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1Helmholtz Zentrum M€unchen-German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg,

Germany
2Technische Universit€at M€unchen, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching,
Germany
3Division of Experimental Anesthesiology and Pain Research, Department of Anesthesiology and Intensive CareMedicine, University Hospital

Cologne, 50937 Cologne, Germany
4These authors contributed equally
5Lead Contact

*Correspondence: jan.hasenauer@helmholtz-muenchen.de

https://doi.org/10.1016/j.cels.2018.04.008
SUMMARY

All biological systems exhibit cell-to-cell variability.
Frameworks exist for understanding how stochastic
fluctuations and transient differences in cell state
contribute to experimentally observable variations
in cellular responses. However, current methods do
not allow identification of the sources of variability
between and within stable subpopulations of cells.
We present a data-driven modeling framework for
the analysis of populations comprising heteroge-
neous subpopulations. Our approach combines
mixture modeling with frameworks for distribution
approximation, facilitating the integration of multiple
single-cell datasets and the detection of causal dif-
ferences between and within subpopulations. The
computational efficiency of our framework allows
hundreds of competing hypotheses to be compared.
We initially validate our method using simulated data
with an understood ground truth, then we analyze
data collected using quantitative single-cell micro-
scopy of cultured sensory neurons involved in pain
initiation. This approach allows us to quantify the
relative contribution of neuronal subpopulations,
culture conditions, and expression levels of signaling
proteins to the observed cell-to-cell variability in
NGF/TrkA-initiated Erk1/2 signaling.

INTRODUCTION

Cellular heterogeneity is a common phenomenon in biological

processes (Elsasser, 1984; De Vargas Roditi and Claassen,

2015). Even isogenic cells of the same cell type may respond

differently to identical stimuli (Tay et al., 2010). This cellular

heterogeneity is critical for cellular decision making and the

formation of complex organisms (Balázsi et al., 2011). It is also
Cell Systems 6, 593–603,
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a cause of failure in treatments of cancer, pain, and a wide range

of common diseases (Willyard, 2016). Many studies have at-

tempted to gain a deeper understanding of cell-to-cell variability

(Rubin, 1990), and recently even a large-scale initiative was

found to investigate this heterogeneity (Regev et al., 2017).

Experimentally, most common approaches use methods

giving single-cell resolution, such as microscopy (Schroeder,

2011), flow and mass cytometry (Pyne et al., 2009), and single-

cell RNA sequencing (Islam et al., 2014). These techniques yield

increasing amounts of data, which are commonly analyzed using

statistical techniques. Accordingly, a large number of powerful

statistical methods have been developed for the analysis of sin-

gle-cell data (see, e.g., Qiu et al., 2011; Kharchenko et al., 2014;

Lun et al., 2017). Unfortunately, these are unable to identify

causalities and latent causes, or to reconstruct the governing

equations of the process. Improved methods of data analysis

are therefore required. We propose a model-based analysis

framework for systems exhibiting cell-to-cell variability at

different levels:

d Differences between cell-types or cellular subpopulations;

for example, caused by the cellular micro-environment

(Ebinger et al., 2016) or stable epigenetic markers estab-

lished during cell differentiation (Reik, 2007).

d Differences between cells of the same cell population

that arise, for example, from differences in the cell state

(Buettner et al., 2015) or from intrinsic stochastic fluctua-

tions (Elowitz et al., 2002).

The differences on both levels can be caused by extrinsic or

intrinsic noise (see definition by Elowitz et al., 2002).

In the case of homogeneous cell populations, the reaction

rate equations (RREs) provide a description of the population

behavior in the form of ordinary differential equations (ODEs)

(Figure 1A). Stochastic fluctuations or latent differences between

cells result in cell-to-cell variability and a distribution of cell

states (Hasenauer et al., 2011; Zechner et al., 2012; Yao et al.,

2016; Filippi et al., 2016) (Figure 1B). The statistical moments

of this distribution are described bymoment-closure approxima-

tion equations (Engblom, 2006) and system size expansions
May 23, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 593
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Figure 1. Cell Populations Exhibiting

Different Levels of Heterogeneity

(A–D) Properties of cells, e.g., receptor levels or

reaction rates, indicated by different gray shades

for individual cells, can be (A) homogeneous,

the property being the same for the entire cell

population; (B) cell-to-cell variable, the property

having a unimodal distribution across the cells;

(C) subpopulation variable, the population able to

be separated into subpopulations, but, within

each subpopulation, the property does not vary;

(D) inter- and intra-subpopulation variable,

the property splitting the population into sub-

populations and also varying between cells within

a subpopulation.
(van Kampen, 2007; Fröhlich et al., 2016). These methods pro-

vide scalable approximations for a range of processes in which

variability arises from different sources. The approximation

might be wrong; e.g., even negative variances might be pre-

dicted (Schnoerr et al., 2014). Additionally, they fail to provide

an accurate description of the population heterogeneity when

subpopulations are present and cannot be used to study the

causal differences between cells and subpopulations.

To address parameter differences between cell populations,

we recently (Hasenauer et al., 2014) introduced a method that

combines mixture modeling and mechanistic RRE modeling of

the subpopulation means (Figure 1C). Cell-to-cell variability

within a subpopulation is treated naively as an additional param-

eter that is to be estimated. Thus, the method assumes that the

subpopulations are homogeneous and no mechanistic descrip-

tion of cell-to-cell variability within a subpopulation is possible.

Moreover, the extant method can only be applied to one-

dimensional measurements. When multivariate measurements

are used, only marginal distributions can be analyzed and corre-

lations between measurements are neglected, which may result

in a substantial loss of information (Altschuler and Wu, 2010;

Buchholz et al., 2013).

In this study, we introduced a non-trivial combination of

mixture models that is able to capture subpopulation structures

and models for individual subpopulations that account for differ-

ences between individual cells (Figure 1D). The approach there-

fore covers several levels of heterogeneity simultaneously (Fig-

ures 1A–1D). This was not possible using the aforementioned

approaches, which are all special cases of our model. The

means and covariances of the observed species in each sub-

population are linked to a mixture distribution, allowing the entire

cell population to be described and providing a mechanistic

description of inter- and intra-subpopulation variability. We

used the sigma-point approximation (van der Merwe, 2004), a

scalable approach allowing for the analysis of large models, to

capture the distribution of cell properties within a subpopulation.

Similarly, our framework is able to exploit moment equations and

system size expansion for the description of individual subpop-

ulations. In contrast with previous work by Hasenauer et al.

(2014), the proposed framework can fully leverage the correla-

tion information in multivariate data, rendering a better condi-

tioned problem and improving identifiability.

We applied this framework to study signal transduction in the

extracellular signal-regulated kinase (Erk) pathway, a signaling
594 Cell Systems 6, 593–603, May 23, 2018
cascade that is involved in a range of biological processes.

Our specific focus was on the pain sensitization signaling in high-

ly heterogeneous primary sensory neurons in response to nerve

growth factor (NGF) stimulation (Hucho and Levine, 2007; Ji

et al., 2009; Andres et al., 2012). Our findings suggest that extra-

cellular scaffolds, which provide important structural and

biochemical cues to cells, play a crucial modulatory role in

pain sensitization signaling and that several changes, such as

relative TrkA expression, Erk1/2 expression, but not subgroup

composition, are involved therein.

RESULTS

Mechanistic Hierarchical Population Model for Single-
Cell Data
We considered populations comprising heterogeneous subpop-

ulations. To allow coverage of multiple levels of heterogeneity,

we linked a mixture distribution f to a mechanistic model of

the means and covariances of individual subpopulations. The

distribution of the parameters (e.g., initial conditions or kinetic

rates) produces a distribution of cell states and observables (Fig-

ures 2A and 2B). This distribution can be simulated using Monte

Carlomethods by drawing parameters from the parameter distri-

bution and simulating the single-cell model. Since this approach

is computationally demanding, we approximated the distribution

of parameters, states, and observables using finite mixture

distributions. The components of the mixture describe the

individual subpopulations.

Each cell j has cellular properties encoded in the parameter

vector cj. In the hierarchical framework (Figure 2C), these pa-

rameters are considered to be drawn from amixture distribution,

as follows:

cj �
X
s

wsNðbs;DsÞ;

with subpopulation weight ws, mean bs, and covariance Ds

for subpopulation s = 1,.,N. The subpopulation parameters

xs = (bs, Ds) classify the variability of a property cj as follows:

bs;i =

8>><>>:
bi homogeneous
bi cell-to-cell variable
bs;i subpopulation variable
bs;i inter- and intra-subpopulation variable
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B Figure 2. Illustration of the Dynamics of a

Heterogeneous Cell Population and the

Mechanistic Hierarchical Population Model

(A) Parameter distribution of a cell population

consisting of two subpopulations. The contour

lines illustrate the (approximated) parameter den-

sity of the cell-to-cell variable parameter 1 and the

inter- and intra-subpopulation variable parameter

2. The heterogeneity of parameters is propagated

from the latent parameter space to the observed

measurement space.

(B) Heterogeneity in parameters yields heteroge-

neous observables y= ðy1; y2ÞT that separate into

twosubpopulationsafter stimulationat timepoint t0.

(C) Structure of the single-cell system and

approximation by the hierarchical population

model using plate notation. Squares indicate fixed

parameters, whereas circles indicate random

variables. Gray shading of the circles/squares in-

dicates a known value, whereas the other values

are latent. The upper plate illustrates the variables

associated with a cell j. Each of the nj cells has

parameters cj drawn from a distribution defined

by xs and w. The states of the species xj, resulting

from the single-cell dynamics, yield the observ-

ables yj , additionally influenced by measurement

noise G. The bottom plate visualizes the statistics

of the corresponding cells of a subpopulation.

For each subpopulation, the subpopulation

parameters xs are mapped to the means and covariances of the species of a subpopulation zs, which then are mapped to the distribution

parameters 4s. The observables at the population level are considered to be distributed according to Equation 2.
8>> 0 homogeneous
Ds;ii =
<>>: Dii cell-to-cell variable

0 subpopulation variable
Ds;ii inter- and intra-subpopulation variable

allowing correlated parameters,Ds,ijs 0. The temporal evolution

of the statistical properties of the cells of a subpopulation,

including the mean and covariance, are computed using scal-

able methods. System size expansions and moment equations

(van Kampen, 2007; Engblom, 2006) are used to describe

stochastic single-cell dynamics, whereas sigma-points (van

der Merwe, 2004) are used otherwise. These approaches yield

an ODEmodel of the statistical moments, comprising the means

and covariances zs = (ms, Cs) of species x. The model is simu-

lated for each of the N subpopulations

_zs =gðzs; xs;uÞ; zsð0Þ = z0ðxs; uÞ (Equation 1)

with initial conditions z0 and experimental condition u. The

moments of the species in a subpopulation are then mapped

to the distribution parameters fs = h(zs, xs, u) of the distribution

f, including measurement noise G, which is assumed to be the

same for all subpopulations. The observables, the quantities of

the biological system that can be measured experimentally,

are assumed to have the distribution

y �
X
s

wsfð4sÞ (Equation 2)

at the population level. In this study, we used mixtures of multi-

variate log-normal distributions, yielding4s = (ms,Ss). The sigma-
point approximation (detailed in STAR Methods) provides

time-dependent moments of the system defined in Equation 1

and accounts for cell-to-cell variability. When combined with

subpopulation variability, this yields both the inter- and intra-

subpopulation variability. For a comparison of our approach to

existing methods, we refer to STAR Methods.

Parameter Estimation and Model Selection
The parameters of biochemical processes, the sources of cell-

to-cell and subpopulation variability, and the precise network

structure are in general unknown. We therefore calibrated the hi-

erarchical population model using single-cell snapshot data ye;k;j

with cell jmeasured at time point tk under experimental condition

ue, for example, representing a drug dosage. The parameters

q˛Rnq usually comprise characteristics of a subpopulation

(e.g., the means and covariances of the parameter distributions),

subpopulation sizes, and measurement noise. Maximum likeli-

hood estimation was used to derive these parameters from the

data. The maximum likelihood estimate bq was obtained by solv-

ing the following optimization problem:

max
q˛Q

(
LðqÞ=

Y
e;k;j

X
s

we
sðtk ; qÞf

�
ye;k;j

��4e
sðtk ; q; ueÞ

�)

subject to _zes =g
�
zes ; xs;ue

�
; zesð0Þ= ze0ðxsðqÞ;ueÞ

4e
s = h

�
zes ; xsðqÞ;ue

�
:

The likelihood function L incorporates all cells, time points,

and experimental conditions. For efficient parameter estimation,

we performed multi-start local optimization with a robust
Cell Systems 6, 593–603, May 23, 2018 595
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Figure 3. Inference of Cell-to-Cell Variability Using Mechanistic Models

(A) Model of a conversion between two species A and B comprising two subpopulations differing in their response to stimulus u. Different colors indicate the

variability of the reaction rates.

(legend continued on next page)
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evaluation scheme for the log likelihood function and its gradient.

The gradient of the log likelihood function with respect to the pa-

rameters was computed using forward sensitivity analysis (see

Loos et al., 2016 and STARMethods). The practical identifiability

and uncertainty of the parameter estimates were evaluated using

profile likelihoods as well as sampling methods. For parameter

sampling we employed an adaptive parallel tempering method.

To infer the subpopulation structure, the difference between

subpopulations, the variability within subpopulations, and the in-

fluence of the experimental condition, a collection of hierarchical

models is formulated. We compare these models and the corre-

sponding hypotheses using the bayesian information criterion

(BIC) (Raftery, 1999). The BIC provides a computationally rela-

tively inexpensive approximation to the Bayes factors, which

gives the favor of a model over another. To justify the use of

the BIC, we compared the results with those obtained by using

(1) Bayes factors computed using thermodynamic integration

(Hug et al., 2016) and (2) log pointwise posterior predictive den-

sities (Gelman et al., 2014).

The subpopulation structures and parameters inferredwith the

hierarchical population models were subsequently used as prior

information for the calibration of the single-cell models. The reg-

ularization provided by the prior allows the prediction of single-

cell trajectories, although the dataset for each individual cell is

scarce. These can then be used to predict individual single-cell

trajectories (see STAR Methods for more details).

The hierarchical models were implemented in the MATLAB

toolbox, incorporating efficient simulations for the individual

subpopulations. While any simulation that provides means and

covariances of the subpopulations can be employed, in this

study, we used the sigma-point approximation. This approach

accounts for cell-to-cell variability, which ismanifested in the pa-

rameters (see STAR Methods for more details).

Unraveling Sources of Heterogeneity
To demonstrate the advantages of the hierarchical population

model, which incorporates a mechanistic description of the

means and variances, over the method proposed by Hasenauer

et al. (2014), we applied our approach to simulated data on a sim-

ple conversion process. Such conversions are common in biolog-

ical systems; for example, in phosphorylation. The conversion

process comprised two species, A andB,with cell-to-cell variable

conversions from B to A (Figure 3A), corresponding to different

levels of phosphatase in the cells. Two subpopulations were

assumed with different responses to stimulus u. This produced

subpopulations with different rates of stimulus-dependent con-

version from A to B. Artificial measurement noise was added to

allow the capability of the framework to distinguish measurement
(B) Model selection with the bayesian information criterion (BIC). The first three mo

additional parameters (1, 2, and 10) for the variances of themixture distribution. Th

their sources of heterogeneity.

(C) Data on the conversion process (1,000 cells per time point) and fit correspon

(D) Confidence intervals for the variability of k3 and themeasurement noise (snoise).

95%, and 99% confidence levels, and the vertical lines the maximum likelihood

(E and F) Single-cell trajectories inferred using a single measurement at (E) t =

population model as prior. Shaded areas indicate the confidence intervals, whic

indicates the single-cell trajectory from which the measurement point was gener

(G) Correlation of predicted and true level of B at 0, 60, and 120 min. True values

the single-cell data at time t = 120 min.
noise from biological variability to be assessed. We assumed the

underlying subpopulation structure (i.e., the subpopulation vari-

ability of k1) to be known (detailed in STAR Methods).

The simulated data were analyzed using (1) the approach

introduced in Hasenauer et al. (2014), which describes the sub-

populations using RREs; and (2) the proposed approach using

hierarchical single-cell analysis. The first approach does not

model the temporal evolution of the variance, requiring different

parameterizations to be compared; i.e., constant, time-depen-

dent, and time/subpopulation-dependent variability.Model selec-

tion with the BIC indicates that different parameters for each sub-

population at every time point are required to be used to describe

the data (Figure 3B). A full Bayesian analysis using the model

evidence as well as the log pointwise predictive density justified

the use of the computationally less expensive BIC (see Figure S1

andSTARMethods). This demonstrates that the observed cell-to-

cell variability changes over time but provides no information

about the sources of the observed cell-to-cell variability.

The mechanistic modeling of multiple levels of heterogeneity

facilitates the prediction of its causal source via model selection.

We considered a range of hypotheses and performed model se-

lection using BIC (Figure 3B). Given the subpopulation structure,

the additional source of heterogeneity, namely, the conversion

from B to A, was correctly predicted using the BIC and the cor-

responding model provided a good fit to the data (Figure 3C).

The BICs for most of the hierarchical models were substantially

lower than that of the best model that incorporates only the

mean. This confirms that a mechanistic description of the vari-

ability is more appropriate.

We analyzed the ability of the hierarchical model to predict the

different contributions of cell-to-cell variability and measurement

noise, as both are normally present in single-cell experiments.

The uncertainty analysis suggested that the hierarchicalmodeling

approach was able to distinguish between the two (Figure 3D).

To evaluate the predictive power of the method for single-cell

trajectories, we inferred the parameter of individual cells from the

single data point available for each cell in combination with the

calibrated hierarchical population model as a prior. We found

that the information about the behavior of a single cell encoded

in the measurement of the first time point was limited (Figure 3E);

e.g., the prediction is off. However, using data from late time

points, we obtained a good estimate of the (latent) single-cell tra-

jectory (Figure 3F). The prediction of the trajectories for 100 sin-

gle cells frommeasurements at time point t = 120min (Figure 3G)

reveals a correlation between true and predicted values >0.9 for

all but early time points.

This example shows how the hierarchical population model

outperforms the variants of models presented in Hasenauer
dels use RREs according to (Hasenauer et al., 2014) and vary in the number of

e last models use themean and variance obtained by sigma-points and differ in

ding to the best and true underlying model.

Horizontal bars show the confidence intervals corresponding to the 80%, 90%,

estimates (MLEs).

0 min and (F) t = 120 min. The inference is regularized using the hierarchical

h were evaluated for samples of the posterior distribution, and the dotted line

ated.

were extracted from the (noise-free) simulation. Predictions are obtained using

Cell Systems 6, 593–603, May 23, 2018 597
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Figure 4. Reconstruction of Differential

Protein Expression in Heterogeneous

Populations Using Multivariate Data

(A) Model of differentially expressed proteins

A and B.

(B) Upper row: data points (1,000 cells per time

point) and kernel density estimation. Lower row:

data points and model for the full distribution.

(C and D) Confidence intervals for the parameters

of the model using (C) the full distribution and

(D) the marginal distributions. Horizontal bars

show the confidence intervals corresponding to

the 80%, 90%, 95%, and 99% confidence levels.

The vertical lines show the MLEs.
et al. (2014). We confirmed the power of the proposed approach

by studying a model of stochastic gene expression (Figure S6)

and comparing the approach with the method by Zechner et al.

(2012) (see STAR Methods). Our model employs a mechanistic

description of the variability, thereby enabling a more detailed

insight into the heterogeneity of the population and reducing the

number of parameters that need to be estimated from the data.

Identification of Differential Protein Expression
Many single-cell technologies provide multivariate measure-

ments and therefore convey information about the correlations

between the observables. To incorporate this, we extended

our hierarchical modeling framework to multivariate data and

demonstrated its capability to reconstruct the differential protein

expression of cellular subpopulations (Sauvageau et al., 1994;

Kharchenko et al., 2014) using simulated data. We considered

a model describing the abundance of two proteins, the expres-

sion of which is regulated by stimulus u (Figure 4A). The influence

of u varies between cell populations and is therefore able to cap-

ture, e.g., different levels of membrane receptors. We generated

multivariate data by simulating a single-cell model (see STAR

Methods for more details).

An analysis using our hierarchical approach confirmed the

ability of the proposed model to reproduce the data (Figure 4B)

and to provide reliable parameter estimates (Figure 4C). Such

multivariate data cannot be exploited by the existing model-

based approaches. When the temporal evolution of proteins is

measured individually, the correlation information is missing

and a symmetry arises in the system (Figure 4D). This is reflected
598 Cell Systems 6, 593–603, May 23, 2018
in the multimodal profiles of the parame-

ters lB,1 and lB,2, indicating a lack of

practical identifiability.

Our framework exploits the correlation

structures of multivariate data, which in

this simulation example allowed us to

conclude that each subpopulation had a

high expression of only a single protein.

This only becomes possible when the

correlations are analyzed.

Modeling Signal Transduction in
Sensory Neurons
We applied the hierarchical modeling

approach to investigate the sources of
variability of NGF-induced Erk1/2 activation in cultures of adult

sensory neurons (Figure 5A). This was done by monitoring the

rates of NGF-mediated Erk1/2 phosphorylation in dissociated

cultures of the primary sensory neurons of rat dorsal root ganglia.

Primary sensory neurons form a heterogeneous population, from

which, upon NGF stimulation, a subpopulation reacts with a

graded Erk1/2 phosphorylation response. Previous models

have attempted to approximate this by assuming the existence

of responders and non-responders with differing levels of the

NGF receptor TrkA (Hasenauer et al., 2014). In the current study,

we refined this substantially by modeling the overall population

using two heterogeneous subpopulations that differed in their

average response. To calibrate this refined model, we collected

quantitative single-cell microscopy data on NGF-induced Erk1/2

phosphorylation kinetics and dose-response curves using

immunofluorescence labeling of pErk1/2 alone, co-labeled with

Erk1/2 and TrkA antibodies (see STAR Methods for more de-

tails). Our analysis used the ODEmodel introduced in Hasenauer

et al. (2014). This has six structurally identifiable parameters k1,

k2, k4, k5, k3 [TrkA]0, and c[Erk]0.

Causal Differences between Subpopulations of
Cultured Sensory Neurons
In this test case, the ultimate goal of our modeling is to provide a

mechanistic explanation for why a subpopulation of cultured

neurons reacts to NGF stimulation with a graded Erk1/2 phos-

phorylation response (phosphorylated Erk is active). Erk1/2 is

activated by TrkA and differences between the responses of

responders and non-responders are likely caused by variation
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Figure 5. Sources of Heterogeneity between

Subpopulations in Primary Sensory Neurons

(A) Pathway model of NGF-induced Erk signaling.

(B) Ranking according to the BIC values for the 64 hierar-

chical models, in which the colored dots indicate those

parameters that are assumed to differ between the sub-

populations. The importance of the differences is ranked

according to the BIC weights, also known as Schwarz

weights. The black circles indicate the mean rank of the

models including the corresponding difference.

(C–F) (C) Data and fit for measurements of pErk1/2 levels

(approximately 1,400 cells per time point and 4,300 cells

per dosage) and multivariate measurements of pErk/TrkA

and pErk/Erk levels (approximately 3,000 cells per dosage)

measured for 60 min under NGF stimulation with indicated

concentrations. The measured values are in a.u. of

intensity. For the multivariate data, the contour lines of the

kernel density estimation of the data and the level sets of

the density of the hierarchical model are shown. Mean and

SD of (D) TrkA levels (nr = 4 replicates, ***p = 5.01 3 10�5),

(E) Erk1/2 levels (nr = 4), and (F) Erk1/2 dephosphorylation

(nr = 4) of non-responsive (pErk�) and responsive (pErk+)

sensory neurons after NGF stimulation with varying

concentrations (as indicated in (C) for 60 min). UI, units of

intensity.
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Figure 6. Differences in NGF-Induced

Erk1/2 Phosphorylation Mediated by

Different Extracellular Scaffolds

Primary sensory neurons were provided with the

two different scaffolds poly-D-lysine (PDL) and

collagen type I (Col I) in an overnight culture.

(A) Sensory neurons grown on the Col I substrate

showed a significantly higher mean phospho-

Erk1/2 response to indicated doses of NGF after

1 hr of stimulation. Means and SDs of four repli-

cates are shown (*p = 0.028, **p = 0.0032, and

***p = 0.0069 for 20, 100, and 500 ng/mL,

respectively).

(B) BIC-based ranking for the potential differ-

ences between culture conditions. The colored

dots indicate which parameters are assumed to

differ between the extracellular scaffolds.

(C) Experimental data and fit for measurements of

pErk1/2distributionsfromCol I (approximately2,300

cells per dosage) and PDL (approximately 4,300

cells per dosage) cultured neurons after treatment

with indicated NGF concentrations for 1 hr.

(D–F) (D) Marginal levels for TrkA and Erk1/2,

which were assumed to be constant over varying

doses and time (approximately 2,000 cells in Col

I and 2,900 in PDL). Mean and SD of (E) TrkA and

(F) Erk1/2 levels of NGF dose-response curve

data, which showed significant elevations (***p =

7.59 3 10�7 and ***p = 1.44 3 10�13, respec-

tively) in Col I treated neurons. For this calcula-

tion, 24 samples were used (four replicates for

six doses).
in TrkA levels. We first validated our modeling approach by pre-

dicting causal differences between subpopulations and its

accordance with described differences in TrkA expression. We

used experimental kinetic and dose-response data from sensory

neurons cultured on the adherence substrate poly-D-lysine

(PDL). We fitted 64models with up to 33 parameters, accounting

for all combinations of the six potential differences between sub-

populations, which was only feasible due to the computational

efficiency of our approach. Our assessment of the importance

of individual differences between the subpopulations using a

BIC-based ranking scheme suggested that cellular TrkA activity

(k3[TrkA]0) made the greatest contribution (Figure 5B). This was

indicated by a high BIC weight, which captures differences by

Bayesian model averaging (see STARMethods for more details),

and the substantially better mean rank of themodels using differ-

ences in cellular TrkA activity compared with those using other

differences. The additional subpopulation variability of TrkA

expression levels was also confirmed experimentally in the cul-

tures (Figure 5D) and use of this difference alone produced an

excellent fit to the experimental data (Figures 5C and S4). The

following potential differences are the relative Erk1/2 expression

levels (c[Erk]0) and the dephosphorylation rate (k5). However, our

experimental data showed no statistically significant difference

in total Erk1/2 levels between responders and non-responders

(Figure 5E). To assess the relevance of the dephosphorylation
600 Cell Systems 6, 593–603, May 23, 2018
rate and thus the corresponding phos-

phatase activity we performed experi-

ments in which we monitored the pErk1/

2 decline dynamics after inhibiting the
mitogen-activated protein kinase (Mek) that phosphorylates

Erk1/2. If the phosphatase activity does vary, we would expect

to observe different equilibration dynamics. However, this could

not be confirmed (Figures 5F and S3).

This demonstrates that the hierarchical approach using exper-

imental data provided an appropriate ranking of differences,

which could be demonstrated experimentally and is in line with

literature (reviewed in, e.g., Mantyh et al., 2011).

Influence of Extracellular Scaffolds on Sensitization
Signaling
As the second test of our approach, we systematically varied the

extracellular environment and asked whether our modeling

approach could generate a mechanistic hypothesis to explain

the altered cellular responses we observed. Specifically, we

characterized NGF-stimulated signaling when neurons were

either grown on collagen type I (Col I), a classical extracellular

matrix protein that forms receptor-matrix interactions, or on

PDL, an organic molecule that promotes cell adherence by

electrostatic interaction. We determined the kinetics and dose-

response curves of NGF-induced Erk1/2 phosphorylation in sen-

sory neurons cultured overnight on Col I or PDL (see STAR

Methods for more details). We found that the mean Erk1/2 acti-

vation was approximately 17% higher in Col I compared with

PDL after NGF treatment (Figure 6A for pErk1/2 dose responses



and Figure S5A for the other datasets). In addition to showing

increased NGF-induced Erk1/2 activation, the number of cells

was observed to be 1.5 times lower in the collagen cultures

than in the PDL cultures. These observations raised questions

about the source of the measured increase in mean NGF-medi-

ated Erk1/2 activation. We considered two hypotheses: (1) the

increase results from a biological action of the different scaffolds

onto the neurons, and (2) the increase reflects a shift of the sub-

population sizes arising from a nonrandom loss of parts of the

high-responder subpopulation due to reduced cell adherence

in the collagen cultures. To unravel the causal differences

between the primary sensory neurons cultured on PDL and on

Col I, we applied 128 hierarchical models with up to 36 parame-

ters, using the previously derived subpopulation structure. These

models considered all combinations of differences between

the cell populations on different scaffolds, including the size

of subpopulations. The model for each adherence substrate

accounted for the cell-to-cell variability of Erk1/2 and the inter-

and intra-subpopulation variability of cellular TrkA activity. The

model ranked first by the BIC (Figure 6B) gave a good fit to the

data and suggested differences not only in cellular TrkA activity

(k3[TrkA]0) but also in Erk1/2 expression (c[Erk]0), and Erk1/2

dephosphorylation (k5) (Figures 6C, 6D, and S5B–S5D). These

differences were assumed to explain the higher response on

Col I, and therefore supported hypothesis (1). The model that

assumed no difference between the extracellular scaffolds

(rank 128) or changes only in the relative size of the subpopula-

tions (rank 127) performed worst, indicating that hypothesis (2)

failed to explain the data. Indeed, the differences in relative

TrkA and Erk1/2 expression levels predicted by the models

with the highest rank could be confirmed (Figures 6D and 6E).

These results confirmed the model-based analysis and sug-

gested an impact of the classical extracellular matrix protein

collagen I on protein expression.

DISCUSSION

Elucidating the causes of cellular heterogeneity is a challenging

task in systems biology and requires appropriate mechanistic

models for use with single-cell data. In this study, we introduced

a hierarchical modeling framework that allowed different levels of

heterogeneity to be investigated, including subpopulation struc-

tures and cell-to-cell variability within subpopulations. It also

provides mechanistic insights. Beyond cell-to-cell variability,

the method accounts for measurement noise and is able to de-

convolute these sources.

Thismodeling approach unifies availablemechanisticmodeling

and inference frameworks (Zechner et al., 2012; Hasenauer et al.,

2014), complements available statistical methods, and exploits

efficient simulation methods for cellular subpopulations. We

focused on the cell-to-cell variability encoded in parameter values

(Koeppl et al., 2012) and used sigma-point approximations to

determine the subpopulation means and variances. To address

variability arising from stochastic fluctuations, moment equations

(Figure S6) and other methods, including the system size expan-

sion (Fröhlich et al., 2016), can be used. The proposed method

facilitates the integration and simultaneous analysis of multiple

datasets, without requiring complex pre-processing of the data

(Lee et al., 2011). The modeling approach is implemented in the
open-source MATLAB toolbox ODE-MM, which is available on

GitHub and ready to be reused by the community.

Procedures such as a forward-backward algorithm (e.g.,

Hastie et al., 2009) or reversible jump Markov chain Monte Carlo

(Green, 1995) could be implemented to perform parameter esti-

mation and model selection simultaneously. An alternative

approach to obtain the model evidence would be the use of

sequential Monte Carlo methods; e.g., as done by Filippi et al.,

2016. In this study, mixtures of log-normal distributions were

used to model the cell population. However, other distributions,

including the Laplace distribution, could be integrated with the

computational framework to improve robustness against outliers

(Maier et al., 2017).

The inference of mechanistic models from single-cell data

relies on statistical models for the measurement and sampling

process. In many modeling studies using single-cell data, no

distinction is made between cells from different batches,

obscuring cell-to-cell variability and differences between exper-

imental batches (Hicks et al., 2015). In this study, we observed

that the derived likelihood function can be overly sensitive and

that model selection is biased toward complex models. To

circumvent this issue, we used a ranking of potential differences

rather than a precise measure of statistical significance. How-

ever, this problem will need to be addressed, as the use of

single-cell data is increasingly common.

In summary, we proposed the use of hierarchical population

models as a novel tool to study heterogeneity in multivariate sin-

gle-cell data and evaluated their performance. Our framework is

the first to account for multiple levels of heterogeneity simulta-

neously. Our results on simulation and application examples

suggest that this method can be used to obtain a more holistic

understanding of heterogeneity.
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EXPERIMENTAL MODEL AND SUBJECT

Antibodies
The following antibodies were used in this study: chicken polyclonal antibody against UCHL1 (1:4000; Novus, #NB110-58872), mouse

monoclonal antibody against UCHL1 (1:1000, MorphoSys, #7863-2004), rabbit monoclonal antibody against phospho-Erk1/2
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(1:250, Cell Signaling, #4370L), mouse monoclonal antibody against ERK1/2 (1:500, Cell Signaling, cat#4696 S), goat polyclonal anti-

body against TrkA (1:500, R&DSystems, #AF1056), and highly cross adsorbed Alexa Fluor 488, Alexa Fluor 568, Alexa Fluor 594-, and

Alexa Fluor 488-conjugated secondary antibodies (Invitrogen).

Reagents
NGF (50 mg/ml in 0.1% BSA), GDNF (20 mg/ml in 0.1% BSA), U0126 (50 mM in DMSO) were purchased from Alomone labs (#N-240),

PeproTech (cat#450-51), and Calbiochem (#662005), respectively, and were prepared as indicated. The concentrations used are

indicated in the text or figure legends. Collagen type I (Cell Systems, #5056-A) and poly-D-lysine (Sigma, #P6407-5MG) were diluted

in 1xPBS to final concentrations of 3.4 mg/ml and 10 mg/ml.

Animals
Male Sprague Dawley rats (200250 g, 8-10 weeks old) were obtained from Harlan Laboratories. All experiments were performed

in accordance with the German animal welfare law with permission of the District Government for Nature and Environment, NRW

(LANUV NRW, license 84-02.05.20.13.045). Rats were sacrificed by CO2 intoxication for tissue isolation.

Coating
96-well imaging plates (Greiner) were coated with 50 ml volume of matrix protein dilutions per well for 3 h at 37�CWells were washed

one timewith 1xPBS for 10min PDL coatings were dried andwashing solution of Col I treated wells was removed immediately before

cell seeding.

Primary Sensory Neuron Culture
L1-L6 dorsal root ganglia (DRG) were isolated, desheathed, pooled and incubated in Neurobasal-A (NB) medium supplemented with

collagenase P for for 1 h in 5% CO2 atmosphere at 37�C. Neurons were dissociated by trituration with fire-polished siliconated

Pasteur pipettes and axonal debris and disrupted cells were removed by a 14% BSA gradient centrifugation (120 g, 8 min).

Cells were resuspended in NB medium supplemented with B27 medium, L-Glutamine, L-Glutamate and Penicillin-Streptomycin.

Subsequently, they were plated on pre-coated 96-well imaging plates and incubated overnight in a 5% CO2 atmosphere at 37�C.

Stimulation and Fixation of Neuronal Cultures
Neuronal cultures were stimulated 15 h after isolation by removal of 50 ml culture medium, mixing with the compound and returning to

the corresponding culturewell. Solvent controls were treated alike. Stimulationwas performedwith automated eight-channel pipettes

(Eppendorf) on pre-warmed heating blocks (37�C), and stimulated cells were placed back into the incubator. Neurons were fixed by

adding 8% PFA (final concentration 4% PFA) for 10 min at RT and subsequently washed three times with 1xPBS for 10 min. Kinetic

experiments involved time courses of 0, 1, 5, 15, 30, 60 and 120min NGF stimulation (20 ng/ml), whereas dose response curves were

obtained by NGF stimulations with the following NGF concentrations for 1 h: 0.16, 0.8, 4, 20, 100, 500 ng/ml.

Immunocytochemistry
Cells were blocked and permeabilized with 2% normal goat serum or 2% normal donkey serum supplemented with 1% BSA, 0.1%

Triton X-100, 0.05% Tween 20 for 1 h at RT. Primary antibodies were added in 1%BSA in 1xPBS and cells were incubated overnight

at 4�C. After three washeswith 1xPBS for 10min at RT, cells were incubatedwith secondary antibodies diluted in 1xPBS for 1 h at RT.

Plates were stored at 4�C after three additional washes with 1xPBS (10 min, RT) until scanning.

Quantitative Microscopy
Immunofluorescently labelled neurons were imaged via the Cellomics ArrayScanmicroscope using a 10x objective as described pre-

viously (Isensee et al., 2014). Images of 512 x 512 pixels were analyzed using the Cellomics software package. Briefly, images of all

channels were background corrected (low pass filter), objects were identified using fixed thresholding (intensity 900) and segmen-

tation by shape (parameter 15). Neurons were validated by the following object selection parameters: size: 1657500 mm2; circularity

(perimeter2/4p area): 12; length-to-width ratio: 12.67; average intensity: 90012.000; total intensity: 23105 to 53107. The imagemasks

were then used to quantify signals in other channels. Raw values of three to four independent experiments were further processed via

the R software. Raw fluorescence data was compensated and normalized. In brief, three controls were prepared for a triple staining:

1. UCHL1 alone, 2. UCHL1 + antibody 1, and 3. UCHL1 + antibody 2. Raw fluorescence data of the controls were used to calculate

the bleed-through between fluorescence channels. The slope of best fit straight lines were determined by linear regression and used

to compensate bleed through as described previously (Roederer, 2002). Compensated data were scaled to a mean value of 1000 for

the unstimulated cells of the poly-D-lysine control to adjust for variability between experimental days.
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METHOD DETAILS

Models for Individual Subpopulations
The hierarchical modeling approach introduced in this manuscript describes the population dynamics based on the dynamics of

individual subpopulations. In this section, we introduce the modeling approaches at the subpopulation level that are used in

our study.

First, we considered the simple case that only the mean of a subpopulation is modeled mechanistically, whereas the variance and

higher order moments are not linked to the underlying biochemical reaction network. For this, the reaction rate equation (RRE)

was used

dx

dt
= fxðx;c;uÞ; xð0Þ= x0ðcÞ;

y= fyðx;c;uÞ:
(Equation 3)

Here, x = (x1,.,xn)
T denotes the biochemical species, y = (y1,.,yd)

T the observables of the system, andc the parameters, such as

reaction rates, protein abundances, or initial conditions. This follows the method introduced in Hasenauer et al., 2014.

The RRE is based on the assumption that the subpopulations are homogeneous. However, many cellular processes exhibit

substantial intrinsic or extrinsic cell-to-cell variability. To account for this variability, we considered models accounting for random

parameters and stochastic reaction kinetics.

Sigma-point Approximation

In this study, we modeled extrinsic variability by heterogeneity in L parameters of the parameter vector c˛Rnj of individual cells. The

parameters c were assumed to follow a probability distribution pj (c). This distribution in the parameters pj (c) is mapped to a dis-

tribution of cell states and observables of the subpopulation, which need to be computed for the parameter estimation. A detailed

analysis of this image requires sampling from pj (c) and subsequent evaluation of the state and observable vectors by simulation.

This procedure is, however, computationally demanding. We employed the sigma-point approximation (van der Merwe, 2004) to

obtain an approximation of the statistical moments of the image, mean and covariance and their dynamics in time, using a small num-

ber of simulations. The sigma-point approximation uses only the image of 2L+1 deterministically chosen parameter vectors. These

parameter vectors, the so called sigma-points, are chosen to represent the mean b and the covariance D of pj. For the parameters

that were considered to be homogeneous, i.e., not variable across the cells, it was assumed that b i= ji and Dii = Dij = 0; cj.

Following van der Merwe (2004), the sigma-points fnl;Slg are defined as

S0 =b; n
ðmÞ
0 =

h3

L+ h3

; for l = 0

S l =b+
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL+ h4ÞD
p �

l
; n

ðcÞ
l =

h3

L+ h3

+ 1� h2
1 + h2; for l = 1; :::; L

Sl =b�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL+ h4ÞD
p �

l
; n

ðmÞ
l = n

ðcÞ
l =

1

2ðL+ h3Þ
; for l = L+ 1; :::;2L:

We used h2 = 2 and h3 = h1
2(L+h4)�L, with h1 = 0.7 and h4 = 0 as proposed by van der Merwe (2004). The superscripts for nl indicate

whether it is used for the calculation of the mean(m) or the covariance(c).

For the examples and applications presented in the manuscript, we assumed that the variability between cells is completely ex-

plained by differences in themodel parameters. For a set of given parameters, the dynamics of individual cells were described by the

RRE (Equation 3). Accordingly, the images of the sigma-points in the state and the observation space, X l and Y l, were computed as

dX l

dt
= fxðX l ;Sl; uÞ; l = 0; :::; 2L

Y l = fyðX l ;S l;uÞ:
(Equation 4)

The mean and covariances of the species were computed as

mxz
X2L
l = 0

n
ðmÞ
l X l;

Cxz
X2L
l = 0

n
ðcÞ
l ðX l �mxÞðX l �mxÞT :

The mean and covariances of the observables read

myz
X2L
l =0

n
ðmÞ
l Y l;

Cxyz
X2L
l =0

n
ðcÞ
l

�Y l �my

��Y l �my

�T
:

(Equation 5)
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In our MATLAB SPToolbox, the parametrization of D was implemented by either a diagonal matrix logarithm or a matrix logarithm

(Williams, 1999), in case of correlations between parameters. For our study, we assumed a log-normal distribution of the parameters,

i.e., b andD described the median and scale matrix of the corresponding log-normal distribution and the exponent of Sl was used in

Equation 4.

Moment-Closure Approximation

In this study, we also considered intrinsic variability of biochemical reactions as introduced by discreteness and stochasticity of

biochemical reactions. The single-cell dynamics are described by continuous time discrete state Markov chains (CTMCs). We

approximated the time-dependent moments of this process using the moment-closure approximation (Engblom, 2006; Lee et al.,

2009). This method provided equations for the temporal evolution of moments of the species, i.e., the mean

mx;iðtÞ=
X
x˛U

xipðx; tÞ; i = 1; :::; n

of species xi, and higher order moments such as the covariance

Cx;ijðtÞ=
X
x˛U

ðxi �mx;iðtÞÞ ðxj �mx;jðtÞÞ; i; j = 1; :::;n

between species xi and xj. Here, p (x, t) denotes the chemical master equation, U the set of possible states, and n the number of

species. Given the moments of the species, we calculated the moments of the observables by

my;iðtÞ=
X
x˛U

ðfy;iðxÞpðx; tÞ

Cy;ijðtÞ=
X
x˛U

fy;iðxÞ �my;iðtÞÞ
�
fy;jðxÞ �my;jðtÞ

�
pðx; tÞ: (Equation 6)

For the automatic generation of the moment-closure approximation and the corresponding simulation files, we employed the

MATLAB toolbox CERENA (Kazeroonian et al., 2016). In addition, this toolbox provided the equations for the system size expansion,

which can also be incorporated into our modeling framework as an alternative to the moment equations.

Mechanistic Hierarchical Population Model
For the hierarchical population model, the mechanistic description of individual subpopulations, as introduced in the previous

section, is combined with mixture models to describe the entire cell population.

Hierarchical Model and Its Approximations

We considered heterogeneous cell populations consisting of multiple subpopulations, s = 1,.,N. Assuming independence, the

distribution of the states and observables in the overall population is the weighted sum of the distribution of the states and observ-

ables in the subpopulations, psðxjtÞ and psðyjtÞ. The weightsws (t) are the relative populations sizes, withct :
P
s
wsðtÞ= 1: This yields

the hierarchical population model

pðxjtÞ=
X
s

wsðtÞpsðxjtÞ;

pðyjtÞ=
X
s

wsðtÞpsðyjtÞ:

The distribution of states and observables in the subpopulations originate according to the single-cell properties. As the measure-

ments y are in general noise corrupted, y � pðyjyÞ we also considered the distribution

pðyjtÞ =
R
pðyjyÞpðyjtÞdy

=
X
s

wsðtÞ
Z

pðyjyÞpsðyjtÞdy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
= :psðyjtÞ

:

To ensure computational efficiency, the probability distributions psðxjtÞ, psðyjtÞ and psðyjtÞwere approximated using the statistical

moments. For the measured observables, the computed statistical moments were encoded in 4s, yielding

pðyjtÞ=
X
s

wsðtÞfðyj4sðtÞÞ

with parametric probability distribution f. In this study, we employed the multivariate normal distribution

Nðyjms;SsÞ= 1

ð2pÞd2detðSsÞ
1
2

e�1
2
ðy�msÞT ðSsÞ�1ðy�msÞ; (Equation 7)

and multivariate log-normal distribution

logNðyjms;SsÞ= 1

ð2pÞd2detðSsÞ
1
2

�Qd
i =1yi

�e�1
2
ðlogðyÞ�msÞT ðSsÞ�1ðlogðyÞ�msÞ; (Equation 8)
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with distribution parameters 4s = (ms, Ss). For example, for the multivariate normal distribution and no measurement noise, the

distributions parameters were obtained by ms = ms,y and Ss = Cs,y.

Likelihood Function

The parameters of the hierarchical populationmodel q comprise themeans/medians of the cell parameters b, bs as well as the entries

of the scale matrices D, Ds, the mixture weights ws, and measurement noise G. These parameters were estimated using maximum

likelihood estimation. The likelihood function for multivariate measurement data ye;k;j˛Rd is given by

LðqÞ=
Y
e;k;j

X
s

we
sðtk ; qÞf

�
ye;k;j

��4e
sððtk ; q; ueÞ

�
with _zes =g

�
zes ; xs;ue

�
; zesð0Þ = ze0ðxsðqÞ;ueÞ

4e
s = h

�
zes ; xsðqÞ;ue

� (Equation 9)

with means and covariances zes = ðme
s ;C

e
sÞT of species x. The means and covariances are provided by some map g, e.g., the sigma-

point approximation or the moment-closure approximation. The subpopulation parameters xs = (bs,Ds) are given by

bs;i =

8>><>>:
bi homogeneous
bi cell-to-cell variable
bs;i subpopulation variable
bs;i inter- and intra-subpopulation variable

Ds;ii =

8>><>>:
0 homogeneous
Dii cell-to-cell variable
0 subpopulation variable
Ds;ii inter- and intra-subpopulation variable

The mapping h links the computed moments to the moments of the measurand including measurement noise, which are denoted

bymy = ðmy;1; :::;my;dÞT and Cy and can be calculated as described, e.g., in Equations 5 and 6. For a mixture of normal distributions

(Equation 7), the means and covariances were linked to the parameters of the normal distribution

me
s =me

s;y;S
e
s =Ce

s;y +G;

including additive normally distributed measurement noise parametrized by

G= ðGi;jÞi;j = 1;:::;n =

0@ s2
1;noise 0 0
0 1 0
0 0 s2

d;noise

1A:

For the log-normal distribution (Equation 8), the distribution parameters were directly simulated with the sigma-point approxima-

tion for the logarithm of the observable, yielding the relation

me
s =me

s;logðyÞ;S
e
s =Ce

s;logðyÞ +G;

accounting for multiplicative log-normally distributed measurement noise. Alternatively, the mean of the simulation was linked to the

mean of the log-normal distribution by

me
s;i = log

�
me

s;y;i

�
� 1

2
Se

s;ii;
 

Se

s;ii = log
Ce

s;y;i

me
s;y;im

e
s;y;i

+ 1

!
+Gij:

In principle also other distributions can be incorporated in the presented modeling framework. Due to numerical reasons, we used

the log-likelihood function (Loos et al., 2016).

Gradient of Likelihood Function

To promote efficiency of the numerical optimization and robust convergence, we derived the gradient of the log-likelihood function.

For this, the gradient of the corresponding mixture ditribution f with respect to q was calculated using

v

vq
N
�
ye;k;j

��me
sðtkÞ;Se

sðtkÞ
�
= � 1

2
N
�
ye;k;j

��me
sðtkÞ;Se

sðtkÞ
� 

Tr

	�
Se

sðtkÞ
��1vS

e
sðtkÞ
vq



+
�
me
sðtkÞ � ye;k;j

�T�
Se

sðtkÞ
��1

	
vme

sðtkÞ
vq


T

+

	
vme

sðtkÞ
vq


T�
Se

sðtkÞ
��1�

me
sðtkÞ � ye;k;j

�
+
�
me
sðtkÞ � ye;k;j

� v�Se
sðtkÞ

��1

vq

!�
me
sðtkÞ � ye;k;j

�!
;
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and the relation

logN
�
ye;k;j

��me
sðtkÞ;Se

sðtkÞ
�
=N
�
log
�
ye;k;j

���me
sðtkÞ;Se

sðtkÞ
� Ye

i = 1

ye;k;ji

!�1

:

Additionally, the sensitivities of the distribution parameters
vme

s
vq and

vSe
s

vq were required, which were obtained by simulating the

sensitivity equation for the sigma-point or the moment-closure approximation and mapping it to the distribution parameters using h.

Comparison with Existing Models
A comparison of the hierarchical population model with existing methods is given in the following:
method

mechanistic

description of

subpopulations multivariate data referencedynamics variability

mixture model U U e.g., Hastie et al. (2009)

moment-closure approximation U U U e.g., Zechner et al. (2012)

ODE-constrained mixture model U U Hasenauer et al. (2014)

hierarchical population model U U U U this manuscript
Parameter Estimation
For parameter estimation, we used theMATLAB toolbox PESTO (Stapor et al., 2018), which employs the function fmincon.m for local

optimization. We used the interior-point algorithm and provided the analytic gradient of the log-likelihood function. Due to numerical

better properties, we estimated the log10-transformed parameters. To explore the full parameter space, we performed multi-start

optimization which has shown to outperform global optimization methods (Raue et al., 2013; Hross and Hasenauer, 2016). For

this, randomly drawn initial parameter values were used for the optimization. For the uncertainty analysis, we calculated profile likeli-

hoods (Raue et al., 2009) and the confidence intervals using the corresponding PESTO functions. We used the maximum likelihood

estimates as initial values for the sampling of the posterior distribution with parallel tempering.

Calibration of Single-Cell Model
The calibrated hierarchical population model provides estimates for bs,i, and Ds,ii which can then be used as prior information for the

single-cell parameters xj of cell j:

p
�
x
j
i

�
=

8>><>>:
d
�
x
j
i � bi

�
homogeneous

Nðbi;DiiÞ cell-to-cell variableX
s

wsd
�
x
j
i � bs;i

�
subpopulation variableX

s

wsN
�
bs;i;Ds;ii

�
inter- and intra-subpopulation variable

in which d denotes the Dirac delta distribution. The posterior distribution for the parameters of cell j, xj, is given by

p
�
xjjyj;G

�
fp
�
yj
��xj;G�p�xj�

in which pðyj��xj;GÞ denotes the likelihood of the single-cell measurement yj for single-cell parameters xj and noise parameters G. The

likelihood is pðyj��xj;GÞ=Nðyj��yj;GÞ for additive normally distributed measurement noise and is pðyj��xj;GÞ= logNðyj��yj;GÞ for multipli-

cative log-normally distributed measurement noise.

Conversion Process
In the manuscript, we considered a model of a conversion process. In the following, we provide a detailed description of the data

generation and data analysis. We first introduce the single-cell model of the conversion process. Afterwards, we present the results

for the model accounting for the mean, and the hierarchical model accounting for the mean and covariances.

Single-Cell Model

The conversion process is described by the following reactions

R1 : A/B; rate= k1u½A�;
R2 : A/B; rate= k2½A�;
R3 : B/A; rate= k3½B�;
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Reaction R1 describes the stimulus-dependent conversion, whereas reaction R2 models the basal conversion from A to B. The

conversion from B to A, reaction R3, does not depend on stimulus u (Hasenauer et al., 2014). The concentrations of the species

A and B are denoted by [A] and [B]. The RRE for (x1, x2) = ([A], [B]) is given by

dx1
dt

= k3x2 � ðk1u+ k2Þx1;
dx2
dt

= ðk1u+ k2Þx1 � k3x2;

with initial conditions

x1ð0Þ= k3
k2
; x2ð0Þ= 1� k3

k2
;

accounting for mass conservation [A]+[B] = 1 and the assumption that the system was in steady state before the stimulus was added

at 0 min. We assumed the conversion from B to A to be cell-to-cell variable,

k3¢logN
�
bk3

; s2
k3

�
; (Equation 10)

yielding cell-to-cell variable initial conditions. The parameter k1 was considered to differ between subpopulations and therefore was

parametrized by k1,1 and k1,2. The weight w1 indicated the proportion of the low responsive subpopulation. We generated artificial

data for the parameters

qtrue =
�
k1;1; k1;2; k2;bk3

;sk3 ;snoise;w1

�T

� �0:1 0:1 �0:45
= 10 ; 10 ;10 ; 10�0:2;10�1; 10�1:8;0:7

�T
:

We observed the concentration of B, i.e., y = x2. The data was created including 1000 cells at 5 time points for u = 1 by sampling

from the distribution for k3 (10) and simulating the corresponding RREs. Of the 1000 cells, 700 cells belonged to subpopulation 1

with low response to stimulation and 300 cells to the high responsive subpopulation 2. Additionally, the measurements of both

subpopulations were assumed to be subject to logarithmic multiplicative measurement noise parameterized by snoise. We assumed

the parameters q to be unknown and estimated them from the data with

(i) the approach introduced by Hasenauer et al. (2014) using the means (obtained by the RRE) and

(ii) hierarchical population model describing the means and covariances (obtained by the sigma-point approximation).

For both approaches, the underlying subpopulation structure was given, i.e., subpopulation variability of k1.

Hierarchical Model Using RREs

We considered a hierarchical model with subpopulation means that were described by the RRE. The distribution of the observables

was assumed to be log-normal and the scale parameters were estimated from the data. We distinguished the following scenarios:

d one scale parameter that is shared across time points and subpopulations,

d one scale parameter for every subpopulations, which is shared between time points,

d 10 scale parameters that differ for each subpopulation and time-point.

These scale parameters were estimated along with k1,1,k1,2,k2,bk3, and w1 for this setting, which corresponds to the ODE con-

strained mixture modeling described by Hasenauer et al. (2014). For optimization, the kinetic parameters ki were assumed to be

in the interval [10�3, 103], the weightw1 in [0, 1], and the scale parameters for the log-normal distribution were restricted to the interval

[10�2, 102]. For each model we performed 50 multi-starts at randomly drawn initial points. The fits corresponding to the optimal

parameter values are shown in Figure S1A.

Hierarchical Model Using Sigma-point Approximations

For the hierarchical population model, the parameter vector for subpopulation s was given by xs = (bs, Ds) with

bs =

0BB@
k1;s
k2
bk3

snoise

1CCA
subpopulation variable

homogeneous
cell-to-cell variable

homogeneous
Ds;i;j =

�
s2
k3

for i = j = 3
0 otherwise:
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To describe the introduced cell-to-cell variability in k3 (10) we used the sigma-point approximation for the log-parameters.

To assess whether the true source of heterogeneity can be detected, we tested all possible combinations of additional cell-to-cell

variability in k1,s, k2, or k3. For this, the sigma-point approximation was applied to the logarithm of the observable, to link themean and

variance of the simulation directly to the distribution parameters of the log-normal distribution. The case of no additional cell-to-cell

variability corresponds to the RRE models and is therefore not covered here.

For optimization, the kinetic parameters or their means (in case of cell-to-cell variability) were assumed to be in the interval

[10�3, 103], the scale parameters ski and measurement noise snoise in [10�3, 102] and the weight w1 in [0, 1]. As for the RRE model,

we performed 50 multi-starts. The fits corresponding to the optimal parameter values for each model are shown in Figure S1.

To evaluate how the method scales with the number of measured cells, we generated datasets with nj = {101, 102, 103, 104, 105}

measured cells per time point. The average computation time for three replicates for 10 optimization starts for the varying number of

data points is shown in Figure S2. The contribution of the evaluation of the density fðyj4sÞ increased linearly with the number of data

points. However, the simulation time was almost constant for increasing number of data points, since the simulation did not depend

on the number ofmeasured cells. The slight increase can be explained by the increased number of iterations needed for optimization,

which might have occurred due to different effective optimizer tolerances that were not comparable for varying number of data

points.

Bayesian Parameter Estimation and Model Selection

In the main manuscript, we used profile likelihoods for parameter uncertainty analysis and the BIC for model selection. We

compared these approaches with their fully Bayesian counterparts. To facilitate this comparison, we considered uniform prior

distributions.

In a first step, we evaluated the confidence intervals obtained using profile likelihoods. Therefore, we sampled the posterior

distribution of the ground truth model using the parallel tempering algorithm implemented in the parameter estimation toolbox

PESTO. The chains were initialized at the maximum likelihood estimates and their convergence was assessed using the Geweke

test (Geweke, 1992). The comparison of the marginal posterior distributions and the profile likelihoods revealed an excellent

agreement (Figure S1B). We note that the initialization of the parallel tempering algorithm using a sample from the prior instead

of using the pre-computed maximum likelihood estimates, yielded substantially longer computation times and often did not

result in a converged chain for 2 3 105 iterations (corresponding to roughly 4 CPU hours). This indicates that for this problem

optimization is an important step. In a second step, we evaluated the ranking obtained with the BIC to the ranking obtained by

fully Bayesian approaches. Therefore, we computed the log marginal likelihood as well as the log pointwise predictive density

(Gelman et al., 2014) for each model. The log marginal likelihood was determined using thermodynamic integration with the

Simpsons rule (Hug et al., 2016) (Figure S1C). The log pointwise predictive density was determined by sampling the posterior

distribution for a subset of the data, for the measurements for all but one time point, and computing the average log-likelihood

on the remaining data. The comparison of BIC values, log marginal likelihoods, and log pointwise predictive densities revealed a

good agreement. The Spearman’s rank correlation coefficient between BICs and log marginal likelihoods is r = 0.98, and r = 0.83

between BICs and log pointwise predictive densities. Furthermore, all criteria suggest the rejection of the models which include

only the mechanistic description of the mean but not the variance. For the remaining models the methods provide a sightly

different ordering, but all of them indicate the importance of the variability of k3. Interestingly, model complexity seems to be

more penalized by the BIC. As the model selection did not reject all models but the ground truth model, we evaluated the contri-

bution of the variability of individual parameters to the variability of the observable. Therefore, we evaluated the reduction of the

variability of the observable achieved by removing the variability in the parameter of interest. This analysis was performed for

samples from the posterior distribution (Figure S1D). We performed this analysis for the models which can not be rejected based

on a Bayes factor cutoff of 100 (Kass and Raftery, 1995) and found that clearly the main contribution to the variability comes

from variability in k3. This means that even for plausible models which account for variability in k1 or k2, the main source of vari-

ability is k3. To confirm this further, we computed the BIC weights, also known as Schwarz weights, for a certain variability by

summing the BIC weights

expð�0:5BICmÞP
�mexp

�
�0:5BIC �m

� (Equation 11)

for all models accounting for this variability. To detect the source of variability, we took the models for all possible combinations into

account. Similarly, we calculated the evidence of a variability based on the computedmarginal likelihoods. Both approaches agree in

the presence of variability in k3, confirming the agreement of the results. The BIC weights for the parameters k1 and k2 are higher than

the evidences computed from the log marginal likelihoods, which, however, does not have a big contribution to the overall variability

(Figure S1D and S1E).

Differential Protein Expression
In the main manuscript, we investigated multivariate measurements of differential protein expression. Here, we provide the detailed

description of the data generation and the data analysis using the hierarchical model for the full and the marginal distributions.

Single-Cell Model

The simple model of differential protein expression considers six reactions
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R1 : B/A; rate= l0;
R2 : B/B; rate= l0;
R3 : B/A; rate= lAu;
R4 : B/B; rate= lBu;
R5 : A/B; rate=g½A�;
R6 : B/B; rate=g½B�;

comprising the basal expression with rate l0, degradation with rate g and stimulus-induced expression, depending on u, with rate lA
and lB for protein A and B, respectively. The corresponding ODE system for the temporal evolution of (x1, x2) = ([A], [B]) is

dx1
dt

= l0 + lAu� gx1;

dx2
dt

= l0 + lBu� gx2;

with initial conditions

x1ð0Þ= x2ð0Þ= l0

g
;

obtained by assuming that the system was in steady state before the stimulus was added at 0 min. Two subpopulations were

assumed, one showing high expression of A while the other shows high expression of B after stimulation with u. The degradation

rate g was considered to be cell-to-cell variable,

g � logN
�
bg; s

2
g

�
; (Equation 12)

with median bg and scale sg which were equal between the subpopulations. The measurements were exposed to log-normally

distributed multiplicative measurement noise parametrized by snoise.

Hierarchical Model

The hierarchical model accounted for the subpopulation variability of lA and lB and the cell-to-cell variability of g. This yielded the

subpopulation parameters

bs =

0BBB@
l0
lA;s
lB;s
bg

snoise

1CCCA
homogeneous
cell-to-cell variable

subpopulation variable
inter- and intra-subpopulation variable

homogeneous
Ds;i;j =

�
s2
g for i = j = 4
0 otherwise:

As before, the sigma-point approximation was applied to the log-transformed parameters accounting for the log-normal distribu-

tion of g. We performed 100 starts using as data either the full or the marginal distribution of A and B. The parameters and corre-

sponding boundaries are:
symbol description qlb qub qtrue

l0 basal protein expression 10�3 103 101.7

lA, 1 induced protein expression of A in subpop. 1 10�3 103 102.7

lA, 2 induced protein expression of A in subpop. 2 10�3 103 102

lB, 1 induced protein expression of B in subpop. 1 10�3 103 102

lB, 2 induced protein expression of B in subpop. 2 10�3 103 102.7

bg median of protein degradation 10�3 103 10�1

sg variability of protein degradation 10�3 101 10�1

snoise measurement noise 10�3 102 10�1

w1 weight of subpop.1 0 1 0.5
Using a statistical approach to obtain the number of converged starts (Hross and Hasenauer, 2016), we found that 84/100 starts

converged for the full distribution and 91/100 for the marginal distributions.
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NGF-induced Erk1/2 Signaling
Here, we provide details for the analysis of NGF-induced Erk1/2 signaling. We employed the model proposed by Hasenauer et al.

(2014), which comprises the reactions

R1 : TrkA +NGF/ TrkA : NGF; rate= k1½TrkA�½NGF�;
R2 : TrkA : NGF/ TrkA +NGF; rate= k2½TrkA : NGF�;

R3 : Erk/ pErk; rate= k3½TrkA : NGF�½Erk�;
R4 : Erk/ pErk; rate= k4½Erk�;
R5 : pErk/ Erk; rate= k5½pErk�:

Conservation of mass yields

½TrkA� + ½TrkA : NGF� = ½TrkA�0 ;
½NGF� + ½TrkA : NGF� = ½NGF�0;

½Erk� + ½pErk� = ½Erk�0:
To eliminate structurally non-identifiable parameters, the model was reparametrized to

dx1
dt

= k1½NGF�0
�
k3½TrkA�0 � x1

�� k2x1; x1ð0Þ= 0

dx2
dt

= ðx1 + k4Þ
�
cP½Erk�0 � x2

�� k5x2; x2ð0Þ= k4cP½Erk�0
ðk4 + k5Þ

(Equation 13)

with x1 = k3[TrkA:NGF] and x2 = cP[pErk]0. The observables for the considered experimental conditions are

ye =

8><>:
ce
P½pErk�0 +oe

P; e= 1;2; ðpErk1=2 kinetics and dose responsesÞ;�
ce
P½pErk�0 +oe

P; cT ½TrkA�0 +oT

�T
; e= 3; ðpErk1=2 and TrkA dose responsesÞ;�

ce
P½pErk�0 +oe

P; cE ½Erk�0 +oE

�T
; e= 4; ðpErk1=2 and Erk1=2 dose responsesÞ;

to compare the subpopulations on poly-D-lysine (PDL) and

ye =

8><>:
ce
P½pErk�0 +oe

P; e= 1;.; 4 ðpErk1=2 kinetics and dose responsesÞ;�
ce
P½pErk�0 +oe

P; cT ½TrkA�0 +oT

�T
; e= 5;6 ðpErk1=2 and TrkA dose responsesÞ;�

ce
P½pErk�0 +oe

P; cE ½Erk�0 +oE

�T
; e= 7;8 ðpErk1=2 and Erk1=2 dose responsesÞ;

to study the effects of the extracellular scaffolds PDL and collagen type I (Col I) on the neurons (PDL: e = 1; 3; 5;7, Col I: e = 2; 4;6;8).

The pErk1/2, TrkA and Erk1/2 levels could only bemeasured up to some scaling constants denoted by cP, cT, and cE , respectively,

and with some offsets denoted by oP, oT, and oE. Each observable was assumed to be subject to multiplicative log-normally distrib-

uted measurement noise parameterized by seP;noise ; sT ;noise; and sE,noise. For the comparison of the extracellular scaffold, the same

scaling, offset, and measurement noise parameters were used for PDL and Col I. For each subpopulation, we used the sigma-point

approximation accounting for cell-to-cell variability in cellular TrkA activity and Erk1/2 levels. The covariance between TrkA

activity and relative Erk1/2 expression was parametrized, accounting for correlations, with the matrix logarithm parametrization

MðsT ;sE ;sTEÞ˛R232. All other entries of Ds were assumed to be 0.

Data Pre-processing

For our analysis, we scaled each replicate such that the quadratic difference of the log-transformed fluorescence mean intensities

across replicates is minimal (see getScalingFactors.m). The scaled intensities of the cells of each replicate were then pooled and

analyzed together.

Subpopulation Differences

We accounted for all possible combinations of subpopulation variability of k1, k2, k4, k5, k3 [TrkA]0, and ceP½Erk�0 . This yielded in total

26 = 64 models that were tested, ranging from nq = 26 parameters, for the model assuming no subpopulations at all, to nq = 33

parameters, assuming that the subpopulations differ in all parameters. To take into account all hierarchical models, we considered

the BIC weights for individual differences as in (11).

We compared the results of model selection by BIC and log pointwise posterior density. This was done for the models accounting

for no or one difference between the subpopulations (Figure S4B). We considered this reduced set of models for the comparison, as

the sampling for the calculation of the log pointwise predictive density and the calculation of the Bayes factors took long (on average

780 CPU hours per model for the Bayes factors). The BIC values, the log pointwise posterior density, and the Bayes factors strongly

prefer themodel accounting for differing TrkA levels over all othermodels ðDBIC > 73 103Þ. We found that the log pointwise posterior

density highly depends on the splitting of the data set, with smaller test and training data sets preferring less complex models. The

results in Figure S4B are shown for splitting the data set in two parts, which gave a rank correlation of r = 0.61. The Bayes factors even

yielded a rank correlation of r = 1, indicating that the Bayes factors are indeed well approximated by the BIC for these models.

Dephosphorylation Rates

To validate, whether the two subpopulations differ in their dephosphorylation/phosphotase activity (parameterized by k5), we in-

hibited cells with the Mek-inhibitor U0126 (10 mM). NGF binds to the TrkA+ subpopulation and activates pErk1/2 signaling, whereas
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GDNF binds to the Ret receptor on the opposing subpopulation (TrkA-) and yields pErk1/2 signaling in this neuronal subgroup. Cells

were pre-stimulated for 1 h with the combined stimuli NGF (20 ng/ml) and GDNF (100 ng/ml) to obtain responses in both subpopu-

lations. We measured pErk1/2 levels to obtain the dynamics of the dephosphorylation as well as TrkA levels to distinguish the two

subpopulations. Cells were considered to belong to the TrkA+ subpopulation if their intensity was above 670 and to the TrkA-

subpopulation if their intensity was below 630. The measurements were taken at 0, 1, 4, 7, 10, 13, 16, 18, 22, 25, 28, 31, 34, and

37 min and collected for four replicates.

To obtain the de-phosphorylation rate k5, we normalized the values of pErk1/2 to 1 at t = 0 min and 0 at tmax = 37 min. We fitted an

exponential decay

EðtÞ=Ecexpð�k5tÞ+E0;

to the scaled data of the four replicates. The scaling Ec and offset E0 could be determined from the boundary conditions

E0 = 1 and EðtmaxÞ= 0:

This yielded the four values for the de-phosphorylation in the TrkA+ subpopulation and in the TrkA-subpopulation shown in Fig-

ure S3. A two-sample t-test with Welch’s correction gave a p-value of 0.6163, indicating that the dephosphorylation rates in the

two subpopulations were not significantly different.

Final Model

The final model accounted for subpopulation differences in cellular TrkA activity (Figure S4A) and also took into account differences in

the variance of TrkA activity between the subpopulations. The fits for the data, which are not shown in the main manuscript are visu-

alized in Figure S4C for the multivariate measurements of pErk1/2 and TrkA, and in Figure S4D for the measurements of pErk1/2 and

Erk1/2. Using the final calibrated model, we predicted the relation between pErk1/2 levels at 0 and 120 min by drawing parameters

from the inferred single-cell parameter distribution and simulating the ODE model (Figure S4E).

Differences Mediated by Extracellular Scaffolds

For the mechanistic comparison of the influence of the extracellular scaffolds, we used the model which assumes subpopulation

differences in TrkA levels. The differences between the extracellular scaffolds were parameterized as

kk1 ; kk2 ; kk4 ; kk5 ; kbk3 ½TrkA�0 ; kbc½Erk�0 ; kw

and the parameters were related by

k1;ColI = k1;PDL10
kk1 :

Accounting for these 7 potential differences, we defined 128 hierarchical models. Eachmodel was fitted to the data with multi-start

local optimization using at least 20 starts. We sorted themodels with respect to their BIC value, for which a low value indicates a good

trade-off between model complexity and goodness of fit. The BIC weights for the differences were computed by summing over the

BIC weights (11) of the models accounting for the corresponding differences. We found that the best model comprised differences in

Erk1/2 expression, Erk1/2 dephosphorylation and cellular TrkA activity. The least suitable model was the model which did not allow

differences between the extracellular scaffolds at all. This model was directly followed by themodel only accounting for differences in

the subpopulation weighting. The fit for the model accounting for differences in Erk1/2 expression, Erk1/2 dephosphorylation and

cellular TrkA activity is shown in Figures 6 and S5. The estimated parameters, their boundaries and the 95% confidence interval

based on the profiles are
symbol description qlb qub bq 95% confidence interval

k1 binding affinity 10�6 106 1.514 [1.114, 2.179]

k2 release of NGF 10�6 106 0.091 [0.067, 0.131]

k4 basal Erk1/2 phosphorylation 10�6 106 0.014 [0.012, 0.017]

k5 Erk1/2 de-phosphorylation 10�6 106 0.177 [0.141, 0.222]

bk3 ½TrkA�0;1 median of cellular TrkA activity in subpop. 1 10�6 106 1.93104 [1.51310�4, 2.41310�4]

bk3 ½TrkA�0;2 median of cellular TrkA activity in subpop. 2 10�6 106 0.141 [0.107, 0.185]

bc1;2
P

½Erk�0 median of relative Erk1/2 expression 10�6 106 1.043104 [8.9893103, 1.2563104]

sT,1 TrkA variability in subpop. 1 10�4 104 5.366 [4.742, 6.121]

sT,2 TrkA variability in subpop. 2 10�4 104 0.303 [0.277, 0.330]

sE Erk1/2 variability 10�4 104 0.250 [0.230, 0.271]

sTE correlation of TrkA and Erk1/2 10�4 104 2.263 [2.162, 2.373]

o1;2
P offset pErk1/2 (e = 1, 2) 10�6 106 8.064310�6 [0, 4.994]

cT=k3 scaling TrkA 10�6 106 1.7353104 [1.3183104, 2.2963104]

oT offset TrkA 10�6 106 239.7 [234.3, 245.2]

cE=c
5;6
P scaling Erk1/2 10�6 106 0.040 [0.032, 0.049]

(Continued on next page)
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Continued

symbol description qlb qub bq 95% confidence interval

oE offset Erk1/2 10�6 106 592.2 [549.8, 631.9]

c3;4P scaling pErk1/2 (e = 3,4) 10�6 106 0.495 [0.478, 0.511]

o3;4
P offset pErk1/2 (e = 3,4) 10�6 106 175.4 [159.8, 190.5]

c5;6P scaling pErk1/2 (e = 5,6) 10�6 106 0.810 [0.783, 0.837]

o5;6
P offset pErk1/2 (e = 5,6) 10�6 106 292.1 [266.2, 317.3]

c7;8P scaling pErk1/2 (e = 7, 8) 10�6 106 1.029 [0.997, 1.061]

o7;8
P offset pErk1/2 (e = 7, 8) 10�6 106 49.91 [21.91, 76.90]

s
1;2
P;noise measurement noise pErk1/2 (e = 1, 2) 10�3 101 0.335 [0.306, 0.361]

s
3;4
P;noise measurement noise pErk1/2 (e = 3,4) 10�3 101 0.370 [0.354, 0.385]

sT,noise measurement noise TrkA 10�3 101 0.433 [0.418, 0.448]

s
5;6
P;noise measurement noise pErk1/2 (e = 5,6) 10�3 101 0.462 [0.450, 0.473]

sE;noise measurement noise Erk1/2 10�3 101 0.257 [0.251, 0.263]

s
7;8
P;noise measurement noise pErk1/2 (e = 7,8) 10�3 101 0.267 [0.241, 0.299]

w1 weight of subpopulation 1 10�4 1 0.294 [0.289, 0.298]

kk5 diff. between extracellular scaffold in k5 10�3 103 1.257 [1.221, 1.297]

kbk3 ½TrkA�0
diff. between extracellular scaffold in TrkA 10�3 103 1.043 [1.019, 1.068]

kb
c
1;2
P

½Erk�0
diff. between extracellular scaffold in Erk1/2 10�3 103 1.393 [1.357, 1.433]
Accounting for Intrinsic Noise
To study the possibility of accounting for intrinsic noise in the hierarchical population model, we generated artificial data of a two

stage gene expression (Figure S6A) using Gillespie’s stochastic simulation algorithm (Gillespie, 1977) incorporated in the MATLAB

Toolbox CERENA (Kazeroonian et al., 2016). The system comprises the following reactions

R1 : B/mA; rate= k1;
R2 : B/mA; rate= uk2;
R3 : mA/B; rate= k3½mA�;
R4 : mA/A; rate= k4½mA�;
R5 : A/B; rate= k5½A�:

Here, mA denotes the mRNA and A the protein and we assumed that only A could be observed. The two subpopulations

differed in their response to stimulus u yielding different rates k2, 1 and k2, 2. For this setting, we only accounted for homogeneous

and subpopulation variable parameters. However, the intrinsic variability of the births and deaths of individual molecules gave cell-

to-cell variability in the cellular states. Cell-to-cell variability in parameters can also be incorporated using the moment-closure

approximation.

TheODEs for the temporal evolution of themeans and covariances were provided by the toolbox CERENA. In particular, themeans

m1 andm2 and the variances C11 and C22 of mRNA mA and protein A, respectively, were described as well as the correlation C12 of

mA and A. The ODE system reads

dm1

dt
=
k1
U
+

uk2
U

� k3m1;

dm2

dt
= k4m1 � k5m2;

dC11

dt
=
k1
U
+

uk2

U2
� 2C11k3 +

k3m1

U
;

dC12

dt
=C11k4 � C12ðk3 + k5Þ;

dC22

dt
= 2C12k4 � 2C22k5 +

k4m1

U
+
k5m2

U
;
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with system size U = 1000. Under the assumption that the system was in steady state before stimulation with u the initial condi-

tions are

m1ð0Þ= k1
Uk3

;

m2ð0Þ= k1k4
Uk3k5

;

C11ð0Þ= k1

U2k3
;

C12ð0Þ= k1k4

U2k3ðk3 + k5Þ
;

C22ð0Þ= 1

U2

	
k1k4
k3 + k5

+
k1k

2
4

k3k5ðk3 + k5Þ


;

The true parameters used for the generation of the data were

qtrue = ðk1; k2;1; k2;2; k3; k4; k5;w1ÞT
= ð10; 10;20;1;5;0:1;0:5ÞT :

In this example, we employed mixtures of normal distributions, for which the mean and variance were linked to the distribution

parameters byms =ms andSs =Cs. First, we compared amodel accounting for themean, whichwas obtained by the RRE (Hasenauer

et al., 2014), and a hierarchical model accounting for the mean and covariances, which were obtained by the moment-closure

approximation (MA), both accounting for two subpopulations. For the RRE model 10 parameters for the parametrization of the var-

iances were introduced, yielding in total n q = 17. The model using the MA only comprised nq = 7, since a mechanistic description of

the variances was incorporated. For parameter estimation, the kinetic parameters were restricted to the interval [10�3, 103] and the

log10-transformed parameters were fitted, whereas the weight w1 was restricted to [0, 1] and fitted linearly. For the RRE model, the

parameters for the variance were assumed to lie within [10�4, 102] and also fitted in log10-space. We also studied two models that

incorporate the mechanistic description of the variance by the MA, but did not consider the presence of two subpopulations (MA, no

subpop.). One of these models, however, accounts for cell-to-cell variability of each parameter (MA, cell-to-cell variability, no sub-

pop.), which corresponds to the description by Zechner et al. (2012).

The models not accounting for subpopulation structures did not fit the data at all (Figure S6B). Even the included variability in pa-

rameters did not improve the fit substantially. In contrast, both subpopulation models provided a good fit to the data. However, the

BIC for the MAmodel was substantially better than for the RREmodel (BICRRE-BICMA = 79.09). We found that the MAmodel gave the

optimal value for 40%of the starts and the optimization for the RREmodel ended in the optimum for 36%of the starts (Figure S6C). In

terms of computation time there was a clear benefit using themechanistic description of the variance (Figure S6D). The time required

for one optimization start was about two-fold faster when using the MA (median = 6.43 sec) instead of RREs (median = 13.13 sec).

Furthermore, we studied the uncertainty of the parameter estimates using profile likelihoods (Figure S6E). Using the MA with

subpopulations, all parameters were identifiable, indicated by a narrow profile. This was not the case for RREs, for which some

parameters could not be identified from the the data and showed a flat profile. For the case of no subpopulations, most of the

true parameters did not lie within the estimated intervals (Figures S6F and S6G). This emphasizes the importance of taking into

account subpopulation structures.

QUANTIFICATION AND STATISTICAL ANALYSIS

For the analysis of the differences in pErk1/2 activity in the kinetic and dose responses for PDL and Col I, we employed a two-way

ANOVA and Sidak’s post-hoc test using GraphPad Prism. For assessing the statistical significance of the predicted differences,

we applied the two-sample Welch’s t-test employed by the MATLAB function ttest2. Significances are indicated as * (p < 0.05),

** (p < 0.01), and *** (p < 0.001). Model selectionwas performed using the BIC.We computed confidence intervals based on the profile

likelihoods.

DATA AND SOFTWARE AVAILABILITY

The toolbox ODE-MM was used to implement the proposed hierarchical modeling framework as well as previous versions. This

toolbox also provided the likelihood function and analytical gradient required for parameter estimation. The simulation of the means

and covariance using sigma-points was implemented in the SPToolbox. Simulation of the RREs and corresponding sensitivity

equations was conducted using the toolbox AMICI (Fröhlich et al., 2016). For the parameter estimation, we employed the toolbox

PESTO (Stapor et al., 2018). All toolboxes and the experimental data are available at https://github.com/ICB-DCM. The versions

of the toolboxes to reproduce the results of this manuscript are available at http://doi.org/10.5281/zenodo.1211553.
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