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� An ultra-sensitive method for urinary
biomarkers of mycotoxin exposure
was established.

� Simultaneous biomonitoring of
regulated and emerging mycotoxins
at trace levels by a single analytical
method.

� First multiple stable isotope assisted
quantification method for mycotoxin
exposure biomarkers validated.

� Applicability in realistic chronic low
dose exposure to mycotoxins in
large-scale cohort.
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a b s t r a c t

There is a critical need to better understand the patterns, levels and combinatory effects of exposures we
are facing through our diet and environment. Mycotoxin mixtures are of particular concern due to
chronic low dose exposures caused by naturally contaminated food. To facilitate new insights into their
role in chronic disease, mycotoxins and their metabolites are quantified in bio-fluids as biomarkers of
exposure. Here, we describe a highly sensitive urinary assay based on ultra-high performance liquid
chromatography - tandem mass spectrometer (UHPLC-MS/MS) and 13C-labelled or deuterated internal
standards covering the most relevant regulated and emerging mycotoxins. Utilizing enzymatic pre-
treatment, solid phase extraction and UHPLC separation, the sensitivity of the method was signifi-
cantly higher (10-160x lower LODs) than in a previously described method used for comparison purpose,
and stable isotopes provided compensation for challenging matrix effects. This method was in-house
validated and applied to re-assess mycotoxin exposure in urine samples obtained from Nigerian chil-
dren, adolescent and adults, naturally exposed through their regular diet. Owing to the methods high
sensitivity, biomarkers were detected in all samples. The mycoestrogen zearalenone was the most
frequently detected contaminant (82%) but also ochratoxin A (76%), aflatoxin M1 (73%) and fumonisin B1

(71%) were quantified in a large share of urines. Overall, 57% of 120 urines were contaminated with both,
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Liquid chromatography tandem mass
spectrometry
aflatoxin M1 and fumonisin B1, and other co-exposures were frequent. These results clearly demonstrate
the advanced performance of the method to assess lowest background exposures (pg mL�1 range) using
a single, highly robust assay that will allow for the systematic investigation of low dose effects on human
health.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Characterizing complex environmental exposures and their
combined effects on toxicity and human health has become a pri-
ority recently and is often referred to in the context of the ‘expo-
some’ paradigm [1e3]. Mycotoxins are a major class of natural
contaminants that humans are typically exposed to throughout
their life. This chemically diverse group of toxic secondary me-
tabolites are produced by filamentous fungi and frequently occur in
our diet [4]. The patterns and concentrations largely depend on
climatic conditions as well as the level of hygienic standards and
economic wealth. Higher mycotoxin exposures are often evident in
tropical and sub-tropical regions of third world countries [5,6],
although the changing climate is also altering occurrence patterns
and concentrations throughout the world [7]. The toxicities of
several mycotoxins have necessitated their regulation in almost all
countries world-wide [8], though less affluent regions often lack
the capacity to effectively implement or control such guidelines to
protect their population. The permitted concentrations of major
mycotoxins in the European Union are regulated within EC 1881/
2006 [9]. For some mycotoxins including the carcinogenic afla-
toxins, permitted levels are typically very low(e.g. aflatoxin M1
(AFM1) in milk: 50 pgmL�1). However, it is known from biomarker
driven research that combined exposures to mycotoxins are com-
mon [10e13]. Moreover, there is growing scientific evidence that
mixtures of co-occurring mycotoxins [14e16] and mycotoxins with
other xenobiotics (bioactive food constituents, drugs etc.) [17,18]
have the potential to cause an additional threat through combi-
natory effects that legislation does not take into account to date.

To assess multiple exposures to mycotoxins, LC-MS/MS-based
methods have been successfully developed to measure the parent
compound or their metabolite(s) in urine, and tested mostly in
smaller pilot surveys [10,12,13,19]. However, typically they consti-
tute a compromise on assay sensitivity compared to single-analyte
methods utilizing tailored sample clean-up protocols. Published
multi-mycotoxin LC-MS/MS methods include rapid and cost-
effective but partially less sensitive dilute and shoot approaches
[20,21], a (semi)-quantitative direct injection method [19], sample
clean-up using highly specific but expensive immunoaffinity (IAC)
columns [19,22] and the combination of IAC columns with solid
phase extraction (SPE) columns [13] which is time- and cost
intensive. Moreover, salting out assisted liquid/liquid extraction
[23e25], and a combination of liquid/liquid extraction with SPE
columns [26] was described. Urine is used as a non-invasive, easily
obtainable material for estimation of exposure to mycotoxins. Since
humans are exposed tomycotoxinsmainly through diet (with some
exceptions where they can be exposed also through dust [27]), the
main absorption region is the small intestine and transfer to the
liver [28,29]. Via their normal diet, humans are also exposed to
modified (“masked”) mycotoxins, which may have different
adsorption patterns. The typical conjugation to sugars (mainly
glucose) is making them more resistant to adsorption in the small
intestine. When reaching the colon, the microbiota can hydrolyse
the conjugated form [30,31], and the “parent”mycotoxin is released
and may be adsorbed there, following the same route to liver by
portal vein, and metabolism process. Modified mycotoxins are an
issue since they are not regulated to date and not covered by most
analytical methods, although they can significantly contribute to
the overall mycotoxin exposure [30e32]. For somemycotoxins such
as deoxynivalenol (DON), this process is highly efficient and glu-
curonides are the major metabolites found in urine [33]. Therefore,
the measurement of parent toxins often resulted in insufficient
correlations with dietary intake estimates and the direct assess-
ment of conjugated forms [34] or pre-treatment with b-glucuron-
idase/arylsulfatase was suggested [35e37].

From an analytical perspective, urine is known as a challenging
matrix particularly due to vast differences in composition and
concentrations between individuals, which may depend on sex,
age, health status, metabolism and predominantly diet [10]. For
mycotoxin biomarkers urine, blood (plasma/serum), milk, and hair
may be used, depending on the targeted mycotoxin, exposure
timeframe, or available analytical technique [38]. Urine was used
most often in the past to describe recent exposure [38], since most
of mycotoxins are rapidly metabolised and excreted via urine [33].
Sample pre-treatment with beta-glucuronidase is important to
reconvert conjugates of mycotoxins back to parent mycotoxins.
There is limited availability of mycotoxin glucuronide standards on
the market and as they are mostly synthetized in small quantities
in-house, hence de-glucuronidation can help in analysing total
exposures if reference standards are not available or too costly.
However, for estimating total exposure both, the direct and the
indirect assessment of metabolites proved their feasibility [34,39].
To effectively compensate for varying matrix effects, extraction
losses and other potential issues during LC-MS/MS quantification of
mycotoxins, stable isotope dilution assays are often used as the
state-of-the-art technique for data quality assurance [40]. Despite
its advantages, no stable isotope labelling (SIL) workflow was re-
ported for multi-mycotoxin exposure assessment in human bio-
fluids to date to the best of our knowledge.

Hence, the aim of this study was to develop a highly specific and
robust method for multi-mycotoxin biomarker analysis using
tailored sample clean-up and stable isotopologues. Its feasibility
and performance to assess individual exposure levels was
demonstrated in a well-defined sample collection with urines
reflecting awide range and diversemix ofmycotoxins, a set likely to
cover typical ranges in large-scale epidemiological studies.
2. Materials and methods

2.1. Reagents and chemicals

Methanol (MeOH; LC gradient grade), acetonitrile (ACN; LC
gradient grade), and glacial acetic acid (HAc; MS grade) were pur-
chased from Merck (Darmstadt, Germany). Mycotoxin standards
were purchased from Romer Labs Diagnostic GmbH Tulln, Austria:
nivalenol (NIV), 13C-NIV, deoxynivalenol (DON), 13C-DON, deepoxy-
DON (DOM-1), ochratoxin A (OTA), 13C-OTA, aflatoxin M1 (AFM1),
13C- AFM1, citrinin (CIT), fumonisin B1 (FB1), 13C-FB1, 13C-zear-
alenone (ZEN)) or Sigma, Vienna, Austria (ZEN, a- and b-zearalenol
(ZEL)). The deuterated [2H4] alternariol (AOH) was synthesized in-

http://creativecommons.org/licenses/by/4.0/
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house [41]. Solid standard substances were dissolved in pure ACN
(a- and b-ZEL; [2H4] AOH). All other standards were delivered in
either ACN or ACN/H2O (FB1) and stored at �20 �C. A combined
multi-standard working solution for preparation of calibrants and
spiking experiments was prepared in ACN containing: NIV
(1500 ngmL�1), DON (1500 ngmL�1), DOM-1 (1500 ngmL�1), FB1
(300 ngmL�1), a- and b-ZEL (300 ngmL�1), ZEN (300 ngmL�1), CIT
(300 ngmL�1), DHC (300 ngmL�1), AOH (300 ngmL�1), AFM1
(30 ngmL�1), OTA (30 ngmL�1). Also a fresh mixture of 13C and
deuterated [2H4] stable isotope standards was prepared regularly
containing: 13C-NIV (3.75 ngmL�1), 13C-DON (3.75 ngmL�1), 13C-
OTA (0.04 ngmL�1), 13C-AFM1 (0.008 ngmL�1), 13C-FB1
(0.38 ngmL�1), 13C-ZEN (0.38 ngmL�1); and deuterated [2H4] AOH
(3.33 ngmL�1).

2.2. Samples

Blank urine for spiking experiments and quality control samples
was obtained from a 30-year-old male volunteer from Austria used
in a previous study [33], who avoided the consumption of pre-
sumably mycotoxin contaminated foodstuffs such as cereal-based
products for two days prior to 24 h urine sample collection. The
blank urine sample was re-evaluated, and only traces of OTA were
detected (below LOQ, 0.002 ngmL�1), while the other mycotoxins
were <LOD. The urine samples from Nigeria were residual aliquots,
which were part of a previously published study [11], stored
at �20 �C. These were re-analysed to evaluate the new method's
performance and enable a comparison with previously published
data, based on a dilute and shoot approach [11,21]. Ethical approval
was permitted by the responsible ethical commissions (State
Ministry of Health (MOH/OFF/237/VOL.1)) and written consents of
all volunteers were obtained prior to urine donation.

2.3. Equipment

Method development and sample analysis was performed using
a Sciex QTrap®6500þ LC-MS/MS system (Foster City, CA) equipped
with a Turbo V electrospray ionization (ESI) source interfaced with
an Agilent 1290 series UHPLC system (Waldbronn, Germany). For
data evaluation the Analyst (version 1.6.3.) and Multiquant® 3.0.2.
software programs were applied.

2.4. Sample preparation

Urine samples were allowed to reach room temperature, and
centrifuged for 3min at 5600� g. Five hundred mL of the super-
natant was incubated with 500 mL PBS (200mM, pH¼ 7.4) con-
taining 3000 U of b-glucuronidase from E. coli Type IX-A (Sigma-
Aldrich, G7396-2MU) [42] for 16 h at 37 �C to allow de-
glucuronidation of mycotoxin-glucuronides. Following hydrolysis
1mL was passed through Oasis PRiME HLB® SPE columns (Waters,
Milford, MA), pre-equilibrated with 1mL MeOH, and 1mLH2O.
After washing twice with 500 mL H2O, mycotoxins were eluted with
200 mL ACN, three times. Extracts were evaporated under a gentle
stream of nitrogen at room temperature, reconstituted with 470 mL
dilution solvent (10% ACN, 0.1% HAc) and fortified with 30 mL of the
IS mixture.

2.5. LC-MS/MS conditions

Analytes of interest were separated on an Acquity HSS T3 col-
umn (2.1� 100mm;Waters, Wexford, Ireland) with 1.8 mmparticle
size. Eluent A was water while eluent B was ACN, both acidified
with 0.1% HAc. After an initial period of 2.0min at 90% A, the per-
centage of B was linearly raised to 50% until minute 15.0. Then,
eluent B was raised to 95% until min 18.0 followed by a hold-time of
4.0min and subsequent 3min column re-equilibration at 90% A.
The flow rate was set to 100 mLmin�1. After injection of 10 mL the
needle was washed for 20 sec to minimize carry-over. The column
effluent was transferred either to themass spectrometer (minutes 5
to 22.5) or to the waste via a six-port valve. The column was
operated at 35 �C.

ESI-MS/MS was performed in scheduled multiple reaction
monitoring (sMRM) mode, with a 180 sec detection windows. At
least two individual transitions were monitored for each analyte.
One chromatographic run consisted of two MS/MS experiments
where both ionization modes run simultaneously using fast po-
larity switching. All measurements were conducted using: source
temperature 550 �C, curtain gas 30psi (69 kPa of max. 99.5% ni-
trogen), ion source gas 1 (sheath gas) 80 psi (345 kPa of nitrogen),
ion source gas 2 (drying gas) 80 psi (345 kPa of nitrogen), collision
gas (nitrogen) high. Ion spray voltage was �4500 V in negative
mode while it was set to 4500 V in positive mode. The analyte
dependent MS/MS parameters were optimized via direct infusion
of reference standards and are displayed in Table S1.
2.6. Validation experiments

In-house validation was conducted following EU Commission
Decision 2002/657/EC [43] with minor modifications. The param-
eters investigated included limit of detection (LOD), limit of
quantification (LOQ), repeatability, within-laboratory reproduc-
ibility, trueness and linearity. Recovery experiments were per-
formed by spiking the blank urines with mycotoxin standard
mixture. The recovery was investigated in more detail than stipu-
lated by using six different concentrations (1x, 1.5x, 2 x LOQ, and
additionally 30x, 100x, and 300x LOQ) to be in a useful range of
expected concentrations in moderate and highly exposed pop-
ulations. The spike concentrations were selected according to the
calibration range and the LOQ of each analyte. Since no suitable
reference material was available, the trueness and selectivity was
estimated by using recovery according to the EC 657/2002 di-
rections [43]. The measurements were repeated on three days with
six determinations per concentration level. The calibration curve
(1/x weighted) for external calibration was generated for each
mycotoxin based on at least five concentration levels. Multi-
mycotoxin calibrants were obtained through dilution 1:100 (v/v)
with the dilution solvent. LOD and LOQ values were calculated
based on a signal to noise ratio of 3:1 and 10:1 from spiked urine
chromatograms by using the Analyst® S-to-N-script. For additional
confirmation, the quantifier to qualifier ion ratio was used with
maximum permitted tolerances of 50% when the relative intensity
of the base peak was �10% [43]. The relative retention time of the
tested mycotoxin and the internal standards were required to be
within of 0.1min to that of the calibration solution [43]. For the
mycotoxins without the ISs (DOM-1, DHC, a- and b- ZEL) all cal-
culations were performed by using the peak area, and not the peak
area ratio as for themycotoxins for which ISs were available. For the
calculation of the extraction efficiency, matrix effect (signal sup-
pression of enhancement (SSE)) and apparent recovery (RA)
following formula were used [44]:

EEð%Þ ¼ average area ðspiked samplesÞ
average area ðmatrix matched standardÞ � 100 (1)

RAð%Þ ¼
average area ðspiked samplesÞ

average area ðeluent diluted standardÞ � 100 (2)
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SSEð%Þ ¼ average area ðmatrix matched standardÞ
average area ðeluent diluted standardÞ � 100 (3)

2.7. Statistical analysis

For the raw data box-plot diagrams presented in Fig. 2, and
supplementary material 2, Statistica software (Dell Statistica, ver.
12, Dell Inc., Tulsa, Oklahoma, USA) was used. Excel (Microsoft,
Redmond, Washington, USA) was used for the calculation of vali-
dation parameters.

3. Results and discussion

3.1. Development of clean-up protocol

Based on their broad analyte coverage allowing for potential
addition of analytes in the future, we focused on SPE columns for
urine clean-up rather than highly specific and cost-intensive IAC
columns. During optimization Oasis® HLB and PRiME HLB [45]
columns were compared for extraction efficiency (EE) and matrix
reduction obtained in MS/MS chromatograms. Since the newly
available PRiME HLB exhibited better EEs, S/N ratios and a faster
processing time, this column type was chosen (Fig. S1). The column
was tested with and without equilibration [45], however, the
absence of equilibration resulted in a slower clean-up. Therefore, an
equilibration stepwas used for subsequent sample preparation. The
elution was tested with different eluents including 100% MeOH,
100% ACN, 50%MeOH/50% ACN, and acidified versions with 1% HAc.
The best EE was obtained when pure ACNwas used and elutionwas
carried applying three times a volume of 200 mL. The chosen SPE
columns resulted in sufficient EEs for both types of mycotoxins,
polar ones such as NIV and DON, and nonpolar ones like ZEN, and
OTA. A slightly lower efficiency onmid-polar range analytes such as
FB1, AOH, or a-/b- ZEL was accepted (Table 1).

3.2. Optimization of LC and MS/MS parameters

For each analyte five different MRM transitions were optimized.
The two transitions with the greatest S/N ratio were selected for
monitoring in the scheduled MRMmode. For DON three transitions
were recorded since one was the highly sensitive but rather noisy
transition m/z 355.1/59.2 used also in other studies [13,46]. The
source conditions were also optimised to protect the interface and
the ion path from contaminations, therefore relatively high curtain
gas 1 and 2 settings were used combined with high source
Table 1
Performance characteristics of the developed method as obtained during in-house valid

Analyte Calibration range [ng mL�1] Relative intensitya EE

Nivalenol 0.015e15 5.2 91%
Deoxynivalenol 0.015e15 1.1 96%
Deepoxy-deoxynivalenol 0.015e15 0.8 89%
Aflatoxin M1 0.0003e0.3 2.2 95%
Fumonisin B1 0.003e3.0 1.1 84%
Dihydrocitrinone 0.003e3.0 3.7 98%
Alternariol 0.003e3.0 1.3 70%
Citrinine 0.003e3.0 10.4 92%
b-Zearalenol 0.003e3.0 1.7 77%
a-Zearalenol 0.003e3.0 4.0 74%
Ochratoxin A 0.0003e0.3 1.8 90%
Zearalenone 0.003e3.0 1.5 89%

EE e extraction efficiency; RSD e relative standard deviation; LOD e limit of detection;
a Intensity of the quantifier transition/intensity of the qualifier transition in spiked bla
temperature, and maximal distance from the source entrance. The
provided blank urine was spiked with the analyte and then tested
for the mycotoxin retention times and matrix associated noise. In
the ‘blank’ urine only traces of OTAwere observed, and two intense
peaks interfered with AFM1 transitions. Hence, nine different MRM
transitions were tested additionally. Interestingly, an interfering
peak was observed on all investigated MRM traces for AFM1, which
is a rather rare phenomenon. Therefore, the LC gradient was opti-
mized to enable proper quantification, and the exclusion of false
positive peaks. The second problemwith AFM1 interferences is that
they are rarely appearing in the urines suggesting that those in-
terferences are highly specific and coming from the diet, or due to
specific individual physiological properties of the subject, and it is
correlated with the specific exposome of the subject. The exact
properties and source of the interferences will be investigated in
future studies.

During the LC optimization MeOH and ACN were tested as
eluent B. The S/N ratios were higher for most of the included
components when the ACN was used. The most relevant exception
of this behaviour was observed for CIT, which can be measured as a
highly sensitive methanol adduct (factor of 3) that was described
before [19]. Due to interferences in many AFM1 chromatograms, a
longer holding time of the aqueous eluent was required to separate
the AFM1 peak from these peaks. Moreover, a relatively low flow
rate was favourable as faster flow and an eluent containing higher
amounts of water caused overlap of the AFM1 transition with the
matrix interferences. Also for CIT high background noise was an
issue which has been described before [44,47]. Because the ob-
tained S/N ratio and the resulting detection limit were deemed
sensitive enough, the [MþH]þ ion was chosen and background
noise accepted.
3.3. Stable isotope dilution assay

To the best of our knowledge, this is the first stable isotope
dilution assay (SIDA) method reported for the simultaneous
quantification of biomarkers in urine which can be used to assess
the exposure of humans to multiple co-occurring mycotoxins.
There are numerous advantages of applying IS in LC-MS/MS anal-
ysis of matrices prone to matrix effects such as urine. The main
problem when analysing urine by LC-MS/MS are the severe differ-
ences in matrix composition and concentrations between individ-
ual subjects. To cope with compromised ionization caused by
matrix effects, ISs can be added prior to final analysis by LC-MS/MS.
The addition of IS could also be done prior to enzymatic treatment
and SPE clean up to compensate for all losses during sample
preparation, if the EE is low. However, since the EEs were in an
ation.

RSD intraday RSD interday LOD matrix [ng mL�1] LOQ matrix [ng mL�1]

5% 15% 0.05 0.10
5% 17% 0.05 0.15
10% 13% 0.30 0.50
7% 18% 0.0003 0.001
20% 18% 0.001 0.01
6% 9% 0.003 0.01
16% 18% 0.01 0.03
8% 17% 0.003 0.01
11% 26% 0.001 0.003
20% 33% 0.003 0.01
14% 19% 0.0003 0.001
11% 15% 0.001 0.003

LOQ e limit of quantification.
nk urine sample.
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acceptable range (Table 1), the amount of expensive labeled IS was
minimized by addition just before injection to the LC-MS/MS sys-
tem to yield an overall price per sample which is more affordable
even in large cohort studies with 1000 þ samples. The overall
sensitivity of the method further enabled the usage of minimal
concentrations of IS to accomplish the task of affordability. Ac-
cording to Hewavitharana [48], matrix matched calibration and
matrix effect estimation is not required when using stable iso-
topologues of the analytes under study as IS. Van Eeckhaut et al.
[49] evaluated the matrix effects of biological fluids, and concluded
that SIDA should be used in LC-MS/MS methods if feasible. An
additional advantage of the method hinges on the utilisation of b-
Fig. 1. MRM-chromatograms of a blank urine sample spiked with a multi-standard solution a
DON 0.3 ngmL�1; c) DOM-1 0.5 ngmL�1; d) AFM1 0.003 ngmL�1; e)FB1 0.01 ngmL�1; f) DHC
ZEL 0.01 ngmL�1; k) OTA 0.001 ngmL�1; l) ZEN 0.003 ngmL�1. The blue line represents th
standard, respectively. (For interpretation of the references to colour in this figure legend,
glucuronidase pre-treatment prior the sample purification, which
aids the quantification of increased amounts of parent mycotoxins.
When comparing the results with other methods not employing
this enzymatic hydrolysis, this fact needs to be considered since
most mycotoxins undergo glucuronidation in the liver prior to
urinary excretion.

3.4. In-house validation

The validation of the method was performed as recommended
by EU directive 657/2002 concerning the performance of analytical
methods and the interpretation of results [43]. For some
nd stable isotopic standards. The individual concentrations were: a) NIV 0.1 ngmL�1; b)
0.03 ngmL�1; g) CIT 0.01 ngmL�1; h) AOH 0.03 ngmL�1; i) b-ZEL 0.003 ngmL�1; j) a-
e quantifier ion, while the red and green lines indicate qualifier ion and the internal
the reader is referred to the Web version of this article.)
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parameters additional experiments were performed. In order to
evaluate the performance criteria, the EE was checked on six levels
for differences between low levels at LOQ, 1.5 x LOQ and 2 x LOQ,
and additionally at 30 x, 100 x, and 300 x LOQ. The results in Table 1
are expressed as means of the tested range while sMRM chro-
matograms of a blank urine sample spiked with the multi-standard
spiking solution are shown in Fig.1. The EEwas generally above 70%
for all analytes. Moreover, all analytes showed linear response
within the tested range. Intra- and interday relative standard de-
viations ranged from 5% for DON and NIV, to a maximum 33% for a-
ZEL.

The LOD and LOQ values were calculated based on S/N ratios
(3:1 and 10:1) from spiked blank urine. The LOD levels ranged from
ppq (300 fgmL�1 for OTA) to ppt levels (300 pgmL�1 for DOM-1). A
comparison with other published methods suggests a higher
sensitivity for most compounds by the newly developed method
despite the fact that some other approaches involve highly specific
IAC columns. NIV was not reported in other methods before with
the exception of Warth et al. [21] where a 10 x higher LOQ value
was reported. For DON many different methods were published,
and the LOQ values ranged from 0.5 ngmL�1 [19] to 4 ngmL�1 [21];
the glucuronide metabolites of DON were also included in those
direct methods. Since a de-glucuronidation step is included here,
an LOQ of 0.15 ngmL�1 includes the sum of parent DON and DON-
glucuronides found in urine. Of all included mycotoxins, DOM-1
had the highest LOQ level (0.5 ngmL�1 in urine matrix), while
Huybrechts et al. [19] reported a slightly lower LOQ level of
0.3 ngmL�1 due to usage of IAC for pre-concentrating the sample
[19]. AFM1 and OTA had the LOQ values of 0.001 ngmL�1, allowing
for the monitoring of lowest background exposures. Other methods
had either significantly higher LOQs (0.17 ngmL�1 for both AFM1
and OTA) [21] or similar levels (0.003 ngmL�1 for OTA and
0.005 ngmL�1 for AFM1) [19]. The LOQ for FB1 was 0.01 ngmL�1

which was slightly lower than the 0.0125 ngmL�1 limit reported
before by Gerding et al. [20]. The LOD values for CIT and DHC were
0.01 ngmL�1 which are in linewhat Gerding et al. [20], and Ali et al.
[50] reported. The ZEN family (ZEN, a-/b-ZEL) also had low LOQ
Table 2
Urinary biomarker concentrations in human urines obtained from volunteers in northe
(Warth et al. [18]) applied before to this sample set, results from the previous analysis (
Results from (Ezekiel et al. [8]) are indicated by italic font; only a subset of analytes was

Mycotoxin LOQb (ng mL�1) Number (%) quantifiedc Number (%

Aflatoxin M1 old
a 0.15 7 (5.8) 17 (14.2)

Aflatoxin M1 0.001 87 (72.5) 87 (72.5)
Alternariolg 0.03 8 (6.7) 8 (6.7)
Citrining 0.01 78 (65.0) 79 (65.8)
Dihydrocitrinoneg 0.01 69 (57.5) 69 (57.5)
Deoxynivalenol olda 4.0 3 (2.5) 6 (5.0)
Deoxynivalenol 0.15 21 (17.5) 23 (19.2)
Fumonisin B1 old

a 2.0 16 (13.3) 16 (13.3)
Fumonisin B1 0.01 71 (59.2) 85 (70.8)
Nivalenolf 0.1 40 (33.3) 40 (33.3)
Ochratoxin A olda 0.15 16 (13.3) 34 (28.3)
Ochratoxin A 0.001 94 (78.3) 94 (78.3)
Zearalenone olda 0.6 8 (6.7) 13 (10.8)
Zearalenone 0.003 98 (81.7) 98 (81.7)
a-Zearalenolf 0.01 5 (4.2) 5 (4.2)
b-Zearalenolf 0.003 7 (5.8) 7 (5.8)

a Data as published by Ezekiel et al. [8].
b Limit of quantitation.
c Number (percentage) of samples with analyte concentrations above the LOQ.
d Number (percentage) of samples with analyte concentrations above the LOQ and th
e Means were calculated for positive samples by considering half LOQ (LOQ/2) for sam
f Analytes sought for by Ezekiel et al. [8] but not detected.
g Analytes sought for only by the newly developed method.
values (0.003/0.01/0.003 ngmL�1) comparable to other published
methods [19,20]. Alternariol which has never been previously re-
ported in human bio-fluids as potential biomarker of exposure was
added to the methods due to its frequent occurrence in cereal
[51,52], tomato [53], or apple [54] products and beverages [41].
Based on a recent exposure estimate [52], it is predicted to be
observed in urine, and may be a useful biomarker of exposure. Due
to a lack of certified reference materials for mycotoxins in urine,
spiked blank samples were used estimate trueness according to the
EC 657/2002 recommendations.

3.5. Application and critical performance evaluation

A comparison of the sensitivity of the presented method to that
published by Warth et al. [21] was performed by re-analysing a set
of 120 urine samples from Nigerian individuals naturally contam-
inated with numerous mycotoxins [11]. The results clearly
demonstrate the enhanced performance, indicated by a higher
number of positive samples (samples with concentrations> LOD)
with the new method reported in this study (Table 2). Importantly,
the number of quantified analytes (samples with mycotoxin con-
centrations> LOQ) was greatly increased, enabling a far more ac-
curate exposure and risk assessment. Ezekiel et al. [11] reported 17
(14.2%) positive samples for AFM1 of which only seven had AFM1
values> LOQ while the present study yielded 87 (73%) positive
samples, all above the LOQ. This is also the case for other key
analytes (OTA and ZEN) quantified. The developed method has
shown the capacity to assess realistic chronic exposures due to the
very low LOQ values for the majority of the analytes, also because
the data points> LOQ are more in number compared to the <LOD
values; a fact contrasted by our former analysis [11].

The prevalence and concentrations of CIT (incidence: 66%; max:
241 ngmL�1), DHC (incidence: 58%; max: 17 ngmL�1), FB1 (inci-
dence: 71%; max: 15 ngmL�1) and ZEN (incidence: 82%; max:
20 ngmL�1) were very high compared to the previous study [11]
(Table 2) while based on mean values (Fig. 2) the highest urinary
levels were obtained for CIT (5.96 ngmL�1), DHC (2.39 ngmL�1),
rn Nigeria (n¼ 120). To enable the direct comparison with a less sensitive method
Ezekiel et al. [8]) and the newly developed method are reported below each other.
assessed previously.

) positived Concentration (ng mL�1)

Minimum Maximum Meane Std Dev. Median

0.08 1.54 0.34 0.45 0.08
0.001 0.62 0.04 0.08 0.01
0.03 0.20 0.06 0.06 0.03
0.015 241.46 5.96 27.43 0.84
0.05 16.89 2.39 3.56 1.00
0.94 6.84 2.56 2.31 1.67
0.08 6.22 2.37 1.88 1.79
2.08 12.77 4.56 2.82 3.84
0.08 14.88 1.09 2.04 0.48
0.24 3.02 0.95 0.60 0.75
0.08 0.56 0.15 0.11 0.08
0.003 0.31 0.05 0.06 0.04
0.94 6.84 3.13 2.28 2.40
0.03 19.99 0.75 2.59 0.20
0.52 2.52 1.27 0.87 0.87
0.06 2.74 0.88 1.08 0.33

ose less than the LOQ but higher than the LOD.
ples below the LOQ value.



Fig. 2. Distribution of urinary mycotoxins in individuals (adults, adolescents and children) from northern Nigeria arranged form the highest to lowest medium concentration.

Fig. 3. Examples of naturally contaminated human urine samples for NIV, DON, FB1, b-ZEL, a-ZEL, ZEN, AFM1, DHC, CIT, OTA, with their respective concentrations.
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DON (2.37 ngmL�1), a-ZEL (1.27 ngmL�1) and FB1 (1.09 ngmL�1).
Unexpectedly and similar to our previous analyses [11], the hy-
droxylated metabolites of ZEN hardly occurred. For the first time,
AOH was found in human urine at concentrations reaching
0.2 ngmL�1 (mean 0.06 ngmL�1) in eight samples. The prevalence
of AFM1 was 72%, mean level (0.04 ngmL�1). With respect to
exposure patterns observed across age groups (Fig. 2), higher AFM1,
DON, DHC, NIV and ZEN median levels were found in adolescent
urines than in adult and children urines while CIT, FB1 and OTA
median levels were higher in adult urines than in urines from other
age groups.

When applying the new analytical method to previously ana-
lysed samples, it could be revealed that about 98% of the urine
samples contained more than one mycotoxin (Supplementary
Table S2), and 25% contained as many as five co-occurring myco-
toxins, while another one third contained at least six mycotoxins
and up to nine different mycotoxin combinations; these are in
contrast to the fewer co-occurrence patterns reported in our 2012
measurements [11]. The discovered mixtures included several
mycotoxins which are regulated and these mixtures may exert
unknown synergistic effects on the exposed populations. Combi-
natory exposure effects have recently been reported in cell lines
and animalmodels [15,55,56], thusmaking it imperative to develop
highly sensitive targeted and untargeted workflows to efficiently
monitor background human exposures and create appropriate in-
terventions among the affected populations. The data provided by
this new method (example in Fig. 3) further suggest the need for
in vitro testing of mycotoxin co-occurrence patterns in realistic,
real-life scenarios (very low to high concentration ranges).

4. Conclusions and outlook

This paper reports on the development, validation, and critical
performance evaluation of the first SIDA-based UHPLC-MS/MS
method for urinary multi-mycotoxin exposure assessment.
Through the unique combination of a more general clean-up (HLB),
the use of internal standards, enzymatic hydrolysis of conjugated
toxins, and optimized chromatographic separation, the ultra-
sensitive quantification of biomarkers of exposure to multiple co-
occurring mycotoxins is now possible. The application of this
method in large-scale cohort exposure assessment studies is
encouraged in order to obtain realistic individual exposure data.
Importantly, this approach is also feasible for expansion to inves-
tigate exposure patterns beyond mycotoxins (potentially towards
capturing the ‘exposome’ and mycotoxin-drug interactions) based
on the non-discriminative sample preparation protocol. Applying
this method to link dietary mycotoxin exposure to the suscepti-
bility, aetiology and outcomes of specific diseases such as exposure-
related cancers (e.g. breast, liver, colon, and oesophagus), stunting
or HIV/AIDS will be a highly important future endeavour.
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