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We constrain effective field theories by going beyond the familiar positivity bounds that follow from
unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples, we
discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The combination of
our theoretical bounds with the experimental constraints on the graviton mass implies that the latter is either
ruled out or unable to describe gravitational phenomena, let alone to consistently implement the Vainshtein
mechanism, down to the relevant scales of fifth-force experiments, where general relativity has been
successfully tested. We also show that the Galileon theory must contain symmetry-breaking terms that are
at most one-loop suppressed compared to the symmetry-preserving ones. We comment as well on other
interesting applications of our bounds.
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The idea that physics at low energy can be described in
terms of light degrees of freedom alone, which goes under
the name of effective field theory (EFT), is one of the most
satisfactory organizing principles in physics. The effect of
ultraviolet (UV) dynamics is systematically accounted for
in the resulting infrared (IR) EFT by integrating out heavy
degrees of freedom, which generate an effective Lagrangian
made of infinitely many local operators. Since the sym-
metries of the underlying UV theory are retained in the IR,
EFTs are predictive even when the UV dynamics is
unknown: only a finite number of symmetric operators
contribute, at a given accuracy, to observable quantities.
Remarkably, extra information about the UV can always

be extracted if the underlying Lorentz invariant micro-
scopic theory is unitary, causal, and local. These principles
are encoded in the fundamental properties of the S matrix
such as unitarity, analyticity, crossing symmetry, and
polynomial boundedness [1,2]. These imply a UV-IR
connection in the form of dispersion relations that link
the (forward) amplitudes in the deep IR with the disconti-
nuity across the branch cuts integrated all the way to infinite
energy [3,4]. Unitarity ensures the positivity of such
discontinuities, and in turn the positivity of (certain)
Wilson coefficients associated with the operators in the

IR effective Lagrangian. This UV-IR connection can be
used to show that coefficients with the “wrong” sign cannot
be generated by a Lorentz invariant, unitary, causal, and
local UV completion [5]: the corresponding EFT, even if
compatible with the symmetries of the system, is thrown to
the “swampland.” Positivity bounds have found several
applications, including the proof of the a theorem [6,7]; the
study of chiral perturbation theory [8] and WW scattering;
and theories of composite Higgs [9–14], quantum gravity
[15], massive gravity [16–18], Galileons [18–21], inflation
[22,23], the weak gravity conjecture [24,25], and conformal
field theory [26–28]. The approach has been recently
extended to particles of arbitrary spin [18], leading to a
general no-go theorem on the leading energy-scaling
behavior of the IR amplitudes, with applications to massive
gravity [16] and Goldstini [29–31]. References [21,32,33]
extended this technique beyond the forward limit.
In this Letter, we show that qualitatively new bounds,

stronger than standard positivity constraints, can be derived
by taking into account the irreducible IR cross sections
under the dispersive integral, which are calculable within
the EFT. We discuss for what models our bounds can be
important and focus explicitly on two relevant applications:
the EFT for a weakly broken Galileon [34,35], and the
ghost-free massive gravity theory [36,37]. Figure 1 gives a
preview of our results for the latter.
Let us consider the center-of-mass 2-to-2 scattering

amplitude Mz1z2z3z4ðs; tÞ, where the polarization functions
are labeled zi. The Mandelstam variables are defined by
s ¼ −ðk1 þ k2Þ2, t ¼ −ðk1 þ k3Þ2, u ¼ −ðk1 þ k4Þ2 and
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satisfy sþ tþ u ¼ 4m2, where m is the mass of the
scattered particles. Our arguments will require finite
m ≠ 0, yet they hold even for some massless theories
[scalars, spin-1=2 fermions, and softly broken Uð1Þ gauge
theories], which have a smooth limit m → 0. We call

Mz1z2ðsÞ≡Mz1z2z1z2ðs; t ¼ 0Þ ð1Þ

the forward elastic amplitude at t ¼ 0 and study the
analyticity properties of Mz1z1ðsÞ=ðs − μ2Þ3, integrating
along a closed contour Γ in the complex s plane, enclosing
all the physical IR poles si associated with stable light
degrees of freedom entering the scattering (or its crossed
symmetric process), together with the point s ¼ μ2 lying on
the real axis between s ¼ 0 and s ¼ 4m2. We define

Σz1z2
IR ≡ 1

2πi

I
Γ
ds

Mz1z2ðsÞ
ðs− μ2Þ3 ¼

X
Res

s¼si;μ2

�
Mz1z2ðsÞ
ðs− μ2Þ3

�
; ð2Þ

which is calculable within the EFT. Using Cauchy’s
integral theorem, the contour can be deformed into a
new contour that runs around the s-channel and u-channel
branch cuts, and goes along a big circle eventually sent to
infinity. The boundary contribution at infinity vanishes, due
to the Froissart-Martin asymptotic bound jMðs → ∞Þj <
const × s log2 s, which is always satisfied in any local
massive QFT [38,39]. This leads to a dispersion relation
that connects the IR, Eq. (2), to an integral (UV) of the total
cross section

Σz1z2
IR ¼

X
X

Z
∞

4m2

ds
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2

s

r

×

�
sσz1z2→XðsÞ
ðs − μ2Þ3 þ sσ−z̄1z2→XðsÞ

ðs − 4m2 þ μ2Þ3
�
IR
; ð3Þ

wherewe use crossing symmetry relating the s andu channels
in the forward limit even for particles with spin [18]: in the
helicity basis, Mz1z2ðsÞ¼M−z̄1z2ðu¼−sþ4m2Þ, and for
particles that are their own antiparticles, z̄ ¼ z. We also
invoke the optical theorem to relate the imaginary parts of the
amplitudes (across the branch cuts) to the cross section.
For any theory where particles 1 and 2 are interacting, as

long as 0 < μ2 < 4m2, the right-hand side (rhs) of Eq. (3) is
always positive, and one obtains the rigorous positivity
bound, Σz1z2

IR > 0. Since Σz1z2
IR is calculable in the IR in terms

of the Wilson coefficients, this provides a nontrivial
constraint on the EFT.
We can in fact extract more than positivity bounds by

noticing that the total cross section on the rhs of the
dispersion relation Eq. (3) contains an irreducible contri-
bution from IR physics, which is also calculable within
the EFT, by construction. The other contributions, e.g.,
those from the UV, are incalculable with the EFT but
are nevertheless always strictly positive, by unitarity.
Moreover, each final-state X in the total cross section
contributes positively too. Therefore, an exact inequality
follows from truncating the rhs of Eq. (3) at some energy
smax ≡ E2 ≪ Λ2 below the cutoff Λ of the EFT. To leading
order (LO) in powers of ðE=ΛÞ2 and ðm=EÞ2 [hence also
ðμ=EÞ2], the bound in Eq. (3) becomes

Σz1z2
IR;LO >

X
X

Z
E2 ds
πs2

½σz1z2→XðsÞ þ σz1−z̄2→XðsÞ�IR;LO

×

�
1þO

�
m
E

�
2

þO

�
E
Λ

�
2
�
; ð4Þ

where the subscript IR highlights the fact that both sides of
the equation are computable within the EFT; the main
source of error for small masses is the truncation of the
tower of higher-dimensional operators. Choosing E at or
slightly below the cutoffΛ gives just an order-of-magnitude
estimate for the bound [18,21], as originally suggested in
Ref. [19]. A rigorous bound can instead be obtained by
choosing a sufficiently small ðE=ΛÞ2: percent accuracy can
be achieved already with E=Λ ≈ 1=10.
The Σz1z2

IR must therefore be not only positive but strictly
larger than something which is itself positive and calcu-
lable within the EFT. Moreover, we can include any
final states X, elastic or inelastic: the more channels and
information are retained, the more refined the bound will
be. Notice that the 2-to-2 cross section retained on the rhs is
obtained by integrating over t; thus, effectively, our bounds
capture as well the behavior of the amplitude away from the
forward limit.

FIG. 1. Exclusion region for massive gravity in the plane of
graviton mass m and coupling g� ≡ ðΛ=Λ3Þ3, with Λ being the
physical cutoff and Λ3 ¼ ðm2mPlÞ1=3 the strong coupling scale.
Our theoretical bound Eq. (14) excludes with accuracy δ ¼ 1%
the darkest gray region, and with 10%, 30% the gradually lighter
gray regions. Solid lines mark the fixed cutoff Λ, whereas the
dashed black line shows the upper experimental bound
m ¼ 10−32 eV. Our constraint gives rise to a tension between
high Λ and a small m: the graviton mass can only be below the
experimental bound at the expense of a premature breakdown of
the EFT at macroscopically large distances.
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The implications of our bound Eq. (4) are particularly
interesting in theories where the elastic forward amplitude
Mz1z2 , appearing on the left-hand side (lhs), is parametri-
cally suppressed compared to the nonforward or inelastic
ones appearing on the rhs. The Galileon, massive gravity,
the dilaton, andWZW-like theories, as well as other models
where 2 → 2 is suppressed while 2 → 3 is not, are other
simple examples of theories that get nontrivial constraints,
on the couplings and/or masses of the corresponding EFTs,
that include and go beyond the positivity of ΣIR. Even in
situations without parametric suppression, our bound
carries important information: it links elastic and inelastic
cross sections that might depend on coefficients of the EFT.
Galileon.—The Lagrangian for the weakly broken

Galileon [34,35],

L ¼ −
1

2
ð∂μπÞ2

�
1þ c3

Λ3
□π þ c4

Λ6
(ð□πÞ2 − ð∂μ∂νπÞ2)

þ c5ð…Þ
�
þ λ

4Λ4
½ð∂πÞ2�2 −m2

2
π2; ð5Þ

with physical cutoff Λ, has suppressed symmetry-breaking
terms λ ≪ c23, c4 and m2 ≪ Λ2. Forward 2 → 2 scattering
is controlled at Oðs2Þ by the symmetry-breaking inter-
actions: the lhs of Eq. (4) is ΣIR ¼ ðλ=Λ4Þ þ ðc23m2=2Λ6Þ.
On the other hand, the hard scattering is controlled
by the symmetry-preserving interactions, σππ→ππ≈
3ðc23 − 2c4Þ2s5=ð5120πΛ12Þ.
In the massless limit, or more generally for c23m

2=Λ2≪λ
(a natural hierarchy, given that λ preserves a shift symmetry
whilem2 does not), the bound Eq. (4) shows not only that λ
must be positive, but (parametrically) at most one loop
factor away from ðc23 − 2c4Þ=4:

λ >
3

640

ðc23 − 2c4Þ2
16π2

�
E
Λ

�
8

for
c23m

2

Λ2
≪ λ: ð6Þ

For a massive Galileon with negligible λ and c3 ≠ 0, one
gets a lower bound on the mass,

m2 > Λ2
3ðc3 − 2c4=c3Þ2
320 × 16π2

�
E
Λ

�
8

for
c23m

2

Λ2
≫ λ; ð7Þ

where ðE=ΛÞ8 ≈ 10−2 for a 30% accuracy. Therefore, the
Galileon symmetry-breaking terms cannot be arbitrarily
suppressed, the general lesson being thatOðs2Þ terms in the
amplitude cannot be too suppressed compared to the Oðs3Þ
terms. The results of Eqs. (6) and (7) hold when loop effects
are included, as they simply generate terms that are
subleading, e.g., ∼ðm=ΛÞ6c43m2=16π2Λ6 in ΣIR (recall that
m ≪ E ≪ Λ).
Massive gravity.—The action for ghost-free massive

gravity, also known as Λ3 or dRGT massive gravity, is
[36,37] (for reviews, see Refs. [40,41])

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

Pl

2
R −

m2
Plm

2

8
Vðg; hÞ

�
; ð8Þ

where mPl ¼ ð8πGÞ−1=2 is the reduced Planck mass, gμν ¼
ημν þ hμν is an effective metric written in terms of the
Minkowski metric ημν (with mostly þ signature) and a
spin-2 graviton field hμν in the unitary gauge, R is the Ricci
scalar for gμν, and

Vðg; hÞ ¼ b1hh2i þ b2hhi2 þ c1hh3i þ c2hh2ihhi þ c3hhi3
þ d1hh4i þ d2hh3ihhi þ d3hh2i2 þ d4hh2ihhi2
þ d5hhi4

is the soft graviton potential, with hhi≡ hμνgμν, hh2i≡
gμνhνρgρσhσμ, etc. Absence of ghosts implies that the
coefficients of this potential depend on just two parameters,
c3 and d5; see Ref. [37,42].
Note that, though tempting, the results obtained above

for the Galileon cannot be directly interpreted in the context
of massive gravity (even if the Galileon is the longitudinal
component of the massive graviton), since the IR dynamics
is different: for example, in the scattering of the Galileon
scalar mode, the helicity-2 mode exchanged in the t channel
contributes as much as the scalar mode.
Since the graviton is its own antiparticle, it is convenient

to express Eq. (4) in terms of linear polarizations [15,16,18]:

Σz1z2
IR;LO >

X
X

2

π

Z
E2 ds

s2
½σz1z2→XðsÞ�IR;LO: ð9Þ

We adopt the basis of polarizations of Ref. [16] to calculate
the amplitudes for different initial- and final-state configu-
rations, finding that, generally, Σz1z2

IR ∼m2=Λ6
3 is suppressed

by the small gravitonmass,withΛ3 ≡ ðm2mPlÞ1=3 the strong
coupling scale [43]. For instance,

ΣSS
IR ¼ 2m2

9Λ6
3

ð7 − 6c3ð1þ 3c3Þ þ 48d5Þ > 0;

ΣVV
IR ¼ m2

16Λ6
3

ð5þ 72c3 − 240c23Þ > 0;

ΣVS
IR ¼ m2

48Λ6
3

ð91 − 312c3 þ 432c23 þ 384d5Þ > 0: ð10Þ

In contrast, the hard-scattering limits of the amplitudes that
enter the rhs of Eq. (9) are unsuppressed. For s, t ≫ m2, e.g.,
elastic amplitudes read

MSS ¼ stðsþ tÞ
6Λ6

3

ð1− 4c3ð1− 9c3Þþ 64d5Þ;

MVV ¼ 9stðsþ tÞ
32Λ6

3

ð1− 4c3Þ2;

MVS ¼ 3t
4Λ6

3

�
c3ð1−2c3Þðs2þ st− t2Þ− 5s2þ 5st− 9t2

72

�
:

ð11Þ
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At this point, we choose the energy scale E in Eq. (9) below
the cutoff, E ≪ Λ, so that the EFT calculation of the cross
sections is trustworthy, and above the mass, E ≫ m, so that
the amplitudes Eq. (11) dominate such cross sections. We
define δ≡ ðE=ΛÞ2, that controls the accuracy of the EFT
calculation, and obtain

Fz1z2ðc3; d5Þ >
�
4πmPl

m

��
g�
4π

�
4

δ6; ð12Þ

where g� ≡ ðΛ=Λ3Þ3 and, e.g.,

FSS ¼
�
960

7 − 6c3ð1þ 3c3Þ þ 48d5
ð1 − 4c3ð1 − 9c3Þ þ 64d5Þ2

�
3=2

;

FVV ¼
��

2560

27

�
5þ 72c3 − 240c23

ð1 − 4c3Þ4
�
3=2

;

FVS ¼
�

80640ð91 − 312c3 þ 432c23 þ 384d5Þ
1975 − 29808c3ð1 − 2c3Þð1 − 4c3 þ 8c23Þ

�
3=2

:

ð13Þ
Amore complete set of Σz1z2

IR ,Mz1z2 , as well as the resulting
inequalities involving the Fz1z2ðc3; d5Þ functions, are
reported in the Supplemental Material [44].
The inequalities following from Eq. (12) are the main

result of this discussion and can be read in several ways:
as constraints on the plane of the graviton potential
parameters ðc3; d5Þ for a given graviton mass m and ratio
ðΛ=Λ3Þ3 ≡ g�, as a constraint on g� for fixed m at a given
point in the (c3, d5) region allowed by positivity, or
equivalently as a bound on the graviton mass for fixed
coupling at that point.
An important aspect of Eq. (12) is that it is possible to

find an absolute maximum value of g� above which our
bounds do not allow for a solution: we write Eq. (12) as
m > mmin ∝ 1=Fz1z2ðc3; d5Þ and note that at each point
ðc3; d5Þ the bound is determined by the smallest Fz1z2 . Now,
the positivity constraints Eq. (10) provide a compact
allowed region in the (c3, d5) plane, within which the
(continuous) function minfFz1z2gðc3; d5Þ has a maximum.

This corresponds to ðĉ3; d̂5Þ ≈ ð0.18;−0.017Þ and FVS ≈
4.6 × 106; thus, the most conservative bound

m > 10−32 eV

�
g�

4.5 × 10−10

�
4
�

δ

1%

�
6

: ð14Þ

Taking m ¼ 10−32 eV as a benchmark experimental upper
bound on the graviton mass (see Ref. [52] for a critical
discussion), any value g� ≳ 4.5 × 10−10 is excluded, irre-
spectively of the values of (c3, d5), a situation that we
summarize in Fig. 1. Slightly stronger bounds can be
obtained by working with the nonelastic channels, while if
we were to admit a slightly larger uncertainty, e.g., δ ¼ 5%,
the upper bound on g� would increase by 1 order of
magnitude. Smaller values of the graviton mass, e.g.,

m ≃H0 ≃ 10−33 eV, as is customary in cosmology, require
an even smaller coupling. For a given mass, only as g� is
lowered sufficiently according to Eq. (14), a region allowed
by our bounds eventually materializes inside the positivity
region.
At this point, the crucial question is what the physical

meaning of g� is, and if it can be arbitrarily small,
g� ≲ 10−10 [18]. To our knowledge, most literature of
massive gravity has so far taken Λ ¼ Λ3, or Λ ≫ Λ3,
corresponding to g� ≳ 1. These values are now grossly
excluded by our bounds. From a theoretical point of view,
Λ and Λ3 scale differently with ℏ, so that their ratio actually
changes when units are changed, in such a way that g�
indeed scales like a coupling constant. This is analogous to
the difference between a vacuum expectation value v and
the mass of a particle ∼coupling × v (e.g., the W-boson
mass mW ∼ gv). The point, then, is that the cutoff Λ is a
physical scale, which differs from Λ3 that instead does
not have the right dimension to represent a cutoff. Since
Λ−1
3 ≈ 320 kmðm=10−32 eVÞ−2=3, a very small coupling g�

translates into a very low cutoff (large in units of distance),

Λ ≃ ð4.1 × 105 kmÞ−1
�

g�
4.5 × 10−10

�
1=3

�
m

10−32 eV

�
2=3

:

ð15Þ
This is clearly problematic. For example, let us consider the
experimental tests of massive gravity in the form of bounds
on fifth forces from the precise measurements of the
Earth-Moon precession δϕ [41,53,54]. Due to the
Vainshtein screening [55,56], which is generically domi-
nated by the Galileon cubic interactions in the (c3, d5)
region allowed by our bounds, the force mediated by the
scalar mode compared to the standard gravitational one is
FS=FGR ∼ ðr=rVÞ3=2, where rV ¼ ðM=4πmPlÞ1=3Λ−1

3 ¼
ðM=4πm2m2

PlÞ1=3 is the Vainshtein radius associated with
the (static and spherically symmetric) source under
consideration, in this case the Earth, M ¼ M⊕. Before
our bound, one would find that at lunar distances,
r ¼ r⊕L ≈ 3.8 × 105 km, the ratio of forces, and thus also
the precession δϕ ∼ πðFS=FGRÞ, even if very small for
m ¼ 10−32 eV, would be borderline compatible with the
very high accuracy of present measurements ∼10−11. Now
our result in Eq. (15) shows that the EFT is not valid already
for r ∼ 1=Λ > r⊕L. This implies that the Vainshtein screen-
ing should receive important corrections before reaching
the (inverse) cutoff 1=Λ, and moreover, it means that new
degrees of freedom should become active at that scale: two
effects that likely impair the fifth-force suppression and
hinder the agreement with the precise measurement of
the Earth-Moon precession. (Note that the Vainshtein
redressing [57] deep inside the Vainshtein region,
Λ3 → zΛ3 with z ≫ 1, does not generically extend to
the physical cutoff Λ, since the rescaling of the kinetic
term in a background does not affect the extra derivative
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terms that come without extra field insertions. In other
words, a potentially large local kinetic term translates into a
small local coupling, but it does not change the location of
poles and thresholds associated with the UV degrees of
freedom).
In summary, our theoretical bound Eq. (14) leads to a

tension between direct limits on the graviton mass and fifth-
force experiments. This either rules out Λ3 massive gravity
or implies that the theory is unable to make predictions at
scales where GR instead agrees with experimental obser-
vations (this EFT of massive gravity cannot tell, e.g.,
whether an apple would fall to the ground or else go
up). This calls for new ideas on extending the theory in the
UV, corresponding here to macroscopic distances, a few
105–106 km as shown in Fig. 1, in such a way as to describe
the relevant gravitational phenomena while remaining
consistent with experimental tests (i.e., the new gravita-
tional dynamics remaining undetected) not only in lunar
experiments but also down to the millimeter.
Needless to say, our bounds apply neither to Lorentz-

violating models of massive gravity (e.g., Ref. [58]), nor to
theories with a massless graviton: one can avoid our bounds
by dropping any of the assumptions on the Smatrix that led
to them. This is in practice not very different from finding
explicit UV completions, since it also requires nontrivial
dynamics in the UV.
There are several directions where our bounds can find

fruitful applications. Immediate ideas involve theories
with Goldstone particles, e.g., the EFT for the Goldstino
from SUSY breaking or the R axion from R symmetry
breaking, and the dilaton from scale symmetry breaking (all
of which have interesting phenomenological applications
[29–31,59,60]), as well as theories with suppressed 2-to-2
amplitudes but unsuppressed 2-to-3 amplitudes, e.g.,
Ref. [61]. It is also attractive to recast our bounds in
diverse spacetime dimensions, such as massive gravity in
d ¼ 3 [62,63], or the conjectured a theorem in d ¼ 6 (see,
e.g., Ref. [64]); for the latter, we have obtained promising
preliminary results. Another stimulating avenue is to use
our bounds to extend the no-go theorems for massless
higher-spin particles in flat space (see, e.g., Refs. [65–69])
to the case of small but finite masses. This could bring new
insight on why light higher-spin particles cannot emerge,
even in principle, in nongravitational theories without
decoupling them or sending the cutoff to zero. One
important open question, that for the time being remains
elusive, is whether it is possible to extend our results to
theories with massless particles with spin J ≥ 2, thus
providing new insights into the long-distance universal
properties of the UV completion of quantum gravity, such
as string theory, or into IR modifications of GR where the
graviton remains massless, such as Horndeski-like theories.
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