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Abstract

In this age of digitalization, industries everywhere accumulate massive amount of
data such that it has become the lifeblood of the global economy. This data may
come from various heterogeneous systems, equipment, components, sensors, systems
and applications in many varieties (diversity of sources), velocities (high rate of
changes) and volumes (sheer data size).

Despite significant advances in the ability to collect, store, manage and filter data,
the real value lies in the analytics. Raw data is meaningless, unless it is properly pro-
cessed to actionable (business) insights. Those that know how to harness data effec-
tively, have a decisive competitive advantage, through raising performance by mak-
ing faster and smart decisions, improving short and long-term strategic planning, of-
fering more user-centric products and services and fostering innovation. Two distinct
paradigms in practice can be discerned within the field of analytics: semantic-driven
(deductive) and data-driven (inductive).

The first emphasizes logic as a way of representing the domain knowledge encoded
in rules or ontologies and are often carefully curated and maintained. However,
these models are often highly complex, and require intensive knowledge processing
capabilities. Data-driven analytics employ machine learning (ML) to directly learn
a model from the data with minimal human intervention. However, these models
are tuned to trained data and context, making it difficult to adapt.

Industries today that want to create value from data must master these paradigms
in combination. However, there is great need in data analytics to seamlessly combine
semantic-driven and data-driven processing techniques in an efficient and scalable
architecture that allows extracting actionable insights from an extreme variety of
data.

In this thesis, we address these needs by providing:

e A unified representation of domain-specific and analytical semantics,in form
of ontology models called TechOnto Ontology Stack. It is highly expressive,
platform-independent formalism to capture conceptual semantics of industrial
systems such as technical system hierarchies, component partonomies etc and
its analytical functional semantics.

e A new ontology language Semantically defined Analytical Language (SAL) on
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top of the ontology model that extends existing DatalogMTL (a Horn fragment
of Metric Temporal Logic) with analytical functions as first class citizens.

e A method to generate semantic workflows using our SAL language. It helps
in authoring, reusing and maintaining complex analytical tasks and workflows
in an abstract fashion.

e A multi-layer architecture that fuses knowledge- and data-driven analytics into
a federated and distributed solution.

To our knowledge, the work in this thesis is one of the first works to introduce and
investigate the use of the semantically defined analytics in an ontology-based data
access setting for industrial analytical applications. The reason behind focusing
our work and evaluation on industrial data is due to (i) the adoption of semantic
technology by the industries in general, and (ii) the common need in literature and
in practice to allow domain expertise to drive the data analytics on semantically
interoperable sources, while still harnessing the power of analytics to enable real-time
data insights. Given the evaluation results of three use-case studies, our approach
surpass state-of-the-art approaches for most application scenarios.



Zusammenfassung

Im Zeitalter der Digitalisierung sammeln die Industrien iiberall massive Daten-
mengen, die zum Lebenselixier der Weltwirtschaft geworden sind. Diese Daten
kénnen aus verschiedenen heterogenen Systemen, Gerdten, Komponenten, Sen-
soren, Systemen und Anwendungen in vielen Varianten (Vielfalt der Quellen),
Geschwindigkeiten (hohe Anderungsrate) und Volumina (reine Datengrofe) stam-
men.

Trotz erheblicher Fortschritte in der Fahigkeit, Daten zu sammeln, zu speichern,
zu verwalten und zu filtern, liegt der eigentliche Wert in der Analytik. Roh-
daten sind bedeutungslos, es sei denn, sie werden ordnungsgemélfs zu verwertbaren
(Geschéfts-)Erkenntnissen verarbeitet. Wer weif, wie man Daten effektiv nutzt, hat
einen entscheidenden Wettbewerbsvorteil, indem er die Leistung steigert, indem er
schnellere und intelligentere Entscheidungen trifft, die kurz- und langfristige strate-
gische Planung verbessert, mehr benutzerorientierte Produkte und Dienstleistungen
anbietet und Innovationen fordert. In der Praxis lassen sich im Bereich der Ana-
lytik zwei unterschiedliche Paradigmen unterscheiden: semantisch (deduktiv) und
Daten-getrieben (induktiv).

Die erste betont die Logik als eine Mdoglichkeit, das in Regeln oder Ontolo-
gien kodierte Doménen-wissen darzustellen, und wird oft sorgfiltig kuratiert und
gepflegt. Diese Modelle sind jedoch oft sehr komplex und erfordern eine inten-
sive Wissensverarbeitung. Datengesteuerte Analysen verwenden maschinelles Ler-
nen (ML), um mit minimalem menschlichen Eingriff direkt ein Modell aus den Daten
zu lernen. Diese Modelle sind jedoch auf trainierte Daten und Kontext abgestimmt,
was die Anpassung erschwert.

Branchen, die heute Wert aus Daten schaffen wollen, miissen diese Paradigmen in
Kombination meistern. Es besteht jedoch ein grofer Bedarf in der Datenanalytik,
semantisch und datengesteuerte Verarbeitungstechniken nahtlos in einer effizienten
und skalierbaren Architektur zu kombinieren, die es ermdglicht, aus einer extremen
Datenvielfalt verwertbare Erkenntnisse zu gewinnen.

In dieser Arbeit, die wir auf diese Bediirfnisse durch die Bereitstellung:
e Eine einheitliche Darstellung der Doméanen-spezifischen und analytischen Se-

mantik in Form von Ontologie modellen, genannt TechOnto Ontology Stack.
Es ist ein hoch-expressiver, plattformunabhingiger Formalismus, die konzep-

iii



v

tionelle Semantik industrieller Systeme wie technischer Systemhierarchien,
Komponentenparonomien usw. und deren analytische funktionale Semantik
zu erfassen.

e Eine neue Ontologie-Sprache Semantically defined Analytical Language (SAL)
auf Basis des Ontologie-Modells das bestehende DatalogMTL (ein Horn frag-
ment der metrischen temporiren Logik) um analytische Funktionen als erstk-
lassige Biirger erweitert.

e Eine Methode zur Erzeugung semantischer Workflows mit unserer SAL-
Sprache. Es hilft bei der Erstellung, Wiederverwendung und Wartung kom-
plexer analytischer Aufgaben und Workflows auf abstrakte Weise.

e Eine mehrschichtige Architektur, die wissens- und datengesteuerte Analysen
zu einer foderierten und verteilten Losung verschmilzt.

Nach unserem Wissen, die Arbeit in dieser Arbeit ist eines der ersten Werke zur
Einfiihrung und Untersuchung der Verwendung der semantisch definierten Analytik
in einer Ontologie-basierten Datenzugriff Einstellung fiir industrielle analytische An-
wendungen. Der Grund fiir die Fokussierung unserer Arbeit und Evaluierung auf
industrielle Daten ist auf (i) die Ubernahme semantischer Technologien durch die In-
dustrie im Allgemeinen und (ii) den gemeinsamen Bedarf in der Literatur und in der
Praxis zuriickzufiihren, der es der Fachkompetenz ermdglicht, die Datenanalyse auf
semantisch interoperablen Quellen voranzutreiben, und nutzen gleichzeitig die Leis-
tungsfihigkeit der Analytik, um Echtzeit-Dateneinblicke zu ermdglichen. Aufgrund
der Evaluierungsergebnisse von drei Anwendungsfillen iibertrifft unser Ansatz fiir
die meisten Anwendungsszenarien modernste Ansétze.
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1 Introduction

The emergence of Industry 4.0 has given opportunities to collect, process and analyze
equipment data across the entire industry value chain that can significantly enhance
maintenance, improve fault management, asset utilization, automation, performance
and so forth. Large heterogeneous data sets from the industrial equipment such as
trains, power generating turbines, smart grid components with nearly 16 Terabytes
of data generating everyday [1], has become a gold mine for industries that can enable
data-driven analytics such as for condition monitoring and diagnosis. However,
integrating and aggregating data to implement analytics across different distributed
data sets and different engineering domains is non-trivial and requires new efficient
methods [2]. This phenomenon has served as an opportunity and motivated many
research initiatives, where natural language processing [3|, information retrieval and
ontology-based data access (OBDA) are utilized to build models and approaches to
extract and analyze relevant data.

Most existing approaches to data access and analytics [4, 5, 6, 7, 8, 9, 10, 11] have
proved effective when a specific characteristic of individual asset such as equipment
or sensor identifiers or a dataset query for a specific equipment is explicitly and
unambiguously encoded in an tool-dependent analytical workflow. In such case,
either analyst has to rely on I'T specialist to develop a corresponding database query
or he makes effort to understand each of the underlying data model. One typical task
of an analytical workflow is to detect potential faults of a turbine equipment caused
by, e.g., an undesirable pattern in pressure behaviour within various components of
the turbine. Consider a (simplified) example of such a analytical task:

For a given turbine, list all pressure sensors that are operating reliably, i.e., they
are operating within the average score of validation tests of at least 90%, and whose
measurements are within the last 20 min were similar, i.e., Pearson correlated by
at least 0.75, to measurements reported last month by a reference design sensor that
had been functioning in a critical mode.

Such task requires to extract, aggregate, and correlate static data of a particular tur-
bine, for which data is generally produced by up to 2,000 sensors that are installed
in different parts of the turbine. In addition to this, there also exist historical opera-
tional data of the reference design sensor that may be stored in multiple data sources
and have several versions or different product configurations. Executing and analyz-
ing such a task currently requires to construct hundreds of queries, the majority of
which are semantically the same (they ask about pressure), but syntactically differ
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(they are over different schemata,formats). Implementing and executing so many
datasource-specific queries and then integrating the computed answers in current
state-of-the-art may take up to 80% of the overall diagnostic and analysis time that
an engineer typically have to spend [12]. In such a scenario, the adoption of OBDA
has proven to save a lot of time since only one domain-specific query can help to
"hide" the technical details of how the data is stored, represented, and accessed in
data sources, and to show only what this data is all about. However, any OBDA
system faces two major challenges, i) lack of unified semantic representation of in-
dustrial or domain-specific system and its underlying data model, that provides a
generic schema but allows for domain-specific building blocks to support knowledge
sharing and information integration, and ii) inefficient and costly analytical oper-
ations in ontological queries, or in data queries specified in the mappings. In the
case of ontological or domain-specific semantic queries, all relevant values from the
source database must be retrieved prior to performing aggregations, arithmetic or
any other analytical operation. Such operation is highly inefficient because it fails
to exploit source capabilities (e.g., access to pre-computed averages). Data retrieval
could also be a bottleneck because the retrieval could be slow and/or costly in case
where these values are stored remotely. Moreover, such semantic queries also adds
to the complexity of equipment-specific queries, and thus limits the benefits of the
abstraction layer which attracts the user towards any OBDA system. Moreover, in
the case of source queries, aggregation functions and comparison operators can be
used in mapping queries. However, this is brittle and inflexible, as values such as
90% and 0.75, which are used to define "reliable sensor" and "similarity", cannot
be specified in the ontological query, but must be "hard-wired" in a mapping lan-
guage (e.g. R2RML), unless an appropriate extension to the query language or the
ontology are developed.

In this thesis, we aim to address these issues by investigating, first, the role of
unified modular ontology model and second, the use of semantically defined ana-
lytical OBDA that can support declarative representations of a industrial equip-
ment together with basic analytical operations and using these to efficiently answer
higher level queries for industrial equipment diagnosis. In particular, we research
and evaluate several methods for access and analyzing two types of semantics for
equipment diagnostics: domain-specific semantics, i.e. semantics extracted from
background engineering ontologies and technical system specifications to capture
equipment knowledge bases, and analytics-aware semantics i.e. semantics required
to develop a analytical language and workflows.

Third, we use Siemens equipment data from three different domains i.e. power
generation, mobility and smart grid as a representative case study of semantically
defined analytical services in the experimental work conducted in this thesis. Specifi-
cally, we study the usability and applicability of both types of semantics in multiple
analytical tasks for each domain. This mainly considers equipment-level analyti-
cal workflows, i.e., sequence of analytical task for detecting the faults of individual
equipment (e.g., "Turbines", "Train", "Door" etc.), and system-level analytics, i.e.,
exchanges outcomes of individual analytical workflows to analyze e.g. the overall
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performance of a given plant. Lastly, we investigate the use of our language to
address the data-dependency challenges with authoring, reuse, and maintenance of
analytical workflows.

We explain the motivation behind our thesis in the following subsections, and detail
our research questions, thesis methodology, contributions and list of publications
produced on our work.

1.1 Motivation

An industrial system is a network of intelligent industrial equipments such as trains
and power generating turbines that collect and share large amounts of data. This
data is either generated by various sensors deployed at the equipment or captures
equipment specific meta-data such as configurations, history of use, design and man-
ufacturing details. Exploitation of such large-scale data resources has the potential
to revolutionize the competitiveness of the data-intensive industries where for exam-
ple, intelligent diagnostics is critical to maximise equipment’s up-time and minimise
its maintenance and operating costs [13, 14]. With the advancements in Big Data
technologies, significant progress has been made in addressing problems related to
the volume and velocity of data, but still they often lag behind in meeting the vari-
ety challenge, which has emerged as the top data priority for mainstream companies
[15]. As a result, the integration of information from multiple sources is often left
to humans, making it difficult and time consuming for decision makers to obtain a
coherent operational overview (Figure. 1.1).

® H A
*0
|
® A

COMMON OPERATIONAL PICTURE

Figure 1.1: Existing approach: humans deal with information integration.

Nevertheless, where methods such as data virtualization, middleware integration,
datawarehousing fall into prey of design and implementation challenges, Ontology-
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based data access (OBDA)[16, 17| has emerged as a winner for many industrial
use-cases (Figure. 1.2).

COMMON OPERATIONAL PICTURE

Figure 1.2: OBDA approach: decision makers provided with coherent operational
overview

It provides an abstraction layer using an ontology that mediates between the data
sources and data consumers. The ontology is a uniform conceptual schema that
describes the domain of the underlying data independently of how and where the
data is stored, and declarative mappings to specify how the ontology is related to the
data by relating elements of the ontology to queries over data sources. The ontology
and mappings are used to transform queries over ontologies, i.e., ontological queries,
into data queries over data sources. As well as abstracting away from details of data
storage and access, the ontology and mappings provide a declarative, modular and
query independent specification of both the conceptual model and its relationship to
the data sources; this simplifies development and maintenance and allows for easy
integration with existing data management infrastructure. Large number of systems
that at least partially implement OBDA have been recently developed; they include
D2RQ [18], Mastro [19], morph-RDB [20], Ontop [21], OntoQF [22| and others
[23]. Some of them are successfully used in various applications including cultural
heritage [24], governmental organisations |25, IT benchmarking [26] and industry
[1, 27, 28, 29]. Despite the success, OBDA systems come with some strengths and
weaknesses when applied on complex industrial systems for analytical tasks including
temporal concepts as will be explained in the following paragraphs.

1.1.1 OBDA for Industrial Analytics: Gaps and Challenges

The process industry accounts for more than 3% of European GDP, is under severe
competitive pressure, and urgently needs to reduce costs and increase productivity
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along the entire value chain. Heavy investment in digitalization and automation is
bringing with it an explosion in the volume and velocity of available data. With an
expected growth of of $7.3 billion in 2018, the market size of big data will break
past the $40 billion mark in 2018 (as per Technical Report on Big Data Devel-
opment (see https://bigdata-madesimple.com /4-critical-big-data-developments-to-
prepare-for-in-2018/). This huge variety of data systems and data sources in use
along the supply chain makes it a challenge to integrate and analyse this data. Nar-
rowing down the gap between available data and execution capability (see Figure
1.3) has become a key objective for many industrial sectors, including condition mon-
itoring [30, 31], predictive maintenance [32], smart manufacturing and IoT domains
to provide decision makers with the information they need to optimise operating
models and business processes.

% Data Availability

50
10 /" Widening Gap
Analytical Capability ) o

30 e -

20 e

Market Volume in Billion U.S Dollars

10

Execution Capability
2014 2015 2016 2017 2018 2019 2020

Year of Investment

Figure 1.3: Gaps between available data, analytical capability, and execution capability
[33].

Most of the industry sector is itself targeting this challenge with an increased focus
on standards. This includes international, European, and national standards within
the technical domains, as well as information and system integration standards such
as OPC UA, Industry 4.0, ISA, IEC and ISO standards. The standards, however,
are often imprecisely specified and inconsistently implemented, and their role in
addressing the variety challenge has yet to be convincingly demonstrated.

With the emergence of semantic-based approaches, much effort has been made to
develop upper-level and domain-specific ontologies that best describe the domain
and its underlying data model. Overall, most existing ontologies adapt fairly well to
some of the specific characteristics and use-cases of the industrial equipment, and
therefore produce relatively higher performances than those which use the conven-
tional generic model. Nevertheless, such models are still semantically weak, because
do not represent the real semantics of equipments when analysing its behaviour or
performance criteria that occur within them [34]. Semantics generally inclined to-
wards exploring what an equipment, system or a component is supposed to mean in
a given scenario. In the data mining and analytics world, representing and encoding
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the semantics of the equipment will likely strengthen the understanding of the type
of the data it produces and the behaviour or function that this data represents in
the context it occurs.

1.1.2 From Equipment Semantics to Analytical-aware
Semantics

In the previous paragraph we discussed that the existing approaches to equipment
analysis (standard and semantic-based) usually address some of the pitfalls and
limitations imposed by the industrial data. However, most of these solutions en-
counter similar problems as they are not tailored towards analytical tasks that are
naturally based on data aggregation and correlation. A typical industrial scenario
that requires both analytics and access to static and streaming data is diagnostics
and monitoring of equipment. Traditional approaches of temporal streaming lan-
guage STARQL extends SPARQL with aim to facilitate data analysis directly in
queries. This and other similar semantic streaming languages, e.g., SPARQLstream
[35], lack the support of rule-based structures and temporal representation of data
signals. Recent efforts have been made to extend ontologies with analytical and
temporal concepts. However, such approach use temporal logics (e.g., LTL, MTL)
which in not adequate to capture time-series data which are often analyzed based
on intervals, e.g. [0s; 10s]. Introduction of analytical operations directly into onto-
logical rules (i.e. SWRL [36], datalogMTL [37]) in such a way that OBDA scenario
is preserved, is the line of work, we use as inspiration. We aspire to investigate on
how to define analytical functions on concepts, e.g. avg C, in an OBDA setting.

However, traditional methods lack the support of defining temporal dimensions to
the rules. Thus considering both conceptual semantics of the equipment and analyt-
ical semantics is rather important when retrieving and analyzing the data. This is
especially crucial to allow engineers to focus more on analysing the analytics output
rather than on understanding the data and implementing an analytical workflows
or combining various workflows for a specific use-case scenario.

The above limitations of different approaches either semantic or non-semantic has
recently brought an immense interest in research and industrial use of semantics
for data analysis (aka, semantically driven data analysis). However, semantic ap-
proaches (domain-specific and analytics-aware) are generally not equipped to handle
complex industrial systems. First, they are restricted by the underlying semantic
resources or domain ontologies, which is especially problematic when processing
data across different systems using a unified model. Secondly, these approaches
are tailored towards the use of conventional mathematical operations and temporal
concepts that is trivial when analysing industrial data.

Our work in this dissertation addresses the problem of developing and managing
analytical-aware ontology model and language for analytics. Our models and lan-
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guage captures the semantics of industrial data to a large extent and features both
domain-specific and analytical semantics in their analytical processes, aiming to
capture the analytical tasks for equipments with regards to their semantics, and
consequently improve the overall data analytics workflow. In the following sections,
we present our research questions that we address in this thesis, we discuss our
contributions, and we provide the outline of the thesis.

1.2 Research Questions and Contributions

The main research question investigated in this thesis is:

Could the semantics of industrial systems and analytical operations boost
data analysis performance on industrial equipment?

Our main focus, as discussed in the previous section is to improve the performance of
data analytics tasks and workflow by developing solutions that incorporates the core
semantics of industrial systems and their analytical characteristics in an analytical
workflow. Given the state of the problem discussed earlier (i.e., the type of the
domain model and the type of semantics used), we have broken-down our main
research question into following four sub-questions in order to improve data analysis
for industrial data in a systematic fashion.

e [RQ1]Can domain-specific and analytical-aware ontology models for
industrial equipment enhance data analysis performance?

Adoption of wide range of standards for domain specification, communication
and interface, life-cycle and system integration by the industries have not yet
serve the purpose to access, integrate, exchange and/or analyse the relevant
heterogeneous data. Key obstacles include:

— overlapping and mutually inconsistent standards;

— lack of precision in the specification of standards leaves them open to
different interpretations;

— legacy systems, some of which are up to 30 years old, implement standards
in an ad-hoc way, if at all;

— shortage of appropriately trained IT personnel means that standards may
be poorly understood and inconsistently implemented;

— the high cost of developing and maintaining the necessary standards; and
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— the inability of Big Data technologies to exploit such standards in order
to meet the variety challenge.

Semantic technologies and in particular OBDA approaches have been success-
ful in providing a semantic declarative representation of the domain together
with comprehensive and timely access to data, answering real user queries with
response times in the range of seconds over TB-size federated databases with
very complex structure; in contrast, existing systems require hours or even
days to answer such queries, if they can answer them at all. However, the
foundation of any OBDA system lies on its ability to capture the semantics of
its domain and analytical characteristics. Thus, we propose a semantic repre-
sentation of industrial equipment to improve OBDA and analytical workflows.
Furthermore, we specify our concrete contributions for this research question
as follows:

— Build a semantic ontology model, called TechOnto, that captures the
conceptual and contextual semantics of industrial equipment and their
diagnostic characteristics.

— Introduce several semantic-driven methods, based on TechOnto, for sys-
tem and component levels fault analysis.

— Build and test a new ontology model manager to author, reuse and man-
age such models.

All these contributions are presented in Chapter 3.

[RQ2]Can an analytical-aware ontology language for analytical tasks
enhance data analysis performance?

Engineers create, use and deploy various diagnostic functions that include com-
plex rule-sets and/or sophisticated analytical models to detect abnormalities
of the equipment and may further combine these abnormalities with models
of physical aspects of equipment for example, thermodynamics and energy
efficacy. Based on the available resources and expertise of the engineer, he
may use different analytical platforms, each of those have a specific conceptu-
alization or schema for representing data and meta-data. This scenario leads
to an extra coding-effort to achieve both the desired interoperability and a
better provenance level. In addition to this, these functions are often data-
dependent in the sense that specific characteristic of individual sensors and
pieces of equipment are explicitly encoded in the models defined in a specific
language.

To reduce the gap, data analytics vocabularies and ontologies have been pro-
posed. Our contributions under this research question incorporates extraction



1.2 Research Questions and Contributions

and inclusion of semantic concepts for analytical operations to enhance their
performance. Our contributions are stated as follows:

— Propose a semantic driven ontology language, called SAL as a common
language to enable data analysis across heterogeneous data sets, support
interoperability among analytical tools and provide more automatized
environment for obtaining the analytical results.

— Implement analytical operations that can filter, aggregate, combine, and
compare data signals and is expressive enough and computationally effi-
cient.

— Prove the proposed ontology language to be effective in an industrial
setting and FO rewritable.

All these contributions are presented in Chapter 4.

[RQ3]Can semantically driven analytical workflows boost data anal-
ysis performance?

Engineers tend to produce a large number of analytical workflows using dedi-
cated data-sets and models specified in a tool-dependent language. And more
often these results are stored locally or shared via traditional interfaces. Such
analysis are time-consuming and requires a certain level of expertise and re-
sources. On the other hand, data and tool-specific dependences makes au-
thoring, composition, reuse and maintenance of such workflows difficult and
error-prone.

To address these challenges, we propose building a new approach to extract
the meta-data of these workflows and support authoring and composition of
analytical workflows in a cost-effective way. Many existing approaches use
syntactic structure of rules or pre-defined sets of templates in order to access
data. Whereas, our solution provides flexibility and promotes reusability of
workflows. We have also evaluated our proposed approach to determine its
effectiveness in a system- and equipment-level fault analysis tasks. Contribu-
tions for this research question are:

— Propose a novel approach that automatically extracts relevant data from
the contextual semantic and generate corresponding analytical workflows

for a given task.

— Formulate and execute workflows using our proposed ontology language
that combine relevant data and analytics together.

— Perform quantitative and qualitative analysis on a test cases of our ex-
tracted analytics-aware semantics and show the potential of our approach

11



1 Introduction

for finding the right models and composing analytical workflow in a user-
friendly manner.

All these contributions are presented in Chapter 5.

[RQ4]Can a semantically defined analytical system boost data anal-
ysis performance?

Any data analytics application today requires sufficient amount of resources
together with a rigorous collaboration of domain experts, engineers, I'T spe-
cialist, statisticians/data miners and software developers. This large resource
commitment makes it difficult to incorporate analytics as part of an overall
business process and ultimately create a direct financial investment link. There
is great need for a unified semantically defined data analytics solution that is
able to combine the knowledge- and data-driven processing techniques in an
efficient and scalable architecture and where experts can collaborate on their
desired data analysis task rather than managing data challenges and software
components.

Contributions for this work in particular are:
— Implementation of a scalable and efficient semantic framework to manage
data analysis task, algorithms, their implementations and executions, as
well as inputs (e.g., data) and outputs (e.g., models) they specity.

— Conduct feature analysis of our semantic system and the state-of-the-art.

All these contributions are presented in Chapter 6.

1.3 Thesis Methodology and Outline

Our thesis aims to present our contributions towards improving the performance of
data analysis tasks and workflows by using both, the domain-specific and analytical-
aware ontology models and language. To achieve the purpose, we developed a generic
methodology that is adopted in the different phases of our work. Abstraction, incor-
poration and assessment are three building blocks of our methodology as depicted
in Figure 1.4 and details are presented below:

1. Abstraction: design methods for capturing domain-specific and analytical-

aware semantics for industrial equipment.

2. Incorporation: investigate state-of-the-art ontology models and languages for

12

incorporating and using domain and analytical-driven semantics in data anal-
ysis tasks and workflows.
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Figure 1.4: Our thesis methodology for abstracting, incorporating and assessing the use
of analytical-aware semantics in industrial diagnostic scenarios.

3. Assessment: measure the performance of our proposed approach of modelling
and use of analytical-driven semantic language in multiple analytical tasks on
industrial data as well as analytical workflow composition.

Figure 1.5 presents an overview of our core contributions that are described in each
chapter of this thesis. We have used these three pillars of the methodology as
presented above in each of these chapters. Our work in this thesis comprises of the
following chapters:

In Chapter 2 we presents a background knowledge of the semantic technologies and
data analysis task. After that, we present details on the building blocks and existing
work in the the area of OBDA and semantic-driven analytics. We also present the
challenges and limitations of the current state-of-the-art models and languages.

In Chapter 3 we present results on our work of using the domain-specific and ana-
lytical ontology models for industrial equipment for improving the performance of
data analysis methods for diagnostics. We also explore the use of ontology model
manager to maintain such models. Our first research question is addressed in this
chapter.

In Chapter 4 we present results on our work of using the analytical-aware ontology
language to improve the performance of data analysis approaches, addressing our
second research question of this dissertation.

In Chapter 5 we present our proposed approach to extract relevant information for
data-access and generate workflows in an automated way which addresses the third
research question. We also present our ontology language to support authoring and
analysis of such semantic-driven workflows.

In Chapter 6 we present the resulting architecture, system implementation of our

solution and its deployment at Siemens power generation business. This addresses
the fourth research question of our thesis.

13



1 Introduction

14

II Technical Systems &
- Analytical tasks
across Domains

> ¢ B Ontology query
EERLY Ontology model i
Ontology model 7 8y answering

(TechOnto) and manager
toolbox (SOMM) Reasoning services

abstraction

Ontology Language Semantic analytical Formal properties
formulation language - SAL

Extended datalogMTL

Workflow Rule

Ontolog anguage
s Workflow generation
e using SAL

Formal properties

Chapter 5

Workflow analysis

Implementation
Deployment

Evaluation of ontology models

_[ System architecture
A

Chapter 6

Evaluation of ontology language —SAL and
workflow generation

Evaluation of semantic systems

Evaluation of Effort and Runtime Analysis

Figure 1.5: Overview of our work under each chapter along with our contributions. Ar-
rows crossing two different chapters represent that results presented in one
chapter is used in the other one.

In Chapter 7 we describe case studies and conduct evaluations on three different
industrial use-cases and device a number of analytical task and workflows to proof
the effectiveness of our approach.

In Chapter 8 we present our main conclusions, our contributions, research limitations
and provide insights to our future work.

1.4 Publications
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ler. "Semantic rule-based equipment diagnostics." In International Semantic Web
Conference, pp. 314-333. Springer, Vienna, Austria, 2017. Best Paper Award.
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2 Fundamentals of Ontology
Models and Languages for Data
Access and Analytics

In this chapter we present the foundations of Semantic Web Technologies together
with formal definitions. We also explore the existing state-of-the-art ontology mod-
els, languages and their constructs. We introduce the building blocks of ontology
based data access systems and its state-of-the-art together with available analytics
aware systems.

2.1 Background

The world wide web (WWW) has provided an exponential increase of information
and has revolutionized the production and use of data. Until now the WWW has
been known and is accessible via search engines and browsers. However, this im-
mense volume of web content is not understandable by any computer. The vision
behind the Semantic Web (SW) is to make this content understandable and provide
semantic meaning to enrich information for effective services.

With the advancement in Semantic Web Technology and knowledge based graph
structures, all of the web content can be available in machine readable formats and
therefore would be possible for automated processing. There are two foundational
blocks to SW. Firstly, a formal ontology model which is mainly domain specific
background information that is expressed, formalized across different partners. It
provides semantic descriptions and a shared vocabulary for a particular domain and
is expressed in form of object classes, predicate classes and their interdependencies.
All these semantic descriptions that represent a certain background information is
formalized in logical statements and axioms. Secondly, this web content is annotated
by constraints that can be read and processed by machines.

There are number of SW applications using this semantic content, amongst which
context and user-driven information retrieval is a prominent application. However,
this information retrieval is highly users dependent, and needs integration of informa-
tion from multiple sources that uses smart filters to gather user centric information.
Therefore, such smart engines becomes more autonomous that captures and is aware
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of semantic knowledge, as well as is capable of interpreting user request, knows where
the content can be originated from and later represents the requested information in
an appropriate user-friendly form. The advantage of semantic annotation features
allows to obtain better search ranking and therefore the semantic matching between
query and the content can be evaluated with high confidence. The second set of
applications are Semantic web services. These services present texts, web content
and multimedia data in a machine readable form. Such services are of great interest
both for academia and industry. Well-defined SW standards are formulated to be
understood by semantic search engines and web applications. Service requests and
interfaces follow such SW standards to serve user-driven information retrieval. In
the third set of SW applications comes the web of data. SW technologies provides
infrastructure, standards and representational languages to integrate and exchange
diverse set of informations. The domain of Biomedicine is a prominent candidate of
SW application with almost 1000 databases publicly available today. One can for-
mulate a common ontological vocabulary to integrate and publish this huge volume
of data for querying and for analysis. The vision of WWW is to bring the knowl-
edge of the world to our applications, readily available and accessible for processing
and analysis. Lastly, in the fourth set of applications, SW technologies are required
to support expert systems, modelling complex industrial domains and supporting
advanced decision making process.

One of the key selling point of SW application is the support for reasoning capa-
bilities. The reasoning capability relies on ontological background knowledge and
the set of asserted statements to derive new set of knowledge. However, it has some
limitations in practice. First, logical reasoning does not easily scale up to huge vol-
umes of data which is required by many industrial applications. Projects like the EU
FP 7 Scalable End-user Access to Big Data (see. http://www.optique-project.eu/)
address this issue and provide implementations and infrastructure to access infor-
mation on the fly supporting Ontology-based Data Access approaches. Secondly,
until now logical reasoning does not easily support temporal and spatial informa-
tion. However, with recent research contributions, such representation of temporal
and spatial information on the SW and reasoning with temporal constraints on an
OBDA system have been recently addressed. Third, logical reasoning completely
relies on axiomatic prior knowledge. It does not explore patterns/ knowledge state-
ments in the data that are not present as ontological background statements. This
brings opportunities for new researchers to explore solutions of combining both an-
alytics, learning as well as temporal constraints to access data and explore new
frontiers of hidden information. The analysis of the potential of data analytics for
the SW is the topic of this thesis. More and more information is made available in
SW formats and machine learning and data mining are the basis for the analysis of
the combined data sources.
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2.1.1 Basics and History

There exist some common terminologies in SW community. For example, terms
knowledge-base, semantic data representation or ontology are used interchange-
ably. Applications implementing SW technologies usually adopt some form of (semi-
)formal abstract/meta representation of knowledge. Whereas, the traditional tech-
nologies allow the storage of raw data. The term ontology usually used in Artificial
Intelligence (AI) is a formal abstraction of a given domain that includes a set of
domain-specific concetps and their relationships. Formal ontologies are well equiped
in supporting instance data with reasoning services that considers the use of back-
ground knowledge represented in form of formal logic axioms and constraints. The
semantics of a formal logical representation refers to the fact that the meaning is
unambiguous and making such information machine processable. Originally, the
term ontology comes from the science of philosophy which refers to a particular
system of categories which are supporting a specific vision of the world. Since the
early 70s ontologies emerged as a prominent technology and was used in the field of
Computers and Al. The technology was required to store knowledge in a machine
readable format and to and process user queries. The charm of this technologiy was
that it was able to process the inserted information as well as deduce additional new
and unknown facts. Thus, the use in Al mainly reflects to an engineering artifact
describing a specific domain at hand by defining its list of concepts together with
their semantics including inference rules. An example for one of the first "semantic
representations" is SIR (Semantic Information Retrieval) [38]. In SIR, the sentences
represents entities and relationships among these entities. Traditionally semantic
applications deal in domain taxonomies rather than arbitrary relations with specific
semantic. Taxonomies are generally best understood in the form of trees. Such data
structures are typical known as frames, termed by Marvin Minsky [39]. There exist
a number of frame-based systems such as KL-ONE [40] that became the popular
choice of knowledge representation like description logic (DL). Most of the knowledge
representations DL is a subset of first-order logic. It highly supports reasoning and
reasonable number of inference algorithms to deduce additional knowledge. Figure
2.1 lists terms popularly known to different research communities for related con-
cepts of components of knowledge representations along with an informal description
from the perspective of machine learning. This abbreviated format over simplifies
and over generalizes most terms. However such simplification makes information
access much easier and manageable in many contexts.

2.1.2 Definition of Formal Ontologies

In the field of AI, an ontology is considered as an engineering artifact, that comprises
of a specific vocabulary which describes and represent a certain domain. In addition,
the artifact also includes a set of explicit facts regarding the intended semantics of
the world in the formal representation [41]. The term formal ontology is generally
used to differentiate the applications of ontologies in the field of AI from the science
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Term Description

individual. instance, | real world evidence or observation; measurable or
fact, statement, | countable concrete event or entity

ground(ed) atom

relation, predicate, | a relation between individuals (relation instance)
property, role OT CONCepts

TESOUTTE, individual, | instance of an entity class

object

domain, universe

set of possible entities that can be quantified

extension of a class

set of all instances of one class

ABox

set of observed instantiations (e.g., of entity
classes and relation classes)

concept, entity (class),
class, entity, type, cat-
egory

a grouping of objects .

interpretation, possible
world

valid and consistent concrete assignment of in-
stances to relations and concepts

vocabulary

set of terms naming concepts, individuals and re-
lations

schema, terminological
knowledge, concept
level, type level, TRox

vocabulary without individuals

taronamy

tree like hierarchy of classes; special case of on-
tologies where all relations have the same seman-
tic, namely the subsumption relation.

model

In the context of formal semantics a model is
an interpretation that satisfies a logical theory
(evaluates an interpretation to be true). When
working with probahilistic representations, e.g.,
in machine learming, model is used to refer to the
format how the data and the hypotheses are rep-
resented. Model 15 also commonly used in the
context of software engineering to describe data
representations or in databases where it defines
database model or database schema which is the
structure or format of a database.

Figure 2.1: Commonly used ontology terms.
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of philosophy. However, the field of computer science specifies to the term ontologies
as a knowledge representation of both non-formal or semi-formal knowledge bases.
It is important to note what do we mean by formal representation. The widely
accepted definition of formal is that the constructed ontology is expressed in a formal
language, that contains a set of terminologies (entities with a certain vocabulary), a
syntax (formal grammar) and formal semantics. These foundation elements makes
the knowledge representation precise and unambiguous, allowing for an automated
machine processing mechanism.

However, one can conclude that formal representation requires an ontology to be
computationally expressive.

There have been many attempts to define the ontology term in many different con-
text and domains. However, the most cited definition of ontologies in information
systems is:

"An ontology is an explicit specification of a conceptualization™ [42].

This definition encapsulates a generic and abstract conceptualization of the ontology
artifact. It emphasizes on a construction of an abstract model that describes certain
aspect of the world, represented in form of entities, properties and the relationships
between them [43]. Studer et al made some efforts to provide a more intuitive
explanation of this definition:

"An ontology is a formal, explicit specification of a shared conceptualization”.

Here, conceptualization means an abstract world view. Explicit means that the
model belongs to some aspect of the work and their intend is explicitly defined.
Formal represents that the ontology must be computationally expressive, have for-
mal semantics and should be machine-readable. Shared meaning the notion the
vocabulary captured in the ontology is agreed amonst different parties, that is, it is
not restrictive to any set of individuals, but mutually agreed by a group of experts.
Guarino [41] provides another intuitive definition:

"An ontology is a logical theory accounting for the intended meaning of a formal
vocabulary, i.e. its ontological commitment to a particular conceptualization of the
world. The intended models of a logical language using such a vocabulary are con-
strained by its ontological commitment. An ontology indirectly reflects this com-
mitment (and the underlying conceptualization) by approximating these intended
models. "

In addition, Guarino [41] provides a formal definition of the terms used (cmp. to
the informal definition in figure 2.1):

Formal vocabulary: V is an ontological vocabulary, i.e., a set of classes and
properties of ontology language .
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Figure 2.2: "The intended models of a logical language reflect its commitment to a
conceptualization. An ontology indirectly reflects this commitment (and the
underlying conceptualization) by approximating this set of intended models"
[41].

Conceptualization: "C =< DWW, R where C is a concept description, D is a set
of facts of a domain or database, WW are the possible worlds and R is the set of
conceptual relations on the domain space D,)V. Thus, a conceptualization is de-
fined by its intentional /conceptual relations instead of a domain space with ordinary
mathematical relations. Specifically the intentional relations are defined on possible
worlds W not generally on the domain D" [41].

Intentional / conceptual relations: "p is defined as a function from W to the
set of all relations on D. All conceptual relations of a possible world will contain
the admittable extensions of p".

Ontological commitment: " is a intensional interpretation of a conceptualiza-
tion C' known as Knowledge Base (KB). An interpretation is defined by assigning
elements of the set of conceptual relations R in C to predicate symbols of V" .

Intended models: "The set of all models of a given ontology language that
are compatible with K will be called the set of intended models. Models of are
extensional interpretations in the form of assignments of elements of D and R to V
. Intended models can be seen as the subset of models that are consistent with the
conceptualization".

Ontology: "O for a language approximates a conceptualization C' if there exists
an ontological commitment /C such that the intended models of according to K are
included in the models of O. In other words, an ontology for L is a set of axioms
designed in a way such that the set of its models approximates the set of intended
models of according to K". An illustration is shown in Figure 2.2.
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It is relevant that the detailed formal definition of [41] shows that foundational parts
of the ontology are defined as axioms and are used as an approximate reality of a
domain. An important characteristic of defining an ontology is the use of formal
semantics. This means that an appropriate ontology language must be chosen and
its purpose well-defined to represent a concrete set of specification capturing certain
aspect of the world.

Here, we would emphasize that using formal ontologies requires a well-defined formal
ontology language because it can support reasoning functionality. Without reason-
ing capabilities there is no advantage of any ontology languages in the context of
automated processing. Computers cannot support automated reasoning if the ma-
chine readable artifacts are not using formal representation. This notion must be
a deciding factor in choosing a right representation while formulating knowledge-
base. However, reasoning can be considered and choosen differently in different
phases of the ontology life cycle [44]. Now we present the use of reasoning capa-
bilities in different phases of the ontology. Firstly, it can be utilized in the design
phase i.e. conceptualization of an artifact. Ontology reasoning can be used to check
contradictions or unintended interpretations and consequences for a set of axioms,
like synonymous concepts or annotations, subsumption relationships etc. Secondly,
when different ontologies are aligned and integrated then it is important to compute
the integrated concept hierarchy and check for consistency. Third use of reason-
ing occurs during deployment phase of the ontology. For example, in determining
subsumption hierarchy of concepts for certain set of facts might be checked for con-
sistency with the corresponding ontology axioms. There exists a large number of
ontology languages for formal knowledge representation. The two most popular log-
ical formalisms for ontology languages are based on are First Order Logic (FOL) and
Description Logic (DL). FOL is more expressive and powerful than DL. However,
there is a trade-of between expressivity and complexity, making DI computation-
ally less demanding. The DL on the other hand provides a number of reasoning
services which allows easy construction of subsumption hierarchies and the checking
of consistency of the semantic descriptions. The DLs provides clear semantics which
makes it easier to encapsulate and use all the knowledge in form of an ontology and
to make it consistent and complete representation of the world.

By simplest definition, any formal language can be used to define formal semantics.
A formal ontology has a formal semantics if and only if it defines an entailment
relation precisely for a statement in a language that entails an unambiguous inter-
pretations of those statements. In very simple terms, a formal ontology has a formal
semantics only if it supports deductive inference. We will provide a detailed defi-
nition of formal semantics using the examples of an ontology language construct of
OWL DL in the following sections. For research purposes, formal semantics serves
as a backbone of the SW community. It allows for ontology sharing, fusion and
translation in an efficient way. However, we identify here some of the key factors
which ontologies need to fulfill to be applicable to the analytical framework.

1. The ontology must contain list of domain-specific terms defining that can be
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Figure 2.3: Expressivity and complexity of heavy-weight vs. light-weight ontologies and
existing datasets.

represented in form of concepts and properties of concepts as well as relations.
Furthermore, a domain of interest must be supported by instance data. In
addition, there must be a mechanism to determine the membership of instances
to concepts and relations. The DL term for that inference service is realization
of a certain class that an individual belongs to.

2. The ontology must define a logical theory that can be checked for consistency.
It must support tools that can be used to identify and compute any contra-
dictory facts in the model. In DL terminology, this is called an operation to
check the consistency of an ABox with respect to a TBox.

2.1.3 Existing Ontology Models

The dilemma of most adopted formal ontologies used in research or in industry is
that if they are highly expressive than they have small set of axioms and if they
are poorly expressive then they are large scale with huge set of axioms. Figure 2.3
visualizes the current status of existing ontology models.

Input and output in a formal representation is complex and unintuitive for an un-
informed user that can be potentially processed for automated reasoning. However,
it requires a large group of users to provide information in order to make a knowl-
edge base available for use. Another problem lies in the requirements imposed by
a large group of users to engineer an ontology which ultimately results in difficulty
to maintain reasonable level of consistency of a knowledge base. It is an important
observation that a representation of knowledge in a logical format can be extremely
difficult especially in cases where uncertainty, contradictions and rapid changes to
the semantic descriptions needs to be supported. Such requirement may arise as a
result of the way the data is being captured or integrated from distributed systems as
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Figure 2.4: Example of a typical RDF-graph.

well as potentially from sources with varying quality. Overlapping schemas, different
formats of same information an also result in such requirements. However, relaxing
the assumption and formulation of a consistent ontology can reduce the require-
ments on automated reasoning and the computational expressivity together. This
results in an inherent contradiction of an ontology being either formally expressive
or a large scale ontology model.

2.1.4 State-of-the-art of the Ontology Languages

The World Wide Web Consortium (W3C) is one of the prime international standards
organization for the WWW. Its main responsibility is to develops standards and
recommendations for the SW. In the following sections, we will discuss the main
ontology languages supported by the SW standards, that are, RDF, RDFS and
OWL.

In general, RDF constructs are useful in making statements about data itself whereas
RDFS supports schema formulations and subclass hierarchies, and OWL is widely
used to formulate additional background knowledge. In a very simplistic way, state-
ments in RDF, RDFS and OWL can all be represented as one combined directed
graph depicted in figure 2.4

A common semantics of these languages rely of languages constructs of RDFS and
OWL that support in defining domain-independent interpretations.

Ontologies in RDF(S)

The most recommended ontology language construct in the world of Semantic Web
is the resource description framework (RDF). It is mainly used to locate and express
information about web resources available on WWW (e.g, meta data/annotations).
However, it is also well-suited to describe all other forms of structured data, e.g.
data from legacy relational databases and applications. In the context of RDF,
each data resource is defined by using a unique identifier. This unique identifier
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is constructed using a uniform resource identifier, URI. Each statement in RDF is
of a triple form (subject, predicate, object). For example tim of a type Person,
tim has a full name Tim Miller is defined as a triple. A triple can be conceived
as a directed arc, labeled by the property (predicate) and directing from a subject
node to a property value node. The subject of any sentence is always a URI, the
property value is either also a URI or a literal (e.g, String, Boolean, Float). In
the first case, one can denotes a property as object property and a statement as
an object-to-object statement. In the latter case one defines a datatype property
corresponding to an object-to-literal statement. A complete knowledge base (triple
store) can then be represented as a directed graph, a semantic knowledge graph as in
figure 2.4. One can consider a triple as a tuple of a binary relation property (subject,
property values). A triple can only represent a binary relation involving a subject
and a property value. Each resource either a subject or an object can be associated
wit one or more resources (i.e., classes) by defining them as a type-property. On
the other hand, every concept can also be interpreted as a property value in a
type-of statement. Conversely, each and every concept or a resource represents all
instances belonging to a certain concept or its type. Concepts are defined in the
RDF vocabulary description language, RDF Schema known as (RDFS). Both, RDF
and RDFS formulate to a combined RDF/RDFS graph. By defining all concepts
in RDF language, the corresponding RDFS schema graph also contains additional
properties that have a predefined semantics, that implement some formal entailment
rules respectively.

Ontologies in OWL DL

As discussed in the previous section, RDF /RDF'S are mainly used as formal ontology
language to model resources with low expressivity. There is still a need of a more
expressive ontology language to model and represent complex knowledge structures
with formal semantics. In this section, we present a very popular ontology language
named OWL DL which is based on strong and well-defined description logic (DL).
DL constructs consists of classes and properties same as defined and used in case
of RDFS. However, in OWL DL these classes and properties can be presented and
structured in complex ways. It comprises of a subset of first-order logic, which
is considered more efficient and effective in case of decision making and problem
solving. Examples of facts expressed in OWL DL are:

e A person has exactly one date of birth.
e A person is either female or male.
e Persons that can drive a car, are not in the age group 0-16.
These complex statements are described by logical constructors. We will briefly

present these constructs in the following paragraph together with the formal seman-
tics of OWL DL.
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Constructor DL Syntax
intersectionOf Cyn..ndc,
unionOf iU udy
complementOf =
oneOf {01, ...,0,}
allValuesFrom YH.C
some ValuesFrom dR.C
value 1R.{o}
minCardinality =nh.C
maxCardinality < nR.C
cardinality =nR.C

Figure 2.5: DL Constructors.

OWL DL Syntax: "OWL DL is a language that provides a good balance between
expressivity and complexity of logical inferencing tasks. Ofcourse, it is less expres-
sive than first order logic but its inferencing mechanism is still computationally
acceptable and decidable. However, in practical sense OWL DL is considered more
expressive than RDFS. OWL DL does not align with some RDFS constructs and
thus its is clearly not a superset of RDFS family. The description logic equivalent
to OWL DL is called SHOIN(D). The basic foundational elements of OWL DL on-
tologies are classes C, properties R and individuals o. Here the properties are also
termed as roles in OWL DL. Person(tim) represents that an individual named tim
belongs to the class Person. The relation knows(tim, tom) is an abstract property.
Individuals are considered as constants in FOL, classes as unary predicates and roles
as binary predicates. Generally, OWL DL classes and concept constructs support in
defining complex sets of axioms or relations. A list of all logical constructors that
can be used in OWL DL are presented in figure 2.5" [45].

"The empty class is denoted as | = CM—C" and the class that contains all individuals
T = CMN=C. In RDFS, the range constraint are expressed by T C VR.C' whereas the
RDFS domain constraint is expressed as 3R T C C'. OWL DL supports a number
of additional axioms that are used to define restrictions on classes or concepts (see
Fig. 2.6 )" [45].

Semantic: Formal semantics of SHOIN(D) mainly comprises of definition of en-
tailment relation. Here, entailment relation is defined firstly by providing an inter-
pretation for individuals, classes and roles and secondly by providing interpretation
for axioms. "The interpretation of individuals, classes and roles is a function to ele-
ments of a particular domain D, respectively. Hereby, identifiers of individuals can
be assigned to elements of D, identifiers of classes to 2P and identifiers of roles to
2P x D. Here the formal interpretation of each item of the vocabulary and the inter-
pretations of its complex constructors are listed in Fig. 2.5. For instance, C'1 U C2
denotes the union U of all identifiers of the individuals of C' and D. Secondly, the
interpretation for every DL axiom (see Fig. 2.6) is determined. In this case, the
identifiers are not mapped to domain descriptions, but assignments of individuals
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Axiom DL Syntax
SubClassOf C, CC,
EquivalentClasses O = .= 0
SubPropertyOf R, C Ry,
Samelndividual 0] = ... =0y
DisjointClasses C; C ~C;
DifferentIndividuals 0; #F 05
inverse(f Hy = H;
Tran=itive RTCH
Symmetric R=R

Figure 2.6: DL Axioms.

are mapped to truth values. For instance C'(a) is interpreted as true if the individual
identified with a is element of class C' Or C; C () is considered true if each identifier
of an individual is member of C and C5. In order to determine a complete closure
to the definition of formal semantics of OWL DL, one is obliged to define the satisfi-
ability of the entailment relation. Given a SHOIN(D) Knowledge Base K in form of
a set of classes, properties, individual and axioms, we define an interpretation to be
a model of this IC if every axiom is assigned with a truth value. Now If such model
exists then this K is specified to be satisfiable" [45].

Reasoning with OWL DL

Reasoning is an important feature of using ontology languages. In this section, we
will present some inference tasks that are supported by reasoners using OWL DL
constructs. In addition, we will also discuss methods used to provide reasoning
services in SW application. Ontologies based on OWL DL language are formally
represented where truth values for assertions not present in ABOX can also be
computed. This means that such formalism can be used to ask user queries about
the concepts and instances together. The most generic decision problems are user
queries to the knowledge base are based on membership checking of individuals. The
more advanced queries solve for tasks like subsumption and concept consistency of
the knowledge base. In the following, we list and present most generic inference
tasks support by OWL DL:

Instance Membership: '"checks whether an instance a is member of a class C.
C'(a) can be entailed if X U —=C'(a) is unsatisfiable".

Realization: "is the retrieval of all instances that are members of a specific class.
It finds the most specific classes that an individual belongs to. Or, in other words,
computes the direct types for each of the individuals. Using the classification hier-
archy, it is also possible to get all the types for that individual".
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Subsumption: "is used to find out if C is a subclass of Cy. This is the case if
KU(C1NC2(a)) is unsatisfiable. Tt is used to compute the subclass relations between
every named class to create the complete class hierarchy. The class hierarchy is
essential to answer queries such as getting all or only the direct subclasses of a class.
There are similar problems that are focused on the TBox like checking if two classes
are equivalent or two classes are disjoint".

Concept Satisfiability: "checks whether a concept is meaningful or more precisely
if it is possible for a concept to have any instances. If class is unsatisfiable, then
defining an instance of the class will cause the whole ontology to be inconsistent”.

Consistency: "is the most essential inference task. To check whether a certain
KB is consistent, it needs to be decided if the K is not unsatisfiable. This ensures
that an ontology does not contain any contradictory facts. In DL terminology, this
is the operation to check the consistency of an ABox with respect to a TBox. All
problems listed can be reduced to the last task of IC consistency”.

The inference algorithm proposed in this thesis also uses domain X consistency
checks during the inference process. The standard inference algorithms checks the
unsatisfiability of a IC using tableaux algorithms. It tries to build a tree-like model,
the tableaux, by starting with an empty Tableaux and iteratively adds logical en-
tailments of the K. Tt terminates either when a contradiction occurs or no more
rules are applicable. If each branch in the tableaux contains a contradiction, there
is no model and the KB is considered to be inconsistent.

Querying

The most popular and recommended query language in the world of SW is SPARQL
(SPARQL Protocol and RDF Query Language). The SPARQL syntax is similar to
that of relational database query languages. It mainly comprises of a search template
which is a directed graph. Such graph may have variable nodes (such as a graph
pattern). The result of a SPARQL query can be retrieved in form of a list of binding
variables or in a form of an RDF-graph structure.

2.2 Ontology-based Data Access

With the recent advancement in SW, data access and retrieval is a prime application.
Ontology Based Data Access (OBDA) is one of the prominent approaches for such
applications in which an ontology is used to mediate between user queries and data
sources. The ontology provides a unified view of the world as well as a single
point of access. In addition, it also allows users to formulate queries using the
vocabulary of the conceptual model. This conceptual model provides an abstraction
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and hides away the complex implementation of the underlying database schemata.
In such a case, domain experts are able to express their information needs and
queries using their own domain terminologies without having any prior knowledge
about the way the data is captured and stored at the source and receive answers
in the same expressive domain language. In the OBDA setting, this ontological
concepts are connected to data columns by a set of mappings. These mappings are
declarative specifications that connects each ontological term with queries over the
underlying data. The magic of OBDA system is that once the mappings are in place,
it automatically translates ontological queries, i.e., SPARQL, into database queries,
i.e., SQL, and delegate execution of SQL queries to the database systems hosting
the data. Such system like OBDA is a natural fit to address industrial data access
challenges. In cases, when a complex database is presented to users via an ontology,
then it is easier for users to formulate queries in terms of classes and properties
in an object-centric fashion. Moreover, OBDA is a popularly known as a virtual
approach, where an abstract access layer lies on top of databases while leaving the
data in its original database. However, OBDA has potential to further improve data
access with a minimal change to existing data management infrastructure.

2.2.1 Definition of OBDA

Generally, an OBDA instance is defined as "a quadruple (D,V, O, M) where D is
an database, V is an ontological vocabulary, i.e., a set of classes and properties, O
is an ontology over V, i.e., a set of axioms expressed in a fragment of first-order
logic, and M is a set of mappings between D and V, i.e., assertions of the form:
P(f(z), f(y)) < SQL(x,y) or C(f(z)) < SQL(x) where C and P are class and
property names from V, SQL(z) and SQL(z,y) are SQL queries over D with one
and two output variables, and f is a function casting values returned by SQL into
URIs and values (e.g., strings, dates)" [27].

Here an ontological query ) expressed in terms of V over (D,V,0, M), where
the user can executes data queries over D where usually SQL queries occurs in
M., then the engine uses the computed answers to populate the extensions of the
corresponding classes and properties occurring in M, which ultimately constitutes
as a set of ontological facts A. Then, the last and final set of evaluation occurs
for the query @ over AU O. Since AU O is based on a logical theory, the query
answering mechanism, over this corresponds to logical reasoning and is defines into
a concrete and precise set of answers. Consequently, these answers are known as set
of tuple ¢ to the query @ over AUQ if Q(t) holds in every first-order model of OU.A
[23]. Sometimes the computation of A and precise answers, can be computationally
very expensive, with worst-case complexity depending on both ontology axioms and
the corresponding expressivity of the query language. In particular, work presented
in [23] shows that the computation is tractable in data complexity (i.e., in the size
of D) if following two conditions are met. Firstly if the ontological queries @ are
conjunctive (CQs) in nature. Secondly if the ontologies O are expressed in OWL
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Figure 2.7: Query processing in OBDA.

2 QL. However, computation and query answering mechanism to obtain precise
answers can be accomplished by implementing two step method of (i) rewriting and
(ii) unfolding as depicted in Figure 2.7.

The rewriting method considers ontological queries. It mainly constitutes the com-
pilation of relevant ontological information into the query (). Technically, it can be
considered as a resolution procedure used in Prolog language, and can be achieved
by a perfect reformulation algorithm [23|. Such resolution takes a conjunctive query
@ and an OWL 2 QL ontology O as input and returns another union of conjunctive
queries RQ). Computation of certain answers for RQ over A will eventually return
the same answers as for ) over A U O. During unfolding procedure, the inputs
R(@) and M are considered and R(Q) is translated into an SQL query U@ by mainly
substituting occurrences of classes and properties in R(Q) with the SQL queries that
they correspond and are mapped to in M. Evaluation of UQ over D will effectively
returns the certain answer computed by R(Q over A and thus by @ over AU O.

2.2.2 State-of-the-art OBDA Systems

In this section, we present the most important state-of-the-art OBDA systems and
their constructs [2]. A typical OBDA system investigates query answering over a
given ontology, implements and uses mappings to fetch the data from the original
data resources to the given ontology concepts. The main idea behind these system
is to reduce the demanding data access problems to a model checking problem over
the data sources, which in most cases are traditional relational databases. The main
focus of such reduction is also motivated by the demand to enable computationally
feasible reasoning services over large instance data sets i.e. ABoxes. Relatively, the
size of the TBox (and the queries) are much smaller as compared to the size of the
ABoxes. However, the ABox alone contributes to measure the computational feasi-
bility of the data set, thereby fixing all other parameters (TBox, query respectively).
In this context, we introduce a type of complexity is called data complexity. The
notion of reduction is popularly known as first order logic (FOL) rewritability, de-
tails of which are explained in the next paragraph. Here, it is important to note that
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the data complexity of answering first order logic queries w.r.t. DIL-Lite ontologies
is considered as a low Boolean circuits complexity class AC?, which is roughly the
class of problems that can be decided in constant time with the help of polynomially
many processors.

Ontologies in DL-Lite

DL-Lite Description logics [17] is one of the most prominent and adopted repre-
sentational language for ontologies. The reason for this is its formal semantics and
polynomial computational properties that can support various standard reasoning
services such as subsumption testing, satisfiability testing, query answering etc. As
introduced in the previous section, query answering serves as a foundational compo-
nent of any OBDA system and related to that is satisfiability testing of ontologies.
An ontology is defined as a pair O = (T, .A) that is fundamentally a TBox and an
ABox. In all DLs this pair is made up by subsets of a set of concept symbols N¢ , a
set of role symbols Ng, and a set of individual constant symbols /V;. Additional con-
stants (and predicates) with precise meanings over a given domain may also support
for DLs with concrete domains or datatypes. Different variants of DLs differ in the
set of concept/role constructors they offer and in the constraints for building TBox
and ABox axioms. Typically TBox axioms are concept subsumptions C' C D or role
subsumptions R C S whereas ABox axioms have the form C(a) or R(a,b), where C,
D stand for concept descriptions, R, S for role descriptions and a, b for individual
constants. In the context of an OBDA system, there exist a family of DLs called
DL-Lite |23] because it supports and allows for FOL rewritability. DL-Lite is a fam-
ily language for another very popular representational language known as the OWL
2 QL profile which is currently W3C recommended web ontology language (OWL).
FOL rewritability is a very strong property that is the sole reason for adoption at
industry and also a prominent research interest. Because of this lightweight logics
such as DL-Lite are used as representation language for the ontology. However, it
has its own limitations on the query language such as restrictions w.r.t unions of
conjunctive queries (UCQs). (But note, that the limits of expressivity under FOL
rewriting can be easily managed by extending family of Datalog language.) To make
the discussion more concrete we present the syntax of a DL-Lite language and its
semantics in Fig. 2.8.

The TBox axioms are additionally constrained by the language that functional roles
are not allowed to occur on the right hand side of role axioms. The semantics of
concept descriptions is defined recursively on the basis of an interpretation Z =
(A, %), which consists of a domain A and a denotation function -Z. The denotation
of concept symbols (atomic concepts) A are subsets AT C AZ of the domain; role
symbols P are denoted by binary relations P2 C A? x AT | and constants a are
denoted by elements of the domain a? € AL,

There is a modeling relation which is denoted by = and one defines that an inter-
pretation Z models or makes true an axiom axif fZ | ax. Any ontology is called
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(P7) = {(d.e) | (e,d) € P*}

R—s P| P~ (3R)T = {dec AT | 3e.(d,e) € BT}
B— A|3R (-t = AT\ o7
C — B|-B IEBCC iff BFCC
TBor:  BLC C,(func R), IER C Ry iff R C Ry
RiC Ry T |= B(a) iff a* € B®
ABoz:  Afa), R(a.b) T = R(a,b) iff (a®,b") € RT

T = (func R) iff Rfisa (partial) function

Figure 2.8: DIL-Lite language and its semantics.

satisfiable if there is an interpretation 7 that makes all axioms in the TBox and the
ABox true. An ontology O entails an axiom az, in short- O | azif f all models of
O are also models of ax.

Query Answering and Rewritability

Any first-order-logic query @ = ¢(x) is a first-order logic formula ¢(x) whose free
variables are the ones in the n-ary vector of variables x; the variables in x are
called distinguished variables. If x is empty, the query is called Boolean. Let a be
a vector of constants from the pair of the ontology. The semantics of n-ary FOL
queries with respect to an interpretation Z is given by the set Q* of n-ary tuples
t over the domain A? such that Ziz — t] = ¢(z) Here, Ziz — ¢ extends Z by
interpreting the variables in x by the elements in ¢. The precise set of answers w.r.t.
an ontology is managed by an certain answer semantics coming from the database
theory. We are not going to discuss the appropriateness of this kind of semantics but
just state its definition. (For an adequateness discussion of certain answer semantics
in particular w.r.t aggregation we refer the reader to [46]). At ontological level, FOL
queries are too complex to be used. Hence, in order to guarantee FOL rewritability,
we introduce two well known weaker subclasses of FOL queries that is conjunctive
queries (CQ) and unions of conjunctive queries (UCQ) which will be used in this
thesis.

Mapping

In any traditional OBDA system, the instance data / ABox is not given or mate-
rialized in advance but produced on-the-fly by using mappings [47] such as RDB
to RDF mappings. These mappings are formally presented as rules with two parts.
Part one are the queries of the ontological level that uses ontology concepts, called
as the target. This is the head of the rule (here the left-hand side). Part two are
the queries in the the data source language (in most cases SQL) and this serves as
the body of the rule, which is noted here always on the right-hand side. Now, we
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SENSOR(SID, CID, Sname, TID, descripticn)

SENSORTYPE(TID, Tname)

COMPONENT (CID, superCID, AID, Cname)

ASSEMBELY(AID, AName, ALocation)

MEASUREMENT (MID, MtimeStamp, SID, Mval)

MESSAGE(MesID, MesTimeStamp, MesAssemblyID,
catID, MesEventText)

CATEGORY (catID, catName)

Figure 2.9: Part of the relational schema in a measurement DB.

will present the definition of a mapping in a logical notation. A recent W3C recom-
mended mapping language in machine readable form is R2RML, a mapping language
from relational databases to RDF (http://www.w3.org/TR/r2rml/). As construct-
ing mappings is a non-trivial task, recent research considers also bootstrapping or
learning these mappings.

We exemplify a mapping for a sensor measurement scenario, assuming that there is
one central DB with sensor measurement data and also sensor descriptions w.r.t. the
DB schema in Fig. 2.9. The ontology is assumed to model sensors, measurements,
events etc. in the same manner as the nearly standard semantic sensor networks
(SSN) ontology, authored by the members of the W3C Sensor Network Incuba-
tor Group (see http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/.) It is
worth mentioning that any such general ontology can be reused and/or extended for
specific sensor measurement scenarios by introducing new names to the signature
of the ontology and adding new ontology axioms. Here, we assume that there is a
concept symbol Sens (for sensors) and an attribute symbol name. ABox assertions
saying which element is a sensor and what their names are, are produced by the
following mapping:

m : Sens(z) A name(x,y) <~ SELECT f(SID) as x, Sname as y
FROM SENSOR

Thus information is basically a row in the measurement table that is mapped to
unary facts (Sens(x)) and binary atomic facts (name(x, y)). If the table SENSOR
contains a row:

(123, comp4b, TC255, TempSens, Atemperaturesensor)

then the mapping produces the conjunction of ABox assertions Sens(f(123)) A
name(f(123), TempSens123).
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In the DI-Lite notation, these mappings have in general on their left-hand side
the conjunctive queries and on their right-hand side, data source specific queries
such as SQL. The mappings are logical and complete when all variables used on
the left-hand side occur as columns on the right-hand side. However, the source
query may contain additional variables. Here, the term f(SID) denotes an individual
constant, represented as a functional term indicating the value of the attribute SID
of the sensor. All expressions f(SID) could be mapped to the more convenient
atomic names of the form, e.g., si. If the ontology language allows for datatypes
as we assume here then we can use attribute values directly without the need of
an additional functional symbol. This is constructed above for the column Sname
containing strings. To ease the construction and management of mappings, they
can be split up into a simpler form where the target consist of an atomic query
only. Within the splitting the source query is projected to the variables occurring
in the atom; in the case of the query above the resulting split mappings would be
as follows:

ml : Sens(x) <~ SELECT f(SID) as x, FROM SENSOR
m2 : name(x,y) < SELECT f(SID) as x, Sname as y FROM SENSOR

For a given database D and a set of mappings M, the induced ABox A(M, D) is
just the union of the ABox assertions produced by the mappings in M over the D.
The semantics of query answering w.r.t. a set of mappings over a DB and a TBox
is just the certain answer semantics introduced above and applied to the ontology
(T, A(M,D)). Here, an important criteria for using such mappings in an OBDA
setting is that the induced ABox is not materialized i.e. transformed into graph
database, for query answering instead it is kept virtual. These queries over the
induced ABox are unfolded to queries over the DB on demand basis. Therefore, in
a traditional approach any UCQ over a TBox and the induced ABox of mappings
w.r.t. a DB is first rewritten into a FOL query, then this query is unfolded into
an SQL query over the DB (using these mappings) and then the unfolded query
is evaluated over the DB, given the set of answers to the original query. There
is no canonical way for unfolding a UCQ into a SQL query, and, indeed, different
strategies for unfolding a UCQ w.r.t DL-Lite ontologies are presented and applied
in the literature, e.g., as one strategy is introduced in [48, 49]. The common idea
of many strategies used in industry and presented in literature is to present the
mappings as logical rules and later use them for logical programming paradigm such
as resolution to get the unfolded query. Sometimes, the rewriting of queries may
even lead to an exponential blow-up, in such cases optimizations can be achieved
at different levels (rewriting, unfolding and mappings) that are crucial in case of
any OBDA system. Different optimization strategies are presented in [50, 51| and
implemented, e.g., ontop OBDA system (http://ontop.inf.unibz.it/).
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2.3 Semantically-defined Analytics Data Access

Recent efforts have been made to enrich and extend ontology models and lan-
guages with analytical and temporal constructs to meet the industrial requirements.
RuleML (Rule Markup Language) is used to implement some basic aggregation func-
tions. "RuleML is a rule language formulated in XML and primarily uses datalog
constructs. Datalog is a function-free fragment of Horn clausal logic". In principle,
RuleML allows the formulation of if-then-else types of rules. Here is important to
note that both RuleML and OWL DL are different subsets of first-order logic (FOL).
Another potential candidate to define analytics is SWRL (Semantic Web Rule Lan-
guage). It is a popular and simplest Semantic Web rule language, that combines
sub-languages of OWL (OWL DL and Lite) with those of the Rule Markup Lan-
guage (Unary/Binary Datalog). Datalog clauses are usually important for modelling
background knowledge in cases where DL might be inappropriate, for example in
many industrial applications with integrity constraints.

Authors in [52, 53] support for temporal operators in queries and ontologies. Still,
their approaches using temporal logics (e.g., LTL) are not adequate in cases where
sensor data are organized based on intervals, e.g. [0s; 10s]. Works in [1, 12] intro-
duce analytical operations directly into ontological rules in such a way that OBDA
scenario is preserved. They define analytical functions on concepts, e.g. avg C,
in OBDA setting. However, the authors do not consider temporal dimension of
the rules. As discussed above, our work is strongly related to the work on well-
studied Metric Temporal Logic [54]. In particular, we use a non-trivial extension of
nonrecursive Datalog language DatalogntMTL which suitable for OBDA scenario.
DatalogntMTL is introduced in [37] where the authors conduct a theoretical and ex-
perimental study investigating computational characteristics of the language. They
show how query answering over a program in DatalognrMTL can be rewritten into
the problem of query answering in SQL. In [55], they also describe how to leverage
DatalognrMTL in a full-fledged temporal OBDA system. Following similar princi-
ples, we define rewriting of our proposed language into SQL and show that such
rewriting performs reasonably well on sensor data. Another related direction is real-
time processing of signal data streams. In this direction, most of the work done so
far mainly focused on querying RDF stream data. Many different approaches such
as C-SPARQL [35], SPARQL stream [56] and CEQLS [57| have surfaced in recent
years, introducing SPARQL based query processors. Most of them, apart from C-
SPARQL, follow the Data Stream Management Systems (DSMSs) paradigm and do
not provide support for stream reasoning. EPSPARQL [58] combines SPARQL with
complex event processing features, and includes sequencing and simultaneity opera-
tors. Unlike the others, LARS [59] is an Answer Set Programming based framework,
which enables reasoning by compiling a Knowledge Base together with a SPARQL-
like query into a more expressive logic program. In the future, we plan to investigate
how to incorporate the real-time computation aspect into our framework.
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2.4 Summary and Discussion

The demand for industrial data analytics is exponentially growing, providing oppor-
tunities to researchers with substantial incentives. However, there exist a number of
challenges that must be taken into account when dealing with industrial data sets.
Most of these challenges can be clustered into two main areas of interest, i.e. data
and domain.

Data: Industrial data are very diverse and heterogeneous in the sense that they often
contain different formats, ill-formed semantics and complex data structures.
Moreover, analytical workflows are usually written using various programming
languages and composed of poorly-structured workflows. Such non-uniform
characteristics often affects the performance of traditional data analysis ap-
proaches.

Domain: Industrial systems are usually of interdisciplinary nature where experts
from various domains combine there expertise for problem-solving. Ap-
proaches to analysing data sets from a given use-case corpus, are therefore
required to adapt to the domain and semantics of the data set in that cor-
pus. As discussed earlier, this is because the intent of the data analysis often
changes with respect to their context in a given use-case scenario.

The above challenges demands for developing semantic-aware analysis approaches
that happen to be more adhesive to the diverse and sparse nature of data and more
flexible in adapting to newer domains and features of data analytics.

In this chapter, we introduced the fundamentals of semantic technology and dis-
cussed the key components of existing ontology languages. These component are
the foundation and govern the rules by which we have constructed our semantic
language for analytics. Furthermore, we presented the ingredients of traditional
ontology-based data access that is an essential part of our solution. We also discussed
the building blocks of OBDA systems and highlight its research challenges. Lastly,
we presented and reviewed the latest development in the area of analytics-aware
OBDA technology which still lacks inclusion of analytical and temporal operators
into a single semantic framework and flexibility to cater complexity, interoperability
and data challenges.

In the following chapters we present our results and details our proposed solutions

addressing each of our research question, along with our evaluation sets that measure
the efficiency of our proposed models, language and system as a whole.
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3 Ontology Models for
Domain-specific and
Analytics-aware Semantics

In this chapter we present the use of ontology models to represent domain-specific
models for industrial applications and extract analytical aware semantics to de-
velop analytical ontology. The representation of industrial information models
and standards using ontologies has been widely acknowledged as a non-trivial task
[60, 61, 62, 63, 64]. However, we present a new approach that entails the semantics
of large and complex technical systems and to find synergies with their underpin-
ning models in applications. Their design has been driven towards fulfilling the same
purposes as the models they originate from, that is, to act as schema-level templates
for data generation and exchange, and to enable the formulation and execution of
analytical queries. Our conclusion is that semantic machine-readable models that
considers domain-specific and analytics aware semantics produce, in most cases, a
higher performance w.r.t data access and integration as compared to those that
merely rely on static models or standards.

The material in this chapter has been published in |65, 66, 67, 68, 69, 70].

3.1 Introduction

Software systems in the industries have become increasingly important in recent
years. Production machines, such as assembly line robots or industrial turbines, are
equipped with and controlled by complex and costly pieces of software, according
to a recent survey, over 40% of the total production cost of such machines is due to
software development and the trend is for this number only to continue growing |71].
Additionally, many critical tasks within business, engineering, and production de-
partments (e.g., control of production processes, resource allocation, reporting, busi-
ness decision making) have also become increasingly dependent on complex software
systems. Recent global initiatives such as Industry 4.0 [72, 73, 74, 75| aim at the de-
velopment of smart factories based on fully computerised, software-driven, automa-
tion of production processes and enterprise-wide integration of software components.
In smart factories, software systems monitor and control physical processes, effec-
tively communicate and cooperate with each other as well as with humans, and are
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in charge of making decentralised decisions. The success of such ambitious initiatives
relies on the seamless (re)development and integration of software components and
services. This poses major challenges to an industry where software systems have
historically been developed independently from each other. There has been a great
deal of research in recent years investigating key aspects of software development
in industrial manufacturing domains, including life-cycle costs, dependability, com-
patibility, integration, and performance (e.g., see |76] for a survey). This research
has highlighted the need for enterprise-wide information models that are machine
readable conceptualisations describing the functionality of and information flow be-
tween different assets in a plant, such as equipment and production processes. The
development information models based on ISA and IEC standards has now become
a common practice in modern companies [77]. In practice, however, many types
of models co-exist, and applications typically access data from different kinds of
machines and processes designed according to different models. These information
models have been independently developed in different (often incompatible) formats
using different types of proprietary software, furthermore, they may not come with a
well-defined semantics, and their specification can be ambiguous. As a result, model
development, maintenance, and integration, as well as data exchange and sharing
pose major challenges in practice.

Adoption of semantic technologies has been a recent development in many large
companies such as IBM [78], the oil and gas company Statoil [27], and Siemens
[79, 80, 12, 81]. An important application of these technologies has been the for-
malisation of information models using OWL 2 ontologies and the use of RDF
for storing application data. OWL 2 provides a rich and flexible modelling lan-
guage that seems well-suited for describing industrial information models: it not
only comes with an unambiguous, standardised, semantics, but also with a wide
range of tools that can be used to develop, validate, integrate, and reason with
such models. In turn, RDF data can not only be seamlessly accessed and ex-
changed, but also stored directly in highly scalable RDF triple stores and ef-
fectively queried in conjunction with the available ontologies. Moreover, legacy
and other data that must remain in its original format and cannot be trans-
formed into RDF can be virtualised as RDF using domain-specific ontologies fol-
lowing the Ontology-Based Data Access (OBDA) approach. Domain-specific on-
tologies such as SSN (https://www.w3.org/2005/Incubator/ssn/ssnx/ssn), QUDT
(http://www.qudt.org/qudt/owl/1.0.0/qudt.owl), Formal Ontology [41] have previ-
ously been developed to capture some aspects of technical systems. For example,
SSN only describes the capabilities of sensors, measurement processes, and result-
ing observations. Closer to our work is the upper ontology based on ISO 15926
[82]. However, it entails slightly loose definitions that can hamper its applicabil-
ity for a specific domain use-case and fails to model the deployment, configuration,
operational and analytical functional aspects of the industrial system.

In this chapter, we investigate extracting and using the domain-specific and analyt-
ical semantics of technical systems on industrial data, aiming mainly at addressing
the above limitations of traditional semantic and non-semantic-based approaches
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and consequently improving their data analysis performances. The research ques-
tion we aim to address in this chapter is:

[RQ1]Can domain-specific and analytical-aware ontology models for in-
dustrial equipment enhance data analysis performance?

In order to address this research question, we propose a generic technical system
ontology model called TechOnto, that integrates the existing models for sensor net-
works and quantity-related attributes and extends them with important concepts
of technical systems such as deployment, functions, configuration, analytical pro-
cesses and so forth. The ontology adopts a modular approach to enable sharing of
knowledge and integrating information across the industries for multiple use-cases.
Domain experts may extend the domain model by linking to their own ontologies,
or existing knowledge bases. In our discussion, we stress the modelling choices made
when formalising these models as ontologies and identify the key OWL constructs
required in this setting. Our analysis revealed the need for integrity constraints for
data validation [83, 84|, which are not available in OWL 2. Hence, we discuss in
detail what kinds of constraints are needed in industrial use cases in general and
how to incorporate them. We then illustrate the use of reasoning services, such as
concept satisfiability, data constraint validation, and query answering for addressing
application requirements.

Our proposed ontology model is currently being maintained and used in industry
(i.e. at Siemens Power Generation business). In order to widen the scope of ap-
plication of semantic technologies in the company it is crucial to make ontology
development accessible to teams of engineers. To this end, we have developed the
Semantic Ontology Model Manager (SOMM) a tool that has been designed to ful-
fil industrial requirements and which supports engineers with little background on
semantic technologies in the creation and use of ontologies.

The rest of the chapter is organized as follows: In Section 3.1 we discuss the back-
ground and motivation of the proposed ontology, Section 3.2 discuss the methodology
and modelling choices underpinning the design of the model and identify a fragment
of OWL 2 QL that is sufficient to capture the basic aspects of the information
models. Our analysis of the model, however, also revealed the need to incorporate
database integrity constraints for data validation, which are not supported in OWL
2. Thus, we also discuss the kinds of constraints that are relevant to data analysis
tasks. We present how the OWL 2 QL axioms and integrity constraints can be cap-
tured by means of rules with stratified negation for the purpose of data validation
and query answering. In Section 3.3 describes the upper ontology in more detail and
highlight its design constructs and modules for knowledge representation and data
analytics. In Section 3.4, we describe the developed tool - SOMM that provides a
simple interface for ontology development and enables the introduction of instance
data via automatically generated forms that are driven by our TechOnto ontology.
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Background and Motivation

A technical system refers to a system (or a network of systems) with a high de-
gree of complexity embedded within a larger infrastructure [85]. Various kinds of
systems such as turbine systems, rail systems, manufacturing systems, smart grids
are recognized as important artifacts of modern technology. They are functionally
integrated into the process of industrialization and economic growth. The focus of
today’s information technology is to analyze the development and function of these
technical systems to enhance management, quality control and intelligent decision
making.

Industries today have adopted a common strategy of "Monitor, Assess, Predict and
Optimize" to serve their purpose [13|[4]. This means that at first, solutions must
monitor the feature of interest and observe related data properties and processes of
the system or component. Secondly, a solution within a system reasons about its cur-
rent state based on the information model and observation data. Third, it predicts
the future health states based on current assessment and finally infers actionable
information to optimize the life cycle cost of the monitored system or component
versus the owners desired value driver such as uptime. These solutions utilize the
power of information and expert knowledge to provide reliable results. But even
today they are split over many different models, software solutions, and processes.
This heterogeneity and complexity of information systems makes it difficult for sys-
tem stakeholders to share, exchange, trace and sustain relevant information. In this
context, recent studies [10] have highlighted the need of an industry-wide knowledge
representation approach. This means that these information models should be a
machine-readable specification of the technical artifacts and represent key concepts
by means of their set of properties, relationships, rules, and constraints. To this
end, the aim of modern data management and modelling approaches is to capture
different facets of the system development life cycle and changing requirements. For
example, the quantities and properties of a component, its design related meta-data
or different operating modes of sensor device together with its measurements.

A gap has developed between system complexity and the users ability to model
information that the system provides. To bridge this gap, a common specification
for 1) domain-centric knowledge and 2) data-centric knowledge (e.g. information
entities, protocols, data formats, frameworks, and architectures) needs to be de-
veloped. There is a need to share knowledge and integrate a rich diversity of the
generic and specific domains, machines and software agents to enable automation
and intelligent decision making. Consequently, these entities must be equipped with
specification on how to interact with and understand the semantics of the exchanged
information.

However, modelling technical systems in a modular way is not a trivial task. Com-
prehensive study of the literature as presented in Chapter 2 and interviews and
sessions conducted with domain experts from different domains of turbo-machinery,



3.1 Introduction

mobility, manufacturing and smart grid units highlight the need to develop a com-
mon model and to find synergies between a variety of existing models within an
industry and outside in order to promote knowledge sharing and ease of information
exchange to accomplish efficient analytics. In the following, we explicitly specify our
motivation of developing an domain ontology model - TechOnto for technical sys-
tems. More specifically, we discuss the background of investigating ontology based
large technical system, highlighting the key problems which could be addressed by
such a modular approach, and potential solution space.

1. An application dependent specification and a localized storage of the concepts
related to any technical system’s equipment and life-cycle processes severely
limits the scalability. For such an architecture, a semantic model may be
reused for logical system design, diagnosis of anomalies, maintenance planning
of components etc. across a wide range of industrial assets. As opposed to the
industrial standards (e.g. ISO 15926 [82]) that either define the physical side
of the system or process side of the system (as in ISO/IEC 15288).

2. Data resources (DB models, logs, sensor data, texts, pictures) are typically
treated in isolated platforms leading to isolated non-actionable knowledge. A
semantic model may provide an ontological foundation for the various types
of equipment models, their deployment profiles, design configurations, com-
ponent hierarchies, part-whole relationships, functional profiles and logical
bindings to other functional profiles. Likewise, state-of-the-art systems re-
quire manual intervention of the expert and collaboration with I'T personnel
to access available resources. The model may be used to provide access and
a consistent view across industrial data resources already available in product
design, engineering, operation, and service processes.

3. One of the key operational limitations of the existing methods is that the
applications such as analytics or decision support lack the understanding of
the system structure, e.g. where a sensor is installed, what data points it
provides, and what physical quantity it measures. Semantic meta-data resolves
such issues to a large extent.

4. Scalability is another issue for current systems. Analysis and adaptation are
severely complicated when an existing system is extended by a new device
or the configuration is changed, owing to a fixed and overloaded number of
standards. A model-based approach may flexibly use logic-based reasoning to
cater new system extensions and revisions.

5. The use of reasoning services [84], such as concept satisfiability, data constraint
validation, and query answering is difficult because solution consist of isolated
parts, which may be addressed by a unified model for various industrial au-

tomation applications including big-data solutions.

6. Furthermore, complex query pose limitations on the usability of advanced
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technologies. A model may provide a schema for constructing and executing
complex queries [84]. For example, a monitoring task that requires sensor
measurements along with the configuration of a component within a platform.
This may even lead to essential information sharing within the technical staff

and promote knowledge sharing.

7. Finally, todays systems have restrictive capabilities to support fault detection,
diagnosis [13], etc., typically requiring equipment know-how to explain the
underlying process. Furthermore, during maintenance and service operation,
technicians can only make decisions based on experience or local knowledge:

A semantic model helps solve these problems.

In summary, as opposed to the state-of-the-art, the above-mentioned problems moti-
vate that the model needs to be more than a static file with the controlled vocabulary
of the desired system. Specifically, from usability perspective, the ontology solution

framework should at least be:

e defined by general-purpose terms of the technical system in a modular fashion

so that more specific classes and relations can be defined.

e acted upon as schema-less templates for data access, integration, and interop-
erability, and to enable the formulation and execution of queries.

e supportive of modifications, collaborative development, and an interactive

model management [67].

e available online and support web-services, interfaces (such as REST API) uti-

lized by different users and applications.

e cxtensible for future use cases based on commercial analytical and report-
ing solutions e.g. KNIME (https://www.knime.org/) workflows, Spotfire

(http://spotfire.tibco.com/) Reports.

Hence we propose that the application of the semantic models provides a machine-
readable format including other formats such as XML. It furthermore elaborates on
contextual reasoning capabilities, where experts can retrieve and explore contextual
information relevant (semantically similar) to their task at hand e.g. for diagnosis,

control, and optimization.

3.2 Methodology

In this section, we first present the knowledge representation(KR) methodology and

modelling approaches used in our work.
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3.2.1 Ontology Development Methodology

We used customised NeOn framework to develop our TechOnto ontology [86]. NeOn
framework provides nine different scenarios comprising of 59 activities. The NeOn
core scenario lists each ontology development process separately. The execution of
each scenario relates to various phases of the underlying life cycle model. There
are two life cycle models included in the framework. First one is waterfall model
which consist of variable number of phases that may depend on the scenarios to
be executed. Secondly, an iterative and incremental model where a sequence of
waterfall models can be supported. Each model here can belong to a different set
of scenario. The framework stores scenarios and activities in a glossary of terms,
aiming to give commonly accepted definitions for certain activities. Each activity
has a set of comprehensive descriptions consisting of functional descriptions (e.g.,
definition, goals, and input/output). The technical system ontology as presented in
this thesis is the result of a number of iterations of the overall ontology engineering
process, which is based on an iterative and incremental life cycle model. So far, both
the NeOn core scenario and the NeOn scenario for the reuse of ontological resources
have been used as part of the thesis. In addition to this, we also adapted some of the
NeOn activities to meet our requirements therein keeping the engineering process
as lightweight as possible. In the following, subsequently performed activities are
described in more detail in the order of their execution.

Knowledge Acquisition: We employ different activitites during the knowledge
acquisition phase. Firstly, we gathered domain descriptions, their structures and in-
stances from the domain experts. Secondly, we employ ontology learning approaches
to automatically derive data descriptions from the unstructured, semi-structured and
structured data sources. Within the technical system ontology engineering process,
the ontology population activity is not performed during the ontology design phase,
as it solely contains domain-specific conceptual knowledge.

Ontology Requirements Specification: The main challenge during the specifica-
tion activity was to identify a set of appropriate competency questions (CQs). These
questions help to describe the requirements set by the domain experts in a system-
atic way. In general, our focus here is to set requirements neccessary for accessing
external data sources and data analytics tasks. The summary of the requirement
specifications are already discussed in details in the previous section, which serves
also as a motivation of the work in this chapter.

Ontology Conceptualization: It is suggested by the NeOn framework to create
a conceptual representation of the domain in order to align the requirements lied
down by the domain expert. This was achieved by listing the terms obtained during
our discussions with the experts along with the documentation of their respective
semantic meanings. This domain representation was iteratively enhanced until we
reached a semi-formal, graphical model description of the intended ontology. Here
we also considered third party ontology models that are available online and checked
them against the given data sources. This activity helped us in improving the quality
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of the model and reuse existing standard ontology models and engineering concepts
as proposed by the NeOn framework [86]).

Ontology Reuse and Aligning: Existing (non-)ontological resources are used
for the development of the TechOnto ontology. These resources encompass indus-
trial data collected from different industrial applications mainly Siemens power gen-
eration, mobility and smart grid businesses, details can be found in Chapter 6.
Moreover, existing relevant domain ontologies are identified and evaluated for their
suitability in the context of TechOnto. In this context, the TechOnto ontology reuses
for example, Sensor Network Ontology and QUDT ontologies to align the desired
domain concepts and reuse their semantic model descriptions as much as possible.

Ontology Implementation: During this activity, we implemented the obtained
conceptual model using OWL 2 QL. In addition to this, OWL 2 QL had to be
extended to include complex constraints posed by the domain specifications. Such
modelling challenges and approaches are presented in the following section. Due to
a large number of considerations, the implementation process is supported by our
in-house developed model manager. Model manager specifications are discussed also
discussed in the following sections.

Ontology Annotation: In order to make our model readable across multiple indus-
trial experts as well as across the equipment lifecycle, we provided various annota-
tions satisfying each user context. In addition to general information (e.g., the ontol-
ogy version), concepts and properties are supported using rdfs:label, rdfs:comment
as well as domain specific labels.

Ontology Evaluation: Before the ontology was published, ontology evaluation is
performed. First the ontology was evaluated against the requirements listed during
the specification activity. Then, with use of HermiT [86] reasoner, we ensured both
the consistency and general quality of our ontology models. Details on ontology
evaluation and different metrics are presented in Chapter 7.

Ontology Documentation: Documentation is an important aspect of the over-
all ontology engineering methodology. Design decisions and code fragments must
be properly registered in order to support transparency and furture extensions.
TechOnto ontology is implemented in OWL 2 in order to be machine-processable
and compatible for OBDA system. Thus, the OWL ontology constitutes the fol-
lowing: (i) classes as sets of individuals, (ii) individuals as instances of classes (i.e.,
real-world objects in the domain) and (iii) properties as binary relations between in-
dividuals. It also defines where possible cardinality restrictions such as domain and
ranges as well as other constructs (e.g., taxonomies) to support reasoning services.
The corresponding TechOnto ontology was modelled using the open-source ontology
editor Protege [87] which is one of the most common tools for ontology development.
To incorporate further contraints that were not supported by the standard tool, we
implemented and used our in-house developed model manager (SOMM).
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3.2.2 Modelling Approach

In the context of ontology formalisms, we consider the most recent and prominent
variant OWL 2 QL axioms in combination with integrity constraints. This is be-
cause the standard OWL 2 QL axioms |83, 84| support subsumption hierarchies
of classes and properties, transitivity, inverse properties, universal restrictions, car-
dinality restrictions of relationships and more. Our study of the requirements of
information models revealed that many key aspects of information models natu-
rally correspond to integrity constraints and hence cannot be captured by standard
OWL 2 ontologies. This demonstrates intrinsic limitations of OWL 2 for industrial
modelling and gives a clear evidence of why constraints are essential for such mod-
elling. We propose the use of OWL 2 QL with integrity constraints to be sufficient
for capturing the conceptual design of the technical system with scalable reasoning,
greater expressibility, and efficient query answering. From the design point of view,
our major consideration was to support modularity, such that the classes can be
easily extended and integrated with more specific domain ontologies.

Modelling with Standard OWL 2 QL Axioms

From an ontological point of view, most building blocks of the the typical industrial
information models are rather standard in conceptual design and naturally corre-
spond to OWL 2 classes (e.g., Turbine, Process, Product), object properties (e.g.,
hasPart, hasFunction, locatedIn) and data properties (e.g., ID, hasRotorSpeed).

The specification of the models suggests the arrangement of classes and properties
according to subsumption hierarchies, which represent the skeleton of the model and
establish the basic relationships between their components. For instance, in the en-
ergy plant model a Turbine is specified as a kind of Equipment, whereas hasRotorSpeed
is seen as a more specific relation than hasSpeed. The models also suggest that
certain properties must be declared as transitive, such as hasPart, hasSpeed and
locatedIn. Similarly, certain properties are naturally seen as inverse of each other
(e.g., hasPart and partOf). These requirements are easily modelled in OWL 2 using
the following axioms written in functional-style syntax:

SubClassOf (Turbine Equipment) (3.1)
SubDataPropertyOf (hasRotorSpeed hasSpeed) (3.2)
TransitiveObjectProperty(hasPart) (3.3)
InverseObjectProperties(hasPart partOf) (3.4)

These axioms can be readily exploited by reasoners to support query answering; e.g.,
when asking for all equipment with a rotor, one would expect to see all turbines that
contain a rotor as a part (either directly or indirectly).

Additionally, the models describe optional relationships between entities. In the
manufacturing model certain materials are optional to certain processes, i.e., they
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are compatible with the process but they are not always required. Similarly, certain
processes can optionally be followed by other processes ( e.g., conveying may be
followed by packaging). Universal (i.e., AllValuesFrom) restrictions are well-suited
for attaching an optional property to a class. For instance, the axiom

SubClassOf (Conveying
ObjectAllValuesFrom(followedBy Packaging)) (3.5)

states that only packaging processes can follow conveying processes; that is, a con-
veying process can be either terminal (i.e., not followed by any other process) or it
is followed by a packaging process. As a result, when introducing a new conveying
process we are not forced to provide a follow-up process, but if we do so it must be
an instance of Packaging.

All the aforementioned types of axioms are included in the OWL 2 QL profile. This
has many practical advantages for reasoning since OWL 2 QL is amenable to efficient
implementation using rule-based technologies.

Modelling with Constraint Axioms

The main challenge that we encountered was to capture the constraints of the models
using ontological axioms. We next describe how this was accomplished using a
combination of OWL 2 QL axioms and integrity constraints.

In addition to optional relationships, the information models also describe rela-
tionships that are inherently mandatory, e.g., when introducing a new turbine, the
energy model requires that we also provide its rotors.

This behaviour is naturally captured by an integrity constraint: whenever a tur-
bine is added and its rotors are not provided, the application should flag an error.
Integrity constraints are not supported in OWL 2; for instance, the axiom

SubClassOf (Turbine
ObjectSomeValuesFrom(hasPart Rotor)) (3.6)

states that every turbine must contain a rotor as a part; such rotor, however, can
be possibly unknown or unspecified.

The information models also impose cardinality restrictions on relationships. For
instance, each double rotor turbine in the energy plant model is specified as having
exactly two rotors. This can be modelled in OWL 2 using the axioms

SubClassOf (TwoRotor Turbine

ObjectMinCardinality(2 hasPart Rotor)) (3.7)
SubClassOf (TwoRotorTurbine
ObjectMaxCardinality(2 hasPart Rotor)) (3.8)
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Such cardinality restrictions are interpreted as integrity constraints in many appli-
cations: when introducing a specific double rotor turbine, the model requires that
we also provide its two rotors. The semantics of axioms (3.7) and (3.8) is not well-
suited for this purpose: on the one hand, (3.7) does not enforce a double rotor
turbine to explicitly contain any rotors at all; on the other hand, if more than two
rotors are provided, then (3.8) non-deterministically enforces at least two of them
to be equal.

There have been several proposals to extend OWL 2 with integrity constraints [83,
84]. In these approaches, the ontology developer explicitly designates a subset of the
OWL 2 axioms as constraints. Similarly to constraints in databases, these axioms
are used as checks over the given data and do not participate in query answering once
the data has been validated. The specifics of how this is accomplished semantically
differ amongst each of the proposals; however, all approaches largely coincide if the
standard axioms are in OWL 2 QL.

Data Validation and Query Answering

Our approach to data validation and query answering follows the standard ap-
proaches in the literature [88, 84]: given a query @, dataset D, and OWL 2 ontology
O counsisting of a set R of standard OWL 2 QL axioms and a set p of axioms marked
as constraints, we proceed according to Steps 1-4 given next.

1. Translate the standard axioms R into a Datalog program Ilz using the well-
known correspondence between OWL 2 QL and Datalog.

2. Translate the integrity constraints p into a Datalog program II, with stratified
negation-as-failure containing a distinguished binary predicate Violation for
recording the individuals and axioms involved in a constraint violation.

3. Retrieve and flag all integrity constraint violations. This can be done by
computing the extension of the Violation predicate.

4. If no constraints are violated, answer the user’s query () using the query an-
swering facilities provided by the reasoner.

Steps 3 and 4 can be implemented on top of RDF triple stores with support for OWL
2 QL and stratified negation (e.g., [89]), as well as on top of generic rule inference
systems (e.g., [90]). In the remainder of this Section we illustrate Steps 1 and 2,
where standard axioms and constraints are translated into rules.

Standard Axioms: Table 3.1 provides the standard OWL 2 QL axioms needed
to capture the information models of Section and their translation into negation-free
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OWL 2 Axiom Datalog Rules
SubClassOf(A B) B(z) < A(x)
SubPropertyOf (P, P,) Py(z,y) < Pi(x,y)
TransitiveObjectProperty(P) P(z,2) « P(x,y) A P(y, 2)

InverseObjectProperties( Py, P,)
Pz(y,$> A Pl(xvy) and
Pl(y7x> — PQ(x7y>

SubClassOf (A AllValuesFrom(P B)) B(y) « P(z,y) AN A(x)

Table 3.1: OWL 2 QL axioms as rules. All entities mentioned in the axioms are named.
By abuse of notation, we use SubPropertyOf and AllValuesFrom to refer to
both their Object and Data versions in functional syntax.

rules. In particular, the axioms (3.1)—(3.5) are equivalent to the following rules:

Equipment(z) <— Turbine(x) (3.9)
hasSpeed(z,y) + hasRotorSpeed(zx, y) (3.10)
hasPart(x, z) < hasPart(x, y) A hasPart(y, z) (3.11)
Packaging(y) < Conveying(z) A followedBy(z, y) (3.12)

Constraint Axioms: Table 3.2 provides the constraint axioms required to capture
the models of Section 3.3 together with their translation into rules with negation.
Our translation assigns a unique id to each individual axiom marked as an integrity
constraint in the ontology, and it introduces predicates not occurring in the ontology
in the heads of all rules. Constraint violations are recorded using the fresh predicate
Violation relating individuals to constraint axiom ids.

The constraint (3.6) from Section 3.2.2 is captured by the rules:

hasPart _Rotor(z) < hasPart(x,y) A Rotor(y) (3.13)
Violation(z, &) <~ Turbine(x) A not hasPart_ Rotor(x) (3.14)

Rule (3.13) identifies all individuals with a rotor as a part, and stores them as
instances of the auxiliary predicate hasPart_Rotor. In turn, Rule (3.14) identifies
all turbines that are not known to be instances of hasPart Rotor (i.e., those with no
known rotor as a part) and links them to the constraint « they violate.

Integrity constraints based on cardinalities require the use of the OWL 2 equality



3.3 Ontology Descriptions (TechOnto)

predicate For instance, the constraint axiom (3.7) from Section 3.2.2, to which we
assign the id (4, is translated into the following rules:

hasPart_2_Rotor(x) < /\ (hasPart(z, y;) A Rotor(y;))
1<i<2
A (not sameAs(y1,y2)),
Violation(z, $1) < TwoRotorTurbine(z)
A not hasPart 2 Rotor(x).

The first rule infers an instance of the auxiliary predicate hasPart 2 Rotor if it
is connected to two instances of Rotor that are not known to be equal; in turn,
the second rule infers that all instances of TwoRotorTurbine that are not known
to be instances of the auxiliary predicate violate the constraint (3.7). Similarly,
axiom (3.8), to which we assign the id (s, is translated as follows:

hasPart_3_ Rotor(z) < /\ (hasPart(z, y;) A Rotor(y;))

1<i<3
A /\ (not sameAs(y;,y;)),
1<i<j<3
Violation(z, 3) <— TwoRotor Turbine(z)
A hasPart_3_Rotor(z).

Analogously to the previous case, the first rule infers that an individual is an instance
of hasPart 3 Rotor if it is connected to three instances of Rotor that are not known
to be equal; in turn, the second rule infers that every such individual that is also an
instance of TwoRotorTurbine violates the constraint axiom (3.8).

To conclude this section, we note that our translation in Table 3.2 yields a stratified
program for any set R of constraints. We can always define a stratification where
the lowest stratum consists of the predicates in R and the intermediate stratum
contains all predicates of the form R B, R _n_B, and R_n, and the uppermost
stratum contains the special Violation predicate.

3.3 Ontology Descriptions (TechOnto)

Our technical system ontology is built upon systematic concepts generalizable for
any complex system of any scale and provides a rationale for delineating technolog-
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OWL Axiom Datalog rules

SubClassOf
(A SomeValuesFrom(R B)) R_B(z) < R(x,y) A B(y) and

Violation(z, ) < A(x) A not R_B(z)

SubClassOf
(A HasValue(R b)) Violation(z, ) < A(z) A not R(x,b)
FunctionalProperty(R) R_2(z) < R(z,y1) N R(z,y2) A
not sameAs(y1,ys)
and Violation(z,a) < R_2(x)
SubClassOf
(A MaxCardinality(n RB)) R_B(z)+ N\ (R(z,y:)AB(y))
1<i<n+1
/\ (not sameAs(y;,y;))
1<i<j<n+1
and Violation(x,a) < A(z) N R_B(x)
SubClassOf
(A MinCardinality(n R B))  R_n_B(z) + N (R(z,4:) A B(y:))

1<i<n

/\ (not sameAs(y;, y;))

1<i<j<n

and Violation(z,a) < A(z) A not R_n_B(x)

Table 3.2: Constraints axioms as rules. All entities are named, n > 1, and « is the
unique id for the given constraint. SomeValuesFrom, HasValue, Functional-
Property, MazxCardinality and MinCardinality denote both their Object and
Data versions.

ical systems from other social systems, small or large. Usually, technical structures
are coherent and comprise interacting and interconnected components. Primarily it
can be viewed as a hierarchy of systems where each system is a large, complex, cus-
tomized and engineered-intensive product of its own kind to meet the requirements
of its customer.

To capture the semantic of such systems for data access and analytics task, many
ontologies exist, but not all of them are suitable for reuse. Here a critical knowledge
engineering task is to select the representative reference ontologies that are generic
enough to unify different domain context and scope. This thesis builds reference on-
tologies that are adopted for the cross-industry domain of managing data integration
and analytics.

Figure 3.1 shows the core reference ontologies that were used on client engagements,
which are the subject of this thesis.
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TechOnto Ontology Stack

What are my technical system assets, where are they, how are they configured, who owns them, how are they designed and
manufactured, how they relate to measurement data etc.. 1) Technical asset / equipment organization and hierarchy, 2) Asset /
equipment configuration, 3) Asset design model / product information, 4) Asset registry.

What are equipment related events, when and how they happen, who are the participants /actors of an event, how each event is
related to certain analytical task, what is the outcome of such analysis, what are the parameters of an analysis, how does it relate
to any other analytical outcome or an event itself etc.

Sensing principles & capabilities: Define how a sensor will | Standard representation of measurable quantities, units of
' perform in a particular context, Characterize the quality of measure, actual values of quantities etc.

sensed data, tasking of sensors, measured properties, feature

. of interest etc..

Figure 3.1: TechOnto Ontology stack including reference ontologies.

The solution technical system ontology builds on and extends existing reference
ontologies and attempts to reuse knowledge that was developed by domain experts
within the solution domain as much as possible. A typical solution requirement
is to use the flexibility, extensibility, and openness that is promised by semantic
web technologies with open methods for data access. The strategy is to adopt
widely used vocabularies and ontologies to define concepts and terms within the
solution reference semantic model. To meet these goals, this thesis identifies relevant
reference ontologies, including the Semantic Sensor Network (SSN) ontology and the
Quantity - Unit - Dimension - Type (QUDT) ontology, and develops Asset-specific
domain (ASD) and Event and Analytics ontologies. The solution domain ontology
uses, extends, and harmonizes these ontologies, and additionally defines its own
concepts, which are not covered by these ontologies.

3.3.1 Domain-specific Ontology Models
Asset-specific Domain Ontology

Asset specific domain ontology is the foundational ontology of TechOnto ontology
and defines competency questions like What are my assets, where are they, how are
they configured, who owns them, how they relate to measurement data, how they
can be analysed for a particular use-case etc. Therefore, the ontology in Figure 3.2
focuses on the following aspects:

e Technical asset/equipment organization and hierarchy

e Asset/equipment configuration
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Figure 3.2: TechOnto Ontology - Asset-specific main classes and properties.

e Asset design model / product information
o Asset registry

Technical asset/equipment organizational hierarchy: defines the formal hi-
erarchy and organization of any equipment and mainly follows the following four
facets in any type of industrial system.

Deployment: facet describes the whole facility such as the 'Deployment Site’ of the
asset/ equipment that have been physically deployed. It also defines the asset
application, system boundaries, substantial descriptions of the system envi-
ronment and interaction with external entities such as ’Customers’, "External
application interfaces’. Some real-world examples would be of a drive-train,
Monticello power plant in Texas, gas power-station in Dresden or wind stations
in Baltic Sea.

Our main contribution is the high-level abstraction of the deployment and
high-level asset meta-data, especially regarding its internal processes and
states. Asset-level processes define the technical functionalities throughout
its life-cycle, which are not informative entities and therefore its type must be
inferred by the information entities of the system itself e.g. inference of its
operational status based on sensor measurements and observation. Another
contribution is the knowledge about the plant’s deployment. It is represented
via geographical objects such as location. Figure 3.2 shows the main classes
and relations of this facet.
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System: is conceptualized as a system of material-technical artifacts of some ma-
terialized action of a specific technical type. Therefore, system module has a
central position in the ontology. This facet corresponds to the 'machine level’
specifications in the hierarchic level of automation. The concept has been
inspired by the 'platform’ concept in SSN ontology.

The main contribution of this facet is first to capture system related concepts
so that any application for data access, processing or analytics can extract
knowledge about the real world. Secondly, the model establishes a direct
link between the system and its configuration. We argue that this system
configuration (design time or real-time) provides a distinct architecture of
interconnected components in a functional chain and is highly important across
life-cycle functions. The System concept further breaks down to capture its
compositional and functional knowledge.

Component: view is captured by the component facet. Various types of compo-
nents are operated by the system. Some could be physical while others could
be virtual components to fit in the architecture of the system. They can be
identified by some component type, manufacturer model and inventory infor-
mation such as article number, SAP description and/or serial number.

Our main contribution is that part-whole relationship (i.e. component hier-
archies) are being captured by an object property hasPart which is transitive
in nature. Secondly, component actions describe all the events across the life-
time of a component. For example, its installation or removal or inspection
of one or more system and plants. This information is also utilized when the
design or any activity of one component impacts other components in the
same system. For example, a turbine stator is being affected by a failure in
its sub-component Stage 3.

Lastly, the most important aspect is the modelling of sensing devices that are
mounted on the components to measures various properties for monitoring and
analytical tasks. The upper ontology describes the sensors, their properties,
measurements and observations by utilizing the SSN ontology. Measurement
capabilities have been extended to include measurement property configuration
(e.g. set-point values at design time and real-time). We also represent sensor
meta-data including its reference designation system tag to infer its location,
its sampling method, and data transfer method. Such meta-data is required
to make the sensor and its output more meaningful for lookup, discovery and
analytical applications.

Function: defines the behavioural semantics of the system and its components.
Functions are defined as all interactions that occur during the life-cycle. It
provides a multi-dimensional functional view of the complex system as well
as translates the functional aspects of any given component or a group of
components by its type, location or related processes. Each function attributes
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Figure 3.3: TechOnto Ontology - Sensor ontology main classes and properties.

to components, sensors and processes descriptions to support discovery and
traceability. For example, failure analysis of a component can be captured
together with its sensor measurements and system-level impact. The class
function can also be realized by failure processes that have temporal bindings,
state, and causality.

Sensors and Sensing Ontology

The sensor-specific domain ontology (see figure. 3.3) defines the capabilities of
sensors and sensor networks, and covers sensing principles and capabilities, such as
the following ones:

e Define how a sensor performs in a particular context

e Characterize the quality of sensed data

e Tasking of sensors
To represent these capabilities, use the Semantic Sensor Network (SSN) ontology
(for more information, see http://www.w3.org/2005/Incubator/ssn/ssnx/ssn). The
SSN ontology covers the subdomains that are sensor-specific, such as the sensing

principles and capabilities, and can be used to define how a sensor performs in a
particular context to help characterize the quality of sensed.

Quantity Kinds and Units of Measure Ontology

Quantity kinds (for example, temperature, pressure, and velocity) and units of mea-
sure (for example, meter, kilogram, and degree Celsius) reference ontologies provide
a standard representation of measurable quantities, units of measure, and actual
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Figure 3.4: TechOnto Ontology - QUDT ontology main classes and properties.

values of quantities. These ontologies are needed to provide a unified model of mea-
surable quantities, units for measuring different kinds of quantities, the numerical
values of quantities in different units of measure, and the data structures and data
types that are used to store and manipulate these objects in software. The ontology
includes instance data populating the model with standard quantities, units, and
quantity values. A few reference ontologies for quantity kinds and units of measure
exist, each with a different purpose, level of completion, and comprehensiveness.
The scope of this paper does not include a comparative study of these ontologies.
Rather, this paper focus on the NASA Quantity - Unit - Dimension - Type (QUDT)
Ontology (for more information, see http://www.qudt.org). This ontology is by far
the most comprehensive and complete regarding quantity kinds and units.

The concepts that are modelled in the quantity kinds, quantity values, and units of
measure ontologies are shown in Figure 3.4 and described as follows:

e Quantity Kind is any observable property that can be measured and quantified
numerically. Examples include physical properties Line Length, Mass, Time,
and Force. Other properties can include Currency, Interest Rate, and Price to
Earning Ratio.

e Quantity is an observable property of an object, event, or system that can
be measured and quantified numerically. Examples include the mass of a
hydrogen atom, the temperature at a certain site, or the duration of a specific
meeting. The attributes include (1) Kind identifies the observable property
that is quantified, and 2)Magnitude expresses its relative size compared to
other quantities of same kind.

e Unit of Measure is a particular quantity of a given kind that is chosen as
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a scale for measuring other quantities of the same kind. Examples include
Meters, Kilograms, and Volts.

e Quantity Value is the numerical value of a quantity’s magnitude with respect
to a chosen unit of measure for the corresponding quantity kind. Examples
include 5 kilograms or 3 meters.

The QUDT ontology defines the base classes properties and restrictions that are used
for modeling physical quantities, units of measure, and their dimensions in various
measurement systems. The QUDT ontology is a schema ontology and uses the name
space and the prefix qudt for all internally defined resources that are described at
http://www.linkedmodel.org/catalog/qudt/1.1/index.html

3.3.2 Analytical Ontology Model

Event detection and diagnostic ontology where event is a focus and starting point
to integrate any type of event data including analytics. In principle, Event collects
information of an order and/or diagnostic actions up to the Asset level versus the
time. An Fwvent is the result of the interactions which occur in a certain point of the
time between an actor and any asset related information (i.e. EventInformation).
Actor can be field service technician, the repair workshop technician or the control
room operator. The FEventInformation can be anything from a single component
which is sent to be repaired or a gas turbine package which is disassembled for doing
Level-C inspection. As it is obvious from this definition, an Event can take long for
several days but in the current design, only one date is associated to each Event.
To be able to verify the Events, each Event must have a reference document. The
document can be a report which is written at the end of one preventive or diagnostic
Event by an analyst, technician or a component repair report which is written by
the repair workshop technician. These reports are the main source of information
for analytical task. This ontology also defines special type of analytical events such
as diagnostic event which present results from an analytical task executed over a
set of data and results are recorded as relevant events. This motivates the reuse
and combination of different diagnostic task and promotes interoperability of its
execution. Details on the specification and formalism of analytical ontology are
described in the following chapter.

3.3.3 Ontology Summary

Many industries today realize and demand improvements in their overall working
life-cycle processes in order to meet their commercial as well as safety and security
constraints. This ultimately demands for integration across the board i.e. existing
information systems, applications and adopted standards. However, there exist a
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Figure 3.5: TechOnto Ontology - Event and Analytical ontology main classes and prop-
erties.

number of challenges which are directly related to a high cost of integrating in-
compatible proprietary representations of information. Nevertheless, with the ad-
vancement in technology, shared ontologies provide an easier approach to cater such
challenges of integration and information access. For example, adopting domain
ontologies that can define and create abstract information base for concepts such as
physical objects, activities, meteorological and topological relations can be benefi-
cial in integrating heterogeneous information. Furthermore, this abstraction layer
can be extended to more specific classes and relations depending on the granularity
of the information exchange.

Many ontologies exist, but not all of them are suitable for reuse. A critical knowledge
engineering task is to select the representative reference ontologies that are appro-
priate to individual domain and scope. This thesis presents the domain together
with reference ontologies that are selected (adopted) for the cross-industry domain
of managing observations and measurements, topologies, events and analytics. Our
proposed ontology contain four modules that also cater the two existing reference
ontologies. Asset-specific domain model describes the physical and virtual concepts
of an industrial equipment or component together with its component hierarchies,
design models, configuration and registry informations. Observations and sensor
measurement related data is conceptualized using SSN reference ontology whereas
quality standards are expressed via qudt ontologies. An important module is Event
and Prediction ontology that describes various event-driven information and actions
that occur on an equipment. Special type of event are called analytical event that
captures all the meta-data generated during an execution of an analytical task or
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workflow. Practical applications and evaluations of the model against state-of-the-
art are discussed in Chapter 6.

3.4 Ontology Model Manager (SOMM)

We have developed the Semantic Ontology Model Manager (SOMM) tool to sup-
port domain experts little or no background on semantic technologies in building
ontologies and inserting data based on their information models. The interface of
SOMM is restricted to support only the kinds of standard OWL 2 QL axioms and
constraints discussed in Section 3.2. SOMM is built on top of the Web-Protege
platform [91] by extending its front-end with new visual components and its back-
end to access RDFox [92]| for query answering and constraint validation, HermiT
[88] for ontology classification, and LogMap [93] to support ontology alignment and
merging. Our choice of WebProtege was based on requirements and CQs of the
experts for the platform underpinning SOMM, namely that it (i) can be used as a
Web application; (ii) is under active development; (iii) is open-source and modular;
(iv) includes built-in functionality for ontology versioning and collaborative devel-
opment; (v) provides a form-based and end-user oriented interface; and (vi) enables
the automatic generation of forms to insert instance data. Although we considered
other alternatives such as Protege- desktop [87], NeON toolkit [94], OBO-Edit [95],
and TopBraid Composer [96], we found that only WebProtege satisfied all the afore-
mentioned requirements. In the remainder of this section, we describe the main
features of SOMM.

3.4.1 Form-based insertion of axioms

We have implemented a new form-based editor to attach properties to a class via
existential, universal, cardinality and value restrictions. This visual component aims
at supporting engineers with little background on semantic technologies in the cre-
ation and interpretation of the most common ontological axioms to capture the
semantics of the models in Siemens. Figure 3.6 shows a screenshot of the SOMM
class editor where the class SteamTurbine has four properties attached; for exam-
ple the first row represents both an universal (default attachment) and existential
restriction since attribute hasState is required (axioms (3.15) and (3.16)) while the
second row is translated into an universal restriction and two cardinality restrictions
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SOMM Data Insertion - Details for 'steam_turbine_987"

hasState (*) Select a value MR
_Add new value

hasld (*) turbine_987 R

_"W"_Add new value

hasConfig (*) SteamTurbineConfiguration M

Add new value

hasProductLine Sglect a value v | %

Add new value

Figure 3.6: Data insertion in SOMM.

(axioms (3.17)-(3.19)).

SubClassOf (SteamTurbine

ObjectSomeValuesFrom(hasState State)) (3.15)
SubClassOf (SteamTurbine

ObjectAllValuesFrom(hasState State)) (3.16)
SubClassOf (SteamTurbine

ObjectMinCardinality(1 hasConfig SteamTurbineConfig)) (3.17)

SubClassOf (SteamTurbine

ObjectMaxCardinality(3 hasConfig SteamTurbineConfig)) (3.18)
SubClassOf (SteamTurbine

ObjectAllValuesFrom(hasConfig SteamTurbineConfig)) (3.19)

3.4.2 Automatically generated data forms

SOMM exploits the Web-Protégé capabilities to generate knowledge acquisition
forms to guide engineers during the data insertion process. The forms are automat-
ically generated for each class driven by the axioms in the ontology, that is, SOMM
generates an entry field for each of the properties attached to a class. SOMM not only
considers directly attached properties but also inherited properties and bottom-up
propagated properties. For example, the class Turbine does not have directly at-
tached properties in one of our ontologies, however SOMM will suggest the attached
properties of its subclasses (e.g. the ones for SteamTurbine). Figure 3.6 shows an
example of the property fields for an instance of the class SteamTurbine, which has
four attached properties according to Figure 3.6. Note that SOMM differentiates
between required (marked with (*)) and optional fields.
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Figure 3.7: Tree-like navigation of the ontology classes and individuals in SOMM.
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Figure 3.8: Reasoning services for ontology classes and individuals in SOMM.
3.4.3 Extended tree-like navigation of classes and individuals

SOMM also allows a tree-like navigation of the ontology classes and individuals
according to a selected property. This visual components is a generalization of the
well-known partonomy hierarchies for which we do not necessarily require a part
whole relationship. SOMM exploits the attachment of properties to classes, inverse
roles and role assertion axioms to built the navigation trees. Figure 3.7 shows the
classes and individuals tree for the property follows, which defines dependencies
among processes.

3.4.4 Ontology Alignment

SOMM integrates the ontology alignment system LogMap [93] to support model
alignment and merging. SOMM allows to select and merge two available Web-
Protégé projects or to import and merge an ontology into the active Web-Protégé
project. Currently LogMap runs in an automatic mode, but we plan to extend
SOMM interface to support user-interaction in the alignment process, as LogMap
includes built-in interactive matching capabilities [97].
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3.4.5 Reasoning services

Web-Protégé does not currently includes reasoning services in its default distri-
bution. SOMM relies on the OWL 2 reasoner HermiT [88] to support standard
reasoning services such as class consistency and ontology classification. The dat-
alog reasoner RDFOx [92] is used to perform the constraint validation task. As
discussed in Section 3.2.2, for data reasoning purposes, ontology axioms are split
into two sets: inference axioms and integrity constraint axioms, and translated
into datalog rules. SOMM implements the approach presented at the end of
section 3.2.2 to check for integrity constraints violations. Figure 3.8 shows the
SOMM intefaces to invoke the supported reasoning services. For example, Fig-
ure 3.8 shows that the class GasTurbineModes is satisfiable and Process is an in-
ferred superclass after performing reasoning, while Figure 3.8 states that the in-
dividual steam _turbine 987 violates one of the integrity constraints. If we recall
the example in Figure 3.6, steam turbine 987 is missing the attribute hasState
which is required for all steam turbines (see Figure 3.6). According to the
translation into rules provided in row «g in Table 3.2 steam turbine 987 is not
in has 1 hasState State and hence deriving Violation(steam turbine 987, av),
where oy = SteamTurbine SubClassOf : hasState some State.
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4 Ontology Language for

Semantically driven Analytical
Tasks

In this chapter we explore the use of ontology language to semantically define data
analysis tasks on Industrial data. This results in proposing a new approach for
capturing semantics of analytical tasks, algorithms, inputs and outputs and evaluate
the effectiveness of the proposed approach on a number of analytical tasks on real
industrial use-cases. We conclude that semantically defined methods that considers
analytical concepts produce, in most cases, a higher interoperability, scalability and
performance than those state-of-the-art.

The material in this chapter has been published in |98, 99, 100].

4.1 Introduction

Traditional approaches to data analytics on industrial data have three main limi-
tations as discussed in previous chapters. Firstly, the number of queries to extract
data for analysis is finite. This means that a domain expert is often dependent
on the IT expert to formulate such queries for him. This limits the data explo-
ration capabilities of the user and may restrict data integration capabilities from
heterogeneous data infrastructures such as when new databases, new columns, new
meta-data emerge. Secondly and more importantly, data analysis implementations
and components are highly data dependent in the sense that specific characteris-
tic of individual data points such as sensors and pieces of equipment are explicitly
encoded in the code. As a result for a typical diagnostic task an engineer has to
configure and run dozens to hundreds of such models with some or little modifica-
tion in the attributes such as sensor tags, component codes, sensor and threshold
values, equipment configuration or design attributes etc. For example, a typical
gas turbine has about 2000 sensors and a diagnostic task to detect whether purging
is over can be captured with over 30 analytical models (e.g. a predictive model).
Many of these models may differ only on specific sensor identifiers or the number
of data patterns and speed signals to aggregate. Adapting these models to another
equipment will also require the basic understanding of the type and configuration
of the equipment type and consequently may require a change of data source and
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corresponding identifiers. Third and the most interesting by-product of the data de-
pendency in analytical models is the challenge of authoring, reuse and maintenance
of analytical models and their results. Most often than not, analytical workflows are
static, use-case driven and have limited re-usability. For example, models that com-
pute performance degradation key performance indicators (KPI) cannot be easily
reused to capture reliability KPIs. Details on the analytical workflow are discussed
in Chapter 5.

In this chapter, we present our results of extracting and using the semantically de-
fined analytical language aiming mainly at addressing the challenges faced by cur-
rent state-of-the-art and consequently improving their performances. This chapter
addresses the following research question:

[RQ2]Can an analytical-aware ontology language for analytical tasks en-
hance data analysis performance?

To this end, we propose to extend the traditional data driven approach to analytics
with an OBDA layer and a new semantic language to what we call textitSemantically
defined Analytical Language (SAL). Our proposed language enjoys the following
features:

e Signals orientation: The language should treat signals as first class citizens
and allow for their manipulation: to filter, aggregate, combine, and compare
signals;

e Expressiveness: The language should capture most of the features of the rule
models as well as analytical operation.

e Usability: The language should be simple and concise enough so that the
engineers can significantly save time in specifying analytical tasks;

e Efficiency: The language should allow for efficient execution of analytical tasks
and must be FO rewritable.

Our language allows to write complex analytical tasks in an abstract fashion and to
exploit both ontological vocabulary and queries over ontologies to identify relevant
sensors and data values. We designed the language in such a way that, on the
one hand, it captures the main signal analysis features and, on the other hand,
it has good computational properties. In particular, SAL allows for rewriting [23]
of analytical task written over OWL 2 QL ontologies into multiple data-dependent
rule-sets with the help of ontologies and OBDA mappings. We implemented SAL
and a prototypical Semantically defined Analytics system. We evaluated usability of
our solution with engineers at Siemens by checking how fast they are in formulating
analytical tasks in SA L. We also evaluated the efficiency of our solution in processing
analytical tasks over turbine signals in a controlled environment. (See chapter 7 for
use-case evaluations.)



4.2 Building blocks of Proposed Language

In rest of this chapter we introduce our language and define its basic components,
then we specify the details of capturing analytical expressions and their semantics.
Lastly, we define the formal properties of the language.

4.2 Building blocks of Proposed Language

We start by introducing basic notation for our proposed ontology language. In
particular, we introduce notions for (i) (sensor) signals and (ii) Knowledge Bases
(KBs). The former we use to capture the sensor data-points over time and the
latter we use to capture background knowledge of equipment and signals as well
as concrete characteristics of the equipment that undergoes analysis. Both signals
and KBs are building blocks of our semantic language SAL (defined in the next
section).

4.2.1 Sensor Signals

In our setting, a signal is the foundation for our language. A signal s is a pair
(0s, f5) of a signal id o5 and a signal function f; defined on R to RU {L}, where
L denotes the absence of a value. A basic signal is a signal whose reading, such
as temperature, is obtained from a single sensor (e.g., in a train) for different time
points. In practice, it may happen that a signal have periods without identified
values. Also, such periods are obtained when combining and manipulating basic
signals. We say that a signal s is defined on a real interval [ if it has a value for each
point of the interval, i.e., L ¢ f(I). For technical reasons we introduce undefined
signal function f, that maps all reals into L. In practice signals are typically step
functions over time intervals since they correspond to sensor values delivered with
some frequency.

In our model, we assume that we are given a finite set of basic signals & =

{s1,--.,8n}

4.2.2 Knowledge Bases and Queries

A Knowledge Base K is a pair of an ontology O and a data set D. An ontology
describes background knowledge of an application domain in a formal language. We
refer the reader to |23] for detailed definitions of ontologies. In our setting, we con-
sider ontologies (as described in chapter 3) that describe general characteristics of
equipment which includes partonomy of its components, characteristics and loca-
tions of its sensors, etc. As an example consider the following ontological expression
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that says that DoorSensor is a kind of PressureSensor:
SubClassOf (DoorSensor PressureSensor). (4.1)

Data sets of KBs consist of data assertions enumerating concrete sensors,
equipments, and their components. The following assertions says that sensors
SKNF_XO01,SKNF _X02, SKNF X03 and SKNF_X04 are all door sensors:

ClassAssertion(DoorSensor SKNF _X01),
ClassAssertion(DoorSensor SKNF _X02),
ClassAssertion(DoorSensor SKNF _X03),
ClassAssertion(DoorSensor SKNF _X04). (4.2)

In order to enjoy favourable semantic and computational characteristics of OBDA,

we consider well-studied ontology language OWL 2 QL that allows to express sub-
class (resp. sub-property) axioms between classes and projections of properties
(resp. corollary between properties).

A formal basis for OWL 2 QL is DL-Liter |23]. Here, we briefly introduce the main
construct of DL-Liter and the main reasoning tasks, query answering. For more
details on the language we refer to |23].

In DL-Liter concepts and roles are of the following form:

B:=A | 3R, C:=B | B,
R:=P | P, E:=R | -R

where A denotes an atomic concept, P an atomic role, and P~ the inverse of P.
Further, B denotes a basic concept (i.e., an atomic concept A or an unqualified
existential quantification on a basic role 3R) and R a basic role (i.e., an atomic role
P or its inverse). Finally, C' denotes a general concept (i.e., a basic concept or its
negation) and E a general role (i.e., a basic role or its negation).

A DL-Liter Thox (or ontology) is a finite set of inclusion statements of the form
BCCorRCE.

A DL-Liter Abox consists of a finite set of membership assertions on atomic concepts
and roles of the form A(a) and P(a,b).

In general, Thox is known as a terminological component that describes set of con-
cepts and their properties, whereas Abox is an assertion component that describes
a fact associated with concept within a knowledge base.

A DL-Liter KB K = (O, A) is a pair of a TBox O and an ABox .A. This means
that Thox and Abox together makes up a knowledge base.

The formal interpretation Z = (A, -T) of DL-Liteg is the standard First order logic
interpretation where A is the domain and -Z is the interpretation function.
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DL-Liter has favourable computational properties of answering unions of conjunc-
tive queries (CQs) under the certain answers semantics [23|. Tt is based on the
concept of certain answers, that is the answers that hold over all interpretations.
Under this semantics the answer set of a non Boolean CQ ¢(z) over a KB K is
defined as follows:

ans(q, K) ={t € C| K = q(t)},
where C is the set of the constants appearing in the KB, and ¢(¢) is the closed

formula obtained by replacing in the query definition the free variables in x by the
constants in .

For example, the following union of CQs returns all main car sensors:

MainCarDoors(x) < doorSensor(z) A locatedIn(x, y)A
(PlatformAccessArea(y) V CabinAccessArea(y)). (4.3)

To be precise, the above contains disjunction in the body thus it can be represented
as a union of two CQs.

4.3 Semantically defined Analytical Language SAL

In this section, we introduce formally the syntax and semantics of our semantically
defined analytical language SAL. To do so, we first introduce analytical expressions
that allow one to manipulate basic signals using mathematical functions and queries
over KBs. Then in following chapter we introduce a notion of workflow that allow one
to compose and combine expressions, and to send desired alert messages. Finally,
we provide semantics of our language that formally defines how SAL should be
executed.

4.3.1 Analytical Expressions

We introduce analytical expressions that filter and manipulate basic signals and
create new more complex data signals. Intuitively, in our language we group data
signals in ontological concepts and analytical expressions are defined on the level of
concepts. Then, a analytical expression is recursively defined as follows:

C = Q | {s1,--,Sm} |
ao(C | C : value(®, «) |
agg Cy | C} : duration(®,t) ]
Cy : align Cy | C} : trend(direction) |

C : forecast(a).
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where C' is a concept, @ is a CQ with one output variable, o € {4, —, x,/},
agg € {min,max,avg,sum,count}, a € R, © € {<,> < >}, adalign €
{within, after(t], before[t]}, t is a period, and direction € {up, down}.

Expressions C = @ and C' = {s1,...,s,} we call basic analytical expressions and
other we call complex analytical expressions.

The formal meaning of analytical expressions is defined in Figure 4.1. In order to
make the mathematics right, we assume that col = loc=landcO L =1Gc=
false for ¢ € R, and analogously we assume for aggregate functions. If the value of
a analytical function at a time point is not defined with these rules, then we define
it as L.

Example 1. The data-driven analytical rules that can be used to determine that car
doors function well, can be expressed with two concepts in SAL as follows:

DoorsLocked = sum MainCarDoors : (4.4)
value(=, Locked Value),
PressureUp = CabinPressure : trend(’up’) : (4.5)

duration(>, 33sec)

Here, MainCarDoors is the CQ defined in Equation (4.3). For brevity we do not
introduce a new concept for each expression but we just join them with symbol “:7.
The constant LockedValue is a parameter of for analysing door of a train, and they
are instantiated from the train configuration when the expressions are evaluated. A

Now we are going to define the semantics of the analytical expressions.

4.3.2 Semantics of SAL

We now define how to determine whether these analytical expressions are FO-
rewritable and is well-suited in OBDA setting. To this end, we extend first-order
interpretations that are used to define semantics of OWL 2 KBs. In OWL 2 a first
class citizen is an object o and interpretation is defining whether C(0) is true or not
for particular concept C'. In our scenario, domain of objects is a domain of signal ids
(basic or ones defined by expressions). Thus, each object o is also has an assigned
function f, that represents the signal value of that object. Observe that o can also
be an id of a train component that does not have signal function. At the moment,
(since it is not crucial for this study and it simplifies the formalism) we also assign
undefined signal f, to such (non-signal) objects.

Formally, our interpretation I is a pair (Zror, Zs) where Loy, interprets objects and
their relationships (like in OWL 2) and Zs—signals. First, we define how 7 interprets
basic signals. Given a set of signals for an interpretation Z: S = {s?,... s’} s.t.

Tros, ‘returns’ the signal id, s7For = o, and Zs ‘returns’ the signal itself, s7s = s.
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C = Concept C' contains
Q all signal ids return by @) evaluated over the KB.
aoCh one signal s’ for each signal s in C4
with fy = ao f,.
Cy 2 value(®, o) one signal s’ for each signal s in C with

fot) = a ® £,(1)
if f5(t) ©® v at time point t; otherwise fu(t) = L.
Cy : duration(®,t')  one signal s’ for each signal s in C; with
fs’(t) = fs(t)
if exists an interval I s.t.: f, is defined I, t € [
and size(I) © t';
otherwise fy(t) = L.
{s1,. ., Sm} all enumerated signal {sy,..., s}
agg C one signal s’ with fu(t) = agg,cc, fs(t), that is,
s’ is obtained from
all signals in C'; by applying the aggregate agg
at each time point ¢.
C1 : align Cy a signal s; from C if: exists a signal sy from Cs
that is aligned
with sy, i.e., for each interval I;
where f;, is defined there is
an interval I where f,, is defined
s.t. Iy aligns with I5.
C : trend(direction)  one signal s’ for each signal s in C; with
fs(t) = fs(t) if exists
an interval [ around ¢ s.t.: f is defined I,
and fs is an increasing or
decreasing function on [ for direction—up
(=down resp.)
Cy : forecast(a) one signal s’ for signal s in C with
fs’(t/) = fs(t) that Is,
s’ is obtained in forecast
interval I’ s.t. f, is defined in I,
and f, is a regression function
on [ for a given number of observations.

Figure 4.1: Meaning of analytical expressions. For the interval I, size(I) is its size. For
intervals I1, I the alignment is: “I; within 1" if I} C Is; “Iy after]t] 12" if
all points of I» are after I; and the start of Is is within the end of I; plus
period t; “Iy before[t] 1" if “Ia start]t] I,”.

Now we can define how Z interprets KBs. Interpretation of a KB K7 extends the
notion of first-order logics interpretation as follows: KZFor is a first-order logics
interpretation KC and X% is defined for objects, concepts, roles and attributes fol-
lowing SZ. That is, for each object o we define oS as s if o is the id of s from S;
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otherwise (o0, fi). Then, for a concept A we define AZs = {s%s | ofror ¢ ATror},
Similarly, we define -Zs for roles and attributes.

Finally, we are ready to define Z for analytical expressions and we do it recursively
following the definitions in Figure 4.1. We now illustrate some of them. For example,
if C'={s1,...,8m}, then CT = {sf ... sL};if C = Q then CTror = QoL where
Q*ror is the evaluation of Q over Zpor and CTs = {s| ofror € QTror} provided
that Zpor is a model of K. Otherwise we define C* = (). Similarly, we define
interpretation of the other expressions.

4.4 Formal Properties of SAL

In this part, we study the formal properties for our SAL language.

First, we assume from now that data signal functions are given on the input as a
step functions over intervals (which is the case in the running example).

Second, we would like to ensure that our language in SAL indeed allow to be rewrit-
ten using OBDA techniques. This condition requires more technical explanation
and we discuss it in more detail in the next paragraph.

Third, we want to understand what is the upper bound of the complexity of our
problem. In particular, we measure the complexity of the problem in the size of
two main components: the size of workflow /program and data. We expect that size
of the data largely dominates the size of workflow, and while the data can be huge
(several GBs) that size of program can be significantly big (several thousands of
rules) thus both measures are relevant.

First Order (FO) rewritability The formal condition that determines if a language
is suitable for OBDA is called First Order (FO) rewritability. In this part we define
it formally. An OBDA setting is a triple (O,S, M) where O in the intensional
level of an ontology, S is a relational schema representing the schema of sources and
M is a set of mapping assertions that describe how to populate ontology with the
database. Typically, mappings are are select-project-join SQL queries over sources
that describe how ontology is populated. We say that query answering over a setting
(0,8, M) is FO-rewritable if for each query ¢ over O there exists a FO query (i.e.,
an linear algebra query) ¢’ over S such that for any database D over S we have that
evaluating ¢ over O (populated via M for D) gives the same result as evaluating ¢’
over D only. In other words, we are reducing answering queries over ontologies into
answering queries over sources. It is expected that query ¢’ is more complex than ¢
since it has to take into account M and 7.

It is known (e.g., see [101]) that if query answering in some formal language is
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FO-rewritable, then the data complexity of the problem is in AC” computational
complexity [102]. Data complexity of a problem is the computational complexity
of the problem when all parameters apart from the data are fixed. Class AC® is
“weaker” than polynomial time and even linear time, and it is represents a class of
problems that are highly parallelizable. Intuitively, a problem is in AC® if it can be
decided in constant time when the number of processors corresponds to the size of
data. A standard way to show that a problem is in AC® is to reduce the problem
to another problem for which it is already known to have AC® in data complexity.
For example, data complexity of checking whether a tuple is the answer of a non-
recursive Datalog query over a database is in AC” in the size of the database.

Hence, to address both problems from above, we encode our SAL into fact-entailment
problem over an extended version of recently introduced non-recursive metric Data-
log [103], Datalog,, MTL . The reason for doing this is twofold. First, Datalog, MTL
(inspired by a well-studied Metric Temporal Logic [104]) provides a natural way to
model rules that reason over time intervals. Second, Datalog,,MTL is a suitable
language for OBDA setting, that is, it has been show how to rewrite queries over
the rules in Datalog,, MTL into standard SQL over the sources [103].

Still, Datalog,, MTL cannot be immediately related to our language since it does
not support aggregates and some other logic constructs that we need for our encod-
ing (in particular, functional symbols, negation and aggregates [102]). So first, we
extend DatalogMTL with functional symbols, aggregation, etc. under reasonable
restrictions, without increasing the complexity. Then to show that our problem is
FO-rewritable we do the semantic workflow encoding described in Chapter 5.

4.4.1 Extended DatalogMTL

In this part we introduce our extension of DatalogMTL. At this moment we only
briefly introduce the main constructs of the language.

An atom A in extended DatalogMTL is either a comparison (e.g., 7 < 7’) or defined
by the grammar

A= P(r,...,m) | T | B,A | B,A |
DA | OA | AU,A | AS, A
A | T=agg[n | P(r,.. ..l

Here, P is a predicate, ¢ is an interval in reals, 7 is a term (possibly with functional
symbols), agg € {min, max, avg, sum, count} and brackets [-] denote multiset (values
can repeat).

A datalogMTL program, X, is a finite set of rules of the form

AT — A N N A or L+ AN AN A,
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where A7 is an atom that does not contain any ‘non-deterministic’ operators $,, $,,
U,, S,, negated atoms, or aggregate operators.

For our purposes it is sufficient to have non-recursive programs. Informally, that
are programs where dependency (direct or indirect) between predicates is acyclic.
In fact, it is not trivial to understand how one would even define recursion in case
of aggregates and negation. Therefore, we only consider extended DatalogMTL
program that are non-recursive.

In DatalogMTL, temporal operators are defined over intervals and they take the
form H,, ¢, and U,, which refer to the future, and H,, ©, and S,, which refer to
the past where p is an interval. For example, H,A is true at ¢ iff an atom A is true
in all points of an interval o in the future from ¢, while $,A is true at ¢ iff there
exists a point in the past not longer than o from ¢ where A is true. For the complete
semantics of the temporal operators and rules.

A (temporal) data instance is a finite set of facts of the form P(c)@Q¢, where P(c) is
a ground atom and ¢ an interval. The fact P(c)@¢ states that P(c) holds throughout
the interval .. Moreover, we simply write P(c)@Qt for P(c)Q[t,t].

Finally, every satisfiable DatalogMTL ¥ program with database D has the canonical
(or minimal) model of = and D, My p. As usual, the most important property of
canonical model is that if a fact holds in canonical model then it holds in any other
model.

4.4.2 An Example Encoding into Extended DatalogMTL

We start with an example of the encoding for analytical expressions. In the next
chapter we present the complete encoding including workflows.

Example 2 (Example of Encoding). The query in analytical expression in Exam-
ples 1 and 4 can be encoded in a modular way, starting from simpler to more complex
ELPTESSIONS.

We start with the encoding rules for Fxample 1.

First, we show how to capture the expression “sum MainCarDoors” in (4.4). For that
we use the following rule:

SumMainCarDoors(c,,), value(car, v1)

sum[v | MainCarDoors(x), value(z,v)] = v;

Intuitively, this introduces a new constant c,,. representing the “aggregated main car
door sensor” and assign the average value of all main car door sensors to it.
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Then, we encode the second part of (4.4), walue(=,LockedValue), wusing
SumMainCarDoors with the rule:

DoorsLocked(z) <— SumMainCarDoors(z),

value(z,v),v = LockedValue

To encode expression (4.5) from Example 1 we need to use temporal operators. In
particular, to encode CabinPressure : trend(‘up’) we need to copy all intervals of a
stgnal in CabinPressure on which the signal is trending up. For that we need universal
quantification (“N”). This is expressible in Datalog by two rules connected with a
negation. First we compute intervals on which a signal s not trending up with the
rule:

notTrendUpcp () <— CabinPressure(x), value(z, vy),

Q0,0 (value(x, va), v1 > v2)

Intuitively, formula (value(z,v1),$0 5 (value(z,ve), v1 > v2)) evaluates to true for
some value v1 at a time point t if there exists an interval of a size at most d containing
t wn which signal x has another value vy that is smaller than v,. Here, a parameter
0 is a “small” real number and it is typically selected based on the size of signal
sampling.

Then we compute the trending-up intervals by eliminating non-trending-up time
points:

CabinPressureAux( fe,(z)) <— CabinPressure(z),
—notTrendUpcp ()

Here, functional symbol fo, is used to create a new signal identifier for each x. The
values of the new signals are the same as originals and they are just copied for each
time-point that is “trending up”

value( fep(z),v) <= CabinPressureAux( fep(x)), value(x, v)

To encode the construct duration we also need temporal operators. In particular, we
encode construct : duration(>, 33sec) with the rule:

PressureUp( fou()) <= j0,335) Bo,335) CabinPressureAux(x)

Intuitively, the temporal operator By 334 selects “an event that lasts for the last 3357,
and the temporal operator Gy 334, selects “an event happens within the last 33s”. The
nested these two <y 33950,335 selects the whole duration of all the events lasting at
least 33s.
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Similarly as above, the value is transferred with the rule:

value( fou(z),v) <— PressureUp( fou(2)), value(x,v)

Finally, to encode message firing (5.1) from Example 4 we introduce two propositions
pai and ppy for concepts DoorsLocked and PressureUp, respectively. In particular, pq
is true if there exists a signal in DoorsLocked that has at least one value. And
stmilarly for ppy. This is encoded with the rules:

Pdi < <[0,00)DoorsLocked,
Pdi < Pjo,00) DoorsLocked,
Pup < p0,00)PressureUp,
Pup < Pjo,00)PressureUp

Here, Qjo,00) and D)o o) are used to check if DoorsLocked has at least one signal with
value in the past or in the future, respectively.

Then we encode with the firing a message:

message(“All car doors OK”) < pai, Pup
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Analytical expressions C Encoding of C

Q To(x) + Q(x), value(z,v).
{s1,..,8m} To(8;)  value(s;,v), for each s;
aoCy, where o € {+,—, x,/} To(fo(x)), value(fo(x),v) < 7¢,(2),

value(x,v),v =a o

C1 : value(®, o), where © € {<, >, <, >}1e(fe(x)), value(fo(x),v) < 7¢, (2),
value(z,v),v ® a.

Cy : duration(>,t) To(fo(r)) < o Bl 70, ().
value(fo(z),v) « 1o(fo(x)), value(z, v).
Cy : duration(<,t) To(fo(r)) < 7, (%), = (©p,0(Bpo,g7e, (7).

—~

value(fo(z),v) « 1o(fo(x)), value(z, v).

agg C, where

agg € {min, max, avg, sum, count} v = aggfvy | value(x, v1), 7¢, ()],
where ¢ is a fresh constant, agg[-]
is an aggregation operator over bags

Cy : after(t] Cy To(fe(21)) + (70, (1)) Uio.0)
(=76, (21) A =7ey (2)) U 7oy (22)).
value(fo(z1),v) « 7¢ fc(xl)) value(z1,v)

(=7, (1) A =70y (22)) S, T, (22)).-
value(fc(z1),v) < 7¢ fc(ld)) value(z1, v)

)Y,
(

C : before[t] Cy To(fo(z1)) (TC1(x1))) [0,00)
(

C : within Cy 1o (fe(xy)) < ((Tcl (z1) /\702(952))

S[O,m)(ﬁTCI(%))) U o) (—7cy (21)).
value(fo(x1),v) < 1e(fo(z)), value(zy, v).

C : trend(up) 1o(fe(x)) < 10, (x), = notTrendUpg, ()
notTrendUp¢, () < 7¢, (), value(x, v1),
0,6 (value(z, va), v1 > vy)
where ¢ is a “small enough”
positive real number

value(fo(z),v) < 1o(fo(x)), value(z, v).

C : trend(down) 1o(fo(x)) < 7¢, (), = notTrendDowng, ()
notTrendDowng, (x) < value(z, v),
0,6 (value(z, va), v1 < vy)
where ¢ is a “small enough”
positive real number

value(fo(z),v) < 1e(fo(x)), value(x, v).

Boolean combinations D Encoding of D

D=C pp  Ppo,00) 70 ().
PD < Qpo,00) T ().

D = Dy and D, DD < PDysPDs-

D = not D, Pp < DD,

message(m) = D message(m) < pp.

Figure 4.2: The encoding SAL language into extended datalogMTL. For each analyt-
ical expression in the left column, the corresponding datalogMTLrules are 79
provided in the right column.






5 Ontology Language for
Semantically driven Analytical
Workflow Generation

In this chapter we present our results on using semantically defined workflows for
data analysis on Industrial data. We present a new approach that incorporates
conceptual semantics of analytical workflows, inputs and outputs and evaluate the
effectiveness of the proposed approach on a number of diagnostic tasks on real
industrial use-cases. Our conclusion is that semantic-based methods that considers
analytical concepts can achieve a higher interoperability and performance than most
of the state-of-the-art systems used for authoring and executing workflows.

The material in this chapter has been published in |98, 105, 106, 99, 107, 100].

5.1 Introduction

Analytical workflows are heavily used in large and data intensive companies. An
important application of such workflows is equipment analytics when equipment
KPIs and reports are computed by aggregating equipments operational, master, and
analytical data. In most of the cases, this data satisfies data variety dimensions and
this dependence poses significant challenges in authoring, reuse, and maintenance
of analytical workflows by engineers and data scientists. In this chapter we will
address these problems by relying on semantic technologies: we use ontologies to
give a high level representation of equipments operational and master data and offer
a high level language to express an analytical workflows over ontologies.

An analytical workflow typically consists of the following steps:
1 data access when users obtain permissions to enterprise data on different levels,
2 data analysis and discovery, when users extract and analyse data by interacting

with the existing templates for dashboards and extract relevant knowledge
from data,
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3 collaboration and sharing when users find extra insights from the data and
knowledge when shared with colleagues.

Modern Business Intelligence systems and analytical platforms allow to combine
these steps in analytical workflows and to iterate over them. Step 2 in such workflows
is where self-service is crucial. Indeed, an analytical platform should be easy to use
so that business users from all skill levels can easily reuse a dashboard or modify
and add components. In data intensive companies such as Siemens such self-service
is often hampered by the fact that re-use and modification of dashboards and their
components require deep knowledge of schemata and formats of underlying data.
Due to the challenging data dimensions, such knowledge is only affordable to IT
specialists.

In this chapter, we present our developed semantically defined workflows that incor-
porate semantics into the traditional workflows. This chapter addresses the following
research question:

[RQ3]Can the semantic-driven analytical workflows boost data analysis
performance?

To this end, we propose to extend the traditional data driven approach to analytics
with an OBDA layer and a new semantic language to what we call SAL, described
in previous Chapter 4. Our language allows to write complex analytical workflows
in an abstract fashion and to exploit both ontological vocabulary and queries over
ontologies to identify relevant data sets and analytical models implemented in var-
ious technology platforms. We designed the language in such a way that, on the
one hand, it captures the main data analysis features and, on the other hand, it
has good computational properties. In particular, SAL allows for rewriting [23] of
analytical workflow written over OWL 2 QL ontologies into multiple data-dependent
rule-sets with the help of ontologies and OBDA mappings. We implemented SAL
and a prototypical Semantically defined analytical system. We evaluated usability of
our solution with engineers at Siemens by checking how fast they can formulate and
combine workflows using our SAL. We also evaluated the efficiency of our solution
in processing diagnostic workflows over turbine signals in a controlled environment.
(See chapter 7 for details.)

In rest of this chapter we introduce our language , then we specify the details of

capturing analytical workflows and their semantics. Lastly, we define the formal
properties of the workflow language.

5.2 Workflow Generation using SAL

We now show how to use analytical expressions to compose workflows and to create
alert messages.



5.2 Workflow Generation using SAL

In the following we will consider well formed sets of analytical expressions, that
is, sets where each concepts is defined at most once and where definitions of new
concepts are assumed to be acyclic: if C] is used to define Cy (directly or indirectly)
then C; cannot be defined (directly or indirectly) using Cs.

A analytical workflow (or simply workflow) II is a tuple (S, IC, H) where S a set of
basic signals, K a KB, H a set of well formed analytical expressions such that each
concept that is defined in H does not appear in K.

Example 3. The running example program 11 = (S, K, H) has the following com-

ponents: signals S for sensors {SKNF_X01,SKNF _X02,SKNF X03,SKNF _X04},
KB K that consists of azioms from Equations (4.1) and (4.2), and H that consists
of expressions from Equations (4.4) and (4.5). A

5.2.1 Message Rules

On top of workflows IT SAL allows to define message rules that report the current
status of a system.

Formally, they are defined as Boolean combinations of analytical expressions:

msg(m) <— D, where D := C | not Dy | Dy and Ds.

A message rule is a rule of the form, where C' is a concept and m is a (text)
message:
message(m) = D.

Example 4. Using Fquations (4.4)—(4.5) we define the following message:

message(“All car doors OK”) = (5.1)

DoorsLocked and PressureUp.

The message intuitively indicates that the doors are functioning and locked. A

Now we are going to define the semantics of the analytical workflows.

5.2.2 Semantics of Workflow and Firing a Message Rule

We now define how to determine whether a workflow II fires a message rule r.

Let IT be a workflow and ‘r : message(m) = C’ a message rule. We say that II
fires message 1 if for each interpretation Z = (Zypoy, Zs) of I, where Zpo,, interprets
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objects and their relationships (like in OWL 2) and Zs—signals. it holds CZror =£ (),
that is, the concept that fires r is not empty. Our workflows and rules enjoy the
canonical model property, that is, each workflow has a unique (Hilbert) interpreta-
tion [17] which is minimal and can be constructed starting from basic signals and
ontology by following analytical expressions. Thus, one can verify CZror £ () only
on the canonical model. This implies that one can evaluate SAL workflows and
expressions in a bottom-up fashion. We now illustrate this approach on our running

example.

Example 5. Consider our running workflow I from Example 8 and its canonical
interpretation L. First, for each query @ in M we evaluate () over KB K by
computing Q™. In our case, the only query is MainCarDoors that collects all sensor
1ds for a particular train. Then, we evaluate the expressions in M following the
dependency graph of definitions. We start by evaluation the expression from Equa-
tion (4.4), again in a bottom-up fashion. Concept MainCarDoors™ contains sensor
1ds: SKNF_X01,SKNF _X02, SKNF X03 and SKNF _X04. At the same time, those
sensors have analytical functions assigned from ST, Let us call them fi, fa, f3 and
f1. Ezpression sum MainCarDoors computes a new signal, say ss, by taking sum of
fi, f2, f3 and fy at each time point. After this, it eliminates all values of s5 that
are # LockedValue. Similarly, we compute signal transformations for the expression
from Equation (4.5). Finally, we use those two expressions to evaluate the message
rule from Equation (5.1). If there exists at least one signal in evaluated erpressions

corresponding to Equations (4.4) and (4.5), then the message is fired.

5.3 Formal Properties of Semantically driven
Analytical Workflows

In this part, we study the formal properties for workflows generated using our SAL

language.

First, we assume from now that signal functions are given on the input as a step

functions over intervals (which is the case in the running example).

Second, we would like to ensure that our workflows in SAL indeed allow to be rewrit-
ten using OBDA techniques. This condition requires more technical explanation and

we discuss it in more detail in the next paragraph.

Third, we want to understand what is the upper bound of the complexity of our
problem. In particular, we measure the complexity of the problem in the size of
two main components: the size of workflow/program and data. We expect that size
of the data largely dominates the size of workflow, and while the data can be huge
(several GBs) that size of program can be significantly big (several thousands of

rules) thus both measures are relevant.
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First Order (FO) rewritability The formal condition that determines if the work-
flow language is suitable for OBDA is called First Order (FO) rewritability. In this
part we define it formally. We encode the specification of firing a message in SAL
workflow into fact-entailment problem over an extended version of recently intro-
duced non-recursive metric Datalog [103], Datalog,, MTL . The reason for doing this
is twofold. First, Datalog, MTL (inspired by a well-studied Metric Temporal Logic
[104]) provides a natural way to model rules that reason over time intervals. Second,
Datalog,, MTL is a suitable language for OBDA setting, that is, it has been show
how to rewrite queries over the rules in Datalog,,MTL into standard SQL over the
sources [103].

Still, Datalog,, MTL cannot be immediately related to our language since it does
not support aggregates and some other logic constructs that we need for our en-
coding (in particular, functional symbols, negation and aggregates [102]). So first,
we extend DatalogMTL with functional symbols, aggregation, etc. under reasonable
restrictions, without increasing the complexity. Then to show that our problem is
FO-rewritable we do the following encoding. Given a workflow Il and a message
rule » we create an extended non-recursive Datalog,,MTL i, and a proposition
m,. only such that: II fires r iff Xy “entails” m,.. A corollary of this gives us (i) that
our language is suitable for OBDA setting (follows from the encoding); (ii) ways to
reformulate our workflows and rules into SQL queries (extending the principles in
[103]).

5.3.1 Extended DatalogMTL

In this part we introduce our extension of DatalogMTL. At this moment we only
briefly introduce the main constructs of the workflow.

A datalogMTL program, X, is a finite set of rules of the form
AT — A NN A or LA A ANA,

where A7 is an atom that does not contain any ‘non-deterministic’ operators $,, <,
U,, S,, negated atoms, or aggregate operators.

For our purposes it is sufficient to have non-recursive programs. Informally, that
are programs where dependency (direct or indirect) between predicates is acyclic.
In fact, it is not trivial to understand how one would even define recursion in case
of aggregates and negation. Therefore, we only consider extended DatalogMTL
program that are non-recursive.

Finally, every satisfiable DatalogMTL ¥ program with database D has the canonical
(or minimal) model of II and D, M p. As usual, the most important property of
canonical model is that if a fact holds in canonical model then it holds in any other
model.
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5.3.2 Encoding into Extended DatalogMTL

In this part we provide full specification of the encoding.

Let (S,K,H) be an SAL workflow. We define a corresponding extended Datalog
MTL program (Dg k., I13) where temporal facts Ds x encodes S and K and program
T3 encodes expressions H in the following way.

For each basic signal s = (o, f5) in S:
o if fi(t) = v we add value(s,v)Qt to Dg x, and
e if 0, is an answer of @) over KB K then we add Q(o0s)@Q(—o00,+00) to Ds k.

We observe that encoding of signals as a finite database instance is possible due the
fact that we assume signals to be step functions.

Workflow Il is constructed from H following the encodings in Table 4.2. The
encoding is obtained by using a unary predicate 7o for each analytical expression C'
and binary predicate value which we describe in the next paragraphs. It is important
to note that these predicates are interpreted not like FO-predicates but using point
based semantics (e.g., 7¢(0) is true or false for a constant o at a given time point t).
For detailed semantics of such rules see [103].

More formally, for a signal s = (os, fs), the fact 7=(04) is true at a time point ¢ iff
(i) o € CT and (ii) fs(t) is a real number. Condition (i) simplifies the encoding
since we do not need to define when a signal does not have a real value at a point;
otherwise we have to have the rules that encode the absence of a real value. Further,
we use functional symbols, e.g., fo, to generate fresh signal identifier. E.g., for a
signal s, fo(os) represents a new signal id obtained from s for the expression C.

To store the value of a signal at a time point we use the predicate value. That is,
value(og, v) is true at point ¢ iff f(t) = v.

The encoding rules for ¢rend(up) and trend(down) are based on intervals. For them
we introduce a parameter 9, a “small” real number, that we use to select an interval
around a time point. In theory, such parameter should converge to 0 to indeed
check the trend of a real function (in fact, one needs the first derivative), however,
in practice we expect that one can select such ¢ a priori (e.g., the length of signal
sampling since signals are step functions) that is sufficiently small to check the trend
of a function for a particular time point.
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5.3.3 Formal Properties of the Encoding

In this part we state the formal properties of the encoding and the most import
consequence: FO rewritability.

We do this in two steps. First we introduce two lemmas that characterize the
encodings of auxiliary predicates value, 7o’s and propositional pp’s. Then we use
them to show the main encoding theorem.

The following lemma establishes correspondence between a program and auxiliary
predicates value and 7¢’s.

Lemma 1. Let Il = (S,K,H) be an SAL workflow and ¥y = (Dss,1ly) be an
extended DatalogMTL program as defined above. Further, let T be the canonical
interpretation for 11 and let 9N be the canonical interpretation for Y. Then, for a
analytical expression C' and a time point t the following is equivalent:

o 57 € CT and f,(t) = v;

e M.t = 7c(0s) and M, t = value(og, v).

Proof. The proof (in the both directions of “iff”) is based on induction on the number
of rules that are required to generate expression C' starting from basic analytical
expressions. We show direction “<". The opposite one can be shown analogously.

Induction Base: In this case, C' is defined either with C' = Q or C' = {s1,..., 8}

Let us assume C' = @, and s* € C% and f,(t) = v. Since s is a basic signal, Dg x must
contain the fact value(os,v)@Qt. Moreover K = Q(os) hence according to the rule
1o(x) < Q(z), value(z,v) we have that 9, ¢ |= 7¢(0s). Since, value(x,v)Qt € Dg x
we also have that 9, ¢ = value(os, v).

Assume now that C' = {s;,...,s,} and s = s; for some i. Then it must be s* €
CT. Next, let us assume that f,(t) = v. Since s is a basic concept, we have
that value(o,,v)@t is in Dg k., and thus M, ¢ |= value(os, v). Further, following the
encoding rule for C, 7¢(z) < value(z,v), we have that 9, ¢ = 7¢(0s).

Induction Step: Consider now that C is an expression that is created by other
expressions in at most n+ 1. For example, let us assume that C' < C : duration(>
,t"). Induction step for the other rules can be shown analogously.

We assume that s € C% and f,(t) = v for some ¢ and v. Since C is created
from C) then it must exists s; such that oy, = fo(os,) and f5, () = v for some
interval I that contains ¢ and is longer ¢. Since, 'y is created in at most n steps by
induction hypothesis we have that 9, ¢ = 7¢,(0s,) and M, t = value(os,,v). Now
we analyze the encoding rule 7¢(fe(x)) <= o0 Blow 7¢, (). Intuitively, the body
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of the rule evaluates to true for some x if there exists a time point in the “past”
of t (expressed with condition ©p ) contained in an interval of size ¢ (expressed
with condition ©y ) such that on that interval 7¢, () is true, i.e, M, t" = 7¢,(2)
for all t” € I. Since I is such interval for which 7, (0s,) is true, we have that
encoding rule fires and makes 7¢(fs(0s)) true at point ¢, i.e., M, t = 7¢(fs(0s,))-
Furthermore, from the rule value(fo(x),v) < 7o(fo(x)), value(z,v) and the fact
that M, t = 7o(fs(0s,)), value(sy,v) it holds that 9, ¢ = value(fo(os,),v). This
concludes the proof. O

The following lemma defines correspondence between a Boolean combinations of
analytical expressions and their encoding rules.

Lemma 2. Let Il = (S,K,H) be an SAL workflow and ¥y = (Dsx,ly) be an
extended DatalogMTL program as defined above. Further, let T be the canonical
interpretation for 11 and let 9N be the canonical interpretation for YXy. Then, for a
Boolean combination of analytical expression D we have that the following is equiv-
alent:

o DT is true;

o M. t = pp for all time point t.

Proof. The proof is based on induction on the size of the Boolean combination that
constitutes D.

Induction Base: We assume D = C' for complex expression C' and assume D7 is
true. Then there must exists a signal s such o, € C% which has at least one value v
at some time point t. From Lemma 1 we have that 9, ¢ = 7¢(0s). Thus, from the
encoding rule pp < 7¢(x) we have that 9, ¢ = pp.

Induction Step: We prove induction step for the case D = Dy and D,. Similarly, it
can be show in case D = —D;.

Assume that D is true in Z, then also D; and D, are true. Since D; and D, are
constructed in less steps then D by induction hypothesis we have that 9, ¢ |= pp,
and M, ¢t = pp,. Hence, M, t = pp. ]

For an extended DatalogMTL program X, ground atom A and a time point ¢ we
define that ¥ = AQt for the canonical model 9 of ¥ it holds M, ¢ = A Then,
directly from Lemmas 1 and 2 we have the following theorem.

Theorem 1 (Encoding Theorem). Let I1 be a processing workflow and r a message
rule. Let Yp the extended DatalogMTL that encodes 11 as described above and let
the grounded propositional m,. be the head of DatalogM'TL rule encoding r. Then the
following holds:

II firesr iff Xp | m,.Qt, for any time point t
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5.3.4 Consequences of the Encoding Theorem

In this part we analyze the direct consequences of the encoding theorem.

First, we observe is extended DatalogMT'L program X is a non-recursive one. It
is not hard to show ideas of Theorem 5 in [103| that new extended DatalogMTL
will preserve computational properties required for OBDA setting. Formally, that
means that data complexity [23] for the fact-entailment problem is in AC” in data
complexity.

The second observation is that we can extend rewriting techniques developed for
DatalogMTL in [103| that allow us to rewrite our rules into standard SQL. More
involving part of rewriting lies on rewriting algebra of intervals, and for more details
we refer [103]. Rewriting that includes functional symbols, negation, aggregation,
and built-in arithmetic can be done can be done straightforwardly.

Let ¥ be an extended DatalogMTL program, D a set of facts and A an grounded
atom. As usual, ¥, D = AQt for some time point ¢ holds if for the canonical model
M of X UD it holds M, t = A. Decision problem success is the problem of checking
whether X, D = AQt. We refer to program (resp. data) complexity if all parameters
are fixed except the program (resp. set of facts).

Lemma 3. Success problem for extended DatalogM'TL programs is PSPACE-
complete in combined and program complezity and in AC® in data complezity.

Proof Idea. Hardness follows from Theorem 5 in [103|. To show membership it is
sufficient to observe that each derivation in an extended DatalogMTL (as in regular
Datalog program) program is of length polynomial in the size of the program. Thus
it is in PSPACE. ]

From Lemma 3 and Theorem 1 we have the following.

Theorem 2. The problem of checking whether a message rule is fired is PSPACE-
complete (it is complete already in size of analytical expressions and workflow), and
it is in ACY in the size of signal data and ontological data.

5.4 Analysis of Workflows Generation using SAL

There are certain challenges with management of analytical workflows. Development
of a diagnostic or analytical workflow is typically a collaborative and open ended
process by a group of diagnostic engineers. Thus, the engineers may introduce mod-
els that either repeat what other models already express or contradict them, i.e., by
stating that purging is over while the other rule model says that is it in progress.
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The former problem of redundancy in diagnostic analytics affects the performance
of diagnostics and the latter of inconsistency among models makes diagnostic re-
sults counter-intuitive and unreliable. Moreover, the complex the model gets, the
harder it becomes to trace the provenance of the messages it fires which again affects
the reliability of diagnostic results. Thus, there is a need for semi-automatic work-
flow analysis support that includes detection of redundancy and inconsistency in
analytical workflows, as well as computation of provenance for diagnostic results.

In order to address the above mentioned challenges, we propose how to execute
semantic workflows, verify redundancy and inconsistency in workflows, and to com-
pute provenance that explains the reasons for analytical results.

Algorithm 1: Firing a message

Input: program Il = (D, ¥), and a message msg(m) < D
Output: true if IT = m, false otherwise

Step 1 For each concept C in O do classification [23], that is, compute all sub
concepts sub(C') of C' implied by O, i.e., C' € sub(C) iff “O = C" C C”.
Step 2 For each signal expression C' in Y, compute CIC AN by

2.1 Replacing each C' in 3 with all sub classes sub(C') in all possible ways.
Let X be the new set of rules.

2.2 Then evaluate each of the expressions by computing ICAN of ¥y in a
bottom-up fashion starting from D.

Step 3 Return true if DIC AN # (); false otherwise.

5.4.1 Redundancy of workflows

One of the critical problems of the workflow analysis is redundancy. To analyse
this problem, the simplest test is to understand whether one message from a certain
workflow is always fired when another message is fired.

In order to make sure that redundancy check is data independent, that is, it holds in
general and not only for a given data set (which may change), we check redundancy
only on the analytical layer of a program. Formally, given messages m; and my we
say that mq is implied by mqy over the analytical layer X, written X = my = mg, if
for every data layer D we have that if (D,X) = m; then (D, X) | mo.

This implication is closely related to the problem of query containment with aggre-
gates over constraints studied in database theory. Already query containment of
SQL queries without aggregates is a very difficult task (in fact it is undecidable).
Containment with aggregates has been partially studied in a limited settings [108],
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without negation and nesting. For this reasons, we simplify the definition of re-
dundancy by assuming that aggregates do not change the signal. This obviously
eliminates the problem of reasoning over aggregates and numeric functions (e.g., of
checking whether filterValue(>,20) = filterValue(>, 10) holds). Moreover, in order
to avoid exponential generation of new interval in signal rules, we assume that signal
functions are step functions over uniform size intervals and that signal expression
are following this interval granularity when defining new signals.

Under these assumptions, Algorithm 2 allows us to verify whether there is a redun-
dancy between two message rules.

Algorithm 2: Checking redundancy

Input: Workflow layer ¥, messages msg(my) <— D1, msg(ms) < Do
Output: true if ¥ = m; = my; otherwise false

Step 1: Unfold D (reps. D) following signal expression in ¥ into D} (reps. D})
such that it contains only basic concepts from the ontology.

Step 2: Unfold D] (reps. D)) further into DY (reps. Dj) following classification as
defined in Steps 1 and 2.1 of Alg. 1.

Step 3: Turn D] (reps. D)) in propositional Boolean formula ¢ (reps. ¢5) by
dropping signal operations, treating each concept as a propositional, and
treating and and not as logical operators.

Step 4: 1f ¢ N ¢l is un-satisfiable return true; otherwise false.

5.4.2 Consistency of workflows

Another important task in workflow analysis is checking if two messages from the
workflow are behaving consistently with their meaning.

In particular, we check whether for a given analytical layer we do not have the case
that two messages of an opposite meaning are fired at the same. For instance, we
want to ensure that we composed workflows such that our system is not firing that
“rotor is overheating” and “rotor is not overheating.”

Analogously to redundancy, we do such check independently of data, that quantify
consistency for any data layer. Formally, given messages m; and ms, that should
not fire simultaneously, we say that m; is consistent with mo over the rule layer X,
written X |= consist(mg, ms) if for every data layer D we have that if (D,Y) &= my
then (D, X) £ my and vice versa.

We observe that the consistency problem can be reduced to redundancy and vice
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versa. Namely, let my < D and my < not D, then ¥ | consist(my, ms) iff
¥ = my = mg. Hence, one can adapt Algorithm 2 for checking consistency.

5.4.3 Provenance of workflow

Finally, we consider another important practical task: when a message is fired a
diagnostic engineer would like to know the reason for this. For example, which
signals caused the firing.

In this case, we are interested in finding minimal w.r.t. set inclusion sub-workflow
of I that fire the message. Notice that there may exist several such minimal sub-
workflows. One of these can be computed by iteratively removing all superfluous
axioms, until only relevant ones remain [109].

5.4.4 Computational Complexity

Now we analyze the computational complexity of the following tasks: Firing, Re-
dundant, Consistency and Provenance. For Firing and Provenance, we distinguish
between data and combined complexity. Data complexity is the complexity of a
problem when all parameters are fixed except for the data layer.

The complexity results we obtained are summarized in Table 5.1. In the following
we provide intuitions for each of the tasks.

Following Algorithm 1 we prove that the problem of firing a message can be decided
in PTIME in combined complexity for the following reasons.

i For each concept classification in OWL 2 QL can be computed in PTIME and
each basic concepts has at most polynomial many sub-concepts in OWL 2 QL.

ii Each filter and arithmetic operation in signal expressions can be computed in
PTiME. Only the PTIME complexity of alignFilter is not obvious because it
is operating on two concepts at the same time, however, since it outputs only
signal from the first concepts concatenating such filters is still in PTIME.

iii Finally, evaluating Boolean expressions is in also in PTIME and thus it is firing
a message as well.

The problem of firing is in AC? in data complexity since we can create one (large)
first-order logic query [23| by unfolding Boolean expressions, signal expressions and
ontology as in Algorithm 2, and then checking firing as query evaluation.
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Complezity Data  Combined
Firing ACY PTIME
Redundancy n.a. CONP-c
Consistency n.a. CONP-c

Provenance PTIME PTIME

Table 5.1: Computational complexity of our reasoning task. The complexity means that
our problem is in that class; -¢c means that the problem is complete for that
class.

Regarding redundancy and consistency, the membership in CONP follows from the
algorithm, and the hardness from CONP- hardness of un-satisfiability problem for
Boolean formulas.

For provenance, the PTIME upper bound for deciding firing of rules implies that
one minimal sub-program that fires them is computable also in polynomial time.
However, computing all of them, or just those of minimal size is known to be a
harder problem [110].
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6 Semantically-defined Analytics
System

In this chapter, we first present the architecture of our Semantically-defined Ana-
lytics system, describe its deployment in practice.

The material in this chapter has been published in [98, 105, 107].

6.1 System Architecture

The main functionality of our Analytics-aware Semantic Diagnostics system for in-
dustrial use-cases is to formulate SAL analytical workflows using the analytical func-
tions, to deploy them in various components of an industrial use-cases, to execute
the workflows in these components, and to visualise the results of execution. We
now give details of our system by following its architecture in Figure 6.1. There
are four essential layers in the architecture, two of which, application and OBDA,
reside in the centralised element of the architecture, and two, analytics execution
and data, reside in individual components of the industrial system. Our system is
mostly implemented in Java. We now discuss the system layer by layer.

Application Layer

On the application layer, the system offers two user-oriented modules. The first mod-
ule allows engineers to author, store, and load diagnostic workflows by formulating
sets of analytical workflows in SAL and data retrieving queries. Such formulation is
guided by the domain ontology (see Chapter 3) stored in the system. In Figure 6.2
(top-left) one can observe a screenshot of the semantic language editor which is em-
bedded in the Siemens analytical toolkit. Another module is the semantic Wiki that
allows among other features to visualize signals and messages (triggered by seman-
tic workflows), and to track deployment of workflows in equipment. In Figure 6.2
(top-right) one can see visualisation of signals from two components of one turbine.
Analytical workflows formulated in the application layer are converted into XML-
based specifications and sent to the OBDA layer, which returns back the messages
and materialised semantic signals, that is, signals over the ontological terms. In
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Figure 6.1: Architecture of Analytics-aware Semantic Diagnostics system for industrial
use-cases.

Figure 6.2 (bottom) one can see an excerpt from an XML-based specification. We
rely on REST API to communicate between the application layer and the OBDA
layer of our system and OWL API to deal with ontologies.

Note that during the course of the thesis, we have developed an extension to the ex-
isting Siemens diagnostic rule-based editor and a dedicated wiki-based visualisation
monitor for semantic data signals. Also note that we use the latter for visualising
query answers and messages formatted according to our proposed domain-ontology
and stored as RDF.

SAL driven OBDA Layer

The OBDA layer takes care of transforming semantic workflows written in SAL into
XML-specification with appropriate SQL and program scripts. This transformation
has two steps: rewriting of workflows and queries with the help of ontologies (at this
step both workflows and queries are enriched with the implicit information from the
ontology), and then unfolding them with the help of mappings. For this purpose
we extended the query transformation module of the Optique platform which we
were developing earlier within an FP7 European project called Optique [81]. The
OBDA layer also transforms signals, query answers, and messages from the data to
semantic representation.
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Figure 6.2: SPR editor (top-left), Wiki-based visualisation monitor for semantic signals
(top-right), and a fragment of an XML-based specification of an workflow
(bottom).

Workflow Execution Layer

The workflow execution layer takes care of planning and executing data-driven an-
alytical functions and queries received from the OBDA layer; and it is deployed in
each piece of equipment that participates in the industrial equipment. If the received
functions are in for example the drools rule language then the executor instantiates
them with concrete sensors extracted with queries and passes them to the Drools
Fusion, the analytical rule engine currently used at Siemens. If the received func-
tions are in SQL then it plans the execution order and executes them together with
the other queries. Likewise, we support R scripts and KNIME analytical framework
to execute respective analytics.

Data Layer

Finally, in the data layer there is all relevant data, e.g., equipment (train or turbine)
design specifications, historical information about services that were performed over
the equipment, previously detected events, and the raw sensor signals.

6.2 Deployment in Industrial Environment

For evaluation purpose, we have deployed our Analytics-aware Semantic Analytical
system at Siemens power generation to analyze gas turbines equipment respectively.
We integrated the system with four types of data sources namely Teradata, MS SQL,
SAP HANA and IBM Maximo. More details are to follow in the case study section.
For analytical processing we connected our system to the Siemens deployment of
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Drools Fusion, R analytics, KNIME and Python platform. An important aspect of
the deployment was the development of a domain-specific, analytical ontology and
mappings which are adopted for each use-case. Details of the deployment application
(see Fig.6.3) for power generation known as OpereX application is discussed below:

OpereX Suite Version 1.7
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Figure 6.3: OpereX deployment suite for Semantically defined analytics for power gen-
eration business.

The following building blocks are part of Siemens power generation OpereX appli-
cation:

1 There are four types of data sources namely Teradata, MS SQL, SAP HANA
and IBM Maximo configured for contract related data, operational profile data,
turbine design data, sensor data and maintenance related data.

2 The second component is our proposed solution where store the
model /ontology and managing how the data should be fetched and stored in
the graph database by using R2ZRML mapping language. The steps are:

— Data sources i.e connections to other databases from where you want to
fetch the data.

— Mappings, how to fetch the data from the data sources and map them
into the graph database according to the ontology.

— Providers, runs the different mappings, fetches the data and store the

OBDA data in the graph database. We already have a model/ontology
finished, we use that to import data from the data sources and manipulate
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the columns and rows from the different tables to store them in our
Blazegraph which is a graph database.

3 Blazegraph is a graph database that uses triples to store all the OBDA data
from the data sources. On the Blazegraph instance a script (Provider loader
deamon) is run to fetch data from SOMM once a provider has been run. The
script takes that data and push it to the Blazegraph graph database.

4 This is a Windows console application (.exe) that takes the data from Blaze-
graph and creates a new SQL cube with all the data and stores it inside a
SQL-database in Mosaic.

5 The SAL workflow is a web service that visualize the data from Blazegraph
as well as retrieving the data. This way SAL users doesn’t need to know
any database languages like CQL or SPARQL to get data. The user is able to
execute analytical task and to generate semantic workflows using SAL language
constructs. The implementation details are hidden and the user does not need
to know how the algorithms are executed. This web service is using Siemens
authentication application, and SMTP for email.

Scheduling of processes and applications The purpose and meaning of the Op-
ereX suite is to provide data from different data sources and run analytics on the
data for different users. The users can access the data via Tableau dashboards and
via the SAL Editor, see Fig.6.2. Since the OpereX Suite is dependent of a contin-
uous data flow for getting the latest data we need to schedule the different scripts,
providers and analytical programs according to the OpereX suite overview above.
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7 Case Studies and Evaluations

In this chapter, we present details on three use-cases selected to evaluate our work
in an industrial setting. Firstly, we describe different analytical tasks, processes
and current challenges to execute and manage data analytics in three industrial
use-cases. Secondly, we present a number of evaluations conducted to determine the
quality and performance metrics of our proposed ontology model, SAL language and
semantic system. We also conducted evaluations to measure the effort to formulate
and process analytical workflows as well as produce run-time analysis for different
tasks and workflows for each use-case.

The material in this chapter is published in [100, 66, 111, 112, 113, 114, 115, 116,
117]

7.1 Case Description 1: Turbine Diagnostics

Siemens produces a variety of rotating appliances, including gas and steam turbines,
generators, and compressors. These appliances are complex machines and typically
used in different critical processes including power generation where each hour of
downtime may cost thousands of Euros. Thus, these appliances should be under
constant monitoring that requires an in-depth knowledge of their components and
setup (see Fig.7.1). Siemens provides such monitoring via service centres and oper-
ates over fifty such centres worldwide, where each centre is responsible for several
thousand appliances. Typical monitoring tasks of a service centre include: reactive
and preventive diagnostics of turbines which is about data analysis applied after a
malfunction or an abnormal behaviour such as vibration, temperature or pressure
increase, unexpected events, or even unexpected shut-downs of a unit is detected;
predictive analysis of turbine conditions which is about data analysis of data streams
received from these appliances. We now discuss these monitoring tasks in detail and
present requirements to enhance them.

Reactive and Preventive Diagnostics: is usually applied after a malfunction of
a unit has occurred, e.g., the abnormal shut-down of a turbine. Complementing the
preventive diagnostic task which is performed before a malfunction of a unit, when
its abnormal behaviour is detected, e.g., high vibration or temperature increase.
Diagnostic tasks are triggered either when a customer sends a service ticket claiming
assistance or an automated diagnostic system creates such a ticket. Fig. 7.2 depicts
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Figure 7.1: Siemens SGT-800 Turbine model and its structural components [118].

a general process triggered when a service ticket arrives. We now discuss each step
of the process in detail.

Arrival of a service ticket. A service ticket typically contains information on when
a problem occurred and its frequency. In some cases the ticket isolates the location
of the problem in the appliance and its cause, but often it has no or few details.

An example of a reactive monitoring request from a customer is:

Example 6. Figure out why the turbine failed to start during the last five hours,
with the goal of checking that there will be no fault of the turbine. A

A typical preventive monitoring request could be:

Example 7. Will there be a failure of the turbine after the observed temperature
A

ncrease?

Data acquisition: Service engineers gather relevant data by querying databases
that are updated every hour, or on demand, and contain sensor and event data.
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In order to support data gathering, Siemens equips service centres with more than
4,000 predefined queries and query patterns of different complexity. Engineers use
the queries by setting parameters such as time periods, names of events or sensors,
sensor types, etc.

Based on the service ticket of Example 6, the engineer formulates the following
information need and has to find appropriate queries to cover it:

Example 8. Return the most frequent start failure and warning messages of the
gas turbine TO01 during the last week. Moreover, find analogous cases of failures for
turbines of the same type as TO1 in the last three months. A

Query result visualisation: Sensor data is visualised with the use of standard
diagrams, and event messages are presented as a list, i.e., as an Excel spreadsheet,
with timestamps and additional attributes.

Data preprocessing: The queried data is preprocessed using generic procedures
such as sensor check (i.e., whether sensor data quality is appropriate), threshold
and trend analysis. Independent from the concrete ticket, these preprocessing steps
are done manually, e.g., over the visualised Excel spreadsheets, or using specialised
analytic tools.

Data analysis: The engineer uses sophisticated diagnostic models and tools for
complex analysis, e.g., Principal Component Analysis or other statistical methods,
to detect and isolate the given problem based on the preprocessed data. Typically,
analytical tasks are executed individually for each ticket. The gathering and analysis
steps are often carried out iteratively, i.e., the results from one iteration are used to
pose additional queries.

Report preparation: This process terminates when an explanation for the prob-
lem in the service ticket is established. In this case the engineer provides the cus-
tomer with a report aggregating the result of the analysis and describing possible
further actions.

Predictive Analysis In predictive analysis, in contrast to the diagnostic process
described above, appliances are continuously monitored, i.e., without prior service
tickets, using online processing of the incoming sensor data. The other process
steps of predictive analysis are similar to the ones described in the previous section,
but have to be applied online to streaming data with minimal user intervention.
The purpose here is to analyse the current condition of an appliance by combining
operating information, system data, specifications of concrete product lines, and
temporal phases of operating regimes. This information allows to predict whether
some parts of an appliance should be repaired soon, assess risks related to the use
of these parts, and adjust maintenance intervals for each part by automatically
integrating this information into service scheduling, thus, minimizing maintenance
cost.
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For predictive analysis of turbines, the diagnostic engineer may want to be automat-
ically notified when a turbine shows repetitive start failures combined with increased
vibration values during its operating time.

This can be formulated as follows:

Example 9. Notify me if a turbine that had more than three start failures in the
last two weeks additionally shows abnormal vibration values in operative phases. /A

Challenges in practice The main bottleneck for diagnostics is the data gathering
part, which takes up to 75% of the overall diagnostic time. The main reason is
that finding the right data for analytics is very hard due to limitations of prede-
fined queries, complexity of data, complexity of query formulation, and limitation
to explicitly stated information. In Fig. 7.2 we schematically depict the complex

Machine configuration

Figure 7.2: Current state-of-the-art for turbine diagnostics.

process of data access that requires to determine the right DB location, then the
right schemata, and the corresponding data collectors and controllers deployed in
turbines. Moreover, often diagnostic tasks involve up to dozens of turbines and thus
this process should be done for each of them.

One example of Siemens turbine model (see Fig. 7.1 for example) has about 2,000
sensors constantly producing measurements. This data can be roughly grouped
into three categories: (i) sensor and event data from appliances; (ii) analytical
data obtained as results of monitoring tasks conducted by service centres for the
last several years; and (iii) miscellaneous data, typically stored in XML, containing
technical description of appliances, types of configurations for appliances, indicates
in which databases information from sensors is stored, history of weather forecasts,
etc. All in all the data is stored in several thousand databases having a variety of
different schemata. The size of the data is in the order of hundreds of Terabytes,
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e.g., there are about 15 GB of data associated to a single turbine, and they currently
grow with the average rate of 30 GB per day. At the moment there is no unified
access point to the Siemens data and it is required.

Existing predefined analytical tasks and workflows in the catalogue, about 4,000
workflows, are often not sufficient to cover information needs as they are often
either too general, thus yielding an overload of irrelevant information, or too specific,
thus not providing enough relevant analysis use-case. For gathering relevant data,
service engineers often have to use several queries and workflows and manually
combine their results. When this is not sufficient, existing workflows have to be
modified or new workflows should be created. To this end the engineer contacts an
IT expert and this leads to a complex and time-consuming interaction that takes up
to weeks. The reason why it takes so long is miscommunication, high workload of
IT personnel, complexity of query formulation, and long query execution times. In
average up to 35 queries require modification every month, and up to 10% of queries
are changed throughout a year. Moreover, several new workflows are developed
monthly. Therefore, flexible modification and definition of workflows is one of the
strong requirements for the improvement of the diagnostic process.

Predictive analysis requires the use of both static information from the past and
streaming information on the current status of appliances. Access to historical data
allows to detect, for instance, seasonal patterns. Continuous monitoring of the
streaming data provides prognosis for key performance indicators and countermea-
sures before a system shut-down occurs. Currently, service engineers do not have
direct access to streaming data. However, engineers often need to access event and
sensor data from several appliances, and stream processing for each related turbine.
One of the requirements for the predictive analysis is the possibility to integrate
sensor and event data from several turbines and diagnostic centres and provide the
use of analytical queries on such data sets.

In a nutshell, the current challenges consist of solutions structured per life-cycle
stage:

e Combining different dimensions of data is time-consuming and requires highly
specialised experts. This limits the level to which Siemens can leverage the
vast value of service and operational data.

e Limited access to data between individual parts of the product life-cycle.

e Siemens R&D experts spend at least 75% of their time on data gathering and
preparation.

e Lead time for R&D projects for component improvement is often 2 years or
more per component per turbine type.
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7.2 Case Description 2: Train Diagnostics

Trains (as in Fig.7.3) are predictable mechanical systems, which are controlled and
driven by software that has been carefully designed to gather, store and transmit
data deemed relevant to support train operation. Train software and maintenance
processes define data structures. Our goal is to use the structure in Mobility data to
improve data services at Mobility. Existing data-service systems are in place to 1.)
receive raw data from the train, 2.) extract and transform the data into relational
database tables, 3.) support statistical/machine learning analyses of the data and
visualization of the results.

Components

Bl Dynamic braking resistor W Diesel engine
Train-protection cabinet Battery box Bl Alternator

Bl Engine cooling plant W Fuel tank W Electric cabinet with central blower
Particle filter B Engine air intake system B Brake rack

Figure 7.3: Siemens Train - Vectron and its structural components [119].

Challenges in practice There are two significant challenges in the current state-
of-the-art solution. As a first, basic step, they solution lack full documentation of
Mobility meta-data. For example, knowing what type data exist? How it can be
analyzed? How do analysis change with software upgrades or configurations?

Consequently, the first challenge is to build interactive, browsable documentation,
which can be browsed by all data service stakeholders to establish what data exists
where, how it is linked and how it is analysed in existing data services. This is the
meta-data management component of the data and analytical concepts.
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The aim is to integrate heterogeneous data sets and find a logical relation between
them. For example, mapping between relational data in the data warehouse and
the data structure defined by train software. In other words, currently the data is
available to data service interfaces only in a relatively flat, high-level relational struc-
ture. Detailed information about the data structures defined by the train software
is available only through configuration experts by manual interactions.

For Example: Sensor data from a device is not as useful in isolation as it is with
a certain context. A context could be data from related entities or data about a
sensor environment. Context is required to answer questions like:

Example 10. How is diagnostic code zyz from data source A related to code abc in
data source B? Do they share triggering sensors? A
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_ten [ tofla | EE
Longterm trend analysis & diagnosis framework
Longterm data storage
Other data (e.g. written reports, weather data)

Datawarehouse

eg PIS Datahub Shortterm analysis & diagnosis EAM
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com@RL sls / operational DB guration
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improvement, e.g. algorithms, thresholds, rules

Figure 7.4: Downstream, shore-side I'T Systems flatten the train-software defined data
structures into relational databases, which provide only superficial links be-
tween data points.

While it may sometimes be possible to bootstrap a context from the data itself, e.g.
through clustering methods, it is preferable to define the context explicitly through
a logical model whenever possible. This is especially desirable when the data is
generated mechanistically by machines that are explicitly configured to send data
in a certain structure. To make data service output trustworthy and transparent,
the data structure configured into the hardware machines must be carried forward
to support the algorithmic output. Consequently, our goal in this case study is to
bring configuration information out of the data structures defined by train software
and up into a formal, logical data model that can be used to enhance analytical
engine reliability and improve confidence in algorithmic output.

The second and most important challenge is to delve deeper into the knowledge

models that are implicit in the train software, in engineering data and in maintenance
management systems. Benefits of such knowledge models for Mobility include
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Improved transparency in the data value chain,

Greater trust in analytical algorithm output

Ability to synchronise train software modifications with algorithms

Continuous improvement: a better understanding of how to develop train
software to support data services in the future

A basis for collaboration between train software engineers, data analysts and
maintenance managers.

The state-of-the-art solution for analytics adopted at Mobility today try to recover
the underlying knowledge models by a given set of diagnostic data in a flat, relational
database system. This approach is limited by the fundamental fact that correlation
does not imply causation. In the end there is no way to prove that a hypothesized
relationship is true. The estimates are guesses that live in a confidence interval that
must be quantified in order to estimate the dependability of data-service / analytical
output down the line. To the extent that an algorithm also operates within a certain
range of confidence, uncertainties about data-relationships begin to multiply with
uncertainties inherent in analytical output. This will be a problem wherever we
would like to rely on analytical algorithms to guide critical decisions where the error
margin must be as small as possible (for example because an incorrect outcome may
have safety-critical, commercial or reputational repercussions).

In our view, the only way to truly understand the causal relationships that lead to
the data to be analysed, is to embed structural information from the train software
directly into the data analytical systems. To do this, we must translate available
data structures into formal domain models which can then be linked to the data.

Our proposal(see Figure. 7.5) is to lift structure from the train software configura-
tion into an ontology and a triple-store. This structure glues existing relationally
organized data tables and other data sources more tightly via a deeper underlying
structure. Our proposed solution of consuming data and analytics through the on-
tology is is called Analytical-aware semantic system which is the topic of the thesis.
The outcome of our solution for mobility is:

e Data and analytical machinery is linked without having to be moved,

e Data can be accessed and analysed via a trusted, structural model, which
captures the mechanistically programmed relationships.

Details of the evaluations are present in the following sections.
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Figure 7.5: Industrial Analytical-aware Semantic Solution.

7.3 Case Description 3: Smart-grid Analytics

Smart Grid modernizes the traditional power grids with a two-way flow of electricity
and informational resources. These help in creating a distributed energy networks
as well as provide automated control over these networks. The real advantage of
adopting such advance management of networks enables real-time monitoring and
diagnostic services that ultimately helps in achieving the right balance of demand
and supply at all levels of grid components.

Challenges in practice Today, the I'T applications mainly manages the transmis-
sion and distribution of power. These are further sub-divided into discrete sub-
applications (e.g. load calculation). These sub-applications employ data-intensive
analysis and are treated individually. They capture a certain aspect of a grid (e.g.
energy efficacy) by utilizing corresponding models (e.g. linear regression) and mul-
tidisciplinary techniques such as machine learning, deep learning, etc. Likewise, it
requires integrated skill set from diverse fields, including, mathematics, statistics,
and machine learning, and domain knowledge to craft an individual analytical task
and to manage it. This means that for a different aspect of a grid, an analyst can
devise a variety of analytical tasks that would entail different data, modelling tech-
niques, and algorithms. An important class of such tasks that are commonly used
in practice allows

o filters, aggregates, combine, and compare signals coming from sensors installed
in a grid component and

e fire notification messages when a certain pattern in signals is detected.
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Figure 7.6: Smart-grid Snapshot [120].

The main challenge for automating analytics in most modern industrial grid system
are highly data dependent in the sense that specific characteristic of individual
sensors and pieces of equipment are explicitly encoded in the application program.
As the result for a typical task engineers have to write dozens of programs that
involve hundreds of sensor ids, component codes, sensor and threshold values as
well as grid configuration and design data.

For example, a typical base load power station has about 3000 sensors and a typical
task to determine its base load power output on demand requires around 160 signal
processing rules, most of which are similar in structure but different device specific
data values.

Thus, there is a need in industry for a higher level semantic language that allows
to express what the analytical task should do rather than how it should do it for
specific grid component. Such language should be high level, data independent, while
powerful enough to express in a concise way most of typical analytical tasks.

Our proposed solution address the above mentioned challenges and ease the inter-
action of grid components. In particular we rely on ontologies to define a novel
analytics-aware language and on reasoning over ontologies to foster execution and
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maintenance of analytical tasks. In a nutshell, we achieve the data access and in-
teroperatability of signal processing rules by providing:

e a semantic language that treats aggregations and other analytical functions as
first class citizens and allows to process signals (filter, aggregate, combine, and
compare signals) in a high level, declarative, and data independent fashion;

e semantic-driven grid programs that combine functions with grid knowledge
captured using ontologies and allow to express complex tasks in an abstract
fashion by exploiting both ontological vocabulary and queries over ontologies
to identify relevant information (such as sensor ids, subsystems and set point
values) about the grid components and devices.

Our proposed solution provides all these services mentioned above and have been
evaluated on publicly available data set from Government of Texas. Details of the
evaluations are presented in the following sections.

7.4 Evaluations

In this section, we present five different set of evaluations of our approach over three
industrial sectors. The first set of evaluation is ontology model related evaluation of
our proposed domain ontology. The goal of the evaluation is to verify the applica-
bility and reusability of our ontology models across different industrial use-cases.

The second and third set of evaluation analyzes the efficiency of our proposed on-
tology language and sytem compared to the state-of-the-art solutions and establish
convincing results for our approach.

The fourth set of evaluation is conducted to analyze the effectiveness of our approach
in terms of reduction in effort. We produce results for time it takes to make data
validation and query answering services accessibility to the domain experts using
our approach versus the state-of-the-art.

The fifth set of evaluations is runtime analysis of our approach versus the state-of-

the-art solutions to show the performance improvements in formulating analytical
task and workflows using our SAL.

7.4.1 Evaluation of Ontology Models

We assess the quality of our proposed solution by checking how good our ontology
covers the case study data sets and then how good our mappings cover the terms in
the data.
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Confidence and Coverage One of the most important quality check for any on-
tology is the confidence and coverage that reflects how well the ontology represents
the domain it models and its data is mapped to.

Method: To evaluate the coverage of the data by the ontology, we developed an
alignment method that comprises of two steps. Firstly we find a syntactic match
of the ontology terms with the domain data set. Secondly we perform a structural
comparison of neighbourhoods around these terms that have a syntactic match. The
alignment results in a set of pairs of matched terms together with a score showing
how well they match. For this purpose we used and extended popular approach of an
ontology alignment system LogMap. It was extended to perform both syntactic and
structural matching of ontologies together with the required alignment of ontologies
and data. The main challenge was to define the notion of a structural neighbourhood
of a data term in a set of conjunctive queries.

However, to meet our experiment requirement, we introduced the following notion:
given a set of data D and a term t, its neighbourhood in D is the set of all terms
t0 occurring in some Q belongs to D that contains t, together with the surrounding
sequence of terms that is common in all such Q. We performed the coverage as-
sessment separately for the state-of-the-art ISO 15926 and our developed TechOnto
ontology from each of the three datasets i.e. turbine, train and smart-grid. Fi-
nally, together with three domain experts we performed a manual assessment of
each matching for classes of each domain-specific data set. The manual assessment
contributed to the class matching that are correct from the domain expert point
of view. We termed such cases as true positives. The incorrect class matching are
termed as false positives. The class which are ambiguous and where domain experts
did not reach a conclusion are termed as semi-positives.

ONTOLOGY CONFIDENCE
TechOnto Ontology ISO 15926 Ontology
74.00% 73.00%

69.00%

63.00%
59.00%
56.00%

TURBINE TRAIN SMART GRID

Figure 7.7: Confidence evaluation of the Ontology w.r.t three data sets represented.

Results: The results of the matching are in Figure 7.7, it describes the confidence of
the data terms by ontologies: the three show the coverage of classes by, respectively
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ISO and TechOnto ontologies. The results are comparable of both the ontologies
because of high generalization of the ontology terms together with the support of
synonyms. The results of our manual assessments are also in Figure 7.8. For exam-
ple, manual assessment of coverage of turbine classes by the ISO ontology gave 15%
of true positives (they are correct for domain experts), then, 24% of semi-true pos-
itives, and 20% are false positives (the matches are wrong for domain experts). In
the case of our ontology, ones that were matched to the data terms are 31% of true
positive for turbine data sets. In case of trains, TechOnto gave 23% of true positives
as compared to 18% of correct matching for ISO ontology. Also the false positives
are of higher number for the state-of-the-art ontology. The same scenario resulted
for smart-grid use-case. The reason behind a good fit of TechOnto ontology is use of
high level of generalization especially in case of system and component hierarchies
and analytical concepts. Most of the smart grid and train data set reflected such
relations. However, the coverage can further be improved by enhancing the model
for geo-spatial and information entity related concepts such as documents, plans.
Nevertheless, it is important to note that the matching results are highly depended
on the type of selected data sets and domain expert competence.

Accuracy Accuracy is yet another important evaluation criteria to assess the qual-
ity of the ontology model. Tt determines if the asserted knowledge (i.e. the mapped
data) in the ontology agrees with the expert’s knowledge about the domain. A
higher accuracy typically results from correct definitions and descriptions in the
ontology data.

Method: Typical the concept of error rates such as word or concept-error rates
are used to determine the accuracy of an ontology model. In our work, we also
determine error rates for each of our use-case driven task evaluation. Following are

the definitions for error rate in our scenario:

e Superfluous concepts e.g. is-a and semantic relations are considered as inser-
tion errors.

e Missing concepts, is-a and semantic relations are treated as deletion errors and
e Off-target or ambiguous concepts are known as substitution errors.
Given appropriate tasks which are basically defined as semantic queries posed by the
domain expert and maximally independent query translating algorithms operating
on the ontology in solving these tasks. Table 7.9 presents an overview of error rates
against which we determine our accuracy index.

According to our definition, we devised an approach stated as follows:

e One or more ontologies can be evaluated against a given user query and their
response in terms of performance can be determined.

113



7 Case Studies and Evaluations

ONTOLOGY COVERAGE
OF TRUE POSITIVE

W TechOnto Ontology W ISO 15926 Ontology

31.00%
27.00%
23.00%
18.00%
15.00%
I 13.00%
TURBINE TRAIN SMART GRID

ONTOLOGY COVERAGE
OF FALSE POSITIVE

m TechOnto Ontology W ISO 15926 Ontology

31.00%

26.00% 26.00%
20%
15.00%
I 12.00%

TURBINE TRAIN SMART GRID

ONTOLOGY COVERAGE
OF SEMI-TRUE POSITIVE

m TechOnto Ontology W ISO 15926 Ontology

24.00%

17.00%

13.00%

0.00% 0.00% 0.00%

TURBINE TRAIN SMART GRID

Figure 7.8: Coverage evaluation of the Ontology for true positives, false positives and
semi-true positives.
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level insertion deletion substitution
1 irreverent concepts | omitted concepts | ambiguous concepts
2 158 100 coarse 15a too fine 1sa too polygamous
3 irreverent relations | nussing relations | indirect relations

Figure 7.9: Overview of the error rates.

e Then based on the query results, one can count the insertion, deletion and
substitution errors,

e Based on error rates , one can improve the ontology, and

e Later re-evaluate the query results with the improved ontology which ulti-
mately should improve the performance.

We evaluated our proposed ontology model using the error rate definitions as de-
scribed above and in Table 7.9. If correct relation was found against the corre-
sponding concept in the ontology, we mark it as accurate match. For counting
the inaccuracies, we counted the semantic relation error rates as described in Table
7.9.

The accuracy is defined as the number of correctly classified instances and is
computed as the total number of instances minus the total number of inaccurate
matches, where inaccurate matches belong to deletion, insertion and substitution
error types.

ONTOLOGY ACCURACY

TechOnto Ontology ISO 15926 Ontology

87.40%
83.40%

76.31%

53.24% 53.30%

23.00%

TURBINE TRAIN SMART GRID

Figure 7.10: Overview of ontology model accuracy of TechOnto and ISO 15926.

Results: As compared to the ISO 15926 standard we obtained the accuracies as
shown in Table 7.10. The 53.24% for turbine case indicate clear cases where a perti-
nent (at least for some queries) relation was not modelled in the ontology. Whereas
for train and smart grid are accuracies are better for TechOnto ontology. One
can easily improve the model by populating the improved model and re-evaluating.
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However, this corresponds more to an engineering perspective where bootstrapping
approaches are popular. However, it can be semantically weak model and less ex-
pressive. A more significant and interesting outcome of such ontology evaluation
concerns a methodology to make such a schema more general and scalable across
different use-cases. It is our aim to demonstrate that such evaluations are hard to
determine the quality of the model in general. Domain experts can easily drive here
to build an accurate model by annotating domain descriptions and their view of
the world. In a bigger picture, one or more domain ontologies can be aligned and
/ or reuse fragments from other models to improve interoperability and reusability.
Thus, we conclude that our proposed TechOnto ontology has better accuracy than
ISO standard ontology as it accomplishes the domain-specific queries better and can
be aligned across multiple domain models.

Precision and Recall Precision is defined as total number of correctly found over
whole knowledge defined in ontology, whereas Recall is total correctly found over all
knowledge that should be found. We consider for all our three use-case sets, their
data description Gw and semantic expand set G's in order to evaluate our proposed
ontology and get the precision and recall index.

Method: We use the state-of-the-art ISO 15926 ontology to conduct the semantic
search on ontologies and determine its effects on different ontologies. We used the
information sources in case-study section to ensure knowledge consistency. Here,
natural language processing algorithm has been employed to retrieve triples for
the use-case data sources. Then we merge the synonyms in tuples based on their
linguistic similarity of vocabularies and finally we get the connected ISO ontology.
We created a sample test set of 150 data instances from each case study data sources
and defined them as searchable objects. According to statistical analysis, more than
95% of the users usually enters 14 keywords to search an object. 13 keywords in
each test set was sampled again to be imported in both our proposed TechOnto
ontology as well as ISO ontology. Then we build subsumption hierarchies within 23
jump and associated direct properties with keywords in ontologies. This way, we
were able to develop two semantic expanded sets of our TechnOnto ontology and
ISO 15926 ontology. Then we collect all vocabularies in one data description as Gw
and calculate the precision and recall.

Results: We calculated the average values of 150 data instances, and determine
their precision-recall indexes as presented in Table 7.11. Based on Table 7.11, we
got the following conclusion. We proved that if the same ontology is used then the
precision remains the same and this is because of increase in keywords. The precision
of TechnOnto ontology is 11% higher than that of ISO 15926 ontology in turbine
use-case. Similar results are found in case of recall, that increases with increase in
number of keywords. However, in the case of recall there is a slow decrease in growth.
Nevertheless, we found that both ontologies have constant recall in cases where we
use same number of keywords. Results are different in case of precision. Due to the
use of linguistic similarity, some irrelevant concepts were inherited. For example:
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Figure 7.11: Overview of precision and recall of keywords from TechOnto and ISO 15926.

device-has-name-is-sensor and location-has-name-is-china. The correct inheritance
should be device-has-name, name-is-sensor, location-has-name, and name-is-china.
Now, because of linguistics based merging, these concepts name then the sensor
inherited device and location. This is the sole reason in decline of precision index.
Whereas, because of increase in parent-child concepts, we get an increasing recall.

7.4.2 Evaluation of Ontology Languages

In this section, we evaluate features of the state-of-the-art ontology languages against
our proposed language that are relevant w.r.t. data integration, analytical processing
and domain-specific semantics. Table 7.12 summarizes the results of our evaluation.
Details of each language is discussed as follows:

In order to assess our proposed language capabilities and functionalities, we have
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caL ICQEL IC-SPARQL STARQL DatalogMTL ISAL
Data Model RDF streams RDF streams RDF streams RDF streams RDF streams RDF streams.
Union, Join, Optional, Filter Yes Yes Yes Yes es es
IF Expression No No Yes Yes es es
|Aggregate Yes Yes Yes Yes No es
|Analytical functions No No Yes Yes No es
Property Paths No No Yes No No [No
Time Windows Yes Yes Yes Yes es es
Historic data No No No Yes es es

RDF stream RDF stream DSMS based external query external query lexternal query

processor processor levaluation with processing processing [processing
Execution triple store

\Adaptive query  |Adaptive query [Static plan Static algebra Static algebra |Static algebra

processing processing loptimization optimizations, host |optimizations loptimizations
Query Optimization loperators loperators evaluator specific

'Stored linked data [Stored linked data |Internal triple store |Data source Data source [Data source
Stored Data dependent dependent [dependent
Reasoning No No RDF entailment 'Yes (DL-Lite) es (DL-Lite) es (DL-Lite)
Maturity High High Low Low Medium Medium
Event Pattern Expressiveness High High Medium Medium Low High
Conceptual Coherence Low Low High Medium High High
Dynamic Rules Low Low High High High High
Heterogeneous knowledge sources Medium Medium Low Low Low High

Figure 7.12: Comparision of state-of-the-art and our proposed language SAL.

extended and conducted our comparative analysis for all relevant semantic languages
(that we are aware of). The results are shown in Table 7.12. To our conclusion,
generally all these languages are supporting basic functionalities like union, join,
optional and filter, some of them (including STARQL) have already incorporated
SPARQL 1.1 expressiveness with TF clauses, aggregations, arithmetic expressions
and more. In addition to this, all of them have limited support of temporal windows
which is an important feature while analyzing signal data streams.

The table presents specific streaming capabilities as well as operators of each se-
mantic language. Here, we can distinguish between two distinct groups of query
languages that perform differently in the management of time and of temporal con-
cepts and their operators. Omne of the first group of languages allows access to
timestamps by functions on each triple or objects within windows. Such languages
include C-SPARQL, and STARQL. However, STARQL is a non-reified version with
a semantics of temporal concepts and states whereas C-SPARQL uses an in-between
approach offering temporal functions on objects for retrieving their timestamps. C-
SPARQL could generally easily lead to inconsistencies, in cases where an object
occurs several times inside a window in different temporal states.

On the other hand, there exist group of languages that are developed to cater tem-
poral sequences and their specific sequencing operators. Such languages include
datalogMTL, STARQL and our language SAL that can easily support applications
of complex event processing (CEP).

With recent adoption of Semantic Technologies, these languages offers several new
operators with functionalities that are not supported by any other state-of-the-art
language formalism. For example, they support functionalities of querying historic
static data as well as support comparision operators to analyze live data streams.
datalogMTL is capable of synchronizing different kinds of input streams (by using
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different kinds of window widths and slides) by using one or more pulse functions.
This allows to have a a regular query output for possibly asynchronous input. More-
over, with an integration of optimized UDFs to ExaStream (such as an optimized
version of the correlation function), STARQL and our language offers foundational
feature set to implement analytics driven OBDA approach. Most of semantic lan-
guages mentioned above rely on native implementations of query processors. For
example, CQELS reimplements functionalities, which do already exist in DSMS and
therefore can be seen as standalone engine. Whereas, an internal DSMS is sup-
ported by C-SPARQL, but it has no feature for RDB to RDF mappings or query
rewritings.

The only two ontology languages using an OBDA approach with mappings and a
extensible backend are datalogMTTL and STARQL. They both suffer the same disad-
vantage because they both rely on external DSMS. Query rewriting and translation
of results can be expensive, while the expressiveness of the underlying systems re-
stricts the input of the RDF streaming queries. Nevertheless, OBDA approaches
can rely on various back-end optimisations to accelerate query processing.

CQL and CQEL are very popularly used in systems equipped for event processing.
However, both are active open source languages that are well received in market and
have reached a stable state. The language is also supported with detailed user guides,
tutorials and comprehensive documentation. On the other hand, C-SPARQL is still
in its initial phases. The language is not mature enough and lack of documentation
makes it difficult to use. There are very rare occurrences in literature that talks
about adoption of C-SPARQL, STARQL and datalogMTL languages in a real-world
use-cases. However, in this thesis, we considered extension to datalogMTL as well as
provide real world examples of its use in industrial sectors. Our solution language
is deployed for Siemens businesses and is part of a product already, therefore we
consider the solution mature enough.

We can easily conclude that CQL, CQEL and SAL is mature and acceptable enough
to provide a rich set of operators for example, to construct event patterns. These
languages support different types of temporal constraints along with sliding windows
as a reasonable set of aggregation functions. In constract, C-SPARQL, STARQL
and datalogMTL are less expressive but general event processing tasks can also be
defined using these languages.

C-SPARQL, STARQL, datalogMTL and SAL allows the processing of static and
streaming data as well as the integration of static domain knowledge by using only
a single language construct. Its queris are able to combine event stream processing
and SPARQL queries together using a single interface. In this sense, a their query
language is self-contained and coherent. Users only require basic semantic query
language skills to formulate and execute tasks. In comparision, the languages such
as CQL and CQEL do not allow easy access to the domain knowledge bases. A sup-
porting Java/Jena application must be programmed in order to integrate the domain
knowledge. A typical example is where a CQL-based architecture is developed to

119



7 Case Studies and Evaluations

120

combine the query language (EQL) for stream processing and Jena/SPARQL code
written in a Java adapter class to retrieve knowledge bases. In such cases, most of
the state-of-the-art languages are not self contained and are highly dependent on
programming logic of the adapter classes.

The main disadvantages of state-of-the-art languages is their inefficiency to change
a rule at runtime. This is difficult to manage because a change can lead to a change
in pattern / template as well. Use of SPARQL query makes such changes easier to
manage. This is because SPARQL queries can be stored as strings in a separate file
and can be reloaded at runtime.

Languages such as C-SPARQL, STARQL and datalogMTL are also restricted in
a sense that they store the ontological background knowledge in RDF format.
Whereas, CQL can be used and adapted for arbitrary adapters allowing the us-
age of different knowledge sources. However, the different data connectors have to
be implemented and maintained by hand which is a costly operation.

Analytical reasoning is not supported by CQL language. It is incapable of deducing
new knowledge automatically from a given knowledge base. C-SPARQL, STARQL,
datalogMTL and SAL provides reasoning capabilities that are sufficient enough to
cater many challenges queries.

Considering the given approaches from a conceptional point of view, our ontology
language is better suited for inherent reasoning, operating on heterogeneous data
sources and providing analytical operators and workflow management . For instance,
SPARQL with analytical operators and RDF entailment can be achieved by using
materialization or query rewriting.

7.4.3 Evaluation of Semantic Systems

In this section, we evaluate various adopted state-of-the-art systems of semantic web
technologies used in industrial and software engineering research communities for a
comparison with our implementation of the analytical-aware semantic system. All
these analytical models and languages are open source and rely on an underlying
meta model, e.g. Etalis comprises of an analytical engine in order to support and
define user driven monitoring rules. In this set of evaluation, we consider comparing
different semantic systems in their approach to define meta models and its overall
system implementation.

SAL, TechOnto and SOMM: As presented in this thesis, we propose to use
a TechOnto ontology in combination with analytical-aware semantic language and
SOMM as model editor. An application independent analytical ontology language
is used for modeling of various analytical models and tasks. This analytical meta
model is stored in our semantic system and can be adapted by the domain experts.



7.4 Evaluations

SWRL + Protege editor

Java + Eclipse editor

Etalis + Prolog editor

[SAL + TechOnto Ontology + SOMM

[Application dependency

no restriction regarding application

no restriction regarding application

no restriction regarding application

Ino restriction regarding application

(Adaptability

missing reification functionality,
thus no adaptability

missing reification functionality,
[thus no adaptability

missing reification functionality,
hus no adaptability

reification functionality is supported and
can be adapted

Integration

relying on the same basis as technical
ontology models, their knowledge can
seamlessly be integrated

knowledge of the technical ontology
models

can be processed by dedicated
|APIs such as Jena

no connection between Prolog
and SPARQL endpoint of
SMW available

seamless integration since technical
ontology relies on the

same basis as other available reference
Imodels

Modeling patterns and libraries

libraries can be reused, but
templates for modeling patterns
o not exist

rule related modeling patterns and
libraries could be established, but do
not exist

no object-oriented programming
approach, thus no templates
or libraries

reusable libraries for rules and
rule related modeling patterns
are available

Consistency checks

menitoring rules without constraint
idefinition, thus no consistency
check possible

hard-coded checks, which are
not automatically part of the
mode!

neither object-based nor plant
related consistency checks
available

object-based and comprehensive
|domain-specific related consistency
checks possible

Maintenance of analytical workflows:

idue to missing reification, no

no advanced maintenance inferences

fdue to missing reification, no

janalytical ontology

mechanism for semantically labeling
or structuring of workflows

considering the similarity
of monitering conditions

mechanism for semantically labeling
or structuring of workflows

for semantically labeling and
structuring of workflows

Figure 7.13: Comparision of state-of-the-art and our proposed analytical-aware semantic
systermn.

The system also provides seamless integration is possible by linking from the on-
tology model into other reference models like sensor ontology, qudt ontologies etc.
The system also provides guidance for the experts during the engineering of moni-
toring and diagnosis rules by reusable analytical libraries and rule related modeling
patterns specified with the Semantic descriptions of a semantic workflows. The cor-
rect structure of the monitoring workflows is verified during the engineering phase.
OWL Reasoner is used to execute and provide inference for the analytical ontology
as well as to maintain quality in form of consistency checks. However, we can also
verify the consistency of the ontology model against the instance data by defining
e.g. SHACL rules, SWRL rules etc. One can also verify if the mappings are linked
in a correct way i.e. the way ontology concepts are linked to the source data sets.
Additionally, the domain experts can use the concepts of the TechOnto model to
manually construct taxonomies of their assets, monitoring conditions or rules and
to execute specified analytical and monitoring tasks by means of OWL reasoning.

SWRL + Protege: A popular rule language of the semantic web community is
SWRL and it is important to draw a comparision of such semantic system with
our proposed solution. SWRL is an application-independent rule language whereas
the domain-specific constraints and the background knowledge of these constraints
are seamlessly formulated and integrated in form of rules. However, an important
drawback of using such rule system is its inability of reifying rules because there
exist a signification gap in linking the terminological and its assertional resources.
In addition to this, an important disadvantage of such system is lack of support of
analytical functional libraries or templates where users can define patterns or run
consistency checks. Due to the missing reification ability, there is also no mechanism
to maintain semantic patterns, custom functions or either formulation of analytical
workflows.

Java + Eclipse: Another plausible state-of-the-art system to define monitoring,
analytical and diagnostic tasks to use them in an hard-wire programming language
such as Java. We used Eclipse as generic editor and managing tool for defining
Java based rules. Similarly to SWRL and others, such systems do not support
adaptations to domain models to formulate analytical tasks or workflows in general.
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However, it is an important feature to consider that Java allows dedicated APIs that
can possibly process the domain-specific knowledge stored in any semantic system
and integrate the knowledge in the monitoring and diagnosis tasks and workflows us-
ing API calls. However, it could be an absolute nightmare to maintain and manage
such workflows. In addition to this, because of no predefined libraries for temporal
operators or analytical-related modelling patterns repositories, such extensions have
to be manages manually which is a high maintenance job. In regards to consistency
checks, Java can handle pretty fairly but the algorithms need to be explicitly de-
fined and run separately than a formulated analytical workflow. It can partially
provide an ability to provide maintenance information about analytical workflows.
However, similarity search of such monitoring rules or any advance reasoning cannot
be supported by any automated means.

Etalis + Prolog: An important state-of-the-art that is widely used in semantic web
community is Etalis configured with SWI-Prolog editor. Etalis is mainly a complex
event processing rule engine that is application-independent. A major drawback of
Etalis is its hard-coded reification functionality. As a result of which, mechanisms
for semantically labelling or structuring analytical tasks and workflows can not be
supported. Furthermore, domain-specific knowledge in form of RDF triples or OWL
axioms cannot be integrated in the workflows. This is due to its interface restrictions
that does not allow to establish connection ports between Prolog and the TripleStore
endpoint. Ftalis is not an object-oriented programming system, which means that
specifying rule libraries, templates or consistency checks algorithms are harder or
even impossible to implement and manage.

7.4.4 Evaluation of Effort

In this section we will verify whether our semantic approach to data analytics can
offer a considerable reduction of effort in terms of time as compared to the state-
of-the-art solutions. Here we will consider examples from our three use-cases and
evaluate if the semantic approach was effective in reducing the effort in data access,
data validation and query answering.

Effort based Analysis of Turbine use-case

Here we take an example from turbine use-case where unexpected damages discov-
ered during on-site inspection often need to be reviewed by highly skilled experts.
Reaching them and getting an evaluation is expensive and time-consuming. The
challenge today is to utilise data from large installed base to collect all historical
observations for each serialized component. For each, create a statistical model to
judge the remaining life and risk of continued operation. Use this model to drive an
on-line analytical system.
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Figure 7.14: Onsite Inspection of Turbines

In the example see Fig.7.14 when an engineer discovers a 3mm crack at the base of
the guide vane of the first compressor stage, he connects to the our semantic system
and submits a problem description based on a standardised terminology using our
domain-specific semantic model. The system responds by showing 5 cases of cracks
in the same turbine type at the same location with a similar application context
using reasoner and provide failure predictions of the current crack. The engineer
reviews the analysis and historic decisions and decides that the cracked guide vane

should be replaced.

Through the use of this semantic intelligence, the turbine value chain can be opti-
mized by learning from past failures and suggest repair activities, propose upgrades
for more power with the same reliability to reduce 20% of the service lead time and

Effort Existing Solution Qur Semantic Solution
Query Formulation 40% 20%
Data Retrieval 30% 20%
Analytical Model Building 10% 20%
Analytical Model Execution 5% 10%
Analytics Deployment 15% 30%

& Visualization

Table 7.1: Effort based analysis of existing solution versus our semantic approach for
turbine use-case
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improve the planning cost and by automatically predicting the KPIs of the top 10
most vulnerable power plants. This requires the integration of huge data streams
retrieved from monitoring the turbine with unrelated data silos (such as operational
machine data, maintenance logs, failure catalogs etc.), and experience-based infor-
mation and statistics derived from sophisticated Al algorithms, as well as domain
knowledge gained through past successful failure handling. However, the integration
of huge amounts of heterogeneous data streams with the knowledge modeled in the
knowledge bases and the results of the Al algorithms is not hard to achieve. The
challenges consist of: R2.1: The modeling of the semantics models to integrate all
the data. R2.2: The ability to extract the annotations and learn domain-specific
rules automatically from event logs/data streams. R2.3: Integrating the analytical
aspects in the knowledge-based techniques. R2.4: The decision to distribute certain
tasks closer to the sensor streams or perform the analysis centralized in order to
optimize cost-efficiency. Our use case is characterized by data from more than 2250
industrial gas turbines, more than 10TB of operations data that grows more than
2TB each year.

Effort based Analysis of Train use-case

The Mobility Data Warehouse is the default access point for Mobility data. More
and more data is being integrated, including from complex sources. As the dataware-
house (DWH) schema grows, it is important to have independent management sys-
tem of the DWH for quality control and sanity checks. A semantic solution to
the DWH has proven as a potential candidate to link the DWH to external sys-
tems to boost analytics without the time consuming process of full data integration.
In addition to this, there is often a gap between the design and development of
data service technology (its development and testing) and its use in practice. A
semantic approach to closing the gap would involve mapping out the workflows in
maintenance operations that involve data into a semantic-based structure. Specific
reports/algorithms/queries can then be attached to semantic solution. As a mainte-
nance engineer traverses his segment of the workflow, he can see/consume/develop
the data services that are directly relevant.

In the example, see Fig7.15 a maintenance engineer is able to generate troubleshoot-
ing reports instantly by using our semantic approach. He queries the system with
his available maintenance related data which are mainly diagnostic codes available
for the required machine using our domain-specific semantic model and automati-
cally retrieves the relevant analytical workflow to execute which are relevant to the
given diagnostic codes. The workflows here are now automatically embedded with
the data for this machine and diagnostic code configuration data. With few clicks
he can either adjust the workflows, create new ones or reuse the whole or segment of
the available workflows at hand. After execution he can himself conclude the discuss
and submit the troubleshooting report to his customer.

Through the use of this semantic intelligence, an ontology manages/defines/stores
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Figure 7.15: Maintenance of Trains

Effort Existing Solution Qur Semantic Solution
Query Formulation 40% 20%
Data Retrieval 30% 20%
Analytical Model Building 20% 20%
Analytical Model Execution 5% 10%
Analytics Deployment 5% 30%

& Visualization

Table 7.2: Effort based analysis of existing solution versus our semantic approach for

train use-case

existing relationships defined in a DWH relational schema. It also includes relation-
ships to data that is not yet in the DWH. Data can then be queried against the
many systems via the ontology. The great advantage of this approach is that we can
integrate new data sources on the fly without having to bring them into the DWH.
The OBDA approach provides a loose semantic integration system integration which
can be tightened by hard integration into the relational database model whenever a
use-case requires high-performance transactional access to data. Another advantage
is improving the reliability of analytics by including mechanistic links between data
and analytical workflows. This approach assist colleagues at Mobility by building
a feedback loop from configuration to the field. We aim to configure our semantic
solution to make it more useful analysis to the maintenance engineers.
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Effort based Analysis of Smart-grid use-case

North American market is moving towards Transactive Energy Market concept
"Transparent energy prices enable customers of all sizes to join traditional providers
wn producing, buying, and selling electricity using automated control to drive reliable
and cost-efficient electricity system"[121]. From the technical point of view we want
data analytic platform that leverages the domain knowledge semantics as well. How-
ever, building an energy production cost modelling platform that takes into account
various heterogeneous data sources (weather, plant, load, fuel price, generation, etc.)
and produces forecasting of energy price and find optimal economic dispatch of en-
ergy generators (optimal output powers of generators to minimize total generation
cost in the system) which is a non-trivial task.
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Figure 7.16: Price Forecasting in Smart-grid

In the example, see Fig7.16 a financial investor or analyst is able to generate re-
ports instantly by using our semantic approach to analyze different scenarios and
come with decision on their position in the market by optimizing their assets to get
maximum turn over (Long term and Short term). He is able query the data that
is collected from various heterogeneous sources: weather, power plants, fuel prices,
operational, generation and load data, etc. This raw ingested data was cleaned and
transformed into the format that is suitable for analytics.

The semantically generated analytical workflows for forecasting, power availability
and cost optimization can be easily executed. The forecasting workflow contains
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Effort Existing Solution Qur Semantic Solution
Query Formulation 50% 20%
Data Retrieval 20% 20%
Analytical Model Building 20% 20%
Analytical Model Execution 5% 10%
Analytics Deployment 5% 30%

& Visualization

Table 7.3: Effort based analysis of existing solution versus our semantic approach for
smart grid use-case

further workflows to be executed. Particularly load forecast workflow that makes
a prediction of energy load values; solar and wind forecast workflows that make
predictions of solar and wind power generations. Asset management workflow that
computes KPIs and availability of power plants and optimization workflow that
optimizes the economic energy dispatch and price. In the final step a visualization
workflow (Tibco Spotfire) was created to visualize data and analytics results.

Through the use semantically generated workflows, we concluded that the imple-
mentation costs and maintenance effort is reduced by half by using such a flexible
semantic architecture. We were able to support for decision making in uncertainty
and poorly maintained measurement environments and improve planning accuracy.
The customers acknowledge the reduction of effort with respect to clarification and
dispatch, also our approach helped in speeding up the data examination and decision
making on a large amount of data at once.

7.4.5 Evaluation of Runtime-based Analysis

In this section, we present comprehensive runtime analysis of our approach over
three case studies described in the previous section.

We present experiments to verify whether writing analytical task in SAL offers a

considerable runtime saving comparing to formulating analytical functions in the
any data dependent language or tool.

Runtime Analysis of SAL

To evaluate the runtime of our semantically defined analytical language, we con-
ducted three case studies in different domains: train diagnostics, turbine diagnostics
and smart-grid diagnostics.
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# Use-Case Age Occupation Education Sem. Web
TrP1 Train 34  R&D Engineer MSc yes
TrP2 Train 32  R&D Engineer MSc yes
TrP3 Train 47  Diagnostic Engineer PhD yes
TrP4 Train 45  Software Engineer MSc yes
TrP5 Train 34  Software Engineer BSc yes
TbP1  Turbine 43 Design Engineer PhD yes
TbP2  Turbine 46  Senior Diagnostic Engineer PhD yes
TbP3  Turbine 37  Diagnostic Engineer MSc yes
TbP4  Turbine 45 R&D Engineer MSc yes
TbP5  Turbine 34  Software Engineer BSc yes
TbP6  Turbine 33 Data Scientist PhD yes
GrP1 Smart Grid 34 Diagnostic Engineer PhD no
GrP2 Smart Grid 32 Diagnostic Engineer PhD no
GrP3 Smart Grid 41 Ré&D Engineer PhD yes
GrP4 Smart Grid 43 R&D Engineer PhD yes

Figure 7.17: Profile information of participants.

To this end we found 16 participants from Siemens, 5 for train diagnostics, 6 for
turbines and 5 for smart-grid all of them are either engineers or software engineers.
In Figure 7.17 we summarise relevant information about the participants. All of
them are mid age, most have at least an MSc degree, and all are familiar with
the basic concepts of the Semantic Web. Their technical skills in the domain of
diagnostics are from 3 to 5. We use a 5-scale range where ‘1’ means ‘no’ and ‘5’
means ‘definitely yes’. Two out of 5 participants never saw an editor for diagnostic
rules, while the other 4 are quite familiar with rule editors.

During brainstorming sessions with Siemens analysts from energy and mobility de-
partments as well as with the R&D personnel from Siemens Corporate Technology
we selected 4 analytical tasks for trains, 5 for smart grid and 10 for turbines; they
can be found in Figure 7.21. The selection criteria were: diversification on topics
and complexity, as well as relevance for Siemens. The tasks have three complexity
levels (Low, Medium, and High) and they are defined as a weighted sum of the
number of sensor tags, event messages, and lines of code in a task.

Before the study we gave the participants a short introduction with examples about
diagnostic workflows and message rules in both Siemens and SAL languages. We also
explained them the constructs of SAL, presented them our diagnostic ontology, and
explained them the data. During the study participants were authoring analytical
workflows for the tasks from Figure 7.21 using both existing Siemens rule language
with CQL queries (as the baseline) and SAL; while we were recording the authoring
time. Note that all participants managed to write the diagnostic tasks correctly and
the study was conducted on a standard laptop with an Intel Core i5-4300U CPU at
2.60 GHz and 16 GB ofRAM running Windows 7 Enterprise (64 bits).
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Figure 7.18: Results of the turbine user study. Left figures: the average time in seconds
that the users took to express the tasks from Figure 7.21 for 1, 10, 50
turbine, respectively, using existing Siemens rule language (Baseline or B)
and our semantic rule language SAL (Semantic or S). Right figures: the
total time in seconds the user took to express these tasks grouped according
to their complexity.

Figure 7.18 summarises the results of the user study. The four left figures present the
average time that the five participants took to formulate the 5 tasks over respectively
1, 10, and 50 turbines, respectively. We now first discuss how the authoring time
changes within each of the four figures, that is, when moving from simple to complex
tasks

Observe that in each figure one can see that in the baseline case the authoring
time is higher than in the semantic case, i.e., when SAL is used. Moreover, in the
semantic case the time only slightly increases when moving from simple (Tbr1) to
complex (Tbr10) tasks, while in the baseline case it increases significantly: from 2
to 4 times. The reason is that in the baseline case the number of sensor tags makes
a significant impact on the authoring time: each of these tags has to be found in
the database and included in the rule, while in the semantic case the number of
tags does not make any impact since all relevant tags can be specified using queries.
The number of event messages and the structure of rules affects both the baseline
and the semantic case, and this is the reason why the authoring time grows in the
semantic case when going from rules with low to high complexity.

Now consider how the authoring time changes for a train analytical tasks when

moving from 1 to 50 trains. In the baseline case, moving to a higher number of
trains requires to duplicate and modify the rules by first slightly modifying the
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Figure 7.19: Results of the train user study. Left figures: the average time in seconds
that the users took to express the tasks from Figure 7.21 for 1, 10, 50 train,
respectively, using existing Siemens rule language (Baseline or B) and our
semantic rule language SAL (Semantic or S). Right figures: the total time
in seconds the user took to express these tasks grouped according to their
complexity.

rule structure (to adapt the rules to train variations) and then replacing concrete
sensors tags, threshold values, etc. In the semantic case, moving to a higher number
of train requires only to modify the rule structure. As the result, one can see that
in the semantic case all four semantic plots are very similar: the one for 50 trains is
only about twice higher than for 1 train. Indeed, to adapt the semantic diagnostic
task T'rpr4 from 1 to 50 trains the participants in average spent 50 seconds, while
formulating the original task for 1 train took them about 30 seconds.

Finally, let us consider how the total time for all 4 tasks changes when moving from
1 to 50 trains. This information is in Figure 7.19. One can see that in the baseline
case the time goes from 500 to 2.100 seconds, while in the semantic case it goes
from 90 to 290. Thus, for 4 tasks the semantic approach allows to save about 2.010
seconds and it is more than 4 times faster than the baseline approach.

Figure 7.20 summarises the results of the user study. The four left figures present the
average time that the five participants took to formulate the 5 tasks over respectively
1, 10, and 50 grid components, respectively. We now first discuss how the authoring
time changes within each of the four figures, that is, when moving from simple to
complex tasks

Observe that in each figure one can see that in the baseline case the authoring
time is higher than in the semantic case, i.e., when SAL is used. Moreover, in the
semantic case the time only slightly increases when moving from simple (Grr1) to
complex (Grrb) tasks, while in the baseline case it increases significantly: from 2
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Figure 7.20: Results of the smart grid user study. Left figures: the average time in
seconds that the users took to express the tasks from Figure 7.21 for 1,
10, 50 grid components, respectively, using existing Siemens rule language
(Baseline or B) and our semantic rule language SAL (Semantic or S). Right
figures: the total time in seconds the user took to express these tasks

grouped according to their complexity.

to 4 times. The reason is that in the baseline case the number of sensor tags makes
a significant impact on the authoring time: each of these tags has to be found in
the database and included in the rule, while in the semantic case the number of
tags does not make any impact since all relevant tags can be specified using queries.
The number of event messages and the structure of rules affects both the baseline
and the semantic case, and this is the reason why the authoring time grows in the

semantic case when going from rules with low to high complexity.
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Task # Complexity sensors,event,code lines Analytical task
Tr T1 Low (23,6,223) Car doors ok
Tr T2 Medium (13,22,453) Start-up normally
Tr_T3 Medium (19,23,421) Axle faults
Tr_T4 High (21,64,631) Brake release
v T1 Low (4,2,102) Variable guided vanes
analysis
v T2 Low (6,5,133) Multiple start attempts
Tb_T3 Low (6,3,149) Lube oil system
analysis
Tb_T4 Medium (6,2,231) Monitoring Trainstates
Tv T5 Medium (18,0,282) Interduct thermocouple
analysis
Th _T6 Medium (16,2,287) Igniter failure
detection
Ty T7 High (17,3,311) Bearing carbonisation
Th T8 High (19,2,335) Combustion chamber
dynamics
Tv T9 High (15,4,376) Gearbox Unit
Shutdown
Tv _T10 High (12,8,401) Surge detection
Gr_T1 Low (14,1,400) HVAC unit analyses
Gr T2 Low (25,2,500) Power plant trip
analysis
Gr_T3 Medium (77,5,760) Power station state
monitoring
Gr T4 High (350,8,1387) Economic dispatch
curve
Gr T5 High (648,38,1654) Synchronization reserve

Figure 7.21: Analytical tasks for Siemens trains, turbines and grid that were used in the
case study, where complexity is defined using the number of sensor tags,
event messages, and lines of code.

Runtime Analysis of Workflow Generation using SAL

This section present experiment set to evaluate the runtime performance of the
semantic workflow. The goal is to analyze the efficiency of the CQL code generated
by our OBDA component (see Chapter 6 for details on our OBDA component).

We consider 3 different scenarios which are related to train diagnostics, performance
analytics of gas turbines, and smart grid component analysis, respectively. For each
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scenario we prepared the diagnostic tasks, corresponding data, and execute the
SQL queries translated from the rules using a standard relational database engine
PostgreSQL. We conducted experiments on an HP Proliant server with 2 Intel Xeon
X5690 Processors (each with 12 logical cores at 3.47 GHz) and 106 GB of RAM.
The experiments of our system consisted of two steps: translation of semantic driven
analytical workflows into SQL queries and then execution of generated queries.

We now describe the details of the three scenarios and their evaluations.

Diagnostic workflow of trains: In Figure 7.22 we present 4 diagnostic tasks
of trains (77 is the running example). On the data side, we took measurements
from 29 sensors as well as the relevant information about the trains where the
sensors were installed. Then, we scaled the original data both in number of sensors
and time dimensions. Our scaling respects the structure of the original data. The
largest data for 232 sensors took 8GB on disk in a PostgreSQL database engine. For
these diagnostic tasks the generated SQL codes are ranging from 113 to 839 lines
depending on the diagnostic task and the code is of a relatively complex structure,
e.g., for each diagnostic task the corresponding SQL contains at least 10 joins (The
most complex one contains 120 joins). The results of the query evaluation are
presented in Figure 7.23.

Performance workflow of gas turbines: In Figure 7.24, we present 3 tasks for
performance measurement of steam turbines. The data contains aggregated values
from various sensors, which are deployed in many different components of steam
turbines. The data scales from 1 to 10 GB in a PostgreSQL database. The largest
table contains 1 month data with 5 minutes frequency for 2449 turbines. For these
tasks, the corresponding SQL queries range from 116 to 407 lines of code and contain
at least 20 joins. The query evaluation results for the performance measurement of
steam turbines is presented in Figure 7.25.

Smart grid component analysis: In Figure 7.27 we present 3 component analysis
tasks. Note that Gry/1-Gry 3 are independent from each other. This is a good
example of modularity of SAL. On the data side, we took measurements from 2
sensors over 6 days as well as the relevant information about the turbines where the
sensors were installed. Then, we scaled the original data to 2000 sensors; our scaling
respect the structure of the original data. The largest raw data for 2000 sensors took
5.1GB on disk in a PostgreSQL database engine. The generated SQL code ranges
from 109 to 568 lines depending on the analytical task and the code is of a relatively
complex structure, e.g., for each analytical task the corresponding SQL contains at
least 10 joins. The results of the query execution are presented in Figure 7.27.

The overall evaluation results are encouraging. We observe that query evaluation
scales well in all three scenarios. Specifically, the running time grows almost linearly
with respect to the data size. We also observe that for turbines the computation of
performance measurements (Figure 7.25) took much longer time than the analytical
tasks. This can be explained by the fact that turbine diagnostics rules involve more
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Train Workflow Tr_ W1: “Verify that all car doors ok in locomotive L17": See
Equation (5.1)

Train Workflow Tr  W2: “Does locomotive L1 start-up normally?”:

StartingTractionEffort = StatorVoltage : trend(‘up’) :
duration(>,10s) : after]5s]
TractionRotorRPM : value(>, RotorStartMinThreshold) : after[20s]
TrainSpeed : value(>, MinLineSpeed).
TractionControlOK = MotorTemperature :
value(<, TempMaz Threshold) and
CoolingControlPressure : value(<, PressureMazThreshold) and
DifferentialCurrent : value(<, CurrentMaz Threshold).
message( “Locomotive Normal Start-up”) = StartingTractionEffort and TractionControlOK

and NormalBrakeRelease.

Train Workflow T'r W 3: “Does locomotive L1 have critical axle faults.”

HotBearings = awg AllBearings TempSensor :
value(>, Bearing Temperature Maz Threshold).
HotWheelRims = WheelRimsTemperature : trend( ‘up’) : duration(>,10s)
message(“Critical Azle”) = (HotBearings or HotWheelRims).
Train Workflow Tr W4: “Verify that the service braking is released normally in
each car of locomotive T17”:
CompressorRestart = CompressorRestartPressure :
value(<, BrakeSystemMazPressure).
BrakeReleaseOK = BrakeReleaseRate :
value(<, BrakeRelease Rate Maz Threshold) and
AllCarBrakePressureValve : value(=, Closed Value) and
AirBrakesMainResVolume : value(<, AirBrakesMainRes VolumeMin Threshold).
NormalBrakeRelease = CarDoorsOK within CompressorRestart :
after[2s] BrakeReleaseOK.

message(“Normal Brake Release”) = NormalBrakeRelease.

Figure 7.22: Analytical workflows for train diagnostics.

aggregation functions, and the generated SQL queries become more selective for the
later steps like coalescing and temporal join appearing after than the aggregation
and consequently run faster.
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Figure 7.23: Workflow evaluation results for the train diagnostics.

Turbine Performance Analytical Workflow Th_ W1: “Steam Engine Failure In-
tegrity”:
Failurelntegrity = TotalSteamFlow : trend( ‘down’) :
duration(>,10m) : after[sm|
TurbineSpeed : value(>, 1000).

message(“Steam Engine Failure Integrity”) = Failurelntegrity.

Turbine Performance Analytical Workflow T0 W2: “Is turbine T1 in service?”:

StartUp = TurbineSpeed : value(>, 2500) : duration(>,10m) :
after(5m]
TurbineSpeed : value(<, 1000) : duration(>,10m).
OperatingMode = ActivePowerGrossMW : value(>, 90) and
TurbineSpeed : value(>, 2400).
InService = OperatingMode : duration(>,2h) : after[5m]
StartUp : duration(>, 10m).

message(“Turbine In Service”) = InService.

Turbine Performance Analytical Workflow T W 3: “Is turbine T1 in outage?”:

NonOperatingMode = ActivePowerGrossMW : value(<, 10) and
TurbineSpeed : value(<, 90).
InOutagel = NonOperatingMode : duration(>,5m) : after[5m)|
StartUp : duration(>, 10m)
InOutage2 = NonOperatingMode : duration(>,5m) : after[5m)|
OperatingMode : duration(>,2h)
message(“Turbine In Outage”) = (InOutagel or InOutagel).

Figure 7.24: Analytical workflow for performance analytics of turbines.
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Figure 7.25: Workflow evaluation results for the performance analytics workflow of tur-
bines.

Grid Analytical Workflow Gr W1: “Is there a ramp change after 6 min in
the grid Gr1007”:

SlowRotor = min RotorSensor : value(<, slowSpeed) :
duration(>, 30s).
FastRotor = max RotorSensor : value(>, fastSpeed) :
duration(>, 30s).
RampChange = FastRotor : after[6m| SlowRotor.
message(“Ramp change”) = RampChange.

Grid Analytical Workflow Gr_W2: “Does the power station in grid Gr100
reach purging and ignition speed for 30 sec?”:

Ignition = avg RotorSensor : value(<, ignitionSpeed).
PurgeAndlgnition = PurgingStart : duration(>,30s) :
after|2m] Ignition : duration(>, 30s).
message(“Purging and Ignition”) = PurgeAndlgnition.

Grid Analytical Workflow Gr_ TW3: “Does the turbine in grid Gr100 go from
ignition to stand still within 1min and then stand still for 30 sec?”:

StandStill = avg RotorSensor : value(<, standStillSpeed).
IgnitionToStand = Ignition : duration(>,1m) :
after[1.5m| StandStill : duration(>,30s).
message(“Ignition to Stand”) = IgnitionToStand.

Figure 7.26: Analytical workflows for smart grid component analysis.
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Figure 7.27: Workflow evaluation results for smart grid component analysis.
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8 Conclusions and Future Work

In this chapter, we conclude our thesis research challenges and results. We specif-
ically highlight our contributions in theory and in practice. Research limitations
are presented to showcase the overall applicability and boundaries of our proposed
solution. Lastly, we discuss few potential areas and extensions for future research.

Conclusion

The main focus of this dissertation was to improve data analysis performance for
industrial analytical tasks and workflows. To achieve this goal we chose three data
sets from different domains and investigated the role of domain-specific semantics
on the performance of various state-of-the-art to data-access for executing and man-
aging analytical task and workflows. To this end, we developed and worked on the
following four research questions:

RQ1 Can domain-specific and analytical-aware ontology models for industrial equip-
ment enhance data analysis performance?

RQ2 Can an analytical-aware ontology language of analytical tasks enhance data
analysis performance?

RQ3 Can semantic-driven analytical workflows boost data analysis performance?

RQ4 Can a semantically defined analytical system boost data analysis perfor-
mance?

Our main motivation behind all our research work is to prove that existing ap-
proaches to data analysis on industrial data are semantically weak. They lack
representational semantics of interdisciplinary domain a when analyzing e.g. equip-
ment related faults. This usually limits data analysis performance, because the
results (e.g. fault identification) highly dependent on the contextual semantics and
restricted by its nature of use, as described in Chapter 3. In Chapters 3, 4, 5 and
6 we present our proposed solution for extracting and incorporating conceptual se-
mantics for data access and analytical tasks. We evaluated our solution for different
diagnostic analysis tasks on three different industrial use-cases. To this end, in the
second part (Chapter 7) we turned our attention towards studying the effectiveness
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of our approach for multiple industrial datasets and initiated multiple analytical task
and analytical workflows and compared the performance of our approaches against
several state-of-the-art baselines.

Our main conclusion in this thesis is that the semantics of domain together with
analytical functions and workflows should be considered when conducting any data
analytical operation. Approaches that extract and use semantics for data analysis
surpass those that merely rely on affect hard coded data models, or syntactic or rule
structures that unambiguously reflect faults in a given equipment.

In the following sections, we summarise our main contributions to theory and prac-
tice, research limitations and future work.

Contributions

As mentioned in the introduction, the research presented in this dissertation is based
on the scientific areas of technical systems engineering, ontology engineering, and
semantic data integration and analytics as well as related areas. Consequently, it
offers contributions to these different knowledge bases.

Research in the field of industrial technical systems is typically focused on the struc-
turing, standardization and generalization of equipment and system data catalogs
or on methods for their implementation within companies. Yet, despite the growing
interest in this field, little work published in the ISO literature addresses the prob-
lem of data integration across different kinds of domain-specific systems. One of the
difficulties in such integration arises from the lack of a uniform description method
for any arbitrary measured physical or virtual component. Moreover, a description
of the relations between such component also lacking. The main contribution of this
dissertation to research on industrial technical systems therefore lies in providing an
ontological formalization of all relevant elements, attributes, and properties. Our
proposed TechOnto ontology provides a common language to enable data analysis
across different distributed data sets and different domains and to foster interoper-
ability among analytical tools. A more specific contribution related to the TechOnto
ontology lies in the description of a technical architecture in which an ontology-based
approach for data integration can be applied to achieve interoperability and reuse
and to structure an inherently unstructured field. Because this dissertation is also
influenced by the research areas of OE and semantic data integration, it also con-
tributes to manage different reference ontology models and align and reuse their
constructs to the TechOnto constructs. Our work also supports tooling to build and
manage such ontology models and provide user-friendly interfaces to define domain-
specific constraints. However, we only support data validation and query reasoning
services in our implemented tool called SOMM model manager.

An important contribution to theory is the development of our semantic language



SAL for equipment diagnostics that is specifically tailored towards ontology medi-
ated data integration scenarios such as industrial diagnostics. Our language has
favourable computational properties and we have formally proved them by resort-
ing to our extension of DatalogMTL. We provide preliminary grammar of semantic
diagnostic tasks and analytical workflows, that includes analytical processing ex-
pressions, message rules with conjunction and negation. Moreover, we give proofs
of our complexity results and conducted formal study of our SAL language. We
also focused on theoretical aspects of redundancy, conflicts, and provenance for sets
of semantic diagnostic workflows. In addition, we also present theoretical results
on first order rewritability in presence of ontologies and present its comprehensive
study via reduction of SAL to our non-trivial extension of DatalognrMTL.

The system architecture and the prototype application developed in this disser-
tation can guide the future development of tools to support industrial diagnostic
applications, particularly web-based systems for the semantic modelling and data
analytics across different domains. Through the theory-driven approach adopted in
this research, it contributes to improving the already existing analytical tools within
Siemens, which lack data integration and interoperability for analytical tasks and
workflows. The developed TechOnto ontology can be used and is already deployed
at Siemens Power generation business as an independent data format to achieve
interoperability between different data sources and analytical tools. Moreover, it
could function as a starting point for companies to develop interoperable analytics
that would enable them to more easily perform performance comparisons within
their own organizations and across organizational boundaries. With the linking of
data sources to a diagnostic system that provides a standardized interface in the
form of the TechOnto ontology, analytics-as- a-service could be offered in the future.
For data scientist, the analytical-aware semantic system reduces the time end ef-
fort required to integrate different data sources into single workflow and to manage
different analytical workflows using same or distributed data sets.

We showed practical benefits of our language and ontology-based rather than data-
driven solutions on three industrial use-cases: trains, turbines and smart-grid, inte-
grated in industrial diagnostic application. These benefits are the ease of formulation
and favourable execution time of diagnostic workflows on industrial IoT with hun-
dreds of pieces of complex industrial equipment and components in trains, turbines
and smart-grids. We believe that our work opens new avenues for research in the
areas of semantic access, semantic (industrial) IoT, and smart diagnostics, since it
shows how such diagnostics can be abstracted from the data it should operate on and
since it shows practical benefits of such approach. The main lesson we learned is the
performance effectiveness of our semantic-driven analytical language in dealing with
the complexity of the analytical tasks and workflows and the number of trains and
sensors for analytics deployment. The evaluation shows that diagnostic engineers
can save up to 66% of time by employing semantic ontologies. Thus, our semantic
solution allows diagnostic engineers to focus more on analyses the diagnostic output
rather than on data understanding and gathering that they have to do nowadays for
authoring data-driven diagnostic workflows. Another important lesson we learned
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is that execution of semantic workflows is efficient and scales well to thousands of
data points and tools which corresponds to real-world complex diagnostic tasks.

Research Limitations

This research has some limitations. This work assumes that the trend toward
semantic-driven analytics will continues and that the formal description of analyti-
cal services will become increasingly important for the automation of performance
analyses that are based upon it. The current increase in formalization activities is
consistent with this assumption thus supports the relevance of this research.

The TechOnto domain ontology was developed based on various technical system
data-catalog and on strategic and service-oriented industrial data collected over the
last five years. Although these data provide a broad basis for the development of
a domain-specific ontology, they cannot be considered to cover all aspects of every
system in the market. Thus, the ontology must be made publicly available to provide
a greater opportunity to identify current shortcomings for consideration in the next
version of the ontology.

The developed semantic language SAL provides a limited number of analytical func-
tions and operators that must be extended to cater more complex analytical tasks.
Many machine learning tasks such as clustering, classification are strong candidates
for language extension.

Additional limitations arise from the data formats used for integration. At present,
the implementation presupposes connections to relational databases. This is because
most of the underlying data used for integration within this dissertation are already
stored in relational databases. This limitation will likely lead to higher effort in
attaching non-relational databases to the system by third parties. Likewise, stream-
ing data is also not supported in the current version of our proposed system, which
will require additional resources to implement query optimization and translation
mechanisms.

Moreover, the system is designed for the internal purposes of an industrial partner
Siemens with special security clearances. As a result, no component of the semantic
system, TechOnto ontology or language is publicly available. However, we are mak-
ing efforts to publicize the semantic language as it bears no links to any domain in
particular.



Future Work

Based on the results of the included publications and in conjunction with the con-
ducted research and evaluations, the following section presents ideas for future re-
search in the major areas addressed by this work.

First and the foremost, we would like to strengthen the evaluation by consider-
ing additional domain specifications and their related diagnostic tasks. One of the
strong candidate is in additive manufacturing business where in a typical manufac-
turing plant, data is generated and stored whenever a piece of equipment consumes
material or completes a task. This data is then accessed by plant operators using
manufacturing execution systems (MES) software programs that monitor the oper-
ations in the plant and report anomalies. MESs are responsible for keeping track
of the material inventory in different locations and tracing their consumption, thus
ensuring that equipment and materials needed for each process are available at the
relevant time. Most common conceptual models used in the manufacturing business
is ISA-88/95 standard, where product, process and execution are main components
used for analytical task. We think that comparing our domain models with the
ISA standard and further authoring and managing diagnostic task for such use-case
would generate more results and could lead to improvement in our proposals.

From the semantic language point of view, we can conduct further analysis by eval-
uating the recent trending semantic constraint language called SHACL. It would be
interesting to see how both language would execute diagnostic tasks and how well
they perform with respect to computational complexity and execution time.

Another important future research could also aim to exploit our proposed seman-
tic analytical language to address data quality issues. In the world of semantics,
approaches to data quality assessment is gaining much popularity and there is no
sufficient work being done in the field. We think that by exploiting our language
constructs and devising specific semantic workflows, we can accommodate various
quality metrics such as identification of missing data, erroneous data, inconsistent
data, outliers and other domain specific violations. This should ultimately lead to
research in the areas of data quality assurance, data verification, enforcement and
persistency techniques where analytical-aware semantics can be a potential solu-
tion.
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