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1. Motivation

The ideas of topology were adapted in the field of condensed matter physics in the nineteen
seventies, prominently through the famous works of Kosterlitz and Thouless [1, 2], and
were employed in a series of seminal studies, e.g., by Thouless et al. in order to explain the
quantization of the Hall conductance in a two dimensional electron gas [3] or by Haldane
in order to derive a theory for spin chains [4, 5]. The concepts of topology not only are
of high importance for the theoretical understanding of phase transitions, but also for
applications, as states of matter with nontrivial topology often offer remarkable material
properties.

The Skyrmion lattice in MnSi [6] is an intensively investigated example for such a state
of matter with non-trivial topology. In the Skyrmion lattice phase the magnetic moments
form a hexagonal lattice of whirls, which are topologically protected against unwinding
into a conventional ferromagnet. The Skyrmion lattice is a multi-k structure that may be
approximated by a superposition of three helices (cf. Ref. [7]), as reflected by a sixfold
pattern in neutron diffraction [6]. Establishing the multi-k nature of the Skyrmion lat-
tice, in contrast to a putative state consisting of multiple domains of a single-k structure,
requires a sophisticated study of higher harmonics [8] or the study of the topological Hall
effect [9], the latter of which arises as a direct consequence of the emergent electrodynam-
ics associated with the nontrivial topology of the magnetic ground state [10]. Skyrmion
lattice phases arise in a wide range of cubic chiral magnets, regardless whether they are
metallic [6], semiconducting [11], or insulating [12]. In these noncentrosymmetric com-
pounds the stabilization of Skyrmion lattice order is based on a hierarchy of energies [13]
comprising exchange interactions, Dzyaloshinski-Moriya interactions [14, 15], and magne-
tocrystalline anisotropies. Rather recently, topologically nontrivial magnetic structures
were also detected in substances such as GaV4S8 [16] or tetragonal Heusler materials [17],
where other stabilization mechanisms play a role.

In this thesis, we investigate a new class of materials as possible host for ground states
with nontrivial topology. First, the centrosymmetric cubic rare-earth intermetallics HoCu,
TmCu, and ErCu, in which a complex magnetic phase diaram arises from competing
interactions rather than a hierarchy of energy scales are studied. Despite the lack of
Dzyaloshinski-Moriya interactions, transport measurements suggested the emergence of
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2 Chapter 1. Motivation

magnetic ground states possessing nontrivial topology (cf. Ref. [18]). Second, the noncen-
trosymmetric compound EuPtSi3, where Dzyaloshinski-Moriya interactions presumably
favor cycloidal modulations, is studied. Again transport measurements, supported by
early neutron experiments, suggested the emergence of antiferromagnetic multi-k order
with nontrivial topology (cf. Ref. [19]).

In this work, microscopic studies of the four compounds are presented. Therefore,
magnetic ground states were determined by means of single-crystal neutron diffraction.
A particular concern was the identification of multi-k structures. In all four compounds we
detected antiferromagnetic superstructures. The identified structures were studied with
respect to their topological properties and their interplay with the electronic structure.

Outline of the thesis

The thesis is organized as follows. In the first chapter (Sec. 2), experimental techniques
are introduced. It is explained, how magnetic ground states may be determined by means
of neutrons, and how multi-k structures may be distinguished from multi-domain states
of single-k structures. The second chapter (Sec. 3) is devoted to the intermetallic com-
pounds RCu. Comprehensive studies of the compounds HoCu, TmCu, and ErCu are
presented. As the main results of our microscopic studies we identified multitudinous
magnetic ground states, including multi-k states, structures with nontrivial topology,
structures that are modulated with a large wavelength in real-space, and structures that
give rise to a complex electronic structure. In the third chapter (Sec. 4), we present a
microscopic study of the compound EuPtSi3. We identified a multi-k state with long wave-
length in real-space, which may possibly be portrayed as a lattice of antiferromagnetic
Skyrmions. In the last chapter (Sec. 5), a conclusion of the thesis is drawn.



2. Experimental Methods

Neutron scattering is a powerful tool in experimental condensed matter physics to study
microscopic properties of materials. In this thesis it is used to study antiferromagnetic
ground states (cf. Ref. [20]) of relatively localized 4f ions in rare-earth compounds. In
the following chapter it is explained, how magnetic ground states may be determined by
means of neutrons. Furthermore, it is established, how multi-k states may be identified.

The chapter is organized as follows. First, the properties of nuclear Bragg scattering
and magnetic Bragg scattering are introduced in Sec. 2.1. Second, concepts required
for magnetic structure determinations are presented in Sec. 2.2. It is addressed, how
multi-k states may be distinguished from single-k states. Third, an overview of the
single-crystalline samples that were used for our neutron experiments is given in Sec. 2.3.

2.1. Neutron Diffraction

In the following, the basic concepts of neutron scattering from crystal structures, i.e.,
nuclear Bragg scattering, as well as from static magnetic ground states are presented.
Comprehensive introductions into these topics are, e.g., found in Refs. [21, 22].

2.1.1. Nuclear Scattering

The compounds studied in this thesis represent crystalline solids [23]. Their crystal struc-
ture may be described by means of a Bravais lattice together with an atomic basis [24].
Neutrons couple to the nuclei on the lattice and may be scattered. The interaction be-
tween an incoming neutron of mass m and a nucleus is typically described in terms of a
point-like Fermi pseudopotential V (x) = 2π}2

m
b · δ (x) [23]. The scattering lengths b for

specific nuclei are, e.g., listed in Ref. [25]. Due to the periodicity of the crystalline struc-
ture, constructive interference with material specific structure factors results in nuclear
Bragg scattering.
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4 Chapter 2. Experimental Methods

The cross section for coherent, elastic Bragg scattering from a Bravais lattice with an
atomic basis, as derived in first-order perturbation theory, i.e., in the Born approximation
(cf. Ref. [22]), using Fermi’s golden rule [26], is given by [22]:

(
dσ
dΩ

)
coh,el

= N
(2π)3

ν0

∑
G
δ (κ−G) |FN (κ)|2 , (2.1)

where N is the number of unit cells and ν0 the volume of a unit cell. The nuclear structure
factor FN (κ) = ∑

d b̄d exp (iκ · d) exp (−Wd) in the cross-section is calculated from the
nuclei in one unit cell. As the nuclei in the crystal are assumed to be point-like, the
structure factor is not q-dependent. The Debye Waller factor Wd, which decreases as
a function of q, describes the change of the cross section as a function of temperature
[24, 27, 28].

Due to the term ∑
G δ (κ−G) in the nuclear cross section, each reciprocal lattice

vector G gives rise to a nuclear scattering process [24]. The condition for constructive
interference can be expressed in terms of the Laue condition kf − ki = G [24] or the
Bragg condition, which has the form 2d sin (θ) = λ. In this thesis, Bragg’s law for a
scattering process with wave vector G = Gh,k,l = (h, k, l) is used in the following form
2dhkl sin (θ) = λ (cf. Ref. [24]). The distance of adjacent lattice planes dhkl = 2π

|Gh,k,l| for
certain Bravais lattices is given by:

1
dhkl

=
√
h2 + k2 + l2

a
(cubic) (2.2)

1
dhkl

=
√
h2 + k2

a2 + l2

c2 (tetragonal) (2.3)

2.1.2. Magnetic Scattering

The compounds studied in this thesis host antiferromagnetic long-range order of rare-
earth ions, which may be portrayed as relatively localized moments. As neutrons also
carry a magnetic moment, they may interact both with orbital and spin contributions of
4f moments of the rare earths [21]. Accordingly, neutrons prove useful for the investigation
of the magnetic ground states and the spectrum of magnetic excitations. In particular,
neutrons prove useful for the study of antiferromagnets, which was first demonstrated by
Shull et al. [29].

The magnetic moment of a neutron may be described in terms of the operator µn =
−γ · e~

2mpσ, where mp is the mass of a proton, e its charge, γ is a positive constant, where
γ = 1.913, and σ the vector of Pauli matrices.
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Coherent, elastic Bragg scattering from a magnetic structure S may be expressed in
terms of a cross section given by [22]:

(
dσ
dΩ

)
el

= (γr0)2N
{1

2gFM (κ)
}2

exp (−2W )
∑
α,β

(
δαβ −

κακβ
κ2

)
·

·
∑

R1,R2

exp (iκ · (R1 −R2))
〈
SαR1

〉 〈
SβR2

〉
. (2.4)

Here, r0 is the classical radius of an electron and g is the Landé splitting factor. The factor(
δαβ − κακβ

κ2

)
is typically referred to as polarization factor. As for the nuclear cross section,

the magnetic cross section in Eq. (2.4) is derived in first-order perturbation theory. In
particular, the cross section does not distinguish between single-k structures with equally
populated domains and multi-k structures, which consist of the same wave-vector type as
the single-k structure.

In contrast to nuclear scattering, magnetic scattering is strongly q-dependent, resulting
in a non constant form factor FM (κ) that vanishes asymptotically in the limit of backscat-
tering, i.e., when sin (θ) /λ → 1

λ
. The form factor for 4f ions, which have both spin and

orbital contributions, may be described in the dipole approximation as follows [30]:

FM (κ) = 〈j0〉+
(

1− 2
g

)
〈j2〉 . (2.5)

The Lande g factor for rare-earth ions may be calculated by means of Hund’s rules [30].
Explicit analytic approximations of 〈j1〉 and 〈j2〉 as a function of s = sin(θ)

λ
are given by

[31]:

〈j0 (s)〉 =A exp
(
−as2

)
+B exp

(
−bs2

)
+ C exp

(
−cs2

)
+D (2.6)

〈j2 (s)〉 =As2 exp
(
−as2

)
+Bs2 exp

(
−bs2

)
+ Cs2 exp

(
−cs2

)
+Ds2 . (2.7)

The coefficientsA,B, .., a, b, .. are summarized for a multitude of different atoms in Ref. [25].
An important property of neutron scattering from magnetic order is the dependence

of the scattered neutron polarization on the magnetic structure. Hence, an analysis of
spin-flip and non-spin-flip ratios of different directions of the polarization for a Bragg
scattering process may provide detailed information about a magnetic ground state (cf.
Refs. [32, 33]).

In the following it is addressed, how the scattered neutron polarization may be cal-
culated, when the magnetic structure as well as the incoming neutron polarization are
known. In this work, neutron experiments are carried out with an incoming neutron
beam that is, as possible as it gets, fully polarized ∼ |Pi| = 1 along a certain direction
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en. Detailed introductions how to mathematically describe a polarized beam may, e.g.,
be found in Refs. [21, 34].

For a Bragg scattering process Q from a given magnetic structure m, the (final) po-
larization Pf of the scattered beam may be calculated by means of the Blume-Maleev
equations [35, 36]. One therefore defines M⊥ = Q̂× (M(Q)× Q̂), where

M(Q) =
∫

m (R) · exp (−iQ ·R)) d3R . (2.8)

As is common for polarization studies with neutrons, Cartesian coordinates are defined
with respect to the scattering vector, such that êz is vertical, êx ‖ Q̂ and êy = êz× êx. The
polarization of the scattered beam is calculated by means of the Blume-Maleev equations
as follows:

Pf = P̃Pi + P′′ , (2.9)

where

P̃ =


1
Ix

(
N − |M⊥|2

)
i
Ix
· Jzn i

Ix
· Jyn

− i
Iy
· Jzn 1

Iy

(
N2 + |M⊥y|2 − |M⊥z|2

)
1
Iy
Ryz

− 1
Iz
· Jny 1

Iz
·Rzy

1
Iz

(
N2 − |M⊥y|2 + |M⊥z|2

)

(2.10)

and

P′′ =


−1
I
· Jyz

1
I
·Rny

1
I
·Rnz

 . (2.11)

Therefore the following abbreviations were used:

Ix = M2 +N2 + P̂xJyz Rij = 2 1
Ix

Re(M∗
⊥i ·M⊥y) (2.12)

Iy = M2 +N2 + P̂yRny Jij = 2 1
Ix

Im(M∗
⊥i ·M⊥y) (2.13)

Iz = M2 +N2 + P̂zRnz Rni = 2Re (M∗
⊥i) (2.14)

I = M2 +N2 + P̂xJyz + P̂Rny + P̂zRnz Jni = 2Im (M∗
⊥i) . (2.15)

The nuclear-magnetic interference terms Rni and Jni are finite when magnetic intensities
coincide with nuclear peak intensities, as is the case for ferromagnetic peaks. The off-
diagonal terms Ryz are called mixed magnetic terms and the Jyz are known as chiral
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terms. Comprehensive studies discussing the meaning of each of the contributions may
be found in Refs. [33, 37–39].

For purely magnetic scattering processes, the equations reduce to:

σP̃ =


− |M⊥|2 0 0

0 |M⊥y|2 − |M⊥z|2 2Re(M∗
⊥y ·M⊥z)

0 2Re(M∗
⊥y ·M⊥z) − |M⊥y|

2 + |M⊥z|2

 (2.16)

σP′′ = −2Im(M∗
⊥y ·M⊥z) · êx, σ = |M⊥|2 + P0x · 2Im(M∗

⊥y ·M⊥z) (2.17)

At zero magnetic field, the calculated matrices need to be averaged over all possible
magnetic domains md:

P c = 〈P c
m〉d =

∑
md

rd · P c
m

∣∣∣∣∣
m=md

, (2.18)

with rd = σd (Q) · Vd/
∑
d′ [Vd′σd′ (Q)], where Vd′ are the volumes of the domains and

σd′ (Q) = C · F 2 (h, k, l)|m=md′
the structure factor for each domain, as calculated from

Eq. (2.4).
In our polarization experiments presented further below, the initial polarization Pi = en

is successively adjusted parallel to ex, ey, and ez, respectively. The scattered (final) po-
larization Pf is always analyzed along the same axis as the initial polarization and the
corresponding matrix elements are inferred via P o

nn = |Pf | / |Pi| for the three directions
ex, ey, and ez. Hence, the experiments allow to determine diagonal elements of polariza-
tion matrices only. The corresponding matrix P o is referred to in the text as observed
polarization matrix.

2.2. Magnetic Structure Determination

In the following, some basic concepts behind magnetic structure determinations with
neutrons are presented. First, basic ideas of representational analysis are introduced.
Second, the concepts behind Rietveld refinements and polarization analysis are presented.
Third, it is discussed, how multi-k structures may be distinguished from single-k structures
by means of neutrons.

There are two common approaches how to perform a magnetic structure determination.
One method is based on the theory of Shubnikov space groups (cf. Ref. [40]), the other
method, which was used for the studies presented in this thesis, is based on representa-
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tional theory [40]. In many cases there is a correspondence between the two methods and
same results are obtained. However, there are many cases, such as incommensurate mag-
netic structures, that cannot be treated with the conventional Shubnikov method [40]. To
handle incommensurate structures, the theory of superspace groups, an extended version
of the Shubnikov method, has been developed recently [41]. For instance, Refs. [42, 43]
discuss the two methods in detail.

A short outline, as given in the following, shall motivate the concepts, which were used
for the determination of magnetic structures. In this thesis, we assume that all magnetic
ground states may be portrayed as static magnetic structures, which may in a classical
sense be described by a vectorfield m (R) on a spatial lattice [42]. This vectorfield may
be decomposed into a Fourier series (cf. Ref. [44]). The wave vectors of the sinusoidal
terms in this series are called propagation vectors. As first step of a magnetic structure
determination, the magnetic propagation vectors that describe the magnetic ground state
have to be determined (cf. Ref. [45]). As second step, the pre-factors of the sinusoidal
terms in the Fourier series are determined. Representational theory provides all pre-
factors that are allowed by symmetry (cf. Ref. [46]). Rietveld refinements or polarized
neutrons may allow to experimentally determine those pre-factors that in fact appear
in the Fourier decomposition of the ground state. Third, the number of propagation
vectors has to be determined (cf. Ref. [42]). When more than one propagation vectors
are involved, a structure is called multi-k [44]. In zero magnetic field, when magnetic
domains are in equilibrium, it is difficult to experimentally distinguish between a multi-k
state and a multi-domain state of a single-k structure. In this thesis we distinguish the
two cases experimentally by symmetry breaking fields and by means of higher-harmonic
peaks.

2.2.1. Fourier Decomposition of a Magnetic Structure

The determination of magnetic propagation vectors, which appear in the Fourier decompo-
sition of a magnetic structure, may be highly nontrivial. Typically, magnetic propagation
vectors are determined by indexation of magnetic Bragg peaks, which are observed in a
neutron diffraction experiment. A propagation vector k0, which has been inferred from a
Bragg peak, defines a whole set of Q-positions [k0]∼ = {k0 + G}, which is called k-arm
(cf. Ref. [47]). The k-arm contains all Q-positions, which differ from k0 by only reciprocal
lattice vectors. Accordingly, all Q-positions of a k-arm represent the same propagation
vector in the Fourier decomposition and Bragg peaks are present at all Q-position of a
k-arm, as long as the polarization factor in the structure factor Eq. (2.4) is not suppressed.
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A propagation vector and its arm give rise to a set of other propagation vectors, which
is labeled {k0} and called propagation vector star [47]. The star contains all k-arms of
nonequivalent wave vectors, which are obtained from k0 by the action of all the elements
of the space group G [48]. If magnetic domains are equally populated, Bragg peaks are
present at all k-arms of a star. Accordingly, k-arms are sometimes also called k-domains.
When dealing with single-k structures, this phrasing may be intuitive. However, it is
misleading, when dealing with multi-k structures.

In principle, all k-arms of a star {k} should be considered as possible propagation
vectors in the Fourier decomposition of a ground state. Representational theory, which was
developed by Bertaut [40], Izyumov [48–50], and others, provides for a given propagation
vector k and a given space group G a decomposition of the magnetic representation into
irreducible representations (IRs). Each IR Γi (k) is related to a set of basis functions Ψk

ν

allowed in the Fourier decomposition of a magnetic ground state.
Accordingly, a magnetic structure may be decomposed into a Fourier series of basis

functions given by:

m (R) =
∑
k,ν

[
Ck
ν Ψk

ν exp (ik ·R) + C−k
ν Ψ−k

ν exp (−ik ·R)
]

(2.19)

where the sum is over all basis functions indexed ν and over all k-arms of the corresponding
k-vector star {k}.

If the sum in Eq. (2.19) goes over a single k-arm, the structure is a single-k structure.
A structure, which is a superposition of not conjugated propagation vectors of different
arms, represents a multi-k structure [51].

For the study presented in this thesis, we will not distinguish between conjugated k-
arms, if an inversion center is present, as explained in the following. The conjugated
k-arms [k]∼ and [−k]∼ belong to the same star, if the space group G has an inversion
symmetry center [47]. For some propagation vectors, such as

(
1
2 ,

1
2 , 0

)
, the two arms [k]∼

and [−k]∼ are equivalent, i.e., they represent the same k-arm. However, for incommensu-
rate propagation vectors the arms [k]∼ and [−k]∼ are nonequivalent, i.e., they represent
different arms of the star {k}. Note, that a Fourier series of a ground state, which contains
k, also contains −k. This follows from the fact that m (R) must be real-valued implying
C−k
ν =

(
Ck
ν

)∗
for the mixing coefficients in Eq. (2.19). Accordingly, also the magnetic

structure factor, as measured in a scattering experiment, is equivalent on conjugated
k-arms.

As we will not distinguish between conjugated k-arms, such as [k]∼ and [−k]∼, we
may identify them as a single set A = [k]∼ ∪ [−k]∼. Such unions of conjugated k-arms
will be called Ω-arms. When dealing with incommensurate structures in this thesis, the
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Ω-arms will also be referred to as arms or wave-vector arms. The number of Ω-arms of
a star determines, how many different propagation vectors a multi-k structure may have,
as explained in the following.

A multi-k structure with propagation vectors of a single star may have at most N (k)
different propagation vectors, where N (k) is the number of (not conjugated) k-arms of
the star {k} (cf. Ref. [47]). Accordinlgy, the maximum number of propagation vectors is
given by the number of Ω-arms of a star. For the propagation vector k =

(
1
2 ,

1
2 , 0

)
there

are |{k}| = 3 different k-arms and they are not conjugated. Accordingly, a structure with
propagation vector

(
1
2 ,

1
2 , 0

)
may be single-k, double-k, or triple-k. For incommensurate

propagation vectors, the number of Ω arms is half of the number of k-arms, which is given
by N (k) = |{k}| /2.

The k-arms, which display finite mixing coefficients Ck
ν in the Fourier decomposition

Eq. (2.19), may be called participating k-arms of the star {k} (cf. Ref. [47]). For a
complete magnetic structure determination, the transition channel [47, 52], i.e., all k-
arms, which are participating in a magnetic phase transition, have to be figured out.

Note, that in principle, a magnetic ground state may be a superposition of propagation
vectors, which belong to different k-stars. A magnetic ground state involving different
stars may be automatically multi-k. However, the variety of structures involving several
different stars reported in literature is small. As pointed out in Ref. [51] conical structures,
which are, for instance, hosted in helimagnets, are an example for magnetic structures
involving two wave-vector stars. In this study we report a couple of magnetic ground
states involving several different k-stars.

If k is an incommensurate propagation vector it is instructive to decompose the mixing
coefficients into real and imaginary part Ck

ν = αk
ν + i · βk

ν :

m (R) =
∑
k,ν

2Ψk
ν

[
αk
ν cos (kR) + βk

ν sin (kR)
]

= (2.20)

=
∑
k,ν

Ak
ν ·Ψk

ν cos
(
kR + δk

ν

)
(2.21)

where

Ak
ν = 2 · sgn

(
αk
ν

)√
(αk

ν )2 + (βk
ν )2 (2.22)

δk
ν = δ = arctan

(
−β

k
ν

αk
ν

)
(2.23)

The decomposition into Bloch waves does not provide any simplification, as it only
changed the mathematical parametrization. However, Landau theory implies that only
one IR can become critical at each second-order phase transition (cf. Ref. [53]). Hence,
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if the ordering temperature possesses second-order origin, only basis functions from one
IR may occur in the Fourier decomposition of the magnetic structure in the phase just
below the ordering temperature. At each further second-order transition one further IR
can become critical. In many cases, magnetic structures follow this rule, even though
the transition does not possess second-order origin. In turn, it proves useful to always
consider magnetic ground states first, that are related to one IR only.

In this thesis, representational analysis is used as a tool and the analysis itself is carried
out by means of the software package SARAh [54]. The labelling of IRs follows the
conventions introduced by Kovalev [55]. Other crystallographic properties, concerning,
e.g., crystallographic stars, are determined by means of the online software ISODISTORT
[56]. For further information we refer to literature.

Note that in this thesis, the following conventions are used: Q-positions in the reciprocal
space are denoted by letters q. Propagation vectors are denoted by round brackets,
if a specific representative of a k-arm shall be denoted, such as k1 =

(
1
2 ,

1
2 , 0

)
. The

corresponding k-arm shall be denoted by
[

1
2 ,

1
2 , 0

]
∼

. The star
{(

1
2 ,

1
2 , 0

)}
may also be

denoted by 〈ππ0〉.
Note, that some studies do not distinguish between propagation vectors and their arms

[44]. In the present thesis, we distinguish between the two cases, as we will perform vector
calculations with specific representatives of k-arms.

2.2.2. Experimental Determination of the Irreducible
Representations

Neutron diffraction may allow to experimentally determine the irreducible representations,
which are associated with a magnetic ground state. In particular, the pre-factors ∑ν C

k
ν Ψk

ν

in the Fourier decomposition Eq. (2.19) may be specified.
Let M be a set containing different physically reasonable ground states M ∈ M. The

ground states in this set may be associated with different irreducible representations. The
structures in M ∈M may be probed experimentally by means of Rietveld refinements or
by means of polarized neutrons. Accordingly, this may allow to experimentally probe the
different irreducible representations.

In the following, the two experimental methods are briefly presented:
• Rietveld Refinements For a Rietveld refinement, magnetic and nuclear structure

factors, i.e., F 2
o , are measured using single crystal neutron diffraction. Therefore,

a large set of integrated intensities I (h, k, l) of both nuclear and magnetic Bragg
reflections may be recorded at a single crystal diffractometer. The observed values
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F 2
o := I (h, k, l) may then be compared with the structure factor F 2

c (h, k, l), calcu-
lated for each magnetic structure ∈ M by means of Eq. (2.4). Therefore Rietveld
refinements [57] are carried out and the free parameters of the magnetic structures
are refined by means of least squares fits, such that the values F 2

c give a good ap-
proximation to the values F 2

o . The goodness of a Rietveld refinement is given by
the R-value:

R = 100 ·
∑
{h,k,l}

(
F 2

o (h, k, l)− 1
c
F 2

c (h, k, l)
)

∑
{h,k,l} F 2

o (h, k, l) , (2.24)

where c is a scale parameter, optimized such that the R-value is minimized .
• Polarization Analysis For the second approach typically a few Bragg peaks

are considered only. For each of the chosen Bragg peaks, a polarization matrix
M n̂

o (h, k, l) is measured. The entries are inferred from spin-flip and non-spin-flip
scattering ratios for various incoming neutron polarizations. In turn, the expected
polarization matrices M n̂

c (h, k, l) may be calculated by means of the Blume-Maleev
equations for each magnetic structure ∈M. The structures may be compared with
the experimental data by minimization of ∑{h,k,l} ∥∥∥M n̂

c (h, k, l)−M n̂
o (h, k, l)

∥∥∥.
In our study, polarization matrices were calculated by means of Mathematica [58].

Rietveld refinements were carried out by means of the Software Jana2006 [59], which
is optimized for single-crystal data. The symmetry analysis of Jana2006 is based on
Shubnikov space groups and not on representational theory. For this thesis, the symmetry
analysis by means of representational theory was simultaneously carried out by means
of SARAh [54]. Another prominent refinement software is Fullprof, which is based on
representational theory. However it was not used in the present study, as it is optimized
for refinements on powder diffraction data [60].

2.2.3. Multiple Periodic Structures

In the following, two strategies are presented, how multi-k structures may be distinguished
from single-k structures. In particular, we will consider the case, where two propagation
vectors k1 and k2, which belong to the same star {k}, are superposed to a multi-k
structure. In zero magnetic field, where magnetic domains are in equilibrium, there are
typically single-k structures, which have the same magnetic structure factor as multi-k
structures (Eq. (2.4)). In this case, the fundamental Bragg peaks are the same for the
multi-k structure and for the single-k structure.

In order to distinguish, whether two wave vectors k1 and k2 from the same star form a
multi-k state or a multi-domain state, we present the following two methods:
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• Mixed Higher Harmonics
Multi-k structures may lead to odd mixed higher harmonics [30, 61], which are
not present for single-k structures. In particular, for a multi-k structure with two
propagation vectors k1 and k2, mixed higher harmonics may be present at reciprocal
space positions such as Q = m · k1 + n · k2, where m, n ∈ Z and m + n ∈ 2Z + 1.
These mixed higher orders are not accounted for by the magnetic structure factor
in Eq. (2.4), which was derived in the Born approximation. Accordingly, their
scattering intensity may be relatively weak and in experiments it may be difficult
to separate real scattering intensities due to higher orders from multiple scattering
contributions. Experimentally this may be done, e.g., by Renninger scans [62] or the
study of dependences on the neutron wavelength. Higher harmonics were studied,
e.g., in the Skyrmion phase of MnSi [8], which may be viewed as a triple-k state, or
in the multi-k phase of Neodymium [63, 64].

• Symmetry Breaking Field
A multi-k structure, which is a superposition of two propagation vectors k1 and k2,
has two participating k-arms, which may be labeled K1 = [k1]∼ and K1 = [k2]∼. In
order to distinguish this multi-k structure from a single-k structure, it may prove
useful to break the symmetry between the two k-arms K1 and K2, either by means
of a field along a direction n̂ or by means of uniaxial pressure along n̂. When
symmetries are broken, a multi-k structure may display a different behavior than
a single-k structure [64–66]. Below, we will give a definition of what it means to
break the symmetry between k-arms. Equivalent to that, we may define, when two
propagation vectors have the same symmetry in a field.

The symmetry between the two k-arms K1 and K2 is broken by a field along n̂, if the
following condition is fulfilled:

There is neither a reflection nor a rotation operator O ∈ G, which leaves n̂
invariant, i.e., On̂ = n̂, and maps the k-arm K1 on ±K2, i.e., OK1 = ±K2.

For propagation-vector arms K1 and K2, for which the symmetry is not broken by a
magnetic field, we will use the following phrasing:

• The symmetry between K1 and K2 is preserved by the field or in the field.
• The k-arms K1 and K2 have the same orientation in the field.
The symmetry between two propagation vectors k1 and k2 is broken by a field along

n̂, if the following condition is fulfilled:

There is neither a reflection nor a rotation operator O ∈ G, which leaves n̂
invariant, i.e., On̂ = n̂, such that there exits a reciprocal lattice vector G satisfying

Ok1 = ±k2 + G.
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Note, that by these definitions conjugated k-arms have the same orientation in a field.

2.3. Single Crystalline Samples

For the present thesis, neutron experiment were carried out on single crystals. The samples
were grown in a zone floating furnace [67] by M. Rahn, M. Wagner, and A. Bauer. Tab. 2.1
gives an overview over all single-crystalline samples studied in this thesis. HoCu, TmCu,
and ErCu crystallize in a cubic, EuPtSi3 in a tetragonal crystal structure. In the following,
the geometry of the samples is briefly described:
HoCu

• OFZ95-3-3-h: The sample represents a cuboid 2× 2× 1mm3. One of the two facets
(2 × 1mm2) corresponds to a (100) plane, and the other two facets correspond to
(110) planes.

• OFZ95-3-2-1-a: The sample resembles a slate cylinder. The top and bottom bases,
both of which correspond roughly to (110) planes, are slightly inclined with respect
to each other.

TmCu

• OFZ107-2-a: The sample represents a cuboid 2.35 × 1 × 3mm3. One of the facets
(3× 1 mm2) corresponds to a (100) plane, and the other facets to (110) planes.

ErCu

• OFZ104-3-4-1: The sample represents a cuboid 1.75×1.5×1mm3. One of the facets
(1.75× 1mm2) corresponds to a (100) plane, the other two facets to (110) planes.

• OFZ104-3-3: The sample has two flat facets. One corresponds to a (100) plane, the
other one to a (110) plane

EuPtSi3
• OFZ97-3-1-cb: The sample represents a cuboid 1× 2× 0.02mm3. One of the facets

(1× 0.02 mm2) corresponds to the (001) plane. The other two facets correspond to
the planes (110) and (110), respectively.
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Sample Shape
HoCu

OFZ95-3-3-h cuboid (1× 2× 2 mm3)
OFZ95-3-2-1 oblique prism with a circle as base (∼ 0.2 cm3)

ErCu
OFZ104-3-4-1 cuboid (1× 1.5× 1.75 mm3)
OFZ104-3-3 no symmetric form (∼ 0.1 cm3)

TmCu
OFZ107-2-a cuboid (3× 1× 2.35 mm3)
EuPtSi3

OFZ97-3-1-cb cuboid (2× 1× 0.02 mm3)

Table 2.1.: Single-crystal samples of HoCu, ErCu, TmCu, and EuPtSi3 that were used for the
experimental study further below. The samples were grown in a zone floating furnace [67] by
M. Rahn, M. Wagner, and A. Bauer.





3. Magnetic Superstructures in
Rare-Earth Copper Compounds

In this chapter, we present microscopic studies on the antiferromagnetic compounds HoCu,
TmCu, and ErCu. All three materials display a complex magnetic phase diagram arising
from competing interactions rather than a hierarchy of energies. Despite the inversion
symmetry of the compounds, transport measurements suggested the emergence of ground
states possessing non-trivial topology (cf. Ref. [18]). Previous magnetic structure deter-
minations were mainly using neutron powder diffraction and focused on commensurate
magnetic ground states [68]. In our study, magnetic structures were determined using
single-crystal neutron diffraction. As the main results of our studies we identified a multi-
tude of ground states, including numerous multi-k states, structures with long wavelengths
in real-space, and structures with non-trivial topology.

The chapter is organized as follows. First, an introduction to rare-earth intermetallics
is given in Sec. 3.1. Second, profound microscopic studies on the three compounds HoCu
(Sec. 3.3), TmCu (Sec. 3.4), and ErCu (Sec. 3.5) are presented. The chapter concludes
with a summary in Sec. 3.6.

3.1. Introduction to Rare-Earth Intermetallics

We now turn to the rare-earth intermetallics HoCu, TmCu, and ErCu. As explained
in the following, the compounds are promising candidate materials for hosting antiferro-
magnetic ground states with non-trivial topology, even though they are centrosymmetric.
Our study, focusing predominantly on the determination of magnetic ground states, was
inspired by recently observed unconventional transport properties [18] suggestive of Berry
phases that may possibly originate in the topology of magnetic ground states. Further-
more, the three compounds feature complex magnetic properties characteristic of rare-
earth intermetallics, such as multi-step magnetism, complex magnetic phase diagrams,
and long-wavelength modulations (cf. Ref. [69]). These remarkable properties are sugges-
tive of multitudinous competing interactions and underscore that the rare-earth copper

17
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compounds are a promising playground for detecting novel magnetic ground states, as
well as novel mechanisms stabilizing topological ground states.

In the following, key properties of rare-earth copper compounds and rare-earth inter-
metallics are presented. First, the highly symmetric crystal structures of the compounds
and second, their magnetism with high-symmetry points as magnetic propagation vectors,
which are typically of type

(
1
2 ,

1
2 , 0

)
in the rare-earth copper compounds, are discussed.

Comments are also made on rare-earth intermetallics in general. Third, the characteristic
interactions on the rare-earth ions, which are typically competing in rare-earth inter-
metallics, are presented. Fourth, specific properties, which are important for the study of
(ππ0) antiferromagnets by means of neutrons, are discussed.

Crystal Structure of Rare-Earth Intermetallics The binary intermetallic compounds
HoCu, TmCu, and ErCu crystallize in the cubic CsCl structure, which is related to
the centrosymmetric space group Pm3m. RCu compounds, which range from GdCu to
TmCu, occur also in a CsCl structure (cf. Refs. [69, 70]). In contrast, some equiatomic
RCu alloys with lighter rare-earths have a FeB structure [69–71]. The two boundary
compounds GdCu [72] and TbCu [73] undergo a martensitic transition, whereas all other
compounds of the series were reported to have a stable crystal structure [69].

Crystallization in relatively simple crystal structures is characteristic of rare-earth in-
termetallics. A compound R0M0, where R0 is a specific rare-earth element and M0 a
metal, often gives rise to a whole series of intermetallic compounds RM0, where R may
be any other rare-earth atom. The compounds of a series often crystallize in the same
crystal structure, as the chemical properties, which are predominantly determined by the
outer electron shells, are mainly unaffected over the series of rare-earth elements [71].
Examples are series of compounds such as RCu, RZn, RAg, RZn, RMg [69]. Many of
them crystallize in the cubic CsCl structure. The compounds RX3, where X is Pb, In, Tl,
Pd, Sn, Ga [69], often feature the cubic AuCu3 structure. An impression of the plethora
of intermetallic materials is, e.g., provided by Morin and Schmitt [69] or by Buschow et
al. giving systematic overviews of, e.g., rare-earth compounds with 3d transition metals
[74], with non-magnetic metals [71] or with specific elements like aluminum [75].

Magnetic Long-Range Order of Rare-Earth Intermetallics The three compounds
HoCu, TmCu, and ErCu establish magnetic long-range order of tripositive rare-earth
ions at temperatures below 30 K. All ground states in the three compounds, which have
so far been reported, have propagation vectors, which are approximately of type

(
1
2 ,

1
2 , 0

)
[68, 69]. Accordingly, the ground states are variations of (ππ0) antiferromagnets (cf.
Ref. [76]).
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Magnetic propagation vectors in rare-earth intermetallics often correspond to high sym-
metry points in the reciprocal space, such as the points M, X, and Γ. Which of the high
symmetry points in the reciprocal space is favored as magnetic propagation vector in
first instance depends on the Fermi energy of the compound. The energy of collinear
magnetic structures in a CsCl crystal structure with high symmetry points M, X, and
Γ as magnetic propagation vectors may be compared in a simple exchange model (cf.
Refs. [68, 77]). In this model, indirect exchange interactions between localised f -electrons
are mediated by delocalised electrons through RKKY exchange. As elaborated in Ref. [77],
as a function of increasing Fermi energy EF , first antiferromagnets with k-vector

(
1
2 , 0, 0

)
should be favoured, second antiferromagnets with k-vector

(
1
2 ,

1
2 , 0

)
, and third ferromag-

nets with k-vector (0, 0, 0). Although there are many deviations from this result, the
model may provide a qualitative explanation for the experimentally observed sequence of
propagation vectors in the rare-earth intermetallics RM , where M is non-magnetic and
R = Rh,Ag,Cu,Zn,Mg,Cd, when the number of electrons indreases [68, 77].

Magnetic Interactions in Rare-Earth Intermetallics A multitude of interactions typ-
ically affects magnetic moments in rare-earth intermetallics. A detailed discussion of
the magnetic interactions, which may be relevant, is, e.g., found in Refs. [30, 69]. The
Hamiltonian describing the magnetic rare-earth ions may be described as follows (cf.
Ref. [69, 78]):

H = HCEF +HB +HQ +HME +HZ . (3.1)

The contributions have the following physical origin:
• Crystal Electric Field HCEF

The crystal electric field (CEF) originates in the surrounding point charges on the
lattice [79] and induces single-ion anisotropies. The contribution in the Hamiltonian
is usually expressed by means of Stevens operators Om

l and may in cubic symmetry
contain terms up to sixth order. The following conventions are in common:

HCEF =A4
〈
r4
〉
βJ
(
O0

4 + 5O4
4

)
+ A6

〈
r6
〉
γJ
(
O0

6 − 21O4
6

)
= (3.2)

=Wx

F4

(
O0

4 + 5O4
4

)
+ W (1− |x|)

F6

(
O0

6 − 21O4
6

)
(3.3)

The conventions are taken from Ref. [79] and from Ref. [80], respectively.
• Bilinear Heisenberg Exchange HB
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Bilinear exchange interactions between localized moments may in the isotropic form
be written as follows:

HB =
∑
〈i,j〉

Jij Ji · Jj (3.4)

Since the spatial overlap of 4f orbitals is negligible, the exchange constants Jij have
vanishingly small contributions from direct 4f -4f exchange. Finite contributions
arise mainly due to indirect exchange, mediated by conduction electrons [30].

• Quadrupolar Interactions HQ

In f -electron materials electric multipole interactions as well as multipolar order may
play an important role (cf. Ref. [81]). In rare earth compounds electric quadrupoles
may interact with each other mostly through two-ion interactions mediated by con-
duction electrons [82]. Quadrupolar interactions in rare-earth intermetallics were
discussed in detail, for instance, in Ref. [69].

• Magnetoelastic Couplings HME

Magnetoelastic effects, which arise due to couplings between magnetic moments
and lattice strains, may be important in rare-earth compounds [30]. An account
of magnetoelastic couplings in rare-earth intermetallics is, for instance, found in
Ref. [69]. The magnetoelastic Hamiltonian may contain both one-ion contributions
HME1 and two-ion contributions HME2 [69].

• Zeeman Energy HZ

The energy of the moments in magnetic fields is accounted for by the ordinary
Zeeman term.

Magnetic interactions are often viewed in a hierarchy. Typcially, bilinear Heisenberg
exchange and crystal electric fields are the dominant interactions that drive magnetic
long-range order defining type of propagation vectors and direction of the easy axis,
whereas quadrupolar interactions are thought of as small perturbations. However, this
simple picture is often insufficient in rare-earth intermetallics. The hierarchy of bilinear
exchange, crystal electric fields, and quadrupolar interactions, if even well defined, may
be entirely different from compound to compound, as the following examples, including
the series RCu, illustrate.

The quadrupolar interactions may, e.g., affect easy axis in a system and hence com-
pete with crystal electric fields. In DyCd, crystal electric fields would provide threefold
directions as easy axes [83]. However, due to qudrupolar interactions, the fourfold direc-
tions are preferred to the threefold directions [83]. In TmCu [84], and possibly also in
other RCu compounds, quadrupolar interactions appear strong enough to compete with
bilinear exchange. In TmCd, the quadrupolar interactions are strong enough to stabilize
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quadrupolar order, whereas magnetic order is absent [78]. In TmZn [85], two successive
transitions, first a quadrupolar at higher and then a ferromagnetic transition at slightly
lower temperature were observed. In dysprosium compounds, bilinear exchange is typ-
ically dominant but the quadrupolar interactions may be important to understand the
stabilization of magnetic order. In DyZn and DyCd, the stabilization of collinear mag-
netic structures may be explained by means of positive quadrupolar interactions, whereas
in DyAg and DyCu the formation of noncollinear multi-k states may be explained by neg-
ative antiferro-quadrupolar interactions [86]. Quadrupolar order, which occurs in TmZn
[87], TmCd [78], and CeAg [88] may be ferro-quadrupolar [69], whereas quadrupolar order
which occurs in TmGa3 [89, 90] or PrBb3 [91] may be antiferro-quadrupolar [69]. In CeB6

[92], first commensurate antiferro-quadrupolar order is established and then at lower tem-
peratures multi-k magnetic order with the same wave vector as for the multipole-order.

The competition of numerous interactions acting on the 4f shell often causes intriguing
magnetic properties, like the formation of multi-k magnetic ground states, as e.g., reported
in DyCu [93], metamagnetic behaviour, which refers to a transition as a function of field of
an antiferromagnet to a state with a large net magnetization [94], multi-step metamagnetic
behavior, which may occur in compounds such as DyCu [93], NdIn3 [95], or DyAg [96], the
occurrence of incommensurate magnetic structures, or the interplay of magnetism with
quadrupolar interactions [97]. Furthermore, complex magnetic phase diagrams evolve
in rare-earth intermetallics [98]. In fact, in rare-earth intermetallics magnetic ground
states are typically commensurate at low temperatures in zero magnetic field and become
incommensurate just below the Néel temperature TN and as a function of field [99]. Even
the pure rare-earth elements may have rich magnetic properties, like holmium where a
helifan structure is established [100] or neodymium [63, 101] which establishing multi-k
order has been a riddle over decades [98, 102]. Another prominent material hosting multi-
k order in zero magnetic field is CeAl2, which is still subject on ongoing research [103].
The structure has early been portrayed as triple-k structure [104]. A decade later, Forgan
and coworkers argued that the magnetic structure of this centrosymmetric compound is
double-k and a non-chiral spiral [105].

The phenomena of numerous competing interactions, complex magnetic phase dia-
grams, incommensurate modulations with large wavelengths, and the tendency to form
canted multi-k structures are promising prerequisites to detect magnetic ground states
with non-trivial topology. This possibility of topological states in rare-earth intermetallics
has mainly escaped notice, even though the formation of multi-k states has been explicitly
considered in early studies (cf. Ref. [69]).
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3.2. Properties of (ππ0) Antiferromagnets

The rare earth copper compounds, which were studied for this thesis, display variations
of (ππ0) antiferromagnetism. In the following, basic properties of (ππ0) antiferromagnets
are discussed.

Antiferromagnets of type (ππ0) are commensurate and characteristically have magnetic
propagation vectors of the star

{(
1
2 ,

1
2 , 0

)}
. This star, which is often denoted by

〈
1
2

1
20
〉
,

has three different k-arms [56]. Representatives of these k-arms are, for instance, given
by kc1 =

(
1
2 ,

1
2 , 0

)
, kc2 =

(
0, 1

2 ,
1
2

)
, and kc3 =

(
1
2 , 0,

1
2

)
. The k-arms may be denoted by

Ac1 :=
[

1
2 ,

1
2 , 0

]
∼

, Ac2 :=
[
0, 1

2 ,
1
2

]
∼

, and Ac3 :=
[

1
2 , 0,

1
2

]
∼

.
Accordingly, (ππ0) antiferromagnets may be written in terms of a Fourier series as

follows:

m (R) =
Nk∑
i=0

rT (kc
i ) exp (i · kc

i ·R) . (3.5)

As the
〈

1
2

1
20
〉

star has three k-arms, (ππ0) antiferromagnets may be single-k, double-k,
or triple-k. Note that the single-k, double-k, and triple-k (ππ0) antiferromagnets, are
collinear, coplanar but noncollinear, and noncoplanar, respectively.

There are in principle infinitely many different commensurate (ππ0) structures. How-
ever, in the rare-earth copper compounds a finite set containing 21 structures may be
physically reasonable, as explained in the following. As pointed out in Ref. [106], it is
instructive to make the two assumptions, namely that the magnetic moments of a com-
mensurate (ππ0) antiferromagnet:

• have equal modulus on each crystallographic site.
• are all directed along directions within a unique crystallographic star, which is either
〈100〉, 〈110〉 or 〈111〉.

The authors of Ref. [106] argued that the first assumption comes from the minimization
of the bilinear exchange term in the case of a high symmetry propagation vector at the
border of the Brioullin zone. The second condition may be related to crystal electric
fields, which should define a unique direction of easy magnetization. The authors inferred
for propagation vectors

(
1
2 , 0, 0

)
that there are 21 different antiferromagnetic structures of

type (π00) that satisfy the two conditions. The authors pointed out, that the treatment
of (ππ0) structures is entirely analogous.

Tab. 3.1 gives an overview of the 21 commensurate (ππ0) structures, which fulfill the
two conditions (cf. Ref. [18]). Each of the structures in Tab. 3.1 may be defined by the
number of propagation vectors, as well as by the pre-factors that are required for the
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Fourier decomposition according to Eq. (3.5). Note, that the 21 commensurate structures
have the same isotropic bilinear exchange energy [106, 107]. Hence, for the stabilization
of specific (ππ0) structures, the competition of crystal electric fields and quadrupolar
interactions may be important.

In this thesis, antiferromagnetic (ππ0) ground states in rare-earth copper compounds
were studied by means of neutrons. In the following, some basic properties of neutron
scattering from (ππ0) antiferromagnets are discussed. In particular, it is addressed, how
(ππ0) ground states may be determined by polarized neutron diffraction at zero mag-
netic field. Further, the effect of symmetry breaking fields on (ππ0) antiferromagnets is
discussed.

In neutron diffraction from (ππ0) antiferromagnets, Bragg peaks are characteristically
observed at Q-positions, which are related to the star

{(
1
2 ,

1
2 , 0

)}
. The distinction of

(ππ0) structures by means of neutrons may be difficult, as many of them exhibit the
same structure factor (cf. Ref. [108]). The criteria, for two (ππ0) structures to exhibit the
same structure factors in zero magnetic field were discussed in detail by Wintenberger in
Ref. [107].

In this thesis, (ππ0) antiferromagnets were determined by means of Rietveld refine-
ments and by beans of polarized neutrons, the latter is explained in the following. For
the polarization analysis, we determined the diagonal entries of polarization matrices of
scattering processes Q =

(
1
2 ,

1
2 , 0

)
by means of polarized neutron scattering. Therefore,

the samples were oriented such that the crystallographic (001) plane corresponded to the
scattering plane.

These polarization matrices may also be calculated for the 21 commensurate (ππ0)
structures listed in Tab. 3.1. For the calculation by means of the Blume-Maleev equations
all possible domains must be taken into account. The polarization matrices of a Bragg
peak located at Q =

(
1
2 ,

1
2 , 0

)
is given by:

P =
∑
d σd · Pd∑
d σd

=


−1 ∗ ∗
∗ α ∗
∗ ∗ −α

 . (3.6)

The values α for the 21 commensurate (ππ0) structures are given in Tab. 3.1.
To distinguish multi-k (ππ0) structures from single-k (ππ0) structures, we performed

neutron experiments under broken symmetries. When symmetries are broken, single-k
structures may feature different temperature or field dependences than multi-k struc-
tures (cf. Refs. [64, 65]). For our neutron studies, fields were applied along major cubic
directions 〈100〉, 〈110〉, and 〈111〉.
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In the following, the possible orientations of k-arms (cf. Sec. 2.2.3 for further informa-
tion) of the

〈
1
2

1
20
〉

star in the presence of fields along major cubic directions are discussed:
• In a field, which is applied along the threefold [111] axis, the three k-arms Ac1, Ac2,

and Ac3 have the same orientation. The k-arms Ac2 and Ac3 are namely mapped
onto Ac1 by the rotation operators Rn

(
θ = 2π

3

)
and Rn

(
θ = −2π

3

)
(n̂ ‖ [111]),

respectively. As these rotation operators do not affect the field direction, i.e.,
Rn (θ) B = B, the symmetry between the three k-arms is preserved.

• In a field, which is applied along the twofold [110] axis, the symmetry is preserved
between the k-arms Ac2 and Ac3. However, the symmetry is broken between Ac1 and
Ac2, and it is also broken between Ac1 and Ac3. The k-arms Ac2 and Ac3 have the same
orientation in the field, as the rotation operator Rθ=π

n (n̂ ‖ [110]) maps Ac2 on Ac3.
Further, this rotation operator leaves the field invariant.

• In a field, which is applied along the fourfold [001] axis, the symmetry is preserved
between the k-arms Ac2 and Ac3. However, the symmetry is broken between Ac1 and
Ac2, and it is broken between Ac1 and Ac3. The k-arms Ac2 and Ac3 have the same
orientation in the field, as the rotation operator Rθ=π

2n (n̂ ‖ [001]) maps Ac2 on Ac3.
Further, this rotation operator leaves the field invariant.

Accordingly, there is one possible orientation of (ππ0) arms in a field along a threefold
〈111〉 axis, there are two possible orientations of (ππ0) arms in a field along a twofold
〈110〉 axis, and there are two possible orientations of (ππ0) arms in a field along a fourfold
〈100〉 axis

Hence, in order to distinguish multi-k from single-k structures, it may prove useful to
apply fields either along 〈100〉 or 〈110〉 directions, rather than 〈111〉 directions.
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double-k structures, Nk = 2
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double-k structures, Nk = 2
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triple-k structures, Nk = 3
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Table 3.1.: There are 21 commensurate (ππ0) structures fulfilling the two conditions that all
moments have equal modulus and all moments are directed along a unique crystallographic
star, which is either M ‖ 〈100〉, 〈110〉, or 〈111〉. The 21 structures can be classified with
respect to the number of k-vectors Nk, which are participating in the Fourier description m =∑Nk
j=1 rT

(
kc
j

)
exp

(
ikc
j ·R

)
. The prefactors r are given for each structure. The diagonals of

the polarization matrices of a Bragg peak located at Q =
(

1
2 ,

1
2 , 0
)

and measured such that
(001) corresponds to the scattering plane are given by (−1, α,−α). The values α, as calculated
by means of the Blume-Maleev equations and averaged over all possible magnetic domains, are
given for each structure.
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3.3. The Compound HoCu

In the following, a microscopic study of the magnetic properties of HoCu is presented.
HoCu is antiferromagnetic and one of three RCu compounds, studied as part of this the-
sis. As a main result, a complex magnetic phase diagram, which arises due to competing
interactions, has been studied in detail and magnetic structures were determined. Despite
the centrosymmetry of the space group of HoCu, transport measurements performed by
Rahn suggested the emergence of ground states with non-trivial topology [18]. Previous
magnetic structure determinations used neutron diffraction from polycrystalline samples
and resolved commensurate magnetic ground states [68]. As the main results of single
crystal neutron diffraction performed in the context of this thesis, a variety of magnetic
ground states could be identified, including several multi-k structures, long-wavelength
modulations, and structures with non-trivial topology. Furthermore, an important inter-
play between magnetic order and the electronic structure could be identified. Namely,
antiferromagnetic ground states may give rise to a finite Berry curvature with an as-
sembly of magnetic charges in the electronic structure, an orbital magnetization, and an
anomalous Hall effect.

The presentation of the study of HoCu is organised as follows. First, an introduction to
the literature of HoCu is given in Sec. 3.3.1. The specific measurements presented in this
chapter, as well as a more detailed outline are motivated in Sec. 3.3.2. Neutron scattering
data measured in zero magnetic field are presented in Sec. 3.3.3, followed by the neutron
scattering data under magnetic fields in Sec. 3.3.4. The results of the neutron scattering
experiments are then combined to determine the magnetic ground states of the zero field
phases in Sec. 3.3.5. The topological and geometric properties of the ground states in
zero magnetic field and the interplay of magnetic long-range order with the conduction
electrons and the electronic structure are discussed in Secs. 3.3.6 and 3.3.7, respectively.

3.3.1. Introduction to HoCu

Centrosymmetric HoCu is prototypical for the complexity of rare-earth magnetism. It is
a candidate material for hosting novel antiferromagnetic ground states with non-trivial
topology, even though the crystal structure is centrosymmetric. Complex magnetic phase
diagrams, as observed recently [18], reflect the presence of competing interactions and a
variety of magnetic ground states. The unconventional Hall effect, reported in Ref. [18],
is clearly related to the antiferromagnetic properties of HoCu, but does not arise due to
an ordinary anomalous Hall effect. The additional contributions to the Hall effect may
be related to non-trivial Berry phases and may possess topological origin. In particular,
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when arising from real-space Berry phases, the Hall effect may be an indication of magnetic
ground states with non-trivial topology (cf. Refs. [9, 109, 110]).

HoCu crystallizes in the cubic CsCl crystal structure [70] with lattice constant a =
3.447 Å [71]. The Ho3+ ions may be portrayed as free ions with moment g

√
J · (J + 1) =

10.61µB/f.u., as inferred from Hund’s rules (L = 6, S = 2, J = 8, and g = 5
4 [30]). They

carry antiferromagnetic long-range order at temperatures below 28 K [68, 111, 112]. Com-
plex magnetic phase diagrams evolve, as shown in Fig. 3.1 for the major cubic directions
and may be inferred from the magnetization, ac susceptibility, and electrical transport
measurements (cf. Ref. [18]). Qualitative differences of the three diagrams reflect the
importance of cubic anisotropies. Critical fields are lower for 〈110〉 and 〈111〉 directions,
whereas for 〈100〉 they are considerably larger. This may suggest fourfold 〈100〉 direc-
tions as hard axes, as well as a binary easy plane, in agreement with previous findings of
neutron spectroscopy measurements, as reported in Ref. [113].

In zero magnetic field, three magnetically ordered phases with transition temperatures
Tt1 = 13.4 K, Tt2 = 20 K, and TN = 26.5 K have been observed [68]. The specific heat
features a lambda-anomaly at TN, which is characteristic of a second-order phase transi-
tion, as well as signatures of a first-order phase transition at Tt1 [68]. At Tt2 the specific
heat features a relatively broad anomaly. The authors of Ref. [68] noticed that the latent
heat L = 3.2 J

mol at the transition Tt1 = 13.4 K, if related to a change in the magnetic
structure, is small compared to the values observed in related compounds (L = 33 J

mol in
TbZn [114], L = 8 J

mol in HoZn [114]).
The susceptibility as a function of temperature features Curie-Weiss behavior with

θ ≈ −12 K, a typical value for non-frustrated antiferromagnets, as well as a fluctuating
moment µeff = 10.65µB, which is slightly larger than the free-ion value of Ho3+ [18] (cf.
Ref. [70]).

Typical magnetization data as a function of field are shown in Fig. 3.2 (top). The
magnetization displays a sequence of step-like increases. The behavior is akin to the
multi-step behavior, which was reported in compounds such as DyCu [115], PrAg [116]
or NdIn3 [95].

Measurements of resistivity, magnetoresistance, and Hall effect were reported in Refs. [18,
112]. Notable is the unconventional behavior of the Hall resistivity ρxy in the magnet-
ically ordered regime [18]. Typical field dependences of the Hall resistivity are shown
in Fig. 3.2 (bottom). In the paramagnetic regime, the Hall resistivity depends linearly
on magnetic fields characteristic of a normal metal. In the magnetically ordered regime,
a negative contribution to the Hall effect is present, being large enough such that the
total Hall signal becomes negative. This additional contribution is clearly related to the
magnetic long-range order but does not arise due to an ordinary anomalous Hall effect as
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Figure 3.1.: Magnetic phase diagrams of HoCu for the major cubic directions 〈100〉, 〈110〉 and
〈111〉. Data were inferred by Rahn from measurements of the magnetization, ac susceptibility,
resistivity and Hall effect. The figure is taken from Ref. [18].

it does not scale linearly with the net magnetization. The author of Ref. [18] noted that
unconventional contributions may be possible, arising from real-space, reciprocal-space,
or mixed Berry phases (cf. Refs. [109, 110, 117]). When associated with real-space Berry
phases, the Hall effect may be an indication of magnetic ground states with a non-trivial
topology [9].

Magnetic structure determinations in zero magnetic field using neutron diffraction on
polycrystalline samples were carried out by Morin et al. [68]. The authors suggested
commensurate (ππ0) structures as magnetic ground states in the three ordered phases.
However, the description of the ground states proves to be insufficient, as reported in
this thesis further below. Fig. 3.3 (a) shows the diffraction spectra recorded by Morin
et al. [68]. At T = 10.5 K < Tt1 in the phase, which is further below labeled phase C,
the inferred ordered moment is given by 7.5µB [68]. The structure was not determined
unambiguously suffering ambiguities arising due to polycrystalline neutron diffraction (cf.
Ref. [108]). Fig. 3.3 (b) shows the possible solutions suggested as magnetic ground state
by Morin et al. [68]. The first possibility is a single-k structure, which is classified by
an angle θ ≈ 56◦, the magnetic moments being parallel to one of the 〈111〉 directions.
The other possibilities are a double-k, as well as a triple-k structure, which have the
same magnetic structure factor as the single-k structure. For both of them, the moments
are directed along the 〈111〉 axes. From the absence of an asymmetric broadening of
nuclear peaks at 10.5 K it was inferred, that there is no noticable distortion of the cubic
lattice, which is particularly consistent with moments pointing along the threefold 〈111〉
directions. In the second phase, which will be labeled IC1 below, the diffraction pattern
was recorded at T = 14.5 K. The inferred ordered moment is here 7.1µB. Further, Morin
et al. [68] found commensurate magnetic propagation vectors of type (ππ0) only. As a
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Figure 3.2.: Magnetization M (top) and Hall resistivity ρxy (bottom) of HoCu at different
temperatures as a function of magnetic field as reported by Rahn [118]. The field was applied
along the two cubic directions 〈110〉 and 〈111〉. Typical magnetization data is monotonic and
features steps. The Hall resistivity ρxy as a function of field is linear in the paramagnetic
regime, which is characteristic of conductors. In the ordered regime (T < TN) a negative
contribution evolves, large enough that the whole Hall signal becomes negative. This negative
contribution does not arise due to an ordinary anomalous Hall effect depending linearly on the
net magnetization. The figures are taken from Ref. [118].

key result of the work reported here, this description is incomplete, due to the presence
of additional incommensurate propagation vectors. In addition, Morin et al. [68] found
that the moments are tilted towards 〈110〉 directions, when compared with the ground
state in phase C. The suggested structure candidates were classified by an angle, which
is either θ ≈ 45◦ or θ ≈ 48◦ [68]. An illustration of suggested solutions, notably single-k,
double-k, and triple-k, is given in Fig. 3.3 (c).

In the third phase, which will be labeled IC2 below, the diffraction pattern presented
in Ref. [68] was recorded at T = 19.7 K. The ordered moment amounted to 6.3µB. The
ground state was also described as commensurate antiferromagnet, which turns out to be
incomplete further below in our study. In Ref. [68] the magnetic structure was classified
by an angle θ ≈ 50◦, being again either single-k, double-k, or triple-k [68].

Crystal electric fields were studied by neutron spectroscopy measurements of diluted
compounds [113]. As mentioned before, it was inferred, that 〈100〉 directions are clearly
the hard axes, whereas 〈110〉 and 〈111〉 directions have similar energies suggesting a
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binary easy-magnetization plane between the [101] and [111] directions in the presence of
predominantly isotropic bilinear exchange interactions [68, 113].

Magnetostriction of polycrystalline HoCu and related compounds such as DyCu, as
measured in pulsed magnetic fields, exhibit a rich dependence on magnetic fields [119]. In
particular, a volume magnetostriction and an anisotropic magnetostriction were observed.
Accordingly, in a magnetic field the lattice of the compounds is differently distorted
parallel and perpendicular to the field direction.
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(a)

(b) (c)

collinear biaxis multiaxis collinear biaxis multiaxis

Figure 3.3.: Magnetic structure determinations in zero magnetic field using policrystalline neu-
tron diffraction as reported by Morin et al. [68]. (a) Diffraction data were recorded in each of
the four zero field phases. The three data sets taken within the magnetically ordered regime
exhibit six magnetic Bragg reflections. Magnetic structure determinations were carried out. (b)
The magnetic structure in phase C at T = 10.5 K is related to an angle θ = 54◦ and may be
collinear and single-k, biaxis and double-k, or multiaxis and triple-k. (c) The magnetic structure
in phase IC1 at T = 14.5 K is either related to an angle θ = 45◦ or an angle θ = 48◦. The
first case is illustrated in the figure. The structure is either single-k and collinear, double-k and
biaxis, or triple-k and multiaxis. The figures are taken from Ref. [68]
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3.3.2. Objectives and Outline

In the following, we provide a short summary of the objectives of our study, followed by
an outline of this chapter, as well as a brief summary of some major results.

As reported in the first part of this chapter, magnetic ground states were determined
using single crystal neutron diffraction. As a major result, magnetic structures of HoCu
were determined in the three magnetically ordered phases at zero magnetic field. All three
phases display variations of (ππ0) antiferromagnetism. Fig. 3.4 illustrates the emergence
of the three ordered phases showing the temperature dependence of the magnetic (ππ0)
order parameter at zero magnetic field. One commensurate phase, labeled phase C, as
well as two incommensurate phases, labeled phases IC1 and IC2, emerge at temperatures
below 28 K. Residual scattering above the ordering temperature is suggestive of strong
spin fluctuations (cf. Ref. [120]).

Figure 3.4.: Temperature dependence of the magnetic (ππ0) order parameter in zero magnetic
field. Shown is the temperature dependence of the

(
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3
2 , 1
)

Bragg peak position reflecting the
emergence of three magnetically ordered phases below the ordering temperature TN. In phase C,
the magnetic order parameter is commensurate. In phases IC1 and IC2, incommensurate satellites
in the vicinity of the commensurate peak evolve. The diffuse signal as observed well above the
onset of long-range order provides evidence of strong spin fluctuations in the paramagnetic
regime. The measurements were performed together with the experiments in Sec. 3.3.3.2. The
figure was inferred from rocking scans around the magnetic Bragg peak
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)

carried out at
the diffractometer HEiDi while cooling down from 45 K to 2.5 K.

Fig. 3.5 illustrates the ground states of phases C, IC1, and IC2 of HoCu, as inferred
from single crystal neutron diffraction and as depicted for one magnetic unit cell. All three
ground states are multi-k and noncoplanar. In phase C, the magnetic structure is com-
mensurate of type (ππ0). It combines three propagation vectors and has a relatively small
unit cell. In phase IC1, the magnetic ground state is a superposition of commensurate
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and incommensurate propagation vectors. The ground state is topologically protected
against unwinding into a collinear antiferromagnet and has a large wavelength along one
spatial direction of the order of 90 Å. Locally, the structure is akin to commensurate
(ππ0) antiferromagnets. In phase IC2, the ground state is a complex superposition of
several propagation vectors. The unit cell has a long wavelength of the order of 90 Å
along two different spatial directions. Locally, the structure is also akin to commensurate
(ππ0) antiferromagnets. Depicted is an educated guess, which may possibly represent the
ground state in IC2.

(a) (c)

(b)

phase C

phase IC1

phase IC2

HoCu
ground states at zero magnetic field

Figure 3.5.: Magnetic structures in the three ordered phases at zero magnetic field. (a) In
phase C the ground state is a triple-k antiferromagnet of type (ππ0) having a relatively small
unit cell of size 2a · 2a · 2a. (b) In phase IC1, the ground state is a triple-k structure, combining
commensurate and incommensurate propagation vectors. The structure is a highly noncollinear
antiferromagnet which is locally akin to commensurate (ππ0) antiferromagnets. The structure
has a long wavelength of the order of ≈ 90 Å along one spatial direction. (c) In phase IC2, the
ground state is more complex. A likely structure candidate is shown. The structure is multi-k
combining commensurate and incommensurate propagation vectors. Locally the structure is akin
to commensurate (ππ0) antiferromagnets. The structure is incommensurate with respect to two
different spatial directions. It has a long wavelength of the order of ≈ 90 Å along two spatial
directions.

The presentation of the detailed observations that allowed to identify these ground
states in the three ordered phases at zero field is organized as follows. In Sec. 3.3.3,
single crystal neutron diffraction is presented. We determined the stars of the magnetic
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propagation vectors and specified the magnetic ground states by means of representational
analysis, Rietveld refinements, polarization analysis, and the study of higher-order peak
positions. The number of propagation vectors of the ground states were determined by
means of symmetry breaking magnetic fields, as reported in Sec. 3.3.4. In the same set
of measurements the ground states under magnetic fields were investigated. In Sec. 3.3.5,
magnetic structure determinations are reported, gathering the results from single crystal
neutron diffraction. In Sec 3.3.6, the topological and geometric properties of the ground
states in zero magnetic field are addressed.

Neutron scattering under field along 〈110〉 and 〈111〉 are presented in Sec. 3.3.4. The
neutron studies reveal a variety of magnetic structures, including numerous multi-k states
and ground states possessing long-wavelength modulations.

Sec. 3.3.7 addresses the interplay of magnetic order and the electronic structure. This
concerns the role of the conduction electrons in the presence of antiferromagnetic (ππ0)
order. First, a theoretical model is suggested of the conduction electrons in the presence of
noncoplanar (ππ0) order. A finite Berry curvature with a complex assembly of monopoles
and antimonopoles in the electronic structure, an orbital magnetization, as well as an
unconventional Hall effect are predicted within this model. An anomalous Hall effect,
which does not originate from an ordinary anomalous Hall effect depending linearly on the
net magnetization, may arise due to noncoplanar magnetic long-range order. Second, it is
reported, that also noncollinear (ππ0) order may possibly cause a finite Berry curvature
and an anomalous Hall effect, which is not ordinary. Third, the emergence of a topological
Hall effect in the presence of ground states with a long wavelength in real-space and a
magnetic field is discussed.



36 Chapter 3. Magnetic Superstructures in Rare-Earth Copper Compounds

3.3.3. Neutron Diffraction in Zero Magnetic Field

In the following, data recorded in HoCu under zero magnetic field by means of several
complementary neutron techniques are reported. The CsCl crystal structure was con-
firmed, as summarized in Sec. 3.3.3.1. The magnetic propagation vectors of the ground
states in zero magnetic field were determined, as presented in Sec. 3.3.3.2. The results
of small angle neutron scattering are presented in Sec. 3.3.3.3. By a combination of
representational analysis (Sec. 3.3.3.4), polarization analysis (Sec. 3.3.3.5), and Rietveld
refinements (Sec. 3.3.3.6), the ground states in the three phases are specified. A study on
higher-order peaks in phases IC1 and IC2 is presented in Sec. 3.3.3.7.

3.3.3.1. Determination of the Crystal Structure

The crystal structure of the single-crystal sample OFZ95-3-2-1-a was determined at the
four-circle neutron diffractometer HEiDi [121]. As the main result, these measurements
confirm a CsCl crystal structure in excellent agreement with the literature [70, 71], as well
as a high sample quality. For these measurements neutrons with a wavelength λ = 1.16 Å
were used. Due to the relatively small lattice constant a of HoCu, only a small volume
in reciprocal space,

√
h2 + k2 + l2 ≤ 2a/λ ≈ 5.93, is accessible for Bragg scattering. At

T = 30 K a value of a = 3.45(3) Å was inferred, consistent with the literature (a =
3.440 Å [68, 71]). For further analysis, a limited set of 161 nuclear Bragg reflections was
recorded at T = 45 K, well above the magnetic transition temperature, in order to avoid
remanent diffuse magnetic scattering. To obtain the structure factor, integrated intensities
F 2
o (h, k, l) = I were inferred from the measured Bragg peaks with the instrument software

at HEiDi. For (2, 0, 0) a large peak intensity of 7.1/std.mon. with a small FWHM of 0.42◦

was observed. All values reflected the high crystalline quality and low mosaicity of the
specimen.

Further, the structure factor for the CsCl structure of HoCu, as inferred from Eq. (2.1),
is given by

F 2
HoCu (h, k, l) =

(bHo + bCu)2 h+ k + l ∈ 2Z

(bHo − bCu)2 h+ k + l ∈ 2Z + 1
. (3.7)

For the scattering lengths of Ho and Cu, bHo = 8.01 fm and bCu = 7.718 fm [122], being
very similar, the nuclear reflections with odd values of h+ k + l are strongly suppressed,
whereas those with even values of h + k + l are strongly enhanced. Thus, the structure
factor is approximately that of a bcc lattice with a one-atomic basis. As shown in Fig. 3.6,
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Model Pm3̄m
No. of measured reflections 161
No. of refined parameters 4

R [F 2 ≥ 3σ (F 2)] 3.91
wR (F 2) 9.99

Extinction correction Isotropic, Lorentzian
Extinction coefficient 0.000276

Uiso (Å2) 0.0051

Figure 3.6.: Determination of the crystal structure of HoCu. The nuclear structure factor was
measured in the paramagnetic regime at T = 45 K. A set of 161 structural Bragg reflections
was measured at the four-circle diffractometer HEiDi and integrated intensities I ∼ F 2

o (h, k, l)
were inferred. The measured structure factor follows the behavior expected for the CsCl crystal
structure splitting into a group of strongly enhanced and a group of strongly suppressed reflections
satisfying h + k + l ∈ 2Z and h + k + l ∈ 2Z + 1, respectively (figure on the left). A Rietveld
refinement was carried out on the 161 structural reflections by means of the software JANA2006
[59] (table on the right). The low R-value of 3.91 reflects the excellent agreement of the
measured data with the CsCl crystal structure. The extinction was accounted for by an isotropic
Lorentzian parameter.

the measured Bragg peaks are in excellent agreement with Eq. (3.7), featuring two groups
of strongly enhanced and strongly suppressed reflections.

In addition, a Rietveld refinement [123] was carried out using JANA2006 [59]. The
measured integrated intensities F 2

o , shown in Fig. 3.6, were fitted according to space
group Pm3̄m. Excellent agreement with the experimental data is indicated by the low R-
value of 3.91. A mean square displacement Uiso = 〈u2〉 ≈ 0.0051Å2 was obtained from the
refinement. The integrated intensities F 2

o (Fig. 3.6) decrease to higher scattering angles
due the Debye-Waller factor [24, 27, 28], which is given by exp(−1

3G2 〈u2〉) ≈ 0.9 for the
largest scattering angles 2θ ≈ 180◦.
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3.3.3.2. Magnetic Propagation Vectors

To determine the magnetic propagation vectors of the three phases C, IC1, and IC2
at zero magnetic field, single crystal neutron diffraction of sample OFZ95-3-2-1-a was
performed at HEiDi and of sample OFZ95-3-3-h at BIODIFF [124]. The main results of
these experiments, as explained in detail further below, may be summarized as follows:

• The phases C, IC1, and IC2 all display variations of (ππ0) antiferromagnetism.
• The ground state of phase C is commensurate. The structure is single-k or multi-k

with up to three commensurate propagation vectors of the star
〈
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1
20
〉

=
{(

1
2 ,

1
2 , 0

)}
.

• The ground states of phases IC1 and IC2 are modulated with an incommensurate
superstructure. Both are multi-k, combining up to three commensurate propagation
vectors of the star
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〉

and up to six incommensurate propagation vectors of
the star

〈
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2 − δ,
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〉
=
{(
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. These maximum numbers of propagation

vectors are inferred from the number of k-arms of the crystallographic stars
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20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
.

• The intensity at the nuclear peak positions is temperature dependent. This depen-
dence, however, is not related to ferromagnetic Bragg scattering, but presumably
arises due to multiple scattering associated with the antiferromagnetic order or
magnetoelastic effects.

The determination of propagation vectors in zero magnetic field was carried out in three
steps. First, specific high symmetry points of the simple cubic lattice were investigated
as the putative location of propagation vectors, namely the critical points Γ, M, R, and
X in the first Brioullin zone (cf. Ref. [125] for further information). However, only Γ and
M were found to be relevant, as temperature dependences were only present at positions
associated with the set of (ππ0) reflections and at the nuclear positions. Second, the
propagation vectors of phase C were determined. It was shown that peaks from the set of
(ππ0) reflections are due to magnetic Bragg scattering, whereas temperature dependent
contributions at structural positions do not display magnetic Bragg scattering. Therefore,
the form factor [21, 22] was measured for a large set of (ππ0) reflections, as well as for
the temperature dependent contribution observed at structural positions. The (ππ0)
reflections were found to follow the square of the magnetic form factor of Ho3+. This
confirmed the magnetic origin of the (ππ0) reflections. In contrast, the temperature
dependent contributions at structural positions do not follow the square of the form factor
of Ho3+, suggesting that the ground state in phase C has magnetic propagation vectors
of the star

〈
1
2

1
20
〉

only. Third, incommensurate propagation vectors were determined in
phases IC1 and IC2. Measurements with a counting tube revealed an incommensurate
splitting of the (ππ0) ordering vectors in phases IC1 and IC2. The precise position of all
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magnetic satellites in the vicinity of
(

1
2 ,

1
2 , 0

)
was determined at BIODIFF with an area

detector allowing accurate identification of the magnetic satellites. These measurements
confirmed that the ground states in IC1 and IC2 are superpositions of commensurate and
incommensurate propagation vectors.

For the measurements at HEiDi, neutrons with a wavelength λ = 1.16 Å were used. To
establish the magnetic ordering vectors the following critical k-points were investigated
as a function of temperature (cf. Fig. 3.7): (i)

(
1
2 ,

1
2 , 0

)
of the set of (ππ0) positions, i.e.,

the M point. As shown in Fig. 3.7 (a) a temperature dependence was present. (ii) The
ferromagnetic (1, 1, 0) position. This was done to obtain information on the related Γ
point. A temperature dependent contribution, which is shown in Fig. 3.7 (b), is present
at temperatures below Tt2. In phase C, at T = 2.5 K, the integrated intensity of the
(1, 1, 0) reflection was roughly 10 % larger than at T = 45 K in the paramagnetic state,
i.e.,

I
(110)
2.5 K

I
(220)
45 K

= 1.095± 0.027 . (3.8)

(iii) Selected positions of the set of (πππ) reflections, where no temperature dependence
was observed. This was confirmed at positions such as the M point, i.e.,

(
1
2 ,

1
2 ,

1
2

)
, in

IC2 at 22 K, in IC1 at 15 K, and in C at 2.5 K. (iv) Selected positions from the set of
(π00) reflections, where no temperature dependence was observed. This was confirmed at
positions such as the R point, i.e.

(
1
2 , 0, 0

)
, in IC2 at 22 K, in IC1 at 15 K, and in C at

2.5 K.
Next, the form factor was determined for (ππ0) reflections and temperature dependent

contributions at structural positions. The measurements showed that the temperature
dependent scattering at the (ππ0) positions in phase C is due to magnetic Bragg scatter-
ing with propagation vectors of the star

〈
1
2

1
20
〉
. In contrast, the temperature dependent

intensities observed at nuclear Bragg positions were found to exhibit no magnetic Bragg
scattering. Instead, the remaining temperature dependence may be due to multiple scat-
tering or magnetoelastic effects. A set of 500 magnetic (ππ0) Bragg reflections and the
181 structural reflections, identical to those investigated in the paramagnetic regime (cf.
Fig. 3.6), were studied in phase C at T = 2.5 K at HEiDi. For

(
1
2 ,

1
2 , 0

)
a large peak inten-

sity of 5.4/std.mon. with a small FWHM of 0.57◦ was observed. Similar values were ob-
served for nuclear Bragg reflections (cf. Sec. 3.3.3.1). Integrated intensities F 2

o (h, k, l) = I

were inferred from the measured Bragg peaks with the instrument software of HEiDi. To
obtain the temperature dependent contributions of structural peak positions in phase C,
a data set containing 161 structural reflections, recorded in the paramagnetic state at
T = 45 K, was subtracted from a data set containing the same 161 structural reflections,
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Figure 3.7.: Investigation of the k-points M and Γ as putative magnetic propagation vectors.
(a) Temperature dependence of the integrated intensity at the antiferromagnetic peak posi-
tion

(
1
2 ,

1
2 , 0
)

(M point), which arises due to magnetic Bragg scattering. The temperature
dependence was inferred from rocking scans, which were fitted with single Gaussian profiles and
integrated. This Gaussian fit provided a good approximation in phase C and a rough approxima-
tion in phases IC1 and IC2. (b) Temperature dependent contribution of integrated intensity at
the nuclear position (1, 1, 0). To obtain the temperature dependent contribution, all integrated
intensities were subtracted by the integrated intensity in the paramagnetic state at 45 K. This
temperature dependence at structural positions arises presumably due to multiple scattering or
magnetoelastic couplings. To obtain integrated intensities, rocking scans were carried out, fitted
with Gaussian profiles and integrated. Measurements were carried out at HEiDi.

recorded in phase C at T = 2.5 K, i.e., I2.5 K−I45 K. The strongest temperature dependent
contributions at nuclear peak positions were at least one order of magnitude weaker than
the strongest antiferromagnetic (ππ0) peaks.

Figs. 3.8 (a) and (b) show the integrated intensities at the antiferromagnetic positions
and of temperature dependent contributions at nuclear positions, respectively, as a func-
tion of sin (θ) /λ, where 2θ is the scattering angle. If the intensities were due to magnetic
Bragg scattering they must follow the square of the magnetic form factor of Ho3+ as a
function of sin (θ) /λ (cf. Ref. [126]). As shown in Fig. 3.8 (a), the temperature depen-
dence follows that of Ho3+ at the antiferromagnetic peaks of the set of (ππ0) positions
(Fig. 3.8). This confirms that the intensities are due to magnetic Bragg scattering. In
contrast, the temperature dependent contribution at the structural positions exhibits dis-
tinctively different behavior, as shown in Fig. 3.8 (b). In particular, the intensities do
not vanish even in the limit of backscattering, sin (θ) /λ→ 1

λ
≈ 0.86 Å−1. The additional

contribution at nuclear peak positions is thus not originating from a ferromagnetic con-
tribution to the magnetic structure, but may be due to a change of the crystal structure
driven by magnetoelastic coupling or multiple scattering from the antiferromagnetic (ππ0)
peaks.
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Hence, all magnetic propagation vectors in phase C are of the star
〈

1
2

1
20
〉
. As the

corresponding k-star comprises three different arms, multi-k textures with up to three
propagation vectors are possible in principle. The number of k-arms was determined by
hand at first and checked with the online tool ISODISTORT [56]. The three k-arms of the
star 〈ππ0〉, which contain the vectors kc1 =

(
1
2 ,

1
2 , 0

)
, kc2 =

(
0, 1

2 ,
1
2

)
, and kc2 =

(
1
2 , 0,

1
2

)
,

may be labeled Ac1, Ac2, and Ac3, respectively.

(a)

HoCu, Phase C, μ0H = 0 T

(b)

Figure 3.8.: Form factors as a function of sin (θ) /λ, measured for magnetic (ππ0) positions
and for temperature dependent contributions at structural positions in phase C. (a) Integrated
intensities F 2

o (h, k, l) = I of (ππ0) positions (q ∈
{(

1
2 ,

1
2 , 0
)}

) as a function of sin (θ) /λ.
500 (ππ0) Bragg peaks were recorded at T = 2.5 K by means of rocking scans, fitted with
Gaussian profiles and integrated. The intensity at (ππ0) positions arises due to magnetic Bragg
scattering, as it follows the square of the form factor of Ho3+. (b) Temperature dependent
contributions at structural peak positions as a function of sin (θ) /λ. To obtain the temperature
dependent contributions at structural peak positions (q ∈ {(0, 0, 0)}), a data set containing 161
structural reflections, recorded in the paramagnetic state at T = 45 K, was subtracted from a
data set containing the same 161 structural reflections, recorded in phase C at T = 2.5 K, i.e.,
I2.5 K−I45 K. These temperature dependent contributions at nuclear positions do not follow the
square of the form factor of Ho3+ indicating that this temperature dependence does not arise
from magnetic Bragg scattering.

As the ensuing discussion illustrates, phases IC1 and IC2 exhibit (ππ0) antiferromag-
netism with a modulated superstructure. A combination of both commensurate and
incommensurate propagation vectors is needed to describe the magnetic ground states.
The incommensurate splitting of magnetic propagation vectors is shown in Fig. 3.9. Re-
ciprocal space was mapped out in the vicinity of the antiferromagnetic

(
1
2 ,

1
2 , 0

)
position

for the three zero field phases C, IC1, and IC2 by means of a counting tube detector
at HEiDI. Q-scans were performed in the (h, k, 0) plane at the temperatures T = 2.5 K,
T = 15 K, and T = 22 K. In particular, scattering intensity was recorded at each discrete
position on a grid with 0.45 ≤ h, k ≤ 0.55, ∆h = 0.005, and ∆k = 0.005.
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In phase C, the intensity at the Bragg peak
(

1
2 ,

1
2 , 0

)
appears to be elongated towards

the reciprocal (110) direction (Fig. 3.9 (a)). However, this is due to the resolution of
HEiDi and the intensity corresponds to commensurate (ππ0) antiferromagnetism.

In phase IC1, two incommensurate satellites that are shifted by ∼ 0.02 r.l.u. within the
(h, k, 0) plane, as well as a commensurate peak (Fig. 3.9 (b)), weaker than in phase C,
suggest (ππ0) antiferromagnetism with a superstructure that is modulated over distances
∼ 50 unit cells. In IC2, incommensurate satellites with a splitting (Fig. 3.9 (c)), similar
to phase IC1, also reflect (ππ0) antiferromagnetism with a modulated superstructure.

k 
(r

.l.
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)
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HoCu, μ0H = 0 T

Figure 3.9.: Incommensurate modulation of the ground states in IC1 and IC2. Reciprocal space
was mapped out in the vicinity of

(
1
2 ,

1
2 , 0
)

in phase C at 2.5 K, in phase IC1 at 15 K, and
in IC2 at 22 K. Data were recorded by means of a single point detector at the diffractometer
HEiDi. (a) The commensurate peak in phase C, stretched along (110) due to the instrumental
resolution, reflects commensurate (ππ0) antiferromagnetism. (b,c) Incommensurate satellites
in IC1 and IC2 are shifted by roughly ∼ 0.02 within the (h, k, 0) plane, and are due to (ππ0)
antiferromagnetism with a modulated superstructure.

In order to determine the propagation vectors in IC1 and IC2 accurately, the reciprocal
space in the vicinity of

(
1
2 ,

1
2 , 0

)
was mapped out at BIODIFF using neutrons with a

wavelength λ = 3.4 Å and an area detector. The sample was oriented such that the
crystallographic plane

(
11̄0

)
corresponded to the horizontal scattering plane. Intensities

were recorded by means of rocking scans around the rocking angle ω0, under which the
Bragg condition for the

(
1
2 ,

1
2 , 0

)
reflection is fulfilled. For each Bragg peak identified in

one of the rocking scans corresponding scattering vectors kf−ki were calculated by means
of Bragg’s law, kf − ki = G.

Fig. 3.11 shows sums over detector images for the rocking scans, recorded in the three
phases C, IC1, and IC2 at T ≈ 5 K, T ≈ 15 K, and T ≈ 22 K, respectively. In phase
C, the single Bragg peak at

(
1
2 ,

1
2 , 0

)
reflects commensurate (ππ0) magnetism. In phase

IC1, the combination of a commensurate Bragg peak at
(

1
2 ,

1
2 , 0

)
, with four satellite Bragg

peaks at
(

1
2 ± δ,

1
2 , 0

)
and

(
1
2 ,

1
2 ± δ, 0

)
forms a fourfold pattern. The splitting parameter
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is given by δ15K = (0.023± 0.003) r.l.u.. The diffraction pattern suggests a superposition
of commensurate and incommensurate propagation vectors as the magnetic ground state.
Weak intensities measured at higher-order positions may be due to multiple scattering. In
phase IC2, a commensurate Bragg peak at

(
1
2 ,

1
2 , 0

)
and incommensurate satellites at the

positions
(

1
2 ± δ,

1
2 , 0

)
and

(
1
2 ,

1
2 ± δ, 0

)
again form a fourfold pattern, similar to IC1. Here,

the splitting parameter is given by δ22K = (0.022± 0.003) r.l.u.. Residual intensities, as
observed at higher-order positions, may again arise due to multiple scattering effects. The
two phases IC1 and IC2 may be directly compared as follows. The incommensurate shift
along the fourfold directions (100) and (010) has a slightly smaller value in IC2 than in
IC1. The intensity measured for the commensurate peak is considerably weaker in IC2
compared to IC1, while the four incommensurate satellites only have a slightly weaker
intensity in IC2 than in IC1.

Propagation vectors of the two stars
{(

1
2 ,

1
2 , 0

)}
and

{(
1
2 − δ,

1
2 , 0

)}
are required to in-

dex the magnetic Bragg peaks in phases IC1 and IC2. The incommensurability is given
by δ15K ≈ 0.023 r.l.u. in IC1 and by δ22K ≈ 0.022 r.l.u. in IC2. The ground states in IC1
and IC2 are multi-k, as they are a superposition of commensurate and incommensurate
propagation vectors. The star

{(
1
2 − δ,

1
2 , 0

)}
, which is defined by the incommensurate

propagation vectors, may also be labeled
〈

1
2 − δ,

1
2 , 0

〉
. This crystallographic

〈
1
2 − δ,

1
2 , 0

〉
star has 12 different k-arms. For the present study we do not distinguish between con-
jugated k-arms, as their experimental signatures are equivalent. Accordingly, we con-
sider unions, such as [k]∼ ∪ [−k]∼. These unions, which may be called Ω-arms, will
in the present study simply be referred to as arms. Accordingly, the crystallographic
star

〈
1
2 − δ,

1
2 , 0

〉
has six different Ω-arms, which may be labeled Aic1,x :=

[
1
2 ± δ,

1
2 , 0

]
∼

,
Aic1,y :=

[
1
2 ,

1
2 ± δ, 0

]
∼

, Aic2,y :=
[
0, 1

2 ± δ,
1
2

]
∼

, Aic2,z :=
[
0, 1

2 ,
1
2 ± δ

]
∼

, Aic3,z :=
[

1
2 , 0,

1
2 ± δ

]
∼

,
and Aic3,x :=

[
1
2 ± δ, 0,

1
2

]
∼

. For the present study we choose the following conventions
for specific representatives of these k-arms: kic1,x =

(
1
2 − δ,

1
2 , 0

)
, kic1,y =

(
1
2 ,

1
2 − δ, 0

)
,

kic2,y =
(
0, 1

2 − δ,
1
2

)
, kic2,z =

(
0, 1

2 ,
1
2 − δ

)
, kic3,z =

(
1
2 , 0,

1
2 − δ

)
, and kic3,x =

(
1
2 − δ, 0,

1
2

)
.

Fig. 3.10 shows an illustration of the k-arms of magnetic propagation vectors at zero
magnetic field. Shown in Fig. 3.10 (a) are Q-positions of all k-arms of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
, respectively. Shown in Fig. 3.10 (b1), (b2), and (b3) are Q-positions,

which belong to the k-arms Ac1, Ac2, and Ac3, respectively. Shown in Fig. 3.10 (c1), (c2),
(c3), (c4), (c5), and (c6) are Q-positions, which belong to the arms Aic1,x, Aic1,y, Aic2,y, Aic1,z,
Aic3,z, and Aic3,x, respectively.

The fourfold pattern around commensurate (ππ0) positions may be understood as fol-
lows. The two spots at

(
1
2 − δ,

1
2 , 0

)
and

(
1
2 + δ, 1

2 , 0
)

belong to the same Ω-arm Aic1,x,
i.e., they belong to conjugated k-arms, and are indexed by the vectors (0, 0, 0) + kic1,x and
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Figure 3.10.: Illustration of the three arms of the star
〈

1
2

1
20
〉

and the arms of the star〈
1
2 − δ,

1
2 , 0
〉

. (a) Illustration of Q-positions, as indicated by grey spheres, of all k-vector arms
of the two stars. (b1)-(b3) The Q-positions, which belong to the k-arms Ac1, Ac2, and Ac3,
respectively, are filled black. (c1)-(c6) The Q-positions, which belong to the arms Aic1,x, Aic1,y,
Aic2,y, Aic1,z, Aic3,z, and Aic3,x, respectively, are filled black.

(1, 1, 0) − kic1,x, respectively, coming from two different structural positions. In contrast,
peaks such as

(
1
2 ,

1
2 − δ, 0

)
and

(
1
2 − δ,

1
2 , 0

)
belong to the arms Aic1,y and Aic1,x, respec-

tively. Accordingly, they belong to different Ω-arms of the star
〈

1
2 − δ,

1
2 , 0

〉
. They may

be indexed by means of (0, 0, 0) + kic1,y and (0, 0, 0) + kic1,x, respectively.
As the star

〈
1
2

1
20
〉

has three k-arms and
〈

1
2 − δ,

1
2 , 0

〉
has six pairs of conjugated k-
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Figure 3.11.: Magnetic propagation vectors in the three zero field phases C, IC1, and IC2.
Reciprocal space in the vicinity of

(
1
2 ,

1
2 , 0
)

was mapped out at the temperatures T = 5 K, T =
15 K, and T = 22 K with a large area detector covering both vertical and horizontal angle. (a)
In phase C, a single Bragg peak at

(
1
2 ,

1
2 , 0
)

reflects commensurate (ππ0) antiferromagnetism.

(a,b) In phases IC1 and IC2, Bragg peaks were observed at the commensurate position
(

1
2 ,

1
2 , 0
)

,

as well as at the incommensurate positions
(

1
2 ± δ,

1
2 , 0
)

and
(

1
2 ,

1
2 ± δ, 0

)
, where δ ≈ 0.02. In

IC1 and IC2, the magnetic ground state is a superposition of commensurate and incommensurate
propagation vectors of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

, respectively. In particular, the ground
state has a modulated superstructure.

arms, the ground states in IC1 and IC2 may have up to three commensurate propagation
vectors of the star

〈
1
2

1
20
〉

and up to six incommensurate propagation vectors of the star〈
1
2 − δ,

1
2 , 0

〉
. In particular, this points to, that the ground states in IC1 and IC2 are

multi-k.
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3.3.3.3. Small Angle Neutron Scattering

To determine, whether there is a ferromagnetic superstructure, small-angle neutron scat-
tering (SANS) on the single crystal OFZ95-3-2-1-a was carried out at SANS-1 [127–129].
As the main result, these measurements established multiple scattering processes of the in-
commensurate antiferromagnetic (ππ0) reflections causing strong SANS signals in phases
IC1 and IC2. This is reflected by the strong wavelength dependence of the SANS intensi-
ties [130, 131]. No evidence for SANS signals due to Bragg scattering from ferromagnetic
order was found. These phenomena are reminiscent of related studies on potassium, for
which an experimental study by Giebultowicz et al. initially inferred from scattering data
the existence of charge density waves [132]. Pintschovius et al. [133], however, found
a strong wavelength dependence of scattering intensities that cannot arise due to Bragg
scattering.

Multiple scattering as the origin of SANS in phases IC1 and IC2 of HoCu was identified
by the strong wavelength dependence of the SANS signals, as explained further below,
and by Renninger scans. That this multiple scattering observed in SANS is caused by
incommensurate antiferromagnetic (ππ0) peaks is indicated by the following observations.
In rocking scans, the peaks in the SANS display their maxima roughly at rocking angles,
where the Bragg position is also fulfilled for peaks at antiferromagnetic (ππ0) positions.
The splitting parameters δ for incommensurate peaks in the SANS correspond to the
parameters, which were observed for incommensurate (ππ0) reflections in IC1 and IC2
(cf. Sec. 3.3.3.2)

To establish the strong wavelength dependence of SANS, rocking scans were performed
with two different neutron wavelengths. First, SANS was carried out with neutrons of
wavelength 4.5 Å. Strong SANS was observed in both phases, IC1 and IC2. Second, SANS
was carried out with neutrons of wavelength 5.5 Å in phase IC1. The comparison of the
two sets of measurements revealed a strong wavelength dependence. Further, the rocking
scans corresponded to Renninger scans for SANS caused by a putative wavevector Q1/2

with a small q-value as arising due to a ferromagnetic superstructure. The wavevectors
Q1/2 are specified further below. As a function of rocking angle, the SANS intensity, which
may be caused by Q1/2, becomes vanishingly small for large angle ranges. All observed
SANS intensities as a function of rocking angle featured maxima at angles, where the
Bragg condition is fulfilled for antiferromagnetic (ππ0) positions. This finding suggests
that the SANS signals arise not from magnetic Bragg scattering of small q values, but
from multiple scattering at incommensurate antiferromagnetic (ππ0) reflections.

For the SANS experiments the sample was oriented such that the scattering plane
corresponded to the crystallographic (001) plane. In the first set of measurements with
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wavelength λ = 4.5 Å, rocking scans were carried out in the range ω = 46◦ ± 7.5◦. SANS
recorded in phase C did not display scattering different from the paramagnetic state. For
the SANS measurements carried out in phases IC1 and IC2, at T = 15 K and T = 22 K,
sums over detector images are shown in Fig. 3.12. In IC1 (Fig. 3.12 (a)), at T = 15 K,
relatively strong peaks appeared at the detector positions (qx, qy) = (±δ, 0), (0,±δ), as
well as at the diagonal positions ± (δ,±δ). Peaks at the second-order positions (±2δ, 0)
and (0,±2δ) were weaker by one order of magnitude. The splitting parameter is given
by δ = (0.4346 ± 0.0002) Å−1. In phase IC2 (Fig. 3.12 (b)), peaks at diagonal positions,
i.e., ± (δ,±δ), were relatively strong with intensities one order of magnitude stronger
than at first-order positions and second-order positions. The splitting in IC2 is given
by δ = (0.0399 ± 0.0001) Å−1. In both phases, IC1 and IC2, the splitting parameters δ
correspond to the values observed for antiferromagnetic satellites in the vicinity of

(
1
2 ,

1
2 , 0

)
(cf. Sec. 3.3.3.2).

0

0 0.05 0.1-0.1 -0.05 0 0.05 0.1-0.1 -0.05

0.05

-0.05

0.1

-0.1
0

4

8

cou
n
ts / std

.m
on

. (1
0

3)

15 K 22 K

 

Phase IC1 Phase IC2(a) (b)

λ = 4.5 Å 
HoCu, μ0H = 0 T

Figure 3.12.: SANS measured in phases IC1 and IC2 with neutrons of wavelength λ = 4.5 Å.
Shown are sums of detector images for a rocking scan ω = 46◦ ± 7.5◦ carried out (a) in phase
IC1 at T = 15 K and (b) in phase IC2 at T = 22 K. The crystallographic [001] direction was
perpendicular to the scattering plane. As discussed in the text, SANS arises due to multiple
scattering at incommensurate (ππ0) peaks.

In the second set of measurements with a wavelength λ = 5.5 Å a large rocking scan
through ω = ±180◦ was carried out in phase IC1 at T = 15 K. Fig. 3.13 (a) shows the
sum over corresponding detector images. The vertical peaks (0,±δ) were distinctively
weaker than the horizontal peaks (±δ, 0). In contrast, in the first set of measurements
with wavelength λ = 4.5 Å horizontal and vertical peaks featured similar intensities (cf.
Fig. 3.12 (a)).

For wavevectors Q1/2 = (0, 0,±δ), the rocking scan in Fig. 3.12 corresponded to a
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Figure 3.13.: Evidence for multiple scattering in SANS in HoCu. SANS was measured in IC1
with a neutron wavelength of λ = 5.5 Å. Therefore, a large rocking scan was carried out
ω = ±180◦ at T = 15 K. (a) Sum of detectorimages for the rocking scan. (b) Average of
integrated intensities for the green regions of interest (ROIs), which were defined in (a). The
orange lines indicate the positions Ω1 of rocking angles, where the Bragg condition is fullfilled
for one of the four peaks

(
1
2 , 0,±

1
2

)
and −

(
1
2 , 0,±

1
2

)
. (c) Average of integrated intensities for

the red ROIs, which were defined in (a). The purple lines indicate the positions Ω2 of rocking
angles, where the Bragg condition is fullfilled for one of the peaks

(
1
2 ,±

1
2 , 0
)

and −
(

1
2 ,±

1
2 , 0
)

.

Renninger scan. If peaks at (0,±δ) in the detector images were due to Bragg scattering
from Q1/2 the intensity must not change for rotations of the sample around Q, as the
rotations do not affect the Bragg condition for wave vectors Q1/2 (cf. Refs. [8, 62]).
However, as established in the following, the intensity at (0,±δ) becomes vanishingly
small for various rocking angles.

Figs. 3.13 (b) and (c) show the intensities of regions of interest at (±δ, 0) and (0,±δ) as
a function of ω for the large rocking scan with wavelength 5.5 Å. Notably, horizontal and
vertical intensities, (±δ, 0) and (0,±δ), never appeared simultaneously within an ω-range
±7.5◦, other than for neutrons with wavelength λ = 4.5 Å (Fig. 3.12 (a). This reflects the
strong wavelength dependence of SANS. For (0,±δ), the intensity as a function of rocking
angle has pairs of maxima and displays vanishingly small intensities for large angle ranges
(cf. Fig. 3.12 (b)). This indicates, that the intensity at (0,±δ) is not caused by Bragg
scattering from Q1/2, but by multiple scattering.

The vertical peaks (0,±δ) appeared at exactly those rocking angles ∈ Ω1, where the
Bragg condition is fulfilled for one of the antiferromagnetic peaks

(
1
2 , 0,±

1
2

)
, −

(
1
2 , 0,±

1
2

)
,

±
(
0, 1

2 ,±
1
2

)
, and −

(
0, 1

2 ,±
1
2

)
. In contrast, the horizontal peaks (±δ, 0) appeared at

rocking angles Ω2, where the Bragg condition is fulfilled for one of the wave vectors
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±
(

1
2 ,±

1
2 , 0

)
. This confirms that the SANS signals are due to multiple scattering from

antiferromagnetic (ππ0) Bragg peaks.
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3.3.3.4. Representational Analysis of the Magnetic Structures

Magnetic structures may be decomposed into a Fourier series of basis functions that
are associated with irreducible representations (IRs). The IRs may be calculated, when
spacegroup and magnetic propagation vectors are given. IRs and their basis functions
represent natural normal modes of a magnetic structure. To determine all IRs as well
as the corresponding basis functions for the two types of propagation vectors, which are
present in HoCu at zero magnetic field, a representational analysis was carried out by
means of the software SARAh [54]. A representational analysis provides all IRs that are
allowed by symmetry. The IRs that are physically relevant and that, in fact, describe the
ground states are determined further below by a polarization analysis (cf. Sec. 3.3.3.5)
and Rietveld refinements (cf. Sec. 3.3.3.6).

As the main results this analysis shows that:
• The magnetic ground state in phase C may be decomposed into a Fourier series with

up to three propagation vectors of the star {kc}, where kc =
(

1
2 ,

1
2 , 0

)
. Each Fourier

component can be written as superposition of Γ3 (kc) and Γ9 (kc) basis functions.
• The magnetic ground states in phases IC1 and IC2 may be decomposed into a

Fourier series with up to three propagation vectors of the star {kc} and six prop-
agation vectors of the star {kic}, where kic =

(
1
2 − δ,

1
2 , 0

)
. Each commensurate

Fourier component may me decomposed analogously to phase C. Each incommen-
surate Fourier component is a superposition of Γ2 (kic), Γ3 (kic), and Γ4 (kic) basis
functions.

Propagation vector IR BV BV components
m‖a m‖b m‖c im‖a im‖b im‖c

Γ3 Ψkc
1 0 0 16 0 0 0

kc =
(

1
2 ,

1
2 , 0

)
Γ9 Ψkc

2 8 0 0 0 0 0
Ψkc

3 0 -8 0 0 0 0
Γ2 Ψkic

1 4 0 0 0 0 0
kic =

(
1
2 − δ,

1
2 , 0

)
Γ3 Ψkic

2 0 4 0 0 0 0
Γ4 Ψkic

3 0 0 4 0 0 0

Table 3.2.: Analysis of representations of the magnetic Ho site in space group Pm3̄m. For
each magnetic propagation vector k that was detected in one of the zero field phases of HoCu,
the IRs Γ (k) containing non-trivial basis functions Ψk are listed. The analysis was carried out
by means of the software SARAh [54].

Tab. 3.2 summarizes the results of the representational analysis as obtained for propa-
gation vectors kc, kic, and space group Pm3̄m. For the commensurate propagation vector
kc =

(
1
2 ,

1
2 , 0

)
the magnetic representation splits into Γ = 1Γ1

3 + 1Γ2
9. The IR Γ3 has the

order ν = 1 containing one basis function which is perpendicular to the basal plane of
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the propagation vector. In contrast, Γ9 has the order ν = 2 and contains the two basis
functions Ψkc

2 and Ψkc
3 , both of which lie within the basal plane of the propagation vector.

For incommensurate propagation vectors kic, the magnetic representation is decomposed
into Γ = 1Γ1

2 + 1Γ1
3 + 1Γ1

4. Each IR has the order ν = 1 and contains one basis function
only. The most general magnetic structure in the zero field phases of HoCu can thus be
written as follows:

m(R) =
∑

k∈Ω,l
Ck
l Ψk

l (exp (ik ·R) + exp (−ik ·R)) . (3.9)

In phase C, the sum ∑
k∈Ω,l goes over the (representatives of) three k-arms of the

〈
1
2

1
20
〉

star, i.e., kci (1 ≤ i ≤ 3). As the three commensurate propagation vectors fulfil the
relationship exp (ikcR) = exp (−ikcR), the magnetic ground state in phase C can be
written as follows:

m (R) =
Nk∑
j=1

r
(
kcj
)
· exp

(
ikcj ·R

)
. (3.10)

In the incommensurate phases IC1 and IC2, the sum ∑
k∈Ω,l goes over (representatives of)

the three k-arms of the
〈

1
2

1
20
〉

star and over the six Ω-arms of the
〈

1
2 − δ,

1
2 , 0

〉
star. In

principle each superposition in Eq. (3.9) may give rise to a conceivable magnetic structure
[134]. However, Landau theory often narrows down the number of possible structures. In
phases, for which Landau theory is applicable, only superpositions with basis functions
associated with one IR only should be allowed (cf. Sec. 2.2). As in HoCu only the
transition at TN is clearly of second order, Landau theory may be applied in IC2 only.
However, in practice Landau theory often applies, even if the transitions are not of second
order.
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3.3.3.5. Polarization Analysis

In the representational analysis, which was reported in Sec. 3.3.3.4, all IRs were deter-
mined that are allowed by symmetry. Typically only very few of them are relevant and
describe the magnetic ground states. To experimentally determine the IRs that describe
the magnetic ground states in phases C, IC1, and IC2, polarized neutron diffraction of the
sample OFZ95-3-3-h was carried out at the diffractometer DNS [135]. In particular, this
study provides the pre-factors to each sinusoidal term in the Fourier series of the ground
states.

The main results of these experiments may be summarized as follows:
• The intensity at the position (1, 1, 0) is purely structural in phases C, IC1, and

IC2. Scattering processes are purely non-spin-flip for incident neutron spins ‖ Q̂,
which is characteristic of scattering at structural Bragg peaks. In particular, no
ferromagnetic component contributes to the magnetic ground state in phase C.

• The intensity at the position (1, 1, 0) is temperature dependent. This dependence,
however, does not arise due to multiple scattering, but presumably due to magne-
toelastic effects.

• All Bragg peaks in the vicinity of
(

1
2 ,

1
2 , 0

)
, commensurate and incommensurate, are

purely magnetic in phases C, IC1, and IC2. The scattering processes are namely
purely spin-flip for incident neutron spins ‖ Q̂, which is characteristic of magnetic
scattering.

• In phase C, the magnetic ground state consists of only Γ9 (kc) basis functions. There
are five structures, two being single-k, two double-k, and one triple-k, among the
21 (ππ0) structures in Tab. 3.1 that meet this condition.

• In phase IC1, the magnetic ground state consists of Γ3 (kc) basis functions and
Γ4 (kic) basis functions. Hence, for given propagation vectors the pre-factors in the
Fourier decomposition of the ground state are known up to complex phase shifts.
The number of k-vectors, however, cannot be inferred from the polarization analysis.

• In phase IC2, the magnetic ground state consists of Γ4 (kic) basis functions and
commensurate contributions. These commensurate contributions may be a pure
superposition of only Γ3 (kc) or only Γ9 (kc) basis functions, or they may be a mixture
of both.

The irreducible representations that describe the ground states in phases C, IC1, and
IC2, were inferred from polarization experiments as follows. First, the experimental po-
larization rate α of the incident beam at the DNS instrument was determined in the
paramagnetic regime at the structural peak (1, 1, 0), for which all scattering processes
are expected to be purely non-magnetic and non-spin-flip. Second, the diagonal entries



3.3. The Compound HoCu 53

of polarization matrices were determined in phases C, IC1, and IC2 for all first-order
magnetic Bragg peaks in the vicinity of

(
1
2 ,

1
2 , 0

)
as well as for the structural position

(1, 1, 0). Third, the irreducible representations that describe the magnetic ground states
in phases C, IC1, and IC2 were inferred from the polarization matrices by means of the
Blume-Maleev equations [35, 36] (cf. Secs. 2.1.2 and 3.2 for further information).

For these measurements, the sample was oriented such that the scattering plane corre-
sponded to the crystallographic (001) plane. Neutrons with wavelength λ ≈ 4.2 Å were
used. Only magnetic peaks in the vicinity of

(
1
2 ,

1
2 , 0

)
were accessible. As is common

for polarized neutrons, a set of Cartesian coordinates was defined with respect to the
scattering vector Q = (h, k, l), such that êz is vertical, êx ‖ Q and êy = êz × êx. At DNS,
the initial polarization Pi of the incident neutron beam may be adjusted parallel to one
of the three Cartesian axes, i.e., Pi = n̂ with n̂ ∈ {ex, ey, ez}. The polarization Pf of the
scattered neutrons may then be analyzed with respect to the direction n̂, along which the
incoming beam is polarized. This procedure allows to determine the diagonal elements of
polarization matrices only. In the following, the three different polarizations are referred
to as polarization channels.

Polarization matrices were inferred from the data by the following procedure. For
each Bragg peak, maps with both spin-flip and non-spin-flip intensities were recorded
for the surrounding reciprocal space region within the (h, k, 0) plane. Therefore, rocking
scans were carried out and the scattered beam was analyzed at different detector bank
positions. For all three polarization channels, maps for both spin-flip (−) and non-spin-flip
(+) scattering were inferred by the software available at DNS, providing:

J−n (h, k, 0) = J sf
n = Jn→n̄ (3.11)

J+
n (h, k, 0) = Jnsf

n = Jn→n . (3.12)

Each Bragg peak was approximated with a two-dimensional Gaussian profile by a least
squares fit:

a±0 exp
−1

2

(
h− h0

σh

)2

− 1
2

(
k − k0

σk

)2
 −→

fit
J± (h, k, 0) . (3.13)

Integrated intensities I± =
∫
J± (h, k, 0) dh dk of spin-flip and non-spin-flip channels were

inferred from the Gaussian profiles. To obtain the diagonal elements of the polarization
matrix, intensities were corrected by a factor γ = 1

1−2ε that accounts for the polarization
rate α = 1− ε < 1 of the incident beam:

P o
nn = γ

(
I+
n − I−n

)
/
(
I+
n + I−n

)
. (3.14)
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For our data analysis we assume that the incident beam is not fully polarized, whereas
other corrections are neglected. To determine the polarization rate α of the incident beam,
the nuclear peak (1, 1, 0) was investigated in the paramagnetic regime at T = 45 K. The
polarization, as measured in the x-channel, was given by P

′
xx = (I+

x − I−x ) / (I+
x + I−x ) =

0.94± 0.01. For a fully polarized beam, one expects P c
xx = +1, as the scattering process

is purely non-spin-flip. It was inferred that a polarization rate α = 1 − ε = 0.97 is in
agreement with the analyzed polarization P ′xx. Consequently, all experimental polarization
matrices were corrected by a factor γ = 1

1−2ε ≈ 1.06 to compensate for this lack of full
polarization.

Tab. 3.3 summarizes all polarization matrices that were measured for magnetic and
structural reflections in phases C, IC1, and IC2. For the structural reflection (1, 1, 0)
the entries of the polarization matrices were 1 in all phases, implying that the scattering
processes are all purely non-spin-flip. This reflects the purely non-magnetic origin of the
Bragg peak at the (1, 1, 0) position. In particular, the ground states in C, IC1, and IC2
do not have any ferromagnetic component. However, the intensity at the position (1, 1, 0)
is temperature dependent, in agreement with the data presented in Fig. 3.7:

I(110) (T )
I

(110)
45K

=


1.096± 0.006 , T = 5 K

1.078± 0.006 , T = 15 K

1.056± 0.006 , T = 22 K

. (3.15)

No multiple scattering processes were identified to explain these temperature dependent
contributions at the position (1, 1, 0) in C, IC1, and IC2 suggesting magnetoelastic effects
as the plausible origin. In contrast, all Bragg peaks in the vicinity of

(
1
2 ,

1
2 , 0

)
were purely

spin-flip in the x-channel Pxx ≈ −1 reflecting their purely magnetic origin (cf. Ref. [136]).
In phase C, the polarization matrix of the commensurate Bragg peak fulfills Pyy ≈
−Pzz ≈ −0.85 indicating that moments corresponding to a propagation vector kc =(

1
2 ,

1
2 , 0

)
of the magnetic ground state in phase C lie mainly in the crystallographic (001)

plane, whereas projections along [001] are small. In phase IC1, the polarization matrix
of the commensurate Bragg peak fulfills Pyy ≈ −Pzz ≈ +0.85 indicating that moments
corresponding to a propagation vector kc of the magnetic ground state in phase IC1 are
mainly directed along the [001] axis, whereas projections in the (001) plane are small (cf.
Ref. [137]).

The incommensurate Bragg peaks have a polarization matrix consistent with Pyy =
−Pzz = −1 implying that magnetic moments corresponding to a propagation vector
kic =

(
1
2 − δ,

1
2 , 0

)
of the magnetic ground state in phase IC1 are directed along the

[001] axis. In phase IC2, the polarization matrix of the commensurate Bragg peak fulfills
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Pyy ≈ Pzz ≈ −0.4 indicating that moments corresponding to a commensurate propagation
vector kc of the magnetic ground state in phase IC2 have finite projections both along
[001] and within the plane (001). The incommensurate Bragg peaks have a polarization
matrix consistent with Pyy = −Pzz = −1 implying that moments corresponding to a
propagation vector kic of the magnetic ground state in phase IC2 are directed along the
[001] axis.

Q-position Phase C Phase IC1 Phase IC2
(1, 1, 0) (1.00, 1.00, 1.00) (1.00, 1.01,−) (1.00, 1.00,−)(

1
2 ,

1
2 , 0

)
(−1,+0.85,−0.88) (−1.02,−0.87,+0.87) (−1.01,−0.39,+0.41)(

1
2 − δ,

1
2 , 0

)
- (−1.02,−0.99,+1.00) (−1.02,−0.99,+1.00)(

1
2 + δ, 1

2 , 0
)

- (−1.02,−0.99,+0.99) (−1.02,−0.99,+0.99)(
1
2 ,

1
2 − δ, 0

)
- (−1.02,−1.00,+1.00) (−1.02,−0.99,+0.98)(

1
2 ,

1
2 + δ, 0

)
- (−1.02,−0.96,+0.96) (−1.02,−0.96,+0.97)

Table 3.3.: Polarization matrices determined experimentally for nuclear as well as magnetic
peaks in phases C, IC1, and IC2, at 5 K, 15 K, and 22 K, respectively. For the measurements,
the HoCu sample was oriented such that the scattering plane corresponded to the crystallographic
(001) plane. Shown are the diagonals of the polarization matrices only. The statistical errors
are all smaller than ±0.02.

The irreducible representations that describe the magnetic ground states may be deter-
mined from Tab. 3.3 by means of the Blume-Maleev equations (cf. Sec. 2.1.2). As argued
in the following, the magnetic ground state in phase C represents a superposition of basis
functions from Γ9 (kc) only. In particular, no basis functions from Γ3 (kc) occur in the
Fourier series, which is equivalent to Ckci

1 = 0. The commensurate ground state in phase
C may then be expanded as follows:

m (R) =
∑
j

[
C

kcj
2 Ψkcj

2 + C
kcj
3 Ψkcj

3

]
exp

(
ikcj ·R

)
. (3.16)

From the measurements this may be inferred as follows. The polarization matrix measured
at the commensurate peak

(
1
2 ,

1
2 , 0

)
fulfills P o

yy ≈ −P o
zz ≈ 0.85 (Tab. 3.3). As shown in

Sec. A.2, a polarization matrix fulfilling Pyy = −Pzz = +1 would in fact imply that
only the basis functions Ψ2 and Ψ3, which are associated with Γ9 (kc), can contribute to
the Fourier decomposition of m. For each of the 21 commensurate (ππ0) structures in
Tab. 3.1 the polarization matrices were calculated by means of Eq. (2.16). All calculated
matrices have diagonals of shape (−1, α,−α). Fig. 3.14 shows the calculated values α for
each of the 21 (ππ0) structures (cf. Tab. 3.1) in comparison with the measured value
P o
yy ≈ 0.85. The structures that agree best with the experimental data, are s2, s4, d2, d5
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and t2. All of them are superpositions of Γ9 (kc) basis functions only, which implies that
Pyy = −Pzz = +1.

In fact, the five structures s2, s4, d2, d5, and t2 are the only structures among the 21
structures in Tab. 3.1 that are superpositions of only Γ9 (kc) basis functions. It is inferred
that the ground state in phase C represents one of the five structures s2, s4, d2, d5 and t2.
The mismatch between P o

yy ≈ 0.85 and P c
yy = 1 may be explained due to double spin-flip

scattering. As explained in Sec. 3.3.3.3, double scattering is relatively strong in HoCu.
In particular, multiple scattering processes of third order may lead to additional double
spin-flip intensities at the

(
1
2 ,

1
2 , 0

)
position. A simulation of such processes would be

difficult. However, as illustrated by the red area in Fig. 3.14, an additional double spin-
flip contribution at the commensurate peak position amounting to approximately 10 %
of the pure

(
1
2 ,

1
2 , 0

)
peak signal would lead to a difference ∆2sf ≈ 0.2 in the measured

polarization P o and may explain the mismatch between P o
yy ≈ 0.85 and P c

yy = 1.
Accordingly, the ground state in C is associated with an angle θ = 90◦, in contrast to

56◦, which was reported in Ref. [68] for phase C and inferred by means of polycrystalline
neutron diffraction.

-1

-0.5

0

0.5

1

 

single-k: double-k: triple-k:

1 2 3 4 5 1 2 3 4 51 2 3 4 5 6 7 8 9 10 11

 

commensurate  (ππ0) structures

Figure 3.14.: Comparison of measured vs. calculated polarization matrices in phase C. For the
21 commensurate (ππ0) structures in Tab. 3.1, the polarization matrix elements α = P cyy were
calculated by means of the Blume-Maleev equations (cf. Sec. 3.2) for a scattering process with
Q =

(
1
2 ,

1
2 , 0
)

, the sample oriented such that [001] is vertical. The experimental values P oyy
were inferred from the data, recorded by means of polarized neutrons. The five structures s2,
s4, d2, d5, and t5 yield P cyy = α = +1 and fit best to the measured polarization P oyy = +0.85.
As indicated by the red area, a double spin-flip signal that is roughly 10 % of the pure magnetic
signal may explain the discrepancy between measured and calculated values.

As shown further, the commensurate contributions to the magnetic ground state in
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phase IC1 are a superposition of only Γ3 (kc) basis functions and the incommensurate
contributions a superposition of only Γ4 (kic) basis functions. In particular, no basis
functions from Γ9 (kc) contribute to the commensurate propagation and no basis functions
from Γ2 (kic) and Γ3 (kic) contribute to the incommensurate propagation in the Fourier
series. The ground state in phase IC1 may then be expanded as follows:

m(R) =
∑

k∈{kc}
CkΨk

1 · exp (ik ·R) +
∑

k∈{kic}
Ψk

3

(
Ck exp (ik) + C−k exp (−ik)

)
=

=
∑

k∈{kc}
αkΨk

1 (k) · exp (ik ·R) +
∑

k∈{kic}
αkΨk

3 · cos (k ·R + φ (k)) . (3.17)

From the measurements this was inferred as follows. The polarization matrix measured
at the commensurate peak

(
1
2 ,

1
2 , 0

)
fulfills P o

yy ≈ −P o
zz ≈ −0.85 (Tab. 3.3). One may

assume that the ground state actually implies a polarization Pyy = −Pzz = −1 and
that the mismatch between measured and calculated values may again be caused by
double spin-flip scattering, as is the case in phase C. The assumption Pyy = −Pzz = −1
implies that the commensurate contributions to the ground state are superpositions of
only Γ3 (kc) basis functions (cf. Sec. A.2). For the incommensurate peaks in phase IC1,
the measured polarization matrices are consistent with Pyy = −Pzz = −1, implying
that incommensurate contributions to the ground state in IC1 are superpositions of only
Γ4 (kic) basis functions (cf. Sec. A.2).

As shown further, the incommensurate contributions to the magnetic ground state in
phase IC2 proof to be a superposition of Γ4 (kic) basis functions only. This may be inferred
from the polarization matrices measured at incommensurate positions in IC2, which are
consistent with Pyy = −Pzz = −1. In contrast, the polarization matrix measured at the
commensurate peak position fulfills Pyy = −Pzz ≈ −0.4 suggesting that commensurate
contributions to the ground state are mixtures of several IRs. This is at odds with
Landau theory, which requires that only one IR is involved in phase IC2. The two cases
Pyy = −Pzz = ±1 only, may be in agreement with Landau theory. Presumably, the
polarization data was again contaminated with double spin-flip scattering signals.
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3.3.3.6. Magnetic Rietveld Refinements

To perform magnetic Rietveld refinements in phases C and IC1, neutron diffraction on
sample OFZ95-3-2-1-a was carried out at HEiDi. The results of the experiments may be
summarized as follows:

• The magnetic ground state in phase C is represented by one of the five (ππ0) struc-
tures s2, s4, d2, d5, and t2. This was confirmed by magnetic Rietveld refinements.

• Among the 21 commensurate (ππ0) structures in Tab. 3.1 these five structures
represent the ones that contain Γ9 basis functions only. The Rietveld refinements
are thus in excellent agreement with the polarization analysis in Sec. 3.3.3.5.

• The structures s2 and s4 are single-k, d2 and d5 are double-k, and t2 is triple-k. As
these structures have the same magnetic structure factor when magnetic domains are
equally populated, they may not be distinguished by means of Rietveld refinements
in zero magnetic field.

• The magnetic structure factor in phase IC1 may be approximated by that of the
commensurate, single-k (ππ0) structure s1. This was confirmed by Rietveld refine-
ments.

• The commensurate structure s1 consists of basis functions only that are associated
with Γ3 (kc). As the only basis function, associated with Γ4 (kic), is parallel to the
only basis function, associated with Γ3 (kc), the Rietveld refinement is in excellent
agreement with the polarization analysis in Sec. 3.3.3.5.

• There is a multitude of multi-k structures that may describe the magnetic ground
state in phase IC1. Rietveld refinements in zero field, however, do not allow to
distinguish them.

In phase C, magnetic Rietveld refinements were carried out on the data sets recorded
at HEiDi at T = 2.5K (cf. Fig. 3.8), containing 500 commensurate (ππ0) reflections
as well as 181 structural reflections. As in phase C the structural reflections are purely
non-magnetic and the (ππ0) reflections are purely magnetic, the integrated intensities
represent nuclear and magnetic structure factors F 2

o , respectively.
Refinements were conducted by means of the software Jana2006 [59]. For the refinement

of the crystal structure, Pm3̄m, a scale parameter, a quadratic (isotropic) displacement
parameter, and an isotropic Lorentzian extinction were introduced. For the magnetic
refinements the (uniform) size of the magnetic moments, an isotropic Lorentzian extinction
parameter, and d− 1 ratio parameters for d possible magnetic domains were introduced.

The five commensurate (ππ0) structures s2, s4, d2, d5, and t2 that are in agreement
with the polarization analysis were considered as magnetic ground state in phase C. As
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Magnetic Structure: s2 s4 d2 d5 t2
Number of k-vectors N: 1 1 2 2 3

Number of domains: 6 6 3 12 2
r(kc1) (1, 0, 0) ( 1√

2 ,
−1√

2 , 0) ( 1√
2 , 0, 0) ( 1√

2 , 0, 0) ( 1√
3 , 0, 0)

r(kc2) - - (0, 0, 1√
2) (0, 1√

2 ,
−1√

2) (0, 1√
3 , 0)

r(kc3) - - - - (0, 0, 1√
3)

Allover refinement:
R [F 2 ≥ 3σ (F 2)]: 5.97 5.22 5.24 5.22 6.28

wR (F 2): 14.45 13.07 13.13 13.03 15.88
Nuclear refinement:
R [F 2 ≥ 3σ (F 2)]: 6.81 6.19 5.70 5.88 5.91

wR (F 2): 16.85 16.00 16.00 14.62 15.24
Magnetic refinement:
R [F 2 ≥ 3σ (F 2)]: 5.43 4.60 4.54 4.17 8.91

wR (F 2): 13.50 11.85 11.86 10.96 19.25
mag. moment (µB): 6.133(2) 6.241(2) 6.256(2) 6.258(2) 6.335(3)

nuc. ext. Giso: 0.123 0.136 0.138 0.128 0.140
mag. ext. Gmag: 0.090 0.120 0.240 0.214 0.414

Uiso 0.0025 0.0039 0.0040 0.0040 0.0047

Table 3.4.: Magnetic Rietveld refinements for the ground state in phase C. Integrated in-
tensities F 2

o of 500 magnetic (ππ0) reflections, as well as 161 structural reflections, which
were inferred from diffraction data recorded at HEiDi, were used for the refinements. The
five magnetic structures s2, s4, d2, d5, and t2 that were considered here are the only struc-
tures among the 21 commensurate (ππ0) structures in Tab. 3.1, which are in agreement with
the polarization analysis. The structures may be expanded into Fourier series by means of
m (R) =

∑
n r (kcn) exp (ikcn · r). For the refinement of the crystal structure, Pm3̄m, a scale

parameter, a quadratic (isotropic) displacement parameter, and an isotropic Lorentzian extinc-
tion were introduced. For the magnetic refinements the (uniform) size of the magnetic moment,
an isotropic Lorentzian extinction parameter, and d − 1 ratio parameters for the d possible
domains were introduced.

these five structures for equally distributed domains all share the same structure factor,
Rietveld refiniments are expected to be similar.

Tab. 3.4 shows the results of the magnetic Rietveld refinements in phase C. A stable
refinement was obtained for each of the five magnetic structures. The low R-values, which
range from 5.1 to 6.2, reflect the excellent agreement between calculated and measured
structure factors in phase C. The R-values were slightly lower for the structures s4, d2,
and d5. The mean quadratic displacement has the smallest value for the structure s2,
namely Uiso ≈ 0.0024. For all other structures it amounts to ≈ 0.0040. The magnetic
moments vary between 6.13µB and 6.35µB for the five structures. All of them are smaller
than (7.5± 0.1) µB/f.u., the value determined in Ref. [68] at T = 10.5 K in phase C,
and considerably smaller than 10.61µB/f.u., the free-ion value of Ho3+ calculated from
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Figure 3.15.: Calculated vs. observed magnetic structure factors Fc/Fo for the magnetic Ri-
etveld refinements in phase C. For the refinement, the five structures of Tab. 3.1, which consist
of only Γ9 functions, were considered. Shown are the structure factors Fc, as calculated for
each of the five magnetic structures, and the values Fo inferred from the 500 recorded magnetic
Bragg reflections. Similarly good were the results obtained for (a),(b) the single-k structures s2
and s4, (c),(d) the double-k structures d2 and d5, and (e) the triple-k structure t2, reflecting
the agreement of the experimental data with structures that consist of only Γ9 basis functions.

Hund’s rules. Extinction parameters for the structural refinements are given by ≈ 0.1.
The magnetic extinction parameters were ≈ 0.1 for single-k structures, ≈ 0.2 for double-k
structures, and≈ 0.3 for triple-k structures. Fig. 3.15 illustrates the excellent agreement of
the magnetic structure factor Fc, calculated for each of the five magnetic structures, with
the structure factor Fo, inferred from the recorded data. For each of the five structures the
data points of the 500 magnetic reflections are almost perfectly on the bisetrix reflecting
the excellent agreement with the experimental data.

For the magnetic Rietveld refinements in phase IC1, rocking scans were carried out for
180 structural and 499 magnetic (ππ0) positions at T = 15 K. Integrated intensities F 2

o for
structural and magnetic (ππ0) reflections were inferred by means of the data reduction
software avaiable at HEiDi, fitting the data at each position with a single-peak profile
function. For most of the (ππ0) positions this provided a good approximation of the total
scattering intensity. Note, however, that the approximation was bad at low q-values, such
as in the vicinity of

(
1
2 ,

1
2 , 0

)
. In these cases, the rocking scans had several maxima and

were badly approximated by a single-peak function. An accurate measurement of both
incommensurate and commensurate magnetic structure factors would be tedious, as it
requires both a high q-resolution and coverage of a large volume in q-space.

As an approximation to the magnetic ground state in IC1, the three commensurate
single-k structures s1, s2, and s4 were considered. The three structures represent all
single-k structures among the 21 structures in Tab. 3.1, which contain basis functions
associated with one IR only. s1 contains only Γ3 (kc) basis functions, s2 and s4 only
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Magnetic Structure: s1 s2 s4
Number of domains: 3 6 6

ri (0, 0, 1) (1, 0, 0) 1√
2(1, 1, 0)

Magnetic refinement:
R [F 2 ≥ 3σ (F 2)]: 7.42 26.86 26.56

wR (F 2): 10.50 30.40 30.49
Nuclear refinement:
R [F 2 ≥ 3σ (F 2)]: 5.16 4.81 6.20

wR (F 2): 7.59 7.45 9.75
Allover refinement:
R [F 2 ≥ 3σ (F 2)]: 6.52 18.08 18.46

wR (F 2): 9.77 26.47 26.69
Magnetic moment (µB): 6.393 6.723 6.768

Extinction coefficient (nuclear): 0.097702 0.136271 0.055549
Extinction coefficient (magnetic): 0.028359 0.481687 0.010686

Table 3.5.: Magnetic Rietveld refinements in phase IC1. The magnetic ground state in IC1 was
approximated by three commensurate single-k structures. The three structures s1, s2, and s4 are
the only single-k structures among the 21 structures in Tab. 3.1 that contain basis functions from
one IR only. Their Fourier series may be represented by mi(R) = ri (exp (ikc1 ·R)). Integrated
intensities were inferred from a data set containing 499 magnetic (ππ0) positions and 180
structural peaks, which was recorded at T = 15 K at HEiDi. For each (ππ0) position intensities
of both commensurate and incommensurate contributions were fitted with a single peak profile.
For magnetic peak positions with low q-values this gives a rough approximation, for larger q-
values the approximation is good. For the refinement of the crystal structure, Pm3̄m, a scale
parameter and an isotropic Lorentzian extinction were introduced. For the magnetic refinements
the (uniform) size of the magnetic moment, an isotropic Lorentzian extinction parameter, and
d−1 ratio parameters for the d possible domains were introduced. The refinements were carried
out by means of JANA2006 [59].

Γ9 (kic) basis functions. The Fourier decompositions of the three structures have the
form:

mj (R) = rj · exp (ikc1 ·R) . (3.18)

with r1 = (0, 0, 1), r2 = (1, 0, 0), r3 = 1√
2 (1, 1, 0). The structure m1 corresponds to s1,

m2 to s2, and m3 to s4 in Tab. 3.1. As shown further, the Rietveld refinement confirmed,
that the structure factor of m1 gives the best approximation to the measured data. In
particular, this finding is in excellent agreement with the polarization measurements, as
the only basis functions associated with Γ4 (kic) is parallel to the only basis function,
associated with Γ3 (kc).

Tab. 3.5 shows the results of the magnetic Rietveld refinements in phase IC1. For the
structure m1, good refinement results were obtained, For m2 and for m3 the refinements
were considerably worse. The R-value 6.52 reflects a good approximation of the mea-
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Figure 3.16.: Calculated vs. observed magnetic structure factors Fc/Fo for the magnetic Ri-
etveld refinements in phase IC1. The magnetic ground state in IC1 was approximated by the
commensurate (ππ0) structures (a) s1, (b) s2, and (c) s4. The three structures are the only
single-k structures among the 21 structures in Tab. 3.1 that contain basis functions associ-
ated with a single IR only. Each of the structures may be represented by a Fourier series
mi(R) = ri (exp (ikc1 ·R)). Shown for the three refinements is the comparison of the magnetic
structure factor Fc, calculated for the magnetic structures s1, s2, and s4, respectively, with the
structure factor Fo, inferred from the 499 magnetic Bragg peaks. The refinement yields relatively
good results for the structure s1, which is associated with the IR Γ3, the magnetic moments
pointing along the c-axis. In contrast, the refinement is worse for the structures s2 and s4, which
are associated with the IR Γ9, the magnetic moments located in the ab-plane.

sured structure factor by the commensurate magnetic structure s1. The refined magnetic
moment 6.393µB is smaller than the value (7.1± 0.1) µB/f.u. observed in Ref. [68] at
T = 14.5 K in phase IC1, but is considerably smaller than 10.61µB/f.u., the value in-
ferred for tripositive holmium by means of Hund’s rules. Fig. 3.16 illustrates graphically
the good agreement of the magnetic structure factor Fc, calculated for the structure m1,
with the structure factor Fo, inferred from the recorded data. In contrast, Fc and Fo are
distinctively different for the structures m2 and m3.
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3.3.3.7. Higher Harmonic Peaks

In order to investigate higher-order magnetic peaks, which may be important for the
identification of multi-k structures [30, 61, 63], neutron diffraction on the sample OFZ95-
3-2-1-a was carried out at MIRA [138]. The main results of these experiments, as explained
further below, may be summarized as follows:

• In phase C, higher harmonics were not investigated, as they are expected either at
the same position as structural peaks or as (ππ0) peaks, both of which are relatively
strong, rendering the separation of intensities difficult.

• In phase IC1, higher-order peaks were detected at the positions
(

1
2 ± 3δ, 1

2 , 0
)

and(
1
2 ,

1
2 ± 3δ, 0

)
. They reflect either the anharmonicity of the magnetic ground state

or they arise due to mixed higher harmonics from a multi-k ground state combining
several wave vectors of the star

〈
1
2 − δ,

1
2 , 0

〉
.

• In phase IC1, no peaks were detected at the mixed positions
(

1
2 + δ, 1

2 ± 2δ, 0
)
,(

1
2 − δ,

1
2 ± 2δ, 0

)
,
(

1
2 + 2δ, 1

2 ± δ, 0
)
, or

(
1
2 − 2δ, 1

2 ± δ, 0
)
.

• In phase IC2, higher-order peaks were detected at the positions
(

1
2 ± 3δ, 1

2 , 0
)

and(
1
2 ,

1
2 ± 3δ, 0

)
. They reflect either the anharmonicity of the magnetic ground state

or they arise due to mixed higher harmonics from a multi-k ground state combining
several wave vectors of the star

〈
1
2 − δ,

1
2 , 0

〉
.

• In phase IC2, peaks were also detected at mixed positions
(

1
2 + δ, 1

2 ± 2δ, 0
)
,(

1
2 − δ,

1
2 ± 2δ, 0

)
,
(

1
2 + 2δ, 1

2 ± δ, 0
)
, and

(
1
2 − 2δ, 1

2 ± δ, 0
)
. They establish that the

ground state in IC2 is a multi-k state combining several wave vectors of the star〈
1
2 − δ,

1
2 , 0

〉
.

• In phase IC2, the ground state is at least a triple-k structure consisting of at least
one commensurate propagation vector of the star

〈
1
2

1
20
〉

and more than one incom-
mensurate propagation vectors of the star

〈
1
2 − δ,

1
2 , 0

〉
.

The investigation of higher harmonics was carried out as follows. First, the resolution
of the instrument MIRA was determined in the vicinity of the magnetic Bragg peak(

1
2 ,

1
2 , 0

)
. Therefore, the Bragg peak

(
1
2 ,

1
2 , 0

)
was properly mapped out by means of q-

scans in phase C. It was assumed that the profile of the Bragg peak
(

1
2 ,

1
2 , 0

)
represents the

resolution of the instrument. This provided as resolution a Gaussian profile function that
gave a remarkably good approximation to all magnetic peaks, measured in the vicinity of(

1
2 ,

1
2 , 0

)
in phases IC1 and IC2. Second, higher harmonics were studied in phases IC1 and

IC2, by scanning the reciprocal space in the vicinity of
(

1
2 ,

1
2 , 0

)
. Therefore, q-scans were

carried out along several high symmetric directions through Q0 =
(

1
2 ,

1
2 , 0

)
. Each peak

Pm at a position Qm, which was observed in one of the scans, was fitted with a profile
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Figure 3.17.: Intrumental resolution of MIRA at the position
(

1
2 ,

1
2 , 0
)

. In phase C, the reciprocal

space position
(

1
2 ,

1
2 , 0
)

was accurately mapped out by means of q-scans at constant h values,
i.e., q-scans were carried out along lines (h0, k, 0). (a) The commensurate magnetic Bragg peak
at
(

1
2 ,

1
2 , 0
)

features a Gaussian profile reflecting the resolution of the instrument. (b) The

Gaussian fit function G0 located at
(

1
2 ,

1
2 , 0
)

as illustrated in terms of a color plot. The function

was used as a model fit function for all other Bragg peaks in the vicinity of the
(

1
2 ,

1
2 , 0
)

position.

function inferred from the resolution by means of Gm (Q−Qm) = j (Qm) · G0 (Q−Q0).
Integrated intensities were inferred further below for each magnetic peak by integration
of these Gaussian fit functions.

For the measurements, the instrument MIRA was used as a triple-axis-spectrometer, as
in this mode the background is strongly suppressed [138]. However, only elastic experi-
ments (zero energy transfer) were performed. Neutrons with a wavelength λ ≈ 4.33 Å were
used. The sample was oriented such that the crystallographic (001) plane corresponded
to the scattering plane.

For the determination of the resolution around
(

1
2 ,

1
2 , 0

)
, diffraction intensity was mea-

sured on a discrete grid with step size ∆h = ∆k = 0.0025 r.l.u. at T = 5 K in phase C. In
particular, for each fixed reciprocal space coordinate h0 (i) = 0.475+ i ·0.0025 (i ∈ [0, 20]),
a q-scan was performed along lines (h0, k, 0) within the range k ∈ [0.45, 0.55] and with
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Qm −
(

1
2 ,

1
2 , 0

)
Phase IC1: j (Qm) Phase IC2: j (Qm)

(0, 0, 0) 0.8387± 0.0085 0.1077± 0.0012
(δ, 0, 0) 0.5855± 0.0060 0.5265± 0.0056
(δ, 0, 0) 0.6363± 0.0065 0.5499± 0.0054
(0, δ, 0) 0.6367± 0.0065 0.5608± 0.0057
(0, δ, 0) 0.6650± 0.0068 0.5693± 0.0058
(3δ, 0, 0) 0.00170± 0.0001 0.00533± 0.00012
(3δ, 0, 0) 0.001420± 0.0001 0.00503± 0.00013
(0, 3δ, 0) 0.00190± 0.0001 0.0047± 0.00012
(0, 3δ, 0) 0.0015± 0.0001 0.0050± 0.00012
(δ, 2δ, 0) < 5.5 · 10−5 5.0 · 10−4 ± 3.6 · 10−5

(δ, 2δ, 0) < 2.9 · 10−5 6.7 · 10−4 ± 4.1 · 10−5

(δ, 2δ, 0) < 5.5 · 10−5 4.8 · 10−4 ± 3.5 · 10−5

(δ, 2δ, 0) < 5.5 · 10−5 5.5 · 10−4 ± 3.8 · 10−5

(2δ, δ, 0) < 6.8 · 10−5 5.2 · 10−4 ± 3.7 · 10−5

(2δ, δ, 0) < 7.0 · 10−5 7.1 · 10−4 ± 4.3 · 10−5

(2δ, δ, 0) < 4.3 · 10−5 7.0 · 10−4 ± 4.2 · 10−5

(2δ, δ, 0) < 6.7 · 10−5 6.9 · 10−4 ± 4.2 · 10−5

Table 3.6.: Integrated intensities of Bragg peaks in the vicinity of
(

1
2 ,

1
2 , 0
)

in phases IC1 and
IC2. Shown are the integrated intensities divided by the integrated peak intensity of the peak(

1
2 ,

1
2 , 0
)

in phase C at 5 K. Both phases IC1 and IC2 exhibit peaks at third-order positions with
incommensurability ∼ (3δ, 0, 0). Peaks at positions with mixed incommensurability ∼ (2δ, δ, 0)
were detected only in phase IC2.

the step size ∆k = 0.0025 r.l.u.. The recorded data were fitted with a two dimensional
Gaussian profile G0, located at

(
1
2 ,

1
2 , 0

)
(Fig. 3.17):

G0

(
h− 1

2 , k −
1
2

)
= a0 · exp

{
− 1
σ2

1
· h̃2 − 1

σ2
2
· k̃2

}
, (3.19)

where
h̃
k̃

 =
cos (φ0) − sin (φ0)

sin (φ0) cos (φ0)

 ·
h− 1

2

k − 1
2

 . (3.20)

The parameters, as obtained from the least squares fit, were found to be a0 = 4.02 ·
104cts/6s, σ1 = 0.002004 r.l.u., σ2 = 0.003419 r.l.u., and φ0 = −36.73◦. The value R2 =
0.9941 indicates remarkable agreement of the Gaussian profile with the recorded data.
The value φ0 is presumably not intrinsic, but is related to the instrumental resolution.
Accordingly, it was assumed that the Gaussian function G0, which has the widths σ1 and
σ2 along minor and major ellipse axis, respectively, may represent the resolution of the
instrument.

Higher orders were not investigated in phase C for the following reasons. As the prop-
agation vectors of the ground state are all of the star

〈
1
2

1
20
〉
, higher orders either have
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the same position as (ππ0) peaks or as structural peaks. Since higher-order intensities
are typically relatively weak, their intensities can hardly be separated from structural and
magnetic (ππ0) intensities, respectively. As example a commensurate multi-k structure
with propagation vectors ka =

(
1
2 ,

1
2 , 0

)
, kb =

(
1
2 , 0,

1
2

)
, and kc =

(
0, 1

2 ,
1
2

)
may be con-

sidered. Higher orders may then be present at positions such as 2ka + kb =
(

3
2 , 1,

1
2

)
or

ka + kb + kc = (1, 1, 1).
To study higher orders in phases IC1 and IC2, reciprocal space scans at T = 15 K

and T = 22 K were carried out through
(

1
2 ,

1
2 , 0

)
along the high-symmetry directions

(h, 0, 0), (0, k, 0), (h, h, 0),
(
h, h̄, 0

)
, (h,±2h, 0), and (2h,±h, 0). Accordingly, we define as

scan-directions the vectors edir = (1, 0, 0), (0, 1, 0), 1√
2 (1, 1, 0), 1√

2 (1,−1, 0), 1√
5 (1,±2, 0),

and 1√
5 (2,±1, 0). Each peak Pm that was identified at a position Qm = (hm, km, 0)

in a q-scan was then separately fitted by a slice through the Gaussian peak function
Gm (Q−Qm) = j (Qm) · G0 (Q−Q0), which is located at Qm. In particular, each peak
identified in a one-dimensional q-scan with scan direction edir was fitted with the one-
dimensional profile:

gm (t− tm) =Gm

(
t · êh · êdir −

1
2 , t · êk · êdir −

1
2

)
= (3.21)

=j (Qm) ·G0

(
t · êh · êdir −

1
2 , t · êk · êdir −

1
2

)
. (3.22)

The fit functions Gm, which are multiples of G0, have the same widths along major and
minor ellipse axes as G0. Accordingly, the integrated intensity of the peak Pm is given by
j (Qm) · I0, where I0 is the integrated intensity of the peak

(
1
2 ,

1
2 , 0

)
in phase C.

Total fit functions for the scattering intensity in the vicinity of the
(

1
2 ,

1
2 , 0

)
position

in phases IC1 and IC2 were obtained via F IC1
fit (h, k, 0) = ∑

mG
IC1
m (h− hm, k − km) and

F IC2
fit (h, k, 0) = ∑

mG
IC2
m (h− hm, k − km), respectively. These fit functions are illustrated

in Fig. 3.18 (a1) and (b1) for phases IC1 and IC2, respectively. A comparison of the data,
recorded along the line

(
h, 1

2 , 0
)
, and the fit function along this line, i.e., Ffit

(
h, 1

2 , 0
)
,

is shown in Fig. 3.18 (b1) and (b2) for IC1 and IC2, respectively. In particular, this
illustrates that the fit functions are in excellent agreement with the recorded diffraction
data.

In both phases IC1 and IC2, five relatively strong Bragg peaks build the fourfold pat-
tern, which was also detected in Sec. 3.3.3.2 and which may be indexed with propagation
vectors of the stars

{(
1
2 ,

1
2 , 0

)}
and

{(
1
2 − δ,

1
2 , 0

)}
. The splitting parameters are given by

δ15K = 0.023± 10−3 and δ22K = 0.019± 10−3 in phase IC1 at T = 15 K and in phase IC2
at T = 22 K, respectively. As explained further, a multitude of higher-order peaks was
detected in the vicinity of

(
1
2 ,

1
2 , 0

)
.
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In phase IC1, faint intensities were detected at the higher-order positions
(

1
2 ± 3δ, 1

2 , 0
)

and
(

1
2 ,

1
2 ± 3δ, 0

)
. Magnetic satellites at those positions typically reflect the anhar-

monicity of the magnetic ground state. For instance, cos3 terms in the Fourier de-
composition of the ground state make for intensities at positions shifted by 3δ with re-
spect to the commensurate position. However, they may also arise due to mixed higher
harmonics from multi-k states with different incommensurate wave vectors of the star〈

1
2 − δ,

1
2 , 0

〉
that lie in the vicinity of different (ππ0) positions, but for which the in-

commensurate splitting is parallel. Examples are multi-k states with wave vectors such
as kd =

(
1
2 − δ,

1
2 , 0

)
, ke =

(
1
2 + δ, 0, 1

2

)
, as corresponding mixed higher-order peaks

may be present at −kd + 2 · ke + (0, 1, 1) =
(

1
2 − δ, 0,

1
2

)
=
(

1
2 + 3δ, 1

2 , 0
)
. In phase

IC1, no peaks were detected at the mixed positions
(

1
2 + δ, 1

2 ± 2δ, 0
)
,
(

1
2 − δ,

1
2 ± 2δ, 0

)
,(

1
2 + 2δ, 1

2 ± δ, 0
)
, or

(
1
2 − 2δ, 1

2 ± δ, 0
)
. This may indicate, that the multi-k ground state

in IC1 does not combine k-vectors of the star
〈

1
2 − δ,

1
2 , 0

〉
, for which the incommensurate

splitting is noncollinear.
In phase IC2, faint intensities were detected at the higher-order positions

(
1
2 ± 3δ, 1

2 , 0
)

and
(

1
2 ,

1
2 ± 3δ, 0

)
. Magnetic satellites at those positions may again either reflect the

anharmonicity of the magnetic structure due to cos3 terms in the Fourier decomposition of
the ground state or they may arise due to mixed higher harmonics from multi-k states with
incommensurate wavevectors of the star

〈
1
2 − δ,

1
2 , 0

〉
that lie in the vicinity of different

(ππ0) positions, but for which the incommensurate splitting is parallel. In IC2, peaks were
also detected at mixed positions

(
1
2 + δ, 1

2 ± 2δ, 0
)
,
(

1
2 − δ,

1
2 ± 2δ, 0

)
,
(

1
2 + 2δ, 1

2 ± δ, 0
)
,

and
(

1
2 − 2δ, 1

2 ± δ, 0
)
. Peaks at those positions establish that the ground state is multi-k

with propagation vectors of the star
〈

1
2 − δ,

1
2 , 0

〉
, for which the incommensurate splitting

is noncollinear, such as
(

1
2 − δ,

1
2 , 0

)
and

(
0, 1

2 − δ,
1
2

)
. In particular, the magnetic ground

state in IC2 is a multi-k state with at least three propagation vectors, at least two are
incommensurate and one commensurate.

Integrated intensities were inferred for all peaks in phases C, IC1, and IC2. For each
peak Pm integration of the corresponding fit function Gm gives as integrated intensity
I0 · j (Qm), where I0 is the integrated intensity of the Bragg peak

(
1
2 ,

1
2 , 0

)
in phase C.

Tab. 3.6 shows the values j (Qm) for each peak in phases IC1 and IC2, respectively.
In phase IC1, the peaks with incommensurability (3δ, 0, 0) were approximately three

orders of magnitude smaller than the first-order peaks with incommensurability (δ, 0, 0),
I3δ

15 K / I
1st
15 K ≈ 2.6 · 10−3. In phase IC2, this ratio is much larger, I3δ

22 K / I
1st
22 K ≈ 9 · 10−3. In

phase IC1, intensities at positions with mixed incommensurability were vanishingly small
within the error bars. In contrast, finite integrated intensities were observed at positions
with mixed incommensurability (2δ, δ, 0) in phase IC2.
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It may be noted that all intensities at higher-order positions may have contributions due
to multiple scattering. However, as argued further, the intensities are mostly due to Bragg
scattering. Notably, in IC1 all peaks at third-order positions with incommensurability 3δ
feature similar intensities ≈ 1.5 · 10−3. The same holds true for the peaks at third-
order positions in IC2 and the peaks at positions with mixed incommensurability in IC2.
This may reflect the non multiple-scattering origin of the peaks, as multiple scattering
intensities typically strongly depend on the exact orientation of a single crystal in the
neutron beam, which was different for the measurement of each higher-order intensity.
Further, it may be inferred from temperature dependences, that the intensities at higher-
order positions do not arise due to multiple scattering. If the intensitites at higher-order
positions were due to multiple scattering effects, the ratios of third-order peaks must scale
monotonically with the ratio of first-order peaks at different temperatures. However, it is
found I3δ

22 K / I
3δ
15 K ≈ 3.1 for the higher-order positions with incommensurability (3δ, 0, 0)

and I1st
22 K / I

1st
15 K ≈ 0.87 for the first-order positions with incommensurability (δ, 0, 0).

The direct comparison of the diffraction data, recorded in IC1 and IC2 at mixed posi-
tions with incommenurability (δ, 2δ, 0), further indicate the existence of higher harmon-
ics at mixed higher-order positions in phase IC2 but not in IC1 (Fig. 3.19). Shown in
Figs. 3.19 (a1,a2), (b1,b2), (c1,c2), and (d1,d2) are q-scans through

(
1
2 ,

1
2 , 0

)
along the

lines (h, k) =
(

1
2 ,

1
2

)
+t· 1√

5 (2, 1), (h, k) =
(

1
2 ,

1
2

)
+t· 1√

5 (2,−1), (h, k) =
(

1
2 ,

1
2

)
+t· 1√

5 (1, 2),
and (h, k) =

(
1
2 ,

1
2

)
+ t · 1√

5 (1,−2), respectively. Mixed higher harmonics may be present
at positions, where t0 = ±

√
5 · δ ≈ 0.045 r.l.u.. Peaks were observed at each of those

mixed position in IC2, but not in IC1. Further, mixed higher-order positions in phase
IC2 like, e.g., (1

2 ± δ,
1
2 ± 2δ, 0) feature integrated intensities distinctively different from

the background. Again, these intensities cannot be explained by multiple scattering ef-
fects, as their intensity would then scale monotonically with the ratio of first-order peaks.
However, it was found Imixed

15 K / Imixed
22 K < 0.08, whereas I1st

15 K / I
1st
22 K ≈ 1.15.
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Figure 3.18.: Higher-order peaks in phases IC1 and IC2. (a1) Total fit function approximat-
ing the diffraction data in the (h, k, 0) plane, as recorded in phase IC1. Higher orders are
present at positions

(
1
2 ± 3δ, 1

2 , 0
)

and
(

1
2 ,

1
2 ± 3δ, 0

)
. (a2) Total fit function approximating the

diffraction data in the (h, k, 0) plane, as recorded in phase IC2. Higher orders were observed at
positions

(
1
2 ± 3δ, 1

2 , 0
)

and
(

1
2 ,

1
2 ± 3δ, 0

)
, and at mixed higher-order positions

(
1
2δ,

1
2 ± 2δ, 0

)
,(

1
2 − δ,

1
2 ± 2δ, 0

)
,
(

1
2 + 2δ, 1

2 ± δ, 0
)

, or
(

1
2 − 2δ, 1

2 ± δ, 0
)

. Scattering data were recorded by

means of q-scans, which contain the position
(

1
2 ,

1
2 , 0
)

and which are directed along (h, 0, 0),

(0, k, 0), (h, h, 0),
(
h, h̄, 0

)
, and (h,±2h, 0), (2h,±h, 0). (b1), (b2) Comparison of the fit func-

tions in phases IC1 and IC2 with the diffraction data, recorded by means of q-scans along the
line

(
h, 1

2 , 0
)

. Excellent agreement between fit functions Ffit and data recorded at T = 15 K
and 22 K, respectively, is indicated by the illustration.
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Figure 3.19.: Diffraction intensities in phases IC1 and IC2 recorded at higher-order positions with
mixed incommensurability. Reciprocal space scans through

(
1
2 ,

1
2 , 0
)

were performed along the

lines, which are located in the (001) plane and which are defined by means of
(
h− 1

2 , k −
1
2

)
=

(a) t ·m1, (b) t ·m2, (c) t ·m3, and (d) t ·m4. For approximately (a1),(b1),(c1),(d1) t0 =
−
√

5 · δ ≈ −0.045 r.l.u. and for (a2),(b2),(c2),(d2) t0 = +
√

5 · δ ≈ +0.045 r.l.u., where mixed
higher harmonics may appear, pronounced peaks were detected in IC2, at T = 22 K, but not in
IC1, at T = 15 K.
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3.3.4. Neutron Diffraction in Magnetic Fields

To study the evolution of magnetic order as a function of field and the magnetic phase
diagram, neutron diffraction was carried out in magnetic fields along the three major cubic
directions. First, fields were applied along the twofold 〈110〉 directions, second along the
fourfold 〈100〉 directions, and third along the threefold 〈111〉 directions. As shown in
the following, a strong dependence on the field history for fields along twofold directions
permitted to specify the number of propagation vectors of the magnetic ground states in
the zero field phases C, IC1, and IC2.

3.3.4.1. Fields Along Twofold Directions

To investigate the evolution of magnetic order for fields along twofold 〈110〉 directions,
neutron diffraction of the single crystal OFZ95-3-2-1-a was carried out at D10 at the ILL.
Magnetic fields vertical to the scattering plane were applied along the [110] direction.

The 〈110〉 phase diagram, which was determined by Rahn (cf. Refs. [18, 118]), is shown
in Fig. 3.20. The regions in this phase diagram were assigned colors and labels. The capital
letters M shall indicate, that magnetic fields are applied along a cubic face diagonal. In
the following presentation, the regions in the phase diagram will be referred to as ”phases”
or ”phase pockets”. Note, however, that these ”phases” are not necessarily phases in a
thermodynamic sense, i.e., they are not necessarily thermodynamically separated by phase
transitions [139].

These experiments had two main purposes. On the one hand, magnetic ground states
in different phase pockets of the 〈110〉 phase diagram were studied. On the other hand,
the experiments allowed to specify the number of commensurate and incommensurate
propagation vectors of the ground states in the zero-field phases C, IC1, and IC2.

As a major result, ground states in many phases of the 〈110〉 phase diagram of HoCu
were specified. Tab. 3.7 summarizes these main results. For each of the phase pockets
listed in the first column, the stars of the propagation vectors, which were inferred from
the neutron diffraction data, are given in the second column. In the third column it is
indicated, whether a ground state is single-k or multi-k. All the propagation vectors,
which were observed in this study, belong to one of the four stars

〈
1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
,

〈qI,α〉, or 〈qI,β〉, the latter two are introduced below.
The number of propagation vectors in phases C, IC1, and IC2 may be specified by

these experiments, as the [110] field direction breaks the symmetry between k-arms of the
propagation vector stars, which were observed in phases C, IC1, and IC2. The propagation
vectors in these three phases belong the the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
, respectively,

as reported in Sec. 3.3.3.2. By means of temperature and field dependences of magnetic
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Figure 3.20.: Phase pockets in the 〈110〉 phase diagram of HoCu. The phase diagram was
determined by Rahn in Refs. [18, 118]. For this study the phase pockets were labeled and filled
with colors.

Bragg peaks, the k-arms participating in a phase may be determined (cf. Sec. 2.2). Each
k-arm featuring finite intensities may correspond to one participating propagation vector
in the Fourier decomposition of the ground state in a phase. In particular, the number
of propagation vectors in a phase may be specified, when symmetries between different
k-arms are broken (cf. Sec. 2.2.3 for further information). For instance, there are two
possible orientations of commensurate (ππ0) arms (cf. Sec. 3.2 for further information)
and three possible orientations of (π − δ, π, 0) arms in a field directed along a twofold axis,
cf. Sec. 3.2 for more details. Note, that the orientation of these k-arms in the magnetic
field is illustrated, for instance, in Fig. 3.10 (c).

In the study reported here, it is helpful to assign the arms of the
〈

1
2

1
20
〉

star and of the〈
1
2 − δ,

1
2 , 0

〉
star, respectively, to sets, such that the magnetic field does not break the

symmetry between arms of the same set, but between arms of two different sets it does
break the symmetry. These sets represent the different orientations in the field of arms
of the

〈
1
2

1
20
〉

star and
〈

1
2 − δ,

1
2 , 0

〉
star, respectively. Accordingly, the commensurate k-

arms of the
〈

1
2

1
20
〉

star may in terms of a partition be assigned to the sets Sc1 = {Ac1}
and Sc2 = {Ac2, Ac3}. For the incommensurate propagation vector arms of the

〈
1
2 − δ,

1
2 , 0

〉
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Phase Pocket Propagation Vector Stars Type of Ground State
C, MI

〈
1
2

1
20
〉

multi-k
IC1, MII

〈
1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
multi-k

IC2, MIII
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
multi-k

Mj1
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
, 〈qI,α〉, 〈qI,β〉 multi-k

Mj2
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
, 〈qI,α〉 multi-k

Mk1
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
, 〈qI,α〉 multi-k

Mk2
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
, 〈qI,α〉 multi-k

Mm1
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
, 〈qI,α〉, 〈qI,β〉 multi-k

Mm2
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
, 〈qI,α〉, 〈qI,β〉 multi-k

Mn1
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
, 〈qI,β〉 multi-k

Mo

〈
1
2

1
20
〉

single-k
Mp

〈
1
2 − δ,

1
2 , 0

〉
single-k or double-k

Table 3.7.: Ground states in the 〈110〉 phase diagram. For each phase in the first column
(cf. Fig. 3.20) the stars of all magnetic propagation vectors, which were inferred from neutron
diffraction data, are given in the second column. In the third column a comment is made,
whether the structure is single-k or multi-k. The three ordered phases in zero magnetic field C,
IC1, and IC2 extend to phase pockets, which are labeled MI, MII, and MIII, respectively.

star the sets are given by S ic1 =
{
Aic1,x, A

ic
1,y

}
, S ic2 =

{
Aic2,y, A

ic
3,x

}
, and S ic3 =

{
Aic2,z, A

ic
3,z

}
.

Wave-vector arms with equivalent orientation with respect to the field direction, i.e., with
preserved symmetry, typically feature the same experimental signatures due to magnetic
domains. Hence, it cannot be distinguished whether k-vectors of different k-arms, for
which the symmetry is preserved, form a multi-k state or whether they form a multi-
domain state. Accordingly, it cannot be distinguished, whether arms, which belong to the
same set S, form a multi-k or a multi-domain state. In the present study temperature
and field dependences were inferred for different arms of the two stars. The investigated
arms include one arm of each of the five sets Sc1, Sc2, S ic1 , S ic2 , and S ic3 .

In detail, the main results of these experiments may be summarized as follows:
• Throughout the 〈110〉 phase diagram the compound displays variations of (ππ0)

antiferromagnetism.
• Phases C, IC1, and IC2 are part of phase pockets in the 〈110〉 phase diagram, which

are labeled MI, MII, and MIII, respectively.
• In C, the magnetic ground state is multi-k. It is either double-k with propagation

vectors kc1 and kc2, or it is triple-k with propagation vectors kc1, kc2, and kc3.
• In IC1, the magnetic ground state is multi-k. It is either double-k with propagation

vectors kc1 and kic2,z, or it is triple-k with propagation vectors kc1, kic2,z, and kic3,z.
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• In IC2, the magnetic ground state is multi-k. It presumably represents a superpo-
sition of at least two commensurate propagation vectors, one of Sc1 and one of Sc2,
and at least two incommensurate propagation vectors, one of each set S ic1 and S ic2 .

• In phase pocket Mp (cf. Fig. 3.20), the magnetic ground state is either single-k or
double-k with incommensurate propagation vectors of the

〈
1
2 − δ,

1
2 , 0

〉
star.

• In phase pocket Mo, the magnetic ground state is single-k with one commensurate
propagation vector of the

〈
1
2

1
20
〉

star.
• In the phase pockets Mj1, Mj2, Mk1, Mm1, Mm2, Mk2, and Mn1 the magnetic ground

state is multi-k combining propagation vectors of at least three different cystallo-
graphic stars.

The study was carried as follows. First, 14 different magnetic Bragg peaks were in-
vestigated as a function of temperature and field. These 14 Bragg peaks included the
two commensurate Bragg peaks at qI,0 := (0.5, 0.5, 1) and qII,0 := (1, 0.5, 0.5), as well
as 12 incommensurate Bragg peaks in the vicinity of qI,0 and qII,0. The recorded data
permitted to infer field and temperature dependences of seven different wave-vector arms.
These investigated arms included one arm of each set Sc1, Sc2, S ic1 , S ic2 , and S ic3 , as well as
arms associated with incommensurate k-vectors of the stars 〈qI,α〉 and 〈qI,β〉, which are
introduced further below. Second, propagation vectors were determined for the magnetic
ground states in different pockets of the 〈110〉 phase diagram. Third, the discussion of the
symmetry-breaking effect on k-arms by the twofold field direction permitted to specify
the participating propagation vectors of the ground states in phases C, IC1, and IC2.

For the experiments at D10, neutrons of wavelength λ = 1.26 Å were used. The sample
was oriented such that the crystallographic (110) plane corresponded to the scattering
plane. In this geometry, commensurate (ππ0) peaks of only the k-arm Ac1 were located
in the scattering plane. Peaks of the other two arms were accessed by means of a lifting
detector.

To obtain field and temperature dependences, three field sweeps and six temperature
sweeps were carried out following specific protocols as described in the following. An
illustration of the trajectories of the sweeps is shown in Fig. 3.21. The field sweeps,
which are labeled sweepB1, sweepB2, and sweepB3, were carried out at 2 K, 16 K, and
23 K, respectively. The three sweeps started at zero field after zero field cooling (zfc).
The field first increased to a maximum field value and second decreased to zero. The
temperature sweeps, which are labeled sweepT1, sweepT2, sweepT3, sweepT4, sweepT5,
and sweepT6 were carried out at 0.5 T, 2.5 T, 3.5 T, 5 T, 7 T, and 9.7 T, respectively. The
sweeps started in the paramagnetic state and the temperature decreased at constant field,
i.e., the protocol was field cooling (fc). During the field and temperature sweeps, rocking
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scans were carried out at discrete points around the two reciprocal space positions qI,0

and qII,0.
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Figure 3.21.: Trajectories of the field- and temperature sweeps in the 〈110〉 phase diagram. The
three field sweeps and six temperature sweeps, which were carried out for this study, are labeled
sweepB1, sweepB2, and sweepB3, and sweepT1, sweepT2, sweepT3, sweepT4, sweepT5, and
sweepT6, respectively. The illustration shows, how the field sweeps and temperature sweeps are
located in the 〈110〉 phase diagram.

In the following a detailed account is presented of the experimental field and temper-
ature dependences of magnetic propagation vectors. First, it is explained that magnetic
Bragg peaks located at 14 different Q-positions may be investigated by means of this
study, i.e., by means of the two rocking scans around qI,0 and qII,0. Note, that not all
Bragg peaks are present in each phase. Two of these 14 Bragg peaks are related to
commensurate magnetic propagation vectors

{(
1
2 ,

1
2 , 0

)}
, 8 of them to incommensurate

magnetic propagation vectors
{(

1
2 − δ,

1
2 , 0

)}
, and four of them to other incommensurate

propagation vectors. The 14 Bragg peaks, which are considered by this study, permit to
investigate 7 different wave-vector arms of 4 crystallographic stars. Second, integrated
intensities are inferred for all Bragg peaks, which were observed in one of the rocking
scans. Third, field and temperature dependences were inferred for the seven different
wave-vector arms, which were investigated in this study.
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As explained in the following, magnetic Bragg peaks at 14 different Q-positions are
considered in the present study. Ten of these 14 Bragg peaks are located at the Q-
positions qI,0, qII,0, q±I,x := (0.5± δ, 0.5, 1), q±I,y = (0.5, 0.5± δ, 1), q±II,y = (1, 0.5± δ, 0.5),
and q±II,z := (1, 0.5, 0.5± δ). The Bragg peaks at qI,0 and qII,0 are indexed by propagation
vectors of the

〈
1
2

1
20
〉

star. Bragg peaks at those positions may be observed, for instance,
in all three zero field phases C, IC1 and IC2. Bragg peaks at the positions q+

I,x, q−I,x, q+
II,y,

q−II,y, q+
II,y, q−II,y, q+

II,z, and q−II,z are indexed by propagation vectors of the
{(

1
2 − δ,

1
2 , 0

)}
star. These vectors of the

〈
1
2 − δ,

1
2 , 0

〉
star may be observed, for instance, in the zero field

phases IC1 and IC2. As seen further below, four additional satellites, which are located
at Q-positions q+

I,α, q−I,α, q+
I,β, and q−I,β, may be identified in the rocking scan around qI,0.

Note, that the subscripts I and II of these Q-positions indicate, whether the Bragg peaks
at these positions may be recorded in rocking scans around qI,0 and qII,0, respectively.

As explained before, the two commensurate peaks at qI,0 and qII,0 are present in phase
C after zfc. To identify them experimentally, rocking scans with step width δω = 0.05◦

were carried out in phase C at T = 2 K after zfc. The two recorded magnetic Bragg peaks
had their maxima at the rocking angles ωI = −142.07◦ and ωII = −60.72◦ , respectively.

The eight incommensurate magnetic Bragg peaks, which are related to the〈
1
2 − δ,

1
2 , 0

〉
star, are present in phase IC1 after zfc. To identify them experimentally,

rocking scans were carried out around the two positions qI,0 and qII,0 at T = 16 K after
zfc. Tab. 3.8 gives an overview over the rocking angles, where the Bragg condition is
fulfilled for these eight incommensurate satellites, as well as for the two commensurate
Bragg peaks at qI,0 and qII,0, which are also present in phase IC1 after zfc.

The six Bragg peaks at qI,0, qII,0, q+
II,y, q−II,y, q+

II,z, and q−II,z were in fact identified in the
recorded data. However, the two peaks at q−I,x and q−I,y, as well as the two peaks at q−I,x
and q−I,y may be detected but their separation may not be resolved in these experiments.
The two each are close to each other and lead to a single profile in the rocking scan. In the
data presented below (cf. Fig. 3.24) they are labeled q−I,x/y and q+

I,x/y. The four additional
satellites at positions q±I,α and q±I,β, as observed in some rocking scans around qI,0, are also
labeled in the figures presenting the recorded data (cf. Fig. 3.24).

Integrated intensities of the Bragg peaks at the positions listed in Tab. 3.8 were inferred
from the rocking scans by means of numerical integration. For each Bragg position, an
appropriate ω-range I (q) was chosen as domain of integration (cf. Tab. 3.8), and the
integrated intensity was inferred using the expression

I (q) = 1
γ (q)

∑
i:ω0+i·δω∈I(q)

J (ω0 + i · δω) · δω , (3.23)

where δω is the step width used in the rocking scan and J (ω) the intensity that was
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Q-position: angle of peak: integration domain: I (Q)
qII,0 := (1, 0.5, 0.5) −141.17◦ [−141.28,−141.06]
q+

II,z := (1, 0.5, 0.52) −142.07◦ [−142.18◦,−141.96◦]
q−II,y := (1, 0.48, 0.5) −141.57◦ [−141.68◦,−141.46◦]
q+

II,y := (1, 0.52, 0.5) −140.72◦ [−140.83◦,−140.61◦]
q−II,z := (1, 0.5, 0.48) −140.22◦ [−140.38◦,−140.16◦]
qI,0 := (0.5, 0.5, 1) −60.72◦ [−60.96◦,−60.50◦]
q−I,x := (0.52, 0.5, 1) −61.19◦ [−61.46◦,−61.00◦]q+

I,y := (0.5, 0.52, 1) −61.15◦
q−I,x := (0.48, 0.5, 1) −60.24◦ [−60.50◦,−60.00◦]q−I,y := (0.5, 0.48, 1) −60.29◦

q+
I,α - [−62.71◦,−62.25◦]

q+
I,β - [−62.70◦,−61.16◦]

q−I,β - [−59.81◦,−59.35◦]
q−I,α - [−58.75◦,−59.21◦]

Table 3.8.: Magnetic peaks, which were investigated in this study by means of rocking scans
around qI,0 =

(
0.5, 0.5, 1

)
and around qII,0 =

(
1, 0.5, 0.5

)
. For each Bragg peak position,

which is listed in the first column, the rocking angle, where the Bragg condition is fulfilled,
is given in the second column. The subscripts of the Q-positions in the first column indicate,
whether the Bragg peaks at those positions may be observed in rocking scans around qI,0 and
qII,0, respectively. In the third column, the ω-intervals are given, which were used as domain
of numerical integration. For the peaks labeled qI,α/β only integration domains but no rocking
angles are given.

recorded at the rocking angle ω. No background was subtracted. Each integrated inten-
sity was normalized with a q-specific scaling parameter γ that is specified below. The
separation of magnetic peaks in the vicinity of qII,0 is relatively small. Hence, residual
integrated intensities may arise due to overlap of magnetic satellites. In particular, the
intensities of peaks located at q±II,y may cause residual integrated intensity in I

(
q±II,z

)
and vice versa. Similarly, the intensities of peaks located at q±II,y may cause residual in-
tegrated intensity in I (qII,0) and vice versa. Note, that for the numerical integration the
pairs consisting of q+

I,x and q+
I,y, as well as q−I,x and q−I,y, which may not be separated due

to resolution, are considered as one peak each.
Temperature and field dependences of k-arms of the

〈
1
2

1
20
〉

star were determined as
follows. The temperature and field dependences of the two commensurate Bragg peaks
at qI,0 and qII,0 directly reflect temperature and field dependences of the k-arms Ac1 and
Ac2, respectively.

Temperature and field dependences of arms of the
〈

1
2 − δ,

1
2 , 0

〉
star were obtained as

follows. Incommensurate satellites in the vicinity of (ππ0) reflections always appear in
pairs denoted by q±. The two constituents of a pair belong to conjugated k-arms, i.e.,
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they belong to the same Ω-arm. They are indexed as satellites around different structural
peak positions, such as:

q−I,x =
(
−1

2 − δ,
1
2 , 1

)
= (−1, 0, 1) + kic1,x (3.24)

q+
I,x =

(
−1

2 + δ,
1
2 , 1

)
= (0, 1, 1)− kic1,x . (3.25)

As seen further below, the two satellites of such a conjugated pair always feature similar
temperature and field dependences, which reflects that the magnetic structure factor is
roughly the same at the two positions q+

I,x and q−I,x due to the relatively small splitting δ.
To obtain temperature and field dependences of the incommensurate wave-vector arms,
the average of integrated intensities was considered for each pair of incommensurate satel-
lites q±, i.e., I (q±) := 1

2 [I (q+) + I (q−)]. Accordingly, in the following, the integrated
intensity of the average of a pair q± is referred to as integrated intensiy of a pair q±. In
particular, temperature and field dependences were obtained for the pairs q±II,y and q±II,z,
reflecting the temperature and field dependences of the arms Aic2,y and Aic2,z, as well as for
the pairs q±I,α and q±I,β. Further temperature and field dependences were determined for
the average of q+

I,x, q−I,x, q+
I,y, and q−I,y, which may not be separated due to the resolution

of the instrument. This average reflects the temperature and field dependences of both
arms Aic1,x and Aic1,y. As the two arms have the same orientation with respect to the field
they should feature similar temperature and field dependences. Accordingly, these arms
are not distinguished further in this study and they are referred to as Aic1,x/y. The cor-
responding Q-positions are referred to as q±I,x/y. In this text, the integrated intensity of
averages q± is sometimes referred to as integrated intensity at q±.

The parameters γ were chosen such that in zero magnetic field after zfc the integrated
intensities, which are associated with k-arms of the same crystallographic star, feature
the same value. This reflects that the magnetic domains are in equilibrium. For the
integrated intensities of qI,0 and qII,0, which are associated with the k-arms Ac1 and Ac2,
respectively, the parameters γ were chosen such that the integrated intensities are the same
in phase C, at T = 2 K after zfc, i.e., I (qI,0) = I (qII,0). This reflects, that the domains
of the commensurate (ππ0) structure in phase C are equally populated after zfc. For
the averages over incommensurate satellites q±II,y, q±II,z, and q±I,x/y, which are associated
with the arms Aic2,y, Aic2,z, and Aic1,x/y, respectively, the parameters γ were chosen such
that the integrated intensities are the same in phase IC1, at T = 16 K after zfc, i.e.,
I
(
q±I,x/y

)
= I

(
q±II,y

)
= I

(
q±II,z

)
. This reflects, that the domains of the ground state in

IC1 are equally populated in zero field after zfc. For the pairs q±I,α and q±I,β an independent
but constant parameter was chosen.

In the following, the data are presented, which were recorded by means of the three field
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sweeps sweepB1, sweepB2, and sweepB3. Diffraction data J (ω) as a function of field, as
recorded by means of rocking scans around qI,0 and qII,0, are presented in terms of color
plots. The inferred integrated intensities as a function of field are first discussed for peaks
of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
only. The evolution as a function of field of the peaks

located at q±α and q±β is discussed further below. Temperature dependences that were
determined at different magnetic fields by means of temperature sweeps are presented in
the appendix (cf. Sec. A.4).

MI

Mj1

Mj2

Mk1

Mm1

 
(a1) (b1)

J

(a2) (b2)

HoCu
sweep B1, 2 K
μ0H || [110]

 

Mm2

Figure 3.22.: Field sweep sweepB1, which started in phase C, at T = 2 K after zfc. Shown
is the field dependence of diffraction data J (ω) recorded by means of rocking scans. (a1) and
(a2) show the scattering intensity in the vicinity of qI,0 for increasing and decreasing fields,
respectively. (b1) and (b2) show the scattering intensity in the vicinity of qII,0 for increasing
and decreasing fields, respectively. The field was first increased from 0 T to 9.7 T and then
decreased to 0 T. Colored stripes at the top indicate the positions of the Bragg peaks listed in
Tab. 3.8. Colored bars in the middle indicate the phases of the 〈110〉 phase diagram, which were
traversed.

Fig. 3.22 presents the data, recorded by means of rocking scans as a function of field,
as determined from sweepB1. Shown in Fig. 3.22 (a) are the data J (ω) recorded by
means of rocking scans around qI,0 for (a1) increasing field and for (a2) decreasing field.
Fig. 3.22 (b) shows the data J (ω) recorded by means of rocking scans around qII,0 for (b1)
increasing field and for (b2) decreasing field. The positions of all magnetic Bragg peaks
in Tab. 3.8 are tagged at the top of the figure by colored stripes. The phase pockets of
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Figure 3.23.: Integrated intensities as a function of field as inferred from sweepB1 of Bragg
peaks, which are associated with the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

, respectively. The integrated
intensities at (a1) q±II,z, (a2) q±II,y, and (a3) q±I,x/y reflect the field dependences of the arms Aic2,z,
Aic2,y, and Aic1,x/y, respectively. These three arms belong to the

〈
1
2 − δ,

1
2 , 0
〉

star. The integrated
intensities at (b1) qI,0 and (b2) qII,0 reflect the field dependences of the k-arms Ac1 and Ac2,
respectively. These two arms belong to the

〈
1
2

1
20
〉

star. Vertical lines represent the transition
fields as inferred from the 〈110〉 phase diagrams presented in Ref. [18]. (c) Schematic illustration
of the orientation of the investigated k-arms with respect to the magnetic field direction. The
phase pockets in the 〈110〉 phase diagram, which are traversed, are indicated by colored bars.

the 〈110〉 phase diagram, which are traversed during the sweep, are indicated by colored
bars in the middle

The comparison of scattering intensities at qI,0 and qII,0 reveals the distinctively differ-
ent field dependences of the two commensurate wave-vector arms Ac1 and Ac2, for which
the symmetry is broken in the field. While the commensurate peak at qI,0 exhibits finite
intensity throughout the whole field range, the intensity of the peak at qII,0 disappears
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twice during the sweep. Several changes of incommensurate propagation vectors indicate
transitions between several magnetic phases featuring different magnetic ground states.

Shown in Fig. 3.23 are the integrated intensities at the positions (a1) q±II,z, (a2) q±II,y, (a3)
q±I,x/y, (b1) qI,0, and (b2) qII,0 as a function of field. Triangles pointing upwards represent
data points for increasing field, triangles pointing downwards represent data points for
decreasing field. The phase pockets of the 〈110〉 phase diagram, which are traversed
during the sweep, are indicated by colored bars. The transition fields, as inferred from
the magnetic phase diagram, are represented by vertical lines. These transition fields are
clearly related to anomalies in the integrated intensities as a function of field. The five
field dependences reflect the evolution of the three arms (a1) Aic2,z, (a2) Aic2,y, and (a3)
Aic1,x/y of the

〈
1
2 − δ,

1
2 , 0

〉
star and of the two k-arms (b1) Ac1 and (b2) Ac2 of the

〈
1
2

1
20
〉

star. Fig. 3.23 (c) illustrates schematically the orientation of the five arms with respect
to the field direction. The two arms Aic1,x/y, which have the same orientation in the field,
are depicted in the same color.

Further, qualitative differences of the field dependences of k-arms, which belong to
the same star, reflect their different orientation with respect to the twofold magnetic
field direction. When the field increases up to 9.7 T, the integrated intensity of the
commensurate peak at qI,0 exhibits only slight variations with at least two broad dips.
The integrated intensity of the commensurate peak at qII,0 displays a distinctively different
behavior. In phase MI it displays a plateau. At H2K

1 = 3.07 T, the integrated intensity
drops sharply featuring distinctively smaller values in phase Mj1, i.e., between H2K

1 and
H2K

2 = 4 T. Above H2K
2 it increases again to a plateau in phase Mj2. Above H2K

3 = 5.99 T
it decreases again and remains small for fields up to 9.7 T, featuring a weak dip at H2K

5 =
9.30 T.

The integrated intensity of q±I,x/y is vanishingly small during the whole sweep, apart from
a shallow maximum slightly above 8 T. The integrated intensity at q±II,z is vanishingly
small for fields below H2K

1 , i.e., in phase MI. At roughly H2K
1 it increases sharply featuring

finite values in phase Mj1. It decreases again sharply slightly above H2K
2 and is clearly

weaker in phase Mj2. At roughly H2K
3 it again starts to increase and displays a plateau

in phase Mk1 ranging to H2K
4 = 7.61 T. Between H2K

4 and 9.7 T, i.e., in phase Mm1 and
beyond, it slowly decreases. The integrated intensity at q±II,y is small for fields below
H2K

4 . Residual integrated intensities are presumably due to a finite overlap with peaks
located at q±II,0. Above H2K

4 it starts to increase, has a local maximum in phase Mm1, and
decreases again between H2K

5 and 9.7 T. For decreasing field the curves of all integrated
intensities are shifted to lower field values, reflecting a weak hysteresis. Between H2K

5

and H2K
4 , i.e., in phase Mm1, the integrated intensities at qII,0 and qI,0 are stronger for

decreasing field than for increasing field. Notably, in zero magnetic field after the field
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sweep, the integrated intensities at both qII,0 and qI,0 feature roughly the same value as
in zero magnetic field after zfc, although the symmetry between the two wave vectors is
broken by the twofold field direction reflecting the multi-k nature of the ground state in
phase C.

J

 

Mj1

Mj2

Mk2

MII

HoCu
sweep B2, 16 K
μ0H || [110]

(a1) (b1)(a2) (b2)

Figure 3.24.: Field sweep sweepB2, which started in phase IC1, at T = 16 K after zfc. Shown
is the field dependence of diffraction data J (ω) recorded by means of rocking scans. (a1) and
(a2) show the scattering intensity in the vicinity of qI,0 for increasing and decreasing fields,
respectively. (b1) and (b2) show the scattering intensity in the vicinity of qII,0 for increasing
and decreasing fields, respectively. The field was first increased from 0 T to 9.7 T and then
decreased to 0 T. Colored stripes at the top indicate the positions of the Bragg peaks listed in
Tab. 3.8. Colored bars in the middle indicate the phases of the 〈110〉 phase diagram, which were
traversed.

Fig. 3.24 presents data recorded by means of the rocking scans as a function of field,
as determined by means of sweepB2. Fig. 3.24 (a) shows the data J (ω) recorded in the
vicinity of qI,0 and Fig. 3.24 (b) the data J (ω) recorded in the vicinity of qII,0.

Shown in Fig. 3.25 are the integrated intensities at (a1) q±II,z, at (a2) q±II,y, at (a3) q±I,x/y,
at (b1) qI,0, and at (b2) qII,0 as a function of field. In zero magnetic field after zfc, the
commensurate peaks feature almost the same integrated intensities I (qI,0) ≈ I (qII,0),
reflecting equilibrium of the magnetic domains in phase IC1. The integrated intensities
of the incommensurate satellites display the same value by definition of the parameters γ.
When the field increases, the integrated intensities at qI,0, qII,0, q±I,x/y, q±II,y, and q±II,z are
constant in phase MII. At H16K

1 = 1.0 T, the integrated intensities at qI,0 and q±II,z start to
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Figure 3.25.: Integrated intensities as a function of field as inferred from sweepB2 of Bragg
peaks, which are associated with the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

, respectively. The integrated
intensities at (a1) q±II,z, (a2) q±II,y, and (a3) q±I,x/y reflect the field dependences of the arms Aic2,z,
Aic2,y, and Aic1,x/y, respectively. These three arms belong to the star

〈
1
2 − δ,

1
2 , 0
〉

. The integrated
intensities at (b1) qI,0 and (b2) qII,0 reflect the field dependences of the k-arms Ac1 and Ac2,
respectively. These two arms belong to the

〈
1
2

1
20
〉

star. Vertical lines represent the transition
fields as inferred from the 〈110〉 phase diagrams presented in Ref. [18]. (c) Schematic illustration
of the orientation of the investigated arms with respect to the magnetic field direction. The
phase pockets in the 〈110〉 phase diagram, which are traversed, are indicated by colored bars.

increase, whereas the integrated intensities at qII,0, q±I,x/y, and q±II,y decrease to vanishingly
small values. The integrated intensities of q±I,x/y and q±II,y remain vanishingly small for
fields up to 8 T. The integrated intensity of qII,0 increases slightly between H16K

2 ≈ 3.85 T
and H16K

3 = 4.89 T, i.e., in phase Mj2, displays a weak maximum at ≈ H16K
3 , and decreases

between H16K
3 and 8 T, i.e., in phase Mk2. The integrated intensity at q±II,z displays

essentially a plateau between H16K
1 and H16K

2 in phase Mj1, decreases between H16K
2 and
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H16K
3 in phase Mj2, and displays a plateau in phase Mk2 between H16K

3 and 8 T that starts
to decrease weakly at a field slightly below 8 T. No differences between decreasing and
increasing fields are visible for fields above H16K

1 , i.e., no hysteresis may be observed. In
phase MII the integrated intensities at qI,0 and q±II,z remain on the value of the plateaus
observed in phase Mj1 between H16K

1 and H16K
2 . In contrast, the integrated intensities at

qII,0, q±I,x/y, and q±II,y remain vanishingly small. This reflects that the domain populations
before and after the field sweep are different.

 Mn1

Mp

MIII

(a1) (b1)(a2) (b2)

HoCu
sweep B3, 23 K
μ0H || [110]

J

Figure 3.26.: Field sweep sweepB3, which started in phase IC2, at T = 23 K after zfc. Shown
is the field dependence of diffraction data J (ω) recorded by means of rocking scans. (a1) and
(a2) show the scattering intensity in the vicinity of qI,0 for increasing and decreasing fields,
respectively. (b1) and (b2) show the scattering intensity in the vicinity of qII,0 for increasing
and decreasing fields, respectively. The field was first increased from 0 T to 9.7 T and then
decreased to 0 T. Colored stripes at the top indicate the positions of the Bragg peaks listed in
Tab. 3.8. Colored bars in the middle indicate the phases of the 〈110〉 phase diagram, which were
traversed.

Fig. 3.26 presents the data recorded by means of rocking scans as a function of field,
as determined by means of sweepB3. Fig. 3.26 (a) shows the data J (ω) recorded in the
vicinity of qI,0 and Fig. 3.26 (b) the data J (ω) recorded in the vicinity of qII,0.

Shown in Fig. 3.27 are the integrated intensities at (a1) q±II,z, at (a2) q±II,y, at (a3) q±I,x/y,
at (b1) qI,0, and at (b2) qII,0 as a function of field. In zero magnetic field after zfc, the two
commensurate Bragg peaks display roughly the same integrated intensities. The same is
true for the incommensurate Bragg peaks, reflecting that magnetic domains in phase IC2
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Figure 3.27.: Integrated intensities as a function of field as inferred from sweepB3 of Bragg
peaks, which are associated with the stars
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and
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2 − δ,
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2 , 0
〉

, respectively. The integrated
intensities of (a1) q±II,z, (a2) q±II,y, and (a3) q±I,x/y reflect the field dependences of the arms Aic2,z,
Aic2,y, and Aic1,x/y, respectively. These three arms belong to the

〈
1
2 − δ,

1
2 , 0
〉

star. The integrated
intensities of (b1) qI,0 and (b2) qII,0 reflect the field dependences of the k-arms Ac1 and Ac2,
respectively. These two arms belong to the

〈
1
2

1
20
〉

star. Vertical lines represent the transition
fields as inferred from the 〈110〉 phase diagrams presented in Ref. [18]. (c) Schematic illustration
of the orientation of the investigated k-arms with respect to the magnetic field direction. The
phase pockets in the 〈110〉 phase diagram, which are traversed, are indicated by colored bars.

are equally populated. When the field increases, the integrated intensity at q±II,z decreases
and vanishes around 2 T in phase MIII. The intensity remains vanishingly small for fields
up to 8 T. The integrated intensity of q±II,y first increases, displays a local maximum in
phase MIII at 1 T, and decreases for fields larger than 1 T. At H23K

1 the slope changes and
in phase Mp above H23K

2 the intensity is vanishingly small. The integrated intensity at
q±I,x/y is almost constant and exhibits only slight variations featuring a shallow maximum
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at 5 T in phase Mn1. The integrated intensity at qI,0 first increases in phase MIII, exhibits
a local maximum at a field slightly larger than H23K

1 , and decreases in the field range
between H23K

1 and 8 T, i.e., in phases Mn1 and Mp. The integrated intensity at qII,0

increases at low fields, displays a local maximum at roughly H23K
1 , and decreases up to

8 T, i.e. in phases Mn1 and Mp. When the field decreases, no differences may be observed
in the integrated intensities at q±I,x/y. No differences are visible in the integrated intensities
at q±II,y and q±II,z for fields between 8 T and 1 T. In phase MIII for fields below 1 T, the
integrated intensity at q±II,y is larger than for increasing fields, whereas the integrated
intensity at q±II,z remains vanishingly small. The integrated intensities at qI,0 do not
exhibit strong differences for increasing and decreasing field between 8 T and 0 T. In
the vicinity of 5 T in phase Mn1 only, the intensity is slightly weaker for decreasing field
than for increasing field. No differences are visible in the integrated intensity at qI,0 for
increasing and decreasing field between 8 T to 6 T. Between 6 T and 3 T in phase Mn1

the integrated intensity at qI,0 is slightly larger for decreasing field than for increasing
field. Below 2 T in phase MIII the intensity of qII,0 is larger for decreasing field than for
increasing field. The difference in integrated intensities before and after the field sweep
reflects that the population of magnetic domains changed during the field sweep.

Presented in Fig. 3.28 are the integrated intensities of q±I,α and q±I,β, as inferred from the
field sweeps sweepB1, sweepB2, and sweepB3. The field dependences, which are presented
in Fig. 3.28 (a), (b), and (c), were inferred from the data presented in Fig. 3.22, Fig. 3.24,
and Fig. 3.26, respectively.

When the field increases in sweepB1, the integrated intensity at q±I,α remains vanishingly
small in phase MI. At H2K

1 the integrated intensity starts to increase, displays a local
maximum in phase Mj1, and decreases steeply just above H2K

2 . Above H2K
3 it exhibits

a steep increase, displays a local maximum in phase Mk1, decreased sharply above H2K
4

and displays a plateau at relatively small intensity in phase Mm1. At the highest field
values, above H2K

5 , the intensity increases again. The integrated intensity at q±I,β remains
vanishingly small in phase MI. In phase Mj1 it starts to increase and displays a local
maximum at H2K

2 . Above H2K
2 in phase Mj2 it decreases steeply. In phase Mk1 it increases

with a small slope. At H2K
4 the intensity increases sharply, displays a local maximum in

phase Mm1 and decreases sharply at approximately H2K
5 . When the field decreases, the

curves are slightly shifted, reflecting a weak hysteresis.
When the field increases in sweepB2, the integrated intensity at q±I,α remains vanishingly

small in phase MII. In phase Mj1 it increases slowly. At H16K
2 it has a kink and a local

maximum. In phase Mj2, i.e., between H16K
2 and H16K

3 , it decreases. At H16K
3 it has a kink,

slightly above H16K
3 it first displays a sharp step-like increase to a local maximum, followed

by a slow decrease when approaching 8 T, the highest field measured. The integrated
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intensity of q±I,β remained vanishingly small for fields below H2K
3 . Slightly above H16K

3 it
increases to a weak plateau in phase Mk2 between H16K

3 and 8 T. No difference is visible
between increasing and decreasing fields.

When the field increases in sweepB3, the integrated intensity at q±I,α is vanishingly
small for fields up to 9.5 T, apart from a weak maximum slightly above H23K

1 in phase
Mn1. The integrated intensity at q±I,β starts to slowly increase at 2 T. Above H23K

1 it first
increased with larger slope, displays a local maximum in phase Mn1, and decreases again.
For fields larger than H23K

2 in phase Mp, the integrated intensity displays a tail while still
decreasing. When the field decreases, no hysteresis is observed.
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Figure 3.28.: Field dependences of the magnetic satellites q±I,α and q±I,β. Shown in (a), (b),
and (c) are integrated intensities as a function of field, as determined at T = 2 K (sweepB1),
at T = 16 K (sweepB2), and at T = 23 K (sweepB3), respectively. Data points for increasing
fields are represented by squares, for decreasing fields by triangles. The transitions, as inferred
from bulk phase diagrams [18], are represented by vertical lines.

The field- and temperature dependences allow to specify the magnetic propagation
vectors in the phase pockets of the 〈110〉 phase diagram. Stars of magnetic propagation
vectors of the ground states in each phase pocket were determined as follows. For each
phase pocket all those stars were identified, for which integrated intensities at related
Bragg peak positions feature finite values in the majority of the corresponding field- or
temperature region. The resulting stars of the corresponding wave vectors, which were
identified, are summarized in Tab. 3.7.
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All ground states with propagation vectors of at least two different stars are multi-k.
This holds true for the ground states in the phase pockets MII (and phase IC1), MIII (and
phase IC2), Mj1, Mj2, Mk1, Mk2, Mm1, Mm2, and Mn1. In phase Mo, the ground state has
only propagation vectors of the star

〈
1
2

1
20
〉
. As argued in the following, the ground state

in Mo is single-k. During field cooling in a field of 9.7 T, i.e., during sweepT6, in phase
Mo the integrated intensity at qcI ∈ Ac1 ∈ Sc1 is strongly enhanced whereas qcII ∈ Ac2 ∈ Sc2
remains relatively weak. Hence, only the single k-arm with orientation Sc1 is participating
and the ground state has propagation vectors of only Ac1 ∈ Sc1 implying that the structure
is single-k.

In phase Mp, the ground state has only propagation vectors of the
〈

1
2 − δ,

1
2 , 0

〉
star.

As argued in the following, the ground state is either single-k or double-k. During field-
cooling in a field of 9.7 T, i.e., during sweepT6, in phase Mp the integrated intensity at
qicI,x/y ∈ AicI,x/y is strongly enhanced, whereas qicII,z and qicII,y are vanishingly small. Hence,
the ground state has propagation vectors of only k-arms with orientation Sic1 . As Sic1
contains only two k-arms, the magnetic structure in phase Mp has either one or two
participating k-arms. Accordingly, the magnetic structure is either single-k or double-k.
Note that a multi-k ground state combining incommensurate propagation vectors that
lie in the vicinity of the same commensurate (ππ0) wave-vector arm may be relatively
unconventional.

In the following, the number of commensurate and incommensurate propagation vectors
of the ground states in MI, which comprises C, in MII, which comprises IC1, and in MIII,
which comprises IC2, are specified further. In principle, the ground state in phase C may
represent a single-k, double-k, or triple-k structure as established in Sec. 3.3.3.2. The
experimental study above allows now to infer, that the ground state in phase C is either
double-k or triple-k. In particular, the ground state is not single-k, as established in the
following. In phase MI, which comprises phase C, the Bragg peaks located at qcI ∈ Ac1 ∈ Sc1
and qcII ∈ Ac2 ∈ Sc2 always display the same integrated intensities. This was confirmed
for the following field histories: (i) In zero magnetic field after zfc. Here, the integrated
intensities at qcI and qcII feature the same value by definition of the parameters γ. This
definition accounts for equal distribution of magnetic domains in zero field after zfc. (ii)
after the field sweep sweepB1, which was presented in Fig. 3.23, (iii) after the temperature
sweep sweepT1, i.e., after fc in a finite field of 0.5 T, and (iv) after the temperature sweep
sweepT2, i.e., after fc in a finite field of 2.5 T (cf. Sec. A.4 for further information).

If the magnetic structure in phase MI, and hence in C, would be single-k, a distinctively
different behavior of the two Bragg peaks at qcI and qcII would be expected for the three
protocols (ii), (iii), and (iv). Hence, it may be concluded that the ground state in phase C
combines propagation vectors of k-arms of the sets Sc1 and Sc2. In particular, the ground
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state represents either a double-k structure with propagation vectors kc1 and kc2 or a
triple-k structure with propagation vectors kc1, kc2, and kc3.

In principle, the ground state in phase IC1 may represent any superposition of up to
three commensurate and up to six incommensurate propagation vectors, which was estab-
lished in Sec. 3.3.3.2. From the experimental study reported here, it may be established
that the ground state in IC1 either represents a double-k or a triple-k state.

In phase MII, which comprises IC1, after sweepB2 presented in Fig. 3.25 only the
Bragg peaks located at qcI ∈ Ac1 ∈ Sc1 and qicII,z ∈ Aic2,z ∈ S ic3 feature finite integrated
intensities. In contrast, the integrated intensities at qcII ∈ Ac2 ∈ Sc2, qicI,x/y ∈ Aic1,x/y ∈ S ic1 ,
and qicII,y ∈ Aic2,y ∈ S ic2 are vanishingly small. This suggests that the ground state in phase
IC1 combines propagation vectors of k-arms of the sets Sc1 and S ic3 . Hence the ground
state in IC1 either represents a double-k structure with propagation vectors kc1 and kic2,z,
or a triple-k structure with propagation vectors kc1, kic2,z, and kic3,z.

Note, that the combination of the two propagation vectors kic2,z, and kic3,z of the〈
1
2 − δ,

1
2 , 0

〉
star having collinear incommensurability may lead to mixed higher orders

at positions such as
(

1
2 ± 3δ, 1

2 , 0
)
, where scattering intensity was observed in phase IC1

as reported in Sec. 3.3.3.7.
In principle, the ground state in phase IC2 may represent any superposition of up

to three commensurate and up to six incommensurate propagation vectors, which was
established in Sec. 3.3.3.2. From the experimental study reported here, it may be inferred
that the ground state in phase IC2 represents a multi-k state with at least four propagation
vectors.

In phase MIII, which comprises IC2, after the field sweep sweepB3 presented in Fig. 3.27
only the Bragg peaks located at qcI ∈ Ac1 ∈ Sc1, qcII ∈ Ac2 ∈ Sc2, qicI,x/y ∈ Aic1,x/y ∈ S ic1 , and
qicII,y ∈ Aic2,y ∈ S ic2 have finite integrated intensities. In contrast the integrated intensity
at qicII,z ∈ Aic2,z ∈ S ic3 is vanishingly small. The same is observed in phase MIII during
temperature sweep sweepT2, i.e., during field cooling in a field of 2.5 T (cf. Sec. A.4 for
further information).

This observation suggests that the ground state in MIII, and hence in IC2, combines
wave vectors of k-arms of the sets ∈ Sc1, Sc2, S ic1 , and S ic2 . In particular, the ground
state represents a superposition of at least four propagation vectors. The combination of
propagation vectors of the

〈
1
2 − δ,

1
2 , 0

〉
star with noncollinear incommensurability may

lead to mixed higher harmonics at positions such as
(

1
2 + δ, 1

2 ± 2δ, 0
)
, where scattering

intensity was observed in phase IC2 as reported in Sec. 3.3.3.7.
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3.3.4.2. Fields Along Fourfold Directions

To investigate the evolution of magnetic order for fields along fourfold 〈100〉 directions,
neutron diffraction of the single crystal OFZ95-3-3-h was carried out at MIRA [138].
Fields were applied along the crystallographic [001] direction. However, the setup of the
experiments provided fields of only 2.2 T. The objective of these experiments was on one
hand to study magnetic ground states for fields along 〈100〉. On the other hand this field
direction in principle qualifies to specify the number of propagation vectors of the ground
states in zero field, as the field may break symmetries between propagation-vectors of
these ground states.

All magnetic propagation vectors of the ground states in phases C, IC1, and IC2 be-
long to one of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
. There are two possible orientations of

commensurate (ππ0) arms and three possible orientations of (π − δ, π, 0) arms in a field
directed along a fourfold 〈100〉 axis. The [001] field direction breaks the symmetry be-
tween the commensurate k-arms Ac1 and Ac2, and it breaks the symmetry between Ac1 and
Ac3. Between Ac2 and Ac3 it preserves the symmetry. The field direction preserves the
symmetry between the incommensurate arms Aic1,x and Aic1,y, between Aic2,y and Aic3,x, as
well as between Aic2,z and Aic3,z. Between each of the three pairs it breaks the symmetry.
In these experiments only the commensurate k-arm Ac1 and the incommensurate arm Aic1,x

were investigated as a function of temperature and field.
The main results of these experiments may be summarized as follows:
• In phase C, the magnetic Bragg peak, which is located at q0 :=

(
1
2 ,

1
2 , 0

)
, vanishes

in relatively small fields of 2 T. This was observed independent of the field history.
• This field dependence of the integrated intensity at q0 may be related either to a

change of magnetic domains of the ground state of phase C implying that the ground
state is single-k or double-k, or to a magnetic phase transition where the magnetic
ground state changes. In the latter case, the ground state may be either single-k,
double-k, or triple-k.

• Temperature dependences of the magnetic Bragg peaks q0 and q1,2 :=
(

1
2 ± δ,

1
2 , 0

)
are distinctively different under zero magnetic field and under a field of 2.2 T along
[001].

The study was organized as follows. First, the integrated intensity of the Bragg peak
located at q0 in phase C was studied as a function of field. Therefore, a field sweep starting
in phase C at 5 K, was carried out. The field dependence of the commensurate Bragg peak
q0 =

(
1
2 ,

1
2 , 0

)
may reflect the field dependence of the k-arm Ac1. Second, temperature

dependences were determined for the peaks located at q0 and q1,2 at zero magnetic field
(i.e. zfc) and at a finite field of 2.2 T (i.e. fc). Therefore, integrated intensities of q0 and
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q1,2, respectively, were studied as a function of temperature. As a function of temperature,
q0 reflects the temperature dependence of the k-arm Ac1, whereas the average of q1 and
q2 reflects the temperature dependence of the arm Aic1,x. Third, implications of these
experiments on the ground states in the zero field phases are discussed.

For the experiments at MIRA, neutrons with a wavelength λ ≈ 4.52 Å were used.
The sample was oriented such that the crystallographic (001) plane corresponded to the
scattering plane. In this study, we investigated Bragg peaks, which are related to the〈

1
2

1
20
〉

star, as present, for instance, in phase C, and Bragg peaks, which are related to
the

〈
1
2 − δ,

1
2 , 0

〉
star, as present, for instance, in phase IC1. The commensurate magnetic

peak at q0 ∈ Ac1 and the incommensurate peaks at q1,2 ∈ Aic1,x were, apart from equivalent
peaks, the only reflections associated with the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
, respectively,

located in the scattering plane and accessible in these experiments. Reflections of other
k-arms (apart from Aic1,y) were far outside the horizontal plane, the exact angles depending
on the incoming neutron wavelength. Temperature and field dependences of Bragg peaks
were inferred from the temperature and field sweeps as follows. During the temperature
and field sweeps rocking scans were carried out at a discrete set of field values and tem-
perature values, respectively. From the rocking scans, integrated intensities of the three
Bragg peaks located at q0, q1, and q2 were inferred.
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Figure 3.29.: Field dependence of the Bragg peak, located at q0 in phase C. (a) Integrated
intensity of the Bragg peak located at q0 as a function of field. This field dependence may
reflect the field dependence of the k-arm Ac1. The field sweep started at T = 5 K in phase C
after zfc. The field first increased to 2.2 T, second decreased to 0 T, and third decreased to
−2.2T. (b) Schematic picture, illustrating the orientation of the Bragg peak at q0 in the field,
directed along [001].

For the field sweep, which started in phase C at T = 5 K after zfc the field first increased
to 2.2 T, second decreased to 0 T, and third decreased to negative values up to −2.2 T.
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Shown in Fig. 3.29 is the integrated intensity of the Bragg peak at q0 ∼ kc1 as a function
of field. As a function of increasing field, the integrated intensity decreases monotonically
and vanishes at roughly 2 T. When the field decreases further, the integrated intensity
increases monotonically and displays a local maximum at µ0H = 0 T, being ≈ 12%
smaller than the integrated intensity after zfc. For inverted fields the integrated intensity
decreases monotonically and vanishes at roughly −2 T.

(100)

(010)

(001)

(a) (b) (c)

HoCu
μ0H || [001]

(½,½,0)

(½±δ,½,0)

Figure 3.30.: Temperature dependences of the Bragg peaks, located at q0, q1, and q2. (a)
Integrated intensities of the Bragg peak at q0 as a function of temperature. Shown are the
temperature dependences, as inferred from the temperature sweep in in zero field (white squares)
and from the temperature sweep in a field of 2.2 T (black squares). (b) Average of integrated
intensities of the Bragg peaks at q1 and at q2 as a function of temperature. Shown are the
temperature dependences, as inferred from the temperature sweep in in zero field (white squares)
and from the temperature sweep in a field of 2.2 T (black squares). (c) Schematic picture,
illustrating the orientation of the Bragg peaks at q0, q1, and q2 in a field along (001). The
Bragg peaks located at

(
1
2 ,

1
2 ± δ, 0

)
are illustrated by spheres with lower opacity.

Shown in Fig. 3.30 are the integrated intensities of q0 and of the average of q1 and q2

as a function of temperature at zero magnetic field (zfc) and at a finite field of 2.2 T (fc).
The temperature dependences of the peak at q0 are shown in Fig. 3.30 (a). In zero

magnetic field, the integrated intensity of the peak at q0 increases as a function of de-
creasing temperatures exhibiting steep steps at Tt2 and at Tt1 , respectively. At a finite
field of 2.2 T the integrated intensity of the peak at q0 exhibits a distinctively different
temperature dependence. Maximum values of the integrated intensity are almost one
order of magnitude weaker than at zero magnetic field. The intensity starts to increase
at roughly TN and displays a shallow, relatively broad maximum slightly below Tt2 .

The temperature dependences of the average of integrated intensities of peaks at q1

and q2 are shown in Fig. 3.30 (b). At zero magnetic field, the integrated intensity of
the incommensurate peaks starts to increase at TN. At Tt2 and Tt1 it displays kinks and
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between Tt1 and Tt2 it features a local minimum. At Tt1 it decreases rapidly to vanishingly
small values. At the finite field of 2.2 T, the integrated intensity of the incommensurate
satellites starts to increase slightly below TN. Between TN and a temperature slightly
larger than Tt1 it increases monotonically as a function of decreasing temperature with a
kink at Tt2 , where the slope changes. Slightly above Tt1 the intensity exhibits a kink and
decreases to vanishingly small values.

The qualitatively different temperature dependences at zero magnetic field and at a
field reflect that symmetries between k-arms are broken in the field along [001]. However,
these experiments do not permit to infer the number of propagation vectors of the ground
states in C, IC1, and IC2. The suppression of the commensurate peak q0 at temperatures
below Tt1 by fields of ±2 T was observed for different field protocols and may arise either
due to a transition from phase C to another phase, or due to a change of population of
the magnetic domains. In the latter case, the peak suppression indicates that the ground
state of phase C is either single-k or double-k, but not triple-k. As the other two k-arms
Ac2 and Ac3 were not investigated as a function of field, these experiments do not permit
to distinguish between these two scenarios.
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3.3.4.3. Fields Along Threefold Directions

In order to study the evolution of magnetic order for fields along threefold 〈111〉 directions,
neutron diffraction of the single crystal OFZ95-3-3-h was carried out at the time-of-flight
diffractometer Wish [140]. Magnetic fields were applied along the cubic [111] direction.
The main objective of these experiments was to study magnetic ground states at different
points in the 〈111〉 phase diagram.

These experiments do not permit to specify the number of propagation vectors of the
ground states in the phases C, IC1, and IC2. There is only one possible orientation of
(ππ0) arms and of (π − δ, π, 0) arms, respectively, in a field directed along a threefold
〈111〉 axis (cf. Sec. 3.2 for further information). In particular, the threefold field direction
preserves the symmetry between all commensurate k-arms of the

〈
1
2

1
20
〉

star and between
all incommensurate k-arms of the

〈
1
2 − δ,

1
2 , 0

〉
star, respectively. Hence, these experiments

do not permit to determine the number of propagation vectors of one of the ground state
at zero magnetic field.

The 〈111〉 phase diagram, which was determined by Rahn (cf. Refs. [18, 118]), is
shown in Fig. 3.31. The regions in this phase diagram were assigned colors and labels.
The capital letters R shall indicate, that magnetic fields are applied along a cubic space
diagonal. As for the 〈110〉 phase diagram, the regions in the 〈111〉 phase diagram will be
referred to as ”phases” or ”phase pockets”. Note, however, that these ”phases” are not
necessarily phases in a thermodynamic sense, i.e., they are not necessarily separated by
phase transitions [139].

The main results of these experiments may be summarized as follows:

• Throughout the 〈111〉 phase diagram HoCu displays variations of (ππ0) antiferro-
magnetism.

• In phases RI, Ra1, Ra2, Ra3, Ra4, and Ra5 the magnetic ground state represents a
commensurate (ππ0) antiferromagnet. Accordingly, these ground states are super-
positions of propagation vectors of the

〈
1
2

1
20
〉

star. They may be single-k, double-k,
or triple-k. Fields along 〈111〉 do not permit to distinguish the three cases.

• In phasesRII, Rb4, Rb2, Rb3, Rb5, RIII, andRb1 the ground states are superpositions of
propagation vectors of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
. Accordingly, these ground

states are multi-k and have a long-wavelength modulation.
• In phases Rc3, Rc4, Rc5, and Rc2 the ground states are superpositions of propagation

vectors of the stars
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
, and

〈
1
2 − δ,

1
2 , δ

〉
. Accordingly, these ground

states are multi-k and have a long-wavelength modulation.
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Figure 3.31.: The 〈111〉 phase diagram of HoCu. The phase diagram was determined by Rahn
in Refs. [18, 118]. For this study the phase pockets were labeled and assigned colors. The doted
lines may represent phase boundaries, as inferred from the present study. The trajectories of
these three field sweeps, which were carried out for this study, are represented by vertical lines.
The positions in the phase diagram, where time-of-flight data were recorded, are represented by
circles. The circles, which are filled, are the positions, where data is further below presented in
Figs. 3.32, 3.34, and 3.36.

To study the 〈111〉 phase diagram, field sweeps were carried out at three different
temperatures. For each of these sweeps, changes of magnetic propagation vectors as
a function of field were investigated. Further, integrated intensities of magnetic Bragg
peaks as a function of field were inferred from the sweeps. This permitted to specify the
ground states in different phases of the 〈111〉 phase diagram.

For the experiments, the sample was oriented such that the crystallographic (111)
plane corresponded to the horizontal scattering plane. Field sweeps started in phase C at
T = 2 K after zfc (sweepB1), in phase IC1 at T = 15 K after zfc (sweepB2), and in phase
IC2 at T = 22 K after zfc (sweepB3). Therefore, fields increased from 0 T to roughly 10 T
and time-of-flight diffraction data were recorded at discrete field values. The trajectories
of the three sweeps in the 〈111〉 phase diagram are represented by vertical lines in Fig. 3.31.
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The positions in the phase diagram, where diffraction data were recorded, are represented
by circles.

At each position, where time-of-flight data were recorded, a large volume of the recip-
rocal space was measured, containing roughly 20 (ππ0) positions. Data were treated by
means of the data reduction software Mantid [141]. In particular, magnetic Bragg peaks
were indexed with propagation vectors and integrated intensities Iq=Ghkl

(B) = F 2
o (h, k, l)

of Bragg peaks were inferred.
The presentation of the data is organized as follows. For each field sweep, first changes of

magnetic propagation vectors as a function of field are discussed. Therefore, an indexation
of all magnetic Bragg peaks, which were observed in the time-of-flight data, was carried
out for each data set. In this presentation, the indexation of magnetic peaks is illustrated
for some of the recorded data sets in terms of the peaks in the vicinity of qI := (0.5, 0.5, 0).
The positions of these data sets in the 〈111〉 phase diagram are indicated by circles, which
are filled black. Second, field dependences of integrated intensities are presented for
specific magnetic Bragg peaks, which are related to the propagation-vector stars

〈
1
2

1
20
〉
,〈

1
2 − δ,

1
2 , 0

〉
, and

〈
1
2 − δ,

1
2 , δ

〉
, respectively.

For the first field sweep, sweepB1 at T = 2 K, time-of-flight diffraction data were
recorded in phase RI at the field values 0 T and 2 T, in phase RII at 3.5 T, in phase Ra1

at 5 T, in phase Ra2 at 6 T, 6.5 T, and 7 T, in phase Ra3 at 8 T and 8.5 T, in phase Ra4 at
9.5 T, and in phase Ra5 at 10.5 T.

As explained further, the magnetic ground state represents a commensurate (ππ0)
antiferromagnet in phases RI, Ra1, Ra2, Ra3, Ra4, and Ra5. As no qualitative differences
of the diffraction data were observed in Ra1, Ra2, Ra3, Ra4, and Ra5, it may be concluded,
that these regions of the 〈111〉 phase diagram belong to a single thermodynamic magnetic
phase. In phase RII, which comprises the zero-field phase IC1, the data confirmed that the
ground state is a superposition of propagation vectors of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
.

In particular, this indicates, that the ground state in phase RII has a long-wavelength
modulation and that it is multi-k. Higher-order peaks were present in phase RII. They
may reflect the multi-k character of the ground state in phase RII.

Fig. 3.32 illustrates distinctive changes of magnetic propagation vectors during sweepB1.
Shown in the figure are diffraction data as recorded in the vicinity of qI at three different
fields. The corresponding positions in the phase diagram (cf. Fig. 3.31) are represented
by filled circles.

In phase RI the single Bragg peak at qI reflects commensurate (ππ0) antiferromag-
netism with propagation vector

(
1
2 ,

1
2 , 0

)
(Fig. 3.32 (a)). In phase RII (cf. Fig. 3.32 (b))

a commensurate propagation vector
(

1
2 ,

1
2 , 0

)
and incommensurate propagation vectors
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(

1
2 − δ,

1
2 , 0

)
and

(
1
2 ,

1
2 − δ, 0

)
are required to index the magnetic Bragg peaks, which were

observed at qI and at q1,2 :=
(

1
2 ± δ,−

1
2 , 0

)
and q3,4 :=

(
1
2 ,−

1
2 ± δ, 0

)
, respectively. The

splitting parameter in phase RII is given by δ ≈ 0.02. This value is in agreement with the
splitting parameter observed in phase IC1, which was reported in Sec. 3.3.3. In phases
Ra1, Ra2, Ra3, Ra4, and Ra5 a single Bragg peak at qI reflects commensurate (ππ0) an-
tiferromagnetism with propagation vector

(
1
2 ,

1
2 , 0

)
. For instance, Fig. 3.32 (c) shows the

scattering data of the Bragg peak, which was recorded in phase Ra1.
In the diffraction data, recorded in phase RII at 3.5 T, peaks are present at positions

q5,6 =
(

1
2 ,−

1
2 ,±2δ

)
, at q7,8 :=

(
1
2 ± 3δ,−1

2 , 0
)
, and at q9,10 :=

(
1
2 ,−

1
2 ± 3δ, 0

)
. Scattering

intensity at the positions q5,6 may be related to higher-order peaks, which arise due to
a multi-k structure with propagation vectors ka =

(
1
2 , 0,

1
2 − δ

)
, and kb =

(
1
2 ,

1
2 , 0

)
. For

instance, the term 2ka + kb − (1, 1, 1) =
(

1
2 ,−

1
2 ,−2δ

)
may explain higher-order intensity

at q6. It was established in Sec. 3.3.3.7, that higher-order peaks at positions q7,8,9,10 may
either reflect the anharmonicity of the ground state, or they may represent mixed higher-
harmonics due to a multi-k structure with several propagation vectors of the

〈
1
2 − δ,

1
2 , 0

〉
star.

h
k

l

h
k

l

h
k

l
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Figure 3.32.: Distinctive changes of magnetic propagation vectors during sweepB1. Magnetic
propagation vectors may be inferred from the time-of-flight scattering data by means of indexa-
tion of magnetic Bragg peaks. Shown are the magnetic Bragg peaks in the vicinity of

(
1
2 ,−

1
2 , 0
)

at three different magnetic fields. (a) In phase RI, a single Bragg peak at qI reflects commen-
surate (ππ0) antiferromagnetism with propagation vectors of the

〈
1
2

1
20
〉

star. (b) In phase RII,
relatively strong Bragg peaks, which were observed at qI and at q1, q2, q3, and q4, reflect, that
the ground state is a superposition of propagation vectors of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

.
Higher-orders are present at q5, q6, q7, q8, q9, and q10. (c) In phase Ra1 a single Bragg peak
at qI reflects commensurate (ππ0) antiferromagnetism with propagation vectors of the

〈
1
2

1
20
〉

star.
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In the following integrated intensities of Bragg peaks, as recorded by means of sweepB1,
are presented. In phase RI at 0 T the integrated intensity at the commensurate peak
position is given by IqI = 8.47±0.04. In phase RII at 3.5 T the integrated intensity of the
commensurate peak is given by I (qI) = 10.59± 0.04 and the integrated intensities of the
incommensurate peaks at q1, q2, q3, and q4 are ranging from 2.60± 0.02 to 3.77± 0.02.
Further, the peaks at the incommensurate positions q5,6 have much smaller integrated
intensities given by 0.26 ± 0.01 and 0.20 ± 0.01, respectively. Peaks at positions q7,8,9,10

have almost vanishing integrated intensities but are clearly visible. In phase Ra1 at 5 T
the integrated intensity of the commensurate peak is given by IqI = 11.47± 0.04.

In the following, field dependences, as inferred from sweepB1, are presented of peaks,
which are related to different arms of the

〈
1
2

1
20
〉

star. In particular, the integrated
intensities as a function of field of the two commensurate magnetic Bragg peaks at
qI = (0.5, 0.5, 0) and qIII = (0.5, 0, 0.5) are presented. The peaks at qI and qIII are
indexed with propagation vectors of the k-arms Ac1 and Ac3, respectively. As the two k-
arms Ac1 and Ac3 have the same orientation in the magnetic field, they feature qualitatively
the same field dependence, as presented in the following.

Fig. 3.33 (a) shows the integrated intensities of the two Bragg peaks at qI and qIII

as a function of field, as inferred from sweepB1. The integrated intensities, which are
shown, are normalized to the integrated intensity at zero magnetic field, i.e., iq (B) :=
Iq (B) /Iq (B = 0). The qualitatively same field dependence of these normalized inte-
grated intensities reflects the preserved symmetry between the k-arms Ac1 and Ac3. The
orientation of the three k-arms of the

〈
1
2

1
20
〉

star with respect to the field is schematically
illustrated in Fig. 3.33 (b). Deviations (iqIII − iqI) /iqIII are smaller than 13 % and may
be caused by misalignment of the sample.

For the second field sweep, i.e., sweepB2 at T = 15 K, time-of-flight data were recorded
in phase RII at the fields 0 T, 2 T, 3 T, and 4 T, in phase Rb4 at the field 4.5 T, in phase
Rb2 at the field 5.5 T, in phase Rb3 at the fields 7 T, 8 T, and 9 T, and in phase Rb5 at the
field 10 T.

No distinctive changes of magnetic propagation vectors were observed during sweepB2.
In the entire field range, the magnetic ground state was found to represent a superposition
of commensurate propagation vectors of the

〈
1
2

1
20
〉

star and incommensurate propagation
vectors of the

〈
1
2 − δ,

1
2 , 0

〉
star. In particular, the ground states in phases RII, Rb6, Rb2,

Rb3, and Rb5 are multi-k with propagation vectors of the stars
〈

1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
.

As no qualitative difference between these phases was observed, they may belong to a
single thermodynamic phase.

Fig. 3.34 illustrates the presence of these magnetic propagation vectors showing diffrac-
tion data recorded at three different fields during sweepB2. Shown are diffraction data
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Figure 3.33.: Field dependences, as inferred from sweepB1, of different k-arms of the
〈

1
2

1
20
〉

star. (a) Integrated intensities of the commensurate Bragg peaks qI =
(
0.5, 0.5, 0

)
and qIII =(

0.5, 0, 0.5
)
, which are related to the k-arms Ac1 and Ac3, respectively. The integrated intensities,

which are shown, are normalized to the integrated intensity in zero magnetic field, i.e., iq (B) :=
Iq (B) /Iq (B = 0). The qualitatively same field dependences of the two peak intensities reflect
the preserved symmetry between the k-arms Ac1 and Ac3. (c) Orientation of the three k-arms
Ac1, Ac2, and Ac3 in a field along [111].

in the vicinity of the Q-position qI recorded at 0 T in phase RII (Fig. 3.34 (a)), at 5.5 T
in phase Rb2 (Fig. 3.34 (b)), and at 10 T in phase Rb5 (Fig. 3.34 (c)). The corresponding
positions in the phase diagram, where data were recorded, are represented by filled circles
in Fig. 3.31.

In all three phases, RII, Rb2, and Rb5, relatively strong Bragg peaks are present at the
position qI, which may be indexed by means of the propagation vector

(
1
2 ,

1
2 , 0

)
, and at

the positions q1, q2, q3, and q4, which may be indexed by means of propagation vectors(
1
2 − δ,

1
2 , 0

)
and

(
1
2 ,

1
2 − δ, 0

)
.

Peaks at higher-order positions change slightly during sweepB2. In phase RII at zero
magnetic field peaks at the higher-order positions q5, q6, q7, q8, q9, and q10 are relatively
weak but visible. In phases Rb2 and Rb5 peaks at higher-order positions q5, q6, q7,
q8, q9, and q10 are distinctively stronger than in phase RII. Further, peaks, which are
presumably also higher-order, were observed at the positions q11 =

(
1
2 ,−

1
2 , 4δ

)
and q12 =(

1
2 ,−

1
2 ,−4δ

)
.

In the following, integrated intensities of magnetic Bragg peaks, as inferred from
sweepB2, are presented. In phase RII at zero magnetic field the integrated intensity
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of the commensurate peak is given by IqI = 7.22± 0.03 and the integrated intensities of
the four incommensurate satellites q1,2,3,4 range from 3.83± 0.02 to 4.83± 0.03. Peaks at
higher-order positions have almost vanishing integrated intensities. In phase Rb2 at the
field 5.5 T the integrated intensity of the commensurate peak is given by IqI = 7.73±0.02,
the integrated intensities Iq1,2,3,4 are ranging from 3.02± 0.02 to 4.55± 0.03, and the inte-
grated intensities Iq5,6 are given by 0.28± 0.01 and 0.35± 0.01. In phase Rb5 at 10 T the
integrated intensity of the commensurate peak is given by IqI = 4.74 ± 0.03, Iq1,2,3,4 are
ranging from 2.27 ± 0.02 to 2.86 ± 0.02, and the integrated intensities Iq5,6 are given by
0.48± 0.01 and 0.60± 0.01.

In the following, integrated intensities as a function of field, as inferred from sweepB2,
are presented first of peaks, which are related to the

〈
1
2

1
20
〉

star, and second of peaks,
which are related to the

〈
1
2 − δ,

1
2 , 0

〉
star. In particular, this presentation illustrates,

that k-arms of the stars
〈

1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
, respectively, always feature similar field

dependences for fields directed along a threefold 〈111〉 direction. This reflects that the field
does not break the symmetry between different arms of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
,

respectively.
Fig. 3.35 (a) shows the normalized integrated intensities iq (B) of the two commensurate

peaks at qI and qIII as a function of field, as inferred from sweepB2. The peaks at qI and
at qIII are related to the k-arms Ac1 and Ac3, respectively, which have the same orientation
in the field. The integrated intensities as a function of field exhibit qualitatively similar
field dependences. Maximum deviation was observed at 8 T, where iqIII (B) is roughly
38 % larger than iqI (B). This deviation may be caused by misalignment of the sample.

Fig. 3.35 (b) shows the normalized integrated intensities iq (B) as a function of field
of the four incommensurate peaks q3 ∈ Aic1,y, q2 ∈ Aic1,x,

(
−1

2 + δ, 0, 1
2

)
∈ Aic3,x, and(

−1
2 , 0,

1
2 − δ

)
∈ Aic3,z, as inferred from sweepB2. In the whole field range, no huge differ-

ences were visible between the integrated intensities at the four incommensurate positions.
This reflects, that the arms Aic1,y, Aic1,x, Aic3,x, and Aic3,z have the same orientation in the
magnetic field.

For the third field sweep, i.e., sweepB3 at T = 22 K, time-of-flight data were recorded
in phase RIII at the fields 0 T and 3 T, in phase Rb4 at 4 T, in phase Rb1 at 4.5 T, in phase
Rc3 at 5.5 T and 6.5 T, in phase Rc4 at 7 T, in phase Rc5 at 7.5 T and 8 T, and in phase
Rc2 at 9 T and 9.5 T.

In phases RIII, Rb4, and Rb1 the ground state represents a superposition of propagation
vectors of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
. In phases Rc3, Rc4, Rc5, and Rc2 the ground

state represents a superposition of propagation vectors of the stars
〈

1
2

1
20
〉
,
〈

1
2 − δ,

1
2 , 0

〉
,
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HoCu, μ0H || [111]
sweepB2, T = 15 K

μ0H = 0 T μ0H = 5.5 T μ0H = 10 T
phase RII phase Rb2 phase Rb5
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Figure 3.34.: Evolution of magnetic propagation vectors during sweepB2. Magnetic propagation
vectors may be inferred from the time-of-flight scattering data by means of indexation of magnetic
Bragg peaks. Shown are magnetic peaks in the vicinity of

(
0.5, 0.5, 0

)
at three different fields. In

the whole field range, Bragg peaks appear at qI, as well as at q1, q2, q3, and q4, reflecting that
the ground states are superpositions of propagation vectors of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

.
Mixed higher orders at q5 and q6 may reflect the multi-k character of the ground states.

and
〈

1
2 − δ,

1
2 , δ

〉
, as established in the following. Accordingly, the ground state is at least

triple-k and has a long-wavelength modulation.
Fig. 3.36 shows the diffraction data in the vicinity of the Q-position qI recorded at

three different fields, illustrating qualitative changes of magnetic propagation vectors as
a function of field during sweepB3.

In phases RIII, Rb4, and Rb1, relatively strong Bragg peaks are present at qI, which is
indexed by

(
1
2 ,

1
2 , 0

)
, and at q1, q2, q3, and q4, which may be indexed by propagation

vectors
(

1
2 − δ,

1
2 , 0

)
and

(
1
2 ,

1
2 − δ, 0

)
, respectively. For instance, Fig. 3.36 (a) shows these

Bragg peaks, as recorded in phase RIII. Intensities at q5, q6, q7, q8, q9, and q10 may
be related to higher-order peaks. In phases Rc3, Rc4, Rc5, and Rc2 relatively strong
Bragg peaks appear at positions qI and at q1, q2, q3, q4,

(
1
2 ,−

1
2 ± δ, δ

)
,
(

1
2 ,−

1
2 ± δ,−δ

)
,(

1
2 ± δ,−

1
2 , δ

)
, and

(
1
2 ± δ,−

1
2 ,−δ

)
. For instance, the scattering data, recorded in phases

Rc4 and Rc5 are shown in Fig. 3.36 (b) and (c), respectively.
A multitude of peaks at higher-order positions was observed in phases Rc4 and Rc5, as

explained in the following.
Fig. 3.39 (a) and (b1) show scattering data in the

(
1
2 , k, l

)
-plane, as recorded by means

of sweepB3 in phases Rc4 and Rc5, respectively. In both phases, relatively strong peaks
are present at the positions qI, q3, q4.
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Figure 3.35.: Field dependences of peaks of the stars
〈

1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

, as inferred from
sweep sweepB2. (a) Normalized integrated intensities iq as a function of field of the Bragg peaks
at qI and qIII. The two peaks are associated with the k-arms Ac1 and Ac3, respectively. The
qualitatively same field dependences reflect that the symmetry between the k-arms Ac1 and Ac3 is
preserved in the magnetic field. (b) Normalized integrated intensities iq of the incommensurate
peaks at q3 ∈ Aic1,y, q2 ∈ Aic1,x,

(
−1

2 + δ, 0, 1
2

)
∈ Aic3,x, and

(
−1

2 , 0,
1
2 − δ

)
∈ Aic3,z as a function

of field. The qualitatively same field dependences reflect that the symmetry between the arms
Aic1,y, Aic1,x, Aic3,x, and Aic3,z is preserved in the magnetic field.

Peaks at q5 and q6, which may be higher order, are visible in Rc4 and in Rc5. Peaks at
positions

(
1
2 ,

1
2 ,±δ

)
are visible in Rc5 but not in Rc4.

Higher orders, which were observed in phase Rc4, but not in Rc5, are at the positions(
1
2 ,−

1
2 ± δ,±2δ

)
and

(
1
2 ,−

1
2 ± δ,∓2δ

)
.

Higher orders, which were observed in phase Rc5, but not in phase Rc4, are at the
positions

(
1
2 ,−

1
2 ±

3
2 · δ, 0

)
. Further, higher orders, which were observed in phase Rc5,

but not in phase Rc4, are at the positions
(

1
2 , k + 0.15,−2δ

)
and

(
1
2 , k − 0.15,+2δ

)
.

Fig. 3.39 (b2) shows scattering data in the (hk0) plane, as recorded in phase Rc5 by
means of sweepB3. Higher orders were observed at the positions

(
1
2 + δ,−1

2 + 2δ, 0
)
,(

1
2 + 2δ,−1

2 + δ, 0
)
,
(

1
2 − δ,−

1
2 − 2δ, 0

)
, and

(
1
2 − 2δ,−1

2 − δ, 0
)
. Peaks at those positions

were not observed in phase Rc4.
In the following, integrated intensities as a function of field, as inferred from sweepB3
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Figure 3.36.: Distinctive changes of magnetic propagation vectors during sweepB3. Magnetic
propagation vectors may be inferred from the time-of-flight scattering data by means of indexa-
tion of magnetic Bragg peaks. Shown are the magnetic Bragg peaks in the vicinity of

(
1
2 ,−

1
2 , 0
)

at three different magnetic fields. (a) In phase RIII, Bragg peaks at qI, q1, q2, q3, and q4

reflecting that the ground state is a superposition of propagation vectors of the stars
〈

1
2

1
20
〉

and〈
1
2 − δ,

1
2 , 0
〉

. (b) In phase Rc4 and (c) in phase Rc5, relatively strong Bragg peaks are present

at qI, q1, q2, q3, q4,
(

1
2 ± δ,−

1
2 , δ
)

,
(

1
2 ± δ,−

1
2 ,−δ

)
,
(

1
2 ,−

1
2 ± δ, δ

)
,
(

1
2 ,−

1
2 ± δ,−δ

)
reflect

that the ground states in phases Rc4 and Rc5, respectively, are superpositions of propagation
vectors of the stars

〈
1
2

1
20
〉

,
〈

1
2 − δ,

1
2 , 0
〉

, and
〈

1
2 − δ

1
2 , δ
〉

.

are presented for peaks, which are associated with the stars
〈

1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
,

respectively.
Fig. 3.37 (a) shows the normalized integrated intensities iq (B) of the two commensurate

peaks at qI and qIII as a function of field, as inferred from sweepB3. The peaks at
qI and at qIII are related to the k-arms Ac1 and Ac3, respectively, which have the same
orientation in the magnetic field. Maximum deviation between the two commensurate
peaks (iqIII − iqI) /iqIII was 13 %. This reflects that the symmetry between the k-arms is
preserved in the field.

Fig. 3.37 (b) shows the normalized integrated intensities iq (B) of the four incommen-
surate peaks q3 ∈ Aic1,y, q2 ∈ Aic1,x,

(
−1

2 + δ, 0, 1
2

)
∈ Aic3,x, and

(
−1

2 , 0,
1
2 − δ

)
∈ Aic3,z as

a function of field, as inferred from sweepB3. The qualitatively same field dependences
reflect that the arms Aic1,y, Aic1,x, Aic3,x, and Aic3,z have the same orientation in the field. The
deviation between the curves may be caused by misalignment of the sample.

In the following, field dependences of k-arms, which are associated with the
〈

1
2 − δ,

1
2 , δ

〉
star, are investigated. The

〈
1
2 − δ,

1
2 , δ

〉
star has 24 different arms or 12 pairs of conjugated
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Figure 3.37.: Field dependences, as inferred from sweepB3, of different k-arms of the stars〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

, respectively. (a) Normalized integrated intensities iq as a function
of field of the Bragg peaks at qI and qIII. The two peaks are associated with the k-arms
Ac1 and Ac3, respectively. The qualitatively same field dependences reflect that the symmetry
between the k-arms Ac1 and Ac3 is preserved in the magnetic field. (b) Normalized integrated
intensities iq of the incommensurate peaks at q3 ∈ Aic1,y, q2 ∈ Aic1,x,

(
−1

2 + δ, 0, 1
2

)
∈ Aic3,x, and(

−1
2 , 0,

1
2 − δ

)
∈ Aic3,z as a function of field. The qualitatively same field dependences reflect

that the symmetry between the arms Aic1,y, Aic1,x, Aic3,x, and Aic3,z is preserved in the magnetic
field.

k-arms. As explained in Sec. 2.2, one may identify conjugated k-arms in terms of Ω-arms.
Accordingly, the

〈
1
2 − δ,

1
2 , δ

〉
star has 12 different Ω-arms.

There are only two possible orientations of k-arms in a field along [111]. Accordingly,
the k-arms may be assign to two sets as follows:

Sa =
{[1

2 + δ,
1
2 , δ

]
∼
,
[1
2 ,

1
2 + δ, δ

]
∼
,
[
δ,

1
2 + δ,

1
2

]
∼
, (3.26)[

δ,
1
2 ,

1
2 + δ

]
∼
,
[1
2 + δ, δ,

1
2

]
∼
,
[1
2 , δ,

1
2 + δ

]
∼
, cc.

}
(3.27)

and:

Sb =
{[1

2 + δ,
1
2 ,−δ

]
∼
,
[1
2 ,

1
2 + δ,−δ

]
∼
,
[
−δ, 1

2 + δ,
1
2

]
∼
, (3.28)[

−δ, 1
2 ,

1
2 + δ

]
∼
,
[1
2 + δ,−δ, 1

2

]
∼
,
[1
2 ,−δ,

1
2 + δ

]
∼
, cc.

}
(3.29)
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Figure 3.38.: Field dependences, as inferred from sweepB3, of different k-arms of the〈
1
2 − δ,

1
2 , δ
〉

star. Shown are integrated intensities as a function of field of Bragg peaks lo-
cated at qa,1, qa,2, qa,3, qa,4, qb,1, and qb,2. The Bragg peaks at qa,1, qa,2, qa,3, and qa,4 are
associated with k-arms, which have the orientation Sa in the magnetic field along [111]. They
display similar field dependences reflecting this same orientation. In contrast, the Bragg peaks at
qb,1 and qb,2 display distinctively different field dependences. They are associated with k-arms,
which have the orientation Sb in the magnetic field along [111].

Each set comprises also the conjugation of each k-arm, as indicated by cc..
The two sets Sa and Sb represent the two possible orientations of k-arms of the〈

1
2 − δ,

1
2 , δ

〉
star in a field along [111]. Accordingly, we may expect that k-arms, which

have the same orientation, feature the same field dependences.
In the following, integrated intensities as a function of field, as inferred from sweepB3,

are presented of Bragg peaks, which are related to different k-arms of the
〈

1
2 − δ,

1
2 , δ

〉
star. Fig. 3.38 shows integrated intensities as a function of field of the peaks qa,1, qa,2,
qa,3, and qa,4, which are associated with k-arms that have orientation Sa, as well as
integrated intensities of the peaks qb,1 and qb,2, which are associated with k-arms that
have orientation Sb. The integrated intensities of these six Bragg peaks as a function of
field reflect the two possible orientations of k-arms in a field along [111]. The peaks, which
are related to Sa have a maximum in phase Rc3 and a second maximum, which extends
over the two phases Rc5 and Rc2. In contrast, the peaks, which are related to Sb display
a distinctively different behavior featuring a single maximum in phase Rc4.
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(a)

(b1)

(b2)

HoCu, μ0H || [111]
sweepB3, T = 22 K

μ0H = 7 T
phase Rc4

μ0H = 8 T
phase Rc5(b)

Figure 3.39.: Multitude of higher harmonics in phases Rc4 and Rc5. (a) Scattering intensity in
the

(
1
2 , k, l

)
plane, as recorded in phase Rc4. (b1) Scattering intensity in the

(
1
2 , k, l

)
plane, as

recorded in phase Rc5. (b2) Scattering intensity in the (h, k, 0) plane, as recorded in phase Rc5.
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3.3.5. Magnetic Structures in Zero Magnetic Field

In the following, magnetic structure determinations are presented for the three phases
C, IC1, and IC2. While specific magnetic structures are determined for C and IC1, an
educated guess with intriguing properties is suggested for IC2.

The study is mainly based on the results from neutron experiments presented in Secs.
3.3.3 and 3.3.4. These experiments provided the following prerequisites for the magnetic
structure determinations. (i) The propagation vector stars of magnetic ground states were
determined for the three phases in Sec. 3.3.3.2. As a result, only the ”propagation vector
types” were obtained, but not the number of propagation vectors in the Fourier series.
(ii) For each propagation vector k0 all pre-factors in the Fourier series that are allowed
by symmetry were established in Sec. 3.3.3.4 by representational analysis. (iii) From all
pre-factors allowed by symmetry the ones that in fact occur in the Fourier-description
of the ground states were determined in Sec. 3.3.3.5 by a polarization analysis. The
findings were further confirmed in Sec. 3.3.3.6 by Rietveld refinements. (iv) The number
of propagation vectors of each ground state was specified in Sec. 3.3.4.1.

3.3.5.1. Ground State in Phase C

The main results of the structure determination in phase C may be summarized as follows:
• The magnetic ground state in phase C represents the commensurate (ππ0) structure

t2 (Tab. 3.1).
• This ground state is triple-k, highly noncollinear, and noncoplanar. Magnetic mo-

ments are directed along 〈111〉 directions.
• The magnetic unit cell has the size 2a× 2a× 2a.
• The stabilization of this multi-k ground state cannot be explained by only bilinear

Heisenberg interactions and crystal electric fields. Presumably quadrupolar inter-
actions stabilize the ground state.

It is known from the experimental study in Sec. 3.3.3.2 (cf. Ref. [68]), that phase C
displays commensurate (ππ0) antiferromagnetism without any ferromagnetic component
in the magnetic ground state. We assumed that the magnetic ground state represents one
of the 21 structures fulfilling the two conditions, that all moments (i) have equal modulus
and (ii) are directed along directions from a unique crystallographic star, which is either
〈100〉, 〈110〉, or 〈111〉 (cf. Ref. [106]). Among these 21 structures, which are summarized
in Tab. 3.1, only the five structures s2, s4, d2, d5, and t2 were found to be consistent with
the experimental observations in Secs. 3.3.3.5 and 3.3.3.6. Further, only three among the
five structures, namely d2, d5, and t2, were consistent with the field study in Sec. 3.3.4.1,
which required that the ground state is multi-k.
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The presentation of the structure determination is organized as follows. First, real-
space pictures are presented for the five structures, which are in agreement with the
neutron experiments in zero magnetic field. The easy axis and crystal electric fields
of the structures are discussed. Second, symmetry arguments establish that only one
magnetic structure, the (ππ0) antiferromagnet t2, is in agreement with the experimental
observations in Sec. 3.3.4.1. Third, mechanisms stabilizing the multi-k ground state in
phase C are discussed.

Fig. 3.40 shows the five commensurate (ππ0) structures in agreement with the ex-
perimental observations in Sec. 3.3.4. The magnetic moments in s2 are directed along
fourfold 〈100〉 directions, in s4 and d2 along twofold 〈110〉 directions, and in d5 and t2
along threefold 〈111〉 directions. Although knowledge about crystal electric fields often
proves useful for an unambiguous determination of magnetic ground states [68, 69, 106], it
does not permit to distinguish the three structures d2, d5, and t2, as all three are in well
agreement with previous studies on crystal electric fields reporting that the fourfold 〈100〉
axes are the hard directions, whereas twofold 〈110〉 and threefold 〈111〉 directions have
similar energies, suggesting a binary easy plane [113]. The energies of (ππ0) structures
may be compared by a model, which is often used for rare-earth systems [30], accounting
for isotropic bilinear Heisenberg exchange between moments Ji and for crystal electric
fields:

Ĥ =
∑
〈i,j〉

JiJj +
∑
i

Hcf (Ji) . (3.30)

The 21 (ππ0) structures in Tab. 3.1 feature the same isotropic bilinear Heisenberg energies
(cf. Ref. [106]) implying that the first term in Eq. (3.30) is equal for all (ππ0) structures.
Accordingly, with regard to Eq. (3.30) the structures s4, d2, d5, and t2 in Fig. 3.40
should be energetically preferred to s1 due to crystal electric fields. However, the three
structures in question, d2, d5, and t2, cannot be distinguished further by the Hamiltonian
in Eq. (3.30).

In the following, it is established that the symmetry properties of only t2 (among the
five structures in Fig. 3.40) are in agreement with the experimental observations presented
in Sec. 3.3.4.1. In these experiments, magnetic fields broke the symmetry between the
two k-arms Ac1 and Ac2. This broken symmetry should have a vast impact on magnetic
domains. However, in phase C it was found that independent of the field history the
integrated intensities of Bragg peaks located at qI,0 ∈ Ac1 and at qII,0 ∈ Ac2 always feature
the zero-field value, i.e., when magnetic domains were equally populated. In particular,
the magnetic structure factor does not depend on the field history. This can be explained
with the structure t2 but not with the other structures in Fig. 3.40. There are namely only
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two different magnetic domains of the structure t2, Dt2
1 and Dt2

2 . As both domains feature
the same structure factors F 2

Dt21
(h, k, l) = F 2

Dt22
(h, k, l) (cf. Sec. A.1), a magnetic ground

state representing t2 would imply that integrated intensities of Bragg peaks located at
qI,0 ∈ Ac1 and qII,0 ∈ Ac2 do not depend on the field history in agreement with the
experimental observations in Sec. 3.3.4.1. In contrast, for each of the structures s2, s4,
d2, and d5 there exist at least two domains that (i) feature different structure factors and
(ii) may have different energies in the field as there is no symmetry operation mapping
one of the domains on the other while leaving B invariant. In particular, the properties
(i) and (ii) would imply that the integrated intensities of Bragg peaks located at qI,0 ∈ Ac1
and qII,0 ∈ Ac2 strongly depend on the field history.

It should be noted that there are some discrepancies between a ground state representing
the structure t2 and the experiments in Sec. 3.3.4.1. The integrated intensity of the Bragg
peak located at

(
1
2 ,

1
2 , 0

)
in phase C is not entirely independent of the field history, when

fields are applied along the fourfold [001] direction. After a field sweep the integrated
intensity of the Bragg peak was ≈ 12% smaller than after zfc. In principle, this is at odds
with the structure t2. However, for the structures s2, s4, d2, and d5 a difference much
larger than 12% may be expected due to the strong symmetry breaking effect of the field.
Hence, the ground state in phase C represents most likely the structure t2.

s2 s4 d2 d5 t2(a1) (a2) (b1) (b2) (c)

Figure 3.40.: Magnetic ground state candidates in phase C. Among the 21 commensurate (ππ0)
antiferromagnets in Tab. 3.1 regarded for the structure determination only 5 are compatible with
the neutron diffraction data in zero magnetic field (Sec. 3.3.3). These structures are shown in
the figure. The structures (a1) s2 and (a2) s4 are single-k. The structures (b1) d2 and (b2) d5
are double-k. The structure (c) t2 is triple-k. Among them, only the three multi-k structures
d2, d5, and t2 are in agreement with the field study in Sec. 3.3.4.1. As concluded by means of
symmetry arguments in the text, only the structure t2 may represent the ground state in phase
C.



110 Chapter 3. Magnetic Superstructures in Rare-Earth Copper Compounds

3.3.5.2. Ground State in Phase IC1

The main results of the magnetic structure determination in phase IC1 may be summa-
rized as follows:

• The magnetic ground state in phase IC1 represents the triple-k structure T2 (cf.
Fig. 3.45), which is a superposition of one commensurate and two incommensurate
propagation vectors.

• Locally, the structure resembles commensurate (ππ0) antiferromagnets.
• Due to the incommensurate superstructure this local (ππ0) antiferromagnet changes

as a function of real-space coordinates. It is oscillating between coplanar and non-
coplanar arrangements.

• The magnetic unit cell has the size ≈ 2a× 2a× 25a.
From neutron experiments in Sec. 3.3.3.2 it is known, that the magnetic ground state in

phase IC1 is a superposition of propagation vectors of the stars
〈

1
2 ,

1
2 , 0

〉
and

〈
1
2 − δ,

1
2 , 0

〉
.

The Fourier decomposition of the ground state was specified in Sec. 3.3.3.5. In particular,
the pre-factors of the sinusoidal terms were determined. As established in Sec. 3.3.4.1,
the structure may either represent a double-k structure with propagation vectors kc1 and
kic2,z or a triple-k structure with propagation vectors kc1, kic2,z, and kic3,z.

The structure determination is organized as follows. First, it is argued that there are
three specific structures in agreement with the experimental observations in Secs. 3.3.3.5
and 3.3.4.1 that may potentially describe the ground state in phase IC1, namely the
double-k structure D1 and the triple-k structures T1 and T2. Second, an intuitive picture
is established, how the commensurate and incommensurate terms in the Fourier series
of the magnetic ground state geometrically look like. Further, it is discussed how these
components may be superposed to double-k and triple-k structures. Third, a real-space
picture for the three magnetic structures D1, T1, and T2 is established. Fourth, it is argued
that only T2 may represent the ground state in phase IC1.

There is only one double-k structure, D1, which is in agreement with the neutron study
in 3.3.4.1. It may be written as follows:

mD1(R) = m0 · (001)T exp (kc1 ·R) +m1 · (100)T cos
(
kic2,z ·R + φ1

)
(3.31)

As the phase shift φ1 can be eliminated by a translation R′ = R + τ of the origin such
that τ · kic2,z = φ1 and hence kic2,z · R + φ1 = kic2,z · R′, it may be omitted, i.e., φ1 = 0.
The size of the moments is not constant, but varies as a function of real-space coordinates
R = a · (x, y, z), as |mD1(R)| = |cos (2πδ · z)|.
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The triple-k structures that are in agreement with the neutron study in 3.3.4.1 may be
expressed in terms of:

m3k(R) = m0 · (001)T exp (kc1 ·R) +m1 (100)T cos
(
kic2,z ·R + φ1

)
+

+m1 (010)T cos
(
kic3,z ·R + φ2

)
. (3.32)
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Figure 3.41.: Spatial dependence of the modulus |m3k| of the triple-k structures m3k, which are
defined in the text, as a function of the phase-shift φ2. Shown are z-dependences of the modulus
for triple-k structures m3k with different phase-shifts φ2. This function is well defined, as the
modulus does not depend on x and y. For φ0 = π

2 only, the modulus is spatially constant. The
spatial dependence is shown for the specific case m0 = m1. For m0 6= m1 spatial dependences
are qualitatively identical.

One of the two phase-shifts may be omitted, e.g., φ1 = 0, corresponding to a translation
of the origin. However, the second phase shift φ2 represents the relative phase of the two
incommensurate propagations and is crucial for the shape of the magnetic structure.
This is indicated by the spatial dependence of the modulus as a function of φ2. Fig.
3.41 shows the modulus |m3k| as a function of z for different phase shifts between 0 and
π. The function of z is well defined, as the modulus does not depend on the spatial
coordinates x and y. The z-dependence is shown for the specific case m0 = m1, but it is
qualitatively identical for m0 6= m1. The spatial dependence of the modulus is pronounced
for φ0 = 0 and φ0 = π. For φ0 = π

2 only, the modulus of m3k is spatially constant. The
relative phase φ2 cannot be inferred from first-order neutron scattering [8] and it may be
extremely difficult to unambiguously determine relative phases in a multi-k structure (cf.
Refs. [105, 142]).

For the present study we investigated the following two cases: (i) the triple-k structure
T1 representing m3k with phase shift φ2 = 0 and (ii) the triple-k structure T2 representing
m3k with phase shift φ2 = π

2 . Structures with phase shifts 0 < φ0 <
π
2 may be seen as a

mixture of the two magnetic structures T1 and T2.
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(a)

(b)

(c)

(d)

[001]

(e)

[100]
[010]

Figure 3.42.: Real-space pictures of the components in the Fourier series of the ground state
in phase IC1. (a) Commensurate antiferromagnetic component ∼ êz · cos (kc1 ·R). (b) In-
commensurate antiferromagnetic component ∼ êy · cos

(
kic3,z ·R

)
representing an amplitude-

modulated antiferromagnet. (c) Superposition of two amplitude modulations êx cos
(
kic2,z

)
+

êy cos
(
kic3,z + φ

)
with phase φ = 0, and (d) with phase φ = π

2 . (e) Triple-k structure repre-
senting a superposition of (d) and (a).

Before discussing the three structures in detail, it is instructive to establish an intuitive
real-space picture of the single components that appear in the Fourier decomposition of
the magnetic structures:

• Fig. 3.42 (a) illustrates the commensurate antiferromagnetic component ∼ êz ·
cos (kc1 ·R) representing a collinear texture, for which all moments are directed
along ± [001]. The modulus of the moments is constant. Along [001] bonds nearest
neighbours are coupled ferromagnetically, along [100] and [010] antiferromagneti-
cally.

• Fig. 3.42 (b) illustrates the incommensurate antiferromagnetic component êykic3,z
representing an antiferromagnetic amplitude modulation. The structure is akin to
the antiferromagnetic spin-density wave, which was reported in chromium [143].
The structure is collinear and all moments are directed along ± [010]. As a function
of x and y, the modulus of the moments is constant. As a function of z, the modulus
of the moments oscillates sinusoidally with a pitch length of ∼ 1

2δ · a ≈ 25 · a. Along
[100] and [001] bonds nearest neighbours are coupled antiferromagnetically, along
[010] bonds ferromagnetically.

The superposition of two or more amplitude modulations may lead to complex magnetic
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textures. In this section our emphasis is on superpositions of incommensurate wave vectors
that lie in the vicinity of different commensurate (ππ0) wave vectors and that have an
incommensurate splitting with respect to the same fourfold 〈100〉 direction, i.e., a collinear
splitting. Figs. 3.42 (c) and (d) show such superpositions of amplitude modulations:

êx cos
(
kic2,z

)
+ êy cos

(
kic3,z + φ

)
. (3.33)

In Fig. 3.42 (c) a structure is shown, for which they are superposed with the same phase,
i.e., φ = 0. The result is a noncollinear but coplanar antiferromagnet with modulated
amplitude. In Fig. 3.42 (d) a structure is shown, for which the two amplitude modulations
are superposed with a shifted phase of φ = π

2 . The result is a complex magnetic structure
with constant modulus of magnetic moments. Along the z direction the moments together
form an antiferromagnetic helix with periodicity of ≈ 25 lattice parameters. Fig. 3.42 (e)
shows a structure, which represents a superposition of Fig. 3.42 (d) and Fig. 3.42 (a).

[001]

[100]

D S

S

D

D

Figure 3.43.: Double-k structure D1 that was considered as possible candidate for the ground
state in phase IC1. The structure is a superposition of one commensurate and one incommensu-
rate propagation vector. Locally the structure is akin to commensurate (ππ0) antiferromagnets.
The magnetic superstructure cell is onedimensional with the following characteristic z-regions.
In z-region D the local antiferromagnet represents the structure d1 (cf. Tab. 3.1), in z-region S
it represents the antiferromagnet s1.

In the following, real-space pictures for the three structures D1, T1, and T2 are es-
tablished. In the presentation, real-space pictures are shown for the specific case, where
m0 = m1 = m2, representing archetypes for all other structures with parameters m0 6= m1.
Realistic values m0 and m1 = m2 are inferred from experiments and commented on.

Fig. 3.43 shows the double-k structure D1. Locally, i.e., within a local magnetic cell
of size (2a)3, the structure D1 is akin to commensurate (ππ0) antiferromagnets listed
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in Tab. 3.1. The magnetic superstructure cell is onedimensional along the z direction.
The local (ππ0) antiferromagnets change as a function of z with a periodicity of ≈ 25
lattice parameters due to the magnetic superstructure. As a function of x and y the
local (ππ0) antiferromagnet does not change. This leads to distinct characteristic z-
regions. In the z-region D, the structure is coplanar and the local antiferromagnet is
akin to the commensurate antiferromagnet d1 (cf. Tab. 3.1). In the z-region S, the
structure is collinear and the local antiferromagnet is akin to s1. In the z-region D, all
magnetic moments are parallel to 〈110〉 directions. In the z-region S, the moments are
directed essentially along 〈100〉 axes, which is at odds with previous studies on the crystal
electric fields [113]. The modulus of the magnetic moments is strictly finite but not
constant. The magnetic ground state, if representing the structure D1, presumably has a
ratio m1/m0 6= 1. The exact value may be inferred from experimental data in Sec. 3.3.3.7.
Therefore, integrated intensities I (q) in Tab. 3.6, which may represent measured structure
factors, may be compared with the magnetic structure factor σD1 (σ) as calculated for
the magnetic structure D1. For the calculation of the structure factor via Eq. (2.4), all
domains of D1 have to be taken into account. The measured and calculated structure
factors were compared for the following positions q0 =

(
1
2 ,

1
2 , 0

)
, q1,2 =

(
1
2 ± δ,

1
2 , 0

)
, and

q3,4 =
(

1
2 ,

1
2 ± δ, 0

)
. It is obtained:

σD1 (q1) + σD1 (q2) + σD1 (q3) + σD1 (q4)
σD1 (q0) = I (q1) + I (q2) + I (q3) + I (q4)

I (q0) (3.34)

⇒ m1/m0 ≈ 2.50 (3.35)

Qualitatively, the structure D1 with a ratio m1 ≈ 2.50 · m0 is akin to the archetype
structure D1 with values m1 = m0. Only, the local antiferromagnet in z-region D is
slightly distorted and the moments are tilted towards the hard fourfold directions. For
m1/m0 = 1 the moments are parallel to 〈110〉 directions, enclosing angles ±45◦ with
± [100]. In contrast, for m1/m0 = 2.5 the moments are tilted away from these 〈110〉
directions towards 〈100〉 directions, enclosing angles 21.8◦ with ± [100]. In z-region S the
local antiferromagnet is unaffected.

Fig. 3.44 shows the triple-k structure T1. The local (ππ0) character is again preserved.
The superstructure cell is again onedimensional along the z-direction. The local antifer-
romagnet changes as a function of z with a periodicity of ≈ 25 lattice parameters due to
the incommensurate superstructure. As a function of x and y the local antiferromagnet
does not change. This leads to distinct characteristic z-regions. In z-region T the struc-
ture is noncoplanar and the local antiferromagnet is akin to t1. In z-region S the local
antiferromagnet is collinear and akin to s1. In the z-regions, where the local antiferro-
magnets are noncoplanar, all magnetic moments are directed along 〈111〉 axes, whereas in
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[001]

[010]

T S

T

S

T

Figure 3.44.: Triple-k structure T1 that was considered as possible candidate for the ground
state in phase IC1. The structure is a superposition one commensurate and two incommensurate
propagation vectors. Locally the structure is akin to commensurate (ππ0) antiferromagnets. The
magnetic superstructure cell is onedimensional with the following characteristic z-regions. In z-
region T the local antiferromagnet represents the structure t1, in z-region S it represents the
antiferromagnet s1.

the z-regions, where the local antiferromagnets are collinear, they are directed along 〈100〉
axes, which are assumed to be the hard axes. The modulus of the magnetic moments is
always finite but not constant.

Fig. 3.45 shows the triple-k structure T2. The structure displays local (ππ0) character
and the local antiferromagnet changes as a function of z with a periodicity of 25 lattice
parameters due to the incommensurate superstructure. As a function of x and y the
local antiferromagnet does not change. This leads to the following distinct z-regions in
one unit cell. In z-region T1 the structure is noncoplanar and the local antiferromagnet
is akin to the structure t1. In z-region T2 the structure is also noncoplanar. The local
antiferromagnets in T1 and T2 correspond to the two chiral domains of the structure t1.
The two domains are related to each other, for instance, (i) by time reversal, which inverses
the direction of each magnetic moment, i.e. M → −M, or (ii) by a reflection at one of
the planes (100), (010), or (001). In the two z-regions D1 and D2 the magnetic structure
is coplanar corresponding to two different (orientational) domains of the antiferromagnet
d1. In the z-regions D1 and D2 the moments are directed along twofold directions and
in the z-regions T1 and T2 they are directed along threefold directions. The magnetic
moments possess equal modulus on each site. A realistic value m1/m0 of the ground state
in IC1 representing T2 may again be determined from experimental data. The calculation
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[001]

[010]

T1 T2D1 D2

T1

T2

D1

D2T1

Figure 3.45.: Triple-k structure T2 representing the ground state in phase IC1. The structure is
a superposition one commensurate and two incommensurate propagation vectors. The incom-
mensurate modulations are phase shifted by π

2 . Locally the structure is akin to commensurate
(ππ0) antiferromagnets. The magnetic superstructure cell is onedimensional with the following
characteristic z-regions. The local antiferromagnets in the z-regions T1 and T2 represent two
different domains of the structure t1, in the z-regions D1 and D2 they represent two different
orientation domains of the antiferromagnet d1. The figure shows the structure T2 for m0 = m1.
The case m1/m0 ≈ 1.77, which may describe the experimental data, is discussed in the text.

is analogous to that for D1, except for the number of possible domains. It is obtained by
comparison of calculated and measured structure factors:

σT2 (q1) + σT2 (q2) + σT3 (q3) + σT2 (q4)
σT2 (q0) = I (q1) + I (q2) + I (q3) + I (q4)

I (q0) (3.36)

⇒ m1/m0 ≈ 1.77 (3.37)

There are no qualitative differences between the archetype structure T2 with m0 = m1

and the structure T2 with m0 6= m1. Only, the local antiferromagnets are distorted as
explained in the following. For m1/m0 = 1, in the z-regions T1 and T2 the moments are
directed along 〈111〉 axes, enclosing angles ±35.26◦ with one of the face diagonals ± [110]
or ± [110], respectively. In contrast, for m1/m0 = 1.77 the moments are tilted towards
the face-diagonals away from [001], enclosing angles ±21.78◦ with these face diagonals.
For m1/m0 = 1, in the z-regions D1 and D2 the moments are perfectly directed along
〈110〉 axes, enclosing angles ±45◦ with one of the two directions + [001] and − [001],
respectively. For m1/m0 = 1.77, the moments are tilted towards [010] enclosing angles
±60.53◦ with ± [001]. In particular, in both cases the moments enclose large angles with
the hard fourfold directions.

In the following, it is established that only the triple-k state T2 may represent the
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magnetic ground state in phase IC1. The reasons are as follows. From the three structures
that are in agreement with the neutron data, T2 is the only one in agreement with studies
on crystal electric fields [113], as all moments enclose large angles with fourfold axes, which
were reported to be clearly the hard directions. In contrast, for both D1 and T1 there
are regions in real space, where the moments are parallel to the energetically unfavorable
fourfold directions. Furthermore, the triple-k structure T2, combining incommensurate
propagation vectors with collinear incommensurability, gives an explanation for peaks at
higher-harmonic positions

(
1
2 ± 3δ, 1

2 , 0
)

that were discussed in Sec. 3.3.3.7 (cf. Ref. [30]).
For D1 no such mixed higher-harmonics would exist.
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3.3.5.3. Ground State in Phase IC2

The main results of the magnetic structure determination in phase IC2 may be summa-
rized as follows:

• The magnetic ground state in phase IC2 represents a complex multi-k antiferromag-
net, which is modulated with an inommensurate superstructure.

• As an educated guess for the magnetic ground state, the structureM1 is suggested.
• Locally, M1 is akin to commensurate (ππ0) antiferromagnets. Due to the super-

structure this local antiferromagnet spatially varies between collinear, coplanar, and
noncoplanar arrangements.

• The magnetic unit cell has a size of ≈ 50a× 50a× 2a.

From neutron experiments in Sec. 3.3.3.2 it is known, that the magnetic ground state in
phase IC2 is a superposition of propagation vectors of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
.

The pre-factors to the sinusoidal terms in the Fourier decomposition of the ground state
were specified in Sec. 3.3.3.5. It was further established in Sec. 3.3.4.1, that the structure
is a superposition of propagation vectors of k-arms ∈ Sc1, Sc2, S ic1 , and S ic2 . In particular,
the structure combines propagation vectors with noncollinear incommensurability, such
as
(

1
2 − δ, 0,

1
2

)
and

(
0, 1

2 − δ,
1
2

)
. This is reflected by higher harmonics that were observed

at positions such as
(

1
2 + δ, 1

2 ± 2δ, 0
)
, as reported in Sec. 3.3.3.7.

In the following, a structureM1 is presented as educated guess for the magnetic struc-
ture in phase IC2. The structure M1 is chosen such that it resembles the structure in
phase IC1 and is in agreement with all experimental observations. We propose a structure
M1, which arises due to a superposition of two antiferromagnetic helices and commensu-
rate antiferromagnetic components. In particular, the structure M1 shall represent the
directorfield of the following vectorfield:

mM1 (R) = m0 · [êz exp (ikc1 ·R) + êx exp (ikc2 ·R) + êy exp (ikc3 ·R)] +

+m1 ·
[
(100)T cos

(
kic2,y ·R

)
+ (001)T cos

(
kic1,y ·R + π

2

)
+

+ (010)T cos
(
kic3,x ·R

)
+ (001)T cos

(
kic1,x ·R + π

2

)]
(3.38)

= cM1 (R) + icM1 (R) . (3.39)

The directorfield of the structure may be defined in terms of nM1 = mM1 (R) / |mM1 (R)|.
The structure was split into its commensurate and incommensurate components.

The pre-factors of the commensurate contributions could not be successfully deter-
mined in the polarization analysis. However, we assume, that they are related to one
irreducible representation only, namely Γ3 (kc), as is case in phase IC1. The experimental
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[010]

[100]

Figure 3.46.: Magnetic structureM1, which was suggested as educated guess for the magnetic
ground state in phase IC2. Locally the structure is akin to various commensurate (ππ0) antifer-
romagnets. Local antiferromagnets represent t1, the moments pointing along 〈111〉 directions,
or they represent d1, the moments pointing along 〈110〉, or s1, the moments pointing along
〈100〉.

study suggests that the incommensurate components are much larger than commensurate
components. In the following, the ratio is arbitrarily set to m0

m1
= 0.1.

Fig. 3.46 shows a real-space picture of the structure M1. The unit cell has a long
wavelength along two spatial directions and has the size 50a× 50a× 2a. Locally, within a
crystallographic unit cell, the structure is akin to commensurate (ππ0) antiferromagnets.
As a function of x and y, the local antiferromagnet changes. The local antiferromagnets
are akin to the commensurate structures s1, d1, and t1, respectively. In large parts of the
magnetic unit cell, the moments point either along threefold directions, i.e., M ‖ 〈111〉,
and the local antiferromagnet is akin to the structure t1, or they point along twofold
directions, i.e., M ‖ 〈110〉, and the local antiferromagnet is akin the structure d1. Notably,
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very few moments are directed along fourfold directions, i.e., M ‖ 〈100〉 (blue regions).
At these points the local antiferromagnet is akin to the structure s1. Hence, the structure
M1 is in agreement with studies on crystal electric fields [113] that showed that the 〈100〉
directions are clearly the hard axes.



3.3. The Compound HoCu 121

3.3.6. Topological and Geometric Properties

The magnetic structures that were determined in Sec. 3.3.5 exhibit intriguing geometric
and topological properties that are discussed in this section. The presentation starts with
an introduction to the properties, which were addressed in this section. These properties
are then discussed for the ground states in phases C (Sec. 3.3.6.1), IC1 (Sec. 3.3.6.2), and
IC2 (Sec. 3.3.6.3). Finally, we investigated, whether superpositions of (ππ0) propagation
vectors may form knots with finite Hopf index, which is presented in Sec. 3.3.6.4.

In the following, an overview over the properties considered in this section is provided.
It is addressed, how noncoplanar the magnetic ground states are. Noncoplanar mag-
netic structures characteristically feature (scalar) spin chiralities [144]. For a set of
three magnetic moments mi, mj, and mk the scalar spin chirality is defined in terms of
mi · (mj ×mk). As this cross product vanishes for a set of coplanar vectors, the scalar
spin chirality measures how noncoplanar a magnetic structure is. Noncoplanar magnetic
structures are often discussed in connection with the anomalous Hall effect, as Berry
phases may be related to scalar spin chiralities, which may represent a fictitious magnetic
field for the conduction electrons [145].

Another aspect addressed in the study, is how well the 120◦ relationship (cf. Ref. [146])
is fulfilled for three magnetic moments. Therefore, the following vector may be calculated:

κ = 2
3
√

3
(mi ×mj + mj ×mk + mk ×mi) (3.40)

The closer the modulus |κ| is to 1, the better the 120◦ relationship is fulfilled [147, 148].
It is furthermore addressed, whether the ground states in phases C, IC1, and IC2 are

topologically protected against unwinding. To investigate the topology of magnetic
ground states it is of major importance to find the correct order-parameter space
[23, 149], as the topology of the order-parameter space P also reflects the topological
properties of the magnetic ground state. In particular, we investigate the homotopy
groups of the order-parameter space, as they provide a mathematical tool to determine
whether maps are protected against unwinding (cf. Ref. [150] for further information). In
particular, a ground state, which is associated with a nontrivial element in a homotopy
group, may be protected against unwinding.

In the following, some examples of order-parameter spaces are given. For a ferromag-
netic system of spins that can rotate on a circle (as in the ferromagnetic XY model), the
order-parameter space may be given by S1, for spins that can point in any direction on a
sphere, the order-parameter space may be given by S2. In contrast, for antiferromagnets,
which are highly discontinuous, it is more complicated to find the right order-parameter
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space. For collinear antiferromagnets, an order-parameter space may be identified as
follows. Conventional collinear antiferromagnets are typically described in terms of a
staggered magnetization [23]. As the staggered magnetization is equivalent for antipodal
points on a sphere ±n̂ ∈ S2, the order-parameter space of a collinear antiferromagnet may
be related to real projective spaces RP n, which are in fact constructed by identification of
antipodal points on a sphere. Accordingly, an antiferromagnetic cycloid [151], which rep-
resents a modulated variation of a collinear antiferromagnet, may be naturally described
in a RP 1 order-parameter space. For the highly noncollinear antiferromagnets discussed
in this thesis this description in terms of a staggered magnetization fails. Hence, concepts
were established, as presented further below, to identify appropriate order-parameter
spaces.

In order to investigate the topology of the order-parameter space, the homotopy groups
πn (P) may be calculated [150]. The properties of homotopy groups are nonlocal properties
of P and may be linked to specific physical phenomena [152]. Of particular interest in
this thesis are the fundamental group π1 (P), as well as the group π2 (P) (cf. Ref. [153]).
The fundamental group π1 (P) describes the homotopy types of closed curves in the order-
parameter space P . Curves that are associated with the same element in π1 (P) may be
continuously transformed into each other. In particular, curves, which are not associated
with 0 ∈ π1 (P), cannot be contracted to a single point in P . The group π2 (P) describes
the homotopy type of maps S2 → P (cf. Ref. [154]). Again, two maps that are associated
with the same element in π2 (P) can be continuously transformed into each other. A map,
which is not associated with 0 ∈ π2 (P) cannot be tranformed into a constant map and is
protected against unwinding.

There are prominent examples for the application of the homotopy concept:
• The order-parameter space of the ferromagnetic XY model is given by SO (2) ' S1.

The fundamental group of this order-parameter space is non-trivial, as π1 (SO (2)) =
Z. Two curves on a circle can be continuously tranformed into each other, if they
have the same winding number ∈ Z. The non-trivial elements in π1 (SO (2)) may
be associated with point defects in the ferromagnetic XY model [147].

• The order-parameter space of the ferromagnetic Heisenberg model is given by S2

[149]. The homotopy group π2 (S2) = Z is non-trivial. The non-trivial elements in
π2 (S2) have a non-trivial winding number and may be related to instantons in the
ferromagnetic Heisenberg model [147]. In fact, Skyrmions, as detected in MnSi [6]
or FeCoSi [11], may be described by maps, which are associated with a non-trivial
element in the homotopy group π2 (S2). Accordingly, they may not be continuously
transformed into a collinear ferromagnet, which has the winding number 0. Hence,
they may be topologically protected against unwinding.
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• Around 1960 Tony Skyrme introduced the concepts of Skyrmions for the description
of nuclear particles in terms of a continuous field theory [155–157]. These particle-
like excitations may be related to elements of the homotopy group π3 (S3) = Z.

• Hopfions are knots with a non-trivial Hopf index representing non-trivial elements
in the group π3 (S2) = Z.

The calculation of homotopy groups can be extremely difficult even for simple order-
parameter spaces. Luckily, for many physical order-parameter spaces, homotopy groups
can be deducted from spherical homotopy groups πn (Sm), which were calculated up to
high values of m,n ∈ N (cf. Ref. [154]). Note, that even if the homotopy group πn0 (P)
is known, it may still be difficult to determine the homotopy type of a specific map
γ : Sn0 → P in the group πn0 (P). In the specific case Sn → Sn, i.e., P = Sn, the
determination of the homotopy type is simple, as the homotopy type of γ : Sn → Sn

within πn (Sn) is related to the Brouwer degree of the map γ [158], which may easily be
calculated. In contrast, for a map γ : S3 → S2, where the homotopy type is related to the
Hopf index of γ, the calculation is not straightforward. In physical cases, i.e., when the
map is not too unconventional, the Hopf index equals the linking number of two different
preimages γ−1 (y1) and γ−1 (y2) of y1, y2 ∈ S2 [159]. Hence, in practice, the Hopf index
may often be determined graphically [160].

It is further addressed, how time reversal T acts on the magnetic ground states. The
impact of time reversal is important for the prerequisites of numerous theorems and
phenomena. If time reversal is preserved, i.e., [H, T ] = 0, Kramers theorem [161] implies
that energy eigenstates are doubly degenerate, if the total spin in the system is odd. The
time reversal operator T reverses the direction of each magnetic moment in a system, i.e.,
T S = −S. Hence, a magnetic structure by definition breaks the time reversal symmetry,
as Tm (R) = −m (R). However, weaker conditions often ensure for a broad range of
interactions, that Kramers theorem is still applicable although time reversal symmetry is
broken [162]. In particular, if time-reversal in combination with another operator O, for
which T O is antiunitary and (T O)2 = −1, represents a good symmetry, an analogue of
Kramers theorem still implies that eigenstates are doubly degenerate [163]. A collinear
antiferromagnet may, e.g., be split into two sublattices that are shifted by a translation
vector τ such that the structure is ferromagnetic on each sublattice. The translation
operator Tτ then makes time-reversal to a good symmetry, as:

TτTm (R) = −Tτm (R) = −m (R + τ) = m (R) . (3.41)

Hence, collinear antiferromagnets have doubly degenerate bands.
The impact of time reversal is also important for topological properties of the electronic
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structure. Namely, if spatial inversion and time reversal are good symmetries, the Berry
curvature Ω of the electronic structure is forced to vanish (cf. Ref. [117]). In particular, the
intrinsic anomalous Hall effect as well as Chern numbers, which are obtained by integration
of the Berry curvature [163, 164], vanish. As magnetic long-range order breaks time
reversal symmetry, the Berry curvature Ω may possibly become finite in the presence of
magnetic long-range order. For an ordinary collinear antiferromagnet, the Berry curvature
vanishes nevertheless in the presence of spatial inversion symmetry. Here, the combination
of a translation and time reversal represents a good symmetry forcing the Berry curvature
to vanish. For noncollinear and especially noncoplanar ground states, the Berry curvature
may possibly be finite. However, each system has to be considered separately. The Berry
curvature Ω in the presence of noncollinear (ππ0) order was investigated in detail in the
scope of this thesis, as reported in Secs. 3.3.7.2 and 3.3.7.3

3.3.6.1. Ground State in Phase C

As reported in the following, topological and geometric properties of commensurate (ππ0)
antiferromagnets were investigated. The focus lies on the structure t2, which represents
the ground state in phase C, but also the other four (ππ0) antiferromagnets, which were
in agreement with the experiments reported in 3.3.3, are commented on.

The results of the considerations may be summarized as follows:
• The magnetic ground state in phase C (structure t2) is noncoplanar. This is reflected

by finite scalar spin chiralities.
• In the presence of the ground state t2, time reversal in combination with a trans-

lation is not a good symmetry, suggesting that Kramers theorem is possibly not
applicable. Note, that the Berry curvature may possibly be finite.

• The other four structures that were in agreement with the experimental results
in Sec. 3.3.3, namely the collinear single-k structures s2 and s4, as well as the
double-k structures d2 and d5, are coplanar. This is reflected by the lack of scalar
spin chiralities. Further, time reversal in combination with a translation is a good
symmetry implying that an analogue of Kramers theorem is applicable.

• In magnetic fields, the coplanar structures d2 and d5 may become noncoplanar.
This is reflected by finite scalar spin chiralities in the presence of ferromagnetic
components. Further, time reversal in combination with a translation is not a good
symmetry. The Berry curvature may possibly be finite.

• In magnetic fields, the collinear structures s2 and s4 may become noncollinear.
There are no finite scalar spin chiralities. However, time reversal in combination
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with a translation is not a good symmetry. Again, the Berry curvature may possibly
be finite.

The discussion in this section is organized as follows. First, the topological properties
of the single-k structures s2 and s4 as well as of the double-k structures d2 and d5 in
zero magnetic field and in magnetic field are discussed. Second, the topological properties
of the triple-k structure t2, which represents the magnetic ground state in phase C, are
discussed. Here, scalar spin chiralities, the 120◦ relationship, and the effect of time reversal
symmetry were considered.

0

- 0.5

0

0.5

fm

(a) (b)

Figure 3.47.: Finite scalar spin chirality in coplanar (ππ0) textures induced by ferromagnetic
components. Considered was the structure d2, which is coplanar in zero magnetic field. Accord-
ingly, spin chiralities are zero at zero magnetic field. (a) A ferromagnetic component fm ‖ [001]
induced by, e.g., a magnetic field inclines the moments effectively out of the basal plane by an
angle θ. (b) Finite scalar spin chiralities are induced by the field, as shown in the green triangle
as a function of tilting angle θ.

All single-k and double-k (ππ0) structures are coplanar in zero magnetic field, which is
reflected by vanishing scalar spin chiralities. For the coplanar but noncollinear structures
d2 and d5, however, finite scalar spin chiralities may be caused by magnetic fields, as
demonstrated in the following. Consider therefore, e.g., the structure d2 and a magnetic
field that is applied along the [001] direction. The effect of the magnetic field on the
magnetic ground state strongly depends on magnetocrystalline anisotropies [165]. How-
ever, in a simple picture, it may be assumed that the moments of d2 are inclined out of
the basal plane by an angle θ due to a ferromagnetic component caused by the magnetic
field. The magnetic structure becomes noncoplanar due to the ferromagnetic component.
Fig. 3.47 shows the scalar spin chirality of the moments on the sites of a triangle as a
function of θ. In zero magnetic field, when θ = 0, the scalar spin chirality vanishes re-
flecting that the structure is coplanar. For increasing θ, the scalar spin chirality increases
until it displays a maximum for θ ≈ 54◦. At this angle, all moments are directed along
〈111〉 directions and the structure is maximally noncoplanar. For angles larger than 54◦

the scalar spin chirality decreases and vanishes at θ = 90◦, where the structure is collinear
with all moments directed along 〈100〉 directions.
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In the following, it is discussed, how time reversal acts on the single-k and double-k
ground states in zero field and in magnetic fields. Furthermore it is discussed, whether the
prerequisites of Kramers theorem are fulfilled for the single-k and double-k structures. In
zero magnetic field, an analogous version of Kramers theorem is applicable for the single-k
and double-k structures. The single-k structures are bipartite, the two sublattices being
shifted by τ . As a consequence, the operator TτT represents a good symmetry for the
single-k textures s2 and s4 fulfilling the prerequisites of an analogue of Kramers theorem
(cf. Ref. [162]). The double-k antiferromagnets d2 and d5 are not bipartite. However, in
zero magnetic field there is still a vector τ , such that time reversal in combination with
the translation Tτ is a good symmetry, i.e., TτTm = m. Hence, the analogue of Kramers
theorem is still applicable. In the presence of a tiny ferromagnetic component caused by a
magnetic field, however, for both single-k and double-k structures the combined symmetry
TτT may be broken. Whether there is another operator, which in combination with time
reversal is a good symmetry, strongly depends on the interactions in the system. However,
the prerequisites for Kramers theorem may possibly not be fulfilled in magnetic fields.

The triple-k structure t2 is noncoplanar and scalar spin chiralities are finite even in zero
magnetic field. There are in total

(
8
3

)
= 56 triangles within the unit cell 2a · 2a · 2a. For

32 of these triangles the scalar spin chirality is finite. For the same triangles the κ vector,
gauging how good the 120◦ relationship is fulfilled, is finite and amounts |κ| = 8

9 . An
analogue of Kramers theorem is not as easily applicable as for the single-k and double-k
structures. There is namely no translation operator for the structure t2 such that TτT is a
good symmetry. More complex operators representing in combination with time reversal
a good symmetry might exist. Note, however, that the types of interactions in the system
determine, whether the prerequisites for an analogue of Kramers theorem are still fulfilled
for such a putative operator.

The geometry of the structure t2 may be illustrated in terms of layers comprising
crystallographic (111) planes. Fig. 3.48 (a) shows three (111) planes of the structure t2.
The moments located in the same layer are depicted in the same color. Figs. 3.48 (b) show
the layers separately. Each of the layers represents a two-dimensional triangular lattice.
The magnetic structure on each layer is identical, but the layers are shifted with respect
to each other perpendicular to the [111] direction. On a two-dimensional sublattice of
each triangular lattice, the moments are directed along [111]. The remaining moments
form a honeycomb lattice.
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(a) (b)

[111]

Figure 3.48.: The ground state in phase C, which is represented by the structure t2, viewed along
a threefold direction. (a) The structure may be decomposed into staggered layers comprising
crystallographic (111) planes. (b) Each of the layers represents a two-dimensional triangular
lattice.
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3.3.6.2. Ground State in Phase IC1

In the following, the topological and geometric properties of the magnetic ground state
in phase IC1 are presented. Comments are also made on the structures T1 and D1, which
were considered in Sec. 3.3.5.2.

The main results of these considerations may be summarized as follows:
• The magnetic ground state in IC1 (structure T2) may be described in a RP 1 order-

parameter space.
• The structure T2 is topologically non-trivial. It represents a non-trivial element

in π1 (RP 1), which is related to a non-trivial winding number. Accordingly, T2 is
topologically protected against unwinding. In particular, it cannot be continuously
transformed into a collinear antiferromagnet.

• The structure T2 may be portrayed as a lattice of monopoles and antimonopoles.
• The magnetic structures D1 and T1 are topologically trivial. They can be continu-

ously transformed into a collinear antiferromagnet.
The discussion is organized as follows. First, it is established for the structure T2 that

the spatial dependence of the local (ππ0) order may be described in a RP 1 order-parameter
space. Second, it is shown that T2 is topologically non-trivial and that this topology is
related to a non-trivial winding number. Third, it is established that T2 consists of four
cones with a periodicity of 50 lattice parameters, which is twice as much as the periodicity
of T2. Fourth, it is shown that in the z-regions, where local antiferromagnets are non-
coplanar, the structure T2 may be portrayed as a lattice of hedgehogs and antihedgehogs
carrying magnetic charges. Fifth, the topology of the magnetic structures D1 and T1 is
investigated.

As noted earlier (cf. Sec. 3.3.5.2), the structure T2 is locally akin to commensurate (ππ0)
antiferromagnets. As a function of z the local (ππ0) antiferromagnet changes, whereas
it is independent of x and y. In the following, it is established that this z dependence
of the local (ππ0) structure may be described in a RP 1 order-parameter space. These
considerations generalize the concept of a staggered magnetization, which is typically used
for the description of ordinary antiferromagnets.

The structure T2, which was described by means of Eq. (3.32) with φ = π
2 , may be

expressed as follows:

mT2 (R) = m0êz · (−1)x+y +m1
[
êx · (−1)y+z · cos (2πδz) + êy · (−1)x+z · sin (2πδz)

]
.
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Introducing a function f : R → S1, f(z) := (cos (2πδz) , sin (2πδz))T allows to rewrite
T2:

mT2 (R) = m0 · êz · (−1)x+y +m1 ·
(
êx · (−1)y+z , êy · (−1)x+z

)T
· f (z) . (3.42)

The local (ππ0) antiferromagnets are unambiguously determined by the values f (z) ∈
S1. But as it turns out, the same local antiferromagnet is obtained for antipodal points on
the circle f = ±n̂ ∈ S1. Hence, the natural image set of the function f is the real projective
line, i.e., f : R→ RP 1. The periodicity of the ground state T2 in z direction amounts to
25 lattice constants. As one unit cell [0; 25[ may be identified with S1, the parameter f
may also be understood as function µ : S1 → RP 1. Fig. 3.49 illustrates the description of
the ground state T2 in terms of the function µ in the RP 1 order-parameter space. Each
element f = (cos (φ) , sin (φ)) ∈ RP 1 unambiguously represents a local commensurate
(ππ0) antiferromagnet. One half of the circle in the figure represents the space RP 1. In
this scheme, the function µ represents a path on the circle that is oriented anticlockwise.
As seen further below, this path is associated with a nontrivial element in the fundamental
group implying that the structure T2 is protected against unwinding.

In order to investigate the topological properties of the order-parameter space RP 1,
the spherical homotopy groups πn (RP 1) were calculated. Since RP 1 is homeomorphic
to S1 [166], the topological properties of RP 1 are the same as of S1. In particular, the
fundamental group is non-trivial, π1 (RP 1) = π1 (S1) = Z, whereas all higher spherical
homotopy groups vanish, πn (RP 1) = 0, n ≥ 2 [154]. Due to this mathematical equiva-
lency between S1 and RP 1, the spatial dependence of the local (ππ0) structure may also
be described in a S1 order-parameter space.

The topology of T2 is non-trivial, which can be shown easily as follows. A home-
omorphism between the real projective line and a circle is given by h : RP 1 → S1,
h ([z]RP 1) = z2. As the S1 order parameter h (µ) makes a full winding with winding num-
ber +1 over a distance of 25 lattice constants, h (µ) represents the non-trivial element +1
in π1 (S1). In particular, µ represents the non-trivial element +1 in the group π1 (RP 1)
and the structure T2 is associated with a non-trivial winding number.

As the structure T2, i.e., the function µ, is represented by a non-trivial element in the
group π1 (RP 1), it cannot be continuously transformed into the collinear antiferromagnet
s1 (cf. Tab. 3.1), which is represented by the trivial element 0 in the group π1 (RP 1).
Accordingly, the structure T2 is protected against unwinding.

As shown in the following, the ground state T2 consists of four cones. Two of the cones
are propagating in positive ẑ direction with mathematically positive winding sense (coun-
terclockwise). The other cones are propagating in negative direction. The winding sense
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[001]

[010]
[100]

T1T2

D1

D2

Figure 3.49.: Magnetic ground state in phase IC1, representing the structure T2, as described
in a RP 1 order-parameter space. The spatial dependence of the local (ππ0) order in phase IC1
may be described in the parameter space RP 1, which is obtained by identifying antipodal points
on a circle. Accordingly, each local (ππ0) antiferromagnet of the structure T2 is unambiguously
represented by a specific value of f = (x, y) ∈ RP 1. In the illustration, the upper semicircle
represents the space RP 1. Each of the local antiferromagnets of the ground state T2 is repre-
sented by a point on the semicircle. In this scheme, the structure T2 is represented by a path µ
on the circle, which is oriented anticlockwise.

is also mathematically positive (counterclockwise), but with respect to the negative ẑ di-
rection. Hence, the cone chiralities are opposite. Note that the sign of these chiralities was
random due to the random definition of the structure T2. Due to the achiral space group,
there is also a second domain of the structure T2, where all chiralities are opposite. The
pitch length of each cone is given by ∼ 1

δ
≈ 50 lattice constants, which is twice as large as

the pitch length of the composite magnetic structure T2. What seems like a contradiction
reflects the RP 1 nature of the magnetic ground state. For a better understanding of the
structure T2 it is instructive to first discuss its local symmetry relations and the relations
between moments in a local unit cell. Therefore, the eight moments at the corners of the
unit cell U0 = [0, a]× [0, a]× [z0, z0 + a] are considered. Fig. 3.50 shows the cell U0, which
comprises the moments S1, .., S8. Once S1 := mT2 (0, 0, z0) is given, the directions of the
other moments may be calculated from S1 by means of simple operators. Tab. 3.50 gives
an overview over these operators, which are defined via Si = OS1. The moments S2, S3,
and S4 at z = z0 are related to S1 by operators P̂x, P̂y, and P̂z, which change the sign of
the x-, y-, and z-spin-component, respectively. The moments at z = z0 + 1, i.e., S5, S6,
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R mT2 (R)
(0, 0, 0) S1
(1, 0, 0) S2 P̂yP̂zS1
(1, 1, 0) S3 P̂xP̂yS1
(0, 1, 0) S4 P̂zP̂xS1
(1, 1, 1) S5 Rε S1
(0, 1, 1) S6 P̂yP̂zRε S1
(0, 0, 1) S7 P̂xP̂yRε S1
(1, 0, 1) S8 P̂zP̂xRε S1

Figure 3.50.: Relation between magnetic moments within a crystallographic unit cell of the
structure T2. The four moments at a fixed z coordinate are related to the spin S1 through
operators P̂x, P̂y, and P̂z, changing the sign of x-, y-, and z-spin-component, respectively. The
moments at z+ 1 are related to S1 through a combination of operators P̂x, P̂y, P̂z and a helical
rotation Rε.

S7, and S8, are related to S1 by a combination of P̂x, P̂y, P̂z and a small helical rotation
by an angle ε = 2πδ ≈ 7.2◦, which is given by:

Rε =


cos (ε) − sin (ε) 0
sin (ε) cos (ε) 0

0 0 1

 . (3.43)

The relations in Fig. 3.50 suggest a decomposition of the the ground state T2 into four
sublattices, such that the structure T2 is continuous on each sublattice. Each sublattice
represents a bbc lattice. The first sublattice contains S1 and S5, the second one S2

and S6, the third one S3 and S8, and the fourth one S4 and S7. For the mathematical
definition of these sublattices, we define a cubic lattice with lattice constants 2a, i.e.,
C2a = {2a · (i, j, k)}. The four bbc lattices may then be described as follows:

L1 = (RS1 + C2a) ∪ (RS5 + C2a) (3.44)
L2 = (RS2 + C2a) ∪ (RS6 + C2a) (3.45)
L3 = (RS3 + C2a) ∪ (RS7 + C2a) (3.46)
L4 = (RS4 + C2a) ∪ (RS8 + C2a) (3.47)

On each sublattice the structure T2 is continuous and represents a cone. On, e.g., L1

Eq. (3.42) reduces to:

mT1 (R) |R∈L1= mT1 (0, 0, 2 · z) = m0 · êz +m1êy cos (4πδ · z) +m1êx sin (4πδ · z) z ∈ Z .
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The periodicity of the cone ∼ 1
δ
≈ 50 is inferred directly from this formula. Fig. 3.51

(a) shows the cone on sublattice L1 within one superstructure cell. Most notably, the cone
makes only half of a winding within a full superstructure cell. Fig. 3.51 (b) illustrates
the signs of the cone chiralities on the sublattices. The cones on sublattices L1 and L3

propagate in positive z direction and have positive chirality χ = +1. On sublattices L2

and L4 the cone chirality is opposite χ = −1.
With respect to time reversal symmetry, we note that there is no simple operator

that makes time reversal to a good symmetry in the presence of the ground state T2.
Accordingly, the Berry curvature may potentially be finite for the ground state T2.

It was illustrated in Sec. 3.3.5.2 that the local (ππ0) antiferromagnets vary between
coplanar and noncoplanar arrangements. As a measure of how coplanar the structure
T2 is, scalar spin chiralities may be calculated. In z-regions D1 and D2 all scalar spin
chiralities vanish reflecting the coplanar arrangement of the magnetic moments. In con-
trast, triangles with finite scalar spin chiralities are found everywhere else, and they are
particularly large in the z-regions T1 and T2, reflecting the noncoplanar arrangement of
the moments.

[001]

[010]

(a) (b)

Figure 3.51.: Decomposition of the ground state of phase IC1, represented by T2, into cones.
(a) The magnetic structure T2 may be decomposed into four bbc-lattices. On each sublattice
the structure T2 is continuous and represents a cone. Shown in (a) is the structure T2 on the
sublattice L1. The cone has a periodicity of 50 lattice parameters. (b) On sublattice L1, which
comprises S1 and S5, and on sublattice L3, which comprises S3, and S7, the cone propagates
along [001] with positive chirality (green). On sublattice L2, which comprises S2 and S6, and
on sublattice L4, which comprises S4 and S8, the cones have opposite chirality (purple).

In the following it is shown, that the local (ππ0) antiferromagnets in the spatial re-
gions T1 and T2 may be portrayed as hedhehog-antihedgehog lattices. Accordingly, the
structure T2 may be viewed as layers comprising monopoles and layers comprising anti-
monopoles. The commensurate (ππ0) antiferromagnets in z-regions T1 and T2 represent
two different chiral domains of the same commensurate (ππ0) structure t1. Fig. 3.52
illustrates the decomposition into hedgehogs and antihedgehogs. The positions of hedge-
hogs and antihedghogs are reversed for the two domains. This decomposition may sug-
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gest the existence of tiny monopole-antimonopole strings, which may be reminiscent of
monopoles in spin ice [167]. The question is pressing, whether the monopole-antimonopole
strings may be pulled apart by means of magnetic fields or whether a diffusive motion of
monopoles is possible (cf. Ref. [168]).

The decomposition into monopoles and antimonopoles may be established as follows.
The structure in z-regions T1 and T2 may be described by the following vectorfields that
are obtained in interatomic interpolation of the commensurate antiferromagnets:

mT1 =êz cos (π (x+ y)) + êx cos (π (y + z)) + êy cos (π (x+ z)) (3.48)
mT2 =êz cos (π (x+ y))− êx cos (π (y + z)) + êy cos (π (x+ z)) (3.49)

It can easily be checked that both interpolated vectorfields vanish at x1 = (a, a, a) · 1
4

and at x2 = (a, a, a) · 3
4 . The continuous interpolation of T1 has a hedgehog at a

4 (1, 1, 1)
and an anti-hedgehog at 3·a

4 (1, 1, 1). The singularities are spatially separated by 1
2a
√

3.
For T2 the positions of hedgehog and antihedgehog are exchanged.

[001]

[010]

(a) (b)

hedgehog  anti-
hedgehog

hedgehog  anti-
hedgehog

Figure 3.52.: Decomposition of the ground state in phase IC1, represented by T2, into hedge-
hogs and antihedgehogs. In the regions, where the structure T2 is noncoplanar, the local an-
tiferromagnets represent the commensurate structure t1, which may be viewed as hedgehog-,
antihedgehog-pair. In the spatial regions T1 and T2 of T2, the local antiferromagnets represents
different chiral domains of the commensurate antiferromagnet t1. (a) In region T1 the struc-
ture may be portrayed as a composition of a hedgehog at a

4 (1, 1, 1) and an anti-hedgehog at
3·a
4 (1, 1, 1). (b) In region T2 the positions of hedgehog and anti-hedgehog are reversed.

We establish further that the hedgehogs and antihedehogs are the origin of a posi-
tive and a negative magnetic charge, respectively. This may be seen as follows. The
directorfield of the magnetization is defined in terms of:

n : [0, a]3 \ {x1,x2} → R3, n (x) = m
|m|

(3.50)
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Following the study in Ref. [169], a Berry curvature field may be defined in terms of
bk = 1

2ε
ijkn (x)·[∂in (x)× ∂jn (x)]. The integration of the Berry curvature on tiny spheres

K around the singularities x1 and x2 reveals (cf. [169]):

QT1 (x) = 1
4π

∫
∂K(x)

dS · bT1 =

+1 , x = x1

−1 , x = x2

, QT2 (x) = −QT1 (x) (3.51)

Hence, the singularities have non-trivial winding numbers, which are related to magnetic
charges of emergent monopoles and antimonopoles [169].

It is now shown that the topology of the magnetic structures D1 and T1 is trivial. The
order-parameter spaces of D1 and T1 may be established in analogy to the study on T2. It
is found that the structure D1 may be described in the order-parameter space PD1 = D1,
i.e., an interval (representing a disk in one dimension), whereas the structure D2 may be
described in the order-parameter space PD2 = D2, i.e., a disc in two dimensions. The
order-parameter space PD1 = D1, as well as PD2 = D2 are both homotopic to a single point
[154]. In particular, all homotopy groups vanish, i.e., πn≥1 (D2) = πn≥1 (D1) = 0 implying
that the structures D1 and T1 are topologically trivial. Accordingly, the structures D1

and T1 may be continuously transformed to collinear antiferromagnets and they are not
protected against unwinding.
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3.3.6.3. Ground State in Phase IC2

The topological properties of the structure M1, which was suggested as educated guess
for the ground state in phase IC2, are now investigated.

The main results of these investigations may be summarized as follows:
• The magnetic structure M1 may be described in a RP 2 order-parameter space.
• The structureM1 is topologically non-trivial. It represents a non-trivial element in

the homotopy group π2 (RP 2). Accordingly, the structure cannot be continuously
transformed into a collinear antiferromagnet and it is protected against unwinding.
However, this topology is not related to an ordinary winding number.

• The structure M1 consists of square Skyrmion-sublattices.
The presentation of these considerations is organized as follows. First, the order-

parameter space that allows to describe the spatial dependence of the local (ππ0) antifer-
romagnet is established. Second, it is shown that the structure consists of four Skyrmion
lattices, two with positive and two with negative winding number.

It was explained before that the structure M1 locally looks like commensurate (ππ0)
antiferromagnets. The spatial dependence of the local antiferromagnet can be described
in a RP 2 order-parameter space. This can be established in analogy to the previous
section. Fig. 3.53 illustrates the description of M1 in the order-parameter space RP 2.
Each element in RP 2 corresponds to a pair of antipodal points n̂ ∈ S2 and unambiguously
represents a local (ππ0) antiferromagnet. In the figure, the space RP 2 is represented by
the northern hemisphere. The points on the sphere are described in terms of spherical
coordinates (θ, φ). The local (ππ0) antiferromagnets ofM1 represent the (ππ0) structures
t1, d1, and s1. For t1, there are two domains, i.e., orientations with respect to the lattice,
for d1 and s1 there are three domains.

To investigate the topological properties of M1, the homotopy groups πn (RP 2) were
calculated. The fundamental group is given by π1 (RP 2) = Z2. Further the second
homotopy group is given by π2 (RP 2) = π2 (S2) = Z. To determine the topological
properties ofM1, the element in πn (RP 2) the structureM1 is associated with has to be
determined. By a tedious calculation using covering spaces [154] it may be established
that M1 is associated with a non-trivial element in the order-parameter space π2 (RP 2)
(however, these considerations are beyond the scope of this thesis). Accordingly, the
structure has a non-trivial topology. M1 cannot be continuously transformed into a
collinear antiferromagnet such as s1, which is associated with the trivial element 0 in the
group π2 (RP 2). Note, that the non-trivial topology of the structureM1 is not related to
an ordinary winding number. Winding numbers which are typically defined for maps such
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as S1 → S1 or S2 → S2 are related to a Brouwer degree [158]. However, a Brouwer degree
does not exist for maps S2 → RP 2, as the space RP 2 does not possess an orientation.

[001]

[010]
[100]

Figure 3.53.: Ground state candidate M1 of phase IC2 as described in a RP 2 order-parameter
space. The spatial dependence of the local (ππ0) order may be described in the RP 2 parameter
space, which is obtained by identifying antipodal points on a sphere. Accordingly, each local
(ππ0) antiferromagnet of the structure M1 may be represented by an element in RP 2, i.e.,
by an element on a hemisphere. In the picture, the space RP 2 is represented by the northern
hemisphere. The points on the sphere are described by spherical coordinates (θ, φ).

It is shown in the following, that the magnetic structure M1 consists of four bbc
Skyrmion lattices, each with a magnetic unit cell of size 50a×50a. Therefore, the structure
M1 may be written as follows:

mM1 (R) =m0êz · (−1)x+y +m0êx · (−1)y+z +m0êy · (−1)z+x +
+m1êx (−1)y+z cos (2πδy) +m1êz (−1)x+z sin (2πδy) +
+m1êy · (−1)x+z cos (2πδx) +m1êZ · (−1)x+Y sin (2πδx) . (3.52)

Analogously to the approach in Sec. 3.3.6.2, the cubic lattice may be decomposed into
four bbc lattices L1, L2, L3, and L4. On each of the four sublattices, the structure M1

represents a square Skyrmion lattice. Fig. 3.54 (a) shows one layer of the structure M1,
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(b)(a) [010]

[100]

Figure 3.54.: Decomposition of the structureM1 into square Skyrmion lattices. The structure
M1 may be decomposed into four bbc-sublattices. On each sublattice, the structure M1
represents a square Skyrmion lattice. (a) Structure M1 in the z = 0 plane. Shown is the
structure on lattice sites from all four sublattices L1, L2, L3, and L4 in the z = 0 plane. (b)
Structure M1 on sublattice L1. Shown is the structure M1 in the z = 0 plane on sublattice
L1. The structure represents a square Skyrmion with finite winding number.

namely z = 0, in a 50a × 50a cell. Fig. 3.54 (b) shows the same layer but depicted are
only lattice points of the sublattice L1. The shape of the structure on L1 clearly resembles
that of a Skyrmion.

To establish the Skyrmion nature on each sublattice, the winding number [6] may be
calculated for a unit cell U0 (L) of extent 50a×50a that contains only sites of one sublattice
L by integration of the Skyrmion density (cf. Ref. [170]):

∫
U0(L)

1
4πn (∂xn× ∂yn) dx dy =

+1, L = L1, L3

−1, L = L2, L4

(3.53)

The finite winding numbers ±1, which were obtained by numerical integration, reflect
the Skyrmion nature of the structure M1 on each sublattice.
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3.3.6.4. Knots in Three Dimensions

For the following presentation, we investigated, whether the superposition of three non-
coplanar sine-wave modulations may lead to a knot with finite Hopf index [159].

The superposition of three ferromagnetic helices, e.g., along the cubic directions [100],
[010] and [001], may represent a three dimensional lattice of hedgehogs and antihedge-
hogs [169]. In ferromagnets the study of such superpositions is more straight forward
than in antiferromagnets, as the order-parameter spaces are typically more intuitive (cf.
Secs. 3.3.6.2 and 3.3.6.3). For this study, we assume that an order-parameter space has
been identified, such that the magnetic structure can be described by a continuous func-
tion M : R3 → R3. While it has been established that the superposition of helices may
lead to a lattice of hedgehogs and antihedgehogs, we want to investigate whether such a
superposition may also possess a non-trivial Hopf index [159]. The Hopf index reflects,
whether a structure S3 → S2 is protected against unwinding. The corresponding homo-
topy group is given by π3 (S2) = Z [154]. So far no static magnetic structures featuring
a non-trivial Hopf number have been observed experimentally. It is often argued that a
static magnetic structure cannot have a non-trivial Hopf index following Derrick’s the-
orem [171]. Note, that the boundary conditions are crucial for the stability of solitons
[172]. There are many works that discuss the stability of Hopfions or which address, how
to overcome Derrick’s theorem [173–175]. The topological concept of Hopfions may be
important in many areas like hydrodynamics [176], electrodynamics [177, 178] or Bose-
Einstein-Condensates, where vortex knots [179] with finite Hopf index may also exist.

The main results of these considerations may be summarized as follows:
• The superposition of three noncollinear sine waves may lead to topologically non-

trivial vectorfields like a lattice of monopoles and antimonopoles.
• This knot-like superposition cannot be interpreted as Hopfion.
To investigate, whether the superposition of three noncollinear sine waves may result

in a Hopfion, the following vectorfield was considered:

M (x, y, z) = êz · cos [π (x+ y)] + êx · cos [π (y + z)] + êy · cos [π (x+ z)] + fm , (3.54)

where the constant vector fm represents a uniform magnetization.
The study is organized as follows. First, it is established under which conditions M may

be interpreted as a map S3 → S2. Second, the Hopf index, which describes the topology
of maps S3 → S2, is determined graphically for two different uniform magnetizations.

In the following it is explained under which conditions M may be interpreted as a map
S3 → S2. The periodicity of the vectorfield M amounts to 2 in all three spatial dimensions.
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Hence the map goes from a 3-torus to three-dimensional space, i.e. M : [−1, 1]3 → R3

[180]. Whether the map M has singularities or not depends strongly on the modulus of
the uniform magnetization. In the following, singularities are neglected for a moment and
it is assumed that the directorfield is well defined on the torus:

n : [−1, 1]3 → S2, n := M (x, y, z)
|M (x, y, z)| . (3.55)

Next, it is assumed that the unit cell, i.e., the box [−1, 1]3, may be identified with S3.
Mathematically this is typically done with a stereographic projection [181]. The prereq-
uisites mainly consist of boundary conditions such that n is constant at the border of the
box.

Figure 3.55.: Preimages of several image points under the directorfield n of M, as determined
by a graphical Monte Carlo method. (a) In the case of a large ferromagnetic component the
preimages of p1, p2, and p3 represent closed curves that are not linked with respect to each other.
Accordingly, the Hopf index of the directorfield vanishes. (b) If the ferromagnetic component is
zero, singularities are present, at which M is zero and the directorfield is not well defined (red
points). The preimages represent stripes between the singularities. Accordingly, the Hopf index
cannot be calculated, as n cannot be interpreted as map S3 → S2.

The graphical determination of the Hopf index of n was done as follows. We used
the property that the Hopf index of a map S3 → S2 is equal to the linking number of
preimages n−1 (p1) and n−1 (p2) for given points p1 , p2 ∈ S2 in the image set [174, 182].
The Hopf index of M turns out to be zero, if the uniform magnetization is large. In
contrast, for vanishing uniform magnetization, the Hopf index cannot be determined, as
the map is not defined on the whole three-sphere S3. For the numerical study, three points
∈ S2 were defined such that p1 = n (−0.23,−0.54, 0.34), p2 = n (0.43, 0.14,−0.43), and
p3 = n (0.23, 0.54, 0.34). Furthermore, it was set p0 = (0, 0, 0). The preimages n−1 (p1),
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n−1 (p2), and n−1 (p3), as well as M−1 (p0) were drawn with a computer program by means
of the following Monte-Carlo approach. A small radius ε = 0.02 was defined and random
points x in a box were created, i.e., x ∈ [−1, 1]3. Each point x was drawn, only if the
image n (x) lay in a sphere around p with radius ε, i.e., n (x) ∈ Kε (p). The procedure
stopped, when 1000 points were drawn. This provided a graphical illustration of the
preimage of p.

Fig. 3.55 shows the preimages of the three points p1, p2, and p3 under the map n. If the
uniform contribution fm is large, the preimages represent circles and the linking numbers
are zero. Accordingly, the map n has Hopf index zero and represents the trivial element
0 in the group π3 (S2). Accordingly, the vectorfield n is topologically trivial. In contrast,
for vanishing uniform magnetization, the preimages do not represent closed curves but
stripes between singularities. At specific points in the preimage set S3 the vectorfield
M is zero (red points). The banana-like shape of the preimages may be understood as
follows. At the points where M = 0, the directorfield n is not well defined. In particular,
the directorfield is not defined on the whole set S3. Accordingly, the Hopf index is not
the correct framework to classify the topology of the vectorfield n, as the map n does not
map the whole three-sphere S3 on S2. However, the stripe-like preimages, even though
not carrying a Hopf charge, strongly indicate that the topology of n may be non-trivial.
They are akin to preimages of torons, which were discussed in related studies in Ref. [174].
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3.3.7. The Conduction Electrons

In a theoretical study, we investigated the impact of (ππ0) ground states on conduction
electrons and their electronic structure. We therefore considered the Berry curvature of the
band structure and the anomalous Hall effect in the presence of noncoplanar structures,
noncollinear structures, and long-wavelength modulations.

The presentation is organized as follows. First, a short introduction to the Hall effect is
given in Sec. 3.3.7.1. Second, it was established in Sec. 3.3.7.2, that a finite Berry curvature
may be caused by noncoplanar (ππ0) structures. Third, it was discussed in Sec. 3.3.7.3
that the Berry curvature may become finite in all commensurate (ππ0) structures, when
a ferromagnetic component, as caused by a magnetic field, is added. Fourth, it was found
in Sec. 3.3.7.4 that a topological Hall effect may be caused by specific (ππ0) magnets with
an incommensurate superstructure.

3.3.7.1. Introduction on the Hall effect

In conventional conductors, the Hall resistivity ρxy typically depends linearly on external
magnetic fields [183] if magnetic order is absent. In ferromagnetic conductors, the Hall
signal is often strongly enhanced by an additional contribution, which is commonly re-
ferred to as anomalous Hall effect [184]. Pugh and Lippert [185] established an empirical
relation, which accounts for the two effects and applies to a broad range of materials:

ρxy ∼ R0 ·Hz +RsMz (3.56)

This additional contribution depending linearly on the net magnetization may be referred
to as ordinary anomalous Hall effect. Accordingly, in conventional antiferromagnets with
zero net magnetization, no such ordinary anomalous Hall effect is expected. An ordinary
anomalous Hall effect in antiferromagnets may arise, when a magnetic field induces a net
magnetization.

For a long time, it was assumed, that additional Hall signals arising due to magnetic
order may only be caused by a finite net magnetization. Recently, several cases were
reported, where an anomalous Hall effect may arise, which does not scale linearly with
the net magnetization. A prominent example is the topological Hall effect ρtop

xy [9], which
was observed in the Skyrmion lattice phase of MnSi [6]. This additional contribution to
the Hall effect arises due to the emergent electrodynamics [10], which is related to the
nontrivial topolgy of the Skyrmion lattice.

Furthermore, it has been noticed that an anomalous Hall effect may especially be
hosted in antiferromagnets, which are noncoplanar [145]. Here, additional contributions
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to the Hall effect may arise due to Berry phases, which are related to the tilting of spins
[145, 186, 187]. As pointed out in Ref. [163], this effect occurs in antiferromagnets, when
symmetries, which typically force the Berry curvature of the electronic structure (cf.
Ref. [117]) and hence the intrinsic anomalous Hall effect to vanish, are absent. Predicted
was an anomalous Hall effect, which is related to this absence of symmetries, in the
noncollinear magnetic phase of Mn3Ir [163]. Experimentally, this type of anomalous Hall
effect was observed recently in the related compounds Mn3Sn [188] and Mn3Ge [189].

3.3.7.2. Anomalous Hall Effect in the Presence of Noncoplanar (ππ0)
Antiferromagnetism

To simulate the transport properties of HoCu or isomorphous compounds in the presence
of noncoplanar (ππ0) order, a simple theoretical model was considered. In this model,
the localized rare-earth moments form a static magnetic ground state representing the
commensurate structure t1 (cf. Tab. 3.1). The conduction electrons are described in
terms of a s-band tight-binding model. They can hop on a sc lattice and the interaction
with the localized f -electron spins are described in terms of a local field.

The model, which is introduced further below, was solved (i) without any distortion
and (ii) with an anisotropic lattice distortion. The distortion turned out to be crucial for
the topological properties of the electronic structure. Our study on a sc lattice is relevant
for a variety of materials. In particular, we claim that DyCu and HoCu are physical
realizations of this model. DyCu namely was reported to host the magnetic ground state
t1 in one of its ordered phases [93]. Further, anisotropic magnetostriction, which may
represent the anisotropic distortions in our model, was observed experimentally in DyCu
[119]. The model may also be realized in phase IC1 of HoCu, as one of the local (ππ0)
antiferromagnets of the ground state in phase IC1 represents the magnetic structure t1
(cf. Sec. 3.3.5.2). Anisotropic magnetostriction in HoCu was reported in Ref. [119]. Note
that our study is reminiscent of the study in Ref. [190], which considered noncoplanar
magnetic order on a distorted fcc lattice.

The results for the undistorted model (i) may be summarized as follows:
• In the presence of noncoplanar magnetic (ππ0) order the Berry curvature of the

electronic structure becomes finite.
• A complex arrangement of magnetic monopoles emerges in the electronic structure.

These singularities appear in pairs carrying opposite magnetic charges.
• Integrals over the Berry curvature vanish, which is reflected by vanishing Chern

numbers. In particular, the intrinsic anomalous Hall effect vanishes.
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The implications of a distortion along the cubic [111] direction (ii) may be summarized
as follows:

• The arrangement of singularities in the electronic structure is distorted. Integrals
over the Berry curvature become finite, which is reflected by finite Chern numbers.
In particular, an anomalous Hall effect arises due to the finite Berry curvature.
However, if magnetic domains are equally distributed, the anomalous Hall effect is
zero in average.

• An orbital magnetization of the conduction electrons is induced by the distortion.
Due to the orbital magnetization the two magnetic domains have different energy in
magnetic fields, even if the net magnetization of rare-earth moments vanishes. Ac-
cordingly, the magnetic domain population is changed by a field and the anomalous
Hall effect, which may be measured, becomes finite.

The presentation of our study is organized as follows. First, the specific Hamiltonian
our model is based on is introduced. Second, the model is solved in the undistorted
case. Therefore, the band structure and the Berry curvature are calculated. A complex
arrangement of monopoles and antimonopoles is found. It is shown that Chern numbers
as well as the orbital magnetization of conduction electrons vanish. Third, the effect of
an anisotropic distortion arising in a field along [111] are discussed. The positions of
monopoles and antimonopoles are investigated. Implications on Chern numbers, orbital
magnetization, and transport properties are discussed in detail.

Figure 3.56.: Dirac cones in the electronic structure in the presence of a noncoplanar (ππ0)
ground state. (a) Noncoplanar magnetic ground state t1. There are two possible magnetic
domains D1 and D2 that are mapped on each other by the time reversal operator T . (b) The
calculated dispersion relation, as shown in the plane kz = π

2 , features cones at singularities of
the electronic structure.

The localized rare-earth moments in our model represent the static magnetic structure
t1. Fig. 3.56 (a) shows a real-space picture of the ground state t1. There are two possibil-
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ities, how t1 can be oriented on a sc lattice, representing the two domains D1 and D2 of
the structure t1. The time reversal operator, which reverses the sign of each spin, maps
one domain on the other, i.e., D2 = T D1. Further, reflections at the planes x = 0, y = 0,
or z = 0, respectively, map the domain D1 on D2 and vice versa. Accordingly, the two
domains represent two different chiral domains of the structure t1.

As f -electrons in a rare-earth system are relatively localized and not primarily involved
in conduction [191], the magnetic structure t1 is assumed to be static for this study. The
itinerant electrons in our model participating in conduction are described by the following
Hamiltonian [145]:

H = −
∑
i,j

dijtija
†
iaj − Jh

∑
i

Si ·
(
a†iσai

)
. (3.57)

The first term accounts for hopping between neighboring sites. The operators â†i and âi

represent the two-component creation and annihilation operators for an electron on site
i, and tij is the hopping transfer from site i to j. In the present study, hopping processes
along 〈100〉 and 〈110〉 directions are considered. The second term, which describes the
interaction between conduction electrons with the structure t1, is akin to the double
exchange term introduced by Anderson [192]. σ represents the Pauli vector and Jh is the
strength of the coupling between the conduction electrons and the rare-earth moments S
[186, 192, 193]. The parameters dij allow to introduce lattice distortions into the model
further below (cf. Ref. [190]).

The Hamiltonian was solved by exact calculations that were carried out with Mathe-
matica. The hopping parameters were therefore set to t〈110〉 = t〈100〉 = 1. These specific
values were chosen arbitrarily. However, qualitatively similar results are obtained as long
as t〈110〉/t〈100〉 > 0.6. In contrast, for values t〈110〉/t〈100〉 < 0.6 the topological properties
of the electronic structure turn out to be much simpler. The specific case t〈110〉 = 0, i.e.,
where hopping processes are considered only along fourfold directions, was discussed in
Ref. [194] for the same static ground state t1.

In order to study the undistorted model, it was set dij = 1. Following previous studies
[186, 190, 193], we assume that the coupling between conduction electrons and core elec-
trons is relatively strong, i.e., JH � tij. The magnetic ground state then acts as a local
magnetic field on the conduction electrons and forces the spins of conduction electrons on
site i parallel to the static field Si. Accordingly, the wave function for the electron spin
on site i may be defined in terms of |χi〉 =

(
cos θi

2 , sin
θi
2 · e

iΦi
)T

, where θi and Φi are the
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polar angles of the spin Si. In the limit JH � tij the Hamiltonian may be reduced to a
single-component spin-less version with effective hopping transfer teff

ij [190]:

H = −
∑
〈i,j〉

teff
ij c
†
icj . (3.58)

The creation and annihilation operators c†i and cj are scalar and the effective transfer is
given by [192]:

teff
ij =dijtij · 〈χi|χj〉 = (3.59)

=dijtij(cos θi2 cos θj2 + sin θi2 sin θj2 exp [−i(Φi − Φj)] .

The Hamiltonian can be transformed into momentum space by setting [150, 190]:

c†i = 1√
N

B.Z.∑
k

exp (−ik ·Ri) c†k

⇒ H =
∑
α,β

c†α,kcβ,kHαβ(k) , (3.60)

where the indices α, β = 1, .., 4 represent the four spin sub-lattices of t1. Hα,β is a
Hermitean 4× 4 matrix and has the shape:

H (k) =


0 f12 (k) f13 (k) f14 (k)

f12 (k) 0 f23 (k) f24 (k)
f24 f23 0 f34 (k)
f14 f13 f12 0

 . (3.61)

The entries are given by:

fij (k) =
[(

exp
(
ik · λaij

)
+ exp

(
−ik · λaij

))
+ (3.62)

+
∑
λ

(
exp

(
ik · λbij

)
+ exp

(
−ik · λbij

))]
· teff
ij ,

with the exchange paths λa12 = λa34 = ê1, λa14 = λa23 = ê2, λa13 = λa24 = ê3, λb1
12 = λb1

34 =
ê2 + ê3, λb2

12 = λb2
34 = ê2− ê3, λb1

13 = λb1
24 = ê1 + ê2, λb2

12 = λb2
34 = ê1− ê2, λb1

14 = λb1
23 = ê1 + ê3,

and λb2
14 = λb2

23 = ê1 − ê3.
The eigenvalue problem H (kx, ky, kz) was solved with Mathematica. As the matrix

is Hermitean, the eigenvalues are real. Two energy bands El(k) = E1/2(k) and Eu(k) =
E3/4(k) were found, both of which are doubly degenerate. Mathematica provided continu-
ous bands |vn,α〉 := vn,α (k) (1 ≤ n, α ≤ 4) as the solutions of the eigenvalue problem. An
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orthonormal basis |un,α〉 (1 ≤ n, α ≤ 4) was constructed by the Gram-Schmidt process.
There are singularities in the band structure, as expected for a Hermitean matrix with
three variables [164].

As explained in the following, the band |v1〉 features a complex arrangement of singu-
larities carrying magnetic charges. In contrast, the band |v2〉 is presumably topologically
trivial, as no numerical evidence for a finite Berry curvature of the second band was found.
In the following, the topological properties of |v1〉 are discussed for the magnetic domain
D1. Impacts of domain effects are discussed further below.

The band |v1〉 has in total 40 singularities in the first Brillouin zone. Fig. 3.57 (a) shows
the distribution of these singularities. In the first octant of the first Brillouin zone, i.e.,
{(kx, ky, kz) : kx, ky, kz > 0}, there are five singularities. Four of them are at the positions
pi ∈

{(
π
2 ,

π
2 ,

π
2

)
+ π

6 · δi, 1 ≤ i ≤ 4
}

, with δ1 = (1, 1, 1), δ2 = (−1,−1, 1), δ3 = (1,−1,−1),
and δ4 = (−1, 1,−1), representing the corner sites of a tetrahedron. They are sources of
positive magnetic charges as seen further below. In the center of the tetrahedron, at the
position p5 =

(
π
2 ,

π
2 ,

π
2

)
, there is a singularity carrying a negative charge. The positions

of the other 35 singularities in the first Brillouin zone are obtained from p1, .., p5 via
reflections Mx, My, and Mz, at the planes x = 0, y = 0, and z = 0. Each reflection maps
monopoles on antimonopoles and vice versa. Thus, in total there are 20 monopoles and
20 antimonopoles in the first Brillouin zone. At each singularity, the two energy bands
Eu and Eo touch at a single point featuring a cone like shape. Fig. 3.56 (b) illustrates
this, showing the dispersion relation in the plane kz = π

2 containing four singularities.
In order to investigate the topology of the band structure, the vector potential A1 (k) :=∑
α 〈u1,α| ∇ |u1,α〉 and the Berry curvature Ω1 (k) := ∇k × A1 (k) [117, 186, 190] were

calculated by means of Mathematica.
The magnetic charges of the singularities were determined by numerical integration

with a radius ρ = 0.15. In the first octant it was obtained:

Q (q) = 1
4πi

∫
∂Kρ(q)

dS · Ω =

+1 , q = p1,p2,p3,p4

−1 , q = p5

. (3.63)

Further, numerical integration with ρ = 0.1 showed that the magnetic charges are
related to finite winding numbers:

W (q) = 1
4πi

∫
∂Kρ(q)

dS · b =

+1 , q = p1,p2,p3,p4

−1 , q = p5

, (3.64)

where bi = ∑
i,j,k

1
|Ω|3 εijkΩ · (∂jΩ× ∂kΩ).
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Chern numbers were calculated by integration over two-dimensional slices through the
Brioullin zone [3, 164]:

γ (kz) := 1
2πi

∫
[−π,π]2

d2k Ω (k) · êz (3.65)

Fig. 3.57 (b) shows the results of the numerical integration. The vanishing Chern num-
bers in the absence of a distortion (d = 1) reflect the high symmetry of the monopole-
antimonopole distribution. As the arrangement is symmetric under reflections Mx, My,
and Mz, the magnetic flux penetrating a slice through the Brioullin zone vanishes im-
plying vanishing Chern numbers. This absence of any finite Chern numbers also implies
that three-dimensional integrals over the Berry curvature vanish. We confirmed this by
numerical integration. In particular, no anomalous Hall effect due to Berry phases is ex-
pected. It was confirmed further by numerical integration, that the orbital magnetization
[117] vanishes, if distortions are absent.

In the following, the implications of a lattice distortion along [111] are discussed. The
distortion may arise due to uniaxial stress, or anisotropic magnetostriction caused by
a field along [111]. Experimental evidence for this type of distortion was reported in
Ref. [119]. The distortion does not have large effects on hopping processes along fourfold
directions, as a distortion along [111] affects all 〈100〉 directions in the same way. In
contrast, there are two possibilities how 〈110〉 bonds may be oriented with respect to the
[111] direction. Three 〈110〉 directions are perpendicular to [111], the other ones are not
perpendicular. An anisotropic distortion should have a different effect on the two types of
〈110〉 bonds. Hence, for the first set of (perpendicular) directions it is set d〈110〉,⊥ = 0.9, for
the other 〈110〉 bonds it is set d = 1, in order to account for the distortion (cf. Ref. [190]).

Due to this distortion, the positions of the monopoles and antimonopoles are shifted,
as explained in the following. The positions of the 40 singularities in the first Brillouin
zone without any distortion, i.e., d = 1 may be summarized as follows:

q0 (ijk) =
(

(−1)i π2 , (−1)j π2 , (−1)k π2

)
(3.66)

p0 (ijk, n) = q0 (ijk)− sgn
(
Qq0(ijk)

)
δn ·

π

6 (3.67)

with i, j, k ∈ {0, 1}, n ∈ {1, 2, .., 4}. The triplets q0 represent the positions of the center-
positions of the tetrahedrons and the triplets p0 represent the positions of the edges of
the tetrahedron.
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In the presence of the distortion d = 0.9, the singularities were shifted to the positions:

q1 (ijk) = q0 (ijk)− sgn
(
Qq0(ijk)

)
· ξ1 · (1, 1, 1) (3.68)

p1 (ijk, n) = p0 (ijk, n) + sgn
(
Qq0(ijk)

)
σn (3.69)

where σ1 = ξ2 · (1, 1, 1), σ2 = ξ3 ·
(

1
4 ,

1
4 ,−1

)
, σ3 = ξ3 ·

(
−1, 1

4 ,
1
4

)
, and σ4 = ξ3 ·

(
1
4 ,−1, 1

4

)
with ξ1 ≈ 0.131, ξ2 ≈ 0.085, and ξ3 ≈ 0.114. Due to this distortion the parity symmetries
are broken, i.e., monopoles and antimonopoles are not mapped on each other any more by
reflections Mx, My and Mz. Hence, the monopole-antimonopole pairs are split up. This
is also reflected by finite Chern numbers. Fig. 3.57 (b) shows the Chern numbers in the
distorted case (d = 0.9) as obtained from numerical integration. The schematic picture
shows the z-coordinates of the distorted singularities and the Chern numbers are clearly
related to this distortion.

The Chern numbers γ (kz) may also be inferred directly from the z-coordinate distri-
bution of the singularities by means of the following variation of Stoke’s law:

γ (kz) =
∑
k<kz

Q (k)−
∑
k>kz

Q (k) . (3.70)

Hence, the Chern number γ (kz) represents the sum of all charges in the first Brillouin
zone at positions k < kz minus the sum of all charges at positions k > kz. This variation
of Stoke’s law was derived by basic vector analysis calculations in Sec. A.3.

This breakup of monopole antimonopole pairs has a vast impact on the topological
properties of the system. The finite Chern numbers in the presence of anisotropic distor-
tions suggest that three dimensional integrals over the Berry curvature may possibly be
finite. As shown in the following, the transverse conductivity for field along [111], which
is related to an integral over the Berry curvature [195], is finite:

σxy = − e2

~ · (2π)2

∫
BZ

d3k f(E(k)) · Ω(111)(k) . (3.71)

In the zero temperature limit the Fermi-Dirac distribution is given by a step function:

W (E) = 1
exp

(
E−µ
kBT

)
+ 1
∼ θ (EF − E) . (3.72)

The integral Eq. (3.71) was calculated numerically for a Fermi level EF ≈ −2.6, which
approximately corresponds to the case of half band filling. Therefore, we neglected the
second band entirely, which is topologically trivial. The case of quarter filling, which
corresponds to equal filling of both bands, would give qualitatively similar results. Nu-
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Figure 3.57.: Non-trivial Chern numbers arising due to the distortion of monopoles and anti-
monopoles. (a) There are 40 singularities in the first Brillouin zone, 20 of them with positive,
20 with negative magnetic charge. In each octant, four singularities form a tetrahedron. In
the center of the tetrahedron there is a singularity with opposite magnetic charge. (b) In the
undistorted model (d = 1) all Chern numbers γ (kz) vanish, as shown by numerical integration.
In the distorted model (d = 0.9) the monopole and antimonopole pairs break up. Accordingly,
finite Chern numbers γ (kz) were obtained by numerical integration. The finite Chern numbers
γ (kz) reflect the distribution of z coordinates of the distorted singularities and follow a variation
of Stoke’s law for Chern numbers, as explained in the text.

merical integration in the distorted case (d = 0.9) yields σD1
xy ≈ (−0.11 ± 0.02) · e2/4hπ2

for the magnetic domain D1. For the second domain, the sign is opposite, i.e., σD2
xy ≈

(+0.11± 0.02) · e2/4hπ2. Hence, in a situation where magnetic domains are equally pop-
ulated, no anomalous Hall effect is obtained.

However, as shown in the following, the two magnetic domains have different energies
due to an orbital magnetization of the conduction electrons. The orbital magnetization
caused by the band structure may be calculated as follows [117]:

Morb = − ie2~
∑
n,α

∫
d3k [〈∂kun,α| × (H − En) |∂kun,α〉+

+2 (En − EF ) 〈∂kun,α| × |∂kun,α〉] . (3.73)

Numerical integration revealed MD1
orb ≈ − e

2~ · 0.236 · (1, 1, 1) in the first domain and
MD2

orb = −MD1
orb in the second domain. Hence, the two domains have different energies

in a magnetic field ‖ (1, 1, 1). Accordingly, the magnetic domains may be manipulated by
magnetic fields, even though the net magnetization of the rare-earth moments vanishes (cf.
Ref. [165]). In particular, an anomalous Hall effect due to the Berry curvature emerges.

The prediction of an orbital magnetization arising due to the band structure is of
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particular interest. A proper theoretical treatment of orbital magnetization has long been
a riddle [117] and was solved only recently [196–198].

To probe our study, we suggest to measure the anomalous Hall effect of the compounds
DyCu and HoCu in the magnetically ordered regime. We further predict a dependence of
the Hall effect on uniaxial pressure. In particular, we suggest to apply a tiny magnetic field
along a threefold direction, in order to remove one of the two chiral magnetic domains.
By means of uniaxial pressure along the same threefold axis the size of the anomalous
Hall effect may be tuned.

3.3.7.3. Anomalous Hall Effect in the Presence of Noncollinear (ππ0)
Antiferromagnetism

In the following, it is established that also noncollinear (ππ0) structures may display a
finite Berry curvature and an anomalous Hall effect, which is not ordinary. The Berry
curvature may namely become finite, when a ferromagnetic component, as caused by a
magnetic field, is added. The mechanism we describe may possibly arise in each of the
four antiferromagnets s2, s4, d2, and d5, once small fields are applied. In t2 the Berry
curvature may be finite even at zero magnetic field. The impact of a small magnetic
field on the magnetic ground states may be complicated and depends strongly on the
magnetocrystalline anisotropies [165]. In the following, it is assumed that an applied
magnetic field simply adds a tiny ferromagnetic component to the ground states leading
to a tiny rotation of the magnetic moments towards the field direction. The discussion is
closely related to the study in Ref. [163].

In the presence of collinear antiferromagnetic order in a centrosymmetric crystal, the
Berry curvature Ω and hence the intrinsic anomalous Hall effect vanish (cf. Ref. [163]).
The centrosymmetry namely implies that Ω (k) = Ω (−k). As a collinear antiferromagnet
is bipartite, the combination of time reversal T and a translation Td represents a good
symmetry implying that Ω (k) = −Ω (−k). Taken together the Berry curvature vanishes
in collinear antiferromagnets with centrosymmetry. However, when the T Td symmetry is
broken the Berry curvature may possibly become finite, as explained in the following.

In the noncoplanar antiferromagnet t2 the operator T Td does not describe a good sym-
metry (cf. Sec. 3.3.6.1). The argument above, which showed that the Berry curvature
vanishes for collinear antiferromagnets, does not hold true for t2, as T Td is not a good
symmetry. Hence, the Berry curvature may possibly be finite for the structure t2 even
at zero magnetic field. There are other symmetry operators, which may, when acting on
t2, represent in combination with time reversal good symmetries and which may possi-
bly imply that the Berry curvature vanishes at zero magnetic field. However, the type of
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interactions determine, whether such putative combined operators represent good symme-
tries. Hence, if other interactions such as spin-orbit coupling are not invariant under these
operators, the Berry curvature Ω may possibly become finite (cf. Ref. [163]). A proper
treatment of spin-orbit coupling would require a detailed description of the orbitals, which
is beyond the scope of this thesis. However, we point out that the Berry curvature and
possibly also the intrinsic anomalous Hall effect may be finite for the structure t2 at zero
magnetic field.

In the bipartite, collinear antiferromagnets s2 and s4, T Td is a good symmetry at zero
magnetic field forcing the Berry curvature to vanish. However, once a magnetic field is
applied and a ferromagnetic component is added, the structures become noncollinear and
the combined symmetry T Td is broken. Accordingly, the Berry curvature may possibly be
finite in magnetic fields. Again, the type of interactions determine, whether other putative
combined operators represent good symmetries, which may force the Berry curvature to
vanish.

In the coplanar antiferromagnets d2 and d5, T Td is a good symmetry in zero magnetic
field, even though the structures are noncollinear. Once a ferromagnetic component is
added, the combined symmetry T Td is again broken. Accordingly, the Berry curvature
may possibly be finite in magnetic fields. Again, the type of interactions determine,
whether putative combined operators represent good symmetries, which may force the
Berry curvature to vanish.

3.3.7.4. Topological Hall Effect

In this section it is established that (ππ0) structures with an incommensurate superstruc-
ture may possibly lead to a topological Hall effect in magnetic fields. As the main result
it is found that a variation of the magnetic structure M1 can cause a topological Hall
effect.

In the following, a specific (ππ0) ground state with incommensurate superstructure is
proposed. It is then argued that in the presence of a field this ground state may cause a
topological Hall effect via specific intra-sublattice hopping processes. As specific magnetic
ground state we consider the directorfield of the following vectorfield:

mM2 (R) = m0 · êz +m1 ·
[
(100)T cos

(
kic2,y ·R

)
+ (001)T cos

(
kic1,y ·R + π

2

)
+

+ (010)T cos
(
kic3,x ·R

)
+ (001)T cos

(
kic1,x ·R + π

2

)]
(3.74)

= m0 · êz + icM1 (R) . (3.75)
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This structure M2 represents a variation of the ground state M1 (cf. Sec. 3.3.6.3). The
major difference between the two structures is that M2 contains ferromagnetic commen-
surate components, whereasM1 contains a antiferromagnetic commensurate component.
A ferromagnetic component may, for instance, be caused by a magnetic field.

The structure M2 still consists of four sublattices, on which the structure represents
Skyrmions, as is the case for M1. However, the winding number (cf. Ref. [6, 170]) has
the same sign now on each sublattice:

∫
U0(L)

1
4πn (∂xn× ∂yn) dx dy = +1 . (3.76)

It is hard to theoretically treat the transport properties for such complex ground states
having a large unit cell. For the structure M2, there are inter-sublattice and intra-
sublattice hopping processes of the conduction electrons that have to be taken into ac-
count. The inter-sublattice processes are highly discontinuous. They cannot be treated
in this thesis, as they lead to eigenvalue problems with matrices containing ≈ 502 entries.

However, intra-sublattice hopping-processes may give rise to a topological Hall effect,
as argued in the following. In a situation where all hopping processes are directed along
threefold directions all electrons stay on the same sublattice L1, L2, L3, or L4, respectively.
It may be assumed that the spins of conduction electrons, when moving through the
sample, adiabatically follow the Skyrmion spin-textures on the sublattices [9]. Due to
the finite winding density of the Skyrmion lattice, an effective field Beff is acting on the
conduction electrons [9].

The effective field leads to a transverse conductivity (cf. Ref. [9]):

∆ρxy = PR0Beff . (3.77)

The effective field Beff can be estimated by means of Beff = Φ0Φ, where Φ0 = h
e

is the
flux quantum, Φ the Skyrmion density, P the local spin polarization of the conduction
electrons, and R0 the normal Hall coefficient [9]. Hence, intra-sublattice hopping may lead
to a topological Hall effect. Note, that there may be magnetic domains with different
chirality of the magnetic ground state. However, the direction of the magnetic field
determines the sign of the winding number. Accordingly, the wining number is equal for
other domains of the magnetic structure M2.
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3.4. The Compound TmCu

In the following, a microscopic study on the cubic antiferromagnet TmCu, the second of
three RCu compounds, is presented. The compound features complex rare-earth mag-
netism and may possibly host magnetic ground states possessing non-trivial topology.
Our study was inspired by the observation of a complex phase diagram and unconven-
tional contributions to the Hall effect [118], which may possess topological origin (cf.
Refs. [9, 109, 110]). Previous magnetic structure determinations were using neutron
diffraction from polycrystalline samples [68]. As the main results of single crystal neutron
diffraction we identified a variety of magnetic ground states, including multi-k structures
and structures with a long wavelength in real-space exceeding 50 Å.

The presentation is organized as follows. First, an introduction to the literature on the
compound is provided in Sec. 3.4.1. Second, magnetic ground states were investigated in
zero magnetic field, which is presented in Sec. 3.4.2. Third, magnetic ground states were
studied for fields along the three major cubic directions, which is presented in Sec. 3.4.2.

3.4.1. Introduction to TmCu

The compound TmCu may, similarly to HoCu, be a candidate material for hosting anti-
ferromagnetic structures with non-trivial topology, even though the space group is cen-
trosymmetric. The reasons are as follows. Complex magnetic phase diagrams suggest a
multitude of competing interactions. The unconventional Hall effect, which was reported
in Ref. [118], is clearly related to magnetic long-range order, but does not arise due to
an ordinary anomalous Hall effect. When related to real-space Berry phases, the Hall
effect may be indication of antiferromagnetic ground states with non-trivial topology (cf.
Refs. [9, 109, 110]).

The compound TmCu crystallizes in the cubic CsCl structure with lattice constant
3.415 Å [71]. The tripositive rare-earth ions carry magnetic long-range order at temper-
atures below ≈ 8 K. The Tm3+ ions may be portrayed as localized magnetic moments,
carrying the moment ≈ gJ ·

√
J · (J + 1) = 7.57µB, as inferred from Hund’s rules (L = 5,

S = 1, J = 6, and gJ = 7
6 [30]). Complex magnetic phase diagrams evolve, as shown in

Fig. 3.58 for the three major cubic directions and inferred from magnetization, ac suscep-
tibility, and transport measured on single crystals (cf. Ref. [118]). The qualitative differ-
ences between the phase diagrams reflect the importance of cubic anisotropies. Critical
fields are considerably smaller for fourfold directions than for twofold and threefold direc-
tions, suggesting a fourfold easy axis, which is in agreement with neutron spectroscopy
studies (cf. Refs. [68, 84]).
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In zero magnetic field, two magnetically ordered phases are established with transition
temperatures Tt = 6.7 K and TN = 7.7 K. Specific heat features signatures characteristic
of first-order phase transitions at both temperatures Tt and TN [68]. Susceptibility in zero
magnetic field displays Curie-Weiss behavior with Θ ≈ −8 K [70], a value characteristic of
a non-frustrated antiferromagnet. The inferred fluctuating moment amounts to 7.56µB,
which is close to the free-ion value of Tm3+. Note, that the transition temperature TN ,
which was reported in Ref. [70], had a too large value of 11 K.

Typical magnetization as a function of field features multiple steps and is akin to multi-
step metamagnetism. Most notable is the unconventional behavior of the Hall effect, which
was reported in Ref. [118]. In the magnetically ordered regime, the Hall resistivity ρxy as
a function of field exhibits additional contributions, which are clearly related to magnetic
long-range order, but do not depend linearly on the net magnetization, as characteristic
of an ordinary anomalous Hall effect. The Hall effect may be related to Berry phases,
caused by a magnetic ground state possessing non-trivial topology.

Magnetic structure determinations were carried out in the two ordered phases in zero
field using neutron diffraction on polycrystalline samples [68]. At T = 1.5 K, in the
lower-temperature phase, which is further below labeled phase C, a commensurate (ππ0)
structure with an ordered moment of ≈ 4.7µB was reported. The ground state was re-
ported to be either a single-k structure, with magnetic moments pointing along the c-axis,
i.e., θ = 0◦, or a multi-k structure with the same structure factor featuring also the same
diffraction pattern. The asymmetric broadening of a nuclear Bragg peak in this commen-
surate magnetic phase, which was confirmed by single crystal neutron measurements [199],
was of the order of 0.7 %. This may be indication that the magnetic structure is single-k,
the moments being directed along a fourfold direction. In the second ordered phase just
below the ordering temperature, which is further below labeled phase IC, incommensurate
magnetic propagation vectors (0.56, 0.5, 0), as well as commensurate propagation vectors
(0.5, 0.5, 0) were reported in Ref. [68]. As ground state a superposition of an antiferro-
magnetic amplitude modulation with a periodicity of ≈ 16 lattice parameters, as well as a
commensurate contribution was suggested. The tetragonal distortion, as inferred from the
asymmetric broadening of a nuclear Bragg peak, was smaller than in the commensurate
phase, but still present. Studies using single-crystalline material confirmed the propaga-
tion vector (0.56, 0.5, 0) [199], even though this description is insufficient, as explained in
our study further below. Magnetic excitations in TmCu were studied using single crys-
tal neutron spectroscopy, as reported in Ref. [199]. The quadrupolar interactions, which
were thoroughly studied in TmCu by means of parastriction, magnetization, and neutron
spectroscopy [84], are presumably of major importance for the understanding of magnetic
order in TmCu [68, 84] and may possibly even be strong enough to compete with bilinear
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exchange interactions [84]. In particular, the comparison with related isomorhpous com-
pounds may prove fruitful, such as TmZn [85, 87], where quadrupolar order was observed
in combination with magnetic order, or TmCd [78, 83], where quadrupolar order was
observed, but no magnetic order.

TmCu

Figure 3.58.: Magnetic phase diagrams of TmCu for fields along the major cubic directions
〈100〉, 〈110〉, and 〈111〉. Data were inferred from field and temperature dependences of magne-
tization, ac susceptibility, and transport. The figure was taken from [118].
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3.4.2. Magnetic Propagation Vectors in Zero Magnetic Field

To determine propagation vectors of the magnetic ground states at zero magnetic field,
neutron diffraction of sample OFZ107-2-a was carried out at the time-of-flight diffrac-
tometer Wish [140].

The main results of these experiments may be summarized as follows:
• The magnetically ordered phases in zero magnetic field display variations of (ππ0)

antiferromagnetism.
• In phase C (T < Tt ≈ 6.7 K [68]), the ground state represents a superposition of

commensurate propagation vectors of the star
〈

1
2

1
20
〉
. The ground state may be

single-k, double-k, or triple-k.
• In phase IC (Tt < T < TN ≈ 7.7 K [68]), the ground state represents a superposition

of incommensurate propagation vectors of the star
〈

1
2 + τ1,

1
2 , τ2

〉
, where τ1 = 0.06

and τ2 = 0.03, and commensurate propagation vectors of the star
〈

1
2

1
20
〉
. Note,

however, that contributions due to commensurate propagation vectors are tiny.
For the experiments the sample was oriented such that the (111) plane corresponded to

the scattering plane. Time-of-flight diffraction data were recorded in phase C at T = 2 K
and in phase IC at 7.25 K. The data analysis followed the same procedure as in Sec. 3.3.4.3.
Propagation vectors were inferred from the diffraction data by indexation of magnetic
Bragg peaks. In the following, the indexation of magnetic peaks is illustrated in terms of
the Bragg peaks that were detected in the vicinity of

(
1
2 ,−

1
2 , 0

)
in the reciprocal space.

In phase C the recorded data feature commensurate Bragg peaks of the
〈

1
2

1
20
〉

star.
Fig. 3.59 (a) shows the diffraction data in the vicinity of

(
1
2 ,−

1
2 , 0

)
as recorded in phase

C. The single magnetic Bragg peak at the commensurate position
(

1
2 ,−

1
2 , 0

)
reflects (ππ0)

antiferromagnetism. Accordingly, the magnetic ground state represents a superposition
of propagation vectors of the star

〈
1
2

1
20
〉
, which is in excellent agreement with previous

studies [68]. The integrated intensity of this commensurate magnetic Bragg peak is given
by 5.85 ± 0.03. As the

〈
1
2

1
20
〉

star possesses three different k-arms, the ground state in
phase C may be single-k, double-k, or triple-k.

In phase IC the recorded data feature commensurate (ππ0) reflections, as well as in-
commensurate satellites in the vicinity of (ππ0) positions. As explained in the following,
the data indicate, that the ground state in IC is a superposition of commensurate and
incommensurate propagation vectors.

Fig. 3.59 (b) shows 9 Bragg peaks, which were observed in the vicinity of
(

1
2 ,−

1
2 , 0

)
. The

Bragg peaks are located at the positions
(

1
2 ,−

1
2 , 0

)
,
(

1
2 ± τ1,−1

2 , τ2
)
,
(

1
2 ± τ1,−1

2 ,−τ2
)
,(

1
2 ,−

1
2 ± τ1, τ2

)
, and

(
1
2 ,−

1
2 ± τ1,−τ2

)
with τ1 = 0.06 and τ2 = 0.03. The Bragg peak lo-
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cated at the commensurate position may be indexed with the propagation vector
(

1
2 ,

1
2 , 0

)
.

The Bragg peaks located at incommensurate positions may be indexed with propagation
vectors of the star

〈
1
2 − τ1,

1
2 , τ2

〉
.

Accordingly, the ground state in phase IC is a superposition of propagation vectors of
the stars

〈
1
2

1
20
〉

and
〈

1
2 − τ1,

1
2 , τ2

〉
. In particular, the ground state has a long-wavelength

modulation of the order of a/τ1 ≈ 16 · a in x-direction and of the order of a/τ2 ≈ 33 · a in
z-direction.

The eight Bragg peaks at incommensurate positions in IC have integrated intensities
ranging from 0.43 ± 0.01 to 0.79 ± 0.01. The integrated intensity of the commensurate
peak is relatively weak and given by 0.04±0.01. Note, that the size of the incommensurate
modulation is in agreement with the study by Morin [68], which reported propagation vec-
tors

(
1
2 − 0.06, 1

2 , 0
)

as inferred from neutron powder diffraction. However, the direction
of the incommensurate modulation is different.

The wave-vector star
〈

1
2 − τ1,

1
2 , τ2

〉
of the incommensurate propagation vector in phase

IC has 12·2 different k-arms. Conjugated k-arms may be identified in terms of pairs, which
we call Ω-arms. Accordingly, the

〈
1
2 − τ1,

1
2 , τ2

〉
star has 12 different Ω-arms, i.e., pairs of

conjugated k-arms [56]. Note, that for the multi-k structures studied in this thesis, we
do not distinguish between conjugated arms, as explained in Sec. 2.2. Four of the Ω-arms
have a pair of Bragg peaks in the vicinity of the

(
1
2 ,−

1
2 , 0

)
position. Accordingly, eight Q-

positions associated with the
〈

1
2 − τ1,

1
2 , τ2

〉
star are located in the vicinity of

(
1
2 ,−

1
2 , 0

)
,

all of which were observed in our experiments.
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(a) (b)

TmCu
μ0H = 0 T

T = 2 K T = 7.25 K 
phase C phase IC

Figure 3.59.: Magnetic propagation vectors in the two ordered phases at zero magnetic field.
The propagation vectors may be inferred by indexation of magnetic Bragg peaks. Shown are
diffraction data as recorded in the vicinity of

(
1
2 ,−

1
2 , 0
)

. (a) Commensurate Bragg peak at(
1
2 ,−

1
2 , 0
)

reflecting commensurate (ππ0) antiferromagnetism in phase C. The ground state

in phase C has propagation vectors of the star
〈

1
2 ,

1
2 , 0
〉

. (b) Commensurate Bragg peak at(
1
2 ,−

1
2 , 0
)

as well as 8 incommensurate satellites, as observed in phase IC. The indexation of

the magnetic Bragg peaks requires propagation vectors of the stars
〈

1
2 ,

1
2 , 0
〉

and
〈

1
2 − τ1,

1
2 , τ2

〉
,

where τ1 = 0.06 and τ2 = 0.03. The ground state in IC is multi-k and has a long-wavelength
modulation.
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3.4.3. Neutron Diffraction in Magnetic Fields

Neutron diffraction in magnetic fields on sample OFZ107-2-a was carried out at the time-
of-flight diffractometer Wish [140].

The main results of these experiments may be summarized as follows:
• In the 〈100〉 phase diagram (Fig. 3.60) the magnetic ground states may be char-

acterized as follows. The magnetic ground state in XI, Xa1, and Xa2 represents a
single-k (ππ0) antiferromagnet.

• The magnetic ground state in Xc1 represents an antiferromagnet with propagation
vectors of the star

〈
1
2 − δ,

1
2 , 0

〉
, where δ = 0.07. Accordingly, the ground state has

a long-wavelength modulation.
• In the 〈110〉 phase diagram (Fig. 3.63) the magnetic ground states may be charac-

terized as follows. The magnetic ground state in MI, Ma1, and Ma2 represents a
single-k (ππ0) antiferromagnet. The magnetic ground state in phase Mb1 represents
a superposition of propagation vectors of the stars

〈
1
2 ,

1
2 , 0

〉
,
〈

1
2 ,

1
2 ,

1
7

〉
,
〈

1
2 ,

1
2 ,

2
7

〉
, and〈

1
2 ,

1
2 ,

3
7

〉
. Accordingly, phase Mb1 does not display a variation of (ππ0) antiferro-

magnetism.
• In the 〈111〉 phase diagram (Fig. 3.66) the magnetic ground states may be charac-

terized as follows. The magnetic ground state in RI and Ra1 represents a single-k
(ππ0) antiferromagnet. The magnetic ground state in Rb1, Rb2, and Rb3 repre-
sents a superposition of propagation vectors of the stars

〈
1
2 ,

1
2 , 0

〉
and

〈
1
2 − δ,

1
2 , 0

〉
,

where δ = 0.07. Accordingly, the magnetic ground state is multi-k and has a long-
wavelength modulation.

• The regions XI, Xa1, Xa2, MI, Ma1, Ma2, RI, and Ra1 may belong to a single thermo-
dynamic phase. The ground state in this phase is a single-k (ππ0) antiferromagnet.
In particular, the ground state in phase C is a single-k (ππ0) antiferromagnet

Experiments were carried out with three different sample orientations. The three orien-
tations were such that the scattering plane corresponded to the (001) plane (orientation
O1), to the (011) plane (orientation O2), and to the (111) plane (orientation O3). In each
orientation, magnetic fields were applied vertically. Accordingly, in orientation O1, O2,
and O3 the magnetic field was directed along [001],

[
01̄1

]
, and [111], respectively. In each

orientation, a field sweep was carried out, staring in phase C at 2 K after zfc. The three
field sweeps may be labeled sweepO1, sweepO2, and sweepO3, respectively.

The 〈100〉, 〈110〉, and 〈111〉 phase diagrams, which were determined by Rahn (cf.
Ref. [118]), are shown in Figs. 3.60, 3.63, and 3.66, respectively. The regions in this phase
diagram were assigned colors and labels. The capital letters X, M , and R shall indicate,
that magnetic fields are applied along a cubic edge, a cubic face diagonal, and a cubic
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space diagonal, respectively. The regions in the 〈111〉 phase diagram will be referred to as
”phases” or ”phase pockets”. Note, however, that these ”phases” are not necessarily phases
in a thermodynamic sense, i.e., they are not necessarily thermodynamically separated by
phase transitions [139].

To determine field dependences of magnetic propagation vectors, time-of-flight diffrac-
tion data sets were recorded at discrete field values during the three sweeps sweepO1,
sweepO2, and sweepO3, respectively. Each recorded data set contained diffraction inten-
sities of a large number of Q-positions, which are related to the star

〈
1
2

1
20
〉
. From each

time-of flight data set, magnetic propagation vectors were inferred by indexation of the
magnetic Bragg peaks in the data set. In the following presentation, the determination
of magnetic propagation vectors in orientation O1, in orientation O2, and in orientation
O3 is illustrated by means of indexation of the Bragg peaks in the vicinity of

(
1
2 ,

1
2 , 0

)
,(

0, 1
2 ,

1
2

)
, and

(
1
2 ,−

1
2 , 0

)
, respectively. Integrated intensities and field dependences were

inferred from the data sets by the same procedure, which was described in Sec. 3.3.4.3.
In orientation O1 time-of-flight data sets were recorded in phase XI at the fields 0 T

and 0.5 T, in phase Xa1 at 1 T, 1.2 T, and 1.4 T, in phase Xa2 at 2 T, in phase Xb1 at 3.2 T
and 4 T, in phase Xc1 at 4.5 T, and in the field polarized state at 6 T.

In this orientation O1, the diffraction data permitted to study Bragg peak positions,
which are related to the k-arm Ac1 of the

〈
1
2

1
20
〉

star, or positions, which are in the close
vicinity of these Q-positions. Peak positions, which are related to the arms Ac2 and Ac3,
were not accessible in this orientation.

In the following, magnetic propagation vectors as a function of field, as inferred from
sweepO1, are discussed. As established in the following, the magnetic ground state rep-
resents a commensurate (ππ0) antiferromagnet in the regions XI, Xa1, and Xa2. Note,
that region XI comprises phase C. As shown in this study, the regions XI, Xa1, and Xa2

presumably belong to a single thermodynamic phase. In this phase, the ground state is
given by a single-k (ππ0) antiferromagnet. In phase Xc1, the ground state has propaga-
tion vectors of the star

〈
1
2 − δ,

1
2 , 0

〉
, where δ ≈ 0.07. Accordingly, the ground state has a

long-wavelength modulation. The ground state in Xc1 may also have tiny contributions
due to propagation vectors of the star

〈
1
2 ,

1
2 , 0

〉
. In phase Xb1 magnetic scattering was

vanishingly small at positions, which are related to the k-arm Ac1, and at positions, which
are close to this k-arm. Presumably, all magnetic intensities were at positions, which are
related to the k-arms Ac2 and Ac3, or at positions, which are located far away from the
scattering plane.

In the following, the indexation of Bragg peaks is illustrated for some data sets, which
were recorded by means of sweepO1. The corresponding positions in the phase diagram
are represented by filled circles in Fig. 3.60. Fig. 3.61 illustrates distinctive changes of
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magnetic propagation vectors during sweepO1. Shown are magnetic Bragg peaks, which
were observed in the vicinity of

(
1
2 ,

1
2 , 0

)
. In phase XI, the single Bragg peak at

(
1
2 ,

1
2 , 0

)
reflects commensurate (ππ0) antiferromagnetism (Fig. 3.61 (a)). The integrated intensity
of the commensurate peak at

(
1
2 ,

1
2 , 0

)
is given by 5.81±0.03. Similar diffraction patterns

in phases Xa1 and Xa2 reflect commensurate (ππ0) antiferromagnetism.
As shown in Fig. 3.61 (b), in phase Xc1 at a field of 4.5 T Bragg peaks were observed

at the incommensurate positions
(

1
2 ± δ,

1
2 , 0

)
and

(
1
2 ,

1
2 ± δ, 0

)
with δ ≈ 0.07. The in-

commensurate splitting is suggestive of a long-wavelength modulation of the order of
a/δ ≈ 14 · a. Bragg peaks at those positions may be indexed by propagation vectors of
the star

〈
1
2 − δ,

1
2 , 0

〉
. Weak intensity was observed at the commensurate peak position(

1
2 ,

1
2 , 0

)
. The integrated intensities of the incommensurate satellites are ranging from

0.63± 0.01 to 1.18± 0.01 and the integrated intensity of the commensurate peak is given
by 0.03± 0.01.
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Figure 3.60.: Regions of the 〈100〉 phase diagram of TmCu. The phase diagram was determined
by Rahn (cf. Ref. [118]). For this study the regions, which may possibly represent phase pockets,
were labeled and filled with colors. The vertical line represents the field sweep, which was carried
out for this study. Diffraction data were recorded at the points, which are indicated by circles.
The filled circles indicate the data sets, for which diffraction data are presented further below.

In the following, integrated intensities as a function of field, as inferred from sweepO1,
of Bragg peaks of the star

〈
1
2

1
20
〉

are presented. Fig. 3.62 shows field dependences of
commensurate Bragg peaks, which are related to the k-arm Ac1, as inferred from the
field sweep in orientation O1. Shown are the normalized integrated intensities iq (B) =
Iq (B) /Iq (0). As a function of field, the integrated intensities of all peaks decrease steeply
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(a) (b)

TmCu
Orientation O1
μ0H || [001], T= 2 K

μ0H = 0 T μ0H = 4.5 T 
phase XI phase Xc1

Figure 3.61.: Evolution of magnetic propagation vectors during sweepO1 in orientation O1. The
indexation of magnetic Bragg peaks may be illustrated in terms of the Bragg peaks, which were
observed in the vicinity of

(
1
2 ,

1
2 , 0
)

. Shown are the recorded data in the vicinity of
(

1
2 ,

1
2 , 0
)

. (a)

Scattering intensity in phase XI at 0 T. The single Bragg peak at
(

1
2 ,

1
2 , 0
)

reflects commensurate
(ππ0) antiferromagnetism. (b) Scattering intensity intensity in Xc1 at 4.5 T. The Bragg peaks at(

1
2 ,

1
2 , 0
)

, at
(

1
2 ± δ,

1
2 , 0
)

, and at
(

1
2 ,

1
2 ± δ, 0

)
indicate that the ground state is a superposition

of propagation vectors of the stars
〈

1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

.

and vanish in the field range < 2 T. If the regions XI, Xa1, and Xa2 share the same ground
state, the decrease of integrated intensities is due to a change of the magnetic domain
populations. In particular, this decrease indicates, that either one or two k-arms of the
star

〈
1
2

1
20
〉

may participate in phases XI, Xa1, and Xa2. Accordingly, the ground state is
either single-k or double-k, but not triple-k. Further below it is argued, that the ground
state is most likely single-k.

Note, that in principle, this decrease of magnetic intensities might also arise due to a
phase transition related to a change of the magnetic ground state. Note, however, that
in this case phases XI, Xa1, and Xa2 would be thermodynamically separated.

In orientation O2 time-of-flight data sets were recorded in phase MI at 0.5 T, in phase
Ra1 at 1 T, 2 T, and 3 T, in phase Ma2 at 3.5 T and 4 T, in phase Mb1 at 4 T, 5 T and
5.5 T, in phase Mc1 at 6 T, in phase Mc2 at 6.5 T, 8 T, and 10 T, and in the field polarized
state at 12 T.

As explained in the following, the ground state represents a commensurate (ππ0) an-
tiferromagnet in MI, Ma1, and Ma2. Note that MI comprises the zero-field phase C.
We assume, that the three regions MI, Ma1, and Ma2 belong to a single thermodynamic
phase. The ground state in this phase is a single-k (ππ0) structure. The ground state
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Figure 3.62.: Integrated intensities as a function of field of commensurate Bragg peaks, as
inferred from sweepO1 in orientation O1. Integrated intensities of peaks, which are related
to the k-arm Ac1, are shown as a function of field along [001]. Field dependences of integrated
intensities were divided by the integrated intensity in zero magnetic field iq (B) = Iq (B) /Iq (0).

in Mb1 represents a superposition of wave-vectors, which are distinctively different from
the propagation vectors of the

〈
1
2

1
20
〉

star. In particular, the ground state in Mb1 does
not represent a (ππ0) antiferromagnet or a variation of it. In Mc1 and Mc2 only relatively
weak Bragg intensities were observed.

In the following, the indexation of Bragg peaks is illustrated for three different data
sets, which were recorded by means of sweepO2. The corresponding positions in the
phase diagram are represented by filled circles in Fig. 3.63. Fig. 3.64 shows magnetic
Bragg peaks in the vicinity of

(
0, 1

2 ,
1
2

)
as inferred from the three data sets. Note, that

data are shown on a logarithmic color scale.
In phase MI at 0.5 T a single Bragg peak is present at the position

(
0, 1

2 ,
1
2

)
reflecting

commensurate (ππ0) antiferromagnetism (Fig. 3.64 (a)). Similar diffraction patterns were
observed in Ma1 and Ma2 reflecting commensurate (ππ0) antiferromagnetism.

Figs. 3.64 (b) and (c) show the scattering intensities in the vicinity of the position(
0, 1

2 ,
1
2

)
, as observed in phase Mb1 at the fields 4.5 T and 5 T, respectively. A Bragg

peak is present at the commensurate position
(
0, 1

2 ,
1
2

)
. Further, relatively weak peaks
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Figure 3.63.: Regions of the 〈110〉 phase diagram of TmCu. The phase diagram was determined
by Rahn (cf. Ref. [118]). For this study the regions, which may possibly represent phase pockets,
were labeled and filled with colors. The vertical line represents the field sweep, which was carried
out for this study. Diffraction data were recorded at the points, which are indicated by circles.
The filled circles indicate the data sets, for which diffraction data are presented further below.

were detected at the positions
(
0, 1

2 ± δ,
1
2

)
and

(
0, 1

2 ,
1
2 ± δ

)
with δ ≈ 0.07. However, the

ground state is not a variation of a (ππ0) antiferromagnet, as magnetic Bragg peaks are
present also at positions, located far away from (ππ0) positions.

Fig. 3.65 shows a two dimensional slice through the diffraction data, which were recorded
in phase Mb1 at a field of 5 T. Magnetic Bragg peaks are present at commensurate po-
sitions (hj,−0.5,−0.5), where hj = j · 1

7 and j = {4, 5, 6, 7, ..., 22}. A similar pattern of
magnetic Bragg peaks was observed in the (h, k, 1.5) plane, as presented in Sec. A.5.

The Bragg peaks may be indexed by means of propagation vectors of the stars
〈

1
2 ,

1
2 , 0

〉
,〈

1
2 ,

1
2 ,

1
7

〉
,
〈

1
2 ,

1
2 ,

2
7

〉
, and

〈
1
2 ,

1
2 ,

3
7

〉
. Accordingly, the ground state is multi-k with at least

four different propagation vectors.
The magnetic Bragg peaks, as observed in phase Mb1, are reminiscent of diffraction

data, which may be observed for spin-slip states. Spin-slip structures are hosted in nu-
merous rare-earth systems, as reported in Refs. [100, 200, 201]. The breakup of (ππ0)
antiferromagnetism in phase Rb1 is in stark contrast to all other ground states detected
in TmCu, HoCu, and ErCu, which are all variations of (ππ0) antiferromagnets.

In the following, integrated intensities as a function of field of Bragg peaks of the
〈

1
2

1
20
〉

star, as inferred from sweepO2, are presented. Shown in Fig. 3.68 (a), (b), and (c) are the
integrated intensities as a function of field, of the Bragg peaks, which are associated with
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Figure 3.64.: Evolution of magnetic propagation vectors in orientation O2. The indexation of
magnetic Bragg peaks may be illustrated in terms of the Bragg peaks, which were observed
in the vicinity of

(
0, 1

2 ,
1
2

)
. Shown are diffraction data recorded in the vicinity of

(
0, 1

2 ,
1
2

)
.

(a) Scattering intensity in phase MI at 0.5 T. The single Bragg peak at
(
0, 1

2 ,
1
2

)
reflects

commensurate (ππ0) antiferromagnetism. (b),(c) Scattering intensity intensity in Xb1 at 4.5 T
and in Xb1 at 5 T. The Bragg peaks at

(
0, 1

2 ,
1
2

)
, at

(
0, 1

2 ± δ,
1
2

)
, and at

(
0, 1

2 ,
1
2 ± δ

)
may be

indexed with propagation vectors of the stars
〈

1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

. However, as explained
in the text, Bragg peaks, located far away from (ππ0) positions, are present in Xb1. Accordingly,
the ground state is not a variation of a (ππ0) antiferromagnet.

the k-arms Ac1, Ac2, and Ac3, respectively. In this orientation O2, where the magnetic field
was directed along

[
01̄1

]
, the k-arms Ac1 and Ac3 have the same orientation. In contrast,

Ac2 has a different orientation with respect to the field. The integrated intensities in
Fig. 3.68 reflect these two different orientations of k-arms. In relatively low fields, the
integrated intensities of Bragg peaks, which are related to Ac1 and Ac3, respectively, drop
to vanishingly small values. In contrast, the integrated intensities of Bragg peaks, which
are related to Ac1, increase to a plateau. Accordinlgy, only a single k-arm is participating
in Ma1 and Ma2. Further, we assume that the regions MI, Ma1, and Ma2 belong to a
single thermodynamic phase. It may be concluded that the ground state in these phases
is single-k, as only one k-arm is participating. Accordingly, also the ground state in phase
C is single-k.

Note, that in principle, this decrease of magnetic intensities might also arise due to a
phase transition related to a change of the magnetic ground state. In this case, however,
MI and Ma1 do not belong to the same phase.

In orientation O3, time-of-flight data sets were recorded in phase RI at the fields 0 T,
1 T, 2 T, and 3 T, in phase Ra1 at 3.2 T, 3.4 T, and 3.6 T, in phase Rb1 at 3.8 T, 4 T, 4.2 T,
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Figure 3.65.: Propagation vectors of the ground state in Xb1 in orientation O2. Shown
are diffraction data in the (h, k,−0.5) plane, as recorded in Xb1 at 5 T. Along the line
(h,−0.5,−0.5) Bragg peaks were observed at the positions h = j · 17 with j = {4, 5, 6, 7, ..., 22}.
Accordingly, the magnetic ground state is multi-k. Propagation vectors of the stars

〈
1
2 ,

1
2 , 0
〉

,〈
1
2 ,

1
2 ,

1
7

〉
,
〈

1
2 ,

1
2 ,

2
7

〉
, and

〈
1
2 ,

1
2 ,

3
7

〉
are required to index the magnetic Bragg peaks.

5 T, 6 T, 6.2 T, and 6.4 T, in phase Rb2 at 6.6 T and 6.8 T, in phase Rb3 at 7 T, 7.2 T,
7.4 T, 7.6 T, 7.8 T, and 8 T.

As explained in the following, the ground state was found to represent a commensurate
(ππ0) antiferromagnet in RI and Ra1. In Rb1, Rb2, and Rb3, the ground state was found
to represent a superposition of propagation vectors of the stars

〈
1
2 ,

1
2 , 0

〉
and

〈
1
2 − δ,

1
2 , 0

〉
,

where δ = 0.07. We believe that RI and Ra1 belong to a single thermodynamic phase.
Further, we believe that Rb1, Rb2, and Rb3 belong to a single thermodynamic phase.

In the following, the indexation of Bragg peaks is illustrated for same data-sets, recorded
by means of sweepO3. The coresponding positions in the phase diagram are represented
by filled circles in Fig. 3.66. Fig. 3.67 shows diffraction data in the vicinity of

(
1
2 ,−

1
2 , 0

)
as inferred from the three data sets.

In phases RI and Ra1 a single Bragg peak is present at
(

1
2 ,−

1
2 , 0

)
reflecting commensu-

rate (ππ0) antiferromagnetism. For instance, Fig. 3.67 (a) shows the Bragg peak, which
was recorded in phase RI at 0 T. The integrated intensity of the commensurate peak is
given by 8.21± 0.04.
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Figure 3.66.: Regions of the 〈111〉 phase diagram of TmCu. The phase diagram was determined
by Rahn (cf. Ref. [118]). For this study the regions, which may possibly represent phase pockets,
were labeled and filled with colors. The vertical line represents the field sweep, which was carried
out for this study. Diffraction data were recorded at the points, which are indicated by circles.
The filled circles indicate the data sets, for which diffraction data is presented further below.

In Rb1, Rb2, and Rb3 Bragg peaks are present, which may be indexed by propagation
vectors of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0

〉
. In particular, the ground state in these regions

is multi-k and has a long-wavelength modulation. For instance, Fig. 3.67 (b), (c), and (d)
show the scattering intensity, as recorded in phases RI at 0 T, Rb1 at 4 T, Rb1 at 6 T, and
in Rb3 at 7.2 T, respectively. In all three phases Rb1, Rb2, and Rb3 Bragg peaks are present
at
(

1
2 ,−

1
2 , 0

)
, at

(
1
2 ± δ,−

1
2 , 0

)
, and at

(
1
2 ,−

1
2 ± δ, 0

)
, where δ ≈ 0.07. Accordingly, the

magnetic ground state represents a superposition of commensurate and incommensurate
propagation vectors of the stars

〈
1
2 ,

1
2 , 0

〉
and

〈
1
2 − δ,

1
2 , 0

〉
, respectively. The ground state

is multi-k and has a long-wavelength modulation of the order of a/δ ≈ 14 · a. In phase
Rb1 at 4 T the integrated intensities of the incommensurate satellites are ranging from
0.18± 0.01 to 0.58± 0.01, the integrated intensity of the commensurate peak is given by
0.86± 0.01.

We believe that the regions XI, Xa1, Xa2, MI, Ma1, Ma2, RI, and Ra1 belong to a
single thermodynamic phase, which has a single-k (ππ0) antiferromagnet as the magnetic
ground state. In particular, the ground state in phase C is single-k.

This finding of a single-k ground state is notable. At zero magnetic field, the ground
state is collinear, having only a single (ππ0) propagation vector. When a magnetic field
is applied, this ground state may possibly become noncollinear due to a ferromagnetic
component. Recently, an unconventional Hall effect was reported in Ref. [118], which
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Figure 3.67.: Evolution of magnetic propagation vectors in orientation O3. The indexation of
magnetic Bragg peaks may be illustrated in terms of the Bragg peaks, which were observed in the
vicinity of

(
1
2 ,−

1
2 , 0
)

. Shown are the recorded data in the vicinity of
(

1
2 ,−

1
2 , 0
)

. (a) Scattering

intensity in phase RI at 0 T. The single Bragg peak at
(

1
2 ,−

1
2 , 0
)

reflects commensurate (ππ0)
antiferromagnetism. (b),(c), and (d) Scattering intensity in Rb1 at 4 T, in Rb1 at 6 T, and in Rb3
at 7.2 T, respectively. The Bragg peaks at

(
1
2 ,−

1
2 , 0
)

, at
(

1
2 ± δ,−

1
2 , 0
)

, and at
(

1
2 ,−

1
2 ± δ, 0

)
require propagation vectors of the stars

〈
1
2

1
20
〉

and
〈

1
2 − δ,

1
2 , 0
〉

, respectively.

is not accounted for by an ordinary anomalous Hall effect, scaling linearly with the net
magnetization. Accordingly, the ground state in phases XI, Xa1, Xa2, MI, Ma1, Ma2, RI,
and Ra1 may represent a noncollinear antiferromagnet causing an anomalous Hall effect,
which is not ordinary. This finding may suggest the presence of a finite Berry curvature
of the electronic structure (cf. Sec. 3.3.7.3 for further information).
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Figure 3.68.: Integrated intensities as a function of field of commensurate Bragg peaks, as
inferred from sweepO2 in orientation O2. Integrated intensities of peaks, which are related to
the k-arms (a) Ac1, (b) Ac2, and (c) Ac3 are shown as a function of field along [001]. Field
dependences of integrated intensities were divided by the integrated intensity in zero magnetic
field iq (B) = Iq (B) /Iq (0).
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3.5. The Compound ErCu

In the following section, we present a microscopic study on the antiferromagnet ErCu, the
third of three RCu compounds studied in this thesis, which may host complex magnet
ground states with non-trivial topology. Previous magnetic structure determinations in
zero magnetic field were based on polycrystalline samples and did not consider all ordered
phases. As our main results of single crystal neutron diffraction we identified several mag-
netic ground states including multi-k structures and modulations with large wavelengths
of the order of 170 Å.

The presentation is organized as follows. First, an introduction to the compound is
provided in Sec. 3.5.1. Second, a study by means of neutrons is presented in Sec. 3.5.2.
Magnetic propagation vectors were determined in the three magnetically ordered phases
at zero magnetic field (Sec. 3.5.2.1) and the ground states were specified by representa-
tional analysis (Sec. 3.5.2.2), Rietveld refinements (Sec. 3.5.2.4), and polarization analy-
sis (Sec. 3.5.2.3). Further, magnetic ground states were studied in magnetic fields along
twofold 〈110〉 directions (Sec. 3.5.2.5).

3.5.1. Introduction to ErCu

The centrosymmetric compound ErCu exhibits properties, which are typical of rare-earth
intermetallics, most notably a rich magnetic phase diagram due to numerous competing
interactions. The compound is a promising candidate material for hosting novel anti-
ferromagnetic ground states with non-trivial topology of the following reasons. The de-
tection of multitudinous ground states in the isostructural compounds HoCu and TmCu
(cf. Secs. 3.3 and 3.4) possessing non-trivial topology, long-wavelength modulations, and
multi-k character, as well as the emergence of highly unconventional transport proper-
ties in HoCu and TmCu (cf. Refs. [18, 118]) may suggest the stabilization of topological
magnetic ground states also in ErCu.

The compound ErCu crystallizes in the cubic CsCl structure with lattice constant
a = 3.431 Å [70, 71]. At temperatures below ≈ 15 K the tripositive rare-earth ions carry
magnetic long-range order. The magnetic ions may be viewed as localized moments of
9.58µB, as inferred for Er3+ ([Xe] 4f 11) by means of Hunds’s rules (L = 6, S = 3

2 , J = 15
2 ,

and g = 6
5 [30]). Complex magnetic phase diagrams evolve, as shown in Fig. 3.69 for

the major cubic directions and inferred from magnetization, ac susceptibility, and specific
heat [202]. The phase diagrams reflect the importance of cubic anisotropies featuring
qualitative differences between the major cubic directions. Critical fields, which are much
smaller for fourfold directions than for twofold and threefold directions, suggest a fourfold
easy axis in agreement with neutron spectroscopy measurements [203].
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Figure 3.69.: Magnetic phase diagrams of ErCu for magnetic field applied along 〈100〉 (left
column), 〈110〉 (middle column), or 〈111〉 (right column). The color coding in the background
represents the susceptibility calculated from magnetization, i.e., dM/dH (top row), the deriva-
tive of the magnetization with respect to temperature, i.e., dM/dT (middle row), and the
non-phonon contribution to the specific heat divided by temperature, i.e., Cel/T (bottom row).
The figure was taken from Ref. [202].

In zero magnetic field, three magnetically ordered phases are established with transi-
tion temperatures TN1 = 8.7 K, TN2 = 12.7 K, and TN3 = 13.8 K [202]. Susceptibility as a
function of temperature, as shown in Fig. 3.70 (a), features three clearly visible anomalies
at the transition temperatures. The inverse susceptibility as a function of temperature,
as shown in Fig. 3.70 (b), displays Curie-Weiss behavior with the fluctuating Curie-Weiss
moment 9.9µB/f.u. and the Curie-Weiss temperature −18 K, which is characteristic of a
non-frustrated antiferromagnet. Specific heat as a function of temperature, which is shown
in Figs. 3.69 (c) and (d), features sharp peaks at TN1 and TN2, as characteristic of first-
order phase transitions, and a lambda-anomaly at TN3, characteristic of a second-order
phase transition (cf. Fig. 3.70). Magnetic entropy in ErCu as a function of temperature,
as shown in Figs. 3.70 (e) and (f), was inferred by approximating the phonon contribu-
tions in ErCu by the phonon contributions of non-magnetic LuCu. The high temperature
limit of the entropy amounts to Smag = R · ln 16, which is consistent with the quantum
mechanically predicted value Smag = R · ln (2J + 1) for Er3+ with J = 15

2 . Resistivity
measurements were reported in Refs. [204, 205]. Typical magnetization data as a function
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.70.: Bulk properties of ErCu in zero magnetic field. (a) AC susceptibility in zero
magnetic field as a function of temperature, the excitation fields applied along major cubic
directions. Three anomalies are observed, labeled TN1, TN2, and TN3. (b) Inverse susceptibility
as a function of temperature featuring linear behavior. (c),(d) Specific heat as a function of
temperature. Shown are specific heat data of ErCu and of the non-magnetic compound LuCu.
Further, an estimate for the phonon contribution, which is based on the Debye model, is shown.
(e),(f) Magnetic contribution to the entropy. Therefore, the phonon contributions in ErCu were
approximated by the phonon contributions in LuCu. (g) Magnetization data as a function of field
at low temperatures are shown for magnetic fields applied along 〈100〉, 〈110〉, and 〈111〉. Data
were measured in three different protocols, namely for increasing field after zero-field cooling
(1), for decreasing fields starting from 14 T (2), and for increasing fields starting from −14 T
(3). The figures were taken from Ref. [202].

of field are shown in Fig. 3.70 (g) for the three major cubic directions. The magnetiza-
tion increases monotonically as a function of field and displays multiple steps, which is
reminiscent of observations in DyCu [115], PrAg [116], or NdIn3 [95]. Relatively weak
hysteresis was observed in the magnetization data, depending on whether the field was
increased after zero-field cooling, increased from −14 T, or decreased from 14 T.

Magnetic structure determinations using neutron diffraction from polycrystalline sam-
ples were reported in Ref. [68]. However, only two magnetically ordered phases were
studied at zero magnetic field, as the authors resolved only two transitions in specific
heat, namely at 10.9 K and 13.8 K. The temperatures that were studied in Ref. [68]
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Figure 3.71.: Magnetic structure in the low-temperature phase of ErCu, which is further below
labeled C. A magnetic structure determination by means of polycrystalline neutron diffraction was
reported by Morin et al. in Ref. [68]. Three magnetic structures were found in agreement with
the neutron diffraction data recorded at T = 1.5 K. The structure candidates were characterized
by an angle θ = 60◦. The ground state is either single-axis, double-axis, or triple-axis. (a) In the
single-axis case the moments point along a direction enclosing an angle θ = 60◦ with the [001]
direction. (b) The double-axis texture has moments pointing along 〈100〉 directions. (c) The
triple-axis texture has moments pointing along 〈111〉 directions. The figures were taken from
Ref. [68].

correspond to the phases C and either to phase IC1 or phase IC2, as referred to in our
study further below. In the lowest-temperature phase C, at T = 1.5 K, commensurate
(ππ0) antiferromagnetism with an ordered moment of 5.7µB was observed. The authors
of Ref. [68] proposed three scenarios for the magnetic ground state in this phase. Fig. 3.71
shows the three possible structures. The ground state represents either a single-k struc-
ture, the moments enclosing an angle of 60◦ with the [001] direction, or a multi-k structure
that has the same structure factor as the single-k structure (cf. Ref. [107]). The moments
point along 〈100〉 directions, if the texture is double-k, or along 〈110〉 directions, if it is
triple-k. Crystal electric fields, as inferred from neutron spectroscopy measurements [203],
do not permit to determine the magnetic ground states unambiguously [68], as the energy
for 〈110〉 and 〈111〉 directions is too similar to the energy for 〈100〉 directions, which had
lowest energy. The authors found that distortions of the lattice are small in phase C, as
only a small broadening of the nuclear (200) peak was observed. At T = 12 K in phase
IC1 or IC2, the ground state was found to represent a superposition of incommensurate
propagation vectors (0.54, 0.5, 0) as well as commensurate propagation vectors. The com-
mensurate component had a modulus of 2.4µB and was directed along the c-axis (θ = 0◦),
the incommensurate component was related to an amplitude modulation with maximum
amplitude of 3µB, the moments also directed along the c-axis (θ = 0◦).
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3.5.2. Neutron Diffraction Study

In the following, a neutron study of ErCu is presented. First, propagation vectors of mag-
netic ground states were determined in zero magnet field, which is presented in Sec. 3.5.2.1.
Therefore, temperature dependences of magnetic Bragg peaks were recorded in zero mag-
netic field. Second, polarization analysis, representational analysis, and Rietveld refine-
ments were carried out, as presented in Secs. 3.5.2.2, 3.5.2.3, and 3.5.2.4, respectively.
Third, temperature dependences of magnetic Bragg peaks were determined at different
magnetic fields along twofold 〈110〉 directions, as presented in Sec. 3.5.2.5.

3.5.2.1. Magnetic Propagation Vectors

To determine the magnetic propagation vectors of ErCu in zero magnetic field, neutron
diffraction of the sample OFZ104-3-3 was carried out on the diffractometer E4 [206].

The main results of these measurements may be summarized as follows:
• In zero magnetic field, ErCu features three phases hosting magnetic long-range

order. These phases may be labeled C (T < TN1), IC1 (TN1 < T < TN2), and IC2
(TN2 < T < TN3) (cf. Ref. [202]).

• All phases display variations of (ππ0) antiferromagnetism.
• In phase C, the ground state is commensurate representing a superposition of prop-

agation vectors of the star
〈

1
2 ,

1
2 , 0

〉
. The structure may be single-k, double-k, or

triple-k.
• In phase IC1, the ground state represents a superposition of incommensurate con-

tributions due to propagation vectors of the star
〈

1
2 − δ,

1
2 , δ

〉
(δ = 0.044), much

weaker contributions due to propagation vectors of the star
〈

1
2 − δ,

1
2 , 0

〉
, and weak

contributions due to commensurate propagation vectors of the star
〈

1
2 ,

1
2 , 0

〉
.

• In phase IC2, the ground state represents a superposition of incommensurate con-
tributions due to propagation vectors of the star

〈
1
2 − δ,

1
2 , 0

〉
and much weaker

incommensurate contributions due to propagation vectors of the star
〈

1
2 − δ,

1
2 , ε
〉

(ε = 0.02). The structure is multi-k. Contributions due to propagation vectors of
the stars

〈
1
2 − δ,

1
2 , δ

〉
and

〈
1
2 ,

1
2 , 0

〉
are finite but relatively weak.

The study was organized as follows. First, magnetic propagation vectors were deter-
mined in phase C at T = 4 K. Therefore, several high-symmetry points of the first
Brillouin zone were probed as putative magnetic propagation vectors and diffraction in-
tensity was recorded by means of rocking scans. Magnetic intensity was detected at the
M point. Accordingly, the magnetic ground state in phase C was confirmed to be a (ππ0)
antiferromagnet. Second, magnetic propagation vectors were determined in phase IC1 at
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T = 10 K and in phase IC2 at 13 K. By means of q-scans, Bragg peaks were recorded at
commensurate (ππ0) positions, as well as at incommensurate positions in the vicinity of
(ππ0) positions. Magnetic propagation vectors were inferred by indexation of the mag-
netic Bragg peaks, which were observed. Third, temperature dependences of magnetic
Bragg peaks were studied.

For the experiments, neutrons with a wavelength of 2.41 Å were used. The sample was
oriented such that the (110) plane corresponded to the scattering plane. While cooling
the sample from room temperature to base temperature, the orientation matrix was de-
termined at the structural reflections (002) and (110). The lattice parameter amounts
to a = 3.4166(18) Å. A two dimensional detector with 256 × 256 pixels on an area
200 × 200 mm2 at the sample-detector distance 79.38 cm permitted to accurately deter-
mine coordinates of incommensurate Bragg peaks in reciprocal space.

To determine magnetic propagation vectors in phase C at T = 4 K, the following high
symmetric points in reciprocal space [125] were considered as putative propagation vectors:
the points (i) M and (ii) R. However, only at the M point a pronounced magnetic Bragg
peak was measured. In contrast, no magnetic intensity was detected in a rocking scan
around the position

(
1
2 ,

1
2 ,

1
2

)
. Accordingly, the magnetic propagation vectors in phase C

are of the star
〈

1
2 ,

1
2 , 0

〉
, in agreement with Ref. [68].

To record the magnetic Bragg peak
(

1
2 ,−

1
2 , 0

)
in phase C at 4 K with high q-resolution,

a q-scan through the position
(

1
2 ,−

1
2 , 0

)
was carried out along the (001) direction in the

reciprocal space. The recorded data are presented in Fig. 3.72. The q-scan with step width
∆l = 0.002 along the line (0, 0, l) in the reciprocal space corresponds to a rocking scan
with step width ∆ω ≈ −0.159◦. The detector changes its position only slightly during
this scan, as in the center d sin (θ) /dh ≈ 0. For instance, during a l-scan with 161 steps
the detector changes its angular position from θ = 29.52◦ (when l = −0.16) to 28.78◦

(l = 0) and back to 29.52◦ (l = 0.16). At each step during the l-scans, a detector image
was recorded. Each detector image represents a 256 × 256 matrix Iω (X, Y ) of recorded
diffraction intensities.

Fig. 3.72 (a) shows the sum over detector images ∑ω Iω (X, Y ) for this rocking scan at
T = 4 K. The pronounced Bragg spot at

(
1
2 ,−

1
2 , 0

)
reflects magnetic long-range order of

type (ππ0) in phase C.
To determine diffraction intensities of the Bragg peak

(
1
2 ,−

1
2 , 0

)
as a function of ω, the

region of interest ROI O was defined in the detector images and intensities were inferred
by summation of the matrix entries lying in ROI O:

I (ω) =
∑

(X,Y )∈O
Iω (X, Y ) . (3.78)
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Figure 3.72.: Magnetic propagation vectors in phase C. A q-scan along (001) through the
position

(
1
2 ,−

1
2 , 0
)

was carried out. Propagation vectors may be inferred by indexation of the
Bragg peaks. (a) Sum over detector images, which were recorded by means of the q-scan.
(b) Intensities as a function of ω for the ROIs (b1) Y+ and X−, (b2) O, and (b3) Y− and
X+. A Bragg peak was observed at the position

(
1
2 ,−

1
2 , 0
)

. For each Bragg peak, which was
observed, the q-position in reciprocal space is indicated by means of the shift with respect to
the commensurate position

(
1
2 ,−

1
2 , 0
)

.

Fig. 3.73 (b2) shows the intensity I (ω), as inferred from the rocking scan around the
peak

(
1
2 ,−

1
2 , 0

)
. A Gaussian profile centered at ω0 = 66.53◦ with a FWHM 0.49◦ gives

an excellent fit to the recorded magnetic Bragg peak as reflected by the relatively high
R-value given by R2 = 0.9995. Shown in Fig. 3.73 (b1) and Fig. 3.73 (b3) are intensities
as a function of ω for the ROIs Y+, Y−, X+, and X−, which display vanishingly small
intensities.

It may be concluded that the ground state in phase C is a superposition of propagation
vectors of the star

〈
1
2 ,

1
2 , 0

〉
. This ground state may be single-k, double-k, or triple-k.

To determine the propagation vectors in phase IC1, the same reciprocal space scan,
which was carried out in phase C, was repeated in phase IC1 at 10 K. Presented in
Fig. 3.73 are the data, as recorded by this q-scan. Fig. 3.73 (a) shows the sum over detector
images. Bragg peak intensities were observed in five different ROIs in the detector images.
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Figure 3.73.: Magnetic propagation vectors in phase IC1. A q-scan along (001) through the
position

(
1
2 ,−

1
2 , 0
)

was carried out. Propagation vectors may be inferred by indexation of the
Bragg peaks. (a) Sum over detector images, which were recorded by means of the q-scan. (b)
Intensities as a function of ω for the ROIs (b1) Y+ and X−, (b2) O, and (b3) Y− and X+. For
each Bragg peak, which was observed, the q-position in reciprocal space is indicated by means
of the shift with respect to the commensurate position

(
1
2 ,−

1
2 , 0
)

.

Shown in Fig. 3.73 (b2) is the intensity as a function of ω, as inferred for ROI O. A Bragg
peak was observed at

(
1
2 ,−

1
2 , 0

)
, the intensity being distinctively smaller than in phase C.

Shown in Fig. 3.73 (b1) and (b2) are intensities as a function of ω, as inferred for the ROIs
Y+, X−, X+, and Y−, respectively. In total 12 different magnetic Bragg peaks are visible
in these data. In the figure, their Q−positions are indicated by their shift with respect to
the Q-position

(
1
2 ,−

1
2 , 0

)
. Relatively strong Bragg peaks were observed at Q-positions,

which are related to the star
〈

1
2 − δ,

1
2 , δ

〉
, where δ = 0.044± 0.002. Further, Bragg peaks

with relatively weak intensities were observed at Q-positions, which are related to the
star

〈
1
2 − δ,

1
2 , 0

〉
.

Accordingly, the ground state is a superposition of relatively strong contributions due
to propagation vectors of the star

〈
1
2 + δ, 1

2 , δ
〉
. The ground state may also have finite

contributions due to propagation vectors of the stars
〈

1
2 ,

1
2 , 0

〉
and

〈
1
2 − δ,

1
2 , 0

〉
. Hence,



3.5. The Compound ErCu 179

the magnetic ground state may be multi-k. Further it has a long-wavelength modulation
of the order of a/δ ≈ 78 Å along two cubic directions.
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Figure 3.74.: Magnetic propagation vectors in phase IC2. A q-scan along (001) through the
position

(
1
2 ,−

1
2 , 0
)

was carried out. Propagation vectors may be inferred by indexation of the
Bragg peaks. (a) Sum over detector images, which were recorded by means of the q-scan. (b)
Intensities as a function of ω for the ROIs (b1) Y+ and X−, (b2) O, and (b3) Y− and X+. For
each Bragg peak, which was observed, the q-position in reciprocal space is indicated by means
of the shift with respect to the commensurate position

(
1
2 ,−

1
2 , 0
)

.

To determine the propagation vectors in phase IC2, the same reciprocal space scan,
which was carried out in phases C and IC1, was repeated in phase IC2 at 13 K. Presented
in Fig. 3.74 are the data, as recorded by the q-scan. Shown in Fig. 3.74 (a) is the sum
over detector images. Bragg peak intensities were observed in five different ROIs in the
detector images. Shown in Fig. 3.74 (b2) is the intensity as a function of ω, as inferred
for ROI O. A Bragg peak is present at

(
1
2 ,−

1
2 , 0

)
, but the intensity is relatively weak.

Shown in Fig. 3.72 (b1) and (b2) are the intensities as a function of ω, as inferred for the
ROIs Y+, X−, X+, and Y−, respectively. Bragg peaks were observed at q-positions, which
are related to the star

〈
1
2 − δ,

1
2 , δ

〉
. However, their intensity is very weak. Bragg peaks

with relatively strong intensities were observed at q-positions, which are related to the
star

〈
1
2 − δ,

1
2 , 0

〉
. Further, peaks were observed at positions, which are related to the star
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〈

1
2 − δ,

1
2 , ε
〉
, where ε = 0.020± 0.002. Accordingly, the ground state is a superposition of

contributions due to propagation vectors of the stars
〈

1
2 − δ,

1
2 , 0

〉
and

〈
1
2 + δ, 1

2 , ε
〉
. The

magnetic ground state may be multi-k and has a long-wavelength modulation of the order
of a/δ ≈ 78 Å along one cubic direction and a/ε ≈ 170 Å along another cubic direction.
Further, the ground state may have finite contributions due to propagation vectors of the
stars

〈
1
2 ,

1
2 , 0

〉
and

〈
1
2 − δ,

1
2 , δ

〉
.

The propagation vector stars
〈

1
2 − δ,

1
2 , δ

〉
,
〈

1
2 − δ,

1
2 , 0

〉
, and

〈
1
2 − δ,

1
2 , ε
〉

have 24, 12,
and 24 different k-arms, respectively. For the study of multi-k structures in this thesis,
we do not distinguish between conjugated k-arms. Accordingly, they may be identified in
terms of Ω-arms. The stars

〈
1
2 − δ,

1
2 , δ

〉
,
〈

1
2 − δ,

1
2 , 0

〉
, and

〈
1
2 − δ,

1
2 , ε
〉
, have 12, 6, and 12

different Ω-arms, respectively. One third of these Ω-arms possesses a pair of q-positions in
the vicinity of

(
1
2 ,−

1
2 , 0

)
. Together with the commensurate peak at

(
1
2 ,−

1
2 , 0

)
this gives

in total 21 Bragg peak positions, which belong to 11 different wave-vector arms.
In the following, integrated intensities as a function of temperature are presented for

these 11 wave-vector arms. Therefore, a temperature sweep was carried out starting in
phase C at 4 K after zfc. During the sweep, the q-scan, which was performed in phases C,
IC1, and IC2, was repeated at well defined temperatures ranging from 4 K to 14 K. The
Bragg peaks, which were observed at 21 different q-positions, where fitted by Gaussian
peak profiles and integrated.

Fig. 3.75 shows the temperature dependences of integrated intensities, as inferred from
the 21 Bragg peak positions. Shown in Fig. 3.75 (a) is the integrated intensity as a
function of temperature of the Bragg peak located at

(
1
2 ,−

1
2 , 0

)
reflecting the temperature

dependence of Bragg peaks of the star {kc}, where kc :=
(

1
2 ,

1
2 , 0

)
. Presented in Figs. 3.75

(b), (c), and (d) are the integrated intensities as inferred from Bragg peaks, which are
associated with the propagation vector stars {kic,1}, {kic,2}, and {kic,3}, where kic,1 :=(

1
2 − δ,

1
2 , δ

)
, kic,2 :=

(
1
2 − δ,

1
2 , 0

)
, and kic,3 :=

(
1
2 − δ,

1
2 , ε
)
, respectively. For the pairs

of incommensurate peaks, which belong to conjugated k-arms, i.e., to the same Ω-arm,
the average of their integrated intensities is shown. An illustration of the location of
the 21 Bragg peaks is given in Fig. 3.75 (e). The k-arms, which belong to the same
star, feature the same temperature dependences, as in zero magnetic field the symmetry
between different k-arms of a star is preserved.
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Figure 3.75.: Temperature dependences of magnetic Bragg peaks in zero magnetic field. (a)
Integrated intensity as a function of temperature, of the Bragg peak, which is associated with the
propagation vector kc. (b)-(d) Temperature dependences of Bragg peak, which are associated
with propagation vectors of the stars {kic,1}, {kic,2}, and {kic,3}, respectively. Shown are
averages of integrated intensities of Bragg peaks, which belong to conjugated k-arms, i.e., to
the same Ω-arm. (e) Illustration of the location of the 21 Bragg peak positions, which were
considered in this study.
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3.5.2.2. Representational Analysis

To determine all irreducible representations (IRs) as well as the corresponding basis func-
tions that are allowed by symmetry for the four types of propagation vectors kc, kic,1,
kic,2, and kic,2, representational analysis was carried out by means of the software SARAh
[54]. The study provides a decomposition of ground states into Fourier series.

The results of this study may be summarized as follows:
• The magnetic ground state in phase C may be decomposed into a Fourier series with

propagation vectors of the star {kc}, where kc =
(

1
2 ,

1
2 , 0

)
. Each Fourier component

can be written as superposition of Γ3 (kc) and Γ9 (kc) basis functions.
• The magnetic ground states in phases IC1 may be decomposed into a Fourier se-

ries with propagation vectors of the stars {kc}, {kic,1}, and {kic,2}, where kic,1 =(
1
2 − δ,

1
2 , δ

)
, and kic,2 =

(
1
2 − δ,

1
2 , 0

)
. Each commensurate Fourier component may

me decomposed analogously to phase C. The incommensurate Fourier components
are a superposition of Γ1 (kic,1) and Γ2 (kic,1) basis functions, as well as Γ2 (kic,2),
Γ3 (kic,2), and Γ4 (kic,2) basis functions.

• The magnetic ground state in phase IC2 may be decomposed into a Fourier series
with propagation vectors of the stars {kic,2} and {kic,3}, where kic,3 =

(
1
2 − δ,

1
2 , ε
)
.

Each incommensurate Fourier component is a superposition of Γ1 (kic,3) and Γ2 (kic,3)
basis functions, Γ2 (kic,2), Γ3 (kic,2), and Γ4 (kic,2) basis functions.

Propagation vector IR BV BV components
m‖a m‖b m‖c im‖a im‖b im‖c

Γ3 Ψ1 0 0 16 0 0 0
kc =

(
1
2 ,

1
2 , 0

)
Γ9 Ψ2 8 0 0 0 0 0

Ψ3 0 -8 0 0 0 0
Γ2 Ψ1 4 0 0 0 0 0

kic,2 =
(

1
2 − δ,

1
2 , 0

)
Γ3 Ψ2 0 4 0 0 0 0
Γ4 Ψ3 0 0 4 0 0 0
Γ1 Ψ1 0 2 0 0 0 0

kic,1 =
(

1
2 − δ,

1
2 , δ

)
Γ2 Ψ2 0 0 2 0 0 0

Ψ3 2 0 0 0 0 0
Γ1 Ψ1 0 2 0 0 0 0

kic,3 =
(

1
2 − δ,

1
2 , ε
)

Γ2 Ψ2 0 0 2 0 0 0
Ψ3 2 0 0 0 0 0

Table 3.9.: Analysis of representations of the magnetic Er site in the space group Pm3̄m. For
each of the four magnetic propagation vectors k that was detected in ErCu, the IRs Γ (k) with
non-trivial basis functions Ψk are listed. The analysis was carried out by means of the software
SARAh.
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Tab. 3.9 summarizes the results of the representational analysis as obtained for propa-
gation vectors kc, kic,1, kic,2, and kic,3 and space group Pm3̄m. For propagation vectors
kc and kic,2 the results are analogous to the results in Sec. 3.3.3.4. For incommensurate
propagation vectors kic,3 and kic,1, the magnetic representation splits into Γ = 1Γ1

1 + 1Γ2
2.

The IR Γ2 has the order ν = 2 and contains two basis functions. In contrast, Γ1 has the
order ν = 1 and contains one basis function.

Figure 3.76.: Magnetic structure mic,3 representing an example for a magnetic structure with
propagation vector kic,3 that is a superposition of basis functions from one IR only, namely
Γ2 (kic,3), and that features spatially constant modulus of magnetic moments.

Magnetic structures with propagation vectors such as kic,3 may have intriguing proper-
ties. Namely, there are some peculiarities related to the fact that the IR Γ2 (kic,3) has the
order ν = 2. For instance, single-k spiral structures exist that consist of basis functions
from one single IR only. Consider therefore, e.g., the magnetic structure with propagation
vector kic,3 =

(
1
2 − δ,

1
2 , ε
)
, which is described in terms of:

mic,3 (R) = m0 (êx cos (kic,3 ·R) + êz sin (kic,3 ·R)] . (3.79)

The structure mic,3 is a superposition of Γ2 (kic,3) basis functions and features spatially
constant modulus of magnetic moments.

Fig. 3.76 shows a real-space picture of mic,3. The structure is incommensurate with
respect to the cubic directions [100] and [001], i.e., along x and z. Magnetic moments
are perfectly antiferromagnetically coupled along y, they are antiferromagnetically cou-
pled with cycloidal character along x, and they are ferromagnetically coupled with helical
character along z. Interestingly, all moments of mic,3 feature the same modulus. In
contrast, there is no such single-k spiral structure with wave-vector kic,2 that is a super-
position of basis functions, which are related to one IR only. All single-k structures with
propagation vector kic,2 that are related to one IR only are in fact amplitude modulations.
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These considerations are of particular interest, if Landau theory implies that the mag-
netic ground state is a superposition of basis functions from one IR only [53]. In fact,
Landau theory may be applicable in phase IC2, as the phase transition at the Néel tem-
perature was reported to be a second-order phase transition [68].
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3.5.2.3. Polarization Analysis

To experimentally determine the IRs that describe the magnetic ground states in phases
C and IC2, polarized neutron diffraction of the sample OFZ104-3-4-1 was carried out at
the diffractometer DNS [135].

The main results of these experiments may be summarized as follows:
• In phase C, the magnetic ground state is a superposition of Γ9 (kc) basis functions

only. In particular, the ground state represents one of the five commensurate (ππ0)
structures s2, s4, d2, d5, and t2 (cf. Fig. 3.40).

• In phase IC2 the ground state contains Γ3 (kc) basis functions and Γ4 (kic,2) basis
functions.

For the experiments the sample was oriented such that the (001) plane corresponded to
the scattering plane. At the DNS diffractometer only peaks located in the scattering plane
are accessible for measurements. Phase IC1 was not investigated with these experiments,
as the magnetic Bragg peaks, which are indexed by propagation vectors kic,1 or kic,3, are
not located in the (001) plane.

The study was done as follows. In phases C and IC2, diagonal entries of polarization
matrices were determined for each peak in the vicinity of

(
1
2 ,

1
2 , 0

)
in the reciprocal space.

Irreducible representations that describe the magnetic ground states in C and IC2 were
inferred by means of the Blume-Maleev equations (cf. Sec. 2.1.2).

Polarization matrices in C and IC2 were determined as follows. With the same experi-
mental procedure as in Sec. 3.3.3.5 large maps for the vicinity of

(
1
2 ,

1
2 , 0

)
in the reciprocal

space were recorded in phase C at T = 5 K and in phase IC2 at T = 13 K. The maps
contained two channels, one with spin-flip and the other one with non-spin-flip scatter-
ing intensities. The data permitted to study in phase C the commensurate Bragg peak(

1
2 ,

1
2 , 0

)
and in phase IC2 the commensurate Bragg peak, as well as the four Bragg peaks

located at
(

1
2 ± δ,

1
2 , 0

)
and

(
1
2 ,

1
2 ± δ, 0

)
.

The integrated intensity of the commensurate peak was considerably weaker in phase
IC2 than in phase C:

I
(

1
2 ,

1
2 , 0

)
13K

I
(

1
2 ,

1
2 , 0

)
5K

= 0.035± 0.001 , (3.80)

which is in agreement with Fig. 3.75. The determination of polarization matrices from
the experimental data followed the same procedure as described in Sec. 3.3.3.5. The
polarization rate of the incident neutron beam was not measured for the ErCu sample.
However, the experimental setup was the same for the two sets of measurements and it
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Q-position Phase C Phase IC2(
1
2 ,

1
2 , 0

)
(−0.98,+0.94,−0.97) (−1.03,−,+0.96)(

1
2 − δ,

1
2 , 0

)
- (−1.00,−,+0.98)(

1
2 ,

1
2 − δ, 0

)
- (−1.01,−,+0.99)(

1
2 ,

1
2 + δ, 0

)
- (−1.01,−,+0.99)(

1
2 + δ, 1

2 , 0
)

- (−1.00,−,+0.94)

Table 3.10.: Polarization matrices of magnetic peaks in phases C and IC2. Shown are the
diagonal elements of polarization matrices, as determined experimentally by means of polarized
neutron diffraction at 5 K in phase C and at 13 K in phase IC2. For the measurements, the
ErCu sample was oriented such that the scattering plane corresponded to the crystallographic
(001) plane. For the vectors, which are listed, the statistical errors of each entry are smaller
than ±0.02.

was assumed that the neutron polarization rate did not change, i.e., α = 1 − ε = 0.97.
Hence, all experimental polarization matrices were corrected by a factor γ = 1

1−2ε ≈ 1.06
to compensate for the lack of full beam polarization.

Fig. 3.10 shows the measured polarization matrices. For all Bragg peaks, the polariza-
tion in the x-channel is consistent with Pxx = −1 reflecting the purely magnetic origin of
all scattering processes (cf. Ref. [136]).

In phase C, the polarization matrix of the commensurate peak
(

1
2 ,

1
2 , 0

)
satisfies Pyy =

0.93 ≈ −Pzz. With the Blume-Maleev equations it may be established that a polarization
matrix fulfilling Pyy = 1 = −Pzz would imply a ground state which is described by only
Γ9 (kc) basis functions (cf. Secs. A.2 and 3.3.3.5). Here, we assume that the polarization
matrix is in fact described by only Γ9 (kc) and that the discrepancy between measured
polarization (Pyy = 0.93 ≈ −Pzz) and expected polarization (Pyy = 1 = −Pzz) arises due
to double spin-flip scattering. Our assumption is based on the same arguments that were
thoroughly explained in Sec. 3.3.3.5. Among the 21 commensurate (ππ0) structures in
Tab. 3.1 there are only five, which contain only Γ9 (kc) basis functions in their Fourier
decomposition, namely s2, s4, d2, d5, and t2. Hence, it is inferred, that the magnetic
ground state in phase C represents one of these five structures. Note, that the five
structures are associated with an angle θ = 90◦, which stands in contrast to an angle of
60◦ inferred by Morin et al. [68].

In phase IC2, the polarization matrices of all incommensurate Bragg peaks are con-
sistent with Pyy = −1 = −Pzz. As it can be shown by the Blume-Maleev equations,
this polarization implies that the incommensurate components of the ground state in
phase IC2 are described by Γ4 (kic,2) basis functions only (cf. Sec. A.2). Similarly, the
polarization matrix of the relatively weak commensurate Bragg peak is consistent with
Pyy = −1 = −Pzz. By means of the Blume-Maleev equations it is inferred that the com-
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mensurate components of the ground state in phase IC2 are described by Γ3 (kc) basis
functions only (cf. Sec. A.2). Both IRs, i.e. Γ4 (kic,2) and Γ3 (kc), are related to an angle
of θ = 0◦, which is in excellent agreement with previous findings at T = 12 K by Morin
et al. [68]. The results are in total analogy to the results in phase IC1 of HoCu (cf.
Sec. 3.3.3.5). Due to the lack of knowledge about the number of propagation vectors it is
beyond the scope of this thesis to suggest a specific magnetic ground state for phase IC2
of ErCu.
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3.5.2.4. Rietveld Refinements

To perform Rietfeld refinements in phase C of ErCu, neutron diffraction of single crystal
OFZ104-3-3 was carried out at the time-of-flight diffractometer SXD [207].

The main results of these experiments may be summarized as follows:
• The CsCl crystal structure of ErCu was confirmed by means of Rietveld refinements.
• The magnetic ground state in phase C represents a commensurate (ππ0) antiferro-

magnet and is a superposition of Γ9 (kc) basis functions only, which is in agreement
with the polarization analysis. Accordingly, the ground state represents one of the
five (ππ0) structures s2, s4, d2, d5 and t2 (cf. Tab. 3.1).

• Time-of-flight data in this compound are contaminated by strong Renninger effects.
For the experiments, neutrons with wavelengths 0.5 Å < λ < 5.5 Å were used. In

phase C at T = 4.5 K a large volume in the reciprocal space was recorded by means of
time-of-flight measurements. The volume contained 1824 structural and 630 magnetic
Bragg reflections of the

〈
1
2

1
20
〉

star. Integrated intensities of the Bragg reflections were
inferred by means of the data reduction software SXD2001 [207]. As explained in the
following, the data set could not as a whole be used for Rietveld refinements, as the
data set displayed an odd behavior, which may be artifact. In particular, all attempts
to carry out Rietveld refinements failed. However, refinements were successfully carried
out on a reduced data set containing only Bragg peaks recorded with neutrons in the
reduced wavelength range 0.9 Å < λ < 1.1 Å. As explained in the following, the large
data set was contaminated with unphysical wavelength dependences. Presumably multiple
scattering, which is typically strongly wavelength dependent [130, 131, 208], caused the
artifact wavelength dependences in the large data set.

To illustrate this untypical wavelength dependence, integrated intensities of structural
reflections were plotted in Fig. 3.77. They are supposed to follow the nuclear structure
factor for the CsCl structure of ErCu, which is given by:

F 2
ErCu (h, k, l) =

(bEr + bCu)2 h+ k + l ∈ 2Z

(bEr − bCu)2 h+ k + l ∈ 2Z + 1
. (3.81)

As the scattering lengths of Er and Cu are very similar, bEr = 7.79 fm and bCu = 7.718 fm
[122], the nuclear reflections should display two groups of strongly enhanced integrated
intensities, when h + k + l is even, and strongly suppressed integrated intensities, when
h+ k + l is odd.

Fig. 3.77 shows the integrated intensities of structural reflections as a function of
sin (θ) /λ. The large data set of 1824 structural reflections recorded with neutrons of
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Figure 3.77.: Nuclear structure factor of ErCu. A large set of structural Bragg reflections was
measured at the time-of-flight diffractometer SXD. Presented is the nuclear structure factor, as
measured in phase C at 4.5 K. Therefore, integrated intensities of the recorded Bragg peaks, i.e.,
I = F 2

o , are shown as a function of sin (θ) /λ. The whole set of 1824 structural Bragg reflections,
which were recorded with neutrons of wavelengths 0.5 Å < λ < 5.5 Å, does not display the
behavior expected for the CsCl crystal structure of ErCu. In contrast, Bragg reflections that
were recorded with neutrons of small wavelength spread, i.e., 0.9 Å < λ < 1.1 Å, display the
expected behavior as they split into two groups of strongly suppressed (when h+ k + l is odd)
and strongly enhanced reflections (when h+k+ l is even) following the structure factor of ErCu.
Presumably, the unphysical wavelength dependence of the whole data set originates in Renninger
effects, which are typically strongly wavelength dependent.

wavelengths 0.5 Å < λ < 5.5 Å are represented by non-filled circles. The red circles de-
scribe Bragg peaks with odd values of h + k + l and the blue ones with even values of
h + k + l. The pattern does not follow the structure factor F 2

ErCu (h, k, l), but displays
a strong sin (θ) /λ dependence. In contrast, the 133 nuclear Bragg reflections that were
recorded with neutrons of small wavelength spread 0.9 Å < λ < 1.1 Å, represented by
filled circles, follow the structure factor F 2

ErCu (h, k, l), featuring two groups of strongly
enhanced and strongly suppressed reflections.

Magnetic Rietveld refinements using JANA2006 [59] were carried out on the reduced
data set containing 133 structural and 170 magnetic (ππ0) Bragg reflections. The inte-
grated intensities were considered as nuclear and magnetic structure factors F 2

o (h, k, l),
respectively. For the refinement of the crystal structure, Pm3̄m, a scale parameter, and
a quadratic (isotropic) displacement parameter were introduced. For the magnetic re-
finements the (uniform) size of the magnetic moments, and d − 1 ratio parameters for d
possible magnetic domains were introduced.
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Magnetic structure s1 s2 s4
Allover refinement:

Number of reflections: 303
R [F 2 ≥ 3σ (F 2)]: 19.65 5.20 5.10

wR (F 2): 63.61 11.61 11.13
Nuclear refinement:

Number of reflections: 133
R [F 2 ≥ 3σ (F 2)]: 14.61 4.19 4.10

wR (F 2): 34.44 10.33 10.12
Magnetic refinement:

Number of reflections: 170
R [F 2 ≥ 3σ (F 2)]: 44.89 10.24 10.04

wR (F 2): 161.63 18.67 16.96
mag. moment (µB): 2.76(3) 4.860(4) 4.143(4)

Uiso 0.013932 -0.000166 0.000378

Table 3.11.: Magnetic Rietveld refinements for the ground state in phase C at 4.5 K. Integrated
intensities I = F 2

o of the 170 magnetic (ππ0) reflections and 133 structural reflections, which
were recorded with neutrons of wavelengths 0.9 Å < λ < 1.1 Å, were used for the refinements.
The three magnetic structures s1, s2, and s4 that were considered as magnetic ground state
are the only single-k structures among the 21 commensurate (ππ0) structures in Tab. 3.1 that
consist of basis functions of one IR only. For the refinement of the crystal structure, Pm3̄m,
a scale parameter and a quadratic (isotropic) displacement parameter were introduced. For the
magnetic refinements the (uniform) size of the magnetic moment and d−1 ratio parameters for
d possible domains were introduced.

As magnetic ground state in phase C, the three commensurate (ππ0) structures s1,
s2, and s4 were considered. These three structures represent the only single-k structures
among the 21 commensurate (ππ0) structures in Tab. 3.1 that contain basis functions
from one IR only. s2 and s4 are superpositions of Γ9 (kc) basis functions and s1 contains
only Γ3 (kc) basis functions. Multi-k structures were not considered due to difficulties to
implement them in JANA2006 in combination with time-of-flight data. As shown in the
following, excellent refinement results were obtained for the two structures s2 and s4. The
five structures s2, s4, d2, d5, and t2 share the same magnetic structure factors and cannot
be distinguished from each other by means of Rietveld refinements in zero magnetic field
(cf. Sec. 3.3.3.6), as they all consist of Γ9 (kc) basis functions only. Hence, the Rietveld
refinements carried out on ErCu confirm that the ground state in phase C consists of
Γ9 (kc) basis functions only, which is in excellent agreement with the experiments in
Sec. 3.5.2.3.

Tab. 3.11 shows the results obtained from the Rietveld refinements. The low R-values
of roughly 4 for the two structures s2 and s4 confirm that the magnetic ground state
in phase C consists of Γ9 (kc) basis functions only. Further, the low R-values for the
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Figure 3.78.: Calculated vs. observed structure factors Fc/Fo for the magnetic Rietveld re-
finements, which were carried out in phase C at 4.5 K. The structure factors Fo inferred from
the recorded data are compared with the structure factors Fc calculated for each of the three
magnetic structures by means of JANA2006 [59]. Shown are magnetic structure factors as in-
ferred from Bragg reflections of the reduced data set, i.e., which were recorded with neutrons of
wavelengths 0.9 Å < λ < 1.1 Å. The three structures taken into account are the only single-k
structures among the 21 commensurate (ππ0) structures (cf. Tab. 3.1) that consist of basis
functions from one IR only. (a) Refinement of the structure s1, which is associated with the IR
Γ3. (b) Refinement of the structure s2, which is associated with the IR Γ9. (b) Refinement of
the structure s4, which is associated with the IR Γ9

nuclear structure refinement of roughly 5 confirm the CsCl crystal structure of ErCu.
In contrast, for the structure s1 the R-values were considerably larger. As displacement
parameter Uiso slightly negative values were obtained for both magnetic structures s2 and
s4, which is unphysical. A magnetic moment of 4.860µB was obtained for the structure
s2 and a moment of 4.143µB for the structure s4. Both values are considerably smaller
than 9.58µB, the moment inferred from Hund’s rules for the free Er3+ ion. No extinction
correction was performed.

Fig. 3.78 indicates graphically the excellent agreement of the magnetic structure factors
Fc, calculated for the two magnetic structures s2 and s4, with the values Fo, inferred from
the recorded data. All points lie in the vicinity of the bisetrix, on which calculated and
measured structure factors are equal.
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3.5.2.5. Magnetic Field Along Twofold Direction

Neutron diffraction of sample OFZ104-3-3 with fields along twofold 〈110〉 directions was
carried out at the diffractometer E4 [206]. The experimental setup was the same as for
the experiments in Sec. 3.5.2.1. However, between the two sets of experiments the sample
was removed.

The main results of these experiments may be summarized as follows:
• The ground states in phases C, IC1, and IC2 are relatively stable for fields up to 2 T.

Accordingly, the magnetic phases at zero magnetic field, C, IC1, and IC2, extend
to pockets of the 〈110〉 phase diagram, which may be labeled MI, MII, and MIII,
respectively.

• Temperature dependences of the arms Aic1,x =
[

1
2 ± δ,

1
2 , 0

]
∼

and Aic1,y =
[

1
2 ,

1
2 ± δ, 0

]
∼

are distinctively different in fields along [110], even though the symmetry between
the k-arms is preserved by the [110] field direction. This is not expected in a non-
chiral space-group and may be related to tiny misalignment of the sample.

The section is organized as follows. First, temperature dependences in relatively low
fields of 2 T are presented. The observed Bragg peaks and their temperature dependences
were very similar to the temperature dependences at zero magnetic field, which were pre-
sented in Sec. 3.5.2.1. In particular, the same types of propagation vectors were observed,
namely of the stars {kc}, {kic,1}, {kic,2}, and {kic,3}. Second, temperature dependences
in relatively high fields ≥ 8 T are presented.

For these experiments, the two magnetic Bragg positions q1 =
(

1
2 ,−

1
2 , 0

)
and q2 =(

1
2 ,−

1
2 , 1

)
as well as incommensurate satellites in the vicinity of the two positions were

studied by means of temperature sweeps at different magnetic fields, namely 2 T, 8 T, 11 T,
and 13.5 T. At zero magnetic field magnetic Bragg peaks were present at 21 different
q-positions in the vicinity of

(
1
2 ,−

1
2 , 0

)
, as pointed out in Sec. 3.5.2.1. These peaks

were indexed with propagation vectors of the stars {kc}, {kic,1}, {kic,2}, and {kic,3},
respectively. For the study, reported here, peaks, which are associated with these four
propagation vector stars were investigated in the vicinity of the two positions q1 and q2

by means of rocking scans. Integrated intensities were inferred by the same procedure as
described in Sec. 3.5.2.1.

Among the Bragg peaks considered in this section some are expected to exhibit similar
temperature dependences due to symmetry arguments, which may be summarized as
follows:
(s.i) Bragg peaks associated with the same k-arm or with conjugated k-arms should

exhibit qualitatively similar temperature dependences, as long as the polarization
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factor [21] in the structure factor does not change at the two q-positions, where the
Bragg peaks are located.

(s.ii) Bragg peaks from same crystallographic stars should have similar temperature de-
pendences, if their k-arms have the same orientation in the field.

In fact, (s.i) was confirmed in these experiments. However, (s.ii) did not hold true in
general.

For each temperature sweep that was carried out at a field B, the protocol was as
follows: The history was (i) zero field cooling to 2 K and (ii) increasing the field to the
value B. The temperature sweep was then carried out with increasing temperature. It
was avoided to approach the paramagnetic state, as in prior test experiments the sample
fell from the sample holder, when critical temperatures were approached in high magnetic
fields.

Fig. 3.79 shows the temperature dependences of magnetic Bragg peaks, as recorded in
a field of 2 T. As seen in the following, the peaks associated with propagation vectors
of the stars {kc}, {kic,1}, {kic,2}, and {kic,3} feature qualitatively the same temperature
dependences as in zero magnetic field (cf. Fig. 3.75) revealing three magnetically ordered
phases. Accordingly, the three phases C, IC1, and IC2 may be be part of phase pockets
MI, MII, and MIII that extend at least up to fields of ≈ 2 T.

Shown in Fig. 3.79 (d) are temperature dependences of the two commensurate Bragg
peaks located at q1 and q2. Both of them display similar temperature dependences, in
agreement with (s.i) as they both belong to the k-arm Ac1. In phase pocket MI, maximum
integrated intensities of the Bragg peak at q1 were twice as large as integrated intensities
of the Bragg peak at q2.

The peaks at q1 and q2 belong to the same k-arm but the size of the integrated inten-
sities differs by a factor 2. This difference of integrated intensities at q1, which has lower
q, and at q2, which has larger q, may be due to a combination of different effects. The
magnetic cross section is namely proportional to:
(q.i) the Debye-Waller factor [21, 22], which is smaller at q2 than at q1.
(q.ii) the square of the magnetic form factor [21, 22], which is smaller at q2 than at q1.
(q.iii) the magnetic polarization factor [21], which does not depend on the modulus q,

but on the direction of magnetic moments.
Fig. 3.79 (a) and (b) show temperature dependences at 2 T of satellite Bragg peaks

associated with propagation vectors of the stars {kic,2} and {kic,1}, respectively. The
satellites located in the vicinity of q1 (Figs. 3.79 (a1) and (b1)) and the satellites located
in the vicinity of q2 (Figs. 3.79 (a2) and (b2)) feature qualitatively the same temperature
dependences as corresponding peaks at zero magnetic field. The peaks associated with
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the star {kic,2} are relatively strong in phase pocket MIII, and the peaks associated with
the star {kic,1} in phase pocket MII, respectively. In both phase pockets, the satellites
with larger q lying in the vicinity of q2 are roughly one order of magnitude weaker than
the corresponding counterparts at smaller q lying in the vicinity of q1. This decrease as
a function of q is in fact much stronger than for the commensurate Bragg peaks located
at q1 and q2 in phase pocket MI, where the factor is given by 2. Accordingly, this
decrease in phases MII and MIII when compared with MI is mainly due to the magnetic
polarization factor (q.iii). In particular, it may be inferred that the magnetic moments
in phase pockets MII and MIII are not perpendicular to q2. Satellite peaks associated
with propagation-vectors of the star {kic,3}, as recorded in the vicinity of q1, are shown
in Fig. 3.79 (c). Temperature dependences are again similar to the dependences at zero
magnetic field. The satellites associated with propagation vectors of the star {kic,3} and
located in the vicinity of q1 are vanishingly small.

At higher magnetic fields, i.e., 8 T, 11 T, and 13.5 T, only peaks associated with propa-
gation vector stars {kc} and {kic,2} were investigated, as intensity at positions associated
with the {kic,3} and {kic,1} propagation vector stars were vanishingly small. Fig. 3.80
shows all finite integrated intensities determined at 8 T, 11 T, and 13.5 T, respectively.
Commensurate Bragg peaks were detected only at 8 T and 11 T, but not at 13.5 T.

Figs. 3.80 (d) and (e) show the integrated intensities of the commensurate (ππ0) peaks
located at q1 and q2 at the fields 8 T and 11 T, respectively. The temperature dependences
of the two peaks were qualitatively equivalent, in agreement with (s.i). However, q1 was
roughly one order of magnitude weaker than q2. This may be explained by (q.iii) and
a change of the direction of magnetic moments, when compared with the direction of
moments in phase pocket MI, where the ratio between q1 and q2 was given by a factor
2. Accordingly, at 8 T the moments are more tilted towards the ‖ +q̂1 direction than in
phase pocket MI. At 11 T almost no intensity is visible at commensurate peak positions
of the

〈
1
2

1
20
〉

star. At 13.5 T the integrated intensities of commensurate Bragg peaks are
vanishingly small.

Incommensurate Bragg peaks of the {kic,2} propagation vector star were observed in
all three fields, i.e., 8 T, 11 T, and 13.5 T. The following two observations were made in
our study:
(o.i) The arms Aic1,x =

[
1
2 ± δ,

1
2 , 0

]
∼

and Aic1,y =
[

1
2 ,

1
2 ± δ, 0

]
∼

featured considerably dif-
ferent temperature dependences, even though the symmetry between Aic1,x and Aic1,y

was preserved by the field direction.
(o.ii) Temperature dependences were qualitatively different at different fields.

In the following, the temperature dependences of peaks associated with {kic,2} are
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presented. We point out in detail, why our observation (o.i) stands in contrast to our
expectation (s.ii), which was established by symmetry arguments.

Fig. 3.80 (a) shows temperature dependences of peaks associated with {kic,2} in a
field of 8 T. Fig. 3.80 (a1) shows the integrated intensities of the peaks

(
1
2 ± δ,−

1
2 , 0

)
(blue) and

(
1
2 ,−

1
2 ± δ, 0

)
(red), and Fig. 3.80 (b1) shows the counterpart satellites in

the vicinity of q2. The Bragg peak intensities reflect the temperature dependences of
the arms Aic1,x (blue) and Aic1,y (red), respectively (cf. Sec. 3.3.4.1). The satellites in the
vicinity of q2 are roughly one order of magnitude stronger than the satellites around
q1. Compared to phase MI, where the ratio is given by 2, the polarization factor has
changed (q.iii). As expected, all peaks having the same color feature the same temperature
dependences, which is in agreement with (s.i). As the magnetic field along [110] preserves
the symmetry between the two arms Aic1,x and Aic1,y, their temperature dependences are also
expected to be qualitatively equivalent (cf. argument (s.iii)). However, the red curves,
reflecting the temperature dependence of Aic1,x, are distinctively different from the blue
curves, reflecting the temperature dependence of Aic1,y. For temperatures ranging from
2 K to 5 K all integrated intensities are vanishingly small. However, above 5 K the Bragg
peaks associated with Aic1,x increase steeply, whereas the peaks associated with Aic1,y display
a shallow increase.

In Fig. 3.80 (b) the data recorded in a field of 11 T are shown. Again the integrated
intensities of Bragg peaks located in the vicinity of q2 (Fig. 3.80 (b2)) were roughly one
order of magnitude stronger than the peaks located in the vicinity of q1 (Fig. 3.80 (b1)).
The curves in the same color feature qualitatively equivalent temperature dependences, as
the peaks belong to conjugated k-arms, i.e., to the same Ω-arm (cf. argument (s.i)). The
curves with different colors again feature distinctively different temperature dependences,
which is again at odds with (s.ii). At low temperatures ranging from 2 K to roughly
6 K, the integrated intensities of peaks associated with Aic1,x have a plateau, whereas the
peaks associated with Aic1,y are vanishingly small. At higher temperatures, the integrated
intensities of peaks associated with Aic1,x decrease steeply, whereas integrated intensities
of peaks associated with Aic1,y increase strongly.

In Fig. 3.80 (c) the temperature dependences in a field of 13.5 T are shown. No quali-
tative differences to the curves in 11 T were observed.

The distinctively different temperature dependences of arms Aic1,x and Aic1,y are curious
and at odds with our expectations. As explained in the following, this curiosity may be
related to misalignment of the sample. The k-arms are namely supposed to have similar
temperature dependences which is related to the non-chirality of the space group (cf.
Ref. [209]) and is explained in the following. A reflection Rn̂ at the plane, which contains(

1
2 ,

1
2 , 0

)
and which is perpendicular to the reciprocal space vector n̂ = (1,−1, 0) maps
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the k-arm Aic1,x on Aic1,y and vice versa. The reflection Rn̂ represents a good symmetry of
the space group. Furthermore, the operator Rn̂ maps the magnetic propagation vector(

1
2 − δ,

1
2 , 0

)
on the vector

(
1
2 ,

1
2 − δ, 0

)
, as it is:

Rn̂

(1
2 − δ,

1
2 , 0

)
=
(1

2 ,
1
2 − δ, 0

)
(3.82)

The reflection Rn̂ does not affect the field direction, i.e., Rn̂B = B. Hence, the two
propagation vector arms have the same orientation in the magnetic field along [110] sug-
gesting that temperature dependences should be qualitatively equivalent. However, in the
experiments, temperature dependences were distinctively different.

We explain this curiosity by a tiny misalignment of the sample implying that the field
was not perfectly directed along [110] causing an energetic difference between Aic1,x on Aic1,y
in the field.
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Figure 3.79.: Temperature dependences of Bragg peaks in a relatively low field of 2 T. The
dependences are qualitatively equivalent to those in zero magnetic field. Integrated intensities as
a function of temperature are shown of magnetic Bragg peaks located in the vicinity of

(
1
2 ,−

1
2 , 0
)

and in the vicinity of
(

1
2 ,−

1
2 , 1
)

. (a) Incommensurate satellites indexed with propagation vectors

of the star {kic,2} in the vicinity of (a1)
(

1
2 ,−

1
2 , 0
)

and in the vicinity of (a2)
(

1
2 ,−

1
2 , 1
)

. (b)
Incommensurate satellites indexed with propagation vectors of the star {kic,1} in the vicinity of
(b1)

(
1
2 ,−

1
2 , 0
)

, and in the vicinity of (b2)
(

1
2 ,−

1
2 , 1
)

. (c1) Magnetic Bragg peaks that are

indexed with propagation vectors of the star {kic,3}, as detected in the vicinity of
(

1
2 ,−

1
2 , 0
)

.

(d) The two commensurate magnetic Bragg peaks
(

1
2 ,−

1
2 , 0
)

and
(

1
2 ,−

1
2 , 1
)

, both of which
belong to the k-arm Ac1.
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Figure 3.80.: Temperature dependences of magnetic Bragg peaks in relatively high fields along
[110]. (a)-(c) Incommensurate peaks in the vicinity of the commensurate position

(
0.5, 0.5, 0

)
that are indexed with propagation vectors of the star {kic,2} in fields of (a1) 8 T, (b1) 11 T, and
(c1) 13.5 T. Corresponding satellites in the vicinity of the commensurate position

(
0.5, 0.5, 1

)
in fields of (a2) 8 T, (b2) 11 T, and (c2) 13.5 T. (d) Commensurate peaks in a field of 8 T and
(e) in a field of 11 T.
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3.6. Summary and Outlook

In this chapter we presented microscopic studies of HoCu, TmCu, and ErCu. The main
results may be summarized as follows:

• We detected multitudinous magnetic ground states, including multi-k structures,
structures with long-wavelength modulations, structures that are topologically pro-
tected against unwinding, and structures giving rise to a complex electronic struc-
ture with finite Chern numbers, magnetic charges, and an orbital magnetization.

• We reported several mechanisms that suggest the emergence of an unconventional
Hall effect due to Berry phases. This Hall effect is related to magnetic long-range
order but does not arise due to an ordinary anomalous Hall effect depending linearly
on the net magnetization.

In the first part of our study of HoCu a sophisticated neutron diffraction study using
single crystals was presented. The aim of the neutron study was on one hand to determine
the magnetic ground states at zero magnetic field. On the other hand, magnetic ground
states of the 〈110〉 and 〈111〉 phase diagrams were studied. A detailed picture of the
three ordered phases at zero magnetic was obtained. In phase C, the magnetic ground
state represents the commensurate antiferromagnet t2. This structure is triple-k, highly
noncoplanar featuring finite scalar spin chiralities, and may be stabilized by quadrupolar
interactions. A finite Berry curvature and magnetic charges in the electronic structure
may emerge together with the noncoplanar magnetic ground state. In phase IC1, the
magnetic ground state represents the triple-k structure T2, which is a superposition of
one commensurate and two incommensurate propagation vectors. The ground state has
a long wavelength in real space of the order of 90 Å. The structure is highly noncoplanar
and the Berry curvature may possibly be finite. The ground state possesses a non-trivial
topology, which is related to a winding number. Accordingly, the ground state is protected
against unwinding, i.e., it cannot be continuously transformed into a collinear antiferro-
magnet. Furthermore, the structure may be portrayed as an assembly of monopoles and
antimonopoles in real-space. In phase IC2, the ground state is a complex multi-k structure
combining several commensurate and incommensurate propagation vectors. An educated
guessM1 was proposed as the magnetic ground state in this phase. The structureM1 is
highly noncoplanar and its topology is non-trivial being protected against unwinding into
a collinear antiferromagnet. In the second part of our study of HoCu, the interplay of
magnetic order and the electronic structure was investigated. Therefore, the conduction
electrons of HoCu were studied in the presence of (ππ0) order. It was found, that (i) non-
coplanar (ππ0) structures may cause a finite Berry curvature associated with a complex
assembly of magnetic monopoles and antimonopoles in the electronic structure. A lattice
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distortion, which may be reflected, for instance, by the presence of magnetostriction, has
a vast impact on the topology of the electronic structure and causes finite Chern numbers,
an orbital magnetization and an anomalous Hall effect, which is not ordinary. Further-
more, it was found that also (ii) noncollinear (ππ0) antiferromagnets, which are collinear
at zero magnetic field and coplanar in fields, may induce an anomalous Hall effect. We
further established, that (iii) (ππ0) antiferromagnets with a long-wavelength modulation
may possibly cause a topological Hall effect at finite magnetic fields.

In our study of ErCu, magnetic ground states were investigated by means of single-
crystal neutron diffraction. First, ground states were studied at zero magnetic field. In
phase C, the ground state was found to be commensurate of type (ππ0). The structure
may be single-k or multi-k. In phases IC1 and IC2 the ground states are multi-k and
have a long wavelength in real-space exceeding 170 Å. Second, magnetic ground states at
magnetic fields were investigated. At higher magnetic fields, magnetic ground states are
predominantly superpositions of incommensurate propagation vectors.

In our study of TmCu, magnetic ground states were investigated by means of single-
crystal neutron diffraction. First, ground states at zero magnetic field were investigated.
In phase C the ground state is a commensurate, single-k (ππ0) antiferromagnet. In
phase IC, just below the ordering temperature, the ground state is multi-k and has a
long wavelength in real space of the order of 110 Å. Second, magnetic ground states
were investigated for fields along the major cubic directions. Multi-k structures with
long-wavelength modulations were identified. For fields along 〈110〉 directions, an exotic
phase, labeled phase Mb1, was observed featuring a ground state distinctively different
from (ππ0) antiferromagnetism. The magnetic structure in Mb1 has a periodicity, which
is 7 times as large as the crystallographic unit cell.

We turn to a conclusion of our comprehensive study on the rare-earth intermetallics
RCu. In all three compounds competing interactions cause a variety of magnetic
ground states, including long-wavelength modulations, multi-k states, ground states with
non-trivial topology, and a non-trivial electronic structure. The compounds, all of which
are centrosymmetric, are a playground for further studies and may be promising candi-
dates for hosting novel stabilization mechanisms of topological order.

In fact, the complex properties, which were observed in this chapter, preclude a full
microscopic understanding. We raise the following questions for future studies on the
RCu series:

• What is the origin of numerous phase transitions?
• What is the origin of modulations with long wavelengths in real-space?
• Are there other ground states among the multitudinous multi-k states possessing

non-trivial topology?
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• Is there orbital order, which is related to magnetic order?
• Are there other relevant mechanisms that induce Berry phases and have an impact

on the transport properties?





4. Incommensurate
Antiferromagnetism in EuPtSi3

In this chapter, a microscopic study of the antiferromagnetic properties of the tetragonal
compound EuPtSi3 is presented. As the crystal structure lacks an inversion symmetry
center, EuPtSi3 may host ground states with non-trivial topology, as suggested by uncon-
ventional contributions to the Hall effect, which may have topological origin [19]. In our
previous study (cf. Ref. [19]) the magnetic ground state at low temperatures in zero mag-
netic field, labeled phase A, was portrayed as antiferromagnet with an incommensurate
modulation along the tetragonal c-axis, suggesting a spiral structure with a wavelength
of the order of 100 Å. However, as reported in the following, this picture is incomplete.
As the main result of single-crystal neutron diffraction, we show that the ground state
in phase A has an incommensurate modulation also in the tetragonal ab-plane. The
wavelength is of the order of 600 Å. The ground state is multi-k representing a superpo-
sition of at least three magnetic propagation vectors. Experimental signatures suggest an
interpretation as a lattice of antiferromagnetic Skyrmions (cf. Ref. [210]).

The presentation of our study is organized as follows. First, an introduction of the
properties as known prior to our study is presented in Sec. 4.2. Second, the results of
the microscopic study on magnetic long-range order in zero magnetic field are presented
in Sec. 4.2. The magnetic propagation vectors of the ground state in phase A at zero
magnetic field were determined by means of single crystal neutron diffraction, as reported
in Sec. 4.2.1. Representational analysis and magnetic structure determination are reported
in Sec. 4.2.2 and Sec. 4.2.3. The solutions include structures with non-trivial topology,
such as a lattice of antiferromagnetic Skyrmions, as reported in Sec. 4.2.3.

4.1. Introduction to EuPtSi3
The fourth compound studied as part of this thesis, EuPtSi3, has a non-centrossymmetric
space group and displays 4f -magnetism. It represents a promising candidate material
as host for antiferromagnetic structures with non-trivial topology. The reasons are as
follows. Recently, signatures of modulated spin structures with a long wavelength were

203
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detected (cf. Ref. [19]). Due to the lack of inversion symmetry, Dzyaloshinskii-Moriya
interactions [14, 15], which are crucial for the stabilization of topological spin states such
as Skyrmions [6, 211–213], may cause the long-wavelength modulations in EuPtSi3. The
unconventional Hall effect in EuPtSi3, which we reported in Ref. [19], may be due to
non-trivial Berry phases associated with a non-trivial topology of the antiferromagnetic
ground states in EuPtSi3 (cf. Refs. [9, 109, 110]).

EuPtSi3 crystallizes in the achiral [214], non-centrosymmetric I4mm crystal structure,
which is also referred to as BaNiSn3 structure (cf. Refs.[215, 216]). The lattice parameters
of the tetragonal unit cell are a = 4.286 Å and c = 9.795 Å [19]. Related compounds
of the EuTX3 series, where T is a d-transition element and X e.g. Ge [217], such as
EuRhGe3 [218, 219], EuIrGe3 [218], EuCoGe3 [219], EuPdGe3 [220, 221], EuNiGe3 [222]
or EuPtGe3 [223], exhibit complex magnetic phase diagrams. Accordingly, these materials
may in principle also be candidates for hosting ground states with non-trivial topology. In
contrast, BaPtSi3 was found to be a BCS-like superconductor [216]. LaPdSi3 and LaPtSi3
are also superconductors [224].

Magnetic long-range order in EuPtSi3 at temperatures below < 18 K originates from the
Eu2+ rare-earth ions, where the orbital momentum is quenched [215]. The rare-earth ions
may be viewed as localized moments having the free-ion value of Eu2+, which is given by
µeff = g ·

√
J (J + 1)µB = 7.94µB/f.u. (J = S = 7

2 , L = 0) according to Hund’s rules. A
complex magnetic phase diagram has been determined, as shown in Fig. 4.1 (a) for 〈100〉,
〈110〉, and 〈100〉 and inferred from ac susceptibility, specific heat, and magnetoresistance.
Note that despite the quenched orbital momentum of Eu2+, the phase diagram exhibits
signatures characteristic of tetragonal anisotropies (cf. Ref. [215]). This observation is in
agreement with anisotropies revealed by Mössbauer spectroscopy [215]. The tetragonal
anisotropies are, e.g., reflected by the anisotropy of the critical fields, which are higher
for the basal 〈100〉 and 〈110〉 directions than for the 〈001〉 direction. Accordingly, the
[001] axis may be an easy direction in agreement with Ref. [215]. The phase diagrams for
fields in the basal plane feature four ordered phases, whereas for fields along the c-axis
two ordered phases are observed. We note that the tetragonal anisotropies may be an
indication of a mixed valence of Eu, suggesting a small ratio of Eu3+ valence states in
addition to the prevailing Eu2+ valence states.

In zero magnetic field two magnetically ordered phases are established. The specific heat
features a lambda-anomaly at Tc = 17 K characteristic of a second-order phase transition,
as well as a small second maximum at slightly lower temperatures [19]. The existence of
two anomalies may be clearly resolved when magnetic fields are applied. At Tc = 17 K in
zero magnetic field, the susceptibility, Reχac, displays a maximum. Curie-Weiss behavior
with positive Curie-Weiss temperature is observed in agreement with Ref. [215], regardless
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whether excitation fields are directed along 〈100〉, 〈110〉, or 〈001〉 [19]. For the basal plane
the Curie-Weiss temperature is given by 4.1 K, whereas for the c-axis it is given by 9.7 K.
The positive sign of the Curie-Weiss temperature is curious in an antiferromagnet such as
EuPtSi3, where in fact a negative value is expected. The fluctuating moment, as inferred
from the slope of Reχ−1

ac (T ), amounted to (7.8± 0.1)µB/f.u., which is slightly smaller
than the free-ion value of Er2+ [19].

Measurements of the Hall effect reveal an unconventional contribution ∆ρxy, which
arises together with magnetic long-range order but is not related to a conventional anoma-
lous Hall effect, where the Hall resistivity would scale monotonically with the net mag-
netization. In particular, the additional Hall contribution may be of topological origin
suggesting a non-trivial topology of the magnetic ground states. Figs. 4.1 (a)-(c) show
the unconventional contribution to the Hall effect as a function of field at different tem-
peratures. The additional contribution to the Hall effect is clearly related to magnetic
long-range order, as it vanishes in the field-polarized and the paramagnetic regime. The
additional contribution was inferred from the Hall signal by subtracting from the total
Hall effect the normal contribution and an anomalous contribution that is linear in the
net magnetization (Figs. 4.1 (d)-(f)). As pointed out in Ref. [19] the additional Hall signal
∆ρxy, when related to non-trivial Berry phases, may in principle be related either to real-
space contributions, reciprocal-space contributions, or off-diagonal mixed contributions
[9, 109, 110].

Magnetic structure determinations in the low temperature phase in zero magnetic field
using neutron powder diffraction were reported in Ref. [19]. At T = 2 K, two different
magnetic propagation vectors were observed, namely the commensurate vector (0, 0, 1),
as well as the incommensurate vector (0, 0, 1− δ) with δ ≈ 0.09. The propagation vectors
were found in agreement with results from single-crystal neutron experiments, which
were resolution-limited due to the use of hot neutrons [19]. The finding suggests a spiral
structure with a long wavelength along the c-axis of the order of λ ∼ 100 Å, as pointed
out in Ref. [19] by the author of this thesis. The long-wavelength modulation is possibly
related to Dzyaloshinskii-Moriya interactions, which may be present in EuPtSi3 due to
the lack of an inversion center [14, 15]. However, spin-orbit interactions would be required
as microscopic mechanism inducing antisymmetric exchange. Based on specific heat and
Mössbauer spectroscopy the authors of Ref. [215] suggested as the ground state in phase
A a commensurate antiferromagnetic structure with propagation vector (0, 0, 1), as well
as an amplitude modulation just below the ordering temperature in phase B [215]. By
means of electronic calculations both the size of the magnetic moments and the direction
of the easy axis were reproduced in Ref. [225].
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(a1) (b)
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Figure 4.1.: (a) Magnetic phase diagrams of EuPtSi3 for fields along the major tetragonal
directions. Data inferred from ac susceptibility, specific heat, magnetoresistance, and Hall effect
are shown on an internal field scale. (b)-(d) Additional contributions ∆ρxy to the Hall resistivity
for magnetic fields along different crystallographic directions. To obtain ∆ρxy, normal and
conventional anomalous Hall effect were subtracted from the total Hall effect. (e)-(g) Normal
and anomalous Hall coeffitients R0 and SA as a function of temperature. The figures were taken
from Ref. [19].

4.2. Magnetic Long-Range Order in Zero Magnetic Field

In the following, a study of the magnetic long-range order in phase A of EuPtSi3 (cf.
Fig. 4.1) is presented. First, the magnetic propagation vectors were determined in phase
A by means of single crystal neutron diffraction, as reported in Sec. 4.2.1. Second, repre-
sentational analysis was carried out, as reported in Sec. 4.2.2, and a magnetic structure
determination was carried out, as reported in Sec. 4.2.3. Some of the possible ground state
solutions have intriguing topological properties, which are discussed in detail in Sec. 4.2.3.

4.2.1. Magnetic Propagation Vectors

To determine the magnetic propagation vectors in phase A, single crystal neutron diffrac-
tion in zero magnetic field of sample OFZ-97-3-1-bc was carried out at BIODIFF [124].
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The main results of these experiments may be summarized as follows:
• The magnetic ground state in phase A at zero magnetic field represents an antifer-

romagnet, which is approximately of type (00π) but additionaly modulated with an
incommensurate superstructure.

• This magnetic structure is a superposition of propagation vectors of the stars {kic,1},
{kic,2}, and {kic,3} with kic,1 = (ε, ε, ξ1), kic,2 = (ε, ε, ξ2), and kic,3 = (ε, ε, ξ3), where
ε = 0.0072, ξ1 = 1.0814, ξ2 = 1.0713, and ξ3 = 1.0604. There is no evidence for a
commensurate propagation vector k = (0, 0, 1).

• The magnetic ground state does not have ferromagnetic components with moments
in the (001) plane. However, it may have a ferromagnetic component with moments
along the c-axis [001].

• The ground state in phase A is modulated with a long wavelength of ≈ 600 Å in the
basal plane and ≈ 120 Å along the tetragonal c-axis.

For the experiments, neutrons of wavelength λ = 3.4 Å and a relatively thin sample were
used to optimize the neutron transmission through the sample. Neutron experiments with
compounds containing Eu are typically difficult, as Eu is highly neutron absorbing due
to the natural abundance of 151Eu (cf. [122]). The neutron wavelength was chosen as a
compromise, as it had to be large enough in order to have enough resolution in the q-
space for the determination of incommensurate satellites, and it had to be small enough to
have sufficient neutron transmission through the sample. Alternatively, a specimen purely
based on the isotope 153Eu (cf. Ref [226]), which is a relatively good neutron transmitter,
could have been grown. The sample was oriented such that the (110) plane corresponded
to the scattering plane. The maximum cross section of the sample ∼ 2 mm2 was at the
beginning of the experiment perpendicular to the neutron beam and the depth of the
sample in beam direction amounted to 0.2 mm. A large detector with high resolution was
used for these experiments.

The experiments were carried out as follows. First, rocking scans were recorded for
the structural peak position (0, 0, 2) in the paramagnetic regime at T = 30 K and in
phase A at T = 5 K. Integrated intensities were inferred for the structural peak at the
two temperatures and compared in order to determine ferromagnetic components with
magnetic moments in the (001) plane. Second, a rocking scan was carried out for the
(0, 0, 1) position at T = 5 K in order to search for magnetic Bragg peaks. Magnetic
propagation vectors of the ground state in phase A were determined by indexation of
magnetic Bragg peaks.

To record rocking scans for the structural (0, 0, 2) position, the sample had to be rotated
by ∼ θ002 ≈ 20.32◦. Hence, the effective cross section of the sample in the neutron
beam was reduced by 1 − cos (θ002) ≈ 6 %. The two rocking scans at T = 30 K and
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T = 5 K were recorded with a step width of 0.2◦. Integrated intensities of the peak
located at (0, 0, 2) were inferred from the two rocking scans as follows. First, intensities
as a function of ω were inferred for the Bragg peak located at (0, 0, 2). Therefore, the
region of interest ROIn was defined in the detector images. From the detector images
Dω (X, Y ), intensities as a function of ω were obtained by summing up the intensities
in ROIn, i.e., I (ω) = ∑

(X,Y )∈ROIn Dω (X, Y ). Second, the integrated intensities were
inferred by summation over the rocking scan I = ∑

ω I (ω).
No difference of integrated intensities around (0, 0, 2) at the two temperatures was

observed:

I5 K

I30 K = 0.99± 0.02 . (4.1)

Hence, the magnetic ground state in phase A does not include a ferromagnetic contri-
bution, i.e., a component with wave vector k = 0 that has finite moments in the basal
plane (001), as inferred by means of the magnetic structure factor [22]. However, this
does not rule out a ground state with a ferromagnetic component directed along [001]. A
component along [001] cannot be detected at the (002) Bragg peak position, as the polar-
ization factor [21] in the magnetic structure factor is entirely suppressed at this position
in reciprocal space.

For the rocking scan around the magnetic position (0, 0, 1), which was carried out in
phase A at 5 K, the sample had to be rotated by ∼ θ001 ≈ 9.99◦. Hence the cross
section of the sample in the neutron beam was reduced by 1 − cos (θ001) ≈ 1.5 %. The
step width of the scan was 0.2◦ and detector images were recorded at the rocking angles
ωj = −14.59 + j · 0.2◦. Accordingly, the Bragg condition for (0, 0, 1) was fulfilled at the
rocking angle ω23 ≈ −θ001.

As explained in the following, 24 magnetic Bragg peaks, which are related to three
different propagation vector stars, were observed during the rocking scan. However, no
Bragg peak was observed at the position (0, 0, 1), where scattering intensity was observed
in neutron powder diffraction, as reported in our previous study (cf. Ref. [19]). The
24 magnetic Bragg peaks may be indexed by means of propagation vectors of the six
stars {kic,1}, {kic,2}, {kic,3}, {−kic,1}, {−kic,2}, and {−kic,3} with kic,1 = (ε, ε, ξ1), kic,2 =
(ε, ε, ξ2), and kic,3 = (ε, ε, ξ3), where ξ1 = 1.0814, ξ2 = 1.0713, ξ3 = 1.0604, and ε = 0.0072.

As each of the six propagation vector stars has four different k-arms, there exist in
total 24 k-arms of the six propagation vector stars. Each k-arm has one Bragg peak in
the vicinity of the (0, 0, 1) position. Note that the Bragg peaks appear in pairs, according
to conjugated propagation vectors. Accordingly, the incommensurate Bragg peaks in the
vicinity of the (0, 0, 1) position appear in pairs.
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(a) (b) (c) (d) (f) (g)

EuPtSi3
phase A
T = 5 K, μ0H = 0 T

(e)

Figure 4.2.: Magnetic Bragg peaks in the vicinity of (0, 0, 1), as observed in a rocking scan in
phase A at 5 K. The rocking scan, which was carried out, represents approximately a q-scan
along the reciprocal space direction

(
1̄10

)
. Shown are detector images recorded at different

rocking angles ωj . (a)-(g) Detector images, recorded at angles, where the Bragg condition was
fulfilled for the indicated q-positions. 12 magnetic Bragg peaks are shown and their reciprocal
space positions are indicated, where ε = 0.0072, ξ1 = 1.0814, ξ2 = 1.0713, and ξ3 = 1.0604.
The indexation of the twelve Bragg peaks requires propagation vectors of three different stars.
(e) Detector image recorded at the rocking angle, where the Bragg condition is fulfilled for the
q-position (0, 0, 1). However, no Bragg peak intensity was observed at this position, which is
indicated by a green rectangle.

The constituents of such a pair are indexed with respect to two different structural peak
positions, such as

(0, 0, 0) + (ε, ε, ξ1) and (0, 0, 2)− (ε, ε, ξ1) . (4.2)

In the following diffraction data are presented, which show the 12 Bragg peaks indexed
with respect to the structural q-position (0, 0, 0).

Fig. 4.2 shows these data, as recorded by means of the rocking scan around the q-
position (0, 0, 1). Shown are detector images, which were recorded at different rocking
angles ωj of the sample. The data presented in (a),(b),(c),(d),(f), and (g) show all 12 Bragg
peaks, which correspond to the reciprocal space position (0, 0, 0) and the propagation
vectors kic,1, kic,2, and kic,3. The data presented in (e) illustrate, that no Bragg peak
intensity was observed at the commensurate (0, 0, 1) position, which is indicated by the
green rectangle.
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As the indexation of the magnetic Bragg peaks requires propagation vectors of three
different non-conjugated crystallographic stars, it may be concluded that the magnetic
ground state in phase A is a multi-k structure with at least three propagation vector. The
magnetic structure has a long wavelength in real-space. The wavelength of the modulation
in the (001) plane is given by a/ε ≈ 600 Å and the wavelength along the tetragonal c-
axis is given by c/

[
(ξ1/2/3 − 1)

]
≈ 120 Å. The finding of a long wavelength modulation

along the tetragonal c-axis is in agreement with our previous study (cf. Ref. [19]). The
long-wavelength modulation in the basal plane, however, was not reported previously.

Note, that the propagation vectors as inferred in the present study give rise to complex
magnetic structures. There are namely multitudinous ways how to superpose the prop-
agation vectors kic,1, kic,2 and kic,3 to multi-k states, as each of the three propagation
vector stars possesses four k-arms. In contrast, magnetic structures with propagation
vectors such as (0, 0, 1 + δ), which were reported in our previous study (cf. Ref. [19]), are
single-k structures, as the wave-vector star {(0, 0, 1 + δ)} possesses one k-arm only.
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4.2.2. Representational Analysis for Magnetic Structures

To determine all IRs as well as the corresponding basis functions for propagation vectors
kic,1, kic,2, kic,3 and space group I4mm, a representational analysis was carried out by
means of the software SARAh [54].

Tab. 4.1 shows the results of the representational analysis, as obtained in SARAh.
The decomposition of magnetic representations is equivalent for the propagation vectors
kic,1, kic,2, and kic,3, as all of them have the form kic = (ε, ε, z) with an incommensurate
parameter z, i.e., z 6∈ Q. The magnetic representation splits into the two IRs Γ1 (kic) and
Γ2 (kic). The IR Γ1 (kic) has the order ν = 1 and the basis function is directed along the
c-axis. In contrast, Γ2 (kic) has the order ν = 2 and the basis functions lie in the basal
plane. Tab. 4.1 also shows the representational analysis for the propagation vector (001)
for the sake of completeness. The representation analysis is the basis for the magnetic
structure determination in Sec. 4.2.3.

Propagation vector IR BV BV components
m‖a m‖b m‖c im‖a im‖b im‖c

Γ1 Ψ1 1 -1 0 0 0 0
kic = (ε, ε, z), z 6∈ Q Γ2 Ψ2 1 1 0 0 0 0

Ψ3 0 0 2 0 0 0
Γ2 Ψ1 0 0 8 0 0 0

(0, 0, 1) Γ5 Ψ2 4 0 0 0 0 0
Ψ3 0 -4 0 0 0 0

Table 4.1.: Analysis of the representation of the magnetic Eu site in the space group I4mm.
For each magnetic propagation vector k (space group I4mm) which is given in the first column,
the IRs Γ (k) that contain non-trivial basis functions Ψk are listed. The analysis was carried out
by means of the software SARAh [54].
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4.2.3. Magnetic Structure Determination

A structure determination was carried out for the magnetic ground state in phase A at
T = 5 K in zero magnetic field. As no data from polarized neutrons or Rietveld refinements
is available, some considerations presented in this section are based on assumptions.

The main results of these considerations may be summarized as follows:
• Each of the propagation vectors kic,1, kic,2, and kic,3 may be viewed as an antifer-

romagnetic cycloid. Putative Dzyaloshinskii-Moriya interactions in EuPtSi3 would
support cycloidal spirals as opposed to helical spirals.

• Accordingly, the ground state in phase A at 5 K represents a superposition of anti-
ferromagnetic cycloids with propagation vectors kic,1, kic,2, and kic,3.

• The geometric and topological properties of the superposition of cycloids depends
mainly on the relationship between the projections of kic,1, kic,2, and kic,3 in the
basal (h, k, 0) plane.

• The superposition of cycloids with propagation vectors kic,1, kic,2, and kic,3, repre-
sents an antiferromagnetic cycloid with modulated amplitude, if the projections of
the propagation vectors onto the basal plane are parallel (which is denoted as (m.i)
in the text).

• The superposition of cycloids with propagation vectors kic,1, kic,2, and kic,3, as well
as a commensurate component, represents a topologically non-trivial structure, if at
least two wave vectors have perpendicular projections in the basal (which is denoted
as (m.ii) in the text).

• Case (m.ii) may be specified further: If the commensurate component is antifer-
romagnetic (which is denoted as (c.i) in the text), the structure represents a lat-
tice of antiferromagnetic Skyrmions. If the commensurate component is ferromag-
netic (which is denoted as (c.ii) in the text), it represents a lattice of ferrimagnetic
Skyrmions.

• In case (c.i) the structure consists of sublattices with strictly opposite Skyrmion
winding numbers. Accordingly, Berry phases vanish on average.

• In case (c.ii) the structure consists of sublattices with equal Skyrmion numbers.
Accordingly, non-trivial Berry phases may lead to a topological Hall effect.

The presentation is organised as follows. First, it is established that each of the three
propagation vectors kic,1, kic,2, and kic,3 may be viewed as an antiferromagnetic cycloid.
Second, superpositions of two cycloids with propagation vectors of the stars {kic,1}, {kic,2},
and {kic,3} are investigated. It is found that some superpositions may be viewed as a
variation of µ (x, y, z) representing an antiferromagnetic or ferrimagnetic Skyrmion lattice.
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Third the topological properties of µ are investigated. Fourth, it is discussed whether the
topological properties may be related to unconventional transport properties.

The magnetic propagation vectors kic,1, kic,2, and kic,3 represent incommensurate points
in the vicinity of (0, 0, 1) in the reciprocal space, which is a forbidden position in space
group I4mm. Magnetic structures that are superpositions of propagation vectors in the
vicinity of (0, 0, 1) characteristically feature an antiferromagnetic coupling of magnetic
moments along the 〈111〉 directions. The character of the propagation vectors kic,1, kic,2,
and kic,3, i.e., whether they are related to a helical, a cycloidal, or an amplitude modulation
(cf. Ref. [30]), cannot be inferred from our experimental data. However, as explained in
the following, the propagation vectors are presumably related to cycloidal propagations.
The I4mm crystal structure of EuPtSi3 [215, 225] is isotypic of the BaNiSn3 structure,
which is non-centrosymmetric [216]. Due to this lack of inversion symmetry, EuPtSi3
may host Dzyaloshinskii-Moriya interactions that favour a canting of magnetic moments
[14, 15]. Further, the crystal structure of EuPtSi3 is related to the point group C4v

[227, 228], where canted spiral structures typically have a cycloidal character [211–213].
A cycloidal structure with wave-vector ∼ k0 = (ε, ε, l0) (where l0 is either l1 := ξ1,

l2 := ξ2 or l3 := ξ3) may be constructed from the basis functions in Tab. 4.1 by means of:

mc =m1 ·
[
êx + êy√

2
cos (k0R) + êz sin (k0R)

]
(4.3)

Note, that the structure mc is a superposition of basis functions from one IR only,
namely Γ2 (k0) (cf. Tab. 4.1). Accordingly, in a situation, where the prerequisites for
Landau theory are fulfilled, the structure mc is allowed as a magnetic ground state, as it
is related to one IR only [53]. In fact, Landau theory may be applicable, as the transition
temperature was characterized by a lambda anomaly in the specific heat [19], which is
characteristic of second-order phase transitions.

Chirality domains of magnetic structures in EuPtSi3, i.e., domains with opposite ro-
tation sense, should be in equilibrium, as EuPtSi3 has an achiral crystal structure [214].
This contrasts chiral magnets, where the chiral crystal structure leads to homochiral mag-
netic structures [6, 229]. Hence, the chirality of the cycloid mc, i.e., the sense of rotation,
may be chosen arbitrarily.

Fig. 4.3 (a) shows a real-space picture of mc in a (110) plane. The structure may
be viewed as an antiferromagnetic cycloid propagating along an axis, that is inclined
with respect to [001] towards [110] by an angle φ = arctan

(√
2εc/l0a

)
≈ 1.2◦. For the

structure mc the coupling of magnetic moments along 〈111〉 directions is antiferromagnetic
and slightly canted. Along the 〈100〉, 〈110〉, and 〈001〉 directions it is ferromagnetic and
slightly canted.
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Figure 4.3.: Magnetic ground state in phase A of EuPtSi3 representing a superposition of
antiferromagnetic cycloids. (a) Each of the propagation vectors of the ground state in phase
A may be viewed as an antiferromagnetic cycloid. Shown is a cycloid mc with wave vector k0
propagating along an axis, which is inclined to the axis [001] by an angle φ towards [110]. (b)
The superposition of two cycloids with propagation vectors k1 = (ε, ε, l1) and k2 = (ε,−ε, l3), as
well as a ferromagnetic component represents a spatially modulated lattice of antiferromagnetic
Skyrmions. Two AFM Skyrmion lattices, which are along the c-direction separated by a distance
z, are relatively shifted by −τ · z within the basal (001) plane.

It was found in Sec. 4.2.1 that the magnetic ground state at 5 K represents a super-
position of propagation vectors kic,1, kic,2, and kic,3. When antiferromagnetic cycloids
with propagation vectors of the stars {kic,1}, {kic,2}, and {kic,3} are superposed, it is
crucial, how the incommensurate projections of the superposed wave vectors onto the
(h, k, 0) plane are related to each other. These incommensurate projections are parallel
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to the 〈110〉 directions. Hence, the projections from two propagation vectors may either
be perpendicular or parallel.

If the projections in the (h, k, 0) plane are parallel, the wave vectors are incommensu-
rate with respect to the same 〈110〉 direction. The superposition of cycloids may then
be portrayed as a complex cycloid with modulated amplitude. If the projections in the
(h, k, 0) plane are perpendicular, the wave vectors are incommensurate with respect to
different 〈110〉 directions. The superposition of cycloids may then be portrayed as an an-
tiferromagnetic Skyrmion lattice. Accordingly, the following two cases may be considered
for the superposition of cycloids:

(m.i) The superposition of wave vectors, for which the projections in the (h, k, 0) plane
are parallel, represents a complex cycloid with modulated amplitude. Examples are
wavevectors such as (ε, ε, l1) and (ε, ε, l3).

(m.ii) The superposition of wave vectors, for which the projections in the (h, k, 0) plane
are perpendicular, may represent a lattice of ferrimagnetic or antiferomagnetic
Skyrmions. Examples are wavevectors such as (ε, ε, l1) and (ε,−ε, l3).

Case (m.i) may be established by simple trigonometric calculations using addition the-
orems. In the following, the more interesting case (m.ii) is established in detail. For
this case, the superposition m2k,⊥ of two cycloids with wavevectors k1 = (ε, ε, l1) and
k2 = (ε,−ε, l3), as well as a commensurate component ‖ êz with wave vector kc that is
specified further below, may be considered. The superposition of the two cycloids has the
following form:

m2k,⊥ (x, y, z) =m1 ·
[
êx + êy√

2
cos (k1 ·R) + êz sin (k1 ·R)

]
+

+m1 ·
[
êx − êy√

2
cos (k2 ·R) + êz sin (k2 ·R)

]
+

+m0 · êz · exp (i · kc ·R) . (4.4)

where

k1 ·R =2π (εx+ εy) + 2πz · l1 (4.5)
k2 ·R =2π (εx− εy) + 2πz · l3 . (4.6)

It is now established that the structure m2k,⊥ may be viewed as a spatially modulated
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variation of an archetype structure µ, which describes a lattice of antiferromagnetic or
ferrimagnetic Skyrmions:

µ (x, y, z) :=m0 · êz · exp (i · kc ·R) +

+m1 ·
[
êx + êy√

2
cos (2πε (x+ y) + 2πz) + êz sin (2πε (x+ y) + 2πz)

]
+

+m1 ·
[
êx − êy√

2
cos (2πε (x− y) + 2πz) + êz sin (2πε (x− y) + 2πz)

]
(4.7)

In each basal (001) plane, the structure m2k,⊥ is equal to µ. However, for different
values of z the Skyrmion layers are shifted by in-plane translations:

m2k,⊥ (x, y, z) = µ (x+ z · τ1, y + z · τ2, z) , (4.8)

where τ = 1
2ε (l1 + l3 − 2, l1 − l3). Fig. 4.3 illustrates Eq. (4.8) showing three different

z-layers of the structure m2k,⊥ with a ferromagnetic component kc = 0.
As the magnetic ground state in phase A represents a superposition not of two, but

at least of three propagation vectors, it is even more complex than the structure m2k,⊥.
However, the ground state in phase A may be portrayed as variation of the structure m2k,⊥

and hence of µ, if propagation vectors with perpendicular projections onto the basal plane
are involved. In particular, topological properties of the ground state in phase A may be
related to the properties of µ.

The structure µ features intriguing topological properties as follows. The topology of µ
depends strongly on the commensurate component with wave vector kc. The vectorfield
µ namely represents either:
(c.i) a lattice of antiferromagnetic Skyrmions, if the commensurate component is anti-

ferromagnetic with kc = (0, 0, 1), or
(c.ii) a lattice of ferrimagnetic Skyrmions, if the commensurate component is ferromag-

netic with kc = (0, 0, 0).
In case (c.i) the structure µ is bipartite with Skyrmions on one sublattice SI and Skyrmions
with opposite winding number on the other lattice SII. The two sublattices of the magnetic
structure µ are shifted by a translation ∼ 1

2

√
2a2 + c2−1 · (a, a, c)T. Along the 〈111〉

directions, the coupling of magnetic moments is antiferromagnetic with a small canting.
To calculate the winding numbers on the two sublattices it is convenient to consider

the directorfield (cf. Ref. [6]):

nAFM = µ (x, y, z) / |µ (x, y, z)| |kc=(0,0,1)
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Note, that the function nAFM is well-defined for finite values of m0.
Fig. 4.4 (a) shows the winding numbers on the two sublattices as a function of the

size of the commensurate component m0 (where m1 = 1). The winding numbers, which
were determined by numerical integration of the Skyrmion density [170] over a unit cell
U =

[
0, a · 1

ε

]
×
[
0, a · 1

2ε

]
in the basal plane, have opposite signs on the two sublattices.

In particular, the winding numbers are finite, as long as |m0| < 2. For positive values of
m0 < 2 it was obtained:

WZ =
∫
U,z=0

nAFM · (∂xnAFM × ∂ynAFM) dx · dy =

−1 SI

+1 SII

(4.9)

Accordingly, the structure µ represents a lattice of antiferromagnetic Skyrmions and
the winding numbers on the two sublattices have strictly opposite sign.

In the second case, where the commensurate component is ferromagnetic (c.ii), there
are spatial regions of the structure µ, where the antiferromagnetic coupling along 〈111〉
directions is broken. Accordingly, the antiferromagnetic coupling along 〈111〉 directions
is weaker and not strictly antiparallel. Note, that the Curie-Weiss temperature, which is
positive even though the compound is antiferromagnetic [19, 215], may possibly be related
to an antiferromagnetic coupling along 〈111〉 directions, which is not strictly antiparallel.

The director field is again well defined for finite values of m0:

nFM = µ (x, y, z) / |µ (x, y, z)| |kc=(0,0,0)

Fig. 4.4 shows the winding numbers on the two sublattices, as obtained by numerical
integration. The winding numbers have now the same sign on both sublattices. In par-
ticular, the winding numbers are finite, as long as |m0| < 2 (again it was set m1 = 1).
For positive values of m0 < 2 it was obtained:

WZ =
∫
U,z=0

nFM · (∂xnFM × ∂ynFM) dx · dy =

−1 SI

−1 SII

Accordingly, the winding numbers have strictly the same sign on both sublattices and
the structure represents a lattice of ferrimagnetic Skyrmions.

In the following, it is argued, that the structure µ and hence m2k,⊥ may cause a topo-
logical Hall effect. In particular, we note that the existence of a topological Hall effect
crucially depends on whether the commensurate component is antiferromagnetic (c.i) or
ferromagnetic (c.ii). For antiferromagnetic Skyrmions (c.i) no finite topological Hall effect
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is expected, as the winding numbers on the two sublattices have opposite sign. Accord-
ingly, the emergent magnetic fields [9] acting on the conduction electrons are zero in
average. Related studies discussed antiferromagnetic Skyrmions on a honeycomb lattice
[230], where the topological Hall effect should also vanish. However, it was pointed out
that the topological Hall effect may become finite, if the two sublattices become inequiv-
alent. Similarly we find that a topological Hall signal may be caused by a structure µ,
which has a ferromagnetic component (c.ii). In the case of a ferromagnetic component,
the winding numbers on the two sublattices have the same sign. Accordingly, an emergent
magnetic field on the conduction electrons may be caused by the structure µ.
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4.3. Summary, Outlook and Open Questions

In this chapter we presented a microscopic study of magnetic long-range order in EuPtSi3.
We reported a magnetic ground state, which is multi-k and may possess non-trivial topo-
logical properties.

First, the magnetic ground state in phase A at zero magnetic field was studied by
means of single crystal neutron diffraction. At first the magnetic propagation vectors
were determined. The magnetic ground was found to have a long-wavelength modulation
of the order of 500 Å in the basal plane, as well as a modulation with a wavelength of the
order of 120 Å along the c-axis. The structure was found to represent a superposition of at
least three different propagation vectors. In particular, the ground state is multi-k. It was
further established that the ground state does not have a commensurate antiferromagnetic
propagation vector (0, 0, 1). There was no evidence for ferromagnetic propagation vectors
with moments in the plane (001), but ferromagnetic contributions with moments along the
c-axis [001] may possibly be finite. However, the neutron study did not allow to determine
the magnetic ground state unambiguously. Nonetheless, striking arguments were found
that each magnetic propagation vector is related to an antiferromagnetic cycloid. As
superposition of at least three cycloids the magnetic ground state in phase A may represent
a variation of an antiferromagnetic or ferrimagnetic Skyrmion lattice. The topological
properties of the structure crucially depend on the nature of commensurate components.
In particular, when superposed with a ferromagnetic component, the superposition of
antiferromagnetic cycloids may have finite winding numbers that are related to Berry
phases and that may cause a topological Hall effect.

A major goal in future studies may be to obtain a full microscopic picture of the
magnetic long-range order. The next experimental step is to carry out neutron or resonant
X-ray scattering in magnetic fields.

The following questions may be raised for future studies:
• What are the mechanisms causing a magnetic ground state with a large wavelength

in real-space?
• What is the origin for unconventional contributions to the Hall effect, which arise

together with magnetic long-range order but are not related to an anomalous Hall
effect, which depends linearly on the net magnetization?

• What is the origin of magnetic anisotropies? Does europium represent a mixed
valence state or can it be described as Eu2+?

• Why is the Curie-Weiss temperature positive, even though the compound is anti-
ferromagnetic?



220 Chapter 4. Incommensurate Antiferromagnetism in EuPtSi3

- 2 0 2

- 1

0

1

- 2 0 2

- 1

0

1

- 2 0 2

- 1

0

1

- 2 0 2

- 1

0

1 Su
b
lattice I

S
u
b
lattice II

S
u
b
lattice I

S
u
b
lattice II

(a1) (a2) (a3)

(b1) (b2)

 

(b3)

- 2 0 2

- 1

0

1

- 2 0 2

- 1

0

1

- 2 0 2

- 1

0

1

- 2 0 2

- 1

0

1

Figure 4.4.: Topological properties of the structure µ. (a) If the commensurate component
in µ is antiferromagnetic (a1), the corresponding structure µAFM has two sublattices that are
antiferromagnetically coupled. Shown in (a2) is the directorfield nAFM of µAFM. The winding
numbers, which were calculated by means of WZ =

∫
U,z=0 nAFM · (∂xnAFM × ∂ynAFM) dx ·dy,

have opposite signs on the two sublattices, as shown by numerical integration (a3). Accordingly,
the structure µAFM represents a lattice of antiferromagnetic Skyrmions. (b) If the commensurate
component is ferromagnetic (b1), the corresponding structure nFM has two sublattices, which are
almost antiferromagnetically coupled. Shown in (b2) is the directorfield nFM of µFM. Winding
numbers, which were calculated by means of WZ =

∫
U,z=0 nFM · (∂xnFM × ∂ynFM) dx · dy,

have the same sign on the two sublattices. Accordingly, the structure µFM represents a lattice
of ferrimagnetic Skyrmions.



5. Conclusions

The focus of this work was the study of antiferromagnetic superstructures in rare-earth
compounds. The materials, which were studied, are candidates for hosting magnetic
ground states with nontrivial topology. We reported microscopic studies of the four ma-
terials HoCu, TmCu, ErCu, and EuPtSi3 by means of single-crystal neutron diffraction.
Magnetic structure determinations were carried out. Of particular interest was the iden-
tification of multi-k structures and structures with nontrivial topology. Furthermore, the
interplay of magnetic order and the electronic structure was investigated.

In the first part of the thesis, experimental methods were introduced. It was explained,
how magnetic ground states may be determined by means of neutron scattering. Strategies
were presented, how multi-k structures may be distinguished from single-k structures.

In the second part of the thesis, microscopic studies of the RCu compounds were pre-
sented. As the main results, a multitude of antiferromagnetic ground states was identi-
fied, including highly noncoplanar multi-k states with long-wavelength modulations and
ground states that are topologically protected against unwinding into a collinear antifer-
romagnet. The interplay between the magnetic ground states and the electronic structure
was investigated. We reported, that a finite Berry curvature with Chern numbers, an
orbital magnetization, and a finite intrinsic anomalous Hall effect may emerge. This class
of centrosymmetric compounds, in which Dzyaloshinski-Moriya interactions are absent,
may be playground for the detection of novel mechanisms stabilizing topological order.

In the third part of the thesis, a magnetic structure determination in the noncen-
trosymmetric compound EuPtSi3, where Dzyaloshinski-Moriya interactions may stabilize
topological order, was reported. In the study by means of neutrons signatures of a multi-k
ground state with long-wavelength modulation were observed. The experimental signa-
tures allowed for an interpretation of the magnetic ground state as antiferromagnetic
Skyrmion lattice.

221





A. Appendix

A.1. Magnetic Structure Factors in the RCu Compounds

In the following, structure factors are calculated for antiferromagnetic (ππ0) structures,
which are described in terms of:

m (R) =
Nk∑
i=0

r (kci ) exp (i · kci ·R) , (A.1)

where 1 ≤ Nk ≤ 3.
The cross section, which is proportional to the magnetic structure factor, is obtained

by inserting Eq. (A.1) into Eq. (2.4):

σ (q) = F 2 (h, k, l) ∼
∑

R1,R2,α,β

Nk∑
i,j=0

rα (kci ) rβ
(
kcj
)
· (δαβ − q̂αq̂β) · (A.2)

· exp
[
i · q · (R1 + R2) + i · kci ·R1 + i · kcj ·R2

]
. (A.3)

As exp (ikci ) = exp (−ikci ) for the three commensurate propagation vectors, the sums
over the spatial coordinates may be simplified as follows:

∑
R1,R2

exp
[
i · q · (R1 + R2) + i · kci ·R1 + i · kcj ·R2

]
= (A.4)

=
∑
i,j

∑
R1

exp [i · q ·R1 − i · kci ·R1] +
∑
R1

exp
[
i · q ·R2 − i · kcj ·R2

]
=

=
(
N (2π)3

v0

)2∑
i,j

∑
G,G′

δ (kci + G− q) · δ
(
kcj + G′ − q

)
. (A.5)

The last line particularly implies q = kci + G and q = kcj + G′. As (i) kci and kcj for
i 6= j belong to different arms of the 〈ππ0〉 star, and (ii) two wave vectors of different
arms of the same star by definition cannot differ by a reciprocal lattice vector, the terms
with i 6= j vanish.
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In our study we are particularly interested in the case q0 =
(

1
2 ,

1
2 , 0

)
. Inserting Eq. (A.5)

into Eq. (A.3) yields:

σ (q0) = C · δ (kc1 + G− q0) ·
(1

2 (r1 (kc1)− r2 (kc1))2 +
(
r3 (kc1)2

))
(A.6)

Note, that in zero magnetic field typically all domains of a magnetic structure have
to be taken into account. As Eq. (A.1) describes only one magnetic domain, the cross
section and the structure factor in Eq. (A.6) also accounts for one magnetic domain only.
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A.2. Polarization Matrices in the RCu Compounds

In the following, we consider (ππ0) ground states and derive properties of polarization
matrices, which were used in our study on HoCu and ErCu.

Let m = md (R) be a (ππ0) magnetic ground state. Note that there may be several
domains d ∈ D of the ground state. The propagation vectors of md are of the star {kc},
where kc =

(
1
2 ,

1
2 , 0

)
.

P shall be the polarization matrix of a scattering process with wave-vector Q =(
1
2 ,

1
2 , 0

)
. The sample orientation in the experiments, where we measure P , shall be

such that the (001) plane corresponds to the scattering plane. Relations between P and
m may be derived by means of the Blume-Maleev equations (cf. Sec. 2.1.2 for further
information). We may define Md

⊥ = Q̂× (md(Q)× Q̂).
We consider the following two cases, where the polarization matrix satisfies (i) Pyy =
−Pzz = 1, as well as (ii) Pyy = −Pzz = −1. Note that polarization matrices satisfying
these conditions (i) were observed in phase C of HoCu and in phase C of ErCu (ii) in
phase IC1 of HoCu and in phase IC2 of ErCu.

For contributions in the Fourier series of m (Fourier components), which are related to
kc, we show in the following, that:

• (i) if Pyy = −Pzz = 1, there are no Fourier components along the z-axis. The ground
state consists of Γ9 (kc) basis functions only.

• (ii) if Pyy = −Pzz = −1, there are no Fourier components perpendicular to the
z-axis. The ground state consists of Γ3 (kc) basis functions only.

In this section we address only commensurate structures. However, the same ar-
guments hold true for incommensurate structures. For Fourier components related to
kic =

(
1
2 ± δ,

1
2 , 0

)
we may summarize:

• if Pyy = −Pzz = 1, there are no Fourier components along the z-axis. The ground
state consists of Γ2 (kic) and Γ3 (kic) basis functions only (cf. case (i)).

• if Pyy = −Pzz = −1, there are no Fourier components perpendicular to the z-axis.
The ground state consists of Γ4 (kic) basis functions only (cf. case (ii)).

In the following, (i) and (ii) are established. The Fourier series of the commensurate
(ππ0) ground state may be written in terms of:

md (R) =
∑
n

rd (kcn) exp (ikcn ·R) (A.7)
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⇒Md(Q) =
∫

md(R) d3R =
∑
G

∑
n∈{1,2,3}

rd(kcn)δ(Q− kcn −G) (A.8)

The off-diagonal chiral terms vanish for all commensurate 〈ππ0〉 structures, since

Im(Md
⊥,iM

d
⊥,j
∗) = 0 . (A.9)

Accordingly, the equations reduce to:

P d
yy = −P d

zz = 1∣∣∣Md
⊥

∣∣∣2
(∣∣∣Md

⊥y

∣∣∣2 − ∣∣∣Md
⊥z

∣∣∣2) (A.10)

Note that md represents only one single magnetic domain. In experiments carried out
at zero magnetic field, all possible domains are typically equally populated. The average
over all magnetic domains yields:

Pyy = 1∑
d σd (Q) ·

∑
d

σd (Q)P d
yy (A.11)

⇒ P = 1∑
d σd (Q)

∑
d

1∣∣∣Md
⊥

∣∣∣2σd (Q) ·
((

Md
⊥,y

)2
−
(
Md
⊥,z

)2
)

(A.12)

For the calculation, all those domains d ∈ D have to be considered, for which the k-arm[
1
2 ,

1
2 , 0

]
∼

is participating, i.e., all domains, for which the corresponding vectorfield md has
a finite component rd

((
1
2 ,

1
2 , 0

))
.

For calculations by means of the Blume-Maleev equations, the cartesian coordinates
are defined with respect to the reciprocal space position Q, such that ez is vertical and
ex = Q̂, ey, ez represent an orthonormal basis. The variables rd can be expanded in that
basis as follows:

rd = µdx · ex + µdy · ey + µdz · ez (A.13)
⇒Md

⊥ = Q̂×
(
Md
⊥ × Q̂

)
= (A.14)

=
∑
G

∑
n∈{1,2,3}

Q̂×
(
rd(kcn)× Q̂

)
· δ(Q− kcn −G) (A.15)
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As is Q =
(

1
2 ,

1
2 , 0

)
= kc1, the equation reduces to:

⇒Md
⊥ ∼ Q̂×

(
rd(kc1)× Q̂

)
= (A.16)

= Q̂×
[(
µdx(kc1) · ex + µdy(kc1) · ey + µdz(kc1) · ez

)
× Q̂

]
(A.17)

A short calculation provides:

1∣∣∣Md
⊥

∣∣∣2
(

+
(
Md
⊥,y

)2
−
(
Md
⊥,z

)2
)

=
+
(
µdy(kc1)

)2
−
(
µdz(kc1)

)2

(
µdy(kc1)

)2
+ (µdz(kc1))2

(A.18)

Inserting this into Eq. (A.12) gives:

Pyy = 1∑
d σd (Q)

∑
d

σd (Q)

(
µdy(kc1)

)2
−
(
µdz(kc1)

)2

(
µdy(kc1)

)2
+ (µdz(kc1))2

(A.19)

From Pyy = +1 it follows for all domains with σd (Q) > 0:

(
µdy(kc1)

)2
−
(
µdz(kc1)

)2

(
µdy(kc1)

)2
+ (µdz(kc1))2

= +1 (A.20)

⇒
(
µdz(kc1)

)2
= 0 and

(
µdy(kc1)

)2
> 0 (A.21)

This shows that only Γ9 (kc) basis functions occur in the Fourier decomposition of md, if
σd (Q) > 0.

Further, this holds true for all other domains, as argued in the following. Consider
the specific case of a domain Dd1 , which has a propagation vector of the k-arm Ac1 with
σd1 (Q) = 0. As the structure factor vanishes at Q, the magnetic moments must fulfill
r (kc1) ‖ Q.

However, from the symmetries of the space group it follows that there is a second
domain Dd2 that originates from Dd1 by a rotation around [001] by an angle θ = 90◦.
In particular, the domains have the same propagation vector kc1 and components along
the z-axis are equivalent, i.e., µd1

z (kc1) = µd2
z (kc1). In this second domain, the polarization

factor of the structure factor is not suppressed at the position Q, i.e., σd2 (Q) > 0. It
follows µd1

z (kc1) = µd2
z (kc1) = 0, and µd1

x (kc1) = µd2
y (kc1) > 0. This implies for both domains

Dd1 and Dd2 that all components of m along the z-axis vanish.
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Second, we consider (ii). From Eq. (A.19) it may be inferred:

(
µdy(kc1)

)2
−
(
µdz(kc1)

)2

(
µdy(kc1)

)2
+ (µdz(kc1))2

= −1 (A.22)

⇒
(
µdy(kc1)

)2
= 0 and

(
µdz(kc1)

)2
> 0 (A.23)

The same argument as before shows, that Eq. (A.23) holds for all domains. Hence, all
components of moments in the basal plane vanish and the ground state consists of only
Γ3 (kc) basis functions.
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A.3. Stoke’s Theorem for Chern Numbers

In the following, a variation of Stoke’s theorem is derived, which describes the relation
between Chern-numbers and the distribution of magnetic monopoles in the first Brillouin
zone of the electronic structure. The theorem is discussed further in the study presented
in Sec. 3.3.7.2.

In Sec. 3.3.7.2 an electron band |v1〉 with Berry curvature Ω (k) was considered. The
band |v1〉 features magnetic charges in the first Brillouin zone. The Chern numbers follow
the following variation of Stoke’s law given by:

γ (kz) =
∑
k<kz

Q (k)−
∑
k>kz

Q (k) . (A.24)

This law may be derived by basic vector analysis calculations as follows. We consider
the following two cuboid regions in the reciprocal space defined by:

V< (kz) :=
{

(κx, κy, κz) : −π
a
≤ κx, κy ≤

π

a
; −π

a
≤ κz ≤ kz

}
(A.25)

V> (kz) :=
{

(κx, κy, κz) : −π
a
≤ κx, κy ≤

π

a
; kz ≤ κz ≤

π

a

}
. (A.26)

The first BZ is the union of V< (kz) and V< (kz). The Berry curvature fulfills (cf.
Ref. [164]):

rot Ω (k0) = 4πi ·
∑

k
δ (k− k0)Q (k) . (A.27)

On the other hand, conventional Stoke’s theorem provides:
∫
V<(kz)

rot Ω (k0) =
∫
∂V<(kz)

Ω · dS∫
V>(kz)

rot Ω (k0) =
∫
∂V>(kz)

Ω · dS . (A.28)

Note, that the sum of surface integrals over the facets of the first Brillouin zone vanishes
due to the periodicity of Ω. Eqs. (A.27) and Eqs. (A.28) provide further:

4πi
∑

k∈V<(kz)
Q (k) =2πi

[
γ (kz)− γ

(
−π
a

)]
(A.29)

4πi
∑

k∈V>(kz)
Q (k) =2πi

[
γ
(
π

a

)
− γ (kz)

]
. (A.30)
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Note, that is γ
(
π
a

)
= γ

(
−π
a

)
= 0, as the charges in the first Billouin zone add up to

zero. Substraction of the two formulas gives:

2
∑

k∈V<(kz)
Q (k)− 2

∑
k∈V>(kz)

Q (k) =
[
2γ (kz)− 2γ

(
π

a

)]
(A.31)

As γ
(
π
a

)
= 0, Eq. (A.24) follows directly from Eq. (A.31).
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A.4. Neutron Diffraction on HoCu with Magnetic Field
along Twofold Directions

As reported in Sec. 3.3.4.1, field and temperature dependencies of magnetic Bragg peaks
were determined for fields along twofold 〈110〉 directions. In the following, we present
integrated intensities as a function of temperature of magnetic Bragg peaks, as inferred
from sweepT1, sweepT2, sweepT3, sweepT4, sweeptT5, and sweepT6 (Fig. 3.21).

Shown in Fig. A.1 are temperature dependences of integrated intensities of Bragg peaks
of the stars 〈qI,α〉 and 〈qI,β〉.

Shown in Fig. A.2 are the temperature dependences of the Bragg peaks located at
positions of the stars 〈ππ0〉 and 〈π − δ, π, 0〉.
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Figure A.1.: Integrated intensities of Bragg peaks the stars 〈qI,α〉 and 〈qI,β〉, as inferred from
sweepT1, sweepT2, sweepT3, sweepT4, sweeptT5, and sweepT6. Data were recorded for de-
creasing fields.
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Figure A.2.: Integrated intensities of Bragg peaks the stars (a) 〈π − δ, π, 0〉 and (b) 〈ππ0〉,
as inferred from sweepT1, sweepT2, sweepT3, sweepT4, sweeptT5, and sweepT6. Data were
recorded for decreasing fields.
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A.5. Neutron Diffraction on TmCu with Field along
Twofold Directions

In Sec. 3.4.3, an unconventional phase Mb1 of the 〈110〉 phase diagram of TmCu was iden-
tified. Fig. A.3 shows the diffraction intensity in this phase, as recorded in the (h, k, 1.5)
plane. The Bragg peaks, which were observed, may be indexed by propagation vectors(
0, 1

2 ,
1
2

)
,
(

1
7 ,

1
2 ,

1
2

)
,
(

2
7 ,

1
2 ,

1
2

)
, and

(
3
7 ,

1
2 ,

1
2

)
. Accordingly, the ground state in Mb1 is dis-

tinctively different from a (ππ0) antiferromagnet.
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Figure A.3.: Scattering intensity in phase Mb1 of TmCu. Shown is the diffraction intensity as
recorded in the (h, k, 1.5) plane. Along the line (h, 1.5, 1.5) Bragg peaks are present at positions
h = j · 1

7 with j = {−1, 4, 5, 6, 7, ..., 21}. Peaks are also present at the positions
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)
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,
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)
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. Accordingly, the magnetic ground state is multi-k and

a superposition of propagation vectors such as
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,
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)
,
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[43] V. Petř́ıček, J. Fuksa, and M. Dušek, Magnetic space and superspace groups, rep-
resentation analysis: competing or friendly concepts? Acta Crystallogr. A 66, 649
(2010).

[44] A. Wills, Magnetic structures and their determination using group theory, J. Phys.
IV France 11, Pr9 (2001).

[45] T. Chatterji, CHAPTER 2 - Magnetic Structures, in Neutron Scattering from Mag-
netic Materials, edited by T. Chatterji (Elsevier Science, 2006) pp. 25–91.

[46] R. Ballou and B. Ouladdiaf, CHAPTER 3 - Representation Analysis of Magnetic
Structures, in Neutron Scattering from Magnetic Materials, edited by T. Chatterji
(Elsevier Science, 2006) pp. 93–151.

[47] Y. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutron Diffraction of Magnetic
Materials (Consultalts Bureau, Plenum Publishing Corporation, New York, 1991).

[48] Y. A. Izyumov and V. E. Naish, Symmetry analysis in neutron diffraction studies of
magnetic structures: 1. A phase transition concept to describe magnetic structures
in crystals, J. Magn. Magn. Mater. 12, 239 (1979).

[49] Y. A. Izyumov, V. E. Naish, and S. B. Petrov, Symmetry analysis in neutron diffrac-
tion studies of magnetic structures: 3. An example: The magnetic structure of
spinels, J. Magn. Magn. Mater. 13, 267 (1979).

[50] Y. A. Izyumov, V. E. Naish, and S. B. Petrov, Symmetry analysis in neutron diffrac-
tion studies of magnetic structures: 4. Theoretical group analysis of exchange Hamil-
tonian, J. Magn. Magn. Mater. 13, 275 (1979).

http://dx.doi.org/10.1107/S0567739468000306
http://dx.doi.org/10.1107/S0567739468000306
http://dx.doi.org/ 10.1088/0953-8984/24/16/163201
http://dx.doi.org/ 10.1088/0953-8984/24/16/163201
http://dx.doi.org/ 10.1051/epjconf/20122200010
http://dx.doi.org/ 10.1051/epjconf/20122200010
http://dx.doi.org/ 10.1107/S0108767310030527
http://dx.doi.org/ 10.1107/S0108767310030527
http://dx.doi.org/ 10.1051/jp4:2001906
http://dx.doi.org/ 10.1051/jp4:2001906
http://dx.doi.org/ 10.1016/B978-044451050-1/50003-3
http://dx.doi.org/ 10.1016/B978-044451050-1/50003-3
http://dx.doi.org/10.1016/B978-044451050-1/50004-5
http://dx.doi.org/https://doi.org/10.1007/978-1-4615-3658-1
http://dx.doi.org/https://doi.org/10.1007/978-1-4615-3658-1
http://dx.doi.org/ 10.1016/0304-8853(79)90086-6
http://dx.doi.org/10.1016/0304-8853(79)90208-7
http://dx.doi.org/10.1016/0304-8853(79)90209-9


Bibliography 239
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C. Pfleiderer, and P. Böni, The multi-purpose three-axis spectrometer (TAS) MIRA
at FRM II, Nucl. Instrum. Methods Phys. Res. A 881, 60 (2018).

[139] L. Landau, The Theory of Phase Transitions, Nature 138, 840 (1936).

[140] L. C. Chapon, P. Manuel, P. G. Radaelli, C. Benson, L. Perrott, S. Ansell, N. J.
Rhodes, D. Raspino, D. Duxbury, E. Spill, and J. Norris, Wish: The New Powder
and Single Crystal Magnetic Diffractometer on the Second Target Station, Neutron
News 22, 22 (2011).

[141] O. Arnold, J. C. Bilheux, J. M. Borreguero, A. Buts, S. I. Campbell, L. Chapon,
M. Doucet, N. Draper, R. Ferraz Leal, M. A. Gigg, V. E. Lynch, A. Markvardsen,
D. J. Mikkelson, R. L. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos,
T. G. Perring, P. F. Peterson, S. Ren, M. A. Reuter, A. T. Savici, J. W. Taylor,
R. J. Taylor, R. Tolchenov, W. Zhou, and J. Zikovsky, Mantid—Data analysis and
visualization package for neutron scattering and µ SR experiments, Nucl. Instrum.
Methods Phys. Res. A 764, 156 (2014).

http://dx.doi.org/10.1107/S0108767306006623
http://dx.doi.org/10.1107/S0108767306006623
http://dx.doi.org/10.1103/PhysRevLett.56.1485
http://dx.doi.org/10.1103/PhysRevLett.56.1485
http://dx.doi.org/10.1103/PhysRevB.35.9330
http://dx.doi.org/10.1103/PhysRevB.35.9330
http://dx.doi.org/10.1524/zksu.2007.2007.suppl_26.53
http://dx.doi.org/10.17815/jlsrf-1-33
http://dx.doi.org/10.1006/jssc.1994.1012
http://dx.doi.org/10.1006/jssc.1994.1012
http://dx.doi.org/10.1103/PhysRevB.81.094429
http://dx.doi.org/10.1016/j.nima.2017.09.063
http://dx.doi.org/10.1038/138840a0
http://dx.doi.org/10.1080/10448632.2011.569650
http://dx.doi.org/10.1080/10448632.2011.569650
http://dx.doi.org/ 10.1016/j.nima.2014.07.029
http://dx.doi.org/ 10.1016/j.nima.2014.07.029


246 Bibliography

[142] P. Bak and B. Lebech, ”Triple-q” Modulated Magnetic Structure and Critical Be-
havior of Neodymium, Phys. Rev. Lett. 40, 800 (1978).

[143] E. Fawcett, Spin-density-wave antiferromagnetism in chromium, Rev. Mod. Phys.
60, 209 (1988).

[144] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insulator: Physics of high-
temperature superconductivity, Rev. Mod. Phys. 78, 17 (2006).

[145] N. Nagaosa, J. Sinova, S. Onoda, A. MacDonald, and N. Ong, Anomalous Hall
effect, Rev. Mod. Phys. 82, 1539 (2010).

[146] A. P. Ramirez, Strongly Geometrically Frustrated Magnets, Annu. Rev. Mater. Sci.
24, 453 (1994).

[147] H. Kawamura and S. Miyashita, Phase Transition of the Two-Dimensional Heisen-
berg Antiferromagnet on the Triangular Lattice, J. Phys. Soc. Jpn. 53, 4138 (1984).

[148] M. Becker, M. Hermanns, B. Bauer, M. Garst, and S. Trebst, Spin-orbit physics of
j = 1

2 Mott insulators on the triangular lattice, Phys. Rev. B 91, 155135 (2015).

[149] D. J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics (World
Scientific, 1998).

[150] A. Altland and B. D. Simons, Condensed matter field theory (Cambridge University
Press, 2010).
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ohne die die letzten Jahre langweilig gewesen wären: Tim Adams, Aisha Aqeel,
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