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Zusammenfassung 

Die WARR e.V. beteiligt sich am langfristigen Ziel, einen europäischen Kleinsatelliten-
Startanbieter zu etablieren, indem sie ein Kaltgas-Lageregelungssystem (Englisch: 
reaction control system, RCS) entwickelt, um die Oberstufe einer suborbitalen 
Technologiedemonstrator-Rakete während einer instabilen Flugphase zu stabilisieren. 
Das RCS wird auf einer bodengebundenen Testanlage getestet, die einem inversen 
Pendel ähnelt. Diese Arbeit zielt darauf ab, die RCS-Entwicklung zu unterstützen, 
indem ein Filter zur Lagebestimmung mit kommerziell erhältlichen Komponenten 
(Englisch: commercial-of-the-shelf-components, COTS) entwickelt wird. Zwei 
Filteralgorithmen werden in einer Simulink-Umgebung entwickelt und getestet, welche 
aus mathematischen Modellen aller relevanten RCS-Subsysteme besteht. Einer der 
Algorithmen, basiert auf einem Komplementär Filter, während der andere auf einem 
adaptiven Kalman Filter basiert. Um den Tuning- und Implementierungsprozess der 
Filter auf dem Mikrocontroller zu erleichtern und die Grenzen des RCSs aufzuzeigen, 
werden die Filteralgorithmen durch Methoden der Statistischen Versuchsplanung in 
einem Monte-Carlo-Simulationsexperiments charakterisiert. Durch Kategorisierung 
und Verwendung der quadratischen Sigma-normierten Empfindlichkeit werden für 
jeden Filter die wesentlichen leistungsbeeinträchtigenden Faktoren ermittelt. Abhängig 
von der Filterkonfiguration zeigen sich die Latenz und das Gyroskoprauschen als 
besonders schädlich für die RCS-Performanz, welche durch die Wurzel aus dem 
gemittelten Fehlerquadrat der wahren Trajektorie zur vorgegebenen Trajektorie 
bestimmt wird. Insgesamt erfüllen beide Filter die an sie gestellten funktionalen 
Anforderungen. Wobei die Kalman Filter-basierte Variante eine bessere mittlere 
Performanz und die Komplementär Filter-basierte Variante eine höhere Robustheit 
bietet.  
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Abstract 

The WARR e.V. participates in the long-term endeavour to establish a European small-
satellite launch provider by developing a cold gas reaction control system (RCS) for 
stabilizing the upper stage of a suborbital technology demonstrator during instable 
flight. The RCS is tested on a ground-based test facility resembling an inverse 
pendulum. This thesis aims to support the RCS development by designing a filter for 
attitude determination with commercial-of-the-shelf-components (COTS). Two filter 
algorithms are developed and tested in a simulation-only Simulink environment 
consisting of mathematical models of all relevant RCS subsystems. The first will be 
based on a complementary filter, while the other is based on an innovation-based 
adaptive Kalman filter. To facilitate the tuning and implementation process of the filters 
on the microcontroller and to reveal the limitations of the RCS, the filter algorithms will 
be characterized by conducting a designed Monte Carlo simulation experiment. 
Through categorization and the use of the squared sigma-normalized sensitivity, 
performance impairing factors will be determined for each filter. Depending on the filter 
configuration, the computational delay and the gyroscope noise are revealed as 
especially detrimental to the RCS performance, which is measured as the root-mean-
square error of the true trajectory to the commanded trajectory. Overall, both filters 
meet the functional requirements placed on them. However, the Kalman filter-based 
configuration provides a superior mean performance, while the complementary-based 
configuration provides a higher robustness.  
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1 Motivation 

Every rocket needs a payload. The main purpose of a rocket is to transport this payload 
from point A to point B. This task becomes extremely costly if point B happens to be in 
space. Although a payload in space may generate an inconceivable amount of benefit, 
private companies, universities, and economically weak nations often lack the financial 
means to afford a “ticket” to space. However, recent development in the privatization 
of space, with companies like SpaceX and Blue Origin at the forefront, promises to 
advance space technologies at an unprecedented rate, vastly lowering the cost of 
space transportation. This promise “piques” the interest of an increasing number of 
companies and universities wanting to find both market and research potential in an 
orbit around Earth. NewSpace – as this advent of modern spaceflight is referred to by 
the media [1] – is represented by Fig. 1-1 which indicates a growing interest in the 
small satellite market. 

  
Fig. 1-1: Market forecast by SpaceWorks Enterprise Inc.®. Projections based on future plans of 

developers and programs indicate nearly 2400 nano / microsatellites will require a launch 
from 2017 through 2023 [2]. 

A significant part of projects involving small satellites stem from universities and private 
companies [3], which emphasizes the need for a cost-effective, customized, launch 
responsive and placement flexible space transport system. This demand can no longer 
be met by “piggyback” missions on traditional medium-to-heavy-lift launchers and is 
sparking the development of so-called microlaunchers: a technology that ignites the 
interest of a generation of space enthusiasts such as those within the Scientific 
Workgroup for Rocketry and Spaceflight (WARR) at the Technical University of 
Munich.  

1.1 Introducing WARR Exosphere 

The student group WARR e.V. (German: Wissenschaftliche Arbeitsgemeinschaft für 
Raketentechnik) began in 2017 with theoretical work on a microlauncher, which is an 
orbital launcher with a payload of a few kilograms. Comparable launchers have already 
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been developed such as the “Electron” rocket from the company Rocket Lab and the 
Japanese SS-520 [4]. Until spring 2018, the first two microlauncher workshops 
produced two carrier concepts with payloads ranging from 25 to 50 kilograms. In order 
to obtain the necessary funding for the realization of such a project, WARR decided to 
develop a suborbital technology demonstrator for testing all necessary technologies 
for an orbital carrier. The project called "Exosphere" was launched to develop the two-
stage suborbital rocket dubbed WARR Experimental Missile 4 (WARR Ex-4). The 
development of the WARR Ex-4 should be as cost-effective as possible in the shortest 
possible time. Therefore, commercial-of-the-shelf (COTS) components shall be used. 
Some important components, which are necessary for the technology demonstration 
of an orbital rocket and not available on the market, are the stage adapter for 
performing the separation of the two stages, the recovery system for high re-entry 
speeds, and the active attitude control system. The last of which is also referred to as 
a reaction control system (RCS) and has the task of controlling and stabilizing the 
upper stage of the WARR Ex-4 along the vertical axes during a long thrustless flight 
phase. This shall allow the second stage thrusters to ignite at an optimal attitude. The 
development of the RCS was the primary focus of WARR’s third microlauncher 
workshop and will be the future focus of project Exosphere endeavors. All planned 
project phases, including the development of a test stand and precursor tests on the 
WARR EX-ONE, are detailed in Section 3.1.  

1.2 Significance of this Work in the Project 

As a part of project Exosphere, this thesis aims to support the development of the RCS. 
To control the attitude of any object, first, its attitude needs to be determined as 
accurately as possible. This is achieved through a multitude of sensors. However, 
COTS sensors provide faulty measurements to the control algorithm, degrading the 
accuracy and stability of the RCS. Therefore, the measurements of the different 
sensors are filtered to extract the optimal estimation of the current attitude of the 
system. This process will be referred to as attitude estimation based on inertial 
sensors. Applying this concept to the cold-gas RCS and identifying performance 
degrading factors will be the aim of this thesis. For this purpose, the current advances 
in microlauncher RCSs, COTS sensors, and filter algorithms will be examined in the 
sections 2.1-2.3. Following this, Chapter 3 will detail the objective of this thesis in the 
form of three research questions, place it in the overall context of the project, and 
elaborated on the concept behind testing the RCS. The main body of this work will 
explain the implementation of a plant model, a preliminary control algorithm (see 
Chapter 4), and multiple sensor data filtering algorithms (see Chapter 5) in a simulation 
environment. A designed Monte Carlo simulation experiment will be performed, 
evaluated, and discussed to characterize the filter throughout both Chapter 6 and 7. 
To conclude this work, a summary and the project outlook is given in Chapter 8. 

Additionally, a guide on how to use the Simulink model of the RCS, including all 
mentioned subsystems, is appended in C. 
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2 State of the Art 

The following sections give an overview of the state-of-the-art technologies crucial for 
attitude determination and control on small-scale suborbital rockets. In the project it 
was decided to settle on an RCS with cold gas thrusters over other more complex 
technologies. A justification for this as well as an extensive list of viable attitude control 
technologies on microlaunchers is provided in the semester thesis of fellow team 
member Till Assmann [5], who worked on the RCS hardware design.  

2.1 Cold Gas Reaction Control Systems on Suborbital Missiles 

In cold gas systems, a gas is stored in a tank at a sufficiently high pressure and 
expanded through a nozzle. Inert gases such as nitrogen, helium, krypton, argon, but 
also hydrogen and methane are often utilised [6]. However, it is also possible to use 
gases which are present in liquid form at high pressure. These include carbon dioxide, 
butane, propane, dinitrogen monoxide and ammonia among others. However, this 
often leads to the same problems as with liquid engines such as fuel swabbing and the 
need to heat the pipes and tanks, so that the gas remains gaseous [7]. An example of 
a suborbital rocket using an RCS with cold gas thrusters is the FALCO-4 model rocket.  

The FALCO-4 was developed for vertical stabilization experiments on a model rocket 
at low speeds. It used 0.068 kg of carbon dioxide as a propellant, which was stored at 
60 bar in a gas cartridge [8]. A pressure regulator expands the gas to 6 bar. The system 
has four valves, each with one nozzle and none of these are Laval nozzles. The gas 
flows out directly from the open end of the gas line after the valve. The four nozzles 
are installed with an offset to the longitudinal axis of the rocket. Each nozzle can 
achieve a maximum thrust of 0.37 N [8]. The RCS data is compiled in Table 2-1. 

Table 2-1: FALCO-4 RCS specifications from [8].  

Parameter Value 

Overall RCS mass  0.834 [kg]   

Propellant mass 0.068 [kg]   

Thrust 0.32 − 0.37 [N]    

Nozzle chamber pressure 6 [bar] 

Tank pressure 60 [bar] 

Number of nozzles 4 [−]    

 

Another example of a suborbital rocket using a cold gas RCS is the SHEFEX-II 
developed by the German Aerospace Center (German: Deutsches Zentrum für Luft- 
und Raumfahrt, DLR). In total, the whole control system includes three colds gas 
RCSs. One for precision control before ignition of the second stage, one for roll rate 
control during precision control, and one triaxial RCS for alignment of the upper stage 
after burnout for position update, alignment in the re-entry direction, and rotational rate 
damping during re-entry. For more information on this mission refer to [9]. 
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Orbital rockets like the Falcon 9 by SpaceX use nitrogen fuelled cold gas RCSs for 
attitude control on the upper stage during the phase without thrust, and for attitude 
control on the lower stage during landing [10].  

Advantages of cold gas RCSs are low complexity, relative security and reliability, low 
cost, the possibility to use non-toxic fuels and the ability to work in pulsed mode. 
However, only a relatively low thrust can be produced per nozzle [6]. 

2.2 Micro-Electro-Mechanical Systems Inertial Measurement Unit 

Micro-electro-mechanical systems (MEMS) is a process technology used to create tiny 
integrated devices or systems that combine mechanical and electrical components. 
These devices are fabricated using integrated circuit batch processing techniques and 
can range in size from a few micrometres to millimetres. These systems have the ability 
to control, actuate and sense on the microscale [11]. The latter will be of importance 
for the inertial measurement unit and hence for all upcoming sections.   

Inertial sensors comprise accelerometers and gyroscopes. An accelerometer 
measures a specific force and a gyroscope measures an angular rate, both without an 
external reference. Devices that measure the velocity, acceleration, or angular rate of 
a body with respect to features in the environment are not considered inertial sensors 
[12]. Most types of accelerometer measure the specific force along a single sensitive 
axis. Similarly, most types of gyroscopes measure the angular rate about a single axis. 
An inertial measurement unit (IMU) combines multiple accelerometers and gyros, 
usually three of each, to produce a three-dimensional measurement of specific force 
and angular rate [12]. 

MEMS IMUs have a significant cost, power consumption, mass and size advantage 
over conventional mechanical or optical (only on gyroscopes) inertial sensor designs. 
However, most MEMS sensors suffer from relatively poor performance on bias 
instability, scale factor instability and noise, which emphasizes the importance of 
extensive calibration [12, 13]. The performance degrades even further for the lowest 
grade of inertial sensors – the consumer grade. The popular MPU-6050 [14] is an 
example of a low-end consumer grade IMU primarily used in smartphones. Being mass 
produced, it impresses with high availability and cost efficiency,  which qualifies it as a 
COTS component for the RCS. It incorporates a 3-axis MEMS gyroscope and 
accelerometer on the same silicon die. The following sections explain the working 
principle of two inertial sensors. 

2.2.1 Accelerometers 

MEMS accelerometers are commonly realized as pendulous accelerometers or 
vibrating beam accelerometers [12]. In both cases, a proof mass is free to move with 
respect to the casing along the sensitive axis. In the MPU-6050, a closed-loop force-
feedback pendulous accelerometer is integrated [15]. This will be explained first. 

 Pendulous Accelerometers 

In a force-feedback accelerometer, an electromagnet mounted on a pair of permanent 
magnets of opposite polarity, mounted on either side of the casing, is used to maintain 
the pendulous arm at a constant position with respect to the casing. The capacitive or 
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resistive pick-off detects departures from the equilibrium position. The force exerted by 
the electromagnet, which keeps the pendulous at the equilibrium point and parallel to 
the casing, is measured [12]. Fig. 2-1 depicts a mechanical force-feedback pendulous 
accelerometer. 

  
Fig. 2-1: Sketch of a mechanical closed-loop force-feedback pendulous accelerometer from [12]. 

The closed-loop configuration ensures that the sensitive axis remains aligned with the 
accelerometer casing, while the electromagnetic torquer offers much greater range 
and linearity than the open-loop accelerometer, which consists of a spring and a pick-
off [12].  

 Vibrating-Beam Accelerometers 

Another possible way of designing a MEMS accelerometer is the so-called vibrating-
beam accelerometer. In this configuration, the proof mass is supported along the 
sensitive axis by a vibrating beam, largely constraining its motion with respect to the 
casing. When a force is applied to the accelerometer casing along the sensitive axis, 
the beam is compressed or stretched while pushing or pulling the proof mass. The 
beam is driven to vibrate at its resonant frequency by the accelerometer electronics. 
As the beam is compressed, the resonant frequency is decreased, while tensing it will 
cause the opposite. Now, the specific force along the sensitive axis can be determined 
by measuring the modified resonant frequency by [16]. Vibrating-beam accelerometers 
are considered an open-loop device; however, the proof mass is essentially fixed. 
Therefore, no variation in the sensitive axis with respect to the casing occurs.  

Fig. 2-2 outlines the operating principle of the vibrating-beam accelerometer and Fig. 
2-3 shows the concept of high-resolution quartz vibrating-beam accelerometer 
developed by [16]. In Fig. 2-2, 𝐹0 represents the resonant frequency, while 𝐹 

represents the modified measured frequency. The acceleration denoted with Γ points 
in the direction of the sensitive axis. This notation is exclusive to this section and will 
not be used again. 
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Fig. 2-2: Principle of operation of the 

vibrating-beam accelerometer 
taken from [16]. 

 
Fig. 2-3: Concept of a 50 ng  quartz vibrating-beam 

inertial accelerometer by [16]. 

Such MEMS accelerometer designs have a typical total operating range of 𝒂𝑟𝑎𝑛𝑔𝑒 =

4 g. This translates to a minimum measurement of −2 g and a maximum measurement 
of 2 g. By increasing the operating range of such a device, the quantization error is 
increased as well. For traditional mechanical accelerometer designs, the operating 
range can be 200 g in total [12]. The quantization error and other error sources are 
explained in Section 4.5. 

Furthermore, novel graphene-based accelerometer designs, making use of optical and 
MEMS technology, promise to combine higher accuracy with the advantages of MEMS 
[17]. However, due to its novelty, the technology cannot be considered a COTS 
component. 

2.2.2 Gyroscopes 

All MEMS gyroscopes operate on the vibratory principle [12]. Therefore, optical 
gyroscope designs like the ring laser gyroscope or the interferometric fiber-optic 
gyroscope will not be explained within this section. 

A vibratory gyroscope comprises an element that is driven to vibrate at its natural 
frequency. The vibrating element may be a string, beam, ring or hemisphere among 
other structures. Fig. 2-4 illustrates a string mounted on a rectangular support or mount 
which vibrates about the centre of the gyroscope frame. The string tends to vibrate in 
the plane spanned by the drive axis and the input axis, even if its support rotates. The 
Coriolis acceleration instigates a harmonic motion along the axis perpendicular to both 
the driven vibration and the angular rate vector input axis. The amplitude of this motion 
is proportional to the angular rate 𝜔 around the input axis. A rotation about the drive / 
vibration axis does not produce a Coriolis acceleration. Therefore, only rotation about 
the input axis leads to significant oscillation in the output axis [12].  

Fig. 2-5 shows a gyroscope design with a ring as a vibratory structure, with the input 
axis still being perpendicular to the drive and output axis. Here, four drive units are 
positioned at right angles around the input axis and four detectors are placed at 
intermediate points. When the gyro is not rotating, the detectors are at the nodes of 
the vibration mode and therefore, no signal is detected [12]. When an angular rate, 𝜔, 
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is applied, the vibration mode is rotated about the input axis, allowing the pick-offs to 
measure an amplitude proportional to the input.  

 
Fig. 2-4: Axes of a vibratory 

gyroscope with a string as 
the vibrating element [12]. 

 
Fig. 2-5: Vibration modes of ring, cylinder and hemispherical 

vibratory gyroscope [12]. 

The vibratory gyroscope designs have a significant cost and power consumption 
advantage over the other mentioned designs. Operating ranges can reach from 
𝝎𝑟𝑎𝑛𝑔𝑒 = ±3 𝑟𝑎𝑑/𝑠 to 𝝎𝑟𝑎𝑛𝑔𝑒 = ±120 𝑟𝑎𝑑/𝑠 [12].  

Most MEMS gyroscope  designs suffer from unreliability caused by unstable micro-
mechanical structures. Further, vibrations and accelerations of high magnitude may 
cause additional errors, which are referred to as acceleration sensitivity [18]. 
Additionally, the complex electronic measuring circuitry increases the cost, with MEMS 
gyroscopes usually being more costly than MEMS accelerometers [13]. Therefore, 
novel chip-scale integrated optical gyroscopes are being researched which promise 
great potential in the low-cost consumer electronics market [18]. 

2.3 Attitude Estimation Based on Inertial Sensors 

The measurements of the accelerometer and the gyroscope can both be used to 
determine the attitude of the rocket body. However, the accelerometer suffers from 
high measurement noise, while the gyroscope suffers from integration drift. To 
overcome these issues, an estimation algorithm is implemented on a microcontroller, 
which combines both measurement information. These estimation algorithms are 
referred to as filters. Combining the IMU with the filter algorithm and any global 
navigation satellite system (GNSS) receiver results in an inertial navigation system 
(INS). However, at this stage of the project, a GNSS module is not required. Therefore, 
the attitude determination relies solely on inertial sensors. A multitude of filter 
algorithms can be used for this task. However, more sophisticated estimation 
algorithms rely on high computing power, which is limited by the flight computer.  

In commercial unmanned aerial vehicles (UAV), the complementary filter is often 
applied as an attitude estimation algorithm because of its simplicity and computational 
efficiency [19]. However the accuracy of such an algorithm is usually worse compared 
to the Kalman filter [20, 21]. The Kalman filter is a recursive estimator which 
theoretically gives the optimal estimation of a state vector of the true system by using 
a dynamic model and measurements, both corrupted with random noise of known 
statistics [22].  
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The Kalman filter comes in different “flavours” with the most important being the 
standard Kalman filter (KF), the extended Kalman filter (EKF) and the unscented 
Kalman filter (UKF). The EKF linearizes the nonlinear model equation about the current 
state estimate, while the standard KF  does not [12]. This, however, requires the 
calculation of the Jacobian matrix, which requires higher computational effort [20]. The 
UKF is characterized by a set of sigma points to approximate a Gaussian probability 
distribution. The accuracy of the estimation for the UKF is expected to be higher than 
the EKF. However, the computational effort per iteration increases as well [12].  

Going through the four mentioned filters, increasing accuracy seems to trade with 
increasing computational effort. Considering the limited computational power of the on-
board computer, the Teensy 3.6 (see 3.1.1), first, the simple complementary filter and 
the standard Kalman filter shall be analysed. If, based on this, the project requirements 
in section 3.1.3 can be fulfilled, more sophisticated algorithms will not be implemented 
in the simulation. The theoretical background of all implemented filters is given in 
Chapter 5.  

After giving an overview of a selection of fundamental technologies involved in the 
development of the RCS, the objective of this thesis is substantiated, and the concept 
of the RCS is described in the next chapter. 
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3 Objective of the Thesis 

Introduced in 1.2, the general aim of this work is to design an appropriate filter for the 
stabilization and control of the second stage of a suborbital launch vehicle. Under the 
assumptions, which will be explained in 3.1, the second stage is simplified to 1-DoF 
inverse Pendulum at the current phase of the project. This results in the following 
research questions regarding the design (Q1) and the characterization (Q2 and Q3) of 
the filter:  

Q1: Which filter design can reliably estimate the attitude of a 1-DoF inverse 
pendulum, stabilized by a cold gas reaction control system, using the 
measurements of a cost-effective IMU, to control the system under the given 
requirements and circumstances? 

In this sense, the reliability of the filter shall be defined as its ability to meet the 
performance requirements (see 3.1.3) while being confronted with the problems arising 
from choosing consumer grade IMUs (see 2.2), relatively high-g dynamics (see 4.4) 
and limited processing power of the on-board microprocessor (see Table 3-2). 

Q2: What are the key factors influencing the control system?  

Key factors shall be defined as a set of model input variables, which critically impair 
the performance of the system (see 6.1). 

Q3: Which rules apply to tuning the control system? 

Formulating the tuning rules shall address the questions: What are the limits of the 
RCS when varying key factors? Can tuning guidelines be formulated to support the 
tuning process of the filter? In this sense, characterizing the filter will be achieved 
through evaluating the whole control system performance.   

Further, this document shall educate new and experienced fellow project members in 
the underlying mechanics of the RCS and the test stand by addressing the research 
questions and providing a comprehensible simulation environment (see 3.2 and B). 

3.1 Scenario Description  

Before Project Exosphere, there was the ambitious long-term goal to design and build 
a microlauncher, which can carry up to 50 kg of payload into a low earth orbit. To attract 
interest in a sustainable German launch provider and to gain technical experience in 
space bound multi-stage rockets, it was decided to test all necessary technology at a 
smaller scale. This technology demonstrator will be a two-staged suborbital rocket 
reaching space in a parabolic arc before falling back to earth just a few minutes later.  

The WARR EX-4 suborbital rocket will be propelled by an already developed and 
tested 10 kN hybrid engine, for the lower stage, and a 2 kN liquid engine for the upper 
stage. The lower stage engine was developed by the WARR e.V. Rocketry team, while 
the upper stage engine is currently being developed by a Munich-based aerospace 
start-up. This leaves the structure, the staging system, the two-stage recovery system 
and the RCS to be developed within Project Exosphere. Due to limited man-power, it 
was decided to focus on the RCS which will actively stabilize the second stage after 
separation during a thrustless coasting phase. The stabilization is mandatory to keep 
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the rocket trajectory on a vertical path into space, eventually crossing the Kármán-line 
at 100 km height. The details of the WARR EX-4 mission are comprised in [5].  

The development of the RCS was divided into six steps. The first steps comprise a 
reduction of complexity by introducing a single DoF to be stabilized on an inverse 
pendulum test stand. After scaling up to 3-DoF, the RCS will be tested and verified on 
the WARR EX-ONE model rocket. All six steps are comprised in the table below. 

Table 3-1: The six phases for developing the RCS. 

Phase Goal 

P0 The RCS shall regulate the pitch axis of an inverse pendulum test stand with 
external gas and power supply, while the yaw and roll axis are locked 

P1 The RCS shall regulate the pitch and yaw axis of an inverse pendulum test stand 
with internal gas or power supply, while the roll axis is locked 

P2 The RCS shall regulate the pitch, yaw and roll axis of an inverse pendulum test 
stand with internal gas and power supply 

P3 The RCS shall be able to run a pre-programmed trajectory on the pendulum test 
stand with internal gas and power supply 

P4 Development of RCS flight version and testing on the inverse pendulum 

P5 Testing the RCS flight version on a modified WARR EX-ONE model rocket 

 

No dedicated inverse pendulum test stand is available to the WARR and therefore 
must be designed as well. The following sections explain the concept behind the RCS 
and the inverse pendulum test stand. 

3.1.1 The Reaction Control System Concept 

The baseline of our attitude control system design is a pressure-fed cold-gas RCS, 
using nitrogen as a propellant, specifically tailored for its use during the thrustless 
costing phase [5]. Thrust vectoring and Vernier thrusters, where excluded as a design 
choice since they require the main engine to be active. The RCS was designed with 
scalability in mind. Therefore, the basic actuator design will remain unchanged for 
versions deployed on the test stand / WARR EX-ONE as well as those qualified for the 
final suborbital rocket. This work will focus on the first-mentioned ones, which are 
developed for the phases P0-P5.  

The main hardware components of the RCS comprise: a carbon fiber reinforced 
polymer (CFRP) tank used for paintball guns; a compact, light-weight pressure 
regulator; a drain valve, fast solenoid nozzle valves; custom nozzles detailed in [5]; the 
electric power distribution system; the MPU-6050 IMU and the microcontroller to run 
the estimation and control algorithms. Fig. 3-1 illustrates the segments of the WARR 
EX-ONE “Lenk” version. 
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Fig. 3-1: WARR EX-ONE “Lenk” version, with a diameter of 0.12 m, translated from [5]. 

Considering the main design goals, cost-efficiency, availability, size and weight, the 
hardware mostly consists of COTS components. Important to this work will be the 
actuator segment, illustrated in Fig. 3-2, which contains the nozzles and the solenoid 
valves. These elements will decide on the maximum thrust and transient behavior of 
the actuators which will have a major effect on the control system performance. 

 
Fig. 3-2: Overview actuator segment of 

the WARR EX-ONE “Lenk” 
translated from [5]. 

 
Fig. 3-3: Overview fluid segment of the WARR EX-ONE 

“Lenk” translated from [5].  

Following the example of [8], a four nozzle configuration with offset to the center was 
chosen to control the 3D attitude. This is expected to save space, cost and weight. 
Hereby, the fast responding solenoid valves represent an especially costly component.  

The fluid segment, the electronics segment and the actuator segment will be mounted 
on the test stand for P1 and onwards. However, at the point this work was composed, 
only two sufficiently fast acting solenoid valves were available to the WARR. For this 
reason, and to further reduce the complexity of the stabilization task, all following 
sections consider the 1-DoF case of P0 and P1. Therefore, the hardware design team 
calculates a maximum thrust of 𝐹𝑚𝑎𝑥 = 7 N per nozzle by using the available Festo 
MHE4 solenoid valves [23], assuming nitrogen as the propellant. An overview of all 
parameters needed for the Simulink model will be given in section 6.1 and throughout 
Chapter 4. 

The electronics segment of the RCS will contain the power supply, wiring and circuitry, 
the on-board computer, the IMU and the communication module. The  power supply 
and circuitry board are, at the point of this work, still being developed. The on-board 
computer was chosen to be a Teensy 3.6 (see Fig. 3-4). It is superior to the Arduino 
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UNO in processing speed while being more compact. It comes equipped with a I2C 
bus, which will be required when receiving the 16 bit measurements of the IMU at high 
frequencies on six inputs. The specifications of the Teensy 3.6 are summarized in the 
table below.  

 
Fig. 3-4: Picture of the Teensy 3.6 taken from 

[24].  

Table 3-2: Teensy 3.6 technical specification from 
[25].  

Feature Teensy 3.6 

Processor  MK66FX1M0VMD18 

Core Cortex-M4 

Rated Speed 180 [MHz] 

Flash Memory 512 [kB]     

RAM 256 [kB]     

Voltage 3.3 [V]       

EEPROM 4 [kB]    

Interfaces USB, CAN, I2C, SPI, 
Ethernet, SD, I2S 

 

The MPU-6050 was chosen as the IMU, due to its low cost and availability. It will 
measure the acceleration, 𝒂 in m/s2, and the angular rate, 𝝎 in °/s, along three axes. 
However, for P0 and P1 only the blue marked states will be filtered and fed to the 
control algorithm: 

 𝒂 = [

𝑎𝑥

𝑎𝑦

𝑎𝑧

 ] ;  𝝎 = [

𝜔𝑥

𝜔𝑦

𝜔𝑧

 ] = [

𝜙̇

𝜃̇
𝜓̇

 ]. Eq. ( 3–1 ) 

Now, the purpose of the RCS will be to control the angular deflection, 𝜃, around the y-
axis of the inertial frame of the test stand to zero. This purpose is further defined by 
the functional requirements in 3.1.3, after introducing the test stand design in the next 
section. 

3.1.2 The Test Stand 

The test stand was designed with the goal in mind to simulate the instable flight of the 
coasting phase for the EX-4 and the fin-stabilized flight of the EX-ONE. A simple 
modifiable inverse pendulum fulfils this requirement.  

The EX-4 coasting phase is not aerodynamically stabilized and therefore assumes 
instable flight. Side winds will easily destabilize the rocket, which would diminish the 
achievable vertical distance. This scenario cannot be tested on a classical pendulum 
design, since it would not reproduce the behaviour of an instable-flying rocket as it is 
considered a stable system. This problem is solved by inverting the pendulum and thus 
positioning the RCS and together with the overall centre of mass above the pivot. In its 
upright position, the inverted pendulum occupies an unstable position, thus requiring 
an active control to remain upright. When the pendulum is deflected, the lever arm and 
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thereby the occurring torque is proportional to the sine function of its angle. This is a 
comparable response to a disturbance at the EX-4 coasting phase, making this design 
well suited for the given task.  

For the second scenario on the EX-One, the stable flight conditions can be simulated 
by introducing a counterweight under the pivot to move the centre of mass below it. A 
mission on this configuration could comprise simply holding a 𝜃 = 5 ° deflection, with 
the help of the RCS, over a specified period. 

The final design, constructed by the testing team, includes: a Cardan joint at the pivot 
to reduce asymmetrical inertia;  modular mounting option; an adjustable end stop; the 
option to lock all axes; a circular aluminium platform to attach the RCS including the 
body tube; the possibility to mount a rotary encode on the pitch axis to evaluate the 
RCS performance; a communications module to initiate a test run and receive data 
from the rotary encoder. 

At the time of drafting this thesis, the complete test stand infrastructure is not finalized. 
The structure of the test stand with the body tube mounted on top is shown in Fig. 3-6. 
It is important to distinguish between the rocket coordinate frames and the test stand 
coordinate frames. The body-fixed coordinate frame of the rocket will originate at the 
centre of gravity, which will which will be the pivot point as well. The inertial frame on 
the actuator will originate at the pivot point as well, however this will not be the centre 
of mass of the test stand. The actuator coordinate frames origin is  placed along the 
symmetry axes at the height of the actuators. For the test stand, this will roughly be  
where IMU will be placed.  
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Fig. 3-5: WARR EX-ONE with the body-fixed 

coordinate frame, 𝐵, and actuator 

frame coordinate frame, 𝐴. 

 
Fig. 3-6: Test stand with the inertial coordinate 

frame, 𝐼, and the actuator coordinate 

frame , 𝐴. Actuators not mounted. 

 

The mass of the pendulum including the RCS was calculated to be 𝑚0 = 5 kg [26]. The 
dynamics of the pendulum will be considered for the model in section  4.1. 

The circular structure in Fig. 3-6 will function as an end stop. It will be adjusted to 𝜃 =
10 °, which gives a linear behaviour between gravitational force and deflection using 
the small angle approximation. Since, the end stop resembles no physical behaviour 
during a flight test, hitting it will disqualify the test run.  

3.1.3 Requirements 

A list of 67 requirements [27] were formulated to cover safety-related (SXX) and 
functional demands (FXX) for the different project phases. A selection of requirements 
relevant to this thesis are listed below: 
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Table 3-3: Extract out of the requirements document [27] translated into English. 

ID Description 

F01 The RCS shall stabilize the pendulum in the vertical direction around a fixed attitude 

F07 The angular deviation from the fixed attitude shall not be more than 1 °. In the case of 
phase 0,1,2,3, this applies after the oscillation of the stabilization process from the 
starting attitude has subsided 

F08 The RCS shall be able to stabilize the pendulum for 𝑡 = 15 s 

F13 The RCS shall control & stabilize the pitch axis of the pendulum 

F21 The RCS shall remain operational within a temperature range of -30 °C ≤ 𝑇𝐸 ≤ +50 °C 

F23 The mass of the RCS shall not exceed 𝑚 = 4 kg 

F24 The RCS shall remain functional after prolonged periods of inactivity of up to one hour 

F32 Under no circumstances should the pendulum reach the end stop after the stabilization 
process has begun 

F33 When designing the controller, a phase margin of 𝜙𝑅 = 60 ° shall be provided in 
accordance with MIL-F-9490D (USAF) [28]  

F34 The overshoot shall not be greater than 𝜃𝑂𝑆 = 60 % of the initial error to the 
commanded trajectory  

F35 The root-mean-square-error (RMSE) of the true trajectory to the commanded 
trajectory shall not exceed 𝑅𝑀𝑆𝐸 = 2.5 ° 

 

Therefore, F35 represents the minimum performance, in terms of 𝑅𝑀𝑆𝐸, a simulation 
run shall possess to be deemed successful. Introducing the 𝑅𝑀𝑆𝐸 as the main 
performance measure.  

3.2 Approach  

The unusual circumstances of the project demand for a highly independent, cost-
effective and parallelized development and simulation procedure.  This is introduced 
in the next sections. 

3.2.1 Development Procedure 

The development procedure of the subsystems in the project is parallelized. This 
enables a subsystem to incorporate design changes suggested by the results of other 
team members’ design progress. This approach works for a frequently communicating 
and interconnected team. However, it requires the team members to estimate design 
parameters for the early development stage. This led to the reference values, 
introduced in Chapter 6, which were used for a preliminary and a main test series. The 
results of the preliminary and main test series of this work will help team members 
evaluate importance and ranges of hardware design driving parameters. 
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3.2.2 Simulation Approach 

Since the RCS hardware is still being developed, the development and testing of the 
controller and filter is performed in a simulation environment. Leveraging the expertise 
of the WARR and collaborating institutes, a simulation-only approach was chosen as 
a first step to save time, reduce costs, and provide a baseline for the later software 
implementation. The chosen simulation environment is Simulink, a graphical simulation 
environment for modelling, simulating and analysing dynamical systems developed by 
The MathWorks Incorporated©. The utilized version is  Matlab R2017b 

SimulinkVersion 9.0 with the Continuous Toolbox Control, Design 

Toolbox and the Control System Toolbox installed. 

For this approach, first, the test stand dynamics, the actuator model and the controller 
were implemented in the simulation environment. The required parameters for the 
models were mostly acquired from literature, datasheets and calculations by the 
hardware design team. This model was used to tune the controller (see 4.3.1). Then 
the model was extended by the sensor error model, which introduced the necessity for 
an appropriate filter algorithm. With the finished model, extensive simulation test runs 
can be executed, improving the control algorithms and providing valuable information 
for further design iterations of hardware and software. In [29], a similar approach was 
performed for the development of an RCS on a suborbital missile. 

One drawback of this concept is that the test series will not consider hardware related 
aspects, which are not covered by the simple mathematical models described in 
Chapter 4. A software-in-the-loop (SIL) approach might be appropriate and will be 
considered as the next step to this thesis. This topic will be thematized in Chapter 7. 

3.3 Delimitation  

As explained in 3.2.1, the workload was divided among the project members to cover 
the design of the whole control system: 

Till Assmann will develop the design of the solenoid valve actuators, the gas tank and 
the pressure regulation and distribution system for applications on the test stand as 
well as on the rocket concept [5, 26].   

Matthias Beck will develop the three-dimensional model of the inverse pendulum (P2), 
and subsequently the rocket, to design an appropriate control algorithm [30, 31].   

Tim Klose will implement the algorithms developed in this thesis on the Teensy 3.6 
microcontroller [32]. 

Therefore, all topics regarding microcontroller implementation, model fidelity, controller 
design, optimization and stability analysis, hardware design, trajectory optimization are 
covered by fellow project members and will not be addressed within this work.  

Nevertheless, the whole control loop for 1-DoF, corresponding to P1, will be modelled 
in Simulink to evaluate the performance of the filter and report back concerns and 
considerations to team members. The utilized equations to model the respective 
hardware and software elements will be detailed in the next chapter. 
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4 Mathematical Simulation Model  

To give an accurate evaluation of the filter without a functioning hardware setup, a 
model of the controller, the actuators, the plant and the sensors as well as a desired 
reference trajectory is needed.  

For modelling in Simulink, the naming conventions defined by the MAAB guidelines 
[33] are adopted. In order to intuitively differentiate between the different blocks and 
their functions, the colour palette (see Fig. 4-1) proposed by New Eagle LLCs Simulink 
Style Guide [34] is used.  

  
Fig. 4-1: Color palette designed by New Eagle LLC [34]. The motohawk_block can be ignored. 

The main level of the RCS-model can be accessed by selecting the RCS1-DoF block 

(see Fig. D-8) on the first level and is depicted in Fig. 4-2. The input variables of the 
model can be initialized either by the MATLAB script initialize_RCS.m or through 

the mask of the respective subsystem. Further information on the initialization and 
handling of the model can be found in the appendix B. 

  
Fig. 4-2: The whole control loop RCS1DoF, including controller, actuator, pendulum, sensor models 

and the filter, resides at the second level of the Simulink model. The trajectory is generated 
at the first level. 
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Every block in Fig. 4-2 is referred to as a subsystem of the control loop. To avoid 
confusion, the model presented in Fig. 4-2 will be referred to as the main model, while 
a reduced model and an example model will be introduced in section 4.3.1 and 5.1.2, 
respectively. 

In the following sections every subsystem except the filter is derived.  

4.1 Inverse Pendulum Mechanics 

The test stand is modelled as a simple 1-DoF inverse pendulum without aerodynamical 
damping or friction losses. This simplification stems on the assumption, that for the test 
stand, aerodynamical damping forces and friction losses are negligible compared to 
the gravitational and actuator force. The gravitational acceleration acts in the negative 
direction of the established x-axis of the inertial frame and acts on the centre of mass 
at the location 𝑃𝐶𝑀, effectively reducing the rigid body of the entire system to a mass 

point with the mass 𝑚. This includes the structural weight of the inverse pendulum and 
the RCS. A mass calculation was performed in [5], resulting in a total weight of 5 kg, 
including a 10 % margin. The total actuator force, 𝐹𝑑𝑖𝑓𝑓, is defined as the difference 

between the forces acting on the pendulum produced by the two solenoid valve 
actuators, detailed in section 4.4. Just as the gravitational force, the actuators produce 
a moment around the y-axis of the inertial frame, 𝑦𝐼, with the lever arm 𝑙𝐴. This 
circumstance is depicted in  Fig. 4-3. 

  
Fig. 4-3: Free cut of the test stand modelled as a 1-DoF inverse pendulum.   

By either applying a moment equilibrium around the origin of the inertial frame, 𝑷𝐼, or 
the Lagrange 2 formalism, the differential equation (DE) for the pendulum can be 
obtained. The DE can be formulated as: 
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 𝜃̈ =
𝑙𝐴

𝑙𝐶𝑀
2 𝑚 

𝐹𝑑𝑖𝑓𝑓 −
(−𝑔)

𝑙𝐶𝑀
sin(𝜃)  Eq. ( 4–1 ) 

with 

 𝐹𝑑𝑖𝑓𝑓 = 𝐹1 + 𝐹2 𝑎𝑛𝑑 𝑚 = 𝑚0 = 𝑐𝑜𝑛𝑠𝑡. Eq. ( 4–2 ) 

The point mass of the system will be assumed to be constant in the main test series, 
since the change in mass due to gas loss will be covered by the mass variation range 
explained in section 6.2.3.2. However, a switch was implemented to activate mass 
reduction due to gas loss (see appendix Fig. D-9). Eq. ( 4–19 ) was used to calculate 
the gas consumption for a simulation run. 

As established in section 3.1.2, the end stop of the test stand was set to 10 °. Therefore, 

the range of motion of the inverse pendulum can be formulated as: 

 −𝜃𝐸𝑆 ≤ 𝜃 ≤ 𝜃𝐸𝑆, Eq. ( 4–3 ) 

and the angle will always be inside the range of the small angle approximation. This 
allows to omit the sine. Therefore, the linearized equation of motion can be Laplace-
transformed into the frequency domain formulating the transfer function Eq. ( 4–4 ) with 
the Laplace frequency domain variable 𝑠.  

 𝐺Θ𝐹𝑑𝑖𝑓𝑓
(𝑠) =

𝛩(𝑠)

𝐹𝑑𝑖𝑓𝑓(𝑠)
=

𝑙𝐴
𝑙𝐶𝑀𝑚

𝑠2−
𝑔

𝑙𝐶𝑀

. Eq. ( 4–4 ) 

However, in the model, the DE, Eq. ( 4–1 ), is used to obtain the angular acceleration 
and therefore translational acceleration on the z-axis of the actuator frame. The 𝐴-
frame originates in the middle of the structural plate approximately on the same plane 
as the force application point of the thrusters and shall be identical to the coordinate 
frame of the IMU. The measured translational acceleration, 𝑎𝑚𝑒𝑎𝑠,𝐴,𝑧,  will adopt the 

binary characteristics caused by the Two-Step controller, which will be introduced in 
section 4.3. The resulting issue for the state estimation and how to handle it is 
addressed in Chapter 5.  

The centrifugal force, 𝐹𝑍, is computed with:  

 𝐹𝑍,𝑥 = 𝑚𝑙𝐶𝑀𝜃̇2. Eq. ( 4–5 ) 

Dividing 𝐹𝑍 by the mass and adding the gravitational acceleration component gives the 
acceleration measured by the sensor along the x-axis of the A-frame, which is referred 
to as 𝑎𝑚𝑒𝑎𝑠,𝐴,𝑥. As this is the 1-DoF model and the test stand is fixed in its place, the 

gyroscopic force and the Coriolis force influence on the accelerometer measurement 
is neglected.   

For the implementation in Simulink it is important to use the Integrator, Second-

Order block, which can be found in the Continuous Toolbox [35]. With this block 

the condition can be set to set the first integration, which is the angular speed, to zero 
if the end stop is reached. However, reaching the end stop during the stabilization 
process for the real test stand will produce a reaction force which is not included in the 
simulation. Therefore, hitting the end stop will disqualify any simulation run. Further, 
this reaction force would not be present on the rocket. This deliberation led to the 
formulation of requirements F32 and F34 in Table 3-3.   
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In summary, the InversePendulum1-DoF will produce the attitude of the pendulum, 

𝜃(𝑡), the accelerations along the x- and z-axis acting on the sensor and the angular 
velocity around the y-axis of the sensor frame as outputs from the actuator input force, 
𝐹𝑑𝑖𝑓𝑓. The attitude, 𝜃(𝑡), may also be referred to as the true trajectory, not to be 

confused with the commanded trajectory, 𝜃𝑐𝑜𝑚, detailed in the next section. 

4.2 Trajectory Generation 

The course of the commanded trajectory, 𝜃𝑐𝑜𝑚, also referred to as desired trajectory, 
depends on the selected trajectory mode, 𝑇𝑚𝑜𝑑𝑒. The operator of the simulation is 
presented with three different trajectory modes. All trajectories possess a simulation 
time of 𝑡𝑠𝑖𝑚 = 16 s. This originates from requirement F08 and an additional second of 

filter buffer time, 𝑡𝑏. The buffer time was chosen to be greater than the rise time, 𝑡𝑟, of 
the filters which depends on the filter input parameters. This interrelation is formulated 
in section 5.1 Eq. ( 5–5 ) and is discussed in 5.4.2. Further, all trajectories can be 
described as one or multiple step inputs at specific points in time. The three 
commandable trajectories are formulated in the following section: 

 𝜃𝑐𝑜𝑚(𝑇𝑚𝑜𝑑𝑒 = 1, 𝑡): {
𝜃𝐸𝑆 , 𝑓𝑜𝑟 𝑡 < 𝑡𝑏 = 1 [s]

    0, 𝑓𝑜𝑟 𝑡 ≥ 𝑡𝑏 = 1 [s]
, Eq. ( 4–6 ) 

with  

 𝐹𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑇𝑚𝑜𝑑𝑒 = 1, 𝑡): {

  0,           𝑓𝑜𝑟 𝑡 < 8.0 [s]

20, 𝑓𝑜𝑟 8 ≤ 𝑡 ≤ 8.1 [s]

  0,           𝑓𝑜𝑟 𝑡 > 8.0 [s]
. Eq. ( 4–7 ) 

Trajectory mode one possesses the particularity that a perturbation force, 𝐹𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒, 
will try to destabilize the pendulum for a defined period. The course of the commanded 
trajectory and the perturbation is visualized in Fig. 4-4 and Fig. 4-7. 𝐹𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 will 
remain zero over the course of the other two trajectories.  

Trajectory mode two will include a step input after eight seconds: 

 𝜃𝑐𝑜𝑚(𝑇𝑚𝑜𝑑𝑒 = 2, 𝑡): {

𝜃𝐸𝑆 ,    𝑓𝑜𝑟 𝑡 < 𝑡𝑏 = 1 [s]

    0,     𝑓𝑜𝑟 1 ≤ 𝑡 < 8 [s]

    5,             𝑓𝑜𝑟 𝑡 ≥ 8 [s]
. Eq. ( 4–8 ) 

This shall simulate a manoeuvre, which can be expanded to a gravity turn or a side 
step manoeuvre. The course of the commanded trajectory is visualized in Fig. 4-5. 

Trajectory mode three is the most significant commanded trajectory to this work since 
it is the least complex and is used to evaluate the performance of the filter algorithms.  

 𝜃𝑐𝑜𝑚(𝑇𝑚𝑜𝑑𝑒 = 3, 𝑡): {
𝜃𝐸𝑆 , 𝑓𝑜𝑟 𝑡 < 𝑡𝑏 = 1 [s]

    0, 𝑓𝑜𝑟 𝑡 ≥ 𝑡𝑏 = 1 [s]
, Eq. ( 4–9 ) 

The course of the commanded trajectory is the same as for trajectory mode one, but 
without any perturbation and is visualized in Fig. 4-6. 
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Fig. 4-4: Commanded trajectory for mode one. 

 
Fig. 4-5: Commanded trajectory for mode two. 

 
Fig. 4-6: Commanded trajectory for mode three. 

 
Fig. 4-7: Perturbation in mode one.  

To increase the time efficiency of the simulation run it is recommended to disable the 
zero-crossing detection in the Integrator, Second-order block. 

Excessive simulation times for second order systems with constant position or attitude, 
as it is the case for the buffer time, is a well-known problem documented in [36]. 

To enable the pendulum to achieve the commanded trajectory, a controller needs to 
be designed which is subject of the next section. 

4.3 Controller  

The development of an optimal control algorithm is not the objective of this thesis. 
Therefore, the following control algorithm represents just one possible solution. The 
focus for this preliminary controller design is simplicity. In [29] a proportional controller 
in combination with duty cycle limiter and pulse width modulation (PWM) is suggested 
for stabilization around the roll axis. However, the inverse pendulum undamped PT2 
dynamics can arguably be classified as a more unstable system than the rolling 
cylinder in [29] which is modelled as a PT1 with a certain damping coefficient. 
Therefore, a faster controller is necessary while also fulfilling steady state accuracy 
implied by the requirements F07 and F35 in Table 3-3.  
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Furthermore, the function for the duty cycle limiter block which  transforms the required 
thrust force into a solenoid valve duty cycle required for the PWM, is acquired by using 
linear regression determined through PWM single-stream testing of the propulsion 
system [29]. The necessary facilities for such kind of testing is not available to the 
WARR and was therefore not an option. 

This thought process led to controller design, consisting of two parts, which will be 
discussed in the next sections. 

4.3.1 PID Controller 

The proportional-integral-derivative controller (PID controller) is a wide-spread control 
loop feedback mechanism [37]. The PID controller applies a correction to the 
continuously calculated error, between the true trajectory and the commanded 
trajectory, based on the proportional, integral and derivative terms.  

For this work, the error in the time-continuous domain is calculated with  

  𝜃𝑒(𝑡) = 𝜃𝑐𝑜𝑚(𝑡) − 𝜃(𝑡). Eq. ( 4–10 ) 

Therefore, the complete time-continuous PID control function can be expressed as  

 𝑢𝑃𝐼𝐷(𝑡) = 𝐾𝑝𝜃𝑒(𝑡) + 𝐾𝑖 ∫ 𝜃𝑒(𝑡′)𝑑𝑡′ + 𝐾𝑑
𝑑𝜃𝑒(𝑡)

𝑑𝑡

𝑡

0
, Eq. ( 4–11 ) 

where the 𝐾𝑝, 𝐾𝑖, 𝐾𝑑, represent the strictly non-negative coefficients for the 

proportional, integral and derivative terms respectively [37]. Therefore, the Laplace 
transform to the frequency domain gives the transfer function 

 𝐺𝑈𝑃𝐼𝐷Θ𝑒
(𝑠) =

𝑈𝑃𝐼𝐷(𝑠)

Θ𝑒(𝑠)
= 𝐾𝑝 + 𝐾𝑖

1

𝑠
+ 𝐾𝑑𝑠. Eq. ( 4–12 ) 

The following paragraph will try to give an intuitive explanation for the underlying 
mathematics of the controller: The proportional term evaluates the current state of the 
system and addresses it with a weight 𝐾𝑝; the integral term evaluates the past state of 

the system and addresses it with a weight 𝐾𝑖 which guarantees steady state stability; 
and the derivative term evaluates the future state of the system and addresses it with 
a weight 𝐾𝑑 which allows the system to respond faster to abrupt changes in trajectory. 
For the 1-DoF case, the PID control algorithm will only need the attitude as a state 
feedback, which will be estimated by the filter developed in Chapter 5. The angular 
velocity will not be fed back. 

For the tuning of the PID controller gains, the Simulink PID Tuning Tool [38] from 

the Control Design Toolbox was used on a reduced ideal model of the system. 

The reduced model includes the PID controller, the actuator model and the inverse 
pendulum model. The PID Tuning Tool calculates the optimal PID-gains, with the 

pidtune(system,’PID’) algorithm [39], patented by The MathWorks Inc.®, for the 

linearized closed-loop plant. Further, the tool allows to adjust the gains to obtain the 
desired phase margin or aggressiveness of the control algorithm, respectively. For this 
project, a high phase margin of 60 °, according to requirement F33, is targeted for the 
reduced model which may be decreased by artificially added time delays causing a 
phase shift in the main model or unanticipated time delays in the real test stand.  

After the PID control algorithm has calculated a 𝑢𝑃𝐼𝐷 value, the signal is delayed by 
𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 = 0.01 s with a Transport delay block to simulate the latency caused by 
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the microcontroller calculation time. The value for the delay time was measured by the 
implementation and software team [32]. Since the delay time may increase when 
scaling up to multiple degrees of freedom, the examination of this parameter will be a 
primary focus of the evaluation in section 6.3. 

The output of the PID controller cannot be processed by the actuator interface, which 
only accepts a binary input. Therefore, a Two-Step controller as an alternative to a 
PWM controller is introduced in the next section. 

4.3.2 Two-Step Controller 

The Two-Step controller (German: Zweipunktregler), more commonly referred to as 
bang-bang controller (BB controller), is a, for some applications time-optimal, feedback 
controller that abruptly switches between two states [40]. 

As previously mentioned, the BB controller was chosen as the second part of the 
control algorithm due to its simplicity and convenience for this application. No testing 
needs to be performed to find an appropriate duty cycle for the respective 𝑢𝑃𝐼𝐷 value, 
as for the PWM controller. In theory, the output of the BB controller, 𝑢𝑏𝑏, can obtain 
one of two states depending on the input condition [40]. Transferred to this work, the 
BB controller output shall control both actuators depicted in Fig. 4-3, with the condition 
that only one actuator can be active at the same time for the 1-DoF case. Additionally, 
a range of inputs 𝑢𝑃𝐼𝐷 shall be defined in which no actuator is active. This threshold 
will be labelled 𝑢𝑏𝑏0 and was implemented to save gas. This assumption will be verified 
in 6.2.2. The resulting conditions for  𝑢𝑏𝑏 can be formulated as 

 𝑢𝑏𝑏: {

   1,                   𝑓𝑜𝑟 𝑢𝑃𝐼𝐷 > 𝑢𝑏𝑏0 
    0, 𝑓𝑜𝑟 −𝑢𝑏𝑏0 ≤ 𝑢𝑃𝐼𝐷 ≤ 𝑢𝑏𝑏0 
−1,                𝑓𝑜𝑟 𝑢𝑃𝐼𝐷 < −𝑢𝑏𝑏0

. Eq. ( 4–13 ) 

The algorithm is implemented in Simulink with the MATLAB function block. By 

selecting discrete as the update method and setting the sample time to chosen 

actuator frequency, 𝑓𝑏𝑏, the output, visualized in Fig. 4-8, becomes unsteady.  

  
Fig. 4-8: Bang-bang controller time-discrete output signal for 𝑓𝑏𝑏 = 100 Hz and 𝑢𝑏𝑏0 = 0.1. 



Mathematical Simulation Model 
 

 

 

Page 24 

Considering Eq. ( 4–13 ), the bang-bang controller output is comparable with the 
Heaviside step function [41], which is classified as a stiff problem [42]. Therefore, using 
an explicit solver, for example the Simulink default setting ode45, is time inefficient. 

Hence using the implicit solver, ode15s, is recommended for this simulation [43]. 

Further, the Simulink stability analysis tool is not applicable for the BB controller. 
Analysing the stability of the closed loop for the final controller design will be a task for 
future work on this project by the control team [31]. 

In this section, the PID controller output was successfully transformed into the 
𝑢𝑏𝑏 𝜖 [−1; 0; 1] signal accepted by the two actuators. In this model 𝑢𝑏𝑏 = −1 will 
activate the actuator facing the opposite direction of the actuator activated with an 
𝑢𝑏𝑏 = 1 (see Fig. 4-3). However, the actuator model detailed in the next section will 

give the output of both actuators combined, labelled 𝐹𝑑𝑖𝑓𝑓. 

4.4 Actuator Modelling 

In 3.1.1 the cold gas thruster RCS, designed in [5], was presented. To model the 
utilized actuators the valve and the nozzle will be considered in this section.  

The valve for the first design iteration will be the MHE4 solenoid valve from Festo AG 
& Co. KG. The product datasheet reveals an ON-switching / OFF-switching time of 
𝑡𝑠𝑡 = 0.0035 s and a maximum switching frequency of 𝑓𝑚𝑎𝑥 = 210 Hz [23]. Further, the 
hardware design team calculated a maximum thrust of 𝐹𝑚𝑎𝑥 = 7 N with the current 
nozzle design [26]. This provides enough information to model the cold gas solenoid 
valve actuators as a PT1 element. The simplification of a solenoid valve transient 
behavior to a PT1 element is suggested by [29]. A similar but more sophisticated 
approach can be found in [44]. The first order differential equation for the described 
actuator can be formulated as 

  𝜏
𝜕𝐹𝑑𝑖𝑓𝑓(𝑡)

𝜕𝑡
+ 𝐹𝑑𝑖𝑓𝑓(𝑡) = 𝐾𝑢𝑏𝑏(𝑡), Eq. ( 4–14 ) 

with the corresponding transfer function in the frequency domain  

 𝐺𝐹𝑑𝑖𝑓𝑓𝑈𝑏𝑏
(𝑠) =

𝐹𝑑𝑖𝑓𝑓(𝑠)

𝑈𝑏𝑏(𝑠)
=

𝐾

𝜏𝑠+1
, Eq. ( 4–15 ) 

Including the time constant 

 𝜏 =
𝑡𝑠𝑡

−ln(1−
𝐹(𝑡=𝑡𝑠𝑡
𝐹𝑚𝑎𝑥

)
= 7.6 ∗ 10−4 [s], Eq. ( 4–16 ) 

and the gain 

 𝐾 = 𝐹𝑚𝑎𝑥 = 7 [N]. Eq. ( 4–17 ) 

Furthermore, the thrust reached after the switching time, 𝑡𝑠𝑡, could not be extracted 
from the datasheet [23] and was therefore, according to [44] assumed to be: 

 𝐹𝑠𝑡 =
𝐹(𝑡=𝑡𝑠𝑡)

𝐹𝑚𝑎𝑥
∗ 100 = 99 [%]. Eq. ( 4–18 ) 

The transient behavior of the modelled actuator for a step input is shown in Fig. 4-9. 
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Fig. 4-9: Transient behavior of the modelled solenoid valve MHE4 for a step input 𝑢𝑏𝑏. 

If the utilized valve changed, the Actuator block in the Simulink model can be 

adjusted if the values for the parameters described in this section are known. 
Additionally, there is the option to add a deadtime to the actuator. This was realized 
through a Transport Delay block and can be adjusted by the variable 𝑡𝑎𝑐𝑡𝑑𝑒𝑙𝑎𝑦. 

The cold gas consumption of the RCS during a test run is calculated with average 
actuator exhaust velocity 𝑣𝑎𝑐𝑡, calculated in [5]. Therefore, the cold gas consumption 
is formulated as 

 𝑚𝑔𝑐(𝑡) =
1

𝑣𝑎𝑐𝑡
∫ |𝐹𝑑𝑖𝑓𝑓|

𝑡

0
𝑑𝑡, Eq. ( 4–19 ) 

within the GasMassCalculation block. The total gas consumption will depend on 

the filter selection and 𝑢𝑏𝑏0. Results will be analyzed in 6.2.2. 

The total actuator thrust, 𝐹𝑑𝑖𝑓𝑓, will act on the inverse pendulum model, described in 

4.1, resulting in the true trajectory, 𝜃(𝑡), the translational acceleration and the angular 
velocity measured by the MEMS sensors. These will add deterministic and stochastic 
errors to the signal which will be detailed in the next section. 

4.5 Sensor Model 

The IMU used for the RCS is the InvenSense MPU-6050 [14]. It contains a MEMS 
vibrating-beam accelerometer as well as a MEMS vibratory gyroscope in a single chip. 
The sensor will use the I2C-bus to interface with the Teensy 3.6. To model the 
accelerometer and the gyroscope for the 1-DoF case, stochastic, also referred to as 
probabilistic or statistical, and deterministic errors are considered. All the necessary 
parameters to model the random error processes can be obtained from an Allan 
Variance analysis. However, the necessary equipment to perform it, such as an optical 
table with minimum deflection, are not available to the WARR.  

Therefore, the model will only contain the following types of random error processes 
[45] which could be gathered from [21, 46]: 
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Quantization Noise: This noise term is introduced into an analog signal after it is 
converted  into a digital signal. The measurement is either truncated or rounded 
because of the set range and limited resolution of the sensor and will result in the 
quantization error. This error possesses the same unit as the measurement. 

White Noise / Angle Random Walk: This noise term is characterized by a white-noise 
spectrum on the sensor output. It is usually marked with the letter 𝑤. In case of the 
gyroscope, the measured rate is integrated and therefore results in a random drift in 
the angle, which is dubbed Angle Random Walk. It is commonly unitized with, 

(°/s)/√Hz for the gyroscope, or (m/s2)/√Hz for the accelerometer. However, for the 
sensor error model, this stochastic process will be modelled as white gaussian noise 
with the standard deviation (STD), 𝜎, measured by [21, 46], and zero mean. The STD 
possesses the same unit as the measurement. 

 𝑤 = 𝒩[0, 𝜎] Eq. ( 4–20 ) 

Bias Instability: This noise type is caused by the electronics or related components 
that are receptive for random flickering. It evaluates how the bias, or initial offset,  of 
the measurement changes over a specified period at constant temperature. This is 
typically presented in units of (°/s)/hr for a gyroscope. Essentially, this drift in bias 
cannot be accounted for through calibration as it is the case with the Static Bias. In the 
scenario of this project, the drift in Bias over one hour (see F24), is −0.035 °/s for the 
gyroscope, according to data from [46]. This error term will be referred to as the 
residual bias, which is marked with the index 𝑅𝐵 in the subscript. It will lead to a 
considerable drift in the angular position of −0.56 ° over the course of the simulation 
time, if state estimation is performed by solely integrating the gyroscope measurement, 
visualised in Fig. 4-11. This proposes the first major concerns of this thesis and will be 
addressed by the filters developed in Chapter 5. The accelerometer value is not 
integrated and therefore the effect of Bias Instability is neglected. 

The deterministic errors were gathered from the product datasheet [14] and 
measurements by [32]: 

Static Bias: For a given physical input, the sensor outputs a measurement which is 
offset by the bias [47]. By measuring the output of the sensors at a fixed known position 
and subsequently averaging the data, the Static Bias can be obtained. Therefore, it 
can be compensated. This process is referred to as calibration. For this model the bias 
is denoted with the index 𝐵 in the subscript and possesses the same unit as the 
measurement.  

Scaling: For this work, scaling shall include a multitude of multiplicative, linear errors. 
Quadratic scale factor terms and even higher order terms (hot) are excluded. For 3-
DoF with the measured states 𝒙𝑚𝑒𝑎𝑠,𝑀, exclusively considering multiplicative errors, 

the following expression is formulated: 

 𝒙𝑚𝑒𝑎𝑠,𝑀 = [

𝑀𝑆𝐹,𝑥𝑥𝑀𝑇𝑆,𝑥 𝑀𝑀𝐴,𝑥𝑦 𝑀𝑀𝐴,𝑥𝑧

𝑀𝑀𝐴,𝑦𝑥 𝑀𝑆𝐹,𝑦𝑦𝑀𝑇𝑆,𝑦 𝑀𝑀𝐴,𝑦𝑧

𝑀𝑀𝐴,𝑧𝑥 𝑀𝑀𝐴,𝑧𝑦 𝑀𝑆𝐹,𝑧𝑧𝑀𝑇𝑆,𝑧

] 𝒙𝑡𝑟𝑢𝑒 + ℎ𝑜𝑡 = 𝑴𝒙𝑡𝑟𝑢𝑒 Eq. ( 4–21 ) 

With the scale factor, 𝑀𝑆𝐹, on the diagonal of matrix 𝑴 and the misalignment 

representing the off-diagonal of matrix 𝑴. The scale factor error is defined as the 
relation between input and output. The scale factor distorts the measurement in a way 
where the output is proportional to the input but scaled [47]. It will be unitized with 
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%. The misalignment error is caused by fabrication or installation flaws. For 1-DoF it 

can be simplified to another multiplicative error term unitized with %, identical to the 
scale factor. Further, it was decided to incorporate an additional multiplicative term 
related to a change in temperature, due to high temperature-gradient a missile 
application might be facing (see F21). It will be labelled temperature sensitivity and 
possesses the unit %/°C. In Eq. ( 4–21 ) it is marked with the index 𝑇𝑆 in the subscript.  

Higher order scale factor terms (ℎ𝑜𝑡) as well as nonlinear scaling effects and cross 
coupling will be neglected for this work. For information on high fidelity sensor models 
refer to [48].  

Acceleration Sensitivity: Especially consumer grade IMUs are subject to a change 
in the bias depending on how the sensor experiences acceleration. This is most 
common in MEMS-gyroscopes, since their sensing elements include moving parts, an 
acceleration or vibration will be mistakenly detected as the angular speed (see 2.2.2). 
This effect can be modelled and removed from the measurements and is often included 
in the IMU signal condition stage before output of the measurements [47]. For this 
scenario, the Acceleration Sensitivity is unitized with °/s/g and will be included in the 
gyroscope model with the index 𝐴𝑆 in the subscript. 

Other probabilistic, such as the Rate Random Walk, or deterministic errors, such as 
the Rate Drift Ramp or the turn-off / turn-on bias error, were excluded from the sensor 
error model since their impact is negligible over a simulation time of 16 s. The 
theoretical background for the Allan variance analysis will not be explored in the frame 
of this thesis, since it is not needed for the simplified sensor error models. For more 
information on this topic refer to [45]. 

4.5.1 Gyroscope Error Model 

The underlying dynamic behaviour of a gyroscope, described in 0, can be modelled as 
a mass-spring-damper system or PT2 element [49]. However, the datasheet [14] 
revealed no information about the relative damping required for modelling such a 
system. Therefore, the gyroscope will be modelled as a PT1 element, also referred to 
as a Low Pass filter, with the natural frequency 𝜔𝑛,𝐺. The natural frequency is 

equivalent to the drive frequency from [14] as explained in 2.2.2. The corresponding 
continuous-time transfer function in the frequency domain for the first order Low Pass 
filter is given in Eq. ( 4–22 ). 

 𝐺(𝑠) =
𝜔𝑛,𝐺

𝑠+𝜔𝑛,𝐺
  𝑤𝑖𝑡ℎ 𝜔𝑛,𝐺 = 30000 [Hz] Eq. ( 4–22 ) 

However, with such a high natural frequency the time delay caused by the gyroscope 
dynamics is arguably negligible.  

Now, the different error terms are added to the model. Fig. 4-10 illustrates the different 
error terms used for the gyroscope model and in which order they are introduced. 
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Fig. 4-10: Gyroscope scheme. 

The multiplicative error terms are implemented as coefficients. For the reference 
values they will be set to 1, therefore assuming no scaling. For the evaluation, in 
section 6.3, they will be varied over range specified by the datasheets [14]. The 
temperature sensitivity is evaluated by changing the environmental temperature, 𝑇𝐸, 
over the range specified by the functional requirement F21.  

For the additive errors, the static bias was not included since it is assumed that it can 
be compensated by the calibration. However, a residual bias term is added to account 
for the previously discussed bias instability and errors in the calibration. The resulting 
drift in angle is shown in Fig. 4-11. The acceleration sensitivity would usually refer to 
acceleration along the corresponding axis. However, for the 1-DoF case there is no 
acceleration towards the y-axis and therefore the acceleration towards the z-axis is 
chosen which should behave similar to the y-axis acceleration in the 3-DoF case. The 
noise process for the MPU 6050 was determined by [21] and [46] to be white gaussian 
in nature. Therefore, it can be implemented in Simulink with the MATLAB function 

block  including  the function random('norm',0,STD). The corresponding standard 

deviation, 𝜎𝐺,𝑦, was measured by the implementation team [32]. It is comparable to the 

values measured by [21]. The raw measurement data is shown in Fig. 4-12. 

 
Fig. 4-11: Drift in the y-axis angle due to 

integration of the residual bias. 

 
Fig. 4-12: Raw MPU-6050 gyroscope y-axis  

measurement data of the with a 
sample rate of 𝑓𝑠𝑒𝑛𝑠𝑜𝑟 = 1000 Hz. 

To summarize, the simplified error terms for the gyroscope can be formulated as 

 𝜃̇𝑚𝑒𝑎𝑠 = 𝑀𝑆𝐹,𝑦𝑦𝑀𝑇𝑆,𝑦𝑀𝑀𝐴𝜃̇𝑡𝑟𝑢𝑒 + 𝑤𝐺,𝑦 + 𝜔𝐴𝑆,𝐺,𝑦𝑎𝑧 + 𝜔𝑅𝐵,𝐺,𝑦. Eq. ( 4–23 ) 
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The static bias term is excluded since it is assumed, that it can be compensated 
through calibration. 

After the additive errors, there the MPU-6050 provides the user with the option to filter 
the measurements by a Low Pass filter. For the evaluation, this filter will not be used. 

At last, the analog signal is converted to a digital signal. This produces the quantization 
error. It will depend on the measurement range, 𝝎𝑟𝑎𝑛𝑔𝑒. If higher angular velocity 

needs to be measured, less decimal digits will be available introducing an error term 
resulting from limited resolution. This error may have a noticeable effect on the output 
if the maximum range is further increased. However, for the reference ranges in 6.1.1 
result in a negligible quantization error (see appendix Section E.2).  

The complete Simulink model of the gyroscope can be found in the appendix Fig. D-11. 

4.5.2 Accelerometer Error Model 

The MPU-6050 datasheet contains no information about the natural frequency of the 
accelerometer. Therefore, it is not included in the accelerometer Error Model. The z-
axis accelerometer measurement is modelled similar to the x-axis accelerometer 
measurement. 

Fig. 4-13 illustrates the different error terms used for the accelerometer model and in 
which order they are introduced. 

  
Fig. 4-13: Accelerometer scheme. 

For the multiplicative error terms, the same as for the gyroscope holds true. For the 
reference values, they will be set to 1, therefore, assuming no scaling. For the 
evaluation in section 6.3, they will be varied over range specified by the datasheets 
[14]. 

The accelerometer error model will only include the gaussian white noise as an additive 
error. Like the gyroscope model, it can be implemented in Simulink with the MATLAB 

function block  including  the function random('norm',0,STD). The 

corresponding standard deviations 𝜎𝐴,𝑥 and 𝜎𝐴,𝑧 were measured by the implementation 

team [32]. They are comparable to the values measured by [21]. The raw measurement 
data is shown in the graphs beneath. 
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Fig. 4-14: Raw MPU-6050 accelerometer x-axis 

measurement data of the with a 
sample rate of 𝑓𝑠𝑒𝑛𝑠𝑜𝑟 = 1000 Hz. 

 
Fig. 4-15: Raw MPU-6050 accelerometer z-axis 

measurement data with a sample rate 
of 𝑓𝑠𝑒𝑛𝑠𝑜𝑟 = 1000 Hz. 

Since a residual bias in the accelerometer measurement would not be integrated, it will 
not result in a drift in the estimated angle. Therefore, no residual bias is included. 

To summarize, the simplified error terms for the gyroscope can be formulated as 

 𝑎𝑚𝑒𝑎𝑠 = 𝑀𝑆𝐹𝑀𝑇𝑆𝑀𝑀𝐴𝑎𝑡𝑟𝑢𝑒 + 𝑤𝐴, Eq. ( 4–24 ) 

for each of the measurement axes respectively. The static bias term is excluded since 
it is assumed, that it can be compensated through calibration. 

The in-built LPF and quantization is handled like in the gyroscope model. 

The most significant concern about the accelerometer lies in the z-axis measurement, 
which will acquire an undamped acceleration proportional to the total actuator force 
𝐹𝑑𝑖𝑓𝑓. Because of the binary nature of the BB controller, see Fig. 4-8, the acceleration 

on the z-axis can be described as regularly recurring and alternating, shown in Fig. 
4-16. The pure gravitational acceleration on the z- and x-axis would allow for an 
adequate estimation of the attitude Eq. ( 5–4 ). However, the relatively high-g distortion 
on the z-axis complicates this process. 
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Fig. 4-16: Accelerometer z-axis measurements. 

This proposes the second major concern regarding the measurement information. 
Therefore, the research question RQ1 can be reformulated to: Is there a filter able to 
estimate the attitude from the distorted data of Fig. 4-11 and Fig. 4-16? This will be the 
primary focus of the next chapter. 

The complete Simulink model of the accelerometer can be found in the appendix Fig. 
D-12. 
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5 Filter Development  

The measurement data provided by the MEMS-sensors, detailed in section 4.5, is 
noisy, biased and subjected to relatively high-g dynamics caused by the discrete nature 
of the two-point-controller. To provide an accurate state estimation for the controller, a 
suitable filter must be designed. The main tasks of the filter shall be to prevent the 
integrated gyroscope measurement from drifting and to smooth the uniform high 
amplitude peaks in the z-axis accelerometer measurements. For this purpose, a 
prefilter, which will be applied on the accelerometer measurements, is introduced in 
section 5.1. Afterwards, the theoretical background and implementation of the two 
main filter concepts, a Complementary filter and discrete-time Kalman filter, are 
presented in section 5.2 and  5.3 respectively. The chapter concludes with 
considerations regarding the tuning process of the filters in section 5.4. 

5.1 Peak-to-Peak Moving Average Filter 

To obtain a reasonable angular deflection measurement from the high-g and high-
frequency dynamics along the z-axis of the accelerometer, three approaches come to 
mind. The first approach is a mechanical damper, such as those used in UAVs, to 
smooth out the high-amplitude, high-frequency vibrations, caused by the rotors, which 
disturb the accelerometer measurement [50]. Silicon foam materials of different shapes 
or stacked Sorbothane© sheets can be used as one of the more cost-effective 
mechanical dampers [50]. Simulating a foam material as a PT2 element can prove 
difficult, since no information about the relative damping, 𝜁, nor the natural frequency, 
𝜔𝑛, is available. The other two approaches are digital; this work attempts to find an 
appropriate digital solution. It is important to note that no remotely satisfying estimation 
result could be achieved by only using the main filter concepts. For the prefilter, two 
solutions were considered and will be qualitatively compared in section 5.1.2: 

First, a discrete-time second order Low Pass filter, which can be described by the this 
continuous-time transfer function in the frequency domain: 

 𝐺(𝑠) =
𝜔𝑛

2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2  𝑤𝑖𝑡ℎ 𝜁 =

√2

2
. Eq. ( 5–1 ) 

The natural frequency or cut-off frequency can be adjusted to smooth out the undesired 
frequencies. However, there is a trade-off between the damping performance and the 
increasing phase lag.  

The second digital approach is a moving average filter, which essentially represents a 
time-discrete first order LPF. For this work a standard moving average filter was 
modified to filter out the high-g, high frequency dynamics of the RCS mounted on the 
inverse pendulum. Since it will take advantage of the regularly recurring, alternating, 
uniform peaks in acceleration (see Fig. 4-16), it will be dubbed Peak-to-Peak Moving 
Average filter (P2PMAF). As with any moving average filter, the number of samples to 
be averaged must first be determined. This number shall be defined as the subset size, 
𝑁𝑃2𝑃. For the accelerometer measurements along the z-axis, 𝑎𝑘,𝑚𝑒𝑎𝑠,𝐴,𝑧, the subset of 

measurements can therefore be specified as: 

 𝐯P2P = {𝑎𝑘−(𝑁𝑃2𝑃−1),𝑚𝑒𝑎𝑠,𝐴,𝑧, 𝑎𝑘−(𝑁𝑃2𝑃−2),𝑚𝑒𝑎𝑠,𝐴,𝑧, … , 𝑎𝑘−1,𝑚𝑒𝑎𝑠,𝐴,𝑧, 𝑎𝑘,𝑚𝑒𝑎𝑠,𝐴,𝑧}  Eq. ( 5–2 ) 

 𝑁𝑃2𝑃 ∈ ℕ 𝑎𝑛𝑑 𝐯P2P ∈ ℕ𝑁𝑃2𝑃×1.  
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Now the maximum and minimum values of the subset 𝐯P2P  is calculated and averaged 
as: 

 𝑎𝑘,𝑃2𝑃,𝑧 =
1

2
(max(𝐯𝑃2𝑃) + min(𝐯𝑃2𝑃)). Eq. ( 5–3 ) 

The result is an unsteady but smoothed measurement, 𝑎𝑘,𝑃2𝑃,𝑧, depicted in Fig. 5-1, 

which can be used together with the x-axis measurement to calculate the angle around 
the y-axis. This is performed by calculating the arc tangent of the ratio between the two 
accelerations and converting the result from radians to degrees:  

 𝜃𝑘,𝑝𝑟𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = arctan (
𝑎𝑘,𝑃2𝑃,𝑧

𝑎𝑘,𝑚𝑒𝑎𝑠,𝐴,𝑥
)

180

𝜋
.  Eq. ( 5–4 ) 

5.1.1 Outlier Analysis 

In Fig. 5-1, the three outliers in 𝑎𝑘,𝑃2𝑃,𝑧 are noticeable: 

 
Fig. 5-1: z-axis accelerometer measurement 

data, raw and filtered by the P2PMAF 
for a subset size 𝑁𝑃2𝑃 = 300. 

 
Fig. 5-2: z-axis accelerometer measurement 

data, raw and filtered by the P2PMAF 
for a subset size 𝑁𝑃2𝑃 = 100. 

The first is equivalent to the rise time, 𝑡𝑟, of a Low Pass filter and is more of a simulation 
issue, since for the start of the simulation 𝑎0,𝑚𝑒𝑎𝑠,𝐴,𝑍 = 0. This minimum is carried 

through the first subset and defines the rise time for the NP2PMAF, 

 𝑡𝑟,𝑃2𝑃 = 𝑁𝑃2𝑃𝑡𝑠 = Δ𝑡𝑃2𝑃, Eq. ( 5–5 ) 

with the sensor sample time, 

𝑡𝑠 =
1

𝑓𝑠𝑒𝑛𝑠𝑜𝑟
. 

The subsequent outliers result from the heavy reliance of the filter on alternating 
accelerometer measurements on the z-axis. If exclusively one actuator is active over 
a period exceeding the subset time window, Δ𝑡𝑃2𝑃, an outlier will occur for as long as 
the second actuator is not active. Outliers will negatively impact the state estimation of 
the main filter, which is explained in 5.4.3. Fig. 5-2 shows that decreasing the subset 
size will lead to an increase in the number of outliers. The Fig. 5-3 graph confirms this 
relationship between the number of outliers, 𝑁𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠, and the subset size, 𝑁𝑃2𝑃. 
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Fig. 5-3: An increase in 𝑁𝑃2𝑃 leads to fewer 

outliers over the course of the 
reference trajectory. 

 
Fig. 5-4: An increase in 𝑁𝑃2𝑃 leads to a higher 

absolute phase lag, |𝛿𝜙|, between the 
true trajectory, 𝜃(𝑡), and the prefiltered 

accelerometer data, 𝜃𝑘,𝑝𝑟𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 . 

However, as for any moving average / first order Low Pass filter, there is a tradeoff 
between the smoothing properties and the resulting phase lag. A higher 𝑁𝑃2𝑃 may 
cancel out all outliers, except the one caused by the rise time, but at the price of the 
growing phase lag |𝛿𝜙| between the true trajectory, 𝜃(𝑡), and the prefiltered 
accelerometer data, 𝜃𝑘,𝑝𝑟𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑. This effect is visualized in Fig. 5-4. The phase lag 

was computed by using the Fast Fourie transform [51, 52] of the smoothed data. The 
smoothing was performed by the MATLAB function 
fit(x,y,'smoothingspline','SmoothingParam',0.07) [53]. It is evident 

that there ought to be an optimal subset size for different applications, which will be 
discussed in 5.4.3.  

For the next section, the performance of a second order LPF and the P2PMAF is 
compared with the aid of an example.   

5.1.2 Comparison Between Second Order LPF and P2PMAF 

Since no suitable cut-off frequency, 𝑓𝑐𝑜, for the second order LPF that would allow for 
a successful stabilization of the pendulum model was found, an example dataset will 
help to compare the two filters.  

The example dataset, 𝜃𝑒𝑥, is distorted, 𝜃𝑒𝑥𝑑,  to achieve the same regularly recurring, 
alternating, uniform peaks as those in the accelerometer measurements in the main 
simulation (see Fig. 5-5). The ability of the two filters to effectively filter out the peaks 
will be compared by using a standard filter comparison method, the 𝑅𝑀𝑆𝐸, between 
the filtered output and the undistorted input, and by the phase lag as described in the 
previous section. The filter output of the second order LPF and the P2PMAF on 𝑅𝑀𝑆𝐸-
optimised cutoff frequency, 𝑓𝑐𝑜, and subset size, 𝑁𝑃2𝑃, is shown in Fig. 5-6. Results are 
documented in Table 5-1.  
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Fig. 5-5: Example dataset, 𝜃𝑒𝑥, and distorted 

dataset, 𝜃𝑒𝑥𝑑 . 

 
Fig. 5-6: Second order LPF output and P2PMA 

output in optimal configuration with 
their respective fits. 

Further, in Fig. 5-6, the rise times, 𝑡𝑟,𝑃2𝑃 and 𝑡𝑟,𝐿𝑃𝐹,  of both filters can be observed 

during the first two seconds of the simulation. In this example the rise times are more 
prominent then in the main simulation, since the tuning parameters are set to “more 
extreme” values. “More Extreme” in the sense of a higher 𝑁𝑃2𝑃 and a lower 𝑓𝑐𝑜.  

Table 5-1: Comparison of the two filters with the RMSE-optimized tuning parameters. The 𝑅𝑀𝑆𝐸 is 

calculated between the respective filter output and the undistorted example trajectory, 𝜃𝑒𝑥.  

Filter Tuning Root-Mean-Square-Error Phase Lag 

2. Order LPF      𝑓𝑐𝑜 = 0.31 [HZ] 𝑅𝑀𝑆𝐸 = 2.585 [−] |𝛿𝜙| = 13.112 [°] 

P2PMAF 𝑁𝑃2𝑃 = 800 [−]   𝑅𝑀𝑆𝐸 = 2.012 [−]  |𝛿𝜙|  = 0.763 [°] 

 

Because of the smaller 𝑅𝑀𝑆𝐸 and phase lag, the P2PMAF is selected to prefilter the 
z-axis accelerometer measurements. 

However, it is important to reiterate that no subset size could be found that allows sole 
reliance on the accelerometer data prefiltered by the P2PMAF, 𝜃𝑘,𝑝𝑟𝑒𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑, for 

controlling the attitude. It can be argued that the inverse pendulum without any 
damping, see 4.1, is too sensitive to even small phase delays or to the resulting 
outliers.  

In the following sections, the main filter designs will be elaborated. 

5.2 The Complementary Filter 

After prefiltering the z-axis accelerometer measurements with the P2PMAF and 
subsequently calculating the angle with the x-axis measurement, a standard 
Complementary filter (CF) can be used to obtain a state estimation. In this chapter, the 
mathematical fundamentals of the CF and the implementation of the algorithm in the 
Simulink model will be elaborated upon. A flow chart of the implemented algorithm is 
given at the end of this section in Fig. 5-7. 
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5.2.1 Theoretical Background 

The Complementary filter is known as a simple and resource-effective filtering 
algorithm, which is often used for state estimation with low-cost IMUs in unmanned 
aerial vehicles [19, 54]. In principle, it implements a time-discrete Low Pass filter on 
the accelerometer measurements to filter out the high frequency noise and a time-
discrete High Pass filter on the gyroscope data to filter out the low-frequency drift 
caused by integration of bias in the angular velocity. It proceeds to add both values 
together for the state estimate.  

The general equation for the Complementary filter can be formulated as follows:   

 𝒙̂𝑘 = 𝐾𝑐(𝒙̂𝑘−1 + 𝒙̇𝑘,𝑚𝑒𝑎𝑠,𝐺Δ𝑡) + (1 − 𝐾𝑐)𝒙𝑘,𝑚𝑒𝑎𝑠,𝐴 Eq. ( 5–6 ) 

0 < 𝐾𝐶 ≤ 1, 

where 𝐾𝐶 is defined as the Complementary filter gain and Δ𝑡 is the interval time 
between CF iterations. The gain can be changed to suit the needs of the application. 
A high 𝐾𝐶 can be interpreted as a high gyroscope sensitivity, usually leading to a less 
volatile output. A low 𝐾𝐶 can be interpreted as a high accelerometer sensitivity, leading 

to less drift in the output in the long term [54]. For 𝐾𝐶 = 1, the accelerometer input is 
ignored, and the algorithm would only consider the gyroscope input over time. The drift 
resulting from the integration would then equal the constant residual bias in the 
gyroscope, 𝒙̇𝑅𝐵,𝐺 °/s, which cannot be eliminated through calibration Fig. 4-11. 

5.2.2 Implementation in the Simulation 

For the 1-DoF case, Eq. ( 5–6 ) can be formulated as follow: 

 𝜃𝑘 = 𝐾𝑐 ∗ (𝜃𝑘−1 + 𝜃̇𝑘,𝑚𝑒𝑎𝑠,𝐺 ∗ Δ𝑡) + (1 − 𝐾𝑐) ∗ 𝜃𝑘,𝑚𝑒𝑎𝑠,A, Eq. ( 5–7 ) 

with the time interval between iterations being  

 Δ𝑡 =
1

𝑓𝑠𝑒𝑛𝑠𝑜𝑟
= 𝑡𝑠, Eq. ( 5–8 ) 

and  the estimated angle around the y-axis of the inverse pendulum, 𝜃𝑘.  

The algorithm in Eq. ( 5–7 )  was implemented by using the MATLAB Function block 

and a Delay element. The corresponding Simulink model is depicted in the appendix 

Fig. D-13. Since it is assumed that the initial position of the pendulum is unknown, the 
initial state estimate , 𝜃0, will be set to zero. This will lead to a filter rise time, which the 
buffer time at the start of the chosen commanded trajectory accounts for. 

Before explaining the tuning considerations, the discrete Kalman filter, a more 
sophisticated estimation algorithm, is introduced. 

To sum up the complementary filter algorithm, a flow chart is depicted in Fig. 5-7. 
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Fig. 5-7: Complementary filter flow chart.  

5.3 The Discrete Kalman Filter 

The Kalman filter (KF)  is the second main filter concept to be designed and evaluated. 
It forms the basis for most state estimation algorithms used in navigation and attitude 
determination systems [12].  The KF is a Bayesian estimator able to obtain optimal 
estimates using knowledge of the deterministic and statistical properties of the system 
parameters and measurements [12]. This chapter explains the underlying algorithms 
and how they can be simplified for implementation in the model. Then, an extension to 
the Kalman filter is introduced to improve the results. A flow chart of the implemented 
algorithm is given at the end of this section in Fig. 5-11. 

5.3.1 Theoretical Background 

Since the filter will handle time discrete data from the sensors, the discrete version of 
the KF algorithm is used.  

The discrete-time Kalman filter algorithm essentially consists of two phases: The 
system propagation or prediction phase and the measurement update or correction 
phase, which are illustrated in Fig. 5-8.  As the name suggests, the prediction phase 
predicts the state vector estimate and error covariance matrix when transitioning 
between timesteps [12]. In the correction phase, the state vector estimate and error 
covariance are updated to incorporate the new measurement information via the 
Kalman gain matrix, 𝑲𝐾 . This matrix optimally weighs the correction to the state vector 
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according to the uncertainty of the current state estimates and the level of noise in the 
measurements [12].  

  
Fig. 5-8: The two phases of the Kalman filter are depicted for two iterations. Adapted from [55].  

The two overarching phases of the discrete-time Kalman filter can be further broken 
down into 10 steps. The first 4 steps are part of the prediction phase, while steps 5 to 
10 form the correction phase. The following procedure is completely taken from [12] 
and simplified to fit into the scope:  

Table 5-2: The 10 steps of the discrete-time Kalman filter algorithm taken from [12].  

ID Description Phase 

K01 Calculate the transition matrix 𝜱𝑘−1 Prediction 

K02 Calculate the system / process noise covariance matrix 𝑸𝑘−1 Prediction 

K03 Propagate the state vector estimate from 𝒙̂𝒌−𝟏
+  and 𝒙̂𝒌−𝟏

−   Prediction 

K04 Propagate the error covariance matrix from 𝑷𝑘−1
+  to 𝑷𝑘−1

−  Prediction 

K05 Calculate the measurement matrix 𝑯𝑘 Correction 

K06 Calculate the measurement noise covariance matrix 𝑹𝑘 Correction 

K07 Calculate the Kalman gain matrix 𝑲𝐾 Correction 

K08 Formulate the measurement 𝒛𝑘 Correction 

K09 Update the state vector estimate from 𝒙̂𝒌
− and 𝒙̂𝒌

+ Correction 

K10 Update the error covariance matrix from 𝑷𝑘
− to 𝑷𝑘

+ Correction 
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The discrete transition matrix 𝜱𝑘−1 is different for every Kalman filter application and 
is derived from the linearized system model. In most cases, it is a function of the time 
interval, 𝜏𝑠, between Kalman filter iterations.  

Step K02 calculates the system noise covariance matrix. It characterizes the growing 
uncertainty in the system model with each iteration. However, for the standard discrete-
time KF, the system noise covariance matrix 𝑸 and the measurement noise covariance 
matrix 𝑹𝑘 remain constant and are never updated (𝑹𝑘 = 𝑐𝑜𝑛𝑠𝑡. = 𝑹) . Thus, the steps 
K02 and K06 are omitted. Step K03 estimates the propagation of the state vector 
through time using:  

 𝒙̂𝑘
− = 𝜱k−1𝒙̂𝑘−1

+ . Eq. ( 5–9 ) 

Step K04 completes the prediction phase by propagating the corresponding error 
covariance matrix: 

 𝑷𝑘
− = 𝜱𝑘−1𝑷𝑘−1

+ 𝜱𝑘−1
𝑇 + 𝑸. Eq. ( 5–10 ) 

The correction phase starts with the calculation of the measurement matrix 𝑯𝑘, which 
defines how the measurement vector varies with the state vector. In a standard Kalman 
filter, each measurement is assumed to be a linear function of the state vector. 
Therefore, 

 ℎ(𝒙𝑘, 𝑡𝑘) = 𝑯𝑘𝒙𝑘. Eq. ( 5–11 ) 

However, for the 1-DoF case the measurement matrix is simplified to 𝑯𝐾 = 1, and thus, 
the measurement 𝑧𝑘, from step K08, simplifies to the true 1D position angle, θk, plus 
the measurement noise, 𝑤: 

 𝑧𝑘 = θk + 𝑤. Eq. ( 5–12 ) 

In step K07 the Kalman gain matrix is calculated. It depends on the error covariance 
matrices of both the true measurement vector, 𝑧𝑘, and that predicted from the 
estimates, 𝑯k𝒙𝑘

−. To provide an intuitive explanation, the Kalman gain can be 

interpreted as a ratio of the uncertainty in the model, with 𝑷𝑘
− = 𝑓(𝑸), to the uncertainty 

in the measurement [55]: 

 𝑲𝐾 =
𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
=

𝑷𝑘
−𝑯𝑘

𝑇

𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇+𝑹
. Eq. ( 5–13 ) 

The Kalman gain will be used to weigh the predicted a-priori state estimate, 𝒙̂𝑘
−, to the 

measurement innovation, 𝒚𝑘, to produce the a-posteriori state estimate, 𝒙̂𝑘
+, in step 

K09: 

 𝒙̂𝑘
+ = 𝒙̂𝑘

− + 𝑲𝑘𝒚𝑘 Eq. ( 5–14 ) 

with, 

 𝒚𝑘 = 𝑧𝑘 − 𝑯𝑘𝒙̂𝑘
−. Eq. ( 5–15 ) 

With this step, the state vector estimate is corrected by the measurement update. 
Correspondingly, the error covariance matrix is updated in K10 with: 

 𝑷𝑘
+ = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘

−. Eq. ( 5–16 ) 

Since the updated state vector estimate is based on more information, the updated 
state uncertainties are smaller than before. The next chapter will apply the principles 
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to the considered scenario established in 3.1.2, which will vastly reduce the complexity 
of the algorithm.  

5.3.2 Implementation in the Simulation 

For the 1-DoF case, only the attitude around the inertial frame y-axis of the inverse 
pendulum needs to be estimated. This reduces the state vector 𝒙𝑘 to the scalar angle 

𝜃𝑘 (see 3.1.2). Since only 𝜃𝑘 needs to be estimated, the Eq. ( 5–9 ) from step K03 
simplifies to the kinematic equation: 

 𝜃𝑘
− = 𝛷k−1𝜃𝑘−1

+ + 𝜏𝑠𝜃̇𝑘−1,𝑚𝑒𝑎𝑠,𝐺 Eq. ( 5–17 ) 

with, 

 𝛷k−1 = 1 𝑎𝑛𝑑 𝜏𝑠 =
1

𝑓𝑠𝑒𝑛𝑠𝑜𝑟
= 𝑡𝑠. Eq. ( 5–18 ) 

Recalling that the steps K02 and K06 are omitted, the algorithm in the Simulink model 
effectively starts with the calculation of the a-priori estimate Eq. ( 5–9 ). Now, only the 
error covariance must be calculated to complete the prediction phase: 

 𝑃𝑘
− = 𝑃𝑘−1

+ + 𝑄. Eq. ( 5–19 ) 

The error covariance matrix, 𝑷𝑘
−,  and the system noise covariance matrix, 𝑸, are 

reduced to the scalar error variance, 𝑃𝑘
−, and system noise variance, 𝑄. As stated in 

5.3.1, the measurement matrix, 𝑯k, will be omitted. On this basis, the correction phase 
starts with step K07 by calculating the scalar Kalman gain, 𝐾k. 

 𝐾𝐾 =
𝑃𝑘

−

𝑃𝑘
−+𝑅

  Eq. ( 5–20 ) 

In accordance with Table 5-2, the a-posteriori estimation of the attitude angle can be 
calculated: 

 𝜃𝑘 = 𝜃𝑘
+ = 𝜃𝑘

− + 𝐾𝑘𝑦𝑘, Eq. ( 5–21 ) 

with the measurement innovation, 

 𝑦𝑘 = 𝜃𝑘,𝑚𝑒𝑎𝑠,𝐴 − 𝜃𝑘
−. Eq. ( 5–22 ) 

Finally, the a-posteriori error variance is computed with the equation: 

 𝑃𝑘
+ = (1 − 𝐾𝑘)𝑃𝑘

−. Eq. ( 5–23 ) 

A summary of the algorithm extended by an innovation-based adaptive estimator is 
depicted in Fig. 5-11. 

In Simulink, the algorithm can be implemented by using a MATLAB Function block 

and the use of Delay elements (see Fig. D-14). The sample rate of the whole 

subsystem and all included blocks is set to the sample rate of the sensor, 𝑓𝑠𝑒𝑛𝑠𝑜𝑟. 
Alternatively, the Delay elements can be replaced by using persistent variables in 

the MATLAB Function block (see [56]). This, however, will require an additional if-

loop in the function for the initialization variables, which may arguably deteriorate the 
transparency and readability of the model.  

For the first iteration of the loop, 𝑘 = 0, the values for 𝜃𝑘−1
+  , 𝜃̇𝑘−1,𝑚𝑒𝑎𝑠,𝐺 and 𝑃𝑘−1

+  must 

be initialized. Similiar to the measurement variance 𝑅 and the process variance 𝑄, the 
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initialization can be performed through a customized mask. A guide on how to use the 
mask is given in the appendix Chapter B. An approach on how choose the initial 
variables for the KF is explained in 5.4.2. 

Of course, there is also the option to use the Kalman Filter block, referred to as 

Simulink Kalman Filter (SKF), which is part of the Simulink Control System 

Toolbox [57]. However, in this thesis, a customized KF was designed to allow 

enhancement by applying an Innovation-based Adaptive Estimator (IAE), which will be 
discussed in the next section.  Fig. 5-9 plots the difference, 𝛿𝜃𝑆𝐾𝐹𝐾𝐹, between the angle 

estimated by the implemented KF, 𝜃𝑘, and the prefabricated SKF block, 𝜃𝑘,𝑆𝐾𝐹. Both 

filters are initialized with the same values for 𝑄, 𝑃0, 𝑅  and 𝜃0. 

 
Fig. 5-9: The graph shows the difference, 𝛿𝜃𝑆𝐾𝐹𝐾𝐹, in degrees over time as well as the 𝑅𝑀𝑆𝐸 

between the estimated angle, 𝜃̂𝑘, by the implemented Kalman filter and the Simulink 

Kalman filter 𝜃̂𝑘,𝑆𝐾𝐹. 

It can be recognized that the error between the two estimation spikes at the beginning 
and then quickly converges to zero. For this experiment the trajectory, 𝜃𝑐𝑜𝑚(𝑇𝑚𝑜𝑑𝑒 =
3), suggested in 4.2, was chosen. Therefore, this spike is not due to the commanded 
step input, which occurs at  𝑡 = 1 s. Upon inspection of the SKF block, it was found  

that for step K03 the current gyroscope measurement input, 𝜃̇𝑘,𝑚𝑒𝑎𝑠,𝐺, is used for the 

system propagation, instead of 𝜃̇𝑘−1,𝑚𝑒𝑎𝑠,𝐺 (see Eq. ( 5–17)). Therefore, the SKF does 

not initialize 𝜃̇𝑘,𝑚𝑒𝑎𝑠,𝐺 with a value defined by the user. This is the only difference found 

between the two algorithms. The relatively small spike at the beginning of the trajectory 
with a magnitude of 𝛿𝜃𝑆𝐾𝐹𝐾𝐹 = 0.0042 ° has no detectable influence on the 
performance. 

5.3.3 Innovation-Based Adaptive Estimation Extension 

For most applications, the KF’s system noise covariance matrix, 𝑸, and measurement 

noise covariance matrix, 𝑹, are constant values, determined during the development 
phase through laboratory measurements of the system, simulation and trials [12]. 
However, there are cases where this is not possible. Vibrations in highly dynamic 
environments cannot always be simulated or tested. Additionally, the sensor 
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performance may deteriorate over several years of usage, which is also difficult to 
simulate. In other cases, the optimum KF tuning might vary over time as the respective 
context changes. For example, a GNSS navigation filter in a mobile device that may 
be stationary, on a walking pedestrian, or in a car, would require a different system 
noise model in each case [12]. For these applications an adaptive Kalman filter (AKF) 
may be used to estimate 𝑹 and 𝑸 as it operates. One possible approach is the 
Innovation-based Adaptive Estimation, which is detailed in [58, 59]. Essentially, the 
IAE updates 𝑹 and 𝑸 based on the relevant measurement innovation statistics.  

For this work, a vastly simplified version of the IAE depicted in [58] was implemented. 
It will help to address the issues arising from the outliers caused by the P2PMAF 
described in Chapter 5.1. Similarly, to the previously described use cases for adaptive 
estimation, the exact point in time and in which magnitude the outliers occur is 
impossible to know beforehand. Therefore, it is difficult to involve them in the 
calculation of the measurement variance 𝑅. In the context of this work, the 
measurement innovation, 𝑦𝑘, is the difference between 𝜃𝑘,𝑚𝑒𝑎𝑠,𝐴, the angle prefiltered 

and calculated from the accelerometer measurement, and the a-priori estimate, 𝜃𝑘
−.   

 𝑦𝑘 = 𝜃𝑘,𝑚𝑒𝑎𝑠,𝐴 − 𝜃𝑘
− Eq. ( 5–24 ) 

Based on the absolute value of the measurement innovation the decision is made on 
whether there is an outlier or not. For 𝑦𝑘 to be classified as outlier-based, it must be 
greater than a chosen threshold, 𝑇𝐼𝐴𝐸. For an outlier-based 𝑦𝑘, the uncertainty in the 
measurement, effectively 𝑅, will be set to infinity and, consequently, the Kalman gain 
will be reduced to zero. 

 𝐾𝐾: {
 0,   𝑓𝑜𝑟 |𝑦𝑘| > 𝑇𝐼𝐴𝐸

 𝐾𝐾, 𝑓𝑜𝑟 | 𝑦𝑘| ≤ 𝑇𝐼𝐴𝐸
 Eq. ( 5–25 ) 

The threshold,  𝑇𝐼𝐴𝐸 = 3 °, was chosen to exceed all non-outlier-based measurement 
innovations. For the set time interval, 𝜏𝑠 (see Eq. ( 5–18 )), a 𝑦𝑘 > 3 ° would be equal 
to angular acceleration of > 3000 °/s for a sensor sample rate of 1000 Hz, which 
classifies the measurement as an outlier. Outliers are visualized in Fig. 5-10. 

 
Fig. 5-10: Absolute measurement innovation over the course of the experimental trajectory, 𝑇𝑚𝑜𝑑𝑒 = 3, 

with a 𝑁𝑃2𝑃 = 200 and reference values.  
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The figure above shows that outliers surpass the threshold on 4 occasions, therefore 
setting the Kalman gain to zero. For the first few iterations the |𝑦𝑘| values are relatively 

high. This is due to the rise time of the KF. Therefore, a small buffer of 0.5 s was 
implemented, in which the IAE will not be activated. This buffer value may be changed 
if other trajectories are chosen.  

To conclude this chapter, a data flow chart of the implemented algorithms is depicted 
in Fig. 5-11.  

 
Fig. 5-11: Flow chart of the implemented discrete-time KF with an IAE extension referencing the steps 

from Table 5-2. The syntax of the KalmanFilterEquations block in Fig. D-14 was 

used. 

5.4 Filter Tuning 

After introducing the prefilter and the two main filter algorithms, the topic of this chapter 
will be to explain best-practice approaches for tuning the respective filter. The 
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knowledge for this procedure was obtained from [12], during the development phase 
and while performing the preliminary test series, detailed in Chapter 6.2. 

5.4.1 Complementary Filter Tuning Considerations 

Tuning the CF can be achieved by optimizing the Complementary filter gain, 𝐾𝐶, which 
may vary depending on the measurement characteristic and performance 
requirements. Since the accelerometer measurements are prefiltered by the P2PMAF, 
the calculated angle will be less volatile, but will exhibit a certain lag depending on the 
subset size, 𝑁𝑃2𝑃. Hence, for this application, the 𝐾𝐶 value must be above a certain 
threshold for the system to be able to stabilize itself and not hit the ends top of the test 
stand. Simply iterating through increasing gain values while keeping all other 
simulation parameters at the constant reference variables listed in 6.1., suggests a 
local optimum at a root-mean-square-error (see 6.2.1) of  𝑅𝑀𝑆𝐸 = 1.78 ° for a 𝐾𝐶 =
0.9987. The 𝑅𝑀𝑆𝐸(𝐾𝐶) plot is depicted in Fig. 5-12 and the true trajectory is shown in 
Fig. 5-13, alongside two other exemplary true trajectories and the commanded 
trajectory. 

 
Fig. 5-12: 𝑅𝑀𝑆𝐸(𝐾𝐶) plot for reference variables 

with local optimum at 𝐾𝐶 = 0.9987. 

 
Fig. 5-13: Exemplary true trajectories for three 

different 𝐾𝐶 values. 

The trajectories in Fig. 5-13 suggest that a decrease in 𝐾𝐶 will lead to a more 
aggressive stabilization process with larger overshoot but faster zero-crossing, and an 
increase in the gain will lead to the opposite. This must be considered when facing 
changing circumstances due to hardware or software design decisions.  

5.4.2 Kalman Filter Tuning Approach 

For tuning the Kalman filter as implemented in the previous chapter, the system 

variance, 𝑄, the measurement noise variance, 𝑅, the initial state values, 𝜃0 and 𝜃̇0, and 
the initial error variance, 𝑃0, must be defined by the developer or user. Both initial states 
are set to zero assuming that the initial state of the system is unknown. This results in 
an initial error variance of 

 𝑃0 = (𝜃𝐸𝑆)2. Eq. ( 5–26 ) 

Suggesting that the initial error or uncertainty in the system is most likely not larger 
than the maximum deflection of the pendulum confined by the end stop. Setting the 
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initial state values to zero will result in a rise time which decreases with increasing 𝑃0 

or decreasing 𝑅. However, minimizing the rise time, and therefore risking performance 
losses, is not necessary, since the initial buffer time of one second can account for it. 

The system variance and the measurement variance are closely related to their 
respective sources. In the state prediction, the used kinematic model is based on the 
gyroscope measurements and the measurement innovation is based on the prefiltered 
accelerometer output. Therefore, both variances are exposed to the respective sensor 
noise. In several studies concerning the characterization of the MPU 6050, the noise 
was classified as white gaussian in nature [21, 46]. This stochastic error process can 
be represented by its standard deviation, 𝜎. The standard deviation for the sensors 
established in 4.5 can now be used for giving an appropriate estimation of the two 
variances:  

 𝑄 = 𝜎𝐺,𝑦
2  Eq. ( 5–27 ) 

 𝑅 = ((atan
𝜎𝐴,𝑧

𝜎𝐴,𝑥
)

180

𝜋
)

2

 Eq. ( 5–28 ) 

It should be noted, that for 𝑅, the respective standard deviations, 𝜎𝐴,𝑧 and 𝜎𝐴,𝑥, are 

given in the unit m/s2 and therefore must be converted from 𝑟𝑎𝑑 into ° by using Eq. ( 
5–4 ) established in Section 5.1. This forms the basis for tuning the Kalman filter 
algorithm. The computed variances will serve as the reference values for further tests 
in 6.1.1.  

To conclude the chapter, some qualitative best-practice tuning guidelines are provided, 
which will be expanded upon in Section 7.1. This shall justify why 𝑄 is chosen to further 
optimize the tuning given a certain error profile. 

If the result after tuning is not satisfactory, [12] suggests optimizing one of the 
parameters by fixing the others. Results from the preliminary test series in 6.2 suggest 
that by varying 𝑄, unwanted effects like a  constant offset or drift of the true trajectory 
can be accounted for. Fig. 5-14 depicts the course of the true trajectory with all 
simulation parameters set to the reference values, documented in Chapter 6.1, except 
the residual bias, 𝜔𝑅𝐵,𝐺,𝑦, which is increased by some arbitrary factor 𝐶 (for Fig. 5-14 

and Fig. 5-15,  𝐶 = 20). An offset of roughly 0.4 ° can be identified, which results from 
a faulty estimation. This loss in estimation performance can be accounted for by 
increasing the variance by the same factor 𝐶 resulting in 

 𝑄 = 𝐶𝜎𝐺,𝑦
2. Eq. ( 5–29 ) 

However, this will result in a lag in the estimation since the Kalman gain, 𝐾𝐾, will now 
converge towards a higher value, which gives more weight to the measurement 
innovation, which has LPF-properties as established in 5.1. This circumstance is 
shown in Fig. 5-15. 
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Fig. 5-14: Constant offset in true trajectory due to 

twentyfold increase in 𝜔𝑅𝐵,𝐺,𝑦, which 

results in a faulty estimation. 

 
Fig. 5-15: Offset in true trajectory due to 20-times 

increase in 𝜔𝑅𝐵,𝐺,𝑦, is accounted for by 

setting 𝐶 = 20  . 

In general, decreasing the ratio 𝑄/𝑅 leads to higher lag in the estimation, which may 
result in a larger overshoot, 𝜃𝑂𝑆. While increasing the ratio may decrease the 
aggressiveness of the stabilization process to a point where the true trajectory does 
not possess steady state accuracy anymore, for the given timeframe. 

Thus, based on Fig. 5-14 and Fig. 5-15, 𝑄 should be multiplied by a tuning constant 𝐶, 
to obtain satisfactory performance results.  

5.4.3 Moving Average Subset-Size Considerations 

In Section 5.1.1 it was established that there is an optimum subset size, 𝑁𝑃2𝑃, to reduce 
the 𝑅𝑀𝑆𝐸. A too low subset size will increase the number of outliers and a too high 
subset size will increase the phase lag. Evidently, outliers negatively impact the 
estimation accuracy of the main filter and even increase the phase lag if the outlier 
count is over a certain threshold as depicted in Fig. 5-4.  

It was assumed that the KF and the Complementary filter might possess different 
optimal 𝑁𝑃2𝑃. Therefore, over the course of the preliminary test series, the subset size 
was varied over a reasonable range to find an optimal configuration for the different 
filter variants. The results are depicted in the following graphs: 
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Fig. 5-16: 𝑅𝑀𝑆𝐸(𝑁𝑃2𝑃)-graph for the KF and the 

CF with their local minima. The 
variation step size is 10. 

 
Fig. 5-17: 𝑅𝑀𝑆𝐸(𝑁𝑃2𝑃)-graph for the AKF with its 

local minima. The variation step size is 
10. 

Fig. 5-17 reveals that the KF with the IAE extension performs best for exceptionally 
low or no prefiltering at all. This is an unexpected result, since initially the IAE was 
introduced for the short comings of the P2PMAF. The results of the optimisation are 
summed up in Table 5-3.  

Table 5-3: 𝑅𝑀𝑆𝐸(𝑁𝑃2𝑃𝑜𝑝𝑡) for the three filter configurations with the respective optimal subset size, 

𝑁𝑃2𝑃𝑜𝑝𝑡. 

Filter Optimal Subset Size Root-Mean-Square-Error 

Complementary filter 340 [−] 1.640 [°] 

Kalman filter 320 [−] 1.656 [°] 

AKF 10 [−] 1.365 [°] 

 

Furthermore, Fig. 5-16 and Table 5-3 reveal a comparable graph history for the CF 
and the KF, when varying the subset size.  

Given these results, only the following two filter configuration will be considered for the 
final evaluation: P2PMAF as the prefilter and the CF as the main filter; KF with IAE 
extension without prefiltering, with the CF being computational simple and the AKF 
possessing better performance. This exclusion of other filter configurations will help 
reduce the complexity of the test series. 

With these results, the design part of this work is finished. The next chapter presents 
a side by side comparison of the performance. There the proposed filter concepts will 
be evaluated for consistent performance under varying input parameters. Thus, 
addressing the characterization part of this thesis. 
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6 Testing and Evaluation 

To evaluate the effect of changing input parameters on the filter performance, a wide 
range of simulation experiments need to be performed. However, the multitude of 
different variable input parameters complicates a profound analysis of the whole 
design space. To reduce the complexity of this problem design of experiments (DOE) 
methods [60] will be combined with Monte Carlo simulation methods [61]. The sample 
size of such an experiment is referred to as levels, 𝐿. With the number of parameters, 
𝑃, the overall number of simulations runs, 𝑁, can be determined for a designed 
experiment [62]. 

 𝑁 = 𝐿𝑃 Eq. ( 6–1 ) 

This denomination will be used for designing an experimental setup for the filter 
evaluation. Nine steps were conducted for designing the simulation experiment: 

Table 6-1: The 7 steps of DoE from [63] are marked with the ID RSX. Additional steps introduced for 
this thesis are marked with ASX. Adopted from [60, 64]. 

ID Description Addressed In 

RS1 Recognition and statement of the problem Chapter 3 

AS2 Categorization of all input factors Section 6.1 

RS3 Selection of the response variable(s) Section 6.2.1 

AS4 Conducting and evaluating a wide range of preliminary experiments  Section 6.2.2 

RS5 Choice of factors, levels and ranges Section 6.2.3 

RS6 Choice of design Section 6.2.4 

RS7 Conducting the experiment Section 6.3 

RS8 Statistical analysis Section 6.3 

RS9 Drawing conclusions and marking recommendations Chapter 7 

 

Characterizing the filter performance under changing input parameters represents the 
problem statement and therefore addresses RS1. The problem statement is broken 
down into the two research questions, Q2 and Q3, formulated in Chapter 3.  

For AS2, all input parameters are classified into three distinct categories and from now 
on will be referred to as factors. An overview of the entire classification process 
regarding the design of this simulation experiment is given in Section 6.3 Fig. 6-5. 

6.1 Factor Categorization 

In [63], factors are categorized into “treatment factors”, which are of primary interest, 
and “nuisance factors”, which are not the primary focus of the experiment. This 
distinction will be essential to reduce the complexity of the problem and is performed 
in Section 6.2.3. To facilitate this process, all factors can also be divided into internal, 
external and error-related factors. The goal of this distinction is to find interrelations 
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between internal, external and error-related key factors. Therefore, the following 
sections will focus on defining the three categories and providing the respective 
reference values 𝑥𝑟𝑒𝑓: 

6.1.1 Internal Factors 

Internal factors are adjustable and can therefore be used to optimize the performance 
of the control system. This includes controller gains, filter parameters, filter-selection-
switches and data rates. A comprehensive list of all internal factors with their respective 
Simulink subsystem and reference value is presented in Table 6-2.  

For the internal factors, the reference values have been proven to satisfy the functional 
requirements for the chosen external (see Table 3-3) and error-related (see Table 6-4) 
reference values. 

Table 6-2: The table lists all input variables of the simulation which will be labeled as internal, therefore 
adjustable, factors and their respective Simulink subsystems. 

Internal 
Factor 

Reference 
Value 

Description Simulink 
Subsystem 

𝑓𝑠𝑒𝑛𝑠𝑜𝑟  1000 [Hz] Sensor sample rate  Sensor 

𝑓𝑏𝑏  100 [Hz] Bang-Bang controller frequency is limited by 𝑓𝑚𝑎𝑥  Controller 

𝑢𝑏𝑏0 0.1 [−]   For 𝑢𝑃𝐼𝐷 < −𝑢𝑏𝑏0 and 𝑢𝑃𝐼𝐷 > 𝑢𝑏𝑏0 control output 𝑢𝑏𝑏 = 0 Controller 

𝐾𝑝  0.53 [−]   Proportional gain Controller 

𝐾𝑖  0.79 [−]   Integrator gain Controller 

𝐾𝑑  0.09 [−]   Differential gain Controller 

𝑁𝑃2𝑃 340 [−]   P2PMAF subset size for CF taken from 5.4.3 Filter 

𝑄, 𝑅, 𝑃0,𝜃0  See Tuning Approach in Section 5.4.2 Filter 

𝐶 1 [−]   Tuning coefficient Kalman filter Filter 

𝐾𝐶  0.9987 [−]   Complementary filter gain (see Section 5.4.1) Filter 

𝑓𝑐𝑜  250 [Hz] Built-in LPF cut-off frequency if 𝑆𝐿𝑃𝐹 = 1 Sensor 

𝝎𝑟𝑎𝑛𝑔𝑒  
500 [

°

s
 ]   

Selected measurement range  Sensor 

𝒂𝑟𝑎𝑛𝑔𝑒  4 [g]    Selected measurement range  Sensor 

𝑠𝐿𝑃𝐹  0 [−]   IMU-integrated LPF switch  Sensor 

𝑠𝐵𝐶  1 [−]   Turns the bias compensator ON for 𝑠𝐵𝐶 = 1 Sensor 

𝑠𝑃2𝑃 0 [−]   Turn P2PMAF ON for 𝑠𝑃2𝑃 = 1 Filter 

𝑠𝐹  1 [−]   Switch between KF for 𝑠𝐹 = 1 and CF for 𝑠𝐹 = 0 Filter 

𝑠𝐼𝐴𝐸  1 [−]   Switch between KF for 𝑠𝐼𝐴𝐸 = 0 and AKF for 𝑠𝐼𝐴𝐸 = 1   Filter 
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6.1.2 External Factors 

External factors are determined by the hardware design or the test environment and 
are therefore, not adjustable. This includes mass of the entire system, computational 
time delay measured by the implementation-team [32], maximum actuator force and 
actuator exhaust velocity among other factors. Table 6-3 presents a comprehensive 
list of all external factors with their respective Simulink subsystem and reference 
values. 

For the external factors, the reference values consist of worst-case estimation by the 
hardware design team [26], values from the product data sheets [23], functional 
requirements or assumed environmental conditions. 

Table 6-3: The table lists all input variables of the simulation which will be labeled as external, 
therefore not adjustable, factors and their respective Simulink subsystems. 

External 
Factor 

Reference 
Value 

Description Simulink 
Subsystem 

𝑡𝑠𝑡  0.0035 [s]    ON / OFF switching time of the actuator Actuator 

𝑣𝑎𝑐𝑡  521 [
m

s
]  Average actuator exhaust velocity Actuator 

𝐹𝑚𝑎𝑥  7 [N]   Maximum force the actuators can produce Actuator 

𝐹𝑠𝑡  99 [%]  Achieved force after 𝑡𝑠𝑡 in relation to the maximum Force Actuator 

𝑡𝑎𝑐𝑡𝑑𝑒𝑙𝑎𝑦 0 [s]    Additional delay on actuator Actuator 

𝑙𝐴 1 [m]  Actuator lever arm Pendulum 

𝑙𝐶𝑀  0.667 [m]  Assumed center of mass lever arm Pendulum 

𝜃𝐸𝑆  10 [°]    End stop angle (equal to initial deflection)  Pendulum 

𝑚0 5 [kg]  Point mass of the whole system at 𝑡 = 0 Pendulum 

𝜔𝑛,𝐺  30000 [Hz] Natural frequency of the gyroscope around y-axes Sensor 

𝑇𝐸  25 [°C]  Environmental temperature impacts Sensor sensitivity Sensor 

𝐵 16 [bit] Available bit size influences quantization error together 
with the measurement range 

Sensor 

𝑡𝑠𝑖𝑚  16 [s]   Simulation time  Trajectory 

𝑇𝑚𝑜𝑑𝑒  3 [−]  Trajectory mode Trajectory 

𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 0.01 [s]   Computational time delay / latency Controller 

𝑠𝑚 0 [−]  Activate decaying mass because of gas loss for 𝑠𝑚 = 1 Pendulum 

6.1.3 Error-Related Factors 

Error-related factors strictly impair the performance of the control system and are not 
adjustable. This includes sensor noise, sensor bias and scale factors among other 
factors. Error-related factors are further divided into deterministic and stochastic errors. 
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A comprehensive list of all error-related factors with their respective Simulink 
subsystem and reference value is presented in Table 6-3. 

For the error-related factors, calibration errors were extracted from the product 
datasheets [14, 23]  and the standard deviations for the white noise were taken from a 
sensor characterization study conducted with MPU-6050 [21]. For the reference 
values, a perfect calibration is assumed therefore setting scale factor, misalignment 
and static bias to zero. As an exception, the gyroscope residual bias, 𝝎𝑅𝐵,𝐺, is set to 

−0.035 °/s to account for requirement F24 (see Section 4.5). 

Table 6-4: The table lists all input variables of the simulation which will be labeled as error related, 
therefore not adjustable and performance impairing, factors and their respective Simulink 

subsystems. 

Error-
Related 
Factor 

Reference 
Value 

Description Type Simulink 
Subsystem 

𝑴𝑆𝐹  1 [−]    Scale Factor for accelerometer (𝑴𝑆𝐹,𝐴) 

and gyroscope (𝑀𝑆𝐹,𝐺,𝑦𝑦) 

Deterministic 
Multiplicative 

Sensor 

𝑀𝑇𝑆  
0.02 [

%

°C
]   

Temperature Sensitivity increases with 
temperatures deviating from 25 °C  

Deterministic 
Multiplicative 

Sensor 

𝑴𝑀𝐴  0 [%]    Misalignment occurs due to installation 
errors or fabrication defects 

Deterministic 
Multiplicative 

Sensor 

𝜔𝐴𝑆,𝐺,𝑦 
0.1 [

°/s

g
] 

gyroscope acceleration sensitivity 
along the y-axis 

Deterministic 
Additive 

Sensor 

𝜔𝑅𝐵,𝐺,𝑦 
−0.035 [

°

𝑠
]     

Residual bias after compensation Deterministic 
Additive 

Sensor 

𝒂𝑅𝐵,𝐴  0 [
m

s2
]   Residual bias after compensation Deterministic 

Additive 
Sensor 

𝜎𝐺,𝑦  
0.128 [

°

𝑠
]     

The STD characterises the white 
gaussian gyroscope y-axes noise  

Stochastic 
Additive 

Sensor 

𝜎𝐴,𝑧 0.034 [
m

s2
]   The STD characterises the white 

gaussian accelerometer z-axes noise 
Stochastic 
Additive 

Sensor 

𝜎𝐴,𝑥 0.012 [
m

s2
]   The STD characterises the white 

gaussian accelerometer x-axes noise 
Stochastic 
Additive 

Sensor 

 

To determine which factors of the three categories shall be analysed, a preliminary test 
series was conducted. 

6.2 Preliminary Tests 

After the 1-DoF Simulink model had been completed in its entirety and all reference 
values had been fixed, a preliminary test series of explorative nature, also referred to 
as pro forma analysis in [64], was conducted. It was used for the tuning process for the 
different filters (Section 5.4), to decide on the response variables, key factors and their 
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practicable ranges. And finally, it led to the design of the main test series. Therefore, 
this section will cover steps AS3 to AS6 introduced in Table 6-1. 

6.2.1 Response Variables 

The main response variable was chosen to be the root-mean-square-error (𝑅𝑀𝑆𝐸) of 

the true trajectory 𝜃(𝑡) to the desired / commanded trajectory 𝜃𝑐𝑜𝑚(𝑡). The 𝑅𝑀𝑆𝐸 can 
be used to evaluate the performance of the whole control system by calculating the 
quadratic difference between 𝜃(𝑡) and 𝜃𝑐𝑜𝑚(𝑡).  

 𝑅𝑀𝑆𝐸 = √𝐸[(𝜽𝑐𝑜𝑚 − 𝜽)2] = √
1

𝑁𝜃
∑ (𝜃𝑖,𝑐𝑜𝑚 − 𝜃𝑖)

2𝑁𝜃
𝑖=1

 Eq. ( 6–2 ) 

Note that Eq. ( 6–2 ) and Eq. ( 6–3 ) are simplified for the 1-DoF case and therefore 
neglect the Euclidean norm. The 𝑅𝑀𝑆𝐸, as well as any regression model introduced in 

later sections, is always indicated in °. Furthermore, 𝑁𝜃 represents the number of 
samples for the pseudo-continuous trajectories and depends on the used Simulink 
solver (see appendix Section C). For the chosen trajectory, established in 4.2, the 
𝑅𝑀𝑆𝐸 shall be smaller than 2.5 °, according to F35 in Table 3-3. 

In [65] the mean-absolute-error (𝑀𝐴𝐸, see Eq. ( 6–3 )) and the geometric average error 
(𝐺𝐴𝐸) are introduced as means to evaluate the error between the two trajectories. The 
smaller the respective value, the better the performance. This holds true for all 
mentioned metrics. However, the 𝑅𝑆𝑀𝐸 will always result in the largest value of the 
three [20]. 

 𝑀𝐴𝐸 = 𝐸[|(𝜽𝑐𝑜𝑚 − 𝜽)|] =
1

𝑁𝜃
∑ |(𝜃𝑖,𝑐𝑜𝑚 − 𝜃𝑖)|

𝑁𝜃
𝑖=1   Eq. ( 6–3 ) 

Since the 𝑅𝑀𝑆𝐸 is closely related to the standard deviation and therefore considers 
the quadratic error, the metric possesses a higher sensitivity towards higher residuals. 
In other words, undesirable behavior such as, high overshoots, high estimator rise 
times, slow convergence of the true trajectory towards the commanded trajectory and 
extremely volatile behavior around the commanded trajectory will be emphasized more 
in the 𝑅𝑀𝑆𝐸 than in the 𝑀𝐴𝐸 or 𝐺𝐴𝐸. Hence, it can be argued, that the 𝑅𝑀𝑆𝐸 is in 
favor of more aggressive trajectories, which converge quickly. However, since this 
characteristic is pertinent to this work, the 𝑅𝑆𝑀𝐸 was chosen to evaluate the 
performance of the entire control system. The 𝑅𝑀𝑆𝐸 and all 𝑅𝑀𝑆𝐸-related results will 

be indicated in °. 

In [12], the 𝑅𝑀𝑆𝐸𝜃̂ is calculated between the estimated trajectory 𝜃𝑒𝑠𝑡 and the 

discretized true trajectory 𝜃𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒. This allows one to isolate the filter performance 
from the controller performance. The sample time of the two trajectories is equivalent 
to the sensor sample time Δ𝑡. Therefore, the number of samples 𝑁𝜃̂  is significantly 

smaller then the number of samples 𝑁𝜃. 

 𝑅𝑀𝑆𝐸𝜃̂ = √𝐸 [(𝜃𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 − 𝜃̂)
2

] = √
1

𝑁𝜃̂

∑ (𝜃𝑖,𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 − 𝜃̂𝑖)
2𝑁𝜃̂

𝑖=1
  Eq. ( 6–4 ) 

However, worse filter performance can arguably lead to worse overall performance. 
Therefore, the 𝑅𝑀𝑆𝐸𝜃̂  and the 𝑅𝑀𝑆𝐸 are coupled, which places the 𝑅𝑀𝑆𝐸𝜃̂  as a 
secondary response variable. Secondary response variables will only be mentioned if 
unusual behavior is detected.  
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Another secondary response variable would be the overshoot, 𝜃𝑂𝑆, which according to 

F34 in Table 3-3, shall be kept under 60 % of the initial disturbance. However, the 
overshoot is also coupled with the 𝑅𝑀𝑆𝐸 and therefore not qualified as a primary 
response variable. If the overshoot limit is surpassed in the test series but the F35 is 
still fulfilled, the resulting performance will still be rated. 

6.2.2 Preliminary Test Results 

After clarifying the rationale behind the 𝑅𝑀𝑆𝐸 as the primary response variable, the 
key findings of the preliminary test series will be presented in this section. These 
findings were previously mentioned throughout Chapter 4 and 5. 

Table 6-5: Preliminary test series findings and the resulting implications for the main test series or the 
subsystem design.  

ID Description Implication 

PT01 Saving gas by varying 𝑢𝑏𝑏0 without impairing 

the performance (see Fig. 6-1) 

𝑢𝑏𝑏0 = 0.1 as reference value 

PT02 Mass loss due to gas consumption 𝑚𝑔𝑐 ≈

0.178 kg has negligible impact on the 𝑅𝑀𝑆𝐸  

𝑚(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑚0 

PT03 Optimal performance for AKF without 
P2PMAF 

Exclude P2PMAF as a prefilter for the 
AKF 

PT04 Performance of KF+P2PMAF comparable to 
CF+P2PMAF  

Only evaluate CF+P2PMAF and AKF 

PT05 Calculating 𝑄, 𝑅, 𝑃0 configuration with 
respective STDs satisfy performance 
requirements but leaves room for 
improvement 

Use formulas from Eq. ( 5–29 ) for 
initial KF tuning and optimize by 
reducing 𝑄 with tuning coefficient 𝐶 

PT06 Requirement F35-fulfilling 𝐾𝐶 and 𝑁𝑃2𝑃 for 
reference values was determined 

Set 𝐾𝐶 = 0.9987 and 𝑁𝑃2𝑃 = 340 as 
reference values for the CF 

PT07 Acceleration Sensitivity negligible for test 
stand applications 

𝜔𝐴𝑆,𝐺,𝑦 will not be further analysed in 

the main test series (nuisance factor) 

PT08 Significant loss in performance for varying 
𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦.  

𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 will be a further analyzed in 

the main test series (key factor) 

PT09 F21 𝑇𝐸-variation with negligible impact on 

𝑅𝑀𝑆𝐸 see Fig. E-20 and Fig. E-21. 

𝑇𝐸 will not be analyzed in the main 
test series (nuisance factor) 

PT10 Quantization error for the chosen fixed 
measurement range is negligible (E.2) 

Measurement range will not be varied 
(nuisance factor)  

PT11 Varying the residual bias was found to have 
negligible impact on both filters (appendix 

Fig. E-32 - Fig. E-35). 

𝜃̇𝑅𝐵,𝐺,𝑦 will not be analysed in the 

main test series (nuisance factor) 
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In PT1 it is described, that a significant amount of gas can be saved by increasing the 
𝑢𝑏𝑏0 value of the BB controller. This behaviour is depicted in Fig. 6-1 with the 

performance depicted in Fig. 6-2. A value of 𝑢𝑏𝑏0 = 0.1 was chosen as the reference 
value, since the performance losses become noticeable after this value. If, in later 
design iterations, gas saving is prioritized over performance, the threshold 𝑢𝑏𝑏0 of the 
BB qualifies as a viable option for that. 

 
Fig. 6-1: Decrease in 𝑚𝑓𝑐 for increasing 𝑢𝑏𝑏0. 

CF in grey and AKF in black. 

 
Fig. 6-2: 𝑅𝑀𝑆𝐸 for increasing 𝑢𝑏𝑏0. CF in grey 

and AKF in black. 

With this, the reference values are determined. The resulting performance for the two 
filter configurations is shown below. 

 
Fig. 6-3: P2PMAF+CF performance result for 

reference values. 

 
Fig. 6-4: AKF performance result for reference 

values. 

Fig. 6-3 and Fig. 6-4 show that, both filter configurations satisfy F35 under reference 
condtitions. Thus, the reference performance is 𝑅𝑀𝑆𝐸𝑟𝑒𝑓 = 1.640 ° for the 

P2PMAF+CF configuration and 𝑅𝑀𝑆𝐸𝑟𝑒𝑓 = 1.365 ° for the AKF configuration. Results 

for the other two trajectories established in Section 4.2 can be found in the appendix 
Section E.1. The reliability of this performance results shall be tested by varrying the 
key factors which will be established in the next section. 
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6.2.3 Key Factors, Levels and Ranges  

According to [60], the selected key factors should be varied over a practicable range 
on an appropriate amount of levels. Levels can be understood as the resolution of the 
input data. For two levels, the range of a factor would be divided into a high and a low 
value, which is computationally efficient; however, information would be lost. The input 
for the experiment will be defined in the next sections. 

 Key Factor Selection 

The established factor categories allow for the following distinction when deciding on 
the key factors:  

Most internal factors are customizable, with restrictions only applying to 𝑓𝑠𝑒𝑛𝑠𝑜𝑟, 𝑓𝑏𝑏, 
𝝎𝑟𝑎𝑛𝑔𝑒 and 𝒂𝑟𝑎𝑛𝑔𝑒, and therefore are able to react to a certain circumstance. As 

established in Section 5.4, factors can be adjusted to keep the performance within the 
requirements boundary. Therefore, they will be used to formulate the tuning rules, but 
will not be labelled as key factors. 

For the external factors, the design and implementation team suggested possible 
factors of interest. These include the actuator switching time, 𝑡𝑠𝑡, the delay time after 
the PID element, 𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦, the initial mass, 𝑚0, the maximum actuator force,  𝐹𝑚𝑎𝑥, and 

a change of the actuator lever arm, 𝑙𝐴. However, 𝑙𝐴 and 𝐹𝑚𝑎𝑥 are inversely proportional 
to 𝑚0, 

 𝑚0~
1

𝑙𝐴𝐹𝑚𝑎𝑥
. Eq. ( 6–5 ) 

This can be extracted from Eq. ( 4–1 ). Therefore, only 𝑚0 will be considered for the 
evaluation. Additionally, the maximum controllable deflection angle will be evaluated 
by varying 𝜃𝐸𝑆. The temperature sensibility was a suggested factor as well, but was 
ultimately ruled out during the preliminary tests (see Fig. E-20 and Fig. E-21). 

For the error-related factors, the scale factor, 𝑴𝑆𝐹, and the random noise process, 𝜎, 
will be analysed. The effect of misalignment and all other multiplicative sensor errors 
are directly proportional to the scale factor, and therefore do not provide any additional 
evaluation information. The listed error-related factors were chosen since they are 
expected to have the highest influence on the performance and cannot be 
compensated by calibration without profound testing and sophisticated sensor error 
models. Further information on compensating the scale factor of an IMU by calibration 
is given in [66] 

This selection of six factors marks the first iteration of key factors, which will be further 
refined, after the main test series, to answer research question Q2.  

 Input Factor Levels  

The number of levels, 𝐿, in an experiment can be understood as the resolution of the 
acquired data. To obtain higher order relations between input and output, there must 
be at least three levels to an experiment. Increasing the number of levels, however, 
will evidently vastly increase the computational effort Eq. ( 6–1 ). The behavior of the 
model to the proposed input factors is completely unknown and therefore, the input 
shall be randomized across enough levels and a wide enough range. To model this 
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uncertainty, an arbitrary input modelled by its PDF with a standard deviation is chosen. 
To capture the effect of inputs 3𝜎 away from the mean, on the response, the sample 

size of the Monte Carlo simulation must be 𝐿 ≥ 371. This is defined by the 
characteristic of the chosen input distribution for which 99.73 % of samples must lie 
within the 3𝜎 range (see appendix Chapter B). Therefore, the sample size for the main 
experiment was chosen to be 𝐿 = 400, to balance informativeness with available time 
and resources. 

Preliminary tests were conducted with a fourth of the main test sample size 𝐿𝑝𝑟𝑒 = 100, 

which is appropriate according to [64]. 

 Input Factor Ranges 

For this evaluation, the range covers the factor space of interest in which either 68.27 % 

or 100 % of the input samples are located, depending on the input function used for 
the sensitivity analysis. Section 6.3 will elaborate on the two different distribution used 
for the evaluation. The range for the respective key factors was either taken from the 
datasheets [14, 23] or estimated with calculations by the design team [26, 32]. As an 
example:  

 𝜎𝑥 = 𝑥𝑟𝑒𝑓𝑅𝑥 Eq. ( 6–6 ) 

will define one STD of the gaussian normal distributed input 

 𝛿𝑥 = 𝒩[𝑥𝑟𝑒𝑓, 𝜎𝑥]. Eq. ( 6–7 ) 

One standard deviation can, therefore, also be referred to as the 68.27 [%] -error, since 
this exact percentage of samples of the random input lie within ±𝜎𝑥. The probability 
density function (PDF) is given in the appendix Section B.2. 

6.2.4 Experiment Design Choice 

To characterize the performance of the two filter configurations in the simulation a one-
factor-at-a-time (OFAT) analysis was conducted. OFAT is a commonly used method 
to analyze sensitivity due to its simplicity and practicability. Here, one factor is varied 
while all other factors of an experiment are kept at a constant, reference value [60]. In 
this work, information about the influence of one factor on the performance of the 
respective filter can be obtained. After analyzing the factor of interest, it is returned to 
the reference value and the next input factor can be varied, while keeping all other 
values constant.  

OFAT experiments depend upon guesswork, luck, experience and intuition for its 
success. This may often lead to unreliable, inefficient and time-consuming experiments 
and may yield false optimum conditions for the process [60]. Therefore, OFAT is strictly 
not considered a DOE method and often out-performed by such methods in terms of 
efficiency, information yield and exploring the entire factor space [67]. Therefore, in an 
OFAT experiment, interactions between input factors might remain undetected. In DOE 
methods, such as fractional factorial method Box-Behnken from [62], input factors 
resolution is simplified to three levels, a high, a low and a central point level. This allows 
the method to explore a vast multi-factorial design space to obtain an optimal 
configuration with relatively few runs. However, the goal of this experiment is not to 
find the optimal configuration, but to obtain the performance sensitivity of the system 
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regarding key factors. The low resolution of fractional factorial methods may impair the 
significance of the statement regarding the sensitivity of the system towards one factor. 
In the context of this simulation experiment, the simplicity of OFAT allows, to give a 
randomized, high sample size, statistical input, in the form of a any distribution, 
described by the previously determined range. The response can be analyzed by using 
statistics and regression models.    

In summary, the two filter configurations will be characterized by analyzing the 
sensitivity of the 𝑅𝑀𝑆𝐸 towards one arbitrary key factor input at a time.  

6.3 Sensitivity Analysis 

After choosing a design for the simulation experiment, the main test series was 
conducted. To parse the effect of the chosen key factors on the performance of the 
control system a sensitivity analysis is performed for statistical evaluation.  

In the context of numerical evaluation of mathematical models, sensitivity can be 
described as the relation between a change in the input to the resulting change in the 
output. In practical modelling, the sensitivity analysis is carried out by changing the 
input parameters. The corresponding response on the selected input 𝛿𝑥 is observed. 
Thus, the sensitivity, 𝑆𝑥, towards an input, 𝑥, is defined by the partial derivative with 
respect to a reference value [68]: 

 𝑆𝑥 =
𝑥𝑟𝑒𝑓

𝑦𝑟𝑒𝑓

𝜕𝑦

∂𝑥
|

𝑥𝑟𝑒𝑓

=
𝑥𝑟𝑒𝑓

𝑅𝑀𝑆𝐸𝑟𝑒𝑓

𝜕𝑅𝑀𝑆𝐸(𝑥)

∂𝑥
|

𝑥𝑟𝑒𝑓

. Eq. ( 6–8 ) 

This sensitivity computation will be labelled partial derivative sensitivity (PDS), where 
the quotient, 𝑥𝑟𝑒𝑓/𝑅𝑀𝑆𝐸𝑟𝑒𝑓, is introduced to normalize the coefficient by removing the 

units [69]. Since the derivative is computed at a fixed reference point, it is considered 
a local method and therefore not recommended to explore the whole input space of 
possibly nonlinear systems [61]. Additionally, it does not consider the different ranges 
in the input. However, it can be modified to analyse the effect of several arbitrary inputs 
on an arbitrary output. For this purpose, the partial derivative at the reference point is 
normalized by the coefficient 𝜎𝑥/𝜎𝑦, which is referred to as the square root of the 

importance index in [69]. Whereby, 𝜎𝑥 represents the STD of one input and 𝜎𝑦 

represents the STD of the response distribution for varying all factors at once. This 
metric is referred to as  the sigma-normalized derivatives sensitivity (SNS), 𝑆𝑥

𝜎,  and is 
often used for the statistical analysis of Monte Carlo simulations. The squared can be 
formulated with the equation [61]: 

 (𝑆𝑥
𝜎)2 = (

𝜎𝑥

𝜎𝑦

𝜕𝑦

∂𝑥
|

𝑥𝑟𝑒𝑓

)

2

= (
𝜎𝑥

𝜎𝑅𝑀𝑆𝐸𝑡𝑜𝑡

𝜕𝑅𝑀𝑆𝐸(𝑥)

∂𝑥
|

𝑥𝑟𝑒𝑓

)

2

. Eq. ( 6–9 ) 

The higher the squared SNS is, the higher is the share of the respective input in the 
output distribution. If the response function is a linear combination of the inputs, the 
sum of the squared SNSs will equate to one. If this is not the case and non-additive or 
nonlinear terms exist in the response equation, the sum of the squared SNSs will be 
less than one [70]. 

For this work, the squared SNS shall allow to rank  the chosen input factors, relative to 
each other, for one filter, regardless of the input distribution and range. Additionally, 
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the statistics of the response for varying one factor at a time will give absolute values 
like the standard deviation or the mean.  

Not all key factor inputs can be varied randomly without restriction. The computational 
time delay, the end stop angle as well as the STD of the sensor noise shall be varied 
over a vast range to identify the limits of the systems. However, they cannot be 
negative and therefore a normally distributed input is not appropriate. It was chosen to 
model the input with an equal / uniform distribution. It will be further described in 6.3.2 
and in the appendix Section B.3.  

Both input distributions will be analyzed with the mentioned sensitivity metrics. The 
partial derivative will be calculated by using a linear regression model fitted to the 
response scatter plot, resulting from a single input variation. If a linear model is not an 
appropriate fit, the partial derivative is calculated at 𝑥𝑟𝑒𝑓. Since the equally distributed 

values will cover a vast design space, additionally, the maximum allowed values, for 
the respective input factor, to still fulfill F35 will be provided. These results are 
presented throughout Sections 0 to 6.3.2.3, while all results together with the SNS 
values for all factors and filters will be summarized in 6.3.3. After introducing yet 
another level of distinction for evaluating the key factors, an overview of the whole 
factor classification process is given in the figure below. 

 
Fig. 6-5: Overview of classification and evaluation process of the input factors. 

Further, both filter configurations will use the same arbitrary generated input, for 
varying one factor at a time, as well as for varying all factors at once, to allow for 
comparable results. 

6.3.1 Normal Distribution Input 

The normal distributed arbitrary input is generated with the MATLAB function 
delta_x=normrnd(x_ref,x_ref*R,L,1). The PDF is given in the appendix Eq. 

( B–5 ). The output will be analyzed by using the characteristic parameters 𝜇𝑅𝑀𝑆𝐸 and 
𝜎𝑅𝑀𝑆𝐸, resulting from the normal distribution fit function 
mu_sigma=fitdist(x,y,'normal'), and by fitting an appropriate regression 

function to the scatter plot. The acceptable limit to the 𝑅𝑀𝑆𝐸, demanded by F35, will 
be visible in the scatter plot. 
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 Actuator Switching Time 

For the actuator switching time, 𝑡𝑠𝑡, the input distribution is calculated with a range of 

𝑅𝑡𝑠𝑡
= 30 %. This value was assumed to cover the tolerance specified in [23]. The 

MATLAB function with the corresponding values is: 

delta_t_st = normrnd(0.0035,0.0035*0.3,400,1); 

Scatter plot and histogram with PDF for the CF+P2PMAF is shown below. 

 
Fig. 6-6: Histogram for 𝑡𝑠𝑡, 𝜇𝑅𝑀𝑆𝐸 = 1.589 ° and 

𝜎𝑅𝑀𝑆𝐸 = 0.096 °. 

 
Fig. 6-7: 𝑅𝑀𝑆𝐸 scatter plot for 𝑡𝑠𝑡, and linear 

regression fit. 

Fig. 6-6 indicates that the performance of the CF configuration has a probability of 
68.27 % to fall within one STD, 𝜎𝑅𝑀𝑆𝐸 = 0.096 °, from the mean, for the given 𝑅𝑡𝑠𝑡

. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.589 [°] ± 0.096 [°]) = 68.27 [%]. Eq. ( 6–10 ) 

The linear regression of the scatter plot reveals the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑡𝑠𝑡) = 3.003𝑡𝑠𝑡 + 1.579. Eq. ( 6–11 ) 

During the simulation, it was observed, that occasionally the zero-crossing detection 
was deactivated. This can be observed in the 𝑅𝑀𝑆𝐸𝜃̂ scatter plot in the appendix Fig. 

E-22. This simulation issue may lead to a higher variance in the output. Next, the 
histogram with the PDF and the scatter plot for the AKF is shown below. 
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Fig. 6-8: 𝑅𝑀𝑆𝐸 histogram for 𝑡𝑠𝑡, 𝜇𝑅𝑀𝑆𝐸 =

1.347 ° and 𝜎𝑅𝑀𝑆𝐸 = 0.060 °. 

 
Fig. 6-9: 𝑅𝑀𝑆𝐸 scatter plot for 𝑡𝑠𝑡 and linear 

regression fit. 

Fig. 6-8 indicates that the performance of the AKF configuration has a probability of 
68.27 % to fall within one standard deviation 𝜎𝑅𝑀𝑆𝐸 = 0.060 ° from the mean, for 𝑅𝑡𝑠𝑡

. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.347 [°] ± 0.060 [°]) = 68.27 [%]. Eq. ( 6–12 ) 

The linear regression of the scatter plot reveals the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑡𝑠𝑡) = 7.390𝑡𝑠𝑡 + 1.320. Eq. ( 6–13 ) 

The output results for the two filter configurations are summarized in the table below. 

Table 6-6: Output statistics for both filter configurations with key factor 𝑡𝑠𝑡. 

Filter Range STD Mean PDS 

P2PMAF+CF 
30 [%] 

0.096 [°] 1.589 [°] 0.006 [−] 

AKF 0.060 [°] 1.347 [°]  0.018 [−] 

 Weight 

For the starting mass, 𝑚0, the input distribution is calculated with a range of 𝑅𝑚0
=

0.356 %. This value is calculated by dividing the gas consumption, calculated with Eq. 
( 4–19 ),  by the starting mass. It resembles the expected change in total mass during 
a test run. The MATLAB function with the corresponding values is: 

delta_m_0 = normrnd(5,5*0.0356,400,1); 

The histogram with the pdf for the CF+P2PMAF configuration is shown in Fig. 6-10 
and the scatter plot in Fig. 6-11. 
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Fig. 6-10: 𝑅𝑀𝑆𝐸 histogram for 𝑚0, 𝑅 = 3.56 %, 

𝜇𝑅𝑀𝑆𝐸 = 1.629  ° and 𝜎𝑅𝑀𝑆𝐸 = 0.103 °. 

 
Fig. 6-11: 𝑅𝑀𝑆𝐸 scatter plot for 𝑚0, 𝑅 =

3.56 % and a linear fit. 

The histogram indicates that the performance of the CF configuration has a probability 
of 68.27 % to fall within one standard deviation 𝜎𝑅𝑀𝑆𝐸 = 0.103 ° from the mean, for 𝑅𝑚0

. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.629 [°] ± 0.103 [°]) = 68.27 [%]. Eq. ( 6–14 ) 

A linear model was fitted to the scatter plot. It can be expressed with the function:  

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑚0) = 0.266𝑚0 + 0.299. Eq. ( 6–15 ) 

The histogram with the PDF for the AKF configuration is shown in Fig. E-26 and the 
scatter plot in Fig. E-27. 

 

 
Fig. 6-12: 𝑅𝑀𝑆𝐸 histogram for 𝑚0, 𝑅 = 3.56 %, 

𝜇𝑅𝑀𝑆𝐸 = 1.383 ° and 𝜎𝑅𝑀𝑆𝐸 = 0.073 °. 

 
Fig. 6-13: 𝑅𝑀𝑆𝐸 scatter plot for 𝑚0, 𝑅 =

3.56 % and a linear fit. 

The histogram indicates that the performance of the AKF configuration has a 
probability of 68.27 % to fall within one standard deviation 𝜎𝑅𝑀𝑆𝐸 = 0.073 ° from the 
mean, for the given input range. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.383 [°] ± 0.073 [°]) = 68.27 [%]. Eq. ( 6–16 ) 

A linear model was fitted to the scatter plot. It can be expressed with the function:  
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 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑚0) = 0.250𝑚0 + 0.133. Eq. ( 6–17 ) 

If the range is extended to 𝑅𝑚0
= 5 %, the regression function changes from a linear 

model to a second-order exponential model (see Eq. ( E–21 ) and Eq. ( E–24 )). When 
solving the equation for the value 𝑅𝑀𝑆𝐸 = 2.5 °, the maximum weight the RCS can 
control without adjusting the PID values can be obtained. For the P2PMAF+CF 
configuration the maximum weight is 𝑚0,𝑚𝑎𝑥,𝐶𝐹 = 5.963 𝑘𝑔 (see Eq. ( E–22 )) while for 

the AKF, it is 𝑚0,𝑚𝑎𝑥,𝐴𝐾𝐹 = 6.185 kg (see Eq. ( E–25 )). Further information regarding 

these test results can be found in the appendix Section E.5. Calculating the PDS at the 
reference point gives results comparable to the linear model results for the lower range. 
Thus, reinforcing the findings. The results for both ranges and filters are comprised in 
the table below. 

Table 6-7: Output statistics for both ranges and filter configurations with key factor 𝑚0. 

Filter Range STD Mean PDS 

P2PMAF+CF 
3.56 [%] 

0.103 [°] 1.629  [°] 0.810 [−] 

AKF 0.073 [°] 1.383 [°]  0.916 [−] 

P2PMAF+CF 
5 [%] 

0.117 [°] 1.627 [°] 0.707 [−] 

AKF 0.104 [°] 1.393 [°] 0.854 [−] 

 

It was observed that varying the centre of mass, therefore changing 𝑙𝐶𝑀, generates 
sensitivity results comparable to the 𝛿𝑚0 results. The 𝛿𝑙𝐶𝑀 results are provided in the 
appendix Section E.6.  

 Scaling 

For the scale factor, 𝑴𝑆𝐹, the input distribution is calculated with a range of 𝑅𝑴𝑆𝐹
=

3 %. This value was assumed to cover the tolerance specified in [14]. The scale factor 
of the gyroscope is examined independently of the accelerometer scale factor. The 
MATLAB expressions with the corresponding values are: 

delta_M_SF_G_yy = normrnd(1,1*0.03,400,1);  

delta_M_SF_A = normrnd(1,1*0.03,400,2);   

The gyroscope scale factor is examined first. The histogram with the PDF for the 
CF+P2PMAF configuration is shown in Fig. 6-6 and the scatter plot in Fig. 6-7. 
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Fig. 6-14: 𝑅𝑀𝑆𝐸 histogram for 𝑀𝑆𝐹,𝐺,𝑦𝑦, 𝜇𝑅𝑀𝑆𝐸 =

1.648 ° and 𝜎𝑅𝑀𝑆𝐸 = 0.086 °. 

 
Fig. 6-15: 𝑅𝑀𝑆𝐸 scatter plot for 𝑀𝑆𝐹,𝐺,𝑦𝑦 and 

linear regression fit. 

Fig. 6-6 indicates that the performance of the CF configuration has a probability of 
68.27 % to fall within one standard deviation, 𝜎𝑅𝑀𝑆𝐸 = 0.086 °, from the mean, for 𝑅𝑴𝑆𝐹

. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.648 [°] ± 0.086 [°]) = 68.27 [%]. Eq. ( 6–18 ) 

The linear regression of the scatter plot reveals the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑀𝑆𝐹,𝐺,𝑦𝑦) = 0.154𝑀𝑆𝐹,𝐺,𝑦𝑦 + 1.494. Eq. ( 6–19 ) 

The histogram with the pdf for the AKF configuration is shown in Fig. 6-8 and the scatter 
plot in Fig. 6-9. 

The histogram indicates that the performance of the AKF configuration has a 
probability of 68.27 % to fall within one standard deviation, 𝜎𝑅𝑀𝑆𝐸 = 0.062 °, from the 

mean, for 𝑅𝑴𝑆𝐹
. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.383 [°] ± 0.062 [°]) = 68.27 [%]. Eq. ( 6–20 ) 

The linear regression of the scatter plot reveals the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑀𝑆𝐹,𝐺,𝑦𝑦) = −0.483𝑀𝑆𝐹,𝐺,𝑦𝑦 + 1.866. Eq. ( 6–21 ) 

 
Fig. 6-16: 𝑅𝑀𝑆𝐸 histogram for 𝑀𝑆𝐹,𝐺,𝑦𝑦, 𝜇𝑅𝑀𝑆𝐸 =

1.383 ° and 𝜎𝑅𝑀𝑆𝐸 = 0.062 °. 

 
Fig. 6-17: 𝑅𝑀𝑆𝐸 scatter plot for 𝑀𝑆𝐹,𝐺,𝑦𝑦 and 

linear regression fit. 



Testing and Evaluation 
 

 

 

Page 64 

For the accelerometer, two axes are of interest. The x- and the z- axes of the actuator 
frame (𝐴-frame). First the P2PMAF+CF configuration is examined. The histogram and 
the 3D scatter plot with a multivariate linear regression fit is shown below. 

Fig. 6-18 indicates that the performance of the AKF configuration has a probability of 
68.27 % to fall within one standard deviation 𝜎𝑅𝑀𝑆𝐸 = 0.117 ° from the mean, for 𝑅𝑴𝑆𝐹

. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.641 [°] ± 0.117 [°]) = 68.27 [%]. Eq. ( 6–22 ) 

The multivariate linear regression fit of the 3D scatter plot reveals the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑴𝑆𝐹,𝐴) = 0.907𝑀𝑆𝐹,𝐴,𝑥𝑥 − 1.433𝑀𝑆𝐹,𝐴,𝑧𝑧 + 2.167. Eq. ( 6–23 ) 

Next, the AKF configuration is examined. The histogram is shown in Fig. 6-20 and the 
3D scatter plot with a multivariate linear regression fit is displayed in Fig. 6-21. 

Fig. 6-20 indicates that the performance of the AKF configuration has a probability of 
68.27 % to fall within one standard deviation, 𝜎𝑅𝑀𝑆𝐸 = 0.060 °, from the mean, for 𝑅𝑴𝑆𝐹

. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.393 [°] ± 0.060 [°]) = 68.27 [%]. Eq. ( 6–24 ) 

 
Fig. 6-18: 𝑅𝑀𝑆𝐸 histogram for 𝑴𝑆𝐹,𝐴, 𝜇𝑅𝑀𝑆𝐸 =

1.641 ° and 𝜎𝑅𝑀𝑆𝐸 = 0.117 °. 

 
Fig. 6-19: 𝑅𝑀𝑆𝐸 scatter plot for 𝑴𝑆𝐹,𝐴 and 

multivariate linear regression fit. 

 
Fig. 6-20: 𝑅𝑀𝑆𝐸 histogram for 𝑴𝑆𝐹,𝐴, 𝜇𝑅𝑀𝑆𝐸 =

1.393 ° and 𝜎𝑅𝑀𝑆𝐸 = 0.060 °. 

 
Fig. 6-21: 𝑅𝑀𝑆𝐸 scatter plot for 𝑴𝑆𝐹,𝐴 and  

multivariate linear regression fit. 
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The linear regression of the scatter plot reveals the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑴𝑆𝐹,𝐴) = −0.152𝑀𝑆𝐹,𝐴,𝑥𝑥 − 0.036𝑀𝑆𝐹,𝐴,𝑧𝑧 + 1.581. Eq. ( 6–25 ) 

The output results for the two filter configurations are summarized in the table below. 

Table 6-8: Results of the two filter configurations for the key factor 𝑴𝑆𝐹. 

Filter Factor Range STD Mean PDS 

P2PMAF+CF 
𝑀𝑆𝐹,𝐺,𝑦𝑦 

3 [%] 

0.086 [°] 1.648 [°] 0.094 [−] 

AKF 0.062 [°] 1.383 [°]  −0.354 [−] 

P2PMAF+CF 
𝑀𝑆𝐹,𝐴,𝑥𝑥 

0.117 [°] 1.641[°] 
0.553 [−] 

𝑀𝑆𝐹,𝐴,𝑧𝑧 −0.874 [−] 

AKF 
𝑀𝑆𝐹,𝐴,𝑥𝑥 

0.060 [°] 1.393 [°] 
−0.111 [−] 

𝑀𝑆𝐹,𝐴,𝑧𝑧 −0.026 [−] 

6.3.2 Equal Distribution Input 

The equal distribution possesses the property that all samples lie within the limits 𝑥𝑚𝑖𝑛 
and 𝑥𝑚𝑎𝑥, which defines the input range. Furthermore, all inputs have the same 
probability of occurring. For more information refer to the appendix Section B.3. In 
MATLAB, such confined arbitrary input distribution can be generated with the 
expression: 

delta_x = x_min + (x_max-x_min) * rand(L,1);  

It will be analyzed by the SNS in Section 6.3.3 and by fitting an appropriate regression 
function to the resulting 𝑅𝑀𝑆𝐸 scatter plot. The acceptable limit to the 𝑅𝑀𝑆𝐸, 
demanded by F35, will be shown in the scatter plot. Output statistics for the equal 
distribution are not representative and will therefore not be analyzed.   

 Initial Deflection 

For the initial deflection of the pendulum, which is equal to the end stop angle, 𝜃𝐸𝑆, the 
maximum controllable deflection with the reference settings shall be found. Therefore, 
the input is varied over a range of 8 ° ≤ 𝑅𝜃𝐸𝑆

≤ 12 °. The corresponding MATLAB 

expression is: 

delta_theta_ES = 8 + (12-8) * rand(400,1);  

The result is shown in Fig. 6-22 and Fig. 6-23 for the P2PMAF+CF and AKF 
configuration respectively. 
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Fig. 6-22: CF 𝑅𝑀𝑆𝐸 scatter plot for 𝜃𝐸𝑆 a second-

order exponential fit. 

 
Fig. 6-23: AKF 𝑅𝑀𝑆𝐸 scatter plot for 𝜃𝐸𝑆 and a 

second-order exponential fit. 

A second-order exponential model was fitted to the P2PMAF+CF scatter plot. It can be 
approximated with the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐶𝐹(𝜃𝐸𝑆) = 0.545𝑒0.105𝜃𝐸𝑆 + 2.811 ∗ 10−8𝑒1.451𝜃𝐸𝑆 . Eq. ( 6–26 ) 

For the AKF scatter plot the same model results in: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐴𝐾𝐹(𝜃𝐸𝑆) = 0.542𝑒0.086𝜃𝐸𝑆 + 4.413 ∗ 10−7𝑒1.231𝜃𝐸𝑆. Eq. ( 6–27 ) 

Solving the functions for the value defined by requirement F35 returns 

 𝜃𝐸𝑆(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐶𝐹 = 𝐹35 = 2.5 [°]) = 11.680 [°],  Eq. ( 6–28 ) 

for the P2PMAF+CF configuration and  

 𝜃𝐸𝑆(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐴𝐾𝐹 = 2.5 [°]) = 11.878 [°],  Eq. ( 6–29 ) 

For the AKF configuration. Therefore, formulating the maximum allowed computational 
delay for the respective filter under reference setting.  

 Measurement Noise 

The measurement noise is characterized by the STD of the respective sensor. The 
goal of this section is to quantify the performance deterioration of the control system 
for a STD higher than the one measured in Section 4.5. Since the KF algorithm is 
provided with the variance in the measurement for tuning, a superior performance of 
the KF compared to the CF is expected. The input is varied over a range of 0.1 °/s ≤
𝛿𝜎𝐺,𝑦 ≤ 0.5 °/s, and 0.01 m/s2 ≤ 𝛿𝝈𝐴 ≤ 0.1 m/s2, which is appropriate for consumer 

grade IMUs [12]. The gyroscope noise level will be examined independently from the 
accelerometer noise levels. The corresponding MATLAB expressions are: 

delta_sigma_G_y = 0.1 + (0.5-0.1) * rand(400,1);  

delta_sigma_A = 0.01 + (0.01-0.01) * rand(400,2);  

The result is shown in Fig. 6-22 and Fig. 6-23 for the P2PMAF+CF and AKF 
configuration respectively. 
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Fig. 6-24: CF 𝑅𝑀𝑆𝐸 scatter plot for 𝜎𝐺,𝑦 with 

linear regression model. 

 
Fig. 6-25: AKF 𝑅𝑀𝑆𝐸 scatter plot for 𝜎𝐺,𝑦 with 

linear regression model. 

A linear model was fitted to the P2PMAF+CF scatter plot. It can be approximated with 
the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐶𝐹(𝜎𝐺,𝑦) = 0.447𝜎𝐺,𝑦 + 1.603. Eq. ( 6–30 ) 

For the AKF scatter plot the same model results in: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐴𝐾𝐹(𝜎𝐺,𝑦) = 0.767𝜎𝐺,𝑦 + 1.271. Eq. ( 6–31 ) 

Solving the functions for the value defined by requirement F35 returns 

 𝜎𝐺,𝑦(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐶𝐹 = 2.5 [°]) = 2.008 [
°

s
],  Eq. ( 6–32 ) 

for the P2PMAF+CF configuration and  

 𝜎𝐺,𝑦(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐴𝐾𝐹 = 2.5 [°]) = 1.603 [
°

s
],  Eq. ( 6–33 ) 

for the AKF configuration. Therefore, formulating the maximum allowed noise level for 
the respective filter under reference settings. These values must be treated with 
caution, since a linear model is assumed, which might not be the case at noise levels 
𝜎𝐺,𝑦 > 0.5 °/s. 

For the accelerometer there are two axes of interest. The x- and the z- axes of the 
actuator frame (𝐴-frame). First the P2PMAF+CF configuration is examined. The 
graphs below show the 3D scatter plots with a multivariate linear regression fit for both 
filter configurations. 
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The multivariate linear regression model of the 3D scatter plot reveals the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐶𝐹(𝝈𝐴) = −0.099𝜎𝐴,𝑥 − 0.637𝜎𝐴,𝑧 + 1.664, Eq. ( 6–34 ) 

for the P2PMAF+CF configuration and  

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐴𝐾𝐹(𝝈𝐴) = 2.028𝜎𝐴,𝑥 − 2.726𝜎𝐴,𝑧 + 1.498, Eq. ( 6–35 ) 

for the AKF configuration.  

The intersection function between the surface and the 𝑅𝑀𝑆𝐸 value defined by 
requirement F35 cannot be found for this variation range. In the appendix the maximum 
noise input was increased fivefold to obtain the intersection functions:   

 𝜎𝐴,𝑥(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐶𝐹 = 2.5 [°]) = 0.663 − 0.408𝜎𝐴,𝑦,  Eq. ( 6–36 ) 

for the P2PMAF+CF configuration and  

 𝜎𝐴,𝑥(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐴𝐾𝐹 = 2.5 [°]) = 0.548 + 0.061𝜎𝐴,𝑦,  Eq. ( 6–37 ) 

for the AKF configuration. The scatter plots for the increased maximum noise input can 
be found in the appendix 0. 

 Computational Delay 

The input distribution for the computational delay after the PID-element is generated 
with the randi([x_min,x_max],L,1) MATLAB function which generates an 

equally distributed series of integers within a certain range. This function was chosen 
because it was observed that, decimal numbers smaller than the sensor frequency 
caused problems within the simulation, resulting in the control system failing to control 
the pendulum. Therefore, the input expression is formulated as: 

delta_t_PIDdelay = randi([1,120],400,1)/1000; 

The maximum delay time 𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦,𝑚𝑎𝑥 = 0.12 s was chosen to be large enough to bring 

the control system to failure. Therefore, the input is varied over a range of 0.001 s ≤
𝛿𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 ≤ 0.12 s. The result is shown in Fig. 6-28 and Fig. 6-29 for the P2PMAF+CF 

and AKF configuration respectively. 

 
Fig. 6-26: P2PMAF+CF 𝑅𝑀𝑆𝐸 scatter plot for 𝝈𝐴 

with multivariate linear regression fit. 

 
Fig. 6-27: AKF 𝑅𝑀𝑆𝐸 scatter plot for 𝝈𝐴 with 

multivariate linear regression fit. 



Testing and Evaluation 
 

 

 

Page 69 

 
Fig. 6-28: CF 𝑅𝑀𝑆𝐸 scatter plot for 𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 and 

a second-order exponential fit. 

 
Fig. 6-29: AKF 𝑅𝑀𝑆𝐸 scatter plot for 𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 and 

a second-order exponential fit. 

A second-order exponential model was fitted to the P2PMAF+CF scatter plot. It can be 
approximated with the function: 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐶𝐹(𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦) = 1.672𝑒3.759𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 + 0.003𝑒60.669𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦. Eq. ( 6–38 ) 

For the AKF scatter plot the same model results in (rounded to the second decimal): 

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐴𝐾𝐹(𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦) = 1.33𝑒5.34𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 + 5.25 ∗ 10−13𝑒244𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦. Eq. ( 6–39 ) 

Solving the functions for the value defined by requirement F35 returns 

 𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐶𝐹 = 2.5 [°]) = 0.074 [s],  Eq. ( 6–40 ) 

for the P2PMAF+CF configuration and  

 𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐴𝐾𝐹 = 2.5 [°]) = 0.108 [s],  Eq. ( 6–41 ) 

For the AKF configuration. Therefore, formulating the maximum allowed computational 
delay for the respective filter under reference setting. 

6.3.3 Comparison and Sigma-Normalization 

For computing the SNS for every factor, all previously discussed inputs are varied at 
the same time. The ranges of 𝜃𝐸𝑆 and 𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 were adapted to an approximately linear 

version around the reference values: 9.5 ° ≤ 𝛿𝜃𝐸𝑆 ≤ 10.5 ° and 0.001 s ≤ 𝛿𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 ≤

0.03 s. The maximum delay was chosen to be 𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦,𝑚𝑎𝑥 = 0.03 s  since it equates 

to three times the reference value, which represents the worst-case assumption for 
scaling up to 3-DoF.  

The response distributions for both filters are shown in Fig. 6-30 and Fig. 6-31. As the 
PDF, a Gamma distribution is used which allows to calculate 𝜎𝑅𝑀𝑆𝐸𝑡𝑜𝑡 for the SNS. It 
has the benefit that it reduces the effect of outliers, which resulted in system failure, on 
𝜎𝑅𝑀𝑆𝐸𝑡𝑜𝑡. The characteristics of the Gamma distribution are explained in the appendix 
Section B.4. 
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Fig. 6-30: Response Gamma distribution with  

𝜎𝑅𝑀𝑆𝐸𝑡𝑜𝑡 = 0.192 ° and 𝜇𝑡𝑜𝑡 = 1.804 °. 

 
Fig. 6-31: Response Gamma distribution with  

𝜎𝑅𝑀𝑆𝐸𝑡𝑜𝑡 = 0.510 ° and 𝜇𝑡𝑜𝑡 = 1.727 °. 

By accessing the Gamma distributions, the AKF provides a lower mean, while the 
P2PMAF+CF provides a lower standard deviation. However, the AKF response result 
is influenced by a larger quantity of outliers, which result from the control system failing 
to stabilize the pendulum. This is further emphasized by the CDFs, 𝑐(𝑅𝑀𝑆𝐸), of both 
filters, which are shown below. 

 
Fig. 6-32: CDF with 𝑐(𝜇𝑡𝑜𝑡) = 0.5. 

 
Fig. 6-33:  CDF with 𝑐(𝜇𝑡𝑜𝑡) = 0.5. 

It can be observed that 99.75 % of runs performed below the F35 limit for the 
P2PMAF+CF configuration, while for the AKF 97 % of runs performed below the F35 
limit. 

 𝑐𝑅𝑀𝑆𝐸,𝐶𝐹(2.5 [°]) = 𝑝(𝑅𝑀𝑆𝐸 ≤ 2.5 [°]) = 99.75 [%]   Eq. ( 6–42 ) 

 𝑐𝑅𝑀𝑆𝐸,𝐴𝐾𝐹(2.5 [°]) = 𝑝(𝑅𝑀𝑆𝐸 ≤ 2.5 [°] = 97 [%]   Eq. ( 6–43 ) 

The true trajectories of all runs for both filters were plotted in Fig. 6-34: All 400 true 
trajectories for varying all key input factors with the given distributions. Fig. 6-34 and 
Fig. 6-35. The figures reveal the outlier trajectories, were the RCS could not lift the 
pendulum or failed to stabilize it.  
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Fig. 6-34: All 400 true trajectories for varying all 

key input factors with the given 
distributions.  

 
Fig. 6-35: All 400 true trajectories for varying all 

key input factors with the given 
distributions.  

Addressing Q1 (see Chapter 3), it was decided that the 2𝜎-error in the response shall 
lie within the F35 boundary of 2.5 °, for the algorithm to be deemed reliable enough. 

For the P2PMAF+CF configuration the 3𝜎-error in the response lies within the F35 
performance boundary. Thus, qualifying the algorithm to be reliable enough in 
stabilizing the system.  

For the AKF the 2𝜎-error in the response lies within the F35 performance boundary. 
Thus, qualifying the algorithm to be reliable enough in stabilizing the system. 
Additionally, the AKF algorithm leaves room for optimization of its 𝑄, 𝑅 and 𝑃0 values. 

To address Q2 the chosen key factors shall be revised and ranked. Key factors will be 
ranked regarding the filter configuration, since each possesses different reference 
response. The factors will by ranked by the squared SNS (SNS2) value.  

The cells of the tables below were color-coded to highlight the four highest SNS2 and 
PDS values. The higher the respective value, the darker the color. A bluish color palette 
was chosen for the P2PMAF+CF configuration and a brownish for the AKF 
configuration. 

Table 6-9 lists the normally distributed input factors while Table 6-10 lists the equally 
distributed input factors: 
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Table 6-9: Output statistics, PDS and squared SNS of the two filter configurations for the normally 
distributed inputs.  

Input Filter Range Output 
STD 

Output 
Mean 

PDS SNS2 

𝛿𝑡𝑠𝑡 
P2PMAF+CF 

30 [%] 
0.096 [°] 1.589 [°] 0.006 [−] 0.0003 [−] 

AKF 0.060 [°] 1.347 [°]  0.018 [−] 0.0002 [−] 

𝛿𝑚0 
P2PMAF+CF 

3.56 [%] 
0.103 [°] 1.629  [°] 0.810 [−] 0.0611 [−] 

AKF 0.073 [°] 1.383 [°]  0.916 [−] 0.0076 [−] 

𝛿𝑀𝑆𝐹,𝐺,𝑦𝑦 
P2PMAF+CF 

3 [%] 

0.086 [°] 1.648 [°] 0.094 [−] 0.0006 [−] 

AKF 0.062 [°] 1.383 [°]  −0.354 [−] 0.0008 [−] 

𝛿𝑀𝑆𝐹,𝐴,𝑥𝑥 
P2PMAF+CF 0.117 [°] 1.641[°] 

0.553 [−] 0.0202 [−] 

𝛿𝑀𝑆𝐹,𝐴,𝑧𝑧 −0.874 [−] 0.0503 [−] 

𝛿𝑀𝑆𝐹,𝐴,𝑥𝑥 
AKF 0.060 [°] 1.393 [°] 

−0.111 [−] 0.0001 [−] 

𝛿𝑀𝑆𝐹,𝐴,𝑧𝑧 −0.026 [−] 0.0000 [−] 

 

Table 6-10: PDS and squared SNS of the two filter configurations for the equally distributed inputs.  

Input Filter Min Max Input STD PDS SNS2 

𝛿𝜃𝐸𝑆 
P2PMAF+CF 

9.5 [°]   10.5 [°] 0.289 [°] 
1.494 [−] 0.1362 [−] 

AKF 1.411 [−] 0.0171 [−] 

𝛿𝜎𝐺,𝑦 
P2PMAF+CF 

0.1 [
°

s
]   0.5 [

°

s
]   0.116 [

°

s
]   

0.035 [−]   0.0726 [−] 

AKF 0.072 [−]   0.0301 [−] 

𝛿𝜎𝐴,𝑥 
P2PMAF+CF 

0.01 [
𝑚

𝑠2]  0.1 [
𝑚

s2]  0.026 [
𝑚

s2]  

−0.001 [−]   0.0002 [−] 

𝛿𝜎𝐴,𝑧 −0.013 [−]   0.0075 [−] 

𝛿𝜎𝐴,𝑥 
AKF 

−0.017 [−]   0.0107 [−] 

𝛿𝜎𝐴,𝑧 −0.068 [−]   0.0193 [−] 

𝛿𝑡𝑃𝐼𝐷𝑑𝑒𝑙𝑎𝑦 
P2PMAF+CF 

0.001 [s]   0.03 [s] 0.008 [s] 
0.042 [−] 0.0904 [−] 

AKF 0.055 [−]   0.0151 [−] 

 

Thus, for the P2PMAF+CF configuration the factor which the system has the highest 
sensitivity towards, is the end stop angle, followed by the computational delay, the 
gyroscope noise, and the total weight. These factors possess the largest share in the 
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overall variance of the system. However, the sum of all SNS2 values does not equate 
to one: 

 ∑ (𝑆𝑥𝑖

𝜎 )
2

𝑖 = 0.4392. Eq. ( 6–44 ) 

Therefore, it can be assumed, that the actual response function is not a linear 
combination of the inputs. Hence, most of the variance in the response may stem from 
nonlinear dependencies and couplings between the factors [70]. 

For the AKF the factor the factor which the system has the highest SNS towards, is the 
gyroscope noise, followed by the accelerometer noise on the z-axis, the end stop 
angle, and the computational delay. However, the sum of all SNS2 values is even 
smaller compared to Eq. ( 6–44 ): 

 ∑ (𝑆𝑥𝑖

𝜎 )
2

𝑖 = 0.1011  Eq. ( 6–45 ) 

Again, the actual response function is not a linear combination of the inputs. Hence, 
an even higher percentage of the variance in the response may stem from nonlinear 
dependencies and couplings between the factors as compared to the P2PMAF+CF 
[70]. 

These results conclude the characterization of the two filters, within the scope of the 
work. The next chapter will relate them to the research questions and scrutinize the 
validity of the approach and the utilized methods. 
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7 Discussion of the Results 

In the following sections the fulfilment of the posed research questions, and the chosen 
methods to answer them, will be discussed and questioned. Therefore, this chapter 
refers to RS9 of the proposed designed experiment steps. 

7.1 Tuning Guidelines and Design Insights 

Placing Q1 in the context of established findings, it can be paraphrased to: 

Q1: Which filter design allows for the 2𝜎-error in the response of the given system 
under changing key input factors to lie within the boundary defined by F35? 

An AKF and CF, expanded with the P2PMAF, can both be implemented to reliably fulfill 
F35. Whereby the AKF appears to have the better mean performance 𝜇𝑡𝑜𝑡, while the 

P2PMAF+CF demonstrates a lower variance (𝜎𝑅𝑀𝑆𝐸𝑡𝑜𝑡)2 in the response. Therefore, 
given that the implementation of the P2PMAF on the microcontroller is unproblematic, 
the latter configuration provides the more robust solution. A possible reason could be 
that the P2PMAF averages out noise on the accelerometer which was one of the major 
performance degrading factors on the AKF.  

Major performance degrading factors are labeled key factors which shall be evaluated 
for Q2: 

Q2: What are the key factors influencing the control system?  

The key factors were found through categorization, preliminary tests and the SNS2 
value for each filter. The effect of the actuator switching time, 𝑡𝑠𝑡, and the scale factor, 

𝑴𝑆𝐹, may have a prominent PDS, however, SNS2 analysis diminishes their importance. 

The P2PMAF+CF seems to be more sensitive towards external key factors like the 
end stop angle, the weight or the computational delay, while the AKF is more sensitive 
towards error-related factors, especially on the gyroscope, like the characteristic noise 
parameter on the y-axis 𝜎𝐺,𝑦. One possible explanation could be that the AKF will often 

neglect the measurement innovation 𝑦𝑘, therefore increasing the reliance on the 
gyroscope measurement. 

Q3: Which rules apply to tuning the control system? 

Boundaries: It was important to the hardware design team and the software 
implementation team to find out maxima of the end stop angle and the overall weight, 
for which the requirements are still fulfilled. Assuming reference values the maximum 
values are: 𝑚0,𝑚𝑎𝑥,𝐶𝐹 = 5.963 𝑘𝑔; 𝑚0,𝑚𝑎𝑥,𝐴𝐾𝐹 = 6.185 kg; 𝜃𝐸𝑆,𝑚𝑎𝑥,𝐶𝐹 = 11.680 °; 
𝜃𝐸𝑆,𝑚𝑎𝑥,𝐴𝐾𝐹 = 11.878 °. 

Tuning rules: The best-practice tuning rules formulated in 5.4 have proven to produce 
reliable performance results in the evaluation and, therefore, will be recommended for 
implementation on the Teensy 3.6. For the AKF the tuning constant 𝐶 was introduced 
to leave room for optimization. In simulation runs outside of the main test series it was 
varied in order to reduce the outliers in the response. Decreasing the tuning constant 
to 𝐶 = 0.5 results in an improvement in the mean performance to 𝜇𝑡𝑜𝑡 = 1.660 °, an 
improvement in the STD to 𝜎𝑅𝑀𝑆𝐸𝑡𝑜𝑡 = 0.412 °, and reduces the number of outliers so 

that 𝑐𝑅𝑀𝑆𝐸,𝐴𝐾𝐹(2.5 °) = 98.25 %. However, it also increases the dependency on the 
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gyroscope measurement even further, which results in (𝑆𝜎𝐺,𝑦
𝜎 )

2

= 0.0462. This is evident 

since 𝑄 is proportional to 𝐶. Figures are shown in the appendix Section E.9. 

With this, all research questions have been addressed. In contrast to the preliminary 
test results (see 6.2.2 and E.1), the P2PMAF+CF proved to be a more robust 
alternative to the AKF. However, the AKF leaves more room for optimization. Further, 
evaluating internal factors like the sensor sample rate, 𝑓𝑠𝑒𝑛𝑠𝑜𝑟, or the actuator 

frequency, 𝑓𝑏𝑏, may reveal further insights about the behaviour of the control system. 
It was  found out that the control system performance decreases vastly if computational 
delay values are not multitudes of  1/𝑓𝑠𝑒𝑛𝑠𝑜𝑟. However, this needs further research and 
could be a simulation error, resulting from the variable step solver. 

The utilized methods for modelling, testing  and evaluation may diminish the 
significance of the obtained results, which is discussed in the next section. 

7.2 Methodological Shortcomings 

The basic thought behind the test stand is that its dynamics resemble the thrustless 
instable flight condition of the WARR EX-4 upper stage during its coasting phase. If 
this assumption is too farfetched, the current progress of the project is in question. 
However, the filtered sensor measurements provide full-state feedback to the  control 
structure, without utilizing a system model of the pendulum. Therefore, the filter 
algorithms should be applicable to any structure for attitude estimation, if gyroscope 
and accelerometer measurements are available. 

For fast results at low expenses it was decided to focus this work on a simulation-only 
test environment for the project phases P0 and P1. However, a SIL simulation – with 
the control and filter algorithms implemented on the Teensy 3.6 being part of the loop 
– is necessary to accurately parse the effect of computational delay and other 
microcontroller related errors in the evaluation. This might be a future task of the 
software implementation team.   

Model fidelity of the inverse pendulum was not the focus of this work. However, omitting 
damping and friction effects completely might have created a simulation model of the 
pendulum more instable than the real one, which might have complicated the 
stabilization task. This fact, combined with a more optimal control approach, such as a 
linear quadratic regulator targeted by [29], and a mechanical damping system [50] 
might make the filter obsolete. However, this is speculation, which will further be 
investigated by [30], which will also incorporate the 3-DoF pendulum model with higher 
fidelity. Other model inaccuracies include: the actuator model which assumes a 
symmetrical force output vector, which is not always the case according to [5], and the 
sensor error model, which can be improved by a proper Allan variance analysis on an 
optical table. 

Lastly, the sum of the SNS2 values resulted in values far smaller than 1. This shows 
that the major share of variance in the response, especially for the AKF, results from 
non-additive, higher-order relations and couplings not described in this work. Whether 
these effects impact the proposed ranking of key factors is uncertain.  
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8 Conclusion and Outlook 

This thesis was designated to design a filter which could estimate the attitude of an 
inverse pendulum that aims to recreate the dynamics of suborbital rockets upper stage 
during instable flight. The filter was required to determine the attitude accurately 
enough to control the instable system via a cold gas RCS, using consumer-grade 
inertial sensors. Two filter algorithms were developed and tested in a simulation-only 
environment consisting of mathematical models of all relevant RCS subsystems. The 
peak-to-peak moving average filter was developed to prefilter the accelerometer output 
and feed it, together with the gyroscope measurements, to a complementary filter for 
state estimation. As a second filter algorithm, a simplified version of an adaptive 
Kalman filter was designed. The RMSE of the true trajectory to the commanded 
trajectory has served as the performance quantity to evaluate the filter algorithms. To 
facilitate the tuning and implementation process of the filters on the microcontroller and 
to reveal the limits of the RCS, the filter algorithms were characterized by conducting 
a designed Monte Carlo simulation experiment. Through categorization and the use of 
the squared sigma-normalized sensitivity, the key performance impairing factors were 
determined for each filter. Hence, revealing that the P2PMAF+CF is more susceptible 
to external factors, like the maximum angular deflection and computational delay, while 
the AKF is more susceptible to error-related factors, like the gyroscope noise. This 
shall help evaluate future RCS design decisions in the project. Overall, the AKF 
provides a better mean performance with more optimization potential, while the 
P2PMAF+CF is the more robust filter solution. 

As a next step in project Exosphere, the control algorithms can be implemented on the 
Teensy 3.6 microcontroller to expand the Simulink model to a software-in-the-loop 
simulation environment. This may help incorporate microcontroller related issues not 
covered in the simulation-only approach. 

Further, preliminary tests reveal that the sensor frequency and the actuator frequency 
could potentially be further reduced, while still maintaining the same performance. 
However, the in-built delays result in failed stabilization attempts for smaller sensor 
frequencies than the default one. Whether this a simulation issue or not may be 
resolved by including the microcontroller in the loop, creating the previously mentioned 
SIL testing environment.  

Additionally, an alternative actuator solenoid valve, which allows to produce a higher 
thrust, can be evaluated with the tools created in this thesis to assess possible 
performance improvements. 

At the time of typing this thesis, the communications module and the electronic power 
supply circuitry were about to be finalized, hence, completing the RCS in its P0 version.  

Matthias Beck aims to advance the 3-DoF model and optimize the control structure for 
later project phases within his semester thesis [30]. Since the controller will be provided 
with full-state feedback, a linear quadratic regulator, as proposed by [29], may be a 
viable option. 
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B Primer on Kalman Filter and Probability   

This section of the appendix shall serve as an overview of basic principles of Kalman 
filtering and probability theory. It will help understand the theory behind both Chapters 
5.3 and 6. 

 Kalman Filter Basics 

The Kalman Filter is considered a Bayesian estimator because it is based on Bayes’ 
theorem which can be formulated as  

 𝑝(𝑋|𝑌) =
𝑝(𝑋∩𝑌)

𝑝(𝑌)
=

𝑝(𝑌|𝑋)𝑝(𝑋)

𝑝(𝑌)
, 𝑓𝑜𝑟 𝑝(𝑌) ≠ 0. Eq. ( B–1 ) 

The rule describes the probability, 𝑝, of event 𝑋 occurring given that event 𝑌 is true. 
This is used in a Kalman Filter to obtain the a-posteriori value, from the a-priori value 
and an observation z. In this sense, 𝑥− corresponds to the a-priori value of 𝑥 , while 
𝑥+ corresponds to the a-posteriori value of 𝑥 [12]. Throughout the Kalman Filter theory 
part, Section 5.3.1, this concept will be further expanded upon.  

Matrices such as the measurement covariance 𝑹, the system covariance 𝑸 and the 
error covariance  𝑷 will be reduced to their one-dimensional scalar counterpart, such 
as the measurement variance 𝑅, the system variance 𝑄 and the error variance 𝑃. 

In general, the variance, 𝜎2, of a random variable 𝒙 is the expected value of the squared 

deviation from the mean, 𝜇, of 𝒙: 

 𝜇 = 𝐸[𝒙] =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 , 𝑤𝑖𝑡ℎ 𝒙 ∈ ℝ𝑁×1, Eq. ( B–2 ) 

𝜎2 = 𝐸[(𝒙 − 𝜇)]. 

Therefore, the standard deviation equates to  

 𝜎 = √𝐸[(𝒙 − 𝜇)]. Eq. ( B–3 ) 

Hereby, the mean and the variance are considered the first and the second statistical 
moment respectively [71]. The skewness and the kurtosis of a distribution define the 
third and the fourth moment but will not be used for the evaluation in this thesis. 

For performance evaluation of estimator the root-mean-square-error (RMSE) is 
recommended [72]: 

 𝑅𝑀𝑆𝐸 = √𝐸[(𝒙 − 𝒙̂)2] = √
1

𝑁
∑ (𝑥𝑖 − 𝑥̂𝑖)2𝑁

𝑖=1 . Eq. ( B–4 ) 

 Gaussian Normal Distribution 

The gaussian normal distribution will be used to describe the random input, 𝑥, of a 
Monte Carlo simulation, which is used for the evaluation process of the filter. The 
probability density function (PDF) of a normal distribution equates to: 

 𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2 . Eq. ( B–5 ) 

Integrating the probability density function 𝑓(𝑥) over a interval of −∞ to a random 

continuous input 𝑥 reveals the cumulative density function (CDF) [71, 73]:  
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 𝑐(𝑥) = ∫ 𝑓(𝑥)
𝑥

−∞
𝑑𝑥 = ∫

1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2
𝜎

−∞
𝑑𝑥. Eq. ( B–6 ) 

Now, the probability , 𝑝(𝑥),  of an event occurring  within one standard deviation is 
calculated by  

 𝑝(𝑥) = ∫ 𝑓(𝑥)
𝜎

−𝜎
𝑑𝑥 = ∫

1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2
𝜎

−𝜎
𝑑𝑥 = 0.6827, Eq. ( B–7 ) 

and accordingly, for two and three standard deviations by 

 𝑝(𝑥) = ∫ 𝑓(𝑥)
2𝜎

−2𝜎
𝑑𝑥 = 0.9545, Eq. ( B–8 ) 

𝑝(𝑥) = ∫ 𝑓(𝑥)
3𝜎

−3𝜎
𝑑𝑥 = 0.9973. 

Reformulated, the CDF represents the probability that the random the random variable 
𝛿𝑥 takes on a value less than or equal to 𝑥: 

 𝑐𝛿𝑥(𝑥) = 𝑝(𝛿𝑥 ≤ 𝑥). Eq. ( B–9 ) 

These equations hold true for any distribution which can be described by a STD.  

A randomly generated value within this distribution will be described by the mean and 
the standard deviation with the following notation for a random variable 𝛿𝑥: 

 𝛿𝑥 = 𝒩[𝜇, 𝜎]. Eq. ( B–10 ) 

  
Fig. B-1: The standard normal distribution from [71] with the transformation 𝑧 = (𝑥 − 𝜇)/𝜎.   

Besides the gaussian, other PDFs will be used to approximate a distribution.  

 Equal Distribution 

First, there is the equal also referred to as uniform distribution. The equal distribution 
is uniformly distributed and possess the PDF [71]:  

 𝑓(𝑥): {

1

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, 𝑓𝑜𝑟 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

0, 𝑓𝑜𝑟 𝑥 < 𝑥𝑚𝑖𝑛

0, 𝑓𝑜𝑟 𝑥 > 𝑥𝑚𝑎𝑥

. Eq. ( B–11 ) 
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Fig. B-2: PDF of the equal distributions from [74].    

An equally distributed arbitrary input will be described with   

 𝑥 = 𝒰[𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]. Eq. ( B–12 ) 

The expected value equates to 

 𝐸[𝑥] = 𝜇 =
𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛

2
, Eq. ( B–13 ) 

and the standard deviation to 

 𝜎 =
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

√12
. Eq. ( B–14 ) 

 Gamma Distribution 

In this work the Gamma distribution is used in the presence of positive outliers in the 
response. The PDF is [71]: 

 𝑓(𝑥, 𝑎, 𝑏) =
𝑎(𝑎𝑥)𝑏−1𝑒−𝑎𝑥

Γ(𝑏)
. Eq. ( B–15 ) 

Where the parameters 𝑎 and 𝑏 are positive real quantities as is the variable 𝑥. For 𝑏 ≤
1 the distribution is J-shaped and for 𝑏 > 1 it is unimodal with its maximum value at 
𝑥 = (𝑏 − 1)/𝑎. 
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Fig. B-3: Examples of Gamma distributions adopted from [71].    

The Gamma distribution is named after Euler’s Gamma function Γ(𝑏): 

 Γ(𝑥 + 1) = 𝑥!. Eq. ( B–16 ) 

A Gamma distributed input will be described with   

 𝑥 = Γ[𝑎, 𝑏]. Eq. ( B–17 ) 

The first moment / expected value equates to 

 𝐸[𝑥] = 𝜇 =
𝑏

𝑎
, Eq. ( B–18 ) 

and the standard deviation to 

 𝜎 =
√𝑏

𝑎
. Eq. ( B–19 ) 
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C How to Use the Simulink Model 

This section presents a step-by-step guide on how to use the Simulink model explained 
in the Chapters 4 and 5.  

To experience no portability issues, the user of the model should make sure to have 
the MATLAB version Matlab R2017b SimulinkVersion 9.0 with the 

Continuous Toolbox Control, Design Toolbox and the Control System 

Toolbox installed.  

 Initialization 

The most recent version of the Simulink model is the System_8b_allfilters.slx 

file. Before starting a simulation run, all parameters must be initialized: 

Open the initialize_RCS.m MATLAB script and run the first section of it labelled 

Initialize RCS Model.  

Now run the next section of the script labelled Open Simulink Model or manually 

set up the simulation time and the solver configuration in Simulink. To make sure that 
the same results are obtained as in this thesis, the solver must be set to the Ode15, 

which is not the default configuration for Simulink. The solver can be selected through 
the tab Model Configuration Parameters. Adjust the values to the ones shown 

in the figure below. 

  
Fig. C-4: Model Configuration Parameters used in this work. 

Note that the simulation runs on a variable step size. However, the sensor and filter 
blocks are sampled with the sensor sample rate, while the two-step controller is 
sampled with the actuator frequency.  

Now that the simulation is initialized with the reference values of the parameters, the 
simulation can be run. Results are exported to MATLAB workspace to evaluate them. 
The last section of the initialize_RCS.m script allows for a quick evaluation of the 

results by computing the RMSE and the total gas consumption.   
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 Orientation in the Model 

Aside from the variables initialized through the script, some variables must be assigned 
through masks of the respective subsystem. A mask is a custom user interface for a 
block in Simulink. If a block possesses a mask, it will appear when double-clicking on 
it. A typical mask layout is presented in the figure below. 

  
Fig. C-5: KalmanFilter1D mask with tuning rules implemented. 

The mask will give the option to enter a value for the respective variable or checkmark 
a box to enable a specific function. In the case of Fig. C-5, checking the box would 
result in activation the innovation-based estimator. 

To reveal the subsystem elements under the mask, the small arrow on the lower right 
corner must be clicked. Another way is to right-click and then search for mask – look 

under mask. 

 Customization 

The user-friendly simulation interface was created to encourage experimenting with 
the model parameters. The result can be visualized at every line by connecting it to a 
scope or utilizing the already existing scopes. However, experimenting with the values 
may lead to system failure. An often-occurring true trajectory is either that the system 
becomes unstable or that the pendulum lies completely flat. This happens for entering 
a mass over the established boundary values without adjusting the PID gains.  
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Fig. C-6: The control system fails to lift the 

pendulum for 𝑚0 = 6.5 kg.  

 
Fig. C-7: The system is initially unstable for 

𝑚0 = 6.165 kg. 

If the system exhibits initially unstable behaviour, like shown in Fig. C-7, adjusting the 
PID gains in the reduced model may help. It is labelled 
PID_gain_tuning_model.slx and only contains the plant and the controller. 

However, for system failure as it is the case in Fig. C-6 adjusting the gains will not help.  

 Evaluation 

Some data like the commanded trajectory,  theta_com, or the true trajectory, theta, 

is already exported to the MATLAB workspace. The label discrete behind a name 
indicates that it uses the same sample time as the sensor. Continuous outputs will 
possess a varying sample size depending on the step size the solver chooses.  

Multiple tools for evaluation were compiled.  Most commonly the eva.m script was 

used compute and plot the values and figures in Section 6.3. It will iterate through the 
set number of runs 𝐿 and output a histogram and a scatter plot with a linear regression 
function. The eva3D.m is used for creating the multivariate regression fits as for the 

scale factor or the accelerometer noise. Finally, the SNStool.m will compute the 

SNS2 value for the input delta_x_all_input.mat, which consists out of the 

arbitrary inputs of all key factors.  

To recreate the exact same results as in this work, it is recommended to use the saved 
arbitrary input generated for the main test series. Or directly input the corresponding 
RMSE values and then run the las section of the respective script without running the 
simulation. 
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D Simulink Subsystems 

The section shows the subsystems described throughout the Chapter 4 and 5. This 
shall serve as an aid for orientation in the Simulink model 
System_8b_allfilters.slx. 

  
Fig. D-8: First level of the Simulink model.   

  
Fig. D-9: InversePendulum1DoF block with transformation to sensor frame and switch to account 

for mass due to gas burn.  
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Fig. D-10: 1-DoF inverse pendulum Dynamics block with non-linear DE and Integrator, 

Second-Order block.   

  
Fig. D-11: The SensorModelGyroY block. 

  
Fig. D-12: The AccelerometerX block. The AccelerometerZ block is similar. 
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Fig. D-13: Complementary Filter Simulink Model   

  
Fig. D-14: The Kalman filter with IAE-extension Simulink model.   
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E Additional Simulation Results 

The section comprises all graphs which are of secondary interest for the evaluation. 
This includes the preliminary test results and 𝑅𝑀𝑆𝐸𝜃̂ scatter plots. To repeat the 

experiments, the input distributions and output distribution were saved for every tested 
factor. 

 Trajectories 

This section shows the performance of the system for the other two established 
trajectories, 𝑇𝑚𝑜𝑑𝑒 = 1 and  𝑇𝑚𝑜𝑑𝑒 = 2. 

 
Fig. E-15: 𝑇𝑚𝑜𝑑𝑒 = 1 for the P2PMAF+CF 

configuration. 

 
Fig. E-16: 𝑇𝑚𝑜𝑑𝑒 = 1 for the AKF configuration. 

The AKF shows a better performance for the 𝑇𝑚𝑜𝑑𝑒 = 1. However, both filters manage 
to stabilize the pendulum after a disturbance. 

 
Fig. E-17: 𝑇𝑚𝑜𝑑𝑒 = 2 for the P2PMAF+CF 

configuration. 

 
Fig. E-18: 𝑇𝑚𝑜𝑑𝑒 = 2 for the AKF configuration. 

For 𝑇𝑚𝑜𝑑𝑒 = 2, an advantage of the AKF becomes evident. Once the Kalman gain 
converges towards the optimal value, the estimation accuracy surpasses the 
P2PMAF+CF configuration which does not change its gain. 
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 Quantization Error 

The quantization is a random error process which all sensors exhibit. It depends on 
the available bit size, 𝐵, of the IMU and the measurement range. A measurement range 

of 𝑎𝑟𝑎𝑛𝑔𝑒 = 4 g – with the minimum measurable value being −2 g and the maximum 

being 2 g – on the accelerometer results in the quantization error shown in Fig. E-19.  

  
Fig. E-19: Quantization error resulting from rounding on the x-axis of the accelerometer.   

At its peak the quantization error reaches 𝑎𝑄𝐸,𝐴,𝑥 = 30 μg, which not enough to further 

analyze it in the main test series. If the measurement range on the accelerometer is 
increased to the maximum of 𝑎𝑟𝑎𝑛𝑔𝑒 = 32 g, the maximum quantization error increases 

to 𝑎𝑄𝐸,𝐴,𝑥 = 244 μg. This was not enough the influence the performance of the control 

system. Therefore, the quantization error will be labeled a nuisance factor. 

 Environmental Temperature  

For the environmental temperature no noticeable performance degradation could be 
identified in the preliminary test series for the AKF. It will not be further analyzed. 
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Fig. E-20: AKF histogram for preliminary test 

result of 𝑇𝐸  with 𝐿𝑝𝑟𝑒 = 100 runs and 

𝜇(𝛿𝑇𝐸) = 1.384 ° and 𝜎𝑅𝑀𝑆𝐸(𝛿𝑇𝐸) =
0.064 °. 

 
Fig. E-21: AKF scatter plot preliminary test result 

for 𝑇𝐸  with 𝐿𝑝𝑟𝑒 = 100 runs. 

 

 Switching Time 

For the actuator switching time a simulation related problem occurred which may 
possibly have a negative impact on the performance. The zero-crossing detection was 
deactivated for some simulation runs, resulting two levels of estimation performance 
on the P2PMAF+CF configuration Fig. E-22. The AKF was not affected by this issue. 

 
Fig. E-22: 𝑅𝑀𝑆𝐸𝜃̂(𝑡𝑠𝑡) scatter plot for 𝐿 = 400 

runs. 

 
Fig. E-23: 𝑅𝑀𝑆𝐸𝜃̂(𝑡𝑠𝑡) scatter plot for 𝐿 = 400 

runs. 

 

 Weight 

To thoroughly explore the design space the range was increased to 𝑅𝑚0
= 5 %. 

Therefore, formulating the MATLAB input:  

delta_m_0 = normrnd(5,5*0.05,400,1) 
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The graphs below show the histogram and the scatter plot of the P2PMAF+CF 
configuration.  

 
Fig. E-24: 𝑅𝑀𝑆𝐸 histogram for 𝑚0, 𝑅 = 5 %, 

𝜇𝑅𝑀𝑆𝐸 = 1.627  ° and 𝜎𝑅𝑀𝑆𝐸 = 0.117 °. 

 
Fig. E-25: 𝑅𝑀𝑆𝐸 scatter plot for 𝑚0, 𝑅 = 5 % and 

a second-order exponential fit. 

The histogram indicates that the performance of the CF configuration has a probability 
of 68.27 % to fall within one standard deviation, 𝜎𝑅𝑀𝑆𝐸 = 0.117 °, from the mean for the 
given input range.  

 𝑝(𝑅𝑀𝑆𝐸 = 1.627 ± 0.117 [°]) = 68.27 [%]. Eq. ( E–20 ) 

A second-order exponential model was fitted to the scatter plot. It can be approximated 
with the function:  

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑚0) = 0.828 𝑒0.1334𝑚0 + 1.576 ∗ 10−15𝑒5.647𝑚0  [°] Eq. ( E–21 ) 

A maximum controllable weight is revealed and can be calculated with 

 𝑚0,𝑚𝑎𝑥,𝐶𝐹 = 𝑚0(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐶𝐹 = 𝐹35 = 2.5 [°]) = 5.963 [kg]. Eq. ( E–22 ) 

The histogram with the PDF for the AKF configuration is shown in Fig. E-26 and the 
scatter plot in Fig. E-27. 
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Fig. E-26: 𝑅𝑀𝑆𝐸 histogram for 𝑚0, 𝑅 = 5 %, 

𝜇𝑅𝑀𝑆𝐸 = 1.393 ° and 𝜎𝑅𝑀𝑆𝐸 = 0.104 °. 

 
Fig. E-27: 𝑅𝑀𝑆𝐸 scatter plot for 𝑚0, 𝑅 = 5 % and 

second-order exponential fit . 

The histogram indicates that the performance of the AKF configuration has a 
probability of 68.27 % to fall within one standard deviation, 𝜎𝑅𝑀𝑆𝐸 = 0.104 °, from the 
mean for the given input range. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.393 ± 0.104 [°]) = 68.27 [%]. Eq. ( E–23 ) 

A second-order exponential model was fitted to the scatter plot. It can be approximated 
with the function:  

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑚0) = 2.338 𝑒−0.150𝑚0 + 1.450 ∗ 10−4𝑒1.503𝑚0 Eq. ( E–24 ) 

A maximum controllable weight is revealed and can be calculated with 

 𝑚0,𝑚𝑎𝑥,𝐴𝐾𝐹 = 𝑚0(𝑅𝑀𝑆𝐸𝑓𝑖𝑡,𝐴𝐾𝐹 = 2.5 [°]) = 6.183 [kg].  Eq. ( E–25 ) 

 Centre of Mass 

The input distribution of the distance from the pivot point to the point mass location, 
𝑙𝐶𝑀, is calculated with a range of 𝑅𝑙𝐶𝑀

= 5 %. The value was chosen because the actual 

center of gravity might deviate by large quantities from the estimated reference value 
once the final RCS design is chosen. The results to the 𝑅 = 5 % range are comparable 
to the mass variation with the same range. The RCS fails to control the pendulum for 
large positive deviations from the reference value. This shall be considered for later 
design considerations. The MATLAB function with the corresponding values is: 

delta_l_CM = normrnd(0.667,0.667*0.05,400,1); 

The resulting plots for the CF+P2PMAF configuration are shown in Fig. E-28 and Fig. 
E-29.   
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Fig. E-28: 𝑅𝑀𝑆𝐸 histogram for 𝑙𝐶𝑀, 𝜇𝑅𝑀𝑆𝐸 =

1.634 ° and 𝜎𝑅𝑀𝑆𝐸 = 0.110 °. 

 
Fig. E-29: 𝑅𝑀𝑆𝐸 scatter plot for 𝑙𝐶𝑀 and a 

second-order exponential fit. 

The histogram indicates that the performance of the CF configuration has a probability 
of 68.27 % to fall within one standard deviation, 𝜎𝑅𝑀𝑆𝐸 = 0.110 °, from the mean for the 
given input range. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.634 ± 0.110 [°]) = 68.27 [%]. Eq. ( E–26 ) 

A second-order exponential model was fitted to the scatter plot. It can be approximated 
with the function:  

 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑙𝐶𝑀) = 0.986 𝑒−0.756𝑙𝐶𝑀 + 1.382 ∗ 10−15𝑒42.720𝑙𝐶𝑀 Eq. ( E–27 ) 

The histogram with the PDF for the AKF configuration is shown in Fig. E-30 and the 
scatter plot in Fig. E-31. 

 
Fig. E-30: 𝑅𝑀𝑆𝐸 histogram for 𝑙𝐶𝑀, 𝑅 = 5 %, 

𝜇𝑅𝑀𝑆𝐸 = 1.389 ° and 𝜎𝑅𝑀𝑆𝐸 = 0.101 °. 

 
Fig. E-31: 𝑅𝑀𝑆𝐸 scatter plot for 𝑙𝐶𝑀, 𝑅 = 5 %,  

and second-order exponential fit. 

The histogram indicates that the performance of the AKF configuration has a 
probability of 68.27 % to fall within one standard deviation, 𝜎𝑅𝑀𝑆𝐸 = 0.060 °, from the 
mean for the given input range. 

 𝑝(𝑅𝑀𝑆𝐸 = 1.389 ± 0.101 [°]) = 68.27 [%]. Eq. ( E–28 ) 

A second-order exponential model was fitted to the scatter plot. It can be approximated 
with the function:  
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 𝑅𝑀𝑆𝐸𝑓𝑖𝑡(𝑙𝐶𝑀) = 10.540𝑒−4.293𝑙𝐶𝑀 + 0.012𝑒6.226𝑙𝐶𝑀. Eq. ( E–29 ) 

The output results for the two filter configurations are summarized in the table below. 

Table E-1: Test results for both filter configurations with key factor 𝑙𝐶𝑀. 

Filter Range STD Mean PDS 

P2PMAF+CF 
5 [%] 

0.110 [°] 1.634 [°] 0.558 [−] 

AKF 0.101 [°] 1.389 [°] 1.067 [−] 

 Gyroscope Bias 

The residual bias on the gyroscope can result from bias instability, described in 4.5 , 
or it can  be the result of a poor calibration procedure. For consumer grade sensors 
there is also a ON / OFF bias change. The bias changes after deactivation and 
reactivation. The effect of the residual bias may lead to a drift in the estimation of the 
attitude. With the applied filters, this effect was successfully reduced. The following 
graphs show the influence of an equally distributed residual bias input over a range of 
𝑅𝜃̇𝑅𝐵,𝐺,𝑦

= 50 %. 

P2PMAF+CF: 

 
Fig. E-32: CF histogram preliminary test for 𝜃̇𝑅𝐵,𝐺,𝑦, 

𝑅𝜃̇𝑅𝐵,𝐺,𝑦
= 50 % and 𝐿𝑝𝑟𝑒 = 100 runs. 

 
Fig. E-33: CF scatter plot preliminary test for  

𝜃̇𝑅𝐵,𝐺,𝑦, 𝑅𝜃̇𝑅𝐵,𝐺,𝑦
= 50 % and 𝐿𝑝𝑟𝑒 = 100 

runs and linear fit model. 

AKF: 
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Fig. E-34: CF histogram preliminary test for 𝜃̇𝑅𝐵,𝐺,𝑦, 

𝑅𝜃̇𝑅𝐵,𝐺,𝑦
= 50 % and 𝐿 = 400 runs. 

 
Fig. E-35: CF scatter plot preliminary test for  

𝜃̇𝑅𝐵,𝐺,𝑦, 𝑅𝜃̇𝑅𝐵,𝐺,𝑦
= 50 % and 𝐿 = 400 runs 

and linear fit model. 

 Accelerometer Noise 

To formulate the intersection function between the fitted surface and F35, the 
accelerometer noise input was increased to: 

delta_sigma_A = 0.1 + (0.5-0.1) * rand(400,2);  

This resulted in the following scatter plots: 

 Tuning Constant  

The tuning constant 𝐶 was reduced on a main test series setup to improve the result. 
It was reduced to 𝐶 = 0.5, which succeeded in improving the performance of the AKF. 
The number of outliers was reduced to 7. 

 
Fig. E-36: P2PMAF+CF 𝑅𝑀𝑆𝐸 scatter plot for 𝝈𝐴 

with multivariate linear regression fit. 

 
Fig. E-37: AKF 𝑅𝑀𝑆𝐸 scatter plot for 𝝈𝐴 with 

multivariate linear regression fit. 
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Fig. E-40: All 400 true trajectories for varying all key input factors with the given distributions and 𝐶 =

0.5. 

 

 
Fig. E-38:  Response Gamma distribution for  

𝐶 = 0.5 with  𝜎𝑅𝑀𝑆𝐸𝑡𝑜𝑡 = 0.412 ° and 

𝜇𝑡𝑜𝑡 = 1.660 °. 

 
Fig. E-39:  CDF with 𝑐(𝜇𝑡𝑜𝑡) = 0.5 and 𝐶 = 0.5. 


