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Zusammenfassung

Die WARR e.V. beteiligt sich am langfristigen Ziel, einen européischen Kleinsatelliten-
Startanbieter zu etablieren, indem sie ein Kaltgas-Lageregelungssystem (Englisch:
reaction control system, RCS) entwickelt, um die Oberstufe einer suborbitalen
Technologiedemonstrator-Rakete wahrend einer instabilen Flugphase zu stabilisieren.
Das RCS wird auf einer bodengebundenen Testanlage getestet, die einem inversen
Pendel ahnelt. Diese Arbeit zielt darauf ab, die RCS-Entwicklung zu unterstitzen,
indem ein Filter zur Lagebestimmung mit kommerziell erhaltlichen Komponenten
(Englisch: commercial-of-the-shelf-components, COTS) entwickelt wird. Zwei
Filteralgorithmen werden in einer Simulink-Umgebung entwickelt und getestet, welche
aus mathematischen Modellen aller relevanten RCS-Subsysteme besteht. Einer der
Algorithmen, basiert auf einem Komplementar Filter, wahrend der andere auf einem
adaptiven Kalman Filter basiert. Um den Tuning- und Implementierungsprozess der
Filter auf dem Mikrocontroller zu erleichtern und die Grenzen des RCSs aufzuzeigen,
werden die Filteralgorithmen durch Methoden der Statistischen Versuchsplanung in
einem Monte-Carlo-Simulationsexperiments charakterisiert. Durch Kategorisierung
und Verwendung der quadratischen Sigma-normierten Empfindlichkeit werden far
jeden Filter die wesentlichen leistungsbeeintrachtigenden Faktoren ermittelt. Abh&éngig
von der Filterkonfiguration zeigen sich die Latenz und das Gyroskoprauschen als
besonders schadlich fir die RCS-Performanz, welche durch die Wurzel aus dem
gemittelten Fehlerquadrat der wahren Trajektorie zur vorgegebenen Trajektorie
bestimmt wird. Insgesamt erfullen beide Filter die an sie gestellten funktionalen
Anforderungen. Wobei die Kalman Filter-basierte Variante eine bessere mittlere
Performanz und die Komplementar Filter-basierte Variante eine héhere Robustheit
bietet.



Abstract

The WARR e.V. participates in the long-term endeavour to establish a European small-
satellite launch provider by developing a cold gas reaction control system (RCS) for
stabilizing the upper stage of a suborbital technology demonstrator during instable
flight. The RCS is tested on a ground-based test facility resembling an inverse
pendulum. This thesis aims to support the RCS development by designing a filter for
attitude determination with commercial-of-the-shelf-components (COTS). Two filter
algorithms are developed and tested in a simulation-only Simulink environment
consisting of mathematical models of all relevant RCS subsystems. The first will be
based on a complementary filter, while the other is based on an innovation-based
adaptive Kalman filter. To facilitate the tuning and implementation process of the filters
on the microcontroller and to reveal the limitations of the RCS, the filter algorithms will
be characterized by conducting a designed Monte Carlo simulation experiment.
Through categorization and the use of the squared sigma-normalized sensitivity,
performance impairing factors will be determined for each filter. Depending on the filter
configuration, the computational delay and the gyroscope noise are revealed as
especially detrimental to the RCS performance, which is measured as the root-mean-
square error of the true trajectory to the commanded trajectory. Overall, both filters
meet the functional requirements placed on them. However, the Kalman filter-based
configuration provides a superior mean performance, while the complementary-based
configuration provides a higher robustness.
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Description
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[x| Corresponds to the absolute value of x

Xklk-1 Expresses x; at a time step k based on a previous value xj_;

df (x)/0ox Expresses the partial derivative of a function f(x) with respect to x
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1 Motivation

Every rocket needs a payload. The main purpose of a rocket is to transport this payload
from point A to point B. This task becomes extremely costly if point B happens to be in
space. Although a payload in space may generate an inconceivable amount of benefit,
private companies, universities, and economically weak nations often lack the financial
means to afford a “ticket” to space. However, recent development in the privatization
of space, with companies like SpaceX and Blue Origin at the forefront, promises to
advance space technologies at an unprecedented rate, vastly lowering the cost of
space transportation. This promise “piques” the interest of an increasing number of
companies and universities wanting to find both market and research potential in an
orbit around Earth. NewSpace — as this advent of modern spaceflight is referred to by
the media [1] — is represented by Fig. 1-1 which indicates a growing interest in the
small satellite market.
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Fig. 1-1: Market forecast by SpaceWorks Enterprise Inc.®. Projections based on future plans of
developers and programs indicate nearly 2400 nano / microsatellites will require a launch
from 2017 through 2023 [2].

A significant part of projects involving small satellites stem from universities and private
companies [3], which emphasizes the need for a cost-effective, customized, launch
responsive and placement flexible space transport system. This demand can no longer
be met by “piggyback” missions on traditional medium-to-heavy-lift launchers and is
sparking the development of so-called microlaunchers: a technology that ignites the
interest of a generation of space enthusiasts such as those within the Scientific
Workgroup for Rocketry and Spaceflight (WARR) at the Technical University of
Munich.

1.1 Introducing WARR Exosphere

The student group WARR e.V. (German: Wissenschaftliche Arbeitsgemeinschaft fir
Raketentechnik) began in 2017 with theoretical work on a microlauncher, which is an
orbital launcher with a payload of a few kilograms. Comparable launchers have already
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been developed such as the “Electron” rocket from the company Rocket Lab and the
Japanese SS-520 [4]. Until spring 2018, the first two microlauncher workshops
produced two carrier concepts with payloads ranging from 25 to 50 kilograms. In order
to obtain the necessary funding for the realization of such a project, WARR decided to
develop a suborbital technology demonstrator for testing all necessary technologies
for an orbital carrier. The project called "Exosphere" was launched to develop the two-
stage suborbital rocket dubbed WARR Experimental Missile 4 (WARR Ex-4). The
development of the WARR Ex-4 should be as cost-effective as possible in the shortest
possible time. Therefore, commercial-of-the-shelf (COTS) components shall be used.
Some important components, which are necessary for the technology demonstration
of an orbital rocket and not available on the market, are the stage adapter for
performing the separation of the two stages, the recovery system for high re-entry
speeds, and the active attitude control system. The last of which is also referred to as
a reaction control system (RCS) and has the task of controlling and stabilizing the
upper stage of the WARR Ex-4 along the vertical axes during a long thrustless flight
phase. This shall allow the second stage thrusters to ignite at an optimal attitude. The
development of the RCS was the primary focus of WARR’s third microlauncher
workshop and will be the future focus of project Exosphere endeavors. All planned
project phases, including the development of a test stand and precursor tests on the
WARR EX-ONE, are detailed in Section 3.1.

1.2 Significance of this Work in the Project

As a part of project Exosphere, this thesis aims to support the development of the RCS.
To control the attitude of any object, first, its attitude needs to be determined as
accurately as possible. This is achieved through a multitude of sensors. However,
COTS sensors provide faulty measurements to the control algorithm, degrading the
accuracy and stability of the RCS. Therefore, the measurements of the different
sensors are filtered to extract the optimal estimation of the current attitude of the
system. This process will be referred to as attitude estimation based on inertial
sensors. Applying this concept to the cold-gas RCS and identifying performance
degrading factors will be the aim of this thesis. For this purpose, the current advances
in microlauncher RCSs, COTS sensors, and filter algorithms will be examined in the
sections 2.1-2.3. Following this, Chapter 3 will detail the objective of this thesis in the
form of three research questions, place it in the overall context of the project, and
elaborated on the concept behind testing the RCS. The main body of this work will
explain the implementation of a plant model, a preliminary control algorithm (see
Chapter 4), and multiple sensor data filtering algorithms (see Chapter 5) in a simulation
environment. A designed Monte Carlo simulation experiment will be performed,
evaluated, and discussed to characterize the filter throughout both Chapter 6 and 7.
To conclude this work, a summary and the project outlook is given in Chapter 8.

Additionally, a guide on how to use the Simulink model of the RCS, including all
mentioned subsystems, is appended in C.



2 State of the Art

The following sections give an overview of the state-of-the-art technologies crucial for
attitude determination and control on small-scale suborbital rockets. In the project it
was decided to settle on an RCS with cold gas thrusters over other more complex
technologies. A justification for this as well as an extensive list of viable attitude control
technologies on microlaunchers is provided in the semester thesis of fellow team
member Till Assmann [5], who worked on the RCS hardware design.

2.1 Cold Gas Reaction Control Systems on Suborbital Missiles

In cold gas systems, a gas is stored in a tank at a sufficiently high pressure and
expanded through a nozzle. Inert gases such as nitrogen, helium, krypton, argon, but
also hydrogen and methane are often utilised [6]. However, it is also possible to use
gases which are present in liquid form at high pressure. These include carbon dioxide,
butane, propane, dinitrogen monoxide and ammonia among others. However, this
often leads to the same problems as with liquid engines such as fuel swabbing and the
need to heat the pipes and tanks, so that the gas remains gaseous [7]. An example of
a suborbital rocket using an RCS with cold gas thrusters is the FALCO-4 model rocket.

The FALCO-4 was developed for vertical stabilization experiments on a model rocket
at low speeds. It used 0.068 kg of carbon dioxide as a propellant, which was stored at
60 bar in a gas cartridge [8]. A pressure regulator expands the gas to 6 bar. The system
has four valves, each with one nozzle and none of these are Laval nozzles. The gas
flows out directly from the open end of the gas line after the valve. The four nozzles
are installed with an offset to the longitudinal axis of the rocket. Each nozzle can
achieve a maximum thrust of 0.37 N [8]. The RCS data is compiled in Table 2-1.

Table 2-1: FALCO-4 RCS specifications from [8].

Parameter Value

Overall RCS mass 0.834 [kg]
Propellant mass 0.068 [kg]
Thrust 0.32 —0.37 [N]
Nozzle chamber pressure 6 [bar]
Tank pressure 60 [bar]
Number of nozzles 4 [—]

Another example of a suborbital rocket using a cold gas RCS is the SHEFEX-II
developed by the German Aerospace Center (German: Deutsches Zentrum flr Luft-
und Raumfahrt, DLR). In total, the whole control system includes three colds gas
RCSs. One for precision control before ignition of the second stage, one for roll rate
control during precision control, and one triaxial RCS for alignment of the upper stage
after burnout for position update, alignment in the re-entry direction, and rotational rate
damping during re-entry. For more information on this mission refer to [9].
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Orbital rockets like the Falcon 9 by SpaceX use nitrogen fuelled cold gas RCSs for
attitude control on the upper stage during the phase without thrust, and for attitude
control on the lower stage during landing [10].

Advantages of cold gas RCSs are low complexity, relative security and reliability, low
cost, the possibility to use non-toxic fuels and the ability to work in pulsed mode.
However, only a relatively low thrust can be produced per nozzle [6].

2.2 Micro-Electro-Mechanical Systems Inertial Measurement Unit

Micro-electro-mechanical systems (MEMS) is a process technology used to create tiny
integrated devices or systems that combine mechanical and electrical components.
These devices are fabricated using integrated circuit batch processing techniques and
can range in size from a few micrometres to millimetres. These systems have the ability
to control, actuate and sense on the microscale [11]. The latter will be of importance
for the inertial measurement unit and hence for all upcoming sections.

Inertial sensors comprise accelerometers and gyroscopes. An accelerometer
measures a specific force and a gyroscope measures an angular rate, both without an
external reference. Devices that measure the velocity, acceleration, or angular rate of
a body with respect to features in the environment are not considered inertial sensors
[12]. Most types of accelerometer measure the specific force along a single sensitive
axis. Similarly, most types of gyroscopes measure the angular rate about a single axis.
An inertial measurement unit (IMU) combines multiple accelerometers and gyros,
usually three of each, to produce a three-dimensional measurement of specific force
and angular rate [12].

MEMS IMUs have a significant cost, power consumption, mass and size advantage
over conventional mechanical or optical (only on gyroscopes) inertial sensor designs.
However, most MEMS sensors suffer from relatively poor performance on bias
instability, scale factor instability and noise, which emphasizes the importance of
extensive calibration [12, 13]. The performance degrades even further for the lowest
grade of inertial sensors — the consumer grade. The popular MPU-6050 [14] is an
example of a low-end consumer grade IMU primarily used in smartphones. Being mass
produced, it impresses with high availability and cost efficiency, which qualifies it as a
COTS component for the RCS. It incorporates a 3-axis MEMS gyroscope and
accelerometer on the same silicon die. The following sections explain the working
principle of two inertial sensors.

2.2.1 Accelerometers

MEMS accelerometers are commonly realized as pendulous accelerometers or
vibrating beam accelerometers [12]. In both cases, a proof mass is free to move with
respect to the casing along the sensitive axis. In the MPU-6050, a closed-loop force-
feedback pendulous accelerometer is integrated [15]. This will be explained first.

2.2.1.1 Pendulous Accelerometers

In a force-feedback accelerometer, an electromagnet mounted on a pair of permanent
magnets of opposite polarity, mounted on either side of the casing, is used to maintain
the pendulous arm at a constant position with respect to the casing. The capacitive or
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resistive pick-off detects departures from the equilibrium position. The force exerted by
the electromagnet, which keeps the pendulous at the equilibrium point and parallel to
the casing, is measured [12]. Fig. 2-1 depicts a mechanical force-feedback pendulous
accelerometer.

L —— 1| Permanent
T~ magnet (+)
:\v
) N ¢ L Pendulous
Sensitive — arm
axis S~
~—] ™ Hinge
\.
\.
™ Case
Capacitive Proof Permanent Electromagnet
pick-off mass magnet (-)

Fig. 2-1: Sketch of a mechanical closed-loop force-feedback pendulous accelerometer from [12].

The closed-loop configuration ensures that the sensitive axis remains aligned with the
accelerometer casing, while the electromagnetic torquer offers much greater range
and linearity than the open-loop accelerometer, which consists of a spring and a pick-
off [12].

2.2.1.2 Vibrating-Beam Accelerometers

Another possible way of designing a MEMS accelerometer is the so-called vibrating-
beam accelerometer. In this configuration, the proof mass is supported along the
sensitive axis by a vibrating beam, largely constraining its motion with respect to the
casing. When a force is applied to the accelerometer casing along the sensitive axis,
the beam is compressed or stretched while pushing or pulling the proof mass. The
beam is driven to vibrate at its resonant frequency by the accelerometer electronics.
As the beam is compressed, the resonant frequency is decreased, while tensing it will
cause the opposite. Now, the specific force along the sensitive axis can be determined
by measuring the modified resonant frequency by [16]. Vibrating-beam accelerometers
are considered an open-loop device; however, the proof mass is essentially fixed.
Therefore, no variation in the sensitive axis with respect to the casing occurs.

Fig. 2-2 outlines the operating principle of the vibrating-beam accelerometer and Fig.
2-3 shows the concept of high-resolution quartz vibrating-beam accelerometer
developed by [16]. In Fig. 2-2, F, represents the resonant frequency, while F
represents the modified measured frequency. The acceleration denoted with I" points
in the direction of the sensitive axis. This notation is exclusive to this section and will
not be used again.
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Fig. 2-2: Principle of operation of the Fig.2-3: Concept of a 50ng quartz vibrating-beam
vibrating-beam accelerometer inertial accelerometer by [16].

taken from [16].

Such MEMS accelerometer designs have a typical total operating range of a, 4,4, =
4 g. This translates to a minimum measurement of —2 g and a maximum measurement
of 2 g. By increasing the operating range of such a device, the quantization error is
increased as well. For traditional mechanical accelerometer designs, the operating
range can be 200 g in total [12]. The quantization error and other error sources are
explained in Section 4.5.

Furthermore, novel graphene-based accelerometer designs, making use of optical and
MEMS technology, promise to combine higher accuracy with the advantages of MEMS
[17]. However, due to its novelty, the technology cannot be considered a COTS
component.

2.2.2 Gyroscopes

All MEMS gyroscopes operate on the vibratory principle [12]. Therefore, optical
gyroscope designs like the ring laser gyroscope or the interferometric fiber-optic
gyroscope will not be explained within this section.

A vibratory gyroscope comprises an element that is driven to vibrate at its natural
frequency. The vibrating element may be a string, beam, ring or hemisphere among
other structures. Fig. 2-4 illustrates a string mounted on a rectangular support or mount
which vibrates about the centre of the gyroscope frame. The string tends to vibrate in
the plane spanned by the drive axis and the input axis, even if its support rotates. The
Coriolis acceleration instigates a harmonic motion along the axis perpendicular to both
the driven vibration and the angular rate vector input axis. The amplitude of this motion
is proportional to the angular rate w around the input axis. A rotation about the drive /
vibration axis does not produce a Coriolis acceleration. Therefore, only rotation about
the input axis leads to significant oscillation in the output axis [12].

Fig. 2-5 shows a gyroscope design with a ring as a vibratory structure, with the input
axis still being perpendicular to the drive and output axis. Here, four drive units are
positioned at right angles around the input axis and four detectors are placed at
intermediate points. When the gyro is not rotating, the detectors are at the nodes of
the vibration mode and therefore, no signal is detected [12]. When an angular rate, w,
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is applied, the vibration mode is rotated about the input axis, allowing the pick-offs to
measure an amplitude proportional to the input.

Lol el
Output axis @ l—’o """ veraion U @

mode

C .................. . F
Vibrating PO Drive axis E:—Ol TO_gE E Q E

element y 7
Input @ 2 <F’x @ @
Pick-off

Mount axis
Output Drive
Vibration mode is rotated

axis | axis element

Drive element

Fig. 2-4: Axes of a vibratory Fig.2-5: Vibration modes of ring, cylinder and hemispherical
gyroscope with a string as vibratory gyroscope [12].
the vibrating element [12].

The vibratory gyroscope designs have a significant cost and power consumption
advantage over the other mentioned designs. Operating ranges can reach from
Wrange = £31ad/s 10 Wyrgnge = £1207ad /s [12].

Most MEMS gyroscope designs suffer from unreliability caused by unstable micro-
mechanical structures. Further, vibrations and accelerations of high magnitude may
cause additional errors, which are referred to as acceleration sensitivity [18].
Additionally, the complex electronic measuring circuitry increases the cost, with MEMS
gyroscopes usually being more costly than MEMS accelerometers [13]. Therefore,
novel chip-scale integrated optical gyroscopes are being researched which promise
great potential in the low-cost consumer electronics market [18].

2.3 Attitude Estimation Based on Inertial Sensors

The measurements of the accelerometer and the gyroscope can both be used to
determine the attitude of the rocket body. However, the accelerometer suffers from
high measurement noise, while the gyroscope suffers from integration drift. To
overcome these issues, an estimation algorithm is implemented on a microcontroller,
which combines both measurement information. These estimation algorithms are
referred to as filters. Combining the IMU with the filter algorithm and any global
navigation satellite system (GNSS) receiver results in an inertial navigation system
(INS). However, at this stage of the project, a GNSS module is not required. Therefore,
the attitude determination relies solely on inertial sensors. A multitude of filter
algorithms can be used for this task. However, more sophisticated estimation
algorithms rely on high computing power, which is limited by the flight computer.

In commercial unmanned aerial vehicles (UAV), the complementary filter is often
applied as an attitude estimation algorithm because of its simplicity and computational
efficiency [19]. However the accuracy of such an algorithm is usually worse compared
to the Kalman filter [20, 21]. The Kalman filter is a recursive estimator which
theoretically gives the optimal estimation of a state vector of the true system by using
a dynamic model and measurements, both corrupted with random noise of known
statistics [22].
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The Kalman filter comes in different “flavours” with the most important being the
standard Kalman filter (KF), the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF). The EKF linearizes the nonlinear model equation about the current
state estimate, while the standard KF does not [12]. This, however, requires the
calculation of the Jacobian matrix, which requires higher computational effort [20]. The
UKEF is characterized by a set of sigma points to approximate a Gaussian probability
distribution. The accuracy of the estimation for the UKF is expected to be higher than
the EKF. However, the computational effort per iteration increases as well [12].

Going through the four mentioned filters, increasing accuracy seems to trade with
increasing computational effort. Considering the limited computational power of the on-
board computer, the Teensy 3.6 (see 3.1.1), first, the simple complementary filter and
the standard Kalman filter shall be analysed. If, based on this, the project requirements
in section 3.1.3 can be fulfilled, more sophisticated algorithms will not be implemented
in the simulation. The theoretical background of all implemented filters is given in
Chapter 5.

After giving an overview of a selection of fundamental technologies involved in the
development of the RCS, the objective of this thesis is substantiated, and the concept
of the RCS is described in the next chapter.



3 Objective of the Thesis

Introduced in 1.2, the general aim of this work is to design an appropriate filter for the
stabilization and control of the second stage of a suborbital launch vehicle. Under the
assumptions, which will be explained in 3.1, the second stage is simplified to 1-DoF
inverse Pendulum at the current phase of the project. This results in the following
research questions regarding the design (Q1) and the characterization (Q2 and Q3) of
the filter:

Q1: Which filter design can reliably estimate the attitude of a 1-DoF inverse
pendulum, stabilized by a cold gas reaction control system, using the
measurements of a cost-effective IMU, to control the system under the given
requirements and circumstances?

In this sense, the reliability of the filter shall be defined as its ability to meet the
performance requirements (see 3.1.3) while being confronted with the problems arising
from choosing consumer grade IMUs (see 2.2), relatively high-g dynamics (see 4.4)
and limited processing power of the on-board microprocessor (see Table 3-2).

Q2: What are the key factors influencing the control system?

Key factors shall be defined as a set of model input variables, which critically impair
the performance of the system (see 6.1).

Q3: Which rules apply to tuning the control system?

Formulating the tuning rules shall address the questions: What are the limits of the
RCS when varying key factors? Can tuning guidelines be formulated to support the
tuning process of the filter? In this sense, characterizing the filter will be achieved
through evaluating the whole control system performance.

Further, this document shall educate new and experienced fellow project members in
the underlying mechanics of the RCS and the test stand by addressing the research
guestions and providing a comprehensible simulation environment (see 3.2 and B).

3.1 Scenario Description

Before Project Exosphere, there was the ambitious long-term goal to design and build
a microlauncher, which can carry up to 50 kg of payload into a low earth orbit. To attract
interest in a sustainable German launch provider and to gain technical experience in
space bound multi-stage rockets, it was decided to test all necessary technology at a
smaller scale. This technology demonstrator will be a two-staged suborbital rocket
reaching space in a parabolic arc before falling back to earth just a few minutes later.

The WARR EX-4 suborbital rocket will be propelled by an already developed and
tested 10 kN hybrid engine, for the lower stage, and a 2 kN liquid engine for the upper
stage. The lower stage engine was developed by the WARR e.V. Rocketry team, while
the upper stage engine is currently being developed by a Munich-based aerospace
start-up. This leaves the structure, the staging system, the two-stage recovery system
and the RCS to be developed within Project Exosphere. Due to limited man-power, it
was decided to focus on the RCS which will actively stabilize the second stage after
separation during a thrustless coasting phase. The stabilization is mandatory to keep
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the rocket trajectory on a vertical path into space, eventually crossing the Karman-line
at 100 km height. The details of the WARR EX-4 mission are comprised in [5].

The development of the RCS was divided into six steps. The first steps comprise a
reduction of complexity by introducing a single DoF to be stabilized on an inverse
pendulum test stand. After scaling up to 3-DoF, the RCS will be tested and verified on
the WARR EX-ONE model rocket. All six steps are comprised in the table below.

Table 3-1: The six phases for developing the RCS.

Phase Goal

PO The RCS shall regulate the pitch axis of an inverse pendulum test stand with
external gas and power supply, while the yaw and roll axis are locked

P1 The RCS shall regulate the pitch and yaw axis of an inverse pendulum test stand
with internal gas or power supply, while the roll axis is locked

P2 The RCS shall regulate the pitch, yaw and roll axis of an inverse pendulum test
stand with internal gas and power supply

P3 The RCS shall be able to run a pre-programmed trajectory on the pendulum test
stand with internal gas and power supply

P4 Development of RCS flight version and testing on the inverse pendulum

P5 Testing the RCS flight version on a modified WARR EX-ONE model rocket

No dedicated inverse pendulum test stand is available to the WARR and therefore
must be designed as well. The following sections explain the concept behind the RCS
and the inverse pendulum test stand.

3.1.1 The Reaction Control System Concept

The baseline of our attitude control system design is a pressure-fed cold-gas RCS,
using nitrogen as a propellant, specifically tailored for its use during the thrustless
costing phase [5]. Thrust vectoring and Vernier thrusters, where excluded as a design
choice since they require the main engine to be active. The RCS was designed with
scalability in mind. Therefore, the basic actuator design will remain unchanged for
versions deployed on the test stand / WARR EX-ONE as well as those qualified for the
final suborbital rocket. This work will focus on the first-mentioned ones, which are
developed for the phases PO-P5.

The main hardware components of the RCS comprise: a carbon fiber reinforced
polymer (CFRP) tank used for paintball guns; a compact, light-weight pressure
regulator; a drain valve, fast solenoid nozzle valves; custom nozzles detailed in [5]; the
electric power distribution system; the MPU-6050 IMU and the microcontroller to run
the estimation and control algorithms. Fig. 3-1 illustrates the segments of the WARR
EX-ONE “Lenk” version.
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WARR EX-ONE “Lenk”

Peak  Actuator Segment Connection Unit Fluid Segment Engine Segment

Fig. 3-1: WARR EX-ONE “Lenk” version, with a diameter of 0.12 m, translated from [5].

Considering the main design goals, cost-efficiency, availability, size and weight, the
hardware mostly consists of COTS components. Important to this work will be the
actuator segment, illustrated in Fig. 3-2, which contains the nozzles and the solenoid
valves. These elements will decide on the maximum thrust and transient behavior of
the actuators which will have a major effect on the control system performance.

Body Tube

Connectors to

Connection Unit Drain Valve

Quick Coupling

Body Tube Low-Pressure Rupture Disc  Particle

Filter il ;,r.ﬂ/.‘

Nozzles

CFRP Tank

Tank Adapter

Solenoid Valves

| Check Valve
Nozzles Connectors for

Connection Unit Pressure High-Pressure Rupture Disc

I
Angle Adaptor Regulator

Fig. 3-2: Overview actuator segment of Fig. 3-3: Overview fluid segment of the WARR EX-ONE
the WARR EX-ONE “Lenk” “Lenk” translated from [5].
translated from [5].

Following the example of [8], a four nozzle configuration with offset to the center was
chosen to control the 3D attitude. This is expected to save space, cost and weight.
Hereby, the fast responding solenoid valves represent an especially costly component.

The fluid segment, the electronics segment and the actuator segment will be mounted
on the test stand for P1 and onwards. However, at the point this work was composed,
only two sufficiently fast acting solenoid valves were available to the WARR. For this
reason, and to further reduce the complexity of the stabilization task, all following
sections consider the 1-DoF case of PO and P1. Therefore, the hardware design team
calculates a maximum thrust of E,,, = 7 N per nozzle by using the available Festo
MHE4 solenoid valves [23], assuming nitrogen as the propellant. An overview of all
parameters needed for the Simulink model will be given in section 6.1 and throughout
Chapter 4.

The electronics segment of the RCS will contain the power supply, wiring and circuitry,
the on-board computer, the IMU and the communication module. The power supply
and circuitry board are, at the point of this work, still being developed. The on-board
computer was chosen to be a Teensy 3.6 (see Fig. 3-4). It is superior to the Arduino
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UNO in processing speed while being more compact. It comes equipped with a 12C
bus, which will be required when receiving the 16 bit measurements of the IMU at high
frequencies on six inputs. The specifications of the Teensy 3.6 are summarized in the
table below.

Table 3-2: Teensy 3.6 technical specification from

[25].

Feature Teensy 3.6

Processor MK66FX1M0OVMD18

Core Cortex-M4

Rated Speed 180 [MHz]

Flash Memory 512 [kB]

RAM 256 [kB]

Voltage 3.3[V]

EEPROM 4 [KB]
Fig. 3-4: Picture of the Teensy 3.6 taken from | |nterfaces USB, CAN, I2C, SPI,

[24]. Ethernet, SD, I12S

The MPU-6050 was chosen as the IMU, due to its low cost and availability. It will
measure the acceleration, a in m/s?, and the angular rate, w in °/s, along three axes.
However, for PO and P1 only the blue marked states will be filtered and fed to the
control algorithm:

Ay Wy ¢

a=[ay];w=[wy]= 9 . Eq<3—1)
aZ wZ '(/j

Now, the purpose of the RCS will be to control the angular deflection, 6, around the y-

axis of the inertial frame of the test stand to zero. This purpose is further defined by

the functional requirements in 3.1.3, after introducing the test stand design in the next
section.

3.1.2 The Test Stand

The test stand was designed with the goal in mind to simulate the instable flight of the
coasting phase for the EX-4 and the fin-stabilized flight of the EX-ONE. A simple
modifiable inverse pendulum fulfils this requirement.

The EX-4 coasting phase is not aerodynamically stabilized and therefore assumes
instable flight. Side winds will easily destabilize the rocket, which would diminish the
achievable vertical distance. This scenario cannot be tested on a classical pendulum
design, since it would not reproduce the behaviour of an instable-flying rocket as it is
considered a stable system. This problem is solved by inverting the pendulum and thus
positioning the RCS and together with the overall centre of mass above the pivot. In its
upright position, the inverted pendulum occupies an unstable position, thus requiring
an active control to remain upright. When the pendulum is deflected, the lever arm and
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thereby the occurring torque is proportional to the sine function of its angle. This is a
comparable response to a disturbance at the EX-4 coasting phase, making this design
well suited for the given task.

For the second scenario on the EX-One, the stable flight conditions can be simulated
by introducing a counterweight under the pivot to move the centre of mass below it. A
mission on this configuration could comprise simply holding a 8 = 5 ° deflection, with
the help of the RCS, over a specified period.

The final design, constructed by the testing team, includes: a Cardan joint at the pivot
to reduce asymmetrical inertia; modular mounting option; an adjustable end stop; the
option to lock all axes; a circular aluminium platform to attach the RCS including the
body tube; the possibility to mount a rotary encode on the pitch axis to evaluate the
RCS performance; a communications module to initiate a test run and receive data
from the rotary encoder.

At the time of drafting this thesis, the complete test stand infrastructure is not finalized.
The structure of the test stand with the body tube mounted on top is shown in Fig. 3-6.
It is important to distinguish between the rocket coordinate frames and the test stand
coordinate frames. The body-fixed coordinate frame of the rocket will originate at the
centre of gravity, which will which will be the pivot point as well. The inertial frame on
the actuator will originate at the pivot point as well, however this will not be the centre
of mass of the test stand. The actuator coordinate frames origin is placed along the
symmetry axes at the height of the actuators. For the test stand, this will roughly be
where IMU will be placed.
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Fig. 3-5:  WARR EX-ONE with the body-fixed Fig.3-6: Test stand with the inertial coordinate
coordinate frame, B, and actuator frame, I, and the actuator coordinate
frame coordinate frame, A. frame , A. Actuators not mounted.

The mass of the pendulum including the RCS was calculated to be m, = 5 kg [26]. The
dynamics of the pendulum will be considered for the model in section 4.1.

The circular structure in Fig. 3-6 will function as an end stop. It will be adjusted to 6 =
10 °, which gives a linear behaviour between gravitational force and deflection using
the small angle approximation. Since, the end stop resembles no physical behaviour
during a flight test, hitting it will disqualify the test run.

3.1.3 Requirements

A list of 67 requirements [27] were formulated to cover safety-related (SXX) and
functional demands (FXX) for the different project phases. A selection of requirements
relevant to this thesis are listed below:
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Table 3-3: Extract out of the requirements document [27] translated into English.

ID Description

FO1 The RCS shall stabilize the pendulum in the vertical direction around a fixed attitude

FO7 The angular deviation from the fixed attitude shall not be more than 1 °. In the case of
phase 0,1,2,3, this applies after the oscillation of the stabilization process from the
starting attitude has subsided

FO8 The RCS shall be able to stabilize the pendulum fort = 15s

F13 The RCS shall control & stabilize the pitch axis of the pendulum

F21 The RCS shall remain operational within a temperature range of -30 °C < Ty < +50 °C
F23 The mass of the RCS shall not exceed m = 4 kg

F24 The RCS shall remain functional after prolonged periods of inactivity of up to one hour

F32 Under no circumstances should the pendulum reach the end stop after the stabilization
process has begun

F33 When designing the controller, a phase margin of ¢z = 60° shall be provided in
accordance with MIL-F-9490D (USAF) [28]

F34 The overshoot shall not be greater than 6,5 = 60 % of the initial error to the
commanded trajectory

F35 The root-mean-square-error (RMSE) of the true trajectory to the commanded
trajectory shall not exceed RMSE = 2.5°

Therefore, F35 represents the minimum performance, in terms of RMSE, a simulation
run shall possess to be deemed successful. Introducing the RMSE as the main
performance measure.

3.2 Approach

The unusual circumstances of the project demand for a highly independent, cost-
effective and parallelized development and simulation procedure. This is introduced
in the next sections.

3.2.1 Development Procedure

The development procedure of the subsystems in the project is parallelized. This
enables a subsystem to incorporate design changes suggested by the results of other
team members’ design progress. This approach works for a frequently communicating
and interconnected team. However, it requires the team members to estimate design
parameters for the early development stage. This led to the reference values,
introduced in Chapter 6, which were used for a preliminary and a main test series. The
results of the preliminary and main test series of this work will help team members
evaluate importance and ranges of hardware design driving parameters.
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Since the RCS hardware is still being developed, the development and testing of the
controller and filter is performed in a simulation environment. Leveraging the expertise
of the WARR and collaborating institutes, a simulation-only approach was chosen as
a first step to save time, reduce costs, and provide a baseline for the later software
implementation. The chosen simulation environment is Simulink, a graphical simulation
environment for modelling, simulating and analysing dynamical systems developed by
The MathWorks Incorporated©. The utilized version is Matlab R2017b
SimulinkVersion 9.0 with the Continuous Toolbox Control, Design
Toolbox andthe Control System Toolbox installed.

3.2.2 Simulation Approach

For this approach, first, the test stand dynamics, the actuator model and the controller
were implemented in the simulation environment. The required parameters for the
models were mostly acquired from literature, datasheets and calculations by the
hardware design team. This model was used to tune the controller (see 4.3.1). Then
the model was extended by the sensor error model, which introduced the necessity for
an appropriate filter algorithm. With the finished model, extensive simulation test runs
can be executed, improving the control algorithms and providing valuable information
for further design iterations of hardware and software. In [29], a similar approach was
performed for the development of an RCS on a suborbital missile.

One drawback of this concept is that the test series will not consider hardware related
aspects, which are not covered by the simple mathematical models described in
Chapter 4. A software-in-the-loop (SIL) approach might be appropriate and will be
considered as the next step to this thesis. This topic will be thematized in Chapter 7.

3.3 Delimitation

As explained in 3.2.1, the workload was divided among the project members to cover
the design of the whole control system:

Till Assmann will develop the design of the solenoid valve actuators, the gas tank and
the pressure regulation and distribution system for applications on the test stand as
well as on the rocket concept [5, 26].

Matthias Beck will develop the three-dimensional model of the inverse pendulum (P2),
and subsequently the rocket, to design an appropriate control algorithm [30, 31].

Tim Klose will implement the algorithms developed in this thesis on the Teensy 3.6
microcontroller [32].

Therefore, all topics regarding microcontroller implementation, model fidelity, controller
design, optimization and stability analysis, hardware design, trajectory optimization are
covered by fellow project members and will not be addressed within this work.

Nevertheless, the whole control loop for 1-DoF, corresponding to P1, will be modelled
in Simulink to evaluate the performance of the filter and report back concerns and
considerations to team members. The utilized equations to model the respective
hardware and software elements will be detailed in the next chapter.
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4 Mathematical Simulation Model

To give an accurate evaluation of the filter without a functioning hardware setup, a
model of the controller, the actuators, the plant and the sensors as well as a desired
reference trajectory is needed.

For modelling in Simulink, the naming conventions defined by the MAAB guidelines
[33] are adopted. In order to intuitively differentiate between the different blocks and
their functions, the colour palette (see Fig. 4-1) proposed by New Eagle LLCs Simulink
Style Guide [34] is used.

Input [units] . - -

Data Type Conversion  To Workspace

Merge
0 b Math |:| N
Constant motohawk block Scope Outputlunits
2|
ot (e > <]
From From Subsystem Logical Goto
Workspace Operator

Fig. 4-1: Color palette designed by New Eagle LLC [34]. The motohawk block can be ignored.

The main level of the RCS-model can be accessed by selecting the RCS1-DoF block
(see Fig. D-8) on the first level and is depicted in Fig. 4-2. The input variables of the
model can be initialized either by the MATLAB script initialize RCS.m or through
the mask of the respective subsystem. Further information on the initialization and
handling of the model can be found in the appendix B.

Controlled System / Plant

GasMassCalculation

Controller

[C2) * q’? heta_e u_PID ) F_aif
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PIDController ‘BangBangSignalGenerator P
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InversePendulum1DoF

Filter

‘SensorModelGyroscope
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PrefilterAndCalculateTheta SensorModelAccelerometer
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Fig. 4-2: The whole control loop RCS1DoF, including controller, actuator, pendulum, sensor models
and the filter, resides at the second level of the Simulink model. The trajectory is generated
at the first level.
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Every block in Fig. 4-2 is referred to as a subsystem of the control loop. To avoid
confusion, the model presented in Fig. 4-2 will be referred to as the main model, while
a reduced model and an example model will be introduced in section 4.3.1 and 5.1.2,
respectively.

In the following sections every subsystem except the filter is derived.

4.1 Inverse Pendulum Mechanics

The test stand is modelled as a simple 1-DoF inverse pendulum without aerodynamical
damping or friction losses. This simplification stems on the assumption, that for the test
stand, aerodynamical damping forces and friction losses are negligible compared to
the gravitational and actuator force. The gravitational acceleration acts in the negative
direction of the established x-axis of the inertial frame and acts on the centre of mass
at the location Py, effectively reducing the rigid body of the entire system to a mass
point with the mass m. This includes the structural weight of the inverse pendulum and
the RCS. A mass calculation was performed in [5], resulting in a total weight of 5 kg,
including a 10 % margin. The total actuator force, F;ff, is defined as the difference
between the forces acting on the pendulum produced by the two solenoid valve
actuators, detailed in section 4.4. Just as the gravitational force, the actuators produce
a moment around the y-axis of the inertial frame, y;, with the lever arm [ . This
circumstance is depicted in Fig. 4-3.

Fig. 4-3: Free cut of the test stand modelled as a 1-DoF inverse pendulum.

By either applying a moment equilibrium around the origin of the inertial frame, P;, or
the Lagrange 2 formalism, the differential equation (DE) for the pendulum can be
obtained. The DE can be formulated as:
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j—_ta p 9 _
0= Z,m Fdlff lear sm(H) Eq (4 1)
with
Fgirf = F1 + F; and m = m, = const. Eq. (4-2)

The point mass of the system will be assumed to be constant in the main test series,
since the change in mass due to gas loss will be covered by the mass variation range
explained in section 6.2.3.2. However, a switch was implemented to activate mass
reduction due to gas loss (see appendix Fig. D-9). Eq. ( 4-19 ) was used to calculate
the gas consumption for a simulation run.

As established in section 3.1.2, the end stop of the test stand was set to 10 °. Therefore,
the range of motion of the inverse pendulum can be formulated as:

—Ops < 0 < Ogs, Eq. (4-3)

and the angle will always be inside the range of the small angle approximation. This
allows to omit the sine. Therefore, the linearized equation of motion can be Laplace-
transformed into the frequency domain formulating the transfer function Eq. (4—4 ) with
the Laplace frequency domain variable s.

la

_ 9(5) _ leym _
GeFdiff(S) - Fdiff(s) - Sz_ﬁ. Eq (4 4)

However, in the model, the DE, Eq. (4-1 ), is used to obtain the angular acceleration
and therefore translational acceleration on the z-axis of the actuator frame. The A-
frame originates in the middle of the structural plate approximately on the same plane
as the force application point of the thrusters and shall be identical to the coordinate
frame of the IMU. The measured translational acceleration, a,eqsa4,, Will adopt the
binary characteristics caused by the Two-Step controller, which will be introduced in
section 4.3. The resulting issue for the state estimation and how to handle it is
addressed in Chapter 5.

The centrifugal force, F,, is computed with:
Fy . =mlcy62. Eq. (4-5)

Dividing F;, by the mass and adding the gravitational acceleration component gives the
acceleration measured by the sensor along the x-axis of the A-frame, which is referred
t0 AS Apeqsax- AS this is the 1-DoF model and the test stand is fixed in its place, the
gyroscopic force and the Coriolis force influence on the accelerometer measurement
is neglected.

For the implementation in Simulink it is important to use the Integrator, Second-
Order block, which can be found in the Continuous Toolbox [35]. With this block
the condition can be set to set the first integration, which is the angular speed, to zero
if the end stop is reached. However, reaching the end stop during the stabilization
process for the real test stand will produce a reaction force which is not included in the
simulation. Therefore, hitting the end stop will disqualify any simulation run. Further,
this reaction force would not be present on the rocket. This deliberation led to the
formulation of requirements F32 and F34 in Table 3-3.
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In summary, the InversePenduluml-DoF will produce the attitude of the pendulum,
0(t), the accelerations along the x- and z-axis acting on the sensor and the angular
velocity around the y-axis of the sensor frame as outputs from the actuator input force,
Faisr. The attitude, 6(t), may also be referred to as the true trajectory, not to be
confused with the commanded trajectory, 6.,,,, detailed in the next section.

4.2 Trajectory Generation

The course of the commanded trajectory, 6.,,,, also referred to as desired trajectory,
depends on the selected trajectory mode, T,,,4.- The operator of the simulation is
presented with three different trajectory modes. All trajectories possess a simulation
time of ty;,,, = 16 s. This originates from requirement FO8 and an additional second of
filter buffer time, t;,. The buffer time was chosen to be greater than the rise time, t,., of
the filters which depends on the filter input parameters. This interrelation is formulated
in section 5.1 Eqg. ( 5-5 ) and is discussed in 5.4.2. Further, all trajectories can be
described as one or multiple step inputs at specific points in time. The three
commandable trajectories are formulated in the following section:

Ops, fort <t, =1[s]

Ocom(Tmode = Lt):{ 0, fort>t, =1[s]' Eq. (4-6)

with
0, fort <8.0(s]
Faisturbance (Tmode =1, t): 20, fOT 8<t=<81 [S] Eq. (4_7 )
0, fort > 8.0 [s]

Trajectory mode one possesses the particularity that a perturbation force, Fiisturbances
will try to destabilize the pendulum for a defined period. The course of the commanded
trajectory and the perturbation is visualized in Fig. 4-4 and Fig. 4-7. Fiisturpance Will
remain zero over the course of the other two trajectories.

Trajectory mode two will include a step input after eight seconds:
Ops, fort<t,=1[s]

Ocom(Tmoge = 2,t):4 0, for1l<t<8]Js]. Eq. (4-8)
5, fort = 8][s]

This shall simulate a manoeuvre, which can be expanded to a gravity turn or a side
step manoeuvre. The course of the commanded trajectory is visualized in Fig. 4-5.

Trajectory mode three is the most significant commanded trajectory to this work since
it is the least complex and is used to evaluate the performance of the filter algorithms.
Ops, fort <t, =1][s]

0, fort=>t, =1]s]
The course of the commanded trajectory is the same as for trajectory mode one, but
without any perturbation and is visualized in Fig. 4-6.

Hcom(Tmode = 3,t): { Eq. (4-9)
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Fig. 4-4: Commanded trajectory for mode one.  Fig. 4-5: Commanded trajectory for mode two.
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Fig. 4-6: Commanded trajectory for mode three. Fig. 4-7: Perturbation in mode one.

To increase the time efficiency of the simulation run it is recommended to disable the
zero-crossing detection in the Integrator, Second-order block.
Excessive simulation times for second order systems with constant position or attitude,
as it is the case for the buffer time, is a well-known problem documented in [36].

To enable the pendulum to achieve the commanded trajectory, a controller needs to
be designed which is subject of the next section.

4.3 Controller

The development of an optimal control algorithm is not the objective of this thesis.
Therefore, the following control algorithm represents just one possible solution. The
focus for this preliminary controller design is simplicity. In [29] a proportional controller
in combination with duty cycle limiter and pulse width modulation (PWM) is suggested
for stabilization around the roll axis. However, the inverse pendulum undamped PT2
dynamics can arguably be classified as a more unstable system than the rolling
cylinder in [29] which is modelled as a PT1 with a certain damping coefficient.
Therefore, a faster controller is necessary while also fulfilling steady state accuracy
implied by the requirements FO7 and F35 in Table 3-3.
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Furthermore, the function for the duty cycle limiter block which transforms the required
thrust force into a solenoid valve duty cycle required for the PWM, is acquired by using
linear regression determined through PWM single-stream testing of the propulsion
system [29]. The necessary facilities for such kind of testing is not available to the
WARR and was therefore not an option.

This thought process led to controller design, consisting of two parts, which will be
discussed in the next sections.

4.3.1 PID Controller

The proportional-integral-derivative controller (PID controller) is a wide-spread control
loop feedback mechanism [37]. The PID controller applies a correction to the
continuously calculated error, between the true trajectory and the commanded
trajectory, based on the proportional, integral and derivative terms.

For this work, the error in the time-continuous domain is calculated with
0 (£) = Ocom(t) — 6(0). Eq. (4-10)
Therefore, the complete time-continuous PID control function can be expressed as

dfe(t)

t ! !
upip(t) = KpBe () + K; [ 0.(¢)dt" + Kg—2—, Eq. (4-11)

where the K,, K;, K, represent the strictly non-negative coefficients for the

proportional, integral and derivative terms respectively [37]. Therefore, the Laplace
transform to the frequency domain gives the transfer function

Upip(s)
ee(s)

The following paragraph will try to give an intuitive explanation for the underlying
mathematics of the controller: The proportional term evaluates the current state of the
system and addresses it with a weight K,; the integral term evaluates the past state of
the system and addresses it with a weight K; which guarantees steady state stability;
and the derivative term evaluates the future state of the system and addresses it with
a weight K; which allows the system to respond faster to abrupt changes in trajectory.
For the 1-DoF case, the PID control algorithm will only need the attitude as a state
feedback, which will be estimated by the filter developed in Chapter 5. The angular
velocity will not be fed back.

1
Gupipo,(s) = = Ky + K~ + Kas. Eq. (4-12)

For the tuning of the PID controller gains, the Simulink PID Tuning Tool [38] from
the Control Design Toolbox was used on a reduced ideal model of the system.
The reduced model includes the PID controller, the actuator model and the inverse
pendulum model. The PID Tuning Tool calculates the optimal PID-gains, with the
pidtune (system,’ PID’ ) algorithm [39], patented by The MathWorks Inc.®, for the
linearized closed-loop plant. Further, the tool allows to adjust the gains to obtain the
desired phase margin or aggressiveness of the control algorithm, respectively. For this
project, a high phase margin of 60 °, according to requirement F33, is targeted for the
reduced model which may be decreased by artificially added time delays causing a
phase shift in the main model or unanticipated time delays in the real test stand.

After the PID control algorithm has calculated a up;, value, the signal is delayed by
tpipdelay = 0.01s with a Transport delay block to simulate the latency caused by
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the microcontroller calculation time. The value for the delay time was measured by the
implementation and software team [32]. Since the delay time may increase when
scaling up to multiple degrees of freedom, the examination of this parameter will be a
primary focus of the evaluation in section 6.3.

The output of the PID controller cannot be processed by the actuator interface, which
only accepts a binary input. Therefore, a Two-Step controller as an alternative to a
PWM controller is introduced in the next section.

4.3.2 Two-Step Controller

The Two-Step controller (German: Zweipunktregler), more commonly referred to as
bang-bang controller (BB controller), is a, for some applications time-optimal, feedback
controller that abruptly switches between two states [40].

As previously mentioned, the BB controller was chosen as the second part of the
control algorithm due to its simplicity and convenience for this application. No testing
needs to be performed to find an appropriate duty cycle for the respective up;, value,
as for the PWM controller. In theory, the output of the BB controller, u,;, can obtain
one of two states depending on the input condition [40]. Transferred to this work, the
BB controller output shall control both actuators depicted in Fig. 4-3, with the condition
that only one actuator can be active at the same time for the 1-DoF case. Additionally,
a range of inputs up;, shall be defined in which no actuator is active. This threshold
will be labelled u;,, and was implemented to save gas. This assumption will be verified
in 6.2.2. The resulting conditions for u,, can be formulated as

1, forupip > uppo
Upp:y 0, for —uppo < Uprp < Uppo - Eqg. (4-13)
-1, forupp < —Uppo

The algorithm is implemented in Simulink with the MATLAB function block. By
selecting discrete as the update method and setting the sample time to chosen
actuator frequency, f;p, the output, visualized in Fig. 4-8, becomes unsteady.
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Fig. 4-8: Bang-bang controller time-discrete output signal for f;;,, = 100 Hz and u,,;, = 0.1.
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Considering Eq. ( 4-13 ), the bang-bang controller output is comparable with the
Heaviside step function [41], which is classified as a stiff problem [42]. Therefore, using
an explicit solver, for example the Simulink default setting ode45, is time inefficient.
Hence using the implicit solver, odel5s, is recommended for this simulation [43].
Further, the Simulink stability analysis tool is not applicable for the BB controller.
Analysing the stability of the closed loop for the final controller design will be a task for
future work on this project by the control team [31].

In this section, the PID controller output was successfully transformed into the
upp € [—1;0; 1] signal accepted by the two actuators. In this model u,, = —1 will
activate the actuator facing the opposite direction of the actuator activated with an
up, = 1 (see Fig. 4-3). However, the actuator model detailed in the next section will
give the output of both actuators combined, labelled Fy;zf.

4.4 Actuator Modelling

In 3.1.1 the cold gas thruster RCS, designed in [5], was presented. To model the
utilized actuators the valve and the nozzle will be considered in this section.

The valve for the first design iteration will be the MHE4 solenoid valve from Festo AG
& Co. KG. The product datasheet reveals an ON-switching / OFF-switching time of
tse = 0.0035 s and a maximum switching frequency of f,,,, = 210 Hz [23]. Further, the
hardware design team calculated a maximum thrust of E,,, = 7 N with the current
nozzle design [26]. This provides enough information to model the cold gas solenoid
valve actuators as a PT1 element. The simplification of a solenoid valve transient
behavior to a PT1 element is suggested by [29]. A similar but more sophisticated
approach can be found in [44]. The first order differential equation for the described
actuator can be formulated as

OF gifr(t)
T—= 4 Fuipp (8) = Kuyp (1), Eq. (4-14)
with the corresponding transfer function in the frequency domain
_ Faife(s) K _
GFdifobb(S) - Upp(S) - s+1' Eq (4 15)
Including the time constant
ts _ -
T=W—7.6*10 4'[S], Eq<4—16)
and the gain
K = F,q0 = 7 [N]. Eq. (4-17)

Furthermore, the thrust reached after the switching time, ty;, could not be extracted
from the datasheet [23] and was therefore, according to [44] assumed to be:

F, = 25504100 = 99 [%)]. Eq. (4-18)

max

The transient behavior of the modelled actuator for a step input is shown in Fig. 4-9.
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Fig. 4-9: Transient behavior of the modelled solenoid valve MHEA4 for a step input u,,.

If the utilized valve changed, the Actuator block in the Simulink model can be
adjusted if the values for the parameters described in this section are known.
Additionally, there is the option to add a deadtime to the actuator. This was realized
through a Transport Delay block and can be adjusted by the variable t4.tgeiqy -

The cold gas consumption of the RCS during a test run is calculated with average
actuator exhaust velocity v,.;, calculated in [5]. Therefore, the cold gas consumption
is formulated as

Mye(t) = if(ﬂFdifA dt, Eq. (4-19)

within the GasMassCalculation block. The total gas consumption will depend on
the filter selection and u,;,. Results will be analyzed in 6.2.2.

The total actuator thrust, Fy; ¢, Will act on the inverse pendulum model, described in

4.1, resulting in the true trajectory, 6(t), the translational acceleration and the angular
velocity measured by the MEMS sensors. These will add deterministic and stochastic
errors to the signal which will be detailed in the next section.

4.5 Sensor Model

The IMU used for the RCS is the InvenSense MPU-6050 [14]. It contains a MEMS
vibrating-beam accelerometer as well as a MEMS vibratory gyroscope in a single chip.
The sensor will use the 12C-bus to interface with the Teensy 3.6. To model the
accelerometer and the gyroscope for the 1-DoF case, stochastic, also referred to as
probabilistic or statistical, and deterministic errors are considered. All the necessary
parameters to model the random error processes can be obtained from an Allan
Variance analysis. However, the necessary equipment to perform it, such as an optical
table with minimum deflection, are not available to the WARR.

Therefore, the model will only contain the following types of random error processes
[45] which could be gathered from [21, 46]:
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Quantization Noise: This noise term is introduced into an analog signal after it is
converted into a digital signal. The measurement is either truncated or rounded
because of the set range and limited resolution of the sensor and will result in the
guantization error. This error possesses the same unit as the measurement.

White Noise / Angle Random Walk: This noise term is characterized by a white-noise
spectrum on the sensor output. It is usually marked with the letter w. In case of the
gyroscope, the measured rate is integrated and therefore results in a random drift in
the angle, which is dubbed Angle Random Walk. It is commonly unitized with,
(°/s)/+/Hz for the gyroscope, or (m/s?)/+/Hz for the accelerometer. However, for the
sensor error model, this stochastic process will be modelled as white gaussian noise
with the standard deviation (STD), o, measured by [21, 46], and zero mean. The STD
possesses the same unit as the measurement.

w = N[0,0q] Eq. (4-20)

Bias Instability: This noise type is caused by the electronics or related components
that are receptive for random flickering. It evaluates how the bias, or initial offset, of
the measurement changes over a specified period at constant temperature. This is
typically presented in units of (°/s)/hr for a gyroscope. Essentially, this drift in bias
cannot be accounted for through calibration as it is the case with the Static Bias. In the
scenario of this project, the drift in Bias over one hour (see F24), is —0.035 °/s for the
gyroscope, according to data from [46]. This error term will be referred to as the
residual bias, which is marked with the index RB in the subscript. It will lead to a
considerable drift in the angular position of —0.56 ° over the course of the simulation
time, if state estimation is performed by solely integrating the gyroscope measurement,
visualised in Fig. 4-11. This proposes the first major concerns of this thesis and will be
addressed by the filters developed in Chapter 5. The accelerometer value is not
integrated and therefore the effect of Bias Instability is neglected.

The deterministic errors were gathered from the product datasheet [14] and
measurements by [32]:

Static Bias: For a given physical input, the sensor outputs a measurement which is
offset by the bias [47]. By measuring the output of the sensors at a fixed known position
and subsequently averaging the data, the Static Bias can be obtained. Therefore, it
can be compensated. This process is referred to as calibration. For this model the bias
is denoted with the index B in the subscript and possesses the same unit as the
measurement.

Scaling: For this work, scaling shall include a multitude of multiplicative, linear errors.
Quadratic scale factor terms and even higher order terms (hot) are excluded. For 3-
DoF with the measured states x,,.45 . €Xclusively considering multiplicative errors,
the following expression is formulated:

MSF.xx MTS,x MMA,xy MMA,xz
Xmeasm = | Muayx  MseyyMrsy — Muays | Xeue +hot = My EQ. (4-21)
MMA,Zx MMA,zy MSF,ZZMTS,Z

With the scale factor, Mgz, on the diagonal of matrix M and the misalignment
representing the off-diagonal of matrix M. The scale factor error is defined as the
relation between input and output. The scale factor distorts the measurement in a way
where the output is proportional to the input but scaled [47]. It will be unitized with
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%. The misalignment error is caused by fabrication or installation flaws. For 1-DoF it
can be simplified to another multiplicative error term unitized with %, identical to the
scale factor. Further, it was decided to incorporate an additional multiplicative term
related to a change in temperature, due to high temperature-gradient a missile
application might be facing (see F21). It will be labelled temperature sensitivity and
possesses the unit %/°C. In Eqg. (4-21) it is marked with the index TS in the subscript.

Higher order scale factor terms (hot) as well as nonlinear scaling effects and cross
coupling will be neglected for this work. For information on high fidelity sensor models
refer to [48].

Acceleration Sensitivity: Especially consumer grade IMUs are subject to a change
in the bias depending on how the sensor experiences acceleration. This is most
common in MEMS-gyroscopes, since their sensing elements include moving parts, an
acceleration or vibration will be mistakenly detected as the angular speed (see 2.2.2).
This effect can be modelled and removed from the measurements and is often included
in the IMU signal condition stage before output of the measurements [47]. For this
scenario, the Acceleration Sensitivity is unitized with °/s/g and will be included in the
gyroscope model with the index AS in the subscript.

Other probabilistic, such as the Rate Random Walk, or deterministic errors, such as
the Rate Drift Ramp or the turn-off / turn-on bias error, were excluded from the sensor
error model since their impact is negligible over a simulation time of 16s. The
theoretical background for the Allan variance analysis will not be explored in the frame
of this thesis, since it is not needed for the simplified sensor error models. For more
information on this topic refer to [45].

45.1 Gyroscope Error Model

The underlying dynamic behaviour of a gyroscope, described in 0, can be modelled as
a mass-spring-damper system or PT2 element [49]. However, the datasheet [14]
revealed no information about the relative damping required for modelling such a
system. Therefore, the gyroscope will be modelled as a PT1 element, also referred to
as a Low Pass filter, with the natural frequency w,;. The natural frequency is
equivalent to the drive frequency from [14] as explained in 2.2.2. The corresponding
continuous-time transfer function in the frequency domain for the first order Low Pass
filter is given in Eq. (4-22).
G(s) = =25 with w, ; = 30000 [Hz] Eq. (4-22)
s+wn‘G ’

However, with such a high natural frequency the time delay caused by the gyroscope
dynamics is arguably negligible.

Now, the different error terms are added to the model. Fig. 4-10 illustrates the different
error terms used for the gyroscope model and in which order they are introduced.
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The multiplicative error terms are implemented as coefficients. For the reference
values they will be set to 1, therefore assuming no scaling. For the evaluation, in
section 6.3, they will be varied over range specified by the datasheets [14]. The
temperature sensitivity is evaluated by changing the environmental temperature, Ty,
over the range specified by the functional requirement F21.

For the additive errors, the static bias was not included since it is assumed that it can
be compensated by the calibration. However, a residual bias term is added to account
for the previously discussed bias instability and errors in the calibration. The resulting
drift in angle is shown in Fig. 4-11. The acceleration sensitivity would usually refer to
acceleration along the corresponding axis. However, for the 1-DoF case there is no
acceleration towards the y-axis and therefore the acceleration towards the z-axis is
chosen which should behave similar to the y-axis acceleration in the 3-DoF case. The
noise process for the MPU 6050 was determined by [21] and [46] to be white gaussian
in nature. Therefore, it can be implemented in Simulink with the MATLAB function
block including the function random ('norm', 0, STD) . The corresponding standard
deviation, o ,,, was measured by the implementation team [32]. It is comparable to the
values measured by [21]. The raw measurement data is shown in Fig. 4-12.
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Fig. 4-11: Drift in the y-axis angle due to Fig.4-12: Raw MPU-6050 gyroscope y-axis
integration of the residual bias. measurement data of the with a
sample rate of f;.,50r = 1000 Hz.

To summarize, the simplified error terms for the gyroscope can be formulated as

émeas = MSF,yyMTS,yMMAétrue + WG,y + wAS,G,yaz + (‘)RB,G,y- Eq ( 4-23 )
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The static bias term is excluded since it is assumed, that it can be compensated
through calibration.

After the additive errors, there the MPU-6050 provides the user with the option to filter
the measurements by a Low Pass filter. For the evaluation, this filter will not be used.

At last, the analog signal is converted to a digital signal. This produces the quantization
error. It will depend on the measurement range, w,q,q.. If higher angular velocity
needs to be measured, less decimal digits will be available introducing an error term
resulting from limited resolution. This error may have a noticeable effect on the output
if the maximum range is further increased. However, for the reference ranges in 6.1.1
result in a negligible quantization error (see appendix Section E.2).

The complete Simulink model of the gyroscope can be found in the appendix Fig. D-11.

45.2 Accelerometer Error Model

The MPU-6050 datasheet contains no information about the natural frequency of the
accelerometer. Therefore, it is not included in the accelerometer Error Model. The z-
axis accelerometer measurement is modelled similar to the x-axis accelerometer
measurement.

Fig. 4-13 illustrates the different error terms used for the accelerometer model and in
which order they are introduced.

Multiplicative Errors Additive Errors
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Noise

Misalignment
Temperature .
Sensitivity Built-in LPF —l

a w + Quantization —> ameas

Fig. 4-13: Accelerometer scheme.

For the multiplicative error terms, the same as for the gyroscope holds true. For the
reference values, they will be set to 1, therefore, assuming no scaling. For the
evaluation in section 6.3, they will be varied over range specified by the datasheets
[14].

The accelerometer error model will only include the gaussian white noise as an additive
error. Like the gyroscope model, it can be implemented in Simulink with the MATLAB
function block including the function random('norm',0,STD). The
corresponding standard deviations o, , and o, , were measured by the implementation

team [32]. They are comparable to the values measured by [21]. The raw measurement
data is shown in the graphs beneath.
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Since aresidual bias in the accelerometer measurement would not be integrated, it will
not result in a drift in the estimated angle. Therefore, no residual bias is included.

To summarize, the simplified error terms for the gyroscope can be formulated as
Ameas = MspMpsMpyaQerye + Wa, Eq. (4-24)

for each of the measurement axes respectively. The static bias term is excluded since
it is assumed, that it can be compensated through calibration.

The in-built LPF and quantization is handled like in the gyroscope model.

The most significant concern about the accelerometer lies in the z-axis measurement,
which will acquire an undamped acceleration proportional to the total actuator force
Fyirr. Because of the binary nature of the BB controller, see Fig. 4-8, the acceleration
on the z-axis can be described as regularly recurring and alternating, shown in Fig.
4-16. The pure gravitational acceleration on the z- and x-axis would allow for an
adequate estimation of the attitude Eq. ( 5—4 ). However, the relatively high-g distortion
on the z-axis complicates this process.
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Fig. 4-16: Accelerometer z-axis measurements.

This proposes the second major concern regarding the measurement information.
Therefore, the research question RQ1 can be reformulated to: Is there a filter able to
estimate the attitude from the distorted data of Fig. 4-11 and Fig. 4-16? This will be the
primary focus of the next chapter.

The complete Simulink model of the accelerometer can be found in the appendix Fig.
D-12.



5 Filter Development

The measurement data provided by the MEMS-sensors, detailed in section 4.5, is
noisy, biased and subjected to relatively high-g dynamics caused by the discrete nature
of the two-point-controller. To provide an accurate state estimation for the controller, a
suitable filter must be designed. The main tasks of the filter shall be to prevent the
integrated gyroscope measurement from drifting and to smooth the uniform high
amplitude peaks in the z-axis accelerometer measurements. For this purpose, a
prefilter, which will be applied on the accelerometer measurements, is introduced in
section 5.1. Afterwards, the theoretical background and implementation of the two
main filter concepts, a Complementary filter and discrete-time Kalman filter, are
presented in section 5.2 and 5.3 respectively. The chapter concludes with
considerations regarding the tuning process of the filters in section 5.4.

5.1 Peak-to-Peak Moving Average Filter

To obtain a reasonable angular deflection measurement from the high-g and high-
frequency dynamics along the z-axis of the accelerometer, three approaches come to
mind. The first approach is a mechanical damper, such as those used in UAVSs, to
smooth out the high-amplitude, high-frequency vibrations, caused by the rotors, which
disturb the accelerometer measurement [50]. Silicon foam materials of different shapes
or stacked Sorbothane®© sheets can be used as one of the more cost-effective
mechanical dampers [50]. Simulating a foam material as a PT2 element can prove
difficult, since no information about the relative damping, ¢, nor the natural frequency,
wy, 1S available. The other two approaches are digital; this work attempts to find an
appropriate digital solution. It is important to note that no remotely satisfying estimation
result could be achieved by only using the main filter concepts. For the prefilter, two
solutions were considered and will be qualitatively compared in section 5.1.2:

First, a discrete-time second order Low Pass filter, which can be described by the this
continuous-time transfer function in the frequency domain:

w}
s2+20wps+tw?

G(s) = with ¢ =22, Eq. (5-1)
The natural frequency or cut-off frequency can be adjusted to smooth out the undesired
frequencies. However, there is a trade-off between the damping performance and the
increasing phase lag.

The second digital approach is a moving average filter, which essentially represents a
time-discrete first order LPF. For this work a standard moving average filter was
modified to filter out the high-g, high frequency dynamics of the RCS mounted on the
inverse pendulum. Since it will take advantage of the regularly recurring, alternating,
uniform peaks in acceleration (see Fig. 4-16), it will be dubbed Peak-to-Peak Moving
Average filter (P2PMAF). As with any moving average filter, the number of samples to
be averaged must first be determined. This number shall be defined as the subset size,
Np,p. For the accelerometer measurements along the z-axis, ay meqs 42, the subset of
measurements can therefore be specified as:

Vp2p = {ak—(szp—l),meas,A,z' Ak —(Npyp—2),meas,A,z: -+ » Ak—1,meas, A,z Qlemeas, Az} Eq . ( 52 )

szp € N and Vpop € NNPZPXl.
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Now the maximum and minimum values of the subset vp,p is calculated and averaged
as:

Ak,p2pz = %(max(vpzp) + min(vp;p)). Eq. (5-3)

The result is an unsteady but smoothed measurement, a; p,p ., depicted in Fig. 5-1,
which can be used together with the x-axis measurement to calculate the angle around
the y-axis. This is performed by calculating the arc tangent of the ratio between the two
accelerations and converting the result from radians to degrees:

Ok prefitterea = arctan (M> =, Eq. (5-4)

Ak,meas,Ax] T

5.1.1 Outlier Analysis
In Fig. 5-1, the three outliers in a p,p , are noticeable:
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Fig. 5-1: z-axis accelerometer measurement Fig. 5-2: z-axis accelerometer measurement
data, raw and filtered by the P2PMAF data, raw and filtered by the P2PMAF
for a subset size Np,p = 300. for a subset size Np,p = 100.

The firstis equivalent to the rise time, t,., of a Low Pass filter and is more of a simulation
issue, since for the start of the simulation ageqs4z = 0. This minimum is carried
through the first subset and defines the rise time for the NP2PMAF,

trp2p = Npapts = Atpyp, Eg. (5-5)

with the sensor sample time,
1

tS N fSBTlSOT.

The subsequent outliers result from the heavy reliance of the filter on alternating
accelerometer measurements on the z-axis. If exclusively one actuator is active over
a period exceeding the subset time window, Atp,p, an outlier will occur for as long as
the second actuator is not active. Outliers will negatively impact the state estimation of
the main filter, which is explained in 5.4.3. Fig. 5-2 shows that decreasing the subset
size will lead to an increase in the number of outliers. The Fig. 5-3 graph confirms this
relationship between the number of outliers, Nyy:iers, @nd the subset size, Np,p.
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However, as for any moving average / first order Low Pass filter, there is a tradeoff
between the smoothing properties and the resulting phase lag. A higher Np,p, may
cancel out all outliers, except the one caused by the rise time, but at the price of the
growing phase lag|6¢| between the true trajectory, 6(t), and the prefiltered
accelerometer data, Oy prefirrerea- 1his effect is visualized in Fig. 5-4. The phase lag
was computed by using the Fast Fourie transform [51, 52] of the smoothed data. The
smoothing was performed by the MATLAB function
fit(x,y, 'smoothingspline', 'SmoothingParam',0.07) [53]. It is evident
that there ought to be an optimal subset size for different applications, which will be
discussed in 5.4.3.

For the next section, the performance of a second order LPF and the P2PMAF is
compared with the aid of an example.

5.1.2 Comparison Between Second Order LPF and P2PMAF

Since no suitable cut-off frequency, f,, for the second order LPF that would allow for
a successful stabilization of the pendulum model was found, an example dataset will
help to compare the two filters.

The example dataset, 6,,, is distorted, 6,,,, to achieve the same regularly recurring,
alternating, uniform peaks as those in the accelerometer measurements in the main
simulation (see Fig. 5-5). The ability of the two filters to effectively filter out the peaks
will be compared by using a standard filter comparison method, the RMSE, between
the filtered output and the undistorted input, and by the phase lag as described in the
previous section. The filter output of the second order LPF and the P2PMAF on RMSE-
optimised cutoff frequency, f.,, and subset size, Np,p, is shown in Fig. 5-6. Results are
documented in Table 5-1.
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Further, in Fig. 5-6, the rise times, t, p,p and t, ;pr, Of both filters can be observed
during the first two seconds of the simulation. In this example the rise times are more
prominent then in the main simulation, since the tuning parameters are set to “more
extreme” values. “More Extreme” in the sense of a higher Np,, and a lower f,,.

Table 5-1: Comparison of the two filters with the RMSE-optimized tuning parameters. The RMSE is
calculated between the respective filter output and the undistorted example trajectory, 6,,.

Filter Tuning Root-Mean-Square-Error | Phase Lag
2. Order LPF fro = 0.31 [HZ] RMSE = 2.585 [] |6¢p| = 13.112 [°]
P2PMAF Np,p = 800 [—] RMSE = 2.012 [-] |6¢p| = 0.763 [°]

Because of the smaller RMSE and phase lag, the P2PMAF is selected to prefilter the
z-axis accelerometer measurements.

However, it is important to reiterate that no subset size could be found that allows sole
reliance on the accelerometer data prefiltered by the P2PMAF, 6y prefiiterear fOr
controlling the attitude. It can be argued that the inverse pendulum without any
damping, see 4.1, is too sensitive to even small phase delays or to the resulting
outliers.

In the following sections, the main filter designs will be elaborated.

5.2 The Complementary Filter

After prefiltering the z-axis accelerometer measurements with the P2PMAF and
subsequently calculating the angle with the x-axis measurement, a standard
Complementary filter (CF) can be used to obtain a state estimation. In this chapter, the
mathematical fundamentals of the CF and the implementation of the algorithm in the
Simulink model will be elaborated upon. A flow chart of the implemented algorithm is
given at the end of this section in Fig. 5-7.
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The Complementary filter is known as a simple and resource-effective filtering
algorithm, which is often used for state estimation with low-cost IMUs in unmanned
aerial vehicles [19, 54]. In principle, it implements a time-discrete Low Pass filter on
the accelerometer measurements to filter out the high frequency noise and a time-
discrete High Pass filter on the gyroscope data to filter out the low-frequency drift
caused by integration of bias in the angular velocity. It proceeds to add both values
together for the state estimate.

5.2.1 Theoretical Background

The general equation for the Complementary filter can be formulated as follows:
/x\k = Kc(/x\k—l + xk,meas,GAt) + (1 - Kc)xk,meas,A Eq- ( o>—6 )
0<K;<1,

where K. is defined as the Complementary filter gain and At is the interval time
between CF iterations. The gain can be changed to suit the needs of the application.
A high K. can be interpreted as a high gyroscope sensitivity, usually leading to a less
volatile output. A low K can be interpreted as a high accelerometer sensitivity, leading
to less drift in the output in the long term [54]. For K. = 1, the accelerometer input is
ignored, and the algorithm would only consider the gyroscope input over time. The drift
resulting from the integration would then equal the constant residual bias in the
gyroscope, xgp ¢ °/s, which cannot be eliminated through calibration Fig. 4-11.

5.2.2 Implementation in the Simulation
For the 1-DoF case, Eq. ( 5—6 ) can be formulated as follow:
ék = K. * (9k—1 + ék,meas,G * At) + (1 - Kc) * ek,meas,Al Eq. ( Sl )

with the time interval between iterations being

At = —=

= t,, Eq. (5-8)

fsensor

and the estimated angle around the y-axis of the inverse pendulum, 8.

The algorithm in Eq. (5-7 ) was implemented by using the MATLAB Function block
and a Delay element. The corresponding Simulink model is depicted in the appendix
Fig. D-13. Since it is assumed that the initial position of the pendulum is unknown, the
initial state estimate , 6,,, will be set to zero. This will lead to a filter rise time, which the
buffer time at the start of the chosen commanded trajectory accounts for.

Before explaining the tuning considerations, the discrete Kalman filter, a more
sophisticated estimation algorithm, is introduced.

To sum up the complementary filter algorithm, a flow chart is depicted in Fig. 5-7.
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Fig. 5-7: Complementary filter flow chart.

5.3 The Discrete Kalman Filter

The Kalman filter (KF) is the second main filter concept to be designed and evaluated.
It forms the basis for most state estimation algorithms used in navigation and attitude
determination systems [12]. The KF is a Bayesian estimator able to obtain optimal
estimates using knowledge of the deterministic and statistical properties of the system
parameters and measurements [12]. This chapter explains the underlying algorithms
and how they can be simplified for implementation in the model. Then, an extension to
the Kalman filter is introduced to improve the results. A flow chart of the implemented
algorithm is given at the end of this section in Fig. 5-11.

5.3.1 Theoretical Background

Since the filter will handle time discrete data from the sensors, the discrete version of
the KF algorithm is used.

The discrete-time Kalman filter algorithm essentially consists of two phases: The
system propagation or prediction phase and the measurement update or correction
phase, which are illustrated in Fig. 5-8. As the name suggests, the prediction phase
predicts the state vector estimate and error covariance matrix when transitioning
between timesteps [12]. In the correction phase, the state vector estimate and error
covariance are updated to incorporate the new measurement information via the
Kalman gain matrix, K . This matrix optimally weighs the correction to the state vector



according to the uncertainty of the current state estimates and the level of noise in the
measurements [12].
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Fig. 5-8: The two phases of the Kalman filter are depicted for two iterations. Adapted from [55].

The two overarching phases of the discrete-time Kalman filter can be further broken
down into 10 steps. The first 4 steps are part of the prediction phase, while steps 5 to
10 form the correction phase. The following procedure is completely taken from [12]
and simplified to fit into the scope:

Table 5-2: The 10 steps of the discrete-time Kalman filter algorithm taken from [12].

ID  Description Phase

KO1 Calculate the transition matrix @;_; Prediction
K02 Calculate the system / process noise covariance matrix Q_ Prediction
KO3 Propagate the state vector estimate from Xj,_; and X;_4 Prediction
K04 Propagate the error covariance matrix from Pj_; to Pjy_, Prediction
K05 Calculate the measurement matrix H, Correction
K06 Calculate the measurement noise covariance matrix Ry Correction
K07 Calculate the Kalman gain matrix K Correction
KO8 Formulate the measurement z; Correction
K09 Update the state vector estimate from %3 and X} Correction
K10 Update the error covariance matrix from Py to P Correction
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The discrete transition matrix @,_, is different for every Kalman filter application and
is derived from the linearized system model. In most cases, it is a function of the time
interval, 74, between Kalman filter iterations.

Step K02 calculates the system noise covariance matrix. It characterizes the growing
uncertainty in the system model with each iteration. However, for the standard discrete-
time KF, the system noise covariance matrix Q and the measurement noise covariance
matrix R, remain constant and are never updated (R, = const.= R) . Thus, the steps
K02 and K06 are omitted. Step KO3 estimates the propagation of the state vector
through time using:

Xy = Pu-1%je-q- Eq. (5-9)

Step K04 completes the prediction phase by propagating the corresponding error
covariance matrix:

P; = ®_,P}_,®]_; + Q. Eq. (5-10)

The correction phase starts with the calculation of the measurement matrix H,, which
defines how the measurement vector varies with the state vector. In a standard Kalman
filter, each measurement is assumed to be a linear function of the state vector.
Therefore,

h(xk,tk) =Hkxk. Eq (5—11)

However, for the 1-DoF case the measurement matrix is simplified to H; = 1, and thus,
the measurement z;, from step K08, simplifies to the true 1D position angle, 6y, plus
the measurement noise, w:

Zr = 0 +w. Eq. (5-12)

In step KO7 the Kalman gain matrix is calculated. It depends on the error covariance
matrices of both the true measurement vector, z,, and that predicted from the
estimates, H X),. To provide an intuitive explanation, the Kalman gain can be
interpreted as a ratio of the uncertainty in the model, with P, = f(Q), to the uncertainty
in the measurement [55]:

uncertainty in the propagation __ P;H};

KK_

- uncertainty in the measurement - HkP;H£+R'

Eq. (5-13)

The Kalman gain will be used to weigh the predicted a-priori state estimate, X}, to the
measurement innovation, y,, to produce the a-posteriori state estimate, Xj, in step
K09:

X =%, + Kiyx Eq. (5-14)
with,
yk=Zk—ka,;. Eq(5—15)

With this step, the state vector estimate is corrected by the measurement update.
Correspondingly, the error covariance matrix is updated in K10 with:

Since the updated state vector estimate is based on more information, the updated
state uncertainties are smaller than before. The next chapter will apply the principles
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to the considered scenario established in 3.1.2, which will vastly reduce the complexity
of the algorithm.

5.3.2 Implementation in the Simulation

For the 1-DoF case, only the attitude around the inertial frame y-axis of the inverse
pendulum needs to be estimated. This reduces the state vector x; to the scalar angle
0, (see 3.1.2). Since only 6, needs to be estimated, the Eqg. ( 5-9 ) from step K03
simplifies to the kinematic equation:

é\k_ = (pk—lélj—l + Tsék—l,meas,G Eq- ( o-17 )

with,
& ,=landt, = ——=t,. Eq. (5-18)

sensor

Recalling that the steps K02 and K06 are omitted, the algorithm in the Simulink model
effectively starts with the calculation of the a-priori estimate Eq. ( 5-9 ). Now, only the
error covariance must be calculated to complete the prediction phase:

P, =Pi,+Q. Eq. (5-19)
The error covariance matrix, P, and the system noise covariance matrix, Q, are
reduced to the scalar error variance, P, , and system noise variance, Q. As stated in
5.3.1, the measurement matrix, Hy, will be omitted. On this basis, the correction phase
starts with step KO7 by calculating the scalar Kalman gain, Kj.
_ P
P +R

Ky Eq. (5-20)

In accordance with Table 5-2, the a-posteriori estimation of the attitude angle can be
calculated:

Or = 0 = 0 + Kiey, Eq. (5-21)
with the measurement innovation,
Ve = ek,meas,A - é\k_ Eq. (5-22)
Finally, the a-posteriori error variance is computed with the equation:
Pr=(1-K)P;. Eq. (5-23)

A summary of the algorithm extended by an innovation-based adaptive estimator is
depicted in Fig. 5-11.

In Simulink, the algorithm can be implemented by using a MATLAB Function block
and the use of Delay elements (see Fig. D-14). The sample rate of the whole
subsystem and all included blocks is set to the sample rate of the sensor, fsensor-
Alternatively, the Delay elements can be replaced by using persistent variables in
the MATLAB Function block (see [56]). This, however, will require an additional if-

loop in the function for the initialization variables, which may arguably deteriorate the
transparency and readability of the model.

For the first iteration of the loop, k = 0, the values for 8;}_, , 8x_1 measc and Pi_; must
be initialized. Similiar to the measurement variance R and the process variance Q, the
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initialization can be performed through a customized mask. A guide on how to use the
mask is given in the appendix Chapter B. An approach on how choose the initial
variables for the KF is explained in 5.4.2.

Of course, there is also the option to use the Kalman Filter block, referred to as
Simulink Kalman Filter (SKF), which is part of the Simulink Control System
Toolbox [57]. However, in this thesis, a customized KF was designed to allow
enhancement by applying an Innovation-based Adaptive Estimator (IAE), which will be
discussed in the next section. Fig. 5-9 plots the difference, §0sxrxr, between the angle
estimated by the implemented KF, 8,, and the prefabricated SKF block, ék,SKF. Both

filters are initialized with the same values for Q, Py, R and 6,.

M sxrir |

3k [

| | RMSE = 5.988e-04 °

0 2 élt (; 8 WlO 112 14 16
t[s]
Fig. 5-9: The graph shows the difference, §0sxrkr, in degrees over time as well as the RMSE
between the estimated angle, 8,, by the implemented Kalman filter and the Simulink
Kalman filter 8, s

It can be recognized that the error between the two estimation spikes at the beginning
and then quickly converges to zero. For this experiment the trajectory, 8.om(Tmode =
3), suggested in 4.2, was chosen. Therefore, this spike is not due to the commanded
step input, which occurs at t = 1s. Upon inspection of the SKF block, it was found
that for step KO3 the current gyroscope measurement input, 8y meqsc, is used for the
system propagation, instead of 8, _; meqsc (S€€ Eg. ( 5-17)). Therefore, the SKF does
not initialize 8y neqsc With a value defined by the user. This is the only difference found
between the two algorithms. The relatively small spike at the beginning of the trajectory
with a magnitude of 66skrxr = 0.0042° has no detectable influence on the

performance.

5.3.3 Innovation-Based Adaptive Estimation Extension

For most applications, the KF’'s system noise covariance matrix, @, and measurement
noise covariance matrix, R, are constant values, determined during the development
phase through laboratory measurements of the system, simulation and trials [12].
However, there are cases where this is not possible. Vibrations in highly dynamic
environments cannot always be simulated or tested. Additionally, the sensor
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performance may deteriorate over several years of usage, which is also difficult to
simulate. In other cases, the optimum KF tuning might vary over time as the respective
context changes. For example, a GNSS navigation filter in a mobile device that may
be stationary, on a walking pedestrian, or in a car, would require a different system
noise model in each case [12]. For these applications an adaptive Kalman filter (AKF)
may be used to estimate R and @ as it operates. One possible approach is the
Innovation-based Adaptive Estimation, which is detailed in [58, 59]. Essentially, the
IAE updates R and Q based on the relevant measurement innovation statistics.

For this work, a vastly simplified version of the IAE depicted in [58] was implemented.
It will help to address the issues arising from the outliers caused by the P2PMAF
described in Chapter 5.1. Similarly, to the previously described use cases for adaptive
estimation, the exact point in time and in which magnitude the outliers occur is
impossible to know beforehand. Therefore, it is difficult to involve them in the
calculation of the measurement variance R. In the context of this work, the
measurement innovation, y,, is the difference between 6y, ,,,.45.4, the angle prefiltered

and calculated from the accelerometer measurement, and the a-priori estimate, 8, .

Y = ek,meas,A - é\l; Eq. ( o5-24 )

Based on the absolute value of the measurement innovation the decision is made on
whether there is an outlier or not. For y, to be classified as outlier-based, it must be
greater than a chosen threshold, T;4z. For an outlier-based y,, the uncertainty in the
measurement, effectively R, will be set to infinity and, consequently, the Kalman gain
will be reduced to zero.

K { 0, for |yxl > Tiap
KUKk, for | yil < Tiag

The threshold, T;,z = 3°, was chosen to exceed all non-outlier-based measurement
innovations. For the set time interval, 7, (see Eq. ( 5-18)), a y, > 3 ° would be equal
to angular acceleration of > 3000 °/s for a sensor sample rate of 1000 Hz, which
classifies the measurement as an outlier. Outliers are visualized in Fig. 5-10.

14 T T T T 1

Eq. (5-25)

0 2 4 6 8 10 12 14 16
t[s]

Fig. 5-10: Absolute measurement innovation over the course of the experimental trajectory, T,0qe = 3,
with a Np,p = 200 and reference values.



Filter Development

The figure above shows that outliers surpass the threshold on 4 occasions, therefore
setting the Kalman gain to zero. For the first few iterations the |y, | values are relatively
high. This is due to the rise time of the KF. Therefore, a small buffer of 0.5s was
implemented, in which the IAE will not be activated. This buffer value may be changed
if other trajectories are chosen.

To conclude this chapter, a data flow chart of the implemented algorithms is depicted

in Fig. 5-11.
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Fig. 5-11: Flow chart of the implemented discrete-time KF with an IAE extension referencing the steps
from Table 5-2. The syntax of the KalmanFilterEquations block in Fig. D-14 was
used.

5.4 Filter Tuning

After introducing the prefilter and the two main filter algorithms, the topic of this chapter
will be to explain best-practice approaches for tuning the respective filter. The
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knowledge for this procedure was obtained from [12], during the development phase
and while performing the preliminary test series, detailed in Chapter 6.2.

5.4.1 Complementary Filter Tuning Considerations

Tuning the CF can be achieved by optimizing the Complementary filter gain, K., which
may vary depending on the measurement characteristic and performance
requirements. Since the accelerometer measurements are prefiltered by the P2PMAF,
the calculated angle will be less volatile, but will exhibit a certain lag depending on the
subset size, Np,p. Hence, for this application, the K. value must be above a certain
threshold for the system to be able to stabilize itself and not hit the ends top of the test
stand. Simply iterating through increasing gain values while keeping all other
simulation parameters at the constant reference variables listed in 6.1., suggests a
local optimum at a root-mean-square-error (see 6.2.1) of RMSE = 1.78° for a K, =
0.9987. The RMSE(K.) plot is depicted in Fig. 5-12 and the true trajectory is shown in
Fig. 5-13, alongside two other exemplary true trajectories and the commanded
trajectory.

RMSE(K ) (K =0.997)
451 * RMSE(K‘,N) 1 8r (K =0.9987)
0K =0.9993)
0

com

0.9955 0.996 0.9965 0.997 0.9975 0.998 0.9985 0.999 0.9995 1 0 2 4 6 8 10 12 14 16
K. [-] t[-]

Fig. 5-12: RMSE (K.) plot for reference variables Fig. 5-13: Exemplary true trajectories for three
with local optimum at K. = 0.9987. different K, values.

The trajectories in Fig. 5-13 suggest that a decrease in K. will lead to a more
aggressive stabilization process with larger overshoot but faster zero-crossing, and an
increase in the gain will lead to the opposite. This must be considered when facing
changing circumstances due to hardware or software design decisions.

5.4.2 Kalman Filter Tuning Approach

For tuning the Kalman filter as implemented in the previous chapter, the system
variance, Q, the measurement noise variance, R, the initial state values, 6, and 8,, and
the initial error variance, P,, must be defined by the developer or user. Both initial states
are set to zero assuming that the initial state of the system is unknown. This results in
an initial error variance of

Py = (6gs)?. Eq. (5-26)

Suggesting that the initial error or uncertainty in the system is most likely not larger
than the maximum deflection of the pendulum confined by the end stop. Setting the
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initial state values to zero will result in a rise time which decreases with increasing P,
or decreasing R. However, minimizing the rise time, and therefore risking performance
losses, is not necessary, since the initial buffer time of one second can account for it.

The system variance and the measurement variance are closely related to their
respective sources. In the state prediction, the used kinematic model is based on the
gyroscope measurements and the measurement innovation is based on the prefiltered
accelerometer output. Therefore, both variances are exposed to the respective sensor
noise. In several studies concerning the characterization of the MPU 6050, the noise
was classified as white gaussian in nature [21, 46]. This stochastic error process can
be represented by its standard deviation, . The standard deviation for the sensors
established in 4.5 can now be used for giving an appropriate estimation of the two
variances:

Q = ggy° Eq. (5-27)
2
R = <(atan %i) %) Eq. (5-28)

It should be noted, that for R, the respective standard deviations, g4, and o, ,, are
given in the unit m/s? and therefore must be converted from rad into ° by using Eq. (
5-4 ) established in Section 5.1. This forms the basis for tuning the Kalman filter
algorithm. The computed variances will serve as the reference values for further tests
in6.1.1.

To conclude the chapter, some qualitative best-practice tuning guidelines are provided,
which will be expanded upon in Section 7.1. This shall justify why Q is chosen to further
optimize the tuning given a certain error profile.

If the result after tuning is not satisfactory, [12] suggests optimizing one of the
parameters by fixing the others. Results from the preliminary test series in 6.2 suggest
that by varying Q, unwanted effects like a constant offset or drift of the true trajectory
can be accounted for. Fig. 5-14 depicts the course of the true trajectory with all
simulation parameters set to the reference values, documented in Chapter 6.1, except
the residual bias, wgp ,y, Which is increased by some arbitrary factor C (for Fig. 5-14
and Fig. 5-15, C = 20). An offset of roughly 0.4 ° can be identified, which results from
a faulty estimation. This loss in estimation performance can be accounted for by
increasing the variance by the same factor C resulting in

Q = Cag,>2. Eq. (5-29)

However, this will result in a lag in the estimation since the Kalman gain, K, will now
converge towards a higher value, which gives more weight to the measurement
innovation, which has LPF-properties as established in 5.1. This circumstance is
shown in Fig. 5-15.
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Fig. 5-14: Constant offset in true trajectory due to  Fig. 5-15: Offset in true trajectory due to 20-times
twentyfold increase in wgg,, Which increase in wgp ¢ 5, IS accounted for by
results in a faulty estimation. setting € = 20 .

In general, decreasing the ratio Q /R leads to higher lag in the estimation, which may
result in a larger overshoot, 6,5. While increasing the ratio may decrease the
aggressiveness of the stabilization process to a point where the true trajectory does
not possess steady state accuracy anymore, for the given timeframe.

Thus, based on Fig. 5-14 and Fig. 5-15, Q should be multiplied by a tuning constant C,
to obtain satisfactory performance results.

5.4.3 Moving Average Subset-Size Considerations

In Section 5.1.1 it was established that there is an optimum subset size, Np,p, to reduce
the RMSE. A too low subset size will increase the number of outliers and a too high
subset size will increase the phase lag. Evidently, outliers negatively impact the
estimation accuracy of the main filter and even increase the phase lag if the outlier
count is over a certain threshold as depicted in Fig. 5-4.

It was assumed that the KF and the Complementary filter might possess different
optimal Np,p. Therefore, over the course of the preliminary test series, the subset size
was varied over a reasonable range to find an optimal configuration for the different
filter variants. The results are depicted in the following graphs:
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Fig. 5-16: RMSE (Np,p)-graph for the KF and the  Fig. 5-17: RMSE (Np,p)-graph for the AKF with its
CF with their local minima. The local minima. The variation step size is
variation step size is 10. 10.

Fig. 5-17 reveals that the KF with the IAE extension performs best for exceptionally
low or no prefiltering at all. This is an unexpected result, since initially the IAE was
introduced for the short comings of the P2PMAF. The results of the optimisation are
summed up in Table 5-3.

Table 5-3: RMSE (Np,pop) for the three filter configurations with the respective optimal subset size,

Np2popt-
Filter Optimal Subset Size Root-Mean-Square-Error
Complementary filter 340 [—] 1.640 [°]
Kalman filter 320 [—] 1.656 [°]
AKF 10 [-] 1.365 [°]

Furthermore, Fig. 5-16 and Table 5-3 reveal a comparable graph history for the CF
and the KF, when varying the subset size.

Given these results, only the following two filter configuration will be considered for the
final evaluation: P2PMAF as the prefilter and the CF as the main filter; KF with IAE
extension without prefiltering, with the CF being computational simple and the AKF
possessing better performance. This exclusion of other filter configurations will help
reduce the complexity of the test series.

With these results, the design part of this work is finished. The next chapter presents
a side by side comparison of the performance. There the proposed filter concepts will
be evaluated for consistent performance under varying input parameters. Thus,
addressing the characterization part of this thesis.



6 Testing and Evaluation

To evaluate the effect of changing input parameters on the filter performance, a wide
range of simulation experiments need to be performed. However, the multitude of
different variable input parameters complicates a profound analysis of the whole
design space. To reduce the complexity of this problem design of experiments (DOE)
methods [60] will be combined with Monte Carlo simulation methods [61]. The sample
size of such an experiment is referred to as levels, L. With the number of parameters,
P, the overall number of simulations runs, N, can be determined for a designed
experiment [62].

N=1F Eqg. (6-1)

This denomination will be used for designing an experimental setup for the filter
evaluation. Nine steps were conducted for designing the simulation experiment:

Table 6-1: The 7 steps of DoE from [63] are marked with the ID RSX. Additional steps introduced for
this thesis are marked with ASX. Adopted from [60, 64].

ID Description Addressed In
RS1 Recognition and statement of the problem Chapter 3
AS2 Categorization of all input factors Section 6.1
RS3 Selection of the response variable(s) Section 6.2.1

AS4 Conducting and evaluating a wide range of preliminary experiments Section 6.2.2

RS5 Choice of factors, levels and ranges Section 6.2.3
RS6 Choice of design Section 6.2.4
RS7 Conducting the experiment Section 6.3
RS8 Statistical analysis Section 6.3
RS9 Drawing conclusions and marking recommendations Chapter 7

Characterizing the filter performance under changing input parameters represents the
problem statement and therefore addresses RS1. The problem statement is broken
down into the two research questions, Q2 and Q3, formulated in Chapter 3.

For AS2, all input parameters are classified into three distinct categories and from now
on will be referred to as factors. An overview of the entire classification process
regarding the design of this simulation experiment is given in Section 6.3 Fig. 6-5.

6.1 Factor Categorization

In [63], factors are categorized into “treatment factors”, which are of primary interest,
and “nuisance factors”, which are not the primary focus of the experiment. This
distinction will be essential to reduce the complexity of the problem and is performed
in Section 6.2.3. To facilitate this process, all factors can also be divided into internal,
external and error-related factors. The goal of this distinction is to find interrelations



between internal, external and error-related key factors. Therefore, the following
sections will focus on defining the three categories and providing the respective
reference values x.:

6.1.1 Internal Factors

Internal factors are adjustable and can therefore be used to optimize the performance
of the control system. This includes controller gains, filter parameters, filter-selection-
switches and data rates. A comprehensive list of all internal factors with their respective
Simulink subsystem and reference value is presented in Table 6-2.

For the internal factors, the reference values have been proven to satisfy the functional
requirements for the chosen external (see Table 3-3) and error-related (see Table 6-4)
reference values.

Table 6-2: The table lists all input variables of the simulation which will be labeled as internal, therefore
adjustable, factors and their respective Simulink subsystems.

Internal Reference Description Simulink
Factor Value Subsystem
fsensor 1000 [Hz] | Sensor sample rate Sensor
fop 100 [Hz] | Bang-Bang controller frequency is limited by £, Controller
Upbo 0.1[—] | Forup;p < —uppe and up;p > Uype control output u,, = 0 | Controller
K, 0.53 [—] | Proportional gain Controller
K; 0.79 [-] | Integrator gain Controller
K, 0.09 [—] | Differential gain Controller
Npyp 340 [-] | P2PMAF subset size for CF taken from 5.4.3 Filter
Q,R,P,y,6, See Tuning Approach in Section 5.4.2 Filter
c 1[—] | Tuning coefficient Kalman filter Filter
K, 0.9987 [-] | Complementary filter gain (see Section 5.4.1) Filter
fro 250 [Hz] | Built-in LPF cut-off frequency if S;pr = 1 Sensor
@range 500 F] Selected measurement range Sensor

S
Qrange 4 [g] | Selected measurement range Sensor
SipF 0[-] | IMU-integrated LPF switch Sensor
Spe 1[-] | Turns the bias compensator ON for sg; = 1 Sensor
Spap 0[—] | Turn P2PMAF ON for sp,p = 1 Filter
Sp 1[—] | Switch between KF for s = 1 and CF for s, = 0 Filter
S1AE 1[-] | Switch between KF for s;,z = 0 and AKF for s;,z = 1 Filter




6.1.2 External Factors

External factors are determined by the hardware design or the test environment and
are therefore, not adjustable. This includes mass of the entire system, computational
time delay measured by the implementation-team [32], maximum actuator force and
actuator exhaust velocity among other factors. Table 6-3 presents a comprehensive
list of all external factors with their respective Simulink subsystem and reference
values.

For the external factors, the reference values consist of worst-case estimation by the
hardware design team [26], values from the product data sheets [23], functional

requirements or assumed environmental conditions.

Table 6-3: The table lists all input variables of the simulation which will be labeled as external,
therefore not adjustable, factors and their respective Simulink subsystems.

External | Reference Description Simulink
Factor Value Subsystem
tor 0.0035[s] | ON/ OFF switching time of the actuator Actuator
Vact 521 [?] Average actuator exhaust velocity Actuator
Frax 7 [N] | Maximum force the actuators can produce Actuator
Fy 99 [%] | Achieved force after t, in relation to the maximum Force | Actuator
tactdelay 0[s] | Additional delay on actuator Actuator
Iy 1 [m] | Actuator lever arm Pendulum
lem 0.667 [m] | Assumed center of mass lever arm Pendulum
O 10 [°] End stop angle (equal to initial deflection) Pendulum
mg 5 [kg] | Point mass of the whole system att = 0 Pendulum
Wn,g 30000 [Hz] | Natural frequency of the gyroscope around y-axes Sensor
Tg 25 [°C] | Environmental temperature impacts Sensor sensitivity Sensor
B 16 [bit] | Available bit size influences quantization error together Sensor
with the measurement range
tsim 16 [s] | Simulation time Trajectory
Trode 3 [-] | Trajectory mode Trajectory
tpipdelay 0.01 [s] | Computational time delay / latency Controller
Sm 0[] | Activate decaying mass because of gas loss for s, = 1 Pendulum

6.1.3 Error-Related Factors

Error-related factors strictly impair the performance of the control system and are not
adjustable. This includes sensor noise, sensor bias and scale factors among other
factors. Error-related factors are further divided into deterministic and stochastic errors.



A comprehensive list of all error-related factors with their respective Simulink
subsystem and reference value is presented in Table 6-3.

For the error-related factors, calibration errors were extracted from the product
datasheets [14, 23] and the standard deviations for the white noise were taken from a
sensor characterization study conducted with MPU-6050 [21]. For the reference
values, a perfect calibration is assumed therefore setting scale factor, misalignment
and static bias to zero. As an exception, the gyroscope residual bias, wg;, IS set to
—0.035 °/s to account for requirement F24 (see Section 4.5).

Table 6-4: The table lists all input variables of the simulation which will be labeled as error related,
therefore not adjustable and performance impairing, factors and their respective Simulink

subsystems.
Error- Reference Description Type Simulink
Related Value Subsystem
Factor
Mg, 1[-] Scale Factor for accelerometer (Mg ,) | Deterministic | Sensor
and gyroscope (Mgr g yy) Multiplicative
M 0.02 0/_o Temperature Sensitivity increases with | Deterministic | Sensor
) °C temperatures deviating from 25 °C Multiplicative
My, 0 [%] Misalignment occurs due to installation | Deterministic | Sensor
errors or fabrication defects Multiplicative
Was,Gy 01 °/s] | gyroscope acceleration sensitivity | Deterministic | Sensor
“lg along the y-axis Additive
WRBGy 0.035 ° Residual bias after compensation Deterministic | Sensor
e S Additive
agp 4 0 [E] Residual bias after compensation Deterministic | Sensor
s2 Additive
06y 0128 ° The STD characterises the white | Stochastic Sensor
' s gaussian gyroscope y-axes noise Additive
04z 0.034 [E] The STD characterises the white | Stochastic Sensor
' s2 gaussian accelerometer z-axes noise | Additive
Opx 0.012 [E] The STD characterises the white | Stochastic Sensor
' s2 gaussian accelerometer x-axes noise | Additive

To determine which factors of the three categories shall be analysed, a preliminary test
series was conducted.

6.2 Preliminary Tests

After the 1-DoF Simulink model had been completed in its entirety and all reference
values had been fixed, a preliminary test series of explorative nature, also referred to
as pro forma analysis in [64], was conducted. It was used for the tuning process for the
different filters (Section 5.4), to decide on the response variables, key factors and their
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practicable ranges. And finally, it led to the design of the main test series. Therefore,
this section will cover steps AS3 to AS6 introduced in Table 6-1.

6.2.1 Response Variables

The main response variable was chosen to be the root-mean-square-error (RMSE) of
the true trajectory 8(t) to the desired / commanded trajectory 6.,,,(t). The RMSE can
be used to evaluate the performance of the whole control system by calculating the
quadratic difference between 8(t) and 6.y, (t).

RMSE = V 0 om \/ Z (91 com 91’)2 Eq ( 6-2 )

Note that Eq. ( 6—2 ) and Eq. ( 6-3 ) are simplified for the 1-DoF case and therefore
neglect the Euclidean norm. The RMSE, as well as any regression model introduced in
later sections, is always indicated in °. Furthermore, Ny represents the number of
samples for the pseudo-continuous trajectories and depends on the used Simulink
solver (see appendix Section C). For the chosen trajectory, established in 4.2, the
RMSE shall be smaller than 2.5 °, according to F35 in Table 3-3.

In [65] the mean-absolute-error (MAE, see Eq. (6-3)) and the geometric average error
(GAE) are introduced as means to evaluate the error between the two trajectories. The
smaller the respective value, the better the performance. This holds true for all
mentioned metrics. However, the RSME will always result in the largest value of the
three [20].

MAE = E[l(gcom 9)” = _Z |(61 com — 0i)| Eq ( 6-3 )

Since the RMSE is closely related to the standard deviation and therefore considers
the quadratic error, the metric possesses a higher sensitivity towards higher residuals.
In other words, undesirable behavior such as, high overshoots, high estimator rise
times, slow convergence of the true trajectory towards the commanded trajectory and
extremely volatile behavior around the commanded trajectory will be emphasized more
in the RMSE than in the MAE or GAE. Hence, it can be argued, that the RMSE is in
favor of more aggressive trajectories, which converge quickly. However, since this
characteristic is pertinent to this work, the RSME was chosen to evaluate the
performance of the entire control system. The RMSE and all RMSE-related results will
be indicated in °.

In [12], the RMSE; is calculated between the estimated trajectory 6., and the
discretized true trajectory 6y;s.rete- This allows one to isolate the filter performance
from the controller performance. The sample time of the two trajectories is equivalent
to the sensor sample time At. Therefore, the number of samples N is significantly
smaller then the number of samples Njy.

RMSE@ = JE [(Qdiscrete - 9) \/ Z (91 discrete — L')Z Eq ( 6-4 )

However, worse filter performance can arguably lead to worse overall performance.
Therefore, the rRMSE; and the RMSE are coupled, which places the rRMSE; as a
secondary response variable. Secondary response variables will only be mentioned if
unusual behavior is detected.
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Another secondary response variable would be the overshoot, 6,¢, which according to
F34 in Table 3-3, shall be kept under 60 % of the initial disturbance. However, the
overshoot is also coupled with the RMSE and therefore not qualified as a primary
response variable. If the overshoot limit is surpassed in the test series but the F35 is
still fulfilled, the resulting performance will still be rated.

6.2.2 Preliminary Test Results

After clarifying the rationale behind the RMSE as the primary response variable, the
key findings of the preliminary test series will be presented in this section. These
findings were previously mentioned throughout Chapter 4 and 5.

Table 6-5: Preliminary test series findings and the resulting implications for the main test series or the

subsystem design.

ID Description Implication

PTO1 | Saving gas by varying u,, Without impairing | u,,o = 0.1 as reference value
the performance (see Fig. 6-1)

PTO02 | Mass loss due to gas consumption my. = | m(t) = constant = m,
0.178 kg has negligible impact on the RMSE

PTO3 | Optimal performance for AKF without | Exclude P2PMAF as a prefilter for the
P2PMAF AKF

PTO04 | Performance of KF+P2PMAF comparable to | Only evaluate CF+P2PMAF and AKF
CF+P2PMAF

PTO5 | Calculating Q,R,P, configuration with | Use formulas from Eq. ( 5—29 ) for
respective  STDs satisfy performance | initial KF tuning and optimize by
requirements but leaves room for | reducing Q with tuning coefficient C
improvement

PTO6 | Requirement F35-fulfilling K. and Np,p for | Set K, = 0.9987 and Np,p = 340 as
reference values was determined reference values for the CF

PTO7 | Acceleration Sensitivity negligible for test | wys g, Will not be further analysed in
stand applications the main test series (nuisance factor)

PTO8 | Significant loss in performance for varying | tp;pgeiqay Will be a further analyzed in
tpipdelay- the main test series (key factor)

PTO9 | F21 Tg-variation with negligible impact on | T will not be analyzed in the main
RMSE see Fig. E-20 and Fig. E-21. test series (nuisance factor)

PT10 | Quantization error for the chosen fixed | Measurement range will not be varied
measurement range is negligible (E.2) (nuisance factor)

PT11 | Varying the residual bias was found to have QRBGy will not be analysed in the
n_egligible impact on both filters (appendix | main test series (nuisance factor)
Fig. E-32 - Fig. E-35).
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In PT1 it is described, that a significant amount of gas can be saved by increasing the
uppo value of the BB controller. This behaviour is depicted in Fig. 6-1 with the
performance depicted in Fig. 6-2. A value of uy,, = 0.1 was chosen as the reference
value, since the performance losses become noticeable after this value. If, in later
design iterations, gas saving is prioritized over performance, the threshold w,;;, of the
BB qualifies as a viable option for that.

0.21 T T T 2.5 T
My (U Sg=1) RMSE(u,, S, =1)
02r om0, 018D i S RMSE(u,, =0.18=1)
0.19 1 my (u,,,S=0) 1 RMSE(u, .S.=0)
m (u, ,=0.1.8,=0) RMSE(u, =0.1.8 =0)
018t \4;\ J ol

[ke]

047} 1
016} 1
0.15F \ 15

o1 \/\

013 |
0'120 o_los 0‘_1 0_‘15 0.2 ! 0 0.|05 0.1 0.‘15 0.2
Uy ] Uppo [
Fig. 6-1: Decrease in mg. for increasing u,,. Fig. 6-2: RMSE for increasing u,,o. CF in grey
CF in grey and AKF in black. and AKF in black.

With this, the reference values are determined. The resulting performance for the two
filter configurations is shown below.

10 T 10
— feom - — feom
al 0 ] gl 0
— —
61 1 6 1
RMSE=1.64 [] RMSE=1.365 [°]
4t 4 4 g
2 2
2+ 9 2 \/
4 . . . . . . . 4 . . . . . . .
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

t[ms] t[ms]

Fig. 6-3: P2PMAF+CF performance result for Fig. 6-4: AKF performance result for reference
reference values. values.

Fig. 6-3 and Fig. 6-4 show that, both filter configurations satisfy F35 under reference
condtitions. Thus, the reference performance is RMSE,., =1.640° for the
P2PMAF+CF configuration and RMSE,..; = 1.365 ° for the AKF configuration. Results
for the other two trajectories established in Section 4.2 can be found in the appendix
Section E.1. The reliability of this performance results shall be tested by varrying the
key factors which will be established in the next section.
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According to [60], the selected key factors should be varied over a practicable range
on an appropriate amount of levels. Levels can be understood as the resolution of the
input data. For two levels, the range of a factor would be divided into a high and a low
value, which is computationally efficient; however, information would be lost. The input
for the experiment will be defined in the next sections.

6.2.3 Key Factors, Levels and Ranges

6.2.3.1 Key Factor Selection

The established factor categories allow for the following distinction when deciding on
the key factors:

Most internal factors are customizable, with restrictions only applying to fiensors fob,
Wrange aNd a,qnge, and therefore are able to react to a certain circumstance. As
established in Section 5.4, factors can be adjusted to keep the performance within the
requirements boundary. Therefore, they will be used to formulate the tuning rules, but
will not be labelled as key factors.

For the external factors, the design and implementation team suggested possible
factors of interest. These include the actuator switching time, t;, the delay time after
the PID element, tp;pgeiay, the initial mass, m,, the maximum actuator force, Fy,,, and
a change of the actuator lever arm, l,. However, I, and E,,,, are inversely proportional
to my,

1

laFmax
This can be extracted from Eq. ( 4-1 ). Therefore, only m, will be considered for the
evaluation. Additionally, the maximum controllable deflection angle will be evaluated
by varying 6;s. The temperature sensibility was a suggested factor as well, but was
ultimately ruled out during the preliminary tests (see Fig. E-20 and Fig. E-21).

For the error-related factors, the scale factor, Mgz, and the random noise process, o,
will be analysed. The effect of misalignment and all other multiplicative sensor errors
are directly proportional to the scale factor, and therefore do not provide any additional
evaluation information. The listed error-related factors were chosen since they are
expected to have the highest influence on the performance and cannot be
compensated by calibration without profound testing and sophisticated sensor error
models. Further information on compensating the scale factor of an IMU by calibration
is given in [66]

This selection of six factors marks the first iteration of key factors, which will be further
refined, after the main test series, to answer research question Q2.

6.2.3.2 Input Factor Levels

The number of levels, L, in an experiment can be understood as the resolution of the
acquired data. To obtain higher order relations between input and output, there must
be at least three levels to an experiment. Increasing the number of levels, however,
will evidently vastly increase the computational effort Eq. ( 6—1 ). The behavior of the
model to the proposed input factors is completely unknown and therefore, the input
shall be randomized across enough levels and a wide enough range. To model this
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uncertainty, an arbitrary input modelled by its PDF with a standard deviation is chosen.
To capture the effect of inputs 30 away from the mean, on the response, the sample
size of the Monte Carlo simulation must be L >371. This is defined by the
characteristic of the chosen input distribution for which 99.73 % of samples must lie
within the 30 range (see appendix Chapter B). Therefore, the sample size for the main
experiment was chosen to be L = 400, to balance informativeness with available time
and resources.

Preliminary tests were conducted with a fourth of the main test sample size L,,.. = 100,
which is appropriate according to [64].

6.2.3.3 Input Factor Ranges

For this evaluation, the range covers the factor space of interest in which either 68.27 %
or 100 % of the input samples are located, depending on the input function used for
the sensitivity analysis. Section 6.3 will elaborate on the two different distribution used
for the evaluation. The range for the respective key factors was either taken from the
datasheets [14, 23] or estimated with calculations by the design team [26, 32]. As an
example:

Ox = XrefRy Eqg. (6-6)
will define one STD of the gaussian normal distributed input
8x = NV [Xrer, 0x . Eq. (6-7)

One standard deviation can, therefore, also be referred to as the 68.27 [%] -error, since
this exact percentage of samples of the random input lie within +a,. The probability
density function (PDF) is given in the appendix Section B.2.

6.2.4 Experiment Design Choice

To characterize the performance of the two filter configurations in the simulation a one-
factor-at-a-time (OFAT) analysis was conducted. OFAT is a commonly used method
to analyze sensitivity due to its simplicity and practicability. Here, one factor is varied
while all other factors of an experiment are kept at a constant, reference value [60]. In
this work, information about the influence of one factor on the performance of the
respective filter can be obtained. After analyzing the factor of interest, it is returned to
the reference value and the next input factor can be varied, while keeping all other
values constant.

OFAT experiments depend upon guesswork, luck, experience and intuition for its
success. This may often lead to unreliable, inefficient and time-consuming experiments
and may yield false optimum conditions for the process [60]. Therefore, OFAT is strictly
not considered a DOE method and often out-performed by such methods in terms of
efficiency, information yield and exploring the entire factor space [67]. Therefore, in an
OFAT experiment, interactions between input factors might remain undetected. In DOE
methods, such as fractional factorial method Box-Behnken from [62], input factors
resolution is simplified to three levels, a high, a low and a central point level. This allows
the method to explore a vast multi-factorial design space to obtain an optimal
configuration with relatively few runs. However, the goal of this experiment is not to
find the optimal configuration, but to obtain the performance sensitivity of the system
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regarding key factors. The low resolution of fractional factorial methods may impair the
significance of the statement regarding the sensitivity of the system towards one factor.
In the context of this simulation experiment, the simplicity of OFAT allows, to give a
randomized, high sample size, statistical input, in the form of a any distribution,
described by the previously determined range. The response can be analyzed by using
statistics and regression models.

In summary, the two filter configurations will be characterized by analyzing the
sensitivity of the RMSE towards one arbitrary key factor input at a time.

6.3 Sensitivity Analysis

After choosing a design for the simulation experiment, the main test series was
conducted. To parse the effect of the chosen key factors on the performance of the
control system a sensitivity analysis is performed for statistical evaluation.

In the context of numerical evaluation of mathematical models, sensitivity can be
described as the relation between a change in the input to the resulting change in the
output. In practical modelling, the sensitivity analysis is carried out by changing the
input parameters. The corresponding response on the selected input dx is observed.
Thus, the sensitivity, S,, towards an input, x, is defined by the partial derivative with
respect to a reference value [68]:

Xref ORMSE(x)

_ Xref 0y _
RMSEyef — 0x

x Yref Ox

Eq. (6-8)

Xref Xref

This sensitivity computation will be labelled partial derivative sensitivity (PDS), where
the quotient, x,../RMSE,., is introduced to normalize the coefficient by removing the
units [69]. Since the derivative is computed at a fixed reference point, it is considered
a local method and therefore not recommended to explore the whole input space of
possibly nonlinear systems [61]. Additionally, it does not consider the different ranges
in the input. However, it can be modified to analyse the effect of several arbitrary inputs
on an arbitrary output. For this purpose, the partial derivative at the reference point is
normalized by the coefficient o,/0,, which is referred to as the square root of the
importance index in [69]. Whereby, o, represents the STD of one input and o,
represents the STD of the response distribution for varying all factors at once. This
metric is referred to as the sigma-normalized derivatives sensitivity (SNS), SZ, and is
often used for the statistical analysis of Monte Carlo simulations. The squared can be
formulated with the equation [61]:

2
(Sa)z — Qa_yl _ 0y  ORMSE(x)
X O'y ox xref ORMSEtot 0x

The higher the squared SNS is, the higher is the share of the respective input in the
output distribution. If the response function is a linear combination of the inputs, the
sum of the squared SNSs will equate to one. If this is not the case and non-additive or
nonlinear terms exist in the response equation, the sum of the squared SNSs will be
less than one [70].

2
) . Eq. (6-9)
Xref

For this work, the squared SNS shall allow to rank the chosen input factors, relative to
each other, for one filter, regardless of the input distribution and range. Additionally,
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the statistics of the response for varying one factor at a time will give absolute values
like the standard deviation or the mean.

Not all key factor inputs can be varied randomly without restriction. The computational
time delay, the end stop angle as well as the STD of the sensor noise shall be varied
over a vast range to identify the limits of the systems. However, they cannot be
negative and therefore a normally distributed input is not appropriate. It was chosen to
model the input with an equal / uniform distribution. It will be further described in 6.3.2
and in the appendix Section B.3.

Both input distributions will be analyzed with the mentioned sensitivity metrics. The
partial derivative will be calculated by using a linear regression model fitted to the
response scatter plot, resulting from a single input variation. If a linear model is not an
appropriate fit, the partial derivative is calculated at x,..r. Since the equally distributed
values will cover a vast design space, additionally, the maximum allowed values, for
the respective input factor, to still fulfill F35 will be provided. These results are
presented throughout Sections 0 to 6.3.2.3, while all results together with the SNS
values for all factors and filters will be summarized in 6.3.3. After introducing yet
another level of distinction for evaluating the key factors, an overview of the whole
factor classification process is given in the figure below.

Categorization
External Factors Error-Related Factors Internal Factors

-
X
@
3.
Complexity =
Reduction 3
o
External Key Factors ElTOl'-Flze‘!la;re: Key %
s, o, (e
Lpipdelay my Mgy
Evaluation .
: ' )
=S
. —
zn PDS S, and . 3
B sNssT Dl il

Fig. 6-5: Overview of classification and evaluation process of the input factors.

Further, both filter configurations will use the same arbitrary generated input, for
varying one factor at a time, as well as for varying all factors at once, to allow for
comparable results.

6.3.1 Normal Distribution Input

The normal distributed arbitrary input is generated with the MATLAB function
delta x=normrnd(x ref,x ref*R,L,1).The PDF is given in the appendix Eqg.
( B=5). The output will be analyzed by using the characteristic parameters ugysz and
ORMSE resulting from the normal distribution fit function
mu_sigma=fitdist (x,y, 'normal'), and by fitting an appropriate regression
function to the scatter plot. The acceptable limit to the RMSE, demanded by F35, will
be visible in the scatter plot.



6.3.1.1 Actuator Switching Time

For the actuator switching time, t,;, the input distribution is calculated with a range of
R:, =30 %. This value was assumed to cover the tolerance specified in [23]. The
MATLAB function with the corresponding values is:

delta t st = normrnd(0.0035,0.0035*%0.3,400,1);
Scatter plot and histogram with PDF for the CF+P2PMAF is shown below.
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Fig. 6-6: Histogram for tg;, urysg = 1.589° and Fig. 6-7: RMSE scatter plot for ty, and linear
ormse = 0.096 °. regression fit.

Fig. 6-6 indicates that the performance of the CF configuration has a probability of
68.27 % to fall within one STD, ogysg = 0.096 °, from the mean, for the given R, ,.

p(RMSE = 1.589 [°] + 0.096 [°]) = 68.27 [%]. Eq. (6-10)
The linear regression of the scatter plot reveals the function:
RMSEy;,(ts) = 3.003t,, + 1.579. Eq. (6-11)

During the simulation, it was observed, that occasionally the zero-crossing detection
was deactivated. This can be observed in the RMSE5 scatter plot in the appendix Fig.
E-22. This simulation issue may lead to a higher variance in the output. Next, the
histogram with the PDF and the scatter plot for the AKF is shown below.
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Fig. 6-8: RMSE histogram for tg, pgusg = Fig.6-9: RMSE scatter plot for t,, and linear
1.347 ° and ogysg = 0.060 °. regression fit.

Fig. 6-8 indicates that the performance of the AKF configuration has a probability of
68.27 % to fall within one standard deviation ogysg = 0.060 ° from the mean, for R, .

p(RMSE = 1.347 [°] + 0.060 [°]) = 68.27 [%]. Eq. (6-12)
The linear regression of the scatter plot reveals the function:
RMSEf;,(ts) = 7.390ts, + 1.320. Eq. (6-13)

The output results for the two filter configurations are summarized in the table below.

Table 6-6: Output statistics for both filter configurations with key factor tg;.

Filter Range STD Mean PDS
P2PMAF+CF 0.096 [°] 1.589 [°] 0.006 [—]
30 [%)]
AKF 0.060 [°] 1.347 [°] 0.018 [—]
6.3.1.2 Weight

For the starting mass, m,, the input distribution is calculated with a range of R,,, =

0.356 %. This value is calculated by dividing the gas consumption, calculated with Eq.
(4-19), by the starting mass. It resembles the expected change in total mass during
a test run. The MATLAB function with the corresponding values is:

delta m 0 = normrnd(5,5*0.0356,400,1);

The histogram with the pdf for the CF+P2PMAF configuration is shown in Fig. 6-10
and the scatter plot in Fig. 6-11.
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Fig. 6-10: RMSE histogram for m,, R = 3.56 %, Fig.6-11: RMSE scatter plot for
Uruse = 1.629 ° and ogysp = 0.103 °. 3.56 % and a linear fit.
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The histogram indicates that the performance of the CF configuration has a probability
of 68.27 % to fall within one standard deviation ogysg = 0.103 ° from the mean, for R, .

p(RMSE = 1.629 [°] + 0.103 [°]) = 68.27 [%)]. Eq. (6-14)
A linear model was fitted to the scatter plot. It can be expressed with the function:
RMSEf;,(mg) = 0.266m, + 0.299. Eq. (6-15)

The histogram with the PDF for the AKF configuration is shown in Fig. E-26 and the
scatter plot in Fig. E-27.
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Fig. 6-12: RMSE histogram for m,, R = 3.56 %, Fig. 6-13: RMSE scatter plot for m, R =
”RMSE b 1383 ° and O-RMSE = 0073 0. 356 % and a ||near f|t

The histogram indicates that the performance of the AKF configuration has a

probability of 68.27 % to fall within one standard deviation ozyss = 0.073 ° from the
mean, for the given input range.

p(RMSE = 1.383 [°] £ 0.073 [°]) = 68.27 [%]. Eq. (6-16)
A linear model was fitted to the scatter plot. It can be expressed with the function:
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RMSE;;;(mg) = 0.250my + 0.133. Eq. (6-17)

If the range is extended to R,, = 5 %, the regression function changes from a linear
model to a second-order exponential model (see Eq. (E-21 ) and Eq. (E-24)). When
solving the equation for the value RMSE = 2.5 °, the maximum weight the RCS can
control without adjusting the PID values can be obtained. For the P2PMAF+CF
configuration the maximum weight is mg ;4. cr = 5.963 kg (see Eq. ( E-22)) while for
the AKF, it is mg max.axr = 6.185 kg (see Eq. ( E-25)). Further information regarding
these test results can be found in the appendix Section E.5. Calculating the PDS at the
reference point gives results comparable to the linear model results for the lower range.
Thus, reinforcing the findings. The results for both ranges and filters are comprised in
the table below.

Table 6-7: Output statistics for both ranges and filter configurations with key factor m,,.

Filter Range STD Mean PDS
P2PMAF+CF 0.103 [] 1.629 [°] 0.810 [-]
3.56 [%]
AKF 0.073 [°] 1.383 [] 0.916 [—]
P2PMAF+CF 0.117 [°] 1.627 [] 0.707 [-]
5 [%]
AKF 0.104 [°] 1.393 [°] 0.854 [—]

It was observed that varying the centre of mass, therefore changing [y, generates
sensitivity results comparable to the ém, results. The &l results are provided in the
appendix Section E.6.

6.3.1.3 Scaling

For the scale factor, Mg, the input distribution is calculated with a range of Ry, =

3 %. This value was assumed to cover the tolerance specified in [14]. The scale factor
of the gyroscope is examined independently of the accelerometer scale factor. The
MATLAB expressions with the corresponding values are:

delta M SF G yy = normrnd(1,1*0.03,400,1);
delta M SF A = normrnd(1,1*0.03,400,2);

The gyroscope scale factor is examined first. The histogram with the PDF for the
CF+P2PMAF configuration is shown in Fig. 6-6 and the scatter plot in Fig. 6-7.
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Fig. 6-14: RMSE histogram for Mg ¢ .y, trusg = Fig. 6-15: RMSE scatter plot for Mg ,, and
1.648 ° and ogysg = 0.086 °. linear regression fit.

Fig. 6-6 indicates that the performance of the CF configuration has a probability of
68.27 % to fall within one standard deviation, ogysp = 0.086 °, from the mean, for Ry

p(RMSE = 1.648 [°] £ 0.086 [°]) = 68.27 [%]. Eq. (6-18)
The linear regression of the scatter plot reveals the function:
RMSEi;(Msp g.yy) = 0.154Mgp ¢ 5,y + 1.494. Eq. (6-19)

The histogram with the pdf for the AKF configuration is shown in Fig. 6-8 and the scatter
plot in Fig. 6-9.
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Fig. 6-16: RMSE histogram for Mgz ., trusg = Fig. 6-17: RMSE scatter plot for Mg, and
1.383 ° and ozysg = 0.062 °. linear regression fit.

The histogram indicates that the performance of the AKF configuration has a
probability of 68.27 % to fall within one standard deviation, ogyss = 0.062 °, from the
mean, for Ry

p(RMSE = 1.383 [°] + 0.062 [°]) = 68.27 [%]. Eq. (6-20)
The linear regression of the scatter plot reveals the function:

RMSE;;(Msp g5y ) = —0.483Msp ¢, + 1.866. Eq. (6-21)
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For the accelerometer, two axes are of interest. The x- and the z- axes of the actuator
frame (A-frame). First the P2PMAF+CF configuration is examined. The histogram and
the 3D scatter plot with a multivariate linear regression fit is shown below.
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Fig. 6-18: RMSE histogram for Mgg 4, prusg = Fig. 6-19: RMSE scatter plot for Mgz, and
1.641 ° and ogysg = 0.117 °. multivariate linear regression fit.

Fig. 6-18 indicates that the performance of the AKF configuration has a probability of
68.27 % to fall within one standard deviation ogysg = 0.117 ° from the mean, for Ry,

p(RMSE = 1.641 [°] + 0.117 [°]) = 68.27 [%]. Eq. (6-22)
The multivariate linear regression fit of the 3D scatter plot reveals the function:
RMSE;(Mgp 5) = 0.907Mgp g xx — 1.433Mgp 4 ., + 2.167.  Eq. (6-23)

Next, the AKF configuration is examined. The histogram is shown in Fig. 6-20 and the
3D scatter plot with a multivariate linear regression fit is displayed in Fig. 6-21.
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Fig. 6-20: RMSE histogram for Mgr 4, prusg = Fig. 6-21: RMSE scatter plot for Mg, and
1.393 ° and ggysg = 0.060 °. multivariate linear regression fit.

Fig. 6-20 indicates that the performance of the AKF configuration has a probability of
68.27 % to fall within one standard deviation, ogysp = 0.060 °, from the mean, for Ry

p(RMSE = 1.393 [°] + 0.060 [°]) = 68.27 [%]. Eq. (6-24)



The linear regression of the scatter plot reveals the function:
RMSEs;(Msp 4) = —0.152Mgp 4 yx — 0.036Msp 4 ,, + 1.581. EQ. (6-25)

The output results for the two filter configurations are summarized in the table below.

Table 6-8: Results of the two filter configurations for the key factor M.

Filter Factor Range STD Mean PDS
P2PMAF+CF 0.086 [°] 1.648 [°] 0.094 [-]
MSF,G,yy
AKF 0.062 [°] 1.383 [] —0.354 [—]
Mg A xx 0.553 [-]
P2PMAF+CF 3 [%] 0.117 [°] 1.641[°]
MSF,A,ZZ —0.874 [_]
Mg A xx —0.111 [-]
AKF 0.060 [°] 1.393[°]
MSF,A,ZZ —0.026 [_]

6.3.2 Equal Distribution Input

The equal distribution possesses the property that all samples lie within the limits x,,;,,
and x,,.,, Which defines the input range. Furthermore, all inputs have the same
probability of occurring. For more information refer to the appendix Section B.3. In
MATLAB, such confined arbitrary input distribution can be generated with the
expression:

delta x = x min + (x max-x min) * rand(L,1);

It will be analyzed by the SNS in Section 6.3.3 and by fitting an appropriate regression
function to the resulting RMSE scatter plot. The acceptable limit to the RMSE,
demanded by F35, will be shown in the scatter plot. Output statistics for the equal
distribution are not representative and will therefore not be analyzed.

6.3.2.1 Initial Deflection

For the initial deflection of the pendulum, which is equal to the end stop angle, s, the
maximum controllable deflection with the reference settings shall be found. Therefore,
the input is varied over a range of 8° < Ry, < 12°. The corresponding MATLAB

expression is:
delta theta ES = 8 + (12-8) * rand(400,1);

The result is shown in Fig. 6-22 and Fig. 6-23 for the P2PMAF+CF and AKF
configuration respectively.
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Fig. 6-22: CF RMSE scatter plot for ;5 a second- Fig. 6-23: AKF RMSE scatter plot for ;5 and a
order exponential fit. second-order exponential fit.

A second-order exponential model was fitted to the P2PMAF+CF scatter plot. It can be
approximated with the function:

RMSEf; cp(0gs) = 0.545¢%105%s + 2.811 » 107 8e1451%s.  Eq. (6-26 )
For the AKF scatter plot the same model results in:
RMSEpi agr(0gs) = 0.542€%08608s 4 4,413 x 10771231055, Eq. (6-27 )

Solving the functions for the value defined by requirement F35 returns

0ps(RMSEp; cr = F35 = 2.5 [°]) = 11.680 [°], Eq. (6-28)
for the P2PMAF+CF configuration and
O0ps(RMSEfi axr = 2.5 [°]) = 11.878 [], Eq. (6-29)

For the AKF configuration. Therefore, formulating the maximum allowed computational
delay for the respective filter under reference setting.

6.3.2.2 Measurement Noise

The measurement noise is characterized by the STD of the respective sensor. The
goal of this section is to quantify the performance deterioration of the control system
for a STD higher than the one measured in Section 4.5. Since the KF algorithm is
provided with the variance in the measurement for tuning, a superior performance of
the KF compared to the CF is expected. The input is varied over a range of 0.1°/s <
805y < 0.5°/s, and 0.01 m/s* < §a, < 0.1 m/s?, which is appropriate for consumer
grade IMUs [12]. The gyroscope noise level will be examined independently from the
accelerometer noise levels. The corresponding MATLAB expressions are:

delta sigma G y = 0.1 + (0.5-0.1) * rand(400,1);
delta sigma A = 0.01 + (0.01-0.01) * rand(400,2);

The result is shown in Fig. 6-22 and Fig. 6-23 for the P2PMAF+CF and AKF
configuration respectively.
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Fig. 6-24: CF RMSE scatter plot for o5, with Fig. 6-25: AKF RMSE scatter plot for o, with
linear regression model. linear regression model.

A linear model was fitted to the P2PMAF+CF scatter plot. It can be approximated with
the function:

RMSEy;; cr(0¢,,) = 04470, + 1.603. Eq. (6-30)
For the AKF scatter plot the same model results in:
RMSEfit,AKF(O-G,y) = 0.7670-6’}, + 1.271. Eq. ( 6_31 )

Solving the functions for the value defined by requirement F35 returns

06,y (RMSEpe e = 2.5 [°]) = 2.008 |- Eq. (6-32)
for the P2PMAF+CF configuration and

06,y (RMSEpie aicr = 2.5 [°]) = 1.603 |<], Eq. (6-33)

for the AKF configuration. Therefore, formulating the maximum allowed noise level for
the respective filter under reference settings. These values must be treated with
caution, since a linear model is assumed, which might not be the case at noise levels
0y > 0.5°/s.

For the accelerometer there are two axes of interest. The x- and the z- axes of the
actuator frame (A-frame). First the P2PMAF+CF configuration is examined. The
graphs below show the 3D scatter plots with a multivariate linear regression fit for both
filter configurations.



Fig. 6-26: P2PMAF+CF RMSE scatter plot for o, Fig. 6-27: AKF RMSE scatter plot for a, with
with multivariate linear regression fit. multivariate linear regression fit.
The multivariate linear regression model of the 3D scatter plot reveals the function:
RMSEfi; cr(04) = —0.0990, , — 0.6370, , + 1.664, EQ. (6-34)
for the P2PMAF+CF configuration and
RMSEfjp axp(04) = 2.0280 4, — 2.7260, , + 1.498, Eq. (6-35)
for the AKF configuration.

The intersection function between the surface and the RMSE value defined by
requirement F35 cannot be found for this variation range. In the appendix the maximum
noise input was increased fivefold to obtain the intersection functions:

04x(RMSEfi cr = 2.5 [°]) = 0.663 — 0.4080,,,,, Eq. (6-36)
for the P2PMAF+CF configuration and
0ax(RMSEji ar = 2.5 [°]) = 0.548 + 0.0610,,,, Eq. (6-37)

for the AKF configuration. The scatter plots for the increased maximum noise input can
be found in the appendix 0.

6.3.2.3 Computational Delay

The input distribution for the computational delay after the PID-element is generated
with the randi ([x min,x max],L,1) MATLAB function which generates an
equally distributed series of integers within a certain range. This function was chosen
because it was observed that, decimal numbers smaller than the sensor frequency
caused problems within the simulation, resulting in the control system failing to control
the pendulum. Therefore, the input expression is formulated as:

delta t PIDdelay = randi([1,120],400,1)/1000;

The maximum delay time tp;pgeiay,max = 0-12 s was chosen to be large enough to bring
the control system to failure. Therefore, the input is varied over a range of 0.001s <
Otpipaelay < 0.12's. The result is shown in Fig. 6-28 and Fig. 6-29 for the P2PMAF+CF
and AKF configuration respectively.
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Fig. 6-28: CF RMSE scatter plot for tp;pgeiqy and  Fig. 6-29: AKF RMSE scatter plot for tp;pgerq,, and
a second-order exponential fit. a second-order exponential fit.

A second-order exponential model was fitted to the P2PMAF+CF scatter plot. It can be
approximated with the function:
RMSEsit cr(tpipaeiay) = 1.672e375%PIndetay + 0.003¢600¢% Pindetay, E(Q. ( 6-38)
For the AKF scatter plot the same model results in (rounded to the second decimal):
RMSEyi; axr (tpipdetay) = 1.33e534Ppdetay 4 525 « 10~ 13e244trnaeiay,.  E(Q. ( 6-39 )

Solving the functions for the value defined by requirement F35 returns

tpipaeiay (RMSEfic cr = 2.5 [°]) = 0.074 [s], Eq. (6-40)
for the P2PMAF+CF configuration and
tpipaeiay(RMSEfi agr = 2.5 [°]) = 0.108 [s], Eq. (6-41)

For the AKF configuration. Therefore, formulating the maximum allowed computational
delay for the respective filter under reference setting.

6.3.3 Comparison and Sigma-Normalization

For computing the SNS for every factor, all previously discussed inputs are varied at
the same time. The ranges of 85 and tp;pqe14, Were adapted to an approximately linear
version around the reference values: 9.5 ° < §6gs < 10.5° and 0.001 s < §tpipgeray <
0.03 s. The maximum delay was chosen to be tp;pgeiaymax = 0.03 s since it equates

to three times the reference value, which represents the worst-case assumption for
scaling up to 3-DoF.

The response distributions for both filters are shown in Fig. 6-30 and Fig. 6-31. As the
PDF, a Gamma distribution is used which allows to calculate ozpsg0r fOr the SNS. It
has the benefit that it reduces the effect of outliers, which resulted in system failure, on
OrmsEtot- 1He characteristics of the Gamma distribution are explained in the appendix
Section B.4.
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Fig. 6-30: Response Gamma distribution with Fig. 6-31: Response Gamma distribution with
O-RMSEfOf = 0.192 ° and ,Lttot = 1.804’ 0. O-RMSEtOt = 0.510 ° and ,utot = 1.727 O.

By accessing the Gamma distributions, the AKF provides a lower mean, while the
P2PMAF+CF provides a lower standard deviation. However, the AKF response result
is influenced by a larger quantity of outliers, which result from the control system failing
to stabilize the pendulum. This is further emphasized by the CDFs, c¢(RMSE), of both
filters, which are shown below.
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Fig. 6-32: CDF with c(i;o;) = 0.5. Fig. 6-33: CDF with c(i;o;) = 0.5.

It can be observed that 99.75 % of runs performed below the F35 limit for the
P2PMAF+CF configuration, while for the AKF 97 % of runs performed below the F35
limit.
CRMSE,CF(Z'S [o]) = p(RMSE S 25 [o]) = 9975 [%] Eq (6—42)
CRMSE,AKF(Z'S [O]) - p(RMSE S 25 [O] - 97 [%] Eq (6—43)

The true trajectories of all runs for both filters were plotted in Fig. 6-34: All 400 true
trajectories for varying all key input factors with the given distributions. Fig. 6-34 and
Fig. 6-35. The figures reveal the outlier trajectories, were the RCS could not lift the
pendulum or failed to stabilize it.



5
5
>
al

P2PMAF+CF

0]

o & b M o N A2 o o
[

S & A M o N A o ®

o
= '

2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
t[s] t [s]

o

Fig. 6-34: All 400 true trajectories for varying all Fig. 6-35: All 400 true trajectories for varying all
key input factors with the given key input factors with the given
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Addressing Q1 (see Chapter 3), it was decided that the 2o-error in the response shall
lie within the F35 boundary of 2.5 °, for the algorithm to be deemed reliable enough.

For the P2PMAF+CF configuration the 3o-error in the response lies within the F35
performance boundary. Thus, qualifying the algorithm to be reliable enough in
stabilizing the system.

For the AKF the 2g-error in the response lies within the F35 performance boundary.
Thus, qualifying the algorithm to be reliable enough in stabilizing the system.
Additionally, the AKF algorithm leaves room for optimization of its Q, R and P, values.

To address Q2 the chosen key factors shall be revised and ranked. Key factors will be
ranked regarding the filter configuration, since each possesses different reference
response. The factors will by ranked by the squared SNS (SNS?) value.

The cells of the tables below were color-coded to highlight the four highest SNS? and
PDS values. The higher the respective value, the darker the color. A bluish color palette
was chosen for the P2PMAF+CF configuration and a brownish for the AKF
configuration.

Table 6-9 lists the normally distributed input factors while Table 6-10 lists the equally
distributed input factors:
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Table 6-9: Output statistics, PDS and squared SNS of the two filter configurations for the normally
distributed inputs.

Input Filter Range Output Output PDS SNS?
STD Mean
P2PMAF+CF 0.096 [°] 1.589[°] | 0.006[—] | 0.0003[—]
Otgt 30 [%]
AKF 0.060 [°] 1.347[°] | 0.018[—] | 0.0002[—]
P2PMAF+CF 0.103[°] | 1.629 [°] | 0.810[—] | 0.0611 [—]
émy 3.56 [%]
AKF 0.073 [°] 1.383[°] | 0.916 [-] | 0.0076 [—]
P2PMAF+CF 0.086 [°] 1.648[°] | 0.094[—] | 0.0006[—]
6MSF,G,yy
AKF 0.062 [°] 1.383 [°] | —0.354 [—] | 0.0008 [—]
SMgp 4 xx 0.553 [—] | 0.0202[—]
P2PMAF+CF 3 [%] 0.117 [°] 1.641[°]
5MSF,A zZZ —0.874 [—] 0.0503 [—]
SMsp 4 xx —0.111 [-] | 0.0001 [-]
AKF 0.060 [°] 1.393 []
SMp 422 —0.026 [-] | 0.0000 [-]

Table 6-10:PDS and squared SNS of the two filter configurations for the equally distributed inputs.

Input Filter Min Max Input STD
P2PMAF+CF
80 95[°] | 10.5[°] 0.289 [°]
AKF 0.0171[-]
P2PMAF+CF . . .| 0.035[-]| 0.0726 [-]
806, o1l | os[]| o116
AKF ® ° 1 0.072[-]
Y —0.001 [-] | 0.0002[-]
P2PMAF+CF
80, —0.013 [-] | 0.0075[-]
’ m m m
001 [5]| o1 [F]| 00265
80, —0.017 [-] | 0.0107 [-]
AKF
80y, —0.068 [-] | 0.0193 []
P2PMAF+CF 0.042 [—] | 0.0904 []
8tpipdetay 0.001[s] | 0.03][s] 0.008 [s]
AKF 0.055 [—] | 0.0151[-]

Thus, for the P2PMAF+CF configuration the factor which the system has the highest
sensitivity towards, is the end stop angle, followed by the computational delay, the
gyroscope noise, and the total weight. These factors possess the largest share in the
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overall variance of the system. However, the sum of all SNS? values does not equate
to one:

Zi(sg‘q)z = 0.4392. Eq. (6-44)

Therefore, it can be assumed, that the actual response function is not a linear
combination of the inputs. Hence, most of the variance in the response may stem from
nonlinear dependencies and couplings between the factors [70].

For the AKF the factor the factor which the system has the highest SNS towards, is the
gyroscope noise, followed by the accelerometer noise on the z-axis, the end stop
angle, and the computational delay. However, the sum of all SNS? values is even
smaller compared to Eq. ( 6—44 ):

Zi(s;i)2 =0.1011 Eq. (6-45)

Again, the actual response function is not a linear combination of the inputs. Hence,
an even higher percentage of the variance in the response may stem from nonlinear
dependencies and couplings between the factors as compared to the P2PMAF+CF
[70].

These results conclude the characterization of the two filters, within the scope of the
work. The next chapter will relate them to the research questions and scrutinize the
validity of the approach and the utilized methods.



7 Discussion of the Results

In the following sections the fulfilment of the posed research questions, and the chosen
methods to answer them, will be discussed and questioned. Therefore, this chapter
refers to RS9 of the proposed designed experiment steps.

7.1 Tuning Guidelines and Design Insights
Placing Q1 in the context of established findings, it can be paraphrased to:

Q1: Which filter design allows for the 2g-error in the response of the given system
under changing key input factors to lie within the boundary defined by F35?

An AKF and CF, expanded with the P2PMAF, can both be implemented to reliably fulfill
F35. Whereby the AKF appears to have the better mean performance ., while the
P2PMAF+CF demonstrates a lower variance (ozysgor)? in the response. Therefore,
given that the implementation of the P2PMAF on the microcontroller is unproblematic,
the latter configuration provides the more robust solution. A possible reason could be
that the P2PMAF averages out noise on the accelerometer which was one of the major
performance degrading factors on the AKF.

Major performance degrading factors are labeled key factors which shall be evaluated
for Q2:

Q2: What are the key factors influencing the control system?

The key factors were found through categorization, preliminary tests and the SNS?
value for each filter. The effect of the actuator switching time, t,;, and the scale factor,
Mg, may have a prominent PDS, however, SNS? analysis diminishes their importance.

The P2PMAF+CF seems to be more sensitive towards external key factors like the
end stop angle, the weight or the computational delay, while the AKF is more sensitive
towards error-related factors, especially on the gyroscope, like the characteristic noise
parameter on the y-axis o5 ,,. One possible explanation could be that the AKF will often
neglect the measurement innovation y,, therefore increasing the reliance on the
gyroscope measurement.

Q3: Which rules apply to tuning the control system?

Boundaries: It was important to the hardware design team and the software
implementation team to find out maxima of the end stop angle and the overall weight,
for which the requirements are still fulfilled. Assuming reference values the maximum
Va|UES are: mo‘max’cp = 5963 kg, mo'max'AKF = 6185 kg, QES,max,CF = 11.680 O;
HES,max,AKF == 11878 o.

Tuning rules: The best-practice tuning rules formulated in 5.4 have proven to produce
reliable performance results in the evaluation and, therefore, will be recommended for
implementation on the Teensy 3.6. For the AKF the tuning constant € was introduced
to leave room for optimization. In simulation runs outside of the main test series it was
varied in order to reduce the outliers in the response. Decreasing the tuning constant
to C = 0.5 results in an improvement in the mean performance to u;,; = 1.660 °, an
improvement in the STD to ogyseror = 0.412 °, and reduces the number of outliers so
that cryseakr(2.5°) = 98.25 %. However, it also increases the dependency on the
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gyroscope measurement even further, which results in (Sgc‘y)z = 0.0462. This is evident
since Q is proportional to C. Figures are shown in the appendix Section E.9.

With this, all research questions have been addressed. In contrast to the preliminary
test results (see 6.2.2 and E.1), the P2PMAF+CF proved to be a more robust
alternative to the AKF. However, the AKF leaves more room for optimization. Further,
evaluating internal factors like the sensor sample rate, fiensor» Or the actuator
frequency, f,,, may reveal further insights about the behaviour of the control system.
It was found out that the control system performance decreases vastly if computational
delay values are not multitudes of 1/f;.ns0r- HOWever, this needs further research and
could be a simulation error, resulting from the variable step solver.

The utilized methods for modelling, testing and evaluation may diminish the
significance of the obtained results, which is discussed in the next section.

7.2 Methodological Shortcomings

The basic thought behind the test stand is that its dynamics resemble the thrustless
instable flight condition of the WARR EX-4 upper stage during its coasting phase. If
this assumption is too farfetched, the current progress of the project is in question.
However, the filtered sensor measurements provide full-state feedback to the control
structure, without utilizing a system model of the pendulum. Therefore, the filter
algorithms should be applicable to any structure for attitude estimation, if gyroscope
and accelerometer measurements are available.

For fast results at low expenses it was decided to focus this work on a simulation-only
test environment for the project phases PO and P1. However, a SIL simulation — with
the control and filter algorithms implemented on the Teensy 3.6 being part of the loop
— is necessary to accurately parse the effect of computational delay and other
microcontroller related errors in the evaluation. This might be a future task of the
software implementation team.

Model fidelity of the inverse pendulum was not the focus of this work. However, omitting
damping and friction effects completely might have created a simulation model of the
pendulum more instable than the real one, which might have complicated the
stabilization task. This fact, combined with a more optimal control approach, such as a
linear quadratic regulator targeted by [29], and a mechanical damping system [50]
might make the filter obsolete. However, this is speculation, which will further be
investigated by [30], which will also incorporate the 3-DoF pendulum model with higher
fidelity. Other model inaccuracies include: the actuator model which assumes a
symmetrical force output vector, which is not always the case according to [5], and the
sensor error model, which can be improved by a proper Allan variance analysis on an
optical table.

Lastly, the sum of the SNS? values resulted in values far smaller than 1. This shows
that the major share of variance in the response, especially for the AKF, results from
non-additive, higher-order relations and couplings not described in this work. Whether
these effects impact the proposed ranking of key factors is uncertain.



8 Conclusion and Outlook

This thesis was designated to design a filter which could estimate the attitude of an
inverse pendulum that aims to recreate the dynamics of suborbital rockets upper stage
during instable flight. The filter was required to determine the attitude accurately
enough to control the instable system via a cold gas RCS, using consumer-grade
inertial sensors. Two filter algorithms were developed and tested in a simulation-only
environment consisting of mathematical models of all relevant RCS subsystems. The
peak-to-peak moving average filter was developed to prefilter the accelerometer output
and feed it, together with the gyroscope measurements, to a complementary filter for
state estimation. As a second filter algorithm, a simplified version of an adaptive
Kalman filter was designed. The RMSE of the true trajectory to the commanded
trajectory has served as the performance quantity to evaluate the filter algorithms. To
facilitate the tuning and implementation process of the filters on the microcontroller and
to reveal the limits of the RCS, the filter algorithms were characterized by conducting
a designed Monte Carlo simulation experiment. Through categorization and the use of
the squared sigma-normalized sensitivity, the key performance impairing factors were
determined for each filter. Hence, revealing that the P2PMAF+CF is more susceptible
to external factors, like the maximum angular deflection and computational delay, while
the AKF is more susceptible to error-related factors, like the gyroscope noise. This
shall help evaluate future RCS design decisions in the project. Overall, the AKF
provides a better mean performance with more optimization potential, while the
P2PMAF+CF is the more robust filter solution.

As a next step in project Exosphere, the control algorithms can be implemented on the
Teensy 3.6 microcontroller to expand the Simulink model to a software-in-the-loop
simulation environment. This may help incorporate microcontroller related issues not
covered in the simulation-only approach.

Further, preliminary tests reveal that the sensor frequency and the actuator frequency
could potentially be further reduced, while still maintaining the same performance.
However, the in-built delays result in failed stabilization attempts for smaller sensor
frequencies than the default one. Whether this a simulation issue or not may be
resolved by including the microcontroller in the loop, creating the previously mentioned
SIL testing environment.

Additionally, an alternative actuator solenoid valve, which allows to produce a higher
thrust, can be evaluated with the tools created in this thesis to assess possible
performance improvements.

At the time of typing this thesis, the communications module and the electronic power
supply circuitry were about to be finalized, hence, completing the RCS in its PO version.

Matthias Beck aims to advance the 3-DoF model and optimize the control structure for
later project phases within his semester thesis [30]. Since the controller will be provided
with full-state feedback, a linear quadratic regulator, as proposed by [29], may be a
viable option.
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B Primer on Kalman Filter and Probability

This section of the appendix shall serve as an overview of basic principles of Kalman
filtering and probability theory. It will help understand the theory behind both Chapters
5.3 and 6.

B.1 Kalman Filter Basics

The Kalman Filter is considered a Bayesian estimator because it is based on Bayes’
theorem which can be formulated as

XNy Y| X)p(X
p(xly) =000 = PERER, forp(v) 0. Eq.(B-1)

The rule describes the probability, p, of event X occurring given that eventY is true.
This is used in a Kalman Filter to obtain the a-posteriori value, from the a-priori value
and an observation z. In this sense, x~ corresponds to the a-priori value of x ,  while
x* corresponds to the a-posteriori value of x [12]. Throughout the Kalman Filter theory
part, Section 5.3.1, this concept will be further expanded upon.

Matrices such as the measurement covariance R, the system covariance Q and the
error covariance P will be reduced to their one-dimensional scalar counterpart, such
as the measurement variance R, the system variance Q and the error variance P.

In general, the variance, o2, of a random variable x is the expected value of the squared
deviation from the mean, u, of x:

u=E[x ]=—Zl 1%, withx € RV*1, Eq. (B-2)
0% = E[(x — p)].
Therefore, the standard deviation equates to
o=E[x—-mw] Eq. (B-3)

Hereby, the mean and the variance are considered the first and the second statistical
moment respectively [71]. The skewness and the kurtosis of a distribution define the
third and the fourth moment but will not be used for the evaluation in this thesis.

For performance evaluation of estimator the root-mean-square-error (RMSE) is
recommended [72]:

RMSE = JE[(x — ®)?] \/Zl 1 (g — ;)2 Eq. (B-4)

B.2 Gaussian Normal Distribution

The gaussian normal distribution will be used to describe the random input, x, of a
Monte Carlo simulation, which is used for the evaluation process of the filter. The
probability density function (PDF) of a normal distribution equates to:

(x=p)?

207", Eq. (B-5)

f(X) = \/2—29_

Integrating the probability density function f(x) over a interval of —oo to a random
continuous input x reveals the cumulative density function (CDF) [71, 73]:
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X o _(x_ )2
c@ =" f)dx= [ et du. Eq. (B-6)

Now, the probability , p(x), of an event occurring within one standard deviation is
calculated by

1 _(=w)?

202 dx = 0.6827, Eq.(B-7)

p(x) = [, f(x)dx = [
and accordingly, for two and three standard deviations by

p(x) = [°7 f(x)dx = 0.9545, Eq. (B-8)

e
2mo?

p(x) = [ f(x)dx = 0.9973.

Reformulated, the CDF represents the probability that the random the random variable
dx takes on a value less than or equal to x:

csx(x) = p(dx < x). Eq. (B-9)
These equations hold true for any distribution which can be described by a STD.

A randomly generated value within this distribution will be described by the mean and
the standard deviation with the following notation for a random variable éx:

éx = N[y, o]. Eq. (B-10)

0.4 J— N (O s ll >

.l / \
| | \ | i —
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Fig. B-1: The standard normal distribution from [71] with the transformation z = (x — u)/o.

Besides the gaussian, other PDFs will be used to approximate a distribution.

B.3 Equal Distribution

First, there is the equal also referred to as uniform distribution. The equal distribution
is uniformly distributed and possess the PDF [71]:

1
’ fOT‘ Xmin = X < Xmax
Xmax~Xmin

f(): 0, for x < Xmin - Eq. (B-11)
0, for x > xXpmax
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Fig. B-2:  PDF of the equal distributions from [74].
An equally distributed arbitrary input will be described with
x = UlXmin, Xmax]- Eq. (B-12)
The expected value equates to
E[x] = p = fmemin, Eq. (B-13)
and the standard deviation to
a=%. Eq. (B-14)

B.4 Gamma Distribution

In this work the Gamma distribution is used in the presence of positive outliers in the
response. The PDF is [71]:

a(ax)b—le—ax

r'(b)

f(x,a,b) =

Where the parameters a and b are positive real quantities as is the variable x. For b <
1 the distribution is J-shaped and for b > 1 it is unimodal with its maximum value at
x=((b-1)/a.

Eq. (B-15)



- 0.5
04 I b=2
0.3 -
0.2 AN ememmeae, b=
0.1 =
0 ; - ] 1 | | I 1 1 -
0 5 10
x/a
Fig. B-3: Examples of Gamma distributions adopted from [71].
The Gamma distribution is named after Euler's Gamma function I'(b):
F'(x+1) =x. Eq. (B-16)
A Gamma distributed input will be described with
x =T[a, b]. Eq. (B-17)
The first moment / expected value equates to
Elx] =p=2, Eq. (B-18)

and the standard deviation to

c=2 Eq. (B-19)



C How to Use the Simulink Model

This section presents a step-by-step guide on how to use the Simulink model explained
in the Chapters 4 and 5.

To experience no portability issues, the user of the model should make sure to have
the MATLAB version Matlab R2017b SimulinkVersion 9.0 with the

Continuous Toolbox Control, Design Toolbox andthe Control System
Toolbox installed.

CA1 Initialization

The most recent version of the Simulink model is the System 8b allfilters.slx
file. Before starting a simulation run, all parameters must be initialized:

Openthe initialize RCS.m MATLAB script and run the first section of it labelled
Initialize RCS Model.

Now run the next section of the script labelled Open Simulink Model or manually
set up the simulation time and the solver configuration in Simulink. To make sure that
the same results are obtained as in this thesis, the solver must be set to the 0de15,
which is not the default configuration for Simulink. The solver can be selected through
the tab Model Configuration Parameters. Adjust the values to the ones shown
in the figure below.

@ Configuration Parameters: System_8b_allfilters/Configuration2 (Active) 2 a X
Q
Solver Simulation time 2
Data Import/Export 0
" 3
» Optimization Start time Stop time: t_sim
» Diagnostics Sol 1
olver options
Hardware Implementation P
Model Referencing Type: Variable-step v | Solver: ode15s (stiff/NDF) -
Simulation Target
» Code Generation ¥ Additional parameters
» Coverage
» HDL Code Generation Max step size: auto Relative tolerance: 1e-3
Simscape Min step size auto Absolute tolerance: |auto
Simscape Multibody 1G
Initial step size auto Shape preservation: Disable All -
» Simscape Multibody
Solver reset method: |Fast » Maximum order: 5t
Number of consecutive min steps: 1
Solver Jacobian method auto -
Zero-crossing options
Zero-crossing control: |Use local settings ~ | Algorithm Adaptive he
Time tolerance: 10*128"eps Signal threshold: |auto
Number of consecutive zero crossings: | 1000 v
OK Cancel Help

Fig. C-4: Model Configuration Parameters used in this work.

Note that the simulation runs on a variable step size. However, the sensor and filter
blocks are sampled with the sensor sample rate, while the two-step controller is
sampled with the actuator frequency.

Now that the simulation is initialized with the reference values of the parameters, the
simulation can be run. Results are exported to MATLAB workspace to evaluate them.
The last section of the initialize RCS.m script allows for a quick evaluation of the
results by computing the RMSE and the total gas consumption.



C.2 Orientation in the Model

Aside from the variables initialized through the script, some variables must be assigned
through masks of the respective subsystem. A mask is a custom user interface for a
block in Simulink. If a block possesses a mask, it will appear when double-clicking on
it. A typical mask layout is presented in the figure below.

Block Parameters: KalmanFilter1D x
1D Adaptive Kalman Filter

Checkmark Adaptive Estimation to partially remove the effect of
outliers in the measurement.

Parameters

Q
‘sigma_G_y"Z *C ‘ g

R
‘(atan(sigma_A_z/sigma_A_x)*180/pi)"2 ‘ 5

PO
|theta_ES~2 [E

theta 0
o [E

theta d 0
o |E

Adaptive Estimation

Cancel Help Apply

Fig. C-5: KalmanFilter1D mask with tuning rules implemented.

The mask will give the option to enter a value for the respective variable or checkmark
a box to enable a specific function. In the case of Fig. C-5, checking the box would
result in activation the innovation-based estimator.

To reveal the subsystem elements under the mask, the small arrow on the lower right
corner must be clicked. Another way is to right-click and then search for mask — 1ook

under mask.

C.3 Customization

The user-friendly simulation interface was created to encourage experimenting with
the model parameters. The result can be visualized at every line by connecting it to a
scope or utilizing the already existing scopes. However, experimenting with the values
may lead to system failure. An often-occurring true trajectory is either that the system
becomes unstable or that the pendulum lies completely flat. This happens for entering
a mass over the established boundary values without adjusting the PID gains.



TScope - O X 4\ Scope - O X
File Tools View Simulation Help + | File Tools View Simulation Help
Q-0 P® - A- K- F- - dOP® - a- [ F&-

theta 5 theta

theta
MainFilter

Ready Sample based  T=16.000 Ready Sample based | T=16.000

Fig. C-6: The control system fails to lift the Fig.C-7: The system is initially unstable for
pendulum for m, = 6.5 kg. my = 6.165 kg.

If the system exhibits initially unstable behaviour, like shown in Fig. C-7, adjusting the
PID gains in the reduced model may  help. It is Ilabelled
PID gain tuning model.slx and only contains the plant and the controller.
However, for system failure as it is the case in Fig. C-6 adjusting the gains will not help.

C.4 Evaluation

Some data like the commanded trajectory, theta com, or the true trajectory, theta,
is already exported to the MATLAB workspace. The label discrete behind a name
indicates that it uses the same sample time as the sensor. Continuous outputs will
possess a varying sample size depending on the step size the solver chooses.

Multiple tools for evaluation were compiled. Most commonly the eva.m script was
used compute and plot the values and figures in Section 6.3. It will iterate through the
set number of runs L and output a histogram and a scatter plot with a linear regression
function. The eva3D.m Iis used for creating the multivariate regression fits as for the
scale factor or the accelerometer noise. Finally, the SNStool.m will compute the
SNS? value for the input delta x all input.mat, which consists out of the
arbitrary inputs of all key factors.

To recreate the exact same results as in this work, it is recommended to use the saved
arbitrary input generated for the main test series. Or directly input the corresponding
RMSE values and then run the las section of the respective script without running the
simulation.



Simulink Subsystems

D Simulink Subsystems

The section shows the subsystems described throughout the Chapter 4 and 5. This
shall serve as an aid for orientation in the Simulink model
System 8b allfilters.slx.

m_g

TrajectoryGeneration RCS1DoF

1

Fig. D-8:  First level of the Simulink model.

m_ge o »
._> FutureExpansion
-I >=1 m_gc omega_x
: e @
theta_d i theta_d=omega_y
— omega
radps2dps
SwitchGasLosslInfluence - FutureExpansion >
omega_z
P theta_d
@ g
»
F_diff
ForceOnXAccelerometer

- FutureExpansion .
ay a

F_disturbance

Ftothetadd

theta_dd*(1_CM)=a_z

Sensorframe

initial_position_deg

deg2rad

Dynamics

Fig. D-9: InversePendulumlDoF block with transformation to sensor frame and switch to account
for mass due to gas burn.
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@ & >0
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sin L

DeleteForLinearizedModel

Fig. D-10: 1-DoF inverse pendulum Dynamics block with non-linear DE and Integrator,
Second-Order block.
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Fig. D-11: The SensorModelGyroY block.
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Fig. D-12: The AccelerometerX block. The Accelerometerz block is similar.
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Fig. D-14: The Kalman filter with IAE-extension Simulink model.



E Additional Simulation Results

The section comprises all graphs which are of secondary interest for the evaluation.
This includes the preliminary test results and RMSE, scatter plots. To repeat the
experiments, the input distributions and output distribution were saved for every tested
factor.

E.1 Trajectories

This section shows the performance of the system for the other two established
trajectories, Thoge = 1 and Tpoge = 2.
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Fig. E-15: Tyoqe =1 for  the P2PMAF+CF Fig. E-16: T,,,,4. = 1 for the AKF configuration.
configuration.

The AKF shows a better performance for the T,,,4. = 1. However, both filters manage
to stabilize the pendulum after a disturbance.
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Fig. E-17: Tyoqe =2 for  the P2PMAF+CF Fig. E-18: T,,,4. = 2 for the AKF configuration.
configuration.

For T,..qe = 2, an advantage of the AKF becomes evident. Once the Kalman gain
converges towards the optimal value, the estimation accuracy surpasses the
P2PMAF+CF configuration which does not change its gain.
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E.2 Quantization Error

The guantization is a random error process which all sensors exhibit. It depends on
the available bit size, B, of the IMU and the measurement range. A measurement range
of arqnge = 4 g — with the minimum measurable value being —2 g and the maximum

being 2 g — on the accelerometer results in the quantization error shown in Fig. E-19.

-5
4 =10 :

t[s]
Fig. E-19: Quantization error resulting from rounding on the x-axis of the accelerometer.

At its peak the quantization error reaches aqr 4, = 30 pg, which not enough to further
analyze it in the main test series. If the measurement range on the accelerometer is
increased to the maximum of a, 4,4, = 32 g, the maximum quantization error increases
10 agp ax = 244 pg. This was not enough the influence the performance of the control
system. Therefore, the quantization error will be labeled a nuisance factor.

E.3 Environmental Temperature

For the environmental temperature no noticeable performance degradation could be
identified in the preliminary test series for the AKF. It will not be further analyzed.
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Fig. E-20: AKF histogram for preliminary test Fig. E-21: AKF scatter plot preliminary test result

result of T with L., =100 runs and for T with Ly, = 100 runs.
#(6TE) = 13840 and O.RMSE((S‘TE) =
0.064 °.

E.4 Switching Time

For the actuator switching time a simulation related problem occurred which may
possibly have a negative impact on the performance. The zero-crossing detection was
deactivated for some simulation runs, resulting two levels of estimation performance
on the P2PMAF+CF configuration Fig. E-22. The AKF was not affected by this issue.
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Fig. E-22: RMSE4(ts) scatter plot for L =400 Fig. E-23: RMSE(ts) scatter plot for L =400
runs. runs.
E.5 Weight

To thoroughly explore the design space the range was increased to R,,, =5 %.
Therefore, formulating the MATLAB input:

delta m 0 = normrnd(5,5*0.05,400,1)
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The graphs below show the histogram and the scatter plot of the P2PMAF+CF
configuration.
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Fig. E-24: RMSE histogram for m,, R =5%, Fig. E-25: RMSE scatter plot for my, R =5 % and
Urmse = 1.627 ° and ogysp = 0.117 °. a second-order exponential fit.

The histogram indicates that the performance of the CF configuration has a probability
of 68.27 % to fall within one standard deviation, oz s = 0.117 °, from the mean for the
given input range.

p(RMSE = 1.627 +0.117 [°]) = 68.27 [%)]. Eq. (E-20)

A second-order exponential model was fitted to the scatter plot. It can be approximated
with the function:

RMSEy;(mg) = 0.828 e%1334M0 + 1576 « 10~ 15¢5647™0 [°] Eq. (E-21)
A maximum controllable weight is revealed and can be calculated with
Momax,cr = Mo(RMSEficr = F35 = 2.5 [°]) = 5.963 [kg]. Eq. (E-22)

The histogram with the PDF for the AKF configuration is shown in Fig. E-26 and the
scatter plot in Fig. E-27.
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Fig. E-26: RMSE histogram for m,, R =5%, Fig. E-27: RMSE scatter plot for my,, R =5 % and
Urmse = 1.393 ° and ozysp = 0.104 °. second-order exponential fit .

The histogram indicates that the performance of the AKF configuration has a
probability of 68.27 % to fall within one standard deviation, ogyss = 0.104 °, from the
mean for the given input range.

p(RMSE = 1393 + 0.104 [°]) = 68.27 [%)]. Eq. (E-23)

A second-order exponential model was fitted to the scatter plot. It can be approximated
with the function:

RMSEf;;(mg) = 2.338 e70130M0 4 1450 + 10~ %e1593™0  Eq. (E-24)
A maximum controllable weight is revealed and can be calculated with
Momax.akr = Mo(RMSEfi axr = 2.5 [°]) = 6.183 [kg]. Eq. (E-25)

E.6 Centre of Mass

The input distribution of the distance from the pivot point to the point mass location,
lcum, s calculated with arange of R, ., = 5 %. The value was chosen because the actual
center of gravity might deviate by large quantities from the estimated reference value
once the final RCS design is chosen. The results to the R = 5 % range are comparable
to the mass variation with the same range. The RCS fails to control the pendulum for
large positive deviations from the reference value. This shall be considered for later
design considerations. The MATLAB function with the corresponding values is:

delta 1 CM = normrnd(0.667,0.667*0.05,400,1);

The resulting plots for the CF+P2PMAF configuration are shown in Fig. E-28 and Fig.
E-29.
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Fig. E-28: RMSE histogram for lcy, Ugmsg = Fig. E-29: RMSE scatter plot for [, and a
1.634 ° and ogysz = 0.110 °. second-order exponential fit.

The histogram indicates that the performance of the CF configuration has a probability
of 68.27 % to fall within one standard deviation, ozy sz = 0.110 °, from the mean for the
given input range.

p(RMSE = 1.634 + 0.110 [°]) = 68.27 [%)]. Eq. (E-26)

A second-order exponential model was fitted to the scatter plot. It can be approximated
with the function:

RMSEf;(Icy) = 0.986 e~0756lem + 1,382 « 10~ 15¢*2720kem Eq. ( E-27)

The histogram with the PDF for the AKF configuration is shown in Fig. E-30 and the
scatter plot in Fig. E-31.
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Fig. E-30: RMSE histogram for l.y, R =5%, Fig.E-31: RMSE scatter plot for l;y, R =15 %,
Urmse = 1.389 ° and azysp = 0.101 °. and second-order exponential fit.

0

The histogram indicates that the performance of the AKF configuration has a

probability of 68.27 % to fall within one standard deviation, ogyss = 0.060 °, from the
mean for the given input range.

p(RMSE = 1.389 + 0.101 [°]) = 68.27 [%)]. Eq. (E-28)

A second-order exponential model was fitted to the scatter plot. It can be approximated
with the function:



RMSEf;(lep) = 10.540e~+293%em 4 0,012¢6226kcwm,

i

Eq. (E=29)

The output results for the two filter configurations are summarized in the table below.

Table E-1: Test results for both filter configurations with key factor [.,,.

Filter Range STD Mean PDS
P2PMAF+CF 0.110 [°] 1.634 [°] 0.558 [—]
5 [%]
AKF 0.101 [°] 1.389 [°] 1.067 [-]
E.7 Gyroscope Bias

The residual bias on the gyroscope can result from bias instability, described in 4.5 ,
or it can be the result of a poor calibration procedure. For consumer grade sensors
there is also a ON / OFF bias change. The bias changes after deactivation and
reactivation. The effect of the residual bias may lead to a drift in the estimation of the
attitude. With the applied filters, this effect was successfully reduced. The following
graphs show the influence of an equally distributed residual bias input over a range of

Roppe, = 50 %.
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Fig. E-32: CF histogram preliminary test for éRB‘G_y,

1.62 1.64

RMSE [°]

1.66

1.68

1.7

RéRB,c,y =50 % and L,,, = 100 runs.

AKF:

3 T
P2PMAF+CF .
© RMSE(frpay)
RMSEmv
25 RMSE,(frs.c.v)
— 35
5L
[ S v e e T
=
Iz
=1
&
s
05
-0.08 -007 -006 -0.05 -Q.O4 -0.03 -002 -0.01 0 0.01

Orp iy [deg/s]

Fig. E-33: CF scatter plot preliminary test for
GRB,G,yv RQRB,G,y = 50 % and Lpre = 100
runs and linear fit model.
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Fig. E-34: CF histogram preliminary test for 6z, Fig. E-35: CF scatter plot preliminary test for
Riggs, =50 % and L = 400 runs. Or5.6.y+ Roggs, = 50 % and L = 400 runs
and linear fit model.

E.8 Accelerometer Noise

To formulate the intersection function between the fitted surface and F35, the
accelerometer noise input was increased to:

delta sigma A = 0.1 + (0.5-0.1) * rand(400,2);

This resulted in the following scatter plots:
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Fig. E-36: P2PMAF+CF RMSE scatter plot for 6, Fig. E-37: AKF RMSE scatter plot for o, with
with multivariate linear regression fit. multivariate linear regression fit.
E.9 Tuning Constant

The tuning constant € was reduced on a main test series setup to improve the result.
It was reduced to € = 0.5, which succeeded in improving the performance of the AKF.
The number of outliers was reduced to 7.
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Fig. E-38: Response Gamma distribution for Fig. E-39: CDF with c(u;,.) = 0.5 and C = 0.5.
C = 0-5 Wlth aRMSEtOt = 0.4‘12 ° and
Uior = 1.660 °.
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Fig. E-40: All 400 true trajectories for varying all key input factors with the given distributions and C =
0.5.
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