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Institute for Communications Engineering

Technical University of Munich
javier.garcia@tum.de

Abstract—This is a short tutorial document explaining a well-
known method to numerically compute achievable rates for
memoryless channels. A MATLAB R© function that implements
the method is also provided.

I. MUTUAL INFORMATION AND MISMATCHED CHANNEL
MODELS

Consider a memoryless channel with conditional probability
pY |X(y|x), where the channel output Y is a continuous
random variable. Assume that the channel input X is drawn
from a discrete, memoryless source with probability mass
function PX(x) for x ∈ X . Here, X is the finite alphabet,
or constellation of source X :

X = {xn}Nn=1 (1)

where N is the constellation size, and xn ∈ RD are real,
D-dimensional constellation points.

The maximum achievable communication rate of this sys-
tem (in bits) is given by the mutual information (MI) [1], [2],
[3]:

I(X;Y ) = E

[
log2

pY |X(y|x)∑
x′∈X PX(x′)pY |X(y|x′)

]
. (2)

Achieving this rate usually requires coded modulation [4].
In many cases, a closed-form expression for pY |X in (2) is

not known. In this case, one can use a mismatched channel
model qY |X [2, Exercise 5.22], [5], [6], [7] to obtain a lower
bound on the mutual information (2). Replacing pY |X with
qY |X in (2) (while still taking the expectation over the true
channel pY |X ) gives the mismatched mutual information

Iq(X;Y ) = E

[
log2

qY |X(y|x)∑
x′∈X pX(x′)qY |X(y|x′)

]
. (3)

The mismatched mutual information is a lower bound on
capacity, i.e.,

Iq(X;Y ) ≤ I(X;Y ). (4)

This can be proved using error exponents [6], but a simpler
proof is provided in [8, Eqs. (37)-(41)], where it is shown that

Iq(X;Y ) = I(X;Y )−D
(
PXpY |X

∥∥pY rX|Y ) (5)
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with
PY (y) =

∑
x′∈X

PX(x′)pY |X(y|x′) (6)

being the true output probability, and

rX|Y (x|y) =
PX(x)qY |X(y|x)∑

x′∈X pX(x′)qY |X(y|x′)
(7)

being the reverse conditional probability of the mismatched
model. The expression

D(f‖g) =
∑
x∈X

∫
y

f(x, y) log2
f(x, y)

g(x, y)
dy ≥ 0 (8)

is the Kullback-Leibler divergence. In (4), equality is achieved
if and only if the D(·‖·) term in (5) becomes 0, i.e, if and only
if pY |X = KqY |X , where K is an arbitrary constant.

Remark. The interpretation of qY |X as a mismatched channel
model requires ∫

y

qY |X(y|x) dy = 1. (9)

In the literature, mismatched channel models are often used
by mismatched maximum-likelihood decoders, in which case
qY |X is a decoding metric and does not need to satisfy (9). All
the results in this document are valid without the constraint (9).

A. Numerical computation of lower bounds on capacity

Let
s = (s1, . . . , sM ) (10)

(with sm ∈ X ∀m) be a long sequence of M symbols drawn
from source X , and let

r = (r1, . . . , rM ) (11)

be the corresponding sequence of output symbols,
such that {(sm, rm)}Mm=1 are distributed according to
PX(sm)pY |X(rm|sm). These sequences can be obtained from
Monte-Carlo simulations of the source and channel, or from
experiments.

A numerical lower bound on the capacity of the channel
pY |X can be obtained by applying (3) to s and r. For large
M , we have

Iq(X;Y ) ≈ 1

M

M∑
m=1

log2
qY |X(rm|sm)∑N

n=1 pX(xn)qY |X(rm|xn)
. (12)
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Remark. Equations (3) and (12) assume a channel with
discrete input and continuous output. They can be extended
to channels with continuous input and continuous output by
replacing the sum in the denominator with an integral. The
integral can either be computed in closed form or by Monte-
Carlo integration, but care must be taken that the result is
accurate.

II. CONDITIONALLY GAUSSIAN MISMATCHED MODEL

One possibility for memoryless channels with discrete input
and continuous output is to use a conditionally Gaussian
mismatched model qY |X . That is, for every constellation point
xn ∈ X , we approximate the unknown conditional probability
pY |X by

qY |X(y|xn) =
1√

det (2πCn)
e−

1
2 (y−µn)

TC−1
n (y−µn) (13)

i.e., a Gaussian distribution whose mean µn and covariance
matrix Cn depend on the input constellation point xn.

To obtain the parameters µn and Cn for n ∈ {1, . . . , N} of
our mismatched channel model, we use the sequences s and r
obtained from simulations or experiments of the real channel.
The parameters are estimated as

µn =
1

|Mn|
∑

m∈Mn

rm (14)

Cn =

(
1

|Mn|
∑

m∈Mn

rmr
T
m

)
− µnµTn (15)

where
Mn = {m : sm = xn} (16)

is the set of time indices m for which constellation point xn
was transmitted.

Substituting (13) in (12) yields our numerical lower bound
on capacity:

Iq(X;Y ) ≈ 1

M

M∑
m=1

{
−1

2
log2 detCnm

− 1

2 log 2
(rm − µnm)

T
C−1nm (rm − µnm)

− log2

[
N∑
n=1

PX(xn)√
detCn

e−
1
2 (rm−µn)

TC−1
n (rm−µn)

]}
(17)

where
nm = (n : sm = xn) (18)

is the index n of the constellation point sm = xn transmitted
at time m.

A method for computing achievable rates of channels with
memory is available in [8].

III. MATLAB R© SOFTWARE TOOL: MI-CG

We provide in [9] a MATLAB R© function mi_cg.m that
implements the method explained in this document. Two
example scripts are provided that compute achievable rates
for well-known channels.
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Figure 1. Achievable rate of a complex AWGN channel with and without
phase noise using uniform 16-QAM modulation, computed using the software
tool in [9].
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Figure 2. Achievable rate of a complex AWGN channel using uniform 16-
QAM modulation, computed using the software tool in [9].

A. Complex AWGN channel with 16-QAM constellation

The script example_mi_cg_complex_16qam.m sim-
ulates a complex additive white Gaussian noise (AWGN)
channel:

Y = X + Z (19)

where Z has a circularly symmetric complex Gaussian
(CSCG) distribution with zero mean and unit variance. The
constellation of the source is 16-QAM:

X =

{√
P

10
(n+ jm)

}
, n,m ∈ {−3,−1, 1, 3} (20)

where P is the transmit power and j =
√
−1 is the imaginary

unit. By varying P , the script tests different values of the
signal-to-noise ratio (SNR) and generates Fig. 2.

B. Partially coherent complex AWGN channel with 16-QAM
constellation

The script
example_mi_cg_real_2D_awgn_vs_phasenoise.m
simulates a partially coherent complex AWGN channel [10]:

Y = XejΘ + Z (21)
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where Z is CSCG with zero mean and unit variance, and Θ
has a Gaussian distribution with mean θ and variance σ2

Θ:

pΘ(θ) =
1

σΘ
√
2π
e
− (θ−θ)2

2σ2
Θ . (22)

The program uses θ = 0.2 and σ2
Θ = 0.05 and generates

Fig. 1, which agrees with [11, Fig. 3, triangular markers]. As
expected, the nonzero mean of Θ does not have any effect on
the achievable rate.
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