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In recent years, the boundary element method has shown to be an interesting alternative to the finite
element method for modeling of viscous and thermal acoustic losses. Current implementations rely
on finite-difference tangential pressure derivatives for the coupling of the fundamental equations,
which can be a shortcoming of the method. This finite-difference coupling method is removed here
and replaced by an extra set of tangential derivative boundary element equations. Increased stability
and error reduction is demonstrated by numerical experiments.
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1. Introduction

The isentropic acoustic wave equation is appropriate for modeling a vast variety of appli-
cations, but fails to give accurate solutions, especially if the acoustic domain is small and
contains narrow gaps. In such situations, the effects of viscous and thermal dissipations
must be considered. Two numerical approaches can be used for modeling of viscous and
thermal acoustic dissipations, namely the finite element method (FEM) and the boundary
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element method (BEM). FEM implementations for arbitrary geometries rely on a direct
evaluation of the full linearized Navier–Stokes equations. This was initially proposed by
Bossart et al.,1 realized by Malinen et al.2 and later presented in different variations by
Cheng et al.,3 Joly et al.4 and Kampinga et al.5 FEM can be computationally demanding,
since the loss mechanisms require proper meshing of the associated boundary layers. Fur-
ther, temperature and velocity are added as extra degrees of freedom. A numerically less
costly method was recently proposed by Kampinga named the sequential linearized Navier–
Stokes.6 It is realized by removing some contributions, deemed negligible after an order of
magnitude analysis and thus making it possible to separately solve uncoupled scalar viscous
and thermal fields. While being more cost-efficient, it is an approximation and also requires
careful meshing of the viscous and thermal boundary layers.

As opposed to modeling viscous and thermal losses with FEM, BEM is an interesting
alternative, avoiding cumbersome meshing of boundary layers. Early BEM implementations
relied on the work by Bruneau et al.,7 turned into BEM by Dokumaci8,9 and Karra and Ben
Tahar.10 Their contributions were either having some restrictions or completely neglecting
viscosity. Later, Cutanda Henŕıquez extended the ideas of Karra and Ben Tahar,10 relying
on the Kirchhoff’s decomposition of the Navier–Stokes equations to include the effects of
viscosity.11 This approach was further developed into more general axisymmetric and three-
dimensional formulations.12–14 While recent publications have shown the capabilities of this
method, tackling large complicated problems,15,16 the method might still have some short-
comings. Especially, the coupling of the Kirchhoff’s decomposition equations is troublesome.
In the current formulation of Cutanda Henŕıquez the coupling is handled through first- and
second-order tangential derivatives evaluated with the use of finite differences. While this
approach works for a large range of problems, it may be problematic for interior problems
at low frequency, where the acoustic pressure is nearly uniform, potentially making finite
differences inaccurate. The low-frequency implications were discussed in a recent conference
paper by the authors, where a combined FEM and BEM approach was presented.17

In the following, a new two-dimensional BEM approach is developed avoiding the use
of first- and second-order finite-difference schemes in the coupling of the fundamental equa-
tions. This is shown possible by using an extra set of BEM tangential derivative equations
for a more natural coupling of the equations. Finally, the new formulation will be evalu-
ated through two simple academic test cases comparing it to the original finite-difference
formulation.

2. Two-Dimensional Dissipative Boundary Element Formulation

Previous BEM implementations including the effects of viscous and thermal dissipations
were based on the Kirchhoff’s decomposition of the Navier–Stokes equations to achieve
a form suitable for BEM discretization. The same approach is adopted in the following
derivations. A large part of the present work relies on the formulation found in Ref. 12 and
this work uses the same notation. In Refs. 12 and 7, the parameters (τa, τh, φa, ka, kh and
kv) of the Kirchhoff’s decomposition are discussed in more detail.
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2.1. Kirchhoff ’s decomposition and boundary conditions

The final form of the decomposed Navier–Stokes equations is given in Eqs. (1)–(3), resulting
in three equations of the Helmholtz form, where pa and ph are the so-called acoustic and
thermal pressures, respectively.18,19 Their sum p = pa + ph represents the total pressure.
The vector �vn is the rotational part of the velocity, also known as viscous velocity. In
this paper, magnitudes written with an arrow vector on top are vectorial fields, while bold
letters indicate matrices. While pa resembles an actual acoustic pressure wave, the equations
containing ph and �vv can be considered as heavily damped wave equations. ka, kh and kv

denote the acoustic, thermal and viscous wavenumbers, respectively:

∆pa + k2
apa = 0, (1)

∆ph + k2
hph = 0, (2)

∆�vv + k2
v�vv = 0 with ∇ · �vv = 0. (3)

Equations (1)–(3) are coupled at the boundary through boundary conditions. It is reason-
able to assume isothermal boundary conditions. The heat capacity is very much higher
at the boundary than in the fluid that temperature variations at the boundary can be
neglected. An isothermal boundary condition can be expressed in terms of the acoustic
and thermal pressures and two frequency-dependent terms τa and τh relating the acous-
tic and thermal pressures to the temperature fluctuations T . This results in a frequency-
dependent thermal boundary layer forming at the boundary, with a thickness ranging from
micrometers to millimeters in the audible frequency range. Isolating ph in the isothermal
boundary condition, Eq. (4), is discretized as,

T = τapa + τhph = 0, (4)

which will be used as the first condition to couple the equations of Kirchhoff’s decomposition.
A second boundary condition states that the fluid will tend to stick to the boundaries (no-
slip condition). A viscous boundary layer will form, having similar thickness as the thermal
boundary layer. This boundary condition is expressed as

�vb = φa∇pa + φh∇ph + �vv, (5)

where �vb is the boundary velocity and φa and φh are constants depending on physical
parameters and frequency. For the further development, it is convenient to describe the
no-slip conditions in a local boundary coordinate system:

vb,n = φa
∂pa

∂n
+ φh

∂ph

∂n
+ vv,n, (6)

vb,t = φa
∂pa

∂t
+ φh

∂ph

∂t
+ vv,t, (7)

with the subscripts n and t denoting the normal and tangential components to the
boundary.
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2.2. Boundary element discretization

The boundary element implementation for regular isentropic acoustic problems starts with
the integral form of the harmonic Helmholtz equation:

C(P )p(P ) =
∫

Γ

∂G(R)
∂n(Q)

p(Q)dΓ(Q) −
∫

Γ
G(R)

∂p(Q)
∂n(Q)

dΓ(Q), (8)

where C(P ) is the integral-free term. The first term on the right-hand side is the double-
layer potential and the second term is the single-layer potential. P is a calculation point, Q

is an integration point on the generator, R = |Q − P | is the distance between calculation
and integration points and G(R) is the fundamental solution in free space. An eiωt time
convention is assumed. It should be noted that inclusion of a source term is omitted for
simplicity, but could be added as an extra term. Meshing and collocation of the Helmholtz
integral equation in matrix form is given by

Cp = Hp− B
∂p
∂n

, (9)

where C is a diagonal matrix containing the integral-free term, H and B are the discretized
double- and single-layer potential matrices, respectively, and p and ∂p

∂n are vectors. A more
compact notation with A = H − C will be used in the following development. Since the
Kirchhoff’s decomposition produces equations formally equivalent to the Helmholtz wave
equation, it is straightforward to apply BEM to Eqs. (1)–(3) using collocation and replacing
the isentropic wavenumber k with ka, kh and kv:

Aapa − Ba
∂pa

∂n
= 0, (10)

Ahph − Bh
∂ph

∂n
= 0, (11)

Avvv,x − Bv
∂vv,x

∂n
= 0, (12)

Avvv,y − Bv
∂vv,y

∂n
= 0, (13)

where Eq. (3) is split into its Cartesian components forming Eqs. (12) and (13). Note that
we here and in the following limit the formulation to two dimensions (x, y) for simplicity. In
two dimensions, the fundamental solution is given by G(R) = 1

2πK0(ikR) where Kj(ikR) is
the modified Bessel function of the second kind of order j. The argument of the fundamental
solution is the imaginary unit i and the wavenumber k can be either acoustic, thermal or
viscous.

2.3. Coupling of equations

The previous boundary element implementations with losses make use of finite differences
to couple the fundamental equation set. The new approach presented here utilizes the
boundary element itself to estimate tangential derivatives. Taking the tangential derivative
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of Eq. (8) with respect to the collocation point yields

C(P )
∂p(P )
∂t(P )

=
∫

Γ

∂2G(R)
∂t(P )∂n(Q)

p(Q)dΓ(Q) −
∫

Γ

∂G(R)
∂t(P )

∂p(Q)
∂n(Q)

dΓ(Q), (14)

thus allowing for the evaluation of the tangential derivative of the pressure on the collocation
points from boundary pressures p(Q) and their normal derivatives ∂p(Q)

∂n . Equation (14) con-
tains second derivatives of the fundamental solution. A similar situation arises when dealing
with irregular frequencies for exterior problems using the Burton–Miller formulation, which
contains double normal derivative kernels that are said to be hypersingular and require spe-
cial treatment.20 However, the integrals arising from the tangential derivative equations are
Cauchy principal value (CPV) integrals. The kernel description can for example be found
in the work by Gallego and Mart́ınez-Castro.21 The viscothermal implementation presented
here relies on an adaptive integration scheme for the evaluation of near-singular integrals
arising in the case of narrow gaps,22 but also for the evaluation of the CPV integrals. Ini-
tial convergence studies have shown that this approach is feasible for the evaluation of the
tangential kernels.

A second set of discretized equations can now be formed containing the tangential deriva-
tive kernels:

C
∂pa

∂t
= Aa,tpa − Ba,t

∂pa

∂n
, (15)

C
∂ph

∂t
= Ah,tph −Bh,t

∂ph

∂n
, (16)

C
∂vv,x

∂t
= Av,tvv,x − Bv,t

∂vv,x

∂n
, (17)

C
∂vv,y

∂t
= Av,tvv,y − Bv,t

∂vv,y

∂n
. (18)

It is possible to describe the no-slip condition in terms of the discretized equations by
isolating ∂pa

∂n ,∂ph
∂n , ∂pa

∂t and ∂ph
∂t in Eqs. (10), (11), (15) and (16), respectively. The boundary

condition equations, i.e. Eqs. (6) and (7), can then be described by

vb,n = φa(B−1
a Aa)pa + φh(B−1

h Ah)ph + vv,n, (19)

vb,t = φaC−1(Aa,tpa − Ba,t((B−1
a Aa)pa)) + φhC−1(Ah,tph − Bh,t((B−1

h Ah)ph)) + vv,t.

(20)

Isolating ph in the isothermal boundary condition (4),

ph = − τa

τh
pa, (21)

the thermal pressure can be eliminated from Eqs. (19) and (20). Finally, the boundary
conditions of the discretized equations can be stated as

vb,n = Enpa + vv,n, (22)

vb,t = Etpa + vv,t, (23)
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where

En = φa(B−1
a Aa) − φh

τa

τh
(B−1

h Ah), (24)

Et = φa[C−1(Aa,t − Ba,t(B−1
a Aa))] − φh

τa

τh
[C−1(Ah,t − Bh,t(B−1

h Ah))]. (25)

2.4. Null-divergence of the viscous velocity

The viscous velocity forms a rotational vector field, meaning that ∇ ·�vv = 0 must be fulfilled.
This is ensured through the null-divergence in a normal and tangential coordinate system
(note that the tangential direction only has a single component in a 2D problem):

∂vv,n

∂n
+

∂vv,t

∂t
= 0, (26)

which will require a relation between local and global quantities on the boundary, achieved
in an all-geometry approach for the individual discrete nodes by

vv,n = nx ◦ vv,x + ny ◦ vv,y, (27)

vv,t = tx ◦ vv,x + ty ◦ vv,y, (28)

where ◦ is the element-wise Hadamard product (see Appendix A) and nx, ny, tx and ty are
the Cartesian components of the normal and tangential vectors at each node. The transform
of the viscous velocity back to the Cartesian coordinates is

vv,x = nx ◦ vv,n + tx ◦ vv,t, (29)

vv,y = ny ◦ vv,n + ty ◦ vv,t. (30)

The goal is now to establish an expression for each of the terms in Eq. (26) using the
discretized equations, containing only local normal and tangential components of the viscous
velocity. This requires taking the derivative of Eqs. (27) and (28) with respect to the normal
and tangential components, respectively. Doing so yields

∂vv,n

∂n
= nx ◦ ∂vv,x

∂n
+ nx ◦ ∂vv,y

∂n
, (31)

∂vv,t

∂t
= tx ◦ ∂vv,x

∂t
+ ty ◦ ∂vv,y

∂t
. (32)

By isolating ∂vv,x

∂n and ∂vv,y

∂n in Eqs. (12) and (13) and substituting into Eq. (31), we
obtain

∂vv,n

∂n
= nx ◦ (B−1

v Avvv,x) + ny ◦ (B−1
v Avvv,y). (33)

Using Eqs. (29) and (30) to describe the viscous velocity in terms of the normal and tan-
gential components, Eq. (33) becomes

∂vv,n

∂n
= nx ◦ (B−1

v Av(nx ◦ vv,n + tx ◦ vv,t)) + ny ◦ (B−1
v Av(ny ◦ vv,n + ty ◦ vv,t)). (34)
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Applying the properties of the Hadamard product for diagonal terms, the terms in Eq. (34)
can be rearranged so that

∂vv,n

∂n
= N1 ◦ (B−1

v Av)vv,n + N2 ◦ (B−1
v Av)vv,t, (35)

where

N1 = nxnT
x + nynT

y , (36)

N2 = nxtT
x + nytT

y . (37)

The result of Eq. (35) will be used later to ensure that the null-divergence condition is
fulfilled. Proceeding with the second term in Eq. (26), a connection between the discretized
equations and ∂vv,t

∂t is established. By isolating ∂vv,x

∂t and ∂vv,y

∂t in Eqs. (17) and (18) and
substituting the result into Eq. (28), an expression for the tangential derivative of the
tangential viscous velocity is found:

∂vv,t

∂t
= tx ◦

(
C−1

(
Av,tvv,x −Bv,t

∂vv,x

∂n

))
+ ty ◦

(
C−1

(
Av,tvv,y − Bv,t

∂vv,y

∂n

))
. (38)

The Cartesian viscous quantities can be transformed into the local form by combining
Eqs. (29), (30), (12) and (13) into

∂vv,t

∂t
= tx ◦ (C−1(Av,t(nx ◦ vv,n + tx ◦ vv,t) − Bv,t(B−1

v Av)(nx ◦ vv,n + tx ◦ vv,t)))

+ ty ◦ (C−1(Av,t(ny ◦ vv,n + ty ◦ vv,t) − Bv,t(B−1
v Av)(ny ◦ vv,n + ty ◦ vv,t))).

(39)

Rearranging the terms and using the Hadamard product properties, the following equation
is obtained:

∂vv,t

∂t
= N3 ◦ (C−1(Av,t − Bv,t(B−1

v Av)))vv,n + N4 ◦ (C−1(Avt − Bvt(B−1
v Av)))vv,t,

(40)

where

N3 = txnT
x + tynT

y , (41)

N4 = txtT
x + tytT

y . (42)

The result of the normal and tangential derivatives of the local viscous velocity components,
Eqs. (35) and (40), is substituted into the local form of the null-divergence, Eq. (26), forming

(N1 ◦ V)vv,n + (N2 ◦ V)vv,t + (N3 ◦ T)vv,n + (N4 ◦T)vv,t = 0, (43)

where V and T are defined as

V = B−1
v Av, (44)

T = C−1(Av,t − Bv,tV). (45)
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The result of Eq. (43) will be used in the following to ensure that the viscous velocity has
null-divergence.

2.5. System of equations and boundary quantities

It is now possible to establish a system of equations containing boundary normal and tan-
gential velocities and the acoustic pressure. Isolating vv,n and vv,t in Eqs. (43) and (23),
respectively, and substituting them into Eq. (22) yields the final system of equations:

[[(N1 ◦V) + (N3 ◦ T)]En + [(N2 ◦ V) + (N4 ◦ T)]Et]pa

= [(N1 ◦ V) + (N3 ◦ T)]vb,n + [(N2 ◦ V) + (N4 ◦ T)]vb,t, (46)

which allows for applying boundary velocity conditions and solving for the nodal acoustic
pressures pa. The total pressure can be described as the sum of the acoustic and thermal
pressures, by assuming isothermal boundary conditions:

p = pa + ph = pa −
τa

τh
pa. (47)

The normal and tangential viscous velocities can be found by rearranging Eqs. (22) and (23),
so that

vv,n = Enpa − vb,n, (48)

vv,t = Etpa − vb,t. (49)

The evaluation of field points can be done by following the approach in Ref. 12. The expres-
sion using the finite-difference approach originally developed by Cutanda Henŕıquez, is
reproduced here for comparison:[

φaB−1
a Aa − φhB−1

h Ah
τa

τh
+

(
φa − τa

τh
φh

)
× (N1 ◦ (B−1

v Av))−1

× (N2 ◦ (B−1
v AvDT1) + DT2)

]
pa

= vb,n + [N1 ◦ (B−1
v Av)]−1 × [N2 ◦ (B−1

v Av) + DT1]vb,t, (50)

where DT1 and DT2 denote the first and second tangential surface finite-difference matri-
ces, respectively. Equation (50) is developed by taking the tangential derivative of the
boundary condition, Eq. (7), whereas the new approach presented in this paper achieves
this goal through a set of tangential boundary element matrices, Eq. (38). As a consequence,
the use of finite difference but also the evaluation of second tangential pressure derivatives
are avoided.

3. Test Cases

Only few analytical solutions are available for testing of acoustic viscothermal implementa-
tions. In the first example, the implementation will be compared with an analytical solution
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for an oscillating cylinder.23 This example considers only viscosity, but this is not an impor-
tant limitation since it is the implementation of viscosity that poses a challenge in BEM
with losses. Thermal losses are easily removed from the formulation by neglecting the terms
containing thermal quantities in En and Et. The second example is a narrow duct. This
example highlights a problematic behavior that might be present in the finite-difference
implementation for some cases.

3.1. Discretization

One requirement when dealing with the tangential derivative integration kernels is the need
for C1 continuity at the collocation points. This can be achieved by using discontinuous
elements. Discontinuous elements are also known to perform well for boundary element
implementations.24 In order to evaluate the effect of the new tangential derivative formu-
lation on equal footing, the finite-difference formulation and the new formulation will use
the same boundary element matrices created using discontinuous quadratic elements. In the
second example, however, the finite-difference implementation uses the full approach found
in Ref. 12, with regular continuous quadratic Lagrangian elements.

3.2. Oscillating infinite cylinder

The infinite cylinder geometry is shown in Fig. 1. The radius R is set to 1 m and the
amplitude of oscillation is 1m/s. A relative error measure will be defined as,

εp =
Nn∑
j=1

|pj − pj,ref |
|pj,ref | , (51)

with the index j denoting the individual nodal solutions, Nn is the total number of nodes and
pj,ref is the corresponding reference solution. Figure 2 shows the convergence of the pressure

Fig. 1. Geometry of the infinite cylinder.
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Fig. 2. Convergence plots at 25Hz and 50 Hz of the new and existing BEM formulations with losses for
the case of an infinite oscillating cylinder. Both pressure and normal viscous velocity errors are plotted for
TD-BEM (solid) and FDD-BEM (dashed).

and the normal viscous velocity, comparing the new tangential derivative boundary element
method (TD-BEM) and the finite-difference derivative boundary element method (FDD-
BEM) implementations at 25 Hz and 50 Hz. These frequencies where chosen to avoid any
influence from irregular frequencies. Higher frequency solutions could be obtained by using
for example the combined Helmholtz integral equation formulation,25 but this is considered
beyond the scope of the paper. The normal viscous velocity is usually much smaller than the
corresponding tangential component and more difficult to compute accurately. The error in
pressure is similar for the two implementations above approximately 100 degrees of freedom,
but higher mesh densities seem to favor TD-BEM. The convergence situation is slightly
different in the case of the normal viscous velocity. In this case, TD-BEM experiences a larger
error for low degrees of freedom, as compared to FDD-BEM, but for higher mesh densities
TD-BEM is again a better choice. It is not fully understood why TD-BEM experiences a
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higher error at low mesh densities. A plausible explanation could be related to the use of
BEM to estimate the tangential derivatives of the viscous velocity, which might require
more elements to be captured appropriately.

3.3. Traveling wave in narrow duct

As a second test case, a traveling wave in a narrow duct is considered. Approximate analyt-
ical solutions for this case exist, that are applicable in the extreme case of very narrow or
wide tubes. To highlight a problematic behavior of FDD-BEM, the case of slightly overlap-
ping boundary layer is studied, therefore an FEM solution with a very fine mesh is chosen
as a reference. The geometry is shown in Fig. 3. The left end of the duct is excited with a
normal boundary velocity with an amplitude of 1/(ρc), where ρ is the density and c is the
speed of sound for air. The other end of the duct is fitted with an impedance of value ρc.
For isentropic acoustic problems this would resemble a fully absorbing boundary, but this
is not necessarily true when the duct is narrow and the boundary layers fill up most of the
domain. The reference FEM solution is implemented in COMSOL Multiphysics with the
same boundary conditions and approximately 300,000 degrees of freedom, using an equally
spaced structured quadrilateral mesh. The boundary layers are covered with about 50 ele-
ments in the direction perpendicular to the boundary. To ensure similar conditions in the
Kirchhoff’s decomposition and the COMSOL implementation, simulations were carried out
assuming an ideal gas and no flow. The length of the duct, L, will be five times the viscous
boundary layer thickness, δv , which for air is 2.21/

√
f (mm),18 with f being the frequency

of the oscillation. The pressure magnitudes are plotted in Fig. 4 along the boundary in the
x-direction for three different duct heights, h. The heights are half, equal and two times
the viscous boundary layer thickness. Simulations were carried out at 2 kHz, meaning that
the wavelength is much larger than the computational domain, resulting in a relatively uni-
form pressure. It is seen how FDD-BEM fails to give accurate solutions, especially when
the height is equal to the viscous boundary layer thickness. This result is invoked by using
slightly smaller elements on the top and bottom parts of the duct compared to the sides (30
elements on the top and bottom parts and five elements on the sides). To further investi-
gate this behavior, the worst case with h = δv is tested with different numbers of elements.
The sides of the duct are fixed to five elements on each boundary, and the top and bot-
tom boundaries keep the same element count, but with varying size. The error measure of

Fig. 3. Narrow duct geometry and boundary conditions.
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(a) (b) (c)

Fig. 4. Numerical solution at 2 kHz for narrow duct test case. The pressure magnitudes are plotted as a
function of the x-coordinate of the boundary for FDD-BEM (dashed), viscothermal FEM (dotted), isentropic
BEM (crosses) and TD-BEM (solid) simulations. The boundary element formulations use a mesh consisting
of five elements on the side and 30 elements on the top and bottom of the duct, while the reference FEM
result is calculated in the FEM software COMSOL Multiphysics using 300,000 degrees of freedom. The plots
correspond to (a) h = δv/2, (b) h = δv and (c) h = 2δv .

Fig. 5. Comparison of TD-BEM and FDD-BEM in terms of pressure errors in the narrow duct for different
mesh configurations. Simulations are conducted at 2 kHz and the height of the duct is equal to the length
of one viscous boundary layer.

Eq. (51) is used, but with the FEM solution as a reference. The results are shown in Fig. 5,
where the total number of elements in the geometry is ranging from 30 to 90. Surprisingly,
FDD-BEM shows an initial low error but a rapid error increase followed by a low error at 60
elements, recovering the high error at higher element counts. In the 60-element geometry,
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all elements, including those on the lid, are of equal size. This means that FDD-FEM is
more likely to behave with low errors, for a controlled environment with elements of equal
size. This is also the case for the oscillating infinite cylinder. It appears that FDD-BEM
might result in instability problems if the element sizes are dissimilar and the pressure is
nearly uniform, as seen in the example. On the other hand, the new TD-BEM shows a much
more stable error response to the change in element size.

4. Conclusions

A new approach to the numerical implementation of the coupling of the Kirchhoff’s decom-
position describing the propagation of sound waves with viscous and thermal losses is shown
possible through development of an extra set of tangential boundary element equations. The
new formulation completely removes finite differences as a coupling method. This leads to an
improvement over the previous BEM implementation with losses. The method is compared
to an earlier implementation through a simple convergence study of an infinite cylinder,
showing that for higher element counts the new method can be expected to give slightly
lower errors. Coarser meshes might lead to a larger error in the viscous velocity computation.
In the second example, a narrow duct, the original finite-difference implementation presents
some instability issues, leading to an unwanted behavior when element sizes are different.
On the other hand, the presented new approach shows a much more stable error behavior.
There exists a hope that the new coupling concept can be extended to three dimensions,
where the use of tangential finite-difference derivatives is more cumbersome.
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16. V. Cutanda Henŕıquez, V. M. Garca-Chocano and J. Sánchez-Dehesa, Viscothermal losses in
double-negative acoustic metamaterials, Phys. Rev. Appl. 8 (2017) 014029.
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22. V. Cutanda Henŕıquez, P. M. Juhl and F. Jacobsen, On the modeling of narrow gaps using the

standard boundary element method, J. Acoust. Soc. Am. 109 (2001) 1296–1303.
23. L. P. Blinova and V. N. Kozhin, Radiation of a cylinder oscillating in a viscous medium, Izv.

Akad. Nauk SSSR, Mekh. Zirdk. Gaza 5(1) (1970) 121–126 [Fluid Dyn. 5(1) (1970) 107–111].
24. S. Marburg and S. Schneider, Influence of element types on numerical error for acoustic boundary

elements, J. Comput. Acoust. 11(3) (2003) 363–386.
25. H. A. Schenck, Improved integral formulation for acoustic radiation problems, J. Acoust. Soc.

Am. 44 (1971) 41–58.
26. R. A. Beezer, in A First Course in Linear Algebra (Congruent Press, 2010), pp. 900–901.

Appendix A. The Hadamard Product

The Hadamard product (defined by ◦) is used extensively in the paper. This Appendix
briefly discusses its definition and properties for diagonal matrices. The Hadamard product
is defined as the entry-wise product of two equally sized matrices. If A and B are two m×n

matrices, the Hadamard product is given by

[A ◦B]i,j = [A]i,j[B]i,j, (A.1)

where i and j are the row and column indices, respectively. If D and E are diagonal matrices,
having sizes m × m and n × n, respectively, then one of the properties of the Hadamard
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product is26

D(A ◦ B)E = (DAE) ◦ B = (DA) ◦ (BE), (A.2)

from which it can be deduced that

D1FD2 = (d1dT
2 ) ◦ F, (A.3)

where D1 and D2 are diagonal matrices of size m × m and F is a matrix of the same size.
In Eq. (A.3), d1 and d2 are m-sized column vectors, created from the diagonals of D1 and
D2, respectively. The relation (A.3) is used several times in the paper.
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