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FAKULTÄT FÜR MATHEMATIK
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Abstract

Especially since the global financial crisis of 2007–2008, stabilizing and securing our
financial system has gained high relevance. To truly identify potential sources of risk
and to study the unfolding contagious dynamics, realistic and flexible network models
are required. This thesis contributes to these questions by studying two of the most
sophisticated network reconstruction techniques, namely ERGMs and fitness models.
A reoccurring problem is the generation of graphs, typically represented by matrices,
that satisfy given row and column sums. We derive necessary and sufficient conditions
under which the methodology of ERGMs offers a solution to this problem. In addition,
the proof to this statement reveals a new and efficient algorithm for parameter calibra-
tion. Furthermore, the class of fitness models is usefully extended to cover more flexible
degree distributions, thus enabling a more precise reconstruction. Building on these re-
sults, a block structured model for the reconstruction of directed and weighted financial
networks, spanning multiple countries, is developed. In a first step, the topology of the
network is reconstructed via an extended fitness model, allowing a calibration to desired
block specific densities and reciprocities. In a second step, weights are allocated via an
ERGM, such that desired row and column sums as well as block weights are satisfied.
Furthermore, calibrating our model to the EU interbank market, we are able to analyze
systemic risk within the EU in detail by applying various prominent contagion models.
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Zusammenfassung

Insbesondere seit der globalen Finanzkrise von 2007–2008 hat die Stabilisierung und
Sicherung unseres Finanzsystems stark an Relevanz gewonnen. Um mögliche Risiko-
quellen zu identifizieren und die folgenden kontagiösen Dynamiken zu studieren, wer-
den realistische und flexible Netzwerkmodelle benötigt. Diese Arbeit trägt zur Lösung
dieser Probleme bei, indem zwei der fortschrittlichsten Netzwerkrekonstruktionsmetho-
den, ERGMs und Fitness Modelle, studiert werden.
Ein wiederkehrendes Problem ist die Generierung von Graphen, üblicherweise in Form
von Matrizen dargestellt, die gegebene Zeilen- und Spaltensummen erfüllen. Wir leiten
notwendige und hinreichende Bedingungen her, unter denen die Methodik der ERGMs
eine Lösung für dieses Problem bietet. Zudem zeigt der Beweis dieser Aussage einen
neuen und effizienten Algorithmus für die Parameterkalibrierung auf. Des Weiteren wird
die Klasse der Fitness Modelle nützlich erweitert, um flexiblere Degree Verteilungen zu
erfassen und somit eine akkuratere Rekonstruktion zu ermöglichen. Basierend auf diesen
Ergebnissen wird ein blockstrukturiertes Modell für die Rekonstruktion von gerichteten
und gewichteten Finanznetzwerken, die mehrere Länder umfassen, entwickelt. In einem
ersten Schritt wird die Netzwerktopologie durch ein erweitertes Fitness Modell rekon-
struiert, das eine Kalibrierung auf gewünschte blockspezifische Dichten und Reciprocities
erlaubt. In einem zweiten Schritt werden Gewichte so allokiert, dass gewünschte Zeilen-
und Spaltensummen, sowie Blockgewichte erfüllt werden. Darüber hinaus können wir
durch eine Kalibrierung unseres Modells auf das EU Interbankennetzwerk, systemisches
Risiko in der EU mittels der Anwendung von prominenten Contagion Modellen im Detail
analysieren.
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1 Introduction

The global financial crisis of 2007–2008 highlighted the necessity for a better under-
standing of our financial markets and an accurate assessment of systemic risk. In 2010,
the Basel Committee on Banking Supervision (2010) identified the interconnectedness
of financial institutions as a significant source of systemic risk and an important cause
for a further amplification of the crisis. Moreover, at the time of the crisis, authorities’
stress tests failed to adequately model interlinkages in the banking sector, which in turn
led to a dramatic underestimation of the vulnerability of financial systems, see Basel
Committee on Banking Supervision (2015a).

Since then, the literature on systemic risk measuring has gained great attention and sev-
eral sophisticated methodologies modeling the propagation of losses through financial
networks have been developed. Prominent examples include Rogers and Veraart (2013),
who generalized the clearing mechanism of Eisenberg and Noe (2001) by introducing
default costs. The resulting payment vector determines the losses that each institution
needs to cover. A different approach is taken by Battiston et al. (2012, 2016), who pro-
pose a measure of systemic impact based on the idea of feedback-centrality, the so-called
DebtRank. Further, Cont et al. (2013) developed the Contagion Index, a simulation-
based approach that quantifies the expected loss in capital generated by an institution’s
default given a common adverse shock scenario and in the light of a recovery rate of
zero.

For an extensive survey on systemic risk models, see De Bandt and Hartmann (2000) and
Hüser (2015). While this strand of literature keeps growing, the problem of constructing
realistic models of financial networks remains open. It constitutes a challenging task,
because information on bilateral interbank-activities is classified confidential and thus
mostly not available. A detailed discussion on the sparsity of consistent bank-level data is
provided by Cerutti et al. (2011). The relevance of this issue has also been acknowledged
by authorities, who in response launched several initiatives to fill essential data gaps,
see, e.g., the G20 Data Gaps Initiative (DGI)1 and the EU-wide transparency exercise
by the European Banking Authority (EBA)2. Nonetheless, until today only few data on
aggregated levels have been published.

Because of the lack of publicly available information on interbank lending, academics
often turn to random graphs or toy networks to apply their developed tools. This allows

1For more information, see, e.g., http://www.imf.org/external/np/seminars/eng/dgi/.
2For more information, see

http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-transparency-exercise.

11

http://www.imf.org/external/np/seminars/eng/dgi/
http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-transparency-exercise


1 Introduction

to derive theoretical results on systemic risk for very specific and well controlled net-
work structures. For a better understanding of the complex topology of actual financial
markets and the underlying mechanisms of shock propagation, however, more realistic
network models are needed. This especially concerns policy-makers, who need reliable
models to derive adequate and effective regulations. For this reason, this research ques-
tion has also been raised by the Joint Research Centre (JRC) of the European Com-
mission. The JRC is the European Commission’s science and knowledge service and
provides independent scientific evidence regarding EU policies throughout the whole
policy cycle. In collaboration with the JRC and to support the aim to assess systemic
risk within the EU interbank network, this thesis develops tractable network models,
that (a) span across multiple countries, (b) allow for fast simulation of sample scenarios,
(c) can be calibrated to scarce available information, and thus generate realistic financial
markets, and (d) offer the flexibility to easily change particular network characteristics
for a detailed analysis.

The thesis and its main contributions are organized as follows.

Chapter 2 introduces the mathematical background on network reconstruction tech-
niques. The most prominent methodologies are exponential random graph models
(ERGMs) and fitness models. Both approaches are explained in detail. To complete
the picture on network reconstruction an overview over further proposed approaches is
provided as well.

A general open problem in the realm of ERGMs is the existence and uniqueness of
solutions, which depend strongly on the considered network characteristics that are
incorporated in the form of constraints. We contribute to this research question in
Chapter 3 by analyzing the class of ERGMs that satisfy given row and column sums.
We derive necessary and sufficient conditions under which a solution exists and show
that the solution is unique up to certain equivalence classes. The proof is furthermore of
special interest as it directly leads to an efficient algorithm for parameter calibration.

The methodology of fitness models is extended in Chapter 4. First, a more generalized
version of the fitness model with randomized variables is developed by adjusting it to a
more flexible degree distribution. Second, we provide mathematical insight into economic
fitness models, which have become very popular as they can easily be applied in light
of scarce information. However, the underlying structure and reasons for which these
models work well, have not yet been investigated.

Chapter 5 extends the findings in Engel et al. (2019b), where the leading author is also
the author of this thesis. Based on the technique of ERGMs, Chapter 5 discusses the
reconstruction of domestic interbank markets. More precisely, an ERGM conditioned on
the in- and out-degree sequence plus the network reciprocity is considered. The problem
of missing available data to estimate the model parameters is tackled by introducing
flexible in- and out-degree distributions that are coupled via a Gaussian copula and
which can be calibrated in light of scarce information. The performance of the model
is demonstrated by reconstructing the German and the Italian interbank market. As
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1 Introduction

many network statistics are closely reproduced, they seem to be a natural consequence
of the specific in- and out-degree distribution and the reciprocity.

The following Chapters 6 and 7 are based on our working paper Engel et al. (2019a),
where the leading author is also the author of this thesis.

Chapter 6 presents a novel model for the reconstruction of international financial net-
works, using a block structure of weighted networks and extending the model of Chap-
ter 5. More precisely, in a first step we use an extended fitness model to reconstruct
the adjacency matrix of the underlying financial network. The adjacency matrix can
be calibrated to desired block-specific densities and reciprocities. This results in a link-
probability matrix, which allows to efficiently sample adjacency matrices through bivari-
ate Bernoulli trials. In a second step, the sampled adjacency matrices are weighted, such
that interbank assets and liabilities, which are known from the banks’ balance sheets, as
well as the total weight circulating within and across countries, is met. This is achieved
via an ERGM conditioned on the row and column sums as well as on the block weights.
Since this model allows to analytically derive the expected weight of each link of a given
adjacency matrix, the conditions are fulfilled exactly by the resulting network.

Another contribution of this thesis is the algorithm that was developed for calibrating the
parameters of the ERGM presented in Chapter 6. The parameters are determined by a
high dimensional non-linear system of equations which is non-trivial to solve. Regarding
the reconstruction of the EU interbank market, for example, there are 7,779 parameters,
i.e. 7,779 depended equations to be solved. We tackle this problem by exploiting the
structure of the system of equations and some findings of Chapter 3.

Last but not least, calibrating the model of Chapter 6 to data on the EU interbank
market, we are able to generate realistic networks. The simulated graphs finally enable
a detailed assessment of systemic risk. Chapter 7 demonstrates the potential of the
model by conducting several analyses on contagion in the EU interbank market. First,
a general overview and comparison of the most prominent contagion models is given.
Second, the correlation of specific node characteristics and systemic risk as well as the
node’s vulnerability are analyzed. Third, as global systemically important banks are
of special interest, their results on contagion are discussed in more detail. Forth, the
influence of the network density, an indicator of risk diversification, on the stability of
the network is analyzed and compared to other findings in the literature. The conducted
analyses are of special interest as they can pave the way for further improvements on
contagion models and systemic risk measures, as well as support the ultimate aim of
policy-makers to stabilize financial markets.

Finally, Chapter 8 concludes and points out possible future research questions.
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2 Mathematical Preliminaries

This chapter introduces the mathematical concepts this thesis builds upon. In particular,
the methodologies of exponential random graph models (Section 2.1) and fitness models
(Section 2.2) are thoroughly explained. Novel instances of both model classes form the
core of the model for international interbank networks developed in Chapter 6. To
complete the picture on network reconstruction techniques, an overview over further
well-known approaches is provided in Section 2.3.

2.1 Exponential Random Graph Models

The literature on ERGMs (also called configuration models) traces back to Holland
and Leinhardt (1981), who proposed an exponential probability distribution for random
networks. Later, Park and Newman (2004) showed that ERGMs in fact constitute the
solution to constrained maximum entropy problems and linked them to the field of
statistical mechanics in modern physics. The fundamental idea is the construction of a
probability distribution over a set of possible graphs, with minimum divergence to the
uniform distribution and subject to satisfying desired network statistics in expectation.

To properly introduce the methodology of ERGMs, we start by recalling the funda-
mentals of general constrained maximum entropy problems. Afterwards, we discuss the
adaptation to complex and weighted networks. Furthermore, Appendix B provides an
overview over well-known classes of ERMGs.

2.1.1 Constrained Maximum Entropy Problems

Imagine, we are asked to assign a (discrete) probability distribution to a random game
with a set Ω of possible outcomes, without any further information. If we have no rea-
son to believe that any outcome ωi ∈ Ω is more likely to occur than any other outcome
ωj ∈ Ω, then we would intuitively, and by the principle of indifference by Bernoulli and
Laplace, assign an equal probability of 1/|Ω| to each ωi ∈ Ω. This concept is extended
by Jaynes’ principle of maximum entropy (Jaynes (1957a,b)), which states that in light
of partial information, the most unbiased distribution is the one which satisfies the given
information and is otherwise as close as possible to the uniform distribution.

15



2 Mathematical Preliminaries

To make the statement “as close as possible” mathematically precise, we need a measure
of divergence. A common measure of similarity between two probability distributions
is given by the Kullback–Leibler divergence (Kullback and Leibler (1951); Kullback
(1997)), also known as the relative entropy.

Definition 2.1.1 (Kullback–Leibler Divergence)
For two discrete probability distributions with probability mass functions P and Q, defined
on the same sample space Ω, the Kullback–Leibler divergence DKL (P‖Q) is defined as

DKL (P‖Q) := EX∼P (X)

[
log

(
P (X)

Q (X)

)]
=
∑
ω∈Ω

P (ω) log

(
P (ω)

Q (ω)

)
, (2.1)

with the continuous extensions 0 log
(

0
0

)
:= 0, 0 log

(
0
Q

)
:= 0, and P log

(
P
0

)
:=∞.

For continuous probability distributions, the Kullback–Leibler divergence is defined
analogously. Moreover, the Kullback–Leibler divergence fulfills the following proper-
ties.

Lemma 2.1.2 (Properties of the Kullback–Leibler Divergence)
The Kullback–Leibler divergence, defined in Definition 2.1.1, has the following properties:

(i) non-negativity, i.e. DKL (Q‖P ) ≥ 0,

(ii) the minimum DKL (Q‖P ) = 0 is attained if and only if Q = P almost everywhere,

(iii) asymmetry, i.e. DKL (P‖Q) 6= DKL (Q‖P ),

(iv) convexity, i.e. for probability distributions P1, P2, Q1, Q2 and for λ ∈ [0, 1] it holds
DKL (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2) ≤ λDKL (P1‖Q1)+(1− λ)DKL (P2‖Q2) .

Proof
See, e.g., Cover and Thomas (2006).

It is well-known and straightforward to show, that the probability distribution which
minimizes the Kullback–Leibler divergence with respect to the uniform distribution also
maximizes the Shannon entropy S(P ) :=

∑
ω∈Ω P (ω) log

(
P (ω)

)
(see, e.g., Abbas et al.

(2017)). Let the discrete uniform distribution defined on Ω with cardinality |Ω| be
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2 Mathematical Preliminaries

denoted by Q and let P be the set of all probability mass functions defined on Ω,

arg min
P∈P

DKL (P‖Q) = arg min
P∈P

∑
ω∈Ω

P (ω) log

(
P (ω)

1/|Ω|

)
= arg min

P∈P
log (|Ω|)

∑
ω∈Ω

P (ω)︸ ︷︷ ︸
=1

+
∑
ω∈Ω

P (ω) log
(
P (ω)

)

= arg min
P∈P

∑
ω∈Ω

P (ω) log
(
P (ω)

)
= arg max

P∈P
−
∑
ω∈Ω

P (ω) log
(
P (ω)

)
︸ ︷︷ ︸

≡S(P )

.

(2.2)

Maximum entropy problems arise in light of partial available information, when we
want to define a probability distribution over a set of possible outcomes, such that
certain known characteristics are met in expectation. In most cases, there will exist
many probability distributions fulfilling the expected desired characteristics. Therefore,
according to the principle of maximum entropy, among these probability distributions,
we choose the one that, in addition, is closest to the uniform distribution. For the
discrete case, let:

• P = {P : Ω→ (0, 1)} denotes the set of all discrete probability laws defined on Ω,

• the functions fi : Ω → R describe desired characteristics, for i ∈ {1, . . . ,m},
m ∈ N,

• µi ∈ R, for i ∈ {1, . . . ,m}, denote the given expected values corresponding to the
characteristics fi, (i.e. the partial information).

The ME distribution is formally defined as the solution to the following constrained
optimization problem, which minimizes the divergence to the uniform distribution

max
P∈P

S (P ) = max
P∈P
−
∑
ω∈Ω

P (ω) log
(
P (ω)

)
, (2.3)

subject to the normalization condition∑
ω∈Ω

P (ω) = 1, (2.4)

and which satisfies the desired characteristics in expectation,∑
ω∈Ω

P (ω)fi (ω) = µi, ∀i ∈ {1, . . . ,m}. (2.5)
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2 Mathematical Preliminaries

Since the Shannon entropy is a strictly concave function, the set P containing all discrete
probability laws defined on Ω is convex, and the constraints are linear functions in P ,
we know from convex optimization theory that every local solution constitutes a global
solution and in case a solution exists it is unique (Boyd and Vandenberghe, 2004, pp. 137–
138). Moreover, because the Shannon entropy and the functions of the constraints are
continuously differentiable w.r.t. P , it suffices to solve the Karush–Kuhn–Tucker (KKT)

conditions (Boyd and Vandenberghe, 2004, p. 244). Hence, let L : (0, 1)|Ω|×R×Rm → R
denote the Lagrangian,

L (P, α, λ) = S (P ) + α

[
1−

∑
ω∈Ω

P (ω)

]
+

m∑
i=1

λi

[
µi −

∑
ω∈Ω

P (ω)fi (ω)

]
. (2.6)

From the KKT conditions it follows, if P ∗, λ∗, and α∗ satisfy

(i)
∑
ω∈Ω

P ∗(ω) = 1,

(ii)
∑
ω∈Ω

P ∗(ω)fi (ω) = µi, for all i ∈ {1, . . . ,m},

(iii) ∇L (P ∗, α∗, λ∗) = 0,

(2.7)

then P ∗ constitutes a solution to the optimization problem defined in Eqs. (2.3) to (2.5),
i.e. the unique solution.

Computing the gradient of the Lagrangian and setting it equal to zero (i.e. KKT condi-
tion (iii)), we obtain the particular form that the solving probability distribution takes.
Let Ω = {ω1, . . . , ωN} be finite, then for all ωk ∈ Ω, we have,

0 =
∂

∂P (ωk)
L (P, α, λ) ⇔ 0 = −

[
log
(
P (ωk)

)
+ 1
]
− α−

m∑
i=1

λifi (ωk)

⇔ log
(
P (ωk)

)
= −1− α−

m∑
i=1

λifi (ωk)

⇔ P (ωk) = exp

[
−1− α−

m∑
i=1

λifi (ωk)

]
.

(2.8)

The findings explained above lead to the following theorem.
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2 Mathematical Preliminaries

Theorem 2.1.3 (Maximum Entropy Distribution)
Let the probability distribution P ∗ : Ω→ (0, 1) be given by

P ∗ (ω) = exp

[
−1− α∗ −

m∑
i=1

λ∗i fi (ω)

]
, (2.9)

for ω ∈ Ω, and where (α∗, λ∗1, . . . , λ
∗
m) ∈ Rm+1 are such that the conditions in Eqs. (2.4)

and (2.5) are satisfied, then P ∗ constitutes the unique solution to the optimization prob-
lem defined in Eqs. (2.3) to (2.5).

Proof
Analogous to the continuous case considered in Cover and Thomas (2006) Theorem
12.1.1, we show that P ∗ uniquely maximizes the Shannon entropy over all possible
probability distributions in P. Assume there exists a probability distribution P̃ satisfying
the constraints in Eqs. (2.4) and (2.5), then

S
(
P̃
)

= −
∑
ω∈Ω

P̃ (ω) log
(
P̃ (ω)

)
= −

∑
ω∈Ω

P̃ (ω) log

(
P̃ (ω)

P ∗ (ω)
P ∗ (ω)

)
= −DKL

(
P̃‖P ∗

)
−
∑
ω∈Ω

P̃ (ω) log
(
P ∗ (ω)

)
≤ −

∑
ω∈Ω

P̃ (ω) log
(
P ∗ (ω)

)
, by Lemma 2.1.2 (i)

= −
∑
ω∈Ω

P̃ (ω)

[
−1− α∗ −

m∑
i=1

λ∗i fi (ωk)

]
(2.10)

= − (−1− α∗)

(∑
ω∈Ω

P̃ (ω)

)
︸ ︷︷ ︸

=1

+

[∑
ω∈Ω

P̃ (ω)
m∑
i=1

λ∗i fi (ωk)

]

= − (−1− α∗)

(∑
ω∈Ω

P ∗ (ω)

)
+


m∑
i=1

λ∗i
∑
ω∈Ω

P̃ (ω) fi (ωk)︸ ︷︷ ︸
=µi


= − (−1− α∗)

(∑
ω∈Ω

P ∗ (ω)

)
+

[
m∑
i=1

λ∗i
∑
ω∈Ω

P ∗ (ω) fi (ωk)

]

= −
∑
ω∈Ω

P ∗ (ω)

[
−1− α∗ −

m∑
i=1

λ∗i fi (ωk)

]
= −

∑
ω∈Ω

P ∗ (ω) log
(
P ∗ (ω)

)
= S (P ∗) . (2.11)
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2 Mathematical Preliminaries

Note that in the forth line equality only holds if P̃ = P ∗ almost everywhere.

2.1.2 Adaptation to Complex Networks

Having introduced the basic concepts of constrained maximum entropy problems, we
now turn to ERGMs. ERGMs constitute a particular family of constrained maximum
entropy problems that are adapted to graphs1 A graph consists of a set of nodes and
links. Depending whether the links are assign a direction a graph can be directed or
undirected. Furthermore, if the links carry a weight, graphs are said to be weighted, and
otherwise unweighted. Figure 2.1 depicts a directed and weighted graph and Fig. 2.2 an
undirected and unweighted graph. Commonly, graphs are conveniently represented in
form of a matrix, as illustrated in Figs. 2.1 and 2.2.

Definition 2.1.4 (Graph)
A graph G consists of n ∈ N nodes and possible links between these nodes. A graph G is
conveniently represented by a matrix W ∈ Rn×n, where the matrix element wij denotes
the link from node i to node j, for all i, j = 1, . . . , n. Commonly, wij = 0 denotes a
non-existing link. Furthermore, graphs can have the following characteristics:

• If we are only interested whether two nodes i and j are connected, but there is
no defined link direction, i.e. wij = wji for all i, j = 1, . . . , n, the matrix W is
symmetric and the graph G is said to be undirected.

• Consequently, if we differentiate between a link wij from node i to node j and a
link wji from node j to node i the graph G is said to be directed.

• If we are only interested whether a link between two nodes i and j exits, but there
is no defined weight of a link, i.e. wij ∈ {0, 1} for all i, j = 1, . . . , n, the graph G
is said to be unweighted. In this case, the matrix W is also called the adjacency
matrix (commonly denoted by A). Note that there exists an adjacency matrix
A ∈ {0, 1}n×n for every graph W with aij := 1{wij>0}.

• Analogously, if links can carry a weight, i.e. wij ∈ R, the graph G is said to be
weighted.

1The terms ‘graph’ and ‘network’ are used interchangeably throughout this thesis.
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0 8 10 1 0



Figure 2.1: Example of a directed and weighted graph.
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A =


0 1 1 1 0
1 0 0 1 1
1 0 0 1 1
1 1 1 0 1
0 1 1 1 0



Figure 2.2: Example of an undirected and unweighted graph.

Regarding the financial networks studied in this thesis, nodes represent financial insti-
tutions and links denote the amount of money lend and borrowed between financial
institutions. Regarding the example pictured in Fig. 2.1, the graph indicates that bank
1 lends money of amount 10 to bank 2.

To construct random graphs that fulfill certain desired characteristics in expectation, we
turn to ERGMs. In the following let:

• G denotes a finite set of possible graphs G,
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• P = {P : G → (0, 1)} denotes the set of discrete probability laws defined on G,

• the functions fi : G → R compute network statistics, for i ∈ {1, . . . ,m},

• µi ∈ R, for i ∈ {1, . . . ,m}, denote the desired expected values corresponding to
the network statistics.

Analogous to Eqs. (2.3) to (2.5), we consider the following constrained maximum entropy
problem,

max
P∈P

S (P ) = max
P∈P
−
∑
G∈G

P (G) log
(
P (G)

)
, (2.12)

subject to the normalization condition∑
G∈G

P (G) = 1, (2.13)

and to the desired network statistics,∑
G∈G

P (G)fi (G) = µi, ∀i ∈ {1, . . . ,m}. (2.14)

Note, in case there are no desired network statistics that are to be met in expectation,
i.e. reducing the optimization problem to Eqs. (2.12) and (2.13), the solving probability
distribution would assign an equal probability to each graph G in G.

The resulting maximum entropy distribution solving Eqs. (2.12) to (2.14) is given by
Theorem 2.1.3 and often reformulated in terms of the partition function Z and the graph
Hamiltonian H. The partition function Z is derived from the normalization condition
(i.e. Eq. (2.13)),

1 =
∑
G∈G

P (G) ⇔ 1 =
∑
G∈G

exp

[
−1− α−

m∑
i=1

λifi (G)

]
, by Theorem 2.1.3

⇔ exp [1 + α] =
∑
G∈G

exp

[
−

m∑
i=1

λifi (G)

]
︸ ︷︷ ︸

≡Z

.

(2.15)
The graph Hamiltonian H : G → R is defined as

H (G) :=

m∑
i=1

λifi (G) . (2.16)

It follows

P (G) =
e−H(G)

Z
. (2.17)
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Moreover, the free energy F is defined as

F := − log (Z) . (2.18)

The free energy F is of interest, because the partial derivatives of F with respect to the
Lagrange multipliers constitute a non-linear system of equations, that can be used to
calibrate the Lagrange multipliers. More precisely, the partial derivatives yield for all
k = 1, . . . ,m,

∂

∂λk
F =

∂

∂λk
[− log (Z)] =

−1

Z

∂

∂λk

∑
G∈G

exp

[
−

m∑
i=1

λifi (G)

]

=
1

Z

∑
G∈G

exp

[
−

m∑
i=1

λifi (G)

]
fk (G) =

1

Z

∑
G∈G

exp [−H (G)] fk (G)

=
∑
G∈G

−eH(G)

Z
fk (G) =

∑
G∈G

P (G) fk (G) = µk.

(2.19)

In order to better understand the underlying structures of ERGMs, let’s consider an
illustrative example. For that purpose and because it will play a central role later, we
introduce the degree and strength sequence.

Definition 2.1.5 (Degree Sequence)
Let W ∈ Rn×n denote an arbitrary graph and let A with aij := 1{wij>0} be the corre-
sponding adjacency matrix. The degree sequence d = (d1, . . . , dn) of graph W denotes
the number of links that each node is connected to. I.e.,

di :=
n∑
j=1
j 6=i

(aij + aji) , ∀i = 1, . . . , n. (2.20)

Furthermore, for a directed graph, the in-degree sequence d(in) =
(
d

(in)
1 , . . . , d

(in)
n

)
and

the out-degree sequence d(out) =
(
d

(out)
1 , . . . , d

(out)
n

)
are defined as follows,

d
(in)
i :=

n∑
j=1
j 6=i

aji, and d
(out)
i :=

n∑
j=1
j 6=i

aij , ∀i = 1, . . . , n. (2.21)

Definition 2.1.6 (Strength Sequence)
Let W ∈ Rn×n denote an arbitrary weighted graph. The strength sequence s = (s1, . . . , sn)
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of graph W denotes the sum of weights that the links of each node carry. I.e.,

si :=
n∑
j=1
j 6=i

(wij + wji) , ∀i = 1, . . . , n. (2.22)

Furthermore, for a directed graph, the in-strength sequence s(in) =
(
s

(in)
1 , . . . , s

(in)
n

)
and the out-strength sequence s(out) =

(
s

(out)
1 , . . . , s

(out)
n

)
are defined as follows,

s
(in)
i :=

n∑
j=1
j 6=i

wji, and s
(out)
i :=

n∑
j=1
j 6=i

wij , ∀i = 1, . . . , n, (2.23)

i.e. the sum of inflowing and outflowing weight, respectively.

Regarding the illustrative example, let the set of possible graphs G be given by all
unweighted and directed graphs with n ∈ N nodes, excluding self-loops, i.e.

G =
{
a ∈ {0, 1}n×n : a11 = · · · = ann = 0

}
. (2.24)

A short remark on the exclusion of self-loops: Self-loops are edges pointing from a node
to itself. For example, in financial networks, a self-loop would mean that a bank is
lending money to itself, which makes no sense. In fact, most real-world networks do
not exhibit self-loops, which is why the diagonal of the graph matrices is usually set to
zero.

Regarding the desired network statistics in our considered example, let’s assume we want
node i to have in expectation di edges, i.e. let d = (d1, . . . , dn) ∈

(
0, 2 (n− 1)

)n
denote

the desired degree sequence. The corresponding graph functions ki : G →
(
0, 2 (n− 1)

)
,

for all i = 1, . . . , n, counting the number of edges of node i in a graph a ∈ G are given
by

ki (a) :=

n∑
j=1
j 6=i

(aij + aji) . (2.25)

This ERGM is formally described by the constrained maximum entropy problem

max
P∈P

S (P ) = max
P∈P
−
∑
a∈G

P (a) log
(
P (a)

)
, (2.26)
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subject to ∑
a∈G

P (a) = 1,∑
a∈G

P (a)ki (a) = di, ∀i ∈ {1, . . . , n}.
(2.27)

From Theorem 2.1.3 we know, that if a solution to the optimization problem of Eqs. (2.26)
and (2.27) exists, it is unique and the solving probability distribution P takes the fol-
lowing form

P (a) =
e−H(a)

Z
= Z−1 exp

[
−

n∑
i=1

λiki (a)

]
, (2.28)

where H denotes the graph Hamiltonian, as defined in Eq. (2.16), Z the partition func-
tion, as defined in Eq. (2.15), and (λ1, . . . , λn) ∈ Rn the Lagrange multipliers belonging
to the constraints on the degree sequence. An essential point is that we can write the
Hamiltonian as a simple sum over the elements of the graph matrix:

H (a) =
n∑
i=1

λiki (a) =
n∑
i=1

λi

( n∑
j=1
j 6=i

aij + aji

)
=

( n∑
i=1

n∑
j=1
j 6=i

λiaij

)
+

( n∑
i=1

n∑
j=1
j 6=i

λiaji

)

=

( n∑
i=1

n∑
j=1
j 6=i

λiaij

)
+

( n∑
j=1

n∑
i=1
i 6=j

λjaij

)
=
∑
i 6=j

(λi + λj) aij .

(2.29)

This allows us to compute the partition function Z analytically,

Z =
∑
a∈G

exp [−H (a)]

=
∑
a∈G

exp

−∑
i 6=j

(λi + λj) aij


=
∑
a∈G

∏
i 6=j

e−(λi+λj)aij

=
∑
a∈G

e−(λ1+λ2)a12
∏
i 6=j

(i,j)6=(1,2)

e−(λi+λj)aij
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=

 ∑
{a∈G:a12=0}

e−(λ1+λ2)a12
∏
i 6=j

(i,j)6=(1,2)

e−(λi+λj)aij



+

 ∑
{a∈G:a12=1}

e−(λ1+λ2)a12
∏
i 6=j

(i,j)6=(1,2)

e−(λi+λj)aij



=

[
e−(λ1+λ2)a12

∣∣∣∣
a12=0

] ∑
{a∈G:a12=0}

∏
i 6=j

(i,j)6=(1,2)

e−(λi+λj)aij


︸ ︷︷ ︸

=?

(2.30)

+

[
e−(λ1+λ2)a12

∣∣∣∣
a12=1

] ∑
{a∈G:a12=1}

∏
i 6=j

(i,j)6=(1,2)

e−(λi+λj)aij


︸ ︷︷ ︸

=?

=
1∑

a∗12=0

e−(λ1+λ2)a∗12

 ∑
{a∈G:a12=a∗12}

∏
i 6=j

(i,j)6=(1,2)

e−(λi+λj)aij


︸ ︷︷ ︸

=?, constant for all a∗12

=

 1∑
a∗12=0

e−(λ1+λ2)a∗12

×
 ∑
{a∈G:a12=0}

∏
i 6=j

(i,j)6=(1,2)

e−(λi+λj)aij



=

 1∑
a∗12=0

e−(λ1+λ2)a∗12

 1∑
a∗13=0

e−(λ1+λ3)a∗13

×
 ∑
{a∈G:a12=0,a13=0}

∏
i 6=j

(i,j)6=(1,2),(1,3)

e−(λi+λj)aij


= . . .

=
∏
i 6=j

 1∑
aij=0

e−(λi+λj)aij

 =
∏
i 6=j

[
1 + e−(λi+λj)

]
.

Note that the complexity of computing Z has been reduced from summing over the
2n(n−1) matrices in G to a product of

(
n
2

)
= n!

(n−2)! 2 = n(n−1)
2 factors. This now allows

the derivation of a non-linear system of equations, that defines the Lagrange multipli-
ers, by taking partial derivatives of the free energy F as explained in Eq. (2.19). For
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k = 1, . . . , n,

dk =
∂

∂λk
F =

∂

∂λk

[
− log (Z)

]
=

∂

∂λk

−∑
i 6=j

log
(

1 + e−(λi+λj)
)

=
∂

∂λk

− n∑
i=1
i 6=k

log
(

1 + e−(λi+λk)
)
−

n∑
j=1
j 6=k

log
(

1 + e−(λk+λj)
)

= −2

n∑
i=1
i6=k

−e−(λi+λk)

1 + e−(λi+λk)
= 2

n∑
i=1
i 6=k

e−(λi+λk)

1 + e−(λi+λk)
.

(2.31)

Moreover, because the graph Hamiltonian constitutes a simple sum over the elements of
the graph matrix, we can derive the independent link probabilities for all k, l ∈ {1, . . . , n}
and k 6= l,

P (Akl = 1)

=
∑

{a∈G:akl=1}

P (a) = Z−1
∑

{a∈G:akl=1}

e−H(a)

=
∏
i 6=j

[
1 + e−(λi+λj)

]−1 ∑
{a∈G:akl=1}

∏
i 6=j

e−(λi+λj)aij

=
∏
i 6=j

[
1 + e−(λi+λj)

]−1
e−(λk+λl)

∑
{a∈G:akl=1}

∏
i 6=j

(i,j)6=(k,l)

e−(λi+λj)aij

=
∏
i 6=j

[
1 + e−(λi+λj)

]−1
e−(λk+λl)

∏
i 6=j

(i,j)6=(k,l)

[
1 + e−(λi+λj)

]
, analogous to Eq. (2.30)

=
e−(λk+λl)

1 + e−(λk+λl)
,

(2.32)

where A denotes a random matrix defined on the probability space (G,P (G) , P ) and
P (G) refers to the power set of G.

Summing up, the n Lagrange multipliers can be calibrated via the n-dimensional sys-
tem of equations given by Eq. (2.31). Afterwards, we can easily sample random graphs
by drawing independent Bernoulli trials according to the link probabilities given by
Eq. (2.32).
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As the above discussed example indicates, a critical component of ERGMs is the com-
putation of the partition function Z. In most cases, the set G contains a substantial
number of graphs, which leaves the evaluation of Z, as a sum over all G ∈ G, computa-
tionally infeasible. Fortunately, whenever the desired network statistics, represented by
the functions fi (G), constitute simple sums over the edges of G, and choosing G wisely,
the partition function Z can be derived analytically. For that purpose, G is typically set
to contain all possible graphs with a given number of nodes. Nevertheless, the flexibility
in the particular choice of G and the constraints fi give rise to a variety of network models.

We further remark, that while the uniqueness of the solving probability distribution
of ERGMs is constituted by Theorem 2.1.3, the existence of a solution depends on the
particular considered instance and has, to the best of our knowledge, not yet been solved.

2.1.3 Extension to Weighted Networks

ERGMs can further be extended to weighted networks. Park and Newman (2004) con-
sider an ERGM conditioned on the strength sequence s = (s1, . . . , sn) ∈ Rn>0, which
describes the total weight of each node. Moreover, the set G of graphs allows all non-
negative natural numbers as link weights, i.e. link weights are in N0. In contrast, Gar-
laschelli and Loffredo (2009) restrict the allowed link weights to an upper bound N ∈ N,
i.e. link weights are in {0, 1, . . . , N}. Moreover, Garlaschelli and Loffredo (2009) consider
several ERGMs conditioned on the strength sequence s = (s1, . . . , sn) ∈ Rn>0 and/ or
the degree sequence d = (d1, . . . , dn) ∈

(
0, 2 (n− 1)

)n
.

The trick to compute the partition function Z is to apply the geometric series, which
leads to a simplified closed form expression for Z. Since calculations work mostly anal-
ogous in all described settings, here, we introduce a more detailed weighted ERGM by
additionally differentiating between the directions ‘in-’ and ‘out-’. As we will see, al-
lowing for unbounded link weights, i.e. in N0, yields realistic bounded expected weights
for all links. Therefore, here, we introduce this case. However, the case of bounded
link weights can be derived analogously by applying the geometric series for bounded
sums.

We explain the neccessary calculations in the following, by deriving the ERGM which
fulfills in expectation

(i) an in-degree sequence d(in) =
(
d

(in)
1 , . . . , d

(in)
n

)
∈ (0, n− 1)n, describing the desired

number of incoming edges of each node,

(ii) an out-degree sequence d(out) =
(
d

(out)
1 , . . . , d

(out)
n

)
∈ (0, n− 1)n, describing the

desired number of outgoing edges of each node,
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(iii) an in-strength sequence s(in) =
(
s

(in)
1 , . . . , s

(in)
n

)
∈ Rn>0, describing the desired

inflowing weight of each node,

(iv) an out-strength sequence s(out) =
(
s

(out)
1 , . . . , s

(out)
n

)
∈ Rn>0, describing the desired

outflowing weight of each node.

Let the set of considered graphs G be given by

G =
{
w ∈ Nn×n≥0 : w11 = · · · = wnn = 0

}
. (2.33)

The ERGM is formally described by the constrained maximum entropy problem

max
P∈P

S (P ) = max
P∈P
−
∑
w∈G

P (w) log
(
P (w)

)
, (2.34)

subject to ∑
w∈G

P (w) = 1,

∑
w∈G

P (w)

n∑
i=1

1{wij>0} = d
(in)
j , for j = 1, . . . , n,

∑
w∈G

P (w)
n∑
j=1

1{wij>0} = d
(out)
i , for i = 1, . . . , n,

∑
w∈G

P (w)

n∑
i=1

wij = s
(in)
j , for j = 1, . . . , n,

∑
w∈G

P (w)
n∑
j=1

wij = s
(out)
i , for i = 1, . . . , n.

(2.35)

From Theorem 2.1.3 we know, that if a solution to the optimization problem of Eqs. (2.34)
and (2.35) exists, it is unique and the solving probability distribution P takes the fol-
lowing form

P (w) =
e−H(w)

Z

= Z−1 exp

−∑
i 6=j

(
λ

(out)
i + λ

(in)
j

)
1{wij>0} +

(
θ

(out)
i + θ

(in)
j

)
wij

 , (2.36)

where H denotes the graph Hamiltonian, as defined in Eq. (2.16), Z the partition func-
tion, as defined in Eq. (2.15), and
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(i)
(
λ

(in)
1 , . . . , λ

(in)
n

)
∈ Rn the Lagrange multipliers belonging to the constraints on

the in-degree sequence,

(ii)
(
λ

(out)
1 , . . . , λ

(out)
n

)
∈ Rn the Lagrange multipliers belonging to the constraints on

the out-degree sequence,

(iii)
(
θ

(in)
1 , . . . , θ

(in)
n

)
∈ Rn the Lagrange multipliers belonging to the constraints on the

in-strength sequence,

(iv)
(
θ

(out)
1 , . . . , θ

(out)
n

)
∈ Rn the Lagrange multipliers belonging to the constraints on

the out-strength sequence.

To simplify notation, in the following we write λij :=
(
λ

(out)
i + λ

(in)
j

)
and

θij :=
(
θ

(out)
i + θ

(in)
j

)
.

Since the Hamiltonian constitutes a simple sum over the elements of the graph matrix,
the partition function Z can be computed analytically,

Z =
∑
w∈G

exp [−H (w)]

=
∑
w∈G

∏
i 6=j

e
−
(
λij1{wij>0}+θijwij

)

=
∑
w∈G

e−(λ121{w12>0}+θ12w12)
∏
i 6=j

(i,j)6=(1,2)

e
−
(
λij1{wij>0}+θijwij

)

=

∞∑
w∗12=0

 ∑
{w∈G:w12=w∗12}

e
−
(
λ121{w∗12>0}+θ12w∗12

) ∏
i 6=j

(i,j)6=(1,2)

e
−
(
λij1{wij>0}+θijwij

)

=
∞∑

w∗12=0

e
−
(
λ121{w∗12>0}+θ12w∗12

)  ∑
{w∈G:w12=w∗12}

∏
i 6=j

(i,j)6=(1,2)

e
−
(
λij1{wij>0}+θijwij

)
︸ ︷︷ ︸

constant for all w∗12

=

 ∞∑
w∗12=0

e
−
(
λ121{w∗12>0}+θ12w∗12

)×
 ∑
{w∈G:w12=0}

∏
i 6=j

(i,j)6=(1,2)

e
−
(
λij1{wij>0}+θijwij

)
= . . .
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(?)
=
∏
i 6=j

 ∞∑
wij=0

e
−
(
λij1{wij>0}+θijwij

) (2.37)

=
∏
i 6=j

1 +
∞∑

wij=1

e−(λij+θijwij)


=
∏
i 6=j

1 + e−λij

−1 +
∞∑

wij=0

e−θijwij


=
∏
i 6=j

[
1 + e−λij

(
−1 +

1

1− e−θij

)]
, by the geometric series,

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]
,

where the same algebraic steps are applied to all elements in (?) as we applied exemplary
to the first element w12. Note that

e−θij < 1 ⇔ θij > 0 (2.38)

has to hold for all i 6= j, since otherwise the value of the partition function Z is infinity,
which implies that P from Eq. (2.36) is not a solving probability measure.

Next, we can derive the non-linear system of equations, that defines the Lagrange mul-
tipliers, by taking partial derivatives of the free energy F as explained in Eq. (2.19). For
k = 1, . . . , n,

d
(in)
k =

∂

∂λ
(in)
k

F =
∂

∂λ
(in)
k

[
− log (Z)

]
=

∂

∂λ
(in)
k

−∑
i 6=j

log

(
1 + e−λij

e−θij

1− e−θij

)
=

∂

∂λ
(in)
k

− n∑
i=1
i 6=k

log

(
1 + e−λik

e−θik

1− e−θik

)
= −

n∑
i=1
i 6=k

1− e−θik
1− e−θik + e−λike−θik

(
−e−λik e−θik

1− e−θik

)
=

n∑
i=1
i 6=k

e−λik−θik

1− e−θik + e−λik−θik
.

(2.39)
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Analogously, we get

d
(out)
k =

n∑
j=1
j 6=k

e−λkj−θkj

1− e−θkj + e−λkj−θkj
. (2.40)

Taking partial derivatives of F w.r.t. the Lagrange multipliers of the strength yields,

s
(in)
k =

∂

∂θ
(in)
k

F =
∂

∂θ
(in)
k

− n∑
i=1
i 6=k

log

(
1 + e−λik

e−θik

1− e−θik

)
= −

n∑
i=1
i6=k

1− e−θik
1− e−θik + e−λike−θik

(
e−λik

−e−θik
(
1− e−θik

)
− e−θike−θik

(1− e−θik)
2

)

=

n∑
i=1
i6=k

e−λik−θik

(1− e−θik + e−λik−θik) (1− e−θik)
.

(2.41)

Analogously, we get

s
(out)
k =

n∑
j=1
j 6=k

e−λkj−θkj(
1− e−θkj + e−λkj−θkj

) (
1− e−θkj

) . (2.42)

Moreover, because the graph Hamiltonian constitutes a sum over the elements of the
graph matrix, the probability that a link exists and its expected weight can be derived
analytically. We note that Garlaschelli and Loffredo (2009) provide the final expression
for the probability that a certain link takes a specific weight, however, the neccessary
calculations are not shown. Here, we provide the precise mathematical derivation.

Let W denote a random matrix defined on the probability space (G,P (G) , P ), where
P (G) refers to the power set of G. The independent link probabilities for all
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k, l ∈ {1, . . . , n} and k 6= l can be computed as follows,

P (Wkl > 0)

=
∑

{w∈G:wkl>0}

P (w)

= Z−1
∑

{w∈G:wkl>0}

e−H(w)

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]−1 ∑
{w∈G:wkl>0}

∏
i 6=j

e
−
(
λij1{wij>0}+θijwij

)

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]−1

 ∞∑
wkl=1

e−(λkl+θklwkl)

 ∑
{w∈G:wkl=1}

∏
i 6=j

(i,j)6=(k,l)

e
−
(
λij1{wij>0}+θijwij

)

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]−1

[
e−λkl

e−θkl

1− e−θkl

] ∏
i 6=j

(i,j)6=(k,l)

[
1 + e−λij

e−θij

1− e−θij

]
, analogous to Eq. (2.37)

=

[
1 + e−λkl

e−θkl

1− e−θkl

]−1
e−λkl−θkl

1− e−θkl

=
1− e−θkl

1− e−θkl + e−λkl−θkl
· e
−λkl−θkl

1− e−θkl

=
e−λkl−θkl

1− e−θkl + e−λkl−θkl
.

(2.43)
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Similarly, we can derive the expected link weights as follows,

E [Wkl]

=
∑
w∈G

wklP (w) = Z−1
∑
w∈G

wkle
−H(w)

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]−1 ∑
w∈G

wkl
∏
i 6=j

e
−
(
λij1{wij>0}+θijwij

)

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]−1

 ∞∑
wkl=1

wkle
−(λkl+θklwkl)

 ∑
{w∈G:wkl=1}

∏
i 6=j

(i,j)6=(k,l)

e
−
(
λij1{wij>0}+θijwij

)

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]−1

− ∞∑
wkl=1

∂

∂θ
(out)
k

e−(λkl+θklwkl)

 ∏
i 6=j

(i,j)6=(k,l)

[
1 + e−λij

e−θij

1− e−θij

]
, analogous to Eq. (2.37)

=

[
1 + e−λkl

e−θkl

1− e−θkl

]−1
− ∂

∂θ
(out)
k

∞∑
wkl=1

e−(λkl+θklwkl)


=

[
1 + e−λkl

e−θkl

1− e−θkl

]−1
[
− ∂

∂θ
(out)
k

[
−1 + e−λkl

e−θkl

1− e−θkl

]]

=

[
1 + e−λkl

e−θkl

1− e−θkl

]−1
[
−e−λkl

−e−θkl
(
1− e−θkl

)
+ e−θkle−θkl

(1− e−θkl)2

]

=
1− e−θkl

1− e−θkl + e−λkl−θkl

[
e−λkl

e−θkl

(1− e−θkl)2

]
=

1

1− e−θkl + e−λkl−θkl
· e
−λkl−θkl

1− e−θkl

=
P (Wkl > 0)

1− e−θkl
.

(2.44)

Furthermore, we can derive the probability that a random link Wkl takes a specific
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weight w∗kl ∈ N≥0,

P (Wkl = w∗kl)

=
∑

{w∈G:wkl=w
∗
kl}

P (w) = Z−1
∑

{w∈G:wkl=w
∗
kl}

e−H(w)

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]−1 ∑
{w∈G:wkl=w

∗
kl}

∏
i 6=j

e
−
(
λij1{wij>0}+θijwij

)

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]−1

e
−
(
λkl1{w∗kl>0}+θklw

∗
kl

) ∑
{w∈G:wkl=w

∗
kl}

∏
i 6=j

(i,j)6=(k,l)

e
−
(
λij1{wij>0}+θijwij

)

=
∏
i 6=j

[
1 + e−λij

e−θij

1− e−θij

]−1

e
−
(
λkl1{w∗kl>0}+θklw

∗
kl

) ∏
i 6=j

(i,j)6=(k,l)

[
1 + e−λij

e−θij

1− e−θij

]
, analogous to Eq. (2.37)

=

[
1 + e−λkl

e−θkl

1− e−θkl

]−1

e
−
(
λkl1{w∗kl>0}+θklw

∗
kl

)

=
1− e−θkl

1− e−θkl + e−λkl−θkl
· e
−
(
λkl1{w∗kl>0}+θklw

∗
kl

)
.

(2.45)

Since the links are pairwise independet, we get the following functional form for the
probability of a certain graph w∗ ∈ G,

P (W = w∗) =
∏
i 6=j

P
(
Wij = w∗ij

)
. (2.46)

Summing up, the 4n Lagrange multipliers can be calibrated via the 4n-dimensional sys-
tem of equations given by Eqs. (2.39) to (2.42). Afterwards, we can easily sample random
graphs by drawing independent Bernoulli trials according to the link probabilities given
by Eq. (2.43). Weights can be assigned to drawn links either via the expected weight
according to Eq. (2.44) or by randomly sampling weights according to their probabilities
as given by Eq. (2.45). The probability of a certain graph w∗ ∈ G can be assessed by
Eq. (2.46).
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2.2 Fitness Models

Fitness models are based on the idea that the generation of links depends on underlying
intrinsic characteristics of the nodes, see Caldarelli et al. (2002); Servedio et al. (2004).
For example, in social networks friendships are formed because individuals share common
interests, in biological networks proteins interact with each other according to their
chemical and physical properties, and the creation of hyperlinks in the world wide web
is influenced by the popularity of a webpage. Hence, each node can be thought of being
equipped with a hidden variable that controls its probability to create edges.

Formally, fitness models are defined as follows. Let A ∈ {0, 1}n×n denote a random
(unweighted) network consisting of n nodes, where each node i is assigned a fitness
xi ∈ R. The probability of an edge existing between nodes i and j is described by a
link probability function f : R2 → [0, 1], that takes as input the fitness variables of
both nodes, i.e. P (Aij = 1) = f (xi, xj). This setting obviously gives rise to a variety
of network models. In general, we can differentiate between two directions. First, as
exemplified above, we might have a clear understanding of which nodes’ features drive
their tendency of generating edges, and data on these features might be readily available.
Second, the fitnesses can be randomized and the structure of the link probability function
f can be derived, such that the resulting network exhibits some desired characteristic.
In the following, both approaches are discussed in detail.

2.2.1 Empirical Fitness Variables

To properly understand the rationale to exploit nodes’ properties, where data is readily
available, as fitness variables, we have to take a step back and discuss the calibration of
ERGMs. ERGMs, as introduced in Section 2.1, constitute a powerful methodology with
a sound mathematical foundation, that can be applied as long as the desired network
statistics µi (see Eqs. (2.12) to (2.14)) are explicitly available. Let’s recall the example of
the ERGM discussed in Section 2.1.2 and set up in Eqs. (2.26) and (2.27), that satisfies
a given degree sequence d = (d1, . . . , dn) ∈ (0, 2 (n− 1))n. A system of equations was
derived in Eq. (2.31), which enables the calibration of the Lagrange multipliers. Note
that for the calibration we need to know (d1, . . . , dn) explicitly. However, in many real
world applications, especially regarding economic and financial networks, the precise
degree sequence is not readily available. Very often we have knowledge of a certain
heterogeneity across the nodes. For example, financial institutions that are big in terms
of total assets or in terms of their total interbank lending volumes, tend to have more
financial relationships with other institutions than smaller ones. So we know that there
exists some heterogeneity, however, for confidentiality reasons, the explicit numbers of
connections that each institution maintains cannot be retrieved.

To tackle this issue, academics have turned to fitness variables. Promising empirical
results were found by Garlaschelli and Loffredo (2008) regarding the World Trade Web
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(WTW). For clarification, the WTW depicts the trade relationships between all coun-
tries. Garlaschelli and Loffredo identified a linear relationship between the exponential
function of the negative Lagrange multipliers and the countries (rescaled) GDP. More
precisely, again recall the ERGM discussed in Section 2.1.2 and set up in Eqs. (2.26)
and (2.27), that satisfies a given degree sequence d = (d1, . . . , dn) ∈

(
0, 2 (n− 1)

)n
,

and let s = (s1, . . . , sn) ∈ Rn≥0 denote the (rescaled) GDP of the n considered coun-
tries. Garlaschelli and Loffredo (2008) found the following empirical relationship, for all
i = 1, . . . , n,

e−λi ≈ zsi, (2.47)

where λ = (λ1, . . . , λn) ∈ Rn denotes the corresponding Lagrange multipliers (see
Eq. (2.28)) and for some scalar z ∈ R. Even though at first sight this relationship
might be surprising, further similar examples have been published (we will discuss them
later) and these results are extremely helpful as they enable the calibration of network
models in light of scarce available data. Moreover, in Section 4.2 we provide some first
mathematical insight into this phenomenon. The mathematical explanation seems to
be that a power law distribution of the fitness variables translates into a power law
distribution (with a saturation effect) of the degrees.

The linear relationship found by Garlaschelli and Loffredo (2008) conveniently allows
the calibration of the ERGM without knowing the exact degree sequence. Of course a
particular degree sequence will not be recovered precisely, but Garlaschelli and Loffredo
(2008) show that the degree distribution is reproduced remarkably well. The network
model considers unweighted and undirected graphs A ∈ {0, 1}n×n symmetric, i.e. with
A = A>. The link probabilities are given for i, j = 1, . . . , n and i 6= j by

P (Aij = 1) =
z2sisj

1 + z2sisj
. (2.48)

There are two aspects to highlight. First, the model incorporates the heterogeneity
across the nodes. There is a natural positive correlation between the GDP and the
degree of the nodes. The higher a node’s GDP the more edges it will have in expectation,
which is in line with economic theory. Second, the calibration of the model has been
reduced from n parameters to just one, namely z. Commonly in fitness models, z is
(numerically) calibrated to a desired density or equivalently to a desired number of
edges L ∈ (0, n (n− 1) /2),

L =
∑
i<j

P (Aij = 1) =
∑
i<j

z2sisj
1 + z2sisj

. (2.49)

Furthermore, in Garlaschelli and Loffredo (2004a, 2008) the authors report that this
model reproduces several network statistics remarkable well, including higher order prop-
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erties like the average nearest neighbor degree and the clustering coefficient.2

A natural and straightforward extension of the undirected fitness model discussed above,
is the directed fitness model. In this case, the in- and out-strength of the nodes are
commonly used as fitness variables for two reasons. First, in most use cases data on
these factors is readily available. For example regarding the interbank market, interbank
assets and deposits are publicly listed in the banks’ balance sheets. Second, the degree
and the strength of nodes are highly correlated, see e.g. Roukny et al. (2014), and hence
a natural positive correlation between the fitness variables and the resulting expected
degrees is induced. Commonly in the directed fitness model, the link probability function
corresponds to that of an ERGM conditioned on the in- and out-degree sequence. Let

A ∈ {0, 1}n×n denote a random directed graph matrix, s(out) =
(
s

(out)
1 , . . . , s

(out)
n

)
∈ Rn≥0

the out-strength of each node and analogously s(in) =
(
s

(in)
1 , . . . , s

(in)
n

)
∈ Rn≥0 the in-

strength, then the link probabilities are defined by

P (Aij = 1) =
z2s

(out)
i s

(in)
j

1 + z2s
(out)
i s

(in)
j

. (2.50)

The only parameter z left to be calibrated is usually chosen such that a desired number
of edges L→ ∈ (0, n (n− 1)) is achieved in expectation,

L→ =
∑
i 6=j

P (Aij = 1) =
∑
i 6=j

z2s
(out)
i s

(in)
j

1 + z2s
(out)
i s

(in)
j

. (2.51)

Moreover, in case the number of links is not known for the entire network, but only for
a subset of nodes I ⊆ {1, . . . , n}, Cimini et al. (2015) suggest to calibrate the parameter
z accordingly. Let L→I denote the number of links of the subset I of nodes, then z is
calibrated such that

L→I =
∑
i∈I

n∑
j=1
j 6=i

P (Aij = 1) + P (Aji = 1)

=
∑
i∈I

n∑
j=1
j 6=i

z2s
(out)
i s

(in)
j

1 + z2s
(out)
i s

(in)
j

+
z2s

(out)
j s

(in)
i

1 + z2s
(out)
j s

(in)
i

(2.52)

is satisfied. This model has been successfully used to reconstruct the WTW and the
e-MID, see Cimini et al. (2015). For clarification, the e-MID is an electronic market for
interbank deposits in Europe.

2A precise definition of all network statistics used throughout this thesis is provided in Appendix A.
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So far, we introduced fitness models that offer a convenient solution for the construction
of unweighted graphs in light of limited available data, especially when precise infor-
mation on the degrees is missing. In a subsequent step, weights can be assigned to the
unweighted fitness models according to the strength of the nodes. Several approaches
have been proposed and are outlined in the following. We note that although these ap-
proaches have been developed for fitness models, they are rather general and can serve
for allocating weights to other unweighted network models as well.

Cimini et al. (2015) suggest to use the degrees inferred by a fitness model to construct an
ERGM subject to these degrees and the strength. More precisely, consider an undirected
random graph A ∈ {0, 1}n×n, with A = A>, a given strength sequence s = (s1, . . . , sn) ∈
Rn>0 and let d = (d1, . . . , dn) ∈

(
0, n (n− 1)

)n
denote the degree sequence deduced from

the fitness model,

di =

n∑
j=1
j 6=i

P (Aij = 1) =

n∑
j=1
j 6=i

z2sisj
1 + z2sisj

. (2.53)

Deriving the ERGM conditioned on the degree sequence d and the strength sequence
s leads to the following link probabilities and expected link weights. Let P ∗ denote
the probability distribution of the ERGM, the parameters λ = (λ1, . . . , λn) ∈ Rn
the Lagrange multipliers corresponding to the degree constraints, and the parame-
ters θ = (θ1, . . . , θn) ∈ Rn the Lagrange multipliers corresponding to the strength con-
straints,

P ∗ (Wij > 0) =
e−λi−λj−θi−θj

1− e−θi−θj + e−λi−λj−θi−θj
, (2.54)

E [Wij ] =
e−λi−λj−θi−θj(

1− e−θi−θj
) (

1− e−θi−θj + e−λi−λj−θi−θj
) , (2.55)

for all i 6= j and where Wij denotes the random weighted link between nodes i and j.
The Lagrange multipliers can be calibrated such that for each node the desired degree
and strength are satisfied in expectation, i.e. for all i = 1, . . . , n,

di =
n∑
j=1
j 6=i

P ∗ (Wij > 0) ,

si =

n∑
j=1
j 6=i

E [Wij ] .

(2.56)

Cimini et al. (2015) demonstrate the potential of this model by reconstructing two real
world networks, the WTW and the e-MID. Both networks are reproduced remarkably
well, in terms of unweighted as well as weighted network characteristics, such as the
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average nearest neighbors degree and strength, and the binary and weighted clustering
coefficient. As already stated above for the WTW in Eq. (2.47), the reason why the
empirical fitness model works well is because of the linear relationship of the exponential
function of the negative Lagrange multipliers and the nodes’ strengths, which the authors
also find for the e-MID network.

Another option to subsequently allocate weights to a network model of unweighted
graphs is given by the adjusted gravity model, presented in Cimini et al. (2015). Let the
network model for unweighted directed graphs be described by the random binary graph
matrix A ∈ {0, 1}n×n and the probability distribution P defining the link probabilities.
To ensure that the given in- and out-strength of each node are met in expectation, Ci-
mini et al. (2015) suggest to allocate the following weights w ∈ Rn×n≥0 to a realization a
of A,

wij =
s

(out)
i s

(in)
j

s(total)P (Aij = 1)
aij , (2.57)

where s(total) denotes the total weight of the network, i.e. s(total) =
∑n

i=1 s
(out)
i =

∑n
i=1 s

(in)
i .

It is straightforward to prove that this model satisfies the in- and out-strength of each
node in expectation. In combination with the directed fitness model, see Eq. (2.50), Ci-
mini et al. (2015) call this model the “degree-corrected gravity model” and demonstrate
that this approach reconstructs the in- and out-strengths of the WTW and the e-MID
remarkably well.

A fundamentally different approach for weight allocation is provided by Gandy and
Veraart (2017a), who propose exponentially distributed weights, i.e. for all i, j = 1, . . . , n
and i 6= j,

Wij |Wij > 0 ∼ Exp (αij) . (2.58)

Moreover, to generate networks from this distribution Gandy and Veraart (2017a) de-
veloped a Markov Chain Monte Carlo (MCMC) sampler. By iteratively selecting cycles
of different length across the network matrix and shifting weight along the chosen cycle,
the MCMC sampler creates a sequence of weighted graphs that all match the desired
row and column sums exactly, and that converges to the exponential distributions of
Eq. (2.58). In Gandy and Veraart (2017b), the authors demonstrate the remarkable
performance of their model, consisting of an undirected fitness model as described in
Eq. (2.50) combined with the MCMC sampler, by reconstructing a number of credit
default swap exposure networks.

2.2.2 Randomized Fitness Variables

A second strand of literature takes a more analytic view on fitness models by randomiz-
ing the fitness variables. Following Caldarelli et al. (2002); Servedio et al. (2004); Gandy
and Veraart (2017a), we start by introducing the general concepts. Subsequently, the
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degree distribution is fitted to follow a power law, since this class of distributions ap-
pears ubiquitously in real world quantities. For particular choices of the link probability
function and the distribution of the random fitness variables, closed form expressions for
the distributions of interest can then be derived.

Consider an undirected (and unweighted) network with n ∈ N nodes, each equipped with
a non-negative random fitness variable Xi ∈ R≥0, for i = 1, . . . , n. Moreover, let the
random fitness variables Xi be i.i.d. according to some probability density function ρX .
The probability that a link exists between two nodes i and j depends on the realized
fitness variables xi and xj and is defined by a function f : R2

≥0 → [0, 1], hence, the
link probability is given by f (xi, xj). We shortly remark, that the case of undirected
networks naturally implies that f should be symmetric in its arguments, i.e. we want
f (xi, xj) = f (xj , xi) to hold.

Next, we define the function d : R → (0, n− 1) which computes the expected degree of
a node. For a node i with realized fitness x, we have

d (x) := E

 n∑
j=1
j 6=i

f (x,Xj)


= (n− 1)E [f (x,X)] , since Xj are i.i.d. ∀j 6= i

= (n− 1)

∫ ∞
0

f (x, z) ρX (z) dz.

(2.59)

Moreover, we define the random variable Y := d (X) as the expected degree of a node
with random fitness variable X. For the function d being continuous and strictly mono-
tonic, i.e. the inverse d−1 exists, the density of ρY of Y can be derived as described in the
transformation theorem of probability densities. The following analyses and discussed
models are restricted to d being strictly monotonically increasing. In this case, we get

ρY (y) =
∂

∂y
P (d (X) ≤ y) =

∂

∂y
P
(
X ≤ d−1 (y)

)
=

∂

∂y
FX
(
d−1 (y)

)
= ρX

(
d−1 (y)

) ∂
∂y
d−1 (y) ,

(2.60)

where FX denotes the cumulative distribution function of X. In addition, we know
from the inverse function theorem that the derivative of d−1 (y) is given by 1/d′ (x), and
hence,

ρY (y) =
ρX (x)

d′ (x)
. (2.61)

The density function ρY denotes the degree distribution of the networks generated by
the random fitness variables and the link probability function. Since many real world
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networks have been found to exhibit degree distributions that follow a power law, fitting
ρY to power law distributions is of particular interest. Power law degree distributions
describe networks where a small number of ‘big’ nodes maintains many links, while
most nodes are ‘small’ and maintain only few links. In fact, power laws are known to
appear ubiquitously in real world quantities, network examples include the Internet, the
connectivity of cities and the interbank market, see Clauset et al. (2009). Therefore, we
are interested in fitting the degree distribution ρY (y) to follow a power law with exponent
α ∈ R<0 on the finite range [d0, d∞] ⊆ (0, n− 1], where ds := limx→s d (x). Note that for
d strictly monotonically increasing, it follows that d0 < d∞. Hence, recalling y = d (x),
we want

ρY (y) = cyα

⇔ ρY (d (x)) = cd (x)α ,
(2.62)

to hold. The parameter c is a constant ensuring the normalization condition
∫ d∞
d0

cyαdy = 1.
For α = −1, ∫ d∞

d0

cy−1dy = 1

⇔ c [log (d∞)− log (d0)] = 1

⇔ c =

(
log

(
d∞
d0

))−1

.

(2.63)

For α 6= −1, ∫ d∞

d0

cy−αdy = 1

⇔ c

α+ 1

[
dα+1
∞ − dα+1

0

]
= 1

⇔ c =
α+ 1

dα+1
∞ − dα+1

0

.

(2.64)

Note that since d0 < d∞ holds, c is positive for all α ∈ R<0.

Combining Eq. (2.61) and Eq. (2.62) yields

ρX (x)

d′ (x)
= c (d (x))α

⇔ ρX (x) = c (d (x))α d′ (x) .

(2.65)

Integrating both sides of Eq. (2.65) from 0 to x gives

R (x) :=

∫ x

0
ρX (z) dz =

∫ x

0
c (d (z))α d′ (z) dz

=

{
c (log (d (x))− log (d0)) , if α = −1
c

α+1

(
d (x)α+1 − dα+1

0

)
, if α 6= −1.

(2.66)
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Solving for d (x) leads to

d (x) =

{
exp

[
1
cR (x)

]
d0, if α = −1[

α+1
c R (x) + dα+1

0

] 1
α+1 , if α 6= −1.

(2.67)

For certain forms of the link probability function f and the distribution ρX of the fitness
variables, closed form expressions for the quantities of interest can be derived. In the
following, we present the examples studied in Caldarelli et al. (2002); Servedio et al.
(2004); Gandy and Veraart (2017a).

A natural first choice for the link probability function f is to consider the product of
possibly transformed fitness variables, i.e.

f (xi, xj) = g (xi)h (xj) . (2.68)

As already pointed out above, in the case of undirected graphs, we want f to be sym-
metric in its arguments, i.e. f (xi, xj) = f (xj , xi) should hold. For that reason, we set
g (x) ≡ h (x).

Theorem 2.2.1 (Fitness model with f (xi, xj) = g (xi) g (xj), arbitrary ρX , and
power law degree distribution with exponent α = −1)
For any arbitrary probability distribution ρX of the fitness variables X, there exists a
function g, such that the link probability function f (xi, xj) = g (xi) g (xj) generates
networks with degrees that are power law distributed with exponent (−1) on the finite
range [d0, d∞], i.e. ρY (d (x)) = cd (x)−1. Moreover, the function g is given by

g (x) = β

(
γ

β

)R(x) [ log (γ)− log (β)

γ − β

]1/2

, (2.69)

where β = d0/ (n− 1) and γ = d∞/ (n− 1). The domain of the power law distribution,
i.e. 0 < β < γ ≤ 1, can be chosen arbitrarily within the following constraint

γ2 log (γ)− log (β)

γ − β
≤ 1. (2.70)

Proof
For a node with realized fitness variable x, we get the following expected degree (i.e. by
inserting f in Eq. (2.59)),

d (x) = (n− 1)

∫ ∞
0

f (x, z) ρX (z) dz = (n− 1) g (x)

∫ ∞
0

g (z) ρX (z) dz

= (n− 1) g (x)E [g (Z)] .

(2.71)
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Combining Eq. (2.71) and Eq. (2.67) for α = −1, gives

(n− 1) g (x)E [g (Z)] = exp

[
1

c
R (x)

]
d0. (2.72)

Computing the expected value of both sides of Eq. (2.72) with respect to the random
fitness variable X, and recalling R (x) =

∫ x
0 ρX (z) dz, yields∫ ∞

0
(n− 1) g (x)E [g (Z)] ρX (x) dx =

∫ ∞
0

exp

[
1

c
R (x)

]
d0ρX (x) dx

⇔ (n− 1)E [g (Z)]E [g (X)] = d0

[
c exp

[
1

c
R (x)

]]∞
0

⇔ (n− 1)
(
E [g (X)]

)2
= d0c

[
exp

(
1

c

)
− 1

]
⇔ E [g (X)] =

[
d0c

n− 1

(
e1/c − 1

)]1/2

.

(2.73)

Substituting c from Eq. (2.63), gives

E [g (X)] =

[
d0

n− 1

(
log

(
d∞
d0

))−1(
exp

(
log

(
d∞
d0

))
− 1

)]1/2

=

[
d0

n− 1

(
log

(
d∞
d0

))−1(d∞
d0
− 1

)]1/2

=

[(
log

(
d∞
d0

))−1 d∞ − d0

n− 1

]1/2

.

(2.74)

Moreover, from Eq. (2.59) we see that d0 = β (n− 1) and d∞ = γ (n− 1) holds for
some β, γ ∈ (0, 1] and β < γ. This reformulation is convenient as it allows to simplify
equations.

Equation (2.74) can be rewritten to

E [g (X)] =

[(
log

(
γ

β

))−1

(γ − β)

]1/2

=

[
γ − β

log (γ)− log (β)

]1/2

. (2.75)

By inserting the expected value of g (X) from Eq. (2.75) and c from Eq. (2.63) into
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Eq. (2.72), we can derive the functional form of g,

(n− 1) g (x)E [g (Z)] = exp

[
1

c
R (x)

]
d0

⇔ g (x) =
d0

n− 1
exp

[
1

c
R (x)

]
E [g (Z)]−1

⇔ g (x) =
d0

n− 1
exp

[
log

(
d∞
d0

)
R (x)

] [
γ − β

log (γ)− log (β)

]−1/2

⇔ g (x) = β

(
γ

β

)R(x) [ log (γ)− log (β)

γ − β

]1/2

.

(2.76)

Note that g (x) > 0 holds for all x ∈ R≥0 and g is strictly monotonically increasing in x
since β < γ. Since g defines the link probability function f (xi, xj) = g (xi) g (xj) ∈ [0, 1],
we also require that g (x) ≤ 1 has to hold. Because of the monotonicity, it suffices to
ensure that limx→∞ g (x) ≤ 1 holds,

lim
x→∞

g (x) ≤ 1

⇔ lim
x→∞

β

(
γ

β

)R(x) [ log (γ)− log (β)

γ − β

]1/2

≤ 1

⇔ β

(
γ

β

)[
log (γ)− log (β)

γ − β

]1/2

≤ 1

⇔ γ2 log (γ)− log (β)

γ − β
≤ 1.

(2.77)

Hence, requiring g (x) ≤ 1 induces a dependence between β and γ. In other words, we
can choose d0 ∈ (0, n− 1) (or d∞ ∈ (0, n− 1)) freely, while Eq. (2.77) defines a bound
for d∞ (respectively d0).

Remark 2.2.2 (Fitnes model with f (xi, xj) = g (xi) g (xj), arbitrary ρX , and
power law degree distribution with arbitrary exponent α)
Servedio et al. (2004) state that for arbitrary exponents α of the power law distribution,
the necessary calculations can be derived analogously. Hence, for any distribution ρX of
the fitness variables X and a power law distribution cyα, there exists a function g such
that the degrees of the generated networks follow the chosen power law distribution.

While Theorem 2.2.1 allows for arbitrary distributions ρX of the random fitness variables
X and derives the implied functional form of g, we can also allow for arbitrary functions
g and derive the induced distribution ρX , as the following theorem shows.
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Theorem 2.2.3 (Fitness model with f (xi, xj) = g (xi) g (xj), with g monotoni-
cally increasing, and power law degree distribution with arbitrary exponent
α)
For any monotonically increasing function g : R≥0 → (0, 1], there exists a probability den-
sity function ρX for the random fitness variables, such that the link probability function
f (xi, xj) = g (xi) g (xj) generates networks with degrees that are power law distributed
with exponent α on the finite range [d0, d∞], i.e. ρY (d (x)) = cd (x)α holds. Moreover,
the probability density function ρX is given by

ρX (x) = c (n− 1)α+1 E [g (X)]α+1 g (x)α g′ (x) . (2.78)

The domain of the power law distribution is such that d0 ∈ (0, n− 1) (or d∞ ∈ (0, n− 1))
can be chosen arbitrarily, while d∞ (respectively d0) is defined by

d∞
d0

=
g∞
g0
, for α = −1,

dα+1
∞ − dα+1

0

gα+1
∞ − gα+1

0

= (n− 1)α+1 E [g (Z)]α+1 , for α 6= −1,

(2.79)

where gs := limx→s g (s).

Proof
The implied form of the density function ρX can be derived by inserting Eq. (2.71) in
Eq. (2.65),

ρX (x) = cd (x)α d′ (x)

= c
[

(n− 1) g (x)E [g (Z)]
]α

(n− 1) g′ (x)E [g (Z)]

= c (n− 1)α+1 E [g (Z)]α+1 g (x)α g′ (x) .

(2.80)

We note that in order for ρX being well defined, g has to be monotonically increasing in
x and g (x) > 0 has to hold for all x ∈ R≥0. Furthermore, because of the link probability
function f , also g (x) ≤ 1 has to be satisfied for all x.

To ensure that ρX truly constitutes a probability density function, we analyze the nor-
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malization condition. For α = −1,

1 =

∫ ∞
0

ρX (x) dx

⇔ 1 =

∫ ∞
0

c (n− 1)α+1 E [g (Z)]α+1 g (x)α g′ (x) dx

⇔ 1 =

∫ ∞
0

cg (x)−1 g′ (x) dx

⇔ 1 = c
[

log
(
g (x)

)]∞
0

⇔ 1 = c log

(
g∞
g0

)
⇔ 1 =

(
log

(
d∞
d0

))−1

log

(
g∞
g0

)
, by Eq. (2.63)

⇔ d∞
d0

=
g∞
g0
,

(2.81)

where gs := limx→s g (x). Hence, we can either choose the lower or the upper bound of the
domain of the power law distribution, while the other bound is defined by Eq. (2.81).

For α 6= −1,

1 =

∫ ∞
0

ρX (x) dx

⇔ 1 =

∫ ∞
0

c (n− 1)α+1 E [g (Z)]α+1 g (x)α g′ (x) dx

⇔ 1 = c (n− 1)α+1 E [g (Z)]α+1 1

α+ 1

[
g (x)α+1

]∞
0

⇔ 1 = c (n− 1)α+1 E [g (Z)]α+1 1

α+ 1

[
gα+1
∞ − gα+1

0

]
⇔ 1 =

α+ 1

dα+1
∞ − dα+1

0

(n− 1)α+1 E [g (Z)]α+1 1

α+ 1

[
gα+1
∞ − gα+1

0

]
,

by Eq. (2.64)

⇔ dα+1
∞ − dα+1

0

gα+1
∞ − gα+1

0

= (n− 1)α+1 E [g (Z)]α+1 .

(2.82)
Hence, we can either choose the lower or the upper bound for the domain of the power
law distribution, while the other bound is defined by Eq. (2.82).

A more difficult form for the link probability function is a summation of the fitness vari-
ables f (xi, xj) = f̃ (xi + xj). Nevertheless, this case can still be solved for exponentially
distributed random fitness variables.
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Theorem 2.2.4 (Fitness model with f (xi, xj) = f̃ (xi + xj), X ∼ Exp (1), and
power law degree distribution with arbitrary exponent α)
Let the random fitness variables be exponentially distributed with rate parameter 1, i.e.
X ∼ Exp (1). There exists a link probability function f (xi, xj) = f̃ (xi + xj), that gen-
erates networks with degrees that are power law distributed with exponent α on the finite
range [d0, d∞], i.e. such that ρY (d (x)) = cd (x)α holds. Moreover, the link probability
function f is given by

f (xi, xj) =
d (xi + xj)− d′ (xi + xj)

n− 1
. (2.83)

The domain of the power law distribution can be chosen arbitrarily for α ≤ −2. For
α ∈ (−2, 0), the domain is subject to the constraint

d∞
d0
≤ e, for α = −1,

d∞
d0
≤ (α+ 2)

1
α+1 , for α ∈ (−2,−1) ∪ (−1, 0) .

(2.84)

Proof
For a node with realized fitness variable x, we get the following expected degree (i.e. by
inserting f in Eq. (2.59)),

d (x) = (n− 1)

∫ ∞
0

f̃ (x+ z) ρX (z) dz, (2.85)

substituting u = x+ z,

d (x) = (n− 1)

∫ ∞
x

f̃ (u) ρX (u− x) du. (2.86)

For exponentially distributed fitness variables X ∼ Exp (1), we get,

d (x) = (n− 1)

∫ ∞
x

f̃ (u) e−(u−x)du

= (n− 1) ex
∫ ∞
x

f̃ (u) e−udu

⇔ 1

n− 1
e−xd (x) =

∫ ∞
x

f̃ (u) e−udu.

(2.87)

Differentiating both sides w.r.t. x gives

1

n− 1

[
−d (x) e−x + d′ (x) e−x

]
= −f̃ (x) e−x

⇔ d (x)− d′ (x)

n− 1
= f̃ (x) .

(2.88)
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Hence, the link probability function is given by

f (xi, xj) = f̃ (xi + xj) =
d (xi + xj)− d′ (xi + xj)

n− 1
. (2.89)

Note that d (x) (and hence also d′ (x)) is completely defined by Eq. (2.67), since in
this example the fitness variables are set to be exponentially distributed, i.e. R (x) =∫ x

0 ρX (z) dz =
∫ x

0 e
−zdz = 1− e−x.

Since f determines the link probability, we have to ensure that f (xi, xj) ∈ [0, 1] for all
xi, xj ∈ R. Recalling d (x) from Eq. (2.67)

d (x) =

{
exp

[
1
cR (x)

]
d0, if α = −1,[

α+1
c R (x) + dα+1

0

] 1
α+1 , if α 6= −1,

(2.90)

where R (x) = 1− e−x and hence ∂
∂xR (x) = e−x. The derivative of d is given by

d′ (x) =

{
d (x) 1

ce
−x, if α = −1,

1
α+1

[
α+1
c R (x) + dα+1

0

] −α
α+1 α+1

c e−x, if α 6= −1,

=

{
d (x) 1

ce
−x, if α = −1,

d (x)−α 1
ce
−x, if α 6= −1,

=

d (x) log
(
d∞
d0

)
e−x, if α = −1, by Eq. (2.63)

d (x)−α
dα+1
∞ −dα+1

0
α+1 e−x, if α 6= −1, by Eq. (2.64).

(2.91)

Hence for d0 < d∞ it follows d′ (x) > 0, i.e. d (x) is strictly monotonically increasing.

For α = −1, the lower bound of f̃ has to hold for all x ∈ R>0,

0 ≤ f̃ (x) ⇔ 0 ≤
d (x)− d (x) 1

ce
−x

n− 1

⇔ 0 ≤ 1− 1

c
e−x.

(2.92)

Note that the right hand side is increasing in x. Therefore, it suffices to consider the
lower bound of the support of x,

0 ≤ f̃ (x) ⇔ 0 ≤ lim
x→0

[
1− 1

c
e−x
]

⇔ 0 ≤ 1− log

(
d∞
d0

)
⇔ d∞

d0
≤ e.

(2.93)
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For the upper bound of f̃ , we get,

1 ≥ f̃ (x) ⇔ 1 ≥
d (x)− d (x) 1

ce
−x

n− 1

⇔ n− 1 ≥ d (x)

[
1− 1

c
e−x
]
.

(2.94)

Note that the right hand side is increasing in x. Therefore, it suffices to consider the
upper bound of the support of x,

1 ≥ f̃ (x) ⇔ n− 1 ≥ lim
x→∞

d (x)

[
1− 1

c
e−x
]

⇔ n− 1 ≥ lim
x→∞

d (x)

⇔ n− 1 ≥ lim
x→∞

exp

[
1

c
R (x)

]
d0

⇔ n− 1 ≥ lim
x→∞

exp

[
log

(
d∞
d0

)(
1− e−x

)]
d0

⇔ n− 1 ≥ d∞,

(2.95)

which is satisfied by the definition of d∞.

For α 6= −1, the lower bound of f̃ has to hold for all x ∈ R>0,

0 ≤ f̃ (x) ⇔ 0 ≤
d (x)− d (x)−α 1

ce
−x

n− 1

⇔ 0 ≤ d (x)− d (x)−α
1

c
e−x

⇔ 0 ≤ 1− d (x)−α−1 1

c
e−x

⇔ 0 ≤ 1−
[
α+ 1

c
R (x) + dα+1

0

]−1 1

c
e−x

⇔ 0 ≤ 1−
[(
dα+1
∞ − dα+1

0

) (
1− e−x

)
+ dα+1

0

]−1 1

c
e−x

⇔ 0 ≤ 1−
[(
dα+1
∞ − dα+1

0

)
(ex − 1) + dα+1

0 ex
]−1 1

c

⇔ 0 ≤ 1−
[
dα+1
∞ (ex − 1) + dα+1

0

]−1 1

c
.

(2.96)

Note that the right hand side is increasing in x. Therefore, it suffices to consider the
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lower bound of the support of x,

0 ≤ f̃ (x) ⇔ 0 ≤ lim
x→0

[
1−

[
dα+1
∞ (ex − 1) + dα+1

0

]−1 1

c

]
⇔ 0 ≤ 1− d−α−1

0

dα+1
∞ − dα+1

0

α+ 1

⇔ 1 ≥ dα+1
∞ − dα+1

0

dα+1
0

1

α+ 1

⇔ 1 ≥

((
d∞
d0

)α+1

− 1

)
1

α+ 1
⇔ (?) .

(2.97)

For α ∈ (−1, 0),

(?) ⇔ (α+ 2) ≥
(
d∞
d0

)α+1

,

⇔ (α+ 2)
1

α+1 ≥ d∞
d0
.

(2.98)

For α ∈ (−2,−1),

(?) ⇔ (α+ 2) ≤
(
d∞
d0

)α+1

,

⇔ (α+ 2)
1

α+1 ≥ d∞
d0
.

(2.99)

For α ∈ (−∞,−2],

(?) ⇔ (α+ 2) ≤
(
d∞
d0

)α+1

, (2.100)

which is always satisfied, because the left hand side is negative and the right hand side
positive.

For the upper bound of f̃ , we get,

1 ≥ f̃ (x) ⇔ 1 ≥
d (x)− d (x)−α 1

ce
−x

n− 1

⇔ n− 1 ≥ d (x)

[
1− d (x)−α−1 1

c
e−x
]

⇔ n− 1 ≥ d (x)

[
1−

[
dα+1
∞ (ex − 1) + dα+1

0

]−1 1

c

]
.

(2.101)

Note that the right hand side is increasing in x. Therefore, it suffices to consider the
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upper bound of the support of x,

1 ≥ f̃ (x) ⇔ n− 1 ≥ lim
x→∞

d (x)

[
1−

[
dα+1
∞ (ex − 1) + dα+1

0

]−1 1

c

]
⇔ n− 1 ≥ lim

x→∞
d (x)

⇔ n− 1 ≥ lim
x→∞

[
α+ 1

c
R (x) + dα+1

0

] 1
α+1

⇔ n− 1 ≥ lim
x→∞

[(
dα+1
∞ − dα+1

0

) (
1− e−x

)
+ dα+1

0

] 1
α+1

⇔ n− 1 ≥ d∞,

(2.102)

which is satisfied by the definition of d∞.

Remark 2.2.5 (Generalization to Directed Graphs)
As Gandy and Veraart (2017a) show for the fitness model of Theorem 2.2.4, it is straight-
forward to generalize the models presented in this section to directed graphs. In this case
we can fit either the in- or the out-degree distribution to follow a power law. In fact, all
calculations stay the same, but the link probabilities f (xi, xj) are interpreted as directed
links from node i to node j.

Note that it is non-trivial to further generalize fitness models to produce both a desired
in- and out-degree distribution simultaneously.

2.3 Further Network Reconstruction Techniques

Besides ERGMs and fitness models, there exist further approaches to reconstruct fi-
nancial networks based on scarce information. Comparisons of some of the proposed
methods are provided by the Basel Committee on Banking Supervision (2015b), Maz-
zarisi and Lillo (2017), and Anand et al. (2018). A general conclusion from these papers
is that each model focuses on the adequate reproduction of a few network characteristics
such as the density, but falls short of reproducing others. Hence, the adequacy of a
method strongly depends on whether the considered network reflects the characteristics
under focus. In the following we give an overview over the main approaches.

Maximum entropy (ME) by Elsinger et al. (2013); Upper (2011); Upper and
Worm (2004)

A popular approach for reconstructing networks based only on the row and column sums
is the ME model. Without further information, a natural simplifying assumption is to
consider the margins, i.e., the relative row and column sums, to be independent. This

leads to a network w̃ with link weights w̃ij = s
(out)
i s

(in)
j /

∑
s

(out)
i , where s

(out)
i denotes

52



2 Mathematical Preliminaries

the sum of row i and s
(in)
j the sum of column j. A problem with w̃ is that weights are

also allocated on the diagonal, while most real-world networks do not exhibit self-loops.
Therefore, the constrained optimization problem of minimizing the Kullback–Leibler
divergence to w̃, while satisfying the row and column sums as well as a zero diagonal, is
considered and solved via the RAS algorithm.

A drawback of the ME model is that the resulting graphs are almost completely con-
nected. Typical real-world financial networks, however, are sparse. Moreover, it has
been shown that the ME model underestimates systemic risk; see, e.g., Anand et al.
(2015); Mistrulli (2011). To address these issues, various modified approaches have been
developed. For example, Drehmann and Tarashev (2013) consider randomly perturbed
ME networks to relax the independence assumption. In addition, Baral and Fique (2012)
replace the independence prior by a fitted Gumbel copula, and thus reduce the density.

Minimum and low density by Anand et al. (2015)

In contrast to the ME model, Anand et al. (2015) propose a minimum density model.
Their aim is to create as few links as needed to satisfy the given row and column sums.
This can again be formulated as a constrained optimization problem, where the objective
function is a cost function scaling with the number of links. Furthermore, Anand et al.
(2015) extend their model to reconstruct disassortative networks. Disassortativity is a
commonly observed feature and means that nodes with few edges tend to be connected
to nodes with many edges and vice versa. This characteristic is included through an ad-
ditional penalty term in the objective function which measures the divergence (relative
entropy) to a probability matrix capturing the disassortativity. Anand et al. (2015) also
developed a heuristic procedure to generate such networks. Moreover, they report that
their model overestimates systemic risk.

Empirical Bayesian methodology by Gandy and Veraart (2017b)

Gandy and Veraart (2017b) propose an empirical Bayesian methodology comprising a
fitness model to reconstruct directed and weighted networks, based on the row and
column sums plus an additional network statistic such as the density. Moreover, they
include the possibility of some links being known. The basic model is split in two steps.
First, independent Bernoulli distributed links are drawn: P

(
Wij > 0

)
= pij , where Wij

denotes the random variables representing a weighted link from node i to node j. Second,
these links are assigned exponentially distributed weights: Wij |Wij > 0 ∼ Exp

(
λij
)
.

Gandy and Veraart (2017a) have shown that under mild conditions for any choice of
p ∈ [0, 1]n×n, there exists a λ ∈ (0,∞)n×n, such that the row and column sums are
fulfilled in expectation. Furthermore, they consider different choices for p and λ. One
option is to choose all entries of p and λ to be identical, which leads to an Erdős–Rényi
graph. This model can be calibrated to match a desired network statistic in expectation,
e.g., the network density.
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In order to achieve a core-periphery structure, Gandy and Veraart (2017b) suggest using
two constant link probabilities: one for links connecting a large bank with any other bank
and one for links connecting two small banks. In addition, hierarchical models are de-
fined, where the basic model is embedded into a larger Bayesian model that randomizes
p and λ. Three examples of such models are studied. The first is defined by pij following
a Beta distribution and λij following a Gamma distribution. The second is a fitness
model with fitness variables Xi ∼ Exp (1). For this setting, Gandy and Veraart derive a
link probability function pij

(
Xi, Xj

)
such that the resulting model exhibits a power law

degree distribution, see Theorem 2.2.4. As a third example, Gandy and Veraart consider
the same link probabilities as in Cimini et al. (2015), see Eq. (2.48), but allocate weights
based on an MCMC sampler that generates a sequence of matrices fulfilling the row and
column sums exactly. In addition, the MCMC sampler allows deriving the distribution
of the conditional network model.

Probability map by Ha laj and Kok (2013)

Based on county level exposures of 89 banks, disclosed by the EBA’s EU-wide stress test
(see http://www.eba.europa.eu), Ha laj and Kok (2013) construct a map of link prob-
abilities by aggregating the banks’ exposures by countries. To sample networks, links
are drawn successively at random and are kept with the corresponding probability of
the probability map. Once a link is kept, its relative weight of unallocated interbank
liabilities is sampled uniformly on [0, 1]. This process is repeated until all interbank
liabilities are allocated.
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3 Notes on the ERGMs with Desired In-
and Out-Strength Sequence

As pointed out in the introduction to ERGMs, the existence and uniqueness of the solu-
tion to general ERGMs has not yet been solved and depends substantially on the chosen
constraints. Here, we start filling this gap by analyzing the existence and uniqueness
of the solution to the specific ERGM with desired in- and out-strength sequence. The
results are of special interest as they (a) provide new insight into the generated graph
structure and (b) imply a novel algorithm for calibrating this class of ERGMs.

3.1 Existence of a Solution

Consider the directed and weighted ERGM that fulfills in expectation

(i) an in-strength sequence s(in) =
(
s

(in)
1 , . . . , s

(in)
n

)
∈ Rn>0, describing the desired

inflowing weight of each node,

(ii) and an out-strength sequence s(out) =
(
s

(out)
1 , . . . , s

(out)
n

)
∈ Rn>0, describing the

desired outflowing weight of each node.

Let the set of considered graphs G be given by

G =
{
w ∈ Nn×n≥0 : w11 = · · · = wnn = 0

}
. (3.1)

The ERGM is formally described by the constrained maximum entropy problem

max
P∈P

S (P ) = max
P∈P
−
∑
w∈G

P (w) log
(
P (w)

)
, (3.2)
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subject to ∑
w∈G

P (w) = 1,

∑
w∈G

P (w)
n∑
i=1

wij = s
(in)
j , for j = 1, . . . , n,

∑
w∈G

P (w)
n∑
j=1

wij = s
(out)
i , for i = 1, . . . , n.

(3.3)

Solving the ERGM as usual via the method of Lagrange multipliers, leads to the following
expected link weights, for i, j = 1, . . . , n and i 6= j,

E [Wij ] =
e−λ

(out)
i −λ(in)j

1− e−λ
(out)
i −λ(in)j

, (3.4)

where
(
λ

(in)
1 , . . . , λ

(in)
n

)
∈ Rn denote the Lagrange multipliers belonging to the con-

straints on the in-strength sequence, and
(
λ

(out)
1 , . . . , λ

(out)
n

)
∈ Rn the Lagrange multi-

pliers belonging to the constraints on the out-strength sequence. To simplify notation

and calculations, in the following we write ai := exp
(
−λ(out)

i

)
and bi := exp

(
−λ(in)

i

)
.

Similar to the weighted ERGM derived in detail in Section 2.1.3 (compare Eq. (2.38)),
the following condition has to be satisfied,

aibj < 1, (3.5)

for all i, j = 1, . . . , n and i 6= j.

The parameters can be calibrated based on the matrix of expected weights,

E [W ] =





0 a1b2
1−a1b2

a1b3
1−a1b3 . . . . . . a1bn

1−a1bn s
(out)
1

a2b1
1−a2b1

. . . a2b3
1−a2b3 . . . . . . a2bn

1−a2bn s
(out)
2

...
. . .

...
...

...
. . .

...
...

...
. . . an−1bn

1−an−1bn

...
anb1

1−anb1 . . . . . . . . . anbn−1

1−anbn−1
0 s

(out)
n

s
(in)
1 s

(in)
2 . . . . . . . . . s

(in)
n

. (3.6)
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Hence, the question of the existence of a solution to the ERGM with desired in- and
out-strength sequence can be reformulated to the question whether and for which s(in)

and s(out) there exist vectors a = (a1, . . . , an) ∈ Rn>0 and b = (b1, . . . , bn) ∈ Rn>0, that
satisfy Eq. (3.5) and fulfill the row and column sums of the matrix of Eq. (3.6). The
following theorem answers this question.

Theorem 3.1.1 (Existence of a Solution to the ERGM with Desired In- and
Out-Strength Sequence)
The directed weighted ERGM that fulfills in expectation an in-strength sequence s(in) =(
s

(in)
1 , . . . , s

(in)
n

)
∈ Rn>0, and an out-strength sequence s(out) =

(
s

(out)
1 , . . . , s

(out)
n

)
∈ Rn>0,

as specified by the optimization problem given in Eqs. (3.2) and (3.3), has a solution if
and only if the in- and out-strength sequences satisfy the following two conditions,

(i)
n∑
i=1

s
(out)
i =

n∑
j=1

s
(in)
j , (3.7)

(ii) s
(in)
j <

n∑
i=1
i 6=j

s
(out)
i , for all j = 1, . . . , n. (3.8)

In other words, there exist vectors a = (a1, . . . , an) ∈ Rn>0 and b = (b1, . . . , bn) ∈ Rn>0

that satisfy Eq. (3.5) and fulfill the row and column sums of the matrix of Eq. (3.6).

Proof
The first direction “⇒” is trivial. Let the vectors a ∈ Rn>0 and b ∈ Rn>0 constitute a
solution to the ERGM under consideration. The following holds,

n∑
i=1

s
(out)
i =

n∑
i=1

n∑
j=1
j 6=i

aibj
1− aibj

=
n∑
j=1

n∑
i=1
i 6=j

aibj
1− aibj

=
n∑
j=1

s
(in)
j , (3.9)

i.e. the condition of Eq. (3.7) is fulfilled. Similarly, it follows,

s
(in)
j =

n∑
i=1
i6=j

aibj
1− aibj

<

 n∑
i=1
i6=j

aibj
1− aibj

+
n∑
i=1
i6=j

n∑
k=1
k 6=i,j

aibk
1− aibk︸ ︷︷ ︸

>0

=
n∑
i=1
i6=j

n∑
k=1
k 6=i

aibk
1− aibk

=
n∑
i=1
i6=j

s
(out)
i ,

(3.10)

i.e. the condition of Eq. (3.8) is fulfilled.

The second direction “⇐” is more complicated to formalize. The proof is based on the
observation that by iteratively adjusting the row parameters (a1, . . . , an) such that the
row sums are fulfilled, and subsequently adjusting the column parameters (b1, . . . , bn)
such that the column sums are fulfilled, the vectors a and b converge to the solution.
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To better understand what is going on, we start by illustrating the methodology via an
example.

Example 3.1.2
Let the desired row and column sums be given by s(out) = (12, 1, 8, 3) and s(in) =
(4, 4, 1, 15). We start with a homogeneous matrix where each element is assigned a

weight of 1/ (4 · 3)
∑4

i=1 s
(out)
i = 24/12 = 2, see Eq. (3.12). Moreover, let the row and

column parameters all be identical, i.e. a1 = . . . = an = b1 = . . . = bn and hence,

a2
1

1− a2
1

= 2 ⇒ a1=

(
2

3

)1/2

= 0.8165. (3.11)

The following matrices illustrate the changes taking place when updating the row and
column parameters iteratively. The ε variables denote the excess (or missing) weight
of the rows and columns. Whenever a row (resp. column) has too much weight, the
corresponding row (resp. column) parameter will decrease in the subsequent step. This
means all elements of the concerned row (resp. column) will decrease (marked in blue).
Analogously, in case a row (resp. column) is missing weight, the corresponding parameter
and all elements of the concerned row (resp. column) will increase (marked in green). The
magnitude of the change of each element is reflected by the intensity of the color (scaled
to 100% in each step). The arrows next to the parameters indicate if the parameter was
increased or decreased.

We start with the homogeneous matrix pictured in Eq. (3.12),



0 2 2 2 a1=0.8165 ε
(out)
1 =6−12=−6

2 0 2 2 a2=0.8165 ε
(out)
2 =6−1=5

2 2 0 2 a3=0.8165 ε
(out)
3 =6−8=−2

2 2 2 0 a4=0.8165 ε
(out)
4 =6−3=3

b1=0.8165 b2=0.8165 b3=0.8165 b4=0.8165
∑
i|ε

(out)
i |=16

ε
(in)
1 =6−4=2 ε

(in)
2 =6−4=2 ε

(in)
3 =6−1=5 ε

(in)
4 =6−15=−9

∑
i|ε

(in)
i |=18 .

(3.12)
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Iteration 1: Adjusting the row parameters leads to



0 4 4 4 a1=0.9798 ↑ ε
(out)
1 =12−12=0

0.3333 0 0.3333 0.3333 a2=0.3062 ↓ ε
(out)
2 =1−1=0

2.6666 2.6666 0 2.6666 a3=0.8907 ↑ ε
(out)
3 =8−8=0

1 1 1 0 a4=0.6124 ↓ ε
(out)
4 =3−3=0

b1=0.8165 b2=0.8165 b3=0.8165 b4=0.8165

ε
(in)
1 =4−4=0 ε

(in)
2 =7.67−4=3.67 ε

(in)
3 =5.33−1=4.33 ε

(in)
4 =7−15=−8

∑
i|ε

(in)
i |=16 .

(3.13)

Iteration 1: Adjusting the column parameters leads to



0 1.8647 0.5754 9.8736 a1=0.9798 ε
(out)
1 =12.31−12=0.31

0.3333 0 0.1288 0.3962 a2=0.3062 ε
(out)
2 =0.86−1=−0.14

2.6666 1.4495 0 4.7302 a3=0.8907 ε
(out)
3 =8.85−8=0.85

1 0.6858 0.2958 0 a4=0.6124 ε
(out)
4 =1.95−3=−1.02

b1=0.8165 b2=0.6643 ↓ b3=0.3728 ↓ b4=0.9268 ↑
∑
i|ε

(out)
i |=2.32

ε
(in)
1 =4−4=0 ε

(in)
2 =4−4=0 ε

(in)
3 =1−1=0 ε

(in)
4 =15−15=0 .

(3.14)

Note that within each column the magnitude by which each element changes follows
the order of the row parameters (a1, . . . , an). Moreover, note that the sum of absolute
errors decreases with each iteration. This is because of two reasons. Firstly, during

every step weight of 1
2

∑
i|ε

(in)
i | (resp. 1

2

∑
i|ε

(out)
i |) is shifted. Hence, the error induced

in the row sums (resp. column sums) is bounded by the size of the current error. Second,
decreasing some elements of a row (resp. column) while increasing others leads to part
of the error canceling out across the row (resp. column) sums. Consider for example
the matrix pictured in Eq. (3.14). Decreasing b2 and b3 induces a negative error of
(1.8647− 4) + (0.5754− 4) = −5.5599 in the first row, while increasing b4 induces a
positive error of 9.8736 − 4 = 5.8736. Hence, in total the error induced in the first row
by updating the column parameters equals only 0.3137.
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Iteration 2: Adjusting the row parameters leads to



0 1.8496 0.5728 9.5776 a1=0.9770 ↓ ε
(out)
1 =0

0.3884 0 0.1464 0.4652 a2=0.3426 ↑ ε
(out)
2 =0

2.4565 1.3711 0 4.1724 a3=0.8704 ↓ ε
(out)
3 =0

1.6040 1.0048 0.3912 0 a4=0.7544 ↑ ε
(out)
4 =0

b1=0.8165 b2=0.6643 b3=0.3728 b4=0.9268

ε
(in)
1 =4.45−4=0.45 ε

(in)
2 =4.23−4=0.23 ε

(in)
3 =1.11−1=0.11 ε

(in)
4 =14.22−15=−0.78

∑
i|ε

(in)
i |=1.57 .

(3.15)

Iteration 2: Adjusting the column parameters leads to



0 1.7376 0.5116 10.2250 a1=0.9770 ε
(out)
1 =12.47−12=0.47

0.3689 0 0.1347 0.4693 a2=0.3426 ε
(out)
2 =0.97−1=−0.03

2.1714 1.3013 0 4.3057 a3=0.8704 ε
(out)
3 =7.78−8=−0.22

1.4596 0.9612 0.3538 0 a4=0.7544 ε
(out)
4 =2.77−3=−0.23

b1=0.7866 ↓ b2=0.6496 ↓ b3=0.3464 ↓ b4=0.9323 ↑
∑
i|ε

(in)
i |=0.95

ε
(in)
1 =4−4=0 ε

(in)
2 =4−4=0 ε

(out)
3 =1−1=0 ε

(in)
4 =15−15=0 .

(3.16)

Setting the stopping criteria to
∑

i|ε
(out)
i | ≤ 10−5, the implementation in Matlab stops

after 15 iterations with the following result:



0 1.6505 0.4913 9.8582 a1=0.9704 ε
(out)
1 =1.36e−06

0.3702 0 0.1362 0.4936 a2=0.3532 ε
(out)
2 =−1.22e−07

2.0559 1.2959 0 4.6482 a3=0.8796 ε
(out)
3 =−1.21e−06

1.5739 1.0536 0.3725 0 a4=0.7995 ε
(out)
4 =−1.28e−06

b1=0.7648 b2=0.6417 b3=0.3395 b4=0.9356

ε
(in)
1 =−1.01e−07 ε

(in)
2 =−1.05e−07 ε

(in)
3 =−2.34e−09 ε

(in)
4 =−1.03e−06 .

(3.17)

The formal proof is structured as follows.

(1) First, we show that for arbitrary vectors b, there exists a unique, admissible (in
the sense of fulfilling Eq. (3.5)) vector a, such that all row sums are satisfied. Vice
versa, for arbitrary vectors a, there exists a unique, admissible vector b, such that
all column sums are satisfied.
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(2) We proceed to prove that in each iteration (updating the row and column parame-
ters) the sum of absolute errors over all row and column sums is strictly decreasing.

(3) With the exception of a special case, the amount by which the global error decreases
in each iteration is bounded from below by ε

(n−1)2
, where ε denotes the error at

the current iteration.

(4) Last, we discuss the special case and show that it eventually also leads to the
solution.

(1) We begin by proofing that in each iteration we can indeed find a vector a (resp. b)
such that all row sums (resp. column sums) are satisfied. Moreover, the respective vector
is unique. For this purpose, we define the following continuous functions for the row and
column sums of the matrix of expected weights, given in Eq. (3.6), for i, j = 1, . . . , n,

f
(out)
i (a, b) :=

 n∑
j=1
j 6=i

aibj
1− aibj

− s(out)
i ,

f
(in)
j (a, b) :=

 n∑
i=1
i 6=j

aibj
1− aibj

− s(in)
j .

(3.18)

Solving the ERGM is equivalent to finding the global root of these functions, which
is non trivial. However, for the proposed methodology, it suffices to show that there
always exists a root for each of the functions, when considered independently. Note that
for every vector a = (a1, . . . , an) ∈ Rn>0 and every vector b = (b1, . . . , bn) ∈ Rn>0, the
following limits hold, for i = 1, . . . , n,

lim
ai↘0

f
(out)
i (a, b) = 0− s(out)

i < 0,

lim
ai↗min{b−1

j :j=1,...,n∧j 6=i}
f

(out)
i (a, b) =∞− s(out)

i > 0,
(3.19)

and analogously, for j = 1, . . . , n,

lim
bj↘0

f
(in)
j (a, b) = 0− s(in)

j < 0,

lim
bj↗min{a−1

i :i=1,...,n∧i 6=j}
f

(in)
j (a, b) =∞− s(in)

j > 0.
(3.20)

Hence, we know from the intermediate value theorem that for all vectors a and b, there

61



3 Notes on the ERGMs with Desired In- and Out-Strength Sequence

always exist a∗i ∈ R>0 and b∗j ∈ R>0 such that

f
(out)
i (a, b)

∣∣∣
ai=a∗i

= 0,

f
(in)
j (a, b)

∣∣∣
bj=b∗j

= 0.
(3.21)

Since the functions f
(out)
i and f

(in)
j are strictly monotonically increasing in all variables,

the roots a∗i and b∗j are unique. Moreover, note that f
(out)
i depends only on ai and

b. Hence, for every vector b = (b1, . . . , bn) ∈ Rn>0 there exists a unique vector a∗ =

(a∗1, . . . , a
∗
n) ∈ Rn>0 such that f

(out)
i (a∗, b) = 0 holds for all i = 1, . . . , n. Analogously,

for every vector a = (a1, . . . , an) ∈ Rn>0 there exists a unique vector b∗ = (b∗1, . . . , b
∗
n) ∈

Rn>0 such that f
(in)
j (a, b∗) = 0 holds for all j = 1, . . . , n. Computing the roots a∗

and b∗ numerically is straightforward since the functions are continuous and strictly
monotonically increasing. Thus, we conclude that for arbitrary vectors b, there exists a
unique, admissible vector a, such that all row sums are satisfies, and vice versa.

(2) Next we prove that in each iteration the global error is strictly deceasing. Since
the parameters have to be updated several times, we denote the iteration number in
brackets, i.e. a (t) denotes the vector a after t iterations. As initial values any admissible
parameters a (0) ∈ Rn>0 and b (0) ∈ Rn>0, fulfilling the condition of Eq. (3.5), serve. For
example, we can start with homogeneous parameters a1 (0) = . . . = an (0) = b1 (0) =
. . . = bn (0), and hence,

n (n− 1)
a2

1 (0)

1− a2
1 (0)

= s(total)

⇔ a2
1 (0) =

s(total)

n (n− 1)

(
1− a2

1 (0)
)

⇔ a2
1 (0)

(
1 +

s(total)

n (n− 1)

)
=

s(total)

n (n− 1)

⇔ a2
1 (0) =

s(total)

n (n− 1)

n (n− 1)

n (n− 1) + s(total)

⇔ a1 (0) =

(
s(total)

n (n− 1) + s(total)

)1/2

,

(3.22)

where s(total) =
∑n

i=1 s
(out)
i denotes the total weight.

According to the result derived above (see (1)), we can adjust the vector a (0) → a (1),
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such that the row sums are fulfilled, i.e.

n∑
i=1

∣∣∣∣f (out)
i

(
a (1) , b (0)

)∣∣∣∣ =

n∑
i=1

∣∣∣∣
 n∑
j=1
j 6=i

ai (1) bj (0)

1− ai (1) bj (0)

− s(out)
i

∣∣∣∣ = 0 (3.23)

holds. While the row sums are satisfied at the moment, the column sums most probably
will not sum up to the desired values. We denote the sum of absolute errors of the

column sums by 2ε
(col)
1,0 , i.e.

n∑
j=1

∣∣∣∣f (in)
j

(
a (1) , b (0)

)∣∣∣∣ = 2ε
(col)
1,0 . (3.24)

Note that because the entire weight s(total) is allocated, the sum of weight that is missing
in some columns has to equal the sum of weight that is in excess in other columns. Hence,

when adjusting the column sums (by updating b accordingly), weight of amount ε
(col)
1,0

is shifted between the columns. Moreover, for those columns where weight is missing,
we have to increase the corresponding column parameter, and for those columns that
have too much weight, the corresponding parameters have to be decreased. We group
the parameters according to their direction of change,

B↑ :=
{
bj : f

(in)
j

(
a (1) , b (0)

)
< 0, for j = 1, . . . , n

}
,

B↓ :=
{
bj : f

(in)
j

(
a (1) , b (0)

)
> 0, for j = 1, . . . , n

}
,

B0 :=
{
bj : f

(in)
j

(
a (1) , b (0)

)
= 0, for j = 1, . . . , n

}
.

(3.25)

Next, we note that shifting weight of amount ε
(col)
1,0 between the columns can cause a

maximum error in the row sums of exactly 2ε
(col)
1,0 , as consequently weight of ε

(col)
1,0 could
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be missing in one row, while another row receives the same amount in excess,

n∑
i=1

∣∣∣∣f (out)
i

(
a (1) , b (1)

)∣∣∣∣
=

n∑
i=1

∣∣∣∣
 n∑
j=1
j 6=i

ai (1) bj (1)

1− ai (1) bj (1)

− s(out)
i

∣∣∣∣

=

n∑
i=1

∣∣∣∣
 n∑
j=1
j 6=i

ai (1) bj (1)

1− ai (1) bj (1)
− ai (1) bj (0)

1− ai (1) bj (0)
+

ai (1) bj (0)

1− ai (1) bj (0)

− s(out)
i

∣∣∣∣

=
n∑
i=1

∣∣∣∣
 n∑
j=1
j 6=i

ai (1) bj (1)

1− ai (1) bj (1)
− ai (1) bj (0)

1− ai (1) bj (0)

+

 n∑
j=1
j 6=i

ai (1) bj (0)

1− ai (1) bj (0)

− s(out)
i

︸ ︷︷ ︸
=0

∣∣∣∣

=
n∑
i=1

∣∣∣∣
 n∑
j=1
j 6=i

ai (1) bj (1)

1− ai (1) bj (1)
− ai (1) bj (0)

1− ai (1) bj (0)

∣∣∣∣
(∗)
≤

n∑
i=1

 n∑
j=1
j 6=i

∣∣∣∣ ai (1) bj (1)

1− ai (1) bj (1)
− ai (1) bj (0)

1− ai (1) bj (0)

∣∣∣∣


=
n∑
i=1

 ∑
bj∈B↑
j 6=i

ai (1) bj (1)

1− ai (1) bj (1)
− ai (1) bj (0)

1− ai (1) bj (0)



+

 ∑
bj∈B↓
j 6=i

ai (1) bj (0)

1− ai (1) bj (0)
− ai (1) bj (1)

1− ai (1) bj (1)


=

 ∑
bj∈B↑

n∑
i=1
i6=j

ai (1) bj (1)

1− ai (1) bj (1)
− ai (1) bj (0)

1− ai (1) bj (0)


+

 ∑
bj∈B↓

n∑
i=1
i6=j

ai (1) bj (0)

1− ai (1) bj (0)
− ai (1) bj (1)

1− ai (1) bj (1)


= 2ε

(col)
1,0 .

(3.26)
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Analyzing (∗) in more detail yields,

∣∣∣∣
 n∑
j=1
j 6=i

ai (1) bj (1)

1− ai (1) bj (1)
− ai (1) bj (0)

1− ai (1) bj (0)

∣∣∣∣

=

∣∣∣∣
 ∑
bj∈B↑

j 6=i

ai (1) bj (1)

1− ai (1) bj (1)
− ai (1) bj (0)

1− ai (1) bj (0)


︸ ︷︷ ︸

=:B1

−

 ∑
bj∈B↓

j 6=i

ai (1) bj (0)

1− ai (1) bj (0)
− ai (1) bj (1)

1− ai (1) bj (1)


︸ ︷︷ ︸

=:B2

∣∣∣∣

=

{
B1 −B2, for B1 ≥ B2

B2 −B1, for B1 ≤ B2

(3.27)

and hence equality in (∗) holds

for B1 ≥ B2 : B1 −B2 = B1 +B2 ⇔ B2 = 0 ⇔ B↓ \ bi = ∅,
for B1 ≤ B2 : B2 −B1 = B2 +B1 ⇔ B1 = 0 ⇔ B↑ \ bi = ∅.

(3.28)

Thus, equality in (∗) in Eq. (3.26) holds if and only if Eq. (3.28) is fulfilled for all i.
This means B↓ = ∅ or B↑ = ∅ has to hold. Since the total weight is always allocated,
whenever there exists a column with excess weight there is also at least one column that
is missing weight (and vice versa), i.e.

|B↓| > 0 ⇔ |B↑| > 0. (3.29)

Hence, Eq. (3.28) can only hold for all i when B↓ = B↑ = ∅. This in turn means all
row and column sums are satisfied and the current parameters constitute a solution.
The results of Eqs. (3.26) to (3.28) hold for every iteration t and also analogously when
updating the row parameters a. Therefore, updating iteratively the row and column

parameters by solving for the roots of each row function f
(out)
i and each column function

f
(in)
j , for i, j = 1, . . . , n, strictly decreases the error.

(3) It is left to show that the sequence by which the error decreases converges to zero
only if the parameters converge to a valid solution. To better understand the unfolding
dynamics when updating the parameters, consider the example pictured in Eq. (3.30).
W.l.o.g. let a (t+ 1) be such that the row sums are satisfied. Hence, next, we update the

column parameters b (t) → b (t+ 1). Furthermore, let ε
(in)
1 , . . . , ε

(in)
4 denote the current

error terms of each column.
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0 w12 w13 w14 w15 s
(out)
1 a1 (t+ 1)

w21 0 w23 w24 w25 s
(out)
2 a2 (t+ 1)

w31 w32 0 w34 w35 s
(out)
3 a3 (t+ 1)

w41 w42 w43 0 w45 s
(out)
4 a4 (t+ 1)

w51 w52 w53 w54 0 s
(out)
5 a5 (t+ 1)

s
(in)
1 + ε

(in)
1 s

(in)
2 − ε(in)

2 s
(in)
3 + ε

(in)
3 s

(in)
4 − ε(in)

4 s
(in)
5

b1 (t) ↓ b2 (t) ↑ b3 (t) ↓ b4 (t) ↑ b5 (t)

(3.30)

We denote by j⊕ the index of the column with the highest amount of excess weight and
by j	 the index of the column that is missing most weight, i.e.

f
(in)
j⊕

(
a (t+ 1) , b (t)

)
= max

{
f

(in)
j

(
a (t+ 1) , b (t)

)
: j = 1, . . . , n

}
,

f
(in)
j	

(
a (t+ 1) , b (t)

)
= min

{
f

(in)
j

(
a (t+ 1) , b (t)

)
: j = 1, . . . , n

}
.

(3.31)

In the example in Eq. (3.30), let j⊕ = 1 and j	 = 2.

Furthermore, we can define the following lower bound for the absolute error of columns
j⊕ and j	,

min

{
f

(in)
j⊕

(
a (t+ 1) , b (t)

)
,−f (in)

j	

(
a (t+ 1) , b (t)

)}
≥ min

{
ε
(col)
t+1,t

|B↑|
,
ε
(col)
t+1,t

|B↓|

}
≥
ε
(col)
t+1,t

n− 1
,

(3.32)

where 2ε
(col)
t+1,t =

∑n
j=1

∣∣∣f (in)
j

(
a (t+ 1) , b (t)

)∣∣∣ denotes the sum of absolute errors over all

columns and the sets B↑ and B↓ are defined as in Eq. (3.25) w.r.t the current iteration.

Updating the column parameters b (t)→ b (t+ 1), i.e. in the example of Eq. (3.30) this
means decreasing b1 and increasing b2, induces an error in the rows sums. However,
part of the induced error cancels out. Consider the example pictured in Eq. (3.30),
decreasing b1 leads to a decrease in all elements of the first column, marked in blue.

Since the first column has excess weight of amount ε
(in)
1 , the parameter b1 is decreased

until the elements of the first column jointly lose weight of amount ε
(in)
1 . This in turn

induces a negative error of ε1 in the row sums. Likewise, increasing b2 leads to an increase
in all elements of the second column, marked in green, which induces a positive error of

ε
(in)
2 in the row sums. However, part of the error induced to the row sums cancels out

as the decrease of wi1 is partly offset by the increase of wi2 in the sum of row i, for all
i = 3, . . . , n.
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Hence, by updating bj⊕ and bj	 , the overall error reduced in each of the rows i ∈
{1, . . . , n} \ {j⊕, j	} by the minimum of the change in the two elements wij⊕ and wij	 ,
i.e. by

min

{
ai (t+ 1) bj⊕ (t)

1− ai (t+ 1) bj⊕ (t)
−

ai (t+ 1) bj⊕ (t+ 1)

1− ai (t+ 1) bj⊕ (t+ 1)
,

ai (t+ 1) bj	 (t+ 1)

1− ai (t+ 1) bj	 (t+ 1)
−

ai (t+ 1) bj	 (t)

1− ai (t+ 1) bj	 (t)

}
.

(3.33)

Note, that the error that cancels out in each row is increasing in ai,

∂

∂ai

(
ai (t+ 1) bj⊕ (t)

1− ai (t+ 1) bj⊕ (t)
−

ai (t+ 1) bj⊕ (t+ 1)

1− ai (t+ 1) bj⊕ (t+ 1)

)
=

bj⊕ (t)(
1− ai (t+ 1) bj⊕ (t)

)2 −
bj⊕ (t+ 1)(

1− ai (t+ 1) bj⊕ (t+ 1)
)2 > 0,

(3.34)

where the last inequality holds because bj⊕ (t) > bj⊕ (t+ 1) and 0 <
(
1− aibj⊕ (t)

)
<(

1− aibj⊕ (t+ 1)
)
; and analogously,

∂

∂ai

(
ai (t+ 1) bj	 (t+ 1)

1− ai (t+ 1) bj	 (t+ 1)
−

ai (t+ 1) bj	 (t)

1− ai (t+ 1) bj	 (t)

)
=

bj	 (t+ 1)(
1− ai (t+ 1) bj	 (t+ 1)

)2 −
bj	 (t)(

1− ai (t+ 1) bj	 (t)
)2 > 0.

(3.35)

Moreover, note that the error ε
(in)
j of column j (compare the example pictured in

Eq. (3.30)), i.e. the change in weight by updating the column parameter bj , is distributed
along (n− 1) rows. Therefore, the element of the row with the highest parameter ai, for

i ∈ {1, . . . , n}\{j}, will change by at least ε
(in)
j / (n− 1). Thus, together with Eq. (3.32),

and as long as max {ai : i = 1, . . . , n} 6∈
{
aj⊕ , aj	

}
holds, we can define the following

lower bound for the reduction of the total error ε
(col)
t+1,t,

min
{(
w

(old)
ij⊕
− w(new)

ij⊕

)
,
(
w

(new)
ij	

− w(old)
ij	

)
: ai = max {a1, . . . , an}

}
≥

ε
(col)
t+1,t

(n− 1)2 ,
(3.36)

where

w
(old)
ij⊕

=
ai (t+ 1) bj⊕ (t)

1− ai (t+ 1) bj⊕ (t)
, w

(new)
ij⊕

=
ai (t+ 1) bj⊕ (t+ 1)

1− ai (t+ 1) bj⊕ (t+ 1)
,

w
(old)
ij	

=
ai (t+ 1) bj	 (t)

1− ai (t+ 1) bj	 (t)
, w

(new)
ij	

=
ai (t+ 1) bj	 (t+ 1)

1− ai (t+ 1) bj	 (t+ 1)
.

(3.37)
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Summing up, in each iteration where the highest row (resp. column) parameter has
a different index than the columns (resp. rows) with the highest positive and highest

negative error, we know that the global error ε
(col)
t+1,t (resp. ε

(row)
t+1,t+1 ) decreases at least by

an amount of
ε
(col)
t+1,t

(n−1)2
(resp.

ε
(row)
t+1,t+1

(n−1)2
).

Furthermore, we can derive a similar result, whenever there are at least two columns
(resp. rows) with positive error and two columns (resp. rows) with negative error. This
even holds in case the highest row (resp. column) parameter has the same index as
the column (resp. row) with the highest positive or negative error. Equation (3.38)

visualizes this case. W.l.o.g. let ε
(in)
1 > ε

(in)
3 , ε

(in)
2 > ε

(in)
4 , and a1 � a2 � a3, a4, a5 hold.

This means that updating the first column happens mainly in w21 and updating the
second column happens mainly in w12. More precisely, w21 is losing weight of at least

ε
(in)
1 / (n− 1) and w12 is gaining weight of at least ε

(in)
2 / (n− 1). As these changes do

not happen within the same row, the lower bound derived in Eq. (3.36) does not have
to hold. However, because column 3 is also updated, which means w13 is losing weight
of at least ε3/ (n− 1), this loss is offset by the gain of weight in w12. Hence, the global

error ε
(in)
t+1,t decreases at least by min

{
ε
(in)
2 , ε

(in)
3

}
/ (n− 1).





0 w12 w13 w14 w15 s
(out)
1 a1 � a2, a3, a4, a5

w21 0 w23 w24 w25 s
(out)
2 a2 � a3, a4, a5

w31 w32 0 w34 w35 s
(out)
3 a3

w41 w42 w43 0 w45 s
(out)
4 a4

w51 w52 w53 w54 0 s
(out)
5 a5

s
(in)
1 + ε

(in)
1 s

(in)
2 − ε(in)

2 s
(in)
3 + ε

(in)
3 s

(in)
4 − ε(in)

4 s
(in)
5

b1 ↓ b2 ↑ b3 ↓ b4 ↑ b5

(3.38)

The analogous case where a2 � a1 � a3, a4, a5 would lead to part of the error canceling

out in row 2, and amounting to at least min
{
ε
(in)
1 , ε

(in)
4

}
/ (n− 1). In general, we can

conclude the following. At the iteration t→ (t+ 1) let the parameters a (t+ 1) and b (t)
be such that the row sums are fulfilled. Further let,

ak (t+ 1) = max {ai (t+ 1) : i = 1, . . . , n} ,

ε
(in)
k,⊕ = max

{
ε
(in)
j : f

(in)
j

(
a (t+ 1) , b (t)

)
> 0, ∀j 6= k

}
> 0,

ε
(in)
k,	 = max

{
ε
(in)
j : f

(in)
j

(
a (t+ 1) , b (t)

)
< 0, ∀j 6= k

}
> 0.

(3.39)
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Updating the column parameters leads to weight added and removed on the respective

column elements and amounts to 2ε
(in)
t+1,t in absolute terms. Let γk2ε

(in)
t+1,t, with γk ∈ (0, 1)

denote the part of the weight change taking place in row k. Hence, the error induced in all

other row sums (besides row k) is bounded from above by (1− γk) 2ε
(in)
t+1,t. The global er-

ror ε
(out)
t+1,t+1, induced in all row sums, is decreasing by at least min

{
ε
(in)
k,⊕, ε

(in)
k,	

}
/ (n− 1),

2ε
(out)
t+1,t+1 =

n∑
i=1

∣∣∣f (out)
i

(
a (t+ 1) , b (t+ 1)

)∣∣∣
≤ (1− γk) 2ε

(in)
t+1,t +

∣∣∣f (out)
k

(
a (t+ 1) , b (t+ 1)

)∣∣∣
= (1− γk) 2ε

(in)
t+1,t +

∣∣∣ n∑
j=1
j 6=k

ak (t+ 1) bj (t+ 1)

1− ak (t+ 1) , bj (t+ 1)
− ak (t+ 1) bj (t)

1− ak (t+ 1) bj (t)

∣∣∣
≤ (1− γk) 2ε

(in)
t+1,t + γk2ε

(in)
t+1,t

− 2 min

{
ak (t+ 1) bk,⊕ (t)

1− ak (t+ 1) bk,⊕ (t)
−

ak (t+ 1) bk,⊕ (t+ 1)

1− ak (t+ 1) bk,⊕ (t+ 1)
,

ak (t+ 1) bk,	 (t+ 1)

1− ak (t+ 1) bk,	 (t+ 1)
−

ak (t+ 1) bk,	 (t)

1− ak (t+ 1) bk,	 (t)

}

≤ 2ε
(in)
t+1,t −

2 min
{
ε
(in)
k,⊕, ε

(in)
k,	

}
n− 1

.

(3.40)

The analogous holds when updating the row parameters.

(4) Hence, there are only two cases left to discuss.

(a) There is only one column (resp. row) with excess weight, which has the same index
as the highest row (resp. column) parameter, and there is at least one column
(resp. row) missing weight.

(b) There is only one column (resp. row) missing weight, which has the same index as
the highest row (resp. column) parameter, and there is at least one column (resp.
rows) with excess weight.

Case (4a) is illustrated in Eq. (3.41).
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0 w12 w13 w14 w15 s
(out)
1 a1 � a2, a3, a4, a5

w21 0 w23 w24 w25 s
(out)
2 a2

w31 w32 0 w34 w35 s
(out)
3 a3

w41 w42 w43 0 w45 s
(out)
4 a4

w51 w52 w53 w54 0 s
(out)
5 a5

s
(in)
1 + ε1 s

(in)
2 − ε2 s

(in)
3 − ε3 s

(in)
4 s

(in)
5

b1 ↓ b2 ↑ b3 ↑ b4 b5

(3.41)

Increasing the column parameters where weight is missing leads to an increase of weight
mostly at the elements of row 1 at the concerned columns, while decreasing the column
parameter of the column with excess weight can affect all other rows, excluding row 1.
Therefore, we cannot identify a lower bound for the error that is canceling out. In this

case the parameters are updated at follows. Let ε
(in)
1 be fixed to denote the error of the

first column sum at this precise iteration. First, only b1 is decreased, such that the first

column sum looses weight of (1/3) ε
(in)
1 . Afterwards, a2, . . . , an are increased until the

row sums are met again. This process is visualized in Eq. (3.42) and Eq. (3.43).





0 w12 w13 w14 w15 s
(out)
1 a1 � a2, a3, a4, a5

w21 0 w23 w24 w25 s
(out)
2 a2

w31 w32 0 w34 w35 s
(out)
3 a3

w41 w42 w43 0 w45 s
(out)
4 a4

w51 w52 w53 w54 0 s
(out)
5 a5

s
(in)
1 + ε

(in)
1 s

(in)
2 − ε(in)

2 s
(in)
3 − ε3 s

(in)
4 s

(in)
5

b1 ↓ b2 b3 b4 b5

(3.42)
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0 w12 w13 w14 w15 s
(out)
1 a1 � a2, a3, a4, a5

w21 0 w23 w24 w25 s
(out)
2 − ε(out)

2 a2 ↑
w31 w32 0 w34 w35 s

(out)
3 − ε(out)

3 a3 ↑
w41 w42 w43 0 w45 s

(out)
4 − ε(out)

4 a4 ↑
w51 w52 w53 w54 0 s

(out)
5 − ε(out)

5 a5 ↑

s
(in)
1 s

(in)
2 s

(in)
3 s

(in)
4 s

(in)
5

b1 b2 b3 b4 b5

(3.43)

Part of the error might cancel out, because the elements of columns 2 and 3, that are
missing weight, are now gaining weight from the increase of the row parameters. In
the following, we will further discuss what happens, if the error does not decrease, i.e.
increasing the row parameters leads mostly to an increase of weight in the other columns
sums. This happens for example if b4 � b2, b3.

Before we start explaining the dynamics of the new updating procedure, we note that
the product of the parameters aibj (for i 6= j) is always bounded from above by,

aibj
1− aibj

< s(total) ⇔ aibj < s(total) − s(total)aibj

⇔ aibj

(
1 + s(total)

)
< s(total)

⇔ aibj <
s(total)

1 + s(total)
.

(3.44)

Let al = max {ai : i = 1, . . . , n ∧ i 6= 1} denote the second highest row parameter. When

b1 is upated, the element wl1 has to lose weight of at least ε
(in)
1 / (3 (n− 1)). Therefore,

a lower bound for the decrease of parameter b1 (t)↘ b1 (t+ 1) can be defined,

al (t+ 1) b1 (t)

1− al (t+ 1) b1 (t)
− al (t+ 1) b1 (t+ 1)

1− al (t+ 1) b1 (t+ 1)
≥ ε

(in)
1

3 (n− 1)

⇔ al (t+ 1) b1 (t)− al (t+ 1) b1 (t+ 1)

(1− al (t+ 1) b1 (t)) (1− al (t+ 1) b1 (t+ 1))
≥ ε

(in)
1

3 (n− 1)

⇔ [b1 (t)− b1 (t+ 1)] al (t+ 1) ≥ ε
(in)
1

3 (n− 1)
(1− al (t+ 1) b1 (t))

(1− al (t+ 1) b1 (t+ 1)) ,
(3.45)
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and

[b1 (t)− b1 (t+ 1)] al (t+ 1) ≥ ε
(in)
1

3 (n− 1)
(1− al (t+ 1) b1 (t)) (1− al (t+ 1) b1 (t+ 1))

≥ ε
(in)
1

3 (n− 1)
(1− al (t+ 1) b1 (t))

2

≥ ε
(in)
1

3 (n− 1)

(
1− s(total)

1 + s(total)

)2

, with Eq. (3.44)

≥ ε
(in)
1

3 (n− 1)
(
1 + s(total)

)2
⇔ b1 (t)− b1 (t+ 1) ≥ ε

(in)
1

3 (n− 1)
(
1 + s(total)

)2
al (t+ 1)

.

(3.46)

Moreover, since

al (t+ 1) <
(

max {bj : j = 1, . . . , n ∧ j 6= l}
)−1 ≤

(
max {bj : j = 1, . . . , n ∧ j 6= 1, l}

)−1

holds, we can further conclude,

b1 (t)− b1 (t+ 1) ≥ ε
(in)
1

3 (n− 1)
(
1 + s(total)

)2
al (t+ 1)

>
ε
(in)
1 max {bj : j = 2, . . . , n ∧ j 6= l}

3 (n− 1)
(
1 + s(total)

)2
>
ε
(in)
1 min {bj : j = 2, . . . , n}
3 (n− 1)

(
1 + s(total)

)2 .

(3.47)

Note, that since we do not change b2, . . . , bn, the right hand side of Eq. (3.47) de-
fines a constant. This means that the performed iterations lead to a non-negligible
decrease in b1 in each step. As b1 decreases a2, . . . , an increase. Note that for
al (t+ 1) = max {ai (t+ 1) : i = 1, . . . , n ∧ i 6= 1}, after updating the column parameter

b1 (t)↘ b1 (t+ 1), the element wl1 has to carry weight of at least s
(in)
1 / (n− 1). Thus,

the following holds,

al (t+ 1) b1 (t+ 1)

1− al (t+ 1) b1 (t+ 1)
≥ s

(in)
1

n− 1

⇔ al (t+ 1) b1 (t+ 1) ≥ s
(in)
1 / (n− 1)

1 + s
(in)
1 / (n− 1)

⇔ al (t+ 1) ≥ s
(in)
1(

n− 1 + s
(in)
1

)
b1 (t+ 1)

.

(3.48)
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Hence, as the decrease in b1 is non-negligible, the increase in al is also non-negligible.
For that reason, after a finite number of iterations one of the following three cases will
happen first.

(i) One of the increasing row parameters will exceed a1. If, furthermore, the new
highest row parameter has a different index than the column with the highest
amount of excess weight (i.e. column 1) and the highest amount of missing weight,
we can return to the standard procedure, updating all column parameters, knowing
that the error will decrease by a non-negligible amount. Otherwise, we continue
the procedure until (ii) or (iii) occurs.

(ii) The parameter b1 will fall below two of the others column parameters. Let k1 and
k2 denote the indices of the new two highest column parameters. At this point, in-

creasing the row parameters leads to additional weight of at least ε
(in)
1 /

(
3 (n− 1)2

)
accumulating at column k, with k ∈ {k1, k2}. If column k is one of the columns
that is missing weight, a substantial part of the error is canceling out. Otherwise
we end up having two columns with excess weight, column 1 and column k. If,
furthermore, there are at least two columns missing weight, we can return to the
standard procedure, knowing from part (3) of the proof that the error is decreasing
substantially. Otherwise, if there is only one column missing weight, and further-
more, the highest row parameter has a different index than the only column that is
missing weight, we can return to the standard procedure, knowing from part (3) of
the proof that the error is decreasing substantially. The last case, where the only
column that is missing weight has the same index as the highest row parameter
equals case (4b) and is treated in the following.

(iii) The error in the first column sum falls below (1/2) ε
(in)
1 . The amount of weight

which has been removed from the first column sum must have been allocated
at one of the other columns. More precisely, there must exist a column k 6= 1

that received weight of at least (1/2) ε
(in)
1 / (n− 1). If column k is one of the

columns that is missing weight, a substantial part of the error is canceling out.
Otherwise we end up having two columns with excess weight, column 1 and column
k. If, furthermore, there are at least two columns missing weight, we can return
to the standard procedure, knowing from part (3) of the proof that the error is
decreasing substantially. Otherwise, if there is only one column missing weight,
and furthermore, the highest row parameter has a different index than the only
column that is missing weight, we can return to the standard procedure, knowing
from part (3) of the proof that the error is decreasing substantially. The last case,
where the only column that is missing weight has the same index as the highest
row parameter equals case (4b) and is treated in the following.

Case (4b) is illustrated in Eq. (3.49).

73



3 Notes on the ERGMs with Desired In- and Out-Strength Sequence





0 w12 w13 w14 w15 s
(out)
1 a1 � a2, a3, a4, a5

w21 0 w23 w24 w25 s
(out)
2 a2

w31 w32 0 w34 w35 s
(out)
3 a3

w41 w42 w43 0 w45 s
(out)
4 a4

w51 w52 w53 w54 0 s
(out)
5 a5

s
(in)
1 − ε1 s

(in)
2 + ε2 s

(in)
3 + ε3 s

(in)
4 s

(in)
5

b1 ↑ b2 ↓ b3 ↓ b4 b5

(3.49)

We proceed similar to case (4a). First, b1 is increased, such that column 1 gains weight

of ε
(in)
1 /2, and subsequently the row parameters a2, . . . , a5 are decreased, while a1 and

b2, . . . , b5 stay constant, compare the illustration in Eqs. (3.50) and (3.51).





0 w12 w13 w14 w15 s
(out)
1 a1 � a2, a3, a4, a5

w21 0 w23 w24 w25 s
(out)
2 a2

w31 w32 0 w34 w35 s
(out)
3 a3

w41 w42 w43 0 w45 s
(out)
4 a4

w51 w52 w53 w54 0 s
(out)
5 a5

s
(in)
1 − ε(in)

1 s
(in)
2 + ε

(in)
2 s

(in)
3 + ε

(in)
3 s

(in)
4 s

(in)
5

b1 ↑ b2 b3 b4 b5

(3.50)





0 w12 w13 w14 w15 s
(out)
1 a1 � a2, a3, a4, a5

w21 0 w23 w24 w25 s
(out)
2 + ε

(out)
2 a2 ↓

w31 w32 0 w34 w35 s
(out)
3 + ε

(out)
3 a3 ↓

w41 w42 w43 0 w45 s
(out)
4 + ε

(out)
4 a4 ↓

w51 w52 w53 w54 0 s
(out)
5 + ε

(out)
5 a5 ↓

s
(in)
1 s

(in)
2 s

(in)
3 s

(in)
4 s

(in)
5

b1 b2 b3 b4 b5

(3.51)
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As explained in Eqs. (3.45) and (3.46), a lower bound for the change in b1 can be
derived,

b1 (t+ 1)− b1 (t) ≥ ε
(in)
1

2 (n− 1)
(
1 + s(total)

)2
al (t+ 1)

, (3.52)

where al = max {ai : i = 1, . . . , n ∧ i 6= 1} <
(

max {bj : j = 1, . . . , n ∧ j 6= l}
)−1

. Fur-
thermore, analogously to Eq. (3.48) an upper bound for the value of ai for all i = 2, . . . , 5
can be defined,

ai (t+ 1) b1 (t)

1− ai (t) b1 (t)
≤ s(out)

i ⇔ ai (t+ 1) ≤
s

(out)
i(

1 + s
(out)
i

)
b1 (t)

. (3.53)

Hence, as long as the decrease in the error term is negligible, b1 keeps increasing by a non-
negligible amount and all row parameters a2, . . . , an keep decreasing by a non-negligible
amount.

After a finite number of iterations, one of the following cases will occur. Let bk =
max {bj : j = 1, . . . , n} denote the highest column parameter.

(i) For l 6= k and column k having excess weight, increasing b1 and decreasing al leads

to a reduction of weight of at least ε
(in)
1 /2 (n− 1)2 at the element wlk. Hence, the

decrease in the global error is non-negligible.

(ii) For l 6= k and column k being without error term, increasing b1 and decreasing al

leads to a reduction of weight of at least ε
(in)
1 /2 (n− 1)2 at the element wlk. Hence,

returning to the standard procedure, updating all column parameters leads to a
non-negligible part of the error canceling out in row 1, as increasing bk leads to an

increase in weight of at least ε
(in)
k / (n− 1) at the element w1k, and decreasing the

column parameters bj , for column j having excess weight, leads to a decrease of

weight of at least ε
(in)
j / (n− 1) at the element w1j .

(iii) For l = k, we continue increasing b1 and decreasing a2, . . . , an. When b1 is in-
creased, row k perceives the highest increase of weight, hence, in turn ak will
subsequently be decreased more than the other row parameters. Therefore, at
some point, ak will not be the highest row parameter any more and one of the
other cases proceeds.

(iv) For l 6= k and k = 1, we continue increasing b1 and decreasing a2, . . . , an. As the
column parameters b2, . . . , bn stay constant, there exists a finite number N ∈ N of
iterations, such that for every δ ∈ R>0, it holds that wij < δ for all i, j = 2, . . . , n.

This means that the entire weight of the row sums s
(out)
2 , . . . , s

(out)
5 is accumulated

in the first column. Since the second condition of the theorem, compare Eq. (3.8),
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requires that

s
(in)
1 <

n∑
i=1
i6=1

s
(out)
i , (3.54)

holds, the error of the first column can at most amount to
∑n

i,j=2
i 6=j

wij . Since this

sum converges to zero, the error in the first column sum, consequently, has to
converge to zero as well.

In fact, whenever the algorithm does not converge, we know that the given in- and out-
strength sequences are infeasible.

Figures 3.1 to 3.3 demonstrate the performance of the algorithm proposed above. For
feasible in- and out strength sequences, the algorithm converges quickly to an error of
zero, compare Fig. 3.1. In contrast, if the first condition of Theorem 3.1.1, i.e. Eq. (3.7),
is not fulfilled, the error converges exactly to the difference of the sum of the in-strength
sequence and the sum of the out-strength sequence, i.e. to the amount that is impossible
to satisfy, compare Fig. 3.2. Similarly, if the second condition of Theorem 3.1.1, i.e.
Eq. (3.8), is not fulfilled, the error again converges exactly to the amount of weight that
is impossible to satisfy, compare Fig. 3.3.

Figure 3.1: Performance of the algorithm proposed in the proof of Theorem 3.1.1 for an
exemplary desired in- and out-strength sequence of dimension n = 1, 000.
The plot on the left shows the decrease in the sum of absolute errors εt,
where t denotes the iterations. Here, one iteration includes updating both
the row and the column parameters once. The plot on the right shows the
desired in- and out-strength sequence.
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Figure 3.2: Performance of the algorithm proposed in the proof of Theorem 3.1.1 for an
exemplary desired in- and out-strength sequence of dimension n = 1, 000,

that do not satisfy the first condition of Eq. (3.7), since
∑1,000

i=1 s
(in)
i −∑1,000

i=1 s
(out)
i = 10, 177. The plot on the left shows the decrease in the sum

of absolute errors εt, where t denotes the iterations. Here, one iteration in-
cludes updating both the row and the column parameters once. The error
converges to the difference between the sum of the in-strength sequence and
the sum of the out-strength sequence, that is impossible to meet. The plot
on the right shows the desired in- and out-strength sequence.
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Figure 3.3: Performance of the algorithm proposed in the proof of Theorem 3.1.1
for an exemplary desired in- and out-strength sequence of dimension
n = 1, 000, that do not satisfy the second condition of Eq. (3.8), since

s
(in)
1 = 8, 356 > 3, 356 =

∑1,000
i=2 s

(out)
i and s

(out)
1 = 196, 541 > 191, 541 =∑1,000

i=2 s
(in)
i . The plot on the left shows the decrease in the sum of ab-

solute errors εt, where t denotes the iterations. Here, one iteration in-
cludes updating both the row and the column parameters once. Since
the error in the first iteration is extremely high, it is omitted here to
provide a clearer picture. The error converges to the following value∣∣s(in)

1 −
(∑1,000

i=2 s
(out)
i

) ∣∣+
∣∣s(out)

1 −
(∑1,000

i=2 s
(in)
i

) ∣∣ = 10, 000, which after up-

dating the row parameters equals the missing weight in the first column plus
the excess weight in columns 2 to n. The plot on the right shows the desired
in- and out-strength sequence.

3.2 Uniqueness of a Solution

Besides the existence of a solution to the ERGM with desired in- and out-strength
sequence, we can also show that the solution is unique up to certain equivalence classes.

Theorem 3.2.1 (Uniqueness of the Solution to the ERGM with Desired In-
and Out-Strength Sequence)
The solution to the ERGM with desired in- and out-strength sequence, established by
Theorem 3.1.1 and represented by the two vectors a = (a1, . . . , an) ∈ Rn>0 and b =
(b1, . . . , bn) ∈ Rn>0 is unique in the sense that all products aibj for i, j = 1, . . . , n and
i 6= j are unique. Hence, for all c ∈ R>0, a · c and b/c likewise constitute a solution,
describing the same probability distribution that solves the optimization problem given in
Eqs. (3.2) and (3.3).

Proof
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3 Notes on the ERGMs with Desired In- and Out-Strength Sequence

We have to show that the solution to the ERGM is unique regarding the product of all
aibj , where i 6= j. Recall from Theorem 2.1.3 that the probability distribution P solving
the constrained maximum entropy problem is unique. This means that the probability
P (w) is unique for all w ∈ G. Assume there exists a second solution denoted by ã and

b̃. Moreover, let w(0) denote the graph where all w
(0)
ij = 0. It follows that,

Pa,b

(
w(0)

)
= Pã,b̃

(
w(0)

)
⇔ Z−1

a,b e
−Ha,b(w(0))︸ ︷︷ ︸

=1

= Z−1

ã,b̃
e−Hã,b̃(w

(0))︸ ︷︷ ︸
=1

⇔ Za,b = Zã,b̃.

For all i, j = 1, . . . , n and i 6= j, let w(i,j) denote the graph where all elements are 0 and

w
(i,j)
ij = 1. This yields,

Pa,b

(
w(i,j)

)
= Pã,b̃

(
w(i,j)

)
⇔ Z−1

a,b e
−Ha,b(w(a,b))︸ ︷︷ ︸
=exp(−θab)

= Z−1

ã,b̃
e−Hã,b̃(w

(a,b))︸ ︷︷ ︸
=exp(−θ̃ab)

⇔ aibj = ãib̃j .

Hence, it follows that all products aibj are unique for all i, j = 1, . . . , n and i 6= j.
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4 Extended Fitness Models

This chapter provides a novel extension to randomized fitness models and mathematical
insight into empirical fitness models.

First, we extend the randomized fitness models introduced in Section 2.2.2 to a flexi-
ble degree distribution that allows fitting it to real-world networks. The advantage of
this model is a more precise reconstruction of scale-free networks, which is achieved by
offering more degrees of freedom to fit the desired degree distribution.

Second, the empirical fitness models discussed in Section 2.2.1 are analyzed analytically.
The nodes’ strength, which are often found to follow a power-law distribution, have been
shown to serve remarkably well as fitness variables in the reconstruction of economic and
financial networks. We provide mathematical insight into this phenomenon by analyzing
the degree distribution induced by combining power-law distributed fitness variables and
the commonly used link probability function.

4.1 Fitness Models with Flexible Power-Law Degree
Distributions

Many real-world networks seem to exhibit power law distributed degrees, see Clauset
et al. (2009). This is especially true for the upper tail of the distribution. The lower
tail, however, is often not well described by a pure power law distribution, see e.g. the
degree distributions of the German and Italian interbank market, pictured in Figs. 5.1
to 5.3. Another problem with the power law degree distributions of the randomized
fitness models derived in Section 2.2.2 is that they offer only two degrees of freedom,
the exponent α ∈ R<0 and either the lower bound d0 or the upper bound d∞ of the
support. An exception is the fitness model given in Theorem 2.2.4, which for α ≤ −2
allows three degrees of freedom. It is therefore difficult to fit a given degree distribution
to, for example, a desired mean, median and some quantile, as done in Chapter 5 for
the German and Italian interbank market. Morover, Chapter 5 shows that fitting the
(in- and out-) degree distribution plays a crucial role in network reconstruction, as many
further network characteristics seem to follow as a natural consequence.

For these reasons, we suggest a mixture distribution for the degrees, consisting of a
uniform distribution in the lower tail and a power law distribution in the upper tail.
Let Y = d (X) again denote the random variable representing the degrees of nodes with
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4 Extended Fitness Models

random fitness variables X. We want the random degrees Yi, for i = 1, . . . , n, of a
network with n nodes, to have the following density function,

ρY (y) = c
(
L−α × 1{d0≤y≤L} + y−α × 1{L<y≤d∞}

)
. (4.1)

The parameter c acts as normalization constant, α is the exponent of the power law
distribution, and L divides the support into the initial uniform and subsequent power
law distributed part. In comparison to the degree distribution of the models discussed
in Section 2.2.2, the distribution in Eq. (4.1) provides an additional degree of freedom,
and hence, facilitates fitting to desired characteristics.

The parameter c can be derived via the normalization condition
∫ d∞
d0

ρY (y) dy = 1.
For α = 1,

1 =

∫ d∞

d0

c
(
L−1 × 1{d0≤y≤L} + y−1 × 1{L<y≤d∞}

)
dy

⇔ 1 = c
[
L−1 (L− d0) + log (d∞)− log (L)

]
⇔ c =

[
1− L−1d0 + log (d∞)− log (L)

]−1
.

(4.2)

For α 6= 1,

1 =

∫ d∞

d0

c
(
L−α × 1{d0≤y≤L} + y−α × 1{L<y≤d∞}

)
dy

⇔ 1 = cL−α (L− d0) +
c

1− α
[
d1−α
∞ − L1−α]

⇔ c =

[
L1−α − L−αd0 +

1

1− α
(
d1−α
∞ − L1−α)]−1

.

(4.3)

Note that for increasing functions d, it follows d0 ≤ L < d∞ and, hence, c is positive for
all α ∈ R>0.

The following theorem extends Theorem 2.2.4 to the more flexible degree distribution of
Eq. (4.1).

Theorem 4.1.1 (Fitness model with f (xi, xj) = f̃ (xi + xj), X ∼ Exp (1), and
flexible power law distribution with arbitrary exponent α)
Consider a fitness model with exponentially distributed random fitness variables, i.e. X ∼
Exp (1). There exists a link probability function f (xi, xj) = f̃ (xi + xj) that generates
networks with degrees distributed according to Eq. (4.1), i.e. such that

ρY (d (x)) = c
(
L−α × 1{d0≤d(x)≤L} + d (x)−α × 1{L<d(x)≤d∞}

)
(4.4)

holds. Moreover, the link probability function f takes the following form

f (xi, xj) =
d (xi + xj)− d′ (xi + xj)

ñ
, (4.5)
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where ñ = n − 1 for undirected networks and ñ = 2 (n− 1) for directed networks. The
function d is given by

d (x) =


R (x) c−1Lα + d0, if x ≤ t
exp

[(
R (x)− cL−1 (L− d0)

)
c−1 + log (L)

]
, if x > t and α = 1[(

R (x)− cL−α (L− d0)
)

1−α
c + L1−α

] 1
1−α

, if x > t and α 6= 1,

(4.6)

where t denotes the point where d (t) = L holds.
The domain of the power law distribution can be chosen arbitrarily for α ≥ 2. For
α ∈ (0, 2), the domain is subject to the constraint

d∞
L
≤ e, for α = 1,

d∞
L
≤ (2− α)

1
1−α , for α ∈ (0, 1) ∪ (1, 2) .

(4.7)

Proof
Recall the function d computing the expected degree of a node with realized fitness x,

d (x) = ñ

∫ ∞
0

f (x, z) ρX (z) dz, (4.8)

where ñ = n − 1 for undirected networks and ñ = 2 (n− 1) for directed networks. As
shown in Section 2.2.2, for d strictly monotonically increasing, we know that d0 ≤ L < d∞
holds and from the transformation theorem of probability densities it follows,

ρY (d (x)) =
ρX (x)

d′ (x)
. (4.9)

Combining Eq. (4.1) and Eq. (4.9) yields

ρX (x)

d′ (x)
= c

(
L−α × 1{d0≤d(x)≤L} + d (x)−α × 1{L<d(x)≤d∞}

)
⇔ ρX (x) = c

(
L−α × 1{d0≤d(x)≤L} + d (x)−α × 1{L<d(x)≤d∞}

)
d′ (x) .

(4.10)

Let t be defined such that d (t) = L holds. Integrating both sides of Eq. (4.10) from 0
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to x gives

R (x) :=

∫ x

0
ρX (z) dz

=

∫ x

0
c
(
L−α × 1{d0≤d(z)≤L} + d (z)−α × 1{L<d(z)≤d∞}

)
d′ (z) dz

=

{∫ x
0 cL

−αd′ (z) dz, if d0 ≤ d (x) ≤ L∫ t
0 cL

−αd′ (z) dz +
∫ x
t c (d (z))−α d′ (z) dz, if L < d (x) ≤ d∞

=

{∫ x
0 cL

−αd′ (z) dz, if x ≤ t∫ t
0 cL

−αd′ (z) dz +
∫ x
t c (d (z))−α d′ (z) dz, if x > t

=


cL−α (d (x)− d0) , if x ≤ t
cL−1 (d (t)− d0) + c (log (d (x))− log (d (t))) , if x > t and α = 1

cL−α (d (t)− d0) + c
1−α

(
(d (x))1−α − (d (t))1−α

)
, if x > t and α 6= 1

=


cL−α (d (x)− d0) , if x ≤ t
cL−1 (L− d0) + c (log (d (x))− log (L)) , if x > t and α = 1

cL−α (L− d0) + c
1−α

(
(d (x))1−α − L1−α

)
, if x > t and α 6= 1.

(4.11)

Solving for d (x) leads to

d (x) =


R (x) c−1Lα + d0, if x ≤ t
exp

[(
R (x)− cL−1 (L− d0)

)
c−1 + log (L)

]
, if x > t and α = 1[(

R (x)− cL−α (L− d0)
)

1−α
c + L1−α

] 1
1−α

, if x > t and α 6= 1.

(4.12)

For exponentially distributed fitness variables X ∼ Exp (1), we know from Eqs. (2.85)
to (2.88), that

f (xi, xj) = f̃ (xi + xj) =
d (xi + xj)− d′ (xi + xj)

ñ
. (4.13)

Note that d (x) (and hence also d′ (x)) is completely defined by Eq. (4.12). Since f deter-
mines the link probability, we have to ensure that f (xi, xj) ∈ [0, 1] for all xi, xj ∈ R≥0.
Recalling that R (x) =

∫ x
0 ρX (z) dz =

∫ x
0 e
−zdz = 1−e−x, we can compute the derivative
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of d,

d′ (x) =


e−xc−1Lα, if x ≤ t
exp

[(
R (x)− cL−1 (L− d0)

)
c−1 + log (L)

]
e−xc−1, if x > t and α = 1

1
1−α

[(
R (x)− cL−α (L− d0)

)
1−α
c + L1−α

] 1
1−α−1

e−x 1−α
c , if x > t and α 6= 1.

=


e−xc−1Lα, if x ≤ t
d (x) e−xc−1, if x > t and α = 1

d (x)α e−xc−1, if x > t and α 6= 1.

(4.14)

Furthermore, t can be derived,

L = d (t)

L = R (t) c−1Lα + d0

(L− d0) cL−α = 1− e−t

⇔ t = − log
(

1−
(
L− d0

)
cL−α

)
.

(4.15)

We start with the case of x ≤ t. The link probability function f̃ is then given by

f̃ (x) =
1

ñ

[
d (x)− e−xc−1Lα

]
. (4.16)

Since d is increasing in x, the same holds for f̃ . Therefore, it suffices to consider the
lower and upper bound of the support of x to ensure that f̃ (x) ∈ [0, 1] holds. The lower
bound yields,

0 ≤ lim
x→0

f̃ (x)

⇔ 0 ≤ d0 − c−1Lα

⇔ 0 ≤

{
d0 −

[
1− L−1d0 + log (d∞)− log (L)

]
L, for α = 1, by Eq. (4.2)

d0 −
[
L1−α − L−αd0 + 1

1−α
(
d1−α
∞ − L1−α)]Lα, for α 6= 1, by Eq. (4.3)

⇔ 0 ≤

{
2d0 − L− L log

(
d∞
L

)
, for α = 1

d0 − L+ d0 − Lα

1−α
(
d1−α
∞ − L1−α) , for α 6= 1

⇔ d0 ≥

{
L
2

(
1 + log

(
d∞
L

))
, for α = 1

L
2

(
1 + Lα−1

1−α
(
d1−α
∞ − L1−α)) , for α 6= 1.

(4.17)
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Since d0 ≤ L has to hold, Eq. (4.17) implies for α = 1

2 ≥ 1 + log

(
d∞
L

)
⇔ eL ≥ d∞. (4.18)

Analogously, Eq. (4.17) implies for α ∈ (0, 1)

2 ≥ 1 +
Lα−1

1− α
(
d1−α
∞ − L1−α) ⇔ 1− α ≥

(
d∞
L

)1−α
− 1

⇔ (2− α)
1

1−α ≥ d∞
L
.

(4.19)

Analogously, Eq. (4.17) implies for α ≥ 1

2 ≥ 1 +
Lα−1

1− α
(
d1−α
∞ − L1−α) ⇔ 2− α ≤

(
d∞
L

)1−α
, (4.20)

which is fulfilled for α ≥ 2 and which leads to the same condition as in Eq. (4.19) for
α ∈ (1, 2).

Regarding the upper bound of f̃ , for x ≤ t, we get

1 ≥ lim
x→∞

f̃ (x) = lim
x→∞

1

ñ

[
d (x)− e−xc−1Lα

]
⇔ ñ ≥ d∞,

(4.21)

which is satisfied by the definition of d∞.

In the case of x > t and α = 1, the link probability function f̃ is then given by

f̃ (x) =
1

ñ

[
d (x)− d (x) e−xc−1

]
=

1

ñ

[
d (x)

(
1− e−xc−1

)]
. (4.22)

Since d is increasing in x, the same holds for f̃ . Therefore, it suffices to consider the
lower and upper bound of the support of x to ensure that f̃ (x) ∈ [0, 1] holds. The lower
bound yields,

0 ≤ f̃ (t) ⇔ 0 ≤ 1− e−tc−1

⇔ 0 ≤ 1−
(

1−
(
L− d0

)
cL−1

)
c−1, by Eq. (4.15)

⇔ 0 ≤ 1− c−1 +
(
L− d0

)
L−1

⇔ 0 ≤ 1−
[
1− L−1d0 + log (d∞)− log (L)

]
+ 1− d0L

−1, by Eq. (4.2)

⇔ 0 ≤ 1− log

(
d∞
L

)
⇔ d∞ ≤ eL.

(4.23)
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Regarding the upper bound of f̃ , for x > t and α = 1, we get

1 ≥ lim
x→∞

f̃ (x) = lim
x→∞

1

ñ

[
d (x)

(
1− e−xc−1

)]
⇔ ñ ≥ d∞,

(4.24)

which is satisfied by the definition of d∞.

In the case of x > t and α 6= 1, the link probability function f̃ is then given by

f̃ (x) =
1

ñ

[
d (x)− d (x)α e−xc−1

]
=

1

ñ
d (x)

[
1− d (x)α−1 e−xc−1

]
=

1

ñ
d (x)

[
1−

[(
R (x)− cL−α (L− d0)

)1− α
c

+ L1−α
]−1

e−xc−1

]

=
1

ñ
d (x)

[
1−

[
1− α
c

R (x)− (1− α)L−α (L− d0) + L1−α
]−1

e−xc−1

]

=
1

ñ
d (x)

[
1−

[
(1− α)

[
L1−α − L−αd0 +

1

1− α
(
d1−α
∞ − L1−α)] (1− e−x)

− (1− α)L−α (L− d0) + L1−α

]−1

e−xc−1


=

1

ñ
d (x)

[
1−

[ [
(1− α)L−α (L− d0) +

(
d1−α
∞ − L1−α)] (1− e−x)

− (1− α)L−α (L− d0) + L1−α

]−1

e−xc−1


=

1

ñ
d (x)

1−

[
d1−α
∞ −

[
(1− α)L−α (L− d0) +

(
d1−α
∞ − L1−α)] e−x]−1

e−xc−1


=

1

ñ
d (x)

1−

[
d1−α
∞ ex −

[
(1− α)L−α (L− d0) +

(
d1−α
∞ − L1−α)] ]−1

c−1

 .
(4.25)

Hence, f̃ is increasing in x. Therefore, it suffices to consider the lower and upper bound
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of the support of x to ensure that f̃ (x) ∈ [0, 1] holds. The lower bound yields,

0 ≤ f̃ (t) =
1

ñ
d (t)

[
1− d (t)α−1 e−tc−1

]
⇔ 0 ≤ 1− Lα−1e−tc−1

⇔ 0 ≤ 1− Lα−1
(

1−
(
L− d0

)
cL−α

)
c−1, by Eq. (4.15)

⇔ 0 ≤ 1− Lα−1
(
c−1 −

(
L− d0

)
L−α

)
⇔ 0 ≤ 1− Lα−1

([
L1−α − L−αd0 +

1

1− α
(
d1−α
∞ − L1−α)]− L1−α + L−αd0

)
⇔ 0 ≤ 1− Lα−1

(
1

1− α
(
d1−α
∞ − L1−α))

⇔ 1 ≥ 1

1− α

((
d∞
L

)1−α
− 1

)
⇔ (?) .

(4.26)

For x > t and α ∈ (0, 1), we get

(?) ⇔ (2− α)
1

1−α≥ d∞
L
. (4.27)

For x > t and α > 1, the lower bound of f̃ yields

(?) ⇔ 2− α≤
(
d∞
L

)1−α
(4.28)

which is always satisfied for α ≥ 2, since in that case the left hand side is negative and
the right hand side positive. For α ∈ (1, 2), we get the same condition as in Eq. (4.27).

Regarding the upper bound of f̃ , for x > t and α 6= 1, we get

1 ≥ lim
x→∞

f̃ (x) =
1

ñ
d (x)

[
1− d (x)α−1 e−xc−1

]
⇔ ñ ≥ d∞,

(4.29)

which is satisfied by the definition of d∞.

Remark 4.1.2
Note that by choosing d0 = L in Theorem 4.1.1, the fitness model of Theorem 2.2.4 is
recovered.
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4.2 Fitness Models with Power-Law Distributed Fitness
Variables

Empirical fitness models, as discussed in Section 2.2.1, have successfully been used to
reconstruct economic and financial networks, see Garlaschelli and Loffredo (2004a, 2008);
Cimini et al. (2015). However, the underlying mathematical structures have not yet been
analyzed. The nodes’ strengths, which are typically used as empirical fitness variables,
often seem to follow a power law distribution, i.e ρX (x) = cxα, see Clauset et al.
(2009). Moreover, a link probability function corresponding to the ERGM conditioned

on the degree sequence is chosen, i.e. f (xi, xj) =
ψ2xixj
ψ2xixj+1

, where ψ ∈ R>0 is a constant.

Commonly, ψ is calibrated such that the empirical fitness models yields a desired density.
Hence, the question arises what kind of degree distribution this model generates.

In this section we make a first step towards an analytical explanation of empirical
fitness models by deriving the degree distribution induced by a fitness model with
power law distributed fitness variables and a link probability function of the form

f (xi, xj) =
ψ2xixj
ψ2xixj+1

.

The following theorem summarizes our findings for fitness variables that follow a power
law distribution with exponent α = −1.

Theorem 4.2.1 (Fitness model with ρX (x) = cx−1 and f (xi, xj) =
ψ2xixj
ψ2xixj+1

)

Consider a fitness model with power law distributed random fitness variables with expo-
nent α = −1 defined on the range [slb, sub], i.e. ρX (x) = cx−1. Moreover, let the link

probability function be given by f (xi, xj) =
ψ2xixj
ψ2xixj+1

. The degree distribution ρY of the

generated networks will then take the following form

ρY (d (x)) =
sub − slb

ñ

[
slb

(
1− exp

(
d (x)

ñc

))
+ sub

(
1− exp

(
−d (x)

ñc

))]−1

, (4.30)

where ñ = n− 1 for undirected networks and ñ = 2 (n− 1) for directed networks.

Proof
The normalization parameter c of the power law distribution ρX is given by

1 =

∫ sub

slb

cx−1dx ⇔ c =

[
log

(
sub

slb

)]−1

. (4.31)
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Recall the function d computing the expected degree of a node with realized fitness x,

d (x) = ñ

∫ sub

slb

f (x, z) ρX (z) dz = ñ

∫ sub

slb

ψ2xz

ψ2xz + 1
cz−1dz

= ñc

∫ sub

slb

ψ2x

ψ2xz + 1
dz = ñc

[
log
(
ψ2xz + 1

)]sub
slb

= ñc log

(
ψ2xsub + 1

ψ2xslb + 1

)
.

(4.32)

The derivative of d (x) is given by

d′ (x) = ñc
∂

∂x

[
log
(
ψ2xsub + 1

)
− log

(
ψ2xslb + 1

)]
= ñc

(
ψ2sub

ψ2xsub + 1
− ψ2slb

ψ2xslb + 1

)
.

(4.33)

Next, we can derive the inverse of d (x),

d (x) = ñc log

(
ψ2xsub + 1

ψ2xslb + 1

)
⇔ exp

(
d (x) ñ−1c−1

)
=
ψ2xsub + 1

ψ2xslb + 1

⇔ exp
(
d (x) ñ−1c−1

)
− 1 = ψ2xsub − exp

(
d (x) ñ−1c−1

)
ψ2xslb

⇔ x =
exp

(
d (x) ñ−1c−1

)
− 1

ψ2sub − exp (d (x) ñ−1c−1)ψ2slb
.

(4.34)

As shown in Section 2.2.2, for d strictly monotonically increasing, the transformation
theorem of probability densities yields,

ρY (d (x)) =
ρX (x)

d′ (x)
= cx−1

[
ñc

(
ψ2sub

ψ2xsub + 1
− ψ2slb

ψ2xslb + 1

)]−1

= ñ−1

[
ψ2xsub

ψ2xsub + 1
− ψ2xslb

ψ2xslb + 1

]−1

.

(4.35)
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Inserting Eq. (4.34) leads to

ρY (d (x)) = ñ−1
[
ψ2sub

(
ψ2sub + x−1

)−1 − ψ2slb

(
ψ2slb + x−1

)−1
]−1

= ñ−1

[
ψ2sub

(
ψ2sub +

ψ2sub − exp
(
d (x) ñ−1c−1

)
ψ2slb

exp (d (x) ñ−1c−1)− 1

)−1

− ψ2slb

(
ψ2slb +

ψ2sub − exp
(
d (x) ñ−1c−1

)
ψ2slb

exp (d (x) ñ−1c−1)− 1

)−1 ]−1

= ñ−1

[
ψ2sub

exp
(
d (x) ñ−1c−1

)
− 1

exp (d (x) ñ−1c−1)ψ2sub − exp (d (x) ñ−1c−1)ψ2slb

− ψ2slb
exp

(
d (x) ñ−1c−1

)
− 1

ψ2sub − ψ2slb

]−1

=
sub − slb

ñ

[
sub

(
1− exp

(
−d (x)

ñc

))
− slb

(
exp

(
d (x)

ñc

)
− 1

)]−1

.

(4.36)
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5 Reconstructing the Topology of Financial
Networks from Degree Distributions and
Reciprocity

As explained in Chapter 1 the reconstructing of topologies of interbank networks consti-
tutes a challenging task, since information on bilateral interbank activities is classified
confidential and therefore mostly not available. However, realistic network models of our
financial markets are urgently needed for a proper assessment of systemic risk. To tackle
this problem, in this chapter, we use an ERGM coupled with flexible in- and out-degree
distributions, that are correlated via a Gaussian copula, to reproduce realistic inter-
bank topologies in light of scarce available information. The performance of the model
is demonstrated by a reconstruction of the German and the Italian interbank market.
These two networks have been chosen, as their central banks, the German Bundesbank
and the Banca d’Italia, published detailed empirical manuscripts on their domestic in-
terbank markets, disclosing a number of aggregated network statistics. This allows us
to evaluate the goodness of fit of the simulated networks. This chapter is based on our
paper Engel et al. (2019b).

5.1 Reconstruction Problem

We start with a brief introduction to the reconstruction problem. We aim at deriving
realistic stochastic models for financial networks, relying only on publicly available in-
formation and with a focus on the EU. For this reason, in a first step we scrutinized
what information is publicly available. To the best of our knowledge, the empirical
works by Bargigli et al. (2015) and Roukny et al. (2014) on the Italian and German
interbank market, respectively, are the most detailed descriptions of financial networks
of EU member states. The authors of both papers report that most network statistics
remain very stable over the considered period of 2008–12 and 2002–12, respectively. This
stability serves as justification to rely on the presented numbers for today’s banking net-
work. A second source of information that is publicly available are the banks’ balance
sheets, which disclose, for example, total interbank assets and liabilities. These weights,
however, refer to the global interbank market, while the network statistics reported by
Bargigli et al. (2015) and Roukny et al. (2014) refer to a single country. Moreover,
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the binary network topology has been identified to drive systemic risk substantially; see
Squartini et al. (2013), and is therefore of special interest. Furthermore, weights can be
allocated to sampled adjacency matrices subsequently, based on given row and column
sums via existing methods as proposed, e.g., by Gandy and Veraart (2017a).

Consider a financial network G∗ with n ∈ N banks for which only some network statis-
tics y1(G∗), . . . , ym(G∗) are given. Examples of such statistics are the network density,
the degree sequence, the reciprocity and the strength sequence. We are interested in
tractable stochastic network models that match these available statistics. To the best
of our knowledge, the framework of exponential random graphs is the only methodol-
ogy currently available that can incorporate multiple network statistics; cf. Section 2.3.
To keep the ERGM tractable, we condition only on the in- and out-degrees and the
reciprocity. More precisely, we take the following characteristics as input:

(i) mean, median, and upper 1% quantile of the in- and out-degree distribution;

(ii) Pearson’s correlation coefficient of the in- and out-degree sequence;

(iii) degree reciprocity.

We use (i) and (ii) to sample coupled in- and out-degree sequences. Let the set of possible
adjacency matrices representing the networks be denoted by G =

{
G ∈ {0, 1}n×n

}
. The

in- and out-degree of each node, as well as the number of reciprocal links, constitutes
a given network statistic and is represented, for each i ∈ {1, . . . ,m}, by a function
G 7→ yi(G). The desired output of our model is a discrete probability distribution
P : G → [0, 1] that allows fast network sampling and satisfies all statistics in expectation,
i.e. the following holds∑

G∈G
P (G)yi(G) = yi(G

∗), ∀i ∈ {1, . . . ,m}.

These conditions still leave many degrees of freedom for P . A natural additional objective
is to distribute the probability mass as “even as possible” on all graphs G ∈ G, i.e., to
minimize the divergence to the uniform distribution. This reflects the fundamental idea
by Shannon and others, that if we have no additional information about a network, then
every graph in G should be assigned the same probability. Exponential random graphs
(ERGs) offer an elegant approach to model precisely this situation.

To the best of our knowledge, there exists no general set of conditions under which the
existence of a solving probability distribution is guaranteed. This is an interesting and
complex open question in the wider realm of the theory on ERGMs, which is left for
further research. Since regarding most ERGMs a closed form of the parameters of the
probability distribution is not known, the parameters are estimated by minimizing the
error of the constraints, and thus a probability distribution with minimal error is always
found. Moreover, the construction of a probability distribution that reconstructs the
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network statistics as closely as possible (and as long as the error is within an acceptable
range) already constitutes an advancement in the assessment of systemic risk.

5.2 ERGM Conditioned on the In- and Out-Degree Sequence
and Reciprocity

For the reconstruction of interbank networks, we opted for an ERGM that is conditioned
on the in- and out-degree sequence and the reciprocity, since this incorporates the max-
imum amount of publicly available information on the one hand, and remains tractable
on the other hand. Furthermore, we assume that no specific links are known. However,
in case a financial institution or the regulator has partial knowledge of the network, the
ERGM can easily be adapted to contain this information. Similar ERGMs conditioned
on the in- and out-degree sequence plus the number of reciprocated links of each node
have been studied before; see Squartini et al. (2013); Bargigli et al. (2015). However,
their information setting differs from ours, since the authors of both references had ac-
cess to data on the Dutch and the Italian interbank network, respectively, while we rely
solely on publicly available information. For this reason, the ERGM considered here is
conditioned on the aggregated number of reciprocal links in the network. Furthermore,
in contrast to the mentioned references we do not know the in- and out-degree sequence
explicitly, but sample them from fitted distributions that are coupled via a Gaussian
copula, as explained in Section 5.4.

Let G = {x ∈ {0, 1}n×n : x11 = · · · = xnn = 0} denote the set of possible adjacency
matrices without self-loops. The in- (and out-) degree of a node i in a specific graph x
can be computed as a simple sum over the ith column (resp. ith row) of the adjacency
matrix x, i.e.,

k
(in)
i (x) =

n∑
j=1,j 6=i

xji, k
(out)
i (x) =

n∑
j=1,j 6=i

xij .

Analogously, the number of reciprocal links in a graph x is calculated by r(x) =∑
j 6=i xijxji. Thus, the Hamiltonian for this situation is given by

H(x) = θrr(x) +
∑
i

θ
(in)
i k

(in)
i (x) + θ

(out)
i k

(out)
i (x)

=
∑
i<j

2θrxijxji + {θ(out)
i + θ

(in)
j }xij + {θ(out)

j + θ
(in)
i }xji,

where (θr, θ
(in)
1 , . . . , θ

(in)
n , θ

(out)
1 , . . . , θ

(out)
n ) ∈ R2n+1 denote the corresponding Lagrange

multipliers.
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Next, we derive the partition function Z, viz.

Z =
∑
x∈G

e−H(x)

=
∑
x∈G

∏
i<j

exp[−2θrxijxji − {θ(out)
i + θ

(in)
j }xij − {θ

(out)
j + θ

(in)
i }xji]

=
∑

(x∗12,x
∗
21)∈{(0,0),(1,0),(0,1),(1,1)}

e−2θrx∗12x
∗
21−{θ

(out)
1 +θ

(in)
2 }x∗12−{θ

(out)
2 +θ

(in)
1 }x∗21

×

 ∑
x∈G:(x12,x21)=(x∗12,x

∗
21)

∏
i<j

(ij)6∈{(12)}

e−2θrxijxji−{θ
(out)
i +θ

(in)
j }xij−{θ

(out)
j +θ

(in)
i }xji


︸ ︷︷ ︸

constant for all (x∗12,x
∗
21)

(∗)
=
∏
i<j

∑
(xij ,xji)∈{(0,0),(1,0),(0,1),(1,1)}

e−2θrxijxji−{θ
(out)
i +θ

(in)
j }xij−{θ

(out)
j +θ

(in)
i }xji

=
∏
i<j

[
1 + e−{θ

(out)
i +θ

(in)
j } + e−{θ

(out)
j +θ

(in)
i } + e−2θr−{θ(out)i +θ

(in)
j +θ

(out)
j +θ

(in)
i }

]
,

where the same algebraic steps are applied to all pairs in (∗) as we applied exemplary to
the first pair (x∗12, x

∗
21). Having Z available in closed form enables us to derive an equation

system that defines the Lagrange multipliers by taking the derivatives of F = − log (Z);
see Equation (2.19). We get

∂

∂θr
F = 2

∑
i<j

e−2θr−{θ(out)i +θ
(in)
j +θ

(out)
j +θ

(in)
i }

1 + e−{θ
(out)
i +θ

(in)
j } + e−{θ

(out)
j +θ

(in)
i } + e−2θr−{θ(out)i +θ

(in)
j +θ

(out)
j +θ

(in)
i }

= 〈r〉,

(5.1)

∂

∂θ
(in)
i

F =
n∑
j=1
j 6=i

e−{θ
(in)
i +θ

(out)
j } + e−2θr−{θ(in)i +θ

(out)
j +θ

(in)
j +θ

(out)
i }

1 + e−{θ
(in)
i +θ

(out)
j } + e−{θ

(in)
j +θ

(out)
i } + e−2θr−{θ(in)i +θ

(out)
j +θ

(in)
j +θ

(out)
i }

= 〈k(in)
i 〉,

(5.2)

∂

∂θ
(out)
i

F =

n∑
j=1
j 6=i

e
−
{
θ
(out)
i +θ

(in)
j

}
+ e
−2θr−

{
θ
(in)
i +θ

(out)
j +θ

(in)
j +θ

(out)
i

}
1 + e

−
{
θ
(in)
i +θ

(out)
j

}
+ e
−
{
θ
(in)
j +θ

(out)
i

}
+ e
−2θr−

{
θ
(in)
i +θ

(out)
j +θ

(in)
j +θ

(out)
i

}

= 〈k(out)
i 〉,

(5.3)
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for all i ∈ {1, . . . , n}, and where 〈r〉 denotes the desired number of reciprocal links,

〈k(in)
i 〉 the desired number of incoming edges of node i, and 〈k(out)

i 〉 the desired number
of outgoing edges of node i.

The above equations already yield the link probabilities. Let Xij denote the random
variable representing a link from node i to node j in the random network, then the
probabilities for the four different cases that a dyad can take are given by

P (Xij = 1 ∧Xji = 1) =
e−2θr−{θ

(out)
i +θ

(in)
j +θ

(out)
j +θ

(in)
i }

1 + e−{θ
(out)
i +θ

(in)
j } + e−{θ

(out)
j +θ

(in)
i } + e−2θr−{θ

(out)
i +θ

(in)
j +θ

(out)
j +θ

(in)
i }

,

(5.4)

P (Xij = 1 ∧Xji = 0) =
e−{θ

(out)
i +θ

(in)
j }

1 + e−{θ
(out)
i +θ

(in)
j } + e−{θ

(out)
j +θ

(in)
i } + e−2θr−{θ

(out)
i +θ

(in)
j +θ

(out)
j +θ

(in)
i }

,

(5.5)

P (Xij = 0 ∧Xji = 0) =
1

1 + e−{θ
(out)
i +θ

(in)
j } + e−{θ

(out)
j +θ

(in)
i } + e−2θr−{θ

(out)
i +θ

(in)
j +θ

(out)
j +θ

(in)
i }

.

(5.6)

These probabilities can be derived analogously to Eq. (2.32). Link probabilities have to
be considered in the form of dyads, since dyad dependency was explicitly induced via
the condition on link reciprocity. Furthermore, the above dyad probabilities enable us
to easily sample networks via bivariate Bernoulli trials.

It can be shown that if the set of probability distributions satisfying the constraints
of Equation (2.5) is not empty, the link probabilities are defined uniquely, see Theo-
rem 2.1.3. From this it follows that the Lagrange multipliers are unique, or in case the
Lagrange multipliers appear only as sums of two distinct subsets, they are unique up
to a constant β that can be added to one subset and subtracted from the other subset,
such that the sum of two Lagrange multipliers, one of each subset, stays the same. From
Theorem 2.1.3, we know that constrained maximum entropy problems define a unique
probability distribution, which means that the maximizing distribution P defined on G
is unique; see Cover and Thomas (2006). Furthermore, for the ERGM considered in this
section we have

P (x) =
∏
i<j

P (Xij = 1 ∧Xji = 1)xijxjiP (Xij = 1 ∧Xji = 0)xij(1−xji)

P (Xij = 0 ∧Xji = 1)(1−xij)xijP (Xij = 0 ∧Xji = 0)(1−xij)(1−xji),

because of inter-dyad independence. Now assume that there are two vectors of Lagrange
multipliers θ 6= λ that solve the ERGM. Further, consider four graphs that are almost
identical but differ in one dyad (xab, xba) denoted by x(0,0), x(0,1), x(1,0), x(1,1) ∈ G. From
the uniqueness of P we know that

(i) Pθ{x(0,0)} = Pλ{x(0,0)},

(ii) Pθ{x(0,1)} = Pλ{x(0,1)},
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(iii) Pθ{x(1,0)} = Pλ{x(1,0)},

(iv) Pθ{x(1,1)} = Pλ{x(1,1)}.

has to hold. Furthermore, dividing (i) by (iii) yields θ
(out)
a + θ

(in)
b = λ

(out)
a + λ

(in)
b and

dividing (i) by (iv) yields −2θr−{θ(out)
a + θ

(in)
b + θ

(out)
b + θ

(in)
a } = −2λr−{λ(out)

a +λ
(in)
b +

λ
(out)
b + λ

(in)
a }. Thus, it follows that θr is defined uniquely and {θ(out)

a + β}, {θ(in)
b − β}

are unique up to an additive constant β ∈ R for all a, b ∈ {1, . . . , n}.

5.3 Data Description

In order to reconstruct the Italian and German interbank networks, we calibrate the
ERGM derived in Section 5.2 to the respective network statistics published in Bargigli
et al. (2015); Roukny et al. (2014).

Bargigli et al. (2015) have access to bilateral interbank exposures of Italian banks and
Italian branches of foreign banks that were transmitted to the Banca d’Italia in the
form of supervisory reports. Their data cover the period 2008–12 and were consolidated
at group level. The network statistics provided in Bargigli et al. (2015) on the total
unweighted Italian interbank market are given in Table 5.1. Furthermore, Bargigli et al.
(2015) observe that these statistics stay very stable over the observed period.

Roukny et al. (2014) extract bilateral exposures of the German interbank market from
the German large credit register (Millionenkredit Evidenzzentrale). German banks are
obliged to report all bilateral liability exposures that surpass a certain threshold to the
German large credit register of the Deutsche Bundesbank; see Roukny et al. (2014). The
data analyzed in Roukny et al. (2014) comprise the period 2002–12 and were aggregated
at the holding corporation level. The network statistics provided in Roukny et al. (2014)
on the unweighted German interbank market are given in Table 5.1. Consistent with
Bargigli et al. (2015), Roukny et al. (2014) note that the statistics on the interbank
market are very stable over the observed period.
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Table 5.1: Network statistics of the Italian interbank market provided by Bargigli et al.
(2015) and the German interbank market provided by Roukny et al. (2014).

Italy (2012) Germany (2012)

# nodes 533 1,700
# edges 3,235 21,318
Density 1.0% 0.74%
Largest weak component 533 NA
Largest strong component 513 ≈ 1,670
Avg undir. path length 2.2 NA
Avg dir. path length 2.4 ≈ 2.241
Out-degree assort. −0.31 NA
In-degree assort. −0.37 NA
Degree assort. −0.37 −0.45
Degree reciprocity 0.45 0.31
Avg dir. clustering 0.448 NA
Avg undir. clustering 0.577 ≈ 0.81
Degree Herfindhal index (HHI) NA ≈ 0.011
Avg Betweenness NA ≈ 0.00064
Avg Closeness NA ≈ 0.48
Avg Eigenvector NA ≈ 0.0054
Corr(in-degree, out-degree) NA ≈ 0.68

In addition, Bargigli et al. (2015) analyze whether certain higher order network statistics
are automatically reproduced by explicitly reconstructing lower order statistics. To
answer this question they use three different ERGMs constrained on:

(a) the in- and out-degree sequence (also known as the binary directed configuration
model (BDCM));

(b) the in- and out-degree sequence plus the sequence of nodes’ reciprocity (also known
as the reciprocal configuration model (RCM));

(c) the in- and out-degree sequence plus the in- and out-strength (also known as the
directed weighted configuration model (DWCM)).

Since Bargigli et al. (2015) have access to the Italian interbank market, they can constrain
their models on the exact values. This differs from our setting, as we use only publicly
available information. In their analysis they find that the BDCM closely reconstructs
the assortativity of a network but fails short at reconstructing triadic motifs. The latter
can be improved by the RCM. For the DWCM they conclude that net exposures are
reconstructed well, while the strength disassortativity is overestimated.
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5 Reconstructing the Topology of Financial Networks

5.4 Coupled In- and Out-Degree Distribution

The empirical in- and out-degree distribution of the Italian interbank market is displayed
in Bargigli et al. (2015). Also, Roukny et al. (2014) provide graphs of the degree dis-
tribution of the German interbank market, as well as Pearson’s correlation coefficient
of the in- and out-degree sequence. To reproduce the reported distributions we suggest
to combine a uniform and a power-law distribution that can be fitted to the available
information, i.e., the mean of the distribution and the maximum degree. In the following
we consider the discrete probability mass function

f(d) = κ
(
L−α × 1{d∈{1,...,L}} + d−α × 1{d∈{L+1,...,R}}

)
(5.7)

for d ∈ {1, . . . , R} and L ∈ {1, . . . , R}. Its continuous analog, however, could be used as
well. The parameter κ acts as normalization constant, α is the exponent of the power-law
distribution, L divides the support into the initial uniform and subsequent power-law
distributed part, and R defines the maximum degree. This gives us two degrees of
freedom (α, L), as R is fixed by the data. Considering the available information, we
decided to calibrate α and L to match the average empirical degree which is reported by
Bargigli et al. (2015) and Roukny et al. (2014), the median, and the upper 1% quantile
that can be deduced from the graphs in their papers.

As detailed information on network statistics are not available for every country, we
decided to construct our model as flexible as possible. This particularly means that
we have to define the median and the upper 1% quantile in dependence of a known
parameter. We found that the degree distributions of both the Italian and the German
interbank market can be well reproduced by choosing the median of the in- (resp. out-)
degree distribution to equal 0.002 × n (resp. 0.004 × n) and the upper 1% quantile to
equal 0.2× n (resp. 0.12× n).

Furthermore, we couple the in- and out-degree sequence via a Gaussian copula which
enables us to adjust Pearson’s correlation coefficient. The calibrated parameters are
presented in Table 5.2 and the reproduced distributions are illustrated in Figs. 5.1–5.3
in comparison to the empirical distributions of the true networks.

Table 5.2: Parameter values of the fitted in- and out-degree density function f defined
in Equation (5.7) for the Italian and the German interbank market.

Parameter
Italy Germany

in-degree out-degree in-degree out-degree

κ 0.5540 1.2055 1.4994 19.0878
α 1.8510 2.0611 1.9523 2.5534
L 1 3 4 9
R 532 532 1,699 1,699
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Figure 5.1: Loglog plot comparing the in-degree distribution of the Italian interbank
network taken from (Bargigli et al., 2015, p. 11) and our proposed distribu-
tion. The total Italian interbank market is represented by purple squares
and our calibrated distribution is given by blue crosses. The blue cir-
cles, green upward-pointing triangles, red downward-pointing triangles, and
turquoise diamonds included in Bargigli et al. (2015) represent resp. the
Italian overnight market, unsecured short-term, unsecured long-term, and
secured short-term market. In this thesis, however, we focus on the total
interbank market.
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Figure 5.2: Loglog plot comparing the out-degree distribution of the Italian interbank
network taken from (Bargigli et al., 2015, p. 11) and our proposed distribu-
tion. The total Italian interbank market is represented by purple squares
and our calibrated distribution is given by blue crosses. The blue cir-
cles, green upward-pointing triangles, red downward-pointing triangles, and
turquoise diamonds included in Bargigli et al. (2015) represent resp. the
Italian overnight market, unsecured short-term, unsecured long-term, and
secured short-term market. In this thesis, however, we focus on the total
interbank market.
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5 Reconstructing the Topology of Financial Networks

Figure 5.3: Semilog plot comparing the degree distribution of the German interbank
network taken from (Roukny et al., 2014, p. 14) and our proposed distri-
bution. The German interbank market is represented by the solid line and
filled circles and our calibrated distribution is given by blue crosses.

5.5 Simulation Results

In this section we simulate from the constructed probability laws on G and compare the
output to reported network statistics. The simulation consists of the following three
steps.

(1) Sampling the in- and out-degree sequence: First, two vectors u(in) and u(out) (real-
izations of

(
U (in), U (out)

)
) are drawn from a Gaussian copula with correlation pa-

rameter ρ, i.e.,
(
U (in), U (out)

)
∼ CGauss

ρ . Note that U (in) and U (out) are uniformly
distributed on [0, 1]. We derive realizations of the in- and out-degree sequences
via the quantile functions of the degree distributions as defined in Section 5.4, i.e.,

k(in) = F (in)−1{
u(in)

}
and k(out) = F (out)−1{

u(out)
}

. Furthermore, the correlation

parameter ρ of the Gaussian copula is set such that corr
(
k(in), k(out)

)
≈ 0.68. Since

for most sampled degree sequences
∑

i k
(in)
i 6=

∑
i k

(out)
i , i.e., the number of sam-

pled incoming links does not equal the number of sampled outgoing links, we add
as many shadow banks as needed (usually only one) to absorb the difference.

(2) Calibration of the ERGM: The realizations of the in- and out-degree sequence k(in)

and k(out) from Step (1) as well as the number of reciprocal links serve as input
for the ERGM. More precisely, these values determine the right hand side of the
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non-linear equation system defined by Eqs. (5.1)–(5.3). This equation system is
solved numerically (e.g., in MATLAB via the fsolve function) and returns the
values of the Lagrange multipliers.

(3) Sampling the network: The Lagrange multipliers specify the link probabilities, as
given in Eqs. (5.4)–(5.6). A network can conveniently be sampled via bivariate
Bernoulli trials according to these link probabilities.

We remark that it is essential to add shadow banks to absorb the difference in the
number of links specified by the sampled in- and out-degree sequence, since otherwise
the constraints of the ERGM would be impossible to be satisfied. One could alternatively
try to solve such a wrongly specified maximum entropy problem by minimizing the overall
error. Attempts to do so, however, increase runtime excessively. This might be due to
the existence of various different parameter combinations with a similar absolute error.

The results of 100 simulations of the Italian interbank market for 2012 are presented in
Table 5.3 and compared to the available empirical numbers. In addition, Bargigli et al.
(2015) report the network statistics of the Italian interbank market for 2008. Based on
this information we conducted the same analysis for 2008, to assess the quality of our
model over time. As the network statistics reported in Bargigli et al. (2015) remain
quite stable over the observed period, our simulation results for 2008 are very similar to
those of 2012.
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Table 5.3: Comparison of some network statistics for 2012 as reported by Bargigli et al.
(2015) and for 100 simulated networks of the Italian interbank market ex-
cluding shadow banks. The simulation of 100 Italian interbank networks in
Matlab 2017a using parallel computing took 2.5h on an Intel(R) Xeon(R)
E5-2687W v3 at 3.1 GHz. Additionally, in brackets the values of an ERGM
conditioned only on the in- and out-degree sequence are reported.

Network
Bargigli et al. (2015) Mean

Standard 95% Confidence
Statistic Deviation Interval

Total number 3, 235 3, 168 540 [3, 062; 3, 274]
of links (3, 323) (703) ([3, 186; 3, 461])

Number of 1,476 1, 558 229 [1, 513; 1, 603]
reciprocal links (1, 161) (600) ([1, 043; 1, 279])

In-degree −0.37 − 0.39 0.10 [−0.41;−0.37]
assortativity (−0.40) (0.10) ([−0.42;−0.38])

Out-degree −0.31 − 0.37 0.10 [−0.39;−0.35]
assortativity (−0.38) (0.09) ([−0.40;−0.37])

Avg. dir. 2.4 2.5 0.34 [2.46; 2.59]
path length (2.4) (0.29) ([2.24; 2.50])

Avg. undir. 2.2 2.3 0.25 [2.28; 2.38]
path length (2.3) (0.22) ([2.26; 2.35])

Largest strong 513 385 58 [374; 397]
component (377) (68) ([363; 390])

Largest weak 533 505 23 [501; 509]
component (512) (18) ([508; 516])

Overall, our model accurately reproduces most network statistics. The discrepancy in the
out-degree assortativity indicates that in the simulations the out-degrees of connected
banks are too heterogeneous. In fact, Figure 5.2 shows that very low out-degrees are
overrepresented in the simulation. This could be fixed by increasing the median, which
is used to calibrate the out-degree distribution. This would, however, also result in a
faster decline of the distribution after the upper 1% quantile in order to preserve the
expected value, and thus high values would be underrepresented. The same would apply
for the German degree distribution, since the median is defined as a function of n, which
would deteriorate the goodness-of-fit of the German degree distribution. Furthermore,
the error of having too many small out-degrees seems to be minor, considering that most
applications focus on a subset of banks that comprise a substantial monetary volume.
As one would imagine, Roukny et al. (2014) report that the correlation of volume and
degree is approximately 0.91. Thus, reducing the interbank network to a subset of banks
of interest eliminates banks with small out-degrees. The same holds for the error in the
LSC. A reduction to a subset of banks of interest most likely eliminates banks that are
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not part of the LCS.

Table 5.3 additionally lists the statistics for an ERGM conditioned solely on the in-
and out-degree sequence, to analyze the effect of including the reciprocity in the ERGM.
Interestingly, with the exception of the number of reciprocal links, which naturally yields
a better fit for the ERGM incorporating reciprocity, all other statistics change only
slightly. This means that degree disassortativity, short path lengths, and large connected
components are fundamentally steered by the heterogeneity in the in- and out-degree
sequence.

The results of 100 simulations of the German interbank market for 2012 are presented
in Table 5.4. Based on network statistics provided by Roukny et al. (2014), we also
conducted the same analysis on the German interbank market for 2002 and 2008, to
assess the quality of our model over time. As the network statistics reported in Roukny
et al. (2014) remain quite stable over the observed period, our simulation results for
2002 and 2008 are very similar to those of 2012.

Table 5.4: Comparison of some network statistics for 2012 as reported by Roukny et al.
(2014) and for 100 simulated networks of the German interbank market ex-
cluding shadow banks. Additionally, in brackets the values of an ERGM
conditioned only on the in- and out-degree sequence are reported.

Network Roukny et al. (2014) Mean Standard 95% Confidence
Statistic Deviation Interval

Total number 21,318 20, 727 1, 355 [20, 460; 20, 994]
of links (20,667) (1, 847) ([20, 305; 21, 029])

Number of 6,717 6, 921 584 [6, 805; 7, 306]
reciprocal links (3,482) (1, 460) ([3, 195; 3, 768])

Degree −0.45 − 0.25 0.06 [−0.26;−0.24]
assortativity (−0.25) (0.07) ([−0.27;−0.24])

Avg. dir. 2.24 2.59 0.27 [2.54; 2.64]
path length (2.58) (0.26) ([2.53; 2.63])

Largest strong 1,670 1, 424 175 [1, 389; 1, 458]
component (1, 401) (169) ([1, 368; 1, 434])

HHI 0.011 0.0070 0.0020 [0.0066; 0.0074]
(0.0069) (0.0019) ([0.0065; 0.0073])

Avg. Closeness 0.48 0.3944 0.0421 [0.3861; 0.4027]
(0.3961) (0.0418) ([0.3879; 0.4043])

Avg. Eigenvector 0.0054 0.0156 0.0005 [0.0155; 0.0157]
(0.0155) (0.0005) ([0.0154; 0.0156])

Corr(in-degree, 0.68 0.69 0.10 [0.67; 0.71]
out-degree) (0.67) (0.10) ([0.65; 0.69])

Most of the relevant network statistics are very close to the true values. The discrep-
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ancy in the degree assortativity indicates that the degrees of connected banks are too
homogeneous. In fact, Figure 5.3 shows that degrees of about 15 to 100 are overrepre-
sented while extreme degrees exceeding 200 are underrepresented. In order to account
for this finding, one would have to choose a different degree distribution with heavier
tails. Again, the error in the LSC seems to be minor when considering a reduction to a
subset of banks of interest that comprise a substantial monetary volume. Furthermore,
the centrality measures indicate that the presence of banks acting as intermediaries is
stronger in the true network.

Table 5.4 additionally lists the statistics for an ERGM conditioned solely on the in- and
out-degree sequence, to analyze the effect of including the reciprocity in the ERGM.
Similar to the results on the Italian interbank market, we again observe that all network
statistics, with the exception of the number of reciprocal links, barely change. This
indicates that these network statistics are essentially steered by the heterogeneity in the
in- and out-degree sequence.

5.6 Conclusion and Outlook

In this chapter, we have developed an analytically tractable instance of an ERGM for
the reconstruction and simulation of financial networks. Based on available information
on the Italian and German interbank market, we have demonstrated that the model
adequately reproduces a number of network statistics. Moreover, the model needs only
few and rather general input parameters, consisting of the in- and out-degree distribu-
tion, their coupling via a Gaussian copula, and the number of reciprocal links. This has
two important implications. First, as no further information is required, this simplifies
the adaptation of the model to other countries. Second, as the model adequately recon-
structs further network characteristics that have not been explicitly incorporated into
the model, this indicates that these features are a natural consequence of the degree
distribution. Not only is this finding interesting in its own right, it is also welcome news
considering the very limited data availability.

Depending on the desired analysis to which the model serves as input, one might still
have to weight the adjacency matrices resulting from the model. One possibility to assign
weights, such that row and column sums are fulfilled, is given by the algorithm from
Gandy and Veraart (2017a). However, while network statistics are available on country
level, interbank assets and liabilities published in the banks’ balance sheets refer to
the international interbank market. Therefore, it seems reasonable to first reconstruct
the interbank markets of relevant countries and to connect them to a global network
in a second step. Cross border links could, for example, be estimated based on the
information provided by the EBA’s transparency exercise.
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Networks Across Multiple Countries

This chapter extends the model presented in Chapter 5 to international weighted finan-
cial networks. In a first step we use an extended fitness model, that can be calibrated to
a desired density and reciprocity, to reconstruct the unweighted and directed network of
each domestic and each cross-border subgraph. This results in a link-probability matrix
from which we can easily sample adjacency matrices through bivariate Bernoulli trials.
In a second step, the sampled adjacency matrices are weighted, such that interbank
assets and liabilities, which are known from the banks’ balance sheets, as well as the
total weight circulating within and across countries, is met. This is achieved via an
exponential random graph model (ERGM), conditioned on the row and column sums as
well as on the block weights. Since this model allows to analytically derive the expected
weight of each link of a given adjacency matrix, the conditions are fulfilled exactly by
the resulting network.

This model is analytically tractable, allows a calibration on scarce publicly available
data, and closely reconstructs known network characteristics of financial markets. More-
over, the model finally enables the application of the proposed contagion mechanisms
and systemic risk measures to more realistic and international financial networks, as
demonstrated in Chapter 7.

This chapter is based on our manuscript Engel et al. (2019a).

6.1 Problem of Financial Network Reconstruction

In the following, we consider a network consisting of n financial institutions that are
located in N countries, which are denoted by C1, C2, . . . , CN ; |Cj | denoting the number
of banks in country j ∈ {1, . . . , N}. This creates a chessboard with N2 blocks. The
corresponding network can be visualized in form of a matrix w, as illustrated in Fig. 6.1.
The element wij equals the nominal value of loans that bank i lends to bank j. Conse-

quently, the row sum s
(out)
i (resp. column sum s

(in)
i ) denotes the total interbank assets

(resp. deposits) of bank i.

As pointed out in Chapter 1, the fundamental problem of reconstructing financial net-
works is the limited data availability. In fact, regarding interbank networks, the only
information which is regularly available to the public are interbank assets s(out) and
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w =

C1 C2 . . . CN
b1 b2 . . . b|C1| b|C1|+1 . . . . . . b|C1|+|C2| . . . . . . . . . b1+
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j=1 |Cj |

. . . bn



C1

b1 0 � . . . � � . . . . . . � s
(out)
1

b2 � 0 � � . . . . . . � s
(out)
2

...
...

. . .
...

...
...

...

b|C1| � � . . . 0 � . . . . . . �
...

C2

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...

...
. . .

...
...

. . .
...

...
. . .

...

CN

...
. . .

...
...

. . .
...

bn 0 s
(out)
n

s
(in)
1 s

(in)
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
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Figure 6.1: Illustration of an international financial network comprising n financial in-
stitutions b1, . . . , bn, grouped by their country of origin C1, . . . , CN . The

variables s
(out)
i and s

(in)
i denote the i-th row and column sum, respectively.

interbank liabilities s(in) of each bank. However, considering all networks which fulfill
the given row and column sums as possible financial networks is misleading, since fi-
nancial networks are, for example, known to be sparse, see, e.g., Craig and Von Peter
(2014). Hence, densely connected networks should be excluded on the grounds of not
being realistic. Moreover, financial networks are known to be disassortative, to exhibit
a core-periphery structure, to feature short paths, degrees and strength are highly cor-
related, etc., see, e.g., Craig and Von Peter (2014), Roukny et al. (2014), Bargigli et al.
(2015). But precise, regular, and complete information on these characteristics are not
publicly available. Thus, to construct realistic networks, a trade-off has to be made
on incorporating available data and accuracy of the reconstructed network topology.
Furthermore, we aim at a tractable model which also includes the flexibility to change
particular network statistics, in order to allow for a detailed assessment of systemic risk
and an analyses of potentially more stable network structures. Therefore, we choose
to base our model on the following characteristics (i) - (iv) for two reasons. First, the
necessary information is either publicly available or can be approximated from publicly
available data, as demonstrated in Section 6.5.1 w.r.t. the EU interbank network. This
allows the construction of realistic interbank networks. Second, these characteristics can
be incorporated in an analytically tractable model. Hence, these characteristics can eas-
ily be twisted and network ensembles with different structures can be generated. This
creates a flexible playground for a detailed analysis on systemic risk and possible new
regulations, which is a key objective of this work. We assume the following information
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to be given:

(i) The density for each block, or equivalently the number of links L→kl for all blocks
k, l = 1, . . . , N , i.e.

L→ ∈ NN×N0 ; (6.1)

(ii) The (degree-) reciprocity for each pair of transposed blocks, or equivalently the
number of mutual links L↔kl = L↔lk for all blocks k, l = 1, . . . , N , i.e.

L↔ ∈ NN×N0 , and L↔ symmetric; (6.2)

(iii) Interbank assets s
(out)
i and liabilities s

(in)
i for each bank i = 1, . . . , n in the network,

i.e.
s(in) ∈ Nn0 and s(out) ∈ Nn0 ; (6.3)

(iv) The total weight for each block, i.e.

s(block) ∈ NN×N0 . (6.4)

The row and column sums, as well as the block weights, are restricted to the set of nat-
ural numbers, as this considerably simplifies the required calculations, see Section 6.3.

Following the notation of Gandy and Veraart (2017a), let w ∈ Nn×n0 denote an interbank
matrix, where the element wij denotes the nominal value of interbank loans granted from
bank i to bank j. Some stakeholders, such as financial institutions, central banks, or
regulators might have partial knowledge on the interbank network, i.e. they might know
the true value of some elements of w. Therefore, we define w∗ ∈ W :=

(
{∗} ∪ N0

)n×n
,

where w∗ij = ∗ denotes an unknown matrix element. We are interested in the set of all
interbank matrices fulfilling the desired characteristics (i) – (iv), as well as matching all
known bilateral interbank elements. Constructing this set of matrices in a tractable and
computationally feasible way is a non-trivial task, and to the best of our knowledge such
a model is not yet available. To provide a solution, we relax the problem and consider
instead a probability space that generates interbank matrices which satisfy the desired
characteristics in expectation.

Definition 6.1.1 (Admissible probability space for interbank networks)
Let Ω :=

{
w ∈ Nn×n0

}
be a set of weighted and directed graphs and let P : P (Ω) →

[0, 1] be a probability measure defined on the power set P (Ω) of Ω. The probability
space (Ω,P (Ω) , P ) is called admissible w.r.t. L→ ∈ NN×N0 , L↔ ∈ NN×N0 symmetric,
s(in) ∈ Nn0 , s(out) ∈ Nn0 , s(block) ∈ NN×N0 , and w∗ if the following conditions are met:
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(i) ∑
w∈Ω

P (w)

 ∑
i∈Ck,j∈Cl

1{wij>0}

 = L→kl , ∀k, l = 1, . . . , N, (directed links)

(ii) ∑
w∈Ω

P (w)

 ∑
i∈Ck,j∈Cl

1{wij>0}1{wji>0}

 = L↔kl , ∀k, l = 1, . . . , N,

(reciprocal links)

(iii) ∑
w∈Ω

P (w)

 n∑
j=1

wij

 = s
(out)
i , ∀i = 1, . . . , n, (assets)

(iv) ∑
w∈Ω

P (w)

[
n∑
i=1

wij

]
= s

(in)
j , ∀j = 1, . . . , n, (liabilities)

(v) ∑
w∈Ω

P (w)

 ∑
i∈Ck,j∈Cl

wij

 = s
(block)
kl , ∀k, l = 1, . . . , N, (block weights)

(vi)
wij = w∗ij , ∀w ∈ Ω and w∗ij 6= ∗. (known links)

In the following, we present a model for generating such admissible ensembles of inter-
bank matrices.

6.2 Reconstructing Unweighted Directed Graphs via an
Extended Fitness Model

As explained in Section 2.2.1, fitness models have successfully been used to reconstruct
several economic and financial networks. Until now the focus of fitness models has been
the reconstruction of realistic degree distributions. Here, we extend this methodology to
additionally incorporate the degree reciprocity. More precisely, we use the link proba-
bility function as defined by an ERGM conditioned on the in- and out-degree sequences
and the number of reciprocal links. For a derivation of this ERGM, see Section 5.2.
The parameters of the ERGM can be estimated for a given in- and out-degree sequence
and a given number of reciprocal links. For most blocks, however, no information on
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the in- and out-degrees is publicly available. For this reason, we resort to the idea of
fitness models and consider the unknown parameters (i.e. the exponential function of the
negative Lagrange multipliers) as hidden variables. More precisely, the hidden variables

controlling the link probabilities are specified by the banks’ interbank assets s
(out)
i and

interbank liabilities s
(in)
i , multiplied by a block specific parameter z ∈ RN×N≥0 that con-

trols for the network density of each block. This leads to the following link probabilities:
Let A ∈ {0, 1}n×n denote the random adjacency matrix, and to simplify notation let zij
denote the z parameter of the corresponding block, then for i 6= j,

P (Aij = 1 ∧Aji = 1) =
r2
ijzijzjis

(out)
i s

(in)
j s

(out)
j s

(in)
i

1 + zijs
(out)
i s

(in)
j + zjis

(out)
j s

(in)
i + r2

ijzijzjis
(out)
i s

(in)
j s

(out)
j s

(in)
i

,

(6.5)

P (Aij = 1 ∧Aji = 0) =
zijs

(out)
i s

(in)
j

1 + zijs
(out)
i s

(in)
j + zjis

(out)
j s

(in)
i + r2

ijzijzjis
(out)
i s

(in)
j s

(out)
j s

(in)
i

,

(6.6)

P (Aij = 0 ∧Aji = 0) =
1

1 + zijs
(out)
i s

(in)
j + zjis

(out)
j s

(in)
i + r2

ijzijzjis
(out)
i s

(in)
j s

(out)
j s

(in)
i

,

(6.7)
where r ∈ RN×N>0 with rkl = rlk is a block specific parameter controlling for the number
of reciprocal links. Again to simplify notation, rij denotes the r parameter of the corre-
sponding block. Furthermore, since financial networks do not exhibit self-loops, we set
Aii = 0 for all i = 1, . . . , n.

The parameter r corresponds to the term exp (−λr) of the discussed ERGM, with λr
being the Lagrange multiplier of the constraint on the reciprocal links. Setting this
Lagrange multiplier to zero λr = 0, or equivalently r = 1, and assuming pairwise in-
dependence for all links, results in the classical fitness model. This model has been
studied in detail and it has been shown to yield good results, see for example Cimini
et al. (2015) and Gandy and Veraart (2017b). Our model extends the classical fitness
model by additionally incorporating the number of reciprocal links and therefore intro-
ducing a dependence structure between the dyads (Aij , Aji). We decided to include the
reciprocity in our model, since it has been shown to constitute an important network
characteristic, which for most networks does not come as a natural consequence of the
degree sequence, see for example Garlaschelli and Loffredo (2004b) and Bargigli et al.
(2015), and because it introduces only one additional parameter. As can be seen from
the link probabilities, Eqs. (6.5) to (6.7), this setting correlates the number of links of
a node to its weight, i.e. the higher the total incoming and outgoing weight of a node,
the higher the number of incoming and outgoing links of a node. This is an essential
characteristic that one would expect for financial networks, and which has been shown
to hold in many empirical works, e.g. Roukny et al. (2014), Bargigli et al. (2015).
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Incorporating available information on the existence of certain links is straightforward.
Let a∗ ∈ {∗, 0, 1}n×n, where aij = ∗ denotes an unknown link. The link probability
matrix A is extended as follows,

Aij = a∗ij , ∀a∗ij 6= ∗. (6.8)

In case only one of two reciprocal links is known, i.e. a∗ij 6= ∗ and a∗ji = ∗, the probability
distribution of the unknown link is given by

P
(
Aji = 0|a∗ij = 0

)
=
P
(
Aji = 0, A∗ij = 0

)
P (Aij = 0)

=
1

1 + zjis
(out)
j s

(in)
i

, (6.9)

P
(
Aji = 0|a∗ij = 1

)
=
P
(
Aji = 0, A∗ij = 1

)
P (Aij = 1)

=
zijs

(out)
i s

(in)
j

zijs
(out)
i s

(in)
j + r2

ijzijzjis
(out)
i s

(in)
j s

(out)
j s

(in)
i

,

(6.10)

P
(
Aji = 1|a∗ij = 0

)
=
P
(
Aji = 1, A∗ij = 0

)
P (Aij = 0)

=
zjis

(out)
j s

(in)
i

1 + zjis
(out)
j s

(in)
i

, (6.11)

P
(
Aji = 1|a∗ij = 1

)
=
P
(
Aji = 1, A∗ij = 1

)
P (Aij = 1)

=
r2
ijzijzjis

(out)
i s

(in)
j s

(out)
j s

(in)
i

zijs
(out)
i s

(in)
j + r2

ijzijzjis
(out)
i s

(in)
j s

(out)
j s

(in)
i

.

(6.12)

The unknown parameters z and r can be calibrated such that a desired number of links
L→ and a desired number of reciprocal links L↔ is met in expectation. The following
three equations are used to calibrate the three parameters for each pair of transposed
blocks k, l = 1, . . . , N ,

E

 ∑
i∈Ck,j∈Cl

Aij

 = L→kl , (directed links) (6.13)

E

 ∑
i∈Cl,j∈Ck

Aij

 = L→lk , (directed links) (6.14)
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and

E

 ∑
i∈Ck,j∈Cl

AijAji

 = E

 ∑
i∈Cl,j∈Ck

AijAji

 = L↔kl . (reciprocal links) (6.15)

There are many options to solve Eqs. (6.13) to (6.15), for example Matlab’s nonlinear
least-squares solver. For the blocks on the diagonal, i.e. for k = l (representing domestic
interbank markets), Eq. (6.13) and Eq. (6.14) are identical, hence there are only two
equations to be solved. Once the parameters are calibrated, sampling adjacency matri-
ces, i.e. unweighted directed graphs, is easy and fast via bivariate Bernoulli trials.

If the desired number of links and reciprocal links are set to feasible numbers there
always exists a solution, as the following theorem shows. Since the parameters z and r
are independent for all pairs of submatrices

(
A(kl), A(lk)

)
, it suffices to show the existence

of a solution for one pair
(
A(kl), A(lk)

)
.

Theorem 6.2.1 (Existence of a solution for the extended fitness model)
Consider four vectors s(out,k), s(in,k) ∈ Rnk>0, and s(out,l), s(in,l) ∈ Rnl>0. Let the random

matrices A(kl) ∈ {0, 1}nk×nl and A(lk) ∈ {0, 1}nl×nk be defined by the probability function
P as given by Eqs. (6.5) to (6.7). For any feasible number of

(i) reciprocal links L↔kl ∈ [0, nknl),

(ii) and links L̃→kl := L→kl−L↔kl and L̃→lk := L→lk−L↔kl with
(
L̃→kl + L̃→lk

)
∈ (0, nknl − L↔kl ),

there exist zkl, zlk, rkl ∈ R≥0, such that Eqs. (6.13) to (6.15) are fulfilled.

Proof
Since the proof takes several pages, it has been moved to the end of this chapter; see
Section 6.6.

To prove whether the solution of the extended fitness model is unique is non-trivial.
However, we can show that the solution is unique w.r.t. the expected in- and out-degree
sequences and the expected number of reciprocal links created by the solution.

Theorem 6.2.2 (Uniqueness of a solution for the extended fitness model)
A solution zkl, zlk, rkl of the extended fitness model, as described in Theorem 6.2.1, yields
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the following particular sequences of expected in- and out-degrees,

d
(in,kl)
j =

∑
i∈Ck

P
(
A

(kl)
ij = 1

)
, ∀j ∈ Cl, (6.16)

d
(out,kl)
i =

∑
j∈Cl

P
(
A

(kl)
ij = 1

)
, ∀i ∈ Ck, (6.17)

d
(in,lk)
j =

∑
i∈Cl

P
(
A

(lk)
ij = 1

)
, ∀j ∈ Ck, (6.18)

d
(out,lk)
i =

∑
j∈Ck

P
(
A

(lk)
ij = 1

)
, ∀i ∈ Cl, (6.19)

as well as the expected number of reciprocal links L↔kl . The solution zkl, zlk, rkl is unique in
the sense that it is the only parameter combination which generates the specific expected

values d
(in,kl)
j , d

(out,kl)
i , d

(in,lk)
j , d

(out,lk)
i , and L↔kl .

Proof
Consider the ERGM defined by maximizing the Shannon entropy such that the expected
particular degree sequences of Eqs. (6.16) to (6.19) and the expected number of reciprocal
links L↔kl are satisfied. A solution to this ERGM is given by

e−λ
(out,k)
i :=

√
zkls

(out,k)
i , ∀i ∈ Ck, (6.20)

e−λ
(in,k)
i :=

√
zkls

(in,l)
i , ∀i ∈ Cl, (6.21)

e−λ
(out,l)
i :=

√
zlks

(out,l)
i , ∀i ∈ Cl, (6.22)

e−λ
(in,l)
i :=

√
zlks

(in,k)
i , ∀i ∈ Ck, (6.23)

e−λr := r, (6.24)

where the λ’s denote the corresponding Lagrange multipliers. From the general the-
ory of maximum entropy problems, we know that the solving probability distribution is
unique, see Theorem 2.1.3. This means that all link probabilities, as given by Eqs. (6.5)
to (6.7), are unique, see Engel et al. (2019b). From this it follows that zkl, zlk, and r are
unique.

6.3 Allocation of Weights via an ERGM

In a second step, we allocate weights to an adjacency matrix, sampled from the fitness
model discussed in Section 6.2, through an exponential random graph model.

Let a ∈ {0, 1}n×n denote a realization of the random adjacency matrix A, as specified in
the previous section. We define a set of possible weighted graphs Ga consistent with a,
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as the set of all graphs that assign weights in N0 to existing links of a and zero weight
to non-existing links of a:

Ga =

{
w ∈ Nn×n0 | wij = 0,∀aij = 0 and wij ∈ N0,∀aij = 1

}
. (6.25)

Remark 6.3.1 (Bounded link weights)
We could further restrict the set of considered graphs, as the maximum weight that a link
can carry is given by the minimum of the corresponding row, column, and block weight,
i.e.

G̃a =

{
w ∈ Nn×n0 | wij = 0,∀aij = 0

and wij ∈
{

1, 2, . . . ,min
{
s

(out)
i , s

(in)
j , s

(block)
ij

}}
, ∀aij = 1

}
.

(6.26)

The analytical derivation of this model works analogously to the one considering Ga.
However, the resulting expected link weights take a slightly more complex form, which
renders parameter estimation more difficult. Since all expected weights, in the setting of

Ga, lie in the interval
(

0,min
{
s

(out)
i , s

(in)
j , s

(block)
ij

}]
, here we consider the simpler setting

of Ga.

Remark 6.3.2 (Partial knowledge of certain weights)
Incorporating available information on the weight of certain links is straightforward. Let
w∗ ∈ W :=

(
{∗} ∪ N0

)n×n
, where w∗ij = ∗ denotes an unknown matrix element. In this

case we simply consider the set of graphs

Ga,w∗ =

{
w ∈ Nn×n0 | wij = w∗ij ,∀w∗ij 6= ∗ and wij = 0, ∀aij = 0

and wij ∈ N0,∀aij = 1, w∗ij = ∗

}
.

(6.27)

The analytical derivation of this model works analogously to the one considering Ga.

Further, let P := {p : Ga → [0, 1]} denote the set of all probability measures defined
on Ga. The most unbiased probability measure p ∈ P is the one with the minimum
Kullback–Leibler divergence w.r.t. the uniform distribution, or equivalently with max-
imum Shannon entropy, and which fulfills the desired row sums, column sums, and
block weights in expectation. This translates to the following constrained optimization
problem,

max
p∈P
−
∑
w∈Ga

p(w) log
(
p(w)

)
(6.28)
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subject to

∑
w∈Ga

p(w)

 n∑
j=1

wij

 = s
(out)
i , ∀i = 1, . . . , n, (assets)

∑
w∈Ga

p(w)

(
n∑
i=1

wij

)
= s

(in)
j , ∀j = 1, . . . , n, (liabilities)

∑
w∈Ga

p(w)

 ∑
i∈Ck,j∈Cl

wij

 = s
(block)
kl , ∀k, l = 1, . . . , N, (block weights)

∑
w∈Ga

p(w) = 1.

(6.29)

Solving this optimization problem as usual by the method of Lagrange multipliers, yields
the following graph Hamiltonian H : Ga → R

H (w) =

n∑
i,j=1

(
θ

(out)
i + θ

(in)
j + θ

(block)
ij

)
wij , (6.30)

where θ(out), θ(in) ∈ Rn, and θ(block) ∈ RN×N denote the corresponding Lagrange mul-

tipliers. To simplify the notation, let θ
(block)
ij denote the Lagrange multiplier of the

corresponding block. Next, we derive the partition function Z. For further clarity we
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abbreviate θij :=
(
θ

(out)
i + θ

(in)
j + θ

(block)
ij

)
. W.l.o.g. let a12 = 1

Z =
∑
w∈Ga

e−H(w) =
∑
w∈Ga

∏
i 6=j

exp (−θijwij)

=
∑
w∈Ga

e−θ12w12
∏
i 6=j

(ij)6∈{(12)}

e−θijwij

=

 ∑
w∈Ga|w12=0

e−θ12w12
∏
i 6=j

(ij) 6∈{(12)}

e−θijwij

+

 ∑
w∈Ga|w12=1

e−θ12w12
∏
i 6=j

(ij)6∈{(12)}

e−θijwij

+ . . .

=

( ∞∑
w̃12=0

e−θ12w̃12

) ∑
w∈Ga|w12=w̃12

∏
i 6=j

(ij)6∈{(12)}

e−θijwij


︸ ︷︷ ︸

constant for all w̃12

(?)
=

∏
(i,j)|aij=1

 ∞∑
wij=0

e−θijwij

 =
∏

(i,j)|aij=1

1

1− e−θij
, by the geometric series,

(6.31)

where the same algebraic steps are applied to all elements in (?) as we applied exemplary
to the first element w12. Note that

e−θij < 1 (6.32)

has to hold for all (i, j) for which aij = 1, since otherwise the value of the partition
function Z is infinity, which implies that p is not a solving probability measure.

From the general theory of ERGMs we known that taking partial derivatives of F :=
− log (Z) w.r.t. the Lagrange multipliers yields the expected value of the corresponding
constraint, see Eq. (2.19). Thus, we get the following

(
2n+N2

)
-dimensional system of

equations, which can serve for calibrating the Lagrange multipliers,

∂F

∂θ
(out)
i

=
∑

j|aij=1

exp (−θij)
1− exp (−θij)

= s
(out)
i , ∀i = 1, . . . , n, (6.33)

∂F

∂θ
(in)
j

=
∑

i|aij=1

exp (−θij)
1− exp (−θij)

= s
(in)
j , ∀j = 1, . . . , n, (6.34)

∂F

∂θ
(block)
kl

=
∑

i∈Ck,j∈Cl|aij=1

exp (−θij)
1− exp (−θij)

= s
(block)
kl , ∀k, l = 1, . . . , N. (6.35)
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Moreover, we can derive the expected link weights as follows. Let Wbc denote the random
variable representing a link from node b to node c, defined on the probability space
(Ga,P (Ga) , p), where p denotes the probability distribution of the ERGM defined in
this section. We get,

E [Wbc | abc = 1]

=
∑
w∈Ga

wbcP (w)

= Z−1
∑
w∈Ga

wbce
−H(a)

=
∏

(i,j)|aij=1

[
1

1− e−θij

]−1 ∑
{w∈Ga}

wbc
∏

(i,j)|aij=1

e−θijwij

=
∏

(i,j)|aij=1

[
1

1− e−θij

]−1


∞∑

w̃bc=0

w̃bce
−θbcw̃bc

 ∑
w∈Ga|wbc=w̃bc

∏
(i,j)|aij=1
(ij)6∈{(bc)}

e−θijwij


︸ ︷︷ ︸

constant for all w̃bc


=

∏
(i,j)|aij=1

[
1

1− e−θij

]−1
 ∞∑
w̃bc=0

w̃bce
−θbcw̃bc

 ∏
(i,j)|aij=1
(ij)6∈{(bc)}

[
1

1− e−θij

]
, analogous to Eq. (6.31)

=

[
1

1− e−θbc

]−1 ∞∑
w̃bc=0

w̃bce
−θbcw̃bc

=
(

1− e−θbc
) ∞∑
w̃bc=0

∂

∂θ
(out)
b

[
−e−θbcw̃bc

]

=
(

1− e−θbc
) ∂

∂θ
(out)
b

− ∞∑
w̃bc=0

e−θbcw̃bc


=
(

1− e−θbc
) ∂

∂θ
(out)
b

[
−1

1− e−θbc

]
, by the geometric series

=
(

1− e−θbc
) e−θbc

(1− e−θbc)2 ,

=
e−θbc

1− e−θbc
.

(6.36)
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Hence, summing up

E [Wij | aij = 1] =
exp (−θij)

1− exp (−θij)
, ∀i, j = 1, . . . , n,

E [Wij | aij = 0] = 0, ∀i, j = 1, . . . , n.

Furthermore, we can derive the probability that a random link Wbc takes a specific
weight w∗bc ∈ N≥0,

P (Wbc = w∗bc | abc = 1)

=
∑

{w∈Ga:wbc=w
∗
bc}

P (w)

= Z−1
∑

{w∈Ga:wbc=w
∗
bc}

e−H(a)

=
∏

(i,j)|aij=1

[
1

1− e−θij

]−1 ∑
{w∈Ga:wbc=w

∗
bc}

∏
(i,j)|aij=1

e−θijwij

=
∏

(i,j)|aij=1

[
1

1− e−θij

]−1

e−θbcw∗bc ∑
{w∈Ga:wbc=w

∗
bc}

∏
(i,j)|aij=1
(ij)6∈{(bc)}

e−θijwij


=

∏
(i,j)|aij=1

[
1

1− e−θij

]−1

e−θbcw
∗
bc

∏
(i,j)|aij=1
(ij)6∈{(bc)}

[
1

1− e−θij

]
, analogous to Eq. (6.31)

=

[
1

1− e−θbc

]−1

e−θbcw
∗
bc

=
(

1− e−θbc
)
e−θbcw

∗
bc .

(6.37)

Since the links are pairwise independet, we get the following functional form for the
probability of a certain graph w∗ ∈ Ga,

P (W = w∗) =
∏

(i,j)|aij=1

P
(
Wij = w∗ij

)
.

(6.38)

The question whether a solution for an ERGM exists is non-trivial and to the best of our
knowledge still constitutes an open problem in the wider realm of the theory of ERMGs.
Regarding the empirical analysis of the EU interbank market, conducted in Section 6.5,
our algorithm for parameter estimation, see Section 6.4, was always able to quickly find
a solution with minimal error. From the general theory of ERMGs, we know that if the
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set of solving distributions is non-empty, then all Lagrange parameters are unique up to
possible equivalence classes.

Theorem 6.3.3 (Uniqueness of a solution for the ERGM)
If the set of probability measures p ∈ P that satisfy all constraints of Eq. (6.29) is
non-empty, then the solving distribution function of the ERGM is unique up to certain

equivalence classes. More precisely, the sum θij =
(
θ

(out)
i + θ

(in)
j + θ

(block)
ij

)
is unique for

all i, j = 1, . . . , n where aij = 1. Any set θ(out), θ(in), θ(block) that matches the unique
sums, defines the same solving probability measure and constitutes an equivalence class.

Proof
From the general theory of maximum entropy problems, we know that the solving prob-
ability measure is unique, see Theorem 2.1.3. Let’s assume there exists a second set
of parameters θ̃ solving the ERGM, i.e. defining the same probability measure. This
especially means that pθ(w) = pθ̃(w) for all w ∈ Ga. Let w(0) denote the graph where

all w
(0)
ij = 0, then we get

pθ(w
(0)) = pθ̃(w

(0))

⇔ Z−1
θ e−Hθ(w(0))︸ ︷︷ ︸

=1

= Z−1

θ̃
e−Hθ̃(w(0))︸ ︷︷ ︸

=1

⇔ Zθ = Zθ̃.

Let w(a,b) denote the graph where all elements are 0 and w
(a,b)
ab = 1, then we get

pθ(w
(a,b)) = pθ̃(w

(a,b))

⇔ Z−1
θ e−Hθ(w(a,b))︸ ︷︷ ︸

=exp(−θab)

= Z−1

θ̃
e−Hθ̃(w(a,b))︸ ︷︷ ︸
=exp(−θ̃ab)

⇔ θab = θ̃ab.

Hence, it follows that all sums θij =
(
θ

(out)
i + θ

(in)
j + θ

(block)
ij

)
are unique for all i, j =

1, . . . , n where aij = 1.

6.4 Model Calibration

Calibrating the Lagrange multipliers of the ERGM presented in Section 6.3 is demand-
ing, since the system of equations is nonlinear, the number of parameters is (in most
cases) very big, and because of the upper bound constraints of certain sums of the La-
grange multipliers (see Eq. (6.32)). For example, the reconstruction of the EU interbank
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network, conducted in Section 6.5, comprises
(
2n+N2

)
=
(
2 · 3, 469 + 292

)
= 7, 779 La-

grange multipliers.1 To solve this problem, we make use of the structural characteristics
of the expected link weights and the system of equations.

To simplify notation, we rewrite the problem in terms of x
(out)
i := exp

(
−θ(out)

i

)
, x

(in)
j :=

exp
(
−θ(in)

j

)
, and x

(block)
ij := exp

(
−θ(block)

ij

)
, for all i, j = 1, . . . , n. From the previous

section we know that the matrix of expected link weights takes the following form, see
Section 6.3, for a ∈ {0, 1}n×n a given adjacency matrix,

E [W | a] =

(
x

(out)
i x

(in)
j x

(block)
ij

1− x(out)
i x

(in)
j x

(block)
ij

aij

)
i,j=1,...,n

. (6.39)

The system of equations is essentially given by requiring the row sums, the column sums,
and the block weights of E [W | a] to equal the desired weights s(out), s(in), and s(block), re-

spectively. Moreover, the condition of Eq. (6.32) can be rewritten to x
(out)
i x

(in)
j x

(block)
ij < 1

for all (i, j) with aij = 1.

Next, we note that for fixed admissible parameters x(in) ∈ Rn>0 and x(block) ∈ RN×N>0 , the
equations of the row sums simplify to n independent, univariate non-linear functions.
In addition, these functions are on the admissible support continuously differentiable
and strictly monotonically increasing. Hence, this subproblem can easily be tackled for
example by the univariate Newton’s method. The same holds true when considering only
the subset of column (block) parameters and column (block) equations. Therefore, we
implement an iterative algorithm updating either the row, or the column, or the block
parameters in each iteration w.r.t. the row, column, or block equations, respectively.

More precisely, in each iteration we compute three sums of absolute errors consisting of
the row constraints, the column constraints, and the block constraints. The subset (row,
column, or block) with the highest error is selected for updating the respective subset
of parameters by one step of the Newton’s method. In addition, we scale the step of
the Newton’s method by a global stepsize parameter, in order to control for the impact
on the disregarded equations. As the algorithm moves towards a minimum, the stepsize
parameter is gradually decreased. To ensure that the bounds of Eq. (6.32) are always
satisfied, we adjust a parameter update that would violate the lower (resp. upper) bound,
by setting the concerned parameter to the smallest (resp. largest) admissible value. The
algorithm terminates, once an acceptable remaining error is reached.

As can be seen from Eq. (6.39), big desired weights s(out), s(in), and s(block), and thus

big expected link weights, mean that the product of the parameters x
(out)
i x

(in)
j x

(block)
ij

gets pushed closer to 1. More precisely, the bigger the desired weights s(out), s(in), and
s(block), the more will the parameters cluster just below the value of 1, and hence the

1There are 28 EU countries plus a Rest-of-the-World node modeling interbank linkages between EU and
non–EU banks. The Rest-of-the-World node gives rise to an additional row and column of blocks.
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more difficult the calibration. Therefore, we consider relative instead of absolute weights,
i.e. all row, column, and block weights are divided by the total weight of the network.
This allows the parameters to spread more broadly and thus facilitates the calibration.
Furthermore, as starting parameters we choose x = s/(1 + s) which in our experiments
works well, but any other starting values can be used likewise.

The pseudo-code of the algorithm is presented in Algorithm 1. Regarding the recon-
struction of the EU interbank market, conducted in Section 6.5, the proposed algorithm
is reasonably fast, see Table 6.2.

Algorithm 1: Parameter calibration of the ERGM discussed in Section 6.3.

(1) Function calibrate ERGM(function: expectedWeights, vector: s(out), vector:

s(in), matrix: s(block), matrix: a)

(2) for i← 1 to n do // initialize parameters

(3) x
(out)
i ← s

(out)
i /

(
s

(out)
i + 1

)
(4) x

(in)
i ← s

(in)
i /

(
s

(in)
i + 1

)
(5) end
(6) for k ← 1 to N do
(7) for l← 1 to N do

(8) x
(block)
kl ← s

(block)
kl /

(
max

{
s(block)

})
(9) end

(10) end

(11) w ← expectedWeights(x(out), x(in), x(block)) // compute expected link

weights

(12) errorRows←
(∑
| rowSums(w)− s(out) |

)
/
(∑

s(out)
)

// get errors

(13) errorColumns←
(∑
| colSums(w)− s(in) |

)
/
(∑

s(in)
)

(14) errorBlocks←
(∑
| blockSums(w)− s(block) |

)
/
(∑

s(block)
)

(15) errorAccept← 1% // set acceptable error threshold

(16) errorV ec← [errorRows, errorColumns, errorBlocks] // initialize

auxiliary variables

(17) stepsize← 0.1
(18) stepAdj ← 100
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(19) while max {errorRows, errorColumns, errorBlocks} > errorAccept do
(20) switch max {errorRows, errorColumns, errorBlocks} do

(21) case errorRows // update all x
(out)
i

(22) for i← 1 to n do
(23) primeRowSumi ←

∂

∂x
(out)
i

(∑n
j=1

x
(out)
i x

(in)
j x

(block)
ij

1−x(out)i x
(in)
j x

(block)
ij

1{aij=1} − s
(out)
i

)
x

(out)
i ←

x
(out)
i − stepsize ·

(
rowSums(w)i − s(out)

i

)
/primeRowSumi

(24) if x
(out)
i > admissible support then

(25) x
(out)
i ← max {admissible support}

(26) else if x
(out)
i < admissible support then

(27) x
(out)
i ← min {admissible support}

(28) case errorColumns // update all x
(in)
i

(29) analogously

(30) case errorBlocks // update all x
(block)
i

(31) analogously

(32) w ← expectedWeights(x(out), x(in), x(block)) // compute expected link

weights

(33) errorRows←
(∑
| rowSums(w)− s(out) |

)
/
(∑

s(out)
)

// get errors

(34) errorColumns←
(∑
| colSums(w)− s(in) |

)
/
(∑

s(in)
)

(35) errorBlocks←
(∑
| blockSums(w)− s(block) |

)
/
(∑

s(block)
)

(36) errorV ec← [errorV ec, [errorRows, errorColumns, errorBlocks]]

(37) if length(errorVec) > stepAdj then // adjust stepsize parameter

(38) if mean(errorVec(end-stepAdj:end-stepAdj/2))−
mean(errorVec(end-stepAdj/2:end)) ≤ 1e− 4 then

(39) stepsize← stepsize/1.2
(40) errorV ec← min {errorV ec}
(41) x(in) ← best(x(in)) // restart at best solution found so far

(42) x(out) ← best(x(out))

(43) x(block) ← best(x(block))

(44) return (x(out), x(in), x(block))

125



6 A Block-Structured Model for Banking Networks Across Multiple Countries

6.5 Empirical Case Study: Reconstructing the EU Interbank
Network

The model developed in this chapter can be calibrated to reconstruct the EU interbank
market. For this purpose, we first discuss how the input variables can be estimated
from publicly available data, and subsequently we present the simulation results. The
simulated networks allow a detailed assessment of systemic risk, which is demonstrated
in Chapter 7.

6.5.1 Data

The network characteristics that are explicitly incorporated in our model and can thus
be set as desired, are

(i) interbank assets s
(out)
i and liabilities s

(in)
i for each bank i in the network;

(ii) the network density of each block, i.e. the number of links L→ ∈ NN×N ;

(iii) the reciprocity of each block, i.e. the number of reciprocal links L↔ ∈ NN×N
symmetric;

(iv) and the weight s
(block)
kl of each block, k, l = 1, . . . , N .

Even though the aggregated data of (ii) - (iv) do not reveal any individual bilateral
lending information, these statistics are not readily available. Therefore, we approximate
these statistics based on publicly available information. Total interbank assets and
liabilities, on the other hand, are published in the banks’ balance sheet. We obtain this
data from the Bankscope (now Orbis BankFocus) database of Bureau Van Dijk.

Roukny et al. (2014) and Bargigli et al. (2015) are granted access to real data from
the German and the Italian central bank and provide detailed empirical analyses on
the respective interbank markets. To the best of our knowledge, their works constitute
the most extensive descriptions on the topology of financial networks of EU member
states. Without further publicly available information, we propose to approximate the
network densities within countries based on the information of the German and Italian
interbank market. More precisely, for a country with |Cj | banks we suggest a density
equal to the average density found in the subgraphs of the German and Italian interbank
market, consisting of the |Cj | banks with the highest degree. This idea is motivated by
the assumption that the difference in the number of banks in a country is mainly due
to the number of small and local banks, while the need for a well connected core of
big banks is universal. Hence, we assume that at least the density of the core of the
interbank network is similar across countries. In case more information on interbank
markets becomes available, the chosen density can easily be adjusted.
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The density of the German and Italian interbank market, reduced to a number of best
connected banks, can be derived via our earlier work Engel et al. (2019b), see also Chap-
ter 5, on the reconstruction of the unweighted German and Italian interbank market.
Fig. 6.2 presents the average densities over 100 simulated German and Italian interbank
networks, reduced to subgraphs of banks with the highest degree. Since the degree of a
bank highly correlates with its weight, the subgraphs can also be interpreted to contain
the biggest banks.

Figure 6.2: Average density over subgraphs of 100 German and 100 Italian simulated
interbank networks, as well as the average over both countries. The size of
the subgraphs is indicated on the x-axis, and the selection is based on the
(descending) degree of the banks.

To every country we assign a network density according to its number of banks and the
average density over the German and Italian interbank networks, as presented by the
dashed line in Fig. 6.2. A summary over all EU countries, their number of banks and
allocated densities, is given in Table 6.1. The densities range from 93% for Malta, a
country with only 5 banks, to 1% for Germany, a country with 1415 banks. It seems
reasonable that countries comprising only a small number of banks are very well con-
nected, while interbank networks of countries containing a large number of banks are
rather sparse.

Next, we discuss the input factor of the block reciprocity. Degree reciprocity ρr is defined
as the correlation coefficient between the symmetric entries of the adjacency matrix a of
a directed graph, i.e. the tendency of nodes to form mutual links,

ρr :=

∑
i 6=j (aij − ā) (aji − ā)∑

i 6=j (aij − ā)2 , (6.40)
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Table 6.1: Estimated network density for each country (data from 2016).

Country AT BE BG CY CZ DE DK EE ES FI FR GR HR HU

number of banks 527 33 14 22 19 1415 45 4 98 13 247 5 23 12
density 3% 65% 85% 77% 80% 1% 53% 93% 26% 86% 8% 93% 75% 87%

Country IE IT LT LU LV MT NL PL PT RO SE SI SK UK

number of banks 16 518 6 42 13 5 18 25 108 20 65 12 14 129
density 83% 3% 92% 56% 86% 93% 81% 73% 23% 79% 39% 87% 85% 19%

where ā denotes the network density. The ‘neutral’ case ρr = 0 indicates that the
network has exactly as many reciprocal links as expected in a random graph with the
same number of vertices and links. Moreover, ρr > 0 (resp. ρr < 0 ) signifies that there
are more (resp. less) reciprocal links than expected by chance. For a detailed discussion
on reciprocity, see Garlaschelli and Loffredo (2004b). Furthermore, Roukny et al. (2014)
and Bargigli et al. (2015) report a reciprocity of 0.31 for the German and 0.45 for the
Italian interbank market. Without any further information on the reciprocity of other
interbank markets, we decided to set the tendency that banks form reciprocal lending
relationships, i.e. the reciprocity of each block, to the average of the two available values,
hence, to 0.38.

The estimation of the block weights is non-trivial, since there is no complete and con-
sistent data set on cross border exposures publicly available. In an attempt to fill this
gap and “thus contributing to market discipline and financial stability in the EU”2 the
European Banking Authority (EBA) conducts a transparency exercise since 2013. As
part of this exercise, the EBA discloses interbank credit exposure of 131 (in 2016) Euro-
pean banks disaggregated on country level. We propose to use this data set to construct
a prior distribution of credit exposure aggregated on country level. Subsequently, we
derive the distribution of the block weights which is as close as possible to the prior
distribution, i.e. the EBA data, while fulfilling the given marginals of total interbank
assets and liabilities for each country, as given by the BankFocus database. As a measure
of divergence we use the Kullback–Leibler divergence, which means we have to solve a
simple maximum entropy problem. Furthermore, for the derivation of the block weights,
we differentiate between cross-border active banks and domestic banks. As an approxi-
mation, we consider those banks as cross-border active which are marked as significant
by the ECB3 or which are classified as global systemically important banks (G-SIBs)4.
The derivation of the distribution of the block weights is explained step by step in the
following.

(1) For those countries for which the EBA data set includes at least one bank with

2See https://www.eba.europa.eu/-/eba-transparency-exercise.
3See https://www.bankingsupervision.europa.eu/banking/list/criteria/html/index.en.html
4See http://www.fsb.org/what-we-do/policy-development/systematically-important-financial-institutions-sifis/

global-systemically-important-financial-institutions-g-sifis/

128

https://www.eba.europa.eu/-/eba-transparency-exercise
https://www.bankingsupervision.europa.eu/banking/list/criteria/html/index.en.html
http://www.fsb.org/what-we-do/policy-development/systematically-important-financial-institutions-sifis/global-systemically-important-financial-institutions-g-sifis/
http://www.fsb.org/what-we-do/policy-development/systematically-important-financial-institutions-sifis/global-systemically-important-financial-institutions-g-sifis/


6 A Block-Structured Model for Banking Networks Across Multiple Countries

a detailed country level distribution of its interbank credit exposures, we derive
the relative distribution of credit exposure, aggregated over all listed banks in a
country. The relative distribution is split to all EU countries, the rest of the world,
and unallocated, which denotes the difference between total credit exposure and
the sum over all listed country exposures.

(2) Countries for which we have a relative exposure distribution from the EBA and
which comprise cross-border active banks: We derive block weights by distributing
interbank assets of cross-border active banks according to the relative distribution
from the EBA data set, and adding interbank assets of the domestic banks to the
home country. For 2016 these countries are: AT, BE, CY, DE, ES, FI, FR, GR,
IE, IT, LU, LV, MT, NL, PT, SE, SI, UK.

(3) Countries for which we have a relative exposure distribution from the EBA but
are missing information on which banks are cross-border active: We approximate
the relative amount of interbank assets of cross-border active banks by the mean
over all countries with EBA and cross-border active information. This amount
is then distributed according to the EBA data, while the corresponding amount
of interbank assets of domestic banks is allocated to the home country. For 2016
these countries are: BG, DK, HU.

(4) Countries for which the cross-border active banks are known, but data of the
EBA is missing: We approximate the amount of interbank assets of cross-border
active banks that is allocated within the home country by the mean over all other
domestic distributions of cross-border active banks that are allocated so far. The
amount of interbank assets of domestic banks is also allocated to the home country.
For 2016 these countries are: CZ, EE, LT, SK.

(5) Countries that are not comprised in the EBA data set and for which information on
cross-border active banks is missing: A home bias is added by allocating the mean
over all assigned home biases multiplied by total interbank assets of the respective
countries. For 2016 these countries are: HR, PL, RO.

(6) Next, we compute how much of the countries interbank assets and liabilities, as
given by BankFocus, are still unallocated. For countries for which we have already
allocated a higher amount than available according to BankFocus, the value of the
unallocated amount is set to zero.

(7) To distribute the unallocated interbank assets to the EU and to the rest of the world
in a reasonable way, we allocate an amount of the sum of unallocated interbank
assets to the rest of the world, that is proportional to the amount of weight that
has been allocated to the rest of the world so far.

(8) The amount of interbank assets which is now still unallocated is spread over all
EU blocks according to the unallocated marginals.
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(9) In a last step we solve the optimization problem of minimizing the Kullback–Leibler
divergence to the thus constructed prior distribution of block weights, subject to
the marginal country constraints as given by BankFocus, i.e. total interbank assets
and liabilities of each country have to be fulfilled.

The resulting distribution is presented in Fig. 6.3. For most countries, we can identify a
clear home bias, visualized by the dark blue colors on the (anti-) diagonal. Furthermore,
some countries allocate a substantial amount of their interbank assets to France, the
rest of the world, Italy, Spain, UK, and Germany. Regarding interbank liabilities, a
substantial amount comes from countries outside of the EU, as well as France and Italy.

Figure 6.3: Distribution of interbank assets and liabilities, based on the EBA trans-
parency exercise of 2016. The plot on the left shows how each country
distributes its interbank assets, i.e. each row sums up to one. The plot on
the right shows where the interbank liabilities of each country come from,
i.e. each column sums up to one. ‘RoW’ denotes the ‘Rest of the World’.

The last input factor that we need to discuss is the density of cross-border blocks. Since
at this point, we have already derived the density of each country and the block weights,
we can compute the average weight per link within each country. Without further
information on cross-border interbank markets, we propose to take the minimum weight
per link of two countries as a proxy for the weight per link of the cross-border block
between both countries. This means the number of links in the cross-border matrix of
countries k and l is approximated by

L→kl =

(
min

{
s

(block)
kk

L→kk
,
s

(block)
ll

L→ll

})−1

· s(block)
kl . (6.41)

This section illustrated one approach to estimate the model input factors based on scarce
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publicly available information. Moreover, these factors only serve for calibration and do
not impact the methodological part of the model. Also, in case further aggregated data
on financial networks, such as the density, degree distribution, block weights, or reci-
procity become available in the future, our model can easily incorporate this information.
Actually, policy-makers might already have access to some additional, not publicly avail-
able data, which they can use to calibrate the model more accurately.

6.5.2 Simulation Results

This section presents the results of the reconstruction of the EU interbank market. The
case study is based on data of 2016, for which BankFocus lists 3,468 unconsolidated EU
banks with positive interbank assets and liabilities. Adding a Rest-of-the-World node
leads to a network of 3,469 nodes and 29 regions (28 EU countries + Rest-of-the-World),
i.e. 292 = 841 blocks. There are two sources of errors that should be differentiated.
First, an adjacency matrix might be drawn that has no links in some rows, columns, and
blocks, and hence no weight can be allocated. Second, the weight allocation found by
Algorithm 1 yields a remaining error. Table 6.2 summarizes the runtime and the error
of both parts of the model. The relative error of the row sums (column sums/ block
weights) refers to the sum of absolute errors over all rows (columns/ blocks) divided by
the sum of all row (column/ block) weights.

Table 6.2: Runtime and error of the fitness model and the ERGM, w.r.t. 100 simulated
interbank networks (including the Rest-of-the-World node) and with an ac-
ceptable error threshold of 1% in Algorithm 1.

Fitness Model ERGM
adjacency matrix weight allocation
mean std mean std

runtime 36 seconds NA 2.5 min/ network NA
relative error:
row sums 3.86e-04 3.40e-05 9.81e-03 1.42e-04
column sums 3.22e-04 3.05e-05 9.83e-03 1.34e-04
block weights 1.00e-02 1.40e-05 9.85e-03 1.10e-04

To gain some insight into the topology of the simulated networks, Table 6.3 reports the
most prominent network statistics. Unfortunately, we do not have access to data on
the actual EU interbank market and hence, cannot conduct a detailed assessment of the
goodness of fit. However, our model seems to successfully reproduce some commonly
reported characteristics of financial networks, such as sparsity, a positive reciprocity,
disassortativity, and short paths.
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Table 6.3: Mean, standard deviation, and 95% confidence interval of different network
statistics, w.r.t. 100 simulated networks (excluding the Rest-of-the-World
node).

mean std 95% confidence interval

total number of links 69,451 223 [69,408; 69,495]

number of reciprocal links 26,995 163 [26,964; 27,027 ]

in-degree assortativity -0.23 0.0026 [-0.23; -0.23]
out-degree assortativity -0.19 0.0017 [-0.19; -0.19]

directed clustering coefficient 0.66 0.0036 [0.66; 0.66]
undirected clustering coefficient 0.72 0.0032 [0.72; 0.72]

shortest directed path 2.92 0.0079 [2.92; 2.92]
shortest undirected path 2.95 0.0092 [2.94; 2.95]

number of isolated nodes 81 8 [80; 83]

largest strongly connected component 2,828 17 [2,824; 2,831]
largest weakly connected component 3,387 8 [3,385; 3,388]

Since the simulated networks serve as a basis for an assessment of systemic risk, the
network similarity within the drawn sample is also of interest. If the location of the
links and their weight does not change much across the sample, systemic risk results
will be very stable as well. With increasing variation in the sampled networks, however,
we expect an increasing variance and uncertainty in the quantification of systemic risk.
Therefore, we now analyze the similarity of the sampled adjacency matrices and the
allocated weights. The similarity between two realizations a and ã of the link probability
matrix A ∼ Bin

(
1, (pij , pji)

)n×n
can be derived analytically. The expected number of

links that exist in both adjacency matrices (drawn independent of each other) is given
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by

E

∑
i 6=j

1{aij=1∧ãij=1}


= E

[∑
i<j

1{aij=1∧aji=0∧ãij=1∧ãji=0} + 1{aij=1∧aji=0∧ãij=1∧ãji=1}

+ 1{aij=0∧aji=1∧ãij=0∧ãji=1} + 1{aij=0∧aji=1∧ãij=1∧ãji=1}

+ 21{aij=1∧aji=1∧ãij=1∧ãji=1} + 1{aij=1∧aji=1∧ãij=1∧ãji=0} + 1{aij=1∧aji=1∧ãij=0∧ãji=1}

]
=
∑
i<j

P (aij = 1 ∧ aji = 0 ∧ ãij = 1 ∧ ãji = 0) + . . .+P (aij = 1 ∧ aji = 1 ∧ ãij = 0 ∧ ãji = 1)

=
∑
i<j

p
(1,0)
ij

(
p
(1,0)
ij + p

(1,1)
ij

)
+ p

(0,1)
ij

(
p
(0,1)
ij + p

(1,1)
ij

)
+ p

(1,1)
ij

(
2p

(1,1)
ij + p

(1,0)
ij + p

(0,1)
ij

)
.

(6.42)

The expected numbers of links that differs and that is absent in a and ã can be computed
analogously. Table 6.4 summarizes the expected similarity and dissimilarity between two
sampled adjacency matrices of the reconstructed EU interbank market. In expectation,
almost half of the sampled links in the network will be identical in both realizations,
and half of the sampled links will change location. Regarding the sampled zeros in the
adjacency matrices, i.e. non-existing links, on average 99.7% of the zeros will be identical
in two simulated networks.

Table 6.4: Expected similarities and dissimilarities in the sampled adjacency matrices
modeling the EU interbank market (excluding the Rest-of-the-World node) if
two independent simulation runs are drawn.

fraction of existing links fraction of existing links fraction of absent links
that is identical in two runs that differs in two runs that is identical in two runs

E

[∑
i,j 1{aij=1∧ãij=1}

]
E[

∑
i,j aij]

= 48.81%

E

[∑
i,j 1{aij=1∧ãij=0}

]
E[

∑
i,j aij]

= 51.19%

E

[∑
i,j 1{aij=0∧ãij=0}

]
E[

∑
i,j 1−aij]

= 99.70%

Next, we analyze the similarity between the allocated weights. Since the parameters of
the ERGM are recalibrated for every realization of the adjacency matrix, the similarity
between the weights cannot be derived analytically. Therefore, we compute two empirical
similarity measures: the relative difference and the cosine similarity. Let w and w̃ denote
two realizations of the EU interbank market. The relative difference between w and w̃
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is given by ∑
ij |wij − w̃ij |∑

ij wij +
∑

ij w̃ij
.

Comparing all 100 simulated networks pairwise yields an average relative difference of
0.18 and a standard deviation of 0.002. The cosine similarity is defined as∑

i,j wijw̃ij√∑
i,j w

2
ij

√∑
i,j w̃

2
ij

. (6.43)

Interpreting both networks as n2-dimensional vectors, the cosine similarity gives the
cosine of the angle between the two vectors. Since all weights are non-negative, the
cosine similarity is bounded by [0, 1] with 1 (resp. 0) signifying the strongest (resp.
least) possible similarity. Comparing the sampled networks pairwise, gives an average
cosine similarity of 0.98 and a standard deviation of 0.002.

The high cosine similarity together with the high number of changing links and a sub-
stantial difference in weight allocation, suggest that links with high weights, connecting
big banks, stay quite constant over the set of sampled networks, while links with small
weights, involving at least one small bank, vary notably (in existence and weight). This
assumption can be verified by plotting the elements of sampled network matrices against
each other, see Fig. 6.4.

Figure 6.4: Scatterplot of link weights wij and w̃ij , comparing 10 simulated networks
pairwise (i.e. network 1 vs. network 2, network 2 vs. network 3, ..., network
9 vs. network 10). Links that do not exist in neither of the two respectively
considered networks are omitted. The figure on the right is in log-log scale.
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6.6 Supplementary Information

In this section we provide a detailed proof for Theorem 6.2.1. For the reader’s conve-
nience the theorem and the necessary elements are recalled in the following.

Theorem 6.2.1 (Existence of a solution for the extended fitness model)
Consider four vectors s(out,k), s(in,k) ∈ Rnk>0, and s(out,l), s(in,l) ∈ Rnl>0. Let the random

matrices A(kl) ∈ {0, 1}nk×nl and A(lk) ∈ {0, 1}nl×nk be defined by the probability function
P as given by Eqs. (6.44) to (6.46). For any feasible number of

(i) reciprocal links L↔kl ∈ [0, nknl),

(ii) and links L̃→kl := L→kl−L↔kl and L̃→lk := L→lk−L↔kl with
(
L̃→kl + L̃→lk

)
∈ (0, nknl − L↔kl ),

there exist zkl, zlk, rkl ∈ R≥0, such that Eqs. (6.47) to (6.49) are fulfilled.

The probability function P is defined by

P (Aij = 1 ∧Aji = 1) =
r2
ijzijzjis

(out)
i s

(in)
j s

(out)
j s

(in)
i

1 + zijs
(out)
i s

(in)
j + zjis

(out)
j s

(in)
i + r2

ijzijzjis
(out)
i s

(in)
j s

(out)
j s

(in)
i

,

(6.44)

P (Aij = 1 ∧Aji = 0) =
zijs

(out)
i s

(in)
j

1 + zijs
(out)
i s

(in)
j + zjis

(out)
j s

(in)
i + r2

ijzijzjis
(out)
i s

(in)
j s

(out)
j s

(in)
i

,

(6.45)

P (Aij = 0 ∧Aji = 0) =
1

1 + zijs
(out)
i s

(in)
j + zjis

(out)
j s

(in)
i + r2

ijzijzjis
(out)
i s

(in)
j s

(out)
j s

(in)
i

.

(6.46)

In expectation the following has to hold

E

 ∑
i∈Ck,j∈Cl

Aij

 = L→kl , (directed links) (6.47)

E

 ∑
i∈Cl,j∈Ck

Aij

 = L→lk , (directed links) (6.48)

E

 ∑
i∈Ck,j∈Cl

AijAji

 = E

 ∑
i∈Cl,j∈Ck

AijAji

 = L↔kl . (reciprocal links) (6.49)
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Proof of Theorem 6.2.1

We start with the interior case. For L↔kl , L̃
→
kl , L̃

→
lk ∈ R>0 with

(
L↔kl + L̃→kl + L̃→lk

)
∈

(0, nknl), we have to show, that there exist zkl, zlk, rkl ∈ R>0, such that

L↔kl =
∑

i∈Ck,j∈Cl

r2
klzklzlks

(out)
i s

(in)
j s

(out)
j s

(in)
i

1 + zkls
(out)
i s

(in)
j + zlks

(out)
j s

(in)
i + r2

klzklzlks
(out)
i s

(in)
j s

(out)
j s

(in)
i

, (6.50)

L̃→kl =
∑

i∈Ck,j∈Cl

zkls
(out)
i s

(in)
j

1 + zkls
(out)
i s

(in)
j + zlks

(out)
j s

(in)
i + r2

klzklzlks
(out)
i s

(in)
j s

(out)
j s

(in)
i

, (6.51)

L̃→lk =
∑

i∈Ck,j∈Cl

zlks
(out)
j s

(in)
i

1 + zkls
(out)
i s

(in)
j + zlks

(out)
j s

(in)
i + r2

klzklzlks
(out)
i s

(in)
j s

(out)
j s

(in)
i

(6.52)

hold.

For simplicity we write sij := s
(out)
i s

(in)
j and sji := s

(out)
j s

(in)
i in the following. Further,

we substitute y := r2
klzklzlk in Eqs. (6.50) to (6.52). It suffices to show that there exist

zkl, zlk, y ∈ R>0 such that

L↔kl =
∑

i∈Ck,j∈Cl

ysijsji
1 + zklsij + zlksji + ysijsji

, (6.53)

L̃→kl =
∑

i∈Ck,j∈Cl

zklsij
1 + zklsij + zlksji + ysijsji

, (6.54)

L̃→lk =
∑

i∈Ck,j∈Cl

zlksji
1 + zklsij + zlksji + ysijsji (6.55)

hold. If zkl, zlk, y exist, then there also exists r2 = y/(zklzlk).

This can be proved by the Bolzano–Poincaré–Miranda theorem5.

Theorem 6.6.1 (Bolzano–Poincaré–Miranda)
Let I denote a parallelotope in Rn, i.e. for a, b ∈ R, let I := {x ∈ [a, b]n}. Let
I	i := {x ∈ I : xi = a} and I⊕i := {x ∈ I : xi = b}. Further, let f : I → Rn, f(x) =
(f1(x), . . . , fn(x)) be a continuous map such that fi

(
I	i
)
⊂ (−∞, 0] and fi

(
I⊕i
)
⊂ [0,∞)

for i = 1, . . . , n, then there exists x0 ∈ I such that f(x0) = (0, . . . , 0).

We split the proof in two cases, depending on the values of L↔kl , L̃
→
kl , and L̃→lk .

5See for example Turzański (2012), Theorem 2, and Mawhin (2013), and the references therein.
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Case 1: For

L↔kl ≤
∑

i∈Ck,j∈Cl

sijsji
sij + sji + sijsji

,

L̃→kl ≤
∑

i∈Ck,j∈Cl

sij
sij + sji + sijsji

,

L̃→lk ≤
∑

i∈Ck,j∈Cl

sji
sij + sji + sijsji

.

(6.56)

For Case 1, define the parameter support by (y, zkl, zlk) ∈
[
m−1,m

]3
, for m ∈ R>0,

m� 1. Furthermore, consider Eq. (6.53) as a function f1 of y, zkl, and zlk, i.e.

f1 (y, zkl, zlk) :=

 ∑
i∈Ck,j∈Cl

ysijsji
1 + zklsij + zlksji + ysijsji

− L↔kl . (6.57)

Note that f1 is continuous, strictly monotonically increasing in y, and strictly monoton-
ically decreasing in zkl, zlk. Thus, we get the following boundary values

max
zkl,zlk

f1

(
m−1, zkl, zlk

)
= f1

(
m−1,m−1,m−1

)
=

 ∑
i∈Ck,j∈Cl

m−1sijsji
1 +m−1sij +m−1sji +m−1sijsji

− L↔kl
m→∞→ −L↔kl ≤ 0,

(6.58)

and

min
zkl,zlk

f1 (m, zkl, zlk) = f1 (m,m,m)

=

 ∑
i∈Ck,j∈Cl

msijsji
1 +msij +msji +msijsji

− L↔kl
m→∞→

 ∑
i∈Ck,j∈Cl

sijsji
sij + sji + sijsji

− L↔kl Eq. (6.56)

≥ 0.

(6.59)

Analogously, consider Eq. (6.54) as a function f2 of y, zkl and zlk, i.e.

f2 (y, zkl, zlk) :=

 ∑
i∈Ck,j∈Cl

zklsij
1 + zklsij + zlksji + ysijsji

− L̃→kl . (6.60)

Note that f2 is continuous, strictly monotonically increasing zkl, and strictly monotoni-

137



6 A Block-Structured Model for Banking Networks Across Multiple Countries

cally decreasing in y, zlk. Thus, we get the following boundary values

max
y,zlk

f2

(
y,m−1, zlk

)
= f2

(
m−1,m−1,m−1

)
=

 ∑
i∈Ck,j∈Cl

m−1sij
1 +m−1sij +m−1sji +m−1sijsji

− L̃→kl
m→∞→ −L̃→kl ≤ 0,

(6.61)

and

min
y,zlk

f2 (y,m, zlk) = f2 (m,m,m)

=

 ∑
i∈Ck,j∈Cl

msij
1 +msij +msji +msijsji

− L̃→kl
m→∞→

 ∑
i∈Ck,j∈Cl

sij
sij + sji + sijsji

− L̃→kl Eq. (6.56)

≥ 0.

(6.62)

Analogously, consider Eq. (6.55) as a function f2 of y, zkl, and zlk, i.e.

f3 (y, zkl, zlk) :=

 ∑
i∈Ck,j∈Cl

zlksji
1 + zklsij + zlksji + ysijsji

− L̃→lk . (6.63)

Note that f3 is continuous, strictly monotonically increasing zlk, and strictly monotoni-
cally decreasing in y, zkl. Thus, we get the following boundary values

max
y,zkl

f3

(
y, zkl,m

−1
)

= f3

(
m−1,m−1,m−1

)
=

 ∑
i∈Ck,j∈Cl

m−1sji
1 +m−1sij +m−1sji +m−1sijsji

− L̃→lk
m→∞→ −L̃→lk ≤ 0,

(6.64)

and

min
y,zkl

f3 (y, zkl,m) = f3 (m,m,m)

=

 ∑
i∈Ck,j∈Cl

msji
1 +msij +msji +msijsji

− L̃→lk
m→∞→

 ∑
i∈Ck,j∈Cl

sji
sij + sji + sijsji

− L̃→lk Eq. (6.56)

≥ 0.

(6.65)
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Hence, it follows from the Bolzano–Poincaré–Miranda theorem, that there exist
(y∗, z∗kl, z

∗
lk) ∈

[
m−1,m

]3
, for m big enough, such that f1 (y∗, z∗kl, z

∗
lk) = 0,

f2 (y∗, z∗kl, z
∗
lk) = 0, and f3 (y∗, z∗kl, z

∗
lk) = 0, and therefore Eqs. (6.53) to (6.55) are

fulfilled.

Case 2: If the conditions of Case 1 are not satisfied, i.e. Eq. (6.56), choose α, β, γ ∈ R>0

such that

L↔kl ≤
∑

i∈Ck,j∈Cl

γsijsji
αsij + βsji + γsijsji

,

L̃→kl ≤
∑

i∈Ck,j∈Cl

αsij
αsij + βsji + γsijsji

,

L̃→lk ≤
∑

i∈Ck,j∈Cl

βsji
αsij + βsji + γsijsji

,

(6.66)

holds. Then it follows from Case 1 above that there exist (y∗, z∗kl, z
∗
lk) ∈

[
m−1,m

]3
that

fulfill Eqs. (6.67) to (6.69)

L↔kl =
∑

i∈Ck,j∈Cl

y∗γsijsji
1 + z∗klαsij + z∗lkβsji + y∗γsijsji

, (6.67)

L̃→kl =
∑

i∈Ck,j∈Cl

z∗klαsij
1 + z∗klαsij + z∗lkβsji + y∗γsijsji

, (6.68)

L̃→lk =
∑

i∈Ck,j∈Cl

z∗lkβsji
1 + z∗klαsij + z∗lkβsji + y∗γsijsji

. (6.69)

Hence, zkl = (z∗klα), zlk = (z∗lkβ) and y = (y∗γ) fulfill the original equations Eqs. (6.53)
to (6.55).

It remains to prove, that for any L↔kl , L̃
→
kl , L̃

→
lk ∈ R>0 with

(
L↔kl + L̃→kl + L̃→lk

)
∈ (0, nknl),

there exist α, β, γ ∈ R>0, such that Eq. (6.66) holds. This problem can be simplifying
by reformulating it several times. First, we replace the less or equal sign by an equal
sign in the second and third equation of Eq. (6.66), i.e. we note that it suffices to show
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that (the stronger conditions)

(i) L↔kl ≤
∑

i∈Ck,j∈Cl

γsijsji
αsij + βsji + γsijsji

,

(ii) L̃→kl =
∑

i∈Ck,j∈Cl

αsij
αsij + βsji + γsijsji

,

(iii) L̃→lk =
∑

i∈Ck,j∈Cl

βsji
αsij + βsji + γsijsji

,

(6.70)

hold. Next, we note that the sum of the right hand sides of (i) - (iii) in Eq. (6.70) equals
nknl for arbitrary α, β, γ. Therefore, we get∑

i∈Ck,j∈Cl

γsijsji
αsij + βsji + γsijsji

=
∑

i∈Ck,j∈Cl

1− αsij + βsji
αsij + βsji + γsijsji

= nknl −

 ∑
i∈Ck,j∈Cl

αsij
αsij + βsji + γsijsji

−
 ∑
i∈Ck,j∈Cl

βsji
αsij + βsji + γsijsji


= nknl − L̃→kl − L̃→lk , if (ii) and (iii) hold

≥ L↔kl , since L↔kl + L̃→kl + L̃→lk ≤ nknl.
(6.71)

Hence, if (ii) and (iii) are fulfilled, than (i) automatically holds as well. Thus, it suffices
to show that for any L̃→kl , L̃

→
lk ∈ R>0, with L̃→kl + L̃→lk < nknl, there exist α, β, γ ∈ R>0

such that
(ii) L̃→kl =

∑
i∈Ck,j∈Cl

αsij
αsij + βsji + γsijsji

,

(iii) L̃→lk =
∑

i∈Ck,j∈Cl

βsji
αsij + βsji + γsijsji

,
(6.72)

hold. Canceling γ in the fractions of (ii) and (iii) in Eq. (6.72) and with a := α/γ and
b := β/γ gives

(ii) L̃→kl =
∑

i∈Ck,j∈Cl

asij
asij + bsji + sijsji

,

(iii) L̃→lk =
∑

i∈Ck,j∈Cl

bsji
asij + bsji + sijsji

.
(6.73)

Moreover, it suffices to show that (ii) and (ii)+(iii) in Eq. (6.73) are fulfilled, i.e. that
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for any L̃→kl , L̃ ∈ R>0, with L̃→kl < L̃ < nlnk, there exist a, b ∈ R>0 such that

(ii) L̃→kl =
∑

i∈Ck,j∈Cl

asij
asij + bsji + sijsji

,

(iii)′ L̃ =
∑

i∈Ck,j∈Cl

asij + bsji
asij + bsji + sijsji

,
(6.74)

hold.

Consider (ii) from Eq. (6.74) as a function fL̃→kl
of a and b, i.e.

fL̃→kl
(a, b) :=

 ∑
i∈Ck,j∈Cl

asij
asij + bsji + sijsji

− L̃→kl . (6.75)

Note that fL̃→kl
is continuously differentiable in all variables, strictly monotonically in-

creasing in a, and strictly monotonically decreasing in b. Furthermore, let a ∈
[
m−1,m2

]
and b ∈

[
m−1,m

]
, with m ∈ R>0 big enough. Now, for any b, we get

lim
m→∞

fL̃→kl

(
m−1, b

)
= −L̃→kl < 0, (6.76)

and
lim
m→∞

fL̃→kl

(
m2, b

)
= nlnk − L̃→kl > 0. (6.77)

Thus, it follows from the intermediate value theorem that for any b0 ∈
[
m−1,m

]
there

exists a0 ∈
[
m−1,m2

]
such that fL̃→kl

(a0, b0) = 0. Together with fL̃→kl
being continu-

ously differentiable and strictly monotonically increasing in a it follows from the implicit
function theorem, that for every (a0, b0) ∈

]
m−1,m2

[
×
]
m−1,m

[
there exist an open

neighborhood V ⊆
]
m−1,m2

[
of a0, an open neighborhood U ⊆

]
m−1,m

[
of b0, and a

unique and continuously differentiable function g0 : U → V with g (b0) = a0 and such
that for all (a, b) ∈ V × U it holds

fL̃→kl
(a, b) = 0 ⇔ a = g0 (b) . (6.78)

Since there exists such a function g0 for every (a0, b0) ∈
]
m−1,m2

[
×
]
m−1,m

[
, this

especially means that there exists a unique and continuously differentiable function
g :
]
m−1,m

[
→
]
m−1,m2

[
such that for all (a, b) ∈

]
m−1,m

[
×
]
m−1,m2

[
fL̃→kl

(a, b) = 0 ⇔ a = g (b) . (6.79)

Moreover, from the definition of fL̃→kl
, see Eq. (6.75), it is obvious that g is strictly mono-
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tonically increasing.

Next, we consider (iii)′ from Eq. (6.74) as a function fL̃ of b and g (b), i.e.

fL̃ (b) :=

 ∑
i∈Ck,j∈Cl

g (b) sij + bsji
g (b) sij + bsji + sijsji

− L̃. (6.80)

Note that fL̃→ is continuously differentiable in all variables and strictly monotonically
increasing in g (b) and b. Furthermore, there exists ε ∈ R>0 small enough, such that

lim
m→∞

fL̃ (m− ε) = nknl − L̃ > 0, (6.81)

and
lim
m→∞

fL̃
(
m−1 + ε

)
= L̃→kl − L̃ < 0. (6.82)

Thus, it follows from the intermediate value theorem that there exists b∗ ∈
[
m−1 + ε,m− ε

]
,

such that fL̃ (b∗) = 0. Moreover, since fL̃→kl
and fL̃ are continuous and strictly monotone

in all variables,
(
g(b∗), b∗

)
constitutes the unique solution for (ii) and (iii)′ in Eq. (6.74).

Last, we note that the special case of L↔kl = 0, can be proved by the Bolzano–Poincaré–
Miranda theorem, analogously to the interior case considered above. It follows that
rkl = 0 has to hold. This leaves us with simplified versions of Eqs. (6.51) and (6.52)

L̃→lk =
∑

i∈Ck,j∈Cl

zkls
(out)
i s

(in)
j

1 + zkls
(out)
i s

(in)
j + zlks

(out)
j s

(in)
i

, (6.83)

L̃→lk =
∑

i∈Ck,j∈Cl

zlks
(out)
j s

(in)
i

1 + zkls
(out)
i s

(in)
j + zlks

(out)
j s

(in)
i

. (6.84)

For completeness, we will briefly discuss the special case where L↔kl = nknl, that is
excluded in Theorem 6.2.1. Note that L↔kl = nknl implies that L̃→kl = 0 and L̃→lk = 0,
and hence, all links in the adjacency matrices A(kl) and A(lk) are set to 1. In the special
case of L→kl = 0, it follows that zkl = 0 and L↔kl = 0, and we simply have to find a zlk
such that

L̃→lk =
∑

i∈Ck,j∈Cl

zlks
(out)
i s

(in)
j

1 + zlks
(out)
j s

(in)
i

, (6.85)
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is satisfied. The existence of a solution to Eq. (6.85) follows from the intermediate value
theorem. In the special case of L→kl = nknl, it follows that L↔kl = L→lk . All links in
A(kl) are set to 1 and for the random matrix A(lk), we consider the simplified problem of
identifying zlk, such that

L→lk =
∑

i∈Ck,j∈Cl

zlks
(out)
i s

(in)
j

1 + zlks
(out)
j s

(in)
i

, (6.86)

holds. Again, the existence of a solution to Eq. (6.86) follows from the intermediate
value theorem.

6.7 Conclusion and Outlook

Realistic models of inter-banking networks are necessary for an adequate and flexible
assessment of systemic risk. Their construction, however, remains challenging, because
of the very limited data availability. In this chapter we contribute to this research topic
by presenting a block-structured model that reconstructs inter-banking networks across
multiple countries. The advantages of our model are the following. First of all, our
model allows to incorporate structural differences in financial networks across countries
and offers great flexibility via the block-structure. The density and the reciprocity can
be chosen separately for every block. Likewise the constraints on the weights, i.e. row
sums, column sums, and block-weights can be set separately. This allows users, like
central banks or policy-makers, who might have partial access to additional information
to calibrate the model more accurately. Also, in case further information on aggregated
level becomes available in the future, it can easily be incorporated in our model. As
a trade-off on accuracy of network reconstruction and data availability, our model is
calibrated on a small number of input factors, that are able to induce important net-
work characteristics. As shown in Section 6.5.2 the model correctly reproduces known
aggregated characteristics of financial networks like sparsity, positive reciprocity, disas-
sortativity, and short paths using only a small set of input factors. Moreover, we show
how block-density, block-reciprocity, and block-weights, which might not be available
explicitly, can be approximated. Since the calibration of the model is non trivial, we
also present an algorithm to handle this task.
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Interbank Market

Our network reconstruction model enables the application of various contagion mech-
anisms and systemic risk measures to realistic, international financial networks. To
demonstrate this, we conduct a systemic risk analysis on the sample of reconstructed
EU interbank networks, presented in Section 6.5. Like the previous chapter, this chapter
is as well based on our manuscript Engel et al. (2019a).

The following results are computed by the ‘FINEXUS Leverage Network Framework
for Stress-testing’ software of Gabriele Visentin, Marco D’Errico, and Stefano Battiston
Battiston et al. (2016); Visentin et al. (2016), which integrates five of the most popular
financial contagion models, namely:

• the ‘clearing vector’ (EN) by Eisenberg and Noe (2001),

• the ‘extended clearing vector’ (RV) incorporating default costs by Rogers and
Veraart (2013),

• the ‘default cascades model’ (DC) by Battiston et al. (2012),

• the ‘acyclic DebtRank’ (aDR) by Battiston et al. (2012),

• and the ‘cyclic DebtRank’ (cDR) by Bardoscia et al. (2015).

Furthermore, following Battiston et al. (2016); Visentin et al. (2016) we differentiate
between two risk dimensions. First, there is the risk that a bank under stress triggers
waves of contagious losses throughout the entire system. Second, there is the risk that
a bank is vulnerable to other banks in the network being under stress. More precisely,
we distinguish:

• Global Vulnerability = relative loss in equity that a shock scenario causes to
the entire system;

• Individual Vulnerability = relative loss in equity that a bank suffers from a
shock scenario.

To keep individual vulnerability comparable across banks, in the following we consider
instead the absolute loss in equity suffered by each bank.

There are many interesting questions regarding systemic risk that can now be analyzed.
Here, we focus on the following four aspects. First, we give a general overview over the
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network fragility for various shock sizes and according to the different contagion models,
see Section 7.1. Subsequently, Section 7.2 describes the correlation of node characteris-
tics and systemic risk. In Section 7.3 we compare the official list of G-SIBs in the EU,
provided by the Basel Committee on Banking Supervision, with our results. Last, in
Section 7.4, we analyze the question how network density, an indicator of diversifica-
tion in interbank lending, affects financial stability and compare our findings with the
literature.

Throughout this section, a recovery rate of 40% is used for all banks.1 The contagion
model of Rogers and Veraart (RV) additionally considers a recovery rate for external
assets, which is fixed to 50%, the default value of the ‘FINEXUS Leverage Network
Framework for Stress-testing’ software. Moreover, ‘first Round’ effects refer to initial
losses, caused solely by external shocks on the banks, disregarding propagation. ‘Second
Round’ effects, computed by the different contagion models, report additional losses due
to contagion, excluding first round losses.

7.1 Systemic Risk for Different Shock Sizes

We start the assessment of systemic risk by shocking all banks equally with various
shock sizes and by propagating the shocks according to five different contagion models.
Figures 7.1 and 7.2 present the resulting loss in equity and the fraction of defaulted
banks. Comparing our results to those of Visentin et al. (2016), who analyze systemic
risk in reconstructed networks consisting of the 50 largest EU banks, we find that our
networks are more stable, but the structure of the curves is very similar. Interestingly,
however, we observe a slightly different partial ordering for the global vulnerability H:

HEN ≤ HRV ≤ HDC ≤ HaDR ≤ HcDR. (7.1)

In all simulations analyzed by Visentin et al. (2016), the authors find the following partial
ordering:

HEN ≤ HDC ≤ HRV ≤ HaDR ≤ HcDR. (7.2)

Whether the DC or the RV model yields higher global losses depends on the shock
size and on the recovery rates. In both the DC and the RV model banks spread losses
only in case of their default. Within the DC model, a defaulted bank triggers distress
to its interbank creditors proportionally to the nominal liabilities and adjusted by the
recovery rate, as soon as the losses suffered reach the bank’s equity. In the RV model,
in contrast, only the amount of a bank’s obligations (external plus interbank liabilities)
that exceeds its assets (external plus interbank assets) is spread proportionally to all
creditors (external plus interbank creditors), adjusted by the recovery rate. Hence, if a
bank suffers a shock equal to the size of its equity, in the DC model it will propagate

1See, for example, www.cdsmodel.com and Altman and Kishore (1996).
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the maximum loss that it can spread, while in the RV model, it will simply absorb this
shock and no propagation takes place. Moreover, in the RV model part of the distress
flows out of the interbank network, since losses are also propagated to external creditors
(via external liabilities). However, in the RV model a bank can suffer shocks higher than
its equity. Therefore, with increasing shock sizes the losses spreading through the RV
model will increase. The DC model, on the other hand, saturates at shock levels equal to
the size of the banks’ equity. Another important parameter that determines losses in the
RV model is the recovery rate on external assets (which is set to 50% in all considered
examples).2

Figure 7.1: Global vulnerability caused by shocking all banks equally with various shock
sizes and for different contagion models. Reported values are averages over
100 simulated networks (excluding the Rest-of-the-World node).

2For more details on the contagion models, see, e.g., Visentin et al. Visentin et al. (2016) and the
references therein.
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Figure 7.2: Fraction of defaulted banks caused by shocking all banks equally with various
shock sizes and for different contagion models. Reported values are averages
over 100 simulated networks (excluding the Rest-of-the-World node).

7.2 Correlation of Node Characteristics and Systemic Risk

In this paragraph we investigate:

1) Which network statistics make a node systemically important, in the sense that
its default causes a severe shock on the entire banking network?

2) Which network statistics make a node vulnerable towards the default of other
banks in the system?

We analyze both questions empirically in our set of reconstructed EU interbank networks,
by letting one bank default at a time and computing the impact on the entire system as
well as towards each of the other banks individually. As network statistics we consider
the nodes’ degree and strength and their centrality w.r.t. the (un-) directed and (un-)
weighted network. In the framework of DC, aDR, and cDR a bank defaults as soon as
the loss suffered reaches the value of its equity. At this point the defaulted bank triggers
the maximum loss spread that it can cause (which equals the sum of its outstanding
interbank liabilities multiplied by one minus its recovery rate). Even if the loss suffered
exceeds the bank’s equity level, the triggered loss spread does not increase further.
Therefore, in the following, we initiate a bank’s default by a shock on its external assets
in the size of its equity. However, the EN and RV model assume that losses up to the
size of a bank’s equity can be absorbed by the bank and only losses exceeding the equity
level are spread to the system. Hence, shocking a single bank by a loss equal to the size
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of its equity causes only the respective bank to default and no further losses occur. So,
in this setting, global vulnerability in the EN and RV model equals simply the relative
value of the defaulted bank’s equity w.r.t. the total equity in the network. Analogously,
individual vulnerability (i.e. losses suffered by a bank upon the default of another bank)
equals zero in the EN and RV model.

Table 7.1 reports the rank correlation, measured by Kendall’s tau, between different
network statistics of the nodes and the relative loss in equity on the entire system caused
by the nodes’ default. Since shocks propagate backwards, from a node to its creditors,
we can observe a high correlation between a node’s number of incoming links as well
as the weight carried by these links and global vulnerability. Regarding the centrality
measures, interestingly closeness centrality seems to be the most relevant. Closeness
centrality is defined as the inverse of the average distance from a node to the other
nodes in the network. Hence, the shorter the paths between a bank and the other banks
in the network, the higher its systemic impact, which is exactly what one would expect.

The correlation of nodes characteristics and individual vulnerability is presented in Ta-
ble 7.2. Overall, we observe a high positive correlation between the number of outgoing
links as well as their carried weight and individual vulnerability. Again, in most cases,
closeness centrality turns out to be the most relevant centrality measure.

Table 7.1: Kendall’s tau for different node characteristics and global vulnerability caused
by the default of the respective node. Values of the EN and RV model es-
sentially report the correlation with the banks’ equity, since in the considered
shock setting no propagation is triggered. All values are statistically highly
significant with p-values smaller than 1e-200.

EN RV DC aDR cDR

in-degree 0.57 0.57 0.65 0.63 0.68

in-strength 0.61 0.61 0.72 0.84 0.79

closeness undirected unweighted 0.61 0.61 0.67 0.72 0.62
in-closeness unweighted 0.58 0.58 0.67 0.75 0.72
closeness undirected weighted 0.67 0.67 0.75 0.79 0.68
in-closeness weighted 0.58 0.58 0.69 0.85 0.77

betweenness undirected unweighted 0.56 0.56 0.59 0.52 0.51
betweenness directed unweighted 0.55 0.55 0.58 0.53 0.54
betweenness undirected weighted 0.52 0.52 0.51 0.50 0.50
betweenness directed weighted 0.48 0.48 0.54 0.54 0.49

eigenvector centrality undirected unweighted 0.60 0.60 0.65 0.69 0.55
eigenvector centrality undirected weighted 0.45 0.45 0.51 0.61 0.45
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Table 7.2: Kendall’s tau for different node characteristics and individual vulnerability
suffered by the respective node and caused by the default of other nodes.
Values for the EN and RV model are not available, since in the considered
shock setting no propagation is triggered. All values are statistically highly
significant with p-values smaller than 1e-14.

EN RV DC aDR cDR

out-degree NA NA 0.68 0.63 0.57

out-strength NA NA 0.95 0.89 0.82

closeness undirected unweighted NA NA 0.55 0.58 0.60
out-closeness unweighted NA NA 0.72 0.74 0.76
closeness undirected weighted NA NA 0.62 0.65 0.65
out-closeness weighted NA NA 0.85 0.83 0.78

betweenness undirected unweighted NA NA 0.59 0.56 0.53
betweenness directed unweighted NA NA 0.61 0.58 0.55
betweenness undirected weighted NA NA 0.50 0.51 0.51
betweenness directed weighted NA NA 0.55 0.55 0.55

eigenvector centrality undirected unweighted NA NA 0.46 0.49 0.49
eigenvector centrality undirected weighted NA NA 0.34 0.38 0.40

7.3 Global Systemically Important Banks (G-SIBs)

The official methodology for identifying global systemically important banks (G-SIBs)
was developed by the Basel Committee on Banking Supervision (BCBS). It is essentially
a weighted sum over a number of normalized financial positions. The BCBS states: “The
Committee is of the view that global systemic importance should be measured in terms
of the impact that a bank’s failure can have on the global financial system and wider
economy, rather than the risk that a failure could occur. This can be thought of as a
global, system-wide, loss-given-default (LGD) concept rather than a probability of default
(PD) concept.”, (see https://www.bis.org/publ/bcbs255.pdf).

As our model allows to directly simulate the failure of a single bank and, hence, to
compute the LGD in the interbank market, naturally the question arises whether the
ranking in terms of global vulnerability is aligned to the one derived by the BCBS
methodology. Differences in the two approaches that should be kept in mind are listed
in Table 7.3.

Figure 7.3 compares the scores of the BCBS against global vulnerability caused by the
single default of each bank. The default of a bank is again initiated by a shock on
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Table 7.3: Differences in the assessment of G-SIBs.

BCBS
Model presented in
Chapter 6

coverage worldwide EU
aggregation level of banks consolidated unconsolidated
LGD w.r.t. global economy interbank market

external assets in the size of the bank’s equity. Hence, in the EN and RV model global
vulnerability equals the relative value of the bank’s equity w.r.t. the total equity in the
network. We observe that the ranking of the banks differs substantially across the con-
tagion models. A low but at the level of 5% significant rank correlation between the
BCBS methodology and global vulnerability can only be identified for the EN and the
RV model, see Table 7.4. Thus, the BCBS ranking is more aligned with the equity of
the banks, than with the systemic risk computed by the DC, aDR, and cDR in our
reconstructed EU interbank networks.

Figure 7.3: Comparison of G-SIBs in the EU as classified by the BCBS’ methodology
(scores on the x-axis in log scale) and global vulnerability (on the y-axis).
The secondary y-axis (right) refers to global vulnerability computed by the
cDR. Global vulnerability values are averages over 100 simulated networks
(excluding the Rest-of-the-World node). Note that the y-axis denotes the
relative loss in equity while the scale of the x-axis is difficult to interpret.
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Table 7.4: Kendall’s tau of the ranking of the G-SIBs in the EU between the BCBS’
classification and global vulnerability. Significance at the level of 5% is marked
by ‘*’.

EN, RV DC aDR cDR

Kendall’s tau 0.46∗ 0.41 0.38 0.28
p-value 0.03 0.06 0.08 0.20

In addition to the computation of a LGD, our model also allows for a detailed analysis
of the consequences of one of the G-SIBs being under stress. For example, we can
simulate a shock of arbitrary size to a G-SIB and compute the resulting network-wide
loss. Figure 7.4 illustrates these shock scenarios for the Deutsche Bank AG and w.r.t. all
five contagion models.3 The point on the x-axis at which a function turns into a constant
marks the shock size at which the bank defaults, i.e. the point at which the absolute
value of the shock equals the bank’s equity. In the DC, aDR, and cDR this triggers the
maximum loss spread that a bank can propagate (which equals the total amount of its
outstanding interbank liabilities adjusted by the recovery rate). We observe that the
amount of total losses depends heavily on the chosen contagion model.

Figure 7.4: Global vulnerability (left) and number of defaults (right) caused by shocking
the Deutsche Bank AG with shock sizes ranging from 1% to 10% of external
assets, computed by the contagion models: EN, RV, DC, aDR, and cDR.
Reported values are averages over 100 simulated networks (excluding the
Rest-of-the-World node).

In summary, our model enables a detailed systemic risk analysis. The BCBS’s methodol-
ogy, on the other hand, allows for a fast calculation and incorporates indicators covering

3Equivalent plots for the other G-SIBs in the EU are included in Fig. 7.6.
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the global economy. Table 7.5 gives an overview over advantages and disadvantages of
both methodologies.

Table 7.5: Advantages and disadvantages of the BCBS’s methodology and our model

BCBS methodology Model presented in Chapter 6

Advantages

• fast calculation • resulting score has a monetary interpretation
• covers the global economy • analysis of arbitrary shock sizes

(< default) is possible
• analysis of simultaneously shocking

several banks is possible
• distribution of shock impact can be estimated
• new regulations can be tested
• impact of network statistics on systemic risk

can be analyzed

Disadvantages

• scale of scores • some input parameters are not known explicitly,
has no interpretation i.e. need to be estimated

• data availability limits the scope of the model,
i.e. determines which countries can be included

• systemic risk values are not deterministic across
different simulated networks, but seem to have
a very low standard deviation

• covers only the EU interbank market

7.4 Network Density and Stability

Another interesting question is how the network density, an indicator of diversification in
interbank lending, influences financial stability. This aspect has already been analyzed
in several papers. Recently, Roncoroni et al. (2018) confirmed earlier results of Acemoglu
et al. (2015), stating that densely connected networks are more stable regarding small
shocks, but more fragile regarding big shocks. Acemoglu et al. (2015) base their analysis
on artificial networks and focus mostly on regular networks (= total claims and liabilities
of all banks are equal). Roncoroni et al. (2018), on the other hand, analyze a unique
dataset of the European Central Bank, consisting of 26 large EU banks.

Are these results confirmed within our sample of reconstructed EU interbank networks
comprising 3,468 banks?

To answer this question, we construct a second network ensemble, where the density
of each block was increased to d(new) = d(old) + (1 − d(old))/2. The density matrix is
presented in form of a heatmap in Fig. 7.5.
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Figure 7.5: Heatmap of original densities (left) and increased densities (right).

First, we analyze the effect of the increased network density on the G-SIBs. Figure 7.6
presents the results of shocking the G-SIBs separately in the more densely connected
networks in comparison to the originally sparse networks, computed by the EN, RV, DC,
aDR, and cDR contagion model. In almost all considered cases, global vulnerability and
the number of defaulting banks is smaller in the densely connected networks. The
magnitude of the difference depends heavily on the applied contagion model.
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(a) EN

(b) RV

(c) DC
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(d) aDR

(e) cDR

Figure 7.6: Global vulnerability (left) and number of defaults (right) caused by shocking
the G-SIBs separately with shock sizes ranging from 1% to 10% of external
assets. Values of the networks with the original densities are pictured in
dashed lines. Reported values are averages over 100 simulated networks
(excluding the Rest-of-the-World node). Legends are ordered according to
the respective global vulnerability at a shock size of 10%.

Next, we analyze shock scenarios where all banks are shocked equally with various shock
sizes on external assets. The results are presented in Fig. 7.7 in comparison to the results
of the same shock scenarios applied to the originally sparse networks. Interestingly,
for the considered shock scenarios, global vulnerability does barley differ between the
sparse and densly connected networks. However, we can observe an increase in the
number of defaulting banks for networks with higher densities. This means that losses
are distributed differently in both network sets. In the more densely connected networks
contagion seems to flow across a bigger number of small nodes that at some point default
and propagate their losses back to big nodes.
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Figure 7.7: Global vulnerability (left) and number of defaults (right) caused by shocking
all banks equally with shock sizes ranging from 1% to 10% of external assets.
Values of the networks with the original densities are pictured in dashed
lines. Reported values are averages over 100 simulated networks (excluding
the Rest-of-the-World node).

7.5 Conclusion and Outlook

The simulated EU interbank networks, derived in Section 6.5.2, enable the application
of a battery of contagion mechanisms and systemic risk measures. To demonstrate the
potential of the model, developed in Chapter 6, this chapter conducts a systemic risk
analysis on the reconstructed European interbank market. The results highlight the
differences in systemic risk measures along five of the most prominent contagion models.
Furthermore, the correlation between node characteristics and systemic risk caused by
a bank’s default as well the vulnerability suffered from the default of other banks is
analyzed. We find that the loss that a bank’s default causes on the interbank network
is highly correlated with the number of its creditors (in-degree) as well as the amount
borrowed (in-strength). Likewise, the vulnerability of a bank is highly correlated with
the number of its debtors (out-degree) and the amount lend (out-strength). Among cen-
trality measures, closeness centrality turns out to be the most significant for indicating
systemic importance. In addition, the results on systemic risk are compared with the
BCBS’s ranking of global systemically important banks, which again turns out to depend
heavily on the applied contagion model. Lastly, we can confirm earlier conclusions on
the effect of the network density on systemic risk. Densely connected networks are more
stable regarding small shocks and more fragile regarding big shocks when measured by
the number of defaulting banks. The total loss in equity caused by big shocks, on the
other hand, is not affected by the density of the network. These outcomes shed new
light on systemic risk and its monitoring and can support policy-makers in their aim to
stabilize the EU interbank market.
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8 Conclusion

The aim of this thesis was to derive tractable, realistic, and flexible models for our
highly interconnected banking systems. The relevance of such models was dramatically
emphasized by the last global financial crisis of 2007–2008, as the lack of knowledge on
the interdependencies between financial institutions lead to a further amplification of
the crisis, see Basel Committee on Banking Supervision (2010).

To support the ongoing efforts on stabilizing and securing the financial system, this
thesis provides the following contributions.

First, the most prominent network reconstruction techniques, namely ERGMs and fitness
models, are analyzed and extended. A main contribution is the derivation of necessary
and sufficient conditions under which a solution to the weighted and directed ERGM,
satisfying given row and column sums, exists, see Theorem 3.1.1. We show that two quite
intuitive conditions on the desired row and column sums suffice to ensure the existence
of a solution, which is, moreover, unique up to certain equivalence classes. This is an
important result, as it ensures a wide applicability of the model in the present context,
based on a sound mathematical foundation. In addition, the proof reveals a new and
efficient algorithm for calibrating the parameters. The question of the existence of a
solution to other classes of ERGMs still remains an open research topic. Solving these
questions could be of interest as this might lead to new and more efficient techniques for
parameter calibration, which is sometimes difficult regarding the reconstruction of very
big networks.
Furthermore, the randomized fitness model is conveniently extended towards more flex-
ible degree distributions, and thus, enables a more precise calibration to real-world net-
works.
Empirical fitness models have been found very useful in the light of scarce available in-
formation. However, the underlying mathematical structure has not yet been analyzed.
We provide a first step towards a better understanding of these models by analytically
deriving the degree distribution of the networks, generated by fitness variables which
follow a power law with exponent α = 1. The resulting degree distributions induced by
other exponents would provide further insight into these models, however, the analytical
analysis seems considerably more complex and is left for further research. Based on our
studies, the reason why empirical fitness models work that well seems to be that the
usual power law distribution of the empirical fitness variables likewise induces a power
law distribution for the degrees of the generated networks.
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8 Conclusion

Besides the theoretical contributions, this thesis provides important practical results
as well. Building on ERGMs, we demonstrate how domestic interbank networks can
be realistically reconstructed using only scarce publicly available data. Comparing the
sample of reconstructed networks with true network statistics of the German and Italian
interbank market leads to the conclusion that many financial networks characteristics
constitute a natural consequence of the heterogeneous in- and out-degree distributions
and the reciprocity. These findings are especially of relevance, since data on financial
interconnections are mostly not available.

The proposed model for domestic and unweighted interbank networks is subsequently
extended to cover multiple countries in a weighted and directed graph. The developed
block structured model presents another main contribution of this thesis. This model
combines the advantages of fitness models and ERGMs and is build on our previously
established results. To the best of our knowledge, this model currently constitutes the
most detailed, flexible, and analytically tractable approach to reconstruct international
financial networks. The model is split in two parts. First, the network topology is recon-
structed via a new extended fitness model. In addition, we show that a solution to the
extended fitness model is guaranteed to exist under very general conditions. Moreover,
the solution is unique w.r.t. the generated expected in- and out-degree sequence and the
number of reciprocal links. Weights are allocated to the sampled adjacency matrices in
a second step based on a new ERGM. Since the parameter calibration of the ERGM
requires to solve a high dimensional and complex system of equations, we also provide
a fast and efficient algorithm for this purpose. The potential of the proposed model is
demonstrated by reconstructing the EU interbank network, comprising 3,469 banks.

The reconstructed networks finally enable a detailed assessment of systemic risk. Ap-
plying five of the most prominent contagion models, we provide a systemic risk analysis
on the EU interbank market. We find that certain node based network statistics are
highly correlated with the systemic risk that a financial institution bears, as well as its
vulnerability. Furthermore, we analysis the GSIBs, which are of special interest, in more
detail. An intriguing result is that the ranking of the GSIBs in terms of systemic risk,
computed via different contagion models, is not aligned with the official ranking of the
BCBS. Investigating the reasons of the discrepancy would be interesting, but is outside
the scope of this thesis, and left for further research. Last, we can confirm previous
results on the ambiguity of the influence of the network density on systemic risk.

This thesis sheds valuable light on the complex nature of our highly interconnected
banking systems and its potential risks. We hope that the derived contributions help
the relevant authorities in their efforts to stabilize and secure our financial system.
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A Network Statistics

For the sake of completeness and the readers’ convenience, we state the definitions of
the network statistics used in this thesis. Throughout this section we use the following
notation:

• n denotes the number of nodes of the considered graph;

• a ∈ {0, 1}n×n denotes the adjacency matrix of a given graph without self-loops,
i.e. aii = 0 for all i = 1, . . . , n;

• d = (d1, . . . , dn) denotes the degree sequence of a, i.e. di =
∑n

j=1
j 6=i

(aij + aji) for

directed graphs and di =
∑n

j=1
j 6=i

aij for undirected graphs.

Assortativity: The degree assortativity (resp. in-degree assortativity and out-degree as-
sortativity) is defined as Pearson’s correlation coefficient of the degrees (resp. in-degrees
and out-degrees) of connected nodes. Negative assortativity indicates that banks with
small degree (resp. small in-degree and small out-degree) tend to connect to banks with
large degree (resp. large in-degree and large out-degree) and vice versa. Positive as-
sortativity indicates that banks tend to connect to banks with a similar degree (resp.
similar in-degree and similar out-degree).

Average nearest neighbor degree: The average nearest neighbor degree knn (k),
also called average degree connectivity, is defined as the average over the degree of the
neighbors of nodes with degree k. Let I (k) = {i = 1, . . . , n : di = k} denote the set
of nodes with degree k and N (i) = {j = 1, . . . , n : aij = 1 ∨ aji = 1} the neighbors of
node i.

knn (k) =
1

|I (k)|
∑
i∈I(k)

1

k

∑
j∈N (i)

dj .

Betweenness centrality: We rely on the definition of Roukny et al. (2014). Between-
ness is a measure of centrality and is based on the number of shortest paths in the
network that pass through a node. For a node i, its betweenness is defined as

bi =
∑
j

∑
h6=j

sjh (i)/sjh,

where sjh(i) is the number of shortest paths between node j and h that pass through
node i, and sjh is the total number of shortest paths between node j and h.
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Closeness centrality: We rely to the definition of Roukny et al. (2014). Closeness is a
measure of centrality and is defined as the inverse of the average shortest paths between
a node i and all other nodes, i.e.,

ci = (n− 1)/
∑
j

dij

where dij denotes the length of the shortest path between node i and j.

Clustering coefficient: The clustering coefficient measures the fraction of triangles
in a network. It can be interpreted as the tendency of a node’s neighbors to also be
connected to each other. The clustering coefficient Ci of a node i is defined as

Ci (a) =

∑
j 6=i
∑

h/∈{i,j} aijaihajh

di (di − 1)
=

(
a3
)
ii

di (di − 1)
.

For more information on the clustering coefficient and its generalized versions for directed
(and undirected) weighted graphs, see Fagiolo (2007).

Eigenvector centrality: We rely on the definition of Roukny et al. Roukny et al.
(2014). Eigenvector centrality is a measure of the influence of a node in the network.
Let λ denote the largest eigenvalue of the adjacency matrix a, and e its corresponding
eigenvector. So λe = ae holds. Now the eigenvector centrality of node i is defined as

ei =
∑
j

aijej/λ.

Herndhal Hirschman Index (HHI): We rely on the definition of Roukny et al. (2014).
The HHI index is defined as the sum of squared shares of links of all nodes, i.e.,

HHI =

n∑
i=1

s2
i ,

where si = ki/
∑

i ki is the share of node i and ki its degree. The HHI is a measure of
concentration and lies in [1/n, 1]. The higher the value of the HHI, the higher is the
number of links that is concentrated on few banks acting as hubs. The inverse of the
HHI gives a proxy of the number of leading actors in the market.

Largest strong component: The LSC denotes the number of nodes in the largest
subset of the network, such that there is a directed path from each node to every other
node in the subset.

Largest weak component: The LWC denotes the number of nodes in the largest
subset of the network, such that there is an undirected path from each node to every
other node in the subset.
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Reciprocity: The (degree) reciprocity (introduced by Garlaschelli and Loffredo (2004b))
is defined as Pearson’s correlation coefficient of the adjacency matrix a and its transpose
a>, i.e.,

ρr =
∑
i 6=j

(
aij − ā

)(
aji − ā

)/∑
i 6=j

(
aij − ā

)2
,

where x̄ denotes the average value of the entries of x, i.e., the network density. Reci-
procity can also be expressed in terms of the total number of edges L→ =

∑
i 6=j aij and

the number of mutual edges L↔ =
∑

i 6=j aijaji,

ρr =
L↔/L→ − ā

1− ā
.
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B Classes of ERGMs

Table B.1 summarizes well kown classes of ERGMs, that have been proposed and studied
in the literature. Although, the corresponding references are listed, we note that these
are often not as precise, and Table B.1 actually provides additional information.

Throughout this thesis, unless explicitly stated otherwise, the following notation and
setting is used:

• Unweighted random graphs with n nodes are denoted by A ∈ {0, 1}n×n. Possible
realizations of A are denoted by a.

• We exclude self-loops, i.e. aii = 0 for all i = 1, . . . , n and for all considered real-
izations a. This implies P (Aii = 0) = 1. However, it is straightforward to adapt
ERGMs to include self-loops.

• We focus on directed graphs. However, in all cases where the network statistics
allow an equivalent application to undirected graphs, the corresponding ERGMs
can be derived likewise.

• Weighted random graphs with n nodes are denoted by W ∈ Nn×n0 . Possible real-
izations of W are denoted by w.
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Table B.1: Overview over various instances of ERGMs.

ERGM with desired density (Newman (2010); Park and Newman (2004))1

Considered set of graphs G G =
{
a ∈ {0, 1}n×n : a11 = · · · = ann = 0

}
Network statistic f f (a) =

∑
i 6=j aij , counts the number of edges in a

Desired density L→

n(n−1) ∈ (0, 1), i.e. L→ ∈ (0, n (n− 1)), denotes the desired number of edges

Hamiltonian H H (a) = λ
∑

i 6=j aij

Partition function Z Z =
[
1 + e−λ

]n(n−1)

Calibration λ = log
(
n(n−1)
L→ − 1

)
Link probabilities P (Aij = 1) = L→

n(n−1) , ∀i 6= j ∧ i, j ∈ {1, . . . , n}

Graph probabilities P (A = a) =
∏
i 6=j

(
L→

n(n−1)

)aij (
1− L→

n(n−1)

)1−aij

ERGM with desired degree sequence (Newman (2010); Park and Newman (2004))1

Considered set of graphs G G =
{
a ∈ {0, 1}n×n : a11 = · · · = ann = 0

}
Network statistics ki ki (a) =

∑n
j=1
j 6=i

aij + aji, ∀i ∈ {1, . . . , n}, counts the number of edges of node i

1 The references consider undirected graphs, while we consider directed graphs. However, computations work analogously.

168



B
C
lasses

of
E
R
G
M
s

Desired degrees di ∈ (0, 2 (n− 1)), denotes the desired number of edges of node i

Partition function Z Z =
∏
i 6=j
[
1 + e−λi−λj

]
Link probabilities P (Aij = 1) = e−λi−λj

1+e−λi−λj
, ∀i 6= j ∧ i, j ∈ {1, . . . , n}

Graph probabilities P (A = a) =
∏
i 6=j [P (Aij = 1)]aij [1− P (Aij = 1)]1−aij

ERGM with desired in- and out-degree sequence (Newman (2010); Park and Newman (2004))

Considered set of graphs G G =
{
a ∈ {0, 1}n×n : a11 = · · · = ann = 0

}
Network statistics k

(in)
j k

(in)
j (a) =

∑n
i=1
i 6=j

aij , ∀j ∈ {1, . . . , n}, counts the number of incoming edges of node j

Network statistics k
(out)
i k

(in)
i (a) =

∑n
j=1
j 6=i

aij , ∀i ∈ {1, . . . , n}, counts the number of outgoing edges of node i

Desired in-degrees d
(in)
i ∈ (0, n− 1), denotes the desired number of incoming edges of node i

Desired out-degrees d
(out)
i ∈ (0, n− 1), denotes the desired number of outgoing edges of node i

Hamiltonian H H (a) =
∑

i 6=j

(
λ

(out)
i + λ

(in)
j

)
aij

Partition function Z Z =
∏
i 6=j

[
1 + e−λ

(out)
i −λ(in)j

]

Link probabilities P (Aij = 1) = e
−λ(out)

i
−λ(in)

j

1+e
−λ(out)

i
−λ(in)

j

, ∀i 6= j ∧ i, j ∈ {1, . . . , n}
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Graph probabilities P (A = a) =
∏
i 6=j [P (Aij = 1)]aij [1− P (Aij = 1)]1−aij

ERGM with desired density and reciprocity (Newman (2010))

Considered set of graphs G G =
{
a ∈ {0, 1}n×n : a11 = · · · = ann = 0

}
Network statistic f f (a) =

∑
i 6=j aij , counts the number of edges in a

Network statistic r r (a) =
∑

i 6=j aijaji, counts the number of reciprocated edges in a

Desired density indirectly given by the desired number of edges L→ ∈ (0, n (n− 1))

Desired reciprocity 2 indirectly given by the desired number of reciprocated edges
L↔ ∈ (max {0, 2L→ − n (n− 1)} , L→)

Hamiltonian H H (a) =
∑

i<j 2λL↔aijaji + λL→ (aij + aji)

Partition function Z Z =
[
1 + 2e−λL→ + e−2λL↔−2λL→

](n2)
Calibration λL→ = log

(
n(n−1)−L↔
L→−L↔ − 2

)
λL↔ = log

(
(L→−L↔)2

n(n−1)L↔−2L→L↔+(L↔)2

)
/2

Link probabilities P (Aij = 0, Aji = 0) = 1
1+2 exp(−λL→ )+exp(−2λL↔−2λL→ ) ,

P (Aij = 1, Aji = 0) = exp(−λL→ )
1+2 exp(−λL→ )+exp(−2λL↔−2λL→ ) ,

2The domain of L↔ is obviously bounded from above by L→, since the set of reciprocal edges is a subset of all edges. Similarly, a maximum of n (n− 1) /2
edges can be allocate as non-reciprocal edges, every additional edge automatically produces two reciprocal edges, hence, the lower bound.
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P (Aij = 1, Aji = 1) = exp(−2λL↔−2λL→ )
1+2 exp(−λL→ )+exp(−2λL↔−2λL→ ) , ∀i 6= j ∧ i, j ∈ {1, . . . , n}

Graph probabilities P (A = a) =
∏
i<j [P (Aij = 0, Aji = 0)](1−aij)(1−aji) [P (Aij = 1, Aji = 0)]aij(1−aji)

[P (Aij = 0, Aji = 1)](1−aij)aji [P (Aij = 1, Aji = 1)]aijaji

ERGM with desired strength sequence (Park and Newman (2004))

Considered set of graphs G G =
{
w ∈ Nn×n0 : w11 = · · · = wnn = 0

}
Network statistic fi fi (w) =

∑n
j=1
j 6=i

wij + wji, computes the weight of node i

Desired strength si ∈ R>0, ∀i ∈ {1, . . . , n}, denotes the desired weight of node i

Hamiltonian H H (w) =
∑

i 6=j (λi + λj)wij

Partition function Z Z =
∏
i 6=j

1

1−e−λi−λj
subject to the condition e−λi−λj < 1, ∀i 6= j ∧ i, j ∈ {1, . . . , n}

Expected link weights E [Wij ] = e−λi−λj

1−e−λi−λj
, ∀i 6= j ∧ i, j ∈ {1, . . . , n}

Probability of link weights P
(
Wij = w∗ij

)
=
(
1− e−λi−λj

)
e−(λi+λj)w

∗
ij , ∀i 6= j ∧ i, j ∈ {1, . . . , n} and w∗ij ∈ N0

Graph probabilities P (W = w) =
∏
i 6=j P

(
Wij = w∗ij

)
, for w ∈ G
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Hüser, A.-C. (2015). Too interconnected to fail: A survey of the interbank networks
literature. Journal of Network Theory in Finance 1 (3), 1–50.

Jaynes, E. T. (1957a). Information Theory and Statistical Mechanics. Physical Re-
view 106 (4), 620–630.

Jaynes, E. T. (1957b). Information Theory and Statistical Mechanics. II. Physical
Review 108 (2), 171–190.

Kullback, S. (1997). Information Theory and Statistics. Dover Publications, Mineola,
NY, USA.

175



Bibliography

Kullback, S. and A. Leibler (1951). On Information and Sufficiency. Ann. Math.
Statist. 22 (1), 79–86.

Mawhin, J. (2013). Variations on Poincaré–Miranda’s theorem. Advanced Nonlinear
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