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Lehrstuhl für Operations Management

Runway Scheduling During Winter Operations

—–

Models, Methods, and Applications

Maximilian Reinhard Pohl, M.Sc.
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Abstract

This dissertation addresses the runway scheduling problem under consideration

of winter operations from an operations research perspective. During snowfall,

runways have to be temporarily closed in order to clear them from snow, ice,

and slush. This thesis presents two exact optimization approaches, including

mathematical model formulations and adequate solution methodologies, to si-

multaneously plan snow removals for multiple runways and to assign runways

and take-off and landing times to aircraft. Both approaches solve the static and

deterministic version of this optimization problem.

The first approach uses a time-continuous model formulation and mixed-integer

programming techniques. Pruning rules and valid inequalities improve the com-

putational tractability of the model. Additionally, a start heuristic derives initial

start solutions for the branch-and-bound procedure.

The second approach uses a time-discrete binary model formulation based on

clique inequalities and an equivalent constraint programming model. A start heu-

ristic based on constraint programming generates a feasible initial start solution.

A column generation scheme initialized with the heuristic solution identifies all

variables of the binary program which are required to solve it optimally. Finally,

a branch-and-bound procedure solves the resulting binary program. For this

time-discrete variant of the winter runway scheduling problem, an enhanced time

discretization method is presented to balance model size and solution quality.

Both optimization approaches are applied to real-world instances from a large

international airport. Optimal schedules are compared to solutions of a practice-

oriented benchmark heuristic. A computational study shows that both proposed

optimization methodologies outperform the practice-oriented heuristic as well as

optimization approaches relying solely on constraint programming techniques.

They significantly reduce weighted aircraft delay and compute very good, and
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often optimal, runway schedules within a few seconds. Regarding the time-

continuous model, a detailed analysis of computational times shows the efficiency

of the proposed pruning rules, the valid inequalities, and the start heuristic. For

the time-discrete variant, an analysis of resulting model sizes proves the ability of

the presented approach to significantly reduce the number of required variables

and constraints of the time-indexed binary program.

Based on the results of this work, this thesis provides several managerial in-

sights for decision makers at airports and air traffic control. It shows that naive

scheduling approaches are not suitable for an application in practice. The thesis

outlines guiding principles which help human planners to generate good snow

removal sequences manually. Additionally, this work provides recommendations

for an application of the proposed algorithms in practice. For most instances,

the time-continuous mixed-integer programming approach computes optimal so-

lutions very fast and is suitable for airports with up to two runways or if linear

cost functions are assumed. The time-discrete binary program and the corre-

sponding column generation scheme, however, outperform the time-continuous

formulation for airports with at least three runways and if non-linear cost functi-

ons are applied.

This dissertation concludes with an outlook suggesting potential future research

directions.
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1 Introduction

Runway availability is a scarce resource at many major international airports.

This situation will presumably intensify in the future since the number of operated

aircraft and, therefore, corresponding flight movements is expected to almost

double until 2040 (Boeing, 2019). This continues to put enormous pressure on

airport infrastructure and existing runway systems in particular. During snowfall,

runway availability is further limited as runways have to be intermittently closed

in order to clear them from snow, ice, and slush. Thus, it is crucial for airport

operators and air traffic control to utilize the available runway capacity in the

best possible way.

This dissertation thesis proposes models and corresponding solution methods

to solve the problem of assigning runways as well as take-off and landing times

to aircraft during winter operations while simultaneously planning snow removal

activities on runways considering the scarcity of snow removal equipment. This is

a complex decision problem since human planners, i.e., the responsible air traffic

controllers and runway managers, have to make decisions fast, taking into account

a frequently changing environment.

• The set of aircraft to be considered often changes since aircraft are con-

stantly taking-off or landing and new aircraft are entering the near-terminal

airspace.

• Attributes of aircraft such as target take-off or landing times, time windows,

and cost functions for delay are aircraft-specific and can change over time.

• The planning of snow removal activities is highly dependent on the current

weather and the weather forecast as well as on the availability of snow

removal equipment.

To account for changing and evolving decision variables and parameters, espe-

cially for modifications in the set of considered aircraft, a recalculation of the

1



1 Introduction

optimal solution is necessary approximately once per minute. Due to the large

number of considered aircraft, runways, and snow removal groups and the crucial

role of the time dimension, the possible solution space is extremely large, which

further complicates the planning task. Additionally, the multitude of involved

stakeholders, such as passengers, airlines, air traffic control, and the airport ope-

rator, require a fair, transparent, and traceable decision. In practice, air traffic

controllers and runway managers conduct the aircraft scheduling process manu-

ally based on a First-Come-First-Served (FCFS) principle. The decision when and

in which order runways are closed for snow removal is based on human experience

and intuition instead of data-driven mathematical optimization. To facilitate the

required planning activities for aircraft and snow removals, this thesis proposes

optimization based methods for the underlying scheduling tasks.

1.1 Scope and Scientific Contribution

This dissertation contributes to the field of airport operations by presenting the

first integrated models which simultaneously schedule departing and arriving air-

craft and snow removals on runways. While the first models investigating runway

scheduling date back to the 1970ies (cf. Dear, 1976; Psaraftis, 1980), the integra-

ted consideration of aircraft scheduling and snow removal planning on runways

has not been studied in the scientific literature so far.

This thesis presents two exact approaches to model and solve the static and de-

terministic version of this winter runway scheduling problem (WRSP). The first

approach models the problem as a time-continuous mixed-integer program (MIP).

Pruning rules are used to presolve and fix binary variables during preprocessing,

and problem specific valid inequalities are applied to exploit compulsory prece-

dence relations between aircraft and snow removals. The second approach com-

bines constraint programming (CP) concepts with a column generation scheme.

For that, the problem is modeled as a time-discrete binary program (BP) based

on clique inequalities and as a CP model. A start heuristic based on the CP for-

mulation generates a feasible initial start solution. A column generation scheme

initialized with that start solution identifies all variables of the BP which are re-

quired to solve it optimally. Finally, a branch-and-bound procedure computes the

optimal solution of the resulting BP. For this time-discrete variant of the WRSP,

2



1 Introduction

an enhanced time discretization method is proposed, which balances model size

and solution quality.

In this thesis, the applicability, effectiveness, and computational efficiency of

both approaches is shown through a detailed computational study. Both ap-

proaches are applied to real-world data from Munich International Airport and

thoroughly evaluated regarding their ability to compute optimal solutions and

with respect to their performance in terms of computational times. Additional

analyses of model sizes of the BP formulation and potential model size reductions

complete the computational study.

The methodologies proposed in this dissertation enable planners to solve real-

world instances of the WRSP to optimality. The presented optimal approaches

significantly outperform a practice-oriented heuristic in terms of overall weighted

delay cost. To derive managerial insights, this thesis compares proven optimal

solutions against schedules of practice-oriented heuristics applied by human plan-

ners. It also discusses the practical applicability of the presented algorithms.

This dissertation is based on two working papers. Pohl et al. (2019b) investigate

the time-continuous approach and Pohl et al. (2019a) focus on the time-discrete

approach for the WRSP.

1.2 Structure and Outline

The remaining part of this dissertation is structured as follows. Chapter 2 details

the characteristics of the WRSP. Chapter 3 discusses previous work and rela-

ted research articles and positions this thesis within the existing literature. In

Chapter 4, a time-continuous solution approach for the WRSP is presented. This

includes a mathematical MIP model, pruning rules, valid inequalities, and a heu-

ristic to derive initial start solutions. A time-discrete solution approach for the

WRSP is proposed in Chapter 5. This time-discrete approach includes two model

formulations, a BP and a CP model, and combines CP techniques with a column

generation scheme. This chapter also introduces an enhanced time discretization

method for the time-discrete BP. Chapter 6 applies both presented approaches,

the time-continuous as well as the time-discrete variant, to real-world data from

Munich International Airport. A computational study proves that both appro-

aches outperform a human planner and investigates advantages and drawbacks

3



1 Introduction

of both variants. For the time-continuous model, this includes an analysis of the

efficiencies of the proposed pruning rules, valid inequalities, and the start heu-

ristic. For the time-discrete variant, the computational study analyzes resulting

model sizes and proves the ability of the presented method to significantly re-

duce the number of required variables and constraints of the binary program. It

also highlights the value of the proposed enhanced time discretization method.

Furthermore, the computational study compares the time-continuous and the

time-discrete solution approach regarding their computational times and their

applicability in real-world settings. Chapter 7 concludes this thesis with mana-

gerial insights and an outlook including potential further research opportunities.
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2 The Winter Runway Scheduling

Problem

The WRSP solves the problem of scheduling aircraft and snow removals on mul-

tiple airport runways while minimizing earliness and tardiness cost for aircraft.

This thesis considers an operational planning horizon for the WRSP of up to two

hours. Specifically, the WRSP schedules aircraft which depart or arrive between

the next 15 to 120 minutes. At airports, air traffic controllers assign runways

and take-off and landing times to departing aircraft currently on the apron or

at gate positions and to arriving aircraft in the near-terminal airspace currently

approaching the airport. In the last phase of the take-off or landing preparation

of an aircraft, approximately 15 minutes before departure or arrival, changing

an aircraft’s runway assignment or its position in the runway sequence is usu-

ally not permitted anymore due to safety regulations. In addition, modifications

of runway assignments and aircraft sequences are usually impossible if arriving

aircraft have entered their final landing trajectory or if departing aircraft are on

their way to the assigned runway or lined up in the aircraft queue waiting for

departure. Depending on the airport, this final freeze period in which runway

sequences remain fixed can be shorter or longer.

2.1 Aircraft Time Windows

Assigned take-off or landing times for aircraft have to respect aircraft-specific time

windows and adhere to earliest and latest possible take-off or landing times. For

departing aircraft, the earliest possible take-off time is given by the time at which

ground operations and taxiing to the runway can be finished and the aircraft can

be ready for take-off. A reliable earliest take-off time can usually be predicted

one to two hours in advance once the aircraft arrived at the departure gate. The
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2 The Winter Runway Scheduling Problem

latest possible take-off time is theoretically unrestricted with later departure times

leading to ever increasing delay. For arriving aircraft, the earliest possible landing

time is given by the shortest flight path to the airport and the maximum flight

speed of the aircraft. It can reliably be calculated once the aircraft is airborne.

Latest possible landing times are imposed by limited fuel, airport opening times,

and regulations regarding working hours of flight personnel. Associated with

each aircraft is a preferred target take-off or landing time within the aircraft’s

time window. This target time reflects the most economical flight path and flight

speed for arriving aircraft and standard ground operations for departing aircraft.

A deviation from this target time constitutes earliness or tardiness and causes

aircraft-specific earliness or tardiness cost. The objective of the WRSP is to

minimize the sum of these earliness and tardiness cost over all aircraft and, thus,

to minimize the overall weighted delay cost of the schedule.

2.2 Separation Requirements

Aircraft scheduled on the same runway have to follow minimum separation re-

quirements to comply with safety regulations imposed by the Federal Aviation

Administration (FAA) and the International Civil Aviation Organization (ICAO).

Separation requirements also apply for interdependent runways which are in close

proximity to each other or cross each other and, thus, cannot be operated inde-

pendently. Required separation times between aircraft mainly depend on the

wake turbulences caused by the leading aircraft and their impact on following

trailing aircraft. Therefore, these separation times are sequence-dependent and

based on the operation classes of the involved aircraft, i.e., their weight classes

(“Small”, “Medium”, “Large”, “Boeing 757”1, “Heavy”, or “Super”), operation

modes (“Take-off” or “Landing”) and relative positions (“Leading” or “Trailing”).

The models in this thesis consider separation requirements not only for aircraft

which directly follow each other, but for all pairs of aircraft on the same runway,

which Beasley et al. (2000) defined as complete separation. Table 2.1 shows se-

paration requirements for all combinations of aircraft operation classes usually

1Boeing 757 aircraft are handled as heavy aircraft if they are leading and as large aircraft if
they are trailing. Therefore, they constitute an own aircraft class with regard to separation
requirements (FAA, 2017).
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2 The Winter Runway Scheduling Problem

Table 2.1: Separation requirements based on aircraft operation classes according to
FAA (2017) (in seconds)

Trailing

Landing Take-off

Leading Large Boeing 757 Heavy Super Large Boeing 757 Heavy Super

Landing

Large 69 69 60 60 75 75 75 75

Boeing 757 157 157 96 96 75 75 75 75

Heavy 157 157 96 96 75 75 75 75

Super 180 180 120 120 180 180 120 120

Take-off

Large 60 60 60 60 60 60 60 60

Boeing 757 60 60 60 60 120 120 90 90

Heavy 60 60 60 60 120 120 90 90

Super 180 180 120 120 180 180 120 120

operated at large international airports including weight classes from “Large” to

“Super”. The data in the table indicate that mixed runway operations, i.e., an

alternation of landing and departing aircraft on the same runway, often lead to

smaller separation times and, therefore, to runway schedules with higher through-

put and less delay. Airports with only a few runways or operating at their capacity

limit often use a mixed runway operations mode to increase the capacity of their

runway system. Compared to a segregated runway operations mode where speci-

fic runways are reserved only for take-offs or landings, mixed runway operations

increase the complexity of the scheduling problem and motivate the application

of a mathematical optimization approach.

2.3 Snow Removal

During winter operations, runways regularly have to be cleared from snow, ice,

and slush to enable safe flight operations. If snow starts piling up on a runway,

flight operations continue as long as safe take-offs and landings can be ensured.

As soon as safe flight operations cannot be ensured anymore, the runway has

7



2 The Winter Runway Scheduling Problem

to be closed temporarily and can only be reopened after the completion of a

snow removal activity. When a runway is closed for snow removal or when safe

operations can momentarily not be guaranteed, aircraft have to be delayed or

reassigned to another runway. Due to advanced weather predictions and a close

monitoring of the runway conditions, the exact point in time at which runways

become unsafe can accurately be forecast up to two hours and, thus, is assumed to

be known at the beginning of the operational planning horizon. After beginning

snowfall, flight operations usually become unsafe at all runways of an airport at

approximately the same time. Under continuous winter operations, i.e., if it is

snowing for a longer period of several hours, the time at which flight operations

on a runway become unsafe usually depends not only on the current snowfall but

also on the elapsed time since the last snow removal on that runway.

For snow removal and runway de-icing, airports use dedicated snow removal

groups. These snow removal groups consist of multiple snowplows and trucks,

which clear a runway collaboratively in a coordinated performance. At most lar-

ger airports, the number of runways exceeds the number of snow removal groups.

Thus, not all runways can be cleared at the same time and snow removal groups

have to clear multiple runways sequentially. Hence, the snow removal planning for

multiple runways becomes a scheduling problem itself. Snow removal schedules

have to consider snow removal durations per runway and transit times between

runways. In practice, clearing a runway from snow and ice usually takes around

20 minutes. The exact snow removal duration, however, depends on the runway

length and the used snow removal equipment. Transit times between runways are

typically sequence-dependent since distances and driving times between runways

depend on the physical layout of the airport and its road network.

After a runway has been cleared by a snow removal group, it usually stays safe

for at least two hours. Hence, each runway has to be cleared not more than once

within the operational planning horizon of the WRSP.

This thesis considers only snow removal activities on runways. During snow-

fall, also taxiways, the apron, and airport roads have to be cleared from snow

and ice. Snow removal on these parts of the infrastructure, however, is often

a subordinated planning task and conducted by separate snow removal groups

using different equipment, e.g., smaller snow plows and other de-icing liquids or

gravel. Thus, it is not considered in this work.
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3 Literature Review

This chapter presents related previous work and research articles and positions

this thesis within the existing literature. Since the WRSP extends the classi-

cal runway scheduling problem (RSP) and has not been investigated so far, this

literature review focuses primarily on existing work on the RSP and related ma-

chine scheduling problems. First, various heuristic solution approaches for the

RSP are discussed. Then, exact methods including dynamic programming (DP)

approaches and MIP models are presented. This chapter also reviews applica-

tions of CP for aircraft scheduling and existing methods which combine CP and

column generation schemes. Since the WRSP is closely related to machine sched-

uling problems with sequence-dependent setup times and maintenance activities,

corresponding machine scheduling literature is briefly discussed as well.

In general, the literature review focuses on recent contributions and articles

most relevant for this thesis. Comprehensive overviews of publications concer-

ning the RSP and related problems in airport arrival management, departure

management, and surface management can be found in Bennell et al. (2011),

Lieder & Stolletz (2016), and Samà et al. (2019). Bennell et al. (2011) compiled

an extensive literature overview of articles published until 2011. Lieder & Stolletz

(2016) considered more recent contributions until 2015 focusing on articles with

heterogeneous (or interdependent) runways and single (or independent) runways.

Samà et al. (2019) organized their literature discussion around arrival scheduling,

departure scheduling, and mixed arrival-departure scheduling.

Table 3.1 compares this dissertation with existing RSP literature regarding

objective functions, runway configurations and solution approaches. While most

papers minimize the weighted earliness and tardiness (weigh. E&T), some articles

consider only tardiness (T) or makespan. A few papers combine different cost

components, e.g., fuel cost, flight cancellation cost or indirect cost for constraint

violation.

9



3 Literature Review

Table 3.1: Comparison of this dissertation with existing literature

Reference Objective functions Runways Solution approaches

RSP — heuristic approaches

Abela et al. (1993) min
∑

weigh. E&T single GA

Fahle et al. (2003) min
∑

weigh. E&T single LS, CP

Hansen (2004) min max T multiple GA

Dı́az & Mena (2005) min
∑

weigh. E&T single CP

Bianco et al. (2006) min makespan, min avg. T multiple LS

Pinol & Beasley (2006) min
∑

weigh. E&T multiple SS, BA

Salehipour et al. (2009) min
∑

T multiple VNS

Liu (2010) min
∑

T (squared) multiple GA

Salehipour et al. (2013) min
∑

weigh. E&T multiple SA, VNS

Vadlamani & Hosseini (2014) min
∑

weigh. E&T single ALNS

Sabar & Kendall (2015) min
∑

weigh. E&T multiple LS

Bennell et al. (2017) min
∑

weigh. cost comp.

(makespan, avg. T, fuel cost,

constr. violation)

single SA

RSP — exact approaches

Abela et al. (1993) min
∑

weigh. E&T single TC MIP

Beasley et al. (2000) min
∑

weigh. E&T multiple TC MIP, TD MIP

Fahle et al. (2003) min
∑

weigh. E&T single TC MIP, TD MIP

Balakrishnan & Chandran

(2010)

min makespan, min
∑

T,

min max T

single DP (CPS)

Furini et al. (2012) min
∑

weigh. T single TC MIP (rol. hor.)

Samà et al. (2013) min max T multiple TC MIP (rol. hor.)

Kjenstad et al. (2013) min
∑

weigh. cost comp.

(canceled flights, weigh. E&T)

multiple TD MIP

Heidt et al. (2014) min
∑

weigh. E&T (squared) single TD MIP (diff. step sizes)

Furini et al. (2014) min
∑

weigh. E&T single MIP (CPS), DP (CPS)

Furini et al. (2015) min
∑

weigh. T single TC MIP (rol. hor.)

Faye (2015) min
∑

weigh. E&T multiple TD MIP

Bertsimas & Frankovich (2015) min
∑

weigh. cost com.

(flight holding cost, travel cost,

runway config. change cost)

multiple TD MIP

Lieder & Stolletz (2016) min
∑

weigh. T multiple TC MIP, DP

Avella et al. (2017) min
∑

weigh. cost comp.

(canceled flights, weigh. E&T)

single TD MIP

WRSP — exact approaches

This dissertation min
∑

weigh. E&T multiple TC MIP, TD MIP
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3.1 Heuristic Solution Approaches

Since the general RSP is known to be NP-hard (Bianco et al., 1999), many heu-

ristic approaches to solve the problem have been developed. Bianco et al. (2006)

and Sabar & Kendall (2015) presented local search (LS) algorithms, while vari-

able neighborhood search (VNS) and adaptive large neighborhood search (ALNS)

methods were proposed by Salehipour et al. (2009) and Vadlamani & Hosseini

(2014). Salehipour et al. (2013) and Bennell et al. (2017) suggested simulated

annealing (SA) approaches to solve the aircraft landing problem. Various popu-

lation based heuristics have been proposed as well. Abela et al. (1993), Hansen

(2004), and Liu (2010) developed genetic search algorithms (GA) and Pinol &

Beasley (2006) presented a scatter search (SS) and bionomic algorithms (BA) to

solve the aircraft landing problem.

3.2 Exact Methods

Despite the computational complexity of the problem, several exact approaches

for solving the RSP have been developed. They often succeed to compute optimal

solutions for relatively small instances (up to approximately 50 aircraft on 3

runways) but frequently fail to optimally solve large instances. Existing exact

approaches mainly use DP or MIP techniques.

To reduce the computational complexity of exact problem formulations, pre-

processing techniques and pruning rules received more attention in recent years.

A comprehensive set of preprocessing methods and pruning rules for the RSP

was developed by Maere et al. (2017). They presented different pruning rules

for the RSP to decrease the solution space of the problem. Their pruning rules

are model-independent and generic. Thus, they can be applied to a variety of

solution methods including exact DP and MIP approaches.

3.2.1 Dynamic Programming

Bennell et al. (2017) presented a DP for the single runway problem and Lieder &

Stolletz (2016) developed a DP approach for multiple interdependent and hetero-

geneous runways. Balakrishnan & Chandran (2010) proposed DP algorithms for
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the single runway problem under consideration of constrained position shifting

(CPS), which reduces the solution space of the DP by prohibiting large devia-

tions from a FCFS order. Furini et al. (2014) built up on that and presented

state space reduction techniques to further improve computational times for DP

approaches.

3.2.2 Mixed-Integer Programming

Several MIP formulations have been developed to solve the RSP in multiple set-

tings with different sets of assumptions. Two types of MIP formulations emerged

and prevail in literature. The first model type solves the RSP in continuous

time and uses big-M formulations. The second model type solves the problem in

discrete time using time-indexed model formulations.

Time-Continuous (TC) MIP Formulations Model formulations solving the

RSP in continuous time typically represent the take-off or landing time of an

aircraft as a single continuous variable. To reflect sequence-dependent separation

requirements between aircraft, they rely on big-M constraints. Abela et al. (1993)

presented such a MIP formulation for the single runway case. Beasley et al.

(2000) developed a MIP model for the multiple runway case, which became the

basis for many succeeding model formulations and publications. Time-continuous

formulations also build the basis for many rolling horizon frameworks as in Furini

et al. (2012), Samà et al. (2013), and Furini et al. (2015).

The time-continuous approach presented in Chapter 4 of this thesis is based

upon the model formulation in Beasley et al. (2000) and extends their work in

order to reflect winter operations, i.e., snowfall and snow removal activities on

runways.

Time-Discrete (TD) MIP Formulations To solve the RSP in discrete time,

time-indexed model formulations represent the take-off or landing time of an air-

craft by a set of binary variables. Each binary variable is associated with a feasible

take-off or landing time within an aircraft’s time window. In a feasible solution

of the RSP, exactly one binary variable of this set equals one, indicating the air-

craft’s take-off or landing time. Such time-indexed model formulations typically
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have a larger number of variables but often return much stronger bounds than

time-continuous big-M formulations. For real-world instances of the RSP with a

realistic number of aircraft and runways, time-discrete formulations with time-

indexed models were long considered to be computationally intractable, especially

due to their enormous model sizes (cf. Beasley et al., 2000; Avella et al., 2017).

However, due to increasing computational power and algorithmic advances of

MIP solvers, they received more attention in recent years. Kjenstad et al. (2013)

proposed a decomposition of the RSP and used a time-indexed formulation to op-

timally assign arrival and departure times to aircraft. Heidt et al. (2014) proposed

a dynamic variant of a time-discrete model formulation, in which aircraft-specific

slot sizes depend on an aircraft’s distance to the runway. Faye (2015) developed a

time-discrete model based on a decomposition of separation times. Bertsimas &

Frankovich (2015) presented a time-discrete approach to optimize the air traffic

flow through airports in a holistic way. Closest to this work is the time-indexed

formulation for the RSP by Avella et al. (2017), which computes optimal schedu-

les for departing and arriving aircraft on a single runway. For this, the authors

developed a new family of clique constraints, which generalizes a family of clique

inequalities presented in Nogueira et al. (2019).

The work of Avella et al. (2017) builds the foundation for the time-discrete

approach proposed in Chapter 5 of this dissertation. The time-indexed model

in this thesis extends the model formulation in Avella et al. (2017) in order to

consider multiple runways as well as winter operations. This thesis also pre-

sents a novel solution algorithm for this model formulation combining a column

generation scheme with a CP start heuristic.

3.3 Constraint Programming

With regard to CP, Allignol et al. (2012) compiled a survey of CP approaches

for air traffic management, including, but not restricted to runway scheduling.

Fahle et al. (2003) compared different exact and heuristic methods, including a

CP model, for the aircraft sequencing problem on a single runway. For the same

single runway problem, Dı́az & Mena (2005) presented a CP implementation
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based on the Oz/Mozart framework1. Junker et al. (1999) and Yunes et al.

(2000) independently developed a column generation method in which the pricing

subproblem is solved using CP techniques. This method was applied to a wide

range of applications (cf. Gualandi & Malucelli, 2013), specifically for the tail

assignment problem (Grönkvist, 2006; Gabteni & Grönkvist, 2008) and the crew

assignment problem (Junker et al., 1999; Fahle et al., 2002).

3.4 Related Machine Scheduling Problems

The RSP is related to machine scheduling problems with sequence-dependent pro-

cessing or setup times where runways correspond to machines, aircraft correspond

to jobs, and separation requirements correspond to sequence-dependent setup

times. For the parallel machine scheduling problem with sequence-dependent

setup times, Lee & Pinedo (1997) proposed a heuristic based on dispatching rules

and simulated annealing to minimize weighted tardiness. For the same problem

and the objective of minimizing weighted earliness and tardiness, Radhakrishnan

& Ventura (2000) presented a simulated annealing approach. In order to mini-

mize makespan, Vallada & Ruiz (2011) suggested a genetic algorithm and Lopes

& de Carvalho (2007) developed a branch-and-price algorithm to minimize an

additive cost function. An overview of scheduling problems with setup times

and related articles until 2008 was compiled by Allahverdi et al. (2008). From

a machine scheduling point of view, snow removal has structural similarities to

preventive maintenance, especially when maintenance crews have to maintain

machines within a given time window and when travel times between machines

apply for crews moving from one machine to the next machine. Scheduling prob-

lems with maintenance activities have received growing interest in recent years.

For the general problem of scheduling jobs and maintenance activities on parallel

machines and the objective of minimizing total weighted completion time, Lee &

Chen (2000) presented a branch-and-bound algorithm based on column genera-

tion. Variants of this problem with aging effects, multiple maintenance activities

during the planning horizon, or maintenance activities with start-time dependent

1Oz is a multiparadigm programming language providing functional, object-oriented, and
constraint programming concepts. The Mozart Programming System is an implementation
of the Oz programming language released by the Mozart Consortium.
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durations have been investigated by Cheng et al. (2011) and Yang et al. (2012).

Ma et al. (2010) presented a survey of scheduling problems with deterministic

machine availability constraints considering articles until 2009. Gao et al. (2006)

studied the flexible job shop scheduling problem considering maintenance acti-

vities with flexible starting times and proposed a hybrid genetic algorithm to

solve it. For a similar problem with scarce maintenance resources where only one

machine can be maintained at any given time, Wang & Yu (2010) proposed a heu-

ristic algorithm based on a filtered beam search. Yoo & Lee (2016) investigated

different objective functions and job characteristics for the parallel machine sched-

uling problem with maintenance activities and developed corresponding dynamic

programming algorithms. The specific variant of a parallel machine scheduling

problem with sequence-dependent setup times for jobs and flexible maintenance

activities has not been studied yet.

Concluding, existing literature focuses on a wide range of aspects of runway

scheduling. However, the WRSP, i.e., the RSP under consideration of winter

operations, has not been investigated so far. This dissertation presents the first

model formulations for the WRSP and corresponding solution methodologies.
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4 Time-Continuous Approach –

Using Pruning Rules, Valid

Inequalities and a Mixed-Integer

Programming Model

This chapter details and explains the first solution approach for the WRSP based

on a time-continuous MIP model. Section 4.1 introduces a deterministic model

formulation considering multiple heterogeneous runways and multiple snow re-

moval groups. The model builds upon and extends the model of Beasley et al.

(2000). In Section 4.2, pruning rules are derived, which can be applied during pre-

processing to improve the performance and tractability of the model. To derive

better LP bounds, valid inequalities are presented in Section 4.3. Additionally,

in Section 4.4, a start heuristic is developed, which regularly yields good feasible

start solutions for the MIP solver and decreases computational times.

4.1 Mixed-Integer Programming Model

Using the sets and parameters defined in Table 4.1 and the decision variables

defined in Table 4.2, the proposed model reflects the problem setting described

in Chapter 2. In particular, the formulation assigns runways r ∈ R and take-off

or landing times xa to departing and arriving aircraft a ∈ A of operation class

c(a) ∈ C. Further, it assigns snow removal groups g ∈ G and snow removal

times vr to runways r ∈ R. The model formulation allows mixed runway ope-

rations, i.e., take-offs and landings can be scheduled on the same runway. The

objective function of the model minimizes the delay cost of the schedule, i.e., the
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Table 4.1: Sets and parameters of the time-continuous model

Notation Definition

a ∈ A Set of aircraft

Ta Target take-off or landing time of aircraft a

La Latest possible take-off or landing time of aircraft a

Ca Cost coefficient per time unit for scheduling aircraft a after Ta

C ∈ C Set of operation classes

c(a) Operation class of aircraft a

SCC′ Sequence-dependent separation time between a leading aircraft

of operation class C and a trailing aircraft of operation class C ′

if both aircraft are scheduled on the same runway

OC Required separation time between an aircraft of operation class

C and a subsequent snow removal on the same runway

g ∈ G Set of snow removal groups

r ∈ R Set of runways

Ur Time at which flight operations on runway r become unsafe

Pr Required time to clear runway r

Qrs Sequence-dependent setup time between starts of snow removals

on runways r and s conducted by the same snow removal group

(including snow removal time Pr and required transit time from

runway r to runway s)

i ∈ A ∪R Set of activities which can either be aircraft or snow removals
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Table 4.2: Decision variables of the time-continuous model

Notation Definition

xa ≥ 0 Take-off or landing time of aircraft a

vr ≥ 0 Start time of snow removal on runway r

δij =

1 if activity i starts before activity j

∈ {0, 1} otherwise

yar =

1 if aircraft a is scheduled on runway r

0 otherwise

zab =

1 if aircraft a and b are scheduled on the same runway

0 otherwise

ρrg =


1

if snow removal on runway r is conducted by snow removal

group g

0 otherwise

φrs =


1

if snow removals on runways r and s are conducted by the

same snow removal group

0 otherwise
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total weighted aircraft delay
∑

a∈ACa(xa − Ta) as the weighted deviation of the

scheduled time xa from the target time Ta.

The model formulation considers time windows Ta ≤ xa ≤ La for aircraft a

limited by target times Ta and latest possible take-off or landing times La. Thus,

aircraft are not allowed to be scheduled before their target time and earliest

possible take-off or landing times are implicitly set as target times. The model

considers sequence-dependent separation requirements Sc(a)c(b) between pairs of

aircraft a and b on the same runway. It also considers separation requirements

Oc(a) between aircraft a and a following snow removal on the same runway. This

time Oc(a) is mainly defined by the duration of the take-off or landing procedure of

aircraft a. The model ensures separation times Pr between a snow removal and a

following aircraft on runway r. It is defined by the duration Pr of a snow removal

procedure on a specific runway r. Additionally, the model considers runway

closings in case too much snow, ice, or slush has piled up on a runway and safe

operations cannot be guaranteed any more. Once a runway has become unsafe

at time Ur, it must be cleared before it can be reopened. If a runway r is cleared

before it becomes unsafe, it stays safe for the remaining planning horizon. The

model formulation schedules exactly one snow removal per runway. If a runway

does not become unsafe or if a snow removal on a runway is not necessary within

the planning horizon due to low aircraft traffic, the model schedules a dummy

snow removal at the end of the planning horizon. For snow removal groups, the

model considers sequence-dependent setup times Qrs between runways r and s,

which, for the ease of notation, include the time Pr to clear runway r and the

transfer time from runway r to runway s. The model formulation uses the notion

of activities, which can either be aircraft or snow removals, and their relative

order δij with i, j ∈ A ∪R : i 6= j indicating whether i or j starts earlier.
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The complete MIP formulation is as follows:

minimize
∑
a∈A

Ca(xa − Ta) (4.1)

subject to

Ta ≤ xa ≤ La ∀ a ∈ A (4.2)

δij + δji = 1 ∀ i, j ∈ A ∪R : i 6= j (4.3)∑
r∈R

yar = 1 ∀ a ∈ A (4.4)

zab ≥ yar + ybr − 1 ∀ a, b ∈ A : a 6= b; r ∈ R (4.5)

xb ≥ xa + Sc(a)c(b)zab −Mδba ∀ a, b ∈ A : a 6= b (4.6)∑
g∈G

ρrg = 1 ∀ r ∈ R (4.7)

φrs ≥ ρrg + ρsg − 1 ∀ r, s ∈ R : r 6= s; g ∈ G (4.8)

vs ≥ vr +Qrsφrs −Mδsr ∀ r, s ∈ R : r 6= s (4.9)

vr ≥ xa +Oc(a)yar −Mδra ∀ r ∈ R; a ∈ A (4.10)

xa ≥ vr + Pryar −Mδar ∀ r ∈ R; a ∈ A (4.11)

xa ≤ Ur +M(1− yar) +Mδra ∀ r ∈ R; a ∈ A (4.12)

xa, vr ≥ 0 ∀ a ∈ A; r ∈ R
δij, yar, zab, ρrg, φrs ∈ {0, 1} ∀ i, j ∈ A ∪R : i 6= j;

a, b ∈ A : a 6= b;

r, s ∈ R : r 6= s; g ∈ G

The Objective (4.1) minimizes the delay cost of the schedule as the sum of

weighted delay over all aircraft. Constraints (4.2) secure that all flights are

scheduled within their allowed time windows. Constraints (4.3) sequence all

activities by deciding for each pair of activities i and j if i precedes j or vice

versa. The presented model formulation and definition of decision variables δij

also allow that activities can start at the same time if they are scheduled on diffe-

rent runways. Constraints (4.4) secure that each aircraft is scheduled on exactly

one runway. Constraints (4.5) determine whether two aircraft are scheduled on

the same runway. Constraints (4.6) guarantee that all separation requirements
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Sc(a)c(b) between aircraft a and b on the same runway are met, imposing complete

separation. Constraints (4.7) assign exactly one snow removal group to each run-

way. Constraints (4.8) determine whether two runways are cleared by the same

snow removal group. Constraints (4.9) secure sufficient setup time Qrs between

two consecutive snow removals on runways r and s which are conducted by the

same snow removal group. Constraints (4.10) secure sufficient separation time

Oc(a) between an aircraft a and a following snow removal on the same runway.

Similarly, Constraints (4.11) secure sufficient separation time Pr between a snow

removal and a following aircraft on the same runway r. Finally, Constraints

(4.12) make sure that an aircraft is only scheduled on a runway as long as flight

operations are safe, i.e., before a runway becomes unsafe or after snow removal

on that runway has been completed. All big-M coefficients are sufficiently large

if M = maxa∈A{La} holds.

The model allows that runways are heterogeneous in the sense that specific

combinations of aircraft operations and runways can be prohibited. This provides

the possibility to model situations in which specific runways are not permitted for

specific aircraft (e.g., because the runways are too short) or situations in which

only take-offs or landings are allowed on certain runways. Fixing variables yar

prohibits or enforces such assignments of aircraft a to runways r and decreases

the complexity of the model since it prunes the branch-and-bound search tree.

Snow removal groups are assumed to be identical in terms of driving speed and

snow removal speed and, therefore, interchangeable. Nevertheless, it is possible

to prohibit or enforce the assignments of snow removal groups g to runways r by

fixing variables ρrg accordingly.

4.2 Problem-Specific Pruning Rules

Pruning rules are applied during preprocessing to improve the computational

performance of the model. They precalculate and fix binary variables to zero

or one in order to decrease the solution space and to accelerate the branch-and-

bound process. Maere et al. (2017) give a comprehensive overview of various

pruning rules for the RSP.

This section discusses three types of pruning rules. Pruning rules of type I order

aircraft according to their non-overlapping time windows and were presented by
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Beasley et al. (2000). Pruning rules of type II order aircraft of the same operation

class and with overlapping time windows according to their target time and are

an extension of a pruning rule developed by Briskorn & Stolletz (2014). Pruning

rules of type III precalculate a dominant, i.e., optimal, snow removal pattern

independently from actual aircraft traffic for many instances with homogeneous

runways and have not been discussed in literature before.

Pruning Rules of Type I: Strict Orders of Aircraft Based on Time Windows

For some pairs of aircraft, an optimal order can be determined based on their

time windows. This was proven by Beasley et al. (2000).

Theorem 1. If the time window [Ta, La] of aircraft a and the time window [Tb, Lb]

of aircraft b do not overlap with La < Tb, then aircraft a must be scheduled before

aircraft b:

δab = 1 ∀ a, b ∈ A : La < Tb

Pruning Rules of Type II: Strict Orders of Aircraft Within the Same

Aircraft Operation Class

Pruning rules of type II are based on the fact that aircraft a and a′ of the same

operation class C are separation identical, i.e., they have the same pairwise separa-

tion requirements in relation to all other aircraft b: Sc(a)c(b) = Sc(a′)c(b) ∧Sc(b)c(a) =

Sc(b)c(a′) ∀ b ∈ A \ {a, a′} since c(a) = c(a′) = C.
For the objectives of minimizing makespan and minimizing weighted delay,

Psaraftis (1980) showed that, within an aircraft operation class, a complete order

can be inferred under the assumptions that no time window restrictions exist and

that all aircraft of this operation class have the same cost function. Briskorn &

Stolletz (2014) showed that such complete orders within aircraft operation classes

also exist if a time window order (see Definition 1) exists for all pairs of aircraft

within a operation class and if class-specific piecewise linear convex cost functions

are assumed.

Definition 1. Time window order. Two aircraft a and a′ of the same operation

class have a time window order a ≺ a′ if Ta < Ta′ ⇒ La ≤ La′ ∧ La < La′ ⇒
Ta ≤ Ta′ .
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Briskorn & Stolletz (2014) showed that scheduling two aircraft a and a′ of the

same operation class according to their time window order is optimal for minimi-

zing delay cost by proving that swapping a and a′ cannot improve the objective

value. Different to Briskorn & Stolletz (2014), this thesis relaxes the assump-

tion of class-specific piecewise linear convex cost functions and assumes aircraft-

specific linear cost functions instead, i.e., aircraft a and a′ of the same operation

class are allowed to have different cost coefficients Ca 6= Ca′ . In practice, these

cost coefficients often depend on the number of passengers aboard an aircraft and

the price segment of the carrier, e.g., premium or low cost. In order to determine

aircraft orders within aircraft operation classes if cost factors are aircraft-specific,

the concept of cost compliance is introduced.

Definition 2. Cost compliance. Two aircraft a and a′ with time window order

a ≺ a′ are cost compliant if aircraft a has the same or a higher cost coefficient

than aircraft a′: a ≺ a′ ⇒ Ca ≥ Ca′ .

A strict order within a pair of aircraft a and a′ of the same operation class can

be precalculated if a time window order exists and the aircraft are cost compliant.

Theorem 2. It is always optimal to schedule aircraft a and a′ of the same ope-

ration class in their corresponding time window order if they are cost compliant:

δaa′ = 1 ∀ a, a′ ∈ A : c(a) = c(a′), (same operation class)

Ta ≤ Ta′ ∧ La ≤ La′ , (time window order a ≺ a′)

Ca ≥ Ca′ (cost compliance)

Proof. Consider two cases:

Case 1: The time windows of aircraft a and a′ do not overlap. In this case,

scheduling a′ before a is not feasible and a must be scheduled before a′. Note

that Theorem 1 applies in this case.

Case 2: The time windows of aircraft a and a′ overlap with La ≥ Ta′ . Consider

a feasible aircraft schedule S with xa > xa′ (a′ is scheduled before a) and assume

time window order (Ta ≤ Ta′ ∧ La ≤ La′) and cost compliance (Ca ≥ Ca′).

Swapping aircraft a and a′ cannot increase the objective value: Generate a new

schedule S̄ by swapping aircraft a and a′ and scheduling aircraft a at x̄a = xa′

and aircraft a′ at x̄a′ = xa. This schedule S̄ is feasible with regard to other
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aircraft since a and a′ are of the same operation class and, thus, separation

identical. Schedule S̄ is also feasible with regard to possible time windows since

Ta ≤ Ta′ ≤ xa′ = x̄a < xa = x̄a′ ≤ La ≤ La′ . From cost compliance (4.13) and

xa′ = x̄a < xa = x̄a′ , it can be concluded by (4.14)–(4.19) that the objective value

O(S̄) = Ca(x̄a − Ta) + Ca′(x̄a′ − Ta′) of the new schedule S̄ where a and a′ are

swapped (and a is scheduled before a′ according to their time window order) is

better than or equal to the objective value O(S) = Ca(xa − Ta) + Ca′(xa′ − Ta′)
of the original schedule S:

Ca ≥ Ca′ (4.13)

⇔ Ca(x̄a − xa) ≤ Ca′(xa′ − x̄a′) (4.14)

⇔ Cax̄a − Caxa ≤ Ca′xa′ − Ca′x̄a′ (4.15)

⇔ Cax̄a + Ca′x̄a′ ≤ Ca′xa′ + Caxa (4.16)

⇔ Cax̄a + Ca′x̄a′ − CaTa − Ca′Ta′ ≤ Ca′xa′ + Caxa − CaTa − Ca′Ta′ (4.17)

⇔ Ca(x̄a − Ta) + Ca′(x̄a′ − Ta′) ≤ Ca(xa − Ta) + Ca′(xa′ − Ta′) (4.18)

⇔ O(S̄) ≤O(S) (4.19)

Pruning Rules of Type III: Dominant Snow Removal Patterns for

Homogeneous Runways

For a set of homogeneous runways (see Definition 3), it is often possible to pre-

calculate a snow removal pattern (see Definition 4) which dominates all other

possible snow removal patterns.

Definition 3. Homogeneous runways. A set of runways R̄ ⊆ R is considered

to be homogeneous if all runways require the same amount of time for a snow

removal activity (Pr = Pr′ ∀ r, r′ ∈ R̄) and if they allow for the same operation

modes, i.e., an aircraft that can take-off or land on a runway r ∈ R̄ can also

take-off or land at all other runways r′ ∈ R̄ with r′ 6= r.

Definition 4. Snow removal pattern. A snow removal pattern P consists of an

|R|-tuple of triples (ri, gi, ei), formally P :=
(
(r1, g1, e1), (r2, g2, e2), . . . , (r|R|, g|R|,

e|R|)
)
. Herein, triple (ri, gi, ei) defines the i-th snow removal activity in non-
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decreasing order of snow removal start times with ri ∈ R denoting the runway

being cleared, gi ∈ G with ρrigi = 1 denoting the assigned snow removal group

and ei denoting the earliest possible start time of the i-th snow removal activity.

Earliest possible start times ei are computed based on preceding snow removals

and sequence-dependent setup times Qrjri with j ≤ i and gj = gi. Due to the

order of the triples, ei ≤ ei+1 ∀ i ∈ 1, 2, . . . , |R| − 1 holds.

Each snow removal pattern P contains each runway r ∈ R exactly once since

each runway is cleared exactly once within the planning horizon. Thus, only a

finite number of different snow removal patterns exists. P denotes the finite set

of all possible snow removal patterns and is bounded by |P| = |R|! · |G||R|.
Similar to the concept of active schedules (cf. Giffler & Thompson, 1960), this

thesis introduces pseudo-active snow removal patterns.

Definition 5. Pseudo-active snow removal pattern. A snow removal pattern P′

is called pseudo-active if and only if no other snow removal pattern P exists in

which the i-th snow removal (i = 1, 2, . . . , |R|) can be started (and, given homo-

geneous runways, also finished) earlier. Formally, P′ :=
(
(r′1, g

′
1, e
′
1), (r

′
2, g
′
2, e
′
2),

. . . , (r′|R|, g
′
|R|, e

′
|R|)
)

is pseudo-active if e′i = minP∈P{ei} ∀ i ∈ 1, 2, . . . , |R| holds.

Extending a snow removal pattern with actual start times for each snow removal

activity yields a snow removal schedule.

Definition 6. Snow removal schedule. A snow removal schedule S extends a

snow removal pattern and is an |R|-tuple of quadruples (ri, gi, ei, σi), formally

S :=
(
(r1, g1, e1, σ1), (r2, g2, e2, σ2), . . . , (r|R|, g|R|, e|R|, σ|R|)

)
where σi denotes the

start time of the i-th snow removal.

Note that, for feasible snow removal schedules, ei ≤ σi ∀ i ∈ 1, 2, . . . , |R| holds.

A snow removal pattern is dominant if it can be extended to an optimal snow re-

moval schedule and, thus, enables an optimal aircraft schedule. An optimal snow

removal schedule must always consider actual aircraft traffic in the planning hori-

zon and requires complete information about occurring aircraft. A dominant snow

removal pattern, however, can often be precalculated in advance, independently

from the occurring aircraft traffic. Finding a dominant snow removal pattern

allows for fixing binary variables δrs ∀ r, s ∈ R : r 6= s, ρrg ∀ r ∈ R; g ∈ G, and

φrs ∀ r, s ∈ R : r 6= s during preprocessing.
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4 Time-Continuous Approach

Theorem 3. For homogeneous runways, a snow removal pattern P∗ :=
(
(r∗1, g

∗
1,

e∗1), (r
∗
2, g
∗
2, e
∗
2), . . . , (r

∗
|R|, g

∗
|R|, e

∗
|R|)
)

is dominant, i.e., it allows at least one optimal

snow removal schedule, if

1. snow removal pattern P∗ is pseudo-active and

2. all runways are cleared in non-decreasing order with regard to their para-

meter Ur.

Proof. In the following, it is shown that an optimal snow removal schedule S∗

can always be constructed by extending a pseudo-active snow removal pattern

P∗ =
(
(r∗1, g

∗
1, e
∗
1), (r

∗
2, g
∗
2, e
∗
2), . . . , (r

∗
|R|, g

∗
|R|, e

∗
|R|)
)

with Ur∗1
≤ Ur∗2

≤ . . . ≤ Ur∗|R|

if runways are homogeneous. Consider a feasible and optimal snow removal

schedule S =
(
(r1, g1, e1, σ1), (r2, g2, e2, σ2), . . . , (r|R|, g|R|, e|R|, σ|R|)

)
. Now, con-

struct a schedule S∗ =
(
(r∗1, g

∗
1, e
∗
1, σ1), (r

∗
2, g
∗
2, e
∗
2, σ2), . . . , (r

∗
|R|, g

∗
|R|, e

∗
|R|, σ|R|)

)
extending dominant snow removal pattern P∗ with snow removal start times

σi ∀ i = 1, 2, . . . , |R| of the optimal snow removal schedule S. From schedule

S being feasible (ei ≤ σi ∀ i ∈ 1, 2, . . . , |R|) and pattern P∗ being pseudo-active

(e∗i = minP∈P{ei}∀i ∈ 1, 2, . . . , |R|), it follows that e∗i ≤ ei ≤ σi∀i = 1, 2, . . . , |R|
and, hence, that schedule S∗ is feasible. In schedule S∗, all homogeneous run-

ways are cleared in non-decreasing order with regard to their parameter Ur. Thus,

schedule S∗ has the same or a better runway availability profile than schedule S,

i.e., at every point in time, schedule S∗ provides at least as many available run-

ways than schedule S (cf. Figure 4.1). Consequently, S∗ allows the same aircraft

schedule and, therefore, the same objective value than S and is also optimal.

Since the number of runways and snow removal groups at airports is rather

small, all possible snow removal patterns in P can be enumerated in order to find

a dominant pattern.
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(a) Runway availability of S with snow removal sequence R2 → R1

available runways

t
1
2

R1
U1

σ2

R2
U2

σ1

(b) Runway availability of S∗ with snow removal sequence R1 → R2

available runways

t
1
2

R1
U1

σ1

R2
U2

σ2

Figure 4.1: Example: S∗ outperforms S in terms of runway availability
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4.3 Problem-Specific Valid Inequalities

In the following, two new sets of valid inequalities are presented which are related

to snow removal activities. Although these constraints are redundant in the MIP

formulation due to a combination of Constraints (4.2) and (4.12), they often

tighten the LP relaxation of the MIP.

Valid Inequalities I: Order Between Snow Removals and Aircraft on the

Same Runway

If an aircraft a is scheduled on runway r and this aircraft’s target time Ta is later

than the time Ur at which operations on runway r become unsafe, snow removal

on runway r must be completed before aircraft a is scheduled and, thus, δra = 1.

Consequently, for all pairs of aircraft a and runways r with Ur < Ta, the following

inequality holds:

δra ≥ yar ∀ a ∈ A; r ∈ R : Ur < Ta (4.20)

Valid Inequalities II: Order Between Global Snow Removals and Aircraft

If the target time Ta of an aircraft a is later than all times Ur at which the

different runways become unsafe, at least one snow removal activity has to be

completed before aircraft a can be scheduled. Consequently, for all aircraft a

with maxr∈R{Ur} < Ta, the following inequality holds:∑
r∈R

δra ≥ 1 ∀ a ∈ A : max
r∈R
{Ur} < Ta (4.21)

4.4 Start Solution Heuristic

The objective of the start solution heuristic is to derive an initial start (incum-

bent) solution for a problem instance I. A mapping I→ I′ is developed to obtain

a less complex instance I′ which can be solved efficiently. I′ is designed to make

maximal use of the proposed pruning rules. To derive I′ from I, all separation

requirements S ′CC′ between pairs of aircraft operation classes C and C ′ are set to

the constant S ′, where S ′ equals the minimum of all separation requirements:

S ′CC′ = S ′ ∀ C, C ′ ∈ C where S ′ = minC,C′∈C{SCC′}. Hence, in I′, all aircraft are
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separation identical, i.e., they can be considered to belong to the same operation

class. Thus, pruning rules of type I and II (cf. Section 4.2) yield a complete order

of all aircraft. This allows for solving I′ efficiently even for a large number of air-

craft by applying the extended MIP consisting of (4.1)–(4.12), (4.20), and (4.21).

From the optimal solution of I′, the order of activities (aircraft and snow remo-

vals) defined by variables δ′∗ij ∀ i, j ∈ A∪R : i 6= j and the optimal snow removal

schedule defined by variables v′∗r ∀ r ∈ R and ρ′∗rg ∀ r ∈ R; g ∈ G is stored. Based

on this information, an initial solution for I is constructed by solving an instance

Iini which equals instance I with fixed values δij = δ′∗ij ∀ i, j ∈ A ∪ R : i 6= j,

vr = v′∗r ∀ r ∈ R, ρrg = ρ′∗rg ∀ r ∈ R; g ∈ G, and φrs = φ′∗rs ∀ r, s ∈ R : r 6= s. For

many instances, Iini yields a good initial solution for I. For some instances, Iini

can be infeasible due to adverse parameter values SCC′ .

The time-continuous solution approach presented in this chapter is tested and

evaluated in a computational study in Chapter 6.

29



5 Time-Discrete Approach –

Combining Constraint

Programming and Column

Generation

This chapter presents the second solution approach for the WRSP using a time-

discrete model formulation and a novel combination of CP and column generation.

While the time-continuous model discussed in the previous chapter is limited to

linear cost functions, a time-indexed model offers greater flexibility with regard

to the objective function. From a technical viewpoint, a time-discrete model is

favorable since time-indexed model formulations often provide relatively strong

bounds compared to big-M formulations.

Section 5.1 introduces a time-discrete BP for the WRSP considering multiple

heterogeneous runways, multiple snow removal groups, and sequence-dependent

separation requirements for all pairs of aircraft as well as sequence-dependent

transit times for snow removal groups. Mandatory precedence relations between

aircraft and snow removal activities lead to additional constraints for the BP.

Section 5.2 presents an equivalent CP model formulation including additional

precedence constraints for the CP model. In Section 5.3, a method to discre-

tize the planning horizon is proposed. This enables improved solutions closer to

optimal time-continuous solutions and allows a good balance between solution

quality and model size. Finally, Section 5.4 presents the exact solution methodo-

logy for time-discrete WRSP. During preprocessing, problem-specific dominance

rules reduce variable domains. The CP model is used to further reduce variable

domains through constraint propagation. It is also the basis for a CP start heu-

ristic. Afterwards, the proposed BP solves the WRSP to optimality. To keep
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5 Time-Discrete Approach

the size, i.e., the number of variables and constraints, of the time-discrete binary

model formulation manageable, a column generation scheme is proposed, which

generates all variables required to optimally solve the BP.

5.1 Binary Program Based on Clique Inequalities

This section introduces a time-discrete mathematical problem formulation for the

WRSP. The model considers the finite planning horizon [1, Tmax] and a set T of

time points t ∈ T : 1 ≤ t ≤ Tmax within that planning horizon. If an aircraft

or snow removal is scheduled at time t, the take-off, landing or snow removal

operation starts at t. If a runway becomes unsafe at time t, it must be closed

directly after t and t is the latest time at which an aircraft can still safely take-off

or land.

If aircraft a ∈ A is scheduled on runway r ∈ R at time t ∈ T , binary variable

xart equals one and associated cost Cart occur. Respectively, if snow removal

group g ∈ G is scheduled on runway r at time t, binary variable ygrt equals one.

If runway r is not cleared during the planning horizon, binary variable zr equals

one.

The time-discrete model in this chapter considers runway-specific aircraft time

windows Tar = {Ear, . . . , Lar} ⊆ T where Ear denotes the earliest possible take-

off or landing time of aircraft a on runway r and Lar denotes the latest possible

take-off or landing time respectively. If Tar = ∅, aircraft a cannot be assigned

to runway r. Similarly, the model considers snow removal time windows Trg =

{Erg, . . . , Lrg} ⊆ T for combinations of runways r and snow removal groups g. If

snow removal on runway r is conducted by group g, snow removal cannot start

before Erg or after Lrg. If Trg = ∅, snow removal group g cannot be used to clear

runway r.

The operation class of aircraft a is denoted by c(a). The model enforces

sequence-dependent separation requirements Sc(a)c(b) between pairs of aircraft a

and b on the same runway, safety buffers Oc(a) between aircraft and following

snow removals on the same runway, and runway-specific snow removal durations

Pr. Additionally, it considers that each runway r can become unsafe due to snow,

ice, or slush at time Ur if it has not been cleared before within the planning

horizon. If Ur ≥ Tmax, runway r does not become unsafe during the planning
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5 Time-Discrete Approach

horizon. Once a runway has become unsafe, it must be cleared before it can be

reopened and used again. Due to the operational planning horizon of up to two

hours, at most one snow removal activity must be scheduled for each runway.

For snow removal groups, the model considers sequence-dependent setup times

Qrs between runways r and s, which include the time required to clear runway r

and the driving time from runway r to runway s. The model minimizes the total

delay cost of the schedule. Table 5.1 summarizes the sets and parameters used

for the BP and Table 5.2 defines the decision variables of the model.

The BP for the WRSP is based on a family of clique inequalities which have

been introduced and referred to as (S,t)-clique inequalities by Avella et al. (2017).

The model considers subsets (cliques) of aircraft and snow removal groups V ⊆
(A ∪ G) with |V| ≥ 2. Here, for all aircraft a ∈ (V ∩ A), va(V) denotes a clique-

specific minimum separation time after scheduling aircraft a and is defined as

va(V) =

minb∈V\{a}{Sc(a)c(b)} if V ⊆ A

minb∈(V∩A)\{a}{Oc(a), Sc(a)c(b)} else

The set of all cliques required for a specific combination of runway r and time t

is denoted as Vrt.

Similarly, the model considers subsets (cliques) of runwaysW ⊆ R with |W| ≥
2. Here, for all runways r ∈ W , wr(W) denotes a clique-specific minimum setup

time after clearing runway r and is defined as

wr(W) = min
s∈W\{r}

{Qrs}

The set of all cliques required for a specific combination of snow removal group

g and time t is denoted as Wgt.
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5 Time-Discrete Approach

Table 5.1: Sets and parameters of the time-discrete model

Notation Definition

t ∈ T Set of considered time points within the planning horizon

r ∈ R Set of runways

Ur Time at which flight operations on runway r become unsafe

Pr Required time to clear runway r

Qrs Sequence-dependent setup time between starts of snow

removals on runways r and s conducted by the same snow

removal group (including snow removal time Pr and required

transit time from runway r to runway s)

a ∈ A Set of aircraft

C ∈ C Set of operation classes

c(a) Operation class of aircraft a

Ear Earliest possible take-off or landing time of aircraft a on

runway r

Tar Target take-off or landing time of aircraft a on runway r

Lar Latest possible take-off or landing time of aircraft a on

runway r

Tar = {Ear, . . . , Lar} ⊆ T Time window of aircraft a on runway r

SCC′ Sequence-dependent separation time between a leading

aircraft of operation class C and a trailing aircraft of operation

class C ′ if both aircraft are scheduled on the same runway

OC Required separation time between an aircraft of operation

class C and a subsequent snow removal on the same runway

g ∈ G Set of snow removal groups

Erg Earliest possible time for snow removal on runway r

conducted by snow removal group g

Lrg Latest possible time for snow removal on runway r conducted

by snow removal group g

Trg = {Erg, . . . , Lrg} ⊆ T Time window for snow removal on runway r conducted by

snow removal group g

Cart Cost coefficient for scheduling aircraft a on runway r at time t
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Table 5.2: Decision variables of the time-discrete model

Notation Definition

xart =

1 if aircraft a is scheduled on runway r at time t

0 otherwise

ygrt =

1 if snow removal group g clears runway r at time t

0 otherwise

zr =

1 if runway r is not cleared during the planning horizon

0 otherwise

With this, the BP formulation is as follows:

minimize
∑
a∈A

∑
r∈R

∑
t∈Tar

Cartxart (5.1)

subject to∑
r∈R

∑
t∈Tar

xart = 1 ∀ a ∈ A (5.2)∑
g∈G

∑
t∈Trg

ygrt + zr = 1 ∀ r ∈ R (5.3)

∑
a∈V∩A

∑
l∈[t−va(V)+1,t]∩Tar

xarl +
∑

g∈V∩G

∑
m∈[t−Pr+1,t]∩Trg

ygrm ≤ 1

∀ r ∈ R; t ∈ T : t ≤ Ur;V ∈ Vrt (5.4)∑
a∈V∩A

∑
l∈[t−va(V)+1,t]∩Tar

xarl +
∑

g∈V∩G

∑
m∈[t−Pr+1,Tmax]∩Trg

ygrm + zr ≤ 1

∀ r ∈ R; t ∈ T : t > Ur;V ∈ Vrt (5.5)∑
r∈W

∑
l∈[t−wr(W)+1,t]∩Trg

ygrl ≤ 1 ∀ g ∈ G; t ∈ T ;W ∈Wgt (5.6)

xart, ygrt, zr ∈ {0, 1} ∀ a ∈ A; r ∈ R; t ∈ T ; g ∈ G
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The objective function (5.1) minimizes the overall delay cost of the schedule.

Constraints (5.2) assign exactly one runway and one take-off or landing time to

each aircraft. Constraints (5.3) assign a snow removal group and a clearing time

to a runway r if this runway is cleared during the planning horizon. Constraints

(5.4) and (5.5) make sure that, at any point in time, each runway is occupied by

at most one activity (aircraft or snow removal) respecting all separation require-

ments. Constraints (5.5) also consider the possibility that a runway is unsafe and

ensure that runways which do not allow safe operations are not used for aircraft

operations. Constraints (5.6) secure that, at any point in time, each snow remo-

val group is busy with at most one snow removal activity respecting setup times

between runways.

The number of constraints (5.4)–(5.6) mainly depends on the cardinalities of

sets Vrt, Wgt and T since the cardinalities of sets A, R and G are comparatively

small.

Constraints (5.4)–(5.6) yield a sufficient and exhaustive set of clique inequalities

if they constitute a complete cover of the problem’s underlying incompatibility

structure, i.e., if all incompatibilities between aircraft operations, snow removal

operations and unsafe runways are reflected in at least one constraint. Formally,

this is the case if

∀ a, b ∈ A : a 6= b; r ∈ R; t ∈ {Ear, . . . , Lar + Sc(a)c(b) − 1} ∩ Tbr
∃ V ∈ Vrt : a, b ∈ V ∧ Sc(a)c(b) = va(V) (5.7)

∀ a ∈ A; g ∈ G; r ∈ R; t ∈ {Ear, . . . , Lar +Oc(a) − 1} ∩ Trg
∃ V ∈ Vrt : a, g ∈ V ∧Oc(a) = va(V) (5.8)

∀ a ∈ A; g ∈ G; r ∈ R; t ∈ {Erg, . . . , Lrg + Pr − 1} ∩ Tar
∃ V ∈ Vrt : a, g ∈ V (5.9)

∀ r, s ∈ R : r 6= s; g ∈ G; t ∈ {Erg, . . . , Lrg +Qrs − 1} ∩ Tsg
∃W ∈Wgt : r, s ∈ W ∧Qrs = wr(W) (5.10)

∀ a ∈ A; r ∈ R; t ∈ Tar : t > Ur

∃ V ∈ Vrt : a ∈ V (5.11)

(5.7) covers incompatibilities between two aircraft on the same runway due to

separation requirements. (5.8) covers incompatibilities between aircraft and fol-
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lowing snow removals, while (5.9) covers incompatibilities between snow removals

and aircraft ensuring that no aircraft is scheduled during a snow removal. (5.10)

covers incompatibilities between two snow removals conducted by the same snow

removal group ensuring sufficient setup time between snow removals. (5.11) co-

vers incompatibilities between aircraft and unsafe runways making sure that no

aircraft is scheduled on a runway which is unsafe.

5.1.1 Construction Algorithms to Create Sets of Required

Cliques

Two construction algorithms are used to create sets Vrt and Wgt satisfying con-

ditions (5.7)–(5.11). They generate sufficient sets of cliques while keeping the

cardinalities of sets Vrt and Wgt small. Algorithm 5.1 Construct-Vrt is based

on the matrix of sequence-dependent separation times SCC′ between aircraft ope-

ration classes (as in Table 2.1) and on required separation times OC between

aircraft and following snow removals. Algorithm 5.2 Construct-Wgt is based on

the matrix of sequence-dependent setup times Qrs between runways. The com-

mon underlying idea for both algorithms is to add subsets (cliques) of aircraft

and snow removal groups to Vrt and subsets (cliques) of runways to Wgt in a

systematic and structured way until all separation requirements between aircraft

and snow removals (c.f. Construct-Vrt) and all setup times between pairs of snow

removals (c.f. Construct-Wgt) are reflected and, therefore, conditions (5.7)–(5.11)

are fulfilled. Algorithms Construct-Vrt and Construct-Wgt can generate domina-

ted cliques, which can lead to redundant or non-binding constraints in the BP.

Hence, in the last steps of both algorithms, dominated cliques are identified and

removed from sets Vrt and Wgt. Here, clique V dominates clique V ′ if V ⊇ V ′ and

va(V) ≥ va(V ′)∀ a ∈ V ′ ∩A. Similarly, clique W dominates clique W ′ if W ⊇W ′

and wr(W) ≥ wr(W ′) ∀ r ∈ W ′ (cf. Proposition 5 in Avella et al., 2017).

5.1.2 Extensions Compared to the Time-Continuous Model

While the time-continuous model only considers aircraft-specific time windows,

the time-discrete model allows aircraft time windows also to be runway-specific.

For arriving and departing aircraft, different time windows can be specified for
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Algorithm 5.1 Construct-Vrt

1: initialize set of cliques Vrt = ∅
2: for all leading operation classes L ∈ C do

3: create set of separation times S = {SLF : F ∈ C, OL}
4: for all separation times s ∈ S do

5: if s ≤ SLL then

6: create new clique V of leading aircraft a, trailing aircraft b and

snow removal groups g

with V =
{
a : a ∈ L ∧ t ∈ {Ear, . . . , Lar + s− 1},
b : SLc(b) ≥ s ∧ t ∈ Tbr,
g : g ∈ G ∧OL ≥ s ∧ t ∈ Trg

}
7: add V to Vrt

8: if s > SLL then

9: for all leading aircraft a ∈ L : t ∈ {Ear, . . . , Lar + s− 1} do

10: create new clique V of leading aircraft a, trailing aircraft b and

snow removal groups g

with V =
{
a,

b : SLc(b) ≥ s ∧ t ∈ Tbr,
g : g ∈ G ∧OL ≥ s ∧ t ∈ Trg

}
11: add V to Vrt

12: remove dominated cliques from Vrt

Algorithm 5.2 Construct-Wgt

1: initialize set of cliques Wgt = ∅
2: for all preceding runways r ∈ R do

3: create set of setup times Q = {Qrs : s ∈ R}
4: for all setup times q ∈ Q do

5: create new clique W of preceding runway r, succeeding runways s

with W =
{
r : t ∈ {Erg, . . . , Lrg + q − 1},
s : s ∈ R ∧Qrs ≥ q ∧ t ∈ Trg

}
6: add W to Wgt

7: remove dominated cliques from Wgt
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different runways. This allows for modeling situations in which aircraft have

different distances and flight paths to different runways and, thus, can reach the

runways at different times. Similar to runway-specific aircraft time windows,

the time-discrete model also supports runway-specific time windows for snow

removal groups. Adjusting earliest possible snow removal times Erg allows to

reflect current locations of snow removal groups g and their respective distances

to runways r. Additionally, the time-discrete model allows earliness, i.e., aircraft

can be accelerated and scheduled before their target time Tar and Ear ≤ Tar ≤ Lar

holds. In the time-discrete model formulation, for every combination of aircraft a

and runway r, each possible take-off or landing time t is associated with a specific

cost factor Cart. Hence, cost functions for earliness and tardiness are not restricted

to linear functions as in the time-continuous model formulation, but can assume

any arbitrary shape including non-linear, non-convex, or discontinuous functions.

5.1.3 Additional Constraints for the Time-Discrete Binary

Program

Similar to pruning rules for the time-continuous model, additional constraints

which decrease the solution space can be derived from compulsory precedence

relations. Such compulsory precedence relations can exist between aircraft of the

same class and between snow removal activities (cf. Section 4.2). This section

presents aggregated-time and disaggregated-time versions for both types of pre-

cedence constraints for the time-discrete BP.

Precedence Constraints for Aircraft of the Same Operation Class

For aircraft of the same operation class, it is often possible to determine an

optimal order during preprocessing and, hence, to derive precedence constraints

between all pairs of aircraft within the respective operation class. For the time-

continuous WRSP with aircraft-specific cost coefficients and without earliness

(Ear = Tar ≤ Lar), Section 4.2 showed that it is always optimal to schedule

aircraft of the same operation class in their corresponding time window order if

they are cost compliant. A similar observation can be made for the time-discrete

WRSP if aircraft acceleration is permitted (Ear ≤ Tar ≤ Lar).
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Theorem 4. For two aircraft a and b of the same operation class, it is always

optimal to schedule a not after b if Ear ≤ Ebr ∧ Lar ≤ Lbr ∀ r ∈ R (time window

order) and Cart+Cbr′t′ ≤ Car′t′+Cbrt∀r, r′ ∈ R; t ∈ Tar∩Tbr; t′ ∈ Tar′∩Tbr′ : t ≤ t′

(cost compliance).

To prove Theorem 4, a swap argument can be applied analogously to the proof

of Theorem 2. Either, it is not possible to swap aircraft a and b due to a violation

of respective time windows or, if a swap is possible, the objective function value

cannot be improved.

For pairs of aircraft a and b, for which it is known that a must not be scheduled

after b, the compulsory precedence relation is denoted as a � b.

Inequalities (5.12) express the corresponding precedence constraints between

aircraft for the BP in an aggregated-time version.∑
r∈R

∑
t∈Tbr

(t · xbrt)−
∑
r∈R

∑
t∈Tar

(t · xart) ≥ 0 ∀ a, b ∈ A : a � b (5.12)

Disaggregated-time versions of the same aircraft precedence constraints can be

formulated as Inequalities (5.13).

∑
r∈R

∑
l∈[0,t]∩Tar

xarl −
∑
r∈R

∑
m∈[0,t]∩Tbr

xbrm ≥ 0

∀ a, b ∈ A : a � b; t ∈
⋃
r∈R

Tbr (5.13)

By adjusting the setR in (5.12) and (5.13), both versions of aircraft precedence

constraints can be adapted to situations where precedence constraints only hold

for a certain runway or for a subset of runways.

Computational experiments showed that precedence constraints between snow

removals improve computational times by a larger degree than precedence con-

straints between aircraft. The experiments also showed that the aggregated-time

versions are more beneficial since disaggregated-time versions regularly yield too

many constraints.
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Precedence Constraints for Snow Removals Based on Dominant Snow

Removal Patterns

Section 4.2 showed that, for a set of homogeneous runways, i.e., runways of

the same length allowing for the same flight operations, it is often possible to

precompute a dominant snow removal pattern P∗ =
(
(r∗1, g

∗
1, e
∗
1), (r

∗
2, g
∗
2, e
∗
2), . . . ,

(r∗|R|, g
∗
|R|, e

∗
|R|)
)

and, thereby, an optimal sequence of snow removals. If a domi-

nant, i.e., optimal, snow removal pattern is known, Inequalities (5.14) express all

corresponding precedence constraints between snow removals for the time-discrete

BP in an aggregated-time version.

∑
t∈Trjgj

(t · ygjrjt) + max
t∈Trigi

(t) · zrj −
∑

t∈Trigi

(t · ygirit) ≥ 0

∀ (ri, gi, ei), (rj, gj, ej) ∈ P∗ : i < j (5.14)

Disaggregated-time versions of the same precedence constraints between snow

removals can be formulated as Inequalities (5.15).

∑
l∈[0,t]∩Trigi

ygiril −
∑

m∈[0,t]∩Trjgj

ygjrjm ≥ 0

∀ (ri, gi, ei), (rj, gj, ej) ∈ P∗ : i < j; t ∈ Trjgj (5.15)

5.2 Constraint Programming Model

This section presents a CP model formulation for the WRSP. The first part of

this section introduces the used CP constructs. Specifically, used variable types,

expressions, and cumulative functions are defined. Then, the CP model formu-

lation is presented and additional constraints based on compulsory precedence

relations are developed.

5.2.1 Variable Types, Expressions, and Cumulative Functions

The notation of the CP model presented in this section is based on common sched-

uling concepts from CP and a terminology which is similar to the one used in IBM
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ILOG CPLEX CP Optimizer and in Goel et al. (2015) and Novara et al. (2016).

This section briefly defines and describes the used concepts and constructs.

Interval variables represent aircraft and snow removals. In a solution of a

constraint program, an interval variable x̃ can be present with a discrete start

time s and end time e or can be absent (denoted as x̃ =⊥). Hence, an interval

variable x̃ is formally defined as x̃ ∈ {[s, e[: s, e ∈ Z, s ≤ e} ∪ {⊥}. The set of

possible values for an interval variable is called its domain. The model uses the

following expressions and constraints for interval variables x̃ and ỹ and sets Ã of

interval variables.

presenceOf(x̃) returns TRUE if interval x̃ is present and FALSE if interval x̃ is

absent.

startOf(x̃) returns the start time s of a present interval x̃ = [s, e[.

lengthOf(x̃) returns the size e− s of a present interval x̃ = [s, e[.

startBeforeStart(x̃, ỹ) enforces interval x̃ to start not after interval ỹ if both

intervals are present.

alternative(x̃, Ã) defines an exclusive alternative between intervals in set Ã. If

interval x̃ is present, then exactly one interval of set Ã is present and this

specific interval starts and ends together with interval x̃. If interval x̃ is

absent, all intervals in set Ã are absent.

Sequence variables represent sequences for specific runways and snow removal

groups. A sequence variable ξ̂ is defined over a set Ã of intervals and represents

an order of all present intervals in set Ã. Each interval ã in set Ã is also associated

with a type θã ∈ Θ through a mapping function Ω : Ã → Θ. A transition matrix

can be specified as a function M : Θ × Θ′ → Z to express the minimal distance

between the end of an interval of type Θ and the start of an interval of type

Θ′. In combination with a noOverlap-constraint, this allows to model sequence-

dependent transition (setup) times. The model uses the following expressions

and constraints for sequence variables ξ̂, sets Ã of interval variables, mappings Ω

to associated interval types Θ and transition matrices M .

sequenceVar(Ã, Ω) defines a sequence variable ξ̂ over interval set Ã and type

mapping Ω.
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noOverlap(ξ̂, M) enforces sequence-dependent transition times for all intervals

in ξ̂ according to transition matrix M .

Cumulative functions represent runways and snow removal groups as constrained

resources. Hereby, a cumulative function’s value over time models a resource

availability over time. Intervals contribute individually to a cumulative function

by changing the function’s value through elementary step functions and, thus, re-

present the use and release of a resource. The model uses the following elementary

step functions.

pulse(x̃, k) changes the value of a cumulative function by k during the interval

x̃ = [s, e[. It increases the function’s value by k at time s and decreases the

value by k at time e.

stepAtEnd(x̃, k) increases the value of a cumulative function by k at the end e

of interval x̃ = [s, e[.

step(t, k) increases the value of a cumulative function by k at time t.

5.2.2 Model Formulation

For scheduling aircraft, mandatory interval variables x̃a are defined for all aircraft

a ∈ A. To represent the specific scheduling of an aircraft a on runway r, optional

interval variables x̃ar ∈ Ã are used for all aircraft a ∈ A and runways r ∈ R.

Similarly, for scheduling snow removals on runways r, optional interval variables

ỹr are defined for all runways r ∈ R. To represent the specific scheduling of a

snow removal on runway r by snow removal group g, optional interval variables

ỹgr ∈ Ỹ are used for all snow removal groups g ∈ G and runways r ∈ R.

To represent a sequence of aircraft and snow removals on a specific runway

r, the model uses sequence variables σ̂r for all runways r ∈ R. To represent

a sequence of snow removals for a specific snow removal group, the model uses

sequence variables τ̂g for all snow removal groups g ∈ G.

To facilitate constraint propagation and domain reduction in the CP model,

required separation times SCC′ between aircraft of operation class C and aircraft

of operation class C ′ are split into a constant processing time p = minC,C′∈C{SCC′}
and a setup time SCP

CC′ = SCC′ − p. Subsequently, to preserve congruency with
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time-discrete BP and to allow Ur as the last possible take-off or landing time for

aircraft on runways which become unsafe at Ur, parameter UCP
r is introduced as

UCP
r = Ur + p.

This thesis defines two mappings of interval variables to types and two tran-

sition matrices accordingly. With regard to specific runway sequences, mapping

ΩR : Ã ∪ Ỹ → C∪ {srg} associates each aircraft interval variable x̃ar with a type

corresponding to its operation class c(a) and all snow removal interval variables

ỹgr with a type srg:

ΩR(ã) =

c(a) ∀ ã ∈ {x̃ar : a ∈ A ∧ r ∈ R}

srg ∀ ã ∈ {ỹgr : g ∈ G ∧ r ∈ R}

Transition matrix MR : C ∪ {srg} × C ∪ {srg} → Z represents separation requi-

rements between aircraft and snow removals accordingly:

MR(C, C ′) =

S
CP
CC′ ∀ C, C ′ ∈ C

0 otherwise

With regard to snow removal sequences of specific snow removal groups, map-

ping ΩG : Ỹ → R associates all snow removal interval variables ỹgr with a type

corresponding to its runway r:

ΩG(ỹgr) = r

Transition matrix MG : R×R → Z represents required transfer times between

runways accordingly:

MG(r, s) = Qrs − Pr

The function Costar : T → R denotes an aircraft- and runway-specific cost

function and determines the resulting earliness or tardiness cost if aircraft a is

scheduled on runway r at time t.
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Using this notation, the CP model formulation is as follows:

minimize
∑
a∈A

∑
r∈R

Costar(startOf(x̃ar)) (5.16)

subject to

x̃ar ∈ [Ear, Lar + p) ∀ a ∈ A; r ∈ R (5.17)

lengthOf(x̃ar) = p ∀ a ∈ A; r ∈ R (5.18)

presenceOf(x̃a) = TRUE ∀ a ∈ A (5.19)

alternative(x̃a, {x̃ar : r ∈ R}) ∀ a ∈ A (5.20)

lengthOf(ỹgr) = Pr ∀ g ∈ G; r ∈ R (5.21)

alternative(ỹr, {ỹgr : g ∈ G}) ∀ r ∈ R (5.22)

σ̂r = sequenceVar({x̃ar : a ∈ A, ỹgr : g ∈ G}, ΩR) ∀ r ∈ R (5.23)

noOverlap(σ̂r, M
R) ∀ r ∈ R (5.24)

τ̂g = sequenceVar({ỹgr : r ∈ R}, ΩG) ∀ g ∈ G (5.25)

noOverlap(τ̂g, M
G) ∀ g ∈ G (5.26)∑

a∈A

pulse(x̃ar, 1) + step(UCP
r , 1)

+
∑
g∈G

stepAtEnd(ỹgr, −1) ≤ 1 ∀ r ∈ R (5.27)

Objective function (5.16) minimizes the overall cost of the schedule depending

on the take-off and landing times of aircraft. Constraints (5.17) and (5.18) de-

fine the time windows and processing times for all aircraft. Constraints (5.19)

and (5.20) ensure that each aircraft is scheduled on exactly one runway. Con-

straints (5.21) define the duration of snow removals on runways and Constraints

(5.22) assign exactly one snow removal group to each runway which is cleared.

Constraints (5.23) declare runway-specific sequences of aircraft and snow remo-

vals and Constraints (5.24) ensure that all separation times between aircraft and

snow removals on the same runway are met. Similarly, Constraints (5.25) declare

a snow removal sequence for each snow removal group and Constraints (5.26) en-

sure sufficiently large setup times between snow removals for each snow removal

group. Finally, Constraints (5.27) represent the availability of each runway and

make sure that aircraft are only scheduled on a runway if the runway is safe.
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Although time points in IBM ILOG CPLEX CP Optimizer are internally re-

presented as integers, the optimal solution of the CP model is equivalent to the

optimal solution of a time-continuous model as long as all time parameters are

integer. Since all time parameters can be converted to integers by multiplying

with a large constant factor, the CP model can be considered to solve the time-

continuous problem.

5.2.3 Additional Constraints for the Constraint Programming

Model

Similar to the additional constraints for the BP presented in Section 5.1, a set

of valid constraints can be used to decrease the solution space of the CP model.

These constraints can be derived from compulsory precedence relations between

aircraft of the same operation class and between snow removals on runways.

Precedence Constraints for Aircraft of the Same Operation Class

For pairs of aircraft a and b with a � b, Constraints (5.28) express the correspon-

ding precedence relation.

startBeforeStart(x̃a, x̃b) ∀ a, b ∈ A : a � b (5.28)

Precedence Constraints for Snow Removals Based on Dominant Snow

Removal Patterns

Given an optimal pattern of snow removals P∗ =
(
(r∗1, g

∗
1, e
∗
1), (r

∗
2, g
∗
2, e
∗
2), . . . ,

(r∗|R|, g
∗
|R|, e

∗
|R|)
)
, Constraints (5.29) assign to each runway the corresponding snow

removal group and Constraints (5.30) express all obtainable precedence con-

straints between snow removals.

presenceOf(ỹgiri) = TRUE ∀ (ri, gi, ei) ∈ P∗ (5.29)

startBeforeStart(ỹgiri , ỹgjrj) ∀ (ri, gi, ei), (rj, gj, ej) ∈ P∗ : i < j (5.30)
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5.3 Enhanced Time Discretization

To apply the time-discrete BP, the continuous planning horizon [1, Tmax] is dis-

cretized by defining a set T of considered time points t ∈ T : 1 ≤ t ≤ Tmax. From

an aircraft- and runway-specific cost function Costar : T → R which calculates

earliness and tardiness cost for aircraft a being scheduled on runway r at time t,

cost factors Cart are computed as Cart = Costar(t).

The size of the BP, the required computational effort to solve it, and the ob-

jective function value of the optimal solution significantly depend on the chosen

time discretization and the resulting cardinality of T . If the number |T | of consi-

dered time points increases, then the number of variables xart and ygrt as well as

the number of constraints (5.4)–(5.6) grows. Increasing |T |, in general, increases

the required computational effort to solve the model but can lead to better op-

timal objective function values, which are closer to an optimal time-continuous

solution. The opposite is true for decreasing the number |T | of considered time

points and, with that, the number of variables and constraints of the model. If

|T | is decreased, the model becomes easier and faster to solve, but, in general, op-

timal objective function values become worse due to a loss of time granularity. If

all time parameters of the model are integer, the time-discrete model with a step

size of one between considered time points is equivalent to the time-continuous

model.

This thesis proposes the following time discretization approach to keep |T |
small while, at the same time, enabling good optimal objective function values

close to time-continuous solutions (cf. Figure 5.1):

1. Start with a general time discretization by considering equidistant time

points t ∈ T which span the planning horizon with a constant step size.

2. For each aircraft a and runway r, add the aircraft’s target time Tar to the

set Tar of considered time points for aircraft a on runway r and to the set

T . This opens the possibility to schedule aircraft a on runway r exactly at

its target time Tar and, thus, to avoid any earliness or tardiness cost. It

eliminates the need to deviate from Tar if an optimal solution with xart = 1

exists.

3. Similarly, for each aircraft a and runway r, add the time xCP
ar = startOf(x̃ar)
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t1 t2 t3 t4 t5 t6

[

Ear

|
Tar

|
xcpar

]

Lar

Tar = {t2, t3, Tar, t4, xcpar, t5}

Time t

Figure 5.1: Enhanced time discretization with resulting time window Tar of aircraft a
on runway r

as computed by the CP start heuristic to the sets Tar and T . This adds the

solution of the CP start heuristic to the BP solution space. Notably, this

adds the optimal time-continuous solution to the BP solution space if it is

found by the CP start heuristic.

The proposed enhanced time discretization approach often enables significantly

better solutions or even the optimal time-continuous solution while adding only

marginal complexity, i.e., only a few variables and constraints, to the model.

5.4 Exact Solution Approach

This thesis proposes an exact algorithm to solve the time-discrete WRSP to

proven optimality. This section details all steps of the proposed algorithm. In a

preprocessing step, dominant snow removal patterns are computed to reduce the

number of variables and the solution space. Constraint propagation based on the

CP model reduces variable domains. The CP formulation is also used to generate

an initial (incumbent) solution heuristically using a standard CP optimization

engine. This incumbent solution from the CP start heuristic provides the basis for

the enhanced time discretization. It is also used to initialize a column generation

scheme which solves the LP relaxation of the BP optimally. The presented column

generation approach identifies all variables which are potentially required to solve

the BP to integer optimality, resulting in a column-reduced BP. In the last step

of the algorithm, a branch-and-bound procedure solves the column-reduced BP

optimally. Figure 5.2 gives an overview of the proposed approach.
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Preprocessing computes dominant snow removal patterns

BP before preprocessing

CP model

CP start heuristic generates solution for enhanced time discretization and as upper bound UBCP

Constraint propagation reduces variable domains

BP after preprocessing with set X of xart variables

Column generation solves LP relaxation of BP

xart variables in X \ X ′ with reduced cost r < UBCP − LBLP are added to master problem

Optimal solution of LP relaxation serves as lower bound LBLP

Master problem: LP relaxation of BP with Subset X ′ ⊆ X of xart variables

Pricing subproblem: Compute reduced cost for all xart variables in X \ X ′

Add xart variables with negative reduced cost

Column-reduced BP with all required variables for integer optimality

Branch-and-Bound solves column-reduced BP

Initial

solution

(columns)
Upper

bound

UBCP

�

Figure 5.2: Overview of the exact approach using constraint programming and column
generation

A key feature of the algorithm is that it decreases the model size, i.e., the num-

ber of variables and constraints, of the time-discrete BP in order to accelerate the

final branch-and-bound procedure. The proposed preprocessing, the constraint

propagation, and the column generation scheme primarily aim at reducing the

number of variables in the model. This is particularly efficient, since, in the pro-

posed model formulation, a reduction of xart and ygrt variables usually decreases

the sizes of sets Tar, Trg, Vrt, and Wgt. This, subsequently, reduces the number

of constraints (5.4)–(5.6).

5.4.1 Preprocessing

In a preprocessing step, the concept of dominant snow removal patterns is used to

reduce the number of ygrt variables in order to decrease the solution space. Given a

dominant snow removal pattern P∗ =
(
(r∗1, g

∗
1, e
∗
1), (r

∗
2, g
∗
2, e
∗
2), . . . , (r

∗
|R|, g

∗
|R|, e

∗
|R|)
)
,

48



5 Time-Discrete Approach

only corresponding precomputed combinations of runways, snow removal groups

and earliest possible snow removal times have to be considered in order to solve

the WRSP optimally. Therefore, ygrt variables can be restricted to all tuples

(g, r, t) with (r, g, e) ∈ P∗ and e ≤ t.

5.4.2 Constraint Propagation

Based on the CP model, constraint propagation computes possible assignments

of aircraft to runways and tightens time windows for aircraft and for snow remo-

vals. To achieve this, constraint propagation makes logical deductions about the

presence and possible domains of x̃ar and ỹgr interval variables. The proposed

algorithm includes only binary variables xart and ygrt in the time-discrete BP

if the corresponding interval variables in the CP model are not reduced by the

constraint propagation procedure. This significantly reduces the number of ygrt

and xart variables in the BP model. Furthermore, all time points t, which cannot

be the start time of any interval variable, are also be excluded from T . This

reduces the number of constraints (5.4)–(5.6) in the BP and, thus, its model size

and complexity.

5.4.3 Start Heuristic Based on Constraint Programming

A CP optimization engine is used to solve the CP model of the WRSP heuristically

in order to derive an initial solution and upper bound UBCP for the problem. The

CP solution procedure is terminated after a given limit of failed tries to construct a

solution or after a given time limit. To adjust for the complexity of the instances

to be solved, these limits are based on the number of considered aircraft and

runways. The resulting, best found (time-continuous) solution of the CP model

is used for the enhanced time discretization approach. It is included in the BP

solution space by adding the corresponding time points xCP
ar = startOf(x̃ar) to Tar

and T as described in Section 5.3. The solution from the CP start heuristic is

also used to construct initial columns for the column generation scheme.
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5.4.4 Column Generation Scheme

After reducing the number of variables during preprocessing, the resulting BP

still has a large number of xart variables. Most of them are non-basic in the

optimal solution. In the following, X denotes the full set of xart variables after

preprocessing. A column generation procedure identifies a subset X ′ ⊆ X which

includes all xart variables required to solve the BP to optimality.

The master problem of the column generation scheme is the LP relaxation of

the BP containing all ygrt and zr variables, but only xart variables with xart ∈ X ′.
Since the number of xart variables exceeds the number of ygrt and zr variables by

far, the column generation scheme focuses on the generation of xart variables. The

master problem is initialized with the subset X ′ of xart variables corresponding to

the solution of the CP start heuristic. In each iteration of the column generation

scheme, the pricing step computes reduced cost for all xart variables in X\X ′.
This pricing procedure can be implemented very efficiently since the number

of xart variables in X\X ′ is finite and the pricing of each variable is solely a

linear combination of respective dual variables. In each iteration of the column

generation procedure, xart variables with negative reduced cost enter the variable

set X ′ for the next iteration. The column generation terminates if no more

variables with negative reduced cost are found. The final solution of the master

problem after the last iteration of the column generation procedure is the optimal

solution for the LP relaxation of the BP and, thus, constitutes a lower bound

LBLP for the BP.

5.4.5 Deriving an Optimal Solution

After the last iteration of the column generation procedure, when no more var-

iables with negative reduced cost are found in the pricing step, all variables

required to optimally solve the master problem, i.e., the LP relaxation of the BP,

have been generated. Solving the BP to integer optimality, however, could require

additional variables from set X\X ′. For all variables xart ∈ X\X ′, their reduced

cost c̄xart describe their contribution to the objective function value of the master

problem if these variables become basic. Given the lower bound LBLP from the

LP relaxation and the upper bound UBCP from the CP start heuristic, it is obvi-

ous that variables xart ∈ X\X ′ with LBLP + c̄xart ≥ UBCP cannot be required for
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the optimal integer solution. Note that all variables which are required to con-

struct the solution from the CP start heuristic resulting in UBCP are present in

the master problem since the column generation scheme was initialized with these

variables. To secure that also all variables potentially required for integer optima-

lity of the BP are present in the master problem, all variables xart ∈ X\X ′ with

LBLP + c̄xart < UBCP are added to the master problem, resulting in the column-

reduced BP. Finally, a standard branch-and-bound procedure of a MIP solver

computes the optimal solution for the integer variant of the column-reduced BP.

The time-discrete solution approach presented in this chapter is tested and

evaluated in a computational study in the next Chapter.
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To show the applicability and efficiency of the presented approaches, both meth-

ods were tested on real-world data from Munich International Airport. Section

6.1 describes the setup and design of the computational study. In Section 6.2, a

practice-oriented benchmark heuristic is introduced which mimicks the schedu-

ling procedure applied manually by runway managers and air traffic controllers.

Section 6.3 details the computational results for the time-continuous approach

based on the MIP model. Optimal schedules are compared against benchmark

solutions of the practice-oriented heuristic with regard to objective function va-

lues and improvements. This section also evaluates the time-continuous approach

and its corresponding pruning rules, valid inequalities, and start solution heuristic

with regard to computational efficiency. Section 6.4 presents computational re-

sults for the time-discrete approach using constraint programming and a column

generation method. It shows that the enhanced time discretization approach en-

ables good solutions even for larger time steps and that it provides a good balance

between model size and solution quality. An analysis of resulting model sizes de-

monstrates that the proposed preprocessing, constraint propagation, and column

generation scheme significantly reduce the number of variables and, subsequently,

also the number of constraints in the time-indexed BP. Additionally, computatio-

nal times for the time-discrete approach are presented including detailed runtime

analyses of all components of the solution method. Section 6.5 compares the time-

continuous and the time-discrete approach with regard to optimal solutions and

computational times. Finally, this chapter concludes with a discussion regarding

the practical applicability of both proposed solution methodologies.

All instances of the computational study were computed on an Intel i7-8700K

processor with 3.7 GHz and 32 GB RAM using Python 3.6 with Gurobi 8.1 as

MIP solver and IBM ILOG CPLEX CP Optimizer for constraint propagation and

as CP optimization engine.
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6.1 Study Design

The computational study considers multiple real-world instances with various

combinations of setups and parameters. This section describes the underlying

data set. It also explains the different parameters and assumptions used in the

computational study.

Data Sets

All instances were generated from a publicly available flight database obtaining

real arrival and departure data of a winter day at Munich International Airport.

As a typical hub airport, Munich International Airport has time windows in which

mainly domestic flights arrive and depart and time windows in which additional

long-distance flights are processed. The computational study considers three

data sets with real flight operations recorded in November 2017, each with a

representative mix of arriving and departing, domestic and long-distance flights.

The data sets reflect different times of the day: 9 a.m. - 10.30 a.m. (data set

“morning”), 12 p.m. - 1.30 p.m. (data set “noon”), and 9 p.m. - 10.30 p.m.

(data set “evening”).

Aircraft Time Windows

The computational study considers two types of time windows for aircraft. Both

are used in existing literature on runway scheduling. First, it considers instances

without earliness, where an aircraft’s target time constitutes its earliest possible

take-off or landing time. Second, it considers instances allowing earliness, where

aircraft can be scheduled up to 10 minutes ahead of their target time causing

respective earliness cost. In both cases, it allows aircraft delays (tardiness) of up

to 20 minutes after the respective target time.

Cost Functions

The computational study considers two established types of cost functions for

aircraft delay (cf. Figure 6.1). The cost function type “linear” assumes that ear-

liness cost (if earliness is permitted) and tardiness cost are linearly related to the
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(a) Cost function type “linear”

Ear Tar Lar

Time

Cost

(b) Cost function type “double”

Ear Tar Lar
-120s -60s +60s +120s +180s +240s

Time

Cost

// //

Figure 6.1: Cost functions for aircraft delay

deviation from an aircraft’s target time. In practice, earliness often causes hig-

her cost than tardiness due to higher fuel consumption at higher aircraft speeds.

The cost increase rate, i.e., the slope of the cost curve, is assumed to be 50%

higher for earliness than for tardiness. To take into account that delays of larger

aircraft with a higher number of passengers are more critical, the study assumes

cost increase rates for tardiness of one, two, three, and four monetary units per

second for aircraft of the classes “Large”, “Boeing 757”, “Heavy”, and “Super”

respectively. For the cost function type “double”, the cost increase rate of the

linear cost function doubles every minute for earliness cost as well as for tardiness

cost.
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Table 6.1: Transit times between runways (in seconds)

Succeeding runway

Preceding runway Runway 1 Runway 2 Runway 3

Runway 1 - 600 1,200

Runway 2 900 - 1,200

Runway 3 1,500 1,500 -

Runways and Snow Removal Groups

The computational study considers instances with either two runways and one

snow removal group or with three runways and two snow removal groups. It con-

siders sets of homogeneous and independent runways, i.e., that runways have the

same length and allow for the same flight operations and that flight operations

on one runway do not affect flight operations on other runways. Transit times

between runways are based on the physical layout and road network of Munich

International Airport and are shown in Table 6.1. For instances with three run-

ways, this thesis considers an extension of the existing runway system as approved

and published by the Bavarian state authorities (cf. Regierung von Oberbayern,

2011).

Aircraft and Flight Density

Instances of the computational study cover 30, 45, 60, or 75 aircraft to be sched-

uled. For instances with two runways and one snow removal group, a flight

density of 45 flight operations per hour is assumed. For instances with three run-

ways and two snow removal groups, 60 flight operations per hour are assumed.

This corresponds to planning horizons between 49 minutes and 128 minutes.

Snowfall Scenarios

The computational study considers three different scenarios regarding snowfall.

In the scenario “beginning snowfall”, all runways have the same initial condi-

tions at the start of the planning horizon, and, due to beginning snowfall, opera-

tions become unsafe at the same point in time on all runways (Ur = Ur′ ∀ r, r′ ∈
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R : r 6= r′). In the computational study, runways become unsafe 25 minutes after

the start of the planning horizon.

In the scenario “continuous winter operations”, runways have previously been

cleared from snow, ice, and slush at different times. Thus, the times at which

runways become unsafe mainly depend on the times elapsed since the previous

snow removals and, consequently, runways become unsafe at different times (Ur 6=
Ur′ ∀ r, r′ ∈ R : r 6= r′). In the computational experiments, the first runway

becomes unsafe 10 minutes after the start of the planning horizon and the second

runway becomes unsafe after 25 minutes. In case of three runways, the third

runway becomes unsafe after 40 minutes.

In the scenario “ending snowfall”, runways have previously been cleared and

not all runways become unsafe during the planning horizon as snowfall is about

to end. In case of three runways, two runways become unsafe after 10 and 25

minutes respectively. In case of two runways, one runway becomes unsafe after

25 minutes. To reflect the lower demand for snow removals in this scenario, one

snow removal group is used regardless of the number of runways.

6.2 Heuristic Scheduling Approaches

To show the efficiency of the proposed optimization approaches for the WRSP,

heuristic scheduling approaches have been developed as benchmark methods. A

naive scheduling approach schedules aircraft on a FCFS basis according to tar-

get times and closes runways for snow removals as soon as they become unsafe.

This leads, in general, to high aircraft delays and is, therefore, not applicable

in practice. The practice-oriented benchmark heuristic is based on discussions

with decision makers of runway management and air traffic control at Munich

International Airport. It simulates and mimicks the actual decision making pro-

cess of human managers and serves as an approximation to decisions observed

in practice. Therefore, schedules computed by the practice-oriented heuristic are

used as benchmark solutions for the proposed optimization approaches.
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6.2.1 Naive Scheduling Approach

A simple and naive heuristic method schedules aircraft and snow removals on

runways according to a FCFS order. Aircraft are scheduled in the order of their

target time on the first runway which is available. As soon as a runway becomes

unsafe, it is closed for snow removal and the first available snow removal group

is used to clear the runway. This often leads to situations where runways have

to be closed without having a snow removal group available for clearing it. As

a consequence, runway capacity significantly deteriorates and large aircraft de-

lays occur causing high operational cost. Therefore, most airports follow more

advanced heuristic approaches yielding significantly better schedules.

6.2.2 Practice-Oriented Benchmark Heuristic

To derive meaningful insights regarding the advantages and efficiency gains of the

exact methods proposed in this thesis, optimal schedules of the time-continuous

and the time-discrete optimization approach are compared against schedules ge-

nerated by a practice-oriented heuristic. This heuristic mimicks the decisions

of human planners at airports and air traffic control resulting in runway sche-

dules which are very similar to schedules observed in practice. The following

practice-oriented benchmark heuristic is based on observations and interviews

with practitioners at airports and follows a stepwise sequential approach. First,

it schedules snow removals. Then, it schedules aircraft based on the resulting

runway availability:

Step 1 Schedule snow removals by sequentially applying the following two rules:

1. Maximize runway availability in order to increase the capacity for

scheduling aircraft. This is equivalent to minimizing the overall time

at which runways are unavailable because they are unsafe or are being

cleared.

2. Start snow removals as late as possible in order to postpone the need

for the next snow removals in the next planning period.

Step 2 Assign runways and take-off or landing times to aircraft by scheduling

them in parallel on all runways on a FCFS basis according to their target

time.
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6 Computational Results

The computational study additionally considers a variant of this heuristic in

which the optimization model of Beasley et al. (2000) is used to schedule aircraft

optimally in Step 2.

For more complex instances with at least three runways and two snow removal

groups, the solution space for scheduling snow removals rapidly grows. In these

cases, the benchmark heuristic computes snow removal schedules which are typi-

cally not found by human planners. Consequently, the heuristic often constructs

better schedules than human planners and solutions of the benchmark heuristic

constitute lower bounds for manually created solutions.

6.3 Results for the Time-Continuous Approach

Using Mixed-Integer Programming

This section presents computational results for the time-continuous WRSP pre-

sented in Chapter 4.

For the time-continuous approach, 24 instances are considered: The scenario

“beginning snowfall” is computed on the data set “morning”, scenarios “continu-

ous winter operations” and “ending snowfall” are based on data sets “noon” and

“evening” respectively. All scenarios are solved with two and three runways and

for 30, 45, 60, and 75 aircraft. All instances consider linear cost functions and no

aircraft acceleration to keep them computationally tractable. Table 6.2 provides

a complete list of configurations and parameters for all instances considered for

the time-continuous approach.

When solving the same problem instance multiple times, a high variance in

computational times became apparent. This variance resulted from the degene-

racy in the LP relaxation of the MIP. If a problem’s LP relaxation has multiple

optimal solutions, the MIP solver chooses one of these LP solutions randomly.

Resulting branching decisions change the search tree and, thus, lead to varying

computational times. In order to derive meaningful conclusions about the perfor-

mance of the proposed approach, each instance of the computational study was

solved 60 times with varying random seeds for the MIP solver. Figure 6.2 ex-

emplary shows the distribution of solver runtimes for instance T/l/begin/m/2/75

using all pruning rules and valid inequalities. In general, computational times
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Figure 6.2: Examplary distribution of runtimes for instance T/l/begin/m/2/75

between the .25-quartile and .75-quartile are closely centered around the median.

For some random seeds, considerably lower or higher computational times were

measured with upper outliers deviating considerably stronger.

Throughout the following sections, computational times are reported as the

median of runtimes over all random seeds.

Table 6.3 presents results for all computed instances. For each instance, the ta-

ble shows the objective function value znaive of the naive scheduling approach and

the objective function value zheu/FCFS of the practice-oriented heuristic as a bench-

mark solution. It also shows the objective function value zheu/opt of a variant of

the practice-oriented heuristic which uses the optimization model of Beasley et al.

(2000) to schedule aircraft optimally. ∆heu/opt = (zheu/FCFS − zheu/opt)/zheu/FCFS

measures the improvement through state-of-the-art aircraft scheduling over the

FCFS-based aircraft scheduling approach used in practice. It assumes that snow

removals are scheduled with the practice-oriented heuristic. The table also re-

ports the objective function value zMIP of the integrated time-continuous MIP and

the improvement ∆MIP = (zheu/FCFS − zMIP)/zheu/FCFS over the practice-oriented

60



T
ab

le
6.

3:
C

o
m

p
u

ta
ti

on
al

re
su

lt
s

fo
r

th
e

ti
m

e-
co

n
ti

n
u

ou
s

ap
p

ro
ac

h

C
om

p
u
ta

ti
on

al
ti

m
es

of
d
iff

er
en

t
co

n
fi
gu

ra
ti

on
s

(i
n

se
co

n
d
s)

In
st

an
ce

zn
a
iv
e

zh
eu

/
F
C
F
S

zh
eu

/
o
p
t

/

∆
h
eu

/
o
p
t

zM
IP

/

∆
M
IP

C
1

(M
IP

)

C
2

(M
IP

+
P

R
I

an
d

II
)

C
3

(M
IP

+
P

R
I–

II
I)

C
4

(M
IP

+
P

R
I–

II
I

+
V

I
I

an
d

II
)

S
ol

u
ti

on
w

it
h

le
ss

th
an

1%

d
ev

ia
ti

on
fr

om

op
ti

m
al

va
lu

e

T
/l

/b
eg

in
/m

/2
/3

0
15

,7
57

2,
41

5
1,

72
6

/
29

%
1,

71
0

/
29

%
41

1
0

0
0

(+
0)

*

T
/l

/b
eg

in
/m

/2
/4

5
31

,4
66

3,
59

2
2,

93
3

/
18

%
2,

93
3

/
18

%
>

3,
60

0
29

6
6

1
(+

0)

T
/l

/b
eg

in
/m

/2
/6

0
49

,7
61

3,
73

2
3,

07
0

/
18

%
3,

07
0

/
18

%
>

3,
60

0
11

2
21

20
1

(+
0)

T
/l

/b
eg

in
/m

/2
/7

5
62

,0
83

3,
80

4
3,

14
2

/
17

%
3,

14
2

/
17

%
>

3,
60

0
20

6
44

40
2

(+
1)

T
/l

/b
eg

in
/m

/3
/3

0
11

,0
57

1,
02

7
1,

00
6

/
2%

1,
00

6
/

2%
>

3,
60

0
48

4
3

1
(+

1)
*

T
/l

/b
eg

in
/m

/3
/4

5
25

,4
92

3,
65

5
2,

82
5

/
23

%
1,

68
3

/
54

%
>

3,
60

0
>

3,
60

0
62

7
60

1
2

(+
4)

T
/l

/b
eg

in
/m

/3
/6

0
32

,8
37

4,
17

9
3,

18
5

/
24

%
1,

74
7

/
58

%
>

3,
60

0
>

3,
60

0
1,

30
6

1,
01

5
8

(+
7)

*

T
/l

/b
eg

in
/m

/3
/7

5
38

,4
76

4,
19

8
3,

20
1

/
24

%
1,

76
3

/
58

%
>

3,
60

0
>

3,
60

0
1,

72
8

1,
68

0
14

(+
28

)*

T
/l

/c
on

t/
n

/2
/3

0
7,

42
3

4,
03

4
3,

15
7

/
22

%
3,

15
7

/
22

%
96

1
2

4
4

2
(+

0)

T
/l

/c
on

t/
n

/2
/4

5
12

,1
92

6,
15

0
4,

35
2

/
29

%
4,

35
2

/
29

%
>

3,
60

0
19

15
14

5
(+

0)
*

T
/l

/c
on

t/
n

/2
/6

0
15

,6
90

6,
45

1
4,

52
2

/
30

%
4,

52
2

/
30

%
>

3,
60

0
42

43
45

8
(+

1)

T
/l

/c
on

t/
n

/2
/7

5
15

,7
52

6,
51

3
4,

58
4

/
30

%
4,

58
4

/
30

%
>

3,
60

0
53

47
48

9
(+

1)

T
/l

/c
on

t/
n

/3
/3

0
1,

22
5

49
9

49
9

/
-

49
9

/
-

31
2

2*
*

3*
*

1
(+

0)
**

T
/l

/c
on

t/
n

/3
/4

5
2,

65
3

1,
26

8
1,

26
6

/
-

63
4

/
50

%
17

57
29

29
**

24
**

1
(+

4)
**

T
/l

/c
on

t/
n

/3
/6

0
2,

90
1

1,
52

9
1,

49
1

/
2%

70
7

/
54

%
>

3,
60

0
95

95
**

76
**

2
(+

7)
**

T
/l

/c
on

t/
n

/3
/7

5
2,

98
2

1,
61

0
1,

54
8

/
4%

73
9

/
54

%
>

3,
60

0
21

6
21

6*
*

19
1*

*
3

(+
7)

**

T
/l

/e
n

d/
e/

2/
30

72
1

72
1

70
0

/
3%

70
0

/
3%

31
3

2
3

1
(+

0)

T
/l

/e
n

d/
e/

2/
45

1,
40

0
1,

40
0

1,
17

6
/

16
%

89
1

/
36

%
20

3
7

7
7

1
(+

1)

T
/l

/e
n

d/
e/

2/
60

1,
47

4
1,

47
4

1,
22

1
/

17
%

93
6

/
36

%
27

2
9

8
9

1
(+

1)

T
/l

/e
n

d/
e/

2/
75

1,
81

9
1,

81
9

1,
56

6
/

14
%

1,
23

9
/

32
%

>
3,

60
0

24
2

21
4

21
5

7
(+

2)

T
/l

/e
n

d/
e/

3/
30

73
5

38
7

26
1

/
33

%
26

1
/

33
%

21
2

1
2

1
(+

0)

T
/l

/e
n

d/
e/

3/
45

83
8

49
0

36
4

/
26

%
36

4
/

26
%

21
9

25
6

7
1

(+
1)

T
/l

/e
n

d/
e/

3/
60

93
1

53
1

40
5

/
24

%
40

5
/

24
%

1,
24

0
43

14
13

2
(+

2)

T
/l

/e
n

d/
e/

3/
75

96
0

56
0

41
8

/
25

%
41

8
/

25
%

1,
87

9
56

20
19

2
(+

2)

*
st

ar
t

h
eu

ri
st

ic
d
o
es

n
ot

y
ie

ld
a

fe
as

ib
le

st
ar

t
so

lu
ti

on
s

**
p
ru

n
in

g
ru

le
s

of
ty

p
e

II
I

d
o

n
ot

y
ie

ld
an

op
ti

m
al

sn
ow

re
m

ov
al

sc
h
ed

u
le

P
R

I,
II

,
II

I
=

p
ru

n
in

g
ru

le
s

of
ty

p
e

I,
II

,
II

I
V

I
I,

II
=

va
li
d

in
eq

u
al

it
ie

s
I,

II

61



6 Computational Results

heuristic. For the time-continuous MIP formulation, computational times for four

model configurations are reported:

• Configuration C1: MIP as defined by (4.1)–(4.12)

• Configuration C2: MIP and pruning rules of type I and II

• Configuration C3: MIP and pruning rules of type I–III

• Configuration C4: MIP, pruning rules of type I–III, and valid inequalities I

and II

In the computational experiments, it became evident that good solutions are

computed early during the branch-and-bound process. Therefore, the last column

of Table 6.3 shows required times to compute solutions which deviate less than

1% from the optimal objective function value zMIP using configuration C4 and the

start solution heuristic. Computational times of the start heuristic are reported

in brackets.

6.3.1 Reduction of Weighted Delay Through Integrated

Planning

An analysis of znaive shows that, for most instances, the naive scheduling approach

constructs solutions significantly worse than all other considered variants and is

not suitable for an application in practice.

The comparison of the objective function values of the practice-oriented heuris-

tic zheu/FCFS and the optimization model zMIP shows that the integrated approach

significantly reduces weighted delay. In 23 out of 24 instances, improvements

∆MIP of up to 58% are achieved. These improvements reflect the benefit of an

optimal aircraft schedule with integrated snow removal decisions. Improvements

∆heu/opt show that using an optimal aircraft schedule instead of a FCFS-based

aircraft schedule within the practice-oriented sequential heuristic reduces weigh-

ted delay only up to 33% (on avg. 18%). Comparing ∆MIP and ∆heu/opt indicates

that, for many instances, substantial reductions of delay cost originate from an

integration of the scheduling decisions for snow removals and aircraft. Since so-

lutions of the benchmark heuristic represent lower bounds for solutions created
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6 Computational Results

by human planners, actual improvements by the integrated approach are most

likely even higher.

6.3.2 Improvements of Computational Times Through

Pruning Rules, Valid Inequalities, and the Start Solution

Heuristic

Computational results show that for 13 out of 24 instances, the original MIP

formulation (C1) does not yield a proven optimal solution within a time limit of

one hour.

For all instances, significant improvements of computational times can be ob-

served if pruning rules are applied. The use of pruning rules of type I and II (C2)

allows for solving 21 of 24 instances to optimality within one hour.

Pruning rules of type III (C3), which compute optimal snow removal patterns,

allow for solving all instances to optimality. For 18 instances, runtimes are less

than one minute. Additionally, these pruning rules reduce the computational

times by up to 92% in case of beginning snowfall and by up to 76% in case of

ending snowfall. Under continuous winter operations, they yield optimal snow

removal patterns only for two runways and one snow removal group. In these

cases, they reduce computational times by up to 21%.

For six instances, valid inequalities (C4) yield a significant speed-up of at

least 10%. Especially for instances T/l/cont/n/3/45, T/l/cont/n/3/60, and

T/l/cont/n/3/75, where pruning rules III do not yield optimal snow removal

patterns, the proposed valid inequalities improve computational times by up to

20%. For all six instances which cannot be solved optimally within one minute,

schedules with less than 1% deviation from the optimal objective function value

are computed in less than one minute. With the start heuristic, initial start solu-

tions can be computed within a few seconds. These are particularly helpful to find

good solutions early in the branch-and-bound procedure. As a result, it is possi-

ble to use the presented approach heuristically by terminating the computation

before a proven optimum with an optimality gap of zero is obtained.
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6 Computational Results

6.4 Results for the Time-Discrete Approach Using

Constraint Programming and Column

Generation

This section presents computational results for the time-discrete WRSP presented

in Chapter 5.

The time-discrete approach is tested on 24 instances considering three different

setups. The first setup assumes linear cost functions and no aircraft acceleration,

which is congruent to the assumptions for the time-continuous approach in Section

6.3. The second setup also assumes linear cost functions but allows aircraft

acceleration and, thus, earliness. The third setup assumes cost functions of type

“double” and allows aircraft acceleration. Each setup is solved for two and three

runways and for 45 and 75 aircraft assuming beginning snowfall and continuous

winter operations. All instances are based on data set “morning”. Table 6.4 shows

the complete list of configurations and parameters for all instances considered for

the time-discrete approach.

For the CP start heuristic, a limit of 2000×|R|×|A| fails was set for instances

without earliness and a limit of 8000× |R| × |A| fails was set for instances with

earliness to account for their larger solution space.

6.4.1 Balancing Model Size and Solution Quality Through

Enhanced Time Discretization

Table 6.5 proves that the proposed enhanced time discretization approach en-

ables high quality solutions while keeping the model size comparatively small.

This is shown by analyzing the number of variables and constraints and the op-

timal objective function values zTD1, zTD3, zTD5, and zTD5e of four different time

discretization variants with various step sizes. Specifically, step sizes of one se-

cond (TD1), three seconds (TD3), and five seconds (TD5) using a standard time

discretization (without special consideration of target times Tar and heuristic so-

lutions xCP
ar ) are compared to the enhanced time discretization approach (TD5e)

which uses a step size of five seconds and includes target times Tar and heuristic

solutions xCP
ar in the solution space. With regard to the optimal solution, TD1 is
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6 Computational Results

equivalent to a time-continuous model formulation since all time parameters in

the computed instances are integer. All four time discretization variants were ge-

nerated for all instances to determine respective model sizes. While solving some

instances with TD1, the solver ran out of memory and the solution procedure

could not be finished (indicated by “n/a”). For optimal objective function values

zTD3, zTD5, and zTD5e, the difference to zTD1 is reported in brackets.

Regarding the model size, the number of variables as well as the number of

constraints is almost directly proportional to the chosen step size of the time

discretization. A step size of three seconds reduces the number of variables and

constraints by approximately a factor of three and, thus, the matrix size of the

BP by a factor of nine. Similarly, a step size of five seconds reduces the number of

variables and constraints by approximately a factor of five and, thus, the matrix

size of the BP by a factor of 25. This comes at the cost of loosing granularity and

solution quality compared to a time-continuous solution using a step size of one.

TD3 yields optimal objective function values which are up to 14.5% (on avg.

4.3%) higher than objective function values of a time-continuous formulation.

With TD5, respective optimal objective function values increase up to 25.0% (on

avg. 8.7%). The enhanced time discretization approach TD5 achieves optimal

solutions which are only up to 2.4% (on avg. 0.9%) higher than time-continuous

solutions while realizing almost the full model size reduction of factor 25.

6.4.2 Reducing the Number of Variables Through

Preprocessing, Constraint Propagation, and Column

Generation

Table 6.6 shows the impact of preprocessing, constraint propagation, and the

column generation approach (cf. Figure 5.2) on the size of the resulting model.

This analysis is based on time discretization variant TD5e due to its favorable

trade-off between model size and solution quality. For all considered instances,

the table reports the number of variables and constraints of the original BP be-

fore preprocessing, which corresponds to columns “TD5e” of Table 6.5. It also

shows the number of variables and constraints after preprocessing and constraint

propagation. The last three columns report the number of variables and con-

straints which remain after the column generation scheme in the column-reduced

67



T
ab

le
6.

6:
R

ed
u

ci
n

g
th

e
m

o
d

el
si

ze
th

ro
u

gh
p

re
p

ro
ce

ss
in

g,
co

n
st

ra
in

t
p

ro
p

ag
at

io
n

,
an

d
co

lu
m

n
ge

n
er

at
io

n

B
P

b
ef

or
e

p
re

p
ro

ce
ss

in
g

B
P

af
te

r
p
re

p
ro

ce
ss

in
g

an
d

co
n
st

ra
in

t
p
ro

p
ag

at
io

n

C
ol

u
m

n
-r

ed
u
ce

d
B

P
af

te
r

co
lu

m
n

ge
n
er

at
io

n

(i
n
cl

u
d
in

g
va

ri
ab

le
s
x
a
r
t

w
it

h
L
B

L
P

+
c̄ x

a
r
t
<
U
B

C
P
)

In
st

an
ce

V
ar

ia
b
le

s
C

on
st

ra
in

ts
V

ar
ia

b
le

s
C

on
st

ra
in

ts
V

ar
ia

b
le

s
C

on
st

ra
in

ts
M

at
ri

x
S

iz
e

(i
n

%
of

B
P

be
fo

re

pr
ep

ro
ce

ss
in

g)

T
/l

/b
eg

in
/m

/2
/4

5
23

,1
72

19
,4

67
16

,2
95

14
,5

79
8,

74
6

(3
7.

7%
)

7,
96

9
(3

4.
4%

)
13

.0
%

T
/l

/b
eg

in
/m

/2
/7

5
38

,3
84

33
,0

75
31

,5
07

28
,1

87
13

,5
74

(3
5.

4%
)

13
,7

15
(3

5.
7%

)
12

.6
%

T
/l

/b
eg

in
/m

/3
/4

5
35

,8
80

31
,0

86
33

,8
76

28
,8

23
20

,0
98

(5
6.

0%
)

16
,7

70
(4

6.
7%

)
26

.2
%

T
/l

/b
eg

in
/m

/3
/7

5
59

,2
74

53
,6

37
56

,4
24

49
,8

14
32

,7
67

(5
5.

3%
)

29
,3

42
(4

9.
5%

)
27

.4
%

T
/l

/c
on

t/
m

/2
/4

5
23

,1
72

19
,4

67
15

,6
59

13
,9

84
4,

51
9

(1
9.

5%
)

4,
17

1
(1

8.
0%

)
3.

5%

T
/l

/c
on

t/
m

/2
/7

5
38

,3
84

33
,0

75
30

,8
71

27
,5

92
6,

21
9

(1
6.

2%
)

6,
87

2
(1

7.
9%

)
2.

9%

T
/l

/c
on

t/
m

/3
/4

5
35

,8
62

30
,7

92
35

,0
15

30
,0

52
8,

80
2

(2
4.

5%
)

8,
56

0
(2

3.
9%

)
5.

9%

T
/l

/c
on

t/
m

/3
/7

5
59

,2
56

53
,3

43
58

,4
09

52
,6

03
13

,0
03

(2
1.

9%
)

14
,5

99
(2

4.
6%

)
5.

4%

E
+

T
/l

/b
eg

in
/m

/2
/4

5
33

,2
54

27
,0

63
23

,5
08

19
,7

99
14

,3
52

(4
3.

2%
)

12
,0

21
(3

6.
1%

)
15

.6
%

E
+

T
/l

/b
eg

in
/m

/2
/7

5
55

,6
54

45
,8

44
45

,1
92

38
,2

18
27

,4
64

(4
9.

3%
)

24
,0

76
(4

3.
3%

)
21

.3
%

E
+

T
/l

/b
eg

in
/m

/3
/4

5
50

,8
35

41
,4

26
48

,8
28

39
,0

72
20

,8
74

(4
1.

1%
)

17
,7

31
(3

4.
9%

)
14

.3
%

E
+

T
/l

/b
eg

in
/m

/3
/7

5
85

,0
31

72
,7

75
82

,1
72

68
,7

73
34

,2
21

(4
0.

2%
)

30
,5

61
(3

5.
9%

)
14

.5
%

E
+

T
/l

/c
on

t/
m

/2
/4

5
33

,2
51

26
,9

79
23

,2
21

19
,6

47
12

,1
40

(3
6.

5%
)

10
,6

02
(3

1.
9%

)
11

.6
%

E
+

T
/l

/c
on

t/
m

/2
/7

5
55

,6
60

45
,9

44
44

,9
02

38
,0

57
21

,4
11

(3
8.

5%
)

20
,0

06
(3

5.
9%

)
13

.8
%

E
+

T
/l

/c
on

t/
m

/3
/4

5
50

,8
23

41
,1

40
50

,3
75

40
,8

00
8,

24
5

(1
6.

2%
)

8,
53

8
(1

6.
8%

)
2.

7%

E
+

T
/l

/c
on

t/
m

/3
/7

5
85

,0
23

72
,5

23
84

,5
75

72
,2

42
17

,1
77

(2
0.

2%
)

19
,8

05
(2

3.
3%

)
4.

7%

E
+

T
/d

/b
eg

in
/m

/2
/4

5
33

,2
54

27
,0

24
23

,5
12

19
,8

24
6,

29
9

(1
8.

9%
)

6,
62

6
(1

9.
9%

)
3.

8%

E
+

T
/d

/b
eg

in
/m

/2
/7

5
55

,6
59

45
,9

00
45

,1
93

38
,2

45
12

,5
02

(2
2.

5%
)

13
,9

40
(2

5.
0%

)
5.

6%

E
+

T
/d

/b
eg

in
/m

/3
/4

5
50

,8
40

41
,4

10
48

,8
30

39
,0

72
12

,0
81

(2
3.

8%
)

12
,6

09
(2

4.
8%

)
5.

9%

E
+

T
/d

/b
eg

in
/m

/3
/7

5
85

,0
32

72
,7

75
82

,1
82

68
,9

34
19

,9
30

(2
3.

4%
)

21
,7

67
(2

5.
6%

)
6.

0%

E
+

T
/d

/c
on

t/
m

/2
/4

5
33

,2
59

27
,0

75
23

,2
25

19
,7

00
5,

78
4

(1
7.

4%
)

6,
24

0
(1

8.
8%

)
3.

3%

E
+

T
/d

/c
on

t/
m

/2
/7

5
55

,6
64

45
,9

57
44

,9
01

38
,0

40
12

,0
55

(2
1.

7%
)

13
,5

35
(2

4.
3%

)
5.

3%

E
+

T
/d

/c
on

t/
m

/3
/4

5
50

,8
26

41
,2

07
50

,3
78

40
,8

18
7,

47
8

(1
4.

7%
)

7,
84

9
(1

5.
4%

)
2.

3%

E
+

T
/d

/c
on

t/
m

/3
/7

5
85

,0
26

72
,6

01
84

,5
75

72
,2

43
14

,2
95

(1
6.

8%
)

17
,1

98
(2

0.
2%

)
3.

4%

68



6 Computational Results

BP and the resulting matrix size in relation to the BP before preprocessing. This

includes all variables xart with LBLP + c̄xart < UBCP and, thus, all variables

which are required to solve the BP to integer optimality. The column generation

scheme generates only 14.7–56.0% (on avg. 29.6%) of all variables of the original

BP before preprocessing. This corresponds to 15.4–49.5% (on avg. 28.5%) of

all constraints. As a result, the size of the matrix of the column-reduced BP is

considerably smaller and only 2.3–27.4% (on avg. 9.6%) of the matrix size of the

original BP.

In summary, preprocessing, constraint propagation, and column generation

reduce the model size by more than 90% on average, which not only reduces

memory demand but also computational times for solving the model.

6.4.3 Analysis of Computational Times

Table 6.7 evaluates the computational performance of the proposed time-discrete

algorithm using enhanced time discretization variant TD5e. It presents details

on the three main components of the algorithm, namely the CP start heuristic,

the column generation phase, and the final branch-and-bound procedure for the

column-reduced BP. With regard to the CP start heuristic, the table shows the

best found solution as upper bound UBCP, its optimality gap, and the compu-

tational time after the start heuristic has terminated due to reaching the given

fail limit. For the column generation phase, it reports the number of required

iterations before no more variables with negative reduced cost are found and the

corresponding final solution as LBLP. It also reports computational times for the

column generation phase, which denote the combined time over all iterations to

compute the LP solutions. For the final branch-and-bound procedure, the table

shows computational times to solve the column-reduced BP to integer optimality

and objective values zBP of the final optimal solution. The last column shows the

sum of computational times over all three components as overall time.

The proposed time-discrete approach solves all 24 considered instances to op-

timality within three minutes. In 15 out of 24 cases, it computes the optimal

solution in less than one minute. Within the chosen fail limits, the CP start

heuristics calculates good solutions in 2–49 seconds. These upper bounds deviate

at most 26.4% (on avg. 8.4%) from the optimal solution. For instances without
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6 Computational Results

Table 6.7: Computational results for the time-discrete approach per component

CP start heuristic Column generation

to solve LP relaxation

Branch-and-bound on

column-reduced BP

Instance UBCP Gap

(in %)

Time LBLP Iterations Time zBP Time Overall

Time

T/l/begin/m/2/45 2,933 87 2 2,469 9 1 2,933 4 7

T/l/begin/m/2/75 3,142 90 5 2,852 16 4 3,142 11 20

T/l/begin/m/3/45 1,683 100 2 977 9 1 1,683 45 48

T/l/begin/m/3/75 1,763 100 6 1,070 16 4 1,763 63 73

T/l/cont/m/2/45 2,933 87 2 2,857 12 1 2,933 1 4

T/l/cont/m/2/75 3,142 88 5 3,082 17 4 3142 3 12

T/l/cont/m/3/45 664 100 3 533 16 5 664 7 15

T/l/cont/m/3/75 744 100 6 604 15 7 744 23 36

E+T/l/begin/m/2/45 2,206 92 14 1,637 8 2 2,004 20 36

E+T/l/begin/m/2/75 2,492 94 40 1,919 13 6 2,170 50 96

E+T/l/begin/m/3/45 1,167 100 17 748 11 3 1,093 42 62

E+T/l/begin/m/3/75 1,238 100 48 831 16 7 1,175 101 156

E+T/l/cont/m/2/45 2,349 93 11 1,875 8 1 1,999 8 20

E+T/l/cont/m/2/75 2,530 94 33 2,078 11 4 2,171 19 56

E+T/l/cont/m/3/45 448 100 17 351 13 4 430 8 29

E+T/l/cont/m/3/75 618 100 49 481 18 15 592 45 109

E+T/d/begin/m/2/45 2,686 90 12 1,934 8 1 2,413 5 18

E+T/d/begin/m/2/75 3,050 93 34 2,206 10 4 2,585 36 74

E+T/d/begin/m/3/45 1,507 100 17 756 10 2 1,261 55 74

E+T/d/begin/m/3/75 1,544 100 49 843 14 6 1,336 104 159

E+T/d/cont/m/2/45 2,839 91 10 2,231 9 1 2,429 3 14

E+T/d/cont/m/2/75 3,288 93 28 2,461 11 4 2,602 12 44

E+T/d/cont/m/3/45 458 100 15 351 15 5 432 7 27

E+T/d/cont/m/3/75 647 100 46 484 15 12 602 55 113

UBCP, LBLP, and zBP rounded to integer Times in seconds
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6 Computational Results

earliness, the CP start heuristic finds the optimal solution but cannot prove its

optimality within the fail limit and terminates with significant optimality gaps

above 87%. For all instances, it requires less than 20 iterations to generate all

required columns and, in each iteration, the solution of the LP is computed in

less than a second on average.

6.5 Comparison of Solution Approaches

This section compares both solution approaches presented in this dissertation re-

garding solution quality and computational times. It also demonstrates that both

proposed exact methods outperform a pure CP approach. For this comparison, all

24 instances considered for the time-discrete BP approach have also been solved

with a time-continuous MIP model and a CP optimization engine. The time-

continuous MIP model is based on the mathematical model presented in Chapter

4. To incorporate earliness, i.e., to allow the acceleration of aircraft, Constraint

(4.2) was replaced by Ea ≤ xa ≤ La. Correspondingly, the Objective (4.1) was

modified to support piecewise linear cost functions. The CP optimization engine

was initialized with a time limit of five minutes.

Table 6.8 reports results for the comparative computational study. For the

time-continuous approach based on the MIP, it shows optimal objective function

values zMIP and computational times. As in Table 6.3, the comparison presents

computational times required to compute schedules which deviate less than 1%

from the optimal solution zMIP. For the time-discrete approach using column

generation for the BP, the table presents computational times and the optimal

solution zBP. The difference to the optimal solution zMIP found by the time-

continuous approach is shown brackets. The table also presents the best found

solution zCP, the remaining optimality gap and computational times of the pure

CP approach. Again, the difference of the heuristic solution zCP to the time-

continuous solution zMIP is reported in brackets.

Objective function values zMIP always reflect the best possible solution for the

WRSP in continuous time. Objective function values zBP, however, represent op-

timal solutions for the time-discrete WRSP and can deviate from zMIP since the

model inherent time discretization implies a loss of granularity and potentially

excludes optimal (time-continuous) solutions from the solution space. Although
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6 Computational Results

Table 6.8: Comparison of solution approaches

Time-continuous

approach

Time-discrete

approach

CP model

Instance zMIP Time Time

(1% dev.)

zBP Time zCP Gap

(in %)

Time

T/l/begin/m/2/45 2,933 6 1 2,933 (+0.0%) 7 2,933 (+0.0%) 87 >300

T/l/begin/m/2/75 3,142 40 3 3,142 (+0.0%) 20 3,142 (+0.0%) 90 >300

T/l/begin/m/3/45 1,683 601 6 1,683 (+0.0%) 48 1,683 (+0.0%) 100 >300

T/l/begin/m/3/75 1,763 1,680 42 1,763 (+0.0%) 73 1,763 (+0.0%) 100 >300

T/l/cont/m/2/45 2,933 5 1 2,933 (+0.0%) 4 2,933 (+0.0%) 87 >300

T/l/cont/m/2/75 3,142 26 1 3,142 (+0.0%) 12 3,142 (+0.0%) 88 >300

T/l/cont/m/3/45 664 32 7 664 (+0.0%) 15 664 (+0.0%) 100 >300

T/l/cont/m/3/75 744 90 44 744 (+0.0%) 36 744 (+0.0%) 100 >300

E+T/l/begin/m/2/45 1,966 7 4 2,004 (+1.9%) 36 2,070 (+5.3%) 92 >300

E+T/l/begin/m/2/75 2,133 46 17 2,170 (+1.7%) 96 2,508 (+17.6%) 94 >300

E+T/l/begin/m/3/45 1,086 1,454 30 1,093 (+0.6%) 62 1,125 (+3.6%) 100 >300

E+T/l/begin/m/3/75 1,166 2,486 49 1,175 (+0.8%) 156 1,916 (+64.3%) 100 >300

E+T/l/cont/m/2/45 1,966 6 3 1,999 (+1.7%) 20 2,136 (+8.6%) 92 >300

E+T/l/cont/m/2/75 2,133 40 17 2,171 (+1.8%) 56 2,511 (+17.7%) 94 >300

E+T/l/cont/m/3/45 428 123 10 430 (+0.5%) 29 435 (+1.6%) 100 >300

E+T/l/cont/m/3/75 586 1,503 42 592 (+1.0%) 109 590 (+0.7%) 100 >300

E+T/d/begin/m/2/45 2,373 3 2 2,413 (+1.7%) 18 2,917 (+22.9%) 91 >300

E+T/d/begin/m/2/75 2,540 24 11 2,585 (+1.8%) 74 3,254 (+28.1%) 93 >300

E+T/d/begin/m/3/45 1,247 2,779 32 1,261 (+1.1%) 74 1,292 (+3.6%) 100 >300

E+T/d/begin/m/3/75 1,327 >3,600 63 1,336 (+0.7%) 159 1,379 (+3.9%) 100 >300

E+T/d/cont/m/2/45 2,373 3 2 2,429 (+2.4%) 14 3,113 (+31.2%) 92 >300

E+T/d/cont/m/2/75 2,540 29 11 2,602 (+2.4%) 44 3,391 (+33.5%) 93 >300

E+T/d/cont/m/3/45 428 140 18 432 (+0.9%) 27 436 (+1.9%) 100 >300

E+T/d/cont/m/3/75 594 >3,600 564 602 (+1.3%) 113 625 (+5.2%) 100 >300

All objective values rounded to integer Times in seconds
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the proposed enhanced time discretization approach reduces these losses, a mo-

derate increase of the objective function values of less than 2.5% can be observed

for instances allowing aircraft earliness.

For instances without earliness of aircraft and with linear delay cost functi-

ons, the time-discrete approach achieves the same optimal solutions as the time-

continuous approach and, in seven out of eight instances, has significantly lower

computational times. Especially instances with three runways can be solved much

faster and runtimes can be reduced by more than 50% in these cases. For these

instances, the time-discrete approach computes optimal solutions in up to 73

seconds and outperforms the time-continuous model.

If aircraft are allowed to be scheduled early, i.e., before their target time, or if

piecewise linear cost functions are used, the time-continuous approach regularly

computes better schedules. In these cases, delay cost are up to 2.4% higher with

the time-discrete approach. For instances with three runways, the time-discrete

approach computes solutions much faster and reduces computational times by at

least 76% resulting in runtimes of at most 159 seconds. For instances with two

runways, the time-continuous solution computes not only superior schedules but

also has lower computational times of at most 46 seconds.

The CP approach relying solely on the CP optimization engine cannot solve

any of the 24 instances to proven optimality within the given time limit of five

minutes. For instances without earliness and with linear cost functions, it finds

the optimal solution but terminates with an optimality gap of at least 87%. For

all other instances, the best found solution at termination has up to 64.3% (on

avg. 15.6%) higher delay cost than the optimal time-continuous schedule.

For all instances, the time-discrete approach outperforms the pure CP approach

regarding resulting schedules and computational times.

The time-continuous approach also is superior to the CP approach. For 16

instances, the time-continuous approach computes optimal solutions within five

minutes while the CP model terminates with high optimality gaps. Neither the

time-continuous approach nor the CP model can solve eight instances to optima-

lity within the given time limit. However, for these instances, the branch-and-

bound process of the time-continuous approach can be terminated early which

results in near-optimal schedules.
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6 Computational Results

6.6 Applicability in Practice

An important aspect of optimization models is their applicability in real-world

settings. Therefore, this section analyzes the proposed solution approaches for

the WRSP with regard to a potential implementation in decision support sys-

tems for runway management and air traffic control. During winter operations,

the situation in the near-terminal area and on the airport ground often changes.

New arriving aircraft are constantly entering the near-terminal area or landing.

Departing aircraft are taking-off and leaving the airspace around the airport con-

trol tower. Snowfall and other weather influences alter the conditions on the

runways. Snow removal groups are clearing runways requiring runway closings or

enabling the reopening of runways. To reflect this changing environment, opti-

mal runway schedules must be recalculated once the situation around the airport

has significantly changed. Given the actual flight density and frequency of air-

craft movements at large international airports, a recalculation of optimal runway

schedules every minute is reasonable.

This thesis proposes to embed the presented solution algorithms in an opti-

mization framework which recomputes optimal runway schedules once per mi-

nute. After each optimization procedure, the decisions for the first minute of the

schedule are implemented and optimal schedules are recomputed with a planning

horizon shifted by one minute. This requires computational times of less than

one minute per optimization procedure.

The time-continuous solution approach for the WRSP presented in this thesis

computes optimal runway schedules in less than one minute for all instances with

up to 75 aircraft and at most two runways. Thus, airports with up to two runways

can integrate and optimize their aircraft and snow removal schedules by using the

time-continuous solution methodology.

For larger airports with at least three runways, the time-continuous approach

often cannot solve the WRSP to optimality within one minute. In these cases,

the time-discrete approach performs significantly faster at the cost of marginally

increased delay due to loss of time granularity. It computes solutions with a

moderate delay cost increase of less than 1% on average within one minute. If

the time-continuous and the time-discrete algorithm cannot compute optimal

solutions in the required short amount of time, it is possible to use the time-
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continuous approach heuristically by terminating the solution procedure early.

This regularly results in optimal or near-optimal schedules.
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7 Conclusion, Managerial Insights,

and Outlook

This dissertation presented two exact optimization approaches for the WRSP.

Both methodologies simultaneously schedule aircraft and snow removals on run-

ways during winter operations at airports. They minimize the operational cost

of the resulting schedule by minimizing cost for weighted aircraft delay.

The first approach modeled the problem as a time-continuous MIP. In order to

accelerate the branch-and-bound procedure, problem specific pruning rules based

on compulsory precedence relations as well as valid inequalities were developed.

Additionally, a method was presented to derive initial start solutions for the MIP

solver heuristically.

The second approach presented a time-discrete variant of the WRSP and an

exact solution algorithm to solve it. This thesis proposed a novel combination

of CP and column generation techniques. It proposed a start heuristic based on

a CP model and presented a time-indexed BP which was solved using a column

generation scheme and a branch-and-bound procedure. An enhanced time dis-

cretization approach was developed and applied to balance solution quality and

model size of the BP. The proposed time discretization method enables high qua-

lity runway schedules which are close to optimal time-continuous solutions while

maintaining small model sizes.

To substantiate the value of this dissertation, both presented approaches were

applied to real-world instances from a large international airport. The numeri-

cal experiments showed significant reductions of weighted delay compared to a

manual scheduling process by a human planner. The computational study also

proved the efficiency of the proposed methods and showed that optimal or near-

optimal runway schedules can be computed in a short amount of time.

The results of this work yield several key insights which are of high practi-
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cal relevance for managers and decision makers overseeing runway scheduling at

airports during winter operations.

• A naive scheduling approach is not suitable for an application in practice.

Simple scheduling rules, which start snow removals as soon as runways are

unsafe and snow removal groups are available, yield only poor schedules

with high delay. In terms of weighted delay cost, these naive solutions are

often by a factor of 10 to 20 worse than optimal schedules.

• When creating runway schedules manually, human planners should follow

guiding principles to generate good snow removal schedules. An analysis

of optimal schedules shows that it is crucial to avoid situations in which a

runway has to be closed due to snow or ice without having a snow removal

group available for clearing it. This often leads to optimal schedules where

a (preceding) snow removal on a runway already starts before operations

on that runway would become unsafe so that a succeeding snow removal on

the next runway can start on time. Furthermore, human planners can use

the concept of dominant snow removal patterns. If dominant snow removal

patterns are precalculated, planners need to consider only schedules that

use such dominant patterns.

• An integrated scheduling of snow removals and aircraft using the proposed

solution methodologies yields optimal schedules and significantly reduces

weighted delay cost. A substantial part of delay cost reduction originates

from the integration of these scheduling decisions. Potential improvements

increase with growing complexity of the underlying optimization problem.

For larger airports with at least three runways, an integrated optimization

of runway schedules can often reduce delay cost by more than 50% compared

to the practice-oriented heuristic.

This thesis also discussed the real-world applicability of the proposed algorithms.

For airports with at most two runways, the presented time-continuous approach

computes optimal runway schedules in less than one minute and is applicable

in practice. For larger airports, the time-discrete method computes very good

runway schedules in a reasonable amount of time. It offers the possibility to

concede some time granularity, and, thereby, solution quality, in exchange for
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better computational performance. In all cases where both approaches cannot

compute optimal runway schedules in the required amount of time, the time-

continuous approach can be applied heuristically. Terminating its branch-and-

bound process early regularly results in near-optimal runway schedules.

The results of this work motivate some potential future research directions.

This thesis considered the static and deterministic version of the WRSP. To better

represent real-world settings, it is reasonable to investigate the dynamic version

of the problem or to incorporate it into a sound rolling horizon approach. Since

many aspects of the problem, e.g., aircraft parameters and weather conditions,

are subject to uncertainty and change, it might be beneficial to account for the

stochasticity of the problem. Related to that, concepts of robust optimization can

help to create more stable schedules which are less likely to change with minor

modifications in the parameters. From a methodological point of view, this thesis

presented a novel combination of constraint programming and column generation

for a time-discrete BP. Such time-indexed model formulations typically have a lot

of variables and constraints. This thesis used preprocessing techniques, constraint

propagation, and column generation to reduce the size of the time-discrete model

resulting in a reduced BP whose matrix size is, on average, less than 10% of the

matrix size of the initial BP. The proposed algorithm combining CP techniques

and column generation might be transferable or adaptable also to time-discrete

optimization models with high numbers of variables and constraints in other

domains. Further research in that direction is highly encouraged.

Reinforced by future advancements, the results of this dissertation enable air-

port operators and air traffic control to integrate their planning and to achieve

better overall runway schedules for winter days with considerable snowfall.
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