
Error Correction for
Partially Stuck Memory Cells

Haider Al Kim1,2, Sven Puchinger1, Antonia Wachter-Zeh1
1Institute for Communications Engineering, Technical University of Munich (TUM), Germany

2Electrical and Communication Engineering, University of Kufa, Iraq
Email: {haider.alkim, sven.puchinger, antonia.wachter-zeh}@tum.de

Abstract—We present code constructions for masking u par-
tially stuck memory cells with q levels and correcting additional
random errors. The results are achieved by combining the
methods for masking and error correction for stuck cells in
[1] with the masking-only results for partially stuck cells in [2].
We present two constructions for masking u < q cells and error
correction: one is general and based on a generator matrix of
a specific form. The second construction uses cyclic codes and
allows to efficiently bound the error-correction capability using
the BCH bound. Furthermore, we extend the results to masking
u ≥ q cells. For u > 1 and q > 2, all new constructions require
less redundancy for masking partially stuck cells than previous
work on stuck cells, which in turn can result in higher code
rates at the same masking and error correction capability.

Index Terms—flash memories, phase change memories, (par-
tially) stuck cells, error correction, defective cells, partitioned
cyclic codes, BCH code.

I . I N T R O D U C T I O N

The dominance of non-volatile memories such as PCMs
(phase change memories) as memory solutions for a variety of
applications has become significant due to their advantages as
permanent storage devices. The advantages of these memories
are their rapid increase in capacity plus their ability as multi-
levels technologies. For these reasons, their cost has been
reduced strongly in the last years. However, reliability issues
make it necessary to suggest new sophisticated coding and
signal processing solutions. PCM cells can hold two states: an
amorphous state and several crystalline states. Non-defective
memory cells can switch between their main states (amorphous
and crystalline). However, due to the cooling and heating
processes of the cells, PCMs may face failures in changing
their states, and therefore the cells can hold only one phase
and they become stuck [3]–[6].

This means that the cell’s charge is trapped in the cell, and it
cannot change its status to be re-written. To deal with the stuck
positions, a mechanism called masking is used. Masking finds
a codeword that holds the same levels as in the stuck positions,
and can therefore be placed properly on the memory. For multi-
level PCMs, since the crystalline state can be programmed into
partial states, the cell may be stuck in this level or in one of its
sub-levels (level higher than 0). If the cell can only represent
levels greater or equal to a reference level s > 0, it is called a
partially stuck cell [2]. For multi-level PCMs, the case s = 1
is particularly important since this means that a cell cannot
reach the amorphous state anymore, but all partially crystalline
ones, cf. [2]. Similarly, (partially) stuck cells can occur in flash

This work has received funding from the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG) under Grant No. WA3907/1-1 and
from the German Israeli Project Cooperation (DIP) grant no. KR3517/9-1.
Al Kim has received funding from the German Academic Exchange Service
(Deutscher Akademischer Austauschdienst, DAAD) under the support program
ID 57381412.

memories. Flash memory stores information by charging it
electronically. If charge is trapped inside one cell at a certain
level (one of the main levels or any intermediate levels), the
ways to rewrite on again are by increasing the trapped level
or by erasing one whole block. However, erasing whole block
reduces the lifetime of these memory devices. Figure 1 shows
the general idea of the (partially) stuck memory cells. On the
other hand, it happens that due to manufacturing defects, cells
can only hold lower levels causing the reverse problem as
partially stuck cells.

No value can be stored

The value that cell can store
/Normal cell stores any value
0(Partially) Stuck at - 0
1(Partially) Stuck at - 1
2(Partially) Stuck at - 2

2
1
0

/ / / / / 0 1 / 2 1 0 1 / 2 1

(A) Normal Cells (B) Stuck (C) Partially Stuck

Figure 1. General idea of (partially) stuck memory cells. In this figure, there
are n = 5 cells with q = 3 possible levels. The stuck levels are (0, 1 or
2). In case (A), normal cells can store any of the three values. In the stuck
scenario as shown in case (B), the stuck cell can store only the exact stuck
level s. It is more flexible in case (C) (partially stuck scenario). A cell that is
partially stuck at 0 can store any value as a non-defective cell. Partially stuck
cells at level s ≥ 1 can store one level or more. This paper only deals with
partially stuck at 1 cells.

A. Related Work

In [1], code constructions for masking stuck memory cells
were proposed. In addition to masking the defect cells, it is
possible to correct errors that occur during the storing and
reading processes. A generator matrix of a specific form was
constructed for this purpose. Moreover, in [1], a partitioned
cyclic code and partitioned BCH were proposed to mask stuck
cells and correct errors. However, the required redundancy
for masking more than one cell is greater than one symbol.
Later, an asymptotic optimal analysis for n → ∞ was
proposed to mask defects of (fixed1 [7], linearly increasing2

[8]) multiplicity that need a redundancy of at least the number
of defects. Besides masking the defects, the construction in
[8, Section 5] can correct errors with overall redundancy
r(n, ρ, τ) = ρ+ o(n), where ρ denotes the number of defects
and τ denotes the number of errors. o(n) is the required
redundancy to correct errors.

In [2], improvements on the redundancy necessary for
masking partially stuck memory cells are achieved, and lower
and upper bounds are derived by the constructions. However,
the paper does not consider error correction in addition to
masking.

1An asymptotically optimal class of codes was proposed to correct ρ defects
(ρ = const value) regardless of n→∞, where n is the code length.

2Asymptotically optimal linear codes were proposed to correct ρ defects
(ρ = αn), where α = constant value and ρ = number of defects that is
linearly increasing while n→∞, i.e. if n is doubled then ρ is doubled.

ar
X

iv
:1

91
1.

02
90

4v
1

 [
cs

.I
T

]
 7

 N
ov

 2
01

9

B. Our Contribution

In this paper, we combine the methods of [1] and [2]. We
obtain code constructions for combined error correction and
masking partially stuck cells. Compared to the stuck-cell case
in [1], we reduce the redundancy necessary for masking, similar
to the results in [2].
In contrast to [2], however, we are able to correct additional
random errors. Similar to the main part of [2], this paper deals
with partially-stuck-at-1 cells, i.e., s = 1 (recall that this is
the typical for PCMs, cf. [2]), but the results are extendable
to arbitrary s similar to [2, Section VII].
On the other hand, compared to the stuck cell model in [8,
Section 5], it is not clear if r(n, ρ, τ) = ρ+ o(n) is higher or
lower than our overall redundancy shown in Theorem 4. This
is because we do not consider an asymptotic analysis in this
paper for the partially stuck cells with errors correction model.
However, under the assumption that both of them require o(n)
redundancy to correct errors, our overall redundancy shown in
Theorem 4 is lower. The reason is that [8, Section 5] uses ρ
check symbols to mask the stuck cells while our construction
uses less than ρ as a redundancy necessary to mask partially
stuck cells. Moreover, our constructions can correct a certain
number of errors and mask a certain number of partially stuck
cells, while [8, Section 5] proposed o(n) redundancy for error
correction that is negligible, i.e o(n)→ 0 ⇐⇒ n→∞.

I I . P R E L I M I N A R I E S

A. Notations

For a prime power q, let Fq denote the finite field of order
q and Fq[x] be the set of all univariate polynomial with
coefficients in Fq . Write [f] = {0, 1, . . . , f−1}. Let k1 be the
number of information symbols, l be the required symbol(s)
for masking, r be the required redundancy for error correction,
t be the number of errors, u be the number of (partially) stuck
cells. Let sφi

denote the (partially) stuck level at any position,
where i ∈ [u]. Let n be the code length and also the memory
size.

B. Definitions

1) Stuck and Partially Stuck Cells: A cell is called stuck at
level s, where s ∈ [q], if it cannot change its value and always
stores the value s. A cell is called partially stuck at level s,
where s ∈ [q], if it can only store values which are at least s.
If a cell is partially stuck at 0, it is a non-defect cell which
can store any of the q levels [2].

2) (u, t)-PSMC: An (n,M)q (u, t)-partially-stuck-at-
masking code C is a coding scheme consisting of an encoder
E and decoder D. The input of the encoder E is
• the set of locations of u partially stuck cells φ =
{φ0, φ1, φ2, · · · , φu−1} ⊆ [n],

• the partially stuck levels sφ0 , sφ2 , · · · , sφu−1 ∈ [q], and
• a message m ∈ M, where M is a message space of

cardinality |M| =M

It outputs a vector c ∈ Fnq which fulfills cφi
≥ sφi

for all
i = 1, . . . , u. The decoder is a mapping that takes c+e ∈ [q]n

as input and returns the correct message m for all error vectors
e of Hamming weight at most t.

3) Q-ary Cyclic Code: a q-ary cyclic code of length n,
dimension k, and minimum distance d is denoted as an
[n, k, d]q code C. It has a generator polynomial g(x) of degree
n− k with roots in Fqm , where n divides qm − 1.

A cyclotomic coset Ma is given by:

Ma :=
{
a · qj mod n, ∀j = 0, 1, · · · , na − 1

}
, (1)

where na is the smallest integer such that a · qna ≡ a mod n.
Let α ∈ Fqm be a primitive nth root of unity in Fqm . The
minimal polynomial of an element αa is given by:

M (a)(x) :=
∏
b∈Ma

(x− αb) (2)

Although the factors (x−αb) are in Fqm [x], minimal polynomi-
als have coefficients in the small field Fq , i.e.,M (a)(x) ∈ Fq[x].
The defining set Dc of a q-ary cyclic code C with parameters
[n, k, d1]q is the set containing the indices b of the zeros αb

of the generator polynomial g(x). If a ∈ Dc, then we have
Ms ⊆ Dc, and hence, Dc is a union of cyclotomic cosets
Ma1 , . . . ,Maw for some w, i.e.

Dc := {b : g(αb) = 0} =Ma1 ∪Ma2 ∪Ma3 · · · ∪Maw . (3)

The generator polynomial g(x) ∈ Fq[x] of the code [n, k, d1]
of degree r = n− k is thus given by

g(x) =
∏
a∈Dc

(x− αa) =
w∏
b=1

M (ab)(x). (4)

For any cyclic code, there is a parity-check polynomial:

h(x) =
(xn − 1)

g(x)
=

∏
a∈[n]\Dc

(x− αa). (5)

The minimum distance of a cyclic code is at least its BCH
bound, which is the number of consecutive elements in Dc

plus one.

I I I . C O D E S F O R (PA R T I A L LY) S T U C K C E L L S

A. Masking Partially Stuck and Correcting Additional Random
Errors using a Generator Matrix Construction

The goal of this paper is to find a code construction that can
store information in a memory with some partially stuck cells
and additionally can correct errors. For the masking process
and according to [2], we need only a single redundancy symbol
if u < q and (sφi = 1). However, the work in [2] does not
consider correcting additional random errors. The following
theorem introduces a code construction using a generator
matrix with a specific form that masks partially stuck cells
and corrects errors.

Theorem 1. Let u ≤ min{n, q − 1}. Assume there is an
[n, k, d ≥ 2t+ 1]q code C with a k × n generator matrix of
the following form:

G =

[
G1

G0

]
=

[
0k1×1 Ik1 P k1×r
1 11×k1 11×r

]
,

where:

• G1 is a k1 × n generator matrix of an [n, k1]q code C1.
• k1 = n− 1− r.
• k = k1 + 1.
• P ∈ Fk1×rq .
By using Algorithm 1 and 2, this code is a (u,t)-PSMC

which can mask u partially stuck memory cells, and can correct
t additional random errors while storing k1 = n − r − 1
information symbols.

Algorithm 1: Encoding
Input:
• Message: m = (m0,m1, . . . ,mk1−1) ∈ Fk1q
• Positions of partially stuck cells: φ

1 Compute the message vector w =m ·G1

2 Find v ∈ Fq such that wφi
6= v

3 z0 ← q − v ≡ −v mod q
4 Compute the masking vector d = z0 ·G0

5 Compute c = (w + d) mod q
Output: Codeword c ∈ Fnq

Algorithm 2: Decoding
Input:
• Retrieve y = c+ e , y ∈ Fnq

1 ĉ← decode y in C
2 ẑ0 ← first entry of c
3 ŵ = (ŵ0, ŵ1, · · · , ŵn−1)← (ĉ− ẑ0 ·G0) mod q
4 m̂← (ŵ1, . . . , ŵk1)

Output: Message vector m̂ ∈ Fk1q

Proof. Since in partially stuck cells the stuck level sφi
≥ 1 has

to be masked, the output codeword c must match the partially
stuck positions:

cφ0
, cφ1

, . . . , cφu−1
≥ 1. (6)

Since u < q, there is at least one value v ∈ Fq such that
wφ0, wφ1, . . . , wφu−1 6= v. Thus, we choose z0 = q−v ≡ −v
mod q. Therefore cφi

= wφi
+ z0 ≡ (wφi − v) mod q 6= 0

and (6) is satisfied.
The decoder (Algorithm 2) gets y, which is c corrupted by

at most t errors. Since C has minimum distance d ≥ 2t+ 1,
we can correct these errors and obtain c. Due to the structure
of the matrix G, the first position of c equals the masking
value z0. Hence, we can compute ŵ = w (cf. Algorithm 2)
and the message vector m̂ = m.

Theorem 1 gives an extension of [1, Theorem 1] and
[2, Theorem 4]. It combines [1] and [2] to provide a code
construction that can mask partially stuck cells and correct
errors. The required redundancy is a single symbol for masking
plus the redundancy for the code C1. In comparison, [1,
Theorem 1] requires at least

min{n− k : ∃ [n, k, d]q code with d > u} ≥ u.

redundancy symbols to mask u cells, where the inequality
follows directly from the Singleton bound.

The code construction of Theorem 1 is based on the matrix
P , which is hard to find in general. One way to construct
such a matrix is to start with a generator matrix of a well-
known code that contains the all-one vector (e.g. certain cyclic
codes, see the next sections) and has a large enough minimum
distance. It is easy to see that the generator matrix can be
transformed into the form of Theorem 1 by elementary row
operations and column permutations.

B. Masking Partially Stuck and Correcting Additional Random
Errors using a Partitioned Cyclic Code Construction

This section generalizes the construction of [1, Theorem 2].
Our construction uses a so-called partitioned cyclic code as
in [1], but requires only a single redundancy symbol l = 1 for

the masking operation similar to Theorem 4 and Algorithm 3
in [2]. Additionally, it corrects errors by selecting a generator
polynomial g1(x) of degree r, where 0 ≤ r < n − 1. As
the construction in the previous section, this new construction
results in a reduced redundancy l compared to masking stuck
cells in [1, Theorem 2]. Compared to Theorem 1 in the previous
section, the cyclic construction directly implies a constructive
strategy how to choose a code of a certain minimum distance.

Construction 1. Let u ≤ min{n, q−1}. Let C0 be an [n, n−
1, δ0]q code with parity-check polynomial g0(x) = 1 + x +
x2 + · · ·+ xn−1. Let:

c0(x) = z0 · g0(x).

Let C1 be an [n, n − r, δ1]q code where g1(x) is its monic
generator polynomial of degree r that divides g0(x), and h1(x)
is its parity-check polynomial. Then let C be an [n, n− r −
1, δ1, δ0]q partitioned cyclic code built from C1 and C0 with
the following encoding rule:

c(x) = m(x) · g1(x) + z0 · g0(x),

where m(x) ∈ Fq[x] is the message polynomial of degree
< n− r − 1 and z0 is a scalar.

Theorem 2. If u ≤ min{n, q − 1}, Construction 1 provides
an (n,M = qn−r−1)q (u,t)-PSMC with redundancy of 1 + r
symbols by using Algorithms 3 and 4.

Algorithm 3: Encoding
Input:
• Message: m(x) ∈ Fq[x] of degree < n− r − 1
• Positions of partially stuck cells: φ

1 n = qm − 1 , m is an integer
2 Let g0(x) = 1 + x+ x2 + · · ·+ xn−1 and h0(x) = x− 1
3 Select g1(x) | g0(x) of degree r, where 0 ≤ r < n− 1
4 c1(x) = c10 + · · ·+ c1n−2 · xn−2 ← m(x) · g1(x)
5 Assign v ∈ Fq such that c1φ0

, c1φ1
, . . . , c1φu−1

6= v
6 Find z0 = −v mod q
7 c0(x) = z0 · g0(x)
8 c(x) = c1(x) + c0(x) mod (xn − 1)

Output: Codeword c(x) ∈ Fq[x] of degree ≤ n− 1

Algorithm 4: Decoding
Input: Retrieve y(x) = c(x) + e(x)

1 ĉ(x)← Decode y(x) in the code generated by g1(x).
2 m̂(x)← ĉ(x) mod g0(x)

Output: Message m̂(x) ∈ Fq[x] of degree < n− r − 1

Proof. Algorithm 3 shows the encoding process for the
partitioning cyclic code construction. Let m(x) = m0 +m1 ·
x+m2 ·x2 + · · ·+mn−r−2 ·xn−r−2. Algorithm 3 calculates
c1(x) in Step 4 of degree < n − 1. Since u < q, there is at
least a single value v ∈ Fq such that the coefficients of c1(x)
in the partially stuck positions c1φ0

, c1φ1
, . . . , c1φu−1

6= v. So
we choose z0 = −v mod q as shown in Step 5. Note that the
value of z0 always appears in c(x). That is, the last memory
location stores z0. Since in partially stuck cells the stuck level
sφi
≥ 1, the coefficients of c(x) must match the partially

stuck positions as in (6). Equation (6) is also satisfied because
cφi = c1φi

+ z0 ≡ (c1φi
− v) mod q 6= 0.

Algorithm 4 decodes the retrieved polynomial y(x). First,
decode y(x) with the code generated by g1(x). We can correct

a random error e(x) (if any) by taking the module operation
mod g1(x). We must choose ê(x) ∈ Fnq which minimizes e(x)
and satisfies ê(x) mod g1(x) = e(x) mod g1(x).

Then, the algorithm performs the unmasking process to find
m̂(x). If m̂(x) = m(x) of degree < n−r−1, the decoding is
successful. Taking mod g0(x) for ĉ(x) gives m̂(x) = m(x):

ĉ(x) = m̂(x) · g1(x) + z0 · g0(x)→

m̂(x) =
ĉ1(x) mod g0(x)

g1(x)
→ m̂(x) = m(x)

Remark 1. We briefly comment on how to choose r in
Theorem 2. To store n− 1 information symbols, choose r = 0
and g1(x) = x0 = 1 so that C becomes C0. For combined
masking and error correction, choose r between 1 ≤ r < n−1.
However, the chosen value of r should be the smallest value
such that an [n, n− r, δ1]q code exists.

C. Further Decreasing the Redundancy in Construction 1

According to [2, Construction 3], it is possible to further
decrease the required redundancy necessary for masking to be
< 1 in Construction 1 if the v value is chosen from a small
subset of [q] such that v ∈ [u+1] and v 6∈ wφi

mod (u+1).
Since the set {wφ0 mod (u + 1), wφ1 mod (u + 1), wφ2
mod (u+1), . . . , wφu−1 mod (u+1)} mod (u+1)} has the
cardinality u and there are u+1 possible values to chose from,
we can always find v ∈ [u+ 1]. Thus, the stored information
k1 increases by logqb

q
u+1c which is the amount that the

required redundancy for masking decreases 1 − logqb
q

u+1c.
Construction 1 will be modified such that v and the coefficients
of g0(x), h0(x), and g1(x) ∈ [u+ 1] (from a small subset of
q), while z0 ∈ [q] and m ∈ Fk1q . We show the improvement in
Construction 1 for k1 and l by k∗1 and l∗ columns in Table I.
We choose q = 6 and u+1 = 3 to show the improvement for
the same n length.

D. Bounds for Partitioned Cyclic Code

As aforementioned, we use a partitioned cyclic C (involves
C1 and C0) code to mask partially stuck memory cells and
correct additional random errors. However, to derive bounds
for the minimum distance for the error correction part of the

code C1, we apply the BCH bound. In the partitioned cyclic
code, there is a pair of designed distances as (δ1, δ0), where δ1
is the designed distance of C1 with parameters [n, k1 +1, δ1]q
and δ0 is the designed distance for the masking part of the
code C0 with parameters [n, k1 + r, δ0]q .

The lower bounds are the pair of designed distances (δ1,
δ0) and they are computed as shown in the following:
• δ0 = 2, use a [n, n− 1, 2]2 Single Parity Check Code.
• δ1 follows always the chosen degree r of g1(x) based on

the given lower bound in [1, Appendix]:

r ≤ m
⌈
δ1 − 1

2

⌉
. (7)

In the following section, we present Table I of length n = 8
to compare ternary code for partially stuck memory cells to
stuck cells with error correction as in [1].

E. Table of Ternary Code with Code Length (n = 8)

Table I presents the maximum amount of information to
be stored and the maximum errors that can be corrected.
Comparing Table I to Table II from [1], an improvement is
shown in Table I since only one parity symbol for masking is
used. For a ternary code n = qm−1 = 8, form = 2 and q = 3,
(x8 − 1) factors are:
(x + 1) · (x2 + 2x + 2) · (x2 + 1) · (x + 2) · (x2 + x + 2) ≡
M (0)(x) ·M (1)(x) ·M (2)(x) ·M (4)(x) ·M (5)(x) respectively.

Although the overall redundancy r + l = 6 used as shown
in item 6 in Table I and item 5 in Table II, longer r in
Table I increases the probability to correct more errors. This
is an improvement from [1]. Furthermore, Table I shows
more flexibility in storing k1 symbols as shown in item 2
where k1 = 5. For longer code length n, our construction is
more likely to have longer consecutive cyclotomic cosets and
accordingly higher minimum distance, thus, can correct more
errors than [1].

I V. N E W C O D E S F O R PA R T I A L LY S T U C K - AT
C E L L S sφi

= 1, q ≤ u < n

The masking technique in the previous section only guar-
antees successful masking up to a number of u < q partially
stuck-at-1 cells. In the following, we study the problem of
masking at least q cells. First, we determine the probability
that masking is still possible with Construction 1 for random

Table I
T E R N A RY C O D E S F O R PA R T I A L LY S T U C K - AT- 1 M E M O RY C E L L

k1 k∗1 l l∗ r δ0 δ1 t h0(x) g1(x) Comment
1 6 6.387 1 0.613 1 2 2 0 M(4)(x) M(0)(x) This is masking only with one redundancy symbol.
2 5 5.387 1 0.613 2 2 2 0 M(4)(x) M(5)(x) Flexibility in storing a desired k information symbols.
3 4 4.387 1 0.613 3 2 3 1 M(4)(x) M(0)(x) ·M(1)(x) Same as Table II in assigning factors → same parameters.
4 3 3.387 1 0.613 4 2 3 1 M(4)(x) M(1)(x) ·M(2)(x) Same as Table II in assigning factors → same parameters.
5 2 2.387 1 0.613 5 2 5 2 M(4)(x) M(0)(x) ·M(1)(x) ·M(2)(x) Same as Table II in assigning factors → same parameters.
6 2 2.387 1 0.613 5 2 3 1 M(4)(x) M(0)(x) ·M(1)(x) ·M(5)(x) No change in δ1, however it is more likely to be increased.
7 1 1.387 1 0.613 6 2 4 1 M(4)(x) M(1)(x) ·M(2)(x) ·M(5)(x) Same as Table II, but it tends to be able to correct more errors.

Table II
T E R N A RY C O D E S F O R S T U C K - AT M E M O RY [1]

k1 l r δ0 δ1 t h0(x) g1(x) Comment
1 6 1 1 2 2 0 M(4)(x) M(0)(x) Masking only.
2 4 1 3 2 3 1 M(4)(x) M(0)(x) ·M(1)(x) Same as Table I in assigning factors → same parameters.
3 3 1 4 2 4 1 M(4)(x) M(1)(x) ·M(2)(x) Same as Table I in assigning factors → same parameters.
4 2 1 5 2 5 2 M(4)(x) M(0)(x) ·M(1)(x) ·M(2)(x) Same as Table I in assigning factors → same parameters.
5 2 3 3 3 3 1 M(4)(x) ·M(5)(x) M(0)(x) ·M(1)(x) l = 3 less flexibility in chosen r.
6 1 3 4 3 4 1 M(4)(x) ·M(5)(x) M(1)(x) ·M(2)(x) Same as Table I. However, less likely to correct more errors.

partially stuck positions. Based on [2, Construction 4], we
propose a method to further increase the guaranteed number
of masked cells at the cost of a masking redundancy of more
than one symbol.

A. Probabilistic Masking
We determine the probability that for a random message,

masking is possible for a number of stuck positions u ≥ q if
the code constructions in Theorem 1 and Theorem 2 are used.
This probabilistic masking approach enables us to use a row
of memory with a certain probability even if more than q − 1
partially stuck cells are present.

Theorem 3. Let G be as in Theorem 1, q ≤ u ≤ k1, sφi
= 1,

and φ1, . . . , φu such that the columns of G indexed by the
φi are linearly independent. For a message m ∈ Fk1q that is
drawn uniformly at random, the probability that we can mask
the word is

P(q, u) =

∑q
i=1(−1)i+1

(
q
i

)
· (q − i)u

qu

Proof. The code discussed in Theorem 1 guarantees to mask
u < q partially stuck cells since u values at the stuck positions
of the intermediate codeword w (after encoding only the
message) do not cover the entire alphabet {0, . . . , q − 1}.
Hence, we can add a constant to all of them in order to prevent
the codeword values to be 0 in the stuck positions. For the
probabilistic case, we can apply the same arguments, but we
need to derive a probability that the intermediate codeword
values at the partially stuck positions do not constitute the
entire alphabet.

Due to the assumption on the linear independence of G’s
columns, the vector (wφ1

, . . . , wφu
) is uniformly distributed

on Fuq . The formula for P(q, u) uses the inclusion-exclusion
principle [9] to count the relative number of vectors in Fuq that
exclude at least one field element.

The following example illustrates that the probability that
masking is successful can be quite large.

Example. Let q = 3, n = 8, r = 0 and v ∈ [q], the
probability in which we can mask u = n− 1 partially stuck-
at-1 memory cells because the values at the partially stuck
positions are from a set of size at most q − 1 is:

3 · (3− 1)7 −
(
3
2

)
· (3− 2)7 +

(
3
3

)
· (3− 3)7

37
= 0.17.

This ratio will be 0.77 if u = q and clearly it is 1 if u < q.
Let m = (2002220) ∈ F7

3 so the augmented message vector
w = (02002220) ∈ F8

3. Let the partially stuck positions be
wφ0, wφ1, wφ2, . . . , wφi for all i ∈ [u] and u = n− 1. Thus,
v = 1 and z0 = 2. The output from Algorithm 1 in Theorem 1
is:

c = (02002220) + (22222222) = (21221112).

As it is shown from the output vector, the partially stuck-at-1
positions for all u are masked because they fulfill the following
condition:

wφi + z0 mod q ≥ 1, where q ≤ u < n.

Remark 2. The assumption in Theorem 3 that the columns
of G indexed by the partially stuck positions are linearly
independent is fulfilled for most known codes with high
probability if u ≤ k1, especially if u � k1. For dependent
columns, it becomes harder to count the number of vectors
that cover not the entire alphabet since (wφ1

, . . . , wφu
) is

uniformly distributed on a subspace of Fk1q .

B. Masking Up to u ≤ q + d0 − 3 Partially Stuck-At Cells

Construction 4 in [2] masks q ≤ u ≤ n partially stuck-at-
1 cells. It is a generalization of the all-one vector as stated
[2, Theorem 4] because if d0 = 2, u ≤ q − 1. Theorem 1
in this paper provides a construction to mask and correct
errors using a matrix with specific form that has (G1 and G0).
Extending Theorem 1 by using the parity-check matrix in [2,
Construction 4] instead of G0 given in Theorem 1 will provide
a solution to mask u ≤ q + d0 − 3 and correct t errors. The
result is formulated in Theorem 4.

Theorem 4. Let u ≤ q + d0 − 3 and sφi
= 1. Assume there

is an [n, k, d0 ≥ u− q+3, d1 ≥ 2t+1]q code C with a k×n
generator matrix of the following form:

G =

[
G1

H0

]
=

[
0k1×l Ik1 P k1×r

H0

]
where:
• G1 is a k1 × n generator matrix of an [n, k1]q code C1.
• For simplicityH0 is a systematic l×n parity-check matrix

of an [n, k1 + r, d0]q code C0.
• k1 = n− l − r.
• k = k1 + l.
• P ∈ Fk1×rq .
By using Algorithm 5 and 6, this code is a (u,t)-PSMC which

can mask any u ≤ n partially stuck memory cells, and can
correct t additional random errors while storing k1 = n−r−l
information symbols.

Algorithm 5: Encoding
Input:
• Message: m = (m0,m1, . . . ,mk−1) ∈ Fk1q
• Positions of partially stuck cells: φ

1 Compute the final message vector w =m ·G1

2 Find z = (z0, z1, · · · zl−1) ∈ Fq as explained in the proof
of [2, Theorem 7]

3 Compute the masking vector d = z ·H0

4 Compute c = (w + d) mod q
Output: Codeword c ∈ Fnq

Algorithm 6: Decoding
Input: y = c+ e ∈ Fnq

1 ĉ← decode y in the code C
2 Unmasking Process:

• ẑ ← (ĉ0, ĉ1, · · · ĉl−1)
• ŵ = (ŵ0, ŵ1, · · · , ŵn−1)← (ĉ− ẑ ·H0) mod q
• m̂← (ŵl, ŵl+1 . . . , ŵn−r−1)

Output: Message vector m̂ ∈ Fk1q

Proof. Algorithm 5 finds z similar to [2, Algorithm 7] instead
of only finding v value as shown in Algorithm 1. The proof
follows a detailed proof in [2, Theorem 8] for the masking
part which replaces the all-ones vector with an (n− k)× n
parity-check matrix. However, Theorem 4 uses H0 which is
(n− k1 − r)× n.
Since the error correction is related to [n, k1]q code C1 and
matrix G1, the proof follows Theorem 1 for how to choose r
and accordingly correct t errors.

Theorem 4 provides an extended construction of Construc-
tion 1 to mask any u ≤ n partially stuck-at-1 cells and correct t
errors. This gain in the number of partially stuck cells that can

Table III
C O M PA R I S O N B E T W E E N [1] , [2] , A N D T H I S W O R K . N O TAT I O N : S E E S E C T I O N I I - A .

[1] (Stuck cells) [2] (Partially stuck cells) This Work (Partially stuck cells)

error correction yes no yes

k1 If l = 1, then k1 = n− r − 1 If l = 1, then k1 ≤ n− 1 k1 ≤ n− 1− r. If r = 0, it is similar to [2]

l l = n− k1 − r l = n− k1 = 1 l = n− k1 − r = 1

r r = n− k1 − l None r = n− k1 − 1

δ0 and δ1 δ0 for masking and δ1 for error correction δ0 = 2 δ0 = 2 , δ1 follows the chosen r → r ≤ md δ1−1
2
e

t ≤ b δ1−1
2
c 0 ≤ b δ1−1

2
c

u u < δ0 and 2t < δ1, Or u ≥ δ0 and 2(u+
t+ 1− δ0) < δ1

u ≤ n and u < q u ≤ min{n, q − 1} (Theorem 1 and 2), or u ≤ n
(Theorem 3 and 4)

sφi
All levels (0, . . . , q − 1) Partial levels (1, . . . , q−1) 1 but expendable to arbitrary sφi

Name u-SMC u-PSMC (u, t)-PSMC

be masked comes at the cost of larger redundancy. However, the
redundancy is still smaller than the construction for masking
and error correction in [1] for the same number of (in this
case stuck) cells.

V. C O N C L U S I O N

We have proposed several constructions for combined
masking of partially stuck-at-1 cells and error correction, by
combining the methods proposed in [1] for error correction and
masking stuck cells, with the masking-only codes for partially
stuck cells in [2]. Compared to [2], the new code constructions
can correct errors in addition to masking. Furthermore, less
redundancy is required for masking compared to the code
constructions for stuck cells in [1].

The results can be extended to partially stuck-at-s cells for
s > 1 using similar methods as [2, Section VII]. It is also
possible to extend the cyclic construction in [1, Theorem 2]
using the approach in Theorem 4, as well as the construction
based on binary codes in [2, Construction 5]. Furthermore,
future work should derive bounds on the required redundancy
for a given number of partially stuck cells to mask and number
of errors to correct.

R E F E R E N C E S

[1] C. Heegard, “Partitioned Linear Block Codes for Computer Memory
with’Stuck-at’Defects,” IEEE Transactions on Information Theory, vol. 29,
no. 6, pp. 831–842, 1983.

[2] A. Wachter-Zeh and E. Yaakobi, “Codes for Partially Stuck-at Memory
Cells,” IEEE Transactions on Information Theory, vol. 62, no. 2, pp.
639–654, 2016.

[3] B. Gleixner, F. Pellizzer, and R. Bez, “Reliability characterization of phase
change memory,” in 2009 10th Annual Non-Volatile Memory Technology
Symposium (NVMTS). IEEE, 2009, pp. 7–11.

[4] K. Kim and S. J. Ahn, “Reliability investigations for manufacturable high
density pram,” in 2005 IEEE International Reliability Physics Symposium,
2005. Proceedings. 43rd Annual. IEEE, 2005, pp. 157–162.

[5] S. Lee, J.-h. Jeong, T. S. Lee, W. M. Kim, and B.-k. Cheong, “A study on
the failure mechanism of a phase-change memory in write/erase cycling,”
IEEE Electron Device Letters, vol. 30, no. 5, pp. 448–450, 2009.

[6] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini,
A. L. Lacaita, and R. Bez, “Reliability study of phase-change nonvolatile
memories,” IEEE Transactions on Device and Materials Reliability, vol. 4,
no. 3, pp. 422–427, 2004.

[7] I. I. Dumer, “Asymptotically optimal codes correcting memory defects
of fixed multiplicity,” Problemy Peredachi Informatsii, vol. 25, no. 4, pp.
3–10, 1989.

[8] ——, “Asymptotically optimal linear codes correcting defects of linearly
increasing multiplicity,” Problemy Peredachi Informatsii, vol. 26, no. 2,
pp. 3–17, 1990.

[9] A. Kharazishvili and T. Tetunashvili, “Combinatorial properties of families
of sets and euler-venn diagrams,” Proc. A. Razmadze Mathematical
Institute, vol. 146, pp. 117–122, 2008.

V I . A P P E N D I X

Example. Masking and Correcting Partially Stuck Memory
Cells - Matrix Form Let q = 3 and n = 14 and we want to
store the message vector m1 = (0210210210210) ∈ Fn−1q or
m2 = (0210210210) ∈ Fn−1−rq and correct one error t = 1
in the tenth position. We use a ternary Hamming code with
redundancy r = 3. The partially stuck positions named φi are
φ1 = 4 and φ2 = 6, ∀i ∈ u and u < q and u is the number
of partially stuck cells. According to Algorithm 1, we need to
find the following:

G =

[
G1

G0

]
=

[
013×1 I13
1 11×13

]
, and P (10×3) =

1 2 0
0 1 2
1 0 2
1 1 1
1 1 2
2 0 2
1 2 1
2 1 1
2 2 0
0 1 1

1) Error free where r = 0, find w1 =m1 ·G1.
2) With error t = 1, find w2 ,

G =

[
G1

G0

]
=

[
010×1 I10 P 10×3
1 11×10 110×3

]
,

then w2 = m2 ·G1.
3) Find d. Since the partially stuck positions are wφ1

= 0
and wφ2

= 1, v 6= wφ1
and 6= wφ2

, then v = 2. Thus,
z0 = 1.

d = z0 ·G0 → d = 1 · 11×14

4) The codeword vector that can mask only is:
c = w1 + d

→ c = 11021021021021.
5) The codeword vector that can mask and correct is:

c = w2 + d → c = 11021021021000
6) Compute s = y · HT where H is the parity check

matrix of G. If s = 0, the retrieved vector y is error free,
z0 ← c0: ŵ1 = c− 1 · 11×14 = 00210210210210.
Then, m̂← (ŵ1, . . . , ŵ13) and we get m̂ =m.

7) To decode the retrieved vector y with single error t = 1
at the tenth position, y = c + e = 11021021001000.
Compute s = y ·HT = 110. It is ternary hamming code.
Comparing sT to the tenth column of H is to correct
the error. For unmasking, same as before (repeat Step 6).

