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Abstract

The present work examines a modelling approach for space harmonics in low-power off-the-shelf in-
duction machines. These cost-saving machines usually exhibit a radial flux density distribution over
the air-gap circumference far from sinusoidal. The flux density harmonics give rise to additional stator
current components resulting in unwanted torque oscillations. At the same time, they also provide
instrumental information for condition monitoring or rotor speed estimation. Taking advantage of
these properties to achieve better drive performance necessitates a more accurate, yet simple ma-
chine description. These aspects are challenging, as generally no information about internal structure
and magnetic characteristics is available for off-the-shelf machines, whereas the physical phenomena
considered are complex.

The approach presented in this thesis constitutes a trade-off between these requirements. We primar-
ily focus on space harmonics arising from the non-sinusoidal conductor distribution over the air-gap
circumference and assume linear magnetic properties and a constant air-gap length. Using the winding
function theory and key mathematical properties of Fourier series, we obtain a simple relation between
currents and flux linkages including the contribution of flux density harmonics. The concept of in-
terconnection matrices allows us to account for various types of winding configurations and therefore
greatly simplifies the derivation of state-space models including flux density harmonics for specific
machines.

In a further step, we derive a coordinate transformation combining interconnection matrices with the
discrete Fourier transform to reduce the model order. The transformation allows for a substantial
decrease of computational effort and makes the modelling approach presented promising for torque
ripple reduction applications. More broadly, it provides a general means of analysing space harmonics
and potentially opens new possibilities for multiphase drive applications.
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Kurzfassung

Die vorliegende Arbeit untersucht einen Modellierungsansatz für Raumharmonische in handelsüblichen
Asynchronmaschinen kleiner Leistung. In diesen kostengünstigen Maschinen ist die radiale Flussdi-
chteverteilung über den Luftspalt meistens nicht sinusförmig. Die Oberwellen der Flussdichtever-
teilung verursachen zusätzliche Statorstromharmonische, die Drehmomentschwingungen hervorrufen.
Gleichzeitig stellen sie eine hilfreiche Informationsquelle für Zustandsdiagnose und Drehzahlschätzung
dar. Die Nutzung dieser Eigenschaften zur Erhöhung der Antriebsperformanz erfordert eine genauere,
jedoch simple Maschinenbeschreibung. Im Falle handelsüblicher Maschinen stellen diese Aspekte auf-
grund fehlender Daten über internen Aufbau sowie magnetische Eigenschaften eine Herausforderung
dar, zumal die betrachteten physikalischen Phänomene komplex sind.

Der in dieser Dissertation beschriebene Ansatz stellt einen Kompromiss zwischen diesen Anforderungen
dar. Wir befassen uns vorrangig mit Raumharmonischen, welche von der nicht sinusförmigen Leit-
erverteilung am Luftspaltumfang herrühren. Lineare magnetische Eigenschaften werden vorausgesetzt
und die Luftspaltlänge wird als konstant angenommen. Der Ansatz der Wicklungsverteilungsfunktion
sowie entscheidende mathematische Eigenschaften von Fourier-Reihen ermöglichen die Herleitung eines
einfachen Zusammenhangs zwischen Strömen und Flussverkettungen, welcher den Beitrag der Flussdi-
chteoberwellen berücksichtigt. Die Verwendung von Verschaltungsmatrizen bietet die Möglichkeit,
verschiedene Arten von Wicklungskonfigurationen in Betracht zu ziehen. Dies vereinfacht die Herlei-
tung von Zustandsraummodellen unter Berücksichtigung Harmonischer der Flussdichteverteilung für
spezielle Maschinen deutlich.

Im Weiteren wird eine Koordinatentransformation durch Kombination der Verschaltungsmatrizen mit
der diskreten Fourier-Transformation zur Reduzierung der Modellordnung hergeleitet. Die Transform-
ation bietet eine wesentliche Verringerung des Rechenaufwands und macht den beschriebenen Model-
lierungsansatz vielversprechend für Anwendungen zur Verringerung von Drehmomentschwankungen.
Im Allgemeinen stellt die Transformation eine systematische Methode zur Analyse von Raumhar-
monischen dar und eröffnet unter Umständen neue Möglichkeiten für Anwendungen mit Mehrphasen-
maschinen.
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B input matrix

L′ inductance matrix of a network of interconnected circuits

R′ resistance matrix of a network of interconnected circuits

N set of natural numbers (including zero)

‖·‖ norm

N
⋆

N
⋆ = N \ {0}

ψ̃rn0, h contribution of wavelength h to the main flux of rotor circuit n0 ∈ J0, mr − 1K

ψ̃sm0, h contribution of wavelength h to the main flux of stator circuit m0 ∈ J0, ms − 1K

R set of real numbers

R
+ set of positive real numbers including zero, i.e. R+ = {x ∈ R | x > 0}

Re[·] real part of a complex number

R resistance matrix of a set of non-interconnected circuits

Zs transformation matrix in presence of circuit interconnections

ϕh ϕh = ϕs0, h − ϕr0, h, for h ∈ N
⋆

ϕr0, h argument of the Fourier coefficient of order h of conductor distribution function Wr0

ϕs0, h argument of the Fourier coefficient of order h of conductor distribution function Ws0

~̃
Ψ main flux linkage vector

~̃
Ψh main flux linkage vector for wavelength h ∈ N

⋆

~̃
ψr, h rotor main flux linkage vector for wavelength h ∈ N

⋆

~̃
ψs, h stator main flux linkage vector for wavelength h ∈ N

⋆

~Ψ flux linkage vector

~i current vector of a set of non-interconnected circuits

~i′ vector of independent currents in a network of interconnected circuits

~u voltage vector of a set of non-interconnected circuits

~u′ vector of independent voltages in a network of interconnected circuits

Z set of integers

Z
⋆

Z
⋆ = Z \ {0}

B(γs) flux density distribution function in stator coordinates

B′(γr) flux density distribution function in rotor coordinates

ch(f) Fourier coefficient of order h ∈ Z of the function f

LM,h coupling inductance between stator and rotor for wavelength of order h ∈ N
⋆

W conductor distribution function

W0 basic winding distribution function
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NOMENCLATURE

Subscripts

α stator direct axis component

β stator quadrature axis component

H denotes quantities computed using only the wavelength orders present in set H
σ leakage

d rotor direct axis component

q rotor quadrature axis component

r rotor

s stator

Superscripts

♮, ♯, ♭ denote transformed quantities

′ denotes electrical quantities in a network of interconnected circuits

r rotor

s stator
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Introduction

Induction machines are omnipresent in our modern society, with applications in the residential, indus-
trial as well as the transportation sector. Although showing lower power densities as their permanent
magnet synchronous counterparts, induction machines are highly robust, comparatively cheap and not
depending on rare earth materials, a criterion of crucial importance with respect to the development
of electromobility. Simultaneously, the currently raising concerns about climate change and the need
for a more responsible use of energy motivates the development of more efficient control strategies for
electric drives.

The present work focuses on a particular, yet extremely common case in this wide context which
is applications involving off-the-shelf induction machines in a power range of up to around ten kilo-
watts. The radial flux density distribution over the air-gap circumference of these low-power machines
generally displays a high amount of harmonics which produce unwanted stator current components,
torque oscillations and losses. Simultaneously, they also provide useful information for monitoring the
machine condition or estimating the rotor speed.

The consideration of these so-called ‘space harmonics’ in control schemes to achieve better drive per-
formance creates interesting challenges as Park’s modelling approach to AC machines is not applicable
anymore and a more precise machine model is required. In addition, usually no information about
internal structure and magnetic properties is available for off-the-shelf machines. Moreover, the new
model must be real-time compliant to meet an essential need of drive control applications. The
modelling strategy described in the thesis aims at finding a compromise between these constraints.

After presenting the context and setting the objectives of the study in the first chapter, we will
introduce the fundamental modelling concepts in chapter 2 and propose the first version of an extended
model including the effect of space harmonics in induction machines.

In chapter 3, we will concentrate on space harmonics caused by the non-sinusoidal conductor distri-
bution over the air-gap circumference. We assume linear magnetic properties and a constant air-gap
length. These hypotheses will allow for simplifications and are a first step towards real-time compli-
ance.

We will then propose and discuss a coordinate transformation for the magnetically linear model in
chapter 4. We will show by means of concrete examples that this transformation enables a substantial
reduction of the model complexity.

The practical potential of the transformed model will be assessed in chapter 5 and conclusions will be
drawn on its ability to fulfil the initial objectives.
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Chapter 1

Scope and objectives of the thesis

Overview of chapter

This introductory chapter presents the context of the investigations carried out in the frame of the
thesis. This aspect includes the existing applications in the considered field. As we focus on off-the-
shelf machines with unknown internal structure, the use of methods such as finite element analysis
is not possible. We will therefore review alternative modelling techniques for taking space harmonics
into account and discuss their benefits and drawbacks.

This will allow us to set the objectives of the present study.
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1.2. Air-gap flux density harmonics in induction machines

1.1 Considered problem and general assumptions

The considerations in the present work essentially focus on inverter drives featuring off-the-shelf squir-
rel cage induction machines for which no information about internal geometry or magnetic properties
is available. These inexpensive yet robust machines often exhibit a radial air-gap flux density distri-
bution far from sinusoidal and thus do not satisfy the fundamental hypothesis of Park’s modelling
approach.

The harmonics present in the air-gap flux density distribution, known as space harmonics, induce
additional voltage and current components in the electrical conductors of the machine (see for instance
[1, chapt. 10]). On the one hand, this results in increased iron losses as well as unwanted torque
oscillations leading to vibrations and noise. On the other, some of the extra stator current components
arising from the presence of space harmonics can provide valuable information to detect the rotor speed
or position.

As we will see next, these characteristics provide the foundation for real-time control applications
such as encoderless control (commonly known as sensorless control), machine condition monitoring
and current (or torque) harmonic reduction. The present study targets:

1.) current and torque harmonic reduction primarily;

2.) encoderless control applications to a lesser extent.

We presume that the power of the drive is low enough to allow for the use of inverters with a switching
frequency of at least 10 kHz, a condition typically met by IGBT inverters up to a few tens of kilowatts.
This enables us to consider the inverter dynamic performance as sufficiently high to generate the
voltage reference waveforms needed in order to damp the current harmonics mentioned above. We
will therefore regard the inverter as ideal and ignore the parasitic high-frequency components in its
output voltages. The modelling approach will be centred on the machine.

1.2 Air-gap flux density harmonics in induction machines

1.2.1 Physical origin

The nature, origin and impact of air-gap flux density harmonics in induction machines have been in-
vestigated since the beginning of the 20th century and are well-documented in the literature. Extensive
analyses of the phenomenon can be found in particular in the works of Kron (cf. [2], [1, chapt. 10]),
Liwschitz [3], Alger [4] or White and Woodson [5, chapt. 10 and 11]. We will therefore only briefly
mention a few important facts here.

The non-ideal distribution of the air-gap flux density in real induction machines results essentially
from two effects:

1.) the discrete distribution of electric conductors, concentrated in slots on the stator as well as on
the rotor;

2.) the variation of permeance due to slot opening, eccentricity or saturation of the lamination stack.
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1.2.2. Space harmonics related to the discrete conductor distribution

1.2.2 Space harmonics related to the discrete conductor distribution

In a machine with uniform air-gap, fed by a set of balanced sinusoidal voltages in which only the
first of the aforementioned effects is considered, the fundamental of the resulting stator currents
produces a stepwise magnetomotive force (MMF) distribution along the air-gap circumference. This
results in a rotating air-gap flux density distribution being the superposition of many waves with
different wavelengths (or pairs of poles), some of which induce voltages and currents in the rotor
conductors. The latter generate a stepwise MMF and air-gap flux density contributions inducing
current components in the stator conductors which in turn generate a stepwise MMF etc. Kron has
described this process of harmonic generation in detail in [1, chapt. 10] and proposed an equivalent
machine representation in which the different waves of the air-gap flux density distribution are modelled
as virtual machines with corresponding pole pair numbers, all rotating at the same speed. We will
take a closer look at this approach in section 1.4.

References [6] and [7] present a concise mathematical description of flux density waves arising from
the discrete conductor distribution and summarize the conditions for them to generate additional
frequency components in the stator currents. Of major interest are the well-known principal slot
harmonics (PSH), the frequency of which depends on the rotor angular velocity. In the case of three-
phase cage induction machines, the corresponding frequencies are [7]:

• Lower principal slot harmonic:

fLPSH =

[
1− Nr

Zp
(1− s)

]
f (1.1a)

• Upper principal slot harmonic:

fUPSH =

[
1 +

Nr

Zp
(1− s)

]
f (1.1b)

where Nr represents the number of rotor bars, Zp the machine pole pair number, s the slip and f
the supply frequency. As flux density waves can only induce currents on the stator side if their pole
pair number corresponds to an harmonic order present in the stator winding MMF, the lower and
upper PSHs will not appear for any number of rotor bars. In a three-phase machine, the conditions
to be met by Nr for a lower PSH to show up is Nr ∈ RLPSH = {k ∈ N

⋆ | k = Zp(6p+ 2), p ∈ N}. In
contrast, an upper PSH will be visible if Nr ∈ RUPSH = {k ∈ N

⋆ | k = Zp(6p− 2), p ∈ N}. Both PSHs
may appear if Nr is multiple of 6Zp [7].

1.2.3 Influence of permeance variations

In a real machine, slot openings, eccentricity and magnetic saturation cause the permeance to depend
on the position considered along the air-gap circumference. The interaction of MMF waves with the
variable permeance distribution leads to additional flux density waves. The non-constant permeance
resulting from slot openings on the stator and the rotor leads to specific stator current components
with the same frequency as the lower and upper PSH, thus impacting on their amplitude [7].

Besides slot openings, an eccentric rotor will also influence the permeance distribution and give rise
to additional stator current components. This effect has been investigated in detail in [8–10].

The impact of magnetic saturation occurring in the lamination stack can be modelled as a periodic
permeance distribution function with a number of periods over the air-gap circumference equal to the
number of poles of the machine [7, 8, 11]. Saturation may produce stator current harmonics as well.
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1.3. Significance of space harmonics for drive control applications

1.3 Significance of space harmonics for drive control applications

This section is intended to provide a brief overview of drive control applications with off-the-shelf
induction machines, in which harmonics of the air-gap flux density play a significant role. There are
predominantly three types of applications of interest:

• encoderless speed or position control;

• machine condition monitoring;

• current, torque and vibration suppression.

1.3.1 Encoderless control

Since the frequency of some additional stator current components caused by air-gap flux density
harmonics is directly related to the rotor speed, the latter may be gained from a spectral analysis of
the stator currents. The authors of [12] proposed a rotor speed detector extracting the frequency of
slotting and eccentricity harmonics in stator currents, in order to extend encoderless control schemes
based on Park’s model which are known for being unreliable at low-speed due to measurement noise
and inverter non-linearities. They compared the performance of several signal processing techniques
to perform the required spectrum analysis in [13]. The detection of the rotor speed by processing
current harmonics was reported more recently in [14] and [15].

As the current components arising from air-gap flux density harmonics vanish at zero-speed, tradi-
tional encoderless control methods for off-the-shelf induction machines at low speed detect permeance
variations using an additional high-frequency test signal to estimate the rotor speed or position [16–
19]. An alternative consists in using the voltage transients generated by the inverter pulse width
modulation (PWM) [20–22].

1.3.2 Condition monitoring

Changes in the machine structure such as winding faults, broken rotor bars and eccentricity affect
the air-gap flux density distribution and the time harmonics present in the stator currents. The
analysis of stator currents in induction machines for the purpose of condition monitoring, known as
‘motor signature current analysis’ goes back to the 1990s with the publication by Toliyat and Lipo
of an extended model based on the winding function approach which enables to take defective stator
windings and rotor cages into account [23].

The research in the field includes the processing of stator current harmonics to detect inter-turn short
circuits [24, 25], broken rotor bars [26–28], bearing faults [29] or rotor eccentricity [10, 30]. [31]
proposes a method of detecting rotor bar failures in inverter-driven induction machines making use
of a transient voltage excitation. Recent research activities appear to concentrate on improving the
performance of the signal processing algorithms to enhance the identification of the current harmonics
associated with specific types of faults [32, 33].

1.3.3 Current and torque harmonic reduction

Besides providing instrumental information for encoderless control and fault detection, current har-
monics resulting from the discrete conductor distribution and permeance variations also generate
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undesirable torque oscillations leading to vibrations and noise [2]. Although time harmonics originat-
ing from inverter supplies are the primary matter of concern with respect to current and torque ripple,
some recent applications reported in the literature address the compensation of oscillations produced
by space harmonics, in particular in the context of fault-tolerant drives [34, 35].

In a broader context going beyond the scope of the present study, the recent work presented in [36]
discusses modelling strategies for reducing noise and vibrations in induction machine drives using time
and space harmonic compensation. This shows the interest of the industry in the topic.

1.4 Review of modelling methods of interest

1.4.1 Context-related constraints

Since Park’s model does not account for air-gap flux density harmonics (see for example [37, chapt. 2]),
it is not appropriate for designing control algorithms intended for the aforementioned applications.
Thus, a more accurate representation of magnetic and geometric characteristics is necessary, in order
to derive a relation between currents and flux linkages taking into account the discrete conductor
distribution as well as permeance variations. Owing to the considerations in section 1.1, the use of
finite elements analysis for this purpose is not realistic, as the required machine data is not available.

Potentially effective modelling approaches to overcome this limitation are:

• the extension of Park’s model to account for specific space harmonics;

• Kron’s approach to modelling space harmonics;

• the winding function theory.

We will review them briefly in the next sections.

1.4.2 Extension of Park’s model to account for space harmonics

Park’s model, also known as ‘fundamental model’, since it assumes a sinusoidally distributed radial
component of the air-gap flux density and therefore sinusoidal and continuous conductor distributions
over the rotor circumference, has been extremely popular in drive control applications in the past
decades. It relies on the concept of space vector and the Clarke transformation, which allow to
represent the machine using a set of two orthogonal windings, one on the stator, the other on the
rotor. We will only summarize the main features of the model. An in-depth description may be found
for instance in [37, chapt. 2].

The model equations, using the stator and rotor current space vectors as state variables, are given
below: 



uss = Rsi
s
s + Ls

diss
dt

+M
disr
dt

0 = Rri
r
r + Lr

dirr
dt

+M
dirs
dt

MM =
3

2
ZpMiss

⊤Jisr

dωr

dt
=

1

JM
(MM −ML)

(1.2a)

(1.2b)

(1.2c)

(1.2d)
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1.4. Review of modelling methods of interest

where

uss =
[
usα usβ

]⊤ ∈ R
2; iss =

[
isα isβ

]⊤ ∈ R
2; irr =

[
ird iiq

]⊤ ∈ R
2; J =

[
0 −1

1 0

]

MM and ωr represent the electromechanical torque and the rotor angular velocity, respectively. The
model parameters are: the stator resistance and inductance, (Rs and Ls resp.), the rotor resistance
and inductance (Rr and Lr resp.), the mutual inductance M as well as the rotor inertia, JM .

Considering the above relations, the success of Park’s approach in drive control applications becomes
apparent:

1.) the model involves few state variables (in the present case, the stator and rotor currents as well
as the angular velocity and the rotor angle). Hence, it is not computationally demanding, a key
criterion in real-time control applications;

2.) it has few parameters which can be determined easily in practice, for instance by means of a
no-load and blocked rotor test.

In addition, Park’s model provides a straightforward understanding of the transient and steady-state
machine behaviour.

The above characteristics make Park’s model ideal for drive control applications and constitute prob-
ably the reason why empirical extensions have been proposed to take specific air-gap flux density
harmonics into account. This is mainly the case in encoderless control at low speed where air-gap
permeance variations provide instrumental information about the rotor and flux position. A common
technique consists in replacing the scalar inductance parameters in (1.2) by matrices to account for
permeance differences in the main and quadrature axis (see for instance [16–18, 20]).

While these strategies are efficient and successful in tackling the problems of the respective applica-
tions, the empirical extension of concepts relying on very specific assumptions may appear as a limiting
factor and raise concerns about general validity. The notion of space vector, the Clarke transformation
and therefore Park’s model equations are indeed inherently dependent on the hypothesis of sinusoidal
air-gap flux density distribution.

These observations suggest giving up this assumption in the first place might be valuable to develop
more general and potentially new solutions for control applications in which space harmonics play a
crucial role.

1.4.3 Kron’s method

Besides a generalized theory of electric machines based on tensorial analysis published in [38], Kron
proposed a description of the current harmonic generation process caused by air-gap flux density waves
arising from the discrete conductor distribution and slot openings (cf. [1, chapt. 10]). Kron’s approach
models each wave as a virtual machine with a number of pole pairs equal to the one of the wave. All
virtual machines rotate at the mechanical speed of the real machine. Each of them features a set of
two orthogonal sinusoidally distributed windings on the stator as well as on the rotor and its electrical
equations are thus of the same form as the ones describing Park’s model (compare eq. (1.2)). The
inductances of a virtual machine are gained from the Fourier series representation of the air-gap flux
density [39].

In a second step, the windings of the virtual machines are interconnected to account for the behaviour
of the real machine, a process illustrated in fig. 1.1. The parameter P represents the pole pair number
of the real machine, while Q is twice the product of the pole pair number and the number of stator
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1.4.4. Winding function theory

Figure 1.1: Interconnection of virtual machines to account for space harmonics [1, p. 183]
(P = Zp, Q = 2Zpws, R = Nr)

windings ws. R corresponds to the number of rotor bars. The top layer in the diagram models the
presence of air-gap flux density waves generated by the fundamental stator currents and which induce
currents in the rotor cage. This is achieved by connecting the stator windings of the virtual machines
in series (on the first layer) and their rotor windings in parallel (on the second layer). The interaction
of induced rotor currents with the stator is accounted for by introducing further virtual machines, the
rotor of which is connected in series on the second layer, whereas their stators are connected in parallel
on the third layer. The influence of the new stator current components on the rotor is considered by
means of a fourth layer etc.

Note that the approach relies on the superposition principle and therefore assumes magnetic linearity.
Originally intended for steady-state analysis, the method was extended by Vernet to obtain a state-
space model of the induction machine including space harmonics [39, 40]. The strategy offers the
possibility of considering the current components arising from space harmonics as specific states in
the model. An application including the design of a Kalman filter to estimate the current component
induced on the rotor side by a stator space harmonic is presented in [40].

Vernet’s method appears particularly promising for torque ripple reduction or encoderless control,
since it isolates the effect of given space harmonics in dedicated model states. A model for encoderless
control could include for instance extra states assigned to rotor speed-dependent current components,
while a torque ripple reduction scheme might feature states modelling unwanted current components
with the aim of eliminating them through proper controller design.

One should, however, be aware of the increase in parameter number with each additional virtual
machine required to model a particular current component. While clear rules apply to the inductances
of the virtual machines (see above), the determination of their resistances is challenging. Modelling
a stator current harmonic component requires at least three virtual machines, leading to roughly 15
parameters. In a context involving off-the-shelf machines with no structural data available, the tuning
of such a set of parameters is problematic.

1.4.4 Winding function theory

The winding function approach started to gain importance in the 1990s and its use to model machines
with concentrated windings or non-uniform air-gap [11, 23, 41, 42]. It consists in a simplified analysis of
magnetic processes which are considered in a machine cross-section along the air-gap. The fundamental
assumptions of the winding function theory are summarized as follows:

• the air-gap field and flux density have no component along the machine axis [42, 43]. This
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1.5. Objectives of the present work

justifies the restriction of the magnetic analysis to a cross-section;

• the permeability of iron is assumed infinite. Magnetic saturation is modelled with a variable
air-gap length [7, 11].

As we will see in chapter 2, the conductor distribution is represented using ‘turn functions’ (compare
[44]). The radial component of the air-gap flux density is computed by means of Ampere’s law.
The flux linking each winding with the others and the corresponding inductances are calculated by
integrating the product of the turn function and the radial flux density distribution over the rotor
circumference.

The principal advantage of the method is that it allows to adjust the degree of precision depending
on the situation considered. In case the geometric characteristics of the machine are known, they can
be taken into account in the model (cf. [45, 46]). Furthermore, the technique offers the possibility to
model various types of machines. References [47, 48] investigate for instance axial flux machines. It
also plays an essential role in fault analysis [9, 49, 50].

The winding function theory seems to be also an interesting modelling strategy if only basic information
about the machine under investigation is available, such as the number of rotor bars and a rough
estimate of the stator winding configuration. In the context of off-the-shelf squirrel cage machines,
this is an option worth considering.

1.5 Objectives of the present work

The considerations in section 1.4 have pointed out some concerns about the general validity of extended
Park models when space harmonics are relevant. An alternative, state-space models based on Kron’s
method, seems difficult to realize with off-the-shelf machines owing to the numerous model parameters.

The primary goal of the investigations to be discussed in the following chapters is to develop a math-
ematically consistent and systematic method of modelling air-gap flux density harmonics in induction
machines with respect to the targeted applications, especially the reduction of current and torque
harmonics. Thus, the model proposed should meet the subsequent requirements:

1.) real-time compliance;

2.) state controllability and observability;

3.) if possible, the model should only have a limited number of parameters which should be easy to
determine.

The assessment of the results presented in this study will be carried out by means of simulations
and experiments. The latter were performed using two 2.2 kW inverter-fed induction machines, in the
following referred to as induction machine 1 (IM1) and induction machine 2 (IM2). The characteristics
of the respective machines are given in appendix A.1. The inverter was controlled using a dSPACE
DS1006 real-time system and inverter dead-time effects were compensated appropriately.

Summary

This first chapter was intended to put the study in context, the aim of which is to develop an in-
novative modelling strategy taking into account space harmonics in off-the-shelf induction machines
with unknown internal structure. The main applications targeted are the compensation of current and
torque oscillations caused by space harmonics and, in a longer term perspective, encoderless control.
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A brief review of existing modelling approaches pointed out the possible limitations of empirical
extensions of Park’s model to integrate space harmonics. A potentially interesting alternative, Kron’s
method, appears to be difficult to implement owing to the number of parameters involved. The
winding function approach seems to be the most promising option and will be the foundation of the
subsequent investigations.
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Chapter 2

A winding function based machine model

Overview of chapter

Among the modelling methods discussed in the previous chapter, the winding function theory appears
to be the most encouraging with respect to our objectives, as it constitutes a compromise between
accuracy and simplicity. We will therefore derive the first version of an extended model of induction
machines using this method and assess its ability to meet our requirements.

The present chapter introduces the fundamental concepts and the methodology to develop a model
taking into account conductor distribution, slot, eccentricity as well as saturation harmonics. We
will only briefly review the geometric and magnetic aspects, as they have already been addressed
extensively in the literature. In contrast, we will focus on the more challenging matter of winding
interconnections.

A model of the machine IM1 is to be discussed from the perspective of accuracy and efficiency. The
results will provide valuable information to determine which strategy to follow in further steps.
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2.1. General assumptions and modelling strategy

2.1 General assumptions and modelling strategy

2.1.1 Considered problem

In order to derive a general model first, we consider the case of an induction machine having Zp pairs
of poles and ws stator windings distributed in Ns slots. The machine might have a wound rotor with
wr windings and Nr slots or a cage with Nr rotor bars.

The magnetic behaviour of the machine is described using the winding function theory mentioned in
section 1.4. Consequently, the following fundamental simplifying hypotheses are made:

1.) the air-gap field and flux density have only a radial component, magnetic effects are analysed in
a cross-section of the machine;

2.) neither magnetic hysteresis nor eddy currents in the iron core are considered.
Magnetic saturation is accounted for by means of a variable air-gap length, while the permeability
of the iron core is assumed infinite (see [11] and [7]).

The above assumptions might appear restrictive but they constitute a compromise between the model
accuracy and the need for computational efficiency in a context with unknown internal machine struc-
ture.

2.1.2 Concept of electrical circuit

The ws stator windings are modelled as a set of ms electrical circuits. Such an electrical circuit might
only represent a subset of the coils belonging to a specific winding rather than the whole winding itself.
This approach provides additional degrees of freedom with respect to the geometric description of the
machine and will prove to be instrumental when optimizing the model in chapter 3 and 4. Similarly,
the wr windings of a wound rotor are described as an electrical network consisting of mr circuits. For
squirrel cage rotors, each circuit corresponds to a coil having one turn and a pitch equal to the rotor
slot pitch, the number of circuits then being equal to the number of bars, i.e. mr = Nr. We will see
later on why this representation of a rotor cage makes sense.

In a first step, we will assume each electrical circuit to be independent, i.e. the voltage at the
terminals of stator circuit number m ∈ J0, ms − 1K, usm (or the voltage at the terminals of rotor
circuit number n ∈ J0, mr − 1K, urn) can be impressed freely. The current flowing through each
circuit is an independent variable as well. Fig. 2.1 shows a schematic of a stator (resp. rotor) circuit
for this virtual machine configuration.

(a) stator circuit m ∈ J0, ms − 1K (b) rotor circuit n ∈ J0, mr − 1K

Figure 2.1: Schematics of the electrical circuits considered in the model

This approach allows us to derive the model of a virtual machine configuration with the same geometric
and magnetic properties as the real machine but without electrical constraints. The subsequent
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determination of the equations describing the behaviour of the real machine is straightforward using
the interconnection transformation defined by Kron in [38, pp. 230–232]. This technique is particularly
convenient as the relations between currents and flux linkages can be determined based exclusively on
the machine geometry. The model of the virtual configuration forms the basis for a given geometry
and is then adapted to account for the specific characteristics of the machine under investigation.

2.2 Model of the virtual machine without circuit interconnections

2.2.1 Electrical equations

We start by setting up the equations describing the electrical behaviour of stator and rotor circuits
without interconnections. Table 2.1 provides an overview of the quantities involved.

Symbol Meaning

usm Voltage at the terminals of stator circuit m ∈ J0, ms − 1K
urn Voltage at the terminals of rotor circuit n ∈ J0, mr − 1K
ism Current flowing through stator circuit m
irn Current flowing through rotor circuit n
ψsm Flux linkage of stator circuit m
ψrn Flux linkage of rotor circuit n

Rsm Resistance of stator circuit m
Rrn Resistance of rotor circuit n

Table 2.1: Overview of the electrical quantities used in the model

Applying Kirchhoff’s second law to stator circuit number m yields the following differential equation:

∀m ∈ J0, ms − 1K, usm = Rsmism +
dψsm

dt
(2.1)

Similarly, the voltage at the terminals of rotor circuit n is:

∀n ∈ J0, mr − 1K, urn = Rrnirn +
dψrn

dt
(2.2)

Introducing the vectors:

~us =
[
us0 · · · usm · · · usms−1

]⊤
~ur =

[
ur0 · · · urn · · · urmr−1

]⊤

~is =
[
is0 · · · ism · · · isms−1

]⊤ ~ir =
[
ir0 · · · irn · · · irmr−1

]⊤

~ψs =
[
ψs0 · · · ψsm · · · ψsms−1

]⊤ ~ψr =
[
ψr0 · · · ψrn · · · ψrmr−1

]⊤

as well as the stator and rotor resistance matrices:

Rs =



Rs0 0

0
. . .

Rsms−1


; Rr =



Rr0 0

0
. . .

Rrmr−1



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2.2. Model of the virtual machine without circuit interconnections

leads to the systems of differential equations:


stator voltage: ~us = Rs
~is +

d~ψs

dt

rotor voltage: ~ur = Rr
~ir +

d~ψr

dt

(2.3a)

(2.3b)

Using the definitions:

~u =
[
~u⊤s ~u⊤r

]⊤
; ~i =

[
~i⊤s ~i⊤r

]⊤
; ~Ψ =

[
~ψ⊤
s

~ψ⊤
r

]⊤
;

R =



Rs 0

0 Rr




eq. (2.3a) and (2.3b) can be combined into one:

~u = R~i+
d~Ψ

dt
(2.4)

The differential system (2.4) describes the electrical behaviour of the virtual machine configuration
without interconnections. A relation between the current and flux vectors as well as an expression
of the electromechanical torque need to be found. This step requires the machine geometry and its
magnetic properties to be taken into account and will be discussed next.

2.2.2 Relation between currents and flux linkages

Air-gap flux density distribution

Figure 2.2: Definition of stator and rotor air-gap coordinates as well as rotor angle

A basic model of magnetic processes is derived using the winding function approach. According to the
hypotheses formulated in section 2.1.1, the magnetomotive force (MMF) Θ as well as the air-gap field

– 16 –



2.2.2. Relation between currents and flux linkages

~H and flux density ~B depend only on the position along the air-gap. In addition, ~H and ~B exhibit
only a radial component, denoted by H and B respectively.

We introduce the stator (and rotor) normalized air-gap coordinate γs (γr resp.) according to fig. 2.2
and with values in the interval [0, 2π]. Note that γs and γr are positive when moving clockwise from
their respective origin.

The schematic of the machine cross section in fig. 2.2 shows the case of one stator and one rotor coil
as an example. In order to illustrate the concept of electrical circuit introduced in section 2.1.2, we
assume that the red coil centred on the origin of the stator air-gap coordinate γs has WS turns and is
the geometric equivalent of stator circuit number 0. We assign to this circuit the conductor distribution
function Ws0 depicted in fig. 2.3 which represents the turn number of the coil as a continuous function
of the coordinate γs. Ws0 is equal to WS on the coil axis and decreases linearly to 0 when moving past
the coil side towards π. Such a conductor distribution function therefore assumes a constant current
density within the slots in which the coil sides are located.

Figure 2.3: Example of conductor distribution function for stator circuit 0

Figure 2.4: Conductor distribution function of rotor circuit 0

Similarly, the orange coil centred on the origin of the rotor air-gap coordinate γr in fig. 2.2 corresponds
to rotor circuit 0. The conductor distribution function assigned to this circuit,Wr0, is shown in fig. 2.4.
As we will see in section 2.3.4, this particular shape for Wr0, with a maximum WR = 1, is used for
modelling a section of a rotor cage consisting of two consecutive bars and the end ring segments joining
them. Notice that the shape of Wr0 also suggests that the current density distribution is non-zero
outside the relevant slots. This provides a basic way of accounting for the rotor skew.
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2.2. Model of the virtual machine without circuit interconnections

Remark:
The conductor distribution function is generally referred to as ‘turn function’ in the literature, such as
in [43]. We prefer the former terminology as it avoids confusion, given that the corresponding function
can also have non-integer or negative values (see for instance fig. A.8).

Figure 2.5: Integration path for determining the air-gap flux density generated by a circuit at a
given instant

Following the above examples, we assign to each stator circuit m ∈ J0, ms − 1K (and each rotor circuit
n ∈ J0, mr − 1K) the conductor distribution function Wsm (Wrn resp.). For a given magnetic state of
the machine and a given rotor angle θr, the air-gap field Hsm produced by current ism flowing through
stator circuit number m is determined using Ampere’s law [43]:

Θsm(γs) =Wsm(γs)ism =

∮

C

~Hsm · d~l = Hsm(γs)δ(~i, γs)−Hsm(0)δ(~i, 0) (2.5)

where Θsm represents the MMF distribution generated by current ism and δ the air-gap length function.
Owing to the considerations in section 2.1.1, the shape of δ depends on the saturation state of the
machine, i.e. on the total current vector,~i, and on the rotor angle due to the relative position of stator
and rotor slots as well as possible rotor eccentricity.

From (2.5) follows:

Hsm(γs) =
1

δ(~i, γs)

[
Θsm(γs) +Hsm(0)δ(~i, 0)

]
(2.6)

In order to determine the value of the term Hsm(0)δ(0), we use the condition{

S

~B · d~S = 0 (2.7)

and integrate on the surface S of a cylinder of radius equal to the air-gap mean radius r and length
corresponding to the lamination stack length l, which leads to

r · l ·
∫ 2π

0
µ0Hsm(γs) dγs = 0
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2.2.2. Relation between currents and flux linkages

⇐⇒
∫ 2π

0

1

δ(~i, γs)

[
Θsm(γs) +Hsm(0)δ(~i, 0)

]
dγs = 0 (2.8)

From the above relation follows:

Hsm(0)δ(~i, 0) = −

∫ 2π

0

Θsm(γs)

δ(~i, γs)
dγs

∫ 2π

0

1

δ(~i, γs)
dγs

(2.9)

Consequently, the flux density distribution Bsm generated by current ism is

Bsm(γs) =
µ0 ism

δ(~i, γs)


Wsm(γs)−

∫ 2π

0

Wsm(γs)

δ(~i, γs)
dγs

∫ 2π

0

1

δ(~i, γs)
dγs


 (2.10)

Remark:
The term in square brackets in relation (2.10) is called ‘winding function’ of circuit m (see [43]).

For a specific rotor position and magnetic state of the machine, assumption 2 in section 2.1 allows to
make use of the superposition principle, as the magnetic state is entirely defined by the air-gap length
function δ. Thus, the total air-gap flux density B generated by all the currents flowing through the
stator and rotor circuits is:

B(γs) =

ms−1∑

m=0

Bsm(γs) +

mr−1∑

n=0

B′
rn(γs) (2.11)

where B′
rn denotes the contribution of rotor circuit n to the air-gap flux density as a function of the

stator coordinate γs.

Flux linkage of a single circuit

The main flux linkage of a coil is the surface integral of the air-gap flux density distribution over the
area spanned by the coil multiplied by the number of turns. In the case of a circuit, we can take
advantage of the conductor distribution function to account for the number of turns and integrate
over an interval of 2π since the conductor distribution function is zero outside the area spanned by
the coils associated with the circuit. Thus, the main flux linking stator circuit m is:

ψ̃sm = r · l ·
∫ 2π

0
Wsm(γs)B(γs) dγs (2.12)

Similarly, the main flux linkage of rotor circuit n is given by the relation:

ψ̃rn = r · l ·
∫ 2π

0
Wrn(γr)B

′(γr) dγr (2.13)

where B′ represents the air-gap flux density distribution as a function of the rotor coordinate γr.

Relation between current and flux linkage vectors

Relations (2.12) and (2.13) allow to determine the components of the main flux vector,
~̃
Ψ, defined as

follows:
~̃
Ψ =

[
ψ̃s0 · · · ψ̃sm · · · ψ̃sms−1 ψ̃r0 · · · ψ̃rn · · · ψ̃rmr−1

]⊤
(2.14)
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2.2. Model of the virtual machine without circuit interconnections

Assuming that small variations of the currents around the operating point do not influence the mag-
netic state of the machine and that the leakage flux of a circuit does not link with others, we in-
troduce the leakage inductances Lσsm of stator circuit m ∈ J0, ms − 1K and Lσrn of rotor circuit

n ∈ J0, mr − 1K. Thus, the total flux linkage vector, ~Ψ, is the sum of
~̃
Ψ and the leakage flux vector,

~Ψσ:
~Ψ =

~̃
Ψ+ ~Ψσ =

~̃
Ψ+ Lσ

~i (2.15)

where Lσ = diag[Lσs0 . . . Lσsm . . . Lσsms−1, Lσr0 . . . Lσrn . . . Lσrmr−1].

Using the above relations, the Jacobian matrix ∂~Ψ/∂~i, i.e. the differential inductance matrix, can
be determined for the considered operating point. We denote the differential inductance matrix by
L(~i, θr) and obtain the subsequent relation between the current and flux linkage vectors:

~Ψ = L(~i, θr)~i (2.16)

Owing to the reciprocity property of magnetically coupled circuits, L(~i, θr) is symmetric. Moreover,

since the quadratic form 1
2
~i
⊤
L(~i, θr)~i represents the instantaneous value of magnetic energy stored

in the field generated by the electrical circuits, L(~i, θr) is positive definite. It is therefore invertible,
which yields:

~i(~Ψ, θr) = L−1(~Ψ, θr)~Ψ (2.17)

Relations (2.16) and (2.17) constitute a simplified model of the magnetic and geometric properties of
the machine.

2.2.3 Mechanical equations

The electromechanical torque MM produced by the machine can be derived from an energy balance
equation applied to the magnetic field coupling the different electrical circuits [51]. This approach leads
to the subsequent expression given the above hypothesis of magnetic linearity (refer to appendix A.2.1
for a detailed proof):

MM =
1

2
~i⊤

∂~Ψ

∂θr
(2.18)

The rotor angular velocity, ωr, is determined by the following equation:

dωr

dt
=

1

JM
(MM − CWωr −ML) (2.19)

where CW denotes the coefficient of friction and ML the external load torque. The rotor angle θr is
obtained by integrating the angular velocity.

2.2.4 State-space equations of the model without interconnections

The components of ~Ψ, the rotor angular velocity ωr and the rotor angle θr are chosen as state variables.
Combining equations (2.4), (2.17), (2.18) and (2.19) leads to the subsequent state-space model of the
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machine: 


d~Ψ

dt
= ~u−RL−1(~Ψ, θr)~Ψ

dωr

dt
=

1

JM

[
1

2

[
L−1(~Ψ, θr)~Ψ

]⊤ ∂~Ψ
∂θr

− CWωr −ML

]

dθr
dt

= ωr

(2.20a)

(2.20b)

(2.20c)

The model dimension is ms + mr + 2. It can already be seen from the form of the equations that
the implementation of the model in a simulation will require the inverse of the differential inductance
matrix L−1 to be calculated at each time step. This is not of particular concern as L is symmetric
positive definite. Consequently, there exists a unique upper triangular matrix ∆ with strictly positive
diagonal elements such that:

L =
∂~Ψ

∂~i
= ∆⊤∆ (2.21)

The factorization (2.21) is known as Cholesky decomposition. It enables a more efficient way of
computing L−1 than general methods of solving linear systems of equations [52, p. 96].

2.3 Accounting for electrical connections between circuits

2.3.1 Impact of electrical connections on the model

The considerations so far have focused exclusively on geometric and magnetic aspects and assumed
that the currents flowing through the electric circuits as well as the voltage at their terminals were
independent. However, in order to obtain a valid model, the circuits must be interconnected to
account for the actual arrangement of electric conductors existing in a real machine. For example,
stator windings are typically connected in star or delta, while rotor windings might be short-circuited
(as are the conductors of a rotor cage).

The interconnection process will introduce constraints between the electrical quantities associated with
each circuit, expressed by Kirchhoff’s laws. Therefore, the ms +mr components of the current vector
~i are not independent. Neither are the components of ~u which can therefore not easily be used as
model inputs in general. For these reasons, the previous method which led to the differential system
(2.20) is not applicable without performing a change of variables.

In available literature references, the crucial step of selecting appropriate variables is either performed
empirically using an application specific approach, as in [24, 42, 53], or not addressed explicitly (see
for example [49, 54–56]). In contrast, we will use the systematic method of electrical circuit analysis
developed by Kron [38, pp. 230–232].

2.3.2 Definition of new electrical variables

Interconnecting the circuits introduced in section 2.2.1 to build a network representing a specific
winding configuration results in a set of constraints between the components of the current vector ~i.
These constraints are obtained by applying Kirchhoff’s first law, an operation which can be described
mathematically by a vector-matrix relation:

~i = C~i′ (2.22)
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2.3. Accounting for electrical connections between circuits

in which the original or old current vector~i is expressed as the product of a rectangular interconnection
matrix C and a new vector~i′. The components of~i′ represent the independent currents in the network
of interconnected circuits and will be referred to as new currents. C hasms+mr rows andm

′ 6 ms+mr

columns while its rank is equal to m′. Eq. (2.22) enables to compute the set of old currents required
in the above magnetic and geometric analysis using the new independent currents.

The definition of a new voltage vector is achieved using the expression of the electric power of the
network [38, p. 231] which is given by:

Pel = ~u⊤~i (2.23)

Combining (2.22) and (2.23) leads to:

Pel = ~u⊤C~i′ =
[
~u⊤C~i′

]⊤
=~i′⊤C⊤~u

=~i′⊤~u′ = ~u′⊤~i′

where
~u′ = C⊤~u (2.24)

The processes described by (2.22) and (2.24) constitute a change of variables. As in general

rank(C) < ms +mr,

C is not invertible and~i′ cannot be calculated from~i by means of (2.22). Conversely, it is not possible
to determine ~u from ~u′ using (2.24). Such operations are, however, not necessary to establish the
model of the machine with interconnected circuits, as we will see later on.

For the sake of clarity, it is often useful to handle stator and rotor circuits separately. Following the
foregoing procedure, the vectors ~i′s and ~u′s of independent stator currents and voltages are introduced
alongside a stator interconnection submatrix Cs. Cs has ms rows and m′

s columns with m′
s 6 ms.

Similarly,~i′r, ~u
′
r and Cr are used for describing interconnections on the rotor side, Cr being anmr×m′

r

matrix with m′
r 6 mr. In such case, (2.22) and (2.24) become:

~i =



~is

~ir


 =



Cs 0

0 Cr





~i′s

~i′r


 =~i′ = C



~i′s

~i′r


 =~i′ (2.25a)

and

~u′ =



~u′s

~u′r


 =



C⊤

s 0

0 C⊤
r





~us

~ur


 = C⊤~u (2.25b)

We will examine next how to make use of the above considerations to describe the practically relevant
case of star-connected stator windings as well as the one of squirrel cage rotors.

2.3.3 Example of star-connected windings

We consider a set of ws stator windings connected in star, each of them modelled using one circuit as
depicted in fig. 2.6. In this particular case, ms = ws stator circuits are necessary.

Applying Kirchhoff’s first law to the network in fig. 2.6, the current in circuit ms − 1, isms−1, can be
expressed as a linear combination of the currents flowing through the others:

isms−1 = −
ms−2∑

m=0

ism
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Figure 2.6: Schematic of star-connected stator electrical circuits

Thus, the vector of stator currents ~is can be written as follows:

~is =




is0
...

isms−1


 =




1 0

0
. . .

1
−1 · · · −1







is0
...

isms−2




Owing to the considerations in section 2.3.2, we introduce a new vector of independent stator currents,
~i′s, and a stator interconnection matrix, Cs, as follows:

~i′s =




i′s0
...

i′sms−2


 =




is0
...

isms−2


 and Cs =




1 0

0
. . .

1
−1 · · · −1




The old vector of stator currents, ~is, is expressed using the new one, ~i′s:

~is = Cs
~i′s (2.26a)

Cs is a matrix of dimension ms × (ws − 1), while ~i′s has the dimension ws − 1.

The new voltage vector ~u′s corresponding to the star-connection is defined using relation (2.25b):

~u′s =




u′s0
...

u′sms−2


 = C⊤

s ~us =



1 0 −1

0
. . .

...
1 −1







us0
...

usms−1


 =




us0 − usms−1
...

usms−2 − usms−1


 (2.26b)

i.e. (2.26b) refers the potential of the free terminals m ∈ J0, ms − 2K to the one of terminal ms − 1.

It is important to remember that the number of stator circuits ms does not have to be equal to the
number of stator windings ws. In practice, a winding might for instance consist of a set of coil groups
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connected in series, each of the latter being itself a series connection of coils. In this case, a circuit
could be defined as a coil or as a coil group. Depending on the situation, one alternative can appear
more convenient than the other when it comes to determining the flux linking a circuit to the others
using the method described in the previous sections. We will make use of this degree of freedom when
establishing the model of IM2 in section 3.7.1.

Figure 2.7: Star-connected windings modelled as a set of circuits connected in series

Fig. 2.7 illustrates the concept of modelling each of the ws star-connected stator windings of a machine
as a set of circuits. Let winding number k ∈ J0, ws − 1K be the series connection of pk ∈ N

⋆ circuits.
The total number of circuits to be used in the model is therefore:

ms =

ws−1∑

k=0

pk

The application of Kirchhoff’s first law to the circuits of winding k yields:

∀ q ∈ J0, pk − 1K, isk,q = isk

⇐⇒~isk =
[
isk,0 . . . isk,pk−1

]⊤
=
[
1 . . . 1

]⊤
isk = Cski

′
sk

where i′sk represents the current flowing through winding k and Csk the related pk×1 interconnection
matrix.

Owing to relation (2.24), the voltage at the terminals of winding number k, u′sk is

u′sk = C⊤
sk

[
usk,0 . . . usk,pk−1

]⊤

which is equivalent to the result provided by Kirchhoff’s second law, i.e. the sum of the voltages at
the terminals of the pk circuits.

Kirchoff’s current law applied to the star point again enables us to represent i′s[ws−1] as a linear
combination of the current flowing through the other windings:

i′s[ws−1] = −
ws−2∑

k=0

i′sk
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2.3.4. Modelling a squirrel cage as a set of interconnected circuits

=⇒~is[ws−1] = −Cs[ws−1]

ws−2∑

k=0

i′sk

The vector~is, the components of which are the currents flowing through each single circuit, is expressed
as follows:

~is =
[
~i⊤s0 · · · ~i⊤sk · · · ~i⊤sws−1

]⊤

=

[
C⊤

s0
i′s0 · · · C⊤

sk
i′sk · · · C⊤

sws−1

ws−2∑

k=0

i′sk

]⊤

=




Cs0

0
Csk

0
Cs[ws−2]

−Cs[ws−1] −Cs[ws−1]







i′s0

i′s[ws−2]




= Cs
~i′s (2.27)

Hence, splitting the windings into several circuits increases the number of rows, ms, of the intercon-
nection matrix Cs while its number of columns, m′

s, remains unchanged and equal to ws − 1 in case
of a star connection.

The approach developed in this section can straightforwardly be applied to machines with wound
rotors. It can also be easily extended to handle for instance winding configurations with multiple star
points.

2.3.4 Modelling a squirrel cage as a set of interconnected circuits

As the two machines investigated in this thesis feature a squirrel cage rotor, a modelling scheme for
the cage relying on the preceding considerations is to be discussed in detail.

A modelling strategy for rotor cages was proposed by Wallace and Wright in [57] and extensively used
in models based on the winding function approach (see for instance [23, 42, 54, 58]). It consists in
describing the cage as a set of magnetically coupled loops made of two consecutive bars and the end
ring segments joining them (see fig. 2.8). The magnetic flux through such a loop exhibits a main as
well as a leakage component. In order to take the latter into account, leakage inductances Le and Lb

are assigned to each segment of end ring and each rotor bar respectively. The resistance of an end
ring segment is Re, the one of a bar Rb.

Fig 2.9 presents the resulting electrical model of a cage with Nr bars as network of 3Nr circuits.
Applying Kirchhoff’s current law to each of the nodes Ak and Bk (k ∈ J0, Nr − 1K) results in the
subsequent 2Nr relations between the 3Nr currents:

• For k = 0:

ir1 − ir[2Nr−1] − ir0 = 0 (node A0) (2.28a)

ir[2Nr] − ir[3Nr−1] + ir0 = 0 (node B0) (2.28b)
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Figure 2.8: Schematic of the rotor cage visualizing the definition of the rotor loops

Figure 2.9: Model of the rotor cage as a set of 3Nr electrical circuits

• For k ∈ J1, Nr − 2K:

ir[2k+1] − ir[2k−1] − ir[2k] = 0 (node Ak) (2.28c)

ir[3Nr−k] + ir[2k] − ir[3Nr−k−1] = 0 (node Bk) (2.28d)

• For k = Nr − 1:

ir[2Nr−1] − ir[2(Nr−1)] − ir[2Nr−3] = 0 (node ANr−1) (2.28e)

ir[2Nr+1] − ir[2Nr] + ir[2(Nr−1)] = 0 (node BNr−1) (2.28f)

The matrix associated with the above system of equations having rank 2Nr−1, the electric behaviour
of the network represented in fig. 2.9 can be fully determined using Nr+1 independent currents chosen
among the 3Nr. Thus, we introduce a vector of independent currents

~i′r =
[
i′r0 . . . i′rk . . . i′rNr

]
∈ R

Nr+1
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2.3.4. Modelling a squirrel cage as a set of interconnected circuits

where for all k ∈ J0, Nr − 1K, i′rk = ir[2k+1] and i′rNr
= ir[2Nr]. Expressing the 3Nr currents in the

network as linear combinations of the components of ~i′r provides the relations:



ir0 = i′r0 − i′r[N−1]

ir1 = i′r0

ir[2Nr] = i′rNr

ir[2k] = i′rk − i′r[k−1], ∀ k ∈ J1, Nr − 1K

ir[2k+1] = i′rk

ir[3Nr−k] = i′rNr
− i′r[Nr−1] + i′r[k−1]

(2.29)

which enable the definition of an interconnection matrix Cr such that:

~ir = Cr
~i′r (2.30a)

To be consistent with (2.24), a vector of independent voltages,

~u′r =
[
u′r0 . . . u′rk . . . u′rNr

]
∈ R

Nr+1

is defined as follows:
~u′r = C⊤

r ~ur (2.30b)

In order to understand the meaning of the components of ~u′r, we make use of eq. (2.29) to derive the
form of the matrix Cr whose columns relate the voltage at the terminals of each circuit in fig. 2.9 to
the components of ~u′r:

Cr =




0 k−1 k Nr−1 Nr

0 1 0 · · · · · · · · · · · · 0 −1 0
1 1 0 · · · · · · · · · · · · · · · · · · 0

2k 0 · · · 0 −1 1 0 · · · · · · 0
2k+1 0 · · · 0 0 1 0 · · · · · · 0

2Nr 0 · · · · · · · · · · · · · · · · · · 0 1

3Nr−k 0 · · · 0 1 0 · · · 0 −1 1




(2.31)

We can deduce from (2.31) that for k ∈ J0, Nr − 2K, only four entries in column k of Cr will be
different from 0, i.e. the entries in row 2k, 2k + 1 and 3Nr − k − 1 will be equal to 1 and the one in
row 2k + 2 equal to −1. As the columns of Cr correspond to the rows of C⊤

r , for k ∈ J0, Nr − 2K,
the new voltage u′k represents the sum of the voltages at the terminals of each circuit within loop k
in anticlockwise direction (see fig. 2.9). As a result, for k ∈ J0, Nr − 2K, u′k = 0.

The coefficients of Cr in column Nr − 1 and row 0 as well as 2Nr + 1 through 3Nr − 1 are equal to
−1 whereas the ones in row 2Nr − 2 and 2Nr − 1 are 1. Hence, the voltage u′r[N−1] is the sum of

the voltages at the terminals of circuit number 2(Nr − 1), 2Nr, 0 and 2Nr − 1 added in anticlockwise
direction. We have: u′r[Nr−1] = 0.

The entries in column number Nr are 0 except for k ∈ J2Nr, 3Nr − 1K. Thus, u′rNr
is the sum of the

voltages at the terminals of circuit number 2Nr through 3Nr − 1 in anticlockwise direction and is also
equal to 0. As we assume no axial magnetic field in the machine, there is no main flux across the loop
formed by circuit 2Nr through 3Nr−1. Furthermore, each of these circuits having the same resistance
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2.3. Accounting for electrical connections between circuits

and the same leakage inductance, there will be no current flowing through this loop, i.e. i′rNr
= 0.

In this context, Nr independent voltages and currents are sufficient to fully account for the electrical
behaviour of the network in fig. 2.9. This observation is consistent with [54]. We will therefore
substitute the squirrel cage for a set of Nr coils having one turn and a pitch equal to the rotor slot
pitch. In all models considered from now on, each of these equivalent coils will be modelled as a
separate circuit. We will therefore use mr = Nr rotor circuits, unless otherwise specified.

As our primary focus is on obtaining a model with a restricted number of parameters, we will assign
a resistance Rr and a leakage inductance Lσr to each of the Nr equivalent coils instead of using
distinct quantities for the cage bars on the one hand and end ring segments on the other. Although
being less accurate, this approach offers the possibility of determining the parameters of the Nr rotor
circuits more easily. Nonetheless, the previous considerations clearly demonstrate that interconnection
matrices would make the use of bar and end ring segment quantities possible, if a more accurate cage
model is required for a particular application.

2.3.5 Equations of the machine model including circuit interconnections

The equations of the general model built in section 2.2 can easily be adapted to match the winding
configuration of a specific machine by means of an interconnection matrix C. Multiplying both sides
of the voltage equation (2.4) by the transpose of C and making use of relations (2.22) and (2.24), we
obtain:

C⊤~u = C⊤R~i+C⊤d~Ψ

dt

⇐⇒ ~u′ = C⊤RC~i′ +
dC⊤~Ψ

dt
(2.32)

We introduce a new flux linkage vector ~Ψ′ as well as a new resistance matrix R′ for the model with
circuit interconnections as follows:

~Ψ′ = C⊤~Ψ (2.33)

R′ = C⊤RC (2.34)

Note that the relation between ~Ψ′ and ~Ψ is of the same nature as the one linking ~u′ to ~u and that R′

is not diagonal. The dimension of R′ is determined by the number of columns of C and is therefore
m′ ×m′.

Using the above notations, the voltage and torque equations holding for the model with interconnec-
tions are:

~u′ = R′~i′ +
d~Ψ′

dt
(2.35)

MM =
1

2
~i⊤

∂~Ψ

∂θr
=

1

2

[
C~i′
]⊤ ∂~Ψ
∂θr

=
1

2
~i′⊤C⊤ ∂

~Ψ

∂θr

=
1

2
~i′⊤

∂~Ψ′

∂θr
(2.36)

A comparison of (2.35) and (2.36) with (2.4) and (2.18) shows that the circuit interconnections do
not affect the form of the voltage and torque expressions.
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In the same manner, a relation between ~Ψ′ and ~i′ is derived from the one between ~Ψ and ~i:

~Ψ′(~i′, θr) = C⊤~Ψ(C~i′, θr) (2.37)

Assuming a linear magnetic behaviour for small variations around the operating point as in section
2.2.2, (2.37) becomes:

~Ψ′(~i′, θr) = C⊤L(~i, θr)C~i
′ = L′(~i′, θr)~i

′ (2.38)

The Jacobian matrix of ~Ψ′ with respect to ~i′, i.e. the differential inductance matrix in presence of
circuit interconnections, is:

∂~Ψ′

∂~i′
= C⊤∂

~Ψ

∂~i
C (2.39)

The above results demonstrate that the process of interconnecting the electrical circuits in the model
does not alter the general form of its equations. The new flux and voltage vectors resulting from
the interconnection process are determined by pre-multiplying the corresponding old vectors in the
model without interconnections by C⊤. In contrast, the old current vector is computed by multiplying
the new one by C. The transformation of matrices involves a pre-multiplication by C⊤ as well as a
post-multiplication by C.

2.4 Continuous-time state-space model with interconnections

2.4.1 Inverting the differential inductance matrix

Recalling section 2.2.4, the continuous-time machine model without circuit interconnections involves
the inverse of the differential inductance matrix ∂~Ψ/∂~i which can be determined using a Cholesky
decomposition, as in (2.21). Combining (2.39) and (2.21) provides the subsequent expression of the
differential inductance matrix for the model including circuit interconnections:

∂~Ψ′

∂~i′
= C⊤∆⊤∆C = (∆C)⊤(∆C) (2.40)

For all ~x ∈ R
m′

,

~x⊤(∆C)⊤(∆C)~x = [∆C~x]⊤[∆C~x]

= ‖∆C~x‖2

> 0

which means that ∂~Ψ′/∂~i′ is symmetric positive semidefinite. ∂~Ψ′/∂~i′ is even positive definite as
rank(C) = m′ implies that for all ~x ∈ R

m′ \ {0}, C~x 6= 0 and, ∆ being invertible, ∆C~x 6= 0. Hence,
the interconnection of the electric circuits does not alter the positive definiteness of the differential
inductance matrix. Its remains invertible and its inverse and can still be calculated using a Cholesky
decomposition.
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2.5. Discussion

2.4.2 State-space model with interconnected circuits

Under the assumptions formulated in section 2.1.1, the state-space model of the machine with inter-
connected circuits is described by the following set of equations:



d~Ψ′

dt
= ~u′ −R′L′−1(~Ψ′, θr)~Ψ

′

dωr

dt
=

1

JM

[
1

2

[
L′−1(~Ψ′, θr)~Ψ

′
]⊤∂~Ψ′

∂θr
− CWωr −ML

]

dθr
dt

= ωr

(2.41a)

(2.41b)

(2.41c)

The components of the flux vector ~Ψ′, the rotor angular velocity as well as the rotor angle are the state
variables. The model has dimension m′

s +m′
r + 2 and forms the basis for all modelling considerations

to come. We will refer to it as geometric model, since the computation of the relation between currents
and flux linkages relies on geometric considerations.

2.5 Discussion

The procedure described in the present chapter was applied to the test machine IM1. Each of the
three star-connected stator windings was modelled using a specific circuit, i.e. ms = ws = 3. This
leads to the stator interconnection matrix, Cs, IM1, having the form:

Cs, IM1 =




1 0

0 1
−1 −1




while in this particular case, m′
s = 2. Hence, the vector ~u′s (or ~i′s) has two components, u′s0 and u′s1

(i′s0 and i′s1 respectively). The benefits resulting from an appropriate choice for the number of circuits
in the model will be discussed in greater detail in section 3.7.

Owing to the considerations in section 2.3.4, mr = Nr = 16 circuits are required to represent the rotor
cage. The rotor interconnection matrix, Cr, IM1, is thus the identity matrix of dimension mr. Hence
m′

r = Nr = 16.

Consequently, the model represented by (2.41) has order 20. Its implementation requires the discret-
ization of the air-gap coordinates γs and γr to perform the flux computations (2.12) and (2.13).

Simulation results reported in [59] show that the model is principally able to generate the stator
current components arising from winding distribution, slotting, eccentricity and saturation effects.
However, the flux computations necessitate far too much time to be performed in real-time, even on a
powerful computer. In addition, the many parameters needed to account for each type of flux density
distribution harmonics and their difficult practical estimation make the model in its current form not
suitable for the targeted applications. For this reason, we will focus on developing a strategy to avoid
the discretization of the air-gap in the next chapter.
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Summary

The considerations in the present chapter laid the foundation for an extended model of the induction
machine taking into account the space harmonics present in the air-gap flux density distribution. The
approach adopted is based on the winding function theory and consists of two distinct steps. First, the
conductor arrangements on the stator and the rotor of the investigated machine are modelled as sets
of electrical circuits. We then assign a conductor distribution function to each circuit which represents
the geometric distribution of the conductors belonging to said circuit. This allows us to work out the
relation between currents and flux linkages in the virtual case where no interconnection exists between
the circuits.

In a second step, we connect the circuits to each other in order to correctly account for the actual
conductor configuration of the machine. This process is accomplished by means of interconnection
matrices and does not affect the positive definiteness of the inductance matrix which can be inverted
efficiently using a Cholesky decomposition.

The resulting geometric model was investigated in the case of IM1. Simulation results show its ability to
reproduce the additional stator current components arising from the flux density harmonics. However,
the necessary discretization of the air-gap coordinates in order to calculate the flux linkages makes the
model inappropriate for real-time applications. Hence, our next task consists in finding an alternative
method to determine these quantities.
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Chapter 3

Magnetically linear geometric model

Overview of chapter

The winding function based model introduced previously relies on the discretization of the air-gap
coordinate to determine the magnetic flux through the electrical circuits. This time-consuming process
makes a real-time computation of the model impossible. The considerations in the present chapter
aim at overcoming this limitation by making use of the periodicity of air-gap quantities which can be
expressed as Fourier series.

The expressions of the flux linkages are gained from the Fourier coefficients of the conductor distribu-
tion functions as well as the ones of the air-gap flux density distribution using Parseval’s identity. As
the corresponding Fourier coefficients decrease rapidly with the order, only a few of them have to be
considered to achieve a fair approximation of the flux linkages.

Further simplification is obtained when assuming a linear magnetic behaviour and a constant air-
gap length, since the flux density distribution can then be expressed as a linear combination of the
conductor distribution functions. As a result, simple analytical approximations of the flux linkages can
be found. In a first step, we consider a configuration in which no electrical interconnection is present.
It is shown that, in this particular case, the resulting inductance matrix is symmetric positive definite.

Interconnections between electrical circuits on the stator as well as on the rotor side are taken into
consideration by means of interconnection matrices. New electrical quantities are introduced for the
system with interconnections. A continuous-time state-space model of the induction machine including
the effect of space harmonics arising from the conductor distribution is gained.

Finally, two strategies for discretizing the state-space equations are examined. On the one hand,
the continuous-time equations are solved using numerical methods. On the other, a zero-order hold
is assumed and the exponential of the system matrix is approximated by means of a power series
expansion. The two approaches are assessed experimentally with respect to their accuracy and com-
putational performance.
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3.1. Important results on Fourier series

3.1 Important results on Fourier series

This section provides a summary of results on Fourier series which will be instrumental in determining
computationally efficient approximations of the flux linkages. For the sake of brevity, detailed proofs
of theorems and propositions are omitted. The interested reader is invited to refer to the references
provided.

3.1.1 Properties of Fourier coefficients

Let E2π be the set of 2π-periodic piecewise continuous functions from R to C.

The transformation

Γ : E2π × E2π −→ C

(f, g) 7−→ 1

2π

∫ 2π

0
f(γ)g(γ) dγ

is a positive Hermitian form on the C-vector space E2π.

For h ∈ Z, we define:

eh : R −→ C

γ 7−→ ejhγ

∀h ∈ Z, eh ∈ E2π and Γ(eh, eh) = 1. For (h0, h1) ∈ Z
2 such that h0 6= h1, Γ(eh0

, eh1
) = 0. As a

result, the list (eh)h∈Z is orthonormal and linearly independent.

Definition 1: Fourier coefficients
For f ∈ E2π and h ∈ Z, we denote

ch(f) = Γ(eh, f) =
1

2π

∫ 2π

0
f(γ)e−jhγ dγ

Definition 2: Fourier partial sum
For f ∈ E2π and N ∈ N, we define

SN (f) =
N∑

h=−N

ch(f)eh

Proposition 1: Results on Fourier coefficients
For (f, g) ∈ E2

2π, for h ∈ Z,

1.) Let λ ∈ C. ch(f + λg) = ch(f) + λch(g)

2.) ∀ γ ∈ R, g(γ) = f(−γ) =⇒ ch(g) = c−h(f)
In particular, if f is even, c−h(f) = ch(f). If f is odd, c−h(f) = −ch(f)

3.) Let γ0 ∈ R.
[∀ γ ∈ R, g(γ) = f(γ + γ0)] =⇒ ch(g) = ejhγ0ch(f)

4.) If f is real-valued, c−h(f) = ch(f)

Proof. The above results follow directly from definition 1.
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3.1.2. Convergence considerations

3.1.2 Convergence considerations

Theorem 2: Dirichlet conditions
If f ∈ E2π is piecewise continuously differentiable and 2π-periodic, then

∀ γ ∈ R, SN (f)(γ) =
N∑

h=−N

ch(f)e
jhγ −−−−−→

N→+∞

1

2

[
lim

∆γ→0+
[f(γ +∆γ) + f(γ −∆γ)]

]

In particular, if f is continuous at a point γ0 ∈ R, SN (f)(γ0) −−−−−→
N→+∞

f(γ0)

A proof of the Dirichlet conditions of convergence of the Fourier partial sum can be found in [60].

The functions describing air-gap quantities satisfy the Dirichlet conditions. Their Fourier series repres-
entation therefore exists. Owing to the modelling assumptions made, the current density distribution
is the only quantity exhibiting discontinuities. In contrast, conductor distribution and slot profile
functions as well as MMF and flux density distributions are assumed to be continuous on the inter-
val [0, 2π]. For this reason, we examine in the following section a few more instrumental properties
applying to continuous 2π-periodic functions.

3.1.3 Parseval’s identity

Let C2π be the set of 2π-periodic continuous functions from R to C.

The map

〈·|·〉 : C2π × C2π −→ C

(f, g) 7−→ 〈f |g〉 = 1

2π

∫ 2π

0
f(γ)g(γ) dγ

is a Hermitian inner product on C2π. The norm associated to 〈·|·〉 is
‖·‖2 : C2π −→ R

+

f 7−→ ‖f‖2 =
√
〈f |f〉 =

√
1

2

∫ 2π

0
|f(γ)|2 dγ

Let F be the vector subspace of CZ consisting of the sequences (uh)h∈Z such that the partial sum
N∑

h=−N

|uh|2 converges. The map

χ : F × F −→ C

((uh), (vh)) 7−→ χ((uh), (vh)) =

+∞∑

h=−∞

uhvh

is a Hermitian inner product on F . The corresponding norm is denoted

N : F −→ R
+

(uh) 7−→ N ((uh)) =
√
χ((uh), (uh)) =

+∞∑

h=−∞

|uh|2

We introduce the linear map

ζ : (C2π, ‖·‖2) −→ (F , N )
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3.2. General expressions of flux linkages using Fourier coefficients

f 7−→
(
ch(f) =

1

2π

∫ 2π

0
f(γ)e−jhγ dγ

)

h∈Z

Theorem 3: Parseval’s identity

∀f ∈ C2π, ‖f‖22 = N (ζ(f))2

⇐⇒ 1

2π

∫ 2π

0
|f(γ)|2 dγ =

+∞∑

h=−∞

|ch(f)|2 (3.1)

Corollary: ∀ (f, g) ∈ C2
2π,

〈f |g〉 = χ(ζ(f), ζ(g))

1

2π

∫ 2π

0
f(γ)g(γ) dγ =

+∞∑

h=−∞

ch(f)ch(g) (3.2)

Proof. Use the polarization identity on the inner product space (C2π, ‖·‖2) and the fact that ζ is a
norm-preserving map.

From eq. (3.2) and Proposition 1.4 follows that if f is a real-valued function, i.e. f = f ,

1

2π

∫ 2π

0
f(γ)g(γ) dγ =

+∞∑

h=−∞

c−h(f)ch(g) (3.3)

3.2 General expressions of flux linkages using Fourier coefficients

Owing to relation (2.12), the magnetic flux linking stator circuit m ∈ J0, ms − 1K with the others (i.e.
the main flux) is gained by integrating the product of the conductor distribution function Wsm and
the air-gap flux density distribution over the whole air-gap circumference:

ψ̃sm = r · l ·
∫ 2π

0
Wsm(γs)B(γs) dγs (3.4)

Wsm and B being real-valued functions, relation (3.3) leads to:

1

2π

∫ 2π

0
Wsm(γs)B(γs) dγs =

+∞∑

h=−∞

c−h(Wsm)ch(B) (3.5)

Hence, the main flux of circuit m can be rewritten involving the Fourier coefficients of Wsm and B
rather than an integral with respect to the stator air-gap coordinate:

ψ̃sm = r · l ·
∫ 2π

0
Wsm(γs)B(γs) dγs = 2πrl

+∞∑

h=−∞

c−h(Wsm)ch(B) (3.6)

Since B does not have a DC component, c0(B) = 0, which leads to:

ψ̃sm = 2πrl

[
−1∑

h=−∞

c−h(Wsm)ch(B) +

+∞∑

h=1

c−h(Wsm)ch(B)

]

= 2πrl
+∞∑

h=1

[ch(Wsm)c−h(B) + c−h(Wsm)ch(B)]
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= 2πrl
+∞∑

h=1

[
ch(Wsm)ch(B) + ch(Wsm)ch(B)

]

= 4πrl
+∞∑

h=1

Re[ch(Wsm)c−h(B)] (3.7)

Similarly, the magnetic flux linking rotor circuit n ∈ J0, mr − 1K with the others is:

ψ̃rn0
= r l

∫ 2π

0
Wrn(γr)B

′(γr) dγr = 2πrl

+∞∑

h=−∞

c−h(Wrn)ch(B
′)

= 4πrl
+∞∑

h=1

Re
[
ch(Wrn)c−h(B

′)
]

(3.8)

where B′ represents the total main flux density distribution as a function of the rotor air-gap coordinate
γr. Eq. (3.7) and (3.8) do not impose any particular restriction on the flux density distribution apart
from the fact that the functions B and B′ should not have discontinuities on the interval [0, 2π].

The two equations show that a space harmonic of order h may have an effect on the flux linkage only
if the considered conductor distribution function has a coefficient of order h. Thus, even if the air-gap
flux density displays space harmonics other than the ones arising from the conductor distribution,
for instance as a result of saturation or eccentricity, they will not have an impact on flux linkages.
Eq. (3.7) and (3.8) are the mathematical justification of the fact that waves with different numbers
of pole pairs do not interact with each other (see for instance the assumption of Kron’s modelling
approach in [1, chapt. 10]). In particular, the two above relations explain the existence of conditions
for PSHs to appear in an induction machine (cf. section 1.2).

In order to avoid confusion with time harmonics which refer to the harmonics present in the waveforms
of quantities such as currents, torque and angular velocity with respect to time, we will use the term
wavelengths to denote the space harmonics which appear in the distribution of air-gap quantities.
Hence, the space harmonic of order h will also be called wavelength of order h or simply wavelength
h to emphasize the distributed character of the considered quantity.

3.3 Necessity of simplifying assumptions

Relations (3.7) and (3.8) are potentially interesting for the computation of the flux linkages if the
Fourier coefficients of the conductor distribution functions and the ones of the flux density distribution
are known.

Stator conductor distribution functions being time-invariant, their Fourier expansion can be determ-
ined without much effort during the model initialization procedure. The same applies to the conductor
distribution functions of rotor circuits which can be precomputed for a specific rotor position when
the model is being initialized. The phase-shift property (see Proposition 1.3) enables us to efficiently
recover the Fourier coefficients for any rotor position.

The flux density distribution, however, not only depends on the conductor distribution functions but
also on the stator and rotor slot profile as well as saturation distributions. As the latter change with
the rotor angle, their Fourier coefficients cannot be precomputed and must be calculated during model
execution. This time-consuming task does not offer any benefit in comparison to a direct integration
with respect to the air-gap variables.
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3.4. Flux linkage expressions including the effect of conductor distribution
harmonics

Bearing in mind that the fundamental objective of the modelling approach is the derivation of a
real-time compliant model, we decide to focus exclusively on the influence of conductor distribution
harmonics. For this reason, the following additional assumptions will apply to the rest of the document:

1.) The air-gap has a constant length. As a result, the influence of stator and rotor slots on magnetic
paths is not taken into account. Neither is magnetic saturation;

2.) the winding arrangements on the stator and the rotor are symmetric over the air-gap circumfer-
ence. This also applies to the conductors of rotor cages.

We will demonstrate in the following sections that these hypotheses are instrumental in finding com-
putationally efficient approximations of the flux linkages which will allow the design of a real-time
compliant model.

3.4 Flux linkage expressions including the effect of conductor dis-
tribution harmonics

3.4.1 Stator air-gap flux density

Assuming a current is0 flowing through stator circuit number 0, the following relations hold between
the conductor distribution function of stator circuit 0,Ws0, the resulting MMF, Θs0, and the radial flux
density distribution, Bs0, when these quantities are expressed as functions of the geometric coordinate
γs:

Θs0 = is0 · [Ws0 − c0(Ws0)] (3.9)

Bs0 =
µ0
δ0

Θs0 =
µ0
δ0

· is0 · [Ws0 − c0(Ws0)] (3.10)

As a result, for all h ∈ Z
⋆, the Fourier coefficients of Θs0 and Bs0 can be related to the ones of Ws0:

ch(Θs0) = is0 · ch(Ws0) (3.11)

ch(Bs0) =
µ0
δ0

· is0 · ch(Ws0) (3.12)

Making use of the symmetric arrangement of stator windings, we define stator circuit m ∈ J0, ms − 1K
so that its conductor distribution function, Wsm, is equal to the one of circuit 0 shifted by an angle
γs0,m (see fig. 3.1):

∀ γs ∈ R, Wsm(γs) =Ws0(γs + γs0,m)

Following Prop. 1.3, the Fourier coefficients of the distributed quantities of a circuit m ∈ J0, ms − 1K
are given by the subsequent relations:

∀h ∈ Z, ch(Wsm) = ejhγs0,mch(Ws0) (3.13)

∀h ∈ Z
⋆, ch(Θsm) = ism · ch(Wsm) = isme

jhγs0,mch(Ws0) (3.14)

and ch(Bsm) =
µ0
δ0

· ismejhγs0,mch(Ws0) (3.15)

Owing to the hypothesis of magnetic linearity, the total radial air-gap flux density component origin-
ating from stator currents is the sum of the contributions of each stator circuit:

Bs(γs) =

ms−1∑

m=0

Bsm(γs) (3.16)
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3.4.1. Stator air-gap flux density

Figure 3.1: Definition of the phase shift angle between stator circuit m and 0, γs0,m

The Fourier coefficients of Bs result from Prop. 1.1 and can be related to the ones of Ws0:

ch(Bs) =

ms−1∑

m=0

ch(Bsm)

∀h ∈ Z
⋆, ch(Bs) =

µ0
δ0
ch(Ws0)

ms−1∑

m=0

isme
jhγs0,m

c0(Bs) = 0

Consequently, the air-gap flux density wave produced by stator currents, expressed as a function of
the stator air-gap coordinate γs, is described by the equation:

Bs(γs) =
+∞∑

h=−∞

ch(Bs)e
jhγs

=
+∞∑

h=−∞

ejhγs
µ0
δ0

ms−1∑

m=0

isme
jhγs0,mch(Ws0) (3.17)

Considering the relationship between stator and rotor air-gap coordinates as illustrated in fig. 3.2,

γs = γr − θr (3.18)
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3.4. Flux linkage expressions including the effect of conductor distribution
harmonics

Figure 3.2: Definition of stator and rotor air-gap coordinates, exemplified for the case of IM1

the expression of the stator flux density wave as a function of the rotor air-gap coordinate γr, denoted
B′

s, is:

B′
s(γr) = Bs(γs) = Bs(γr − θr)

=
+∞∑

h=−∞

ch(Bs)e
jh(γr−θr)

=
+∞∑

h=−∞

ch(Bs)e
−jhθrejhγr

=
∑

h∈Z⋆

ejhγr
µ0
δ0

ms−1∑

m=0

isme
jh(−θr+γs0,m)ch(Ws0) (3.19)

3.4.2 Rotor air-gap flux density

The Fourier coefficients related to the distributed quantities of rotor circuit n ∈ J0, mr − 1K are derived
similarly to section 3.4.1. In case the distributed quantities are expressed as functions of the air-gap
coordinate γr, the following relations result:

∀h ∈ Z, ch(Wrn) = ejhγr0,nch(Wr0) (3.20)

∀h ∈ Z
⋆, ch(Θrn) = irn · ch(Wrn) = irne

jhγr0,nch(Wr0) (3.21)

and ch(Brn) =
µ0
δ0

· irnejhγr0,nch(Wr0) (3.22)

where γr0,n represents the shift angle between the conductor distribution functions Wrn and Wr0.
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As a consequence of the superposition principle, the total radial air-gap flux density generated by
currents flowing through rotor circuits is

Br(γr) =

mr−1∑

n=0

Brn(γr) (3.23)

and its Fourier coefficients are:

ch(Br) =

mr−1∑

n=0

ch(Brn) =
µ0
δ0
ch(Wr0)

mr−1∑

n=0

irne
jhγr0,n (3.24)

Therefore, the air-gap flux density component resulting from rotor currents has the following Fourier
representation:

Br(γr) =
+∞∑

h=−∞

ch(Br)e
jhγr

=
∑

h∈Z⋆

ejhγr
µ0
δ0

mr−1∑

n=0

irne
jhγr0,nch(Wr0) (3.25)

The same quantity expressed as function of the stator air-gap coordinate is referred to as B′
r and

satisfies the relation:

B′
r(γs) = Br(γr) = Br(γs + θr)

=
+∞∑

h=−∞

ch(Br)e
jh(γs+θr)

=
∑

h∈Z⋆

ejhγs
µ0
δ0

mr−1∑

n=0

irne
jh(γr0,n+θr)ch(Wr0) (3.26)

3.4.3 Total air-gap flux density distribution

The assumption of magnetic linearity allows to sum the contributions of stator and rotor circuits to
obtain the overall air-gap flux density distribution at a given time instant. These two contributions
have to be expressed using the same coordinate, i.e. γs or γr.

Hence, the total air-gap flux density wave, B, has the following form in stator coordinates:

B(γs) = Bs(γs) +B′
r(γs) = Bs(γs) +Br(γs + θr)

=

ms−1∑

m=0

Bsm(γs) +

mr−1∑

n=0

Brn(γs + θr)

=

ms−1∑

m=0

µ0
δ0
ismWsm(γs) +

mr−1∑

n=0

µ0
δ0
irnWrn(γs + θr)

=

ms−1∑

m=0

µ0
δ0
ismWs0(γs + γs0,m) +

mr−1∑

n=0

µ0
δ0
irnWr0(γs + θr + γr0,n)

The Fourier coefficients of B are computed using the ones of the conductor distribution functions Ws0
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and Wr0:

∀h ∈ Z
⋆, ch(B) =

µ0
δ0

ms−1∑

m=0

isme
jhγs0,mch(Ws0) +

µ0
δ0
ejhθr

mr−1∑

n=0

irne
jhγr0,nch(Wr0) (3.27)

In the same manner, the results obtained in the previous section enable us to work out the expression of
the total air-gap flux density distribution in rotor coordinates, B′, based on the conductor distribution
functions of stator and rotor circuit number 0:

B′(γr) = Br(γr) +B′
s(γr) = Br(γr) +Bs(γr − θr)

=

mr−1∑

n=0

Brn(γr) +

ms−1∑

m=0

Bsm(γr − θr)

=

mr−1∑

n=0

µ0
δ0
irnWrn(γr) +

ms−1∑

m=0

µ0
δ0
ismWsm(γr − θr)

=

mr−1∑

n=0

µ0
δ0
irnWr0(γr + γr0,n) +

ms−1∑

m=0

µ0
δ0
ismWs0(γr − θr + γs0,m)

Consequently, the Fourier coefficient of order h ∈ Z
⋆ of B′ is:

ch(B
′) =

µ0
δ0

mr−1∑

m=0

irne
jhγr0,nch(Wr0) +

µ0
δ0
e−jhθr

ms−1∑

m=0

isme
jhγs0,mch(Ws0) (3.28)

As we will see in the upcoming sections, relations (3.27) and (3.28) provide the information necessary
to calculate flux linkages based on (3.7) and (3.8).

3.4.4 Contribution of a specific wavelength to the main flux

Flux through stator circuits

For h ∈ N
⋆, we consider the contribution of the wavelength of order h to the main flux through a

specific stator circuit m0 ∈ J0, ms − 1K, ψ̃sm0, h, defined in accordance with relation (3.7):

ψ̃sm0, h = 4πrlRe[ch(Wsm0
)c−h(B)] (3.29)

The results listed in Prop. 2 in combination with eq. (3.27) allow us to express ψ̃sm0, h using the Fourier
coefficients of Ws0 and Wr0 only:

ch(Wsm0
)c−h(B) = ejhγs0,m0 ch(Ws0)c−h(B)

=
µ0
δ0
ejhγs0,m0 ch(Ws0)

[
ms−1∑

m=0

isme
−jhγs0,mc−h(Ws0)

+ e−jhθr

mr−1∑

n=0

irne
−jhγr0,nc−h(Wr0)

]

=
µ0
δ0

|ch(Ws0)|2ejhγs0,m0

ms−1∑

m=0

isme
−jhγs0,m+
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µ0
δ0
ch(Ws0)c−h(Wr0)e

jh(γs0,m0
−θr)

mr−1∑

n=0

irne
−jhγr0,n (3.30)

Let ϕs0, h = arg [ch(Ws0)], ϕr0, h = arg [ch(Wr0)] and ϕh = ϕs0, h − ϕr0, h.

ch(Wsm0
)c−h(B) =

µ0
δ0

|ch(Ws0)|2ejhγs0,m0

ms−1∑

m=0

isme
−jhγs0,m

+
µ0
δ0

|ch(Ws0)||ch(Wr0)|ejh(γs0,m0
−θr)ejϕh

mr−1∑

n=0

irne
−jhγr0,n

As a consequence:

Re[ch(Wsm0
)c−h(B)] =

µ0
δ0

|ch(Ws0)|2Re

[
ejhγs0,m0

ms−1∑

m=0

isme
−jhγs0,m

]

+
µ0
δ0

|ch(Ws0)||ch(Wr0)|Re

[
ej[h(γs0,m0

−θr)+ϕh]
mr−1∑

n=0

irne
−jhγr0,n

]

where

Re

[
ejhγs0,m0

ms−1∑

m=0

isme
−jhγs0,m

]
= cos(hγs0,m0

)

ms−1∑

m=0

ism cos(hγs0,m) + sin(hγs0,m0
)

ms−1∑

m=0

ism sin(hγs0,m)

=



cos(hγs0,m0

)

sin(hγs0,m0
)




⊤




ms−1∑

m=0

ism cos(hγs0,m)

ms−1∑

m=0

ism sin(hγs0,m)




and

Re

[
ej[h(γs0,m0

−θr)+ϕh]
mr−1∑

n=0

irne
−jhγr0,n

]

= cos[h(γs0,m0
− θr) + ϕh]

mr−1∑

n=0

irn cos(hγr0,n) + sin[h(γs0,m0
− θr) + ϕh]

mr−1∑

n=0

irn sin(hγr0,n)

=






cos(ϕh − hθr) sin(ϕh − hθr)

sin(ϕh − hθr) cos(ϕh − hθr)






cos(hγs0,m0

)

sin(hγs0,m0
)







⊤




mr−1∑

n=0

irn cos(hγr0,n)

mr−1∑

n=0

irn sin(hγr0,n)




We define the subsequent matrices:

T̃Csh =



1 · · · cos(hγs0,m) · · · cos(hγs0,ms−1)

0 · · · sin(hγs0,m) · · · sin(hγs0,ms−1)


 (3.31a)

T̃Crh =



1 · · · cos(hγr0,n) · · · cos(hγr0,mr−1)

0 · · · sin(hγr0,n) · · · sin(hγr0,mr−1)


 (3.31b)
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∀ϕ ∈ R, T(ϕ) =



cosϕ − sinϕ

sinϕ cosϕ


 (3.31c)

This enables us to express ψ̃sm0, h using the stator and rotor current vectors, ~is and ~ir:

ψ̃sm0, h = 4πrl
µ0
δ0

|ch(Ws0)|2


cos(hγs0,m0

)

sin(hγs0,m0
)




⊤

T̃Csh
~is

+ 4πrl
µ0
δ0

|ch(Ws0)||ch(Wr0)|



cos(hγs0,m0

)

sin(hγs0,m0
)




⊤

T(hθr − ϕh)T̃Crh
~ir (3.32)

At this stage, it is convenient to introduce the stator and rotor main inductances as well as the coupling
inductance between stator and rotor circuits for the wavelength of order h, L̃s, h, L̃r, h and LM,h:

L̃s, h = 4πrl
µ0
δ0

|ch(Ws0)|2 (3.33a)

L̃r, h = 4πrl
µ0
δ0

|ch(Wr0)|2 (3.33b)

LM,h = 4πrl
µ0
δ0

|ch(Ws0)||ch(Wr0)| (3.33c)

Using these notations, the expression of the main flux through stator circuit m0 arising from the
wavelength of order h becomes:

ψ̃sm0, h =



cos(hγs0,m0

)

sin(hγs0,m0
)




⊤

[
L̃s, hT̃Csh

~is + LM,hT(hθr − ϕh)T̃Crh
~ir

]
(3.34)

The vector of stator main flux linkage for wavelength of order h,

~̃
ψs, h =

[
ψ̃s0, h · · · ψ̃sm, h · · · ψ̃sms−1, h

]⊤

results directly from eq. (3.34):

~̃
ψs, h = T̃⊤

Csh

[
L̃s, hT̃Csh

~is + LM,hT(hθr − ϕh)T̃Crh
~ir

]

= L̃s, hT̃
⊤
CshT̃Csh

~is + LM,hT̃
⊤
CshT(hθr − ϕh)T̃Crh

~ir (3.35)

The main inductance matrix of the stator circuits, L̃s h, and the coupling inductance matrix between
rotor and stator circuits, L̃rs h(θr), both associated with wavelength h, are defined as follows:

L̃s h = L̃s, hT̃
⊤
CshT̃Csh (3.36)

L̃rs h(θr) = LM,hT̃
⊤
CshT(hθr − ϕh)T̃Crh (3.37)

Using these notations,
~̃
ψs, h = L̃s h

~is + L̃rs h(θr)~ir (3.38)

Note that since L̃s h is square and L̃⊤
s h

= L̃s h, L̃s h is symmetric.
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Flux through rotor circuits

The space harmonic of order h of the flux density distribution generates a flux through rotor circuit
n0 ∈ J0, mr − 1K denoted ψ̃rn0, h and defined according to (3.8) as follows:

ψ̃rn0, h = 4πrlRe
[
ch(Wrn0

)c−h(B
′)
]

(3.39)

Following the same considerations as for stator circuits,

ch(Wrn0
)c−h(B

′) =
µ0
δ0
ejhγr0,n0 ch(Wr0)

[
mr−1∑

n=0

irne
−jhγr0,nc−h(Wr0)

+ ejhθr
ms−1∑

m=0

isme
−jhγs0,mc−h(Ws0)

]

=
µ0
δ0

|ch(Wr0)|2
mr−1∑

n=0

irne
−jh(γr0,n−γr0,n0

)

+
µ0
δ0

|ch(Wr0)||ch(Ws0)|ej[h(γr0,n0
+θr)−ϕh]

ms−1∑

m=0

isme
−jhγs0,m (3.40)

As a result,

ψ̃rn0, h = 4πrl
µ0
δ0

|ch(Wr0)|2


cos(hγr0,n0

)

sin(hγr0,n0
)




⊤

T̃Crh
~ir

+ 4πrl
µ0
δ0

|ch(Wr0)||ch(Ws0)|



cos(hγs0,m0

)

sin(hγs0,m0
)




⊤

T⊤(hθr − ϕh)T̃Csh
~is (3.41)

The vector of rotor main flux linkage for wavelength of order h,

~̃
ψr, h =

[
ψ̃r0, h · · · ψ̃rn, h · · · ψ̃rmr−1, h

]⊤

follows directly from eq. (3.41) and the definitions (3.33):

~̃
ψr, h = T̃⊤

Crh

[
L̃r, hT̃Crh

~ir + LM,hT
⊤(hθr − ϕh)T̃Csh

~is

]

= L̃r, hT̃
⊤
CrhT̃Crh

~ir + L̃⊤
rs,h(θr)~is (3.42)

Introducing the notations

L̃rh = L̃r, hT̃
⊤
CrhT̃Crh (3.43)

L̃sr h(θr) = L̃⊤
rs,h(θr) (3.44)

provides a compact expression for the vector of rotor main flux linkage arising from wavelength h:

~̃
ψr, h = L̃rh

~ir + L̃sr h(θr)~is (3.45)
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Inductance matrix associated with a specific wavelength

Depending on the context, it might be useful to merge eq. (3.38) and (3.45) together and define the
vector of main flux linkage associated with wavelength h,

~̃
Ψh =

[
~̃
ψ⊤
s, h

~̃
ψ⊤
r, h

]⊤

~̃
Ψh is determined using the current vector ~i =

[
~i⊤s ~i⊤r

]⊤
by means of the following relation:

~̃
Ψh =



~̃
ψs, h

~̃
ψr, h


 =




L̃s h L̃rs h(θr)

L̃sr h(θr) L̃r h





~is

~ir


 = L̃h(θr)~i (3.46)

The matrix L̃h(θr) introduced in eq. (3.46) links the currents with the main harmonic fluxes generated
by wavelength h.

Proposition 4: Properties of the matrix L̃h(θr)

1.) L̃h(θr) is symmetric

2.) L̃h(θr) is positive semidefinite

Refer to page 142 for the proof.

3.4.5 Total flux linkage

Using the relations gained in the previous sections, the vector of total main flux linkage

~̃
Ψ =

[
ψ̃s0 · · · ψ̃sm · · · ψ̃sms−1 ψ̃r0 · · · ψ̃rn · · · ψ̃rmr−1

]⊤

can be expressed as a function of the current vector ~i as follows:

~̃
Ψ =

∑

h∈N⋆

~̃
Ψh =

∑

h∈N⋆

L̃h(θr)~i =

[
∑

h∈N⋆

L̃h(θr)

]
~i (3.47)

Eq. (3.47) enables us to define a total main inductance matrix, L̃(θr):

L̃(θr) =




L̃s L̃rs(θr)

L̃sr(θr) L̃r


 =

∑

h∈N⋆

L̃h(θr) =




∑

h∈N⋆

L̃s h

∑

h∈N⋆

L̃rs h(θr)

∑

h∈N⋆

L̃sr h(θr)
∑

h∈N⋆

L̃r h


 (3.48)

Proposition 5: Properties of the matrix L̃(θr)

1.) L̃(θr) is symmetric

2.) L̃(θr) is positive semidefinite

The symmetry of L̃(θr) results from its definition. The positive semidefiniteness is gained from pro-
position 4 and the convergence of the sum in (3.48), while making use of the fact that the sum of
positive semidefinite matrices is also positive semidefinite.

Eq. (3.47) and (3.48) include the contributions to the flux linkage of all wavelengths present in the flux
density distribution but do not consider magnetic leakage occurring in the stator and rotor circuits.
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The leakage flux through stator circuit m is accounted for by adding a further contribution ψσsm to
the main flux ψ̃sm, depending exclusively on the current ism. In the same manner, the leakage flux
through rotor circuit n is denoted by ψσrn and depends only on the current irn.

Owing to the assumptions made in section 3.3, neither the magnetic state of the machine nor the
rotor angle have an influence on the leakage flux. For this reason, we will make use of a single leakage
inductance value, Lσs, for all stator circuits. The same applies to the rotor circuits, for which we
introduce the leakage inductance Lσr. Upon these considerations, the leakage flux vector ~Ψσ results
in:

~Ψσ =




ψσs0

...

ψσsms−1

ψσr0

...

ψσrmr−1




=




Lσs

0

Lσs

Lσr

0

Lσr







is0

...

isms−1

ir0

...

irmr−1




=



Lσs 0

0 Lσr





~is

~ir


 = Lσ

~i (3.49)

The expression of the total flux linkage follows from (3.47) and (3.49):

~Ψ(~i, θr) =
∑

h∈N⋆

~̃
Ψh + ~Ψσ = L̃(θr)~i+ Lσ

~i =
[
L̃(θr) + Lσ

]
~i (3.50)

The total inductance matrix, L(θr), is computed as the sum of the main and the leakage inductance
matrices:

L(θr) =




Ls Lrs(θr)

Lsr(θr) Lr


 =



L̃s + Lσs L̃rs(θr)

L̃sr(θr) L̃r + Lσs


 (3.51)

We had already established in chapter 2 that L(θr) must be symmetric positive definite for physical
reasons. This property is verified in the present case as L(θr) is the sum of a positive semidefinite
main inductance matrix and a diagonal leakage inductance matrix with positive diagonal entries.

The expression of L̃(θr) according to (3.48) is of theoretical nature as it involves infinite sums and
can therefore not be computed in real-time on a digital controller. For this reason, it is necessary to
approximate L̃(θr) by means of a partial sum, i.e. to consider only a finite number of wavelengths in
the conductor distribution functions and the air-gap field density distribution. This is generally not a
limiting factor as the magnitude of the Fourier coefficients of Ws0 and Wr0 decreases rapidly with the
wavelength order h [61]. As we will see for the machines IM1 and IM2, very few space harmonics need
to be taken into consideration to fairly account for the time harmonics they give rise to in current and
torque waveforms.

Based on these observations, we introduce the finite set of considered wavelength orders H ⊂ N
⋆.

In all simulations and test bench implementations, we will restrict the sums appearing in (3.48) and
(3.50) to the subset H and compute the following approximation of ~Ψ:

~ΨH(~i, θr) =
∑

h∈H

~̃
Ψh + ~Ψσ = L̃H(θr)~i+ Lσ

~i =
[
L̃H(θr) + Lσ

]
~i = LH(θr)~i (3.52)

The approximation of the total inductance matrix used in (3.52), LH(θr), remains symmetric positive
definite.

We have worked out a simple relation between the current and flux linkage vectors accounting for the
presence of conductor distribution harmonics under the assumption of a constant air-gap length and
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linear magnetic behaviour. Together with the voltage and torque equations obtained in chapter 2,
this will enable us to establish a real-time compliant state-space model of induction machines which
includes the effect of conductor distribution harmonics.

3.5 Voltage and torque equations in presence of interconnected cir-
cuits

Combining the specific flux linkage expression (3.50) with the general relations set up in chapter 2, we
obtain the following voltage equation for the model including conductor distribution harmonics and
taking into account circuit interconnections:

~u′ = R′~i′ +
d~Ψ′

dt
= R′~i′ +

d
[
C⊤~Ψ

]

dt
= R′~i′ +

d
[
C⊤L(θr)C~i

′

]

dt

= R′~i′ +C⊤L(θr)C
d~i′

dt
+ ωr

∂
[
C⊤L(θr)C

]

∂θr
~i′ (3.53)

In accordance with definition (2.39), we introduce the total inductance matrix for the model with
interconnections as:

L′(θr) = C⊤L(θr)C

=




L′
s L′

rs(θr)

L′
sr(θr) L′

r


 =




C⊤
s LsCs C⊤

s Lrs(θr)Cr

C⊤
r Lsr(θr)Cs C⊤

r LrCr


 (3.54)

The dimension of L′(θr) is m
′ ×m′. The voltage equation (3.53) simplifies into:

~u′ = R′~i′ + L′(θr)
d~i′

dt
+ ωr

∂L′(θr)

∂θr
~i′ (3.55)

Substituting the expression of the flux linkage (3.50) into the torque relation (2.36) results in:

MM =
1

2
~i′⊤

∂
[
C⊤L(θr)C~i

′

]

∂θr
=

1

2
~i′⊤

∂L′(θr)

∂θr
~i′ (3.56)

Since the leakage flux is considered independent of the rotor angle, (3.56) is equivalent to:

MM =
1

2
~i′⊤

∂
[
C⊤L̃(θr)C

]

∂θr
~i′ =

1

2
~i′⊤

∂L̃′(θr)

∂θr
~i′ (3.57)

where

L̃′(θr) = C⊤L̃(θr)C =




L̃′
s L̃′

rs(θr)

L̃′
sr(θr) L̃′

r


 =




C⊤
s L̃

′
sCs C⊤

s L̃
′
rs(θr)Cr

C⊤
r L̃

′
sr(θr)Cs C⊤

r L̃
′
rCr


 (3.58)

is the main inductance matrix of the model with interconnected circuits.

Proposition 6:

1.) For h ∈ N
⋆, L̃′

h
(θr) = C⊤L̃h(θr)C is symmetric positive semidefinite.

2.) L̃′(θr) is positive semidefinite.

3.) L′(θr) is positive definite.
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Refer to page 143 for the proof.

Depending on the context, it might be practical to use separate voltage equations for stator and rotor
quantities as follows:



stator voltage: ~u′s = R′
s
~i′s + L′

s

d~i′s
dt

+ L′
rs(θr)

d~i′r
dt

+
∂L′

rs(θr)

∂θr
~i′r

rotor voltage: ~u′r = R′
r
~i′r + L′

r

d~i′r
dt

+ L′
sr(θr)

d~i′s
dt

+
∂L′

sr(θr)

∂θr
~i′s

(3.59a)

(3.59b)

In this case, the torque relation becomes:

MM =
1

2

[
~i′⊤s ~i′⊤r

]⊤




0
∂L̃′

rs(θr)

∂θr

∂L̃′
sr(θr)

∂θr
0






~i′s

~i′r




=
1

2
~i′⊤s

∂L̃′
rs(θr)

∂θr
~i′r +

1

2
~i′⊤r

∂L̃′
sr(θr)

∂θr
~i′s =

1

2
~i′⊤s

∂L̃′
rs(θr)

∂θr
~i′r +

1

2
~i′⊤r

∂L̃′⊤
rs (θr)

∂θr
~i′s

=
1

2
~i′⊤s

∂L̃′
rs(θr)

∂θr
~i′r +

1

2

[
~i′⊤s

∂L̃′
rs(θr)

∂θr
~i′r

]⊤

=~i′⊤s
∂L̃′

rs(θr)

∂θr
~i′r (3.60)

3.6 Continuous-time state-space machine model

Relations (3.55), (3.56) and (2.19) enable us to build a continuous-time state-space model of the
induction machine which includes the effect of conductor distribution harmonics. Using the currents
alongside the rotor angular velocity and the rotor angle as state variables leads to the subsequent set
of equations: 



d~i′

dt
= −L′−1

(θr)

[
R′ + ωr

∂L′(θr)

∂θr

]
~i′ + L′−1

(θr)~u
′

dωr

dt
=

1

JM

[
1

2
~i′

⊤∂L
′(θr)

∂θr
~i′ −ML − CWωr

]

dθr
dt

= ωr

(3.61a)

(3.61b)

(3.61c)

Introducing the notations

A(ωr, θr) = −L′−1
(θr)

[
R′ + ωr

∂L′(θr)

∂θr

]
; B(θr) = L′−1

(θr)
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(3.61) becomes: 


d~i′

dt
= A(ωr, θr)~i

′ +B(θr)~u
′

dωr

dt
=

1

JM

[
1

2
~i′

⊤∂B
−1(θr)

∂θr
~i′ −ML − CWωr

]

dθr
dt

= ωr

(3.62a)

(3.62b)

(3.62c)

The above equations are of theoretical nature. The implementation of (3.62) on a digital controller
requires the following additional steps:

1.) computation of the Fourier coefficients of the conductor distribution functions;

2.) determination of the wavelength orders to be considered in the model;

3.) sampling of the state-space equations (3.62) to obtain a discrete-time model representation.

These aspects are best discussed with practical examples. We will therefore work out specific models
for the machines under investigation, IM1 and IM2, next.

3.7 Case study

3.7.1 Deriving specific models for the investigated machines

Representation of the stator windings as sets of electrical circuits

To obtain the model equations of a particular machine, we first determine a representation of the
stator windings and the rotor cage using the concepts of electrical circuit and interconnection matrix
introduced in chapter 2. As both IM1 and IM2 feature three star-connected windings on the stator
and a rotor cage (cf. appendix A.1), we will apply the general method for modelling a star-connection
of windings presented in section 2.3.3.

A straightforward option is to introduce an electrical circuit for each of the windings. This is the choice
we already made in chapter 2 for IM1. Using the notations of section 2.3, the number of circuits ms is
then identical to the number of windings ws = 3, which results in the following stator interconnection
matrix for IM1:

Cs, IM1 =




1 0
0 1
−1 −1




Consequently, the vector ~i′s has m′
s = 2 components, i′s0 and i′s1, representing independent stator

currents. Similarly, the components of ~u′, u′s0 and u′s1, are the two independent line-to-line voltages
depicted in fig. 3.3(a).

Although the same strategy could be used with the stator windings of IM2, which would lead to an
interconnection matrix identical to the above one, we adopt a slightly different perspective to illustrate
the flexibility of the method. As IM2 features two pole pairs, half of the coils belonging to a stator
winding lies within a pole pair pitch, the rest within the other. For this reason, each winding is
modelled as a set of two circuits connected in series, a circuit being composed of the winding coils
within a specific pole pair. Following the schematic in fig. 3.3(b), circuit 0 represents the coils of
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(a) Induction machine 1 (b) Induction machine 2

(c) Stator circuit m ∈ J0, ms − 1K

Figure 3.3: Schematics of the stator circuits used in the models of IM1 and IM2 and definition of
corresponding electrical quantities

winding 0 within the first pole pair, circuit 3 the ones within the second. Hence, the series connection
of circuit 0 and 3 in the model is equivalent to winding 0 in the real machine. The tremendous benefit
resulting from the choice of the circuits according to fig. 3.3(b) will become apparent during the model
optimization in chapter 4. Consequently, the model of IM2 includes ms = 6 stator circuits and the
stator interconnection matrix is defined as follows:

Cs, IM2 =

[
1 0 −1 1 0 −1
0 1 −1 0 1 −1

]⊤

Rotor circuits and rotor interconnection matrix

Owing to section 2.3.4, a rotor cage with Nr bars can be represented as a set of Nr coils, each
of them having one turn and a pitch corresponding to the rotor slot pitch. In this context, it is
convenient to introduce a specific circuit in the model for each rotor coil, the total number of rotor
circuits being mr = Nr. The currents flowing through the circuits and the voltages at their terminals
constitute independent variables. Thus, the rotor interconnection matrix is simply the identity matrix
of dimension mr.

The underlying assumptions of the linear geometric model listed in section 3.3 imply that in fact only
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mr − 1 rotor currents are independent. Under these circumstances, the current in rotor circuit mr − 1
can be expressed as a linear combination of the others. This leads to the rotor interconnection matrix
becoming an mr × (mr − 1) matrix of the form:

Cr =




1 0

0
. . .

1
−1 · · · −1




The rotor interconnection matrix of IM1, Cr, IM1, has mr = 16 rows and m′
r = 15 columns while the

one of IM2 possesses mr = 28 rows and m′
r = 27 columns. The vector of independent rotor voltages

~u′r (and the vector of independent rotor currents ~i′r) has therefore 15 components in the case IM1 and
27 in the case of IM2.

Order of the models

Following the above considerations, the total number of independent currents in the model of IM1,
i.e. the components of the vector ~i′, is m′

s +m′
r = 17. Taking into account the rotor angular velocity

and angle, the number of state variables necessary to describe the dynamic behaviour of IM1 is 19. In
contrast, 29 independent currents appear in the model of IM2, leading to 31 state variables in total.

These results show that the model complexity is directly impacted by the number of stator windings
and rotor bars. Apart for machines with an integer number of bars per pole pair pitch, in which case
it is common practice to use an equivalent model of reduced order by introducing an ‘electrical angle’,
the model order cannot be further decreased.

Practical determination of the inductance matrix coefficients

Having chosen the electrical circuits in the model, their associated conductor distribution functions
have to be derived from the winding configuration and rotor bar number of the machine. As explained
in section 3.4, only the conductor distribution functions of stator and rotor circuit number 0, Ws0 and
Wr0, are necessary, since the remaining ones are shifted copies of Ws0 and Wr0 respectively. Note
that the choice of the electrical circuits in the model has to ensure that this requirement is met (see
section 3.4.1). The conductor distribution functions Ws0 and Wr0 of the machines IM1 and IM2 are
provided in appendix A.1 alongside the related current density and MMF distribution functions.

Figure 3.4: Basic function allowing for a straightforward computation of the Fourier coefficients of
conductor distribution functions

The Fourier coefficients of Ws0 and Wr0 have to be calculated in order to determine the inductances
associated with each wavelength order defined in (3.33). This potentially arduous task can be greatly
simplified when considering Ws0 and Wr0 as linear combinations of shifted copies of the simple func-
tion W0 depicted in fig. 3.4. The Fourier coefficients of W0 are easily computed as functions of the
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parameters a and b while the results in Proposition 1 enable us to infer the ones of Ws0 and Wr0

without difficulty. Note that this method provides general analytical expressions of the Fourier coef-
ficients of Ws0 and Wr0 which can be adapted effortlessly to match a specific machine configuration.
In addition, these expressions turn out to be instrumental when doing parameter tuning, as we will
see in chapter 5.

The main inductance matrix for the wavelength of order h ∈ N
⋆ is calculated in accordance with

(3.46) using the corresponding inductance values. This process involves the matrices T̃Csh and T̃Crh

defined in (3.31a) and (3.31b) in which the angles γs0,m and γr0,n appear. γs0,m, m ∈ J0, ms − 1K is
the angle with which Ws0 has to be shifted in order to obtain the conductor distribution function of
stator circuit m. In the case of IM1, γs0,m = m · 2π/3 while for IM2, γs0,m = m · π/3. Similarly,
γr0,n, n ∈ J0, mr − 1K, determines how Wr0 has to be shifted to get the conductor distribution of rotor
circuit n. γr0,n = n · 2π/16 for IM1 and γr0,n = n · 2π/28 for IM2.

The only remaining task to have all the information needed to calculate the coefficients of the total
inductance matrix LH(θr) is to select the wavelengths to consider in the model. This topic is discussed
in the next section.

3.7.2 Selecting the wavelengths to be included in the model

An aspect of crucial practical importance which remains to be addressed concerns the choice of
wavelengths accounted for in the model. A compromise must be found as a high number of terms in
the flux linkage approximation (3.52) will result in a more accurate but slower model.

To gain insight into the matter, we will first examine the impact of the conductor distribution func-
tion spectral content on the stator current, torque and angular velocity waveforms obtained from the
model. Fig. 3.5 shows the conductor distribution functions Ws0 and Wr0 of the two machines under
investigation as well as their normalized Fourier spectra. The base wavelength order used for normal-
izing the Fourier coefficient amplitudes is selected according to the machine pole pair number, i.e. 1
for IM1 and 2 for IM2. As expected, the coefficient magnitude decreases rapidly with the wavelength
order and drops below 1% of the base value for orders greater than 60.

The diagrams in fig. 3.6 illustrate the influence of the considered wavelengths on the shape of the
conductor distribution functions Ws0 and Wr0. The approximation including all wavelengths up to
order 60 provides a fairly accurate representation of the actual conductor distribution functions. This
observation is supported by the simulation results shown in Fig. 3.7, obtained with two variants of
the state-space model (3.62) in the case of IM1: one with 60 wavelengths, the other with 500. The
latter is considered as reference model given that the number of terms in the partial sum (3.52) is
sufficiently high to correctly represent the actual conductor distribution function.

The simulations were performed using Heun’s method and a step size δt = 10−5 s. The two models
were supplied with the same input quantities, i.e. balanced sinusoidal voltages and a rated load
torque step applied at time t = 0.5 s. Hence, any discrepancy in the results generated by the two
models can be regarded as approximation error originating from the neglect of wavelength orders.
According to Fig. 3.7, the approximation error in the stator current, torque and angular velocity
reaches its maximum in each case during the starting transient and slightly increases with the slip.
This is likely to be linked to the increased weight of neglected space harmonics in the air-gap flux
density distribution due to higher rotor currents. The steady-state error in all three quantities arises
primarily from a small phase-lead while the amplitudes generated by the model with 60 wavelengths
remain accurate. The overall error remains however rather insignificant, making the 60 wavelength
model precise enough for most applications.
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Figure 3.5: Waveforms of conductor distribution functions Ws0 and Wr0

alongside their normalized spectra

Note that for both machines, Ws0 does not exhibit even wavelength orders. Owing to the discussion
in section 3.2, wavelengths of even order potentially present in other distributed quantities (e.g. Wr0)
will not influence stator flux linkages and can therefore be ignored to lessen the computational effort.

We now examine a model with the minimal set of wavelength orders, Hm, necessary to generate the
principal slot harmonic (PSH) in the stator currents. In the case of IM1, Hm = {1, 17}, while for
IM2, Hm = {2, 26}. The corresponding approximated conductor distribution functions are depicted
in fig. 3.6.

A comparison of the stator current, torque and angular velocity waveforms with the 500 wavelength
reference model under the conditions described above shows a notably larger error both during transi-
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Figure 3.6: Impact of the number of wavelength orders on the shape of the conductor distribution
functions Ws0 and Wr0

ents and in steady-state (see fig. 3.8). The steady-state error in current and torque is the combination
of an incorrect estimation of phase and amplitude of the PSH, while the angular velocity error also
shows the presence of an offset.

Notwithstanding these imprecisions, a model with only two space harmonics offers the advantage
of being computationally particularly efficient and constitutes therefore the first choice for real-time
applications, especially the ones involving model predictive control schemes. Depending on the context
and requirements, additional wavelength orders can be added to improve the model accuracy. We will
therefore narrow down our subsequent investigations to models with a handful of wavelength orders
and examine the minimal models of IM1 and IM2 with two space harmonics extensively.
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3.7.3 Determination of appropriate sampling methods

A discrete-time representation of the model (3.62), for which the total inductance matrix has been
determined using a finite number of wavelength orders as explained previously, has to be found to
enable its execution on a digital controller. The sampling process consists in estimating the state
variables repetitively at time intervals Ts, a task for which diverse methods are available and which
differ from each other in respect of their accuracy and complexity.

The easiest and for this reason in drive control applications most popular sampling technique relies
on the explicit Euler method to work out an estimation of the state variables at the next sampling
instant (see for example [62, 63]). The other side of the coin is the requirement for a sufficiently
small sampling period Ts to ensure an acceptable state estimation. The sampling period is, however,
often dictated by the inverter switching frequency or the controller performance. As a result, Euler’s
method may under certain practical conditions lack of precision.

Various strategies for drive control applications based on Park’s model have been reported in the lit-
erature to overcome this limitation. These include solving the continuous-time model equations under
the assumption of a zero-order hold and approximating the required exponential of the continuous-
time system matrix (cf. [64–66]) or performing a Taylor expansion of the state vector [67]. In [68] a
state feedback was used to achieve an exact model discretization. [69] proposes a discrete-time model
based on variational integrators.

In any case, the choice of the sampling method constitutes a trade-off between the estimation accuracy
and the computational effort. The performance of the following approaches in solving the system (3.62)
is to be examined with respect to these two criteria:

• numerical methods for ordinary differential equations: forward Euler (order 1), Heun (order 2)
and Bogacki-Shampine (order 3);

• zero-order hold assumption and solving of the resulting linear system of differential equations.
The matrix exponential in the expression of the solution is approximated by means of a partial
sum.

The interested reader may refer for instance to [70] to obtain detailed information about the math-
ematical background of above methods. The most appropriate strategy will be determined based on
simulation and experimental results.

3.7.4 Computation of the state variables by means of numerical methods

Accuracy assessment of the selected methods

First insight into the performance of each preselected numerical method can be gained from offline
simulations. Consequently, we simulate a model of IM1 with wavelength orders 1 and 17 (H = Hm)
using Euler’s, Heun’s as well as the Bogacki-Shampine method and a step size δt = 10−4 s, which
corresponds to the sampling period of the real-time system used in the experiments. A further, more
accurate simulation with the Runge-Kutta method of order 4 and a step size δt = 10−6 s is used as
reference. The waveforms of the stator current i′s0, the torque and the angular velocity delivered by
each of the methods under test are compared to the ones of the reference model.

Fig. 3.9 presents the responses of the different model variants to a balanced sinusoidal voltage supply
(frequency f = 50Hz, line-to-line voltage U = 400V) and a rated load torque step applied at time
t = 0.5 s. The poor performance of Euler’s scheme during transients as well as in steady-state even
regarding the fundamental of the stator current is striking, which makes it unsuitable for the purpose.
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3.7. Case study

Heun’s method performs much more satisfactorily and provides decent waveforms overall. A closer look
at the stator current and the torque under load shows that the scheme is however unable to correctly
estimate the phase of high-frequency harmonic components, leading to an oscillating error. This error
is still present in the results computed with the Bogacki-Shampine method, yet to a markedly lesser
extent.

In order to validate these preliminary observations, the model with H = {1, 17} was implemented
on the test rig using Euler’s, Heun’s and the Bogacki-Shampine method. A second model of IM1
including the additional wavelengths 5 and 11 and a model of IM2 with H = {2, 26} were examined
experimentally as well (compare [71, 72]). The induction machines IM1 and IM2 were operated by
means of a feedforward U/f control with balanced sinusoidal reference voltages of frequency f = 40Hz.
These reference voltages were also used as model inputs alongside the torque measured at the machine
shaft. The mechanical topology of the test bench consisting of the two rotor masses and the one of
the torque sensor constitutes a three spring-mass system. This results in complex torque waveforms
with rich harmonic content. This aspect alongside noise impacting the signal transmission creates
parasitic oscillations of the electromechanical torque and the rotor angular velocity computed by the
machine models (see for example fig. 3.13). For this reason, in all steady-state investigations, the DC
component of the torque signal was extracted using a moving average filter and fed into the model.

The steady-state comparison in fig. 3.10 of the calculated stator current, torque and rotor angular
velocity waveforms with the corresponding measured quantities clearly highlights the insufficient ac-
curacy of Euler’s method. The amplitude of the fundamental stator current component is seriously
underestimated as well as the DC component of the rotor angular velocity.

In contrast, Heun’s and the Bogacki-Shampine methods provide similar, notably more realistic results
in this regard. The erroneous phase estimation delivered by Heun for the stator current PSH in the
simulation results depicted in fig. 3.9 appears to be much less serious in practice (see fig. 3.10 and
3.11). The no load current spectrum in fig. 3.11 shows a reasonable performance of Heun’s method
at estimating the amplitude of the PSH. A significant overestimation of the latter occurs however at
rated load. As this phenomenon is also observed with the Bogacki-Shampine scheme, its origin is
not related to the sampling process but likely to be found in the model assumptions, especially the
hypothesis of magnetic linearity which has only limited physical validity. Note that this issue is less
severe in the case of IM2 for which only a minimal increase of the discrepancy between predicted and
measured PSH magnitudes is observed at rated load (compare fig. 3.12).

A consequence of the incorrect amplitude estimation of the PSH at rated load is the suspiciously
high computed magnitude of the torque harmonic component associated with it in the case of IM1.
This problem appears clearly in the traces in fig. 3.13 which were obtained by applying a rated load
torque step. The amplitude of said torque harmonic drastically increases with the fundamental torque
component, yet an experimental evidence of this phenomenon is nowhere to be found in the measured
torque. Nonetheless, no hasty general conclusion should be drawn from this fact about the pertinence
of the modelling approach as the results regarding the magnitude of the relevant torque harmonic look
much more encouraging in the case of IM2 (cf. fig. 3.14, Heun’s and Bogacki-Shampine methods).

Another important factor impacting on the electromagnetic torque and rotor angular velocity pre-
dictions is the use of the measured torque signal as load torque input of the model. In contrast to
steady-state measurements, the signal had to be fed directly to the model as any filter delay would
have been unacceptable. Thus, the parasitic oscillations present in the measured load torque generate
additional frequency components in the model waveforms. Leaving aside this aspect, the traces in
fig. 3.13 attest to an acceptable overall dynamic behaviour of the model variants based on Heun’s or
the Bogacki-Shampine method. Conversely, Euler’s approach yields, yet again, poor results in the case
of IM1 and even leads to the model of IM2 becoming unstable under no load conditions (see fig. 3.14).
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3.7. Case study

The investigations so far examined the performance of the three numerical methods exclusively from an
accuracy point of view. In this regard, Euler’s method does not constitute a viable option which makes
imperative the use of higher order schemes under the considered experimental conditions. Heun’s and
the Bogacki-Shampine methods appear to be promising candidates. However, careful considerations
would have to be made for each specific application, as the simulation results presented in fig. 3.9 have
shown inaccuracies with respect to the phase of current and torque harmonics.

Evaluation of the complexity of each model variant

The suitability of the models discussed above regarding practical applications highly depends on the
time required to compute the state variables. Although it is in theory sufficient to ensure that the
state variables can be calculated within a sampling period, target-specific implementation constraints
such as interrupt latency require the model computation time to be less.

For this reason, we will on the one hand consider the time necessary to calculate the value of the
state variables at the next sampling instant from their current value and the one of the inputs. We
will refer to it as model execution time, as it represents a fair measure of the model complexity.
The model execution time is easily determined by means of a processor timer. On the other hand,
we will evaluate the model real-time capability based on the time needed for the execution of the
complete interrupt service routine in which the model code is embedded. The latter includes for
instance the interrupt latency as well as the servicing of data exchange processes and will be denoted
interrupt routine execution time. It can vary considerably and must be less than the sampling period
Ts = 100µs. The interrupt routine execution time is estimated using a timer on the FPGA generating
the processor interrupt request signal. The latter is issued at the beginning of each inverter PWM
period, as symmetric sampling is used.

We also introduce the iteration time describing the time necessary to evaluate the state derivatives
in (3.62) for given state and input values. Heun’s method requires two and the Bogacki-Shampine
scheme three iterations to be carried out in order to gain the value of the state variables at the next
sampling instant. As L′(θr) is symmetric and its diagonal blocks L′

s and L′
r are constant, the iteration

time primarily involves the computation of the submatrix L̃′
sr(θr) (resp. L̃′

rs(θr)) and the Cholesky
decomposition to obtain L′−1(θr). Thus, it is roughly independent of the numerical method selected.

Method Model [µs] Interrupt routine [µs]

Euler 14.9 34.5
Heun 29.4 49.3
Bogacki-Shampine 44.1 64.3

Table 3.1: Maximal execution times obtained on the real-time system for each numerical method
(model of IM1 with H = {1, 17})

Table 3.1 provides an overview of the maximal model and interrupt routine execution times obtained
on the real-time system with each numerical method and the model of IM1 including wavelengths of
order 1 and 17. An iteration requires almost 15µs, whereas the Cholesky decomposition alone takes
around 8µs (L′ has dimension 17 and the model order is 19). Note the significantly higher maximal
interrupt routine execution time, which is partly due to the data transfer processes used for acquiring
the waveforms discussed previously.
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3.7.5. Zero-order hold assumption and discrete-time state-space model

Method Model [µs] Interrupt routine [µs]

Euler 18.9 37.5
Heun 37.2 56.5
Bogacki-Shampine 55.6 75.1

Table 3.2: Maximal execution times obtained on the real-time system for each numerical method
(model of IM1 with H = {1, 5, 11, 17})

Table 3.2 gives an overview of the maximal execution times in the case of a model of IM1 for which
H = {1, 5, 11, 17}. It can be inferred from the data that an additional wavelength costs approximately
2µs. Although the maximal model execution times are similar to the ones given in [71], the interrupt
routine execution times are noticeably higher, attesting to the highly unpredictable character of this
parameter. The value obtained with the Bogacki-Shampine scheme shows a processor utilization
reaching already 75%.

Method Model [µs] Interrupt routine [µs]

Euler 46.9 66.8
Heun (fsw = 8kHz) 93.7 113.5
Bogacki-Shampine (fsw = 5kHz) 140.4 160.8

Table 3.3: Maximal execution times obtained on the real-time system for each numerical method
(model of IM2 with H = {2, 26})

The time measurements carried out with the model of IM2 featuring the wavelengths of order 2 and
26 are listed in table 3.3. The model having order 31, its maximal execution time with Euler’s method
leaps to around 47µs, i.e. more than three times the value obtained for the equivalent model of IM1.
As a consequence of the model order increase compared to IM1, the model variants derived with
Heun’s and the Bogacki-Shampine methods are not real-time compliant at fsw = 10 kHz. Thus, the
inverter switching frequency fsw had to be reduced to 8 kHz (5 kHz respectively) to allow for execution
on the real-time system. This issue shows the highly problematic dependence of the model order on
the number of rotor bars.

The model of IM2 based on Euler’s method is the only variant which complies with the real-time
requirements. Since it does not yield acceptable results (see fig. 3.14), the strategy adopted so far fails
to address the general goals set in section 1.5.

3.7.5 Zero-order hold assumption and discrete-time state-space model

Derivation of the discrete-time model

The comparatively high computation effort obtained with Heun’s and the Bogacki-Shampine method
primarily arises from the need for several iterations during which nearly all the model equations have
to be evaluated. An attempt to alleviate the problem consists in assuming the rotor angular velocity
ωr and the rotor angle θr constant during a sampling period alongside the input voltage vector ~u′ and
the load torque ML. This allows for eq. (3.62a) to be solved as a linear time-invariant differential
system, independently of (3.62b) and (3.62c).
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3.7. Case study

Under these circumstances, the knowledge of the state variables and the inputs at an instant t0 > 0
enables the determination of the current vector ~i′(t0 + ν), for all ν > 0, as follows:

~i′(t0 + ν) = eνA(t0)~i′(t0) +

∫ ν

0
e(ν−τ)A(t0) dτB~u′(t0) (3.63)

where A(t0) = A(ωr(t0), θr(t0)).

Solving eq. (3.62b) and (3.62c) yields:

ωr(t0 + ν) =

[
ωr(t0)−

MM −ML

CW

]
e
−

CW
JM

ν
+
MM −ML

CW
(3.64)

and

θr(t0 + ν) = θr(t0) +
MM −ML

CW
ν +

JM
CW

[
ωr(t0)−

MM −ML

CW

][
1− e

−
CW
JM

ν
]

(3.65)

In particular, for k ∈ N, t0 = kTs and ν = Ts,

~i′((k + 1)Ts) = eTsA(kTs)~i′(kTs) +

∫ Ts

0
e(Ts−τ)A(kTs) dτB~u′(kTs)

ωr((k + 1)Ts) =

[
ωr(kTs)−

MM −ML

CW

]
e
−

CW
JM

Ts +
MM −ML

CW

θr((k + 1)Ts) = θr(kTs) +
MM −ML

CW
Ts +

JM
CW

[
ωr(kTs)−

MM −ML

CW

][
1− e

−
CW
JM

Ts

]

Introducing the notations:

~i′[k] =~i′(kTs); ~u′[k] = ~u′(kTs)

ωr[k] = ωr(kTs); θr[k] = θr(kTs)

F[k] = eTsA(kTs); G[k] =

∫ Ts

0
e(Ts−τ)A(kTs) dτB

we obtain the subsequent discrete-time state-space representation of (3.62):



~i′[k + 1] = F[k]~i′[k] +G[k]~u′[k]

ωr[k + 1] =

[
ωr[k]−

MM −ML

CW

]
e
−

CW
JM

Ts +
MM −ML

CW

θr[k + 1] = θr[k] +
MM −ML

CW
Ts +

JM
CW

[
ωr[k]−

MM −ML

CW

][
1− e

−
CW
JM

Ts

]

(3.66a)

(3.66b)

(3.66c)

The expressions of F and G involve a matrix exponential. Using the power series expansion of the
exponential,

∀ t ∈ R, etA =
+∞∑

n=0

tnAn

n!
(3.67)

F andG can be approximated by means of a partial sum of orderN ∈ N to allow for an implementation
of (3.66) on a digital controller, e.g.

for k ∈ N, F[k] =
N∑

n=0

Tn
s A

n[kTs]

n!
+O(TN+1

s ) (3.68)
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3.7.5. Zero-order hold assumption and discrete-time state-space model

Model assessment

We investigate variants of the model (3.66) obtained using approximations of the matrix exponential
with partial sums of order 1 to 4. To do so, we repeat the simulation described in section 3.7.4 under
the exact same conditions. Again, the stator current, torque and angular velocity waveforms obtained
with the Runge-Kutta method of order 4 and a step size of 10−6 s are used as references.

The corresponding results are provided in fig. 3.15. The following remarks can be made:

• the approximation of order 1 substantially underestimates the amplitude of the stator funda-
mental current as well as the angular velocity under load. Since this approach is similar to
Euler’s method, the phenomenon is not surprising;

• the approximation of order 2 performs notably better from the perspective of the fundamental
current. However, the phase error in the current and torque harmonics is appreciable;

• a comparison of the waveforms generated with approximations of order 3 and 4 shows no tangible
reduction of the error. This suggests that increasing the number of terms in the partial sum
beyond 3 is not beneficial;

• none of the model variants under test appears to be accurate during the initial transient until the
machine has reached a nearly synchronous speed. This is a hint that the rotor angle variation
and the one of its derivative become significant within a sampling period, making the zero-order
hold assumption questionable.

A comparison of the model estimations with steady-state measurements carried out on the two ma-
chines under the same general conditions as with the numerical methods confirms the above observa-
tions (see fig. 3.16 and 3.17). Note that the approximation of order 1 is unstable in the case of IM2.
A look at the stator current spectrum of IM1 under no load and rated load in fig. 3.18 shows that the
approximation of order 3 delivers amplitude values for the PSH comparable to Heun’s method. The
DC component of the angular velocity is somewhat overestimated and the amplitude of the funda-
mental current slightly low under rated load. This is due to the fact that the model parameters were
determined based on comparisons between estimations using Heun’s method and measurements.

The dynamic responses of the models based on approximations of order 1 to 3 to a rated load torque
step are compared to experiments in fig. 3.19 in the case of IM1. The third order approximation
provides a fairly accurate representation of the current and angular velocity transient behaviour. As
with numerical methods, the computed amplitude of the torque harmonic caused by the wavelength of
order 17 is too high in all three cases. This confirms that the origin of this phenomena is not related to
the discretization process but the result of somewhat restrictive modelling hypotheses made necessary
by the need for a real-time compliant model (compare section 3.3).

Considering the model execution times given in table 3.4 and 3.5, an increase of the approximation
order by 1 leads to an additional computation time of roughly 4.5µs for IM1 and 13µs for IM2. This
is far less than the time required for a complete model iteration, since only a further power of the
matrix A has to be calculated. Although all model variants are real-time compliant when sampling at
10 kHz, not enough time would remain within a sampling period to execute a control algorithm. Thus,
the computational burden of the model implementations is still not satisfactory to consider their use
in real-time control applications.
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3.7.6. Discussion

Approximation order Model [µs] Interrupt routine [µs]

1 16.8 35.7
2 21.4 40.7
3 25.9 45.2

Table 3.4: Maximal execution times obtained on the real-time system with approximations of the
matrix exponential of order 1 to 3 (model of IM1 with H = {1, 17})

Approximation order Model [µs] Interrupt routine [µs]

1 52.0 71.7
2 64.3 83.4
3 77.6 96.6

Table 3.5: Maximal execution times obtained on the real-time system with approximations of the
matrix exponential of order 1 to 3 (model of IM2 with H = {2, 26})

3.7.6 Discussion

The results of the investigations presented in the foregoing sections lead to the following conclusions:

• the real-time execution of machine models including a few space harmonics is basically possible
at a sampling frequency in the order of 10 kHz;

• Euler’s method cannot be used in the considered context;

• Heun’s scheme represents a fair compromise between accuracy and computation effort. So does
an approximation of order 3 when discretizing the model based on the zero-order hold assump-
tion;

• the dependence of the model order on the rotor bar number is a fundamental issue with respect
to the computational burden. The real-time execution of the model, even on a powerful system,
is challenging.

From the last observation follows that the proposed model in its current form has no prospect of
practical use in drive control applications. Thus, our initial objectives are not yet fulfilled. The
simplification of the model should become our main focus.

Summary

The periodicity of distributed air-gap quantities makes possible their representation as Fourier series.
Taking advantage of this property, Parseval’s identity enabled us to express the flux linkages using the
Fourier coefficients of the conductor distribution functions and the air-gap flux density distribution.

Under the assumption of magnetic linearity and constant air-gap length, all air-gap quantities can be
determined from the knowledge of the conductor distribution functions. Following the properties of
Fourier series and the hypothesis of a symmetrical machine, only the conductor distribution function of
a single stator circuit and the one of a single rotor circuit are required. In this context, the contribution
of each space harmonic to the main flux is easily determined. This allowed us to establish the general
form of a continuous-time state-space model including the effect of conductor distribution harmonics.
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3.7. Case study

In a further step, specific models of the two investigated machines were derived. Two techniques for
obtaining discrete-time representations were discussed from the perspective of accuracy and compu-
tational burden: numerical methods and the solving of the model equations assuming a zero-order
hold. Heun’s method and an order 3 approximation of the continuous-time system matrix exponential
appear to provide fairly accurate results. A fundamental issue remains the unacceptably excessive
computational effort with regard to the targeted applications.
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Chapter 4

Transformed linear geometric model

Overview of chapter

In order to tackle the issue of computational effort encountered with the machine model developed in
chapter 3, we aim at optimizing its mathematical description. The main drawback of the approach
adopted so far is the dependence of the model order on the number of independent electrical variables.
As a result, the model order is directly impacted by the number of rotor bars and stator windings.

In contrast, our goal is to gain a state-space representation equivalent to the one established in
section 3.6 but in which the wavelength orders taken into account in the conductor distribution
functions determines the model order. In other words, a model with only a handful wavelengths
should be described with few state variables. We therefore focus our attention on the design of a state
transformation following the same principles as the Clarke transformation in Park’s model.

In a further step, we apply the proposed transformation to the state-space equations of the linear
geometric model (3.62) to obtain a simple, yet general, model description. We will then customize the
model equations to derive specific models for the investigated machines IM1 and IM2. These models
will be assessed by means of simulations and experiments.
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4.1. Preliminary considerations

4.1 Preliminary considerations

4.1.1 Intuitive approach

A key step in the derivation of the linear geometric model developed in chapter 3 consisted in working
out the contribution of a specific wavelength h ∈ N

⋆ to the main flux, which, as established in
section 3.4.4, has the following form:

~̃
Ψh =



~̃
ψs, h

~̃
ψr, h


 = L̃h(θr)~i =




L̃s h L̃rs h(θr)

L̃sr h(θr) L̃rh





~is

~ir


 =



L̃s h

~is + L̃rs h(θr)~ir

L̃sr h(θr)~is + L̃r h
~ir


 (4.1)

The expressions of the submatrices appearing in (4.1) are summarized here:

L̃s h = L̃s, hT̃
⊤
CshT̃Csh (4.2)

L̃rh = L̃r, hT̃
⊤
CrhT̃Crh (4.3)

L̃rs h(θr) = LM,hT̃
⊤
CshT(hθr − ϕh)T̃Crh (4.4)

L̃sr h(θr) = LM,hT̃
⊤
CrhT(−hθr + ϕh)T̃Csh = L̃⊤

rs h(θr) (4.5)

The stator and rotor inductance submatrices associated with wavelength h, L̃s h and L̃r h, have an
interesting form, since they are the product of the matrix T̃Csh (T̃Crh resp.) and its transpose. This
aspect might give us a hint on how a transformation could be designed. We therefore take a closer
look at these matrices.

Recalling definitions (3.31a) and (3.31b), the general form of T̃Csh and T̃Crh is:

T̃Csh =



1 · · · cos(hγs0,m) · · · cos(hγs0,ms−1)

0 · · · sin(hγs0,m) · · · sin(hγs0,ms−1)


 (4.6a)

T̃Crh =



1 · · · cos(hγr0,n) · · · cos(hγr0,mr−1)

0 · · · sin(hγr0,n) · · · sin(hγr0,mr−1)


 (4.6b)

where γs0,m (and γr0,n) represents the angle by which the conductor distribution of stator (resp. rotor)
circuit 0 has to be shifted in order to obtain the one of stator circuit m ∈ J0, ms − 1K (rotor circuit
n ∈ J0, mr − 1K resp.).

In section 3.7.1, we took advantage of the flexibility provided by the modelling approach with respect
to the choice of the electrical circuits in the models of IM1 and IM2. In the case of IM1, we used a
circuit for each of the ws = 3 stator windings. Since IM1 has only one pole pair, this decision resulted
in the angle γs0,m, m ∈ J0, 2K being a multiple of 2π/3. Thus, the ms = 3 stator shift angle values
are equally spaced in the interval [0, 2π]. However, IM2 having two pole pairs, this condition would
not have been satisfied if we had used a single circuit per winding. Modelling each winding as the
series connection of two circuits enabled us to obtain ms = 6 shift angle values equally spaced in the
interval [0, 2π].

In the considerations discussed in this chapter, we assume that the stator and rotor circuits in the
model have been defined to meet the conditions:

∀m ∈ J0, ms − 1K, γs0,m = m
2π

ms
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4.1.1. Intuitive approach

∀n ∈ J0, mr − 1K, γr0,n = n
2π

mr

In this situation, we obtain a more specific expression of T̃Csh and T̃Crh as follows:

T̃Csh =



1 · · · cos

(
hm

2π

ms

)
· · · cos

(
h(ms − 1)

2π

ms

)

0 · · · sin

(
hm

2π

ms

)
· · · sin

(
h(ms − 1)

2π

ms

)


, m ∈ J0, ms − 1K (4.7)

T̃Crh =



1 · · · cos

(
hn

2π

mr

)
· · · cos

(
h(mr − 1)

2π

mr

)

0 · · · sin

(
hn

2π

mr

)
· · · sin

(
h(mr − 1)

2π

mr

)


, n ∈ J0, mr − 1K (4.8)

For a given wavelength order h ∈ N
⋆,

∃! (λ, k) ∈ N× J0, ms − 1K, h = λms + k

∃! (µ, l) ∈ N× J0, mr − 1K, h = µmr + l

As a result of the periodicity of sine and cosine functions,

T̃Csh =



1 · · · cos

(
km

2π

ms

)
· · · cos

(
k(ms − 1)

2π

ms

)

0 · · · sin

(
km

2π

ms

)
· · · sin

(
k(ms − 1)

2π

ms

)


 = T̃Csk, m ∈ J0, ms − 1K (4.9)

T̃Crh =



1 · · · cos

(
ln

2π

mr

)
· · · cos

(
l(mr − 1)

2π

mr

)

0 · · · sin

(
ln

2π

mr

)
· · · sin

(
l(mr − 1)

2π

mr

)


 = T̃Cs l, n ∈ J0, mr − 1K (4.10)

Consequently, there exist only ms different forms of the matrix T̃Csh and mr variants of T̃Crh, since
k ∈ J0, ms − 1K and l ∈ J0, mr − 1K. In addition, the two matrices can be represented by means of the
following complex vectors:[

1 · · · ejkm
2π
ms · · · ejk(ms−1) 2π

ms

]
∈ C

ms , (k, m) ∈ J0, ms − 1K2 (4.11a)

[
1 · · · ejln

2π
mr · · · ejl(mr−1) 2π

mr

]
∈ C

mr , (l, n) ∈ J0, mr − 1K2 (4.11b)

Considering all possible combinations of (4.11a) for k ∈ J0, ms − 1K yields the matrix:

Ws =




1 1 · · · · · · · · · 1

1 ej
2π
ms · · · ejm

2π
ms · · · ej(ms−1) 2π

ms

...
...

...
...

...
...

1 ejk
2π
ms · · · ejkm

2π
ms · · · ejk(ms−1) 2π

ms

...
...

...
...

...
...

1 ej(ms−1) 2π
ms · · · ej(ms−1)m 2π

ms · · · ej(ms−1)2 2π
ms




(4.12)
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4.1. Preliminary considerations

Ws is very similar to the ms ×ms Fourier matrix.

Definition 3: Fourier matrix
For ms ∈ N

⋆, the ms ×ms Fourier matrix, denoted Wms
, is defined as follows:

Wms
=

1√
ms




1 1 · · · · · · · · · 1
1 Wms · · · Wm

ms
· · · Wms−1

ms

...
...

...
...

...
...

1 W k
ms

· · · Wmk
ms

· · · W
(ms−1)k
ms

...
...

...
...

...
...

1 Wms−1
ms

· · · W
m(ms−1)
ms · · · W

(ms−1)2

ms




(4.13)

where Wms = e−j 2π
ms .

Remark 1:
The ms ×ms Fourier matrix is the matrix of the ms point Discrete Fourier Transform (DFT).

Remark 2:
In some sources such as [73], Wms = ej

2π
ms is used in the definition of the ms ×ms Fourier matrix

(and the one of the ms point DFT matrix).

Due to the close similarity betweenWs andWms
, thems×ms Fourier matrix seems to be a prospective

candidate for transforming vectors related to stator quantities. Using the same reasoning, vectors
involving rotor quantities will be transformed by means of the mr point DFT matrix.

4.1.2 Mathematical justification

Taking a closer look at the equations (4.2) and (4.7), the coefficient of L̃s h in row k and column l,
(k, l) ∈ J0, ms − 1K2, is:

L̃s h, kl = L̃s, h cos

[
(k − l)

2π

ms

]

It can be readily observed from the above relation that the entry in row k + 1 and column l + 1 is
equal to L̃s h, kl. It results from this property and the periodicity of the cosine function that the entries

in each column of L̃s h are shifted one position to the bottom compared to the column left of it with
wraparound to the top, i.e. L̃s h is circulant.

Proposition 7: Diagonalization of circulant matrices
For ms ∈ N

⋆, an ms ×ms circulant matrix is diagonalized by the ms ×ms Fourier matrix.

See [74, p. 287] for the proof.

Proposition 7 justifies the use of Fourier matrices for the transformation to be designed, as they enable
us to work with diagonal equivalents of L̃s h and L̃r h which are significantly easier to handle.
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4.1.3. Other important properties of Fourier matrices

4.1.3 Other important properties of Fourier matrices

We mention here two additional properties of Fourier matrices which will turn out to be instrumental
in the transformation of the linear geometric model.

Proposition 8: Important properties of Fourier matrices
For ms ∈ N

⋆,

1.) Wms
is symmetric, i.e. Wms

= W
⊤
ms

2.) Wms
is unitary: W

−1
ms

= Wms

⊤

Proof.

1.) The symmetry of Wms
results directly from its definition.

2.) For (k, l) ∈ J0, ms − 1K2, the coefficient of Wms
Wms

⊤
in row k and column l is:

1√
ms

[
1 · · · Wmk

ms
· · · W

(ms−1)k
ms

] 1√
ms




1
...

Wml
−ms

...

W
(ms−1)l
−ms




=
1

ms

ms−1∑

m=0

Wmk
ms
Wml

−ms
=

ms−1∑

m=0

e−jmk 2π
ms ejml 2π

ms

=
1

ms

ms−1∑

m=0

[
ej(l−k) 2π

ms

]m

=δkl =
1√
ms

[
1 · · · Wmk

−ms
· · · W

(ms−1)k
−ms

] 1√
ms




1
...

Wml
ms

...

W
(ms−1)l
ms




where δkl represents the Kronecker delta.

Consequently, Wms
Wms

⊤
= Wms

⊤
Wms

= Ims
, Ims

being the ms ×ms identity matrix.

4.1.4 Definition of transformed quantities

We introduce a transformation operator based on the Fourier matrix as follows:

Definition 4: Transformation operator
For n ∈ N

⋆, we define the following linear operator:

TWn : C
n −→ C

n

~x =
[
x0 · · · xn−1

]⊤ 7−→ TWn(~x) = x♮ =
[
x♮0 · · · x♮n−1

]⊤
= W

−1
n ~x

(4.14)
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The corresponding inverse operator, TW−1
n , is:

TW−1
n : C

n −→ C
n

x♮ =
[
x♮0 · · · x♮n−1

]⊤
7−→ TW−1

n (x♮) = ~x =
[
x0 · · · xn−1

]⊤
= Wnx

♮
(4.15)

Remark 3:
TWn is well-known in electrical engineering as ‘symmetrical component transformation’ for the analysis
of unbalanced conditions in power systems (cf. for instance [5, p. 548]). We will adopt a perspective
more common in signal processing and consider TWn as the Discrete Fourier Transform operator since
this is likely to be beneficial to the understanding of the behaviour of space harmonics.

With n = ms, the operator TWms
enables us to introduce transformed stator quantities:

Definition 5: Transformed stator voltage and current vectors
The transformed stator voltage and current vectors, u♮s ∈ C

ms and i♮s ∈ C
ms, are defined as follows:

u♮s = TWms
(~us) = W

−1
ms
~us (4.16a)

i♮s = TWms
(~is) = W

−1
ms

~is (4.16b)

Analogously, TWmr
allows for the definition of transformed rotor quantities:

Definition 6: Transformed rotor voltage and current vectors
The transformed rotor voltage and current vectors, u♮r ∈ C

mr and i♮r ∈ C
mr , are defined as follows:

u♮r = TWmr
(~ur) = W

−1
mr
~ur (4.17a)

i♮r = TWmr
(~ir) = W

−1
mr

~ir (4.17b)

A comparable transformation was used in [5] and [61] to simplify the analysis of multiphase induction
machines in presence of space harmonics, and in [75] in the specific case of three phase induction
machines with rotor cage. However, in all these references no relation was established with the
Discrete Fourier Transform.

4.2 Transforming the equations of the linear geometric model

4.2.1 Transformation of the voltage equations

We start with the transformation of the voltage equations assuming no interconnection between the
electrical circuits of the model. An interconnection matrix will be introduced later on to account for
the actual conductor configuration in the machine.

Combining relations (2.4) and (3.50), we obtain:



~us

~ur


 =



Rs 0

0 Rr





~is

~ir


+



L̃s + Lσs L̃rs(θr)

L̃sr(θr) L̃r + Lσr







d~is
dt

d~ir
dt


+ ωr




0
∂L̃rs(θr)

∂θr

∂L̃sr(θr)

∂θr
0






~is

~ir


 (4.18)

Applying TWms
to the first line of (4.18) provides the expression of the transformed voltage vector u♮s:

u♮s = W
−1
ms
~us = W

−1
ms

Rs
~is +W

−1
ms

(
L̃s + Lσs

)d~is
dt

+W
−1
ms

L̃rs(θr)
d~ir
dt

+ ωrW
−1
ms

∂L̃rs(θr)

∂θr
~ir (4.19)
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The quantities ~is and ~ir in (4.19) are eliminated by applying TW−1
ms

and TW−1
mr

respectively:

u♮s = W
−1
ms

RsWms
i♮s +W

−1
ms

(
L̃s + Lσs

)dWms
i♮s

dt
+W

−1
ms

L̃rs(θr)
dWmr

i♮r
dt

+ ωrW
−1
ms

∂L̃rs(θr)

∂θr
Wmr

i♮r

= W
−1
ms

RsWms
i♮s +W

−1
ms

LσsWms

di♮s
dt

+W
−1
ms

L̃sWms

di♮s
dt

+W
−1
ms

L̃rs(θr)Wmr

di♮r
dt

+ ωr
∂W−1

ms
L̃rs(θr)Wmr

∂θr
i♮r (4.20)

Introducing the following matrices,

R♮
s = W

−1
ms

RsWms
(4.21a)

L♮
σs = W

−1
ms

LσsWms
(4.21b)

L̃♮
s = W

−1
ms

L̃sWms
(4.21c)

L̃♮
rs(θr) = W

−1
ms

L̃rs(θr)Wmr
(4.21d)

the transformed stator voltage equation becomes:

u♮s = R♮
si

♮
s +

(
L♮
σs + L̃♮

s

)di♮s
dt

+ L̃♮
rs(θr)

di♮r
dt

+ ωr
∂L̃♮

rs(θr)

∂θr
i♮r (4.22)

Similarly, the rotor voltage equation is gained from the second line of (4.18) by means of TWmr
and

TW−1
mr

:

u♮r = W
−1
mr
~ur = W

−1
mr

Rr
~ir +W

−1
mr

(
L̃r + Lσr

)d~ir
dt

+W
−1
mr

L̃sr(θr)
d~is
dt

+ ωrW
−1
mr

∂L̃sr(θr)

∂θr
~is

= W
−1
mr

RrWmr
i♮r +W

−1
mr

LσrWmr

di♮r
dt

+W
−1
mr

L̃rWmr

di♮r
dt

+W
−1
mr

L̃sr(θr)Wms

di♮s
dt

+ ωr
∂W−1

mr
L̃sr(θr)Wms

∂θr
i♮s

= R♮
ri

♮
r +

(
L♮
σr + L̃♮

r

)di♮r
dt

+ L̃♮
sr(θr)

di♮s
dt

+ ωr
∂L̃♮

sr(θr)

∂θr
i♮s (4.23)

where

R♮
r = W

−1
mr

RrWmr
(4.24a)

L♮
σr = W

−1
mr

LσrWmr
(4.24b)

L̃♮
r = W

−1
mr

L̃rWmr
(4.24c)

L̃♮
sr(θr) = W

−1
mr

L̃sr(θr)Wms
(4.24d)

Combining stator and rotor quantities into a single vector, we obtain:

u♮s

u♮r


 =



R♮

s 0

0 R♮
r





i♮s

i♮r


+



L̃♮
s + L♮

σs L̃♮
rs(θr)

L̃♮
sr(θr) L̃♮

r + L♮
σr


 d

dt



i♮s

i♮r


+
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4.2. Transforming the equations of the linear geometric model

ωr
∂

∂θr



L̃♮
s + L♮

σs L̃♮
rs(θr)

L̃♮
sr(θr) L̃♮

r + L♮
σr





i♮s

i♮r


 (4.25)

Introducing the definitions,

i♮ =



i♮s

i♮r


 u♮ =



u♮s

u♮r


 R♮ =



R♮

s 0

0 R♮
r




L♮
σ =



L♮
σs 0

0 L♮
σr


 L̃♮(θr) =




L̃♮
s L̃♮

rs(θr)

L̃♮
sr(θr) L̃♮

r


 L♮(θr) =



L̃♮
s + L♮

σs L̃♮
rs(θr)

L̃♮
sr(θr) L̃♮

r + L♮
σr


 = L̃♮ + L♮

σ

(4.25) becomes:

u♮ = R♮i♮ + L♮(θr)
di♮

dt
+ ωr

∂L♮(θr)

∂θr
i♮ (4.26)

Eq. (4.26) represents the voltage equation of the transformed linear geometric model.

4.2.2 Transformation of the torque equation

Using (2.18) and applying TW−1
ms

and TW−1
mr

while recalling that ~is ∈ R
ms , we obtain an expression of

the electromechanical torque depending on the stator and rotor transformed currents:

MM =~is
⊤∂L̃rs(θr)

∂θr
~ir = Wms

i♮s
⊤∂L̃rs(θr)

∂θr
Wmr

i♮r

= i♮s
⊤ ∂

∂θr

[
Wms

⊤
L̃rs(θr)Wmr

]
i♮r = i♮s

⊤ ∂

∂θr

[
W

−1
ms

L̃rs(θr)Wmr

]
i♮r

= i♮s
⊤∂L̃♮

rs(θr)

∂θr
i♮r (4.27)

The expression of the electromechanical torque given in (4.27) is consistent with [75].

In some situations, it may be preferable to express the torque as a function of i♮ and L♮(θr):

MM =
1

2

[
i♮s

⊤∂L̃♮
rs(θr)

∂θr
i♮r + i♮s

⊤∂L̃♮
rs(θr)

∂θr
i♮r

]
=

1

2


i♮s

⊤∂L̃♮
rs(θr)

∂θr
i♮r +

(
i♮s

⊤∂L̃♮
rs(θr)

∂θr
i♮r

)⊤



=
1

2


i♮s

⊤∂L̃♮
rs(θr)

∂θr
i♮r + i♮r

⊤∂L̃♮
sr(θr)

∂θr

⊤

i♮s


 =

1

2

[
i♮s

⊤∂L̃♮
rs(θr)

∂θr
i♮r + i♮r

⊤∂L̃♮
rs(θr)

∂θr
i♮s

]

=
1

2

[
i♮s

⊤

i♮r
⊤
]



0
∂L̃♮

rs(θr)

∂θr
∂L̃♮

sr(θr)

∂θr
0






i♮s

i♮r




=
1

2
i♮
⊤∂L̃♮(θr)

∂θr
i♮ =

1

2
i♮
⊤∂L♮(θr)

∂θr
i♮ (4.28)
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4.2.3 Properties of the transformed resistance matrices R♮
s
and R♮

r

We now take a closer look at the structure of the transformed matrices introduced in section 4.2.1 and
start with the resistance matrices R♮

s and R♮
r. In the general case where each circuit has a different

resistance, the matrices Rs and Rr have the following form:

Rs = diag
[
Rs0, . . . Rsm, . . . Rsms−1

]

Rr = diag
[
Rr0, . . . Rrn, . . . Rrmr−1

]

Note that Rs and Rr are diagonal but not circulant. Applying the transformation to these matrices
will not produce a diagonal matrix. The coefficient in row k ∈ J0, ms − 1K and column l ∈ J0, ms − 1K

of R♮
s is given by:

R♮
s, kl =

1

ms

ms−1∑

l′=0

W kl′

−ms
Rs l′W

l′l
ms

=
1

ms

ms−1∑

l′=0

Rs l′W
l′(l−k)
ms

This expression cannot be further simplified without additional assumptions. When presuming that
all stator (rotor) circuits have the same resistance Rs (Rr resp.), i.e.

Rs = RsIms
and Rr = RrImr

R♮
s and R♮

r are diagonal as well:

R♮
s = W

−1
ms
RsIms

Wms
= RsIms

(4.29)

R♮
r = W

−1
mr
RrImr

Wmr
= RrImr

(4.30)

4.2.4 Properties of the transformed leakage inductance matrices L♮
σs and L♮

σr

If each circuit has a different leakage inductance, the matrices Lσs and Lσr are diagonal but not
circulant :

Lσs = diag
[
Lσs0, . . . Lσsm, . . . Lσsms−1

]

Lσr = diag
[
Lσr0, . . . Lσrn, . . . Lσrmr−1

]

The coefficient in row k ∈ J0, ms − 1K and column l ∈ J0, ms − 1K of L♮
σs is:

L♮
σs, kl =

1

ms

ms−1∑

l′=0

Lσs l′W
l′(l−k)
ms

and cannot be simplified. Assuming that all stator (rotor) circuits have the same leakage inductance
Lσs (Lσr resp.), i.e.:

Lσs = LσsIms
and Lσr = LσrImr

results in L♮
σs and L♮

σr being diagonal:

L♮
σs = W

−1
ms
LσsIms

Wms
= LσsIms

(4.31)

L♮
σr = W

−1
mr
LσrImr

Wmr
= LσrImr

(4.32)

4.2.5 Properties of the transformed main inductance matrices

In order to gain insight into the influence of each wavelength present in the air-gap quantities, the
transformation will be carried out on the inductance submatrices associated with a single wavelength
order h ∈ N

⋆, i.e. L̃s h and L̃rs h(θr) on the stator side and L̃r h and L̃sr h(θr) on the rotor side. As in
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section 3.4.5, the expression of the transformed total main inductance matrix is obtained subsequently
by adding the contributions of all wavelengths.

Transformed stator main inductance matrix of wavelength h, L̃♮
s h

The transformed stator main inductance matrix of wavelength h is defined as follows:

L̃♮
s h

= W
−1
ms

L̃s hWms
(4.33)

Owing to section 4.1 and, since the coefficients of L̃s h are real numbers,

L̃♮
s h

= Wms

⊤
L̃s, hT̃

⊤
CshT̃CshWms

= L̃s, hT̃CshWms

⊤

T̃CshWms
(4.34)

Furthermore, there exists a unique k0 ∈ J0, ms − 1K such that

L̃♮
s h

= L̃s, hT̃Csk0
Wms

⊤

T̃Csk0
Wms

(4.35)

Working out the matrix product in (4.35) leads to the following general expression of L̃♮
s h

as a diagonal
matrix with at most two non-zero eigenvalues (see details in appendix A.2.3):

L̃♮
s h

=
ms

2
L̃s, h




m=k0 m=ms−k0

0 0

0
... 0

... 0
0 0

k=k0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0

0
... 0

... 0
0 0

k=ms−k0 0 · · · 0 0 0 · · · 0 1 0 · · · 0
0 0

0
... 0

... 0
0 0




(4.36)

Note that the position of the non-zero diagonal elements depends on the wavelength order considered.

Transformed rotor main inductance matrix of wavelength h, L̃♮
rh

The transformation of the rotor main inductance matrix associated with wavelength h is performed
analogously:

L̃♮
r h

= W
−1
mr

L̃r hWmr

= Wmr

⊤
L̃r, hT̃

⊤
CrhT̃CrhWmr

= L̃r, hT̃CrhWmr

⊤

T̃CrhWmr
(4.37)

There exists a unique l0 ∈ J0, mr − 1K such that

L̃♮
r h

= L̃r, hT̃Cr l0
Wmr

⊤

T̃Cr l0
Wmr

(4.38)
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The computation of the matrix product in (4.38) yields a diagonal matrix with at most two non-zero
eigenvalues as well (cf. appendix A.2.3):

L̃♮
rh

=
mr

2
L̃r, h




n=l0 n=mr−l0

0 0

0
... 0

... 0
0 0

l=l0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0

0
... 0

... 0
0 0

l=mr−l0 0 · · · 0 0 0 · · · 0 1 0 · · · 0
0 0

0
... 0

... 0
0 0




(4.39)

The wavelength order determines the position of the non-zero entries on the diagonal.

Transformed mutual inductance matrix of wavelength h

The mutual inductance matrix for the wavelength of order h, L̃rs h(θr), is transformed as follows:

L̃♮
rs h

= W
−1
ms

L̃rs hWmr

= Wms

⊤
LM,hT̃

⊤
CshT(θ′r, h)T̃CrhWmr

= LM,hT̃CshWms

⊤

T(θ′r, h)T̃CrhWmr
(4.40)

where θ′r, h = hθr − ϕh.

A detailed analysis of above matrix product can be found in appendix A.2.3 and demonstrates that,
in the general case, at most two entries of L̃♮

rs h
are non-zero:

L̃♮
rs h

= LM,h

√
msmr

2




n=l0 n=mr−l0

0 0

0
... 0

... 0
0 0

k=k0 0 · · · 0 ejθ
′

r, h 0 · · · 0 0 0 · · · 0
0 0

0
... 0

... 0
0 0

k=ms−k0 0 · · · 0 0 0 · · · 0 e−jθ′
r, h 0 · · · 0

0 0

0
... 0

... 0
0 0




(4.41)

As for the transformed stator and rotor inductance submatrices, the position of the non-zero elements
results from the wavelength order under consideration.

The transformation of the matrix expressing the contribution of stator currents to rotor fluxes,
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L̃sr h(θr), is straightforward:

L̃♮
sr h

= W
−1
mr

L̃sr hWms
= Wmr

⊤
L̃⊤
rs hWms

=
[
W

⊤
ms

L̃rs hWmr

]⊤

As the coefficients of L̃rs h(θr) are real, L̃rs h(θr) = L̃rs h(θr) and

L̃♮
sr h

=
[
Wms

⊤
L̃rs hWmr

]⊤
=
[
W

−1
ms L̃rs hWmr

]⊤
= L̃♮

rs h

⊤

(4.42)

Transformed total main inductance matrix L̃♮

For a given wavelength h, the above results show that the transformation operators TWms
and TWmr

,
besides diagonalizing the stator and rotor inductance submatrices, produce particularly simple trans-
formed mutual inductance submatrices. In order to examine the consequences for the total main
inductance matrix, we introduce the following linear map:

Definition 7:
For (m, n) ∈ (N⋆)2, let Γ(m,n) be the linear map:

Γ(m,n) : Mm,n(C) −→ Mm,n(C)

M 7−→ Γ(m,n)(M) = W
−1
m MWn

(4.43)

where Mm,n(C) is the set of m× n matrices with entries in C.

The relations (4.33), (4.37) and (4.40), which relate an inductance submatrix to its transformed
representation, can be rewritten as follows:

L̃♮
s h

= Γ(ms,ms)(L̃s h) (4.44)

L̃♮
rh

= Γ(mr,mr)(L̃r h) (4.45)

L̃♮
rs h

= Γ(ms,mr)(L̃rs h) (4.46)

Recalling the definition of L̃H, with H ⊂ N
⋆,

LH =




∑

h∈H

L̃s h

∑

h∈H

L̃rs h(θr)

∑

h∈H

L̃sr h(θr)
∑

h∈H

L̃rh


 (4.47)

we introduce the transformed main inductance matrix for the set of wavelengths H in accordance with
the rules set out in section 4.2.1:

L̃♮
H
=




Γ(ms,ms)

(
∑

h∈H

L̃s h

)
Γ(ms,mr)

(
∑

h∈H

L̃rs h(θr)

)

Γ(mr,ms)

(
∑

h∈H

L̃sr h(θr)

)
Γ(mr,mr)

(
∑

h∈H

L̃rh

)




(4.48)
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Owing to the linearity of Γ,

L̃♮
H
=




∑

h∈H

L̃♮
s h

∑

h∈H

L̃♮
rs h

(θr)

∑

h∈H

L̃♮
sr h

(θr)
∑

h∈H

L̃♮
r h


 (4.49)

Note also that Γ being a linear map in a finite dimensional vector space, it is continuous. For this
reason, the partial sum 



N∑

h=1

L̃♮
s h

N∑

h=1

L̃♮
rs h

(θr)

N∑

h=1

L̃♮
sr h

(θr)
N∑

h=1

L̃♮
r h



, N ∈ N

⋆

converges towards

L̃♮(θr) =




∑

h∈N⋆

L̃♮
s h

∑

h∈N⋆

L̃♮
rs h

(θr)

∑

h∈N⋆

L̃♮
sr h

(θr)
∑

h∈N⋆

L̃♮
rh




(4.50)

when N −→ ∞ and

L̃♮(θr) =




W
−1
ms

[
∑

h∈N⋆

L̃s h

]
Wms

W
−1
ms

[
∑

h∈N⋆

L̃rs h(θr)

]
Wmr

W
−1
mr

[
∑

h∈N⋆

L̃sr h(θr)

]
Wms

W
−1
mr

[
∑

h∈N⋆

L̃r h

]
Wmr




=



W

−1
ms

L̃sWms
W

−1
ms

L̃rsWmr

W
−1
mr

L̃srWms
W

−1
mr

L̃rWmr


 =



W

−1
ms

0

0 W
−1
mr


L̃(θr)



Wms

0

0 Wmr


 (4.51)

The results (4.49) and (4.51) justify our approach to first transform the inductance matrices of each
single wavelength and, in a second step, add their contributions together to obtain the inductance
matrices of the transformed model. This observation allows us to draw the following conclusions:

• the transformed total stator and rotor inductance submatrices are diagonal;

• the transformed mutual inductance matrices become dense when the number of considered
wavelengths increases.

Moreover, these statements together with the position of the non-zero eigenvalues of the transformed
stator main inductance submatrix L̃♮

s provide us with a means of segregating the wavelengths depend-
ing on their impact on the components of transformed stator quantities. Assuming a finite number
of wavelengths is taken into account, if the greatest wavelength order considered is less than half the
number of stator circuits, ms/2, the effect of each wavelength will indeed be reflected in a separate
component of the transformed stator current and flux linkage vectors. This is due to the fact that the
non-zero eigenvalues of L̃♮

s appear at different positions on the diagonal.

In contrast, if the order of at least one wavelength is greater than ms/2, some eigenvalues of L̃♮
s may

be the sum of contributions arising from different wavelengths, the effect of which then appears in the
same components of the transformed stator current and flux linkage vectors. A well-known analogy
is the ‘aliasing’ phenomenon which occurs when a signal is sampled at a frequency less than twice
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the maximal frequency present in its spectrum. Thus, using as many stator circuits in the model
as possible may seem advantageous if the objective is to understand the influence of every single
wavelength on the machine behaviour. However, we will see in the analysis of practical examples that
the necessary process of interconnecting the circuits to account for the winding configuration of the
real machine is a limiting factor in that respect.

4.2.6 Continuous-time transformed state-space model

The relations (4.26), (4.27) and (2.19) provide all the information required to set up a transformed
state-space model of the induction machine which includes the effect of conductor distribution har-
monics. We select the components of the transformed current vector i♮, alongside the rotor angular
velocity ωr and the rotor angle θr as state variables. The components of the transformed voltage
vector u♮ and the load torque ML will be the model inputs.

To do so, we need to ensure that the transformed total inductance matrix L♮ is invertible, since the
voltage equation (4.26) has to be solved for the current vector derivative. This is readily verified by
taking a look at the relation between L♮(θr) and L(θr):

L♮(θr) =



Wms

0

0 Wmr



−1

L(θr)



Wms

0

0 Wmr




Thus, L♮(θr) and L(θr) are similar and L(θr) having full rank, so does L♮(θr).

The continuous-time state-space model of the transformed linear geometric model follows:


di♮

dt
= −L♮−1

(θr)

[
R♮ + ωr

∂L♮(θr)

∂θr

]
i♮ + L♮−1

(θr)u
♮

dωr

dt
=

1

JM

[
1

2
i♮
⊤∂L♮(θr)

∂θr
i♮ −ML − CWωr

]

dθr
dt

= ωr

(4.52a)

(4.52b)

(4.52c)

Note that the general form of the equations describing the transformed model is the same as the one
of the original (cf. (3.62)). This is to be expected since both models represent the same physical
phenomena and confirms that the transformation is consistent.

Similarly to section 3.6, it is convenient to introduce the notations

A♮(ωr, θr) = −L♮−1
(θr)

[
R♮ + ωr

∂L♮(θr)

∂θr

]
; B♮(θr) = L♮−1

(θr)

which lead to the following compact model representation:


di♮

dt
= A♮(ωr, θr)i

♮ +B♮(θr)u
♮

dωr

dt
=

1

JM

[
1

2
i♮
⊤∂B♮−1

(θr)

∂θr
i♮ −ML − CWωr

]

dθr
dt

= ωr

(4.53a)

(4.53b)

(4.53c)
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4.2.7 Transformation in presence of circuit interconnections

As described in the previous chapters, it is necessary to interconnect the electrical circuits present in
the model in order to achieve a correct representation of the considered machine. This aspect has
not been addressed in our approach so far, as potential constraints on the components of u♮, i.e. the
model inputs, have been ignored. In order to tackle this issue, we make use of the interconnection
matrices Cs and Cr alongside the vectors of independent stator (rotor) voltages and currents, ~u′s and
~i′s (~u′r and ~i′r resp.), as we did in chapter 3.

Combining relation (2.26a) and the definition of i♮s, we obtain:

i♮s = W
−1
ms

Cs
~i′s =

[
Wms

⊤
Cs

]
~i′s (4.54a)

Definition 8: Transformation matrix for independent stator currents

We denote Zs the matrix product Wms

⊤
Cs. Zs ∈ Mms×m′

s
(C)

Therefore, Zs allows for the computation of the transformed stator currents from the independent
stator currents.

Similarly, substituting the definition of u♮s into (2.26b) and recalling that Cs = Cs yields:

~u′s = C⊤
s Wms

u♮s =
[
Wms

⊤
Cs

]⊤
u♮s

= Zs
⊤
u♮s (4.54b)

Thus, the complex conjugate transpose of Zs enables us to calculate the independent stator voltages
from the transformed stator voltages.

Analogously, the relations for rotor quantities are:

i♮r = W
−1
mr

Cr
~i′r =

[
Wmr

⊤
Cr

]
~i′r (4.55a)

~u′r =
[
Wmr

⊤
Cr

]⊤
u♮r (4.55b)

Definition 9: Transformation matrix for independent rotor currents

The matrix product Wmr

⊤
Cr is denoted Zr. Zr ∈ Mmr×m′

r
(C)

Remark 4: Transformation of rotor voltages for squirrel-cage machines
Following the considerations in section 2.3.4, the interconnection matrix for the circuits of a rotor
cage is the identity matrix. Since ~u′r = ~ur = ~0, u♮r = 0 as well.

If necessary, stator and rotor equations can be combined together, which results in the subsequent
relations:

i♮ =



i♮s

i♮r


 =



Zs 0

0 Zr





~i′s

~i′r


 = Z~i′ where Z =



Zs 0

0 Zr


 (4.56a)

~u′ =



~u′s

~u′r


 =



Zs

⊤
0

0 Zr
⊤





u♮s

u♮r


 = Z

⊤
u♮ (4.56b)

Substituting these expressions into the voltage equation (4.26) leads to:

~u′ = Z
⊤
u♮ = Z

⊤
R♮i♮ + Z

⊤
L♮di

♮

dt
+ ωrZ

⊤∂L♮

∂θr
i♮
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= Z
⊤
R♮

Z~i′ + Z
⊤
L♮

Z
d~i′

dt
+ ωr

∂Z
⊤
L♮

Z

∂θr
~i′ (4.57)

A comparison of this result with (3.55) yields the following relations:

R′ = Z
⊤
R♮

Z (4.58a)

L′ = Z
⊤
L♮

Z (4.58b)

Remark 5:
The fact that Z is not invertible hinders the determination of u♮ from ~u′ (or ~i′ from i♮). Although this
may seem at first sight problematic, we will discuss workarounds while analysing practical examples.

4.3 Application to the investigated machines

4.3.1 Adopted approach

Discussing several examples involving the machines IM1 and IM2, we will see how the general form of
the transformed model (4.53) evolves when a few wavelengths are considered. This will also provide
the opportunity to illustrate the method for setting up the model equations. More specifically, we will
focus on:

1.) the derivation of the fundamental model (i.e. the model with H = {1}) for IM1, to show the
consistency of the proposed approach;

2.) the extension of the fundamental model to the wavelength of order 17 (H = {1; 17});

3.) the derivation of the transformed model of IM2 with H = {2; 26}.

The equations of each model will be derived step-by-step with detailed intermediate calculations to
help the reader understand the methodology. The workflow includes the following tasks:

1.) work out the expressions of the transformed inductance matrices for each of the wavelengths
taken into account;

2.) deduce the transformed total inductance matrix;

3.) set up the voltage and torque equations of the transformed model;

4.) eliminate the unnecessary voltage equations to determine the state-space representation of the
transformed model.

The transformed model of IM1 with H = {1; 17} and the one of IM2 with H = {2; 26} will be
compared to the original versions presented in chapter 3 by means of simulations and experiments.
These two models are also discussed in [76].

In addition to the hypotheses made in section 3.3, we assume that all stator windings have the same
resistance Rs and the same leakage inductance Lσs. Likewise, all circuits modelling the rotor cage
have the resistance Rr and the leakage inductance Lσr. As explained in sections 4.2.3 and 4.2.4, this
is necessary to ensure that the transformed resistance and leakage inductance matrices are diagonal.
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4.3.2 Deriving the fundamental model of a squirrel cage induction machine

We illustrate the derivation of the well-known fundamental model of induction machines in the case
of IM1. We therefore consider that the conductor distribution functions as well as the air-gap flux
density distribution exhibit a single wavelength of order h = 1. Hence, the distributed quantities are
sinusoidal functions of the air-gap coordinates, which corresponds to Park’s modelling hypotheses.

We recall from section 3.7.1 that each of the ws = 3 stator windings of IM1 is modelled using an
electrical circuit, i.e. ms = 3. The cage with Nr = 16 rotor bars is accounted for with mr = 16 rotor
circuits.

Transformed stator and rotor resistance matrices

As stator circuits are assumed to have the same resistance, following (4.29), the transformed stator
resistance matrix results in:

R♮
s = Rs




m=0 m=2

k=0 1 0 0
0 1 0

k=2 0 0 1


 (4.59)

Similarly, (4.30) yields:

R♮
r = Rr




n=0 n=15

l=0 1

0
0

l=15 1


 (4.60)

Transformed stator and rotor leakage inductance matrices

The leakage inductance of all stator circuits being the same, eq. (4.31) leads to the following expression
for the transformed stator leakage inductance matrix:

L♮
σs = Lσs




m=0 m=2

k=0 1 0 0
0 1 0

k=2 0 0 1


 (4.61)

Likewise, from (4.32) follows:

L♮
σr = Lσr




n=0 n=15

l=0 1

0
0

l=15 1


 (4.62)
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Transformed main inductance matrices of the fundamental wave

The fundamental wave has the order h = 1. As ms = 3 and mr = 16,
[
h ≡ 1 (mod ms)

h ≡ 1 (mod mr)
=⇒

[
k0 = 1 6= ms − k0 = 2

l0 = 1 6= mr − l0 = 15

Consequently, the expressions of the transformed inductance matrices L̃♮
s 1
, L̃♮

r 1
, L̃♮

rs 1
, given by (4.36),

(4.39) and (4.41) respectively, are:

L̃♮
s 1

=
3

2
L̃s, 1




m=0 m=2

k=0 0 0 0
0 1 0

k=2 0 0 1


 (4.63)

L̃♮
r 1

=
16

2
L̃r, 1




n=0 n=15

l=0 0

1 0
0

0 0
l=15 1




(4.64)

L̃♮
rs 1

=

√
3× 16

2
LM, 1




n=0 n=15

k=0 0 0 0 0 0 0

0 ejθ
′

r, 1 0 0 0 0 0

k=2 0 0 0 0 0 e−jθ′r, 1


 (4.65)

Transformed voltage equations

Substituting the expressions obtained above for the resistance and inductance matrices into the trans-
formed stator voltage equation (4.22) yields:



u♮s, 0

u♮s, 1

u♮s, 2



=




Rsi
♮
s, 0

Rsi
♮
s, 1

Rsi
♮
s, 2



+




Lσs 0 0

0 Lσs +
3

2
L̃s, 1 0

0 0 Lσs +
3

2
L̃s, 1



d

dt




i♮s, 0

i♮s, 1

i♮s, 2




+ 2
√
3LM, 1



di♮r, 1
dt




0

ejθ
′

r, 1

0


+

di♮r, 15
dt




0

0

e−jθ′r, 1







+ jωr2
√
3LM, 1


i

♮
r, 1




0

ejθ
′

r, 1

0


+ i♮r, 15




0

0

−e−jθ′r, 1





 (4.66)
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This leads to the following differential system:



u♮s, 0 = Rsi
♮
s, 0 + Lσs

di♮s, 0
dt

u♮s, 1 = Rsi
♮
s, 1 +

(
Lσs +

3

2
L̃s, 1

)
di♮s, 1
dt

+ 2
√
3LM, 1e

jθ′r, 1
di♮r, 1
dt

+ jωr2
√
3LM, 1e

jθ′r, 1i♮r, 1

u♮s, 2 = Rsi
♮
s, 2 +

(
Lσs +

3

2
L̃s, 1

)
di♮s, 2
dt

+ 2
√
3LM, 1e

−jθ′r, 1
di♮r, 15
dt

− jωr2
√
3LM, 1e

−jθ′r, 1i♮r, 15

(4.67)

In the same way, the transformed rotor voltage equation (4.23) is rewritten using the previously
determined resistance and inductance matrices:



u♮r, 0

u♮r, 1

u♮r, 2

...

u♮r, 14

u♮r, 15




=




Rri
♮
r, 0

Rri
♮
r, 1

Rri
♮
r, 2

...

Rri
♮
r, 14

Rri
♮
r, 15




+




Lσr

Lσr + 8L̃r, 1 0

Lσr

0 Lσr

Lσr + 8L̃r, 1




d

dt




i♮r, 0

i♮r, 1

i♮r, 2

...

i♮r, 14

i♮r, 15




+ 2
√
3LM, 1




di♮s, 1
dt




0

e−jθ′r, 1

0

...

0




+
di♮s, 2
dt




0

0

ejθ
′

r, 1







+ jωr2
√
3LM, 1




i♮s, 1




0

−e−jθ′r, 1

0

...

0




+ i♮s, 2




0

0

ejθ
′

r, 1







(4.68)
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The foregoing relations result in the subsequent system of differential equations:



0 = Rri
♮
r, 0 + Lσr

di♮r, 0
dt

0 = Rri
♮
r, 1 +

(
Lσr + 8L̃r, 1

)di♮r, 1
dt

+ 2
√
3LM, 1e

−jθ′r, 1
di♮s, 1
dt

− jωr2
√
3LM, 1e

−jθ′r, 1i♮s, 1

0 = Rri
♮
r, 2 + Lσr

di♮r, 2
dt

...
...

0 = Rri
♮
r, 14 + Lσr

di♮r, 14
dt

0 = Rri
♮
r, 15 +

(
Lσr + 8L̃r, 1

)di♮r, 15
dt

+ 2
√
3LM, 1e

jθ′r, 1
di♮s, 2
dt

+ jωr2
√
3LM, 1e

jθ′r, 1i♮s, 2

(4.69)

Simplifying the voltage equations

Assuming that all rotor currents are initially zero, i.e. ∀n ∈ J0, mr − 1K, i♮r, n(0) = 0, (4.69) ensures

that ∀n ∈ J0, mr − 1K \ {1, 15}, ∀ t ∈ R
+, i♮r, n(t) = 0.

Hence, (4.69) can be reduced to a system of two differential equations:


0 = Rri
♮
r, 1 +

[
Lσr + 8L̃r, 1

]di♮r, 1
dt

+ 2
√
3LM, 1e

−jθ′r, 1
di♮s, 1
dt

− jωr2
√
3LM, 1e

−jθ′r, 1i♮s, 1

0 = Rri
♮
r, 15 +

[
Lσr + 8L̃r, 1

]di♮r, 15
dt

+ 2
√
3LM, 1e

jθ′r, 1
di♮s, 2
dt

+ jωr2
√
3LM, 1e

jθ′r, 1i♮s, 2

(4.70)

At this stage, it is interesting to examine the case of delta and star connections of stator windings
separately:

• Case 1: delta connection
The delta connection does not introduce any restriction regarding the currents flowing through the
stator windings. However, the following constraint applies to the voltages at their terminals:

us0 + us1 + us2 = 0

⇐⇒ ~us =
[
us0 us1 us2

]⊤ ∈ span
([

1 1 1
]⊤)⊥

Since

TW3





1
1
1




 =




√
3
0
0


 ∈ span

([
1 0 0

]⊤)

~us ∈ span





1
1
1






⊥

⇐⇒ u♮s = TW3(~us) ∈ span





0
1
0


,



0
0
1






⇐⇒ ∀ t ∈ R
+, u♮s, 0(t) = 0
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Stator currents being initially equal to zero, the above relations imply that: ∀ t ∈ R
+, i♮s, 0(t) = 0.

• Case 2: star connection
The interconnection matrix for stator circuits takes the form

Cs, IM1 =




1 0
0 1
−1 −1




leading to the transformation matrix between ~i′s ∈ R
2 and i♮s ∈ C

3:

Zs, IM1 = W3
⊤
Cs, IM1 =

1√
3




0 0

1− ej4π/3 ej2π/3 − ej4π/3

1− ej2π/3 ej4π/3 − ej2π/3




= −j




0 0

ej2π/3 −1

ejπ/3 1


 (4.71)

This results in i♮s ∈ span





0
1
0


,



0
0
1




. Hence, ∀ t ∈ R

+, i♮s, 0(t) = 0.

Consequently, in both cases, (4.67) can be simplified as follows:



u♮s, 1 = Rsi
♮
s, 1 +

(
Lσs +

3

2
L̃s, 1

)
di♮s, 1
dt

+ 2
√
3LM, 1e

jθ′r, 1
di♮r, 1
dt

+ jωr2
√
3LM, 1e

jθ′r, 1i♮r, 1

u♮s, 2 = Rsi
♮
s, 2 +

(
Lσs +

3

2
L̃s, 1

)
di♮s, 2
dt

+ 2
√
3LM, 1e

−jθ′r, 1
di♮r, 15
dt

− jωr2
√
3LM, 1e

−jθ′r, 1i♮r, 15

(4.72)

The components of the vector ~is being real, for all m ∈ J0, ms − 1K,

i♮s,ms−m =

ms−1∑

k=0

iske
j 2π
ms

k(ms−m) =

ms−1∑

k=0

iske
−j 2π

ms
km = i♮s,m (4.73)

For this reason, i♮s, 2 = i♮s, 1. Likewise, i
♮
r, 15 = i♮r, 1.

In consequence, the evolution of stator and rotor currents can be described by the two differential
equations below:



u♮s, 1 = Rsi
♮
s, 1 +

(
Lσs +

3

2
L̃s, 1

)
di♮s, 1
dt

+ 2
√
3LM, 1e

jθ′r, 1
di♮r, 1
dt

+ jωr2
√
3LM, 1e

jθ′r, 1i♮r, 1

0 = Rri
♮
r, 1 +

(
Lσr + 8L̃r, 1

)di♮r, 1
dt

+ 2
√
3LM, 1e

−jθ′r, 1
di♮s, 1
dt

− jωr2
√
3LM, 1e

−jθ′r, 1i♮s, 1

(4.74)

Owing to the previous considerations, (4.74) completely describes the electrical behaviour of the
machine and therefore carries the same amount of information as (4.67) and (4.69) together. It

becomes apparent that only two complex components of the transformed voltage vector, u♮s, 1 and

u♮r, 1, as well as two of the transformed current vector, i♮s, 1 and i♮r, 1, are required. This property
explains the drastic reduction of model order achieved with the well-known Clarke transformation.
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Rewriting (4.74) as:



u♮s, 1 = Rsi
♮
s, 1 +

(
Lσs +

3

2
L̃s, 1

)
di♮s, 1
dt

+ 2
√
3LM, 1

dejθ
′

r, 1i♮r, 1
dt

0 = Rri
♮
r, 1 +

(
Lσr + 8L̃r, 1

)di♮r, 1
dt

+ 2
√
3LM, 1

de−jθ′r, 1i♮s, 1
dt

(4.75)

and introducing the notations

i♭s, 1 = i♮s, 1e
−jθ′r, 1 (4.76a)

i♯r, 1 = i♮r, 1e
jθ′r, 1 (4.76b)

yields: 


u♮s, 1 = Rsi
♮
s, 1 +

(
Lσs +

3

2
L̃s, 1

)
di♮s, 1
dt

+ 2
√
3LM, 1

di♯r, 1
dt

0 = Rri
♮
r, 1 +

(
Lσr + 8L̃r, 1

)di♮r, 1
dt

+ 2
√
3LM, 1

di♭s, 1
dt

(4.77)

The above change of variable leading to (4.77) corresponds to the familiar Park transformation and
results in electrical equations independent of the rotor angle.

Referring rotor quantities to the stator side

In order to allow for comparisons with the usual modelling approach of induction machines, it is
insightful to refer the second equation in (4.77) to the stator side. Recalling the expressions of the
inductances L̃s, 1, L̃r, 1 and LM, 1 from (3.33):

L̃s, 1 = 4πrl
µ0
δ0

|c1(Ws0)|2

L̃r, 1 = 4πrl
µ0
δ0

|c1(Wr0)|2

LM, 1 = 4πrl
µ0
δ0

|c1(Wr0)||c1(Ws0)|

and defining M1 =
3

2
L̃s, 1, we then express L̃r, 1 and LM, 1 as functions of M1:

L̃r, 1 = L̃s, 1
|c1(Wr0)|2

|c1(Ws0)|2
=

2

3
M1

|c1(Wr0)|2

|c1(Ws0)|2

LM, 1 = L̃s, 1
|c1(Wr0)|
|c1(Ws0)|

=
2

3
M1

|c1(Wr0)|
|c1(Ws0)|

This results in:


u♮s, 1 = Rsi
♮
s, 1 + (Lσs +M1)

di♮s, 1
dt

+
4
√
3

3
M1

|c1(Wr0)|
|c1(Ws0)|

di♯r, 1
dt

0 = Rri
♮
r, 1 +

(
Lσr +

16

3
M1

|c1(Wr0)|2

|c1(Ws0)|2

)
di♮r, 1
dt

+
4
√
3

3
M1

|c1(Wr0)|
|c1(Ws0)|

di♭s, 1
dt

(4.78a)

(4.78b)
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(4.78b) is rewritten as follows:

0 = Rri
♮
r, 1 +

16

3

|c1(Wr0)|2

|c1(Ws0)|2

(
3

16

|c1(Ws0)|2

|c1(Wr0)|2
Lσr +M1

)
di♮r, 1
dt

+
4
√
3

3
M1

|c1(Wr0)|
|c1(Ws0)|

di♭s, 1
dt

(4.79)

Multiplying both sides by

√
3

16

|c1(Ws0)|
|c1(Wr0)|

then leads to:

0 =

√
3

16

|c1(Ws0)|
|c1(Wr0)|

Rri
♮
r, 1 +

√
16

3

|c1(Wr0)|
|c1(Ws0)|

(
3

16

|c1(Ws0)|2

|c1(Wr0)|2
Lσr +M1

)
di♮r, 1
dt

+M1

di♭s, 1
dt

(4.80)

Introducing the definitions

irr =

√
16

3

|c1(Wr0)|
|c1(Ws0)|

i♮r, 1 irs = i♭s, 1 L′
σr =

3

16

|c1(Ws0)|2

|c1(Wr0)|2
Lσr

subsequently provides:

0 =
3

16

|c1(Ws0)|2

|c1(Wr0)|2
Rri

r
r +

(
3

16

|c1(Ws0)|2

|c1(Wr0)|2
Lσr +M1

)
dirr
dt

+M1
dirs
dt

(4.81)

The notations

R′
r =

3

16

|c1(Ws0)|2

|c1(Wr0)|2
Rr L′

σr =
3

16

|c1(Ws0)|2

|c1(Wr0)|2
Lσr

allow for further simplification which results in a compact expression of (4.78b):

0 = R′
ri

r
r +

(
L′
σr +M1

)dirr
dt

+M1
dirs
dt

(4.82)

Finally, using the following definitions

uss = u♮s, 1 iss = i♮s, 1 isr =

√
16

3

|c1(Wr0)|
|c1(Ws0)|

i♯r, 1 = irre
jθ′r, 1

one obtains the well-known differential equations of Park’s model expressed in their respective co-
ordinate systems: 



uss = Rsi
s
s + (Lσs +M1)

diss
dt

+M1
disr
dt

0 = R′
ri

r
r +

(
L′
σr +M1

)dirr
dt

+M1
dirs
dt

(4.83a)

(4.83b)

Torque equation

We now examine the expression of the electromechanical torque which is computed from the trans-
formed quantities using eq. (4.27):

MM = i♮s
⊤∂L̃♮

rs 1
(θr)

∂θr
i♮r = i♮s

⊤

j2
√
3LM, 1




0 0 0 0 0

0 ejθ
′

r, 1 0 0 0 0

0 0 0 0 −e−jθ′r, 1



i♮r
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= i♮s
⊤

j2
√
3LM, 1




0

ejθ
′

r, 1i♮r, 1

−e−jθ′r, 1i♮r, 15


 = 2

√
3LM, 1

(
i♮s, 1je

jθ′r, 1i♮r, 1 − i♮s, 2je
−jθ′r, 1i♮r, 15

)

As i♮s, 2 = i♮s, 1 and i♮r, 15 = i♮r, 1,

MM = 2
√
3LM, 1

(
i♮s, 1je

jθ′r, 1i♮r, 1 + i♮s, 1je
jθ′r, 1i♮r, 1

)
= 4

√
3LM, 1Re

[
i♮s, 1je

jθ′r, 1i♮r, 1

]

= 4
√
3LM, 1Re

[
i♮s, 1ji

♯
r, 1

]
(4.84)

The notations introduced in the previous section allow for a further simplification of the torque equa-
tion as follows:

MM = 4
√
3
2

3
M1

|c1(Wr0)|
|c1(Ws0)|

Re

[
issj

√
3

16

|c1(Ws0)|
|c1(Wr0)|

isr

]

= 2M1Re
[
issji

s
r

]
(4.85)

(4.85) differs from the usual expression of the electromagnetic torque of an induction machine obtained
using Clarke’s transformation by a scaling factor. This is not surprising as TW3 introduces a factor
1/
√
3 instead of 2/3, which means that the quantities iss and i

r
s each have to be multiplied by

√
3/2 to

get back to the standard definition of space vectors. In this case, (4.85) would be multiplied by 3/4,
leading to the typical factor 3/2.

The results (4.83) and (4.85) demonstrate that the proposed approach is consistent and generalizes
the common modelling method for induction machines.

4.3.3 Model of IM1 with wavelengths of order h = 1 and h = 17

We extend the model derived previously and add a wavelength of order 17 on top of the fundamental.
The resistance and leakage inductance matrices remain unchanged. Consequently, only the main
inductance matrices as well as the voltage and torque equations need to be determined.

Expressions of the transformed inductance matrices

The subsequent relations hold for the wavelength of order h = 17 in the case of ms = 3 and mr = 16:
[
h ≡ 2 (mod ms)

h ≡ 1 (mod mr)
=⇒

[
k0 = 2 6= ms − k0 = 1

l0 = 1 6= mr − l0 = 15

Following (4.36), (4.39) and (4.41), the transformed inductance matrices associated with the

wavelength of order 17, L̃♮
s 17

, L̃♮
r 17

and L̃♮
rs 17

, are:

L̃♮
s 17

=
3

2
L̃s, 17




m=0 m=2

k=0 0 0 0
0 1 0

k=2 0 0 1



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L̃♮
r 17

= 8L̃r, 17




n=0 n=15

l=0 0

1 0
0

0 0
l=15 1




L̃♮
rs 17

= 2
√
3LM, 17




n=0 n=15

k=0 0 0 0 . . . 0 0

0 0 0 . . . 0 e−jθ′r, 17

k=2 0 ejθ
′

r, 17 0 . . . 0 0




Thus, the transformed total stator and rotor inductance matrices are given by:

L♮
s = L♮

σs + L̃♮
s 1

+ L̃♮
s 17

=




Lσs 0 0

0 Lσs +
3

2

[
L̃s, 1 + L̃s, 17

]
0

0 0 Lσs +
3

2

[
L̃s, 1 + L̃s, 17

]




(4.86)

L♮
r = L♮

σr + L̃♮
r 1

+ L̃♮
r 17

=




Lσr

Lσr + 8
[
L̃r, 1 + L̃r, 17

]
0

Lσr

0 Lσr

Lσr + 8
[
L̃r, 1 + L̃r, 17

]




(4.87)

The submatrix L̃♮
rs which describes the effect of transformed rotor currents on transformed stator flux

linkages has the following expression:

L̃♮
rs = 2

√
3




0 0 0 . . . 0 0

0 LM, 1e
jθ′r, 1 0 . . . 0 LM, 17e

−jθ′r, 17

0 LM, 17e
jθ′r, 17 0 . . . 0 LM, 1e

−jθ′r, 1


 (4.88)

We notice the presence of two additional non-zero entries compared to the expression of L̃♮
rs obtained

for the model with H = {1}.
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Simplified transformed voltage and torque equations

Upon simplification of the stator and rotor voltage relations similarly to section 4.3.2, we obtain:



u♮s, 1 = Rsi
♮
s, 1 +

[
Lσs +

3

2
(L̃s, 1 + L̃s, 17)

]
di♮s, 1
dt

+ 2
√
3


LM, 1e

jθ′r, 1
di♮r, 1
dt

+ LM, 17e
−jθ′r, 17

di♮r, 1
dt




+ jωr2
√
3
[
LM, 1e

jθ′r, 1i♮r, 1 − 17LM, 17e
−jθ′r, 17i♮r, 1

]

0 = Rri
♮
r, 1 +

[
Lσr + 8(L̃r, 1 + L̃r, 17)

]di♮r, 1
dt

+ 2
√
3


LM, 1e

−jθ′r, 1
di♮s, 1
dt

+ LM, 17e
−jθ′r, 17

di♮s, 1
dt




− jωr2
√
3
[
LM, 1e

−jθ′r, 1i♮s, 1 + 17LM, 17e
−jθ′r, 17i♮s, 1

]

(4.89)

The fact that the systems (4.74) and (4.89) have the same order results from the form of the submatrices

L̃♮
rs and L̃♮

sr and the properties of the discrete Fourier transform with respect to real-valued vectors

(see (4.73)). The latter impose i♮s, 1 = i♮s, 2 and i♮r, 15 = i♮r, 1. Thus the order of the transformed system
of voltage equations including the effect of wavelengths 1 and 17 remains 4. However, wavelength 17
introduces additional complex exponentials in (4.89) which depend on the rotor angle.

The torque expression taking into account wavelength 17 is derived from (4.27) as follows:

MM = i♮s
⊤∂L̃♮

rs(θr)

∂θr
i♮r = i♮s

⊤

j2
√
3




0 0 0 . . . 0 0

0 LM, 1e
jθ′r, 1 0 . . . 0 −17LM, 17e

−jθ′r, 17

0 17LM, 17e
jθ′r, 17 0 . . . 0 −LM, 1e

−jθ′r, 1


i

♮
r

=
[
i♮s, 0 i♮s, 1 i♮s, 2

]⊤
j2
√
3


i

♮
r, 1




0

LM, 1e
jθ′r, 1

17LM, 17e
jθ′r, 17


− i♮r, 15




0

17LM, 17e
−jθ′r, 17

LM, 1e
−jθ′r, 1







= j2
√
3
[
i♮s, 0 i♮s, 1 i♮s, 2

]⊤




0

LM, 1e
jθ′r, 1i♮r, 1 − 17LM, 17e

−jθ′r, 17i♮r, 1

17LM, 17e
−jθ′r, 17i♮r, 1 − LM, 1e

−jθ′r, 1i♮r, 1




= 4
√
3LM, 1Re

[
i♮s, 1je

jθ′r, 1i♮r, 1

]
+ 4

√
3 · 17LM, 17Re

[
i♮s, 1je

jθ′r, 17i♮r, 1

]
(4.90)

In comparison to (4.84), an extra term representing the influence of the wavelength of order 17 appears
in the torque relation.

Continuous-time state-space model using real state variables

The model equations so far involve complex numbers. From a practical perspective, it appears more
suitable to work out a state-space representation of the model with wavelengths 1 and 17 using
real state variables. Such a model description is gained from eq. (4.89) and (4.90) by splitting the
transformed voltage and current components into their real and imaginary parts.
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We therefore make use of the notations:

u♮s, 1 = us, 1α + jus, 1β (us, 1α, us, 1β) ∈ R
2; u♮r, 1 = ur, 1d + jur, 1q (ur, 1d, ur, 1q) ∈ R

2

i♮s, 1 = is, 1α + jis, 1β (is, 1α, is, 1β) ∈ R
2; i♮r, 1 = ir, 1d + jir, 1q (ir, 1d, ir, 1q) ∈ R

2

Introducing the definitions

Ls = Lσs +
3

2
(L̃s, 1 + L̃s, 17); Lr = Lσr + 8(L̃r, 1 + L̃r, 17)

I2 =

[
1 0

0 1

]
; J =

[
0 −1

1 0

]
; S =

[
1 0

0 −1

]

leads to the following relations for the components of the transformed stator voltage:[
us, 1α

us, 1β

]
= Rs

[
is, 1α

is, 1β

]
+ Ls

d

dt

[
is, 1α

is, 1β

]
+ 2

√
3

[
LM, 1T(θ′r, 1)

d

dt

[
ir, 1d

ir, 1q

]
+ LM, 17T(−θ′r, 17)S

d

dt

[
ir, 1d

ir, 1q

]]

+ 2ωr

√
3J

[
LM, 1T(θ′r, 1)

[
ir, 1d

ir, 1q

]
− 17LM, 17T(−θ′r, 17)S

[
ir, 1d

ir, 1q

]]
(4.91)

The components of the rotor voltage are obtained in the same manner:[
0

0

]
= Rr

[
ir, 1d

ir, 1q

]
+ Lr

d

dt

[
ir, 1d

ir, 1q

]
+ 2

√
3

[
LM, 1T(−θ′r, 1)

d

dt

[
is, 1α

is, 1β

]
+ LM, 17T(−θ′r, 17)S

d

dt

[
is, 1α

is, 1β

]]

− 2
√
3ωrJ

[
LM, 1T(−θ′r, 1)

[
is, 1α

is, 1β

]
+ 17LM, 17T(−θ′r, 17)S

[
is, 1α

is, 1β

]]
(4.92)

Eq. (4.91) and (4.92) are merged together to express the model in the form:

~
˚
u =

˚
L(θr)

d~
˚
i

dt
+
˚
P(θr, ωr)~

˚
i (4.93)

which involves the following quantities:

~
˚
u =

[
us, 1α us, 1β ur, 1d ur, 1q

]⊤
; ~

˚
i =

[
is, 1α is, 1β ir, 1d ir, 1q

]⊤

˚
L =

[
LsI2 2

√
3
[
LM, 1T(θ′r, 1) + LM, 17T(−θ′r, 17)S

]

2
√
3
[
LM, 1T(−θ′r, 1) + LM, 17T(−θ′r, 17)S

]
LrI2

]

˚
P =

[
RsI2 2

√
3ωrJ

[
LM, 1T(θ′r, 1)− 17LM, 17T(−θ′r, 17)S

]

−2
√
3ωrJ

[
LM, 1T(−θ′r, 1) + 17LM, 17T(−θ′r, 17)S

]
RrI2

]

Remark:
The definitions of the conductor distribution functions Ws0 and Wr0 according to fig. A.4 and A.5
impose ϕ1 = 0 and ϕ17 = π, which leads to θ′r, 1 = θr and θ′r, 17 = 17θr − π.

We select the components of the vector ~
˚
i as model states alongside ωr and θr. We need therefore to

make sure that
˚
L has full rank to calculate its inverse. In the above relation,

˚
L appears as 2× 2 block

matrix, each block having dimension 2× 2. Since the diagonal blocks are nonsingular, it is sufficient
to verify that the corresponding Schur complement is invertible [77]. This condition is satisfied for
the values of the considered machine parameters.
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Transforming the torque relation (4.90) in order to express it as a function of the state variables results
in:

MM = 4
√
3
[
is, 1α is, 1β

]
J
[
LM, 1T(θ′r, 1)− 17LM, 17ST(θ′r, 17)

]
[
ir, 1d

ir, 1q

]
(4.94)

where the term −17LM, 17ST(θ′r, 17) describes the influence of wavelength 17.

Finally, the continuous-time state-space representation of the transformed model is gained by com-
bining the equations (4.93), (4.94) and (2.19):



d~
˚
i

dt
= −

˚
L−1(θr)

˚
P(θr, ωr)~

˚
i+

˚
L−1(θr)~

˚
u

dωr

dt
=

1

JM
(MM − CWωr −ML)

dθr
dt

= ωr

MM = 4
√
3
[
is, 1α is, 1β

]
J[LM, 1T(θr) + 17LM, 17ST(17θr)]

[
ir, 1d

ir, 1q

]

(4.95a)

(4.95b)

(4.95c)

We notice the tremendous order reduction, which is now 6, compared to the original version of the
model discussed in section 3.7, which had order 19.

Computation of the transformed stator voltages and the original stator currents

For the model (4.95) to be of practical interest, there must exist a simple way of determining the
transformed voltages us, 1α and us, 1β from the impressed line-to-line voltages u′s0 and u′s1 depicted in
fig. 3.3(a). Another condition is that the computation of the currents i′s0 and i′s1 must be possible to
allow for comparisons with the measured ones.

Recalling the general transformation relations (4.54a) and (4.54b), these requirements do not seem to
be met, since Zs is not square and therefore not invertible. However, in the case of IM1, eq. (4.54a)
has the following specific form:



i♮s, 0

i♮s, 1

i♮s, 2


 = Zs, IM1



i′s0

i′s1


 = −j




0 0

ej2π/3 −1

ejπ/3 1






i′s0

i′s1


 (4.96)

The first row of Zs, IM1 does not carry any relevant information with respect to the simplified model
(4.95) and we can focus on the square submatrix:

Z
′
s, IM1 = −j

[
ej2π/3 −1

ejπ/3 1

]
(4.97)

The determinant of Z′
s, IM1 is non-zero and its inverse is:

Z
′−1
s, IM1 =

√
3

3

[
1 1

−ejπ/3 ej2π/3

]
(4.98)

– 104 –



4.3.3. Model of IM1 with wavelengths of order h = 1 and h = 17

Owing to (4.73), i♮s, 2 = i♮s, 1 and 

i′s0

i′s1


 = Z

′−1
s, IM1



i♮s, 1

i♮s, 1


 (4.99)

which leads to: 

i′s0

i′s1


 =




2/
√
3 0

−1/
√
3 1





is, 1α

is, 1β


 (4.100)

(4.100) enables us to calculate the required currents i′s0 and i
′
s1 from the state variables is, 1α and is, 1β .

Similarly, by substituting Zs, IM1 into (4.54b), we deduce the subsequent relation for the voltages:



us, 1α

us, 1β


 =




√
3

3
− 1

2
√
3

0
1

2






u′s0

u′s1


 (4.101)

The relations (4.100) and (4.101) allow us to determine the inputs and process the outputs of the
simplified model as required. (4.95) can now be discretized and tested in simulation as well as on the
test bench.

Model validation

We first verify the consistency of the simplified transformed model of IM1 with its original counterpart
used in section 3.7 in offline simulations. More specifically, we compare the stator current, torque and
angular velocity waveforms generated by the two models while feeding them with the same inputs.
Fig. 4.1 shows the simulated traces of the relevant quantities when using a balanced sinusoidal voltage
excitation (frequency f = 50Hz, line-to-line voltage U = 400V) and applying a rated load torque step
at t = 0.5 s. Heun’s method and a step size δt = 10−5 s were used. The outputs of the original model
are considered as reference and any discrepancy between the waveforms in fig. 4.1 is interpreted as
error of the transformed model.

Owing to the results in fig. 4.1, the current and torque error is in the order of 10−3Nm which is
negligible. With a discrepancy less than 10−10 rad s−1, the angular velocity waveforms are almost
perfectly correlated. Reducing the step size by a power of ten decreases the current and torque error
by a factor 100. This suggests that the apparent differences observed between the two models are
caused by numerical errors.

Euler’s, Heun’s and the Bogacki-Shampine method were examined alongside the zero-order hold as-
sumption to obtain a discrete-time representation of the transformed model. Tests were conducted on
the real-time system under the same conditions as for the original model (cf. sections 3.7.4 and 3.7.5).
Fig. 4.2 compares the steady-state stator current and its spectrum as well as the angular velocity
predicted using Heun’s method with the corresponding measured quantities at no load and rated load.
The results are in line with the ones presented in fig. 3.11. Fig. 4.3 shows the dynamic responses of the
quantities computed with Euler’s, Heun’s and the Bogacki-Shampine method to a rated load torque
step alongside the measured waveforms. The results are consistent with the ones shown in fig. 3.13.

Table 4.1 provides an overview of the maximal model and interrupt routine execution times obtained
with the three numerical methods. The substantial decrease of the model execution time resulting
from the order reduction achieved by means of the transformation is striking (cf. table 3.1). No
tangible difference in computational effort can be detected in comparison to Park’s model.
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4.3.4. Model of IM2 with wavelengths of order h = 2 and h = 26

Method Model [µs] Interrupt routine [µs]

Euler 3.4 23.6
Heun 5.3 25.8
Bogacki-Shampine 7.5 27.8

Table 4.1: Maximal execution times obtained on the real-time system for each numerical method
(transformed model of IM1 with H = {1, 17})

The computation times resulting from the zero-order hold assumption and the approximations of the
matrix exponential as partial sum of order 1 to 3 are summarized in table 4.2. An increase of the
order from 1 to 3 has imperceptible consequences on the execution times. For this reason, order 3
should be used as it provides better accuracy.

Approximation order Model [µs] Interrupt routine [µs]

1 3.4 23.5
2 3.5 23.5
3 3.5 23.3

Table 4.2: Maximal execution times obtained on the real-time system with approximations of the
matrix exponential of order 1 to 3 (transformed model of IM1 with H = {1, 17})

4.3.4 Model of IM2 with wavelengths of order h = 2 and h = 26

Following the particularly encouraging results delivered by the transformed model of IM1, we apply
the same methodology to build a model of IM2 taking into account the space harmonics of order 2
and 26.

Expressions of the transformed inductance matrices

We recall that each of the ws = 3 stator windings was modelled as a series connection of two circuits
and therefore ms = 6 (see section 3.7.1). This choice enables us to apply the transformation theory
developed in this chapter, since it ensures that the stator and rotor main inductance matrices are
circulant. The rotor cage having Nr = 28 bars, mr = 28 rotor circuits are used. We also remember
that the wavelength of order 2 represents the ‘fundamental’ in respect of Park’s approach, since the
machine has Zp = 2 pole pairs.

The subsequent relations apply to the wavelength of order 2:
[
h ≡ 2 (mod ms)

h ≡ 2 (mod mr)
=⇒

[
k0 = 2 6= ms − k0 = 4

l0 = 2 6= mr − l0 = 26

The expressions of the transformed inductance matrices for the space harmonic of order 2, L̃♮
s 2
, L̃♮

r 2

and L̃♮
rs 2

, are:

L̃♮
s 2

= 3L̃s, 2 diag[0, 0, 1, 0, 1, 0]

L̃♮
r 2

= 14L̃r, 2 diag[0, 0, 1, 0 . . . 0, 1, 0]
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4.3. Application to the investigated machines

L̃♮
rs 2

=
√
42LM, 2




n=0 n=27

k=0 0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0

0 0 ejθ
′

r, 2 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0

0 0 0 0 . . . 0 e−jθ′r, 2 0
k=5 0 0 0 0 . . . 0 0 0




Now considering the contribution of wavelength 26,
[
h ≡ 2 (mod ms)

h ≡ 26 (mod mr)
=⇒

[
k0 = 2 6= ms − k0 = 4

l0 = 26 6= mr − l0 = 2

the corresponding transformed inductance matrices, L̃♮
s 26

, L̃♮
r 26

and L̃♮
rs 26

are:

L̃♮
s 26

= 3L̃s, 26 diag[0, 0, 1, 0, 1, 0]

L̃♮
r 26

= 14L̃r, 26 diag[0, 0, 1, 0 . . . 0, 1, 0]

L̃♮
rs 26

=
√
42LM, 26




n=0 n=27

k=0 0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0

0 0 0 0 . . . 0 ejθ
′

r, 26 0
0 0 0 0 . . . 0 0 0

0 0 e−jθ′r, 26 0 . . . 0 0 0
k=5 0 0 0 0 . . . 0 0 0




The transformed total stator and rotor inductance matrices follow as:

L♮
s = L♮

σs + L̃♮
s 2

+ L̃♮
s 26

= diag
[
Lσs, Lσs, Lσs + 3

(
L̃s, 2 + L̃s, 26

)
, Lσs, Lσs + 3

(
L̃s, 2 + L̃s, 26

)
, Lσs

]
(4.102)

L♮
r = L♮

σr + L̃♮
r 2

+ L̃♮
r 26

= diag
[
Lσr, Lσr, Lσr + 14

(
L̃r, 2 + L̃r, 26

)
, Lσr . . . Lσr, Lσr + 14

(
L̃r, 2 + L̃r, 26

)
, Lσr

]
(4.103)

The submatrix L̃♮
rs, accounting for the effect of transformed rotor currents on transformed stator flux

linkages, has the following expression:

L̃♮
rs =

√
42




0 0 0 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0

0 0 LM, 2e
jθ′r, 2 0 . . . 0 LM, 26e

jθ′r, 26 0

0 0 0 0 . . . 0 0 0

0 0 LM, 26e
−jθ′r, 26 0 . . . 0 LM, 2e

−jθ′r, 2 0

0 0 0 0 . . . 0 0 0




(4.104)
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4.3.4. Model of IM2 with wavelengths of order h = 2 and h = 26

Simplified transformed voltage and torque equations

As for the model of IM1, a single voltage equation is needed on the stator and the rotor side respectively
to fully describe the electromagnetic relations in the model with H = {2, 26}. This fact follows from
the position of the non-zero entries in the transformed inductance submatrices.

Bearing in mind that u♮s, 4 = u♮s, 2, i
♮
s, 4 = i♮s, 2 and i♮r, 26 = i♮r, 2, we obtain:




u♮s, 2 = Rsi
♮
s, 2 + Ls

di♮s, 2
dt

+
√
42


LM, 2e

jθ′r, 2
di♮r, 2
dt

+ LM, 26e
jθ′r, 26

di♮r, 2
dt




+ jωr

√
42
[
2LM, 2e

jθ′r, 2i♮r, 2 + 26LM, 26e
jθ′r, 26i♮r, 2

]

0 = Rri
♮
r, 2 + Lr

di♮r, 2
dt

+
√
42


LM, 2e

−jθ′r, 2
di♮s, 2
dt

+ LM, 26e
jθ′r, 26

di♮s, 2
dt




+ jωr

√
42
[
−2LM, 2e

−jθ′r, 2i♮s, 2 + 26LM, 26e
jθ′r, 26i♮s, 2

]

(4.105)

where Ls = Lσs + 3
[
L̃s, 2 + L̃s, 26

]
and Lr = Lσr + 14

[
L̃r, 2 + L̃r, 26

]
.

The expression of the electromechanical torque including the influence of wavelengths 2 and 26 results
from (4.27):

MM = i♮s
⊤∂L̃♮

rs(θr)

∂θr
i♮r

=
[
i♮s, 0 i♮s, 1 i♮s, 2 i♮s, 3 i♮s, 4 i♮s, 5

]⊤
j
√
42




i♮r, 2




0

0

2LM, 2e
jθ′r, 2

0

−26LM, 26e
−jθ′r, 26

0




+ i♮r, 26




0

0

26LM, 26e
jθ′r, 26

0

−2LM, 2e
−jθ′r, 2

0







=
√
42
[
i♮s, 2 i♮s, 2

]⊤

 j2LM, 2e

jθ′r, 2i♮r, 2 + j26LM, 26e
jθ′r, 26i♮r, 2

−j2LM, 2e
−jθ′r, 2i♮r, 2 − j26LM, 26e

−jθ′r, 26i♮r, 2




= 4
√
42
[
LM, 2Re

[
i♮s, 2je

jθ′r, 2i♮r, 2

]
+ 13LM, 26Re

[
i♮s, 2je

jθ′r, 26i♮r, 2

]]
(4.106)

Continuous-time state-space model with real state variables

In order to obtain a model representation with real variables, we define:

u♮s, 2 = us, 2α + jus, 2β (us, 2α, us, 2β) ∈ R
2; u♮r, 2 = ur, 2d + jur, 2q (ur, 2d, ur, 2q) ∈ R

2

i♮s, 2 = is, 2α + jis, 2β (is, 2α, is, 2β) ∈ R
2; i♮r, 2 = ir, 2d + jir, 2q (ir, 2d, ir, 2q) ∈ R

2

– 111 –



4.3. Application to the investigated machines

and bring the voltage equation in the form:

~
˚
u =

˚
L(θr)

d~
˚
i

dt
+
˚
P(θr, ωr)~

˚
i (4.107)

where

~
˚
u =

[
us, 2α us, 2β ur, 2d ur, 2q

]⊤
; ~

˚
i =

[
is, 2α is, 2β ir, 2d ir, 2q

]⊤

˚
L =

[
LsI2

√
42
[
LM, 2T(θ′r, 2) + LM, 26T(θ′r, 26)S

]
√
42
[
LM, 2T(−θ′r, 2) + LM, 26T(θ′r, 26)S

]
LrI2

]

and

˚
P =

[
RsI2

√
42ωrJ

[
2LM, 2T(θ′r, 2) + 26LM, 26T(θ′r, 26)S

]
√
42ωrJ

[
−2LM, 2T(−θ′r, 2) + 26LM, 26T(θ′r, 26)S

]
RrI2

]

The torque is given by the relation:

MM = 4
√
42
[
is, 2α is, 2β

]
J
[
LM, 2T(θ′r, 2) + 13LM, 26ST(−θ′r, 26)

]
[
ir, 2d

ir, 2q

]
(4.108)

Remark:
For the conductor distribution functions Ws0 and Wr0 shown in fig. A.8 and A.9, ϕ2 = 0 and ϕ26 = 0.
Hence, θ′r, 2 = 2θr and θ′r, 26 = 26θr.

For the same reasons as in section 4.3.3,
˚
L has full rank. This allows for the components of ~

˚
i to be

chosen as state variables alongside the rotor angular velocity ωr and the rotor angle θr. The subsequent
continuous-time state-space representation of the model with wavelengths 2 and 26 results from this
choice: 



d~
˚
i

dt
= −

˚
L−1(θr)

˚
P(θr, ωr)~

˚
i+

˚
L−1(θr)~

˚
u

dωr

dt
=

1

JM
(MM − CWωr −ML)

dθr
dt

= ωr

MM = 4
√
42
[
is, 2α is, 2β

]
J[LM, 2T(2θr) + 13LM, 26ST(−26θr)]

[
ir, 2d

ir, 2q

]

(4.109a)

(4.109b)

(4.109c)
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4.3.4. Model of IM2 with wavelengths of order h = 2 and h = 26

Setting up the transformation matrix

Substituting the expression of the stator interconnection matrix introduced in section 3.7.1 into Defin-
ition 8 yields the transformation matrix Zs, IM2:

Zs, IM2 = W6
⊤
Cs, IM2 =

1√
6




1 1 1 1 1 1

1 ejπ/3 ej2π/3 −1 ej4π/3 ej5π/3

1 ej2π/3 ej4π/3 1 ej2π/3 ej4π/3

1 −1 1 −1 1 −1

1 ej4π/3 ej2π/3 1 ej4π/3 ej2π/3

1 ej5π/3 ej4π/3 −1 ej2π/3 ejπ/3







1 0

0 1

−1 −1

1 0

0 1

−1 −1




=
√
2j




0 0

0 0

−ej2π/3 1

0 0

e−j2π/3 −1

0 0




(4.110)

Thus, in the present case, (4.54a) becomes:

i♮s =




i♮s, 0

i♮s, 1

i♮s, 2

i♮s, 3

i♮s, 4

i♮s, 5




=
√
2j




0 0

0 0

−ej2π/3 1

0 0

e−j2π/3 −1

0 0






i′s0

i′s1


 (4.111)

In other words, the process of interconnecting the stator circuits imposes i♮s, 0 = 0, i♮s, 1 = 0, i♮s, 3 = 0

and i♮s, 5 = 0. Owing to relation (4.73), i♮s, 4 = i♮s, 2.

Consequently, defining the matrix

Z
′
s, IM2 =

√
2j



−ej2π/3 1

e−j2π/3 −1


 (4.112)

(4.111) can be simplified as follows:


i♮s, 2

i♮s, 2


 = Z

′
s, IM2



i′s0

i′s1


 (4.113)

Remark:
As the ws = 3 stator windings are modelled withms = 6 circuits, the transformation of stator quantities
involves a 6 point DFT. Theoretically, the 6 point DFT allows for the distinction between three classes
of wavelengths depending on which of the following condition holds for the order h:

1.) h ≡ 0 (mod 3): the wavelength will directly influence component number 0 of the stator quantities
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4.3. Application to the investigated machines

(e.g. i♮s, 0);

2.) h ≡ 1 (mod 3): the wavelength will impact on component no. 1;

3.) h ≡ 2 (mod 3): the wavelength will have a direct effect on component no. 2.

We see, however, that these benefits are lost when the circuits are interconnected and we obtain a
situation similar to IM1. Thus, not the number of circuits but the number of windings is decisive with
respect to the segregation of wavelengths.

As det
(
Z
′
s, IM2

)
= −j2

√
3, Z′

s, IM2 is nonsingular and

Z
′−1
s, IM2 =

1√
6




1 1

e−j2π/3 ej2π/3


 (4.114)

Consequently, the following relation can be deduced, which enables us to determine the original stator
currents from the transformed ones:


i′s0

i′s1


 =

2√
6




1 0

−1/2
√
3/2





is, 2α

is, 2β


 (4.115)

Similarly, using (4.54b), the subsequent relation is derived for the voltages



us, 2α

us, 2β


 =




1√
6

− 1

2
√
6

0
1

2
√
2






u′s0

u′s1


 (4.116)

which allows the computation of the model inputs from the impressed stator voltages.

Simulation and experimental results

As for IM1, the simulated response of the transformed model to a set of balanced sinusoidal voltages
(frequency f = 50Hz, line-to-line voltage U = 400V) and a rated load torque step is consistent with
the original (see fig. 4.4). Again, a decrease of the step size by a factor 10 reduces the error by a
factor 100, which makes numerical issues the likely cause of the discrepancies between the two model
versions.

Fig. 4.5 provides a steady-state comparison of the computed and measured stator current and rotor
angular velocity. The results are in line with the ones of the original model (cf. fig. 3.12). This is also
the case for the dynamic responses of the discrete-time model variants derived from Euler’s, Heun’s
and the Bogacki-Shampine method to a rated load torque step (compare fig. 4.6 and 3.14). We note
that Euler’s method remains unstable with the reduced-order transformed model.

Method Model [µs] Interrupt routine [µs]

Euler 3.8 24.1
Heun 6.0 26.5
Bogacki-Shampine 8.2 28.7

Table 4.3: Maximal execution times obtained on the real-time system with numerical methods
(transformed model of IM2 with H = {2, 26})
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4.4. Comments on the proposed transformation

Approximation order Model [µs] Interrupt routine [µs]

1 4.1 24.2
2 4.1 24.2
3 4.2 24.4

Table 4.4: Maximal execution times obtained on the real-time system with the zero-order hold
assumption (transformed model of IM2 with H = {2, 26})

Table 4.3 provides an overview of the execution times achieved with the numerical methods, while the
times obtained with the zero-order hold assumption are given in table 4.4. The model order being
6 as well, the computational effort is comparable to the one of the transformed model of IM1. The
order reduction from 31 to 6 resulting from the transformation makes possible the use of Heun’s and
the Bogacki-Shampine methods at fsw = 10 kHz, which was unfeasible with the original model (see
table 3.3).

4.4 Comments on the proposed transformation

The strategy applied in this chapter to simplify the linear geometric model relies on a coordinate
transformation (in mathematical terms, a change of vector basis) which allows for the diagonalization
of the stator and rotor main inductance submatrices. As the latter are circulant, their diagonalization
is carried out using Fourier matrices. In the new vector basis, the main stator and rotor inductance
submatrices associated with each space harmonic have at most two non-zero entries. This is also the
case for the corresponding mutual inductance matrices. These particular characteristics are at the
very heart of the order reduction achieved through the basis transformation.

The method leading to the transformed state-space model presented in section 4.2.6 is essentially
the same as the one developed by White and Woodson in [5] and Nasar in [61] for multi-winding
induction machines. Fudeh followed a similar technique to model the effect of MMF harmonics in
multi-winding machines in [78] and examined the specific case of three-phase squirrel cage machines
in [79] as well as the impact of space harmonics in steady-state operation in [80]. In the latter case,
the computation efficiency of the model was considered as well. Drozdowski in [75] and Munõz in [54]
followed comparable approaches to derive efficient models of the three-phase squirrel-cage induction
machine accounting for space harmonics. However, none of these references mentions the relationship
with the discrete Fourier transform, although Nasar points out the fundamental role of circulant
inductance matrices in the derivation of a simplified model.

The DFT allows us to consider space harmonics from a signal processing point of view and thus
helps us gain a broader understanding of their impact on the model behaviour. The fact that the
contributions of different wavelengths may appear in the same component of the transformed voltage
and current vectors is a direct consequence of the aliasing phenomenon. The number of stator and
rotor circuits in the model determines the size of the Fourier matrices involved in the coordinate
transformation and therefore the number of points of the corresponding DFTs.

For this reason, it might seem judicious to use as many circuits as possible to describe a given wind-
ing configuration, since a DFT with more points would provide a better means of separating the
space harmonics arising from this winding configuration. This property is comparable to sampling a
time signal at a higher rate, which enables higher frequencies to be detected. The example of IM2,
however, has shown that the necessary process of circuit interconnection will cause wavelengths seem-
ingly distinguishable to affect the same components of the transformed voltage and current vectors.
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Hence, increasing the number of stator phases is the only effective option allowing for a more accurate
segregation between wavelengths.

From a broader perspective, the combination of Fourier and interconnection matrices provides a sys-
tematic method for transforming the model equations of all categories of induction machines. This is
especially the case for multiphase machines and generalizes previous definitions of coordinate trans-
formations (compare for instance [81] and [82, p. 493]).

Summary

Owing to the modelling hypotheses of the linear geometric model (cf. section 3.3, p. 37), the stator and
rotor inductance submatrices are circulant and can therefore be diagonalized using Fourier matrices.
Assuming that the circuits representing stator windings all have the same resistance and leakage
inductance and this property also applies to the circuits modelling the rotor cage, the transformation
of the original equations by means of Fourier matrices results in a much simpler model representation.
In addition, the relation between Fourier matrices and the discrete Fourier transform provides a deeper
understanding of the influence of space harmonics.

Combining Fourier and interconnection matrices, we introduced a systematic transformation for mod-
elling multi-winding induction machines. This is one of the main contributions of the present work.

From a practical perspective, the transformation allows for a substantial decrease of computational
requirements in comparison to the original model presented in chapter 3. The transformed state-space
models of the machines IM1 and IM2 including two space harmonics appear interesting for real-time
applications, since their complexity is comparable to Park’s.

As we intend to use these models in control applications, we will take a closer look at their structural
properties in the following chapter. This will allow us to make a few important observations about
the controllability and the observability of the state variables.
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Chapter 5

Potential of the transformed geometric model in

control applications

Overview of chapter

The coordinate transformation introduced previously provides us with an extended model of induction
machines promising for real-time control applications such as current or torque harmonic reduction.
We now examine its practical potential more closely from two perspectives.

First, as we intend to make use of the model in closed-loop control strategies, the controllability and
the observability of its states (e.g. the transformed stator and rotor currents or the rotor angular
velocity) should be investigated. This is a particularly challenging task, even in the case for which
only two wavelengths are considered, since the model is non-linear due to the presence of the rotor
angle and speed in the inductance matrix. As a thorough analysis would go far beyond the scope of
the present thesis, we focus on the structural properties of the model with H = {1, 17} and show that
it is substantially similar to the one of the well-known fundamental model. For this reason, no major
problem is to be expected in respect of the controllability and the observability of the currents. In
addition, preliminary investigations suggest that the extended model may be appropriate for speed
estimation around standstill.

Second, we discuss the issue of parameter determination. Despite the model having a very limited
number of parameters, some basic information about the internal structure of the machine is necessary,
e.g. the number of turns of the winding coils. This might be problematic in field applications and
further work should be carried out to estimate these parameters rather than open the machine.
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5.1. Controllability and observability of the transformed model

5.1 Controllability and observability of the transformed model

5.1.1 Adopted approach

Following the considerations in chapter 4, the order of the differential system (4.53) directly depends
on the wavelengths taken into account in the model. Given the variety of possible cases, a general
conclusion about the controllability and observability of the state variables is thus not possible.

In addition, the dependence of the system matrix A♮ and input matrix B♮ on the rotor angle can, in
general, not be eliminated as in the equations of Park’s model (see conclusion of [78], for instance).
This is especially the case for the models of IM1 (resp. IM2) with H = {1, 17} (resp. H = {2, 26}),
for which the contributions of the two wavelengths appear at the same positions on the diagonal of
the transformed stator and rotor inductance submatrices (see section 4.3.3). As a result, methods of
non-linear control theory would have to be used to investigate properties such as controllability and
observability (cf. for example [83]).

Since such analyses goes way beyond the scope of the present work, we will examine the structure of
the model with H = {1, 17} and show its striking similarity to Park’s. This will enable us to make a
few preliminary observations with respect to controllability and observability.

5.1.2 Structural analysis of the model with wavelengths h = 1 and h = 17

We consider the model of IM1 withH = {1, 17} derived in section 4.3.3. The following continuous-time
state-space representation was obtained (see (4.95)):



d~
˚
i

dt
= −

˚
L−1(θr)

˚
P(θr, ωr)~

˚
i+

˚
L−1(θr)~

˚
u

dωr

dt
=

1

JM
(MM −ML)

dθr
dt

= ωr

MM = 4
√
3
[
is, 1α is, 1β

]
J[LM, 1T(θr) + 17LM, 17ST(17θr)]

[
ir, 1d

ir, 1q

]

(5.1a)

(5.1b)

(5.1c)

with is, 1α, is, 1β , ir, 1d, ir, 1q as well as ωr and θr as state variables.

As the matrix product −
˚
L−1(θr)

˚
P(θr, ωr) involves many trigonometric expressions depending on the

rotor angle, it is preferable to use an alternative model representation to allow for better comparison
with Park’s. To do so, we go back to the complex voltage equations (4.89), which are rewritten in a
slightly more compact form:




u♮s, 1 = Rsi
♮
s, 1 + Ls

di♮s, 1
dt

+ 2
√
3

[
LM, 1

d

dt

[
ejθ

′

r, 1i♮r, 1

]
+ LM, 17

d

dt

[
e−jθ′r, 17i♮r, 1

]]

u♮r, 1 = Rri
♮
r, 1 + Lr

di♮r, 1
dt

+ 2
√
3

[
LM, 1

d

dt

[
e−jθ′r, 1i♮s, 1

]
+ LM, 17

d

dt

[
e−jθ′r, 17i♮s, 1

]]
(5.2)

where Ls = Lσs +
3

2
(L̃s, 1 + L̃s, 17), Lr = Lσr + 8(L̃r, 1 + L̃r, 17) and u

♮
r, 1 = 0.
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5.1.2. Structural analysis of the model with wavelengths h = 1 and h = 17

As for the derivation of Park’s model in section 4.3.2, we make the following change of variable:

i♯r, 1 = i♮r, 1e
jθ′r, 1 (5.3)

and multiply the second equation in (5.2) by ejθ
′

r, 1 , which yields:


u♮s, 1 = Rsi
♮
s, 1 + Ls

di♮s, 1
dt

+ 2
√
3


LM, 1

di♯r, 1
dt

+ LM, 17e
−j(θ′r, 17−θ′r, 1)

di♯r, 1
dt




− 16jωr2
√
3LM, 17e

−j(θ′r, 17−θ′r, 1)i♯r, 1

u♯r, 1 = Rri
♯
r, 1 + Lr

di♯r, 1
dt

+ 2
√
3


LM, 1

di♮s, 1
dt

+ LM, 17e
−j(θ′r, 17−θ′r, 1)

di♮s, 1
dt




− jωr

[
Lri

♯
r, 1 + 2

√
3LM, 1i

♮
s, 1 + 17LM, 172

√
3e−j(θ′r, 17−θ′r, 1)i♮s, 1

]

(5.4)

The torque equation becomes

MM = 4
√
3LM, 1Re

[
i♮s, 1ji

♯
r, 1

]
+ 4

√
3 · 17LM, 17Re

[
i♮s, 1je

j(θ′r, 17−θ′r, 1)i♯r, 1

]
(5.5)

Introducing the notations

u♯r, 1 = ur, 1α + jur, 1β (ur, 1α, ur, 1β) ∈ R
2 (5.6)

i♯r, 1 = ir, 1α + jir, 1β (ir, 1α, ir, 1β) ∈ R
2 (5.7)

the voltage equations (5.4) are brought in a form similar to (4.93):

~
ˆ
u =

ˆ
L(θr)

d~
ˆ
i

dt
+

ˆ
P(θr, ωr)~

ˆ
i (5.8)

where

~
ˆ
u =

[
us, 1α us, 1β ur, 1α ur, 1β

]⊤
; ~

ˆ
i =

[
is, 1α is, 1β ir, 1α ir, 1β

]⊤

ˆ
L =




LsI2 2
√
3
[
LM, 1I2 + LM, 17ST(θ′r, 17 − θ′r, 1)

]

2
√
3
[
LM, 1I2 + LM, 17ST(θ′r, 17 − θ′r, 1)

]
LrI2




ˆ
P =




RsI2 −16ωr · 2
√
3LM, 17JST(θ′r, 17 − θ′r, 1)

−2
√
3ωrJ

[
LM, 1I2 + 17LM, 17ST(θ′r, 17 − θ′r, 1)

]
RrI2 − ωrLrJ




Note that, as θ′r, 1 = θr and θ′r, 17 = 17θr − π, the above expressions can be simplified as follows:

ˆ
L =




LsI2 2
√
3[LM, 1I2 − LM, 17ST(16θr)]

2
√
3[LM, 1I2 − LM, 17ST(16θr)] LrI2




ˆ
P =




RsI2 16ωr · 2
√
3LM, 17JST(16θr)

−2
√
3ωrJ[LM, 1I2 − 17LM, 17ST(16θr)] RrI2 − ωrLrJ




while the subsequent relation holds for the torque:

MM = 4
√
3
[
is, 1α is, 1β

]
J[LM, 1I2 + 17LM, 17ST(16θr)]

[
ir, 1α

ir, 1β

]
(5.9)
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5.1. Controllability and observability of the transformed model

ˆ
L is invertible since the Schur complement of LrI2 has full rank. We can therefore solve (5.8) for the
current vector and build a state-space model with the components of ~

ˆ
i, ωr and θr as state variables:



d~
ˆ
i

dt
= −

ˆ
L−1(θr)

ˆ
P(θr, ωr)~

ˆ
i+

ˆ
L−1(θr)~

ˆ
u

dωr

dt
=

1

JM
(MM −ML)

dθr
dt

= ωr

MM = 4
√
3
[
is, 1α is, 1β

]
J[LM, 1I2 + 17LM, 17ST(16θr)]

[
ir, 1α

ir, 1β

]

(5.10a)

(5.10b)

(5.10c)

In order to gain insight into the model structure, we now take a closer look at the form of
ˆ
L−1(θr),

which can be calculated using block matrix algebra (cf. [77]). We introduce the subsequent set of
parameters to obtain manageable expressions:

λ1 = 2
√
3LM, 1 µ1 = 2

√
3LM, 17

λ2 = Ls −
1

Lr

[
λ21 + µ21

]
µ2 = − 2

Lr
λ1µ1

λ3 =
λ2

λ22 − µ22
, λ2 6= µ2 µ3 = − µ2

λ22 − µ22
, λ2 6= µ2

λ4 = λ3λ1 + µ3µ1 µ4 = λ3µ1 + µ3λ1

λ5 =
1

Lr
+

1

L2
r

[λ1λ4 + µ1µ4] µ5 =
1

L2
r

[λ1µ4 + µ1λ4]

λ6 = −λ4
Lr

µ6 = −µ4
Lr

From these definitions follows:

ˆ
L =




LsI2 λ1I2 − µ1ST(16θr)

λ1I2 − µ1ST(16θr) LrI2


 (5.11)

ˆ
L−1 =



λ3I2 − µ3ST(16θr) λ6I2 − µ6ST(16θr)

λ6I2 − µ6ST(16θr) λ5I2 − µ5ST(16θr)


 (5.12)

ˆ
P =




RsI2 16µ1ωrJST(16θr)

−λ1ωrJ+ 17µ1ωrJST(16θr) RrI2 − ωrLrJ


 (5.13)

We now take a closer look at the matrix:

ˆ
A(θr, ωr) = −

ˆ
L−1(θr)

ˆ
P(θr, ωr) (5.14)

Defining the following additional constants

λ7 = λ6λ1 − 17µ6µ1 µ7 = µ6λ1 − 17λ6µ1

λ8 = λ1λ5 − 17µ1µ5 µ8 = µ5λ1 − 17µ1λ5
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5.1.2. Structural analysis of the model with wavelengths h = 1 and h = 17

leads to the expression of
ˆ
A as block matrix:

ˆ
A =


ˆ
A11

ˆ
A12

ˆ
A21

ˆ
A22


 (5.15)

where

ˆ
A11 = −Rsλ3I2 + λ7ωrJ+ [Rsµ3I2 + µ7ωrJ]ST(16θr) (5.16a)

ˆ
A21 = −Rsλ6I2 + λ8ωrJ+ [Rsµ6I2 + µ8ωrJ]ST(16θr) (5.16b)

ˆ
A12 = −Rrλ6I2 + [λ6Lr − 16µ1µ3]ωrJ+ [Rrµ6I2 + (µ6Lr − 16λ3µ1)ωrJ]ST(16θr) (5.16c)

ˆ
A22 = −Rrλ5I2 + [λ5Lr − 16µ1µ6]ωrJ+ [Rrµ5I2 + (µ5Lr − 16λ6µ1)ωrJ]ST(16θr) (5.16d)

Using the notations

λ9 = λ6Lr − 16µ1µ3 µ9 = µ6Lr − 16λ3µ1

λ10 = λ5Lr − 16µ1µ6 µ10 = µ5Lr − 16µ1λ6

the blocks of
ˆ
A are rewritten in a slightly more convenient form:

ˆ
A11 = −Rsλ3I2 +Rsµ3ST(16θr) + ωrJ[λ7I2 + µ7ST(16θr)] (5.17a)

ˆ
A21 = −Rsλ6I2 +Rsµ6ST(16θr) + ωrJ[λ8I2 + µ8ST(16θr)] (5.17b)

ˆ
A12 = −Rrλ6I2 +Rrµ6ST(16θr) + ωrJ[λ9I2 + µ9ST(16θr)] (5.17c)

ˆ
A22 = −Rrλ5I2 +Rrµ5ST(16θr) + ωrJ[λ10I2 + µ10ST(16θr)] (5.17d)

Considering the above relations, it becomes apparent that all four blocks of
ˆ
A have the same structure.

The state-space model can now be brought in its final form. To do so, we define:

• the state vector ~x ∈ R
6:

~X =
[
x0 x1 x2 x3 x4 x5

]⊤

=
[
is, 1α is, 2α ir, 1α ir, 1β ωr θr

]⊤

• the input vector ~U ∈ R
3:

~U =
[
u0 u1 u2

]⊤
=
[
us, 1α us, 2β ML

]⊤

Note that the load torque is an unknown input.

• the input matrix
ˆ
B(x5) ∈ M4×2(R) which consists of the first two columns of

ˆ
L−1(x5):

ˆ
B(x5) =



λ3I2 − µ3ST(16x5)

λ6I2 − µ6ST(16x5)


 =


ˆ
B1(x5)

ˆ
B2(x5)


 (5.18)

• the output vector ~Y ∈ R
3:

~Y =
[
y0 y1 y2

]⊤
=
[
is, 1α is, 2β θr

]⊤
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5.1. Controllability and observability of the transformed model

The rotor angle is assumed to be known.

• the output matrix
ˆ
C ∈ M3×6(R):

ˆ
C =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1




Owing to the above definitions, the state-space equations of the transformed model with wavelengths
1 and 17 are rewritten as follows:



d

dt




x0

x1

x2

x3



=

ˆ
A(x4, x5)




x0

x1

x2

x3



+

ˆ
B(x5)

[
u0

u1

]

dx4
dt

=
1

JM

[
4
√
3
[
x0 x1

]
J[LM, 1I2 + 17LM, 17ST(16x5)]

[
x2

x3

]
− u2

]

dx5
dt

= x4

~Y =
ˆ
C ~X

(5.19)

In order to understand to which extend the consideration of wavelength 17 modifies the structure of
the model equations, we take a look at the numerical values of the parameters λp and µp, p ∈ J1, 10K.
The latter are summarized in table 5.1 for the model with H = {1, 17} and table 5.2 in case of the
fundamental model, i.e. H = {1} and thus, LM, 17 = 0.

Symbol and value (SI) Symbol and value (SI)

λ1 = 2.153× 10−3 H µ1 = 3.111× 10−6 H
λ2 = 2.861× 10−2 H µ2 = −9.167× 10−4 H
λ3 = 3.498× 101 H−1 µ3 = 1.121× 100 H−1

λ4 = 7.532× 10−2 µ4 = 2.521× 10−3

λ5 = 8.281× 105 H−1 µ5 = 2.653× 104 H−1

λ6 = −5.155× 103 H−1 µ6 = −1.726× 102 H−1

λ7 = −1.109× 101 µ7 = −9.899× 10−2

λ8 = 1.781× 103 µ8 = 1.333× 101

λ9 = −7.538× 10−2 µ9 = −4.263× 10−3

λ10 = 1.211× 101 µ10 = 6.442× 10−1

Table 5.1: Numerical values of the constants in the state-space model with H = {1, 17}

We notice that the value of all µp, p ∈ J1, 10K, is zero for the fundamental model, as LM, 17 = 0. As a
result, the dependence of the matrices

ˆ
A and

ˆ
B on the rotor angle disappears. The general structure

of the state-space model, however, remains the same. In addition, the value of the parameters λp,
p ∈ J1, 10K, is only marginally affected by the presence of wavelength 17.
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5.1.3. Comments on the controllability and the observability of the state variables

Symbol and value (SI) Symbol and value (SI)

λ1 = 2.153× 10−3 H µ1 = 0 H
λ2 = 2.743× 10−2 H µ2 = 0 H
λ3 = 3.645× 101 H−1 µ3 = 0 H−1

λ4 = 7.849× 10−2 µ4 = 0
λ5 = 8.611× 105 H−1 µ5 = 0 H−1

λ6 = −5.375× 103 H−1 µ6 = 0 H−1

λ7 = −1.157× 101 µ7 = 0
λ8 = 1.854× 103 µ8 = 0
λ9 = −7.849× 10−2 µ9 = 0
λ10 = 1.257× 101 µ10 = 0

Table 5.2: Numerical values of the constants in the state-space model with H = {1}

5.1.3 Comments on the controllability and the observability of the state variables

Rotor currents

Since extending the fundamental model to wavelength 17 does not affect the elementary structure
of the state-space equations, we expect the two models to share similar behaviour regarding the
properties of controllability and observability. In particular, rotor currents should remain controllable
and observable in the model with H = {1, 17}, even though the input and system matrices depend on
the rotor angle.

In order to support this conjecture, we examine whether there exist values of θr for which the im-
pressed stator voltages have no effect on stator and rotor currents. The influence of the voltages
on the derivative of the stator currents is described by the submatrix

ˆ
B1 which was introduced in

relation (5.18). We observe that its determinant is non-zero and independent of the rotor angle:

det
ˆ
B1 = det[λ3I2 − µ3ST(16x5)] = det



λ3 − µ3 cos(16x5) µ3 sin(16x5)

µ3 sin(16x5) λ3 + µ3 cos(16x5)




= λ23 − µ23 cos
2(16x5)− µ23 sin

2(16x5) = λ23 − µ23 6= 0

This means that any non-zero input voltage vector [u0 u1]
⊤ will have an effect on the derivative of

the stator currents. Similarly,

det
ˆ
B2 = det[λ6I2 − µ6ST(16x5)] = λ26 − µ26 6= 0

and any non-zero input voltage vector will also influence the derivatives of rotor currents. In other
words, the impressed voltages can be used to command stator as well as rotor currents and thus the
electromechanical torque.

We now investigate the observability of rotor currents in the model with wavelengths 1 and 17. In
order to be observable at the model outputs, rotor currents must have an impact on stator currents
regardless the value of the rotor angle. To check whether this is the case, we work out the determinant
of the submatrix

ˆ
A12 which describes the influence of rotor currents on the derivative of stator currents.

To draw more general conclusions, as all four blocks in the system matrix
ˆ
A have the same form, we

compute the determinant of the following general expression:

det[α1I2 + α2ST(16θr) + ωrJ[β1I2 + β2ST(16θr)]] for (α1, α2, β1, β2) ∈ R
4
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5.1. Controllability and observability of the transformed model

= det



α1 + α2 cos(16x5) + β2ωr sin(16x5) −ωr[β1 − β2 cos(16x5)]− α2 sin(16x5)

[β1 + β2 cos(16x5)]ωr − α2 sin(16x5) α1 − α2 cos(16x5)− β2ωr sin(16x5)




= α2
1 − [α2 cos(16x5) + β2ωr sin(16x5)]

2 + β21ω
2
r − [β2ωr cos(16x5)− α2 sin(16x5)]

2

= α2
1 − α2

2 + ω2
r (β

2
1 − β22)

We notice that the determinant of the four blocks of
ˆ
A depends on the rotor angular velocity but not

on the rotor angle, as for the fundamental model. In particular,

det
ˆ
A12 = R2

r(λ
2
6 − µ26) + ω2

r (λ
2
9 − µ29)

= 1.375× 10−1 + 5.663× 10−3ω2
r

> 0 ∀ωr ∈ R

This result demonstrates that the rotor angle does not impose any restriction regarding the influence
of rotor currents on stator current derivatives.

We can deduce from the considerations in this section that the extended model of IM1 withH = {1, 17}
is fundamentally suitable for use in torque ripple reduction applications, as the dependence of the
system and input matrices on the rotor angle does not impose limitations on the controllability and
observability of rotor currents.

The same conclusions can be drawn for the model of IM2 with wavelengths 2 and 26, since it has the
very same structure. In general, however, the number of states in the model may increase depending
on the wavelengths considered (see chapter 4). For this reason, a thorough model analysis should be
carried out in each specific case.

Observability of the rotor speed

The structure of the state equations (5.19) shows that for a constant rotor angle, i.e. ωr = 0, the
differential system describing the behaviour of the currents is linear. Under these circumstances, if the
model is excited with input voltages at a given frequency, the output currents will exhibit only this
frequency. Owing to the expressions given in (5.17), the coefficients of the system matrix will change
depending on the value of θr. This is a major difference with the fundamental model, for which the
rotor angle has no impact on the system matrix at zero-speed.

Fig. 5.1 compares the stator current response of the model with wavelengths 1 and 17 to the one
obtained with the fundamental model for θr = π/12 and θr = π/16. As expected, the current
trajectory computed with the fundamental model is circular and does not change when the rotor is
moved from one position to the other. This contrasts with the elliptic trajectory generated by the
model with H = {1, 17} whose main axis is directly impacted by the change in rotor position.

This characteristic makes the extended model potentially interesting for encoderless control applica-
tions. An extensive theoretical analysis of the rotor speed observability, similar to the ones reported by
Wit in [84] or Vaclavek in [85] in the case of Park’s model, would be valuable as well as experimental
investigations.
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Figure 5.1: Simulated current responses of the transformed models with H = {1, 17} and H = {1} to
balanced sinusoidal voltages (U = 0.15UNY , f = 2kHz) for two different rotor angles

5.2 Practical determination of the model parameters

Besides the controllability and the observability of the model states, a straightforward determination
of its parameters is crucial for its practical suitability. As described in chapter 3, the linear geometric
model requires a few additional parameters in comparison with Park’s. They describe the machine
internal geometry and are summarized in table 5.3.

Parameter Symbol

Mean air-gap length δ0
Mean air-gap radius r
Lamination stack length l

Number of stator slots Ns

Stator slot width −
Number of rotor slots Nr

Rotor slot width −
Number of turns of the stator winding coils WS

Table 5.3: Additional parameters required in the linear geometric model

For the purpose of the investigations, the test machines IM1 and IM2 were opened to simplify the
parameter estimation. This is usually not acceptable in practice. Thus, estimation methods should be
developed to allow for the determination of the geometry related parameters from the stator current
response of the machine.

The number of rotor slots could, for instance, be deduced from the time-harmonics present in the stator
currents under balanced voltage excitation. An alternative would be the injection of a high-frequency
test voltage and the processing of the current response (see fig. 5.1).
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5.2. Practical determination of the model parameters

While the lamination stack length might be available in the documentation provided by the machine
manufacturer, the determination of the other parameters is more complicated. The machine size and
number of pole pairs may provide valuable hints on the stator winding configuration and thus help
determine the shape of the corresponding conductor distribution functions.

An approach adopted in the context of this thesis consists in using Park’s model parameters as reference
and perform simulations with the linear geometric model (cf. chapter 3) to find suitable values for the
unknown parameters. This method requires a systematic means of computing the Fourier coefficients
of the conductor distribution functions. A particularly effective technique for tackling this problem
is to understand the conductor distribution functions as linear combinations of shifted copies of a
basic function, such as the one shown in fig. 3.4 on page 52. The shape of this basic function is
determined for instance by two parameters and parametric expressions of its Fourier coefficients are
found straightforwardly. The properties listed in section 3.1 allow to deduce the Fourier coefficients of
the conductor distribution functions, which then depend on the geometric parameters. The influence
of the latter on the inductances can easily be determined in simulations.

Nonetheless, finding appropriate values of the parameters remains arduous. Further work should
therefore be carried out to optimize this process.

Summary

Controllability and observability of the rotor currents and the rotor angular velocity have been em-
pirically assessed for the model of IM1 with wavelengths 1 and 17. For this particular model, the
dependence of the system and input matrices on the rotor angle caused by the presence of wavelength
17 turns out to be unproblematic in respect of the controllability and the observability of rotor cur-
rents. This property makes the model suitable for use in applications aiming at reducing current and
torque oscillations caused by space harmonics.

By contrast, the influence of the rotor angle on the coefficients of the system matrix could be useful
for encoderless control applications. This aspect, however, necessitates comprehensive investigations
from a theoretical as well as experimental perspective.

A further point needing additional research is the efficient determination of the model parameters
describing the machine geometry, since no optimal solution has yet been found.
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Conclusion and outlook

The investigations reported in this thesis started with a general model of induction machines including
the effect of different categories of space harmonics. In order to meet our first objective of achieving
real-time compliance, we then focused on space harmonics caused by the discrete distribution of
electric conductors in the machine. We therefore assumed a linear magnetic behaviour as well as a
uniform air-gap. Taking advantage of the mathematical properties of Fourier series, we proposed a
simplified machine representation. Corresponding models of the two machines under test including
a handful of space harmonics were analysed in simulation and experimentally. Although acceptable
from the perspective of accuracy, they turn out to be computationally too demanding with respect to
the targeted applications. This observation led us to develop a coordinate transformation to reduce
the model order. Transformed models of the investigated machines with two space harmonics were
derived and assessed. The transformation proves to drastically reduce the computational burden and
provides execution times similar to Park’s model. Our first goal is therefore met.

The considerations in chapter 5 showed that the transformed models with two space harmonics have
essentially the same structure as Park’s. The dependence of the system and input matrices on the
rotor angle does not appear to have any detrimental consequence. On the contrary, the rotor angle
seems to be observable at zero speed. As the currents are controllable and observable, the model is
suitable for use in current and torque harmonic reduction applications. Thus, our second objective is
achieved.

The extended model requires some additional information about the machine structure, which, in the
frame of the study, was determined by looking inside the machine. As this method is not acceptable
in practice, we proposed alternatives in chapter 5. Our third objective is fulfilled although further
research would be needed to simplify the parameter determination.

Beyond the initial goals, the main contribution of the work presented is the derivation of a general
coordinate transformation for multiphase machines taking into account the effect of winding intercon-
nections. The transformation is based on the discrete Fourier transform and the concept of intercon-
nection matrices. Besides diagonalizing the stator and rotor inductance submatrices of the model, it
sheds new light on space harmonics and enables to consider them from the insightful perspective of
signal processing.

More generally, the present work demonstrated the fundamental role played by the mathematical
properties of the model:

• the symmetric positive definiteness of the inductance matrix as a result of physical phenomena;

• the careful choice of the interconnection matrix such that the inductance matrix remains sym-
metric positive definite after interconnection and therefore invertible using a efficient Cholesky
decomposition;

• the interpretation of the inductance matrix diagonalization as a discrete Fourier transform;

• the combination of Fourier and interconnection matrices to obtain a general coordinate trans-
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5.2. Practical determination of the model parameters

formation for multiphase machines.

These observations should always motivate the engineer to consider a given problem from different
perspectives to propose original solutions.

Finally, the investigation of the following potentially promising aspects would be beneficial:

• the practical implementation and assessment of the transformed linear geometric model to reduce
current and torque harmonics. Its complexity is comparable to Park’s model and makes it
suitable for use in predictive control schemes;

• the potential of the transformed model for encoderless control purposes should be determined,
especially in the case of multiphase machines;

• we have only discussed transformed models including two space harmonics. The possible benefits
of selecting different combinations of space harmonics for a given machine should be examined.
In the case of IM1, this includes the orders 1, 5 and 11, which also generate a principal slot
harmonic, instead of 1 and 17;

• an extensive comparison with Kron’s method would be of interest. The advantage of Kron’s
approach is the possibility of assigning state variables to each space harmonic, which may provide
more possibilities to influence the corresponding current components. The original geometric
model, however, allows to examine the influence of specific space harmonics without difficulty,
as no further parameter is needed;

• an extension of the linear geometric model to account for the effect of slotting or non-uniform
air-gap, as in synchronous reluctance machines, might also be interesting. The geometric model
might be extended to other types of machines as well.
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Appendix

A.1 Characteristics and parameters of the investigated machines

A.1.1 Induction machine 1 (IM1)

Figure A.1: Induction machine 1 on the test rig

Physical quantity Symbol and value (SI)

Rated power PN = 2.2 kW
Rated rotor speed NN = 2890 min−1

Rated torque MMN = 7.3 Nm
Rated voltage (star, line-to-line) UNY = 400 V
Rated current (star) INY = 4.5 A
Rated frequency fN = 50 Hz
Power factor cosϕ = 0.85

Table A.1: Nameplate specifications of induction machine 1
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A.1. Characteristics and parameters of the investigated machines

(a) Model showing the rotor cage

(b) Cross section of IM1 with rotor cage modelled as a set of Nr

circuits

Figure A.2: Schematics of a cross section of IM1
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A.1.1. Induction machine 1 (IM1)

Physical quantity Symbol and value (SI)

Number of stator slots Ns = 18
Number of rotor slots Nr = 16
Number of stator circuits ms = 3
Number of rotor circuits mr = Nr = 16

Moment of inertia JM = 2.2× 10−3 kgm2

Coefficient of friction CW = 6.4× 10−4 Nms

Table A.2: Geometric data of induction machine 1

Physical quantity Symbol and value (SI)

Number of pole pairs Zp = 1

Stator resistance Rs = 2.2 Ω
Main inductance M = 326 mH
Stator leakage inductance Lσs = 14 mH
Rotor leakage inductance Lσr = 14 mH
Rotor resistance Rr = 1.7 Ω

Table A.3: Park’s model parameters of induction machine 1

Figure A.3: Definition of normalized stator and rotor air-gap coordinates (IM1)
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A.1. Characteristics and parameters of the investigated machines

Figure A.4: Distributed quantities of stator circuit 0 (IM1)

Figure A.5: Distributed quantities of rotor circuit 0 (IM1)
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A.1.2. Induction machine 2 (IM2)

A.1.2 Induction machine 2 (IM2)

Figure A.6: Induction machine 2 on the test rig

Physical quantity Symbol and value (SI)

Rated power PN = 2.2 kW
Rated rotor speed NN = 1410 min−1

Rated torque MMN = 14.9 Nm
Rated voltage (star, line-to-line) UNY = 400 V
Rated current (star) INY = 4.9 A
Rated frequency fN = 50 Hz
Power factor cosϕ = 0.81 1

Table A.4: Nameplate specifications of induction machine 2

Physical quantity Symbol and value (SI)

Number of stator slots Ns = 36
Number of rotor slots Nr = 28
Number of stator circuits ms = 6
Number of rotor circuits mr = Nr = 28

Moment of inertia JM = 6.0× 10−3 kgm2

Coefficient of friction CW = 1.3× 10−3 Nms

Table A.5: Geometric data of induction machine 2
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A.1. Characteristics and parameters of the investigated machines

Physical quantity Symbol and value (SI)

Number of pole pairs Zp = 2

Stator resistance Rs = 3.0 Ω
Main inductance M = 214 mH
Stator leakage inductance Lσs = 7 mH
Rotor leakage inductance Lσr = 7 mH
Rotor resistance Rr = 2.7 Ω

Table A.6: Park’s model parameters of induction machine 2

Figure A.7: Cross section of IM2 with normalized stator and rotor air-gap coordinates
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A.1.2. Induction machine 2 (IM2)

Figure A.8: Distributed quantities of stator circuit 0 (IM2)

Figure A.9: Distributed quantities of rotor circuit 0 (IM2)
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A.2. Mathematical proofs

A.2 Mathematical proofs

A.2.1 Winding function based model (chapter 2)

Expression of the electromagnetic torque (p. 20)

The derivation of the torque expression (2.18) proposed below is based on [51].

During the infinitesimal time interval dt , the energy of the coupling field, Wf , experiences a variation
dEel which is linked to the exchanged electrical and mechanical energy dWe and dWm :

dWf = dWe − dWm

=

ms+mr−1∑

k=0

ik
dψ̃k

dt
dt −MM dθr

=

ms+mr−1∑

k=0

ik dψ̃k −MM dθr (A.1)

In order to use the currents and the rotor angle as system variables, the coenergy Wc is introduced:

Wc =

ms+mr−1∑

k=0

ikψ̃k −Wf (A.2)

The differential form of (A.2) is:

dWc =

ms+mr−1∑

k=0

ψ̃k dik +

ms+mr−1∑

k=0

ik dψ̃k − dWf (A.3)

Appropriate substitution of (A.1) into (A.3) gives:

dWc =

ms+mr−1∑

k=0

ψ̃k dik +

ms+mr−1∑

k=0

ik dψ̃k −
ms+mr−1∑

k=0

ik dψ̃k +MM dθr

=

ms+mr−1∑

k=0

ψ̃k dik +MM dθr (A.4)

As Wc is depends exclusively on the currents and the rotor angle, dWc is a total differential. The
following relationship holds:

dWc =

ms+mr−1∑

k=0

∂Wc

∂ik
dik +

∂Wc

∂θr
dθr (A.5)

Equations (A.4) and (A.5) lead to the expressions:

ψ̃k =
∂Wc(i0, · · · , ims+mr−1, θr)

∂ik
(A.6)

MM =
∂Wc(i0, · · · , ims+mr−1, θr)

∂θr
(A.7)

Having neglected hysteresis and eddy current losses, the coupling field is conservative. Thus, the
energy stored in this field at a certain time instant only depends on the value of the state variables at
this time instant. As a result: ∮

dWf = 0 and

∮
dWc = 0
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This property makes possible to freely choose the path of integration to compute the value of Wf and
Wc. It appears opportune to select a path along which the rotor is first moved to its position θr while
the currents remain zero and then bring each current successively to its final value ik. This results in:

Wc(~i, θr) =

∫ (~i, θr)

(~0, 0)
dWc =

∫ (~0, θr)

(~0, 0)
dWc +

∫ (~i, θr)

(~0, θr)
dWc

The first term on the right-hand side is zero as no energy is being exchanged between the mechanical
system and the coupling field when no current is flowing through the electrical circuits. Owing to the
above consideration, the coenergy value resulting from the state vector (~i, θr) is:

Wc(~i, θr) =

∫ (i0,··· , 0)

(0,··· , 0)

ms+mr−1∑

k=0

∂Wc

∂i′k
di′k + · · ·+

∫ (i0,··· ,ims+mr−2, ims+mr−1)

(i0,··· ,ims+mr−2, 0)

ms+mr−1∑

k=0

∂Wc

∂i′k
di′k

=

∫ i0

i′=0
ψ̃0(i

′, 0, · · · , 0, θr) di′ + · · ·+
∫ ik

i′=0
ψ̃k(i0, · · · , ik−1, i

′, 0, · · · , 0, θr) di′

+ · · ·+
∫ ims+mr−1

i′=0
ψ̃ms+mr−1(i0, · · · , ims+mr−2, i

′, θr) di
′

=

ms+mr−1∑

k=0

∫ ik

i′=0
ψ̃k(i0, · · · , ik−1, i

′, 0, · · · , 0, θr) di′ (A.8)

Given the expression of the main flux vector (3.47),Wc(~i, θr) can be further simplified in the considered
case:

Wc(~i, θr) =

ms+mr−1∑

k=0

∫ ik

i′=0

(
k−1∑

l=0

L̃kl(θr)il + L̃kk(θr)i
′

)
di′

=

ms+mr−1∑

k=0

(
k−1∑

l=0

L̃kl(θr)ilik +
1

2
L̃kk(θr)i

2
k

)

As L̃(θr) is symmetric,

k−1∑

l=0

L̃kl(θr)ilik =

ms+mr−1∑

l=k+1

L̃kl(θr)ilik, which yields:

Wc(~i, θr) =

ms+mr−1∑

k=0

(
1

2

k−1∑

l=0

L̃kl(θr)ilik +
1

2
L̃kk(θr)i

2
k +

1

2

ms+mr−1∑

l=k+1

L̃kl(θr)ilik

)

=
1

2

ms+mr−1∑

k=0

ms+mr−1∑

l=0

L̃kl(θr)ilik

=
1

2
~i⊤L̃(θr)~i =

1

2
~i⊤

~̃
Ψ (A.9)

As expected for a linear system, the coenergy Wc is equal to the energy Wf . The electromagnetic
torque is calculated using (A.9) and (A.7):

MM =
∂

∂θr

(
1

2
~i⊤L̃(θr)~i

)

=
1

2
~i⊤

∂L̃(θr)

∂θr
~i =

1

2
~i⊤

∂
~̃
Ψ

∂θr
(A.10)
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A.2.2 Linear geometric model (chapter 3)

Proposition 4 (p. 46): Properties of the matrix L̃h(θr), h ∈ N
⋆

• L̃h(θr) is symmetric.

L̃⊤
h (θr) =




L̃⊤
s h

L̃⊤
sr h

(θr)

L̃⊤
rs h

(θr) L̃⊤
r h


 =




L̃s h L̃rs h(θr)

L̃sr h(θr) L̃rh


 = L̃h(θr) (A.11)

• L̃h(θr) is positive semidefinite.

For ~i =
[
~i⊤s ~i⊤r

]⊤ ∈ R
ms+mr with ~is ∈ R

ms and ~ir ∈ R
mr ,

~i⊤L̃h(θr)~i =
[
~i⊤s ~i⊤r

]


L̃s h

~is + L̃rs h(θr)~ir

L̃sr h(θr)~is + L̃r h
~ir




=~i⊤s L̃s h
~is +~i

⊤
s L̃rs h(θr)~ir +~i

⊤
r L̃sr h(θr)~is +~i

⊤
r L̃r h

~ir

Given the expressions (3.36), (3.37) as well as (3.43) and (3.44), we have:

~i⊤L̃h(θr)~i = L̃s, h
~i⊤s T̃⊤

CshT̃Csh
~is + LM,h

~i⊤s T̃⊤
CshT(hθr − ϕh)T̃Crh

~ir

+ LM,h
~i⊤r T̃⊤

CrhT(−hθr + ϕh)T̃Csh
~is + L̃r, h

~i⊤r T̃⊤
CrhT̃Crh

~ir

= L̃s, h

[
T̃Csh

~is

]⊤[
T̃Csh

~is

]
+ LM,h

[
T̃Csh

~is

]⊤
T(hθr − ϕh)

[
T̃Crh

~ir

]

+ LM,h

[[
T̃Crh

~ir

]⊤
T(−hθr + ϕh)

[
T̃Csh

~is

]]⊤
+ L̃r, h

[
T̃Crh

~ir

]⊤[
T̃Crh

~ir

]

= L̃s, h

∥∥∥T̃Csh
~is

∥∥∥
2
+ LM,h

[
T̃Csh

~is

]⊤
T(hθr − ϕh)

[
T̃Crh

~ir

]

+ LM,h

[
T̃Csh

~is

]⊤
T(hθr − ϕh)

[
T̃Crh

~ir

]
+ L̃r, h

∥∥∥T̃Crh
~ir

∥∥∥
2

= L̃s, h

∥∥∥T̃Csh
~is

∥∥∥
2
+ 2LM,h

[
T̃Csh

~is

]⊤
T(hθr − ϕh)

[
T̃Crh

~ir

]
+ L̃r, h

∥∥∥T̃Crh
~ir

∥∥∥
2

The second term on the right-hand side requires particular attention:

2LM,h

[
T̃Csh

~is

]⊤
T(hθr − ϕh)

[
T̃Crh

~ir

]
> −2LM,h

∥∥∥T̃Csh
~is

∥∥∥
∥∥∥T(hθr − ϕh)T̃Crh

~ir

∥∥∥

> −2LM,h

∥∥∥T̃Csh
~is

∥∥∥
∥∥∥T̃Crh

~ir

∥∥∥

As a result,

~i⊤L̃h(θr)~i > L̃s, h

∥∥∥T̃Csh
~is

∥∥∥
2
− 2LM,h

∥∥∥T̃Csh
~is

∥∥∥
∥∥∥T̃Crh

~ir

∥∥∥ + L̃r, h

∥∥∥T̃Crh
~ir

∥∥∥
2

– 142 –



A.2.2. Linear geometric model (chapter 3)

Using (3.33), a meaningful expression can be gained:

~i⊤L̃h(θr)~i > 4πrl
µ0
δ0

[
c2h(Ws0)

∥∥∥T̃Csh
~is

∥∥∥
2
− 2ch(Wr0)ch(Ws0)

∥∥∥T̃Csh
~is

∥∥∥
∥∥∥T̃Crh

~ir

∥∥∥

+ c2h(Wr0)
∥∥∥T̃Crh

~ir

∥∥∥
2
]

> 4πrl
µ0
δ0

(
ch(Ws0)

∥∥∥T̃Csh
~is

∥∥∥ − ch(Wr0)
∥∥∥T̃Crh

~ir

∥∥∥
)2

> 0 (A.12)

The validity of eq. (A.12) for every ~i ∈ R
ms+mr \ {~0} ensures the positive semidefiniteness of L̃h.

L̃h is, however, not positive definite. As rank(T̃Csh) 6 2 and rank(T̃Crh) 6 2, the rank-nullity

theorem leads to dim
[
ker(T̃Csh)

]
> ms +mr − 2 and dim

[
ker(T̃Crh)

]
> ms +mr − 2.

Hence, ∃~i ∈ R
ms+mr \ {~0}, ~i⊤L̃h(θr)~i = 0.

Proposition 6 (p. 48): Properties of the matrices L̃′
h
(θr), (h ∈ N

⋆), L̃′(θr) and L′(θr)

• For h ∈ N
⋆, L̃′

h
(θr) = C⊤L̃h(θr)C is symmetric positive semidefinite.

L̃′⊤
h
(θr) =

[
C⊤L̃h(θr)C

]⊤
= C⊤L̃⊤

h
(θr)C = L̃′

h
(θr) as L̃h is symmetric.

For ~i′ =
[
~i′⊤s ~i′⊤r

]⊤ ∈ R
m′

s+m′

r with ~i′s ∈ R
m′

s and ~i′r ∈ R
m′

r ,

~i′⊤L̃′
h(θr)~i

′ =
[
~i′⊤s ~i′⊤r

]


C⊤

s 0

0 C⊤
r






L̃s h L̃rs h(θr)

L̃sr h(θr) L̃rh





Cs 0

0 Cr





~i′s

~i′r




=
[
~i′⊤s ~i′⊤r

]



C⊤
s L̃s hCs C⊤

s L̃rs h(θr)Cr

C⊤
r L̃sr h(θr)Cs C⊤

r L̃rhCr





~i′s

~i′r




=~i′⊤s

[
C⊤

s L̃s hCs
~i′s +C⊤

s L̃rs h(θr)Cr
~i′r

]
+~i′⊤r

[
C⊤

r L̃sr h(θr)Cs
~i′s +C⊤

r L̃rhCr
~i′r

]

= L̃s, h

[
T̃CshCs

~i′s

]⊤
T̃CshCs

~i′s + LM,h

[
T̃CshCs

~i′s

]⊤
T(hθr − ϕh)T̃CrhCr

~i′r

+ LM,h

[
T̃CrhCr

~i′r

]⊤
T(−hθr + ϕh)T̃CshCs

~i′s + L̃r, h

[
T̃CrhCr

~i′r

]⊤
T̃CrhCr

~i′r

> L̃s, h

∥∥∥T̃CshCs
~i′s

∥∥∥
2
+ L̃r, h

∥∥∥T̃CrhCr
~i′r

∥∥∥
2
− 2LM,h

∥∥∥T̃CshCs
~i′s

∥∥∥
∥∥∥T̃CrhCr

~i′r

∥∥∥

> 4πrl
µ0
δ0

(
ch(Ws0)

∥∥∥T̃CshCs
~i′s

∥∥∥ − ch(Wr0)
∥∥∥T̃CrhCr

~i′r

∥∥∥
)2

> 0
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• L̃′(θr) is positive semidefinite.

For N ∈ N
⋆,

N∑

h=1

L̃′
h(θr) is positive semidefinite as the sum of positive semidefinite matrices. The

positive semidefiniteness of L̃′(θr) is then gained from the fact that

L̃′(θr) = lim
N−→+∞

N∑

h=1

L̃′
h(θr)

exists and, for ~i′ ∈ R
m′

s+m′

r , the map

φ~i′ : Mm′

s+m′

r
(R) −→ R

M 7−→ φ~i′(M) =~i′⊤M~i′

is a linear form in a finite dimensional vector space and therefore continuous.

• L′(θr) is positive definite.

L(θr) being the sum of a positive semidefinite and a positive definite matrix, L̃′(θr) and Lσ respectively,
it is positive definite. Hence, there exists a unique upper triangular matrix with strictly positive
diagonal coefficients ∆ such that L(θr) = ∆⊤∆ (Cholesky). For ~i′ ∈ R

m′

s+m′

r

~i′⊤L′(θr)~i
′ =~i′⊤C⊤∆⊤∆C~i′ =

[
∆C~i′

]⊤
∆C~i′ =

∥∥∥∆C~i′
∥∥∥
2

Owing to the shape of matrix C, ~i′ 6= ~0 =⇒ C~i′ 6= ~0. As ∆ is invertible, ~i′ 6= ~0 =⇒ ~i′⊤L′(θr)~i
′ > 0.

Hence, L′(θr) is positive definite.

A.2.3 Transformed linear geometric model (chapter 4)

Transformed stator main inductance matrix of wavelength h, L̃♮
s h

(p. 86)

In order to find a simpler expression of L̃♮
s h

, the matrix product T̃Csk0
Wms

is now being investigated.

To do so, the coefficients of T̃Csk0
are expressed using complex exponentials:

T̃Csk0
=

1

2





1 · · · ejk0m

2π
ms · · · ejk0(ms−1) 2π

ms

0 · · · −jejk0m
2π
ms · · · −jejk0(ms−1) 2π

ms




+



1 · · · e−jk0m

2π
ms · · · e−jk0(ms−1) 2π

ms

0 · · · je−jk0m
2π
ms · · · je−jk0(ms−1) 2π

ms






=
1

2





1 0

0 −j





1 · · · W k0m

−ms
· · · W

k0(ms−1)
−ms

0 · · · W k0m
−ms

· · · W
k0(ms−1)
−ms




+



1 0

0 j





1 · · · W k0m

ms
· · · W

k0(ms−1)
ms

0 · · · W k0m
ms

· · · W
k0(ms−1)
ms





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=
1

2






1 0

0 −j





1 · · · · · · 1

0 1 · · · 1







1

0

W k0m
ms

0

W
k0(ms−1)
ms




+



1 0

0 j





1 · · · · · · 1

0 1 · · · 1







1

0

W k0m
ms

0

W
k0(ms−1)
ms







(A.13)

Defining the following matrices,

Mms,k0
=




1

0

W k0m
ms

0

W
k0(ms−1)
ms




N =



1 · · · · · · 1

0 1 · · · 1


 P =



1 0

0 j




we obtain:

T̃Csk0
=

1

2

(
PNMms,k0

+PNMms,k0

)
(A.14)

At first, we focus on the product Mms,k0
Wms

:

Mms,k0
Wms

=
1√
ms




1

0

W k0m
ms

0

W
k0(ms−1)
ms




×




1 1 · · · · · · · · · 1
1 Wms · · · Wm

ms
· · · Wms−1

ms

...
...

...
...

...
...

1 W k
ms

· · · Wmk
ms

· · · W
(ms−1)k
ms

...
...

...
...

...
...

1 Wms−1
ms

· · · W
m(ms−1)
ms · · · W

(ms−1)2

ms



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=
1√
ms




1 · · · · · · · · · 1
W k0

ms
· · · W k0+m

ms
· · · W k0+ms−1

ms

...
...

...
...

...

W kk0
ms

· · · W
k(k0+m)
ms · · · W

k(k0+ms−1)
ms

...
...

...
...

...

W
(ms−1)k0
ms · · · W

(ms−1)(k0+m)
ms · · · W

(ms−1)(k0+ms−1)
ms




In order to calculate the product NMms,k0
Wms

, it is necessary to determine the sum
ms−1∑

k=0

W k(k0+m)
ms

=

ms−1∑

k=0

[
e−j(k0+m) 2π

ms

]k

depending on (k0, m) ∈ J0, ms − 1K2. The following two cases have to be distinguished:

• Case 1: k0 +m ≡ 0 (mod ms)

∃λ ∈ Z, k0 +m = λms

=⇒ e−j(k0+m) 2π
ms = e−jλms

2π
ms = e−jλ2π = 1

=⇒
ms−1∑

k=0

W k(k0+m)
ms

= ms

As (k0, m) ∈ J0, ms − 1K2, the only possible values of λ are 0 and 1:

λ = 0 =⇒ k0 +m = 0 =⇒ m = k0 = 0 (only relevant if k0 = 0)

λ = 1 =⇒ k0 +m = ms =⇒ m = ms − k0 (only relevant if k0 6= 0)

• Case 2: k0 +m 6≡ 0 (mod ms)

ms−1∑

k=0

W k(k0+m)
ms

=
1−

[
e−j(k0+m) 2π

ms

]ms

1− e−j(k0+m) 2π
ms

= 0

As a result, if k0 = 0,

NMms,k0
Wms

=
1√
ms

[ m=0 m=ms−1

ms 0 · · · 0
ms − 1 −1 · · · −1

]

and

PNMms,k0
Wms

=
1√
ms

[ m=0 m=ms−1

ms 0 · · · 0
j(ms − 1) −j · · · −j

]

In contrast, if k0 6= 0,

NMms,k0
Wms

=
1√
ms

[ m=0 m=ms−k0 m=ms−1

0 · · · 0 ms 0 · · · 0
−1 · · · −1 ms − 1 −1 · · · −1

]

and

PNMms,k0
Wms

=
1√
ms

[ m=0 m=ms−k0 m=ms−1

0 · · · 0 ms 0 · · · 0
−j · · · −j j(ms − 1) −j · · · −j

]
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Considering now the remaining term in (A.14), the product Mms,k0
Wms

needs to be calculated:

Mms,k0
Wms

=
1√
ms




1

0

W k0k
−ms

0

W
k0(ms−1)
−ms




×




1 1 · · · · · · · · · 1
1 Wms · · · Wm

ms
· · · Wms−1

ms

...
...

...
...

...
...

1 W k
ms

· · · Wmk
ms

· · · W
(ms−1)k
ms

...
...

...
...

...
...

1 Wms−1
ms

· · · W
m(ms−1)
ms · · · W

(ms−1)2

ms




=
1√
ms




1 · · · · · · · · · 1
W−k0

ms
· · · Wm−k0

ms
· · · Wms−1−k0

ms

...
...

...
...

...

W−kk0
ms

· · · W
k(m−k0)
ms · · · W

k(ms−1−k0)
ms

...
...

...
...

...

W
−(ms−1)k0
ms · · · W

(ms−1)(m−k0)
ms · · · W

(ms−1)(ms−1−k0)
ms




The computation of NMms,k0
Wms

requires a closer look at the sum
ms−1∑

k=0

W k(m−k0)
ms

=

ms−1∑

k=0

[
e−j(m−k0)

2π
ms

]k

which depends on (k0, m) ∈ J0, ms − 1K2.

• Case 1: m− k0 ≡ 0 (mod ms)

∃λ ∈ Z, m− k0 = λms

=⇒ e−j(m−k0)
2π
ms = e−jλms

2π
ms = e−jλ2π = 1

=⇒
ms−1∑

k=0

W k(m−k0)
ms

= ms

(k0, m) ∈ J0, ms − 1K2 =⇒ λ = 0

=⇒ k0 −m = 0 =⇒ m = k0

• Case 2: k0 −m 6≡ 0 (mod ms)

ms−1∑

k=0

W k(m−k0)
ms

=
1−

[
e−j(m−k0)

2π
ms

]ms

1− e−j(m−k0)
2π
ms

= 0
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Following these results:

NMms,k0
Wms

=
1√
ms

[ m=0 m=k0 m=ms−1

0 · · · 0 ms 0 · · · 0
−1 · · · −1 ms − 1 −1 · · · −1

]

and

PNMms,k0
Wms

=
1√
ms

[ m=0 m=k0 m=ms−1

0 · · · 0 ms 0 · · · 0
j · · · j −j(ms − 1) j · · · j

]

According to the previous considerations, the value of k0 has an influence on the product T̃Csk0
Wms

and the case k0 = 0, i.e. the wavelength order h is a multiple of the number of stator circuits ms, has
to be examined separately.

k0 = 0 =⇒ T̃Csk0
Wms

=
1

2
PNMms,k0

Wms
+

1

2
PNMms,k0

Wms

=
1

2
√
ms

[ m=0 m=ms−1

2ms 0 · · · 0
0 · · · · · · 0

]

=
√
ms

[ m=0 m=ms−1

1 0 · · · 0
0 · · · · · · 0

]

k0 6= 0 =⇒ T̃Csk0
Wms

=
1

2
PNMms,k0

Wms
+

1

2
PNMms,k0

Wms

=
1

2
√
ms



[ m=0 m=k0 m=ms−1

0 · · · 0 ms 0 · · · 0
j · · · j −j(ms − 1) j · · · j

]

+

[ m=0 m=ms−k0 m=ms−1

0 · · · 0 ms 0 · · · 0
−j · · · −j j(ms − 1) −j · · · −j

]



In case k0 6= ms − k0,

T̃Csk0
Wms

=

√
ms

2

[ m=0 m=k0 m=ms−k0 m=ms−1

0 · · · 0 1 0 · · · 0 1 0 · · · 0
0 · · · 0 −j 0 · · · 0 j 0 · · · 0

]

however, if k0 = ms − k0 (i.e. k0 = ms/2),

T̃Csk0
Wms

=
√
ms

[ m=0 m=k0 m=ms−1

0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0

]

The latter case may only occur if the number of stator circuits is even, for example when considering
the wavelength of order 3 in a 6 phase machine.

Getting back to the transformed stator main inductance of wavelength h, L̃♮
s h

, the previous results
lead to:
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• k0 = 0, i.e. the wavelength order h is a multiple of the number of circuits ms:

L̃♮
s h

= L̃s, hT̃Csk0
Wms

⊤

T̃Csk0
Wms

= L̃s, h
√
ms




k=0 1 0

0
...

...
...

k=ms−1 0 0



√
ms

[ m=0 m=ms−1

1 0 · · · 0
0 · · · · · · 0

]

= msL̃s, h




m=0 m=ms−1

k=0 1 0 · · · 0
0 · · · · · · 0
...

...
...

...
k=ms−1 0 · · · · · · 0


 (A.15)

• k0 6= 0:
If k0 = ms − k0, an expression similar to the previous one is obtained:

L̃♮
s h

= L̃s, hT̃Csk0
Wms

⊤

T̃Csk0
Wms

= L̃s, h
√
ms




k=0 0 0
...

...

0
...

k=k0 1
...

0
...

...
...

k=ms−1 0 0




√
ms

[ m=0 m=k0 m=ms−1

0 · · · 0 1 0 · · · 0
0 · · · · · · · · · · · · · · · 0

]

= msL̃s, h




m=0 m=k0 m=ms−1

k=0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . . 0
0 · · · 0 0 0 · · · 0

k=k0 0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . . 0
k=ms−1 0 · · · 0 0 0 · · · 0




(A.16)

If k0 6= ms − k0, we have:

L̃♮
s h

= L̃s, hT̃Csk0
Wms

⊤

T̃Csk0
Wms
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= L̃s, h

√
ms

2




k=0 0 0
...

...

0
...

k=k0 1 j
0 0
...

...
0 0

k=ms−k0 1 −j
0 0
...

...
k=ms−1 0 0




×
√
ms

2

[ m=0 m=k0 m=ms−k0 m=ms−1

0 · · · 0 1 0 · · · 0 1 0 · · · 0
0 · · · 0 −j 0 · · · 0 j 0 · · · 0

]

=
ms

2
L̃s, h




m=k0 m=ms−k0

0 0

0
... 0

... 0
0 0

k=k0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0

0
... 0

... 0
0 0

k=ms−k0 0 · · · 0 0 0 · · · 0 1 0 · · · 0
0 0

0
... 0

... 0
0 0




(A.17)

Transformed rotor main inductance matrix of wavelength h, L̃♮
rh

(p. 86)

As in section A.2.3, three cases have to be distinguished, depending on the value of l0:

• l0 = 0, i.e. the considered wavelength order is a multiple of the number of rotor circuits mr:

T̃Cr l0
Wmr

=
1

2
PNMmr, l0Wmr

+
1

2
PNMmr, l0Wmr

=
√
mr

[ n=0 n=mr−1

1 0 · · · 0
0 · · · · · · 0

]

L̃♮
r h

= mrL̃r, h




n=0 n=mr−1

l=0 1 0 · · · 0
0 · · · · · · 0
...

...
...

...
l=mr−1 0 · · · · · · 0


 (A.18)
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• l0 6= 0 ∧ l0 = mr − l0:

T̃Cr l0
Wmr

=
√
mr

[ n=0 n=l0 n=mr−1

0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0

]

L̃♮
rh

= mrL̃r, h




n=0 n=l0 n=mr−1

l=0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . . 0
0 · · · 0 0 0 · · · 0

l=l0 0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . . 0
l=mr−1 0 · · · 0 0 0 · · · 0




• l0 6= 0 ∧ l0 6= mr − l0:

T̃Cr l0
Wmr

=

√
mr

2

[ n=0 n=l0 n=mr−l0 n=mr−1

0 · · · 0 1 0 · · · 0 1 0 · · · 0
0 · · · 0 −j 0 · · · 0 j 0 · · · 0

]

L̃♮
r h

=
mr

2
L̃r, h




n=l0 n=mr−l0

0 0

0
... 0

... 0
0 0

l=l0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0

0
... 0

... 0
0 0

l=mr−l0 0 · · · 0 0 0 · · · 0 1 0 · · · 0
0 0

0
... 0

... 0
0 0




(A.19)

Transformed mutual inductance matrix of wavelength h (p. 87)

It is useful to express the coefficients of the matrix T(θ′r, h) using complex exponentials:

T(θ′r, h) =



cos(θ′r, h) − sin(θ′r, h)

sin(θ′r, h) cos(θ′r, h)


 =

1

2




ejθ
′

r, h + e−jθ′
r, h j

[
ejθ

′

r, h − e−jθ′
r, h

]

−j
[
ejθ

′

r, h + e−jθ′
r, h

]
ejθ

′

r, h + e−jθ′
r, h




=
1

2
ejθ

′

r, h




1 j

−j 1


+

1

2
e−jθ′

r, h



1 −j

j 1


 (A.20)

Following the results obtained in the foregoing sections, nine different computation schemes of L̃♮
rs h

need to be distinguished depending on the wavelength order h and, consequently, the values of k0 and
l0:
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1.) k0 = 0 ∧ l0 = 0

1

2
ejθ

′

r, h




1 j

−j 1


T̃Cr l0

Wmr
=

√
mr

2
ejθ

′

r, h




1 j

−j 1



[ n=0 n=mr−1

1 0 · · · 0
0 0 · · · 0

]

=

√
mr

2
ejθ

′

r, h

[ n=0 n=mr−1

1 0 · · · 0
−j 0 · · · 0

]

1

2
e−jθ′

r, h



1 −j

j 1


T̃Cr l0

Wmr
=

√
mr

2
e−jθ′

r, h



1 −j

j 1



[ n=0 n=mr−1

1 0 · · · 0
−j 0 · · · 0

]

=

√
mr

2
e−jθ′

r, h

[ n=0 n=mr−1

1 0 · · · 0
j 0 · · · 0

]

As a result,

T(θ′r, h)T̃Cr l0
Wmr

=

√
mr

2

[ n=l0 n=mr−1

ejθ
′

r, h + e−jθ′
r, h 0 · · · 0

−jejθ′r, h + je−jθ′
r, h 0 · · · 0

]

and hence,

L̃♮
rs h

= LM,h
√
ms




k=0 1 0

0
...

...
...

k=ms−1 0 0




√
mr

2

[ n=l0 n=mr−1

ejθ
′

r, h + e−jθ′
r, h 0 · · · 0

−jejθ′r, h + je−jθ′
r, h 0 · · · 0

]

= LM,h
√
msmr




n=0 n=mr−1

k=0 cos(θ′r, h) 0 · · · 0

0
... 0

k=ms−1 0


 (A.21)

2.) k0 = 0 ∧ l0 = mr − l0

• 1

2
ejθ

′

r, h




1 j

−j 1


T̃Cr l0

Wmr
=

√
mr

2
ejθ

′

r, h




1 j

−j 1



[ n=0 n=l0 n=mr−1

0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0

]

=

√
mr

2
ejθ

′

r, h

[ n=0 n=l0 n=mr−1

0 · · · 0 1 0 · · · 0
0 · · · 0 −j 0 · · · 0

]
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• 1

2
e−jθ′

r, h



1 −j

j 1


T̃Cr l0

Wmr
=

√
mr

2
e−jθ′

r, h



1 −j

j 1



[ n=0 n=l0 n=mr−1

0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0

]

=

√
mr

2
e−jθ′

r, h

[ n=0 n=l0 n=mr−1

0 · · · 0 1 0 · · · 0
0 · · · 0 j 0 · · · 0

]

As a result,

T(θ′r, h)T̃Cr l0
Wmr

=

√
mr

2

[ n=0 n=l0 n=mr−1

0 · · · 0 ejθ
′

r, h + e−jθ′
r, h 0 · · · 0

0 · · · 0 −jejθ′r, h + je−jθ′
r, h 0 · · · 0

]

and hence,

L̃♮
rs h

= LM,h
√
ms




k=0 1 0

0
...

...
...

k=ms−1 0 0




√
mr

2

[ n=0 n=l0 n=mr−1

0 · · · 0 ejθ
′

r, h + e−jθ′
r, h 0 · · · 0

0 · · · 0 −jejθ′r, h + je−jθ′
r, h 0 · · · 0

]

= LM,h
√
msmr




n=0 n=l0 n=mr−1

k=0 0 · · · 0 cos(θ′r, h) 0 · · · 0

0

0
... 0

k=ms−1 0


 (A.22)

3.) k0 = 0 ∧ ¬(l0 = 0 ∨ l0 = mr − l0)

• 1

2
ejθ

′

r, h




1 j

−j 1


T̃Cr l0

Wmr

=

√
mr

4
ejθ

′

r, h




1 j

−j 1



[ n=0 n=l0 n=mr−l0 n=mr−1

0 · · · 0 1 0 · · · 0 1 0 · · · 0
0 · · · 0 −j 0 · · · 0 j 0 · · · 0

]

=

√
mr

2
ejθ

′

r, h

[ n=0 n=l0 n=mr−1

0 · · · 0 1 0 · · · 0
0 · · · 0 −j 0 · · · 0

]

• 1

2
e−jθ′

r, h



1 −j

j 1


T̃Cr l0

Wmr
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=

√
mr

4
e−jθ′

r, h



1 −j

j 1



[ n=0 n=l0 n=mr−l0 n=mr−1

0 · · · 0 1 0 · · · 0 1 0 · · · 0
0 · · · 0 −j 0 · · · 0 j 0 · · · 0

]

=

√
mr

2
e−jθ′

r, h

[ n=0 n=mr−l0 n=mr−1

0 · · · 0 1 0 · · · 0
0 · · · 0 j 0 · · · 0

]

Consequently,

T(θ′r, h)T̃Cr l0
Wmr

=

√
mr

2

[ n=0 n=l0 n=mr−l0 n=mr−1

0 · · · 0 ejθ
′

r, h 0 · · · 0 e−jθ′
r, h 0 · · · 0

0 · · · 0 −jejθ′r, h 0 · · · 0 je−jθ′
r, h 0 · · · 0

]

and

L̃♮
rs h

= LM,h
√
ms




k=0 1 0

0
...

...
...

k=ms−1 0 0




×
√
mr

2

[ n=0 n=l0 n=mr−l0 n=mr−1

0 · · · 0 ejθ
′

r, h 0 · · · 0 e−jθ′
r, h 0 · · · 0

0 · · · 0 −jejθ′r, h 0 · · · 0 je−jθ′
r, h 0 · · · 0

]

L̃♮
rs h

= LM,h

√
msmr

2




n=l0 n=mr−l0

k=k0 0 · · · 0 ejθ
′

r, h 0 · · · 0 e−jθ′
r, h 0 · · · 0

0 0

0
... 0

... 0
k=ms−1 0 0


 (A.23)

4.) k0 = ms − k0 ∧ l0 = 0

T(θ′r, h)T̃Cr l0
Wmr

=

√
mr

2

[ n=l0 n=mr−1

ejθ
′

r, h + e−jθ′
r, h 0 · · · 0

−jejθ′r, h + je−jθ′
r, h 0 · · · 0

]

L̃♮
rs h

= LM,h
√
ms




k=0 0 0
...

...

0
...

k=k0 1
...

0
...

...
...

k=ms−1 0 0




T(θ′r, h)T̃Cr l0
Wmr
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= LM,h
√
msmr




n=0 n=mr−1

k=0 0
... 0
0

k=k0 cos (θ′r, h) 0 · · · 0

0
... 0

k=ms−1 0




(A.24)

5.) k0 = ms − k0 ∧ l0 = mr − l0

T(θ′r, h)T̃Cr l0
Wmr

=

√
mr

2

[ n=0 n=l0 n=mr−1

0 · · · 0 ejθ
′

r, h + e−jθ′
r, h 0 · · · 0

0 · · · 0 −jejθ′r, h + je−jθ′
r, h 0 · · · 0

]

L̃♮
rs h

= LM,h
√
ms




k=0 0 0
...

...

0
...

k=k0 1
...

0
...

...
...

k=ms−1 0 0




T(θ′r, h)T̃Cr l0
Wmr

= LM,h
√
msmr




n=l0

k=0 0

0
... 0
0

k=k0 0 · · · 0 cos (θ′r, h) 0 · · · 0

0

0
... 0

k=ms−1 0




(A.25)

6.) k0 = ms − k0 ∧ ¬(l0 = 0 ∨ l0 = mr − l0)

T(θ′r, h)T̃Cr l0
Wmr

=

√
mr

2

[ n=0 n=l0 n=mr−l0 n=mr−1

0 · · · 0 ejθ
′

r, h 0 · · · 0 e−jθ′
r, h 0 · · · 0

0 · · · 0 −jejθ′r, h 0 · · · 0 je−jθ′
r, h 0 · · · 0

]

– 155 –



A.2. Mathematical proofs

L̃♮
rs h

= LM,h
√
ms



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It turns out that the expressions of L̃♮
rs h

obtained in cases 1 to 8 are a particular form of (A.29).

Hence, (A.29) can be treated as the general form of L̃♮
rs h

for any wavelength h ∈ N
⋆.
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