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The Helmholtz equation for exterior acoustic problems can be solved by the finite element method in
combination with conjugated infinite elements. Both provide frequency-independent system matri-
ces, forming a discrete, linear system of equations. The homogenous system can be understood
as a quadratic eigenvalue problem of normal modes (NMs). Knowledge about the only relevant
NMs, which — when doing modal superposition — still provide a sufficiently accurate solution
for the sound pressure and sound power in comparison to the full set of modes, leads to reduced
computational effort. Properties of NMs and criteria of modal reduction are discussed in this work.
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1. Introduction

Exterior acoustic problems comprehend the propagation and distribution of sound pres-
sure in fluid-filled domains of infinite extent. This implies sound sources under free-field
conditions in full- or half-space problems, with or without open cavities. For the descrip-
tion of sound sources, e.g. by means of their radiated sound power, free-field conditions are
required in order to only determine the characteristics of the source and to exclude the
influence of the measurement environment. This also applies for the numerical simulation
of sound radiation, since in the context of virtual prototyping, it is desired for estimating
acoustical properties in the development process. For this purpose, the Sommerfeld radi-
ation condition has to be satisfied, according to which the sound pressure decays with a
defined rate and vanishes towards infinity.

The classical finite element method (FEM)? is restricted to interior acoustic problems in
enclosed computational domains with reflecting or partially absorbing boundary conditions
(ABCs). Givoli et al®® introduce and review the existing high-order local ABCs with the
aim of applying the FEM to exterior acoustic problems. Rabinovich et al® compare the
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high-order ABCs with perfectly matched layers (PMLs) that were introduced by Berengerd
and optimized for frequency domain problems by Bermudez et al™ PMLs ensure nonre-
flective outer boundaries of the computational domain by attaching additional damped and
finite computational domains to its outer boundary with perfect impedance matching at the
junction. Similar to the PML approach, the infinite element method (IFEM) works with an
outer layer around an inner spherical or ellipsoidal FE domain. Different formulations have
been presented, e.g. by Bettess,” Burnett™ and Astley™ The Astley-Leis IFEM formulation
provides frequency-independent system matrices ™13 which is required for the subsequent
investigations in this work. The radial interpolation of the sound pressure between the outer
FE boundary and infinity can be realized by different polynomials. Using Legendre or Jacobi
polynomials leads to improved matrix conditioning in comparison to conventional Lagrange
polynomials, according to von Estorff and Dreyer et o/ 1413

The Sommerfeld radiation condition is also implied in the boundary element method
(BEM),W where an integral equation is found to solve the Helmholtz equation at the
surface of the sound source for the given set of boundary conditions. This leads to discrete
and frequency-dependent, single-layer and double-layer potential matrices that associate
the sound pressure and fluid particle velocity at the boundary.

In order to determine the sound pressure or sound power using one of the above methods,
linear systems of equations have to be solved and matrices have to be inverted for each
frequency of interest separately. This leads to considerable computational effort for studies
with a large number of degrees of freedom (DOFs) in a wide frequency range. A possible
model reduction approach is modal analysis and superposition, in which the solution is
decomposed into modes — or, in mathematical terms, eigenvalues and eigenvectors — which
describe theoretically possible and orthogonal shapes of vibration that can be summed up
or superimposed to the total solution.

The concept of normal mode (NM) was first adapted to exterior acoustic problems by
Marburg et al 1820 and further investigated by Moheit and Marburg. They apply the
frequency-independent Astley—Leis IFEM in order to solve a single linearized eigenvalue
problem referring to the works by Ruge@I and Tisseur and Meerbergen. The authors
investigate the influence of the mesh and the radial interpolation of the IFEM on NMs and
acoustic radiation modes (ARMs) and compare both kinds of modes in exterior acoustic
problems. Fuf} et al 5 use an Arnoldi eigenvalue solver to calculate selected, weakly damped
NMs in a proximity to the imaginary axis iteratively. The modal reduction of ARMs has
been investigated by Kuijpers et al. Kessels? and Peters et ql 2830 using BEM.

Model reduction is mainly associated with Krylov subspace-based methods such as Padé-
via-Lanczos and Padé-via-Arnoldi. The latter approach has been applied to fluid-loaded
structural modes by Peters et al. in Ref. 30 using a fully-coupled FEM/BEM model, whereas
Baugart et al®l apply the Padé-via-Lanczos algorithm to FE- and IFE-discretized exterior
problems in order to predict sound power efficiently. Wagner et al2 describe the concept
of the Krylov subspace approach on the basis of Dirichlet-to-Neumann (DtN) boundary
conditions and IFEs in exterior acoustics with the aim of solving the Helmholtz equation
simultaneously at multiple frequencies.
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In this phenomenological work, the authors recapitulate the NMs approach and the
determination of the sound pressure and sound power and investigate the properties of
eigenvalues and eigenvectors for different geometries and load cases. In particular, the dis-
tinction between pure exterior problems and cavity problems is worked out. Finally, the
errors of the radiated sound power are determined for reduced modal bases with certain
criteria of modal reduction.

2. Method

According to the work by Marburg et al. 2% NMs in numerical exterior acoustic problems
can be determined as follows: For the description of the spatial sound pressure field p(x) at
a frequency f, the Helmholtz differential equation is used. It is discretized by the FEM and
the IFEM according to Astley and Leis. The general setup is depicted in Fig. [

The resulting discrete system of N linear equations —w?M — iwD + K = f is solved as
a linearized quadratic eigenvalue problem with 2N x 2/N-sized hypermatrices A and B:

[M 0] [0M]
A= , B= : (1)
0 K M D

This leads to 2N eigenvalues k,, corresponding to left and right eigenvectors y. ,, and x, ,,
due to nonsymmetric system matrices for the IFEs

(A —kmB)x;,;, =0 and yZm(A — kmB) = 0. (2)

The subscript z indicates the twofold length of the eigenvectors as a consequence of the state-
space linearization. The eigenvectors can be column-wisely comprised in modal matrices,
which are indicated by the capital letters in what follows. The orthogonality of the modes
is measured by the product of modal matrices and hypermatrices

YTAX, = diag(a,...,a0n—5) and YIBX, = diag(Bi,..., Bon—s), (3)

I'r <

Fig. 1. General setup of the FEM/IFEM discretization: sound source as an obstacle (gray) in the fluid-filled
computational domains QFEM (radius a) and QFEM (outer radius R).
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where the ratio of the entries on the diagonals is found as the eigenvalues K, = /G-
The eigenvalues are complex numbers and their real part contains information about the
damping of the respective mode, whereas their imaginary part indicates its resonance fre-
quency. ¢ is the rank deficiency of the mass matrix. A circular shape of the FE domain
leads to an empty mass matrix for all DOFs of the IFEs. T2 Marburg?? suggested canceling
empty rows and columns, which leads to a system of equations of reduced size 2N — 9.

It is notable that only one single eigenvalue problem has to be solved, since the system
matrices do not depend on the frequency and neither do the eigenvalues and eigenvectors.

2.1. Modal sound pressure and sound power

Up to this point, the eigensolution of the problem is frequency-independent and does not
consider any right-hand-side excitation f, e.g. caused by a structural particle velocity vs(x)
at the boundary of inner obstacles. The discrete sound pressure field can be constructed by
modal superposition of the truncated eigenvectors y,, and x,, of size N X 1, considering
only those N DOF's that are related to the pressure as shown by Marburg in Ref.

2N -6 T
Yr mfF
=5 T 4
P m=1 Oém+2k,8m " ( )

where the wave number k = w/cy is the ratio of the angular frequency 27 f and the speed of
sound of the fluid. The index I" indicates that only those DOF's in the right-hand-side vector
and in the eigenvectors have to be taken into account that are related to the surface of the
inner obstacles. The modal basis can be reduced if the sum is formed by the given eigenvec-
tors and eigenvalues. In the same manner, the radiated sound power can be superimposed
by a reduced number of modes. The discrete definition of the radiated sound power includes
the discrete sound pressure and the particle velocities at the radiating boundaries20:28.

p—w{jpfovi}, )

where © is the boundary mass matrix T2 Hence, the sound power Py is found as the sum
of modal sound power distributions P, with

1 N0yl fr
Pyv = RE-0.5 U N <N 6

The sound power P is called Paj,, in what follows, as long as the included sound pressure
vector in Eq. (B is obtained by full inversion of the dynamic stiffness matrix A according to

pr = [A"H]r = [(~wM — iwD + K) " (—iwp0vy)]r. (7)

3. Models and Implementation

Three geometries are modeled and the respective FE matrices are computed by using the
commercial software COMSOL Multiphysics®. The matrices as well as the mesh information
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are exported to MATLAB, where the subsequent processing is done. This includes the
implementation of the IFEM, the computation of the NMs and the radiated sound power
as well as the visualization of the results. All models are two-dimensional problems that
consider a solid structure as a sound-hard obstacle in a circular, fluid-filled FE domain,
where the IFEs are attached to the outer boundary of the FE mesh according to the setup
in Fig.[1]

The first model (a) is an ellipse-like structure with a rectangular insertion over the whole
length of the ellipsoidal obstacle along the z-axis with a height of 0.1 m. The two semi-axes
of the halfway stretched ellipses are a = 0.9m and b = 17/30m ~ 0.57m. The second
geometry (b) is a slight modification of the first one. Here, a part of the inner rectangular
insertion is cut out at the right side with a length of 1.7m. The third obstacle (c) is the
inversion of the second geometry, where the ellipse is removed and only the former cavity
is an inner obstacle in the fluid domain. The geometries and meshes are depicted in Fig. 2.
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Fig. 2. Meshes in the fluid-filled domain around the three inner obstacles discretized by FE and IFEs.
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Fig. 2. (Continued)

The three chosen geometries are motivated as follows: The fluid in the computational
domain is air with a density of py = 1.3kg m~3 and a speed of sound of cr = 340 ms~!. In
the case of a closed tube with a length of 1.7m, the undamped eigenvalue problem leads
to eigenfrequencies in 100 Hz-steps, starting from the first natural frequency at 0 Hz and
corresponding to standing waves along the long side of the tube. In the case of the open
cavity in the exterior acoustic domain, the eigenfrequencies are expected to appear damped
at lower frequencies, but still can be found with roughly the same frequency step from one
eigenfrequency to the next. This helps to better identify cavity-related resonance frequencies
in the solution. In comparison to the ellipsoidal obstacle with the duct-like cut-out (b) and
with these expected cavity modes inside, the ellipsoid (a) and the rectangle (c) are pure
exterior problems. They all have the same IFE discretization and only differ in the inner
area of the FE domain close to the surface of the obstacles, which might reveal similarities
and differences in the spectral solution. In these examples, the role of pure real and complex
eigenvalues and eigenvectors with respect to cavity-related resonances and outer multipole
modes shall be investigated.

All surfaces of the obstacles behave reverberantly in such a way that the boundary
admittance is zero Y (x) = 0 and the particle velocities at the surfaces are the same in
the fluid and in the structure vy = vs.lﬁ' The FE mesh has a maximum element size of
hmax = 11.33cm in order to ensure at least six elements per wavelength at a frequency
of 500 Hz for second-order Lagrangian FEs, which seems to be an appropriate sampling
according to the literature Refs. [33] and [34]

At each of the 84 quadratic line elements at the outer circular FE boundary, an IFE is
attached. Its polynomial order for the interpolation in the transversal direction is inherited
from the corresponding boundary line. For the interpolation in the radial direction, the
authors used 8-order Jacobi polynomials with the two corresponding exponents a = 1 and
B = 0. According to von Estorff et al™ and Dreyer et al.® Jacobi polynomials provide a
much better matrix condition number of the system matrices in comparison to Lagrange
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Table 1. Number of DOFs of the three geometries.

Geometry DOF FE DOF IFE DOF Total
Ellipsoid (a) 2746 1176 3922
Ellipsoid with cut-out (b) 2840 1176 4016
Rectangle (c) 3404 1176 4580

polynomials. This observation was confirmed by the authors in Ref. 21} however, the influ-
ence on NMs and ARMs was negligible. The number of DOFs in the used meshes is given
in Table [

Two different load cases are investigated. In the first case, a structural particle velocity
Ugjin = 1ms™! is applied to the inner left surface of the open duct. The other case is
considered for two geometries, the ellipsoid and the ellipsoid with the cavity. A structural
particle velocity vsouy = 1ms™! is applied to all outer surfaces of the ellipsoid without
the right surface of the rectangular insertion. Both excitations apply for all frequencies
from 1Hz to 500 Hz in 1 Hz-steps.

Reference solutions of the radiated sound power were computed by using COMSOL
Multiphysics® and by applying a circular PML around the inner FE domain with a much
finer mesh. The computation time of the presented method is not yet competitive to com-
mercial codes, since it is not optimized for performance and only efficient if a reduced
number of modes is considered during the modal superposition. Currently, the whole modal
basis is computed in order to investigate the results regarding their characteristics and rele-
vance and makes the approach hardly comparable to the PML approach, where the resulting
radiated sound power is determined directly and efficiently.

4. Results
4.1. FErigenvectors

The NM eigenvectors are found in the whole computational fluid domain including FE and
IFE DOFs. However, in general, the main focus is on the sound pressure distribution at the
mesh nodes close to the inner obstacles, i.e. in the FE domain. Three typical mode shapes
are column-wisely depicted in Fig. Bl in the example of the ellipsoidal with the open duct.
The authors distinguish between modes with the sound pressure mainly concentrated at or
close to the surface of the inner obstacles or inside a cavity, those with the sound pressure
mainly concentrated at the junction between the FE and IFE domains and, finally, those
modes with an even distribution.

In order to distinguish between these three kinds of mode shapes, the sum of certain
eigenvector entries is set in relation to the sum of the remaining entries associated to the
DOFs in the FE domain. In doing so, the concentration of the sound pressure — either at
the surface of the inner obstacles or at the junction of the FE and the IFE domains — can be
compared to the remaining share of the sound pressure distribution in the entire fluid, and
the qualitative distinction can be done automatically to a certain extent. The eigenvectors

1850029-7



J. Theor. Comp. Acout. 2018.26. Downloaded from www.worldscientific.com
by TECHNICAL UNIVERSITY OF MUNICH on 11/30/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

L. Moheit € S. Marburg

abs

real

Min Max Min Max Min‘ (/Iax
[ e— ] &

imag

-1 0 1 Min Max -1 0 1

Fig. 3. Three exemplary kinds of NM shapes (one per column) as right eigenvectors x for the second geometry
(b): even sound pressure distribution in the whole fluid domain (left); concentration of pressure peaks close
to the surface of inner obstacles or cavity modes (middle); concentration of sound pressure peaks at the
junction of the FE and IFE domains (right); Eigenvector magnitudes (first row), real parts (second row)
and imaginary parts (bottom row).

were normalized to the length of one for this purpose and called X. In mathematical terms,
the eigenvector distribution ratio x,, for a certain mode m can be written as

Z ‘&m,z‘
-+
> Kyl

J

Xm with i € I' and j € Q\I, (8)

where I' = I'j, V D'yt includes either the DOFs at the inner boundaries of the obstacles I'y,
or at the outer FE boundary I'gy.

As mentioned in Sec. @ the asymmetry of the IFE matrices provides left and right
eigenvectors that are both part of the orthogonal modal basis and are required for the
computation of the modal sound pressure and sound power contributions, see Sec. Bl
Examples of left and right eigenvectors are visualized in Fig. @ for IFE DOFs only, since
both mode shapes are almost the same in the FE domain. The similarity of left and right
eigenvectors can be measured by the modal assurance criterion (MAC), which is presented
in Sec. 43 The left eigenvectors show a much more extended radiation pattern in the radial
direction in comparison to the right eigenvectors and are in antiphase to each other.
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Fig. 4. Three examples of right eigenvectors x (left column) and the corresponding left eigenvectors y
(right column) in the IFE domain, each both purely real and colored on the basis of the same color scale,
respectively.
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4.2. FEigenvalues

Initially, the NMs are sorted by increasing the magnitude of their eigenvalue k,,. This order
is not necessarily the best sequence of significance for the efficient superposition of NMs,
even though weakly damped modes (small #{x,,}) at low frequencies (small I{x,,}) can be
found in the very beginning in the list of ascending eigenvalue magnitudes. The subsequent
modes might either have a weak damping or become in resonance at low frequencies in
the audible frequency range, which is both an indicator of significance for the radiation of
sound and therefore for the modal superposition of sound pressure or sound power. This
leads to the research question of how a modified sorting algorithm could distinguish between
relevant and nonrelevant modes.

The eigenvalues of the second problem (ellipse with the open duct inside) are depicted in
the complex plane in Fig. B. With each increment of the number of IFE radial interpolation
points n..q, & new straight line of highly damped eigenvalues comes up, where — at the
same time — the other existing lines of eigenvalues move with a growing absolute angle in
the polar form. As observed by the authors in Ref. 21 an even number for the polynomial
order ny,q leads to a line of purely real eigenvalues (cf. Fig. Bl with n,,q = 8), whereas odd
polynomial degrees do not induce these eigenvalues.

It can be observed that the eigenvalues are symmetric with respect to the real axis,
which is due to the appearance of complex conjugated eigenvalues with a different sign of
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Fig. 5. NM eigenvalues of the cavity problem (second geometry) in the complex plane with linear (left) and
logarithmic (right) scaling of the real axis.

10% £ o
¢
3L
—_ E
2 10%
¢ £
-
&?
K )
102 E m,ellipse
F v Km,cavity
K
- m,rectangle .
T 1 T R S | SRR S 0 R Y 08 T EEERY B B TR S ]SSR 8 1 T ERRRE [ 0 B 171 ENSRRN O I W TIRRRRNS S W TT] MY

10°® 10 1072 10° 102 10*
|R{x, H

Fig. 6. Eigenvalues of the three models shown in one complex plane, considering only the positive part of the
imaginary axis with double-logarithmic scaling, neglecting the purely real eigenvalues: ellipsoidal obstacle
(gray deltas), ellipsoidal obstacle with the rectangular cavity (gray nablas) and rectangle (black dots).

their imaginary parts (resonance frequency), corresponding to — more or less — the same
mode shape (cf. Secs. 1] and [4.3]).

In Fig. Bl the eigenvalues of the three models are only shown in one complex plane
for positive imaginary parts. In particular, most of the highly damped eigenvalues are very
similar for all three problems and seem to be correlated with the properties of the IFEs. This
is not the case for weakly damped eigenvalues whose positions in the complex plane seem to
be more problem-dependent and therefore related to eigenvectors with a significant sound
pressure distribution close to the inner obstacles. In the case of the cavity problem (b),
additional lines of weakly damped eigenvalues at low frequencies can be observed. Some
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of them appear roughly in 100 Hz-steps, which was expected by the choice of the 1.7 m-
long, duct-like cavity in the ellipse. Another line of cavity-related eigenvalues at higher
frequencies begins with a weaker damping once again. These eigenvalues correspond to
eigenvectors with resonances in the lateral y-direction of the open duct. If no inner obstacle
is placed inside the FE domain, the observations can be confirmed: the highly damped
eigenvalues in lines and a few multipole modes in the FE domain with small real parts of their
eigenvalues can be found in the complex plane, whereas there are no problem-specific mode
shapes.

According to Sec. 1l the eigenvectors can be roughly classified by the concentration
of their pressure distribution y at inner I'j, or outer boundaries I'yy; in relation to the
remaining FE DOF's in the fluid domain, see Eq. (8) and the three examples in Fig. Bl. The
corresponding eigenvalues can thus be rated as inner, outer or mixed modes with respect
to their eigenvector distribution ratio. This was done in Fig. [l in the example of the second
geometry with the eigenvalues in the complex plane and with y in the third dimension
and additionally colored from blue to red for small to high values of x. It can be observed
that the higher the real part of the eigenvalues, the higher the distribution ratio of the
eigenvectors at the junction of the FE and the IFE domains (see Fig. [7a)). The highest
pressure concentration can be found for purely real eigenvalues with a real part in a range
of about 103 to 10%. On the other hand in Fig. [[[b), the highest pressure concentration at
the inner obstacle is found for eigenvalues in the middle range of the real axis, where the
cavity-related modes were expected in Fig.[6l The lowest concentration can be observed for
highly damped modes, even though the ratios increase significantly at the very end of the
real axis. In both cases, the behavior is the same for the complex conjugated partners in
such a way that the lower pictures are virtually symmetric with respect to the real axis.

2 10° 32
g o — g 100
3 10° —— 8
o} s o}
= s
Z 107 . ) g 10710
= 10° 10° 10° = 107
IR0k, )
4 4
2 x10 2 x10
| I o
¢ ?‘é«_ @ 3
5 epar svn e drasee \\\ ZZ; . R
2 : : 2 : :
10° 10° 10° 107 10° 10°
R, ) s, M
(a) Outer boundary modes (b) Inner boundary modes

Fig. 7. (Color online) Eigenvalues in the complex plane with the ratios of the eigenvector distributions x (see
Eq. [B)) on the z-axis for the outer FE boundary oyt (left) and inner obstacle boundaries I'y, (right) each
with respect to the remaining DOFs; second geometry; each two views of a three-dimensional plot, where
the color indicates the height on the z-axis (blue/small to red/high).
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The authors observed that purely real eigenvalues are associated with purely real eigen-
vectors. This applies in the same manner for complex eigenpairs.

4.3. Modal assurance criterion (MAC)

By means of the MAC3 the similarity of the eigenvectors to each other can be rated in
an interval between zero and one. In previous work, the authors used the MAC in order to
track the eigenvalues in convergence studies with different meshes and increasing orders of
radial interpolation polynomials2!

The MAC values of the left and right eigenvectors of the second geometry are depicted
in Fig. B(a). Two cases are compared to each other: either only FE DOFs (gray) or all DOFs
(including the FE and IFE domains; red) are considered. Left and right eigenvectors are
almost the same (MAC ~ 1) according to MAC in the first case. On the other hand, only
a few pairs of left and right eigenvectors are virtually identical, when all DOFs are taken
into account. Here, the MAC values are distributed in almost the whole range between zero
and one. In Fig. B(b), the MAC value is added in colors (blue/zero to red/one) and to the
third dimension to the complex plane of NM eigenvalues. Obviously, the similarity of left
and right eigenvectors is the best for weakly damped modes, which are primarily related
to large eigenvector contributions at the inner boundary lines (cf. Fig. [(b)). Accordingly,
the single peaks (with small mode numbers m) of each two modes with a relatively high
MAC value for FE and IFE DOFs (red) in Fig. B(a) are the cavity modes. For eigenvalues
with a real part larger than 1, the MAC values decrease virtually, logarithmically and with
increasing damping until the values slightly grow for the very highly damped eigenvalues
that do correspond to outer FE boundary modes (cf. Fig. [[{a)). The MAC values are
virtually the same for both complex conjugated eigenvalue partners.

0.8
™ 0.6
x
>
04
=
0.2 l
— MACrg
\_ﬂ /\JL ". ’ ——MACrgrrE |
o ; o s 10 10° 10°
10 10 10 10 [R{x_}|
Mode number m m

(a) (b)

Fig. 8. (Color online) MAC of left and right NM eigenvectors in the example of the ellipse with the rectangular
cavity. (a) MAC for FE DOFs only (black; almost one for all modes) and for all DOF's in the FE and the IFE
domains (red) and (b) Complex plane of NM eigenvalues rp, with the MAC value in the third dimension
and colored from blue/zero to red/one.
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Fig. 9. (Color online) Sound power level Ly, and relative error € p with respect to the PML solution for two
different load cases and geometries. Geometry (a): error curves (pink), sound power curves (gray); geometry
(b): error curves (red), sound power curves (black); PML reference curves ( ), full inversion Pajny

inEgs. @ and @) (- — — =), Pnmin Eq. @) (- - - - - ).

4.4. Modal sound power

The two different load cases vs out (for geometries (a) and (b)) and vs i, (for geometry (b))
lead to the radiation of sound power, which is depicted in Fig. @lin terms of the sound power
level L,,. The sound power is determined by three different approaches for each problem:
P4 iny — full inversion of the dynamic stiffness matrix for the vector of nodal sound pressure
values in Eq. (@) to be substituted into Eq. (@), Pxy — full summation of modal sound
power contributions according to Eq. (6) and Ppy, — a reference solution is computed by
using the commercial FE software COMSOL Multiphysics® and by applying PMLs.

It can be observed in Fig.[@la) that the radiated sound power is almost identical for both
geometries and approaches if the structural velocity vs oyt is applied to the outer ellipsoidal
surfaces of the obstacles. At the resonance frequencies of the cavity modes, the sound power
level collapses slightly for geometry (b) with the opening, while the relative errors, with
respect to the PML reference solution, increase significantly. However, the relative errors
are less than 1% above 10Hz and differ for both geometries, but do not for the different
approaches, respectively.

If the velocity excitation is applied to the left end of the duct-like cavity (b), the reso-
nances in the tube can clearly be found in the curves of the sound power levels (see Fig.[[b)).
The relative errors of Pjny and Pnyv with respect to the PML solution are virtually the
same and in the order of magnitude of ~ 10% even though the approximation of the sound
power seems to be reasonable in the whole frequency range.

Each NM has its own contribution to the total radiated sound pressure p,, and sound
power P, (cf. Eqs. @) and ([@)). These two quantities are frequency-dependent and their
modal contribution varies as the frequency changes. This is illustrated in Fig. [[0(a) for 1 Hz
and for multiple frequencies in Fig. [I0(b) in the example of the second geometry and with
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Fig. 10. (Color online) Modal sound power and sound power level contributions P and Le,m of NM
eigenvalues m for geometry (b) and vs;,. (a) Pm at 1Hz in the third dimension of the complex plane
(blue/small to red/high) and (b) Lw,m at frequency steps f; (with increasing brightness) for S{x} < | £+
750 Hz.

the excitation inside the open duct vs;,. The largest sound power is contributed by NMs
with a real part in a range of about 0.01 o 1000, which are most likely related to inner
boundary modes according to Fig. [l(b). At 1Hz, the sound power share in the complex
plane is virtually symmetric with respect to the real axis (see Fig. [0(a)), i.e. the sound
power contribution of the eigenvalues is almost the same for both complex conjugated part-
ners. In Fig. [I0(b), the sound power levels for nine frequency steps f; are only depicted for
positive and negative imaginary parts of k,, that are smaller than 750 Hz according to the
amount, for the sake of clarity. Five of these frequency steps f; are close to resonances of
cavity modes. Most of the modal sound power contributions seem to increase as the fre-
quency grows (which is emphasized by increasing the brightness of the lines), but only a few
of them — primarily on the negative side of the imaginary axis — show clear peaks in par-
ticular at these resonance frequencies. This leads to an obviously asymmetric modal sound
power level contribution for positive and negative imaginary parts of the complex eigen-
value partners. The differences of the modal sound power contributions of each of the two
complex conjugated partners are depicted in Fig. [[1l, where the observations in Fig. [[0(b)
can be confirmed: The eigenvalue partners differ significantly at their corresponding cavity
resonance frequencies only, where the radiation of sound is mainly due to the modes with
the negative imaginary parts.

Different properties of the eigenvalues and eigenvectors have been discussed so far. With
the aim of modal reduction during the summation process, a number of reduced modal
bases is taken into account in Fig. [I2], where the errors relative to Painy (Eqgs. (B) and ([))
are depicted for both vs oyt (Fig. [2(a)) and v, (Fig. I2(b)) for the ellipsoidal geometry
with the cavity (b). The relative error for the full modal basis is almost equal to zero
over the whole frequency range for both velocity excitations and shown as a red, thick
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Fig. 12. (Color online) Errors of the superimposed sound power curves (relative to Painy) for geometry (b)
and both load cases vs,out and v i, considering the whole modal basis (red, thick line), only modes with
negative imaginary parts ( — — — — ), only modes with positive imaginary parts ( - - - - - ), only purely
real modes (———) and neglecting only the modes with positive imaginary parts (- - — - — ).

line, respectively. In the case of the outer excitation, the purely real eigenvalues lead to
an acceptable relative error of less than 1%, except in the region of the cavity resonance
frequencies. When considering only complex eigenvalues with only positive or only negative
imaginary parts, respectively, the relative errors are not acceptable for the given geometry
and excitation. In the last case, only the complex eigenvalues with a positive imaginary
part are removed from the whole modal basis, which leads to a better result over the whole
frequency range and less significant error peaks at the resonances in particular. However,
the overall error is much worse in comparison to the purely real modal basis.

If the velocity excitation is applied inside the open duct, the purely real modal basis
performs almost as poorly as the complex eigenvalues with a positive imaginary part, as can
be seen in Fig. [2(b). The relative error is acceptable for frequencies higher than 10 Hz for
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the two other methods: the eigenvalues with negative imaginary parts and — even better —
the modal basis without the complex eigenvalues with a positive imaginary part.

Altogether, this leads to the assumption that pure exterior problems are mainly domi-
nated by the purely real eigenvalues, and the cavity modes are due to the complex eigen-
values with a negative imaginary part. Neglecting the eigenvalues with a positive imaginary
part only leads to acceptable results in the given example. However, better performance is
desired and the criteria for reduced modal bases have to be further developed.

5. Conclusion

The sound pressure and sound power due to structural velocities in exterior problems could
be determined by superposition of NMs. The major part of the eigenvalues is not problem-
specific and due to the FE and IFE mesh. It was found that for weakly damped modes, the
sound pressure is mainly concentrated at the surfaces of inner obstacles in the fluid, whereas
highly damped modes have a large pressure distribution at the junction of the FE and the
IFE domains. However, the largest share of radiated sound power is not due to the modes
with the smallest damping coefficient, but it is mainly dominated by cavity resonances. The
authors observed that the sound power peaks at these resonances are due to modes with
a negative imaginary part, whereas the positive complex conjugated partners play a minor
role in the radiation of sound. In order to further reduce the modal basis and — at the
same time — minimize the errors during the modal superposition, additional criteria have
to be developed in future work.
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