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Making inferences from partial information constitutes a critical aspect
of cognition. During visual perception, pattern completion enables
recognition of poorly visible or occluded objects. We combined
psychophysics, physiology, and computational models to test the
hypothesis that pattern completion is implemented by recurrent
computations and present three pieces of evidence that are consistent
with this hypothesis. First, subjects robustly recognized objects even
when they were rendered <15% visible, but recognition was largely
impaired when processing was interrupted by backward masking.
Second, invasive physiological responses along the human ventral cor-
tex exhibited visually selective responses to partially visible objects
that were delayed compared with whole objects, suggesting the need
for additional computations. These physiological delays were corre-
lated with the effects of backward masking. Third, state-of-the-art
feed-forward computational architectures were not robust to partial
visibility. However, recognition performance was recovered when the
model was augmented with attractor-based recurrent connectivity.
The recurrent model was able to predict which images of heavily
occluded objects were easier or harder for humans to recognize, could
capture the effect of introducing a backward mask on recognition
behavior, and was consistent with the physiological delays along the
human ventral visual stream. These results provide a strong argument
of plausibility for the role of recurrent computations in making visual
inferences from partial information.

visual object recognition | computational neuroscience | pattern
completion | artificial intelligence | machine learning

Humans and other animals have a remarkable ability to make
inferences from partial data across all cognitive domains. This

inference capacity is ubiquitously illustrated during pattern comple-
tion to recognize objects that are partially visible due to noise, limited
viewing angles, poor illumination, or occlusion. There has been sig-
nificant progress in describing the neural machinery along the ventral
visual stream responsible for recognizing whole objects (1–5). Com-
putational models instantiating biologically plausible algorithms for
pattern recognition of whole objects typically consist of a sequence of
filtering and nonlinear pooling operations. The concatenation of
these operations transforms pixel inputs into a feature representation
amenable for linear decoding of object labels. Such feed-forward
algorithms perform well in large-scale computer vision experiments
for pattern recognition (6–9) and provide a first-order approximation
to describe the activity of cortical neurons (e.g., ref. 10).
Spatial and temporal integration play an important role in

pattern completion mechanisms (11–14). When an object is oc-
cluded, there are infinitely many possible contours that could join
the object’s parts together. However, the brain typically manages
to integrate those parts to correctly recognize the occluded object.
Multiple studies have highlighted the importance of temporal in-
tegration by demonstrating that recognizing partially visible ob-
jects takes more time than recognizing fully visible ones at the
behavioral (11, 15) and physiological (12, 13) levels. We con-
jectured that within-layer and top-down recurrent computations
are involved in implementing the spatial and temporal integrative
mechanisms underlying pattern completion. Recurrent connec-
tions can link signals over space within a layer and provide specific

top-down modulation from neurons with larger receptive fields
(16, 17). Additionally, recurrent signals temporally lag behind
their feed-forward counterparts, and therefore provide an ideal
way to incorporate temporal integration mechanisms.
To examine plausible mechanisms involved in pattern completion,

we combined psychophysics, neurophysiology (13), and computa-
tional modeling to evaluate recognition of partially visible objects. We
show that humans robustly recognize objects even from a limited
amount of information, but performance rapidly deteriorates when
computations are interrupted by a noise mask. On an image-by-image
basis, the behavioral effect of such backward masking correlates with
an increase in latency in neurophysiological intracranial field poten-
tials along the ventral visual stream. A family of modern feed-forward
convolutional hierarchical models is not robust to occlusion. We
extend previous notions of attractor dynamics by adding recurrence
to such bottom-up models and providing a proof-of-concept model
that captures the essence of human pattern completion behavior.

Results
Robust Recognition of Partially Visible Objects. Subjects performed a
recognition task (Fig. 1 A and B) involving categorization of ob-
jects that were either partially visible (Partial in Fig. 1C, Right) or
fully visible (Whole in Fig. 1C, Left). Images were followed by
either a gray screen (“unmasked” in Fig. 1A) or a spatially over-
lapping noise pattern (“masked” in Fig. 1B). The image pre-
sentation time, referred to as stimulus onset asynchrony (SOA),
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ranged from 25 to 150 ms in randomly ordered trials. Stimuli
consisted of 325 objects belonging to five categories: animals,
chairs, faces, fruits, and vehicles. The parts revealed for each ob-
ject were chosen randomly. There were 40 images per object,
comprising a total of 13,000 images of partial objects (Methods).
For whole objects and without a mask, behavioral performance

was near ceiling, as expected (100% visible in Fig. 1F). Subjects
robustly recognized partial objects across a wide range of visibility
levels despite the limited information provided (Fig. 1F). Although
poor visibility degraded performance, subjects still showed 80 ± 3%
performance at 35 ± 2.5% visibility (partial versus whole objects:
P < 10−10, two-sided t test). Even for images with 10 ± 2.5% visi-
bility, performance was well above chance levels (59 ± 2%; P < 10−10,
two-sided t test; chance = 20%). There was a small but signifi-
cant improvement in performance at longer SOAs for partially
visible objects (dashed lines in Fig. 1H; Pearson r = 0.56; P <
0.001, permutation test).
In a separate experiment, we generated images where objects

appeared behind a black surface occluder (Fig. 1D). Consistent
with previous studies (e.g., ref. 14), recognition was also robust
when using heavily occluded images (Fig. 1I). The presence of an
occluder improved recognition performance with respect to partial
objects (compare SI Appendix, Fig. S1 A versus B; P < 10−4, χ2
test). We focused next on the essential aspects of pattern com-
pletion by considering the more challenging condition of partially
visible objects, without help from other cues such as occluders.

While subjects had not seen any of the specific images in this
experiment before, they had had extensive experience with fully
visible and occluded versions of other images of animals, faces, fruits,
chairs, and vehicles. We conducted a separate experiment with novel
shapes (Fig. 1E and SI Appendix, Fig. S8A) to assess whether ro-
bustness to limited visibility (Fig. 1 F, H, and I) extended to un-
familiar objects. Visual categorization of such novel objects was also
robust to limited visibility (Fig. 1J and SI Appendix, Fig. S8B).

Backward Masking Disrupts Recognition of Partially Visible Objects.
Behavioral (18), physiological (19, 20), and computational studies
(3, 4, 10) suggest that recognition of whole isolated objects can be
described by rapid, largely feed-forward, mechanisms. Several in-
vestigators have used backward masking to force visual recognition
to operate in a fast regime with minimal influences from recurrent
signals (21): When an image is rapidly followed by a spatially
overlapping mask, the high-contrast noise mask interrupts any ad-
ditional, presumably recurrent, processing of the original image
(22–24). We asked whether this fast, essentially feed-forward, rec-
ognition regime imposed by backward masking is sufficient for
robust recognition of partially visible objects by randomly inter-
leaving trials with a mask (Fig. 1B).
Performance for whole images was affected by the mask only for

the shortest SOA values (compare Fig. 1 F versus G at 100%
visibility; P < 0.01, two-sided t test). When partial objects were
followed by a backward mask, performance was severely impaired
(compare Fig. 1 F versus G). A two-way ANOVA on performance
with SOA and masking as factors revealed a significant interaction
(P < 10−8). The behavioral consequences of shortening SOA were
significantly stronger in the presence of backward masking (com-
pare solid versus dashed lines in Fig. 1H). Additionally, backward
masking disrupted performance across a wide range of visibility
levels for SOAs that were ≤100 ms (Fig. 1G andH). Similar effects
of backward masking were observed when using occluded objects
(Fig. 1I; P < 0.001, two-way ANOVA) as well as when using novel
objects (Fig. 1J and SI Appendix, Fig. S8 C and D; P < 0.0001, two-
way ANOVA). In sum, interrupting processing via backward
masking led to a large reduction in the ability for recognition of
partially visible objects, occluded images, and partially visible novel
objects across a wide range of SOA values and visibility levels.

Images More Susceptible to Backward Masking Elicited Longer Neural
Delays Along Human Ventral Visual Cortex. In a recent study, we
recorded invasive physiological signals throughout the ventral visual
stream in human patients with epilepsy while they performed an
experiment similar to the one in Fig. 1A (13). This experiment in-
cluded 25 objects presented for 150 ms without any masking, with
random bubble positions in each trial. For whole objects, neural
signals along the ventral visual stream showed rapid selective re-
sponses to different categories, as shown for an example electrode
in the left fusiform gyrus in Fig. 2 A and B. When presenting par-
tially visible objects, the neural signals remained visually selective
(Fig. 2 C and D). The visually selective signals elicited by the partial
objects were significantly delayed with respect to the responses to
whole objects (compare the neural latency, defined here as the
single-trial time of peak responses, in Fig. 2 C and D with the time
of peak response before 200 ms in Fig. 2 A and B). Because the
visible features varied from trial to trial, different renderings of the
same object elicited a wide distribution in the neural latencies (Fig.
2 C and D). For example, the peak voltage occurred at 206 ms after
stimulus onset in response to the first image in Fig. 2C and at
248 ms in response to the last image in Fig. 2C.
Heterogeneity across different renderings of the same object was

also evident in the range of effects of backward masking at the
behavioral level in the experiment in Fig. 1 G and H. We hypoth-
esized that those images that elicited longer neural delays would
also be more susceptible to backward masking. To test this hy-
pothesis, we selected two electrodes in the neurophysiological study
showing strong visually selective signals (Methods; one of these
sites is shown in Fig. 2 A–D). We considered 650 images of par-
tially visible objects corresponding to the 25 objects from the
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Fig. 1. Backward masking disrupts recognition of partially visible objects. (A
and B) Forced-choice categorization task (n = 21 subjects). After 500 ms of
fixation, stimuli were presented for variable exposure times (SOA from 25 to
150 ms), followed by a gray screen (A) or a noise mask (B) for 500 ms. Stimuli
were presented unaltered (Whole; C, Left and D, Left), rendered partially
visible (Partial; C, Right), or rendered occluded (D, Right) (SI Appendix, Fig. S1).
(E) Experimental variation with novel objects (SI Appendix, Fig. S8). Behavioral
performance is shown as a function of visibility for the unmasked (F) and
masked (G) trials. Colors denote different SOAs. Error bars denote SEM. The
horizontal dashed line indicates chance level (20%). Bin size = 2.5%. Note the
discontinuity in the x axis to report performance at 100% visibility. (H) Average
recognition performance as a function of SOA for partial objects (same data
replotted from F and G, excluding 100% visibility). Performance was signifi-
cantly degraded by masking (solid gray line) compared with the unmasked
trials (dotted gray line) (P < 0.001, χ2 test; df = 4). (I) Performance versus SOA
for the occluded stimuli in D (note: chance = 25% here) (SI Appendix, Fig. S1).
(J) Performance versus SOA for the novel object stimuli in E.
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neurophysiology experiment. Using the same images (i.e., the exact
same features revealed for each object), we conducted a separate
psychophysics experiment to evaluate the effect of backward
masking on each individual image (n = 33 subjects). This experi-
ment allowed us to construct a curve of behavioral performance, as
a function of SOA during backward masking, for each of the se-
lected images from the neurophysiology experiment (Fig. 2E). To
quantify the effect of backward masking for each individual image,
we defined a masking index (MI), 1 − AUC, where AUC is the
normalized area under the curve in the performance versus SOA
plot (gray area in Fig. 2E). Larger MI values correspond to larger
effects of backward masking: the MI ranges from 0 (no effect of
backward masking) to 0.8 (backward masking leads to chance per-
formance). For example, in Fig. 2C, the first image was less affected
by backward masking than the last image, particularly at short SOA
values (MI values of 3% and 20%, respectively).
For those images from the preferred category for each of the two

electrodes, the MI showed a weak but significant correlation with
the neural response latency, even after accounting for image dif-
ficulty and recording site differences (Fig. 2F; Pearson r = 0.37;
P = 0.004, permutation test; Methods). This effect was stimulus

selective: The MI was not correlated with the neural response la-
tency for images from the nonpreferred categories (P = 0.33,
permutation test). The neural latencies are noisy measures based
on single trials (Methods and Fig. 2C), the physiology and behav-
ioral experiments were conducted in different subjects, and there
was variability across subjects in the MI (Fig. 2F and SI Appendix,
Fig. S2). However, despite all of these sources of noise, images that
led to longer neural response latencies were associated with a
stronger effect of interrupting computations via backward masking.

Standard Feed-Forward Models Are Not Robust to Occlusion. We next
investigated the potential computational mechanisms responsible
for the behavioral and physiological observations in Figs. 1 and 2.
We began by considering state-of-the-art implementations of
purely feed-forward computational models of visual recognition.
These computational models are characterized by hierarchical,
feed-forward processing with progressive increases in the size of
receptive fields, degree of selectivity, and tolerance to object
transformations (e.g., refs. 2–4). Such models have been success-
fully used to describe rapid recognition of whole objects at the
behavioral level (e.g., ref. 4) and neuronal firing rates in area V4
and the inferior temporal cortex in macaque monkeys (e.g., ref.
10). Additionally, these deep convolutional network architectures
achieve high performance in computer vision competitions eval-
uating object recognition capabilities (e.g., refs. 6, 7).
We evaluated the performance of these feed-forward models in

recognition of partially visible objects using the same 325 objects
(13,000 trials) in Fig. 1. As a representative of this family of
models, we considered AlexNet (6), an eight-layer convolutional
neural network trained via back-propagation on ImageNet, a large
corpus of natural images (9). We used as features either activity in
the last fully connected layer before readout (fc7; 4,096 units) or
activity in the last retinotopic layer (pool5; 9,216 units). To mea-
sure the effect of low-level differences between categories (e.g.,
contrast, object area), we also considered raw pixels as baseline
performance (256 × 256 = 65,536 features).
We sought to measure the robustness of these networks to partial

object visibility in the same way that tolerance to other transfor-
mations such as size and position changes is evaluated [i.e., by
training a decision boundary on one condition such as specific size,
viewpoint, or whole objects and testing on the other conditions such
as other sizes, viewpoints, or occlusion (e.g., refs. 2, 4)]. It is not fair
to compare models trained with occluded objects versus models
trained exclusively with whole objects; therefore, we do not include
occluded objects in the training set. Furthermore, the results in Fig.
1J and SI Appendix, Fig. S8 show that humans can perform pattern
completion for novel objects without any prior training with oc-
cluded versions of those objects. We trained a support vector ma-
chine (SVM) classifier (linear kernel) on the features of whole
objects and tested object categorization performance on the rep-
resentation of images of partial objects. Importantly, all of the
models were trained exclusively with whole objects, and perfor-
mance was evaluated in images with partially visible objects. Cross-
validation was performed over objects: Objects used to train the
decision boundary did not appear as partial objects in the test set.
The performance of raw pixels was essentially at chance level (Fig.
3A). In contrast, the other models performed well above chance
(P < 10−10, two-sided t test; also SI Appendix, Fig. S4). While feed-
forward models performed well above chance, there was a signifi-
cant gap with respect to human performance at all visibility levels
below 40% (P < 0.001, χ2 test; Fig. 3A). These results are consistent
with those reported in other simulations with occluded objects and
similar networks (25). The decrease in performance of feed-forward
models compared with humans depends strongly on the stimuli and
on the amount of information available: Bottom-up models were
comparable to humans at full visibility (26) (SI Appendix, Fig. S3).
The decline in performance with low visibility was not specific to

the set of images used in this study: AlexNet pool5 and fc7 also
performed below human levels when considering novel objects (SI
Appendix, Fig. S9A). The decline in performance with low visibility
was not specific to using pixels or the AlexNet pool5 or fc7 layer.
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Fig. 2. Behavioral effect of masking correlated with the neural response la-
tency on an image-by-image basis. (A) Intracranial field potential (IFP) responses
from an electrode in the left fusiform gyrus averaged across five categories of
whole objects while a subject was performing the task described in Fig. 1 (no
masking, 150-ms presentation time). This electrode showed a stronger response
to faces (green). The gray rectangle indicates the stimulus presentation time
(150 ms). The shaded area indicates SEM (details are provided in ref. 13). (B) IFP
responses for one of the whole objects for the electrode in A showing single-
trial responses (gray, n = 9) and average response (green). The latency of the
peak response is marked on the x axis. (C) Single-trial responses (n = 1) to four
partial images of the same object in B. (D) New stimulus set for psychophysics
experiments was constructed from the images in 650 trials from two electrodes
in the physiology experiments. A raster of the neural responses for the example
electrode in A, one trial per line, from partial image trials selected for psy-
chophysics is shown. These trials elicited strong physiological responses with a
wide distribution of response latencies (sorted by the neural latency). The color
indicates the voltage (color scale on bottom). (Right, Inset) Zoomed-in view of
the responses to the 82 trials in the preferred category. (E) We measured the
effect of backward masking at various SOAs for each of the same partial ex-
emplar images used in the physiology experiment (n = 33 subjects) and com-
puted anMI for each image (Methods). The larger theMI for a given image, the
stronger was the effect of masking. (F) Correlation between the effect of
backward masking (y axis, MI as defined in E) and the neural response latency (x
axis, as defined in B and C). Each dot is a single partial object from the preferred
category for electrode 1 (blue) or 2 (gray). Error bars for the MI are based on
half-split reliability (SI Appendix, Fig. S2), and the neural latency values are
based on single trials. There was a significant correlation (Pearson r = 0.37; P =
0.004, linear regression, permutation test). cc, correlation coefficient.
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All of the feed-forward models that we tested led to the same
conclusions, including different layers of VGG16, VGG19 (7),
InceptionV3 (8), and ResNet50 (SI Appendix, Fig. S4). Among
these models, the VGG16 architecture provided slightly better
recognition performance in the low-visibility regime.
The models shown in Fig. 3A and SI Appendix, Fig. S4 were

trained to optimize object classification performance in the ImageNet
2012 dataset (9) without any specific training for the set of objects
used in our study, except for the SVM classifier. To assess whether
fine-tuning the model’s weights could alleviate the challenges with
limited visibility, we fine-trained AlexNet via back-propagation using
the 325 whole objects and then retested this fine-tuned model on the
images with limited visibility. Fine-tuning the AlexNet architecture
did not lead to improvements at low visibility (SI Appendix, Fig. S5).
These results are consistent with a previous computational study
using feed-forward models similar to the ones in the current work
and evaluating a more extensive image dataset (25).
We used stochastic neighborhood embedding to project the

AlexNet fc7 layer features onto two dimensions and to visualize
the effects of occlusion on the model (Fig. 4C). The representation
of whole objects (open circles) showed a clear separation among
categories, but partial objects from different categories (filled cir-
cles) were more similar to each other than to their whole object
counterparts. Therefore, decision boundaries trained on whole ob-
jects did not generalize to categorization of partial objects (Fig. 3A).
Despite the success of purely feed-forward models in recognition of
whole objects, these models were not robust under limited visibility.
We next sought to further understand the breakdown in the

models’ representations of objects under partial visibility. Removing
large amounts of pixels from the objects pushed the model’s rep-
resentation of the partially visible object away from their whole
counterparts (Fig. 4C). The distance between the representation of
a partially visible object and the corresponding whole object cate-
gory mean is indicative of the impact of partial visibility. We eval-
uated whether this distortion was correlated with the latencies in
the neural recordings from Fig. 2. We reasoned that images of
partial objects whose model representation was more distorted
would lead to longer neural response latencies. We computed the
Euclidean distance between the representation of each partial ob-
ject and the whole object category mean. We found a modest but
significant correlation at the object-by-object level between the
computational distance to the category mean and the neural re-
sponse latency for the pool5 (Fig. 3B) and fc7 (Fig. 3C) features.
The statistical significance of these correlations was assessed by
regressing the distance to category mean against the neural latency,
along with the following additional predictors to account for po-
tential confounds: (i) the percentage of object visibility and pixel

distance to regress out any variation explained by low-level effects
of occlusion and difficulty, (ii) the electrode number to account for
the interelectrode variability in our dataset, and (iii) the MI (Fig.
2E) to control for overall recognition difficulty. The model distance
to category mean in the pool5 and fc7 layers correlated with the
response latency beyond what could be explained by these addi-
tional factors (pool 5: Pearson r = 0.27; P = 0.004, permutation test;
fc7: Pearson r = 0.3; P = 0.001, permutation test). In sum, state-of-
the-art feed-forward architectures did not robustly extrapolate from
whole to partially visible objects and failed to reach human-level
performance in recognition of partially visible objects. As the dif-
ference in the representation of whole and partial objects increased,
the time it took for a selective neural response to evolve for the
partial objects was longer.

Recurrent Neural Networks Improve Recognition of Partially Visible
Objects. The behavioral, neural, and modeling results presented
above suggest a need for additional computational steps beyond
those present in feed-forward architectures to build a robust
representation for partially visible objects. Several computational
ideas, originating from models proposed by Hopfield (27), have
shown that attractor networks can perform pattern completion. In
the Hopfield network, units are connected in an all-to-all fashion
with weights defining fixed attractor points dictated by the whole
objects to be represented. Images that are pushed farther away by
limited visibility would require more processing time to converge
to the appropriate attractor, consistent with the behavioral and
physiological observations. As a proof of principle, we augmented
the feed-forward models discussed in the previous section with
recurrent connections to generate a robust representation through
an attractor-like mechanism (Fig. 4A), with one attractor for each
whole object. We used the AlexNet architecture with fixed feed-
forward weights from pretraining on ImageNet (as in Fig. 3) and
added recurrent connections to the fc7 layer. Recurrent connec-
tivity is ubiquitous throughout all visual neocortical areas in bi-
ological systems. The motivation to include recurrent connectivity
only in the fc7 layer was to examine first a simple and possibly
minimal extension to the existing architectures (Discussion).
We denote the activity of the fc7 layer at time t as the 4,096-

dimensional feature vector ht. At each time step, ht was determined
by a combination of the activity from the previous time step ht−1 and
the constant input from the previous layer x: ht = f ðWhht−1, xÞ,
where f introduces a nonlinearity (Methods). The input from
the previous layer, fc6, was kept constant and identical to that in the
feed-forward AlexNet. Wh is a weight matrix that governs the
temporal evolution of the fc7 layer. We considered a Hopfield re-
current neural network (RNNh) without introducing any free pa-
rameters that depended on the partial objects, where Wh was a
symmetrical weight matrix dictated by the fc7 representation of the
whole objects, using the implementation of Li et al. (28). The initial
state of the network was given by the activity in the previous layer,
h0 =W6→7fc6, followed by binarization. The state of the network
evolved over time according to ht = satlinsðWhht−1Þ, where satlins is
a saturating nonlinearity (Methods). We verified that the whole
objects constituted an attractor point in the network by ensuring
that their representation did not change over time when used as
inputs to the model. We next evaluated the responses of RNNh to
all of the images containing partial objects. The model was run until
convergence (i.e., until none of the feature signs changed between
consecutive time steps). Based on the final time point, we evaluated
the performance in recognizing partially visible objects. The RNNh
model demonstrated a significant improvement over the AlexNet
fc7 layer (Fig. 4B; 57 ± 0.4%; P < 0.001, χ2 test).
The dynamic trajectory of the representation of whole and

partial objects in the fc7 layer of the RNNh model is visualized in
Fig. 4C. Before any recurrent computations have taken place, at
t = 0 (Fig. 4C, Left), the representations of partial objects were
clustered together (closed circles in Fig. 4C) and separated from
the clusters of whole objects in each category (open circles in Fig.
4C). As time progressed, the cluster of partial objects was pulled
apart and moved toward their respective categories. For example, at
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Fig. 3. Standard feed-forward models were not robust to occlusion. (A) Per-
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t = 16 (Fig. 4C, Center) and t = 256 (Fig. 4C, Right), the repre-
sentation of partial chairs (closed blue circles in Fig. 4C) largely
overlapped with the cluster of whole chairs (open blue circles in Fig.
4C). Concomitant with this dynamic transformation in the repre-
sentation of partial objects, the overall performance of the RNNh
model improved over time (Fig. 4D).
In addition to the average performance reported in Fig. 4 B and

D, we directly compared performance at the object-by-object level
between humans and the RNNh model (SI Appendix, Fig. S6).
There were notable differences across categories [e.g., humans were
much better than the model in detecting faces (green circles in SI
Appendix, Fig. S6)]. For this reason, we first compared models and
humans at the object-by-object level within each category and then
averaged the results across categories. Over time, the RNNh be-
haved more like humans at the object-by-object level (Fig. 4E). For
each time step in the model, we computed the average correct rate
on partial objects for each object, from each of the five categories,
and correlated this vector with the pattern of human performance
(SI Appendix, Fig. S6). The upper bound (dashed line in Fig. 4E)
represents human–human similarity, defined as the correlation in
the response patterns between half of the subject pool and the other
half. Over time, the recurrent model–human correlation increased
toward the human–human upper bound. Additionally, there was a
parallel between human performance across different SOAs and the

model performance across varying recurrent time steps (SI Appen-
dix, Fig. S12): At fewer recurrent steps, the model showed a higher
correlation with human performance at short SOAs, whereas with
more recurrent steps, the model showed a higher correlation with
human performance at long SOAs.
Adding a Hopfield-like recurrent architecture to AlexNet also

improved performance in recognition of the novel objects (SI Ap-
pendix, Figs. S8A and S9 B–D). Similar conclusions were obtained
when considering the VGG16 architecture and adding Hopfield-like
recurrent connections to the fc1 layer (SI Appendix, Fig. S7).
In sum, implementing recurrent connections in an attractor-like

fashion at the top of a feed-forward hierarchical model signifi-
cantly improved the model’s performance in pattern completion,
and the additional computations were consistent with temporal
delays described at the behavioral and neural levels.

Backward Masking Impaired RNN Model Performance.We reasoned that
the backward mask introduced in the experiment discussed in Fig. 1
B, G, and H impaired performance by interrupting processing, and
we set out to investigate whether we could reproduce this effect in
the RNNh model. We computed the responses of the AlexNet model
to the mask and fed the fc6 features for the mask to the RNNhmodel
after a certain number of time steps. Switching the mask on at earlier
time points was meant to mimic shorter SOAs in the psychophysical
experiments. We read out performance based on the resulting fc7
activity combining the partial object and the mask at different time
points (Fig. 4F). Presenting the mask reduced performance from
58 ± 2% (SOA = 256 time steps) to 37 ± 2% (SOA = two time
steps). Although we cannot directly compare SOAs in milliseconds
with time steps in the model, these results are qualitatively consistent
with the behavioral effects of backward masking (Fig. 1H; a side-by-
side comparison of the physiological, behavioral, and computational
dynamics is shown in SI Appendix, Fig. S10).

Discussion
It is routinely necessary to recognize objects that are partially
visible due to occlusion and poor illumination. The visual system is
capable of making inferences even when only 10–20% of the ob-
ject is visible (Fig. 1F), and even for novel objects (Fig. 1J). We
investigated the mechanisms underlying such robust recognition of
partially visible objects (referred to as pattern completion) at the
behavioral, physiological, and computational levels. Backward
masking impaired recognition of briefly presented partial images
(25 ms ≤ SOA ≤ 100 ms) (Fig. 1 G–J). The strength of the dis-
ruptive effect of backward masking was correlated with the neural
delays from invasive recordings along the ventral visual stream
(13) (Fig. 2). State-of-the-art bottom-up computational architec-
tures trained on whole objects failed to achieve robustness in
recognition of partially visible objects (Fig. 3A and SI Appendix,
Figs. S4 and S5). The introduction of proof-of-principle recurrent
connections (Fig. 4A) led to significant improvement in recogni-
tion of partially visible objects at the average level (Fig. 4B and SI
Appendix, Figs. S7 and S9B) and also in explaining which images
were easier or harder for humans at the object-by-object level (Fig.
4E and SI Appendix, Figs. S6 and S12). The RNNh model had no
free parameters that depended on the partial objects: All of the
weights were determined by the whole objects. The increase in
performance involved recurrent computations evolving over time
that were interrupted by the introduction of a mask (Fig. 4F).
Recognition of partially visible objects requires longer reaction

times (11, 15) and delayed neural representation with respect to
that of whole objects (12, 13). These delays suggest the need
for additional computations to interpret partially visible images.
Interrupting those additional computations by a mask impairs rec-
ognition (Fig. 1 G–J). Backward masking disproportionately affects
recurrent computations (22–24). Accordingly, we conjectured that
the disruptive effect of backward masking during pattern com-
pletion could be ascribed to the impairment of such recurrent com-
putations. The rapid and selective signals along the ventral visual
stream that enable recognition of whole objects within ∼150 ms
have been interpreted to reflect largely bottom-up processing
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Fig. 4. Dynamic RNN showed improved performance over time and was impaired
by backward masking. (A) Top-level representation in AlexNet (fc7) receives inputs
from fc6, governed by weights W6→7. We added a recurrent loop within the top-
level representation (RNN). The weight matrix Wh governs the temporal evolution
of the fc7 representation (Methods). (B) Performance of the RNNh (blue) as a
function of visibility. The RNNh approached human performance (black curve) and
represented a significant improvement over the original fc7 layer (red curve). The
red and black curves are copied from Fig. 3A for comparison. Error bars denote SEM.
(C) Temporal evolution of the feature representation for RNNh as visualized with
stochastic neighborhood embedding. Over time, the representation of partial ob-
jects approaches the correct category in the clusters of whole images. (D) Overall
performance of the RNNh as a function of recurrent time step compared with hu-
mans (top dashed line) and chance (bottom dashed line). Error bars denote SEM
(five-way cross-validation; Methods). (E) Correlation (Corr.) in the classification of
each object between the RNNh and humans. The dashed line indicates the upper
bound of human–human similarity obtained by computing how well half of the
subject pool correlates with the other half. Regressions were computed separately
for each category, followed by averaging the correlation coefficients across cate-
gories. Over time, the model becomes more human-like (SI Appendix, Fig. S6). Error
bars denote SD across categories. (F) Effect of backward masking. The same back-
ward mask used in the psychophysics experiments was fed to the RNNh model at
different SOA values (x axis). Error bars denote SEM (five-way cross-validation).
Performance improved with increasing SOA values (SI Appendix, Fig. S10).
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(2–4, 10, 18–20; however, ref. 29) Physiological delays of ∼50 ms
during recognition of partial objects (12, 13) provide ample time for
recurrent connections to exert their effects during pattern comple-
tion. These delays could involve recruitment of lateral connections
(16) and/or top-down signals from higher visual areas (30).
Humans are constantly exposed to partially visible objects.

While subjects had not previously seen the specific experiment
images, they had had experience with occluded animals, chairs,
faces, fruits, and vehicles. To evaluate whether category-specific
experience with occluded objects is required for pattern com-
pletion, we conducted an experiment with completely novel ob-
jects (Fig. 1J and SI Appendix, Figs. S8 and S9). Subjects robustly
categorized novel objects under low visibility even when they had
never seen those heavily occluded objects or similar ones before.
There exist infinitely many possible bottom-up models. Even

though we examined multiple state-of-the-art models that are suc-
cessful in object recognition (AlexNet, VGG16, VGG19, Incep-
tionV3, and ResNet50), their failure to account for the behavioral
and physiological results (25, 26) (Fig. 3 and SI Appendix, Fig. S4)
should be interpreted with caution. We do not imply that it is im-
possible for any bottom-up architecture to recognize partially visible
objects. In fact, a recurrent network with a finite number of time
steps can be unfolded into a bottom-up model by creating an ad-
ditional layer for each time step. However, there are several ad-
vantages to recurrent architectures, including a reduction in the
number of units and weights. Furthermore, such unfolding of time
into layers is only applicable when we know a priori the fixed
number of computational steps, whereas recurrent architectures
allow an arbitrary and dynamically flexible number of computations.
The RNN dynamics involve temporal evolution of the features

(Fig. 4 C–F), bringing the representation of partial objects closer to
that of whole objects. These computational dynamics, map onto the
temporal lags observed at the behavioral and physiological levels.
The RNNh model’s performance and correlation with humans sat-
urates at around 10–20 time steps (Fig. 4 C–F); a combination of
feed-forward signals and recurrent computations is consistent with
the physiological responses to heavily occluded objects arising at
around 200 ms (Fig. 2D). The RNNh model uses discrete time steps,
but a more realistic implementation should be based on spikes and
continuous dynamics. A continuous time implementation of re-
current interactions shows that information can be added rapidly,
particularly under noisy input conditions, and consistently with the
empirically observed delays of ∼50–100 ms in Figs. 1 and 2 (29).
Furthermore, these dynamics are interrupted by the presentation of

a backward mask in close temporal proximity to the image (Figs. 1
G–J and 4F and SI Appendix, Fig. S10).
Multiple other cues can aid recognition of partially visible ob-

jects, including relative positions, segmentation, movement, illu-
mination, and stereopsis. Additionally, during learning, children
often encounter partially visible objects that they can continuously
explore from different angles. It will be interesting to integrate
these additional sources of information and to understand how
they contribute to pattern completion. The convergence of be-
havioral, physiological, and theoretical evidence presented here
provides insight into the human visual recognition neural circuitry
and a biologically constrained hypothesis to understand the role of
recurrent computations during pattern completion.

Methods
An expanded version is presented in SI Appendix.

Psychophysics. A total of 106 volunteers (62 female, aged 18–34 y) partici-
pated in the behavioral experiments. We performed an experiment with
partially visible objects rendered through bubbles (Fig. 1) and three varia-
tions with occluded objects (Fig. 1 and SI Appendix, Fig. S1), novel objects
(Fig. 1 and SI Appendix, Figs. S8 and S9), and stimuli matched to a previous
neurophysiological experiment (13) (Fig. 2). All subjects gave informed
consent and the studies were approved by the Institutional Review Board
at Children’s Hospital, Harvard Medical School.

Neurophysiology Experiments. The neurophysiological intracranial field po-
tential data in Figs. 2 and 3 were taken from a study by Tang et al. (13). The
neural latency for each image was defined as the time of the peak response in
the intracranial field potential and was calculated in single trials (e.g., Fig. 2C).

Computational Models. We tested state-of-the-art feed-forward vision
models, focusing on AlexNet (6) (Fig. 3; other models are shown in SI Ap-
pendix and SI Appendix, Fig. S4), with weights pretrained on ImageNet (6,
9). As a proof of principle, we proposed an RNN model by adding all-to-all
recurrent connections to the top feature layer of AlexNet (Fig. 4A). The RNN
model was defined using only information about the whole objects by set-
ting the recurrent weights based on a Hopfield attractor network (27), as
implemented in MATLAB’s newhop function (28).
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