesion through Epac-Rap1 signaling
and thereby improves EC barrier function [38]. GPR182
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(A, C) Reporter luciferase activity in GPR182-versus EV-transfected HEK293T cells. (B, D) Reporter luciferase activity in GPR182-versus EV-transfected HEK293T cells upon
downstream stimulation with forskolin (CRE), PMA and lonomycin (NFAT-RE), lonomycin and 20% FCS (SRE), and 20% FCS (SRF-RE). Error bars: s.e.m.

overexpression is associated with slightly, but significantly
increased cAMP signaling in base line which might improve the
homeostatic endothelial barrier. However, the activating effect of
GPR182 on the cAMP pathway was inverted upon forced down-
stream stimulation using forskolin. This phenomenon was
described earlier, however its function remains elusive [31]. As
cAMP signaling enhances barrier function, one could speculate that
GPR182 is capable of inhibiting over-activation of this pathway
maintaining high permeability with low level adherence junctions.

In conclusion, this is the first study to comprehensively inves-
tigate the endothelial expression of GPR182 in human tissues.
GPR182 is a novel marker molecule of sinusoidal endothelial cells in
liver, spleen, lymph node, and bone marrow which is lost upon
sinusoidal capillarization in liver fibrosis/cirrhosis and liver cancer.
Notably, GPR182 is involved in signal transduction using classical
GPCR pathways in vitro and may mediate sinusoidal endothelial
differentiation (ERK) and hyperpermeability (SRF).
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