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 “Writing a book is an adventure. To begin with, it is a toy and an amusement.  
Then it becomes a mistress, and then it becomes a master, and then it becomes a tyrant. 

The last phase is that just as you are about to be reconciled to your servitude, 
you kill the monster and fling him to the public.” 

- Winston Churchill 
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ABSTRACT 
 
Cellular proteins exist in a dynamic equilibrium in which they are continuously destroyed and re-
built. The processes of protein degradation and synthesis determine the rate of protein turnover, 
and their coordination is fundamental to the regulation of protein abundance and the mainte-
nance of cellular functions. Plenty of research has demonstrated that cancer, neurodegenerative, 
and age-related diseases are associated with a dysregulation of protein turnover leading to a dis-
ruption of protein homeostasis. Further, there is increasing evidence that protein degradation is 
tightly controlled by post-translational modifications (PTMs). Hence, there is a growing need for 
methods that facilitate the global investigation of protein turnover and stability in a modification-
specific manner.  

Today, mass spectrometry-based, bottom-up proteomics technologies allow for the assessment 
of turnover characteristics for thousands of endogenous proteins in parallel. However, isoform- 
and modification-specific proteome turnover has so far been mostly neglected due to underlying 
challenges of the robust quantification of single peptides across multiple conditions. Here, the 
power of recent technological improvements was harnessed to decipher proteoform-specific pro-
tein turnover, and investigate the impact of PTMs on protein turnover for the first time on a pro-
teome-wide scale.  

Initially, label-free and tandem mass tag (TMT)-based quantification approaches were systemati-
cally assessed for their suitability to quantify specifically single phosphorylated peptides repro-
ducibly and accurately across multiple conditions. MS3-based TMT quantification was considered 
most expedient for such analyses, and the corresponding data acquisition method was further 
optimized regarding identification quality and quantification accuracy of phosphopeptides. In ad-
dition, an improved TMT labelling protocol was established that reduced the required quantity of 
expensive labelling reagent by a factor of eight and still achieved complete labelling.  

Following method optimizations, the merits of combining pulsed SILAC (stable isotope labelling by 
amino acids in cell culture) with TMT labelling for the determination of endogenous turnover were 
evaluated. This novel approach provided enhanced human proteome coverage (>7,000 proteins) 
and single peptide resolution. The obtained comprehensive data facilitated a global evaluation of 
the impact of protein properties and functions on their half-life under steady-state conditions and 
revealed a potential role of oxidative stress in the regulation of protein turnover within the res-
piratory chain complex I. Moreover, the significance of peptide-resolved turnover measurements 
was illustrated by several examples of splice variants and post-translationally processed proteins 
with significantly different turnover.  

The combination of the pulsed SILAC and pulsed SILAC-TMT approaches with enrichment methods 
for acetylated, ubiquitinated, and phosphorylated peptides further enabled the direct measure-
ment of modification-regulated turnover for >30,000 modified sites and disclosed an under-ap-
preciated level of post-translational regulation of protein complexes and metabolic enzymes. Fur-
thermore, an unexpected high fraction of acetylation sites with considerably decreased turnover 
was observed. Integration with ubiquitin counterpart sites and drug treatment data suggested 
that part of these sites indicated a protein stabilization, for example by precluding ubiquitination, 
but another fraction reflected an imbalance in acetylation kinetics caused by the lack of eraser 
enzyme activity. This demonstrates that differential turnover of modified peptidoforms can un-
cover cellular mechanisms beyond the stabilization or destabilization of proteins and indicates the 
tremendous potential of this approach to identify functional relevant modification sites. 

In summary, this work provides guidance on how to achieve robust turnover estimates for pepti-
doforms meanwhile pointing out and tackling challenges in the measurement and data analysis, 
and compiles the first global atlas of modification-resolved peptide turnover. 
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ZUSAMMENFASSUNG 
 

Zelluläre Proteine existieren in einem dynamischen Gleichgewicht, in dem sie kontinuierlich 
abgebaut und neu synthetisiert werden. Die Prozesse des Proteinabbaus und der -synthese 
bestimmen die Rate des Proteinumsatzes und ihre Koordination ist von grundlegender Bedeutung 
für die Regulierung der Proteinabundanz und die Aufrechterhaltung zellulärer Funktionen. Viele 
Studien haben gezeigt, dass Krebs, neurodegenerative und altersbedingte Erkrankungen mit einer 
Dysregulation des Proteinumsatzes verbunden sind, die zu einer Störung der Proteinhomöostase 
führt. Darüber hinaus gibt es immer mehr Hinweise darauf, dass der Proteinabbau durch 
posttranslationale Modifikationen (PTMs) streng geregelt ist. Daher besteht ein wachsender 
Bedarf an Methoden, die die globale Untersuchung des Proteinumsatzes und der Proteinstabilität 
in modifizierungsspezifischer Weise erlauben. 

Heute ermöglichen massenspektrometriebasierte Bottom-up-Proteomik-Technologien die Be-
wertung des Umsatzes für Tausende endogene Proteine gleichzeitig. Der isoform- und 
modifizierungsspezifische Proteomumsatz wurde jedoch bisher weitgehend nicht untersucht 
aufgrund der Herausforderungen für die robuste Quantifizierung einzelner Peptide über mehrere 
Bedingungen hinweg. In dieser Arbeit wurde nun das Potenzial jüngster technologischer 
Verbesserungen ausgeschöpft, um proteoformspezifischen Proteinumsatzes nachzuweisen und 
erstmals proteomweit die Auswirkungen von PTMs auf den Proteinumsatz zu untersuchen.  

Zunächst wurden markierungsfreie und Tandem-Mass-Tag (TMT)-basierte Methoden systema-
tisch auf ihre Eignung hin bewertet, einzelne phosphorylierte Peptide reproduzierbar und genau 
über mehrere Bedingungen hinweg zu quantifizieren. Die MS3-basierte TMT-Quantifizierung 
wurde für solche Analysen als zweckdienlichste angesehen. Die entsprechende Messmethode 
wurde weiterhin optimiert hinsichtlich der Identifikationsqualität und Quantifizierungs-
genauigkeit von Phosphopeptiden. Darüber hinaus wurde ein verbessertes TMT-Markierungs-
protokoll erstellt, das die erforderliche Menge an teurem TMT-Reagenz um einen Faktor acht 
reduzierte und dennoch eine vollständige Markierung erreichen konnte. 

Im Anschluss wurde der Vorteil einer Verbindung von pulsed SILAC (stable isotope labelling by 
amino-acids in cell culture) mit der TMT-Markierung zur Bestimmung des endogenen Protein-
umsatzes untersucht. Diese neuartige Methodik sorgte für eine verbesserte Abdeckung des 
humanen Proteoms (>7.000 Proteine) und einer Messauflösung auf Ebene einzelner Peptide. Die 
gewonnenen Daten ermöglichten eine globale Untersuchung der Auswirkungen von Protein-
eigenschaften und -funktionen auf ihre Halbwertszeit und legten eine mögliche Rolle von 
oxidativem Stress bei der Regulierung des Proteinumsatzes innerhalb des Atemkettenkomplex I 
nahe. Darüber hinaus wurde die Bedeutung peptidaufgelöster Umsatzmessungen veranschaulicht 
anhand mehrerer Beispiele von Spleißvarianten und posttranslational prozessierten Proteinen mit 
signifikant unterschiedlichem Umsatz. 

Die Kombination der pulsed SILAC und pulsed SILAC-TMT-Methodik mit Anreicherungsmethoden 
für acetylierte, ubiquitinierte und phosphorylierte Peptide ermöglichte ferner die direkte 
Messung des Umsatzes von Peptiden mit >30.000 Modifikationsstellen und legte ein 
unterschätztes Level an posttransla-tionaler Regulierung von Proteinkomplexen und 
metabolischen Enzymen nahe. Darüber hinaus wurde ein unerwartet hoher Anteil an 
Acetylierungsstellen mit deutlich verringertem Umsatz beobachtet. Eine nähere Untersuchung 
deutete darauf hin, dass ein Teil dieser Modifikations-stellen auf eine Proteinstabilisierung 
hindeutete, z. B. durch die Verhinderung von Ubiquiti-nierung. Eine andere Fraktion spiegelte 
allerdings ein Ungleichgewicht in der Acetylierungskinetik hervorgerufen durch fehlende 
Deacetylierungs-Enzymaktivität wider. Das verdeutlicht, dass ein unterschiedlicher Umsatz 
modifizierter Peptidoformen zelluläre Mechanismen jenseits der Stabilisierung oder 
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Destabilisierung von Proteinen aufdecken kann und zeigt das enorme Potenzial dieses Methode, 
funktionell relevante Modifikationsstellen zu identifizieren. 

Zusammenfassend lässt sich sagen, dass diese Arbeit Leitlinien für eine robuste Analyse des 
Peptidoformumsatzes bereitstellt und dabei Herausforderungen in der Messung und 
Datenanalyse aufzeigt und bewältigt. Zum Abschluss wird erstmalig ein globaler Atlas des 
modifizierungsaufgelösten Peptidumsatzes erstellt. 
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“My definition of an expert in any field is a person who 
knows enough about what’s really going on to be scared.” 
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1 Expanding life’s portfolio 

Proteins participate in the control and execution of virtually every process that is involved in the 

perpetuation of cellular homeostasis thereby defining the functional state of a cell. As stated in 

the central dogma of molecular biology [1], the blueprint of proteins is encoded as genes in the 

DNA (deoxyribonucleic acid). The genetic information is transcribed into mRNA (messenger ribo-

nucleic acid) before this is translated into the amino acid sequence of proteins (Figure I-1). In spite 

of a common genetic basis, cells and tissues of organisms feature a wide range of physiological 

diversity not least determined and regulated by underlying differences in gene expression pat-

terns [2, 3]. It had been assumed that this extensive, cellular heterogeneity is based on a large 

number of more than 100,000 human genes [4]. However, the number of estimated genes has 

dropped ever since the first results of the human genome project were published [5-7]. By now, 

depending on the database, 19,900 to 21,300 human genes are reported to serve as blueprint for 

proteins [8]. Likely, the number of genes will yet increase slightly again since small open reading 

frames (smORFs) of less than 300 nucleotides (100 amino acids) are so far underrepresented due 

to limits that had to be set for genome annotation to reduce false positives [9, 10]. Nevertheless, 

the number of genes appears small considering the extraordinary structural and functional diver-

sity of highly specialized cells, tissues, and organs. This suggests that additional important layers 

of regulated information gain from the gene to protein level exist to enable the development and 

maintenance of complex living organism. Indeed, different sources of gene-encoded, post-tran-

scriptional, co- and post-translational protein variation are known to shape the complexity of the 

total protein complement of a genome, commonly termed proteome (introduced in [11]). Such 

mechanisms go far beyond errors that may occur during transcription and translation (for an over-

view see [12-16], Figure I-1), and they jointly determine the number of so-called proteoforms 

(“different molecular forms in which a protein product of a single gene can be found” [17]).  

1.1 Gene- and transcript-encoded variations 

Gene-level variation – Protein diversity can be encoded at the gene locus itself via somatic mu-

tations [18] or non-synonymous single-nucleotide polymorphisms (SNPs) resulting in single-amino 

acid polymorphisms (SAPs) [19]. Those determine intra-individual and population (inter-individ-

ual) variations in protein sequences, respectively. The somatic, recombinatorial rearrangement of 

gene regions represents another, unique source of protein alteration. It takes place during the 

development of bone marrow-derived lymphocytes and provides a basis for antibody and T-cell 

receptor variety during adaptive immune response [20, 21].  

RNA-level variation – The most significant contribution to protein diversity before translation, 

however, occurs at the RNA level. In the late 1970s, the observation of “split genes” and the sub-

sequent discovery of alternative splicing [22, 23] questioned the dogma that one gene encodes 

one protein (originally described as the one-gene-one-enzyme [24], later expanded to the one-

gene-one-polypeptide hypothesis [25]). It became clear that precursor mRNA consists of introns 

(intragenic, non-coding regions) and exons (expressed regions) [26]. The latter can be spliced to-

gether in various combinations to produce mature mRNAs serving as several templates for differ-

ent proteins derived from the identical gene sequence (Figure I-1). The process of splice variant 

generation is typically catalysed and regulated by the spliceosome, a ribonucleoprotein complex 

[27]. The implementation of the RNAseq technology in 2008 [28] enabled the genome-wide, sys-

tematic study of splicing events and revealed an unexpectedly high degree of alternative splicing 

which affected >90 % of human genes [29, 30]. It has been argued that this large number could 
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also be driven by erroneous splice site choice leading to a multitude of low abundant, likely non-

functional splice variants [31]. Yet, in ~86 % of the cases, the minor (non-canonical) splice variants 

were detected at a frequency of not less than 15 % [29] suggesting at least some biological signif-

icance. Transcription itself can also be initiated and terminated at varying sites, which often results 

in distinct 5’ terminal exons and can subsequently change splicing patterns and ultimately protein 

N-termini [32, 33]. Moreover, RNA editing (a term coined by Benne and colleagues [34]) comprises 

enzymatically regulated nucleotide conversions, insertions, and deletions in mRNAs and can lead 

to new start or stop codons, coding frame shifts or SAPs (reviewed in [35, 36]). In humans, aden-

osine-to-inosine conversions seem to occur most commonly [37], but so far less than 10 % of these 

modifications have been reported to be translated into actual amino acid substitutions [38]. 

Figure I-1 | Sources of pro-
teome complexity. While 
non-synonymous genetic 
polymorphisms that cause 
amino acid substitutions 
produce inter-individual var-
iation, transcription errors, 
alternative transcription ini-
tiation, and mRNA pro-
cessing (alternative splicing, 
RNA editing) can fuel protein 
diversity within single cells. 
This is additionally aug-
mented by potential transla-
tion errors and alternative 
translation initiation sites. 
Enzymatic and non-enzy-
matic post-translational 
modifications like proteo-
lytic cleavages, additions of 
functional moieties and 
chemical amino acid modifi-
cations further amplify the 
number of potential protein 
variants (proteoforms) de-

rived from the same gene locus and contribute to the generation of complex proteomes (Nterm: protein N-
terminus; Cterm: protein C-terminus; iMet: initiator methionine; P: phosphorylation, Ub: ubiquitination, Ac: 
acetylation; adapted with permission from [15]). 

1.2 Co- and post-translational protein modifications 

Translation-level variation – The protein synthesis process at the ribosome, where triplets of 

mRNA nucleotides are translated into amino acids with the help of transfer RNAs, is another 

source of proteome complexity. Alternative translation initiation sites (TIS) can produce N-termi-

nal extended and truncated proteins or, in the case of out-of-frame start codons, totally new pro-

teins (outlined in [39]). Sequence analyses have shown that more than a third of human transcripts 

have AUG start codons in the 5’ untranslated region of the annotated coding sequence [40]. In-

deed, ribosome profiling revealed that almost half of the transcripts have multiple TISs, frequently 

also employing non-AUG start codons [41] which complicates a computational annotation of such 

translation initiation sites. In line with the linear scanning mode of the ribosome, most alternative 

TIS produce N-terminal extended protein isoforms from start codons upstream of the annotated 

TIS [13, 41]. However, in non-optimal sequence environments [42], ribosomes can also pass over 
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start codons (known as leaky scanning), initiate translation downstream of the annotated start 

codon, and produce shorter protein variants [39].  

 

Figure I-2 | Frequencies of curated post-translational modifications and types of modified residues of 
human proteins from the Swiss-Prot database [43]. PTMs were extracted for the 20,431 canonical, human 
protein sequences in the curated Swiss-Prot database. (A) Phosphorylation is by far the most frequently an-
notated PTM, but the broadest spectrum of residues can be modified by methylation. ‘Glycosylation’ com-
prises N-, O-, and S-linked glycosylation. ‘Acylation’ includes the most prominent and frequent class member 
acetylation, and additionally comprehends all common acyl-modifications with chain lengths from one 
(formylation) to five carbon atoms (glutarylation), and biotinylation. ubiquitination, sumoylation, and ned-
dylation are contained in the category ‘Protein’, and ‘Proteolytical processing’ comprises annotated cleav-
ages of signal and pro-peptides. (B) Serine is the amino acid that is annotated to be modified most frequently, 
but lysine residues feature the highest diversity of possible modifications providing a broad basis for com-
petitive crosstalk. Note that here modifications were not grouped into classes like in (A) but e.g. every acyl-
ation type was counted separately. 

Variation through protein modifications – The last layer of protein information gain is medi-

ated by a multitude of post-translational modifications (PTMs) causing a combinatorial explosion 

of potential proteoforms (Figure I-1). It has been known for many decades that proteins are being 

modified in cells, for instance, through phosphorylation [44] and acetylation [45], and that these 

modifications can be controlled by enzymes [46, 47]. However, the detailed elucidation of the 

complexity of the modification landscape and its regulation has just begun in recent years. There 

is a huge variety of cellular protein modifications (~400 according to http://www.unimod.org) in-

cluding proteolytic processing, enzymatic addition of small functional groups, sugars, fatty acids 

or even small proteins, and chemical modifications which can also lead to amino acid conversion 

(reviewed in [14, 48]). Only few of them have been studied extensively, most prominently phos-

phorylation, glycosylation, acetylation, and ubiquitination (Figure I-2 A). PTMs can take place on 

different amino acids or protein N- or C-termini (Figure I-2 B), exhibit a simple or very complex 

structure, be reversible or irreversible in nature, and occur co- or post-translationally and enzy-

matically or non-enzymatically. Enzymes that catalyse PTMs account for more than 5 % of the 

genome in higher eukaryotes [48] evidencing the functional importance of these modification pro-

cesses. In humans, there are 500 proteases alone which are critically involved in the maturation 

or degradation of proteins by spatiotemporally regulated proteolysis. A prominent example is the 

co-translational removal of the initiator methionine (iMet) on proteins by methionine aminopep-

tidases which is often followed by N-terminal acylation or alkylation [49]. Other proteolytic mod-

ifications include the removal of propeptides which is frequently associated with the activation of 

enzymes [50] and hormones [51] and the cleavage of signals peptides which dictate the extracel-

lular or intracellular organelle localization of proteins [52]. In addition to such irreversible pro-

cessing events, many reversible post-translational modifications shape proteoform diversity. 



I | GENERAL INTRODUCTION 

6 | P a g e  

Those are often subject to an evolutionary conserved writer-reader-eraser principle where pro-

teins with enzymatic activity add modifications enabling proteins with certain binding domains to 

interact with modified residues in a specific manner before other enzymes remove the modifica-

tion again. Examples for such dynamic PTMs are phosphorylation, acetylation, and ubiquitination, 

which are outlined in the following.  

Phosphorylation – More than 500 human protein kinases (writers) [53] and 140 phosphatases 

(erasers) [54, 55] jointly control cellular signalling cascades via protein phosphorylation of serine, 

threonine, and tyrosine hydroxyl groups (Figure I-3 A). Interestingly, less than 1/5th of kinases, 

but nearly 2/3rd of phosphatases act on tyrosine residues [53, 54]. On the other hand, almost half 

of tyrosine phosphatases also hydrolyse phosphorylated serine and threonine residues, whereas 

protein kinases generally seem to possess selectivity towards either serine/threonine or tyrosine 

[54]. Several attempts have been made to systematically identify substrates of phospho-writer 

and -eraser enzymes and in some cases consensus motifs have been identified (reviewed in [56, 

57]), but many kinase/phosphatase-substrate relations still remain largely elusive in particular in 

vivo. The phosphate group transferred in the kinase reaction originates from the phosphate an-

hydride ATP (adenosine triphosphate) and changes neutral hydroxyl into di-anionic functional 

groups (Figure I-3 A). Those feature larger hydrated shells and are capable of building stronger 

hydrogen bonds and salt bridges than the acidic amino acids aspartate and glutamate [58]. Con-

sequently, phosphorylation often entails a change in protein conformation and states but also 

enables the selective interaction with several 100s of distinct reader-proteins via phosphorylation-

specific binding domains (for an overview see [59, 60]). SH2, SH3 (Src-homology-2/3), and PTB 

(phosphotyrosine-binding) domain-containing proteins, for instance, bind to phosphorylated ty-

rosine, while FHA (forkhead-associated) domains interact with phospho-threonine and 14-3-3 do-

mains with phosphorylated serine and threonine (Figure I-3 A). It has been assumed that more 

than 70 % of cellular proteins are being phosphorylated at some point [61] illustrating the broad 

involvement of this modification in cell signalling. Mostly phospho-serine and -threonine sites (84 

and 13-15 %) are being detected in phosphoproteomic studies due to their probably higher fre-

quency and stoichiometry. In contrast, tyrosine phosphorylation usually only accounts for a small 

fraction in the phosphoproteome (<1-3 %) [62, 63]. This observation has been suggested to be 

caused by a higher degree of specificity for phospho-tyrosine controlled signalling [64]. Recently, 

the identification of non-canonical phosphorylation on histidine, aspartate, glutamate, lysine, ar-

ginine, and cysteine via mass spectrometry has been reported in a human cells [65]. Although non-

canonical phosphorylation has been shown to occur in mammalian cells previously [66], these 

observations are being highly debated due to specific challenges in phosphoproteomics that can 

under certain circumstances easily lead to mislocalization of phosphosites (see also pp. 29). 

Acetylation – As mentioned above, α-amino groups of protein N-termini can undergo acylation 

which most commonly emerges as acetylation and is estimated to affect 80 to 90 % of cellular 

proteins irrespective of iMet cleavage [49, 67]. The modification is catalysed by N-terminal acetyl-

transferases (NATs) which feature diverse specificities and utilize acetyl coenzyme A (ac-CoA) as 

an acetyl donor. So far, no Nα-acetylation-erasing enzyme has been identified for which reason 

this modification is considered irreversible [49, 68]. In contrast, the second type of N-acetylation 

is invertible and occurs on ε-amino group of lysine residues neutralizing the positive charge of 

their side chains. Lysine acetylation has first been identified on histones in the 1960s [45] and soon 

afterwards its involvement in the regulation of chromatin structure and transcriptional activation 

was suggested [69]. This dominated the research on acetylation and its writer and eraser enzymes 

as transcriptional regulators for decades. Only within recent years, non-histone acetylation and 



GENERAL INTRODUCTION | I 

P a g e | 7 

its functional relevance for a multitude of cellular processes has gained attention [70]. The transfer 

of acetyl groups from ac-CoA onto the ε-amino group of lysine residues is catalysed by histone/ly-

sine acetyl transferases (HATs/KATs) and reversed by deacetylases (HDACs/KDACs, Figure I-3 B). 

Thirteen functionally and structurally diverse KATs have been well characterized, but the existence 

of additional ones has been proposed (for a detailed overview see [68, 70]). Similarly, the number 

of proteins with potential KDAC activity is growing. The 18 commonly accepted members of the 

KDACs family are distinguished into zinc2+-dependent KDACs and NAD+ (nicotinamide adenine 

dinucleotide)-dependent sirtuins. They exhibit different subcellular localizations and are often 

part of multi-enzyme complexes. Substrate specificities of KATs and KDACs are largely unknown, 

but considering the comparably small number of identified enzymes it is assumed that substrates 

are mainly determined by localization and protein interaction partners instead of substrate se-

quence motifs [70]. Importantly, it has been shown decades ago that protein acetylation can also 

occur non-enzymatically in the presence of ac-CoA [71], but only recently a link to energy metab-

olism has been made [72, 73]. It is assumed that non-enzymatic acetylation predominantly takes 

place in mitochondria favoured by elevated ac-CoA concentrations and a slightly higher pH com-

pared to other cell compartments [73]. Lysine acetylation is recognized by less than 50 bromo-

domain (BRD)-containing proteins [74] which appears to be a small number compared to phos-

phorylation-reader proteins. Recently a new recognition domain for acetylated lysine (YEATS) has 

been identified [75] suggesting that additional acetyl-reader domains so far may have been evad-

ing discovery. Importantly, many acetyl-lysine binding proteins are members of large protein com-

plexes or have catalytic activities themselves, which lays the foundation for acetylation signal 

transmission and integration [74]. 

Ubiquitination – The formation of an (iso)peptide bond between the C-terminus of the 76 amino 

acid small protein ubiquitin (Ub) and the ε-amino group of a lysine (rarely the N-terminal α-amino 

group) of a target protein is catalysed by at least three enzymes (reviewed in [76, 77], Figure I-3 C). 

Initially, Ub is activated under consumption of ATP and covalently linked to a cysteine within the 

E1 (Ub-activating) enzyme via a high-energy thioester bond. Next, the Ub is transferred to a sec-

ond cysteine in the active site of the E2 (Ub-conjugating) enzyme in a trans-thiolation reaction. 

Finally, Ub is either directly ligated to lysine residues of the target protein aided by the E3 (Ub-

ligating) enzyme or first covalently attached to the E3 ligases and then transferred to the sub-

strate. The number of proteins in the three different classes increases in each reaction step provid-

ing the basis for a universally applicable and still specific attachment of ubiquitin to target pro-

teins. In humans there are 2 Ub-specific E1, ~40 E2, and more than 600 E3 enzymes [77]. The latter 

class of enzymes determines the specificity and is divided into three mechanistic categories, 

namely RING (really interesting gene)/Ubox, HECT (homologous to E6-associated protein C termi-

nus), and RBR (RING-between-RING) ligases. Mono-ubiquitinated proteins can be further modified 

by attachment of additional Ub molecules on one of the eight amino groups of the already linked 

Ub. This results in a myriad of potential poly-Ub assemblies with various chain lengths and linkage 

types, which have been described to feature differing cellular functions [76]. Most prominently, 

lysine 48-linked poly-Ub chains with at least 4 Ub molecules typically mark proteins for pro-

teasomal degradation [48]. In many cases, however, the consequences of different poly-ubiquiti-

nations are still not completely elucidated or vary between modified proteins [76]. Ubiquitin-bind-

ing domains (UBDs) with differing affinities towards mono- and differentially linked poly-Ub are 

being identified in a growing number of proteins (> 150) suggesting a still underappreciated in-

volvement of Ub in cell signalling beyond degradation processes [78]. UBDs are structurally as 

diverse as the modifications they bind to but are broadly categorized into four subclasses, namely 
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α-helix, zinc finger, plekstrin homology and ubiquitin-conjugating-like domains. Notably, UBDs 

have also been identified in deubiquitinases (DUBs). Approximately 80 DUBs can either cleave 

(iso)peptide bonds irrespective of the Ub-linkage type or act in a linkage-specific manner [79]. 

They erase mono and poly-Ub from substrate proteins and recycle Ub. In addition, they are re-

sponsible for releasing Ub from translation products generated from genes which encode multi-

ple, fused ubiquitin sequences or fusions of Ub with ribosomal proteins [79]. Importantly, DUBs 

can also edit Ub modifications by trimming poly-Ub chains and thereby modify Ub signals.  

 

Figure I-3 | Writer-reader-eraser principle. Reversible reactions of protein phosphorylation on serine, tyro-
sine, and threonine residues (A), acetylation on lysine residues (B), and mono- and poly-ubiquitination on 
lysine residues (C) are depicted. Writing and erasing enzymes are indicated (KAT: lysine acetyl transferase; 
KDAC: lysine deacetylase; DUB: deubiquitinase; E1: Ub-activating enzyme; E2: Ub-conjugating enzyme; E3: 
Ub-ligating enzyme). For acetylation, the reaction catalysed by zinc2+-dependent enzymes is displayed. Ex-
amples of PTM-specific binding domains that recognize modified residues are shown (SH2: Src-homology-2; 
PTB: phosphotyrosine-binding; FHA: forkhead-associated; UBD: Ub-binding domain). For ubiquitination, the 
3-step process of the transfer of ubiquitin (Ub) to its substrate is illustrated (adapted with permission from 
[14]). 

1.3 Functional significance of proteoforms 

Constraints on the proteoform inventory – All the above specified sources of proteome com-

plexity may lead to an exponential increase in the protein portfolio within a biological system. Yet, 

the number of observable proteoforms lies well below the number of theoretically possible pro-

tein variants [80]. As an example, only 74 of ~3 million possible combinatorial modification codes 

could be detected on the N-terminal tail of histone H4 [81]. There are several potential, technical, 

and biological explanations for this discrepancy. First, even the most sophisticated technologies 

available today are likely not sensitive enough to detect all of the expressed but rare proteoforms 

on a proteome-wide level [80]. Hence, the true biological dimension of proteoform diversity can-

not be determined with complete certainty. Second, proteoform complexity is limited simply by 

the number of expressed proteins, i.e. the maximal possible number of proteoforms derived from 

a single gene equates the number of its protein copies [16]. Last, and maybe most significantly, 

there is a high degree of enzymatic control imposed on proteome complexity confining its biolog-

ical magnitude. Expression of proteoforms arising from transcription and translation errors or al-
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ternative splicing and TIS utilization may effectively be diminished by cellular surveillance path-

ways such as nonsense-mediated mRNA decay or ribosome quality control mechanisms, especially 

when they exhibit a reduction or loss in function [82, 83]. Moreover, as outlined above, post-

translational defined proteome diversity is regulated by the spatiotemporally controlled activity 

of PTM writers and erasers and governed by the enzymes’ specificities and affinities for different 

substrates. Despite these potential constraints on proteoform expression and detection, there is 

a large body of experimental evidence for a multitude of structurally diverse protein variants, and 

many have been linked to altered functionalities of gene products (Figure I-4).  

Biological implications of protein iso-

forms – Transcriptome studies have indi-

cated that tissue specific functions are associ-

ated with the expression of different splice 

variants [29, 30] and even stronger with alter-

native transcription start and termination 

events [33]. In addition, protein isoforms 

have been shown to feature vastly different 

interaction profiles with most isoform pairs 

sharing less than 50 % of their interaction 

partners [85]. Importantly, differences across 

protein isoforms were found to be potentially 

as big as for proteins encoded by entirely dif-

ferent genes. Likewise, alternative translation 

initiation has been linked to altered protein 

localization [86]. As an example, translation 

of ornithine decarboxylase-antizyme can 

start from two different TIS. The longer iso-

form is translated less efficiently and trans-

ported to mitochondria, whereas the shorter 

isoform is missing the mitochondrial transit 

peptide and thus resides in the cytoplasm 

[87]. Besides, alternative translation initia-

tion can also lead to protein products with to-

tally different function, as exemplified by the secreted osteogenic growth peptide which is trans-

lated from the same mRNA as the histone protein H4 [88]. These examples illustrate the possibility 

to adapt and broaden the functional repertoire of a living system by tailoring gene expression 

patterns. 

Regulation of protein function via PTMs – Post-translational modifications are often reversi-

ble and thereby highly dynamic which offers great potential for the flexible and invertible regula-

tion of cellular functions as a response to environmental cues. As molecular switches, reversible 

PTMs facilitate an initially even more rapid and energy-efficient way to control protein function 

temporarily than a change in protein synthesis may achieve. Consequently, PTMs play a pivotal 

role for effectively every cellular process. The modification of amino acid residues in proteins can 

remove or add charges, alter protein conformations locally or even globally, and establish or mask 

surfaces for protein binding (reviewed in [14, 48, 89]). Accordingly, protein properties such as 

interactions with other proteins, activity, localization, or stability can be modulated (Figure I-4). 

As an example, enzymatic activity and substrate binding of many protein kinases is regulated by 

 

Figure I-4 | Impact of proteoform diversity on gene 
function. The different sources of proteome complex-
ity illustrated in Figure I-1 produce a multitude of pro-
teoforms which can feature great structural and func-
tional diversity potentially influencing protein activity, 
localization, interaction partners and stability 
(adapted with permission from [84]). 
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phosphorylation of one or more positions in their so-called activation loop. Upon modification, 

the loop changes its conformation uncovering the site for substrate binding. Further, the proper 

orientation of a conserved aspartate within the active site is facilitated which is required for ca-

talysis [90]. This principle mechanism of kinase activation via an upstream protein kinase creates 

signalling cascades that enable signal amplification and transduction [91]. Similarly, activity of 

transcription factors is known to be regulated by PTMs. Mono-ubiquitination of FOXO4, for in-

stance, has been described to prompt nuclear translocation of the cytoplasmic transcription factor 

and induce expression of target genes [92]. This illustrates that a prolonged change in the modifi-

cation landscape will ultimately pass into modulated gene expression patterns. Another well-stud-

ied example of a transcription factor with more than 300 different modification sites is the tumour 

suppressor p53 [93]. While ubiquitination in the C-terminal domain marks it for degradation, acet-

ylation on the same residues has been suggested to stabilize p53 [94] and increase binding to DNA 

[95]. This evidences the potential for PTM crosstalk, in this case in a competitive manner by dif-

ferent modifications that occur on the identical amino acid. Lysine offers the greatest opportunity 

for such competitive crosstalk (Figure I-2 B). Negative and positive crosstalk can also take place 

sequentially when one modification promotes another or in concert when different modifications 

emerge independently of each other but in combination induce an altered response compared to 

their exclusive presence (reviewed in [96]). This enables signal integration and generation of com-

plex structural and regulatory networks that are usually controlled by more than one type of PTM 

[14]. Concisely, protein modifications allow for a fast adaption of protein functionalities and fine-

tuning of cellular signalling. Together with pre-translationally controlled proteome diversity, they 

provide an incredible plasticity for living organisms. 
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2 Linking protein homeostasis and turnover  

Proteome abundance and activity are tightly controlled and continually adjusted in response to 

internal and external stimuli. To this end, the coordination of protein synthesis and degradation 

(summarized under the term turnover) are fundamental processes that regulate the abundance 

of functional proteins and maintain cellular protein homeostasis (proteostasis). Even under 

steady-state conditions when the overall abundance of cellular proteins and their PTMs remains 

constant over time, proteins still exist in a dynamic state in which they are continuously destroyed 

and rebuilt [97]. While this default turnover may appear unfavourable from an energy efficiency 

point of view, it ensures proper proteostasis by replacing damaged, malfunctioning, or even harm-

ful proteins and contributes to a cell’s capability to respond rapidly to a changing environment. 

Proteome integrity is maintained by a multitude of cellular machineries and pathways many of 

which were only recently discovered and are still under investigation (reviewed in [83, 98-100]). 

Protein degradation plays a pivotal role in many of these dynamic responses. In the following, a 

brief overview of the regulation of cellular degradation with a focus on the proteasome and its 

contribution to the critical maintenance of proteostasis is given and methods for measurement of 

protein turnover are outlined. 

2.1 Regulation of protein degradation 

Degradation machineries – Spatiotemporal regulated, intracellular protein degradation is ena-

bled by two major systems, the autophagosome-lysosome and the ubiquitin-proteasome system 

(UPS; reviewed in [101-103]). Autophagy involves the sequestering of cytoplasmic components 

via membrane vesicles, subsequent fusion with the lysosome, and protein degradation facilitated 

by more than 60 acid hydrolases [101, 104]. Originally, it was thought to occur in a non-specific 

manner, but there is increasing evidence for targeted ways of protein clearance via autophagy 

(outlined in [105]). While autophagy is considered mainly responsible for the removal of protein 

aggregates, long-lived proteins, and damaged organelles, the UPS is understood as the major 

route for selective protein degradation in mammalian cells particularly for dysfunctional and reg-

ulatory proteins [102].  

Protein degradation via the 26S proteasome, a huge multi-subunit protein complex, is strongly 

energy dependent [106], although peptide hydrolysis is in principle an exergonic reaction. This 

underpins the high degree of regulation underlying this type of protein breakdown. As described 

above, the common first step is the attachment of poly-ubiquitin to a substrate. Substrates are 

then bound to the 19S regulatory subunit of the 26S proteasome either directly via the attached 

Ubs or indirectly mediated by an Ub- and proteasome-binding adaptor protein [107] (Figure I-5). 

Additionally, ATP-dependent binding of a loosely folded, degradation-initiation region in the sub-

strate is required [108] before proteasome-associated DUBs hydrolyse UB-chains thereby recy-

cling Ub. This is followed by substrate unfolding via the action of ATPases at the 19S subunit and 

proteolysis in the 20S catalytic chamber via β1 (caspase-like), β2 (trypsin-like), and β5 (chymotryp-

sin-like) subunits [103, 109]. Proteasomal degradation results in small polypeptides (95 % within 

a range of 3 to 22 amino acids [110]) which are further digested into single amino acids by cytosolic 

peptidases [102].  

Diverse alterations of the 26S proteasome itself have been described to influence its substrate 

preference including a varying composition and modifications of proteasomal subunits (reviewed 

in [102, 103]). The selectivity of 26S proteasomal degradation is also collectively mediated by the 

activity and substrate specificity of E3 ligases, the availability of an E3 ligase recognition motif, an 
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acceptor site for Ub, and a disordered structure for proteasome interaction on the substrate [107] 

(Figure I-5). On the other hand, also ubiquitin-independent degradation via solitary 20S pro-

teasomes that are missing the 19S regulatory subunit has been observed for intrinsically disor-

dered proteins [111]. Besides, ubiquitination is increasingly recognized as signal for selective au-

tophagosomal-lysosomal degradation [112]. This exemplifies the existent crosstalk and reciprocal 

regulation between the two proteolytic pathways via shared components and substrates (outlined 

in [105]). New regulatory mechanisms are being constantly reported which demonstrates that the 

intricacies of regulation of protein degradation have only just begun to be elucidated. 

 

Figure I-5 | The ubiquitin-proteasome system (UPS). UPS substrates must contain an E3 ligase recognition 
element (also termed degron), an ubiquitin (Ub) acceptor site, and a loosely folded region for interaction 
with the proteasome. Ubiquitinated substrates initially bind to the 19S regulatory subunit either directly via 
ubiquitin or indirectly via an adaptor protein. Only upon additional interaction of the disordered region with 
the proteasome, deubiquitination is initiated. This is followed by unfolding of the substrate, translocation 
into the 20S catalytic core unit and digestion into small peptides by proteolytically active β-subunits (adapted 
with permission from [107]). 

Degrons – Half-lives of cellular proteins have been determined to range between minutes and 

more than 1,000 hours [113, 114] demonstrating the high degree of regulation that is imposed on 

protein degradation. As noted above, selectivity is mediated through several mechanisms, one 

being the recognition of specific binding motifs by ubiquitinating E3 ligases. These universal (i.e. 

protein independent), minimal recognition elements for the proteolytic apparatus are commonly 

termed degrons [115]. The first degradation signals were identified upon permutation of the first 

amino acid in β-galactosidase resulting in vastly differing protein stabilities [116]. This lead to the 

formulation of the N-end rule predicting a destabilization for basic and bulky hydrophobic amino 

acids. Following further investigations, this was later expanded to elaborate N-end rule pathways 

in which protein stability was additionally influenced by N-terminal modifications such as acetyla-

tion, deamidation, and arginylation [117]. Importantly, N-degrons must be accessible to be effec-

tive, which means that N-termini that are by default buried within a properly folded protein or 

protein complex escape the N-end rule [118]. Noteworthy, the erroneous exposure of N-degrons 

in misfolded proteins offers one mechanism how dysfunctional proteins can be selected for deg-

radation.  

Like N-degrons, most hitherto identified degradation signals are short linear motifs and they seem 

to occur more frequently on N- or C-termini than in the middle of protein sequences [107, 119]. 

As an example, the stability of the tumour suppressor p53 is regulated by its E3 ligase MDM2 

(murine double minute 2) which binds to a degron consisting of three hydrophobic residues (Phe, 

Trp, and Leu at positions 19, 23, and 26) located in an N-terminal α-helix [120]. Interestingly, the 

interaction can be blocked by phosphorylation of a threonine residue at position 18 resulting in 
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stabilization of p53 [121]. The effectiveness of degrons can also be impacted by modifications of 

the Ubiquitin acceptor lysine as exemplified by the acetylation-ubiquitination competition that 

was described above for the C-terminal domain of p53 [94]. This illustrates a common principle of 

degrons already insinuated above for N-degrons: They are usually conditional in nature and can 

depend on the presence of PTMs and other structural constraints. This means degrons can often 

be switched on and off adding another layer of sophisticated regulation. This is equally true for 

degradation motifs that are only created by modifications such as the phosphodegron within the 

sequence of the cell cycle inhibitor p27 [122]. Another prominent example is the oxygen level-

dependent degron in the hypoxia inducible factor (HIF) 1α which contains a degradation-inducing, 

hydroxylated proline [123]. Hydroxylation of this transcription factor only occurs when oxygen is 

available in sufficient concentrations. Via this mechanism, the foundation is laid for oxygen level 

sensing and adaption of gene expression in hypoxia, which results in HIF 1α stabilization and acti-

vation.  

It is noteworthy that many degrons are located within intrinsically disordered sequence stretches 

[119] which often are characterized by a high proportion of hydrophilic amino acids.  Interestingly, 

disordered regions themselves have been associated with shorter half-lives [124, 125]. However, 

it is not clear whether they represent an inherent degradation signal or whether this association 

rather reflects the higher possibility of interactions with other proteins and modifications within 

disordered structures, which may create conditional degrons. Contrarily, larger hydrophobic pro-

tein regions have been identified to serve as inherent degradation signals [126, 127]. Usually they 

are buried within correctly folded protein structures, but in misfolded proteins they are solvent 

exposed and can be bound by chaperones, the cellular protein-folding assistants. Those can fur-

ther mediate the interaction with E3 ligases that subsequently ubiquitinate the misfolded chaper-

one cargo and mark it for degradation [126]. Similarly, assembly interfaces of protein complexes 

can serve as degradation signals resulting in a removal of supernumerary subunits [127].  

The degradation response can further be fine-tuned via a range of additional regulations, for in-

stance via multiple degrons working in cooperation and exhibiting differing E3 ligase affinities, or 

when a preceding modification by a different enzyme is required before the actual degron can be 

induced through another modification (reviewed in [119]). It becomes clear that the creation of 

an active degron is a multifactorial process. To date, only a small fraction of the ~600 E3 ligases 

has a known target sequence [119]. The strong influence of structural accessibility of degrons 

complicates their systematic and global identification and their often PTM-dependent nature adds 

another layer of complexity. This illustrates that cellular stability of endogenous proteins must be 

determined in different modification states to enable elucidation of regulatory principles under-

lying protein degradation. 

2.2 Critical maintenance of proteostasis  

Proteostasis players and their duties – The three tightly regulated processes of protein syn-

thesis, protein folding, and protein degradation are main contributors to a balanced protein flux 

and, as outlined above, they are executed by the ribosome, chaperones, and the proteasome or 

in the lysosome, respectively (Figure I-6). They function in a concerted manner building an inter-

twined proteostasis network to ensure proper quality control in every single phase of a protein’s 

lifetime. It has been reported that already during protein biogenesis 12-15 % of nascent chains 

are poly-ubiquitinated and marked for proteasomal degradation [128]. This co-translational ubiq-

uitination can affect polypeptide chains on ribosomes that are stalled, for instance due to mRNA 
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with rare codons or inhibitory secondary structures, but more frequently it occurs on active trans-

lation complexes [83, 128]. A connection to protein misfolding has been suggested for the latter 

phenomenon, which was underpinned by a 50 % increase of co-translational ubiquitination upon 

chaperone inhibitor treatments that block co-translational folding [128]. Although the direct proof 

that ubiquitinated proteins in active ribosome complexes are incorrectly folded is still missing, this 

presumption would be in line with several other known protein misfolding-induced degradation 

pathways. Secretory and membrane proteins that cannot fold or assemble properly in the endo-

plasmic reticulum (ER) are retro-translocated into the cytosol, ubiquitinated and degraded (ER 

associated degradation [129]). Cytosolic proteins that feature a non-functional conformation state 

resulting from either misfolding or protein age-related damage underlie similar degradation prin-

ciples [99].  

 

Figure I-6 | The cellular proteostasis net-
work. The strongly regulated processes of 
protein synthesis, folding, and degradation, 
and their executors (ribosome, chaperones, 
proteasome, lysosome) built an intertwined 
network to ensure protein homeostasis. In 
case of insufficient protein folding or degra-
dation, misfolded or damaged proteins may 
accumulate and protein aggregates may be 
formed. As a result, chaperones mediate 
the initiation of specialized stress pathways 
such as the unfolded protein response (UPR) 
or heat shock response (HSR). This leads to 
a re-establishment of proteostasis via inhi-
bition ( Ʇ ) of protein synthesis, and en-
hancement ( ↑ ) of protein folding and deg-
radation capacities. 

As mentioned above, malfunctioning proteins are mainly cleared by the UPS in close collaboration 

with chaperones such as the heat-shock proteins (HSPs). Chaperones have a certain buffer capac-

ity in case of a sudden increase in faulty proteins, act as sensors for increased proteotoxic stress, 

and regulate the balance between protein anabolism and catabolism [84, 130, 131]. The unfolded 

protein response [100] and the heat shock response [98], for instance, are activated in a chaper-

one-dependent manner upon accumulation of insufficiently folded proteins in the ER or of dam-

aged proteins in the cytosol. Both responses result in an attenuation of protein synthesis and a 

concomitant elevation of protein degradation and folding capacities. If proteostasis networks are 

nevertheless overwhelmed with proteins in non-native conformations, potentially toxic aggre-

gates consisting of two or more protein molecules can arise [131]. These protein aggregates can 

be removed either by dissociation and targeting to the UPS with the help of certain chaperones 

or by autophagy resulting ultimately in lysosomal protein degradation [130, 131]. Apart from the 

removal of malfunctioning proteins, the UPS and lysosome have also an important role in signal 

abrogation or initiation via degradation of signalling and regulatory proteins, respectively. Prime 

examples are the 26S proteasome-dependent, periodic degradation of cell cycle regulatory pro-

teins via phosphodegrons to enable progression of cell proliferation [132] and the elimination of 

activated receptor tyrosine kinases from the cell membrane via endocytosis and subsequent lyso-

somal degradation [133]. In summary, a properly functioning proteostasis network minimizes the 

formation and aggregation of misfolded proteins, eliminates potentially toxic protein aggregates, 

replaces damaged proteins, and has essential regulatory functions in cellular signalling. 
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Proteome imbalance in diseases – Evidence suggest that in a healthy state there is an excess 

of protein folding and degradation capabilities that can buffer increased proteostasis stress [84]. 

In steady-state hippocampal neurons, for instance, only 20 % of available proteasomes were 

shown to be occupied with substrates, whereas the remaining proteasomes exhibited the sub-

strate-accepting ground state [134]. However, many diseases are marked by proteome imbal-

ances that are caused by a lasting increase in translational output and/or a decrease in protein 

folding activity and degradation capacity and often result in an accumulation of dysfunctional pro-

teins. Indeed, protein aggregates are increasingly recognized as the base for cytotoxicity in neu-

rodegenerative diseases like Alzheimer’s, Huntington’s, and Parkinson’s disease (outlined in 

[135]). While the molecular mechanisms underlying the aetiopathogenesis of these aggregation 

diseases require further investigation, many have been linked to disruptions of the proteostasis 

network. This is exemplified by a certain type of early onset Parkinson’s disease that is associated 

with mutations in the Parkin gene. This encodes an E3 ligase that has been reported to contribute 

to the degradation of potential neurotoxic proteins by the UPS [136, 137] and of defective mito-

chondria by mitophagy [138, 139]. Interestingly, ageing itself has been linked to a decline in pro-

teostasis [140] providing an explanation for the age-related risk of many neurological diseases. 

Many metabolic diseases, which are also associated with age, likely compromise cellular proteo-

stasis as well. Type 2 diabetes, for instance, has been connected to a prolonged, unresolvable 

unfolded protein response which ultimately triggers β-cell death [141]. In line with an over-

whelmed molecular chaperone system, a supply of chemical chaperones has been observed to 

mitigate diabetes- and obesity-related symptomatology in mouse models [142].  

The development of cancer represents another example for a disease tightly linked to proteome 

imbalance. Crucial regulators of the proteostasis network such as E3 ligases and other signalling 

proteins are commonly mutated during cancerogenesis [119, 143]. Further, oncogenic transfor-

mation is generally accompanied with a broad range of alterations in overall proteome homeo-

stasis [84]. On the one hand, oncogenic transformation is characterized by an amplified, uncon-

trolled cell proliferation [144] which must require an elevated protein synthesis and also increased 

protein folding capabilities. On the other hand, it has been demonstrated that cancer cells are at 

the same time highly dependent on an enhanced proteasomal degradation activity [145]. This may 

be explained by a higher demand to degrade cell cycle regulators to proceed in cell division, faulty 

proteins caused by increased genome mutation and translation error rates, or potentially aggre-

gation-prone complex subunits that may be produced in excess due to gene duplications, translo-

cations, and aneuploidy [84, 146]. It has been suggested that the observed oncogenic addiction 

on proteasome function is a result of an exhausted buffering capacity for proteotoxic stress in 

cancer cells [145]. Indeed, inhibition of the proteasome and certain chaperones like HSP90 have 

shown promising clinical response presumably based on the induction of a proteotoxic crisis which 

culminates in the desired tumour cell death [147, 148]. However, the efficacy of these therapies 

is largely dependent on the combination with other drug molecules and the tumour background 

which demonstrates the need for a detailed and cancer-dependent, molecular investigation of 

protein turnover, drug effects and their interplay. 

2.3 Methodologies to quantify protein turnover 

Since the discovery of the dynamic state of body constituents in the late 1930s [97], a multitude 

of methodologies have been employed to study protein turnover and alterations thereof under 

different cellular conditions. Many approaches are based on the incorporation or loss of a tracer 

that is added to culture medium or infused into animals [116, 149-151]. Subsequently, turnover 
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rates of proteins can be inferred from the time-dependent change of the tracer abundance in 

individual proteins or the whole protein pool. Alternatively, changes in protein abundances upon 

inhibition of translation have been used to estimate degradation behaviour [152]. Even cleverly 

devised fluorescence-tagging strategies have been utilized to determine relative and absolute pro-

tein turnover [153-155]. The different strategies provide differing information contents and per-

formance profiles and are briefly discussed in the following. 

Bulk and single protein approaches – For the first time, protein turnover was revealed in mice 

by quantifying the differences in a fed and excreted, stable heavy isotope of nitrogen (15N) using 

early mass spectrometers [149]. Later, amino acids that were labelled with radioactive isotopes 

of hydrogen (3H), carbon (14C), or sulphur (35S) were utilized in a pulse-chase experimental setup 

and protein synthesis and degradation were estimated from tracer incorporation or loss kinetics 

measured by scintillation counting (Figure I-7 A). Generally, essential amino acids that were largely 

metabolically isolated (methionine, leucine, phenylalanine, arginine, valine) were chosen to en-

sure efficient incorporation and avoid labelling artefacts due to amino acid conversions. Such 

methods were applied to measure bulk turnover (i.e. turnover of all expressed proteins at once  

[156, 157]) or stability of single proteins after immunopurification [116]. Coupling of radioactive 

pulse-chase experiments to two-dimensional gel electrophoresis (2DE) increased the number of 

investigated proteins up to a couple of hundreds but without identifying them [158, 159]. In con-

trast, utilization of subsequent tandem mass spectrometry (MS) or western blotting enabled pro-

tein identification, but in turn reduced the throughput to less than 20 proteins [160, 161]. While 

these radioisotope-based approaches are very sensitive because even a marginal fraction of la-

belled proteins can be detected, they are associated with radioactivity hazards. Moreover, an un-

ambiguous identification of individual quantified proteins is necessary if differences on protein-

level shall be resolved. Bulk measurement and even 2DE approaches do not provide this resolution 

since 2DE spots often contain several proteins.  

Another strategy that is often used to assess or validate degradation rates of single proteins uti-

lizes translation inhibitors like cycloheximide and time-dependently measures abundance changes 

after drug administration using western blots [162, 163] (Figure I-7 B). However, antibody-based 

approaches can suffer from cross-reactivity and are inherently restricted to a predefined set of 

proteins. Moreover, quantification on western blots provides only limited quantitative accuracy 

and can therefore only be used to resolve larger turnover differences. Besides, treatments with 

translation inhibitors have been shown to induce cellular stress [164] and thus can trigger unde-

sired signalling responses that may affect the proteostasis network and bias the readout.  

Proteome-wide strategies – Cyclohexamide experiments coupled to anti-TAP (tandem affinity 

purification)-tag western blots have also been proven feasible for higher throughput methods us-

ing thousands of TAP-tagged yeast strains covering a large fraction of the proteome [152]. Another 

tagging approach, named global protein stability (GPS) profiling, circumvents the translation in-

hibitor treatment using a fluorescence-based assay and flow cytometry. With this method, relative 

stability of ~8,000 proteins in HEK-293T cells was estimated based on the fluorescence ratio of a 

dye fused to the protein (and hence being degraded together with the protein) to another dye 

translated independently (thus not being degraded) but from the identical mRNA [153] (Figure 

I-7 C). Alternatively, bleach-chase experiments in cells expressing fluorophore-tagged proteins can 

extrapolate absolute protein half-lives. Here, fluorophores are bleached with a short pulse of light 

and the difference in fluorescence between bleached and non-bleached cells measured with time-

lapse fluorescence microscopy is used to estimate the protein removal rate. While this approach 
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offers the potential for a similar throughput as GPS profiling, it has so far only been applied to 100 

proteins [154]. Likewise, tandem fluorescence timers, which feature a time-dependent change in 

colour, have been utilized as a proxy for protein age, degradation and synthesis rates for tens to 

one-hundred proteins [155, 165]. Each tandem fluorescence timer consists of two fluorescent pro-

teins with differing maturation kinetics, which are fused to a protein of interest. The ratio of their 

fluorescence reflects protein age within a pre-defined time-range (i.e. the fluorophore maturation 

times ranging from minutes to several hours), and a shift in ratios indicates an alteration in syn-

thesis or degradation rates. While all these fluorophore-based approaches provide high sensitivity 

and a striking single-cell resolution, protein tagging at the N- or C-terminus entails the risk of dis-

rupting the functional structure, binding properties, and localization, which all can alter protein 

stability. Moreover, incomplete degradation of certain fluorescence tags has been reported [166]. 

Since this distorts stability estimations, dyes have to be chosen carefully. Further, the ectopic over-

expression of proteins may affect proteostasis and consequently protein half-lives, and impair the 

transferability of measured turnover rates to endogenously expressed proteins. Finally, establish-

ing clonal libraries of tagged proteins can consume a lot of time and resources and is only possible 

in genetically tractable systems thereby limiting their feasibility for studies on the scale of prote-

omes. 

 

Figure I-7 | Methods to quantify protein turnover. Different tracer-based (A), drug treatment (B) and fluo-
rescence tag-based approaches (C) can be employed to estimate absolute or relative protein turnover. Ex-

amples of tracers or treatments are indicated in italics. For details of methods please see text (Δ: sampling 

time-point, ◊: addition of amino acids, washout start, treatment start, or bleach pulse; FP: fluorescence pro-
tein; X: protein of interest; IRES: internal ribosome entry site).  

In recent years, pulsed SILAC (stable isotopic labelling of amino acids in cell culture [167]) ap-

proaches in conjunction with modern MS-based technologies have emerged as a powerful alter-

native for protein turnover measurements. Similar to radioisotope-based methods, they employ 

isotopically labelled amino acids (mostly lysine, arginine, leucine) incorporated into newly synthe-

sized proteins, but in this case using stable isotopes (2H, 13C, 15N) and coupling protein identification 
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and turnover quantification within the mass spectrometric readout (Figure I-7 A). Such pulsed 

SILAC (pSILAC; also called dynamic SILAC [150]) approaches enable, in theory, the unbiased, hy-

pothesis-free, and proteome-wide assessment of turnover of endogenous proteins expressed at 

physiological levels [113, 168-170]. Since the mass spectrometer can quantify both, isotopically 

labelled and non-labelled protein version, experimental setups only require a pulse and no chase 

to determine label incorporation and loss simultaneously. Improvements in sample processing, 

MS measurement, and data analysis techniques now enable the quantification of endogenous 

turnover behaviour for >6,000 up to 8,500 proteins in a single biological sample [114, 170, 171]. 

However, accurate quantification can be difficult for relatively low label incorporation within a 

high background of non-labelled proteins as it is often observed for very short pulses or in non-

dividing cells. In this context, BONCAT (bio-orthogonal non-canonical amino acid tagging) meth-

odologies have been proven valuable for enrichment of trace levels of newly synthesized proteins. 

They utilize amino acids that carry small reactive groups and thus allow for a reaction and enrich-

ment with modified affinity tags. The concomitant depletion of non-labelled proteins reduces 

background signals significantly and ultimately facilitates the detection of labelled proteins. In this 

manner, azidohomoalanine (AHA) and homopropargylglycine (HPG) have been applied success-

fully for the detection of newly synthesized proteins [151, 172, 173]. Noteworthy, unspecific bind-

ing of non-labelled proteins in the enrichment process can distort quantification and thus needs 

to be evaluated diligently. This can also be controlled for by adding isotopically labelled SILAC 

amino acids in parallel to non-canonical ones and restricting the quantification to isotopically la-

belled proteins [172, 174]. More importantly, the introduction of non-canonical amino acids into 

biological systems has been reported to induce protein-folding pathways and downregulate syn-

thesis-associated proteins [174] resembling an induction of the UPR pathway. This effect was ap-

parently minimized by adjusting the AHA-to-methionine ratio [174] but still reveals that the po-

tential impact of non-canonical amino acids on proteostasis has to be assessed thoroughly and 

AHA-pulse times should be kept short.  

Based on mentioned limitations and advantages, the method used for determination of protein 

turnover should be chosen carefully and depending on the research question and cellular system 

at hand. To this end, the design of conventional dynamic SILAC experiments has been adapted in 

many ways, for example to improve detection of slow label incorporation [169], to compare dif-

ferent conditions within one measurement [175], or to simultaneously acquire protein abundance 

changes during the time-course of the pulse [170, 176]. Pulsed SILAC coupled to advanced MS-

based proteomics technologies promises the analytical coverage necessary to assess proteoform-

specific turnover globally, and is currently considered the only suitable method to study isoform- 

and modification-specific turnover of endogenous, un-tagged proteins. 
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3 Analysing peptidoforms with bottom-up proteomics technologies 

In terms of depth, throughput, and sensitivity, mass spectrometry-based approaches provide a 

unique applicability for studies of cellular functions on a proteome-wide scale (reviewed in [177]). 

They are divided into ‘top-down’ and ‘bottom-up’ methodologies. Historically, top-down prote-

omics referred to all methods that included an initial separation of proteins irrespective of the 

subsequent sample processing before MS data acquisition (i.e. it could include a protein digestion 

step). Now it is generally understood as the MS analysis of whole proteins [178]. Thus, it is the 

only MS-based way to truly identify proteoforms. Due to the largely overlapping isotope clusters 

of big molecules, however, it is so far limited to more abundant and lower molecular weight pro-

teins (<50 kDa) in rather uncomplex samples [179]. On the contrary, bottom-up (also called shot-

gun) proteomics characterises all workflows that result in the measurement of peptides derived 

from the digestion of proteins usually using cleavage-specific proteases. While this way most sen-

sitivity issues of top-down analyses can be overcome, it poses several challenges for the analysis 

of proteoforms. It is difficult to distinguish highly homologous proteoforms since they share most 

of their peptides with one another. For about 18 % of all splice variants annotated in the Swiss-

Prot database [43], no tryptic peptide (within the size requirements of a bottom-up MS measure-

ment) does exist to identify them unambiguously. One-third of the residual non-canonical splice 

variants feature only three or less of such unique peptides (Figure I-8 A). This issue is exacerbated 

in actual measurements due to differing isoform abundances and detectability of peptides. Be-

sides, the relation between different PTMs within a proteoform is lost upon digestion and modi-

fied peptides cannot be reassembled without ambiguity, which makes an inference of entire pro-

teoforms that actually exist in a sample often impossible [180] (Figure I-8 B). Nevertheless, bot-

tom-up proteomics is still by far the most convenient approach for large-scale quantification of 

proteomes [177], and there are several methods to improve peptide coverage and consequently 

the basis to infer information about proteoforms. In the following, the principal steps of a bottom-

up proteomics workflow will be covered with a focus on procedures that have been used and are 

relevant for this thesis (Figure I-9). Since (modified) peptides and not proteoforms are the entity 

Figure I-8 | Challenges in analysis of 
proteoforms with bottom-up prote-
omics. (A) The human Swiss-Prot data-
base [43] was digested in-silico using 
trypsin cleavage specificity and allowing 
up to 2 missed cleavages. Unique pep-
tides that unambiguously identify main 
(canonical, grey) or minor (non-canoni-
cal, blue) splice variants were plotted 
(upper panel). The number of identified 
unique peptides for splice variants is 
even lower in actual measurements 
(representative sample in the lower 
panel). Of the minor splice variants, 70 
% can only be identified with a single 
peptide. (B) Upon digestion of proteins, 
the overall sequence context of modifi-
cations is lost. This results in many com-
binatorial possible proteoforms of 
which only a subset may actually be pre-
sent in the sample.  
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that is being measured, the term ‘peptidoform’ [181] will be used to describe all versions of a 

peptide that can be derived from the same backbone amino acid sequence.  

3.1  Sample preparation steps to enhance peptidoform coverage 

Protein extraction and digestion – A wide range of sample processing workflows for bottom-

up proteomics exists, all of which have a specific purpose, advantages and limitations, and are 

ideally tailored to the research question at hand [177, 182]. Common to all of them is the initial 

extraction of proteins from the source material. The choice of extraction buffer and lysis proce-

dure depends on several considerations (reviewed in [183]) such as what type of sample is used 

or whether native protein structures need to be preserved. Extracted proteins can optionally be 

fractionated based on physicochemical properties or size [160], or specific subproteomes can be 

enriched [184]. Before protein digestion, disulphide bridges in proteins are usually reduced and 

free cysteines alkylated [185]. Subsequently, peptides are generated in most cases using se-

quence-specific proteases. Trypsin is the most commonly utilized enzyme because it generates 

peptides with C-terminal lysine or arginine residues with advantageous properties for MS meas-

urement and identification [186]. However, to improve sequence coverage and the number of 

unique peptidoforms, other enzymes such as GlucC (cleaves C-terminal of glutamate), chymotryp-

sin (C-terminal of hydrophobic amino acids), and AspN (N-terminal of aspartate) have been proven 

useful [187-189]. Nevertheless, overall identification rates are lower with alternative proteases, 

thus trypsin remains the enzyme of choice for most standard applications.  

Off-line peptide fractionation – Digestion produces incredible complex peptide mixtures that 

cannot be captured by mass spectrometry comprehensively without prior separation. Hence, off-

line fractionation methods are often employed to reduce sample complexity and facilitate pepti-

doform identification. A wide range of techniques is available to separate peptides according to 

their physicochemical properties (charge, polarity, hydrophobicity, size) and depending on the re-

sultant, reciprocal interactions with the different stationary and mobile phases (reviewed in 

[190]). Fractionation can be conducted utilizing high-performance liquid chromatography (HPLC) 

systems [191] or self-packed stop-and-go-extraction (STAGE) tips [192]. The number of fractions 

is always a compromise between proteome depth and expenditure of MS measurements time. To 

fully capitalise measurement time, the off-line fractionation approach should exhibit a good sep-

aration power and orthogonality to low pH reversed-phase (RP) chromatography, which is typi-

cally coupled on-line to the mass spectrometer to further decreases complexity and separates 

peptides according to hydrophobicity [193] (see p. 22). As an example, strong anion exchange 

(SAX) is highly orthogonal, as the underlying separation principle is based on charge. It depends 

on electrostatic interactions of negatively charged peptides and positive functional groups on the 

stationary phase under alkaline conditions, and peptides are eluted consecutively using salt gra-

dients. In contrast, high pH RP fractionation separates analytes according to hydrophobicity simi-

lar to low pH RP chromatography albeit at differing pH values. Hence, it is not perfectly orthogonal 

which is usually accounted for by discontinuous pooling schemes after fractionation [194].  

Even for in-depth fractionated samples, the identification of PTMs is often still difficult. This is a 

result of the, for most parts, sub-stoichiometric nature of modified peptides that can hamper their 

detection through suppression of their potentially weak MS signal by high abundant, non-modi-

fied peptides. Hence, bottom-up proteomic workflows frequently include enrichment procedures 

for PTM subproteomes that are based on some form of specific interaction with the modified 

amino acid side chain [195].  
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Figure I-9 | Typical bottom-up proteomics workflow. Samples are lysed and extracted proteins are di-
gested. Subsequently, peptides can be fractionated and modified peptidoforms can be enriched utilizing a 
variety of approaches. These steps can also be conducted consecutively and in interchangeable order. Di-
rectly before mass spectrometry (MS) analysis, peptides are separated employing a low pH reversed-phase 
liquid chromatography (LC) that is coupled on-line to a mass spectrometer. After peptide ionization, spectra 
of peptides and peptide fragments are acquired. Those are subjected to a database search for peptide iden-
tification. Following quantification, data is further processed and analysed, for instance performing statisti-
cal tests to assess significant differences between samples (adapted with permission from [196]). 

 Enrichment of phosphorylation – A variety of techniques has been developed for the enrich-

ment of phosphorylation on protein and peptide level, including immunoaffinity purification, 

chemical derivatization, charge-based fractionation, and metal-based affinity methods (reviewed 

in [197]). Nowadays, immobilized iron(III) metal affinity chromatography (Fe-IMAC) is one of the 

more frequently used approaches for efficient phosphopeptide enrichment and is available in col-

umn- [198] and batch-format [194]. Originally, IMAC with divalent ions such as Zn2+ and Cu2+ has 

been developed for purification of histidine- and cysteine-containing proteins [199], but later 

IMAC using trivalent Fe3+-ions revealed to also enrich phosphorylated proteins [200]. The enrich-

ment is based on the high-affine coordination of negatively charged phosphate groups (at acidic 

pH) to positively charged trivalent metal ions that are immobilized on a stationary phase via che-

lating agents such as iminodiacetic acid [197] (Figure I-10 A). Elution can be performed with alka-

line solvents (e.g. ammonium hydroxid) or phosphate buffers [194, 201]. IMAC in conjunction with 
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off-line fractionation and modern MS technologies has enabled the detection of up to 40,000 

phosphorylation sites in a single sample [62, 194]. Efforts to improve enrichment strategies and 

optimize protocols are still ongoing, and many are focussed on lowering required input amounts 

[202] or improving the coverage of chronically underrepresented tyrosine phosphorylation sites 

[203]. To this end, affinity purification based on an engineered phosphotyrosine binding domains 

has been proven more efficient for the specific enrichment of phosphorylated tyrosine peptides 

than the commonly used antibody-based approaches [204]. 

Enrichment of lysine acetylation – In comparison to phosphorylation, lysine acetylation often 

features an even lower stoichiometry on proteins [63, 205] making an enrichment for global anal-

ysis indispensable. Currently, immunoaffinity purification using antibodies raised against the ace-

tyl moiety and coupled to Protein A agarose beads is the only widely used enrichment strategy for 

acetylated peptides [195]. Elution is commonly achieved in acidic conditions leading to the dena-

turation of the antibodies. As for all antibody-based approaches, the performance depends 

strongly on the efficacy of the antibody. Moreover, batch-to-batch variation is common, and dif-

fering sequence specificities may affect the identification of acetylation sites [206]. Part of these 

challenges has been tackled by using a mix of different monoclonal antibodies to minimize the 

sequence bias [206, 207]. In combination with various fractionation techniques, this allowed for 

the detection of more than 10,000 acetylation sites, but required large protein inputs of 10 to 

20 mg [207, 208]. 

 

Figure I-10 | Enrichment approaches for modified peptides. (A) In IMAC, negative phosphate groups are 
coordinated with iron(III) ions that are immobilized using iminodiacetic acid. (B) The di-glycine remnant pro-
duced after tryptic digestion of ubiquitinated peptides can be recognized by specific antibodies (adapted 
with permission from [209, 210]). 

Enrichment of ubiquitination – Initially, ubiquitination surveys were based on genetically engi-

neered ubiquitin that carried a histidine or streptavidin tag, and ubiquitinated proteins were en-

riched via IMAC or using biotin-based affinity matrices [211, 212]. Besides the potential interfer-

ence with ubiquitin function, this approach resulted in a high number of unmodified peptides 

upon digestion of the enriched sample, which limited the depth of the PTM analysis. Hence, similar 

to enrichment of lysine acetylation, antibody-based strategies on peptide level are the method of 

choice for global ubiquitination surveys today. Tryptic digestion of ubiquitinated proteins creates 

a di-glycine remnant on modified lysine side chains that can be recognized by antibodies [213] 

(Figure I-10 B). Noteworthy, other ubiquitin-like protein modifications such as neddylation feature 

the identical di-glycine remnant and can be co-enriched. However, it has been suggested that 

more than 94 % of identified modification sites originate from ubiquitination [214]. Optimized 

workflows, including a peptide fractionation step prior to di-glycine immunopurifications, these 

days facilitate the identification of up to 25,000 ubiquitination sites from 15 mg of protein input 

following proteasome inhibition [215]. 

3.2 Principles of tandem mass spectrometry measurements 

Following sample processing, enriched and fractionated peptides are subjected to MS analysis. 

Mass spectrometers function as very accurate molecular scales that can determine the mass of 
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charged molecules in the gas phase by harnessing their manipulability in electric or magnetic fields 

(reviewed in [216]). They consist of an ion source generating gas phase ions, and at least one mass 

analyser and detector enabling the determination of mass-to-charge (m/z) ratios of peptides and 

peptide fragments. Prior to a segregation according to their m/z values, peptides are typically sep-

arated via an additional on-line coupled liquid chromatography (LC).  

On-line peptide separation – Due to its outstanding peak capacity and solvent compatibility 

with MS analysis, RP HPLC at acidic pH is the most commonly used technique for on-line separa-

tion of peptides [193, 217]. It is based on a non-polar stationary phase (often hydrophobic, octa-

decyl alkane chains on silica beads) and an aqueous mobile phase containing an amphiphilic ion-

pairing reagent (e.g. formic acid). Hydrophobic amino acids of peptides can bind directly to the 

stationary phase. Retention and thereby resolution is further increased by indirect interactions of 

polar peptide parts mediated by the ion-pairing reagent [190]. Consecutive elution of absorbed 

peptides is achieved by gradually increasing the concentration of organic solvent (usually acetoni-

trile) in the mobile phase resulting in separation of peptides according to their hydrophobicity. 

Subsequently, early eluting polar and later eluting non-polar peptides are delivered to the mass 

spectrometer via the ion source interface.  

 

Figure I-11 | The Orbitrap FusionTM LumosTM TribridTM mass spectrometer. After ionization, gas-phase pep-
tide ions are focussed and propelled towards mass analysers via the ion optics. The quadrupole acts as mass 
filter, and peptide and peptide fragment spectra can be acquired either in the Orbitrap or in the ion trap 
mass analyser. The instrument allows for a variety of fragmentation and acquisition modes such as higher-
energy collisional dissociation that is executed in the ion routing multipole (with permission from Thermo 
Fisher Scientific). 

Electrospray ionization – A separation based on m/z values by mass analysers requires the 

transfer of peptides into the gas phase and their ionization. For on-line LC-MS setups, this is 

achieved by electrospray ionization (ESI) [218]. This 'soft' ionization technique enables the vapor-

ization of large and polar peptides and even proteins without physical destruction [219]. The an-

alyte solution exits the RP column through a thin conductive capillary (emitter), to which a voltage 

is applied. The liquid forms the so-called Taylor cone that carries positively charged peptide mol-

ecules. At its tip, Coulomb forces cause the solution to disperse into small, multiply charged drop-

lets. During migration through the electrostatic field and towards the mass spectrometer, the LC 

solvent evaporates leading to an increased surface charge. As soon as Coulomb forces exceed the 

surface tension (Raleigh limit), aerosol droplets disintegrate further in a process named Coulomb 

explosion or fission. Final ionization of peptides is hypothesized to occur via an active ion emission 

from droplets with radii less than 10 nm due to field desorption (ion evaporation model) and/or 

complete solvent evaporation, where residual droplet charges finally remain on the analyte 
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(charged residue model) (outlined in [219]). Complete drying is latest accomplished in the heated 

transfer tube through which positively charged peptide ions enter the vacuum of the mass spec-

trometer (Figure I-11). 

Mass-to-charge analysis – Peptide m/z ratios can be measured with a myriad of different mass 

analysers and corresponding detectors (reviewed in [216, 220]). Common to all of them is the 

manipulation of ion trajectories in vacuo by direct or alternating currents (DC or AC), and the sub-

sequent inference of m/z values by measuring the peptides’ responses to electromagnetic forces 

imposed by applied currents in comparison to known m/z standards. Obtained information is rec-

orded in mass spectra, which display ion currents as intensities at certain m/z ratios (Figure I-9). 

Due to their different measurement principles, various types of mass analysers provide differing 

mass accuracy, speed, sensitivity, and resolution (ability to differentiate molecules with very close 

m/z ratios). Nowadays, different mass analysers are often combined within one instrument plat-

form allowing for flexible data acquisition. One example of such hybrid instruments is the Fusion 

Tribrid series of mass spectrometers (Fusion and Fusion Lumos, Figure I-11). They incorporate a 

quadrupole, a dual-pressure linear ion trap, and an Orbitrap mass analyser [221]. Since this was 

the instrument platform mainly utilized for data acquisition, its major functionalities will be de-

scribed in the following.  

Peptide ions entering a mass spectrometer are initially passing through the ion optics. They consist 

of lenses and rod-shaped electrodes that focus ions via application of ACs. With the help of DC 

offsets, which create an electric potential gradient, ions are directed towards the quadrupole 

[216]. In general, the motion of analyte ions depends on the effective force that acts on them. The 

force, in turn, is dictated by their mass and net-charge as well as the strength of the applied elec-

tromagnetic field regulated by the voltage of applied DC and AC currents. This principle can be 

harnessed to deflect, store, separate, and detect analyte ions according to their m/z ratio. The 

quadrupole in the Fusin Lumos, for example, is used for mass filtering by removing ions below or 

above certain m/z values (lower and upper mass filter). This is achieved by applying certain super-

imposed DCs and ACs on the four rods of the quadrupole (Figure I-12 A) [216, 220]. The lower 

mass filter is defined by an AC, also named main radio frequency (RF), that confines peptide ions 

radially and prompts them to adopt a ‘secular’ (cork-screw like) motion when passing through the 

quadrupole. Since the extent of the motion depends on the main RF characteristics as well as the 

size of the ions with smaller ions featuring larger amplitudes, smaller m/z species can be removed 

from the quadrupole laterally by increasing the main RF [216]. The upper mass filter depends on 

a quadrupolar DC generated by voltages that have an equal amplitude but pairwise opposite signs 

on the four rods. Positively charged peptide species will be attracted to the negatively charged 

rods, and if they have too much inertia, the forces generated by the radially confining AC will not 

be strong enough to push them back onto a stable trajectory [216]. Consequently, large ions with 

higher inertia will either escape between the rods or bump into them. By choosing different AC 

and DC voltages, varying m/z ranges are allowed to pass through the quadrupole. This can include 

a range of several hundreds of m/z or the isolation of a single ion species. With the advanced 

quadrupole technology in the Fusion Lumos, masses can be isolated with a minimal window (iso-

lation width) of down to 0.4 m/z. 

In contrast to the quadrupole in the Tribrid instrument, the linear ion trap can be used to deter-

mine the m/z value of peptide ions but also to store, isolate, and fragment analyte ions. Ion traps 

are composed of four rod-shaped electrodes each of which is cut into three segments. Two of the 

four rods, named exit rods, contain slits through which ions can escape for detection (Figure 

I-12 B). Initial ion storing is achieved by two forces. Similar to quadrupoles, a quickly oscillating 
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main RF that is applied to pairs of electrodes re-

stricts the ions’ movements radially and induces a 

secular ion motion. In addition, an offset between 

DCs applied to central and outer rod segments traps 

ions axially [216]. Subsequently, ions can be re-

moved from the stored ion pool in two different 

ways. As in quadrupoles, ramping of the main RF 

will increase amplitudes of secular ion motions 

steadily and at some point cause ions to leave their 

stable trajectories with smaller ions being lost from 

the ion pool first. Alternatively, an additional AC can 

be applied to the exit rods in order to eject ions in 

a directed way towards a detector. If the frequency 

of the exit rod AC equates the frequency of the sec-

ular motion of a peptide ion, resonance will be in-

duced, which will eventually cause the ion to leave 

the trap through the exit slits (resonance ejection). 

The time it takes the ion to exit can be controlled by 

the applied voltage (i.e. the amplitude) of the exit 

rod AC. Ion selection within an ion trap is achieved 

at a constant main RF by altering the exit rod AC to 

remove unwanted ion species. The selection pro-

cess can be accomplished very quickly via simulta-

neous resonance ejection [216]. To this end, all AC 

waves that match frequencies of unwanted m/z val-

ues are superimposed to an isolation waveform and 

only those waves that match ion species that are to 

be isolated are excluded. This way, it is possible to 

isolate several analytes of distinct m/z in parallel, a 

process called synchronous precursor selection 

(SPS) [222]. 

Unlike ion selection, spectra acquisition in the ion 

trap is performed at a fixed frequency of the exit 

rod AC, while the main RF is ramped up. Peptide 

ions with increasing masses are ejected sequen-

tially and in a controlled way as soon as their mo-

tions’ escalating frequencies match the frequency of the exit rod AC [216]. Accordingly, the stream 

of resonance-ejected ions can be quantified with an electron multiplier. When a single ion hits the 

surface of such a detector, several secondary electrons are released which themselves will prompt 

emission of more electrons as soon as they strike the detector surface [223]. In this way, an elec-

tron cascade is induced that multiplies the signal until it is collected by an anode. This signal am-

plification together with the ion accumulation capability, renders ion traps highly sensitive at rel-

atively high scan speeds but with comparably poor mass accuracy and resolution [220, 224]. 

Superior mass accuracy and resolution is provided by the high-field Orbitrap mass analyser in the 

Fusion Lumos [225, 226]. It consists of a coaxial, spindle-shaped electrode that is surrounded by 

 

Figure I-12 | Mass filter and analyzers in the 
Fusion Lumos mass spectrometer. (A) A quad-
rupole can filter ions via the interplay of a 
quadrupolar direct current (DC) and an alter-
nating current (main RF). (B) An ion trap can 
additionally store analytes enabled by a po-
tential well caused by differing DCs between 
the central and outer segment. Spectra can be 
acquired by ramping the main RF causing an 
ejection of ions through the slits, which then 
can be recorded with an electron multiplier. 
(C) An Orbitrap mass analysers detects ions via 
the current that is induced in the outer elec-
trodes by their circular motion of ions around 
the central, rod-shaped electrode (adapted 
with permission from [216]). 
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two barrel-like outer electrodes (Figure I-12 C). Since Orbitraps cannot collect or store ions them-

selves, they are combined with trapping devices. To perform an Orbitrap scan, collected ion pack-

ets are injected from the C-trap into the Orbitrap with an offset from the central electrode [227]. 

A voltage ramp applied during injection squeezes ions towards the spindle-shaped electrode with 

smaller m/z species moving closer to it than larger ones. This prevents different ion species from 

colliding when they start to orbit around and oscillate along the central electrode [220]. This 

movement is caused by a quadro-logarithmic, electromagnetic field that is created by a DC poten-

tial between the conical inner and outer electrodes. The frequencies of the harmonic oscillations 

in the axial dimension depend on the m/z ratios of ions with smaller ions featuring higher frequen-

cies [225]. Based on this known relation, image currents that are induced in the outer electrodes 

by oscillating ions can be utilized to deduce their m/z ratios. Accordingly, superimposed, highly 

complex currents of all moving ions are recorded in the time-domain, Fourier-transformed into 

the frequency domain, and subsequently converted into mass spectra. While Orbitraps are not as 

sensitive as ion traps, they offer sub-ppm mass accuracy [227] and an extraordinary resolution 

that increases with oscillation time and can reach up to 1 million [228]. 

Peptide fragmentation and tandem mass spectrometry – If the resolution and mass accu-

racy of the m/z analysis are high enough, characteristic isotope patterns of peptides that arise 

from the incorporation of stable, heavy isotopes (in proteins most frequently 13C and 15N) can be 

determined. The knowledge that the isotope peaks must differ by the mass of one neutron can be 

utilized to derive the protonation state from the spacing of isotope peaks in the m/z scale. Via 

subsequent calculation of its accurate neutral mass from the monoisotopic peak, the exact ele-

mental composition of a peptide can be determined [229]. Yet, often there are still many isobaric, 

but structurally different peptides to which a certain mass could match. Therefore, bottom-up 

proteomics approaches narrow down potential peptide matches by additionally identifying (at 

least partially) the sequence of peptides through a tandem MS approach [230]. This refers to the 

acquisition of peptide spectra (precursor, MS1, or (full) MS spectra), an isolation of an individual 

peptide ion species (e.g. in a quadrupole or ion trap), its subsequent fragmentation, and recording 

of m/z ratios of peptide fragment ions in fragment spectra (MS2 or MS/MS spectra; Figure I-9). 

While the Tribrid series offers a multitude of fragmentation options employing either physical 

force or chemical reactions [221, 231, 232], most commonly peptides are fragmented using colli-

sion-induced dissociation (CID) [233], or higher-energy collisional dissociation (HCD) [234]. Both 

fragmentation modes are characterised by an excitation of ions and a collision with inert gas mol-

ecules like nitrogen, helium, or argon, and only differ in their way of ion excitation. Following 

clashes with gas molecules, the kinetic energy of peptide ions will be transformed into vibrational 

energy, which will accumulate from repeated impact and ultimately lead to the breakage of chem-

ical bonds within the analytes. 

In the Fusion Lumos, CID is performed in the high-pressure cell of the linear ion trap filled with 

inert gas molecules [221]. Similar to the process of controlled resonance ejection, resonance of 

the analyte ion of interest is induced by setting the frequency of the exit rod AC to match the 

frequency of their secular motion. For fragmentation, however, a smaller voltage for the exit rod 

AC is set allowing the ions to stay in resonance longer to allow them to collide with the gas 

molecules causing the peptides to fragment [216]. The resonance time (also called activation time) 

determines the extent of fragmentation. Small fragment ions are often lost in this ion trap-based 

fragmentation mode since they cannot be kept on stable trajectories with the main RF that is 

needed to keep precursor ions long enough in resonance for efficient fragmentation [216]. In con-

trast, HCD is performed in a quadrupolar or octopolar collision cell, which in the Tribrid series is 
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called ion routing multipole (Figure I-11). Here, ions gain kinetic energy while they are accelerated 

from a neighbouring mass analyser into the gas-filled collision cell applying a DC offset [234]. This 

leads to higher kinetic energies and shorter impact times compared to CID fragmentation. Since 

in HCD the excitation and fragmentation processes are physically separated, the main RF in the 

collision cell can be adjusted to retain also small peptide fragment ions without compromising 

fragmentation efficiency. 

 

Figure I-13 | Peptide fragmentation upon collision-type dissociation methods. (A) Via collisions with inert 
gas molecules, CID and HCD typically lead to the cleavage of peptide bonds producing b- and y-ions. (B) In 
an ideal case, fragment ions differ by one amino acid allowing the direct determination of the complete 
peptide sequence from mass differences between fragment peaks. For the sake of simplicity, only y-ions are 
displayed (adapted with permission from [234]). 

Both collision-type fragmentation modes mostly result in fragment ions with an intact amino- and 

carboxy-terminus that are named b- and y-ions, respectively [235] (Figure I-13). However, CID and 

HCD spectra still are still somewhat different due to their difference in precursor excitation. Since 

HCD does not suffer from a lower mass cut-off, it enables the robust detection of smaller fragment 

ions such as immonium ions that can be diagnostic for the presence of certain amino acids or 

modifications [234]. At the same time, HCD yields less of the larger b-ions due to higher energies 

applied and secondary fragmentation taking place. In contrast, activation in CID is comparably 

slow and leads to a preferential breakage of lower energy bonds, which produces neutral loss ions 

more frequently than in HCD. They arise from the precursor ion when neutral fragments like water 

or ammonia are lost [236]. For phosphoserine and -threonine containing peptides a loss of phos-

phoric acid (-H3PO4) commonly dominates CID spectra and impedes successful phosphopeptide 

identification [237]. This can be overcome by a second resonance excitation of the generated neu-

tral loss ion in the ion trap, a fragmentation method termed multistage activation (MSA, also 

known as pseudo-MSn [238]). Although this fragmentation mode is slower, it improves identifica-

tion rates for phosphopeptide spectra significantly because it increases their information content. 

Examples of data acquisition strategies on hybrid instruments – Besides several fragmen-

tation modes, the instrument architecture and software options on the Fusion Lumos also allow 

for various data acquisition regimes. Shotgun proteomics approaches often employ a so-called 

data-dependent acquisition (DDA) strategy. Here, the instrument automatically switches between 

recording of MS1 and MS2 spectra, meanwhile consecutively isolating typically the N most abun-

dant peptides in the preceding MS1 scan for fragmentation. A dynamic exclusion prevents re-

peated fragmentation of the same m/z value for a defined time and thus increases the amount of 

sampled peptidoforms. On the Lumos, peptide scans are obtained in high resolution and high mass 

accuracy mode utilizing the Orbitrap, whereas fragment spectra can either be acquired sequen-

tially in the Orbitrap or in parallel to the MS1 scan in the ion trap, which enables much faster scan 

rates [221]. The DDA approach is very convenient since no prior knowledge about the sample is 
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required. However, the stochastic selection of precursors for fragmentation can lead to irrepro-

ducible (i.e. missing) identification and quantification across different samples, for example for 

lower abundant or strongly regulated peptidoforms. Methods targeting a predetermined set of 

analytes of interest can overcome this reproducibility issue, but are not hypothesis-free and re-

quire prior knowledge. In such targeted measurements like parallel reaction monitoring (PRM 

[239]), the mass spectrometer only targets predefined m/z values at specified retention times for 

fragmentation without any dynamic exclusion. Consequently, compared to DDA methods, a much 

smaller number of peptides is analysed but with superior sensitivity and reproducibility across 

runs [240]. 

 

Figure I-14 | Isobaric tags and data acquisition in MS3 mode. (A) The structure of primary amine-reactive 
tandem mass tag (TMT) is displayed. In each tag, 5 of the marked carbon (yellow) or nitrogen atoms (purple) 
are replaced with heavy isotopes (NHS: N-hydroxysuccinimide). (B) Upon fragmentation, sample-specific re-
porter ions are released. For TMT10-plex, high-resolution scans are required to differentiate slightly lighter 
reporter ions that contain 15N (purple) from those that contain the same number of heavy isotopes but ex-
clusively 13C (yellow). (C) Co-isolation and co-fragmentation of interfering peptides (lighter colour) can result 
in ratio compression in MS2 mode measurements. This can be minimized with an MS3 acquisition mode, 
where a second isolation and fragmentation step of peptide fragments is performed. 

Isobaric labelling and subsequent sample multiplexing present another approach for more repro-

ducible (but untargeted) identification and quantification across different samples. Isobaric tags 

carry heavy isotopes of carbon or nitrogen on different positions of the molecule and consist of a 

reactive group for protein or peptide labelling, a mass normalizer, and a cleavable mass reporter 

(an example of amine-reactive tandem mass tags (TMTs [241]) is illustrated in Figure I-14 A). After 

labelling and pooling of different samples, the intensity signal of a peptidoform will be summed 

up for all multiplexed samples in the MS1 spectrum since all isobaric tags feature identical physi-

cochemical properties and thus behave the same during sample chromatography. Only after pep-

tide fragmentation, sample-specific reporter ions will be released in the low m/z range with dif-

ferent masses (owing to differing numbers of 13C and 15N atoms, Figure I-14 B). Their intensities 

can be used as a proxy for the relative abundance of peptidoforms in different samples. One sub-

stantial shortcoming of quantification with isobaric tags is the frequently observed distortion of 

true ratios that can arise from co-isolation and co-fragmentation of differentially regulated pep-

tides [242-245] (Figure I-14 C). The quantification accuracy of such peptide tagging strategies can 

greatly benefit from advanced MS3 methods that are available on the Tribrid instrument series 

[222, 246]. In MS3-mode, peptide identification and quantification are decoupled by an additional 
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selection and fragmentation step that reduces interfering ions and significantly reduces ratio dis-

tortion in the subsequent MS3 scan. To this end, an MS2 spectrum for peptide identification is 

acquired followed by re-fragmentation of the same peptide and isolation plus high-energy frag-

mentation of its most abundant peptide fragment(s) [246]. The resulting TMT reporter ions are 

recorded in an MS3 scan, which typically constitutes a better reflection of true ratios. Importantly, 

in so-called MultiNotch MS3 measurements, the ion trap selects several of the top N most abun-

dant peptide fragments simultaneously (SPS, see p. 25) thereby increasing overall reporter inten-

sities in the MS3 spectrum and improving sensitivity [222] (Figure I-14 C). The MS3 scan is com-

monly acquired after HCD at high energies to ensure an efficient release of the reporter ions from 

peptide fragments. Noteworthy, isobaric tags such as TMT10-plex exist that yield reporter ions 

that do not differ in the absolute number of heavy isotopes but only in whether a 13C or 15N atom 

is present (i.e. whether the extra neutron is located within the carbon or nitrogen atom) [247]. 

For these tags, the quantitative scan needs to be acquired in the Orbitrap at high resolution to 

resolve the small mass difference of ~6.3 mDa resulting from the difference in nuclear binding 

energies. Apart from these terms, fragmentation modes, number of peptide fragments for the 

SPS, and mass analysers employed for the MS2 scan can be chosen flexibly on the Fusion Lumos, 

offering great potential for custom-made methods, for example for PTM-enriched samples [248-

250].  

3.3 Analysis of mass spectrometry data 

Subsequent to data acquisition, qualitative and quantitative analyses of raw data provides infor-

mation about peptides and, accordingly, proteins. In principle, peptide masses can be derived 

from MS1 spectra (utilizing the m/z value and spacing between isotope peaks), and corresponding 

amino acid sequences can be deduced from fragment spectra (mass difference between frag-

ments). In reality, however, fragmentation patterns are often incomplete and intervening peaks, 

for instance from co-isolated peptides, may complicate peptidoform identification [230]. Moreo-

ver, modern mass spectrometers produce thousands of spectra in a short time, which precludes 

manual annotation. Therefore, a multitude of software solutions has been developed for peptide 

and protein identification and quantification, and the computational pipelines are typically specif-

ically adapted for certain data acquisition approaches and research questions at hand.  

Peptidoform and protein identification – Except for de novo sequencing algorithms [251] 

(which will not be covered here), peptide identification is commonly based on some type of 

matching of acquired fragment spectra either to in silico generated spectra from a database (se-

quence database approach [252]) or to a collection of previously acquired, experimental spectra 

(spectral library matching [253]). For database searching, many search engines such as Mascot 

[252], Andromeda [254] (integrated in MaxQuant [255]), and Spectrum Mill are available. Spectra 

are usually pre-processed to improve signal-to-noise and clean up the m/z space. This can include 

but is not limited to centroiding, de-isotoping and charge state deconvolution [256]. Afterwards, 

observed fragment masses are matched to a plausible set of theoretical spectra that are obtained 

from in silico digestion of known and putative protein sequences derived from genomic or tran-

scriptomic data (Figure I-15 A). Theoretical spectra need to resemble the specificity of the enzyme 

used for digestion and should account for expected fixed (such as carbamidomethylation of cys-

teines) and variable modifications (such as N-terminal acetylation) or optionally introduced labels. 

Further, the fragmentation mode should be specified to factor in the preferential occurrence of 

different fragment ions and provide the most likely fragment ion series for matching. Subse-

quently, probability-based search engines like Mascot and Andromeda compute probabilities that 
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a peptide spectrum match (PSM) may be a random event meanwhile accounting for the number 

of matched fragments amongst other criteria. Probabilities are converted into scores using a neg-

ative log transformation [252]. Consequently, PSMs with high scores have a low probability of 

being wrong, and the highest scoring PSM will be reported as the (most likely) identified peptide. 

Since probability metrics often differ between algorithms, identical spectra can lead to different, 

highest ranked PSMs using different software solutions [257]. Furthermore, false matches may 

arise from poor spectra quality, sub-optimal search parameters (e.g. when neglecting a frequently 

occurring modification), or simply by random chance. To control for erroneous matching, gener-

ally a false discovery rate (FDR) is estimated using target-decoy approaches [257]. To this end, 

experimental spectra are re-searched against an equally sized decoy database that contains re-

versed or scrambled sequence information. Hits to this decoy database are wrong by definition. 

Assuming that false matches in the target database follow a similar distribution than hits in the 

decoy database, an FDR can be estimated (e.g. number of decoy hits/number of target hits). Sub-

sequently, an (arbitrary) FDR cut-off is set (usually ≤ 1 %) to improve the general identification 

quality [182]. 

Variable PTMs pose a particular challenge for database searches since all the possible permuta-

tions of modified sequences vastly increase the search space, which can potentially compromise 

identification quality [258, 259]. In addition to sequence identification, the position of a modifica-

tion has to be correctly determined [260]. This can be especially difficult in phosphoproteomics 

experiments where multiple possible sites can exist in a given peptide sequence. In theory, neigh-

bouring fragment ions (so-called site determining ions) are indicatory of a modified amino acid, 

but they can be absent or of low abundance making a distinction from noise difficult. Several al-

gorithms have been established to estimate the positional certainty of modifications (reviewed in 

[260]). They are typically based on an estimation of the likelihood that a site-determining ion is 

present by chance [261] or on the difference in spectrum matching likelihood between different 

positional modification isomers [262]. Owing to these increased identification challenges, modi-

fied peptides are often filtered through additional cut-offs for identification scores or delta scores 

(the score difference to the next best hit in the database). In addition, identifications of modified 

peptides are frequently further filtered for localization probabilities to gain confidence on the 

modification position prior to functional analyses [263]. 

Following quality assessment and filtering of PSMs, identified peptide sequences can be assigned 

to corresponding proteins, which is not a trivial step due to the protein inference problem [264]. 

Proteins can only be identified without doubt by peptides that are unique to them, but often pep-

tides are shared between proteins (commonly termed razor peptides, Figure I-8 and Figure I-15 B). 

Therefore, search algorithms usually report groups that include all proteins that share peptides 

with other identified proteins in the group and are not identified with any unique peptide. Conse-

quently, splice variants will often end up in the same protein group and all proteins that are po-

tentially but not necessarily present in a sample are listed which clearly complicates proteoform 

analysis with bottom-up proteomics. 

In contrast to DDA-type of experiments, targeted analyses are hypothesis-driven and generally 

rely on high-quality spectral libraries for method development as well as affirmative identification 

after data acquisition [240]. Such approaches assess the similarity of experimental spectra to pre-

viously acquired, high-confidence PSMs that can be obtained from DDA-type of experiments or 

measurements of synthetic peptides (Figure I-15 A). They are based on the assumption that 

fragmentation patterns are highly deterministic given similar measurement parameters. To en-

sure direct comparability, spectral libraries are usually not de-charged and de-isotoped. Matching 
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quality can be assessed with specialized software solutions such as Skyline [265]), which extracts 

elution profiles of fragment ions at the expected retention times and demands them to be present 

in the expected intensity ratios. Accordingly, similarity scores are provided which do not only ne-

cessitate the presence of certain fragment peaks but also account for characteristic intensity pat-

terns [266]. Ultimately, targeted analyses commonly include careful manual inspection of ion 

traces and potential interfering peaks to ensure high confidence identification and subsequent 

robust quantification [240] (Figure I-16).  

 

Figure I-15 | Peptide and protein identification. (A) Spectra can be matched to peptides employing a target-
decoy database search strategy or via comparison to previously acquired, spectral libraries. (B) Protein in-
ference from peptide-spectrum matches is complicated by shared (razor) peptides. While typically all pro-
teins to which a peptide matches are listed in a protein group, they may not actually be present in the sample 
(e.g. the red protein could be absent since purple and grey protein are sufficient to account for the purple, 
red, and grey peptide). 

Peptidoform and protein quantification – In addition to identification, quantification is an 

integral part of mass spectrometry-based proteomics allowing an estimation of abundances for 

thousands of analytes in parallel. Early quantitative assessments were based on counting of PSMs 

under the assumption that proteins that are more abundant in one sample yield more of corre-

sponding spectrum matches compared to another sample [267]. Spectrum counting approaches 

are straightforward, but they are highly dependent on measurement parameters such as dynamic 

exclusion and require a certain number of data points [268] rendering it inapplicable for quantifi-

cation of peptidoforms. Today, quantification is more commonly based on measuring the MS sig-

nal response of peptides, which is proportional to their abundance over four orders of magnitude 

[269], hence providing a means to accurately quantify single peptides. Importantly, only intensi-

ties of identical peptides can be compared across samples since the response of different peptides 

may differ vastly, for example owing to unequal losses (e.g. absorptive losses of hydrophobic pep-

tides) or differing ionizability. A multitude of quantification approaches is available depending on 

the sample preparation and data acquisition method employed (reviewed in [267, 270, 271], for 

examples see Figure I-16). Since respective data processing algorithms are often integrated in the 

computational pipelines that are also utilized for identification purposes, in most cases, quantita-

tive values can be obtained easily in an automatic fashion [255, 265]. The MaxQuant software, for 
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example, was originally developed for SILAC samples [272], but now supports all kinds of label-

based and label-free quantification approaches [255]. 

For metabolic labelling methods such as SILAC [167] (see also pp. 15), differentially labelled and 

treated samples are combined earliest in the workflow thereby minimizing potential variations 

introduced during sample processing. Peptides that contain heavy isotope-labelled amino acids 

have identical physicochemical properties as non-labelled ones and can only be distinguished in 

the mass spectrometer based on their mass difference. This facilitates accurate relative quantifi-

cation within one MS run which is achieved by comparing summed MS1 intensities of isotope 

cluster as a function of retention time (Figure I-16). Based on the availability of heavy isotope-

labelled amino acids, typically no more than three samples are combined in a SILAC experiment in 

practice. Importantly, the number of MS1 features scales linearly with the number of channels. 

This leads to more complex MS1 spectra, increased co-isolation resulting in chimeric MS2 spectra, 

and repeated sampling of the same peptide in different labelling states, all of which reduce the 

overall number of distinct peptide identifications. This can be prevented when employing an MS1 

intensity-based label-free quantification (LFQ) approach. The underlying quantification principle 

is the same as for SILAC samples, but here intensities of elution profiles are compared across sam-

ples measured in different runs (Figure I-16). LFQ allows for comparison of a practically infinite 

number of samples and is applicable to any cellular system, also to those that are not (easily) 

accessible with metabolic labelling approaches (e.g. human tissues). Since samples are only com-

bined at the level of data analysis, a reproducible and robust sample processing workflow is key 

to prevent an accumulation of large variations that can bias quantification. As mentioned above 

(see pp. 28), the stochastic nature of peak picking in DDA-type of experiments can quickly increase 

the number of irreproducible, missing identifications and quantifications in large LFQ sample sets. 

This equally applies to SILAC data when only one of the isotope labelling duplets or triplets is being 

identified via a PSM. Such missing values complicate statistical analyses and can obscure im-

portant biological information. To overcome this issue, algorithms have been developed to trans-

fer identifications from one labelling isotope pattern or label-free run to another [255, 272, 273]. 

In brief, corresponding peptide elution profiles are aligned and matched utilizing accurate m/z and 

retention time information, and subsequent quantification of matched profiles reduces missing 

values. It is important to note that a reproducible performance of the on-line coupled chromatog-

raphy system is inevitable for a successful utilization of such match-between-runs approaches. 

Furthermore, these algorithms cannot eliminate missing values completely. MS1 based quantifi-

cation approaches also need to balance acquisition of MS1 and MS2 spectra carefully to allow for 

confident run alignment. This is generally important to facilitate feature detection in the MS1 

space, achieve accurate quantification of elution profiles, and at the same time permit a reasona-

ble proteome depth via a sufficient quantity of potential PSMs. 

An alternative to MS1-based strategies is offered by quantification using isobaric tagging ap-

proaches (e.g. TMT, see also pp. 28 and Figure I-14). They rely on reporter ion intensities extracted 

from fragment spectra and their quantification reproducibility is typically less sensitive to perfor-

mance variations of the LC-MS systems than for label-free measurements. In addition, the high 

multiplexing capability of TMT reagents (recently increased to 16-plex) reduces measurement 

time and enables a deep proteome coverage for multiple samples within a reasonable time-

scale. Together, these advantages likely explain why isobaric tagging approaches are increasingly 

popular for large-scale and cross-laboratory studies [194, 274, 275] although the reagents are 

fairly expensive. Noteworthy, the circumvention of missing values additionally makes them attrac-

tive for peptidoform studies that depend on robust identification and quantification of single 
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peptides across conditions. However, as mentioned above (see pp. 28), accuracy of isobaric tag-

based quantification can be compromised by ratio distortion. In addition to above described MS3-

based acquisition approaches [222, 246], several strategies have been suggested to tackle this 

issue. Those range from adjusting sample preparation workflows (extended fractionation [244]) 

and optimizing data acquisition parameters (gas-phase purification of isolated peptides [276], 

fragmentation at elution peak maximum, narrowing isolation windows [277], utilizing ion-mobility 

[278, 279]) to customizing data processing (computational removal of co-isolated intensities [245], 

utilizing complement reporter ions [280]). While most of the proposed methods have proven great 

merit for the reduction of ratio compression, they frequently come at costs of decreased through-

put, or they necessitate specialized instrumentation and data processing workflows, which can 

limit their overall applicability.  

 

Figure I-16 | Common quantification approaches in bottom-up proteomics. Peptide quantification can be 
performed label-free or label-based and on peptide precursor or fragment level. Many methods integrate 
elution profiles to obtain area-under-the-curve values as proxy for peptide abundances. Isobaric tag-based 
approaches, however, directly utilize reporter ion intensities. Examples for the different quantification ap-
proaches are indicated in boxes. 

Generally, peptidoform quantification often already requires some form of integration of quanti-

tative information, for example from peptide elution profiles recorded in differing charge states 

or detected in multiple off-line fractions of the same sample. This is often achieved by simple 

signal summation, but can also include more sophisticated data integration steps [281]. Owing to 

the protein inference problem, consolidation of quantitative peptide information on protein level 

can pose a substantially greater challenge. Protein group intensities can be influenced 

considerably depending on how razor peptides are handled. They may be derived from all pep-

tides matching to a certain group (including group-razor peptides) or only from those that exclu-

sively match to this group. Group-razor peptides may also be assigned based on the principle of 
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parsimony (Occam’s razor), which means they are allocated solely to the protein group with the 

strongest evidence (i.e. the one with the most peptides [272]). Frequently, additional filters for 

peptides that are included for protein quantification are applied. As an example, post-translation-

ally modified peptides and their unmodified counterparts are commonly excluded, and at least 

two quantified peptides can be demanded per protein. Subsequently, protein intensities can be 

computed, for example by summation or averaging of all peptide signals, sometimes only includ-

ing a fixed number of the highest intense peptide features [282]. Alternatively, quantitative pro-

tein fold changes (FCs) can be computed as median of all peptide FCs [272, 281]. This increases 

robustness of quantification and minimizes the influence of outliers that may amongst other thing 

result from ambiguous assignment of razor peptides.  

Following quantification, typically data normalization on peptide or protein level is essential to 

optimize quantification performance and correct for systematic biases (e.g. introduced by losses 

during sample processing). Normalization procedures may be provided by database search algo-

rithms [281], but their applicability should be evaluated on a case-by-case basis. In some instances, 

a customized normalization procedure that accounts for the specific experimental design by mak-

ing reasonable assumption about the expected data structure can be advisable. 

Data interpretation – Noteworthy, measured and normalized intensities are not readily compa-

rable across proteins because peptide signal responses may differ and accumulated protein inten-

sities are highly dependent on additional parameters like protein length and the number of theo-

retically observable peptides. Different strategies that normalize intensities for these biases such 

as iBAQ (intensity-based absolute quantification [113]) have been proposed to obtain information 

on relative expression levels and enable a direct comparison of different proteins. In addition, 

computation of absolute protein copies for deeply fractionated proteomes by harnessing histone 

protein intensities has shown promising concordance with spike-in standards for absolute quan-

tification [283]. However, these approaches rely on a sufficient number of peptides per protein 

(group) and are therefore mostly incapable of estimating absolute abundances of different protein 

isoforms. Likewise, absolute copy numbers of proteins carrying a certain modification cannot be 

obtained directly from the intensity of a specific peptidoform alone. Instead modification stoichi-

ometries (also called occupancies) can be calculated, for example when quantitative information 

of a modified peptide, its unmodified counterpart, and the whole protein (i.e. several other pep-

tides) is available in at least two different sample conditions [61, 63]. The knowledge about occu-

pancies can provide another layer of helpful information for the elucidation of mechanisms un-

derlying the regulation of cell signalling events and proteostasis [205]. Owing to the sheer amount 

of data generated by MS-based proteomics methodologies, an efficient biological interpretation 

of experimental results is further often critically dependent on prior functional annotations [284]. 

Numerous resources are available to guide data exploitation, such as general protein knowledge 

databases like UniProt [43] and Gene Ontology [285], or specialized repositories for signalling 

pathways [286], protein classes [287], domains [288], interactions [289], complexes [290], subcel-

lular localizations [291, 292], structures [293], and modifications [294]. 

It becomes clear that a multitude of intricacies in proteomic workflows renders the comprehen-

sive study of proteoforms quite challenging. However, MS-based proteomics is currently the only 

methodology to study cellular functionalities beyond the gene level and with high throughput. 

Therefore, it offers an unprecedented opportunity to observe and investigate complex biological 

processes and ultimately to understand the processes that govern life. 
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4 Objective and outline 

The dynamic equilibrium of protein turnover contributes to a cell’s capability to respond rapidly 

to external stimuli by altering the abundance of functional proteins. It becomes increasingly ap-

parent that dysregulations of processes that regulate protein turnover, such as post-translational 

modifications, are involved in a multitude of disease states. Thus, there is a growing need for 

methods that enable the global determination of protein turnover on the level of peptidoforms 

to elucidate factors implicated in its post-transcriptional and post-translational control. Recent 

advances in mass spectrometry-based proteomics suggest that global measurements of pro-

teoform-specific turnover are feasible in principal, but so far, they have been widely neglected 

due to technical challenges that accompany such measurements. The objective of this work was 

to harness the power of recent technological improvements to unravel proteoform-specific pro-

tein turnover and, in particular, investigate the impact of acetylation, ubiquitination, and phos-

phorylation on protein stability on a proteome-wide scale.  

Initially, different quantification approaches were benchmarked to identify a strategy that enables 

robust quantification of single, modified peptides across multiple conditions. The most promising 

approach was further optimized regarding costs, robustness, and accuracy of measurements 

(Chapter III). Gained insights were utilized to establish a novel method for the determination of 

turnover rates with improved proteome coverage and single peptide resolution. This facilitated 

the examination of global and proteoform-specific determinants of protein turnover in human 

cells (Chapter IV). Finally, this new approach was combined with the analyses of the post-transla-

tional modification state to discover modification-specific protein turnover, which revealed the 

tremendous potential of this approach to identify functional relevant modification sites (Chap-

ter V).  
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1 Protein and peptide sources 

Details about the protein source, number of cell culture replicates, and treatment and pulse time-

points for certain experiments can be found in the experimental procedure sections of the respec-

tive chapters (see p. 64, pp. 103, pp. 133). 

WHIM2 and WHIM16 basal and luminal breast cancer PDX (patient-derived xenograft) models 

were generated as previously described [295] and PDX and Jurkat peptides were kindly provided 

by the Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard in Cam-

bridge, Massachusetts. Peptides from murine liver tissue were kindly provided by the Max 

Delbrück Center for Molecular Medicine in the Helmholtz Society in Berlin, Germany. All other 

samples were generated in-house. 

1.1 Cell cultivation and treatment 

For method evaluation and optimization experiments, HeLa, K562 and Jurkat cells were cultured 

at 37 °C and 5 % CO2 in DMEM (Dulbecco’s Modified Eagle’s Medium), IMDM (Iscove's Modified 

Dulbecco's Medium) and RPMI-1640 medium, respectively. The media were supplemented with 

10 % FBS (GibcoTM) and RPMI-1640 medium additionally with 1 % antibiotic, antimycotic solution 

(Sigma). The haploid Saccharomyces cerevisiae cell line Y187 was cultured at 30 °C on yeast pep-

tone dextrose (YPD) agar plates or in YPD broth on a shaker at 350 rpm.  

Steady-state pulsed SILAC experiments – For pSILAC experiments, HeLa cells were cultured in 

SILAC DMEM (Thermo Fisher Scientific) supplemented with 10 % dialyzed FBS (GibcoTM), 1 % an-

tibiotic, antimycotic solution (Sigma) and 1.74 mM L-proline (≥ 99 %, Sigma). L-lysine and L-argi-

nine were added to a final concentration of 0.798 mM and 0.398 mM, respectively, in either light 

(Lys-12C614N2/K0, isotope purity ≥ 99%; Arg-12C614N4/R0 ≥ 98 %, Sigma) or heavy form (Lys-

13C615N2/K8, isotope purity ≥ 99 %; Arg-13C615N4/R10, isotope purity ≥ 99 %, Cambridge Iso-

tope Laboratories). Completely heavy labelled cells for label swop experiments were obtained af-

ter cultivating light-labelled cells in medium containing K8 and R10 for at least 10 cell doublings. 

For time-course pSILAC experiments, HeLa cells were seeded at 5.7e3 cells/cm2 to avoid over-

growth during the time-course of the experiments. Pulses were started 40 h after cell seeding by 

removing old medium, washing light (or heavy) labelled cells twice using PBS (phosphate-buffered 

saline) with Mg2+/Ca2+, and adding K8R10 (or K0R0) medium. For determination of cell doubling 

times during pulse experiments, HeLa cells were seeded in 96 well plates at the same density and, 

after medium exchange, counted in six replicates every 12 h. 

Cell viability assays and treatments – Cell viability assays were conducted using alamarBlue 

reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol. Tanespimycin (17-

AAG, Selleckchem) treatment was started 24 h after seeding of 1e3 K562 cells in 96-well. Cell via-

bility was read-out before treatment start and 72 h after incubation with increasing drug concen-

trations (0, 3, 10, 30, 100, 300 nM, 1, 3, 10, 30 µM). The lowest 17-AAG concentration that showed 

a full cytostatic effect (1 µM) was applied in time-dependent treatments (0, 0.5, 1, 2, 4, 6, 8, 16, 

24, 32 h) of K562 that were seeded 24 h prior to treatment at 5.1e5 cells/ml. 

For the investigation of the effects of rotenone induced, oxidative stress on turnover of respiratory 

chain complex I (NADH dehydrogenase) proteins, HeLa cells were seeded in K0R0 medium at 

3.3e4 cells/cm2. Following 40 h of cultivation, 1 µM rotenone (≥ 95 %) in DMSO and 5 mM L-(-)-

malic acid and L-glutamic acid (Sigma) were added to the cells. Cells treated with DMSO plus 5 mM 

L-(-)-malic acid and L-glutamic acid or DMSO only served as control. After 30 min, K0R0 medium 



II | GENERAL METHODS 

40 | P a g e  

was removed, cells were washed twice using PBS with Mg2+/Ca2+, and K8R10 medium containing 

the above stated treatment or respective control supplements was added to cells. 

1.2 Protein extraction 

HeLa and Jurkat cells were lysed at 80 to 90 % confluence or after indicated pulse or treatment 

time-points (corresponding to a lower cell density). Yeast cells were harvested in the early log-

phase at OD 600 = 1. Cells lines and tissues were lysed after 2 PBS washes in 8 M urea in 40 mM 

Tris-HCl, pH 7.6 (Hela, yeast) or 75 mM NaCl and 50 mM Tris, pH 8.0 (Jurkat, mouse liver, PDX) 

containing protease inhibitor (cOmpleteTM Mini, Roche) and phosphatase inhibitor cocktails (pre-

pared in-house according to the formula of Phosphatase Inhibitor Cocktail 1, 2, and 3 from Sigma). 

Lysate buffer volumes were adjusted to cell density and cell culture vessel to reach concentrations 

of at least 1 mg protein per ml buffer (typically 2 to 5 mg/ml). Lysates were incubated on ice for 

10 to 30 min. Yeast cells were, in addition, mechanically disrupted through four cycles of bead 

beating for 5 min followed by 2 min of cooling on ice. The yeast lysate was centrifuged for 10 min 

at 13,500 g and 4 °C to sediment the glass beads and the supernatant was collected. All lysates 

were stored at - 80 °C. 

1.3 Synthetic phosphopeptides 

Crude, combinatorial synthetic phosphopeptides for spike-in experiments originated from the ref-

erence library previously published by Marx et al. [296]. Two pools were selected based on an 

initial assessment of synthesis success via the ratio of peptides detected by LC-MS measurements 

to peptides that theoretically should be present in the peptide pool. Besides, larger pools with 

2,400 peptides were excluded due to a disadvantageous increase in sample complexity and quan-

tity after spiking them into a complex human background. This lead to physical overloading of LC-

MS columns and, consequently, to a biased loss of hydrophilic peptides in samples with high spike-

in ratios which distorted a proper evaluation of label-free spike-in experiments.  

After the initial assessment, peptide pool 14 and 61 were selected. Each pool was based on a 

human, tryptic peptide sequence with prior evidence of a phosphorylation site in at least 

three large-scale phosphoproteomics studies (14: ATPGNLGSSVLApSK; 61: pYRSPEPDPYLSYR). To 

obtain a diverse set of (phospho)peptides, the phosphorylation site of these seed sequences had 

been replaced with serine, threonine, tyrosine and their phosphorylated versions, and, in addition, 

neighbouring, non-C-terminal amino acids had been permutated with all 20 naturally occurring 

amino acids. This resulted in 60 different phosphopeptides (ATPGNLGSSVL[X]p[STY]K, 

p[STY][X]SPEPDPYLSYR), and their respective unmodified counterparts in each pool.  
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2 Sample preparation for mass spectrometry analyses 

Specifics about used protein and peptide amounts, technical replicates, differing parameters dur-

ing optimization procedures, and detailed experimental workflows can be found in the experi-

mental procedure sections of the respective chapters (see p. 64, pp. 103, pp. 133). 

2.1 Protein digestion 

Before digestion, thawed lysates were cleared at 20,000 g for 10 to 20 min at 4 °C and the protein 

concentration of the supernatant was determined in at least triplicate measurements using the 

PierceTM Coomassie or BCA Protein Assay Kit (Thermo Scientific) according to the manufacturer’s 

instructions. Disulfide bridges were reduced on a shaker at 600 rpm using 10 mM DTT at 30 °C for 

20 to 30 min (HeLa, yeast) or 5 mM DTT at 37 °C for 1 h (Jurkat, mouse liver, PDX). Alkylation was 

performed at RT (room temperature) in the dark using 50 mM chloroacetamide for 20 to 30 min 

(HeLa, yeast) or 10 mM iodoacetamide for 45 min (Jurkat, mouse liver, PDX). Lysates were diluted 

to < 2 M urea using 40 mM Tris-HCl, pH 7.6 (HeLa, yeast) or 50 mM Tris-HCl, pH 8.0 (Jurkat, mouse 

liver, PDX). Digestion was performed by either adding trypsin (Promega) at a 1:50 enzyme-to-sub-

strate ratio and incubating overnight at 37 °C on a shaker at 600 rpm (HeLa, yeast) or by perform-

ing a double digestion at 25 °C using 1:50 LysC (Wako) for 2 h and 1:50 trypsin overnight (Jurkat, 

mouse liver, PDX). Digests were acidified by addition of neat FA (formic acid) to 1 %, centrifuged 

to pellet insoluble matter and supernatants were stored on ice until sample clean-up. 

2.2 Sample clean-up by solid-phase extraction 

Depending on the peptide quantities, different sorbent weights were employed for sample desalt-

ing via solid-phase extraction (SPE). For more than 2.5 mg protein digest, 200 mg tC18 RP (re-

versed-phase) solid-phase extraction cartridges were used, whereas smaller amounts were de-

salted on 50 mg tC18 RP cartridges (both Waters) using a vacuum manifold. Peptide quantities 

below 100 µg were cleaned up using self-packed StageTips [192]. Per 10 µg of protein digest, one 

plug (Ø 1.5 mm) of C18 material (Octadecyl Extraction Disk, 3M EmporeTM) was packed into a 

200 µl pipette tip and solvents were centrifuged through the tips. Volumes of solvents were 

adapted to sorbent weights using typically 3 ml, 1 ml, and 220 µl for 200 mg cartridges, 50 mg 

cartridges, and StageTips, respectively. C18 material was conditioned with 100 % ACN (acetoni-

trile) and desalting solvent B (0.1 % FA or 0.07 % TFA (trifluoroacetic acid) in 50 % ACN), followed 

by equilibration applying desalting solvent A (0.1 % FA or 0.07 % TFA). Before loading, samples 

that were devoid of organic solvent were acidified with neat FA or TFA to a pH of 2 to 3. Samples 

that contained organic solvents were dried down and reconstituted in desalting solvent A. After 

slow loading, bound peptides were washed twice with solvent A. Elution was performed by apply-

ing two times 250, 150, or 25 µl of solvent B depending on the sorbent weight. For desalting of 

enrichments of di-glycine remnant and acetylated peptides, 0.1 % FA in 40 % ACN was used as 

elution solvent. For instantaneous phosphopeptide enrichment, eluates were adjusted to a final 

ACN concentration of 30 % by addition of 0.7 % TFA. Otherwise samples were frozen, dried by 

vacuum centrifugation, and stored at - 80 °C until further processing. 

Tandem mass tag labelling 

For TMT labelling, peptide concentrations were determined after desalting either before dry down 

using a NanoDropTM 2000 spectrophotometer (Thermo Fisher Scientific) or after dry down and 

reconstitution in 0.1 % FA using the PierceTM BCA Protein Assay Kit and desired peptide quantities 

were dried by vacuum centrifugation. Standard parameters for the labelling reaction comprised 
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100 µg of peptides per channel that were labelled with 100 µg of TMT10plex or TMT11plex rea-

gents (Thermo Fisher Scientific) at a peptide, TMT and ACN concentrations of 4 µg/µl, 11.6 mM, 

and 20 %, respectively. In detail, peptides were dissolved in 20 µl of 50 mM HEPES (pH 8.5), and 

5 µl of a 58.1 mM TMT stock dissolved in 100 % anhydrous ACN were added. The peptide-TMT 

mixture was incubated for 1 h at 25 °C on a shaker at 400 rpm, and the labelling reaction was 

stopped by addition of 5 % hydroxylamine to a final concentration of 0.4 % and incubation for 

15 min at 25 °C and 400 rpm. Peptide solutions were pooled and acidified using 20 µl of 10 % FA. 

Reaction vessels in which the labelling took place were rinsed with 20 µl of 10 % FA in 10 % ACN, 

and the solvent was added to the pooled sample. The pools were frozen at - 80 °C and dried by 

vacuum centrifugation. Differing quantities, volumes, and concentrations were used in experi-

ments in which TMT-to-peptide quantities were titrated, and those are indicated in the respective 

chapter (see pp. 66). 

2.3 Metal ion affinity purification of phosphorylated peptides 

Column-based IMAC – In general, with the exception below, column-based IMAC (immobilized 

metal ion affinity chromatography) of unfractionated samples was employed for phosphopeptide 

enrichments as described previously [201]. In brief, a ProPac IMAC 10 column (4 x 50 mm, Thermo 

Fisher Scientific) connected to an Aekta HPLC system (GE Healthcare Life Sciences) was charged 

with iron(III) ions, washed with IMAC elution solvent (0.315 % NH4OH), and equilibrated in IMAC 

loading solvent (0.07 % TFA in 30 % ACN). Samples were dissolved in 0.5 ml of the loading solvent, 

loaded onto the column and washed for 5 min at a flow rate of 0.2 ml/min meanwhile collecting 

the flow-through containing non-phosphopeptides. Bound phosphopeptides were eluted and col-

lected applying a two-step gradient from 0 % to 12 % elution solvent within 1.5 min at 0.55 ml/min 

and from 12 % to 26 % elution solvent within 5 min at 3 ml/min. Flow-through and eluted fraction 

were dried by vacuum centrifugation and stored at - 20 °C. 

Batch format-based phosphopeptide enrichment – For the in-depth phosphoproteome anal-

ysis to benchmark the optimized TMT protocol, phosphopeptides were enriched from fraction-

ated peptides using NTA (nitrilotriacetic acid) superflow agarose beads (Qiagen) as described re-

cently [297] (performed at the Broad Institute of MIT and Harvard). In brief, peptide fractions were 

dissolved in 0.1 % TFA in 80 % ACN at a concentration of 0.5 µg/µL. Fractions were added to 10 µl 

of iron(III) loaded beads in a 1 : 1 : 1 : 1 slurry of beads : ACN : methanol : 0.01 % acetic acid and 

incubated for 30 min at 25 °C on a shaker at 1,000 rpm. Beads were settled for 1 min at 1,000 g, 

supernatants were removed, and beads were re-suspended in 200 µl of 0.1 % TFA in 80 % ACN. 

The slurry was transferred to conditioned and equilibrated StageTips (2 plugs, see p. 41), and 

beads were washed twice using 50 µl of 0.1 % TFA in 80 % ACN and once using 50 µl of 1 % FA. 

Phosphopeptides were eluted from the beads onto the C18 material in three iterations using 70 µl 

of 500 mM potassium phosphate buffer. After washing with 100 µl of 1 % FA, phosphopeptides 

were eluted from the C18 plugs using 60 µl of desalting solvent B. Eluates were dried by vacuum 

centrifugation and stored at - 20 °C. 

2.4 Immunoaffinity purification of ubiquitin-remnant and acetylated peptides 

Acetylated and di-glycine remnant peptides were enriched via immunoaffinity purification (IAP). 

For all washing steps of ubiquitin-remnant antibody beads (PTMScan® Ubiquitin Remnant Motif 

(K-ε-GG) Kit #5562, Cell Signaling Technology) or acetyl antibody beads (PTMScan® Acetyl-Lysine 

Motif [Ac-K] Kit #13416, Cell Signaling Technology), 1 ml of solvent was added swirling up beads, 
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followed by centrifugation for 1 min at 2,000 g and 4 °C and removal of supernatants. Unless oth-

erwise stated, all applied solvents were ice-cold and enrichment steps for acetylated and di-gly-

cine remnant peptides were identical. 

Antibody crosslinking – Before enrichment of the di-glycine modified peptides, Ubiquitin-rem-

nant antibodies were cross-linked to agarose beads. Acetyl antibodies were not cross-linked. 

UbiScan beads were washed three times with 100 mM sodium tetraborate decahydrate (Borax), 

pH 8.8. During the last washing step, 5 µl of the bead slurry were removed. Antibodies were co-

valently linked to beads at RT for 30 min with end-over-end rotation applying freshly prepared 

20 mM dimethyl pimelimidate in 100 mM Borax, pH 8.8. The reaction was stopped by washing 

beads twice with 200 mM ethanolamine, pH 8.0, and then incubating with 200 mM ethanolamine 

at 4 °C for 2 h with end-over-end rotation. The capping solution was removed by washing beads 

three times with IAP buffer (50 mM MOPS, pH 7.2, 10 mM Na2HPO4, 50 mM NaCl). At the third 

washing step, again 5 µl of the bead slurry were removed to check the coupling efficiency. Beads 

were re-suspended in PBS containing 0.02 % (w/v) sodium azide and stored at 4 °C. 

Evaluation of coupling efficiency – Free antibodies in the 5 µl aliquots of bead slurry were 

eluted at RT applying two times 50 µl of 0.15 % TFA for 5 min. Eluates were dried in by vacuum 

centrifugation and reconstituted in 20 µl of 2x NuPAGETM LDS sample buffer (Thermo Fisher Sci-

entific) containing 20 mM DTT. After incubation at 70 °C for 10 min, samples were separated for 

40 min at 200 V using NuPAGETM 4-12 % Bis-Tris protein gels in 1 x  NuPAGETM MOPS SDS run-

ning buffer (Thermo Fisher Scientific). After protein fixation for 1 h in 2 % acetic acid and 40 % 

methanol, the gel was stained for 20 min in 7.5 % Coomassie (Roth) in 20 % methanol. Cross-link-

ing would be considered efficient, if band intensities of the light and heavy antibody chains de-

creased by roughly 90 % after the coupling process. 

Enrichment of ubiquitin-remnant and acetylated peptides – During the optimization of the 

immunopurification protocol, differing peptide and bead quantities and wash and elution steps 

were tested, and those are indicated in the respective chapter (see pp. 133). Generally, 10 µl set-

tled beads were employed to enrich ubiquitin-remnant and acetylated peptides from 2 mg of pro-

tein digest. First, bead storage solution was removed, and 80 µl settled beads were washed three 

times with IAP buffer and re-suspended in IAP buffer. Desalted and dried peptides were reconsti-

tuted in 1 ml IAP buffer and centrifuged at 20,000 g for 10 min at 4 °C to pellet insoluble matter. 

Supernatants were added to 130 µl of the bead slurry (~10 µl settled beads) and incubated for 1 h 

at 4 °C with end-over-end rotation. Then, beads were settled for 1 minute at 2,000 g and 4 °C, and 

the supernatant was retained as flow-through. After 2 washes with IAP buffer (only 1 wash for 

acetyl beads) and 2 washes with PBS, modified peptides were eluted twice at RT using 50 µl of 

0.15 % TFA for 5 min. 

2.5 Peptide fractionation  

Depending on the input amount, StageTips (>50 ug protein digest) or columns (>150 ug protein 

digest) connected to off-line HPLC (high-performance liquid chromatography) systems were em-

ployed for peptide fractionation. For deep-scale (phospho)proteome analyses to benchmark the 

optimized TMT protocol, peptides were fractionated on a high-pH (basic) RP (bRP) column. TMT 

labelled, pulsed SILAC samples were separated via hSAX (hydrophilic strong anion exchange) chro-

matography. All other samples were fractionated on bRP StageTips (see p. 41). Samples were al-

ways cleaned-up (see p. 41) prior to fractionation. Peptide separations were performed according 
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to previously published, detailed protocols [191, 194, 298] and are described briefly in the follow-

ing. 

High-pH RP tip fractionation – After conditioning and equilibration with bRP tip solvent (25 mM 

ammonium formate, pH 10), StageTips were loaded with peptides dissolved in 50 µl of bRP sol-

vent. Alternatively, peptides bound to StageTips after washing during the desalting procedure 

were directly re-buffered in 50 µl of bRP tip solvent omitting the elution, dry down, and re-consti-

tution step in between. Peptides were sequentially eluted using 40 to 60 µL of bRP tip solvent 

containing increasing concentrations of ACN (scheme 1: 5, 7.5, 10, 12.5, 15, 17.5, and 50 % ACN 

for TMT labelled peptides; scheme 2: 5, 10, 15, 17.5, and 50 % ACN for SILAC-labelled whole pro-

teome digests; scheme 3: 2.5, 7.5, 12.5, 50 % for SILAC-labelled phosphopeptides). The sample 

flow-through was combined with the 17.5 % ACN eluate (scheme 1 and 2) or the flow through 

(scheme 3) and the 5 % ACN fraction with the 50 % ACN fraction (scheme 1 and 2), resulting in a 

total of six or four fractions, respectively. Fractions were dried by vacuum centrifugation and 

stored at - 20 °C until LC-MS measurement.  

Column-based high-pH RP chromatography – Peptides were reconstituted in bRP solvent A 

(4.5 mM ammonium formate, pH 10, in 2 % ACN) and loaded onto a Zorbax 300 Extend-C18 col-

umn (3.5 μm, 4.6 × 250 mm; Agilent) coupled to an Agilent 1100 HPLC system. Samples were sep-

arated into 96 fractions in 96 min at 1 ml/min, first washing with bRP solvent A for 7 min, followed 

by increasing bRP solvent B (4.5 mM ammonium formate, pH 10, in 90 %) up to 60 % in several 

steps (to 16 % in 6 min, 40 % in 60 min, 44 % in 4 min, 60 % in 5 min). In the end, the column was 

washed with 60 % bRP solvent B for 14 min. Collected fractions 13 to 90 were pooled discontinu-

ously (i.e. fraction 13+37+61, 14+38+62, and so forth) into 23 fractions and fraction 91 to 96 

yielded the 24th pooled fraction. Pooled fractions were acidified using 10 % (v/v) of neat FA and 

5 % of each fraction was kept for in-depth full proteome analysis, whereas the residual 95 % were 

further pooled into 12 fractions (fraction 1+13, 2+14, and so forth) for phosphoproteome enrich-

ment using Fe(III) loaded NTS beads (see p. 42). 

Hydrophilic strong anion exchange chromatography – For hSAX chromatography, samples 

were reconstituted in hSAX solvent A (5 mM Tris-HCl, pH 8.5) and loaded onto an IonPac AS24 

strong anion exchange column (2 x 250 mm) equipped with an IonPac AG24 guard column (2 x 

50 mm) and coupled to a Dionex Ultimate 3000 HPLC system (Thermo Fisher Scientific). Samples 

were washed using 100 % hSAX solvent A for 3 min at 250 µl/min and subsequently eluted in a 

two-step gradient by raising hSAX solvent B (1 M NaCl in 5 mM Tris-HCl, pH 8.5) to 25 % within 

24 min followed by an increase to 100 % within 13 min. During separation, 40 fractions (1 minute 

each) were collected. Peptide solutions were acidified with 5 µl neat FA and less complex, early 

and late fractions were pooled (1-4, 5-7, 8-9, 26-27, 28-30, 31-33, 34-35, 36-40). The resulting 

24 fractions were desalted on StageTips (see p. 41) before LC-MS measurement. 
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3 Mass spectrometry data acquisition, processing and analysis 

Depending on the sample type and research question at hand, differing LC-MS and database 

search parameters, and data processing and analysis strategies were developed and applied. 

Highly experiment-specific or varying approaches can be extracted from experimental procedure 

sections of the respective chapters (see p. 64, pp. 103, pp. 133), while methods that are more ge-

neric or remain unchanged within this thesis and their underlying rationales are described in the 

following. 

3.1 Data dependent LC-MS measurements 

With exception for samples measured at the site of collaboration partners (inter-laboratory eval-

uation of the optimized TMT protocol, see p. 66), nanoflow LC-ESI-MS measurements were per-

formed using an Ultimate 3000 RSLCnano system coupled to a Fusion Lumos Tribrid or Q-Exactive 

HF-X mass spectrometer (Thermo Fisher Scientific). Samples were re-constituted in 0.1 % FA ex-

cept for bRP-fractionated peptides, which were dissolved in 0.5 % FA. For phosphopeptides en-

riched using the IMAC column, the sample solvent was supplemented with 50 mM citrate.  

Liquid chromatography – Generally, 1 to 1.5 µg protein digest (corresponding to roughly 500 to 

750 ng peptides) were injected onto a trap column (75 µm x 2 cm, packed in-house with 5 μm C18 

resin; Reprosil PUR AQ, Dr. Maisch) and washed for 10 min with 0.1 % FA at a flow rate of 5 μl/min. 

Subsequently, peptides were transferred to an analytical column (75 µm x 45 cm, packed in-house 

with 3 μm C18 resin; Reprosil Gold, Dr. Maisch) at 300 nl/min and separated within 20, 50, 80 or 

100 min using linearly increasing gradients of LC solvent B (0.1 % FA, 5 % DMSO in ACN) in LC sol-

vent A (0.1 % FA in 5 % DMSO). LC solvent B was increased from 4 to 32 % for TMT-labelled phos-

pho-peptides and label-free or SILAC-labelled whole proteome, acetyl- and di-glycine peptides. In 

contrast, a two-step gradient from 2 to 15 % in 60 % of gradient time and then up to 27 % was 

employed for unlabelled and SILAC-labelled phospho-proteomes to achieve optimal separation of 

the more hydrophilic phosphopeptides. TMT-labelled whole proteome samples, acetyl- and di-

glycine peptides were separated using 4 to 32 % LC solvent B for 100 min gradients and 8 to 34 % 

for 20 to 60 min gradients to account for their generally higher hydrophobicity due to the TMT 

tag. 

Mass spectrometry – Mass spectrometers were operated in positive ionization and data de-

pendent acquisition (DDA) mode. MS1 spectra were recorded in the Orbitrap from 360 to 

1300 m/z (1500 m/z for TMT-labelled samples) at a resolution of 60K, using an automatic gain 

control (AGC) target value of 4e5 (Lumos) or 3e6 (HF-X) charges and a maximum injection time 

(maxIT) of 25 to 50 ms. For non-MS3 methods, MS2 spectra were obtained in the Orbitrap at 15K 

or 30K resolution after HCD fragmentation using 26/28 % (HF-X/Lumos) or 33 % normalized colli-

sion energy (NCE) for SILAC-labelled or label-free and TMT-labelled samples, respectively. The AGC 

target value was set to 1e5 to 2e5 charges, the maxIT to 22 to 120 ms, depending on expected 

sample complexity and peptide abundance. The first mass was fixed to 100 or 120 m/z and isola-

tion windows were set to 0.7 to 1.7 m/z applying narrower windows for TMT-labelled peptides to 

reduce co-isolation. The number of MS2 spectra was limited either by a cycle time of 2 s or 3 s or 

a top12 to top25 method, depending on gradient length and maxITs. In MS3-based methods, cycle 

time was limited to 2 or 3 s or up to 10 peptide precursors were allowed for isolation (window 0.7 

m/z) and fragmentation via CID, MSA, or HCD. MS2 spectra were recorded either in the ion trap 

in rapid scan mode or in the Orbitrap at 15K or 30K resolution. For each peptide precursor, an 
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additional MS3 spectrum for TMT quantification was obtained in the Orbitrap at 50 or 60K reso-

lution (scan range 100-1,000 m/z, AGC of 1e5 or 1.2e5 charges, maxIT of 110 or 120 ms). For this, 

the precursor was fragmented the same way as for the preceding MS2 scan, followed by synchro-

nous selection of typically the 10 most intense peptide fragments in the ion trap and further frag-

mentation via HCD using a NCE of 55 %. Dynamic exclusion was adjusted according to gradient 

length (20 to 90 s). 

3.2 Database searching  

MaxQuant – Peptide and protein identification and quantification for most experiments was per-

formed using MaxQuant with its built in search engine Andromeda [254, 255]. Depending on the 

sample type, tandem mass spectra were searched against the human, mouse and/or yeast refer-

ence proteome (UP000005640 / 74,468 proteins, UP000000589 / 55,197 proteins, 

UP000002311 / 6,049 proteins, downloaded Dec 2018), the phosphopeptide library, or the human 

Swiss-Prot database (42,145 entries including splice variants, downloaded on Feb 2016). In addi-

tion, common contaminants were included. Unless stated otherwise, MaxQuant’s default param-

eters were applied. These included trypsin/P as the proteolytic enzyme with up to two missed 

cleavage sites allowed, carbamidomethylation of cysteine as fixed modification, oxidation of me-

thionine and N-terminal protein acetylation as variable modifications, Andromeda score and delta 

score cut-offs for modified peptides of 40 and 6, respectively, precursor tolerance of ±4.5 ppm, 

and fragment ion tolerance of ±20 ppm in the Orbitrap or 0.5 Da in the ion trap. Labels (K8/R10, 

TMTzero, TMT10, TMT11), experiment types (standard, reporter ion MS2/MS3), and additional 

variable modifications (phosphorylation on STY, acetylation/GlyGly on K, TMTzero/TMT10 on K 

and peptide N-termini, TMTzero/TMT10 on H/STY, K8, R10, acetylation on K8) were customized 

to the sample type. The match-between-runs option was enabled for samples necessitating MS1-

based quantification. All results were adjusted to 1 % PSM and protein FDR, employing a target-

decoy approach using reversed protein sequences. Isotope impurities of TMT batches were spec-

ified in the configuration of modifications to allow MaxQuant the automated correction of TMT 

intensities. 

Spectrum Mill – Database searches of in depth fractionated (phospho)proteomes for bench-

marking the optimized TMT labelling protocol were conducted with Spectrum Mill suite 

vB.06.01.202 (Broad Institute and Agilent Technologies). Raw files were searched against the hu-

man and mouse RefSeq database (20160914, 37,592 human and 27,289 mouse entries) comple-

mented with common contaminants. Briefly, a 4-cycle fixed/mix modifications search strategy was 

employed that ran 4 consecutive searches with different sets of modifications in each round and 

then produced a single integrated output. The four cycles were as follows: all unmodified, both 

peptide N-termini and lysines labelled, only lysines labelled, and only peptide N-termini labelled. 

Carbamidomethylation of cysteines and selenocysteines was set as additional fixed modification. 

N-terminal protein acetylation, oxidation of methionine, de-amidation of asparagine, hydroxyla-

tion of proline (when followed by glycine), cyclization of peptide N-terminal glutamine and car-

bamidomethyl cysteine to pyroglutamic acid (pyroGlu) and pyro-carbamidomethyl cysteine, re-

spectively, and TMT overlabelling of serine, threonine, and tyrosine (limited to histidine containing 

peptides) were set as variable modifications. For phosphoproteome analysis, phosphorylation of 

serine, threonine, and tyrosine were allowed as additional variable modifications, while de-ami-

dation of asparagine was restricted to N followed by glycine, and TMT overlabelling and hydrox-

ylation of proline were not allowed. Trypsin Allow P was specified as the proteolytic enzyme with 

up to 4 missed cleavage sites allowed. For proteome analysis, the allowed precursor mass shift 
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range was -18 to 262 Da to allow for pyroGlu and up to one additional TMT modification and 

2 methionine oxidations per peptide. For phosphoproteome analysis, the range was expanded to 

-18 to 272 Da to allow for up to 3 phosphorylations and 2 methionine oxidations per peptide. Pre-

cursor and product mass tolerances were set to ±20 ppm with PSM-level FDR < 1 % employing a 

target-decoy approach using reversed protein sequences. To better dissect proteins of human and 

mouse origin, the subgroup-specific (SGS) protein grouping option in Spectrum Mill was enabled, 

details of which were previously described [299].  

Mascot – For generation of a spectral library for a parallel-reaction-monitoring (PRM) assay of 

members of respiratory chain complex I, a HeLa sample was searched using Mascot Distiller 

(v2.6.1.0). Trypsin/P was specified as enzyme with up to 2 missed cleavages allowed, Carbami-

domethyl (C) of cysteine was required as fixed modification, and Acetyl (N-term) and Oxidation 

(M) were allowed as variable modifications. Peptide tolerance was set to 10 ppm and MS/MS tol-

erance to 0.05 Da. Allowed peptide charge states included 2+, 3+, and 4+ precursors and the de-

charging option was disabled. 

3.3 Data processing and analysis for comparison of quantification approaches 

Decoys and potential contaminants were removed from all datasets and redundant modified se-

quences in evidence.txt files were merged into one entry with summed intensity.  

Synthetic peptide spike-in experiments – Since synthetic peptide quantities, used to spike 

into the complex HeLa background, spanned more than 5 orders of magnitude, the prerequisites 

underlying the MaxLFQ algorithm [281] for normalization were not fulfilled. Hence, raw intensities 

were used for analysis of label-free samples. Except for the endogenous seed sequence of both 

peptide pools (see p. 40), peptides were not naturally occurring in the human proteome and could 

thus be readily discriminated from the HeLa background. Therefore, normalization across samples 

was instead performed solely based on endogenous human peptides by shifting the median of 

their log5 intensity ratios to zero for both quantification approaches. 

HeLa-yeast mixed sample – For the MS3 standard sample, identified peptides that are shared 

in an in-silico digest of the human and yeast proteome were excluded from analysis. The constant 

human background was used for total-sum normalization of TMT channels to account for mixing 

errors. TMT intensity of yeast peptides in the outermost channels disclosed co-isolation, whereas 

intensity ratios of the other channels were utilized to estimate ratio distortion by comparing ex-

pected to measured ratios to the median of the three channels with the lowest yeast quantity.  

Estimation of amounts of functional groups in protein digests – An in silico digest of the 

human reference proteome was performed using the Protein Digestion Simulator released by the 

Pacific Northwest National Laboratory (https://omics.pnl.gov/software/protein-digestion-simula-

tor). To obtain a conservative estimate of primary amines on peptide N-termini, cleavage was set 

to trypsin/P with no missed cleavage sites allowed. Minimum and maximum fragment masses 

were set to 400 and 6,000 Da, and duplicated sequences for given proteins were included. The 

average of monoisotopic peptide masses 𝑚 was used to calculate amounts of functional groups 

in 100 µg digest. Quantity 𝑁 of primary amines (peptide N-termini and ε-amino groups of lysine 

residues), for instance, was calculated as follows (𝑟(𝐾): fraction of lysine residues containing pep-

tides): 

 N(primary amines) =
100 µg

(1+r(K)) ∙ m
  (eq. 1) 

https://omics.pnl.gov/software/protein-digestion-simulator
https://omics.pnl.gov/software/protein-digestion-simulator
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Under- and overlabelling analysis of TMT titration experiments – To estimate underlabel-

ling, samples from TMT titration experiments were searched with TMT as variable modification 

on lysine residues and peptide N-termini. Peptide sequences which were modified with TMT on 

all lysine side chains and free (i.e. not acetylated) peptide N-termini were counted as ‘fully la-

belled’. Peptides that did not bear any TMT were annotated as ‘not labelled’, whereas peptides 

that contained at least one TMT but were not fully labelled were classified as ‘partially labelled’. 

N-terminal acetylated arginine peptides were excluded from the underlabelling analyses. In an 

overlabelling search, TMT was specified as a label on lysine residues and peptide N-termini and, 

in addition, as variable modification on serine, threonine, or tyrosine residues. Peptides that were 

identified to be labelled with TMT on at least one serine, threonine, or tyrosine were counted as 

‘overlabelled’.  

TMT-labelled deep-scale (phospho)proteomes – For analysis of fractionated PDX (phos-

pho)proteomes, reporter ion signals were corrected for isotope impurities, and only human and 

mouse proteins identified with at least 2 unique peptides were considered for analysis. Relative 

abundances of proteins and phosphorylation sites were determined using the median of TMT re-

porter ion intensity ratios from all PSMs matching to the protein or phosphorylation site. PSMs 

lacking a TMT label, having a precursor ion purity < 50% or a negative delta forward-reverse score 

(half of all false-positive identifications) were excluded. To normalize quantitative data across 

TMT10-plex experiments, TMT intensities were divided by the median intensity of all 10 TMT 

channels for each phosphorylation site and protein. Ratios were further normalized by median 

centring and median absolute deviation scaling.  

3.4 Processing of time-course pulsed SILAC-TMT data 

Decoys and potential non-human contaminants were removed from the pSILAC-TMT dataset. For 

calculation of normalization factors, also potential human contaminants were removed.  

Pulsed SILAC-TMT data extraction – Database searching of SILAC and, at the same time, TMT-

labelled samples was performed specifying TMT10plex as a label and SILAC amino acids as variable 

modifications. Consequently, TMT intensities provided in MaxQuant’s proteinGroup.txt output 

file are derived from the sum of both heavy and light peptides, rendering this quantitative infor-

mation unfeasible for the assessment of the decay or increase of either of both labels. Hence, TMT 

data extracted from the evidence.txt output file that discriminated K0/R0 and the K8/R10 labelled 

peptides was utilized for quantitative analyses. Peptides that could not be assigned to either of 

both turnover types were removed for turnover analyses. This included missed cleaved peptides 

that contained both a light and a heavy version of lysine or arginine and C-terminal peptides that 

did not contain any lysine or arginine residue.  

Pulsed SILAC-TMT data normalization – Data normalization was conducted under the premise 

that the total protein amount (i.e. light plus heavy labelled protein) was equal across TMT chan-

nels since identical protein amounts were digested and TMT labelled for all pulse time-points. As 

a result, the principle underlying total sum normalization procedures should be applicable to 

pulsed SILAC-TMT samples obtained under steady-state conditions. However, in this regard, two 

additional factors must be considered: (i) Depending on the time-points chosen, intensities of light 

and heavy SILAC peptides can exhibit globally differential distributions leading to a preferential 

picking of the overall more intense of both labels for fragmentation in a DDA type of experiment; 

(ii) TMT intensities do correlate with the MS1 intensity of the peptide and are further highly de-

pendent on the time in the elution profile at which the peptide was fragmented. Consequently, a 
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normalization based on a simple summation of TMT intensities would be dependent on selected 

pulse time-points and is likely biased towards synthesis or degradation curves. On account of this, 

a so-called row-wise normalization (i.e. for each peptide [300]) was employed before the total-

sum normalization procedure. This step compensated for differences in overall TMT intensity lev-

els for the corresponding light and heavy peptides due to differing MS1 intensities and times of 

picking for fragmentation. In detail, the following steps were performed using whole proteome 

information and for each cell culture replicate separately: First, evidence entries containing chan-

nels with zero intensity in between channels with non-zero intensities or exhibited zero intensities 

in more than 3 channels were removed. Subsequently, intensities of the same TMT channel were 

summed up for all evidence entries in the same labelling state matching to an identical peptide 

sequences (oxidized and non-oxidized versions of the same peptide sequence were considered 

identical). Then, sequence entries were filtered for those for which information on both synthesis 

and degradation behaviour was available, i.e. which were quantified in both SILAC labelling states. 

Accordingly, a row-wise normalization factor NFrow was calculated for all remaining peptide se-

quences and SILAC labelling states. The calculation was based on the TMT reporter intensities RI 

in the first (0 h) and last (inf.  h) channel of peptides representing degradation (deg) and synthe-

sis (syn) behaviour, respectively: 

 NFrow(pepdeg) =
RIdeg(0 h) + RIsyn(inf. h)

2 ∙ RIdeg(0 h)
 (eq. 2) 

 NFrow(pepsyn) =
RIdeg(0 h)+RIsyn(inf. h)

2∙RIsyn(inf. h)
 (eq. 3) 

These row-wise normalization factors equalize TMT reporter intensities representing completely 

labelled peptides, i.e. the first channel of decreasing and the last channel of increasing curves, 

thus allowing for a total sum normalization. They were multiplied with all TMT channel intensities 

of the particular peptide sequence in the respective labelling state. Thereafter, all intensities be-

longing to the same TMT channel were summed up for all sequences in both labelling states and 

a total sum normalization factor NFsum was computed for each TMT channel (time-point t): 

 NFsum(RI(t)) =
median of all ∑ RI(t)all sequences

∑ RI(t)all sequences
 (eq. 4) 

These 10 normalization factors normalize for TMT sample mixing errors and were applied to re-

spective TMT channels of all entries of MaxQuant’s evidence output table. 

In-silico removal of ratio compression – Depending on the SILAC label of the peptide frag-

mented, TMT intensities in pSILAC-TMT experiments are expected to show a constantly increasing 

or decreasing behaviour reflecting label incorporation or loss, respectively. Consequently, co-iso-

lation and fragmentation of peptides with opposing quantitative characteristics can result in se-

vere ratio distortion and failure to pass filter criteria for turnover rate estimation or adulteration 

of turnover rate estimations. To tackle this quantitative bias in the pSILAC-TMT dataset including 

PTMs (see Chapter V), ratio distortion was corrected in silico by subtraction of the average syn-

thesis curve from all degradation curves and the average degradation curve from all synthesis 

curves in the respective subproteome samples. This was implemented with the help of the outer-

most TMT channels that, owing to the experimental design, indicated the degree of co-isolation 

and ratio distortion. More precisely, for adjustment of degradation curves, TMT intensities of all 

evidence entries representing synthesis and exhibiting less than 10 % ratio compression (calcu-

lated by the ratio of the first (0 h) to the last TMT channel (inf. h)) were summed up per channel. 

Then summed intensities were divided by the summed intensity of the last TMT channel to obtain 
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average synthesis intensity ratios IRsyn_average that represented the average synthesis curve nor-

malized to a range of 0 to 1. Subsequently, adjusted reporter intensities RI_RC were calculated 

for each pulse time-point t and each evidence entry illustrating degradation by subtracting the 

fraction of intensity corresponding to the average synthesis curve: 

 RI_RCdeg(t) =  RIdeg(t) − RIdeg(t) ∙ IRsyn_average(t) (eq. 5) 

TMT reporter intensities of evidence entries showing synthesis were corrected accordingly by uti-

lizing the average degradation intensity ratios IRsyn_average derived from degradation evidence 

entries with less than 10 % ratio compression (calculated by the ratio of the last (inf. h) to the first 

TMT channel (0 h)): 

 RI_RCsyn(t) =  RIsyn(t) − RIsyn(t) ∙ IRdeg_average(t) (eq. 6) 

Intensities with removed ratio compression where then subjected to normalization as described 

above (see pp. 48). 

Correction for peptide abundance variations – The kinetic model underlying the computation 

of turnover rates assumes steady-state conditions (see pp. 52). However, the abundance of indi-

vidual (modified) proteins may still change over the time course of a pSILAC experiment. To im-

prove turnover estimations, intensity ratios to which turnover curves were fitted were corrected 

for such abundance fluctuations in the pSILAC-TMT dataset including PTMs (see Chapter V). As an 

example, if abundance increased steadily over the course of the experiment, ratios of later time-

points were appropriately scaled down to account for the gain in total abundance. The assessment 

of abundance changes was based on the premise that the sum of the MS1 intensity of the light 

and heavy version of a peptide at a certain time-point corresponds to its total abundance at this 

respective time-point. Therefore, abundance was only corrected for peptides for which MS1 in-

tensity information of both versions was available. Further, at least 4 quantified MS1 peak elution 

profiles in any replicate or, alternatively, 2 quantified MS1 peak elution profiles in at least 2 repli-

cates were required to improve robustness and avoid artefacts during abundance correction. In 

the same manner as for the calculation of normalization factors (see pp. 48), evidence entries 

containing too many zero TMT intensities were removed and MS1 intensities and TMT intensities 

were summed up for identical peptide sequences in the same labelling state and replicate. Then, 

the fraction of the MS1 intensity (MS1 intensity fraction) corresponding to a peptide at a certain 

time-point t was calculated from ratio compression adjusted reporter intensities, separately for 

the two labelling states corresponding to degradation and synthesis: 

 MS intensity fractiondeg(t) =
RI_RCdeg(t)

∑ RI_RCdegall time−points
∙ MS1 intensity(pepdeg) (eq. 7) 

 MS intensity fractionsyn(t) =
RI_RCsyn(t)

∑ RI_RCsynall time−points
∙ MS1 intensity(pepsyn) (eq. 8) 

The sum of the MS intensity fractions of degradation and synthesis curves was utilized as a proxy 

for the abundance at a certain time-point in each replicate: 

 Abundance(pep(t)) = MS intensity fraction𝑑𝑒𝑔(t)+MS intensity fraction𝑠𝑦𝑛(t) (eq. 9) 

Factors F for the adjustment of intensity ratios for degradation and synthesis curve fitting were 

calculated as the abundance changes relative to the first and the last channel, respectively: 

 Fdeg(t) =
Abundance(pep(t))

Abundance(pep(0h))
  (eq. 10) 
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 Fsyn(t) =
Abundance(pep(t))

Abundance(pep(inf.h))
  (eq. 11) 

The median of these factors across replicates was utilized to obtain abundance adjusted intensity 

ratios (IR_Ab) to which degradation and synthesis curves were fitted: 

 IR_Abdeg(t)  =
RI_RCdeg(t)

median(Fdeg(t)) ∙RI_RCdeg(0h)
  (eq. 12) 

 IR_Absyn(t)  =
RI_RCsyn(t)

median(Fsyn(t)) ∙RI_RCsyn(inf.h)
  (eq. 13) 

Estimation of protein copy numbers – In principle, copies of a protein can be determined from 

its mass, molecular weight (MW) and the Avogadro constant (NA): 

 Copies(protein x) =  
Mass (protein x)

MW (protein x)
∙ NA (eq. 14) 

Usually the mass of a protein in a sample or a single cell is not known. However, based on the 

assumption that, for deep-scale proteome analyses, a protein’s MS signal intensity as a fraction of 

the total MS signal is an appropriate measure for the proportion of its mass to the total protein 

mass [301], it can be approximated as: 

 Mass(protein x) =
MS intensity (protein x)

Total MS intensity
∙ Total protein mass (eq. 15) 

Accordingly, protein copy numbers per cell can be derived from eq. 14 and 15 as: 

 Copies/cell(protein x) =  
MS intensity (protein x)

Total MS intensity
∙

Cell protein mass

MW (protein x)
∙ NA (eq. 16) 

For determination of total protein mass per HeLa cell, protein amounts were quantified with the 

Bradford method (Coomassie (Bradford) Protein Assay Kit, Thermo Fisher Scientific) for increasing 

cell numbers (3e4, 6e4, 1.2e5, 2.5e5, 5e5, 7.5e5, 1e6) from three different HeLa cell batches in 

three replicates each. Linear correlation of cell numbers with corresponding protein amounts re-

sulted in 251.4 pg protein per single HeLa cell. 

Since TMT intensities are critically dependent on the time in the elution profile at which the pre-

cursor was picked for fragmentation, TMT intensities cannot directly be used for the calculation 

of intensities as needed in eq. 16. However, due to the experimental design, the first or the last 

TMT channel always represented the completely light or heavy labelled peptide, which could be 

harnessed to obtain meaningful single protein to total protein intensity ratios. To do so, the frac-

tion of the MS1 intensity (MS1 intensity fraction) corresponding to completely labelled peptides 

was calculated in the same manner as for the correction of abundances: 

 MS intensity fractiondeg =
RIdeg(0 h)

∑  RIdegall time−points
∙ MS1 intensity(pepdeg) (eq. 17) 

 MS intensity fractionsyn =
RIsyn(inf. h)

∑  RIsynall time−points
∙ MS1 intensity(pepsyn) (eq. 18) 

Accordingly, protein copies per cell were determined by using the estimated protein amount per 

cell and by deriving the protein intensity from the sum of intensities of peptides assigned exclu-

sively to the respective protein group: 

Copies/cell(protein x) =
∑  MS intensity fractionall peptides for protein x

∑  MS intensity fractionall peptides
 ∙  

2.514∙10−7

MW (protein x)
∙ NA  (eq. 19) 
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Since the MS intensity fraction can be calculated for both light and heavy labelled peptides, pro-

tein copies per cell could be computed twice for each cell culture replicate. Median values were 

taken for correlation analysis with protein half-lives. 

3.5 Processing of single time-point pulsed SILAC data 

Hits to the reverse database and potential non-human contaminants were removed from the pSI-

LAC dataset. Heavy and light peptide and protein intensities and new-to-old (N/O) peptide and 

protein ratios were calculated based on intensities and heavy-to-light (H/L) ratios specified in the 

MaxQuant’s evidence.txt output file. Intensities were summed up for all evidence entries in the 

same labelling state and pulse time-point corresponding to an identical peptide or protein group. 

H/L ratios were log transformed and the median of all evidence entries matching to the same 

peptide sequences or protein group was calculated. Oxidized and non-oxidized versions of the 

same peptide sequence were combined and only protein group unique peptides were included to 

compute protein intensities and H/L ratios. For replicates for which the cell culture medium was 

switched from K0R0 to K8R10, H/L ratios corresponded to N/O ratios, while the inverse value of 

H/L ratio was used as N/O ratio for replicates starting with K8R10 labelled cells and exchanging 

K8R10 with K0R0 medium.  

3.6 Turnover computation and underlying kinetic model 

Kinetic turnover model – Briefly, the applied model was based on the assumptions that (i) the 

probability of a protein being degraded is the same for pre-existing and newly synthesized pro-

teins and stays constant over the life-time of these proteins (i.e. the degradation rate is constant), 

(ii) protein synthesis occurs at a constant rate, and (iii) cells are in steady state implying that the 

average abundance of a (modified) protein per cell doesn’t change during the course of the ex-

periment (i.e. the synthesis rate of a protein equals its degradation rate). Hence, protein turnover 

described as the loss of originally available molecules over time (N(t)) ideally follows first-order 

kinetics: 

 N(t) = e−K∙t (eq. 20) 

In order to account for experimental constraints such as amino acid recycling and ratio compres-

sion, this simple model was adjusted for curve fitting to measured label incorporation and loss 

data as previously described by Boisvert et al. [170] and Welle et al. [302] (see eq. 21 and 22).  

Curve fitting to time-course data for turnover rate estimation – Before curve fitting, inten-

sity ratios IR were computed to enable the implementation of global, intensity-independent curve 

fitting constraints. For pSILAC time-course data the ratio of the light or the heavy label to the sum 

of both labels was calculated. For pSILAC-TMT experiments, TMT intensities were divided by the 

intensity of the in last (inf. h) TMT channel for peptides representing label incorporation, whereas, 

for peptides illustrating label loss, ratios were calculated relative to the intensity of the first (0 h) 

TMT channel. Intensity ratios (IR) were fitted to following exponential equations: 

 IRsyn(t) = (Bsyn − Asyn) ∙ e−Ksyn∙t + Asyn (eq. 21) 

 IRdeg(t) = (Adeg − Bdeg) ∙ e−Kdeg∙t + Bdeg (eq. 22) 

IRsyn(t) is the proportion of protein molecules (or peptides) which have incorporated the newly 

provided label and IRdeg(t) is the fraction of protein molecules still bearing the old label at each 
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time-point t in hours. Ksyn and Kdeg are the rate constants of label incorporation and loss, respec-

tively. As they should be the same by definition of steady-state conditions, they are referred to as 

turnover rate K in the following. The parameter A refers to the maximum of the curve (i.e. the 

normalized total protein amount) and should be 1 in an ideal case. The parameter B accounts for 

a potential curve offset which ideally should be zero. Offsets bigger than zero could either be 

attributed to the recycling of amino acids or ratio compression. Consequently, (A − B) represents 

the amplitude of the fitted curve. Turnover rates, curve maxima and offsets were obtained for 

each evidence entry via performing a nonlinear least square (NLS) optimization in R (version 3.3.3, 

function “nls”) [303]. Peptide and proteins rates were obtained from a combined fit including all 

evidence entries filtered for criteria stated below and belonging to the respective peptide or pro-

tein sequence. In addition, only protein group unique peptides were allowed for determination of 

whole protein (group) turnover. 

For the comparison of pSILAC-TMT and classical time-course pSILAC data on protein level, samples 

were derived from identical protein digests and raw files of the two approaches were searched 

together in separate experimental groups in the MaxQuant software. For the MS3 data, TMT in-

tensities were normalized as described above and summed up for all peptides with the same la-

belling state belonging to the same protein group. Protein TMT or SILAC intensity ratios for label 

incorporation and loss were calculated and subjected to curve fitting as described above. For the 

curve fitting of SILAC data, missing quantitative data for up to 3 out of 6 time-points were allowed, 

meanwhile counting zero intensities resulting from quantification of only 1 SILAC channel as valid 

(i.e. non-missing) values.  

Curve filter criteria – To establish adequate filter criteria and remove poor quality quantitative 

data, different constraints were applied for curve variables K, A and B, and for the curve fitting 

quality parameter R2. Curves that were at the border of passing filter criteria were manually in-

spected, and correlation of turnover rates across replicates was assessed. Final filtering criteria 

were based on the goal to filter out PSMs which lead to irreproducible turnover rate estimations 

based on replicate correlations, showed a high variation of data points along the fitted curve (A 

and R2), a high ratio compression (B), or resulted in turnover rates (K) which simply could not be 

determined accurately based the pulse time-points that were chosen in the experimental design.  

Estimation of amino acid recycling – The degree of amino acid recycling was estimated har-

nessing quantitative information on missed cleaved peptides that were quantified in the label 

state representing synthesis and the mixed labelling state (containing both a light and a heavy 

version of lysine and/or arginine residues) in the pSILAC-TMT dataset. First, the fractions of the 

MS1 intensities were calculated for synthesis and mixed-label peptides for each pulse time-point 

according to eq. 7 and 8. Second, the recycled fraction at certain pulse time-points t was calcu-

lated as the ratio of the MS1 intensity fraction of the mixed-label peptide to the sum of MS1 in-

tensity fractions of mixed and the synthesis-representing peptide: 

 Recycled fraction(t) =  
MS intensity fractionmixed(t)

MS intensity fractionmixed(t) + MS intensity fractionsyn(t)
  (eq. 23) 

Since it was impossible to remove ratio compression for mixed-label peptides, non-adjusted TMT 

reporter intensities were used for the computation of the recycled fraction. 

Single pulse time-point analysis – The equation for computing the turnover rate K from single 

time-point pSILAC data was obtained by conversion of eq. 22 and approximation of the curve am-

plitude by 1: 
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 Kdeg = −
ln (IRdeg(t) − B)

𝑡
 (eq. 24) 

The intensity ratio for curves that indicate label loss at a certain time-point (IRdeg(t)) further can 

be re-written using the fraction of newly synthesized and pre-existing protein or peptide: 

 IRdeg(t) =
Old fraction(t)

Old + New fraction(t)
=

1
New fraction(t)

Old fraction(t)
 + 1

=
1

N/O(t) + 1
 (eq. 25) 

Combining eq. 24 and 25 results in: 

 K = −
ln(

1

N/O(t) + 1
 − B)

𝑡
 = = −

ln(
1

N/O(t) + 1
 − Recycled fraction(t))

𝑡
 (eq. 26)  

Hence, the turnover rate for pSILAC data from single time-points was calculated using the com-

puted N/O ratios and the recycled fraction estimated from pSILAC-TMT data. 

Computation of turnover times and half-lives – The time at which half of total protein mole-

cules have lost the “old” label or incorporated the new label is known as 50 % turnover time 

(T50%). T50% was derived from eq. 20 as the time at which half of the molecules have been 

degraded: 

 T50% =
ln (2)

K
 (eq. 27) 

In order to estimate actual protein and peptide degradation (or synthesis) rates (k) and half-lives 

(T1/2), the influence of sheer cell doubling on labelling kinetics needs to be taken into account. 

Cell doubling parameters were determined via fitting an exponential growth equation to cell 

counts monitored over time during the pulse experiment. Then, labelling rates were corrected for 

cell doubling rates (kcd) to obtain degradation rates: 

 k = K − kcd (eq. 28) 

Accordingly, half-lives were calculated as: 

 T1/2 =
ln (2)

K−kcd
 (eq. 29) 

3.7 Parallel reaction monitoring assay for NADH dehydrogenase complex 

Spectral library construction – For acquisition of spectra for a spectral library generation for 

members of respiratory chain complex I (NADH dehydrogenase), single time-point SILAC pulse 

samples obtained upon rotenone and control treatment and non-treated, non-pulsed HeLa sam-

ple were analysed in DDA mode on a Lumos Fusion mass spectrometer employing 100 min gradi-

ents as described above (see pp. 45). In addition, a scheduled m/z inclusion list for peptides of 

respiratory chain complex I proteins was specified in the MS method, utilizing information on 

charge states and retention times from the ProteomeTools project [231]. MS2 spectra of peptides 

from the targeted m/z list were recorded with scan priority 1 in the Orbitrap at 15K using an AGC 

target value of 2e5 charges, a maxIT of 100 ms, and a dynamic exclusion of 30 s. Non targeted m/z 

values were recorded with scan priority 2 using an AGC target value of 1e5, a maxIT of 22 ms and 

a dynamic exclusion of 60 s. The spectral library was constructed using the Skyline 3.7.0 software 

[265] importing a MaxQuant derived msms.txt from the search of pulsed SILAC samples and a 

Mascot derived DAT file from the search of the non-pulsed sample. Uniqueness of NADH dehy-

drogenase peptides was checked in Skyline using the canonical Swiss-Prot database as background 

proteome. Precursor charge states and transitions were automatically chosen from the spectral 

library resulting in 38 and 93 peptide entries for the MaxQuant and the Mascot derived library. A 
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scheduled inclusion list containing mass and charge information for light and heavy labelled pep-

tides with 6 min retention time windows for monitoring was exported for the PRM LC-MS method. 

Parallel reaction monitoring – PRM measurements of rotenone treated and control, pulsed 

SILAC samples were performed on a Lumos Fusion mass spectrometer as described above (see 

pp. 45) with following modifications: Per injection, 100 fmol of PRTC retention time calibration 

mixture (Pierce) were spiked into samples and the MS method was set up to switch between two 

separate experiments after each duty cycle. The first experiment consisted of a full scan MS1 spec-

trum recorded in the Orbitrap at a resolution of 15K. The second experiment consisted of a tMS2 

PRM scan triggering peptide isolation and fragmentation based on the scheduled inclusion list 

containing m/z and charge information. MS2 spectra were recorded in the Orbitrap from 100 to 

2000 m/z at a resolution of 15K using an AGC target value of 2e5 and a maximum injection time 

of 200 ms. 

PRM data filtering and processing – RAW files were imported into Skyline for data inspection 

and filtering. The transitions were extracted specifying Orbitrap as mass analyser with 15K reso-

lution and allowing precursor charges 2, 3 and 4, and y-ion types. Peaks were integrated using the 

automatic peak finding function followed by manual curation of all peak boundaries and transi-

tions to remove fragment ions exhibiting interferences. At least 3 transitions that showed robust 

elution profiles and a dot product larger than 0.8 were required in at least one of the two SILAC 

channels in at least one condition. The summed area under the fragment ion traces and heavy-to-

light (H/L) ratios were exported for every peptide to perform data normalization in Microsoft Ex-

cel. Since cell treatments can lead to a change in growth behaviour of cells that would globally 

shift SILAC ratios in a pulse experiment and bias interpretation of results, H/L ratios derived from 

the PRM experiment were normalized based on a median centring of all H/L ratios across all meas-

ured samples of each pulse time-point. For this, the DDA MS analyses for spectral library genera-

tion were utilized to calculate a normalization factor that shifted the median of log transformed 

H/L ratios of all samples of one pulse time-point to the same value. This normalization factor was 

then applied to log transformed H/L ratios of the PRM experiment. It should be noted that such 

normalization procedures will only work properly if ratio distributions of the different conditions 

have similar variances. This usually only applies for rather short treatment times and/or treat-

ments which only affect a small fraction of the proteome.  

3.8 Functional and statistical data analyses 

Integration with public data – For integration of turnover data with protein properties and 

functions, the median of log transformed turnover rates or half-lives from all four replicates was 

utilized. Functional annotations of UniProt Keywords [43], protein complexes [290, 304], domains 

[288], and modifications [294] were performed using the based on the first UniProt identifier for 

each protein group or peptide sequence. In contrast, protein class [287] and localization infor-

mation [291, 292] was on available on gene level and was therefore matched based on the first 

gene name. All other literature data (turnover [114, 169, 170, 302, 305], protein copy numbers 

[306, 307], thermal protein stability [308], enzyme-substrate information [70, 208, 309, 310]) 

were first matched based on the first IPI/UniProt identifier and second, for still unmatched data 

or for data for which no protein identifier was available, on the first gene name entry for each 

protein group or peptide sequence. Acetylation sites were identified as targets of KDACs and KATs 

when inhibitor treatments or enzyme transfections induced at least a 2-fold change in PTM abun-

dance. Degrons [311, 312] were annotated based on (modified) peptide sequences. Prediction of 
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secondary protein structure was performed employing the s2d method [313]. Crystal structures 

of respiratory chain complex I were obtained from the RCSB protein databank website 

(http://www.rcsb.org [293]; PDB ID: 5XTD [314]). 

Statistical analyses and data visualization – The Perseus software suite (v.1.5.6.0 or 1.6.2.3) 

[315] was utilized to perform correlation analyses, functional 1D enrichment analyses [316], 

ANOVA (analysis of variance), Fisher’s exact and Student’s t-tests using log-transformed, normal-

distributed intensities, turnover rates or new-to-old protein or peptide ratios. Expected linear re-

lationships were analysed using Pearson’s correlation coefficients (R), otherwise Spearman rank 

correlation coefficients (ρ) were computed. Statistical tests were corrected for multiple testing 

applying a permutation based or Benjamini-Hochberg FDR calculation at 1 or 5 % as indicated. S0 

was computed in R (v3.4.1 or 3.6.0, function “samr” [317]) for each statistical group comparison 

separately. This constant is based on the significance analysis of microarrays [318] and adjusts the 

significance cut-off of statistical analyses on the fold-change level while accounting for differing 

variances across the range of measured values and groups. Mann-Whitney tests performed in 

GraphPad were used to check whether two non-Gaussian distributions were significantly differ-

ent. Significant differences in multiple non-Gaussian distributions were assessed using a Kruskal-

Wallis test, and a post hoc Dunn’s multiple comparison test was employed to pinpoint the specific, 

significantly different distribution(s). ROC (receiver operator characteristic) curves were also com-

puted in GrapPad. Motif enrichment analyses were performed using the motifX algorithm [319] 

via the R package rmotifx [320]. Sequence windows with 11 amino acids around sites that showed 

either significantly faster or slower turnover were specified as foreground, and sequence windows 

of all other identified sites with quantified turnover were used as background. Duplicates were 

removed, a minimum of 20 sequences was required per motif, and significance cut-off was set to 

2.5e-4 corresponding to an actual alpha-value of <0.05 after Bonferroni correction [321]. Amino 

acid distributions in sequence windows of sites with significantly slower or faster turnover were 

plotted using pLogo [322]. Protein crystal structures were visualized in PyMOL and all other data 

using R, GraphPad, Excel, or Tableau.  
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„Quality means doing it right when no one is looking.” 

- Henry Ford 
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III A CASE FOR ROBUST PEPTIDE QUANTIFICATION 
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1 Introduction and summary 

The basis of biological interpretation of bottom-up proteomics data is the robust identification 

and quantification of peptides across multiple samples. To determine quantitative differences in 

the abundance of (modified) peptides, a variety of strategies can be followed (reviewed in [267, 

270, 271]). Among those, TMT-based and label-free quantification are two commonly employed 

approaches. Both have their own strengths and limitations with regard to dynamic range, accuracy 

and precision of quantification, reproducibility of peptide detection across samples, costs of sam-

ple processing and measuring, and sample throughput and achievable proteome coverage (see 

pp. 15). Although there have been several studies comparing label-free (or other MS1-based 

quantification strategies) with isobaric tagging approaches [245, 325-328], these reports have 

often only included a limited number of samples (≤ 3) and mainly focussed on quantification 

performance on protein level. In this case, quantitative information of several peptides mapping 

to the same protein are integrated thereby improving quantitative robustness. Consequently, 

missing quantification of individual peptides in single conditions may have little adverse effects. 

However, analysis of proteoforms with bottum-up proteomics is critically dependent on accurate 

and precise peptide level quantification since quantitative variation usually cannot be counter-

vailed by integrating information of a multitude of different peptides (see also Figure I-8). In addi-

tion, missing values can accumulate substantially the more conditions are included. Modification 

proteomics involves the additional challenge of correct site localization of the modified amino acid 

side chain. This is often especially difficult for phosphoproteomic analyses, and ambiguous iden-

tifications will affect quantification performance. 

In order to identify the most suitable quantification strategy for peptidoform analyses across mul-

tiple conditions, the robustness of label-free and TMT-based quantification was investigated spe-

cifically on peptide level. To this end, different experimental approaches were employed including 

10 to 11 different samples. A dilution row of synthetic, non-endogenous phosphopeptides in a 

complex human background demonstrated the superior dynamic range of label-free quantifica-

tion, but also confirmed its considerable limitations with respect to missing quantification across 

conditions. This was corroborated in a treatment time course experiment using an HSP90 inhibi-

tor, which also confirmed that this disadvantage could be overcome by TMT-labelling. The latter 

also showed benefits with regard to precision and phosphorylation site localization. Additional 

analyses of a human-yeast mix sample indicated that the drawback of ratio compression for the 

TMT-based strategy can be significantly reduced by utilizing advanced MS3-mode measurements 

ultimately rendering this strategy an appropriate compromise for robust peptidoform quantifica-

tion. Further, the species interference sample was also used for optimization of MS3 data acqui-

sition where, for instance, CID-MSA fragmentation for MS2 spectra and their read-out in the Or-

bitrap proved beneficial for phosphopeptide identification and quantification. Further, the high 

costs of the employed stable isotope reagents were tackled by systematically evaluating the im-

pact of labelling reaction parameters and establishing a robust and efficient TMT-labelling proto-

col that achieves complete labelling of primary amines in peptides using 8-times less TMT reagent 

than recommended by the vendor. Finally, inherent limitations of the studied quantification ap-

proaches and how they can be managed are discussed, and guidance on the adoption of the opti-

mized labelling protocol for different peptide quantities is provided. 
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2 Experimental designs 

The following sections provide an overview of the experimental designs for the assessment of 

label-free versus TMT-based quantification, establishment of a TMT-labelled standard, and the 

optimization of the TMT labelling protocol. Details on individual experimental steps and data anal-

yses are specified in chapter II (see pp. 37) 

2.1 Comparison of label-free and TMT-based phosphopeptide quantification  

To evaluate the linear dynamic range, identification and quantification reproducibility of the two 

approaches, two label-free and TMT experiments were conducted. The first experiment, a dilution 

series of synthetic phosphopeptides was spiked into a constant background of HeLa peptides, and 

expected and measured spike-in ratios were compared (Figure III-1 A). The chosen peptide pools 

contained phosphopeptides and their unmodified counterparts (see p. 40) and were thus first sub-

jected to Fe(III) IMAC. This should also deplete synthesis by-products such as non-phosphorylated, 

truncated peptide versions or non-phosphorylated peptides that still carry the protection group. 

Hence, it was expected to improve the robustness of TMT labelling process. The enriched phos-

phopeptide fraction was mixed with 1 mg of HeLa protein digest in 9 one-to-five dilution steps 

starting with an estimated amount of 1,000 pmol per phosphopeptide down to 2.6 fmol. Addition-

ally, one sample without any synthetic spike-in was included. For the label-free quantification ap-

proach, 70 % of each sample were separately IMAC enriched and desalted, while 30 % were la-

belled with TMTs and the pool was subjected to a single phosphoproteome enrichment. In order 

to achieve more comparable LC-MS measurement times for both quantification approaches, the 

TMT-labelled phosphopeptides were further fractionated in a bRP StageTip. In the second exper-

iment, K562 cells were treated with the HSP90 inhibitor 17-AAG (tanespimycin) for up to 32 h and 

per time-point 2.2 mg proteins were processed similar to synthetic spike-in samples, subjecting 

90 % of the samples to the label-free and the rest to the TMT-based workflow (Figure III-1 B).   

 

Figure III-1 | Experimental designs for the comparison of label-free and TMT-based quantification. (A) 
Synthetic phosphopeptides were spiked into a constant HeLa background in 1/5 dilution steps including one 
sample without spike-in. Sample aliquots were either processed as label-free, phosphoproteome single-shots 
or subjected to a TMT-labelling workflow including peptide fractionation. (B) K562 cells were treated with 
17-AAG for up to 32 h and digests were processed as described in (A). 
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All samples were measured on a Fusion Lumos mass spectrometer and 1/5th of the TMT-labelled 

fractions and 1/7th the label-free single shots were injected. TMT-labelled fractions of spike-in ex-

periments were measured employing both an 80 min MS2 and MS3 method for quantification of 

TMT reporter ions. In the MS2 method, peptides were fragmented with HCD (NCE of 33 %) and 

MS2 spectra were required at 50K resolution using 1e5 charges and a maxIT of 86 ms. For MS3 

data acquisition, first a CID MSA fragmentation (35 % NCE) was performed to obtain a spectrum 

for identification in the Orbitrap at 30K resolution (AGC of 5e4 charges, maxIT of 60 ms). Then, the 

same precursor was fragmented again and the 10 most abundant fragments were subjected to 

HCD fragmentation (55 % NCE, AGC of 1e5 charges, maxIT of 120 ms) to obtain quantitative re-

porter ion information. For both methods, an isolation window of 0.7 m/z, a cycle time of 3 s and 

a dynamic exclusion of 90 s was employed. Label-free samples were measured using an effective 

gradient of 50 min resulting in a total of 12.5 h turn-around time (10x 75 min for total MS method 

length) versus 10.5 h for the TMT-based measurements (6x 105 min for total MS method length). 

Cycle time was set to 2 s and dynamic exclusion to 25 s. Peptides were fragmented via HCD (28 % 

NCE, isolation window of 1.2 m/z) and MS2 resolution, AGC and maxIT were set to 15K, 1e5 

charges, and 50 ms, respectively. Following parameters were changed for measurement of sam-

ples from 17-AAG treated K562 cells: For non-labelled peptides, MS2 resolution and maxIT were 

increased to 30K and 120 ms, and a top15 method was used. For the MS3 method for TMT-la-

belled phosphoproteomes, peptides were fragmented using CID and the 10 most abundant pre-

cursors and MS3 maxIT was set to 120 ms. Raw data were searched using MaxQuant v1.6.2.10 

(spike-in experiment) or v1.5.6.5 (17-AAG treatment) and the human reference proteome supple-

mented with sequences of the synthetic peptides for spike-in experiments. 

2.2 Generation of a TMT-labelled standard 

For the systematic assessment of TMT-ratio compression, MS methods and machine performance, 

a TMT-labelled, human-yeast-mix sample was designed analogous to the two-proteome standard 

established by Ting et al. [246]. As human background, equal quantities of HeLa-derived peptides 

(300 µg protein digest) were used in each channel (Figure III-2). Yeast peptides were added in 

increasing amounts in a 1:2:8 ratio in triplicates (10, 20, and 80 µg protein digest), while the first 

and last channel of the 11-plex sample did not contain yeast peptides. After TMT-labelling and 

pooling, the total ratio of yeast:human peptides was 1:10. Whole cell proteomes were utilized for 

comparison of MS2- and MS3-based quantification and for tracking of instrument performance 

using 50 min gradients, whereas phosphopeptides were employed for evaluation of different MS3 

methods employing 80 min gradients.  

 

Figure III-2 | Generation of an MS3 standard. Yeast peptides were spiked in low quantities as triplicates into 
a constant, dominating HeLa background. Outermost channels were left empty. Phospho- and whole cell 
proteomes were measured with varying parameters to optimize MS methods and assess ratio compression, 
quantification accuracy, and precision (W: whole cell proteome; P: phosphoproteome). 
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MS3 method optimizations for phosphopeptides included amongst others the variation of the 

width of the MS2 isolation window (0.4 to 3 m/z) and the number of SPS notches (2 to 20) to 

assess their influence on ratio compression. Further, Orbitrap and ion trap read-out for MS2 spec-

tra were compared using different fragmentation modes (CID, CID-MSA, and HCD) and excluding 

or allowing the neutral loss for subsequent SPS and fragmentation (Table III-1). The neutral loss 

exclusion was achieved via the precursor ion exclusion option that was, for example, set to disal-

low m/z values for SPS that are within a -50 to +5 window around a doubly charged precursor. For 

all MS3 methods for phosphopeptides, the cycle time was limited to 3 s, maxITs for MS2 and MS3 

were set to 60 ms and 120 ms, respectively, and up to 1e5 charges were collected for the MS3 

spectrum that was recorded at 50K resolution. MS3 mode measurements of whole proteomes 

were conducted applying the same parameters with following modifications: Up to 1e4 charges 

were collected for MS2 spectra and peptides were fragmented using CID and read out in the ion 

trap. For MS2 mode measurements, MS2 AGC and maxIT were increased to 1e5 charges and 86 ms 

and acquisition took place in the Orbitrap at 50K resolution after HCD fragmentation (NCE 33 %). 

Raw files were searched against the human and yeast reference proteomes using MaxQuant 

v1.6.2.10 as specified in general methods but setting the ion trap fragment match tolerance to 0.4 

Da. 

Table III-1 | Parameters altered during optimization of MS2 acquisition in MS3 mode measurements of 
phosphopeptides. Only parameters that differed in at least one of the displayed methods are shown. For all 
CID(-MSA) methods, activation time was set to 10 ms and activation Q to 0.25 (OT: Orbitrap; IT: ion trap, NL: 
neutral loss). 

 MSA OT HCD OT CID OT CID OT NL MSA IT HCD IT CID IT CID IT NL 

Activation type CID HCD CID CID CID HCD CID CID 

Collision energy 35 33 35 35 35 33 35 35 

Multistage acti-
vation 

True --- False False  True --- False False 

NL Mass [m/z] 97.9673 --- --- --- 97.9673 --- --- --- 

Detector type Orbitrap Orbitrap Orbitrap Orbitrap Ion trap Ion trap Ion trap Ion trap 

Resolution (OT) 
or scan rate (IT) 

30 k 30 k 30 k 30 k Rapid Rapid Rapid Rapid 

AGC target 5e4 5e4 5e4 5e4 2e4 2e4 2e4 2e4 

NL exclusion      
for SPS 

True True True False True True True False 

 

2.3 Optimization of the TMT-labelling protocol 

For evaluation of economically optimized TMT labelling conditions, peptides from different pro-

tein sources were labelled using various peptide and reagent quantities, and concentrations and 

TMT under- and overlabelling of peptides was investigated (Figure III-3). An overview of labelling 

conditions including quantities, volumes, and concentrations of labelling reactants, buffers, and 

solvents is provided in Table III-2, and, in more detail, in the supplemental information of the 

online publication ([323], suppl. table 2). All peptide amounts are based on quantification after 

digestion and clean-up. 

The rationale of single optimization experiment series is described in more detail in the respective 

results sections. In brief, in three independent experiments, increasing peptide quantities (12.5 to 

800 µg) were labelled using the same TMT concentration and quantity (100 or 800 µg). To this 

end, 11 conditions were included as technical, intra-laboratory duplicates or triplicates. Moreover, 
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17 samples were labelled in three experiment series as singlicates applying different TMT (40 to 

400 µg) and peptide (40 or 200 µg) quantities and concentrations to explore the impact of these 

parameters on labelling performance and to examine the adaptability of optimized protocol pa-

rameters to lower peptide quantities. To assess inter-laboratory robustness, four labelling exper-

iments, in which the TMT quantity was titrated (50 to 400 µg) against a constant peptide amount 

(100 µg), were carried out as 7 replicates of which 2 or 3 were performed in three independent 

laboratories. After stopping the reaction, peptide solutions were either acidified using 45 % 

(vol/vol) of 10 % FA in 10 % ACN or directly frozen at -80 °C and dried by vacuum centrifugation. 

All experiments for method optimization were measured as single-shot LC-MS/MS runs (for meas-

urement parameter see Appendix Table 0-1) and searched against the human and/or mouse ref-

erence proteome using MaxQuant v1.6.3.3. 

 

Figure III-3 | Workflow for the optimization of the TMT-labelling protocol. Varying peptide amounts from 
different protein sources were labelled using varying reagent quantities and concentrations (red box) and 
measured either as single shots or after fractionation (24 fractions) and phosphopeptide enrichment 
(12 fractions, grey box). Labelling efficiency, overlabelling of serine, threonine, tyrosine and histidine and 
reproducibility were analysed to assess the performance of the differing labelling protocols. 

Further, to evaluate the utility of the final, optimized labelling protocol to highly fractionated sam-

ples, a deep-scale (phospho)proteome analysis was performed as previously described [194] but 

using the optimized protocol (i.e. using 8x less TMT reagent) and comparing the result to the orig-

inal labelling protocol. Briefly, peptides derived from digests of basal (B) and luminal (L) breast 

cancer PDX models (WHIM2 and WHIM16) were labelled in 5 replicates within a TMT10-plex ex-

periment (TMT channels: B-L-B-B-L-B-L-L-B-L), fractionated using high pH reversed-phase (RP) 

chromatography, and subjected to IMAC enrichment. Finally, 24 whole proteome and 12 phos-

phoproteome fractions were measured by LC-MS/MS (Figure III-3, Appendix Table 0-1) and ana-

lysed using Spectrum Mill vB.06.01.202. Sample preparation and data analysis of the deep scale 

experiment were performed in the proteomics facility of the Broad Institute of MIT and Harvard, 

Massachusetts, USA. 
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Table III-2 | Overview of labelling conditions of different experiment series for optimization of TMT label-
ling. Concentrations (conc.) refer to concentrations during the labelling reaction (NH2OH: hydroxylamine). 

 VENDOR 
DOWN-

SCALED 1 
DOWN-

SCALED 2 
JURKAT PDX 

LOW IN-

PUT 
INTER-

LAB 
DEEP-
SCALE 

Peptide source 
Mouse 

liver 
Mouse 

liver 
HeLa Jurkat PDX PDX PDX PDX 

TMT reagent 
Mix of 
TMT10 

Mix of 
TMT10 

TMTzero TMTzero TMTzero TMTzero TMTzero TMT10 

TMT / peptide 
(wt/wt) 

8to1 - 
1to1 

8to1 - 
0.5to1 

8to1 - 
0.5to1 

2to1 - 
0.5to1 

2to1 - 
0.5to1 

8to1 - 
1to1 

4to1 - 
0.5to1 

8to1 and 
1to1 

Peptide (µg) 100 - 800 100 - 800 
12.5 - 
200 

200 200 40 100 300 

TMT (µg) 100 
100 and 

800 
100 100 - 200 100 - 200 40 - 320 50 - 400 

300 and 
2400 

TMT stock 
conc. (mM) 

56.7 56.7 59 59 59 59 
28.1-
224.6 

56.7 

Hepes (µl) 100 20 20 20, 40 40 16-80 20 60, 300 

TMT stock (µl) 41 5 5 5, 10 2-20 2, 4 5 15, 123 

Total labelling 
volume (µl) 

141 25 25 25-50 45-60 18-96 25 75, 423 

TMT conc. (mM) 16.5 11.3 11.8 6.6-19.7 6.6-19.7 1.4-29.5 5.6-44.9 
11.3, 
16.5 

Peptide conc. 
(g/l) 

0.7-5.7 4, 8 0.5-8 4-8 3.3-4.4 0.4-2.2 4 1, 4 

ACN conc. (%) 29 20 20 11-33 11-33 2-29 20 20, 29 

Quenching 
8 µl Tris, 

pH 8 
8 µl Tris, 

pH 8 
2 µl 

NH2OH 
2-4 µl 

NH2OH 
3-5 µl 

NH2OH 
1-7 µl 

NH2OH 
2 µl 

NH2OH 
6, 32 µl 
NH2OH 

Conditions 4 2 5 4 3 10 4 2 

Replicates 3 3 2 1 1 1 2 or 3 1 
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3 Results  

In order to assess label-free and TMT-based workflows qualitatively and quantitatively for pep-

tide-level analysis, various experimental setups (Figure III-1, Figure III-2) were employed and the 

performance of the different quantification methods was evaluated for phosphopeptides. 

3.1 A compromise between accurate dynamic range and reproducible coverage 

A 5-fold diluted series of two synthetic peptide pools, featuring phosphorylation sites on either 

the most N-terminal amino acid or the most C-terminal amino-acid before lysine, were spiked into 

a constant amount of HeLa peptides and measured employing a label-free or a TMT-based 

quantification strategy in MS2 or MS3 mode (Figure III-1 A). Apart from the respective base 

peptide sequence in each pool, all other 59 peptides with permutated amino acids at and around 

the phosphorylation site represented non-endogenous phosphopeptides. This setup allowed for 

examination of the dynamic range of accurate, relative quantification in the presence of a non-

changing background and the assessment of the correct site localization.  

Dynamic range, accuracy and precision of different quantification approaches – In the 

label-free dataset, the sample with the highest amount of peptide spike-in (1,000 fmol) showed 

selectively decreased intensities of hydrophilic peptides and a shift in the peptide elution profile 

(Appendix Figure 0-1 A). This unequal loss of hydrophilic peptides that was likely a result of trap 

column overloading was also apparent by worse correlations of HeLa peptide intensities to all 

other samples (average R=0.85) compared to other pairwise correlations (average R=0.95, Appen-

dix Figure 0-1 B). The sample containing the second highest quantity of synthetic peptides 

(200 fmol) also showed a slight, less obvious decrease in correlation coefficients (average R=0.93). 

In addition, both samples exhibited notably lower MS2 spectra identification rates (10.4 and 

16.2 % compared to 19.5 % in other samples, Appendix Figure 0-1 C). This may be caused by the 

high proportion of spike-ins, interfering with and hampering the identification of less abundant 

peptides. To circumvent any potential quantitative bias, ratios for label-free samples were there-

fore calculated based on the sample with the third highest amount of synthetic phosphopeptides. 

For the TMT-labelled sample, ratios were computed relative to the channel with the second high-

est quantity of non-endogenous spike-in peptides.  

A total of 93 synthetic phosphopeptides were identified with the phosphorylation on the 

designated amino acid in any of the three quantification approaches. Additional 26 and 39 were 

detected with the phosphorylation annotated in the wrong position. Despite false localizations, 

all of these peptides should exhibit the expected five-fold decrease in signal intensity from sample 

to sample and were thus included in the comparison of expected and measured ratios across 

samples. Data from TMT-labelled samples acquired in MS2 mode quantified most synthetic 

phosphopeptides in a single condition, followed by the MS3-based and label-free approach (118, 

114, and 99 peptides). Label-free quantification, however, featured the highest dynamic range 

(Figure III-4 A). Accurate relative quantification in this experimental setup could be obtained for 

phosphopeptides differing up to roughly 625-fold, only showing a deviation from the anticipated 

ratios for very low and very high spike-in amounts. For the latter, also the background signal was 

lower than expected. This was in line with above mentioned observations in chromatograms and 

HeLa peptide correlations (Figure III-1 A-B) and suggested a bias in the samples with the highest 

spike-in amounts that hindered the approximation of the upper limit of the dynamic range. The 

proportion of quantitative values arising from the match-between-runs function in MaxQuant in-

creased linearly with decreasing, synthetic phosphopeptide quantities. From the sixth dilution 
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step onward, quantification was solely based on few matches across runs and started to diverge 

from expected intensities (Figure III-4 A). In the sample void of synthetic spike-ins, only one phos-

phopeptide was spuriously matched. MS2-based TMT quantification performed poorly compared 

to label-free quantification with a dynamic range of only, at best 25-fold (Figure III-4 B). Even 

within this range, the average of the log ratio distributions deviated slightly from the anticipated 

log ratios likely due to ratio distortion caused by co-isolation, co-fragmentation, and co-quantifi-

cation of non-changing HeLa peptides. This also resulted in the detection of reporter ion intensi-

ties in the, by experimental design, empty channel for 58 % (69) of all quantified phosphopeptides. 

For measurements in MS3 mode, this fraction dropped to 11 %, and the dynamic range increased 

5-fold to roughly 125-fold (Figure III-4 C). Generally, the TMT-based strategies exhibited a higher 

precision indicated by the smaller error bars of log ratios for background peptides and a lower 

median CV of 16 % (MS2) and 14 % (MS3) compared to 19 % for label-free quantification of HeLa 

phosphopeptides (excluding the two samples with highest spike-in quantities). 

 

Figure III-4 | Linear dynamic range of label-free and TMT-based phosphopeptide quantification examined 
with synthetic peptide spike-ins. A comparison of the expected and measured ratios of synthetic phospho-
peptides (spike-in) mixed in increasing quantities into a complex HeLa proteome (background) illustrates the 
accuracy, precision (error bars), and dynamic range obtained by label-free (A), and TMT-based quantification 
in MS2 (B) and MS3 (C) mode. Estimates of the dynamic ranges are illustrated by brackets. Numbers for 
peptides with non-zero intensities included in the analysis are indicated. All phosphorylated peptides apart 
from the endogenous base sequence were considered, irrespective of the phosphorylation site localization 
(error bars: standard deviation; mbr: exclusively identified by the match-between-runs algorithm). 

Reproducible peptide detection and correct localization of phosphorylation sites – In ad-

dition to the dynamic range of accurate quantification, the reproducible detection of peptides was 

of interest. This was examined including quantitative information about the constant background. 

The label-free and MS2-based TMT approach quantified comparable numbers of distinct, modified 

peptide sequences (12,465 and 13,629) in any of the ten samples, whereas expectedly less pep-

tides were identified in the MS3-based measurements (11,748, Figure III-1Figure III-5 A). The over-

lap of identified peptide sequences among TMT-labelled samples was bigger than for the label-

free and the TMT approaches suggesting that the two different quantification strategies tend to 

identify in part different subsets of the phosphoproteome likely due to a change in peptide prop-

erties. Despite comparable total identifications, the label-free approach suffered severely from 

missing values showing zero intensities in at least one of the samples for 82 % of identified pep-

tides (Figure III-5 B). This fraction decreased to 71 % when the sample with the highest spike-in 

amount was excluded. On the contrary, only 2.1 % and 3.3 % of peptides had zero intensities in 

any of the TMT-labelled samples in MS2 and MS3 mode, respectively. While label-free peptides 

with zero and one missing value exhibited on average higher intensities, this negative correlation 

of missing values and intensity could not be detected for 3 or more missing values (Figure III-5 C). 
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Moreover, non-labelled peptides with more missing values exhibited significantly lower localiza-

tion probabilities for phosphorylation sites (Kruskal-Wallis p-value < 0.001 for spike-in peptides, 

Figure III-5 D). This was also apparent from the higher fraction of class I sites (localization prob. 

> 0.75) in peptides with fewer missing values and an increasing fraction of class III sites (localiza-

tion prob. < 0.5) for peptides with 7 or more missing values (Figure III-5 D). 

With a ground truth dataset of syn-

thetic phosphopeptides at hand, 

the performance of the three quan-

tification methods could also be ex-

amined regarding the correct locali-

zation of the phosphorylation. The 

peptide pool bearing the phosphor-

ylation at the N-terminus of the 

peptides (pool 61, see p. 40) gener-

ally showed a higher proportion of 

uncertain or mislocalized sites (15-

29 % vs. 7-15 % for peptide pool 14, 

Figure III-5 E). Strikingly, this was 

most profound for label-free phos-

phopeptides for which only 71 % 

identified spectra contained a class I 

site. In contrast, TMT-labelled pep-

tides measured in MS3 mode out-

performed the other two ap-

proaches and featured the highest 

percentage of correctly localized 

sites in both peptide pools (93 and 

85 %, Figure III-5 E).  

Comparison of label-free and 

TMT-labelling approaches in a 

real-world scenario – To examine 

whether similar advantages and 

limitations of label-free and TMT-

based quantification as in the spike-

in experiment can be observed in a 

biological setting, a time-dependent 

treatment of K562 cells with the 

HSP90 inhibitor 17-AAG was chosen 

as a real-world scenario (Figure 

III-1 B). Here, instead of increasing 

amounts of synthetic peptides, 

equal total peptide quantities were 

present, but an overall higher per-

centage of phosphopeptides was 

expected to exhibit changes across 

conditions as compared to the 

 

Figure III-5 | Missing values and localization probabilities for 

label-free and TMT-based phosphopeptide quantification in 

synthetic peptide spike-in experiments. (A) The overlap of total 

identified, distinct modified peptides is shown. (B) The fraction 

of peptides exhibiting a zero intensity (missing value) in at least 

one sample is displayed. (C) Boxplots reveal intensities of pep-

tides with increasing numbers of missing values in the label-

free dataset. Asterisk mark distributions that are significantly 

different from all other distributions (Kruskal-Wallis and Dunn’s 

post hoc test, p-value <0.001; box: 25th-50th-75th percentile; 
whiskers: 10th and 90th). (D) A dot plot and heat map illustrate 

localization probabilities and proportions of localization cer-

tainty categories (Class I, II, and III as indicated) for label-free 

peptides dependent on the number of missing values. Horizon-

tal lines indicate the average per missing value category (pur-

ple: average of pool 14 with a C-terminal phosphorylation; 

grey: average of pool 61 with an N-terminal phosphorylation, 

red: total average). (E) Doughnut diagrams indicate the propor-

tions of PSMs that feature different localization certainties 

within the two different peptide pools. Total number of spectra 

and fraction of class I sites are indicated (p-site: phosphoryla-

tion site; class I: localization probability >0.75; unsure: loc. 

prob. between 0.75 and 0.5 or identical to a different site; 

wrong: loc. prob. smaller than on another site). 
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spike-in experiment. Based on the previously determined, limited dynamic range and accuracy of 

MS2-based quantification, TMT-labelled peptides were only measured in MS3 mode. Similar to 

observations in spike-in experiments, a higher total number of modified peptide sequences was 

identified using the label-free (19,216) compared to the TMT-based approach (16,805, Figure 

III-6 A). However, missing values accumulated quickly with every additional, label-free sample, 

while TMT-labelled peptides showed virtually no missing values. Only 3,652 (19 %) or 6,701 label-

free peptides (35 %) were quantified across all conditions with or without the match-between-

runs function, compared to 16,422 TMT-labelled peptides (98 %). Moreover, a higher fraction of 

TMT-labelled peptides was phosphorylated compared to label-free peptides (90 vs. 79 %, Appen-

dix Figure 0-2 A) which further improved the coverage of phosphopeptides across conditions in 

the TMT (14,747) compared to the label-free dataset (5,278, Figure III-6 A). Of note, the spectra 

identification rate was much lower after TMT-labelling (19 % vs. 33 %, Appendix Figure 0-2 A) sug-

gesting that the depth of the TMT-labelled phosphoproteome could be additionally enhanced 

when low identification rates are tackled. Identical to the spike-in experiment, only initially de-

creasing intensities but constantly declining localization probabilities were observed with increas-

ing numbers of missing values in the label-free dataset (Kruskal-Wallis p-value < 0.001, Appendix 

Figure 0-2 B, Figure III-6 B). Often the localization was uncertain when several potential phosphor-

ylation sites were present in close proximity. In fact, ambiguous allocation of modifications could 

lead to a higher number of missing values, and artificially increase the number of total, quantified 

peptides since every new, inconsistently localized phospho-isomer would result in an additional 

modified peptide identification (Figure III-6 C). 

 

Figure III-6 | Comparison of label-free and MS3-TMT based phosphopeptide identification and quantifi-
cation for time-dependent 17-AAG treatments. (A) The cumulative number of quantified peptides and miss-
ing values (zero intensity) is displayed for label-free (match-between-runs enabled) and TMT-labelled phos-
phoproteomes. The latter were measured in MS3 mode. (B) Boxplots illustrate the distribution of localization 
probabilities for peptides with increasing numbers of missing values in the label-free dataset (box: 25th-50th-
75th percentile; whiskers: 10th and 90th percentile). (C) An example of a phosphopeptide with several uncer-
tain site allocations in different label-free samples reveals how ambiguous site allocation can increase the 
number of total phosphopeptide identifications and missing values. 

In summary, label-free quantification outperformed TMT-based quantification with regard to ac-

curate dynamic range, but suffered from missing values that considerably reduced the number of 

quantifiable peptides across several conditions. This issue was aggravated by ambiguous site lo-

calizations in label-free phosphoproteomic analyses and resulted in a superior performance of 

TMT-based approaches when it came to reproducible detection of the same peptide across con-

ditions. However, the accuracy and dynamic range of MS2-based TMT quantification was limited 

due to ratio compression. In contrast, measurements in MS3 mode exhibited an improved and 

seemingly acceptable dynamic range and accuracy. A more detailed comparison of the two differ-

ent TMT quantification strategies should provide further clues about when MS2 mode analyses 
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may be adoptable and when measurements in MS3 mode are inevitable and thus was conducted 

as a next step.   

3.2 A versatile TMT standard  

To generate a standard sample for a more systematic assessment of peptide co-isolation and sub-

sequent ratio distortion in MS2 and MS3 mode analyses, small quantities of yeast peptides were 

mixed into a high, constant human background and labelled with TMT (Figure III-2). Single shot 

measurements of the phospho- and whole proteome of this species interference sample were 

further utilized for MS3 method optimization and tracking of machine performance. 

Quantitative performance of measure-

ments in MS2 and MS3 mode – Due to the 

high ratio of the human:yeast mix (10:1), the 

proportion of identified yeast peptides was 

much smaller than for human peptides (Table 

III-3). For the whole cell proteome, roughly 

11 % of identified peptides were derived 

from yeast (977 and 498), whereas only 5 % 

of peptides could be assigned to yeast in the 

results the phosphoproteome measurements 

(302 and 192, Figure III-7 A, Appendix Figure 

0-3 A). This was likewise reflected by high hu-

man-to-yeast MS1 intensity ratios of 9.5 and 

37.8 for unmodified and phosphorylatd pep-

tides, respectively. Phosphorylated yeast peptides displayed a smaller overlap across measure-

ment modes than yeast peptides in the full proteome sample (Figure III-7 A, Appendix Figure 

0-3 A). As expected, MS3 mode analyses detected overall less peptides showing a 22 % and 45 % 

decrease in identifications for phospho- and full proteomes, respectively (Table III-3). However, 

yeast peptides quantified in MS3 mode exhibited much less co-isolation of human peptides indi-

cated by the overall lower intensities and the higher proportion of actual zero intensities in the 

two, by experimental design, empty TMT channels (Figure III-7 B, Appendix Figure 0-3 B). This, in 

turn, also resulted in a significant reduction of ratio distortion and shifted measured ratio distri-

butions closer to their expected values (e.g.  median log2 ratio of 2.68 vs. 1.58 for phosphopep-

tides and expected log2 ratio of 3, Figure III-7 C, Appendix Figure 0-3 C). In MS2 mode, the phos-

phopepetide quantification appeared to be overall more compressed compared to peptides in the 

whole cell proteome measurements. However, this difference in ratio compression was dimin-

ished by the additional fragment ion selection step in the MS3 methods rendering the ratio distri-

butions of phospho- and unmodified peptides virtually indistinguishable (Figure III-7 C, Appendix 

Figure 0-3 C).  

Further, the precision of quantification was evaluated by calculating the CVs within each ratio 

group for yeast peptides and across all channels for human peptides. Generally, the latter exhib-

ited slightly smaller CVs compared to yeast peptides with exception of MS2 mode measurements 

of whole cell proteomes, which showed comparable CVs (Figure III-7 D, Appendix Figure 0-3 D). 

While MS3 measurements significantly lowered precision for unmodified peptides indicated by 

increased CVs, phosphorylated peptides surprisingly showed no such reduction in the 

quantification reproducibility, but even significantly decreased in CVs for HeLa peptides acquired 

Table III-3 | Numbers of quantified, modified peptides 
sequences identified in MS2 and MS3 mode in the 
whole cell and phosphoproteome of the TMT stand-
ard and their species assignment. 

 MS2 MODE MS3 MODE 

Whole cell proteome 8,415 4,625 

Human 6,841 (87.9 %) 4,083 (88.3 %) 

Yeast 882 (11.3 %) 498 (10.7 %) 

Human/yeast 58 (0.7 %) 44 (1.0 %) 

Phosphoproteome 5,693 4,444 

Human 5,386 (94.6 %) 4,250 (95.6 %) 

Yeast 302 (5.3 %) 192 (4.3 %) 

Human/yeast 5 (0.1 %) 2 (0.05 %) 
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in MS3 mode (Mann-Whitney p-value < 0.0001). In general, more then 90 % of CVs were below 

20 %, indicating an excellent precision in all cases which can be beneficial to identify statistical 

significant differences across groups irrespective of the accuracy of intensity ratios.  

 

Figure III-7 | Evaluation of TMT-based phosphopeptide quantification in MS2 and MS3 mode using a 
yeast-human species-mix sample. (A) The overlap of identified yeast phosphopeptides is shown. (B) TMT 
intensity distributions of yeast phosphopeptides are displayed for different channels containing different 
amounts of yeast sample. Intensities detected in the first and the last channel arise from co-isolation of 
human peptides. The number of peptides with zero intensities in these channels is indicated. (C) Distributions 
of measured intensity ratios of phosphopeptides (calculated from intensity averages of each group) are il-
lustrated in comparison to the expected ratios for different yeast amounts. (D) Coefficients of variation (CV) 
are shown for HeLa and yeast phosphopeptides. Asterisks denote significantly different distributions (Mann-
Whitney p-value < 0.0001). 

Statistical recovery of differential abundances of yeast peptides – Next, it was assessed to 

which extent the known differences in the triplicate yeast channels could be recovered by 

statistical tests using MS2 and MS3 data. One-sided t-tests were performed for all group-wise 

comparisons (exemplified for phospho data in Figure III-8 A). Then, true positive and true negative 

rates (sensitivity and specificity), and false positive and false negative rates were calculated based 

on the fraction of yeast and HeLa peptides that were identified to be significantly different (Figure 

III-8 B, Appendix Figure 0-4 A). Further, ROC curves were computed using corrected p-values (q-

values) to assess the overall diagnostic ability of the two quantification strategies to discriminate 

between upregulated yeast and non-changing HeLa peptides (Figure III-8 C, Appendix Figure 

0-4 B).  

For expected 4-fold and 8-fold differences (log2 of 2 and 3), the sensitivity of detecting a 

quantitative change through the statistical test was very high in phospho- and whole cell 

proteome data and for both quantification approaches (> 94.7 % for phosphopeptides and 

> 96.7 % for unmodified peptides, Figure III-8 B, Appendix Figure 0-4 A). In turn, this resulted in 

small false negative rates (< 5.3 % and < 3.3 %). Due to the enhanced (phospho)proteome depth, 

the absolute number of significant yeast peptides was much higher for MS2 data (286/287 vs. 

182/181 for 4-fold/8-fold differences of phosphopeptides, Figure III-8 A). However, MS3 

acquisition led to an improved specificity of detection of these larger differences (> 98.3/94.2 % 

vs. < 93.9/87.7 % for phospho-/unmodified peptides) and a likewise decreased false positive rate 

(Figure III-8 B, Appendix Figure 0-4 A). In general, MS3-based TMT quantification showed a much 

smaller false postive rate with maximal 5.8 % for 8-fold differences in the full proteome data. In 

contrast, MS2 data entailed up to 14.1 % human peptides that were falsly identified as significantly 

upregulated despite the 5 % FDR that was applied in the statistical test. This is likely a result of 

yeast peptides being co-isolated with human peptides and distorting their technically unchanged 

abundances. This is in line with negligible false positive rates for the smallest ratio of 2 (<1.2 %). 

For this, instead, false negative rates increased substantially (not less than 21.7 %), especially for 

MS2-based quantification of phosphopeptides (66.6 %) resulting in an accordingly decreased 
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sensitivity of detecting these smaller changes (33.4-78.2 %, Figure III-8 B, Appendix Figure 0-4 A). 

Consequently, MS3-based acquisition even identified more significant yeast phosphopeptides 

among 2-fold upregulated ones compared to MS2 (145 vs. 101, Figure III-8 B). These observations 

were also resembled by computed ROC curves. They revealed that both quantification approaches 

performed fairly well in identifying specifically yeast peptides as significantly different (in at least 

97.3 % of the cases for an at least 4- and 8-fold change, as implied by the areas under the ROC-

curves). However, a performance drop was detectable for the comparison of the two groups which 

differed by the smallest factor of 2 (max. 91.1 % of the cases, Figure III-8 C). In a nutshell, MS3 

data yielded improved or at least comparable sensitivity and specificity for all tested ratios and, 

hence, also minimized false negative and false positive rates, but identifed less sigificant peptides 

in absolute terms for larger ratios. Of note, in our experimental setup, especially phosphorylated 

peptides benefited from MS3-based quantification (compare Figure III-8 B-C, Appendix Figure 

0-4 A-B). 

 

Figure III-8 | Statistical recovery of differential phosphopeptide abundances in the yeast-human species-
mix sample. (A) The results of one-sided student’s t-tests comparing groups of TMT channels that contain 
different yeast quantities are plotted for MS2 and MS3 based TMT quantification. A 5% permutation based 
FDR and S0 (as indicated) cut-off were applied. (B) Sensitivity (significant yeast fraction) and specificity (non-
significant human fraction) and corresponding false negative and positive rates are shown for t-tests con-
ducted in (A). (C) ROC curves computed from corrected p-values obtained from t-tests in (A) are shown (AUC: 
area under the curve).   

MS method optimization – In addition to a global comparison of MS2 and MS3-based MS meth-

ods, the species interference sample allowed for a systematic evaluation of the impact of individ-

ual method parameters on identification and quantification performance. First, its suitability to 

assess ratio compression was confirmed in measurements with varying isolation windows. As ex-

pected, broadening the MS2 isolation window stepwise from 0.4 to 3 m/z significantly suppressed 

expected ratios for the MS2-based quantification approach (Kruskal-Wallis p-value < 0.0001, e.g. 
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decrease of median log2 ratio from 2.56 to 2.09 for expected log2 ratio of 3, Appendix Figure 

0-5 A). At the same time, TMT reporter intensities increased continuously with wider isolation 

windows and lead to a concomitant improvement of precision (Appendix Figure 0-5 B-C). More 

surprisingly, similar results were observed for MS3 data despite the additional selection step of 

fragment ions before TMT acquisition (Appendix Figure 0-5 A-C). Yet, this trend was overall less 

pronounced (median log2 ratio of 2.85 to 2.59 for expected log2 ratio of 3, Appendix Figure 0-5 C) 

and not significant for isolation windows between 0.4 and 1.2 m/z. Likewise, stepwise increasing 

the number of fragment ions (SPS notches) used for the MS3 spectrum from 2 to 20, increased 

ratio distortion, TMT intensities, and precision of quantification, albeit to a lesser extent (median 

log2 ratio of 2.87 to 2.73 for expected log2 ratio of 3, Appendix Figure 0-5 D-F). Other parameters 

(injection times or amounts, MS1 resolution, advanced peak detection, inject beyond for MS2 

spectra) had no measurable effect on ratio compression or general performance of MS3-based 

methods. 

 

Figure III-9 | Optimization of MS2 acquisition for MS3 mode measurements of phosphopeptides. Bar 
charts indicate (A) numbers of quantified phosphopeptides, (B) acquired MS2 scans corresponding to the 
speed of the different methods, and (C) the spectra identification rate. Violin plots show the distributions of 
(D) Andromeda scores, (E) summed TMT intensities for all phosphopeptides, and (F) TMT intensities for yeast 
phosphopeptides in the first and last, theoretically empty channels illustrating co-isolation of HeLa peptides. 
(G) Boxplots display the distributions of log ratios (calculated from intensity averages of each group) which 
would be expected to be 3. For all distribution plots, only phosphopeptides that were present in results of all 
8 methods were included (n=46). (H) The radar plot summarizes results of the optimization runs with out-
ward facing spikes showing an improvement and inward directed spikes indicating a decline in performance 
for certain methods relative to the other methods. For specifics of different methods, see also Table III-1. 

The phosphopeptide enrichment of the TMT standard was further utilized to optimize MS2 data 

acquisition and phosphopeptide identification specifically for the MS3 method. Depending on the 

fragmentation mode, neutral losses of the phosphate group can be common and lead to sparse 

ion series, which makes the identification of phosphopeptide sequences often more challenging 

compared to unmodified peptides. Therefore, following fragmentation methods were combined 

with either Orbitrap (OT) or ion trap (IT) readout and examined for their performance for phos-

phopeptide identification and quantification (Table III-1): CID while excluding or allowing the neu-

tral loss in the subsequent fragment ion selection for the MS3 spectrum, CID with an additional 

multi-stage activation (MSA) step targeting the neutral loss, and HCD fragmentation. In general, 
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OT methods identified 6 to 14 % more phosphopeptides (on average 4,781 vs. 4,375) despite less 

acquired MS2 spectra (17,650 vs. 20,454) but explained by vastly improved identification rates 

(24.8 vs. 19 %, Figure III-9 A-C). This was also connected to improved Andromeda scores, especially 

for the MSA and HCD method (median of 133 vs. 114, Figure III-9 D). As expected, TMT intensities 

in the MS3 spectrum were unaffected by the analyser used for MS2 spectra acquisition. Surpris-

ingly, though, ratio distortion appeared to be somewhat increased after IT readout implied by 

slightly higher intensities of yeast peptides in the, by experimental design, empty TMT channels 

and log2 ratios that were farther off the expected ratio, in particular for the CID method (2.67 vs. 

2.76 for expected log2 ratio of 3, Figure III-9 E-F). These differences, however, were not statisti-

cally significant (according to group-wise Mann-Whitney tests). With respect to fragmentation 

modes, HCD with OT readout yielded the highest number of phosphopeptide identifications 

(5,163) which was mostly connected to its enhanced speed compared to CID-based methods (Fig-

ure III-9 A-C). Although the CID-MSA-OT method is comparably slow due to the additional frag-

mentation of the neutral loss peak, it provided the second highest number of phosphopeptides 

(4,724), better scores, and identification rates based on the improved ion series (Figure III-9 A-D). 

Including the neutral loss after CID fragmentation for generation of the MS3 spectrum, naturally 

resulted in the highest TMT intensities, but also the largest ratio compression, although this was 

only significant for the comparison to HCD and MSA methods (Mann-Whitney p-value < 0.05, Fig-

ure III-9 E-H). Taken together, CID-MSA and HCD spectra acquired in the Orbitrap performed best 

for peptide identification in MS2 with CID-MSA potentially providing an additional advantage for 

more confident localization of phosphorylation sites reflected by the higher Andromeda scores. 

3.3 A robust and cost-efficient TMT-labelling protocol 

After TMT-based quantification proved advantageous in overcoming missing values across multi-

ple samples and drawbacks such as ratio compression were shown to be manageable with spe-

cialized data acquisition methods, the high costs of TMT workflows were to be tackled as a next 

step. For this purpose, different peptide quantities were labelled using decreasing reagent quan-

tities at various concentrations and labelling efficiency was examined. 

Reducing reagent-to-peptide ratios for 

high protein quantities – To assess the mini-

mally required amount of TMTs necessary for 

sufficient labelling of a certain peptide quantity, 

corresponding amounts of primary amines 

were estimated based on an in silico digest. 

One-hundred µg of human peptides yielded 

~116 nmol free primary amines. The TMT-label-

ling protocol provided by the manufacturer rec-

ommends adding 800 µg labelling reagent, 

which equates to 2.32 µmol of TMT (2.36 µmol 

in case of TMTzero), to peptides originating 

from a digest of 25 to 100 µg protein. Hence, 

the standard protocol uses at least a 20-fold 

molar excess of the labelling reagent. Even if a certain degree of reagent hydrolysis and overlabel-

ling on hydroxyl and imidazole groups is taken into account, the TMT reagent is still applied in 

great excess. These theoretical considerations suggest that considerably higher quantities than 

100 µg peptides could be labelled using 800 µg TMT reagent. 

Table III-4 | Theoretical amount of functional 
groups in a complete digest of 100 µg of a human 
proteome. Estimations are based on average pep-
tide length, and pKa values were taken from litera-
ture [329, 330]. 

FUNCTIONAL GROUP AMOUNT [nmol] PKA 

    α-amine on N-term 78 7.7 ± 0.5 

    ε-amine on Lys 38 10.5 ± 1.1 

Primary amines 116  

    Hydroxyl on Tyr 25 10.3 ± 1.2 

    Hydroxyl on Ser 76 ~16 

    Hydroxyl on Thr 49 ~16 

Hydroxyl groups 150  

Imidazole on His 24 6.6 ± 1.0 
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To test this hypothesis, a peptide titration experiment was performed in triplicates using amounts 

ranging from 100 to 800 µg of murine liver peptides resulting in TMT-to-peptide ratios (wt/wt) of 

8:1 up to 1:1. Across labelling reactions, the total reaction volume and thus TMT concentration 

 

Figure III-10 | Peptide titration experiments using the vendor recommended (A-D) and a down-scaled (E-
H) TMT-labelling protocol. (A) Quantities and concentrations of a mix of TMT10-plex reagents (blue) and 
peptides (grey) are shown for increasing peptide amounts in labelling volumes recommended by the TMT 
vendor (pep: peptide). The TMT reaction was quenched using 50 mM Tris, pH 8. (B) The numbers of all pep-
tides (grey circles, including fully, partially and non-labelled sequences) and only fully TMT-labelled peptides 
(blue circles) are displayed for the labelling experiment series illustrated in (A). (C) PSMs identifying underla-
belled and fully labelled peptides are depicted for intra-laboratory replicates using the labelling protocol 
displayed in (A). (D) The number of PSMs assigned to overlabelled, O-acylated peptides and the distribution 
of serine, threonine, and tyrosine in these spectra are shown for the peptide titration row displayed in (A). 
(E) Same as (A) but using TMTzero and smaller peptide quantities in decreased volumes (pep: peptide). The 
TMT reaction was quenched using 0.4 % hydroxylamine. (F) Same as (B) but for the labelling experiment 
series shown in (E). (G) Same as (C) but for the labelling protocol displayed in (E). (H) Same as (D) but for the 
peptide titration row depicted in (E). 
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was kept constant (16.5 mM TMT during labelling), whereas the protein concentration conse-

quently increased with increasing peptide input amounts (Figure III-10 A). The reaction was 

stopped by adding Tris, pH 8 to a final concentration of 50 mM.  

Single shot LC-MS/MS analysis led to the identification of 8,081 to 8,807 peptide sequences with 

a slight increase with decreasing TMT-to-peptide ratios (Figure III-10 B). Across the entire range 

of tested peptide quantities, at least 98.7 % of PSMs corresponded to peptides that were fully 

labelled (Figure III-10 C). Consequently, few non-labelled or partially labelled peptides (where ei-

ther the lysine side chain or peptide N-terminus was not labelled) were observed (less than 0.7 % 

of PSMs for all but one outlier sample corresponding to 200 µg peptides). Furthermore, most of 

the underlabelled PSMs (77-100 %) contained at least one TMT modification. The corresponding 

overlabelling analysis revealed that 10.4 to 14.6 % of PSMs contained at least one TMT-labelled 

serine, threonine, or tyrosine residue, when the labelling reaction was conducted using 100 to 

400 µg peptides (Figure III-10 D). Interestingly, in the 800 µg peptide samples, the fraction of PSMs 

assigned to overlabelled peptides decreased to less than 3 % with only a very small concomitant 

increase in partially labelled PSMs. For lower peptide quantities, overlabelling primarily affected 

serine residues (up to 74.2 % of overlabelled PSMs), whereas tyrosine residues were overrepre-

sented when using lower TMT-to-peptide ratios (up to 67.3 % of overlabelled PSMs, Figure 

III-10 D). Noteworthy, 55.5 to 78.1 % of overlabelled PSMs contained a histidine residue. To ex-

clude that this observation was an artefact created by false TMT localization, the data were re-

searched allowing TMT as a variable modification on histidine. Only 1.5 % of the spectra were 

assigned to peptides containing a TMT labelled histidine and up to 95.7 % of these contained a 

serine, threonine, or tyrosine residue. This indicates that false TMT localization in the overlabelling 

search is not a substantial issue. Intensity distributions of overlabelled peptides were comparable 

to correctly labelled peptides, while underlabelled peptides showed significantly lower intensities 

(Appendix Figure 0-6 A). Taken together, this indicates that the recommended quantity of 800 µg 

TMT reagent can label at least 4 to 8 times more peptides than what the vendor protocol suggests 

with a concomitant reduction in overlabelling of undesired amino acid residues.  

Downscaling TMT quantities using optimized labelling parameters – Encouraged by the 

above findings, it was subsequently examined whether smaller peptide quantities can be effi-

ciently labelled using less TMT reagent than recommended by the vendor (for a detailed overview 

of all performed experiments and results, see Suppl. Table 2 of the online publication). From 

chemical reaction kinetics and the law of mass action, it follows that the efficiency of the labelling 

reaction depends not only on the absolute quantities of tagging reagent used but, more im-

portantly, on the molar concentrations of the reactants, i.e. TMT and peptides or, more precisely, 

relevant functional groups on peptides. Hence, in order to keep conditions similar to the initial 

peptide titration experiment, in addition to decreasing TMT and peptide quantities, also the reac-

tion volume was reduced to maintain relatively high concentrations.  

Initial experiments were performed using 100 µg TMT reagent and between 12.5 and 200 µg HeLa 

peptides while decreasing reaction volumes by a factor of 5.6 (Figure III-10 E). Consequently la-

belling took place at TMT concentrations of 11.8 mM and the reagent-to-peptide ratio varied from 

8:1 to 1:2. This time, the reaction was stopped by adding hydroxylamine to a final concentration 

of 0.4 %. Replicate analyses demonstrated that up to 100 µg peptides were efficiently labelled 

resulting in 7,005 to 7,906 fully TMT labelled peptides (Figure III-10 F) and a PSM labelling effi-

ciency of 99.8 to 99.9 % (Figure III-10 G). Notably, the lower the TMT-to-peptide ratio was, the 

higher were the peptide identifications obtained. For 200 µg peptides (1:2 ratio of TMT-to-pep-
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tide), the proportion of PSMs corresponding to partially or non-labelled peptides sharply in-

creased to an average of 14.9 % (Figure III-10 G), affecting ε-amines of lysine residues more than 

peptide N-termini (18 % of all lysine residues vs. < 4 % of all N-termini). The MS1 intensities of 

underlabelled peptides were again found to be always considerably lower than those of correctly 

labelled peptides, whereas overlabelled peptides showed comparable intensities (Appendix Fig-

ure 0-6 B). TMT-labelled serine, threonine, and tyrosine residues were present in on average 

10.8 % of identified spectra for a TMT-to-peptide ratio of 8:1 (Figure III-10 H). This fraction de-

creased to 6.3 % and 1.5 % for a reagent-to- peptide ratio of 1:1 and 1:2, respectively. Serine ac-

counted for about two thirds of the overlabelled amino acids for all peptide quantities used. Again, 

most of the overlabelled peptides contained a histidine (Figure III-10 F). In accordance with the 

first experiment series, a search allowing histidine to be labelled by TMT assigned, on average, 

4.6 % of the PSMs to peptides with a TMT labelled histidine residue, and up to 99 % of these pep-

tides also comprised at least one serine, threonine, or tyrosine residue. 

The above findings were corroborated in 

independent experiments using murine 

liver tissue. Triplicate experiments using 

100 µg TMT revealed fully labelled pep-

tides in on average 99.7 % of PSMs for 

100 µg peptides and 42.7 % of PSMs for 

200 µg peptides. Additional experiments 

using 200 µg peptides from Jurkat cell 

and PDX digests showed complete label-

ling using 200 µg TMT at the same TMT 

concentration of 11.8 mM (> 99.4 % of 

PSMs identified correctly labelled pep-

tides). Together, it can be concluded that, 

for 100 µg or higher peptides quantities, 

peptides can be efficiently labelled at a 

TMT-to-peptide ratio of 1:1 and at TMT 

and peptide concentrations of 11.8 mM 

and 4 g/L, respectively. 

Another series of labelling experiments 

was performed using a smaller peptide 

quantity of 40 µg PDX peptides. TMT-to-

peptide ratios ranging from 8:1 to 1:1 and 

different TMT (1.4 to 29.5 mM) and pep-

tide concentrations (0.5 to 2.2 g/L) 

demonstrated the importance of main-

taining sufficient TMT and peptide con-

centrations during labelling (see Figure 

III-11 A for experiments using smaller 

TMT quantities). Spectra labelling effi-

ciencies of > 99.6 % were obtained in all 

experiments employing a TMT-to-peptide ratio of at least 2:1 For a TMT-to-peptide ratio of 1:1 at 

6.6 mM TMT and 2.2 g/L peptides, 98.2 % of PSMs identified fully labelled peptides, but this 

fraction dropped substantially to 82.1 % and 75.7 % with lower TMT and peptide concentrations 

 

Figure III-11 | Selection of peptide titration experiments 
using smaller peptide quantities. (A) Quantities and con-
centrations of TMTzero reagent (blue) and peptides 
(grey) are illustrated for a titration of the absolute label-
ling volume employing smaller peptide quantities of 
40 ug and 40 or 80 ug of TMTzero reagent (pep: peptide). 
The TMT reaction was quenched using 0.4 % hydroxyla-
mine. (B) PSMs identifying underlabelled and fully la-
belled peptides are depicted for labelling experiments dis-
played in (A). 
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(Figure III-11 B). This illustrates that for peptide quantities below 100 µg, less than 100 µg TMT 

can be used if the TMT and peptide concentrations are adapted accordingly.  

 

Figure III-12 | TMT titration experiments using the downscaled TMT labelling strategy across laboratories. 
(A) Quantities and concentrations of TMTzero reagent (blue) and peptides (grey) are illustrated for increas-
ing TMT quantities in constant labelling volumes (pep: peptide). The TMT reaction was quenched using 0.4 % 
hydroxylamine. (B) PSMs identifying underlabelled and fully labelled peptides are shown for intra- and inter-
laboratory replicates following the protocol depicted in (A). (C) The number of PSMs assigned to overla-
belled, O-acylated peptides and the distribution of serine, threonine, and tyrosine in these spectra are dis-
played for the workflow shown in (A). 

Assessing inter-laboratory reproducibility of the optimized labelling protocol – Having 

established that a TMT-to-peptide ratio of 1:1 (wt/wt) is sufficient to label a proteome efficiently, 
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it was to be demonstrated that reproducible labelling efficiencies can be achieved in different 

laboratories when using identical labelling workflows. To accomplish this, peptides from digests 

of cryopulverized patient-derived breast cancer xenograft tumours were distributed to three 

laboratories and replicates of 100 µg peptide aliquots were labelled with 50 to 400 µg TMTzero 

reagent spanning TMT-to-peptide ratios from 4:1 to 1:2 while maintaining a constant reaction 

volume (Figure III-12 A). This time, the TMT amount and concentration was increased to be able 

to assess if doing so would result in differences in over- or underlabelling compared to the previ-

ous peptide titration experiments. The labelling reaction was stopped by adding hydroxylamine 

to a final concentration of 0.4 %. 

Despite differences in the overall numbers of identifications between laboratories due to different 

LC setups and LC/MS instrument performance (3,877 to 7,197 modified peptide sequences, Figure 

III-12 B), on average 99.7 % of PSMs consistently identified fully labelled peptides in all reactions 

using a TMT-to-peptide ratio of 4:1 to 1:1 (Figure III-12 C). Moreover, the percentage of underla-

belling in these experiments was < 0.5 % of PSMs. However, reducing the TMT-to-peptide ratio to 

1:2 led to significant underlabelling of between 4.7 and 28.4 % of PSMs depending on the labora-

tory (Figure III-12 C). The fraction of identified spectra assigned to overlabelled peptides also dif-

fered between laboratories and ranged from 2.6 to 13.3 % in efficiently labelled samples Figure 

III-12 D). This fraction dropped by a factor of 2 to 3 in experiments using only 50 µg TMT for 100 µg 

peptides. Again, serine was the predominantly O-acylated amino acid, though discrepancies in the 

fraction of TMT labelled serine and tyrosine residues were observed among overlabelled peptides 

in single experiments (Figure III-12 D, Figure III-10 D-H). Despite evaluation of several potential 

parameters that could influence overlabelling (see pp. 92), a well-founded explanation for these 

differences could not be established. As already observed in the peptide titration experiments, up 

to 98 % of overlabelled peptides also contained a histidine in the sequence (Figure III-12 D). Con-

sistent with the prior observations, underlabelled peptides exhibited consistently lower MS1 in-

tensities compared to correctly labelled peptides, while overlabelled peptides showed compara-

ble to marginally higher signals (Appendix Figure 0-6 C). No apparent difference in the under- or 

overlabelling trend caused by higher TMT concentrations compared to higher peptide concentra-

tions could be determined when comparing the TMT titration to the peptide titration experi-

ments.  

Benchmarking the optimized protocol for deep (phospho)proteomes – After it had been 

established in several lines of experiments and across laboratories that a TMT-to-peptide ratio of 

1:1 is sufficient to achieve high labelling efficiency judged by single-shot LC-MS/MS analyses, the 

optimized protocol was evaluated for deep-scale (phospho)proteome studies. Here, peptides 

from five replicates of basal and luminal breast cancer PDX models were combined into a TMT10-

plex experiment and separated into 24 whole cell proteome and 12 phosphoproteome fractions. 

The same workflow as described in Mertins et al. [194] was employed but the TMT labelling step 

was adjusted such that only 1/8th of the recommended amount of TMT reagents was used. Spe-

cifically, 300 µg of TMT reagent and 300 µg of peptides were labelled per channel in a final volume 

of 75 µL, and results were benchmarked against the original protocol using 2,400 µg TMT reagents 

to label 300 µg of peptides in a total volume of 423 µL (Figure III-13 A). These samples were gen-

erated and analysed at the Broad Institute. 

Not surprisingly, the observed labelling efficiency was slightly lower for both fractionated TMT10-

plex experiments (Figure III-13 B) compared to the single-shot analysis described above because 

the fractionation step enabled identification of more of the lower abundant and underlabelled 

peptides. The overall numbers of collected MS2 spectra, PSMs, distinct (phospho)peptides and 
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labelling efficiencies were comparable between the two labelling protocols (Figure III-13 B). Un-

derlabelling at peptide N-termini was 2 % for the standard protocol and 3 % for the reduced TMT 

protocol, while underlabelling of lysines was 0.5 % and 0.6 %, respectively. Overlabelling on histi-

dine containing peptides and fractions of overlabelled serine, threonine and tyrosine residues 

were also comparable between the standard (11.4 %) and the optimized protocol (11.6 % of 

PSMs). More than 12,000 proteins were identified in both experiments, of which > 8,400 were of 

human origin, and protein identifications showed a large overlap (> 90 %) between experiments 

(Figure III-13 C). On average, ~42,000 phosphorylation sites were detected (> 35,000 of human 

origin), and three quarters of these were identified in both workflows. An excellent intra-plex cor-

relation (Pearson > 0.8) of human and murine proteins and phosphopeptides was observed across 

luminal and basal quintuplicates for both labelling protocols (Figure III-13 D). Similarly, proteins 

and phosphopeptides correlated well (Pearson > 0.7) between the two workflows. Importantly, 

this inter-workflow correlation was comparable to the inter-plex correlation reported previously 

 

Figure III-13 | Benchmarking the optimized protocol for deep-scale (phospho)proteomic analysis. (A) 

TMT10-plex experiments were performed using five replicates each of peptides derived from basal and 

luminal breast cancer PDX models and following the two different labelling protocols displayed here. 

Quantities and concentrations of TMT10-plex reagents (blue) and peptides (grey) used per channel are 

shown for the standard and the optimized labelling protocol (pep: peptide). (B) The table lists the number 

of total PSMs, PSMs identifying fully and partially labelled peptides, and distinct (phospho)peptides for 

the whole cell and phosphoproteome analyses following the labelling protocols displayed in (A). (C) Bar 

charts illustrate proteins (upper panel) and phosphosites (lower panel) that were identified for both or 

only one of the two labelling workflows depicted in (A). Proteins and phosphorylation sites mapping to 
the human database are reported in brackets. (D) Pearson correlation coefficients are plotted for corre-

lations within TMT10-plex experiments (intra-plex) and between TMT10-plex experiments (inter-plex, i.e. 

inter-workflow) following the protocols depicted in (A). 
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for two identical TMT10-plex experiments using the vendor recommended amount of TMT rea-

gent [194]. In summary, this demonstrates the utility of the optimized TMT protocol employing 

1/8th of the original amount of TMT for deep-scale proteomics and phosphoproteomic studies.  
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4 Discussion and conclusion 

While limitations and advantages of label-free and isobaric-tagging strategies for quantitative pro-

teomics have been extensively reviewed (see [270, 271]), the primary goal here was to quantita-

tively explore their dynamic range, accuracy, and precision specifically on peptide level. Phospho-

proteomic analyses of up to 11 samples were chosen as a particularly challenging example be-

cause they require not only peptide sequence identification and robust quantification, but also 

reproducible assignment of the modified residue(s) within the peptide sequence and across all 

conditions.  

4.1 Confining the dynamic range of peptide quantification 

Synthetic phosphopeptides, which were spiked into a constant human background and spanned 

in total almost 6 orders of magnitude, quickly demonstrated vastly different dynamic ranges for 

label-free and TMT-based quantification. The TMT methods exhibited a 5- (MS3) to 25-fold (MS2) 

reduction in linear dynamic range compared to the label-free approach. The big difference 

between the two TMT measurement modes is in accordance with an earlier investigation of the 

dynamic range of iTRAQ [243]. TMT-MS3 achieved two orders of magnitude (corresponding to 

iTRAQ without background spiked in), while TMT-MS2 featured a dynamic range of only one order 

of magnitude (as iTRAQ in presence of a complex background). For label-free data, the actual 

dynamic range is supposably even larger as determined in the presented experiment since the 

observed upper limit was not a consequence of MS signal saturation but rather due to an 

overloaded trap and analytical column resulting in a selective loss of hydrophilic peptides. The 

overloading could have been circumvented by reducing the number of different synthetic peptide 

sequences spiked in and, thus, the total mass loaded onto the trap column. This, however, may in 

turn have limited the significance of the whole analysis. Alternatively, an increased trap capacity 

or direct injection of the unlabelled samples onto the analytical column can provide information 

on how far the linear dynamic range can be extended for label-free phosphopeptide quantification 

and when an actual upper limit of quantification is reached.  

TMT-based quantification is unlikely to show any upper limit of quantification reflecting a detector 

saturation with the MS parameters used, even if one would increase the amount of spike-in. In-

stead, the highest TMT reporter ion will determine the maximum of the linear dynamic range and 

the ratios to other reporter ions in the spectrum will dictate its lowest possible limit that can be 

detected (Appendix Table 0-2). This is due to the inherently compositional nature of TMT quanti-

fication [331] resulting from the readout in a single spectrum and the AGC which restricts the 

maximum number of collected charges. In general, the maximal possible dynamic range within 

one Orbitrap spectrum is defined by the number of charges injected into the mass analyser, the 

minimum number of charges that induce a signal, and the number of ion species (i.e. peptides or 

fragments) in the spectrum. For Orbitrap analyser the intra-scan dynamic range has been reported 

to span 4 to 5 orders of magnitude when only two analytes were present [332, 333]. In the case 

of TMTs (and assuming that the AGC target is always reached), the number of charges is distrib-

uted among the 6 to 16 reporter ions for any given peptide. If the abundance in one sample in-

creases and, consequently, the fraction of ions for the corresponding TMT reporter scales up, then 

the intensity fraction of other reporters must proportionately decrease [331]. Taking the applied 

AGC target value into account (1e5) and assuming that a minimum of 10 charges is necessary to 

induce a detectable signal in the Orbitrap [332], the conducted 5-step dilution experiment could 
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at best detect a dynamic range of ~3,100. Increasing or decreasing the dilution steps would ac-

cordingly change the maximum detectable dynamic range (Appendix Table 0-2). This reveals a 

general drawback of such an analysis for isobaric tagging approaches: results depend on the ex-

perimental design, and the actual dynamic range in a biological experiment may differ from pep-

tide to peptide. Nevertheless, the comparison of the two TMT acquisition approaches is valid and 

reveals the setback of MS2 relative to MS3-based quantification. The dynamic range of TMT-MS2 

suffers not only from a higher number of ion species (i.e. peptide fragments) in the quantitative 

spectrum, but it is also reduced by peptide co-isolation and ratio compression.  

The above exemplified connection further implies that increased multiplexing capacity of TMTs 

(6-, 10-, 11-, and 16-plex) naturally comes at some expense for the dynamic range, and that higher 

AGC values can improve the dynamic range. However, the potential of the latter is restricted by 

the maximum number of ions that do not lead to space charging in the Orbitrap (or the C-trap for 

that matter) which will cause high abundant ion species to coalesce [334, 335]. Instead of two 

distinct, nearby peaks, ion coalescence results in a single peak with the average m/z value of the 

two original species. It is more likely to occur, the more charges are collected, the closer and more 

abundant the two ion species are, and the higher their m/z [336]. Although rather unexpected 

due to the small mass of TMT reporter ions, it has been reported that AGCs larger than 2e5 can 

cause coalescence of proximate TMT10-plex reporter ions on a QExactive mass spectrometer 

[337] which precludes accurate quantification. 

In theory, MS1-based quantification is also compositional since similar AGC constraints are ap-

plied, but the total intensity in a spectrum is usually distributed among many more ion species 

(i.e. peptides). This confines the influence of an increase of a single ion species on the other spe-

cies. Consequently, the effects of a restricted number of allowed charges for MS1-based quantifi-

cation within the same spectrum (e.g. SILAC) is in most cases insignificant [331]. Importantly, the 

relative quantification for label-free experiments is not performed within the same spectrum. 

Thereby, the possible dynamic range is enhanced via the automatic adjustment of injection times 

for different scans resulting in an improved inter-scan versus intra-scan dynamic range [333]. La-

bel-free quantification also differs globally from TMT quantification in ion injection times for the 

quantitative scan, which are usually in the low ms range due to the much higher ion current in full 

scan mode. This can more quickly result in an apparent detector saturation for vastly increased 

injection amounts. Saturation is determined by the highest number of charges that the electrom-

eter responsible for AGC determination can accurately measure and the smallest possible ion in-

jection time that can be accomplished which together dictate the ability to inject the correct num-

ber of charges defined by the AGC. In addition, the accuracy of calculations of actual intensities 

from the AGC target value will drop with extremely small ion injection times, and injection of too 

many charges can again lead to ion coalescence hampering accurate quantification [335].  

Concisely, label-free and TMT-based quantification exhibit large differences in dynamic range. 

While part of the smaller dynamic range of isobaric tagging strategies can be explained by ratio 

compression, they are also simply more affected by inherent constrains of instrument architecture 

and MS measurement principles than the MS1-based, label-free approach. This implies that even 

with a complete removal of ratio compression, TMT-based quantification would still exhibit a 

more confined dynamic range than (inter-scan) label-free methods. 
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4.2 Negotiating quantification approaches for (modified) peptides 

Inseparable connected to the dynamic range, is quantification accuracy. In this regard, the label-

free method was clearly superior to both TMT-based approaches. Nevertheless, accuracy of TMT 

quantification significantly improved to an acceptable level when the synthetic peptide spike-in 

and the species mix sample were measured in MS3 mode. This is in line with studies reporting 

diminished ratio compression owing to the additional selection step during MS3 measurement 

[222, 246]. Besides accuracy, precision is another parameter to consider, especially for statistical 

analysis of quantitative differences. As reported by others [250, 325, 327, 328], precision of TMT-

based quantification was improved compared to the label-free quantification strategy. Com-

monly, the lower precision of label-free data is explained by the independent sample processing 

during which inhomogeneous biases can potentially be introduced [267, 271], whereas samples 

after TMT labelling are processed together and affected uniformly by sample losses preserving 

precision. However, these biases would equally influence accuracy of label-free quantification that 

is generally considered excellent for cautiously processed samples. This makes it very likely that 

the difference in precision is largely coupled to the difference in data acquisition and post-acqui-

sition processing. This appears plausible especially because other MS1-based quantification meth-

ods like SILAC and dimethyl show a similar precision to label-free data [250, 327] even though 

samples are combined much earlier in the workflow. Hence, the superior precision of isobaric tag 

approaches is mainly connected to the improved signal-to-noise ratios in MS2 versus MS1 spectra 

and the less complicated extraction of intensity information from MS2 spectra [271]. MS1-based 

quantification approaches require sophisticated algorithms for detection, extraction, tracking, 

and integration of peptides features along retention time [272] and the performance of the algo-

rithms is highly dependent on the number of MS1 spectra acquired across the peptide elution 

profile which overall limits precision of quantification. 

Noteworthy, it has recently been shown that, due to the enhanced precision, ratio distortion and 

a subsequently declined accuracy are less critical for calling significant differences between con-

ditions when replicates are included within the same TMT experiment [250, 328, 338]. When TMT-

labelled and label-free data comprising known abundance differences were compared, both ap-

proaches overall demonstrated an excellent performance with only minor differences in sensitiv-

ity and false positive rates [250, 326, 328]. Meanwhile, it often depended on the extent of the 

true ratio between conditions which of both strategies showed slightly superior ability to flag 

known differences correctly. Importantly though, TMT-based quantification outperformed label-

free quantification reliably with regard to the total number of repeatedly quantified proteins and 

peptides across replicates. This in turn resulted in an overall higher number of proteins/peptides 

that were available for statistical testing and subsequently identified as significantly different. This 

illustrates the importance of another parameter for evaluation of quantification approaches, 

which is the occurrence of missing values across conditions. 

The unmatched dynamic range and accuracy of label-free quantification was countervailed by a 

much higher number of missing values in both the spike-in and the 17-AAG treatment experiment. 

Indeed, as already observed by others [250, 325, 328], the label-free method quantified similar 

total numbers of peptides as the MS2-based TMT approach, and even much higher numbers as 

corresponding MS3 data when comparable measurement times were employed. However, about 

two thirds of the peptides showed at least one zero intensity in any of the ten samples. This was 

the case although match-between-runs [255, 281] was enabled which allowed for the inter-run 

transfer of PSMs using accurate retention time and m/z information followed by quantification of 
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corresponding peptide elution profiles [255, 281]. Ultimately, 2.5 to 3 times more peptides were 

reproducibly quantified in all conditions with MS3-based quantification of TMT-labelled as com-

pared to label-free samples, which is in line with recent reports [250, 328]. Notably, the fraction 

of missing values among peptides is higher than commonly observed for proteins (~40-50 %) [328, 

339] which emphasizes the aggravation of this issue on peptide level. Noteworthy, the advantage 

of less sparse quantification matrices on peptide level for TMT-based approaches only comes into 

effect properly as long as the number of samples does not exceed the available number of isobaric 

plexes. More samples can still be compared using isobaric tags when several plexes are analysed 

including a common reference sample (see e.g. [274, 275, 299, 340]). Then, however, similar chal-

lenges with regard to missing values will have to be tackled during data analysis [341] and these 

cannot be overcome by elution profile matching across runs. 

For the label-free quantification method, match-between-runs has proven to be powerful in im-

proving the number of peptides without missing values by more than 80 % (similar to what was 

reported in [250]). Still, the label-free quantification matrix was vastly incomplete illustrating the 

limitation of such algorithms especially for very complex samples. It was also observed that match-

ing of very low abundant peptides in the spike-in dilution experiment led to inaccurate intensities 

essentially setting the lower limit of the dynamic range. It should be noted, though, that there was 

no difference in quantification accuracy between PSMs identified by an actual MS2 spectrum and 

matched intensities for higher abundant peptides corroborating earlier observations [328]. Con-

sequently, the match-between-runs algorithm offers a considerable improvement for label-free 

quantification in reducing missing values. One could even argue that the less accurate intensities 

of extremely low abundant species are nothing else than automatically imputed values for missing 

quantifications.  

It is commonly accepted that missing values in MS1-based quantification approaches occur more 

often for low abundant peptide species since they are less reliably picked in every run [250, 328, 

342]. The spike-in experiment (without the biased, highest spike-in sample) was in particular 

suited to examine the relationship between intensities and missing values in more detail. In this 

setup, a constant amount of HeLa peptides was present in every run and, thus, every missing value 

must be connected to an MS2 spectrum of an equally abundant peptide in another run. While it 

was true that peptides with no or only one missing value had, on average, significantly higher 

intensities, all other peptides showed very similar intensity distributions and their intensities 

spanned 4 orders of magnitude irrespective of the number of missing values. This supports earlier 

findings [343] and suggests that the relationship between intensities and missing values is not 

strongly linear. Hence, a higher number of missing values has little predictive value with regard to 

a supposedly low intensity of a peptide. Missing values among high abundant precursors may be 

explained by overlapping isotope patterns that complicate the reliable assignment of charges 

states and subsequent selection for fragmentation by the instrument software. A recent improve-

ment of the algorithm that determines peptide precursor charge states from isotope clusters 

(APD: advanced peak determination) indeed showed improved sampling of precursors in highly 

populated m/z regions and also for peptides in the high abundance range [344]. Consequently, 

treating missing values in label-free data as indicator for low abundance can be misleading and 

they must rather be understood as a true missing value where no quantitative information is avail-

able. Conversely, zero intensities in TMT-based quantification approaches are inherently more in-

formative since they reflect a quantitative value that is truly below the limit of quantification in 

the recorded scan. The poor correlation of intensity and missing values in label-free data puts the 

broad application of missing value imputation assuming low abundance of missing quantification 
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under question. It has even been reported recently that such imputation of label-free data did not 

improve the detection of known regulated proteins but even increased the number of false nega-

tives instead [328]. Clearly, imputation of proteomics demands more sophisticated algorithms and 

a careful evaluation of the influence of any imputation strategy on the label-free datasets at hand 

[343].  

Specifically for phosphoproteomics, additional advantages of TMT over label-free quantification 

became apparent. First and unexpectedly, IMAC enrichments from TMT-labelled samples showed 

consistently better selectivity towards phosphorylated peptides. It was hypothesized that this 

might be connected to a decreased contamination with non-phosphorylated peptides possessing 

multiple acidic residues which are known to be frequently co-enriched [345]. However, this could 

not be confirmed by an examination of non-phosphorylated peptides in label-free and TMT data 

since they showed virtually the same distribution of acidic residues in both datasets. Hence, the 

reason for this discrepancy remains elusive. Second, challenging site localizations (e.g. at neigh-

bouring sites) led to ambiguous and varying allocation of the modification in different label-free 

runs. Hence, the number of total phosphopeptide species and, at the same time, missing values 

was artificially increased. In contrast, TMT quantification within the same spectrum assured that 

the identical peptide is compared, even if localization probability was low. Third, TMT-labelled 

phosphopeptides exhibited an improved localization, particular for N-terminal phosphorylation as 

determined in the synthetic peptide spike-in experiment. It can be hypothesized that this is medi-

ated by the commonly observed increase in the complimentary b-ion series for TMT-labelled pep-

tides [346, 347], which presumably increases the likelihood of observing a site determining ion. 

The fact that the gain in b-ions is generally less profound in the higher mass range [347] may 

explain why this boost in localization certainty is not observed for peptides bearing the phosphor-

ylation at the C-terminus. Interestingly, TMT-MS3 provided the highest fraction of correctly local-

ized sites. This may be due to the use of CID-MSA fragmentation for corresponding MS2 spectra, 

which has been shown to improve correct phosphosite localization [238, 249]. In addition, this 

could be a result of the comparably slow MS3 method leading to preferential sampling of more 

abundant peptides that, in turn, give rise to more informative spectra. The connection of TMT 

labelling and phosphosite localization needs to be further investigated including larger sets of la-

bel-free and TMT-labelled peptides with varying positions of the phosphorylation site and using 

different fragmentation modes. Current efforts to systematically acquire such data are ongoing 

[231] and will provide insight on whether and how TMT-labelling globally improves site localiza-

tion in the future.  

4.3 Managing constraints of TMT-based (phospho)peptide quantification  

The capability to repeatedly quantify (phospho)peptides across many conditions without intro-

ducing missing values that are difficult to impute or even spurious was considered the major ad-

vantage of TMT above label-free quantification. This made the isobaric approach especially attrac-

tive for peptidoform analysis. Hence, it was evaluated in more detail how TMT acquisition can be 

optimized and substantial drawbacks such as ratio distortion and decreased identification rates 

can be managed most efficiently.  

It became clear that improved accuracy as effectuated by measurements in MS3 mode comes at 

the expense of proteome coverage. Empirically, MS3 methods lead to a 30-40 % decrease in iden-

tifications on peptide and modification site level and 15-20 % on protein level [250, 348]. The 

compromised proteome coverage is a result of the additional fragmentation and scan recording 

steps that decelerate the acquisition. This becomes increasingly relevant the shorter the applied 
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gradients are, and likely explains the even more profound reduction in peptide identifications in 

more complex, whole proteome single shots of the species mix sample compared to the less com-

plex phosphoproteome measurements (45 % loss for 60 min vs. 22 % for 90 min). As mentioned 

above, MS3 measurements at the same time significantly reduced ratio compression by minimiz-

ing co-isolation as visible from the considerably increased number of true zero intensities in outer-

most channels of the yeast-human mix sample. Notably, the species mix sample was designed to 

emulate a worst-case scenario for quantification by mixing yeast peptides into human background 

in very low quantities and measuring single shots without any fractionation. This promoted co-

isolation and a substantial contribution of human background to yeast intensities resulting in ratio 

distortion. In the phosphoproteome, the fraction of yeast peptide was even lower (about 4 times 

less as deduced from MS1 peptide intensities) which explains the even more profound ratio dis-

tortion of phosphopeptides in MS2 mode measurements. Interestingly, this difference between 

unmodified and phosphorylated peptides disappeared upon MS3 acquisition suggesting that such 

kind of advanced measurements are equally powerful for higher and lower abundant, and more 

and less compressed peptides. 

Next, it was assessed how differences in accuracy influence statistical test results specifically for 

the two TMT measurement modes. As the conducted statistical tests indicated, ratio distortion in 

MS2 mode impeded the identification of true regulations when they were small (below 4-fold). 

The argument has been made that larger regulations are biologically more interesting and that 

thus the lower sensitivity on smaller ratios is justifiable [250]. On the other hand, it may as well 

be argued that rewiring of protein expression or induction of PTMs (which is limited by their initial 

stoichiometry) may often only lead to smaller, but potentially widespread changes that may be of 

functional importance. In such cases, MS3 measurements are beneficial, as they have been proven 

to considerably increase the sensitivity for detecting smaller changes for very low abundant yeast 

phosphopeptides in the presented setup. In this context, it is important to note that the sensitivity 

of detecting such changes is again dependent on the experimental design that defines the ratios 

across yeast groups. Due to the compositional nature of TMT quantification (see p. 85), a group 

with very high ratios compared to the other two groups (here 1:8 and 2:8) will limit the detecta-

bility of the smaller ratio (here 1:2). Hence, it is not surprising that O’Connell et al. who mixed 

yeast peptides in ratios of 1:2:3 (instead of 1:2:8) into human background achieved a much higher 

sensitivity for detecting significant regulations in groups with the expected fold change of 2 (96 % 

versus 78 % in data presented here). Nevertheless, basic differences of MS2 and MS3-based ac-

quisition can be deduced irrespective of the exact experimental design. Surprisingly, comparisons 

of the two different quantification approaches in the literature have so far been only based on the 

degree of recovery of known regulations and the absolute number of detected, significant changes 

[250, 326] meanwhile neglecting false positive rates that can potentially result in misleading con-

clusion. In the here conducted analyses, false positives were increased upon MS2-based quantifi-

cation, this time affecting groups with expectedly larger ratios. Ultimately, the decision on which 

measurement mode to use depends on the consideration of how much quality (accuracy, sensi-

tivity, specificity) can be sacrificed to improve quantity (proteome coverage) and which advanced 

measurement modes are available (see also pp. 170).  

Filtering of acquired spectra based on precursor intensity fraction (PIF; fraction of intensity in the 

isolation window that is derived from the targeted precursor) can be an alternative approach for 

improvement of quantification accuracy when advanced instruments for MS3 mode measure-

ments are not available. A PIF cut-off can remove a fraction of potentially highly distorted pep-

tides. However, TMT intensities in some of the remaining spectra may still be compressed because 
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the PIF has limited predictive value for the actually existent ratio compression (based on personal 

experience and observations of others [250, 326, 327]). This is likely caused by an underestimation 

of co-isolation from raw file spectra that are used for PIF estimation owing to a specific signal cut-

off that is already applied by the MS instrument software [245, 267]. In addition, different frag-

mentation efficiencies and reporter ion yields for co-isolated compared to targeted peptides can 

result in a significant contribution to reporter intensities even of very low abundant background 

peptides [326, 327]. Attempts have been made to computationally correct for co-isolation based 

on PIF values [245, 326], but this only works under the assumption that the co-isolated peptide(s) 

are of constant abundance in all conditions. While these corrections may be expedient on protein 

level where many quantitative data are aggregated, they are likely too inaccurate for individual 

PSMs [245] due to the low correlation of PIF and ratio compression and thus are not applicable on 

the level of individual peptides. 

Besides quantification accuracy, identification rates were generally lower for TMT-labelled as 

compared to label-free peptides. This has been observed by others already [325, 349, 350], and 

various reasons and solutions have been proposed for this phenomenon. First, although the label-

ling reaction with NHS-ester reactive reagents has a high selectivity towards primary amines, 

overlabelling on hydroxyl and imidazole groups has been reported to occur [351-356] and was 

also detected in TMT titration experiments using adequate search parameters. The use of stand-

ard search parameters for TMT-labelled samples, however, would prohibit identifying those 

overlabelled peptides and thus decrease identification rates. Interestingly, also pre-processing of 

spectra by removing ions related to labelling reagents has been proven to have benefits for iden-

tification scores and thus identification rates [349, 357] suggesting that isobaric tag-labelled pep-

tides are inherently more difficult to identify by current search algorithms. Furthermore, upon 

TMT-labelling, a primary amine is replaced by a tertiary amine which increases the gas phase ba-

sicity [358] and leads to a slight increase in the average charge state [327, 350, 359]. In addition, 

it was hypothesized that isobaric tags change the mobility of protons along the peptide backbone 

[349]. Higher charge states and altered proton mobility may lead to disparate or more complex 

fragmentation patterns and those may not sufficiently be accounted for by standard search algo-

rithms which are optimized for doubly charged peptides [360]. In line with these assumptions, a 

charge reduction through application of ammonia vapour during ionization has been shown to 

improve identification rates for isobaric tag-labelled peptides [350]. Together this indicates that 

identification rates and thus (phospho)proteome coverage could generally be improved by adjust-

ing search algorithms specifically to isobaric tag-labelled peptides and optimizing fragmentation 

modes to reduce adverse effects of altered charge states and proton mobility.  

An MS3 method optimization series suggested that MSA may be such a useful fragmentation tech-

nique for the identification of TMT-labelled, phosphorylated peptides. This is not surprising since 

the additional activation of the neutral loss, which is even more profound for TMT-labelled than 

for label-free phosphopeptides due to the changed proton mobility [359], has already been re-

ported to improve scores and localization certainty for phosphopeptides [238]. However, it is a 

rather slow fragmentation process. Interestingly, HCD showed an even slightly better perfor-

mance with regard to absolute number of identifications despite lower identification rates. It re-

duces the formation of neutral losses similar to MSA and additionally preserves the lower mass 

range yielding richer MS/MS spectra compared to CID [234]. However, this increase may mostly 

be explained by the fast beam-type activation allowing for the acquisition of many more spectra 

than the slower fragmentation methods. In line with Hogrebe et al. [250] who recently also pub-

lished a comparison of different quantification approaches for phosphorylated peptides, OT 
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readout performed better for phosphopeptide identification irrespective of the fragmentation 

mode used, presumably based on a better mass accuracy which enhances scores. Consequently, 

MSA-OT appeared most advantageous for identification of TMT-labeled phosphopeptides. With 

regard to quantification, significantly more ratio compression was observed when the neutral loss 

generated after CID fragmentation was allowed for the SPS and subsequent quantification. This is 

in conflict with other reports [248-250], which stated improved TMT intensities with no 

compromise on quantification accuracy for neutral loss methods. Based on their results, Erickson 

et al. have even argued that ratio distortion is not caused by co-isolated peptides of identical 

charge and mass but instead by low-level background fragmentation [248]. The most profound 

difference of here presented data to these studies was the abundance of peptides used for the 

evaluation: While here the aim was to determine ratio distortion for very low abundant peptides, 

the other laboratories assessed peptides that were of much higher abundance (in some cases even 

higher than the constant background). It can be reasoned that the increased ratio compression 

observed in the presented data resulted from co-isolated, non-changing phosphopeptides of the 

identical charge state as the targeted precursor which produced a neutral loss that was again of 

similar m/z as the targeted neutral loss and thus contributed to distorted intensities. The discrep-

ancy with other studies suggests that this mechanism is, on average, not as relevant for higher 

abundant peptide species, although it remains unclear from their results whether the fraction of 

highly compressed peptides may have been considerably increased in these studies.   

Other parameters that influenced quantitative performance were isolation windows and the num-

ber of SPS precursors. The beneficial influence of smaller isolation windows on ratio compression 

has been under debate [276], but early analyses may have been biased by the limited capabilities 

of early quadrupoles to reproducibly narrow isolations of precursors. This should be improved on 

newer instrument generations. A more recent report shows a clear reduction of ratio distortion 

with smaller windows [338], which was corroborated by the presented data even for MS3-based 

quantifications albeit to a lesser extent. Moreover, the previously observed negative correlation 

of accuracy and precision mediated by higher TMT intensities was also detected [338]. The same 

relation was evident when the number of fragment precursors for SPS was scaled up. More 

notches increase the probability of including a fragment from a co-isolated peptide rendering a 

very small number of SPS notches advantageous for average accuracy. However, few notches, at 

the same time, increased the fraction of strongly distorted peptides likely resulting from cases 

were only fragments from co-isolated but not the targeted peptide were selected. As a compro-

mise between robust and accurate TMT quantification, an MS2 isolation window of 0.7 m/z and 

10 SPS notches were chosen for MS3 methods.  

4.4 Characterizing critical parameters for TMT labelling  

Several protocols in which the amount of TMT reagent recommended by the vendor for peptide 

labelling was reduced have recently been published [298, 356, 361-363] and such economically 

optimized labelling workflows have successfully been applied to address a variety of biological 

questions [364-366]. However, details on the quantities and concentrations of reactants vary 

widely in the published literature and, to the best of the knowledge of the author, no systematic 

evaluation of the influence of reducing TMT-to-peptide ratios on the overall labelling performance 

has been reported to date. The conducted series of TMT-labelling experiments using different re-

agent and peptide concentrations, quantities, and ratios allowed for a systematic assessment of 

the influence of these parameters on the labelling reaction. Smaller reaction volumes and, conse-

quently, higher TMT and peptide concentrations were advantageous for labelling efficiency as the 
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law of mass action would demand. Further, the smaller the ratio of TMT to peptides, the more 

crucial was the concentration of reagent and peptide. This can be readily explained by the com-

peting reactions of labelling of primary amines and hydrolysis of the TMT reagent in aqueous con-

ditions, which contributes to less efficient labelling in less concentrated protein and TMT solu-

tions. Therefore, for reagent-to-peptide ratios of 1:1 (wt/wt), it is advisable to employ TMT and 

peptide concentrations of 10 mM (3.4 µg/µL) and 2 g/L, respectively, to ensure efficient labelling. 

Importantly, peptide concentrations should be determined directly before TMT labelling (as done 

in the optimization experiments) because, from experience, 30 to 50 % of the initial protein quan-

tity can be lost during digestion and subsequent desalting procedures and these losses may vary 

between sample types and laboratories.  

Moreover, it needs to be stressed that careful handling of the TMT reagent is inevitable (as de-

scribed in the manufacturer protocol) when working with low TMT-to-peptide ratios to avoid loss 

of active reagent as a result of hydrolysis caused by absorbed water from ambient air. This is of 

particular relevance when TMT leftovers need to be stored. In the author’s experience, unused 

TMT reagent can readily be kept in anhydrous ACN at -20 °C or -80 °C for at least 3 months without 

any drop in labelling efficiencies. For long-term storage, TMT should be aliquoted in an inert at-

mosphere and stored dried down and under exclusion of water. This can easily be realized by 

performing the aliquoting procedure in a bin filled with argon, and aliquots can be kept under 

argon or with a desiccant. By this means, aliquoted TMT reagents have been stored for up to a 

year without any decline in labelling performance.  

Although the optimized protocol, in principle, can be adapted to peptide quantities in the low 

microgram range by appropriately decreasing reaction volumes, handling very small volumes, par-

ticularly TMT reagent in 100 % ACN, is not very practical and can lead to inaccuracies. Conse-

quently, it is advisable to increase the relative reaction volume for peptide quantities below 50 µg 

and compensate for the lower TMT and peptide concentrations (e.g. 5 mM TMT and 1 g/L peptide) 

by concomitantly increasing the TMT-to-peptide ratio (e.g. to 2:1). For peptide quantities below 

10 µg, even higher reagent-to-peptide ratios are likely required [367]. Alternatively, it is conceiv-

able that higher ACN concentrations may have a positive effect on labelling efficiency (due to 

lower reagent hydrolysis) particularly for less concentrated samples or low absolute sample quan-

tities and would facilitate the use of the desired TMT-to-peptide ratio of 1:1. Although labelling 

experiments at different ACN concentrations were included during the optimization process, 

these always also involved variations of other parameters such as TMT or peptide concentration. 

Hence, a systematic assessment of the influence of ACN on the labelling reaction would require 

further experiments preferentially using small peptide quantities. 

Small changes in the pH of the reaction buffer can also affect labelling efficiency and overlabelling. 

Typically, more alkaline pH values promote the inactivation of NHS-esters due to hydrolysis [351]. 

This is particularly relevant when the excess of the labelling reagent is limited. For example, a 

TMT-to-peptide ratio of 1:1 roughly corresponds to a 2.5 x molar excess of TMT reagent over the 

estimated molarity of primary amines in a perfectly digested human proteome. Therefore, the pH 

(and purity) of the peptide solution must be controlled properly to ensure a reproducible out-

come. At the same time, pH values lower than the pKa values of the primary amines of lysine and 

peptide N-termini result in a higher degree of protonation at equilibrium, which hinders the reac-

tion with TMT. Since labelling was performed at pH 8.5, this effect is illustrated by the higher frac-

tion of non-labelled lysine residues (pKa ~10.5) compared to N-termini (pKa ~7.7) in all samples 

that show significant underlabelling in the single-shot analyses. However, also an opposite trend 

of N-termini being preferentially underlabelled at pH 8.5 using various TMT, peptide, and ACN 
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concentrations was observed, particularly in samples that show near complete labelling. This is 

also in line with reports from literature [194, 367]. This may be explained by the fact that the 

higher pKa value of the ε-amine also typically (depending on the solvent) corresponds to a higher 

nucleophilicity in the deprotonated state and consequently a higher reactivity towards TMT. 

Thereby, the labelling of lysine residues may be kinetically favoured over peptide N-termini under 

certain conditions. However, which reaction conditions determine preferential underlabelling of 

either the ε- or α-amine remains elusive and needs further investigation. Notably, it has been 

shown for pH values of up to 8.5 that the increase in reactivity of both primary amines exceeds 

the accelerated hydrolysis rate of NHS esters [354, 368] providing the basis for conducting the 

TMT labelling reaction at pH 8.5.  

Considering that the pKa values of the side chains of lysine and tyrosine are similar [329], one 

would expect that the reactivity of tyrosine would also increase at elevated pH, rendering it more 

prone to react with TMT at more basic pH values. However, several studies investigating labelling 

of amino acids and peptides using NHS esters reported that the abundance of acylated tyrosine 

residues is enhanced only at a more acidic pH, whereas more alkaline pH values favour N-acylation 

[353, 354, 368]. This may be explained by the lower stability of tyrosine acylation in basic condi-

tions that can be harnessed to reverse overlabelling by adding hydroxylamine and thus increasing 

the pH above 9 to quench the labelling reaction [352, 355, 368, 369]. The reversal of overlabelling 

by hydroxylamine may also account for the overall lower fraction of O-acylation at higher TMT-to-

peptide ratios observed in the titration experiments using 12.5 to 200 µg peptides compared to 

the ones using 100 to 800 µg peptides. In the latter series of experiments, Tris buffer at pH 8 in-

stead of hydroxylamine was used to quench the labelling reaction.  

The high prevalence of TMT-labelled serine and threonine residues seems surprising considering 

their very high pKa values [330] which must result in a high degree of protonation of their hydroxyl 

groups at pH 8.5 and, therefore, a low susceptibility to react with TMT. Indeed, an early study 

investigating the reactivity of NHS esters towards amino acids could not detect serine and threo-

nine derivatives at pH 7.4 [351]. In contrast, others have found that hydroxyl-containing amino 

acids in peptides are reactive towards NHS esters when histidine is in close proximity, notably in -

2 or +2 position, to the labelled amino acid (H-X-[STY], [STY]-X-H) [352, 354, 355, 370]. This implies 

that pKa values can change drastically depending on the molecular environment of amino acids. 

Indeed, overlabelled peptides were also strongly enriched in histidine in presented data, and ser-

ine, threonine, or tyrosine residues were 3 to 11 times more likely to be identified in a TMT la-

belled state when they were part of the H-X-[STY] motif. The pKa of histidine is lower than that of 

N-termini [329] which would, in principle, promote histidine modification by TMT. In fact, this has 

been suggested to occur in solid-phase labelling protocols under slightly acidic conditions [356]. 

However, for the applied in-solution labelling protocol (performed at basic pH), the results of da-

tabase searches allowing TMT as a variable modification on histidine provided no plausible evi-

dence that histidine itself is prevalently labelled. This is in accordance with studies reporting a 

transient, very labile modification of histidine under neutral to alkaline conditions with spontane-

ous hydrolysis of the formed N-acylimidazole that has a half-life in the range of minutes [351, 353]. 

This may also explain the preferential overlabelling of histidine containing peptides via an increase 

in the local concentration of TMT by an initial derivatization of histidine and a subsequent reaction 

of the N-acylimidazole intermediate with proximal hydroxyl-containing amino acids [354]. Be-

sides, histidine could also lead to an increase in the nucleophilicity of hydroxyl containing amino 

acids via hydrogen bonding between the side chains resulting in a higher reactivity towards TMT 

[370]. Of note, the enrichment of histidine in O-acylated peptide sequences likely also accounts 
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for the, on average, higher intensities observed for overlabelled peptides compared to correctly 

and underlabelled peptides. Irrespective of absolute abundance, histidine-containing peptides ex-

hibit generally higher intensities than non-histidine containing peptides due to improved ioniza-

tion mediated by its gas phase basicity. 

Interestingly, a weak but consistent increase in spectra identification rates with decreasing TMT-

to-peptide ratios could be noticed in all searches of titration experiments specifying TMT as vari-

able modification on lysine and peptide N-termini. As already suggested by Böhm et al. [356], this 

increase in identification rates may be ascribed to a reduction in the fraction of overlabelled pep-

tides which was simultaneously noticed at decreased TMT-to-peptide ratios. A similar observation 

was made by Miller et al. who detected a higher fraction of modified tyrosine residues with higher 

reagent-to-peptide ratios [352]. This may be a result of different rates of TMT hydrolysis and the 

reaction with primary amines versus hydroxyl groups. O-acylation has been found to proceed up 

to 20 times slower than N-acylation [352, 353] at least when no histidine was present in close 

proximity. Therefore, employing relatively low reagent quantities that can be fully consumed by 

reacting with all primary amines as well as accounting for some reagent hydrolysis would suppress 

O-acylation and thus reduce overlabelling. Although not investigated here, shortening the reac-

tion time might further minimize overlabelling.  

4.5 Conclusion 

A range of different sample and experimental designs was employed to provide the basis for a 

well-justified decision on which approach is most suitable for reproducible and accurate quantifi-

cation of individual peptides across several conditions. While label-free quantification expectedly 

showed the best accuracy and dynamic range, missing values substantially limited the ability to 

track the quantitative behaviour of individual peptides across different samples. Hence, they will 

ultimately restrict the inference of information about peptidoforms across conditions in a biolog-

ical setup and may complicate or bias statistical approaches that often benefit from (or are only 

applicable in the case of) a complete quantitative matrix across samples. In contrast, TMT-based 

quantification featured an unmatched precision and a, for the most part, complete quantitative 

matrix within a single TMT-plex thereby improving overall proteome coverage. Together, this 

readily enabled the identification of peptide level changes across conditions even when acquiring 

TMT reporter ions in the much less accurate MS2 mode as long as replicates are available. In ab-

sence of replicates, however, MS3-based TMT quantification represented a compromise with im-

proved dynamic range and accuracy but reduced proteome coverage compared to MS2 data. If 

time is available, this can be overcome by deeper sample fractionation and higher measurement 

costs. This, in turn, would also further reduce ratio distortion [244] which even in MS3 mode could 

not be overcome completely. In general, TMT approaches have the additional advantage of re-

quiring less input material per condition. This can prove beneficial especially when sample 

amounts are limited or larger quantities are needed for enrichment of PTMs. The disadvantage of 

higher costs for sample preparation due to expensive isobaric labelling reagents was overcome by 

adjusting the labelling protocol. The optimized in-solution labelling procedure is cost-effective 

without any sacrifice in labelling efficiency or robustness and reduces the amount of required TMT 

reagent by 8-fold relative to the vendor’s protocol. Thus, it represents a further improvement of 

previously published labelling workflows [298, 356, 361, 362]. In conclusion, the MS3-based quan-

tification approach was considered most expedient for analyses of proteoforms with a bottom-up 

approach enabling robust, quantitative measurements of single peptides across multiple condi-

tions. 
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1 Introduction and summary 

Cellular proteins exist in a dynamic state in which they are continuously destructed and re-con-

structed [97], and the coordination of protein synthesis and degradation for controlling and ad-

justing protein abundance is a fundamental process in cellular homeostasis. In order to expand 

the understanding of the concerted action of these two processes, protein turnover has been 

studied for decades (reviewed in [372]). Traditional approaches have made use of a multitude of 

methodologies notably pulse-chase radiolabelling [157, 373], inhibition of protein synthesis [152], 

or tagging of endogenous proteins with fluorescent dyes [153, 154]. However, radioactive label-

ling only allows for the analysis of bulk protein turnover or of the stability of single proteins. Treat-

ment of cells with translation inhibitors, on the other hand, disrupts cell homeostasis and half-

lives determined in this way might not fully reflect the actual endogenous degradation process. 

Similarly, measuring the stability of fluorescently tagged and overexpressed proteins might not 

resemble physiological protein half-lives.  

In recent years, advances in MS based technologies in conjunction with SILAC [167] have dramat-

ically improved protein turnover measurements. Nowadays, dynamic SILAC experiments enable 

the parallel measurement of turnover characteristics of thousands of endogenous proteins ex-

pressed at physiological levels [113, 168-170, 305, 374, 375]. Yet, despite ongoing efforts, tech-

nical issues still exist and important cellular mechanisms affecting protein stability at the molecu-

lar level still often remain elusive. For example, comparison of different studies often show limited 

correlation of protein turnover rates and sometimes arrive at contrasting conclusions about which 

protein properties might affect half-lives [125, 153, 163, 170, 305, 375]. In addition, different cel-

lular stabilities have been reported for the same protein depending on its localization [170], the 

cellular condition [375], protein interactions [376], or its post-translational modification state 

[163]. Moreover, differences in turnover rates have also been detected for splice variants of the 

same gene [162]. Together with the fact that more than 200 different types of protein modifica-

tions have been described [14] and that nearly all multi-exon genes have been shown to be alter-

natively spliced [29, 30], this demands studying turnover on the level of individual proteoforms, 

but such analyses have largely been neglected in the past. 

The investigation of proteoform dynamics with bottom-up proteomics approaches is not trivial. 

First, a robust and accurate method for quantification of pulsed SILAC labelled peptides across 

multiple time points is needed because often only single peptide sequences distinguish non-ca-

nonical from canonical isoforms or modified from non-modified proteins. However, the standard 

dynamic SILAC approach suffers from substantial missing quantitative values across pulse time-

points measured as separate samples. This issue is amplified when increasing the number of meas-

ured pulse time-points and matters a lot when analysing data at the peptide level. While protein 

level quantification can make use of averaging several peptide measurements thereby increasing 

the robustness of turnover estimation, every missing value may severely lower accuracy at the 

peptide level. As indicated by initial results of the comparison of MS1-based (label-free) and TMT-

based quantification (see chapter III), multiplexing and subsequent quantification of all time-

points in the same spectrum may overcome this issue. The general feasibility of combining pulsed 

SILAC with iTRAQ 4-plex labelling of peptides derived from different pulse time-points has previ-

ously been demonstrated in Streptomyces coelicolor [176] albeit with low proteome coverage. 

Subsequently, TMT labelling of pulsed SILAC samples has been proposed in a review by Hughes 

and Krijgsveld [377] and recently demonstrated by Welle et al. [302] who determined turnover 
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dynamics for 1,276 human proteins in a single MS3 based experiment. Yet, none of the above 

studies have specifically addressed turnover at the level of proteoforms.  

Here, the merits of combining dynamic SILAC and TMT-labelling of ten pulse time-points for pep-

tide-resolved analysis of protein turnover were evaluated. For this purpose, a robust normaliza-

tion method for multiplexed turnover data was established. Moreover, a new approach to com-

pute absolute protein copy numbers per cell from TMT data was developed. Pulsed SILAC-TMT 

and standard dynamic SILAC data showed high concordance and SILAC-TMT hyperplexing, addi-

tionally, enabled high proteome coverage (6,000 proteins) within reasonable time (two days) of 

LC-MS measurements. Systematic evaluation of replicates showed that robust single peptide level 

turnover measurements can be achieved if experiments are conducted carefully. Facilitated by 

the deep proteome coverage, several examples of post-transcriptional and post-translational pro-

cessing leading to differential protein stabilities were identified. For example, N-terminally pro-

cessed peptides exhibited both faster and slower turnover behaviour compared to other peptides 

of the same protein. In addition, the suspected proteolytic processing of the fusion protein FAU 

was substantiated by measuring vastly different stabilities of the cleavage products. Furthermore, 

differential peptide turnover suggested a previously unknown mechanism of activity regulation 

by post-translational destabilization of Cathepsin D as well as the DNA helicase BLM. Finally, the 

comprehensive dataset enabled a detailed re-evaluation of molecular determinants of proteome 

stability in steady-state cells and uncovered that oxidative stress may contribute to the high turn-

over of proteins in the respiratory chain complex I. To enable further research on the topic, protein 

stability data have been made available in ProteomicsDB [378].  
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2 Experimental designs 

The following sections provide an overview of the experimental procedures and methods that are 

specific for the evaluation of the pulsed SILAC-TMT approach. Details on individual experimental 

steps, data processing and analyses are specified in chapter II (pp. 48, and pp. 52). The rationale 

of the experimental design is described in more detail in the results section (pp. 105). 

For an initial assessment of the pulsed SILAC-TMT method (Figure IV-1A), K0R0 cells were switch 

to K8R10 medium and lysed directly before medium exchange (0 h time-point) and after 1, 3, 6, 

10, 16, 24, 32, 40, and 50 h. After digestion, peptides were labelled using TMT, combined, sepa-

rated into six bRP fractions, and analysed employing an MS2 or MS3 method for TMT quantifica-

tion. In the main experiment (Figure IV-1B), four HeLa cell culture replicates and an MS measure-

ment duplicate were performed to assess the reproducibility of the pulsed SILAC-TMT approach 

and enable statistical evaluation of differences in peptide turnover rates. Two cell batches were 

switched from K0R0 to K8R10 and two replicates were switched from K8R10 to K0R0 and lysed 0, 

1, 3, 6, 10, 16, 24, 34 and 48 h after medium exchange. This time, an “infinite” time-point was 

included for which cells were grown in K8R10 (or K0R0) medium for ≥ 10 cell doublings and 

checked for >99.9 % label incorporation. These were seeded in K8R10 (or K0R0) medium concur-

rently to K0R0 (or K8R10) labelled cells and lysed at the same time as the cells of the 48 h time-

point. In addition, for one replicate, fractional SILAC labelling of six time-points (1, 3, 6 ,10, 24, 

48 h) was directly analysed on MS1 level omitting the TMT labelling step to enable a comparison 

of the two different quantification approaches (Figure IV-1B). To achieve similar measurement 

time, peptides from the six time-points were separated into four fractions, while TMT-labelled 

samples were separated into 24 fractions.  

 

Figure IV-1 | Experimental designs for the evaluation of the pulsed SILAC-TMT approach. (A) For the initial 
comparison of MS2 and MS3-based TMT quantification, peptides from ten different pulse-time points were 
labelled with TMT, fractionated using bRP STAGE tips, and measured in MS2 and MS3 mode. (B) For the main 
experiment (upper workflow), four pulsed SILAC replicates including label swaps and ten time-points were 
TMT-labelled, and pulsed SILAC peptides were subjected to hSAX fractionation. In parallel, 6 time-points of 
one replicate were processed omitting the TMT-labelling step and performing bRP fractionation for each 
time-point (lower workflow). 

All samples were measured on a Fusion Lumos Tribrid mass spectrometer injecting an amount 

corresponding to 1.2-1.5 µg protein digest, and peptides were separated using a 100 min linear 
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gradient from 4 to 32 % solvent B. For MS analysis of SILAC samples without TMT label, MS2 spec-

tra were recorded in the Orbitrap at 15K resolution after HCD fragmentation (28 % NCE) using an 

isolation window of 1.6 m/z, an AGC target value of 1e5, a maxIT of 50 ms, and a fixed first mass 

of 100 m/z. In the MS2-based TMT method, the isolation window was set to 1.2 m/z, the AGC 

target value to 1.2e5, the maxIT to 100 ms, the NCE to 33 %, and the fixed first mass to 120 m/z. 

For both methods, cycle time and dynamic exclusion were set to 2 and 60 s, respectively. In the 

MS3-based TMT method, MS2 spectra for peptide identification were recorded in the ion trap in 

rapid scan mode upon fragmentation via CID (NCE of 35 %, activation Q of 0.25) and using an AGC 

target value of 2e4 and a maxIT of 100 ms (isolation window 0.7 m/z, dynamic exclusion of 90 s). 

MS3 spectra for TMT quantification were obtained in the Orbitrap at 60K resolution (scan range 

100-1,000 m/z, charge dependent isolation window from 1.3 (2+) to 0.7 (5 - 6+) m/z, AGC of 1.2e5 

charges, maxIT of 110 ms) following synchronous selection of the 10 most intense peptide frag-

ments in the ion trap and fragmentation via HCD using a NCE of 55 %. Cycle time was set to 2 s. 

Raw data were searched against the human Swiss-Prot database using MaxQuant v1.5.5.1. For 

pulsed SILAC samples without TMT label, Lys0/Arg0 and Lys8/Arg10 were specified as metabolic 

labels, whereas for pulsed SILAC-TMT samples, TMT10 was specified as label within a reporter ion 

MS3 experiment type and K8 and R10 were set as additional variable modifications. Andromeda 

score and delta score cut-offs for modified peptides were disabled. To obtain labelling rate con-

stants, TMT data were normalized based on steady-state assumptions and equations following 

first-order kinetics were fitted to peptide data. After filtering for high quality curve fits (K: 0-5; 

B: 0-0.3; A: 0.67-1.5; R2≥0.8), data were condensed at the peptide and protein level and analysed 

regarding determinants of protein turnover and peptidoform-specific turnover behaviour. To de-

termine protein and peptide half-lives (T1/2), cell doubling rates were estimated by fitting an ex-

ponential growth equation to cell numbers counted every 12 h and subtracted from labelling rates 

to obtain protein degradation rates (k). Half-life was then calculated as ln(2)/k (see pp. 52 for de-

tails). 

For the investigation of the turnover of respiratory chain complex I proteins upon induction of 

oxidative stress (Figure IV-2), HeLa cells were treated with the complex I inhibitor rotenone and 

the complex I specific substrates glutamate and malate. After a 3 or 8 h pulse with heavy medium, 

ratios of newly synthesized to formerly existing proteins (heavy-to-light ratios) were evaluated in 

a PRM assay (pp. 54) and compared to control cells that were treated either with glutamate and 

malate or with DMSO. All cell culture conditions were evaluated as triplicates to enable statistical 

analysis of turnover differences. 

 

Figure IV-2 | Workflow for the assessment of respiratory chain complex I turnover upon rotenone-in-
duced oxidative stress. K0R0 cells were treated with complex I inhibitor rotenone and the complex I sub-
strates glutamate and malate before medium was switched to K8R10. H/L ratios were analysed in a PRM 
assay, meanwhile using quantitative information of DDA runs for normalization. 
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3 Results  

3.1 Design of a pulsed SILAC-TMT experiment 

The aim was to design an experimental workflow that facilitates the systematic determination of 

protein turnover measured as SILAC label incorporation or loss on a proteome-wide scale ideally 

providing proteoform resolution. This demanded (i) a deep proteome profiling method to ensure 

good protein and peptide coverage, (ii) an adequate number of pulse time-points enabling high 

accuracy of turnover estimation, (iii) a robust quantification method for single peptides across all 

time-points, and (iv) high reproducibility of (peptide) rate estimations. To meet these require-

ments, an approach combining TMT labelling of ten different pulsed SILAC time-points together 

with peptide fractionation by hSAX chromatography was employed (Figure IV-3). For calculation 

of meaningful peptide ratios for curve fitting, a maximum value corresponding to the total abun-

dance of a particular peptide for both, increasing (synthesis) and decreasing (degradation) label, 

was required. This was achieved by allocating the first TMT channel to cells lysed directly before 

the pulse start (0 h) and reserving the last TMT channel for cells that were already completely 

labelled with the SILAC amino acids that were provided during the pulse (inf. h, in practice > 200 h, 

Figure IV-3). This experimental design also allowed for estimation of ratio compression in the 

outermost TMT channels resulting from co-isolation of oppositely labelled peptides, which can 

distort turnover rate estimations. In addition, this enabled the calculation of protein abundances 

as copies per cell from TMT intensities by utilizing the fraction of the MS1 intensity that was linked 

to the first or last TMT channel of peptides showing degradation or synthesis, respectively (see 

pp. 48). Intermittent time-points were chosen based on three premises: (i) Obtaining a high tem-

poral resolution for early time-points to facilitate accurate quantification based on the assumed 

first order kinetics; (ii) Ensuring exponential growth of HeLa cells during the entire pulse period to 

maintain the steady-state assumption which required avoiding growth inhibition due to high cell 

densities at later time-points; (iii) Achieving a comparable MS1 intensity of SILAC pairs to increase 

the probability of fragmentation (given the DDA mode for MS analysis), and thus quantification of 

fractional SILAC labelling of both, the K0R0 and the K8R10 labelled peptides. Based on these con-

siderations, HeLa cells were lysed 1, 3, 6, 10, 16, 24, 34, and 48 h after medium exchange (Figure 

IV-3). It should be noted that optimal time-points may differ for different cell lines depending on 

the respective cell doubling rates. 

In order to correct for mixing errors of TMT-labelled digests, data were normalized based on the 

prerequisite that the sum of K0R0 and the K8R10 peptide intensities should be constant across 

different time-points (i.e. TMT channels), as equal protein amounts were employed for each time-

point (Appendix Figure 0-7), for detailed information see pp. 48). Subsequent to normalization, 

curves for estimation of turnover rates, determined from the kinetics of SILAC label incorporation 

or loss, were fitted to quantitative data of all peptide evidence assuming exponential protein deg-

radation (Figure IV-3). The normalization procedure improved the overall quality of the curve fit-

ting as indicated by an overall shift of the R2 distribution to higher values (Appendix Figure 0-7) In 

addition, the number of successful curve fits after filtering also increased (in total 210,704 before 

and 238,489 after normalization in all 4 cell culture replicates). A number of criteria were system-

atically evaluated in order to remove poor quality peptide curve fits, for example, due to low TMT 

intensities or high ratio compression. A graphical user interface is implemented in the R package 

“proturn” (https://github.com/mengchen18/proturn) for curve fitting visualization and assess-

ment of filter criteria. 

file://10.152.171.234/kusterlab/users_files/Jana%20Zecha/PhD/Thesis/%22https:/github.com/mengchen18/proturn%22
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Figure IV-3 | Schematic representation of the multiplexed pulsed SILAC-TMT strategy for estimation of 
protein synthesis and degradation employed in this study. Cells grown in K0R0 containing medium were 
pulsed labelled with medium supplemented with K8R10 and lysed after 10 different time-points (inf. h cor-
responds to ≥ 10 cell doublings). After digestion, peptides derived from different time-points were labelled 
with TMT, pooled, and fractionated using hSAX chromatography. Peptides were identified using MS2 spectra 
and quantified via MS3 scans. Decreasing and increasing labels represent protein degradation and synthesis. 
Assuming exponential protein degradation, one-phase decay and association functions were applied for es-
timation of the rates of K0R0 label decrease and K8R10 label increase (A: curve maximum; B: curve offset; 
K: turnover rate; see Chapter II, General Methods for a detailed explanation of the curve fitting). 

For calculation of half-life times (T1/2), labelling rates indicative of protein or peptide turnover 

were corrected for cell doubling to obtain rates of protein synthesis and degradation. To account 

for minor differences in growth behaviour and thus to improve accuracy of half-life time calcula-

tions, cell doubling rates were determined for each cell culture replicate separately using the 

identical cell batch and applying the same conditions (e.g. cell medium exchange) as for the cor-

responding, simultaneously conducted pulse experiment. Cell doubling times for the four cell cul-

ture replicates ranged from 26.3 h to 30.9 hours (Appendix Figure 0-8). 
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3.2 Benchmarking the pulsed SILAC-TMT approach 

After developing an experimental design for a pulsed SILAC-TMT study, MS2- and MS3-based 

quantification were compared and the acquired data were benchmarked against the commonly 

used, non-multiplexed pulsed SILAC approach. Further, the reproducibility of turnover rate esti-

mations on protein and peptide level was assessed. 

Comparison to other SILAC based protein turnover measurement approaches – It is well 

known that isobaric tagging circumvents missing values occurring in data dependent MS1-based 

quantification approaches. However, quantification based on fragment ions of isobaric tags can 

suffer from ratio compression resulting from co-isolation of peptides featuring differing quantita-

tive behaviour. Hence, it was of particular interest to assess and minimize such ratio compression 

as much as possible to avoid an adulteration of labelling rate estimations. Our experimental design 

enabled estimation of ratio distortion in either the first or the last TMT channel. Indeed, a median 

residual intensity of 28.0 % in the 0 h time-point of synthesis curves indicated that severe ratio 

compression was present for SILAC-TMT samples that were measured employing an MS2 readout 

(Appendix Figure 0-9 A). In contrast, the MS3-based quantification method using the same sample 

and fractionation reduced the median residual intensity to 1.8 %. To further minimize ratio distor-

tion and concomitantly increase proteome coverage, a more extensive fractionation scheme was 

employed in following experiments (Figure IV-1). In this final setup, residual intensities in the 

outermost TMT channels were still detectable, but data filtering based on curve fitting parameters 

resulted in less than 10 % ratio compression for more than 80 % of all utilized peptide evidence 

(Figure IV-4 A). 

In order to address if our TMT-multiplexed, pulsed SILAC approach using MS3-based quantification 

provides results similar to the standard dynamic SILAC workflow, aliquots of identical lysates from 

pulsed HeLa cells were processed in either way. Resulting samples were analysed expending equal 

amounts of LC-MS measurement time, using the same function for curve fitting, and applying 

identical filtering criteria after curve fitting. Hence, TMT-labelled and pooled samples derived from 

10 pulse time-points (measured in 24 fractions, Figure IV-3) were compared to 6 non-tagged 

pulsed SILAC samples (1, 3, 6, 10, 24, 48 h, each measured in 4 fractions). MS3-based ratios of 

labels across time-points and derived turnover rates were in good agreement with those calcu-

lated from the classical MS1-based pulsed SILAC method as indicated by an overall correlation of 

R=0.70 (Figure IV-4 B) and exemplified by the virtually identical labelling curves of the protein 

STAT3 (Figure IV-4 C). Importantly, rates determined by either of both approaches also correlated 

as well with already published HeLa protein rates as these literature data correlated among dif-

ferent laboratories (R=0.51-0.54, Figure 0-9 B). However, for 41 % of filtered synthesis and degra-

dation curve fits in the MS1-based approach, intensities were not detectable for all 6 time-points. 

A head-to-head comparison of MS1 and MS3 measurements disclosed that these missing intensity 

values across SILAC isotope pairs or time-points can considerably decrease accuracy of rate esti-

mations as exemplified by the protein STAT6 (Figure IV-4 D) resulting in half-lives of 31.3 and 23.6 

hours for the pSILAC and pSILAC-TMT approach, respectively. More generally, it became apparent 

that the precision of MS3-based quantification of reporter ions devoid of missing values enhanced 

the overall goodness of the curve fits in the multiplexing strategy to a median R2 of 0.98 compared 

to 0.94 in the MS1-based approach (Figure IV-4 E). As a result, turnover dynamics could be 

determined for 83 % of proteins identified with the multiplexing strategy, whereas only 58 % of 

protein identifications in the MS1-based quantification approach passed filter criteria after curve 

fitting. Also facilitated by a deeper fractionation, the pulsed SILAC-TMT strategy yielded 6,035 
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proteins with quantified turnover compared to 3,600 proteins in the classical pulsed SILAC ap-

proach using the same amount of measurement time yet covering ten instead of six pulse time-

points (Figure IV-4 F).  

 

Figure IV-4 | Comparison of MS1 (pulsed SILAC) and MS3 (pulsed SILAC-TMT) based quantification. (A) 
The fraction of MS3 spectra as a function of the detected ratio compression (from measuring the residual 
intensities in outermost TMT channels) illustrates that >80 % of all fitted and filtered spectra showed less 
than 10 % residual intensities. (B) Correlation analysis of log transformed labelling rates shows good agree-
ment between the MS1 and MS3-based quantification approaches. (C) Labelling characteristics measured 
for the protein STAT3 either using the MS1 or MS3 strategy yielded consistent data. (D) Fractional labelling 
determined for the protein STAT6 in which MS1 data points were missing (one SILAC isotope pair signal 
missing for 1, 3, 6, and 48 h time points and no data for the 10 and 24 h time points) led to substantial 
differences in curve fits between MS1 and MS3 data. (E) Distributions of coefficients of determination (R2) of 
curve fits display consistently higher values for the MS3 compared to the MS1 approach (dotted lines: medi-
ans). (F) Comparison of the number of proteins with determined turnover parameters shows a higher num-
ber for the MS3 strategy. 

Reproducibility of estimations of protein and peptide turnover rates – Next, the reproduc-

ibility of the pulsed SILAC-TMT approach was assessed. To do so, four pulsed SILAC experiments 

using different HeLa cell batches were performed, two of which were subjected to a SILAC label 

swap. In addition, fractions of one replicate were measured twice providing a technical MS repli-

cate. After data processing and filtering, turnover rates were computed for on average 5,957 pro-

tein groups per cell culture replicate (Figure IV-5 A). For 71-76 % of all proteins, information on 

both protein label increase and decrease was available providing an internal duplicate measure-

ment of protein turnover rates for each sample in a steady-state system. In all four cell culture 

replicates combined, synthesis and/or degradation curves were obtained for 55,067 protein group 

unique peptides (59,586 peptides when also counting oxidized forms) assigned to 7,203 proteins 

(Figure IV-5 B) with a median sequence coverage of 17.4 %. In total, turnover rates were computed 

for more than 86 % of all identified proteins groups and for 6,083 proteins, rates from both label 

increase and decrease were available. Labelling rate pairs showed a median Pearson’s correlation 

coefficient of 0.64 and a median CV of 15 % (Figure IV-5 C). When rates of label decrease and 

increase were treated separately, the technical MS duplicate and the cell culture quadruplicates 

exhibited a median R of 0.80 and 0.77 and a median CV of 8 % and 18 %, respectively (Figure 

IV-5 C), demonstrating good precision of the pulsed SILAC-TMT approach. Interestingly, turnover 
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rate determinations on peptide level were as reproducible as for proteins (median R of 0.84 and 

0.72 and median CV of 8 % and 18 %, Appendix Figure 0-10 A). Notably, for technical replicates 

more than 82 % of both estimated protein and peptides rates showed a CV of less than 20 %. 

However, when correlating rates obtained from label increase and decrease within a sample, the 

level of concordance dropped in particular on peptide level (median R of 0.51 and CV of 0.16, 

Appendix Figure 0-10 A). This observation was likely attributable to residual ratio distortion that 

still affected some peptides. This adulterated turnover rate determination in opposite ways for 

label incorporation and loss, eventually more strongly deteriorating correlation analysis on pep-

tide than on protein level. Likewise, a weak correlation (R of 0.36) of peptide labelling rates with 

CVs computed from increasing and decreasing curve pairs was identified suggesting that ratio 

compression somewhat more strongly affects rate determinations of high turnover peptides (Ap-

pendix Figure 0-10 B) as one might expect. However, it is important to point out that there was 

generally no correlation of turnover rates and replicate CVs (exemplified for peptide rates across 

technical replicates in Appendix Figure 0-10 C, R=0.04). This encouragingly implies the absence of 

an overall precision bias depending on the turnover rate, meaning that rate determination is reli-

able across the measured range of fast and slow turnover peptides or proteins (for examples see 

Figure IV-5 D, Appendix Figure 0-10 D). 

 

Figure IV-5 | Reproducibility of protein turnover rate determination using pulsed SILAC-TMT. (A) Bar chart 
illustrates that turnover rates were determined for 5,528 to 6,367 protein groups per cell culture replicate 
(R1-R4). (B) In total, rates were obtained for 7,203 proteins, and for 83 % of this turnover information was 
available from both label increase and decrease. (C) Correlation matrix depicts color-coded Pearson’s corre-
lation coefficients for log transformed protein turnover rates determined from synthesis and degradation 
curves for cell culture (R1-R4) and MS injection (R2 and R2’) replicates. The boxplots (25th-50th-75th percen-
tile) show the coefficients of variation of label incorporation and label loss rates across MS injections, curve 
pairs within a sample and cell culture replicates. (D) Examples of the reproducibility of turnover determina-
tion across cell culture replicates are displayed for the high turnover protein G2/mitotic-specific cyclin-B1 
(CCNB1) and the stable 60S ribosomal protein L32 (RPL32). 

3.3 Evaluation of determinants of protein turnover 

Estimated protein turnover rates spanned three orders of magnitude resulting in calculated half-

lives ranging from minutes (exemplified by Serine/threonine-protein kinase SIK1) to thousands of 

hours (for Fatty acid desaturase 2 (FADS2), Figure IV-6 A). The median half-life of all proteins was 

37.8 h. Apart from an expected slight underrepresentation of the membrane and the extracellular 

subproteomes, our set of proteins proved to be functionally representative for the entire human 

proteome (Appendix Figure 0-11 A). In addition, protein copy numbers per cell determined from 

the SILAC-TMT data were in good agreement with published data [306, 307] (R=0.72 and 0.85, 
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Appendix Figure 0-11 B) and covered several orders of magnitude substantiating the highly repre-

sentative character of the data at hand (Appendix Figure 0-11 C). Hence, the current compilation 

of protein turnover data provided a good opportunity to investigate the influence of protein prop-

erties and functions on protein stability. 

 

Figure IV-6 | Analysis of protein half-lives relating to intrinsic protein properties and functions. (A) The 
distribution of protein half-lives in HeLa cells is displayed. The median protein half-life of all proteins is 
37.8 hours. (B) Correlations of protein half-lives and copy numbers per cell (upper panel, ρ: Spearman rank 
correlation coefficient) and protein length (bottom panel) are shown. Solid black lines indicate the median 
length of all proteins per the half-life bin. (C) Spearman rank correlation coefficients are depicted for the 
correlation of protein half-lives and amino acid composition, amino acid properties, and protein secondary 
structure elements. (D) Floating bar charts illustrate the range of protein half-lives as a function of cellular 
localization (according to the Human Protein Atlas (HPA) and MitoCharta project). Proteins that are part of 
cell structures involved in cell division are shown in green, endo-, lyso- and peroxisome-associated proteins 
are shown in red. Grey boxes display all proteins associated with the respective subcellular location, blue 
boxes refer to proteins (blue dots) which were exclusively found in this particular cell compartment or struc-
ture. Numbers on the right indicate how many proteins are in each category and numbers in brackets refer 
to proteins with exclusive localization. (E) The scatter plot shows significantly enriched categories after a 
one-dimensional functional enrichment analysis (1 % FDR) using protein domain and family information pro-
vided by the PROSITE and HPA databases. The size of each circular shape indicates the number of proteins 
in each category. 

Intrinsic determinants of protein stability – Two factors that may affect protein turnover 

could be protein size and cellular abundance, as these co-determine the energy costs caused by 

re-synthesis of a certain protein species after its degradation in a steady-state system. Indeed, 

protein half-lives were positively (albeit not strongly) correlated with protein abundance (ρ=0.38, 

Figure IV-6 B). In contrast, and perhaps surprisingly, protein size did not show any consistent or 

global effect on protein stability (Figure IV-6 B). Other protein properties that potentially influence 
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turnover are the primary and secondary structure as well as the hydrophobicity of a protein. Over-

all, weak correlations of protein half-lives and amino acid content or predicted proportions of α-

helix, β-sheet, and coil structures (ρ between -0.28 and 0.23) were observed. For example, a high 

percentage of hydrophobic amino acids and an ordered secondary structure were associated with 

longer half-lives, whereas polar amino acids and a disordered structure (often showing high pro-

line content) seemed to rather destabilize proteins (Figure IV-6 C, Appendix D). It is noteworthy 

that all examined protein features correlated with each other to some extent. For instance, the 

more abundant a protein was, the smaller (ρ=-0.40) and the less polar (ρ=-0.30) and disordered 

(ρ=-0.22) it tended to be (Appendix Figure 0-11 E). In order to investigate whether susceptibility 

to aggregation might be associated with cellular protein turnover, protein half-lives were com-

pared to corresponding melting points that have recently been reported for HeLa proteins [308]. 

However, no general dependency of cellular protein turnover on thermal stability could be deter-

mined (Appendix Figure 0-11 F). 

The localization of proteins might also affect their stability. To examine a potential spatial regula-

tion of turnover, proteins were grouped according to their subcellular location reported by the 

human protein atlas (HPA) [292] and the MitoCharta 2.0 [291] projects. Again, proteins in these 

categories spanned a wide range of stability even when only assessing proteins that were exclu-

sively found at a single location (Figure IV-6 D). However, endo-, lyso-, and peroxisomal proteins 

(median T1/2 of 80.2 h) appeared to be more stable compared to the overall cellular proteome. 

Of note, the small number of data points limits the generalizability of this observation. Conversely, 

proteins that constitute members of mitotic cell structures (centrosome, mitotic spindle, cytoki-

netic bridge, and midbody, median T1/2 of 24.9 h) exhibited shorter median half-lives. This poten-

tially reflects the need for rapid regulation of abundance during different phases of the cell cycle. 

In contrast, actin and intermediate filaments and proteins exclusively located in the endoplasmic 

reticulum (ER) were on average slightly more stable compared to nuclear and cell junction pro-

teins (median T1/2 of 77.8, 58.7 and 50.5 versus 30.3 and 22.4 h). Other localizations did not show 

any considerable trend towards an overall stabilization or destabilization of associated proteins. 

Next, the relation of protein half-lives to annotated functions was investigated using protein do-

main and family information provided by the PROSITE [288] and HPA [287] databases. A functional 

1D enrichment analysis illustrated the significantly shorter half-lives of transcription factors con-

taining zinc finger (ZF), fork head, basic helix-loop-helix (bHLH) and leucine zipper domains (bZIP), 

as well as nuclear receptors (Figure IV-6 E). Examples included members of the STAT (Signal trans-

ducer and activator of transcription) family, the transcriptional regulators MAX and MYC as well 

as retinoic acid and androgen receptors. In contrast, several families of enzymes, notably oxidore-

ductases, ligases, lyases, isomerases, and hydrolases were significantly overrepresented in more 

stable proteins (Figure IV-6 E). Interestingly, the aforementioned transcription factors and en-

zymes also clearly differed in the biochemical features assessed above. Enzymes did not only pos-

sess longer half-lives compared to transcription factors (55.4 h vs. 17.6 h), but were also more 

abundant (50,000 vs. 9,000 copies per cell) and more hydrophobic (44 % vs. 37 % hydrophobic 

amino acids) and exhibited much less disordered secondary structures (54 % vs. 84 % coil struc-

ture, Appendix Figure 0-11 G). Other distinctively more stable functional protein groups included 

cell and organelle membrane associated transporters and, interestingly, proteins with a C-termi-

nal KDEL motif, which targets proteins to the ER. The latter indicates that proteins that perma-

nently and exclusively reside in the ER lumen, like for instance protein disulphide isomerases, are 

indeed more stable as already suggested by the HPA subcellular location annotations (Figure 

IV-6 D). Furthermore, the Rab family of GTPases, which regulate vesicular trafficking, exhibited 
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significantly longer half-lives. On the contrary, kinesin-like proteins, which are involved in mitosis 

via the control of chromosome segregation, were enriched in high turnover proteins. Likewise, 

proteins bearing ASX hydroxyl and EGF like domains appeared to be rather short-lived. It is im-

portant to note that these domains often co-occur on extracellular proteins (e. g. fibrillins and 

fibulins), and the detected comparably short half-lives might therefore rather reflect the intracel-

lular transit time before these secreted proteins are lost from the pool of analysed proteins than 

their actual stability. The same argument applies for proteins featuring von Willebrand factor 

type C (VWFC) repeats that include amongst others fibrillar collagens. Taken together, the collec-

tive turnover dataset facilitated the analysis of protein properties and functions affecting protein 

stability, but no universal protein immanent factors deterministically influencing half-lives were 

identified. 

Oxidative stress as a regulating factor for NADH dehydrogenase stability – Besides protein 

intrinsic factors such as structure and function, protein half-lives might also be regulated by mo-

lecular interactions. To this end, the stability of CORUM complex members [379] was evaluated. 

Proteins reported to be part of a protein complex exhibited overall longer half-lives (median 

51.9 h) compared to proteins which are not listed in the CORUM database (median 44.1 h) sug-

gesting a stabilizing effect of protein interactions and complex formation. In particular, the pro-

teasome and ribosome (and their precursors) were significantly enriched in more stable proteins 

(Figure IV-7 A). Interestingly, respiratory chain complex I (NADH dehydrogenase) members were 

the only proteins participating in complexes and the electron transport chain that showed overall 

significantly shorter half-lives (median 9.5 h, p-value=1.84e-11, Figure IV-7 A-B). Together with the 

Ubiquinol cytochrome C oxidoreductase (respiratory chain complex III), the NADH dehydrogenase 

is the main site of superoxide radical formation caused by electron leakage in the respiratory chain 

(Figure IV-7 A-B). Therefore, it was hypothesized that the high turnover of complex I proteins may 

be an adaptive mechanism to compensate oxidative stress by replacing damaged complex mem-

bers and thus to maintain the functionality of the electron transport chain which is needed for 

energy generation by oxidative phosphorylation. Following this assumption, the turnover of NADH 

dehydrogenase proteins should be accelerated upon enhanced oxidative stress. In order to test 

this hypothesis, HeLa cells were treated with the complex I inhibitor rotenone in combination with 

glutamate and malate to increase oxidative stress specifically at complex I [380] (Figure IV-2). By 

inhibiting electron transfer from iron-sulphur centres to ubiquinone, rotenone treatment should 

lead to a backload of electrons that should be further amplified by the increased electron supply 

provided by the NADH dehydrogenase substrates glutamate and malate (Figure IV-7 C). The rote-

none and control treatments (either DMSO or solely glutamate and malate) were followed by a 3 

or 8 h pulse in K8/R10 SILAC medium. To overcome missing quantitative data across treatment 

conditions and replicates, a parallel-reaction-monitoring assay was developed to quantify heavy-

to-light ratios, which reflected the fraction of newly synthesized to the total protein amount. In 

total, 43 peptides representing 27 complex I proteins were monitored in their K0R0 and K8R10 

labelled states. For both pulse time-points, rotenone treated cells showed a clear shift towards 

higher heavy-to-light (H/L) ratios compared to control cells implying that the overall fraction of 

newly synthesized complex I members and thus their turnover increased (Figure IV-7 D, Appendix 

Figure 0-12). Proteins featuring peptides with a significantly different H/L ratio were mainly lo-

cated at the so-called IF site where electrons are transferred from NADH to FMN (Flavin mononu-

cleotide) and further passed down the chain of iron-sulphur centres (Figure IV-7 E). Taken to-

gether, these results indicate that the turnover of many respiratory chain complex I members is 
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accelerated upon the blockade of electron transfer to ubiquinone suggesting that a general regu-

lation of their half-lives by oxidative stress may exist. 

 

Figure IV-7 | Analysis of turnover of respiratory chain complex I proteins in response to rotenone-induced, 
oxidative stress. (A) One-dimensional enrichment analysis (1 % FDR) using CORUM database annotations 
revealed that respiratory chain complex I (NADH dehydrogenase) was significantly enriched in high turnover 
proteins. The size of each circular shape indicates the number of proteins in each complex. (B) Scatter dot 
plots show protein half-lives of members of the different respiratory chain complexes. Black lines indicate 
the median half-life of proteins within each complex and proteins marked in red were followed up by rote-
none and/or glutamate and malate treatment in the subsequent PRM assays. (C) The schematic represen-
tation of the different complexes of the respiratory chain (I-V) illustrates sites of metabolic reactions and 
superoxide production (IMM: Inner mitochondrial membrane; IMS: Intermembrane space; Q: Ubiquinone; C: 
Cytochrome C). (D) The Volcano plot shows the results of triplicate PRM assays monitoring the turnover of 
22 members of the respiratory chain complex I in response to rotenone (1 uM), glutamate and malate 
(5 mM) treatment. Peptides exhibiting a significantly higher turnover upon treatment are illustrated by filled 
circles and labelled with the subunit, peptide start and end positions. Colours refer to particular proteins 
shown in panel E. (E) Crystal structures of respiratory chain complex I proteins are displayed. NADH dehy-
drogenase proteins with significantly increased turnover upon rotenone treatment are coloured in red, blue 
and green. Iron sulphur clusters are shown as sticks. Subunits coloured in black were detected in the PRM 
assay, but did not show a significant change in turnover upon treatment after an 8 h pulse. Subunits in light 
grey could not be robustly monitored in the PRM assay. 
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3.4  Turnover diversity of peptides 

Expecting a cell to be able to respond quickly to cellular stimuli such as rotenone induced, oxida-

tive stress as shown above, inevitably leads to the hypothesis that protein turnover could be dy-

namically regulated by post-translational protein modifications. For the above example on the 

turnover of respiratory chain proteins, it was unfortunately not possible to test this hypothesis 

directly because information on methionine oxidized respiratory chain peptides and their non-

oxidized counterparts was not available. In general, the comparison of oxidized and non-modified 

counterpart peptides did not show any global shift in turnover due to oxidation (Appendix Figure 

0-13 A). This is not surprising assuming that protein and peptide oxidation largely occurs during 

sample processing and, hence, would not alter the measured, cellular turnover. Moreover, a Stu-

dent’s t-Test did not reveal any significant differences of individual oxidized and non-modified 

peptide pairs (FDR=5 %, S0=0.05). Yet, it was generally, and quite unexpectedly, observed that 

turnover rates determined from all spectrum evidences for a certain peptide sequence showed 

less variation (median CV of 18 %) than rates derived from all spectrum evidences for a protein 

group (median CV of 25 %, Figure IV-8 A upper panel). A protein group can contain peptides that 

originated from different expressed protein isoforms, if unique peptide(s) are identified solely for 

one of these isoforms and only shared peptides have been identified for the other isoform(s). 

Thus, the global difference in CV values of protein groups compared to peptides suggested that 

protein isoforms (that are unavoidably included in a protein group) might indeed often differ in 

their turnover behaviour. Given the availability of four cell culture replicates, statistical testing 

was feasible to prioritize protein groups consistently containing peptides with considerably vary-

ing stabilities. To do so, only peptides for which a turnover rate was determined at least 3 times 

(from synthesis or degradation curves or different replicates) and which belong to protein groups 

containing at least three of these peptides were included (25,313 peptides assigned to 3,130 pro-

tein groups). A two-sided, 5 % FDR corrected t-Test yielded 425 peptides from 305 protein groups 

for which turnover rates significantly differed (Appendix Figure 0-13 B). Amongst these, several 

Figure IV-8 | Analysis of peptidoform-resolved turnover. (A) Distributions of coefficients of variation of 
turnover rates across spectra are displayed for peptides and proteins. The upper panel shows the distribution 
of CVs of all spectra for the same protein group (irrespective of the number of proteins or protein isoforms 
in each group). The bottom panel depicts the CV distribution of all spectra for protein groups that only con-
tain a single protein. Medians are indicated by vertical lines in the corresponding colour. (B) Scatter dot plots 
show the distributions of turnover rate constants for peptides of different protein isoforms. Peptides corre-
sponding to a particular gene share the same colour. Median peptide rates across replicates are displayed 
as vertical lines. (C) Turnover rates are illustrated for different modified N-terminal peptides and correspond-
ing proteins. Only N-termini and proteins with statistically significantly different rates are displayed (see also 
Appendix C). (D) Scatter plots show peptide turnover rates as a function of the relative position within the 
protein sequence. Zero denotes the protein N-terminus and 1 denotes the C-terminus. Peptides derived from 
the same protein share the same colour, and closed circles mark peptides that exhibited a significantly dif-
ferent turnover compared to the rate of the whole protein (see also Appendix C). The left panel illustrates 
examples for mitochondrial proteins in which the N-terminal transit peptides show a higher turnover than 
other peptides of the same protein. The middle panel depicts a similar analysis but for proteins with higher 
turnover of C-terminal peptides. The right panel shows examples for proteins in which one peptide displayed 
a strong difference in turnover compared to other peptides of the same protein which often but not always 
encompassed known modification sites. (E) Fractional peptide labelling is displayed for Cathepsin D (CTSD), 
a protein that is proteolytically processed into a signal peptide, an activation peptide (blue circles), a light 
chain (red circles) and a heavy chain (grey circles). (F) Fractional peptide labelling is depicted for the fusion 
protein FAU. Peptides representing the Ubiquitin-like protein FUBI are shown in blue, peptides from the 40S 
ribosomal protein S30 are shown in grey. 
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protein groups containing different splice variants were identified. For example, the only peptide 

that was exclusively assigned to isoform 2 of Nucleosome Assembly Protein 1-like 4 (NAP1L4) was 
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much less stable (T1/2=4.1 h) compared to peptides occurring in both isoforms 1 and 2 

(T1/2=56.0 h, Figure IV-8 B). It has to be pointed out that these differences might also be caused 

by a putative stabilizing modification, which happens to occur in the identified isoform 1 specific 

sequence stretch, hence making the unmodified counterpart peptide appear less stable compared 

to the other peptides of the protein. However, the occurrence of different half-lives for different 

isoforms was also observed in cases where isoforms were unambiguously identified via several 

unique peptides and which thus were assigned to different protein groups as exemplified by chro-

mosome transmission fidelity protein 8 homolog (CHTF8, 5.7 vs. 117.1 h for isoform 1 vs. splice 

variant DERPC, Figure IV-8 B). Notably, most of these protein groups that separated isoforms fea-

turing significantly different turnover also possessed considerably different primary sequences 

and thus physicochemical properties. 

After the removal of all protein groups that contained more than one protein isoform, turnover 

rates of all peptide evidences belonging to a single protein still showed overall higher CVs (median 

CV of 22 %) than rates derived from all evidences for single peptides (median CV of 18 %, Figure 

IV-8 A, lower panel). This demonstrates that alternative splicing alone does not sufficiently explain 

the variation in turnover across peptides assigned to the same gene. In fact, many peptides lo-

cated at the protein N-terminus were found to exhibit significantly different turnover rates. To 

explore this further, rates of differently modified N-terminal peptides of the same protein were 

compared among each other in addition to the comparison to the overall protein turnover rate. 

Even without enrichment of N-terminal peptides, rates were obtained for 343 N-terminal peptides 

from 306 proteins. About half of these peptides (53 %) neither contained the initiator Met residue 

nor were they acetylated. After filtering, differences were statistically evaluated for 287 proteins 

(Appendix Figure 0-13 C). Eleven N-termini significantly differed in their turnover rates, but the 

effect was not consistent for the type of modification (Figure IV-8 C). While, for instance, the N-

terminal peptide without the initiator methionine of HNRNPH1 appeared to be turned over more 

quickly compared to the whole protein, it was the other way around for the mitotic spindle-asso-

ciated MMXD complex subunit MIP18 (FAM96B).  

Higher turnover rates for peptides located near the N-terminus were also identified for mitochon-

drial proteins like the G-rich sequence factor 1 (GRSF1, Figure IV-8 D, left panel). In fact, these 

peptides were part of or spanned cleavage sites of transit peptides, which target nuclear encoded 

proteins to mitochondria. This suggests that these localization signals are in general rapidly 

cleaved off and degraded leading to mature, more stable proteins. Likewise, pro-peptides often 

appeared to be less stable compared to mature proteins as exemplified by Prosaposin which is 

cleaved into four different Saposins, a signal peptide, and several pro-peptides (Appendix Figure 

0-13 D). Another case where proteolytic processing led to products with different apparent cellu-

lar stability is illustrated by Cathepsin D (CTSD), a protease that consists of a light and a heavy 

chain which are encoded by the same gene and is post-translationally cleaved [381] (Figure IV-8 E). 

Interestingly, not only did the activation peptide of CTSD exhibit a higher turnover (T1/2=3.7 h), 

but also its light chain showed a shorter half-life (7.5 h) compared to the heavy chain (33.9 h) 

which, in turn, implies a much lower abundance of the light compared to the heavy chain in steady 

state. Moreover, to our knowledge, the first experimental evidence for the post-translational 

cleavage of the protein produced by the fusion gene FAU was provided by the data. This is demon-

strated by the considerably different stabilities of peptides corresponding to the Ubiquitin-like 

protein FUBI and the 40S ribosomal protein S30 part of the fusion protein (T1/2=0.3h vs. 52.4 h, 

Figure IV-8 F).  
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Apart from these rather intuitively explicable examples, mechanistic explanations for discrepan-

cies between peptide and corresponding protein turnover rates were often less apparent. A group 

of proteins, for instance, exhibited a distinctively higher turnover for the most C-terminal located 

peptides (examples are shown in Figure IV-8 D, middle panel). This might hint to a C-terminal mod-

ification that stabilizes these proteins and thus would lead to a seemingly shorter half-life of the 

unmodified C-terminus. In fact, many peptides showing significantly different turnover rates en-

compassed reported modification sites. Amongst others, for example the only peptide of elonga-

tion factor 2 (EEF2) showing a substantially higher turnover rate contained His715 which is be-

lieved to be the only histidine in eukaryotes that is converted into diphthamide [382] (Figure 

IV-8 D, right panel). Furthermore, the peptide showing by far the highest turnover rate for the 

heat shock cognate 71 kDA protein (HSPA8) included a lysine (position 561) that was demon-

strated to be trimethylated by the methyltransferase METTL21A. This, in turn, suggests a stabiliz-

ing effect of the modified proteoform of HSPA8 in addition to the previously described chaperone 

activity modulating effect that enhanced α-Synuclein aggregation and, thus, may play a role in 

Parkinson disease [383] (Appendix Figure 0-13 E). The most stable peptide of the bloom syndrome 

protein (BLM) comprised Thr766 which has been shown to be phosphorylated by Cyclin depend-

ent kinase 1 (CDK1) potentially regulating its helicase activity during mitosis [384] (Appendix Fig-

ure 0-13 F). In contrast to these examples, many peptides also featuring significantly different 

rates did not encompass any known modification site (exemplified by GNL3L in Figure IV-8 D, right 

panel). Still, all the cases described above clearly demonstrate differential turnover rates for dif-

ferent proteoforms suggesting an association of post-transcriptional and post-translational pro-

cessing with protein stability. 
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4 Discussion and conclusion 

4.1 Technical and data analysis challenges for (pSILAC-TMT) turnover studies 

Enabled by advances in MS based proteomic technologies in general and the introduction of the 

SILAC technology in particular, several attempts have been made in recent years to investigate 

endogenous proteome turnover [113, 168-170, 305, 374]. Still, generating such data at high qual-

ity is far from trivial and many factors have to be carefully considered when planning and execut-

ing such experiments. At the technical level, the accuracy of the commonly applied standard dy-

namic SILAC method employing MS1-based quantification can be impaired by missing data across 

different pulse time-points. Considering the utilization of combined, quantitative information of 

multiple peptides, this shortcoming may be tolerable at the protein level, but, especially for single 

peptides, such rate estimations can be unreliable. Therefore, a method was established that com-

bines the quantitative precision of TMT-10plex labelling with pulsed SILAC labelling of cells, and 

the merits of this approach were evaluated thoroughly. Direct comparisons illustrated the extent 

of the missing value issue in the MS1-based quantification method. Absent intensities across SILAC 

pairs and time-points reduced the number of successfully determined protein labelling rate con-

stants and concomitantly decreased the quality of curve fits. This was the case even though miss-

ing values were already minimized by utilizing the automatic SILAC pair identification and the 

match-between-runs function implemented in the MaxQuant software [385] and even though less 

stringent criteria regarding missing values were applied for the curve fitting. While TMT labelling 

effectively overcomes the issue of missing values and thus facilitates determination of turnover 

rates at single peptide level, it is well known that quantification using isobaric tags suffers from 

ratio distortion caused by co-isolated peptides. This drawback can have massive consequences for 

rate determinations, in particular if a K0R0 and a K8R10 peptide are co-fragmented since they 

would show the exact opposite abundance behaviour. Indeed, when applying MS2-based quanti-

fication of reporter ions, severe ratio compression was detected often rendering determined la-

belling rates plain invalid. This was also underlined by the fact that, after correction of these turn-

over rates for cell doubling, almost 50 % of all quantified proteins had negative half-lives that typ-

ically result from either an underestimation of labelling rates or an overestimation of cell doubling 

rates. By contrast, using a more extensive fractionation scheme and a MS3-based TMT quantifica-

tion strategy, ratio distortion was minimized and negative values were obtained for less than 3 % 

of all proteins which is a very small fraction compared to other published turnover studies. More-

over, turnover rates obtained from this experimental workflow were in good agreement with rates 

determined via the classical approach based on MS1 quantification. Overall, it must be concluded 

that an MS3-based measurement is required for proper estimation of protein turnover when using 

a pulsed SILAC-TMT format. 

In contrast to the standard pulsed SILAC approach, the SILAC-TMT hyperplexing strategy provided 

a duplicate measurement of turnover rates for all cases where both peptides of a SILAC pair were 

fragmented. This helped to assess the quality of rate estimations offering an additional level of 

confidence within the same experiment. In fact, a comparison of rates calculated from label in-

crease and decay exposed those, mainly high turnover peptides for which residual TMT ratio com-

pression affected determined rates. Although not investigated in this study, this internal duplicate 

may be particularly helpful for the evaluation of turnover rates in non-steady-state, dynamic or 

disturbed systems such as cell differentiation or upon cell treatments. The data normalization and 

curve fitting functions used were based on the assumption that the average abundance of all pro-

teins does not change during the course of the experiment (steady state) and, therefore, that the 
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synthesis rate of a protein equals its degradation rate. For this reason, cell seeding densities and 

culture conditions were carefully elaborated to assure that HeLa cells were no longer in lag phase 

or not yet entering the stationary growth phase during all SILAC pulses. Still, cells were cultured 

under somewhat non-continuous conditions as nutrients were depleted and metabolites accumu-

lated over the course of the experiment. These factors can potentially cause cells to respond with 

a change in abundance of certain proteins. Consequently, it cannot be precluded the possibility 

that the applied curve fitting algorithms might not perfectly describe the detected labelling be-

haviour for all proteins.  

In light of the above, an even greater challenge may be posed when aiming to establish an appro-

priately adopted model for labelling kinetics under non-steady-state circumstances, which would 

account for changes in protein abundance during an experiment. In addition, one would typically 

want to compare different conditions eventually obtaining absolute protein stabilities. However, 

when proliferating cell models are used, measured labelling kinetics are not only dependent on 

protein degradation and re-synthesis, but are also critically influenced by sheer cell doubling. This 

complicates comparability since cell-doubling rates are likely to be different between cell treat-

ments and may even be changing during the course of a single pulse experiment under non-

steady-state conditions. This emphasizes the need for an accurate method to measure temporally 

resolved labelling kinetics and for the correct determination of cell doubling times, which must be 

conducted under the same culture conditions using identical cell batches.  

Steady-state assumptions and the consequently applied exponential synthesis and degradation 

models also presume that the probability of a protein being degraded stays constant over its life-

time. This alone might not hold true for all proteins. In fact, newly synthesized proteins have pre-

viously been reported to show shorter half-lives before they enter a second, more stable state 

[157]. Recently, McShane et al. found that about 10 % of all proteins detected in their study show 

such a non-linear degradation behaviour [376]. Many of these proteins were members of protein 

complexes that were produced in super-stoichiometric amounts substantiating the assumption of 

protein stabilization due to complex formation, which has been termed cooperative stability 

[386]. Besides, co-translational ubiquitination and rapid degradation of misfolded proteins imme-

diately after synthesis have also been demonstrated [387, 388] suggesting that a biphasic degra-

dation behaviour could also be a result of cellular quality control mechanisms. For evaluation of 

non-linear degradation kinetics, an initial discrimination of newly synthesized and aged proteins 

would be needed, for example via a combination of different pulse and chase time-points [157] 

or a second metabolic label [376]. As most other published turnover surveys, the presented work 

does not provide such resolution. Instead, the data describes an average behaviour of the differ-

ent states of a protein likely dominated by the turnover characteristics of the most abundant one. 

4.2 Biological implications of measured protein turnover 

The systematic evaluation of replicates, followed by the assessment of the reproducibility for turn-

over estimations attested a reliable precision of the SILAC-TMT approach on the protein as well 

as the peptide level. Moreover, the four cell culture replicates did not only allow for testing of 

statistically significant differences, but should also increase the robustness of combined turnover 

information from replicates, thereby providing a unprecedentedly comprehensive and high-qual-

ity dataset on endogenous protein turnover. Still, it has to be noted that very quickly turned over 

proteins, particularly those that are completely turned over within 1 h, will be missing or un-

derrepresented in the dataset simply due to the choice of time-points and curve fitting con-

straints. Nevertheless, the representative proteome coverage and high quality of the data allowed 
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for re-assessment of potential determinants of protein stability that are inherent to the protein 

itself.  

A positive correlation between protein abundance and turnover, but a negative correlation be-

tween protein abundance and length was observed which corroborates findings by others [113, 

170, 283]. Making highly abundant proteins stable and small may offer a route for cells to avoid 

excessive energy consumption considering the costs for re-synthesis of degraded proteins. It 

should be noted though that for high abundant proteins, even slow degradation rates will lead to 

degradation of a large number of molecules. For the 60S ribosomal protein L18, for example, only 

0.13 % of all molecules were measured to be degraded per hour (corrected for cell doubling). 

However, at a cellular abundance of, on average, more than 1 Mio copies per cell, this still results 

in the degradation and subsequent re-synthesis of about one RPL18 molecule every 3 seconds 

illustrating the energy efforts for the maintenance of the default turnover of very stable, but highly 

abundant proteins. Protein size (length) has also been reported to be associated with protein sta-

bility based on measurements using fluorescently tagged proteins in mammalian cells and yeast 

[125, 153]. While perhaps intuitive, as making longer proteins should contribute to energy con-

sumption during translation, others subsequently argued that this is not the case for endogenous 

proteins [170, 305] and the here presented data confirms that there is no global correlation of 

protein length with protein stability.   

However, a weak correlation of protein half-lives with features of primary and secondary protein 

structure was detected. Polar amino acids, proline (which is known to disrupt ordered structures), 

and random coils were associated with short-lived proteins, the latter confirming earlier reports 

[125, 305] and being in line with the requirement of an disordered structure for proteasome bind-

ing and subsequent degradation [108]. In addition, overall sequence and structure differences ap-

peared to explain, at least in part, the significantly different stabilities of functionally distinct pro-

teins exemplified by transcription factors and enzymes. It has been known for a long time that the 

hydrophobic effect drives protein folding thereby reducing the surface area of proteins and the 

solvent accessibility of hydrophobic amino acids and leading to more ordered structures [389, 

390]. Conversely, a more polar and random protein structure with relatively larger surface areas 

could possibly lead to a higher accessibility for modifications and interactions with other proteins, 

which could potentially induce protein degradation. This assumption would be in line with the 

hypothesis of cooperative protein stability since surfaces of proteins in complexes are also less 

solvent exposed [386, 391]. Indeed, it has even been hypothesized that disordered proteins with 

larger surface areas tend to engage in more promiscuous interactions, and are also more likely to 

have pathological effects when overexpressed [392]. This higher dosage sensitivity of disordered 

proteins would provide a conceptual explanation for the observed inverse correlation of the con-

tent of random coils with protein abundance. Overall, the observed higher turnover rate of rather 

disordered proteins could be a regulatory mechanism that protects cells from toxic protein aggre-

gates. 

In terms of single amino acids, serine had the strongest association with protein stability. One 

might speculate that its destabilizing effect might in part be related to its involvement in the for-

mation of phosphodegrons, amino acid motifs that are recognized by E3 ligases which ubiquitinyl-

ate and thus mark respective proteins for degradation [132]. In contrast, charged amino acids did 

not appear to have any consistent effect on endogenous protein turnover in our data. This is 

somewhat contradictory to results of a fluorescence-based genomic tagging study, which found 
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glutamate, aspartate, lysine and arginine to be enriched in stable proteins [153]. This again sug-

gests that protein stabilities derived from genomic tagging approaches investigating overex-

pressed proteins might not be readily transferable to endogenous protein half-lives. 

In general, the transferability of turnover data obtained from different biological systems and ex-

periments remains a subject of debate. A high conservation of protein stability has been claimed 

for human and murine proteins [169], across closely related rodent species [393] and for different 

primary cell types of the hematopoietic lineage [114] when using identical methodologies and 

conducting the comparative study in the same laboratory. However, discrepancies in turnover 

datasets appear generally more profound across different laboratories (Appendix Figure 0-9 B and 

according to [163, 170]). This may to some extent be of technical nature and, for example, be 

related to different measurement strategies, detection of different peptides for the same protein 

which may display distinct turnover rates, data quality or differing analysis approaches further 

underscoring the challenge to reproducibly determine protein turnover. However, turnover rates 

published from different laboratories but for the same cell line were found to correlate better 

among each other than across different cell lines which indicates some cell line-specific compo-

nent affecting turnover. This may not be surprising considering the reported relationships of pro-

tein abundance, localization, or interactions with protein stability. Although features such as 

amino acid content and structure will not differ for the same protein between various cell lines, 

expression patterns, main splice variants, and complex partners may vary considerably and thus 

influence measured protein stability. Moreover, it has to be noted that the HeLa cells used in this 

study are highly aneuploid. It has already been shown that proteins derived from amplified gene 

regions often feature a higher degradation rate [376], which may provide an additional explana-

tion for the observed discrepancies across cell lines. In addition, the here explored dynamic state 

of the proteome in proliferating cells may not resemble protein stability in whole organisms where 

most cells reside in a non-dividing state. Nevertheless, our turnover rates correlated well with 

data derived from arrested HeLa cells [169]. Overall, while some comparative cross-species or 

cross-cell type studies have been published recently [114, 393], the degree of conservation of 

protein stability still needs to be explored more systematically also including different laborato-

ries.  

Another factor that has been described to influence turnover rates is the localization of proteins. 

In the present study, only minor differences in half-lives of proteins assigned to different cell lo-

cations were observed. However, it has to be noted that potentially different turnover rates for 

the same protein species localizing to various cell compartments cannot be distinguished in the 

presented work since whole cell extracts were analysed. A spatially resolved study would provide 

further insights, especially considering recent observations that proteins frequently localize to 

multiple cell compartments [292]. Indeed, after subcellular fractionation, Boisvert et al., detected 

differing stabilities of the same proteins depending on their localization [170]. In particular, they 

detected complex subunits to exhibit longer half-lives after complex assembly which has recently 

been further supported by McShane et al. [376].  

As mentioned earlier, the present study does not provide the resolution to discriminate between 

free and assembled complex units. However, a generally longer half-life of proteins that are part 

of complexes was detected supporting the overall notion of a stabilizing effect of protein interac-

tions. The only significant exception to this rule was the NADH dehydrogenase, complex I of the 

electron transport chain. Despite of their high abundance, members of this complex exhibited 

rather short half-lives. It was suspected that this might be related to damage inflicted by oxidative 

stress, which was corroborated by experiments performed under rotenone-induced, oxidative 
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stress conditions. Within the scope of this work, only NADH dehydrogenase proteins were inves-

tigated, thus further experiments are required to clarify whether the turnover of other respiratory 

chain proteins can also be regulated by other forms of oxidative stress. This may be of particular 

interest for members of complex III, as this is the second site of superoxide formation in the elec-

tron transport chain. Surprisingly, not all assayed subunits of respiratory chain complex I showed 

the same significant increase in turnover upon rotenone treatment indicating that single subunits 

mainly located around the iron-sulphur centres were substituted in the complex. Although a se-

lective exchange of single subunits has been described before in other complexes [394, 395], the 

processes and mechanisms by which this occurs remain elusive. Notably, half-lives of proteins 

within some complexes (also including the respiratory chain complexes) showed major variations 

which might further support the principle of a selective degradation of single complex subunits. 

However, another explanation could be that measured turnover rates represent an average of the 

degradation behaviour of free and assembled subunits. As already stated, these two states might 

possess different stabilities and, in addition, not exhibit the same proportions for all complex 

members. Indeed, for NADH dehydrogenase, this presumption was substantiated by an observed 

negative correlation of copies and half-lives (ρ=-0.34) attesting a higher turnover for those subu-

nits which must feature a bigger fraction of the free protein state. 

Not only proteins within the same complex varied in their stabilities, but also even peptides as-

signed to the same protein group differed more in their turnover rates than what could be simply 

explained by technical variation. It has been stated before that isoforms and differentially modi-

fied proteins can exhibit different stabilities [162, 163, 169], but due to the restricted quantifica-

tion accuracy at the peptide level, these kinds of analyses have hitherto largely been limited to 

comparisons of turnover dynamics of groups of peptides or the simple comparison of proteins 

included in a modification database to those not registered in this database. As demonstrated 

within this work, using the pulsed SILAC-TMT multiplexing approach facilitates an evaluation of 

turnover rates at the level of single peptides. Among the peptides with significantly different turn-

over times, several were constituents of distinct splice variants potentially representing isoform 

specific protein turnover. For most of these examples, physicochemical properties of annotated 

splice variants considerably differed, which further reinforces the notion that structure, hydro-

phobicity and abundance play a fundamental role in regulating protein stability. How this is con-

trolled at a molecular level, however, remains largely elusive.  

As noted above, certain sequence motifs termed degrons have been found to serve as recogni-

tions signals for E3 ubiquitin ligases and are therefore connected to protein stability [107, 119, 

396]. In addition to the aforementioned phosphodegrons, it has been demonstrated that the iden-

tity of N-terminal residues following the initiator methionine and N-terminal processing are asso-

ciated with different protein stabilities [163, 397]. Indeed, proteins possessing an N-terminal ala-

nine were significantly enriched in long-lived proteins, whereas lysine and glutamate appeared to 

have a rather destabilizing effect (1D enrichment analysis at 1 % FDR employing protein half-life 

data). However, the overall effect was small (enrichment scores between -0.14 and 0.09) indicat-

ing a high variation in the half-lives of proteins featuring the same N-terminal residue. Regarding 

N-terminal processing, Gawron et al. also detected a generally higher stability for peptides that 

retained the initiator Met residue (iMet) before valine and proline residues compared to those 

without it [163]. Consistent with this, the proline containing N-terminus of 60S ribosome subunit 

biogenesis protein NIP7 was detected to be less stable after iMet cleavage in our data. Conversely, 

the eukaryotic translation initiation factor 3 subunit B (EIF3B) protein and the mitotic spindle-

associated MMXD complex subunit MIP18 (FAM96B), which contain an N-terminal Pro and Val 
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residue respectively, displayed the opposite behaviour with iMet containing peptides featuring a 

much higher turnover. Overall, this indicates that effects of N-degrons do not necessarily need to 

be consistent across proteins and that additional factors like accessibility [118] may be involved in 

N-terminal regulation of protein stability. 

Importantly, with regard to potentially modified peptides, it needs to be emphasized that the dis-

appearance of SILAC labelled peptides can be caused either by actual degradation of the pro-

teoform related to this detected peptide or by the peptide entering another (modification) state. 

In other words, a higher turnover rate of iMet containing peptides could also be related to the 

rate of N-terminal proteolytic processing. The same applies to other irreversible post-translational 

modifications and in general to all cases where the detected peptide or protein is lost from the 

pool of analysed species as it is the case, for example, for secreted proteins. Accordingly, it is 

conceivable that the high turnover rate of the peptide encompassing His715 in EEF2 might also 

reflect the rate of diphthamide modification [382]. Similarly, the turnover of peptides comprising 

cleavage sites in CTSD and PSAP, may as well illustrate the proteolytic process itself. In contrast, 

peptides that are completely contained in a cleavage product should represent its actual stability 

as observed for mitochondrial transit peptides, the Ubiquitin-like part of FAU and also the light 

chain of CTSD. Two different products of CTSD which are likely to be related to the full length 

protein and the product resulting from the cleavage of the secretion signal peptide have previ-

ously been shown to differ in their turnover rates [162]. However, it has never been demonstrated 

that the amino terminal light chain of CTSD is less stable than the carboxyl-terminal heavy chain. 

Since both chains are associated via hydrophobic interactions to form the active site of CTSD [398], 

this potentially hints to a hitherto unknown control mechanism of CTSD activity by regulation of 

the abundance of the light chain via its higher turnover. Consequently, a stabilization of the light 

chain alone would rapidly increase the abundance of active CTSD.  

A similar principle could underlie the regulation of BLM activity. This helicase has been proposed 

to be involved in DNA double strand repair [399] and described to be phosphorylated at Thr766 

by the cell cycle regulating kinase CDK1 [384] which in turn has been demonstrated to be degraded 

upon genotoxic stress [400]. Together with the observation of a much higher stability of the 

Thr766 non-phosphorylated state, this suggests that BLM half-life can be increased via diminished 

phosphorylation on Thr766 as a result of reduced CDK1 activity following DNA damage (Appendix 

Figure 0-13 E). This post-translationally regulated stabilization would provide a rapid means to 

enhance helicase activity for DNA repair. This example illustrates that a high “default” protein 

turnover, which at first sight may appear to be disadvantageous from an energy efficiency point 

of view, can enable a cell to respond more flexibly and rapidly to altered cellular conditions with-

out the need to induce transcription and translation. With respect to the further identification of 

differentially turned over proteoforms, it generally needs to be considered that, in bottom-up 

proteomics, every peptide that is analysed may include molecules derived from various pro-

teoforms. As a result, when comparing unmodified (potential modification counterpart) peptides 

to the whole protein, only modifications that either very potently alter protein stability and/or 

exhibit an overall high occupancy can be indirectly identified as turnover regulating PTMs. In order 

to overcome the limitation of proteoform-shared peptides, a direct measurement of modified 

peptides and a comparison to their unmodified counterparts would prove beneficial. 

4.3 Conclusion 

In summary, this pulsed SILAC-TMT proof-of-concept study provides one of the most comprehen-

sive, high quality turnover datasets in a single cell line to date with high temporal resolution of 
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endogenously expressed, untagged proteins in a steady-state cell system. Observed protein deg-

radation rates spanned more than four orders of magnitude demonstrating that protein turnover 

must be a highly regulated process. Although multiple protein features were associated with turn-

over on the protein level, correlations were often only weak, which diminishes their overall pre-

dictive value and underscores the intricacies of the underlying, regulatory processes. This is illus-

trated by an even higher variation of degradation rates at the peptide level (more than five orders 

of magnitude) demonstrating that post-transcriptional and post-translational processing plays an 

essential role in the dynamic regulation of protein stability and thus revealing an underappreci-

ated dimension in the functional control of life.  

 

 

 

 



 

 

  



 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

„The beginning of knowledge is the discovery of something we do not understand.” 
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1 Introduction and summary 

After protein turnover in steady state was discovered in the late 1930s [97], the dynamic nature 

of cellular proteins has been studied intensively [372], and its significance for maintaining cellular 

protein homeostasis has been widely acknowledged [84, 99, 401]. More recently, the utilization 

of isotope tracing methodologies in conjunction with MS-based readouts has enabled investiga-

tion of turnover of endogenous proteins on a proteome-wide scale [168]. Employing pulsed SILAC 

approaches, half-lives of cellular proteins have been shown to range between minutes and more 

than 1,000 hours and vary considerably between different cell types and tissues [114, 402, 403] 

demonstrating the high degree of regulation imposed on protein synthesis and degradation pro-

cesses. For several proteins, PTMs have been implicated in protein stability suggesting that the 

differential turnover observed in different biological systems may be post-translationally con-

trolled. Most prominently, poly-Ubiquitin chains linked via lysine at position 48 typically mark pro-

teins for proteasomal degradation [76]. Further, phosphorylated motifs that serve as recognition 

elements for E3 Ubiquitin ligases can induce ubiquitination and subsequent protein degradation. 

Such phosphodegrons have been identified to be responsible for periodic degradation of cell cycle 

regulators and enable progression of cell proliferation [122, 132]. In contrast to this positive PTM 

crosstalk, a competitive interplay between stabilizing acetylation and destabilizing ubiquitination 

has been observed for several transcription factors including p53, MYC, and SMAD7 [94, 404-409]. 

However, acetylation has also been shown to result in degradation of other transcriptional regu-

lators such as HIF1α and GATA-1 [410, 411] illustrating the diversity and complexity of underlying 

regulatory mechanisms. Importantly, for most proteins, modification types and sites governing 

protein degradation remain elusive demonstrating the need for a global interrogation of modifi-

cation-specific protein turnover. 

Advances in the analyses of PTMs with MS-based proteomics technologies now facilitate the quan-

tification of thousands of phosphorylation, ubiquitination, and acetylation sites within a single 

sample [194, 207, 215, 297] thereby theoretically allowing for the proteome-wide investigation of 

modification-regulated protein stability. However, only a limited number of studies have exam-

ined the impact of PTMs on protein degradation [162, 412, 413]. They either compared protein 

half-lives that were computed including or excluding all available phosphopeptides [162], inferred 

degrons from responses of co-occurring phosphorylation and ubiquitination sites upon pro-

teasome inhibition [412], or relied on the integration of protein turnover data with counts of pre-

viously observed modifications sites [413]. While these investigations have their own merit, none 

of these studies directly assessed the steady-state turnover of individual modified peptidoforms 

limiting their informative value regarding the impact of individual modifications sites.  

In an attempt to examine phosphorylation-, acetylation-, and ubiquitination-specific turnover 

globally for the first time, two strategies were employed. First, the pulsed SILAC-TMT approach, 

which has proven useful for time-course analyses of peptide turnover (see Chapter IV), was ex-

tended to measurements of the phosphoproteome and acetylome. Via adjustments of the data 

processing procedure including a computational removal of ratio compression and abundance 

corrections, pSILAC-TMT data quality was improved further. Second, phosphorylated, acetylated, 

and di-glycine peptides were analysed for four individual SILAC pulse time-points to obtain their 

relative turnover. The combined datasets yielded turnover information for >120,000 peptides car-

rying >30,000 modification sites and demonstrated that lysine acetylation predominantly de-

creased turnover of peptides, while ubiquitination mostly accelerated peptidoform turnover and 
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phosphorylation produced both effects. Statistical evaluation revealed an unexpectedly high de-

gree of differentially turned-over peptidoforms within metabolic enzymes and protein complexes 

like the proteasome and ribosome indicating an under-appreciated level of post-translational reg-

ulation of their activities. Modification-specific analyses further identified new candidates for ac-

tive degrons and suggested an additional layer of regulation by modifications that inhibit degron 

activity. An integration with structural information and drug treatment responses facilitated the 

identification of two distinct groups within acetylation sites that resulted in decreased peptide 

turnover. The first group was located within ordered secondary structures and partly antagonized 

destabilizing ubiquitination. The second group of acetylation sites was followed by proline and 

their slower turnover appeared to reflect an imbalance in modification kinetics caused by the lack 

of eraser enzyme activity instead of altered protein stability. Notably, di-glycine counterparts of 

slower turning-over acetylation sites frequently displayed a similar turnover as the non-modified 

site, suggesting that alternative mechanisms than a blocking of ubiquitination might slow down 

the turnover of many acetylated peptidoforms. Finally, the majority of modification sites with dif-

ferential turnover lacked functional annotations illustrating the great potential of modification-

specific turnover analyses for the identification of sites with potentially functional relevance. 
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2 Experimental Procedures 

The following sections provide an overview of the experimental design and data processing strat-

egies that are specific for the assessment of modification-regulated turnover. Details on individual 

experimental steps, data processing and analyses are specified in chapter II (see pp. 37).  

Initially, enrichment procedures for acetylated and ubiquitin-remnant peptides using respective 

PTMScan® Kits (Cell Signaling Technology) needed to be implemented in the laboratory. Amongst 

other things, differing peptide quantities (1, 2, 3, 5, 10 mg), antibody bead amounts (5, 10, 20 µl 

settled beads), wash protocols (1x IAP buffer + 2x water, or 2x IAP buffer + 3x PBS), and elution 

steps (eluting up to 4x) were evaluated on the basis of the manufacturer’s and other published 

protocols [207, 210]. Based on this multi-step optimization procedure (Appendix Figure 0-14, 

Figure 0-15), a protocol was established in which 10 µl settled beads and 2 to 5 mg of protein 

digest was used, beads were washed once/twice (acetyl/ubiquitin-remnant) with IAP buffer fol-

lowed by two washes with PBS, and enriched peptides were eluted twice. 

 

Figure V-1 | Experimental designs of the two strategies for the assessment of modification-regulated pro-
tein turnover. For both experimental workflows, 4 replicates including two label-swaps were prepared. (A) 
For time-course data, pulsed SILAC-TMT experiments were conducted as described in chapter IV. An aliquot 
of labelled peptides was fractionated using hSAX chromatography to obtain non-modified peptidoforms. 
Residual peptides were subjected to serial phosphorylation and acetylation enrichments. (B) For single pulse 
data, individual pulses of 4 time-points were performed. Phosphorylated (P), di-glycine (GG, Ub-remnant), 
and acetylated (Ac) peptides were enriched sequentially. The whole proteome (W, flow-through containing 
non-modified peptides) and phosphoproteome were fractionated using bRP STAGE tips. 

To determine the turnover of modified peptides, four replicates of a time-course pSILAC-TMT ex-

periment were performed exactly as described in chapter IV (pp. 105). This time, however, an 

enrichment of phosphorylated and acetylated peptides was included after TMT labelling (Figure 

V-1 A), and phosphorylated peptides were fractionated into 6 bRP tip fractions. In an alternative 

approach, 4 HeLa cell culture replicates of 4 single SILAC pulses (1, 6, 24, 40 h) were prepared 

meanwhile switching two replicates from K0R0 to K8R10 and the other two replicates from K8R10 

to K0R0 (Figure V-1 B). Following protein extraction and digestion, a serial enrichment of phospho, 
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acetyl, and ubiquitin-remnant moieties was conducted. The flow-through containing the non-

modified peptidoforms was fractionated via bRP STAGE tips into 6 fractions, whereas the phos-

phoproteome was separated into 4 fractions. No TMT labelling was performed. 

Pulsed SILAC-TMT samples were measured, searched, and processed as described in chapter IV 

(pp. 103) with following modifications and additions: One-third of the phosphoproteome and half 

of the acetyl-peptide enrichment were each injected twice for MS measurement. MS2 spectra of 

phosphopeptides were acquired after HCD fragmentation using an NCE of 33 % and a cycle time 

of 2 s, whereas acetyl-peptides were fragmented with CID at 35 % NCE in a top10 method. Raw 

data were searched using MaxQuant v1.6.0.16 adding phosphorylation on serine, threonine, or 

tyrosine as variable modification for the phosphoproteomes and acetylation on K0 or K8 for acety-

lomes. Mass tolerance for ion trap spectra was set to 0.4 Da. The KRAB filter was adjusted (K: 0-5; 

R2≥0.7; A: 0.7-1.4; B: -0.15-0.25) to improve correlations and CVs of turnover rates across repli-

cates and label incorporation and loss curves (Appendix Figure 0-16 A). Additionally, ratio com-

pression was computationally reduced before normalization, and afterwards peptide intensities 

were corrected for abundance changes (see pp. 48, and pp. 135 for details).  

Single pulse time-points were measured on a Q-Exactive HF-X mass spectrometer injecting 

amounts corresponding to 1 µg of whole proteome digest, one-fifth of the phosphopeptide en-

richment, and half of the acetyl and di-glycine IPs. The latter were injected twice. Peptides were 

separated using a 50 min linear gradient from 4 to 32 % solvent B, except for phospho-peptides 

which were separated in a two-step gradient from 2 to 15 to 27 % solvent B. Up to 25, 15, and 12 

precursors were selected for HCD fragmentation (26 % NCE) for non-modified, phosphorylated, 

and acetylated/di-glycine peptides, respectively. MS2 spectra were recorded at 15K resolution 

using an isolation window of 1.3 m/z, an AGC target value of 1e5 (2e5 for phosphopeptides), and 

a maxIT of 100 ms (22 for non-modified peptides). Raw data of single pulse samples were searched 

against the human Swiss-Prot database using MaxQuant v1.6.0.16. Lys0/Arg0 and Lys8/Arg10 

were specified as metabolic labels, and phosphorylation on serine, threonine, and tyrosine, or 

acetylation or di-glycine on lysine were allowed as variable modifications for corresponding sub-

proteome enrichments. Ratios of new-to-old (N/O) peptides and proteins, and corresponding 

turnover rates were computed as described in chapter II (pp. 52).  

For counterpart analyses, non-modified peptides were mapped to modified sites on site not pep-

tide sequence level for all PTMs, since acetylation and ubiquitination of lysine residues leads to 

missed cleavages. Hence, a peptide was defined as counterpart as long as it contained the unmod-

ified amino acid that was identified with a modification in another peptide. Modifications were 

not filtered for localization probability but always automatically assigned to the most likely site. 

Student’s t-tests were conducted separately for different datasets using turnover rates for pSILAC-

TMT data and N/O ratios for single SILAC pulse experiments. Afterwards, significant hits were 

combined for functional enrichment and motif analyses as described in the results section 

(pp. 138). 
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3 Results  

3.1 Two approaches for the investigation of PTM-specific turnover 

For determination of the turnover of modified peptidoforms, two different approaches were pur-

sued. For both, only acetylated, phosphorylated, ubiquitinated (i.e. di-glycine containing) and non-

modified sequences were counted as distinct peptides (peptidoforms), whereas quantitative in-

formation of oxidized peptide sequences was integrated with non-oxidized versions. 

Pulsed SILAC-TMT approach and refinement of data processing – In the first approach, the 

previously established pulsed SILAC-TMT method (see chapter III, Figure IV-3) was combined with 

an enrichment of phosphorylated and acetylated peptides to obtain their time-resolved label in-

corporation and loss behaviour. After data normalization, curve fitting and filtering, a dispropor-

tional discard of curves for modified peptidoforms was observed. While 53 % of evidence entries 

for non-modified peptides passed the KRAB-filter, only 17 % (ac-K) to 49 % (ph-S) of evidence en-

tries mapping to modified peptides resulted in successful curve fitting (Figure V-2 A). It was as-

sumed that this was at least partly caused by the, on average, higher ratio compression particu-

larly for acetylated and tyrosine-phosphorylated peptides. Only 55, 48, and 45 % of evidence en-

tries for N-terminal acetylated, lysine acetylated, and tyrosine-phosphorylated peptides, respec-

tively, featured a ratio compression below 10 % compared to 62 % of entries for non-modified 

peptides (Figure V-2 B). To correct for this bias, ratio compression was computationally tackled 

assuming that it originated from co-isolation and fragmentation of peptides with respective op-

posing quantitative characteristics. More precisely, for each peptide that exhibited a label loss (or 

incorporation), the average label incorporation (or loss) curve was normalized to the apparent co-

isolated intensity in the last (or first) TMT channel and then subtracted from the individual peptide 

intensities (Appendix Figure 0-16 B). In addition, it was investigated to which extent the premise 

of a constant abundance of peptides during the pulse time-course was fulfilled. To this end, abun-

dances of peptides that were identified in both labelling states were assessed by harnessing the 

sum of their fractional MS1 intensities for each time-point. Although an ANOVA at 1 % FDR did 

not identify any peptides that changed significantly in abundance across time-points, partly large 

fold changes (FCs) were observed with 41 % of peptides showing at least a 2-fold difference be-

tween any two of the time-points. Especially modified peptidoforms were affected by these vari-

ations, for instance, 64 to 66 % of serine-phosphorylated and lysine-acetylated peptidoforms dis-

played at least a 2-fold change (Figure V-2 C). Since fluctuations in abundance can alter estimated 

turnover rates, an adjustment for such abundance variations was performed to improve accord-

ance between label loss and incorporation curves (Appendix Figure 0-16 C). In brief, the 

knowledge of a relative abundance increase (or decrease) was utilized to adjust ratios, to which 

turnover curves were fitted, accordingly downwards (or upwards). Importantly, curves were cor-

rected based on median abundance changes across replicates, and only turnover curves for which 

quantitative peptide information on both labelling states was available could be adjusted in this 

way (41 % of peptides). 

After these refinements in processing of pulsed SILAC-TMT data, the number of successful curve 

fits increased by 17 %, most considerably for evidence entries identifying acetylated peptides 

(46 % increase, Figure V-2 D). Moreover, the correlations of turnover rates across replicates im-

proved from an average Pearson correlation coefficient of 0.65 to 0.71 (Figure V-2 E), which was 

mainly a result of enhanced correlations of rates derived from label incorporation and loss curves 

(improvement from R=0.59 to 0.67, Appendix Figure 0-16 A). While the increase in the overall 
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number of distinct peptides for which a turnover rate could be determined was due to the in silico 

removal of ratio compression, abundance corrections mainly enhanced the correlation across rep-

licates thereby improving the robustness of rate estimations (Figure V-2 F). In the end, nearly 

82,000 peptidoforms (17,418 modified ones) assigned to 8,430 protein groups were available in 

the pulsed SILAC-TMT dataset for the assessment of modification-specific turnover. 

 

Figure V-2 | Refinement of pulsed SILAC-TMT data processing. (A) The doughnut plot illustrates the fraction 
of evidence entries identifying peptides with various modifications and passing the KRAB-filter before data 
processing was revised (see also Appendix Figure 0-16). Numbers of evidence entries are indicated. (B) Ratio 
compression of unfiltered evidence entries was estimated based on intensities in the outermost channels 
that are supposed to be empty and is displayed for the all evidence entries (area) and separately for those 
matching to different modified and non-modified peptidoforms (lines). (C) Boxplots (25th-50th-75th percentile) 
show the maximal fold increase of peptidoform intensities (average of replicates) across the course of the 
pulse time-series. Numbers of included peptides are indicated on the right. (D) Same as in (A) is illustrated 
but after refinement of data processing including computational removal of ratio compression and abun-
dance correction. (E) Pearson correlation coefficients of turnover rates obtained from label incorporation 
and loss curves of the four cell culture replicates are plotted before and after refined data processing. (F) 
Average Pearson correlation coefficients across replicates and the number of peptides for which a turnover 
rate could be determined are indicated for different refinement steps of the data processing procedure. The 
correlation coefficients on the left are obtained for peptides shared between different processing steps. 

Single SILAC pulse time-points – In the second approach, phosphorylated, ubiquitin-remnant-

containing, and acetylated peptides were enriched from individual SILAC pulse experiments cov-

ering four time-points (1, 6, 24, and 40 h) with no additional TMT-labelling step. Instead of per-

forming curve fitting to estimate absolute turnover rates, determined ratios of newly synthesized 

to older peptides (N/O ratios) were utilized as a proxy for the relative turnover of modified and 

non-modified peptidoforms within a certain pulse time-point. As expected, different pulses 

yielded globally shifted N/O ratios that were larger for later time-points (median of 0.1, 0.2, 1.1, 

and 1.8 for 1, 6, 24, and 40 h, Figure V-3 A). The number of peptidoforms quantified in both 
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labelling states was significantly lower for the 1 h pulse (22,891) compared to the other three 

pulse time-points (average of ~59,400) due to the overall small fraction of label incorporation and 

the challenging determination of very large ratios (Figure V-3 B). Different pulse time-points also 

tended to quantify more distinct peptidoforms than replicates of the identical time-point. Overall, 

N/O ratios of replicates from the same pulse correlated well with few exceptions (Figure V-3 C). 

Noteworthy, replicates that started with cell culture medium containing the same isotopically la-

belled amino acids featured a superior correlation of N/O peptide ratios (average R of 0.80) com-

pared to replicates that started with different cell culture media (average R of 0.53, Figure V-3 C). 

This was especially apparent for the 1 h time-point where the poor correlation of label swap pairs 

(average R of 0.32) suggested that quantification of large ratios was considerably less reproducible 

and thus less accurate than if light and heavy intensities were more similar as it was the case for 

other pulse time-points. Interestingly, samples in which the light version of peptides showed on 

average higher intensities than the heavy versions consistently displayed the highest correlation 

of N/O ratios (K0R0-to-K8R10 switch for 1 and 6 h pulse, K8R10-to-K0R0 switch for 24 and 40 h 

pulse). The reason for this phenomenon remains ambiguous. In total, single pulse experiments 

provided N/O ratios for about 79,500 peptides (24,560 modified ones) mapping to 7,259 protein 

groups in any of the four time-points. 

 

Figure V-3 | Characteristics of the single time-point pulse dataset. (A) Violin plots illustrate distributions of 
N/O peptide ratios for increasing time-points. (B) The bar chart and the major Venn diagram display the 
number and overlaps of distinct peptidoforms with an N/O ratio for the different pulse time-points. Oxidized 
peptide versions were not counted as distinct. The shading of the Venn diagram reflects the degree of overlap 
across datasets. The smaller Venn diagram shows the overlaps across replicates of the 24 h pulse time-point 
as a comparison. (C) Pearson correlation coefficients of N/O ratios are plotted for different pulse time-points 
indicating whether they were derived from the comparison of replicates that start the pulse with the identical 
light (L = K0R0) or heavy (H = K8R10) cell culture medium (white and black circles) or with different cell cul-
ture media (grey circles, label swap correlations).  

Congruence of both approaches – When combining results from both experimental strategies, 

information of turnover was available for more than 121,000 peptidoforms assigned to more than 

10,000 protein groups, and one third of peptides was quantified by both approaches (Figure 

V-4 A). This included 34,116 modified peptides covering 30,499 modification sites of which on fifth 

was shared between the pSILAC-TMT and the single pulse datasets (Figure V-4 B). In an attempt 

to integrate all data, turnover rates were computed for single SILAC pulse experiments using N/O 

ratios as described in Chapter II (pp. 52). Amino acid recycling estimated from pSILAC-TMT data 

(Appendix Figure 0-17 A) was factored in for rate computations since it improved coefficients of 

variation across pulse replicates especially for 1 h time-point (median of 0.55 vs. 0.30 without ac-

counting for recycling). As already suggested from correlation analyses, the CV distribution for the 

1 h pulse data was nevertheless broader as the ones of other pulse time-points (75th percentile of 

0.37 vs. 0.14-0.17, Figure V-4 C). Remarkably, CVs increased further when turnover rates of all 
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single pulses were combined (median of 0.27 vs. 0.09-0.10), even if the 1 h pulse was omitted 

(median of 0.19). This indicated that N/O ratios from different pulses generally yielded somewhat 

diverging turnover rates, which was indeed corroborated by globally shifted rate distributions 

(0.22, 0.046, 0.033, 0.028 for 1 to 40 h, Appendix Figure 0-17 B). Similarly, turnover rate distribu-

tions of combined single SILAC pulses were slightly narrower and shifted towards smaller turnover 

rates in comparison to pulsed SILAC-TMT data (median of 0.034 vs. 0.038, Figure V-4 D), and a 

combination of both approaches somewhat increased CVs (Figure V-4 C). Hence, it was decided 

to analyse the datasets separately using N/O ratios for single SILAC pulses and turnover rates for 

pulsed SILAC-TMT data.  

 

Figure V-4 | Integration of data from the two different pulsed SILAC approaches. (A) Venn diagram and 
bar chart illustrate the number and overlaps of peptides (ignoring oxidized versions) and modification sites 
for which turnover behaviour could be quantified. (B) Boxplots (25th-50th-75th percentile) display distributions 
of coefficients of variation for N/O peptide ratios and estimated turnover rates for single datasets and com-
bined data. (C) Violin plots reveal global differences in turnover rates between all modified (including acety-
lated, ubiquitinated, and phosphorylated) and non-modified peptides and the two different pSILAC ap-
proaches. Only peptides that were shared between the two different methods were included.  

3.2 Characterization of peptidoforms with differential turnover  

A global comparison of post-translationally modified and non-modified peptides revealed a gen-

erally broader distribution of turnover rates for modified peptidoforms with medians shifted to-

wards higher turnover indicating an overall decreased stability (e.g. 0.048 vs. 0.038 for pSILAC-

TMT data, Figure V-4 D). To investigate modification-specific turnover in more detail, turnover 

rate and N/O ratio distributions of peptides with different modification types were examined sep-

arately (Figure V-5 A). Further, turnover of modified peptides was set in relation to their corre-

sponding proteins (Figure V-5 B) or non-modified counterpart peptides (Figure V-5 C) to reveal 

protein-specific, stabilizing or destabilizing effects of post-translational modifications.  

Figure V-5 | Global differences in turnover of modified peptidoforms. Medians of cell culture replicates are 
plotted. (A) Turnover rate and N/O ratio distributions are shown for modified peptides in comparison to non-
modified, non-counterpart peptides. Counterpart peptides include all peptides that encompass an unmodified 
amino acid that was found in a modified state in any of the acquired datasets. Vertical, coloured lines mark 
the medians of respective distributions. (B) Ratios of turnover rates or N/O fractions of modified peptides to 
their corresponding protein are displayed. For computation of protein turnover rates, at least 3 peptides were 
required including all peptides irrespective of their modification state. (C) Ratios of turnover rates or N/O 
fractions of modified peptides to their non-modified counterpart peptide are plotted. Coloured numbers indi-
cate the fraction of peptides that featured a 2-fold slower or faster turnover compared to the protein or 
counterpart peptide. 
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Global differences in the turnover of modified peptidoforms – The observed, global differ-

ence of modified and non-modified peptides was mainly driven by the large fraction of phosphor-

ylated peptides. They featured, on average, a higher turnover as non-modified peptides 
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irrespective of the modified amino acid (STY) and for both experimental approaches (Figure V-5 A). 

Strikingly, this clear shift vanished when the turnover ratios of phosphorylated peptides to their 

corresponding proteins or counterpart peptides were examined (Figure V-5 B, C). This suggests 

that phosphorylation was predominantly detected on high-turnover proteins. While ratio distri-

butions had medians close to zero, they exhibited a wide range, which indicated that still many 

phosphorylation events could alter measured protein turnover. Especially the comparison to non-

modified counterpart peptides implied that the majority of such regulating phosphosites in-

creased turnover (62-84 % of peptides that showed a ≥ 2-fold turnover difference, Figure V-5 C). 

Comparable to phosphorylation, ubiquitin-remnant peptides displayed a global shift towards 

higher turnover in comparison to non-modified peptides (Figure V-5 A). This destabilizing effect 

had been expected based on the well-established involvement of ubiquitination in proteasomal 

protein degradation. However, the observed shift decreased with increasing pulse time and was 

not apparent anymore for the 40 h time-point. A large fraction of 20 to 60 % of di-glycine peptides 

showed an at least doubled turnover compared to the corresponding protein or counterpart pep-

tide in the 1 and 6 h time-point, whereas this fraction dropped to 7.8 to 15 % for the 24 and 40 h 

pulses (Figure V-5 B, C). After longer pulse times, up to 7.7 % of di-glycine peptides even exhibited 

an at least 2-fold decrease in turnover compared to their protein supporting the notion that the 

functional relevance of ubiquitination transcends its role as degradation signal. 

N-terminal acetylation resulted in only minor differences in overall turnover compared to non-

modified peptides. For lysine acetylation, however, a globally decelerated turnover compared to 

non-modified peptides was observed, which was especially apparent in pSILAC-TMT data and after 

longer single SILAC pulses (Figure V-5 A). A comparison of the turnover of acetyl-lysine peptides 

and their assigned proteins or non-modified counterparts equally demonstrated their vastly 

slower turnover with almost half of them showing more than 2-fold decreased turnover in the 

40 h pulse samples (Figure V-5 B, C). Noteworthy, also lysine acetylated peptides with more than 

a doubled turnover were detected, but mostly at a much lower frequency (2.5-15 %) compared to 

≥ 2-fold stabilizing acetyl-lysine peptides (9.5-48 %). Only for the comparison to counterpart pep-

tides in the 1 h pulse samples, these higher-turnover peptides accounted for the majority of ace-

tyl-peptides (54 %). Noteworthy, this may also be an artefact of the partially poor quantitative 

performance observed for 1 h pulse replicates (Figure V-3 C, Figure V-4 C). Therefore, statistical 

test were performed as a next step to account for replicate variance and prioritize modification 

sites that affect turnover with high confidence. 

Identification of peptides with significantly different turnover – For each of the 5 datasets, 

significance of turnover differences between peptides and their corresponding proteins or coun-

terparts was assessed separately. To this end, at least two turnover rates or N/O ratios were re-

quired in each group for any statistical test. Further, only peptides that mapped to proteins with 

at least three quantified peptides were considered in the comparisons to proteins. Hence, 64-77 % 

of all quantified peptides were included for the peptide-to-protein tests except for the 1 h SILAC 

pulse where only 5 % matched all required criteria (Appendix Figure 0-18 A). Naturally, propor-

tions of quantified peptides used for the comparison of modified and counterpart peptides were 

smaller (3-7 % of all peptides, corresponding to 21-30 % of modified peptidoforms, Appendix Fig-

ure 0-18 A). All possible peptide pairs were allowed in the analyses resulting in several pairwise 

comparison for modified peptides for which more than one non-modified counterpart peptide 

was quantified (applied to 17-28 % of tested modified peptides). Statistical tests lead to differing 

fractions of significant hits ranging from 0 (for peptide-to-protein tests in the 1 h and 40 h pulse 

samples) to a quarter of performed pairwise comparisons (for modified peptide-to-counterpart 
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test in the 6 h replicates, Appendix Figure 0-18 B). The pulsed SILAC-TMT dataset yielded the high-

est number of peptides with significant different turnover to their assigned protein (6,697), 

whereas the 6 h SILAC pulse identified most modified peptides with significant differences in sta-

bility compared to their counterpart peptides (913). Collectively, 9,940 peptides assigned to 4,874 

proteins scored in at least one of the statistical tests, which corresponded to ~11 % of tested pep-

tides. 

Enriched protein functions among significant peptidoforms – To set observed turnover dif-

ferences in context with known functional annotations of peptidoforms and corresponding pro-

teins, significant hits from all analyses were combined and subjected to Fisher’s exact tests. To 

this end, turnover of a peptide was defined as significantly slower or faster when at least one of 

the statistical tests identified it to be significantly slower or faster. Peptides that were found in 

conflicting groups (faster and slower) in different datasets were discarded before enrichment 

analysis (50 for the peptide-to-protein and 18 for the modified peptide-to-counterpart compari-

son, corresponding to <1 % of significant hits, Appendix Figure 0-18 C).  

Fisher’s exact tests using UniProt keywords, KEGG pathways, and HPA protein classes identified 

multiple categories that were enriched within peptides with both, significantly slower and faster 

turnover (Figure V-6 A). These included most notably annotations of large multi-protein com-

plexes such as the proteasome, the spliceosome, and the nuclear pore complex, and of metabolic 

pathways like glycolysis and the citrate cycle (enrichment factors of >2.1, >1.6, >1.8, >2.4 and >2.1 

for peptides with significantly different turnover compared to their protein). A more detailed ex-

amination of α-, β-, and regulatory subunits of the 26S proteasome revealed 153 of 895 quantified 

peptides with significantly different turnover corresponding to ~20 % of the 783 proteasomal pep-

tides subjected to statistical testing. The majority of comparably faster turned-over peptides was 

post-translationally modified (72 of 98, mainly ubiquitinated), while most stabilized peptides ac-

counted for non-modified peptidoforms (54 of 64). Regulated peptides were predominantly de-

tected within subunits of the α-ring (PSMDA1-8, Figure V-6 B) and the base of the proteasome 

(ATPase subunits PSMC1-6 and non-ATPase subunits PSMD1-2, Appendix Figure 0-19). The high 

proportion of differentially turned-over and typically modified peptidoforms may hint at a hith-

erto under-appreciated, high degree of post-translational regulation of proteasome activity. Like-

wise, >21 % of statistically tested peptides mapping to proteins associated with the UniProt Key-

word ‘Glycolysis’ exhibited a significantly different turnover to the protein or counterpart peptide. 

Approximately half of these regulated peptides carried a modification and 2/3rd featured a slower 

turnover. Notably, Fructose-bisphosphate Aldolase A (ALDOA), Phosphoglycerate Kinase 1 (PGK1), 

α-Enolase (ENO1), Glycerinaldehyde-3-phosphate Dehydrogenase (GAPDH), and Pyruvate Kinase 

(PKM) yielded the highest faction of modified and differentially turned-over peptides (Figure 

V-6 B) insinuating that their stability and activity may be strongly controlled by PTMs. Contrarily, 

only one phosphorylated peptide with significantly higher turnover was identified for the rate-

limiting enzyme of glycolysis, 6-Phosphofructo-2-kinase (PFKFB2, pS466, log2 FC of 0.7), whose 

activity is regulated by pH and multiple allosteric activators and inhibitors (e.g. AMP/ATP, acetyl-

CoA, and its product fructose-1,2-bisphosphate). Surprisingly, none of the modification sites on 

peptides mapping to the proteasomal subunits or glycolytic enzymes and featuring a significantly 

different turnover was annotated with a known effect in the PTM database PhosphoSitePlus. The 

differential turnover properties of these modified peptides yet suggest some regulatory relevance 

of the corresponding PTM sites. Their absent functional annotations demonstrate the knowledge 

gap between identification of modification sites and the characterization of their role in cellular 

processes. 
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Noteworthy, the UniProt keyword citrullination was also enriched among stabilized and destabi-

lized peptidoforms (Figure V-6 A), which may hint at a general role of this modification in turnover 

regulation. To further investigate this hypothesis, the 40 proteins in this category containing for 

example histones, ribosomal proteins and transcription factors were searched for differentially 

turnover of non-modified peptides that encompass or (in case of trypsin cleavage) succeed poten-

tially deiminated arginine residues annotated in UniProt. However, only 2 of 16 of such peptides 

showed a decreased turnover and at the same time did not carry any other modification that likely 

may impact turnover (peptides following potentially citrullinated TRIM28 residue 472 and CCDC86 

residue 342 with log2 FCs of -0.7 and -1.4 in pSILAC-TMT data). Hence, the enrichment of this 

category was not directly mediated by citrullination itself, and a convincing global association be-

tween this modification and turnover needs yet to be established with further experiments. 

Additional protein categories that were solely overrepresented among peptides with slower turn-

over included ‘intermediate filament’ and ‘LIM domain’, which both largely comprised structural 

proteins. For both protein classes, protein-protein interactions play an important role for protein 

function and may be regulated via modifications. Intermediate filaments form coiled-coil dimers 

and LIM domain-containing proteins can bind other proteins via their two contiguous zinc finger 

domains. Indeed, several phosphopeptides containing sites that have been linked to a molecular 

association function or intracellular localization were identified among stabilizing peptidoforms 

within these protein classes. As an example, Lamin A peptides spanning pS390, pS392, or both 

phosphorylation sites exhibited a significantly decreased turnover compared to the whole protein 

and counterpart peptide in the pSILAC-TMT and 6 h single pulse datasets, respectively (log2 FCs 

of -0.7 to -1.2 and -1.1 to -1.2). Phosphorylation on these residues has been described to induce 

disassembly of the nuclear lamina [414, 415]. It may be counterintuitive that phosphorylated mon-

omers exhibit a slower turnover than non-phosphorylated dimers, but this finding could also indi-

cate additional functionalities of pS390 and pS392 in Lamin A (see also discussion pp. 153).  

Another category emerging from Fisher’s exact tests contained translation initiation factors which 

showed a 2.2- and 1.9-fold enrichment among peptides with slower and higher turnover, respec-

tively (Figure V-6 A). Roughly 15 % (163) of peptides mapping to 41 initiation factors and included 

in t-tests featured significantly different turnover characteristics and one third of these were mod-

ified peptidoforms (mostly ubiquitinated for destabilized and phosphorylated for stabilized pep-

tides). Interestingly, several regulated, modified and non-modified peptides carried potential 

degron motifs that are listed in the ELM database [311] but have so far not been associated with 

Figure V-6 | Traits and functional annotations of assigned proteins for peptides with significantly differ-
ent turnover. (A) Plots illustrate results of Fisher’s exact tests at 1 % Benjamini-Hochberg FDR using peptides 
that were identified to feature significantly faster (left side) or slower (right side) turnover. The respective 
background was always defined by all other peptides included for t-test analyses as shown in  Appendix 
Figure 0-18 B. Functional categories tested for significant enrichment included protein annotations (grey 
circles) from UniProt, KEGG, and HPA, and peptide traits (coloured circles) like modification state, localiza-
tion within the protein, and degron sequences. Only more than 2-fold enriched categories are displayed. (B) 
The position of peptides within their corresponding proteins is plotted against the turnover difference to 
their proteins for 20S proteasome subunits and glycolytic enzymes that were enriched in both, significantly 
slower and faster degrading peptides. If peptides match to more than one gene, additional genes are indi-
cated in brackets. The length of the major isoform is displayed in italics. (C) Average N/O ratios from repli-
cates of single pulse time-points are illustrated for the Eukaryotic Translation Initiation Factor 3 subunit H 
(EIF3H) and Transketolase (TKT), and their modified and non-modified peptidoforms that comprise degron 
motifs. (D) Turnover curves are shown for Uracil-DNA Glycosylase (UNG) and its modified and non-modified 
peptidoforms that span a phosphodegron motif. Shaded areas indicate 95 % confidence intervals obtained 
from fitting to respective evidence entries from pSILAC-TMT quadruplicates.  
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the respective translation initiation factors. The Eukaryotic Translation Initiation Factor 3 subunit 

H (EIF3H), for instance, contains an S/T-rich, SPOP (speckle-type POZ protein)-binding consensus 

motif, and three ubiquitin-remnant-containing peptidoforms spanning this degron showed in-

creased turnover (log2 FC of 0.5 to 1.4 to protein and 1.0 to 1.9 to counterpart, Figure V-6 C). In 

contrast, the non-modified versions exhibited a comparably slower turnover (e.g. log2 FC of -0.7 

and -0.8 in pSILAC-TMT and 40 h pulse data). This may indicate that a high fraction of expressed 

EIF3H is by default targeted for degradation by the SPOP/Cullin-3 E3 ligase complex. Likewise, 

another non-modified peptide of EIF2A with a similar SPOP-binding motif (NTVLATWQPYTTSK) 

featured a significantly slower turnover in the pSILAC-TMT dataset (log2 FC of -0.9). However, no 

ubiquitinated peptidoform, which would corroborate the notion of a functional SPOP/Cullin-3 

degron, was detected. Further, EIF3B carries a potential, tertiary destabilizing N-degron (gluta-

mine in second position [117]), and its unprocessed N-terminal peptide identified in pSILAC-TMT 

experiments showed a significantly higher turnover compared to the protein (log2 FC of 2.5). Con-

trarily, the N-terminal acetylated version detected in 24 h and 40 h pulse data showed no signifi-

cant turnover difference to the protein. This is in line with a rapid and irreversible modification of 

EIF3B’s N-terminus, either by N-terminal acetylation to protect the protein from degradation or 

by cleavage of the initiator methionine and further processing (i.e. deamidation and arginylation) 

of the glutamine residue to facilitate ultimately binding of N-recognins via their UBR-box. This 

results in EIF3B ubiquitination and subsequent degradation.  

Enriched peptide traits among significant peptidoforms – Besides protein annotations, pep-

tide characteristics like modification status, localization within the protein, and potential degron 

sequences were analysed for enrichment among peptides with significantly faster or slower turn-

over. UBR-box degrons with tertiary destabilizing glutamine or asparagine residues generally were 

enriched by a factor of 10 within destabilized peptides (Figure V-6 A). In addition to EIF3B, this was 

driven by Filamin C and Ubiquitin itself, which also featured faster turned-over N-terminal pep-

tides with and without the initiator methionine (e.g. log2 FC of 3.4 and 2.2 in 24 h pulse samples). 

Of note, no other degron category was overrepresented among destabilized peptidoforms. Nev-

ertheless, 180 peptides assigned to 154 protein groups and comprising a potential degron se-

quence exhibited significantly faster turnover compared to the protein or counterpart peptide. 

Among those, a doubly phosphorylated sequence of Uracil-DNA Glycosylase (UNG) was identified. 

The peptide with phosphorylated threonine 60 and serine 64 mapped to the consensus sequence 

of a FBW7 (F-box and WD repeat domain-containing 7)-binding phosphodegron and was signifi-

cantly less stable compared to the non-modified counterpart peptide and the protein in pSILAC-

TMT data (log2 FC of 1.3 and 1.0, Figure V-6 D). This observation substantiates a previous report 

that suggested that the ph-T60-ph-S64 pair functions as a phosphodegron in UNG [416]. The 

mono-phosphorylated peptidoform which only contained ph-T60 also exhibited a higher turnover 

(log2 FC of 0.6 and 0.3), but the difference in turnover rates was not significant. In addition to 

UNG, Transketolase (TKT), an enzyme of the pentose phosphate metabolic pathway, was found to 

carry a conditional FBW7-binding phosphodegron, which has so far not been characterised. The 

ph-T287-containing peptide showed a significantly decreased stability compared to non-modified 

counterpart peptides in the 40 h pulse experiment (average log2 FC of 0.8, Figure V-6 C). Interest-

ingly, another peptide with a phosphorylated serine (pS295), which was located 8 residues down-

stream of the threonine that is phosphorylated to form the phosphodegron, was significantly sta-

bilized (average log2 FC of -1.1). This may indicate an inhibitory role of this modification site to-

wards the formation and activity of the phosphodegron. Regarding modification status, Ubiquitin-

remnant peptides were clearly enriched within peptides with higher turnover, whereas lysine 
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acetylated, N-terminal acetylated, and tyrosine-phosphorylated peptidoforms were overrepre-

sented among stabilized ones (Figure V-6 A). N-terminal acetylated and N- and C- terminal pep-

tides, in general, also scored in Fisher’s exact test using peptides with significantly higher turnover, 

and other phosphorylations and modification counterpart peptides were similarly enriched in 

higher- and slower-turnover peptidoforms, albeit overall to a lesser extent (enrichment factors of 

1.2 to 1.5 in peptide-to-protein comparisons). Altogether, this illustrates a remarkably high degree 

of modification-specific turnover. 

3.3 Functional perspective on modification-specific turnover  

Modification-specific turnover was investigated in more detail in site- and motif-centric analyses. 

Importantly, in the following, site turnover will be referred to as the measured turnover of pep-

tides carrying the respective modification and not the kinetics of the modification process itself. 

Analogous to the peptidoform enrichments, significant hits from all Student’s t-tests were com-

bined and sites were determined as influencing turnover significantly when any peptide encom-

passing this site (irrespective of other modifications in the peptide) was found to exhibit signifi-

cantly different turnover in any of the statistical tests. This time, 120 of 19,600 statistically tested 

sites were identified on faster and slower turned-over peptides, mostly based on their assignment 

to different peptide sequences with a varying number of other modification sites (e.g. cases where 

mono- and di-phosphorylation on peptides showed opposing effects on turnover). These sites 

were discarded for further analyses resulting in 19,478 modified sites of which 13 % (for N-termi-

nal acetylation) to 26 % (for ac-K) were identified to exhibit significantly different turnover com-

pared to the non-modified site (Figure V-7 A). Only 4 % (773) of all sites were annotated to feature 

a regulatory function in the PSP database (for GG-/ac-K sites only 0.5 %/1.4 %). Noteworthy, this 

fraction increased within sites with significantly different turnover depending on the modification 

type by 11 % (phosphorylation) to 57 % (ubiquitination). Further, a fifth of all regulatory sites ex-

hibited a differential turnover behaviour. Nevertheless, more than 96 % (3,708) of significant sites 

lacked any regulatory function in PSP illustrating the potential to spot hitherto unknown, func-

tionally relevant modification sites conducting turnover analyses on peptidoform-level.  

Enriched sequence and site features among significant modifications – PSP annotation to-

gether with UniProt sequence features, PFAM domains and data on writer and eraser enzymes 

[208, 309, 310] were utilized for site-centric enrichment analyses, which were performed for ac-

K, GG-K, and ph-STY sites separately. Interestingly, modifications within ribosomal domains were 

over-represented among sites with higher turnover for all three modifications suggesting that 

PTMs may generally interfere with ribosomal function (also already indicated in the peptide-cen-

tric enrichment analyses, Figure V-6 A, Figure V-7 B). More precisely, 77 of 153 modified sites 

within ribosomal domains resulted in an accelerated protein turnover (9 ac-K, 10 ph-ST, and 58 

GG-K sites), while only 4 modifications exhibited a stabilizing effect (RPL7A_acK150, 

RPL10A_acK91, RS11_acK45, MRTO4_pS80). For none of them functions were annotated in PSP. 

Likewise, no functions were listed for higher turnover di-glycine sites within additionally enriched 

PFAM categories. These included MCM domains of DNA replication licensing factors (MCM pro-

teins) which control the initiation of DNA replication [417]. The high fraction of destabilizing Ubiq-

uitin-remnants within the functional domain of all identified MCM proteins (11 of 12 detected GG-

K sites, Figure V-7 C) indicates that ubiquitination of this C-terminal domain may be a common 

mechanism for MCM protein degradation. Destabilizing effects were also observed for most di-

glycine sites on Ku domains of X-ray repair cross-complementing protein 5 and 6 (XRCC5/6; 16 of  

19 GG-K sites, Appendix Figure 0-20), which form a DNA-binding heterodimer and are involved in 
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DNA repair pathways [418]. The 

same applied to many di-glycine sites 

within chaperonin domains of the 

protein-folding assistants included in 

the T-complex protein 1 family (17 of 

31 GG-sites on CCT2-5/6A/7-8 in 

Cpn60/TCP1 category, Figure V-7 B). 

Similarly, di-glycine sites on Actin and 

EF hand domains within cytoskeleton 

proteins such as Myosins and S100 

proteins often displayed an increased 

turnover (17 of 32 GG-K sites). 

In contrast, acetylation on structural 

proteins was widely associated with 

decreased turnover as exemplified by 

the over-representation of Rod domains among stabilizing ac-K sites (Figure V-7 B). They are com-

posed of α-helices which shape coiled-coiled dimers as part of filamentous proteins such as Vi-

mentin, Lamin A, and Keratins. As already suggested in the peptide-centric analyses, this indicates 

that turnover analyses may identify modifications that mediate potentially stabilizing protein-pro-

tein interactions. More general, 86 of 197 ac-K sites within α-helices and β-strands featured a 

slower turnover resulting in the enrichment of these structural features, and many of them were 

located within cytoskeleton proteins (Figure V-7 C). As a second protein class, a multitude of met-

abolic enzymes including several involved in glycolysis were identified to carry ac-K sites within 

ordered protein structures that led to a vastly decreased turnover (Figure V-7 C, Appendix Figure 

0-20). Further, such sites were also detected on several proteins involved in DNA synthesis, mRNA 

processing, translation, and protein folding. Importantly, for some of these sites increased acety-

lation was observed upon KDAC inhibitor treatment using SAHA, CUDC-101, and Romidepsin (e.g. 

UBE2E1_acK43, FASN_acK1704, ENO1_acK80, PKM_acK433, Figure 0-21 A). Others have detected 

similar upregulations on additional sites (e.g. MDH2_acK335, VIM_acK104) using the Sirtuin inhib-

itors Sirtinol and Tenovin [310], and identified several ac-K sites to be regulated by the KATs CREB-

binding protein (CBP) and p300 (e.g. UBE2E1_acK43, EEF1B2_acK185) [208]. This implies that at 

least a fraction of these modifications is subject to enzymatic control. Altogether, this may disclose 

Table V-1 | Motifs enriched among PTMs leading to signifi-
cantly different peptidoform turnover. Consecutive motif en-
richment analyses were performed using motifX [319] (fg: fore-
ground; bg: background). 

MOTIF SCORE FOLD      
ENRICHMENT 

MATCHES 
IN FG 

MATCHES  
IN BG 

Faster turnover 
.[ST]phxxE. 6.7 1.5 158 (17 %) 1,303 (11 %) 
.GKGG. 3.7 1.5 87 (11 %) 223 (7 %) 

Slower turnover 
.Ex[ST]phP. 22.9 2.4 75 (5 %) 253 (2 %) 
 .[ST]phPE. 15.9 1.8 92 (7 %) 429 (4 %) 
.[ST]phP. 9.2 1.2 662 (53 %) 4,745 (44 %) 
.KacP. 14.2 3.8 47 (13 %) 46 (3 %) 
.ExxKac. 5.2 2.1 42 (13 %) 84 (6 %) 

Figure V-7 | Functional annotations and motifs of PTMs resulting in significantly different turnover. (A) 

Bar charts present fractions of sites with regulatory annotations in the PhosphoSitePlus database (upper 

panel) and residing on peptides with significantly different turnover (lower panel). (B) Enriched sequence 

features and site functions are shown for modifications on peptides with significantly faster (left panel) or 

slower turnover (right panel). Functional categories in enrichment analyses (Fisher’s exact tests at 5 % Ben-

jamini-Hochberg FDR) comprised kinase-substrate relations [309], site functions from PSP, and UniProt se-

quence and site features. Only at least 2-fold enriched categories with more than 10 members are displayed. 

(C) Average turnover is illustrated for modification sites (circles) within MCM domains (GG-sites) and α-hel-

ices or β-strands (ac-sites), and their corresponding proteins (squares). All peptides mapping to a modified 

or non-modified site were included for calculation of average N/O ratios or turnover rates K. Amino acids 

surrounding the modification site are indicated in brackets. (D) Probability logos for 11 amino acid long se-

quence windows were plotted using pLogo [322] and are illustrated for serine/threonine (X) phosphoryla-

tion, lysine acetylation, and ubiquitination that significantly influenced protein turnover (red horizontal line: 

p=0.05). 
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what appears to be a prevalent mechanism by which acetylation within ordered structures de-

creases protein turnover. 

Other enriched categories among sites with decelerated protein turnover included chaperones of 

the Heat shock protein 70 family (Figure V-7 B) which featured slow-turnover ac-K sites also in 

non-helical protein parts (e.g. HSP8_acK507/524/531/ 589). Further, ph-ST sites mapping to posi-

tions 2, 4, 5, and 7 in C-terminal heptapeptide repeats of the DNA-directed RNA polymerase II 

subunit RPB1 (POLR2A, Y[ST]P[STQ][ST]P[SRTEVKGN]) were enriched hinting at some relevance of 

C-terminal phosphorylation for POLR2A function. Likewise, turnover of Dynein light intermediate 

chains decreased with C-terminal phosphorylation (e.g. DLIC1_pS510/512/513/515/ 516) indi-

cated by the over-representation of the DLIC PFAM category. The same applied to regulatory site 

categories ‘phosphorylation’ and ‘activity, induced’, which were enriched within ph-ST sites with 

slower turnover despite the scarcity of functional annotations. 

Enriched enzyme-substrate relations and PTM motifs among significant modifications – 

Regarding protein kinase substrates (determined in vitro [309]), target sites of Casein Kinase II 

subunit α (CSNK2A2/CK2a2) were over-represented within ph-ST sites accelerating protein turno-

ver. On the contrary, ph-ST sites mapping to substrates of G2/M-phase Cyclin dependent Kinase 

(CDK1/Cdc2), c-Jun N-terminal Kinase (MAPK8/JNK1), and Dual Specificity Tyrosine-phosphoryla-

tion-regulated Kinase 1A (DYRK1A) were enriched among stabilizing ph-ST sites (Figure V-7 B). 

Their preferential substrate motifs were also reflected by the results of motif enrichment analyses 

(Figure V-7 D, Table V-1). For faster turnover ph-ST sites, acidic amino acids were significantly 

overrepresented in +1 and +3 position, and slower turnover sites exhibited mainly an enrichment 

of proline in +1 position. Motif analysis of ac-K sites with decreased turnover equally revealed a 

proline in +1 position. This finding was surprising in light of concurrently enriched α-helices and β-

strands since proline generally breaks these ordered secondary structures due to its rigid struc-

ture. Interestingly, ac-K sites followed by a proline were indeed depleted within slower turnover 

modifications sites in α-helices and β-strands compared to those that were not located within 

such ordered structures (2 % vs. 16 %). Hence, there are two major groups among acetylation sites 

that show a decreased turnover: One is located within ordered structures, and one followed by 

proline accounting for 23 and 12 % of slower-turnover ac-K sites, respectively. 

To investigate whether certain writer or eraser enzymes are connected to ac-K sites with signifi-

cantly different turnover, published data from drug treatment and transfection studies was uti-

lized (19 KDAC inhibitors in HeLa cells [310], one CBP/p300 inhibitor in Kasumi-1 cells and p300 

transfection in 293FT cells [208]). Although Sirtuin 1 and 2 inhibitor-responsive sites were slightly 

enriched among slower turned-over ac-K sites (based on 10 observations only), other acetylation 

sites that have been found to be regulated by class I, II and IV KDACs and CBP/p300 were depleted 

2- to 5-fold. However, they were not enriched within faster turnover ac-K sites (Figure V-7 B). Ad-

ditionally, proline was found to be significantly under-represented in +1 position for sites induced 

upon KDAC inhibitor treatment (only 4 of 302 sites) but not among CBP/p300 regulated sites (28 

of 674, Appendix Figure 0-21 B). This suggests that the second class of slow turnover ac-K sites 

may be a result of the inability to remove acetylation enzymatically from lysine residues that are 

followed by a proline. This would inevitably lead to an accumulation of such modification over the 

lifetime of a protein and their higher probability to occur on ‘older’ proteins would present itself 

as decreased turnover of the modified proteoform.  

Counterplay of acetylation and ubiquitination – In contrast to ac-K sites with slower turno-

ver, no consistent patterns were identified for di-glycine sites with significantly different turnover 
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except for a weak over-representation of glycine in -1 position for Ubiquitin-remnant sites with 

increased turnover (Figure V-7 D, Table V-1). The lack of congruence between motifs of slower 

turnover ac-K and faster turnover GG-K sites may give the impression that there is no strong coun-

teracting effect on protein stability for acetylation and ubiquitination. However, this observation 

may also simply be biased by the preferential identification of different subpopulations of lysine 

sites within the two PTM subproteomes. Therefore, effects of different lysine modifications were 

assessed for sites that were identified in both modification states and as unmodified version. To  

 

Figure V-8 | Turnover counterplay of lysine modifications. (A) The overlap of modified and non-modified 
lysine residues is displayed for single pulse time-point data excluding the 1 h time-point. (B) Ratios of aver-
age N/O fractions of ac-K (upper panel) or GG-K sites (lower panel) to their non-modified counterpart site 
were computed including all peptides mapping to respective sites. Ratio distributions are shown for all iden-
tified modification sites, sites that list an ac-/GG-K pair in the PhosphoSitePlus database, and ac-/GG-K pairs 
actually identified in 6, 24, and 40 h single pulse data. Number of sites mapping to the three categories are 
indicated. (C) Relative turnover differences of ac-K and GG-K sites to non-modified lysine residues are illus-
trated and sites with significant differences are marked. Note that the same site can be displayed multiple 
times if it was detected in different single time-point pulse experiments, and that 22-26 % of plotted GG-K 
and ac-K data points could not be tested for significant differences due to missing replicate quantifications. 
Dotted lines indicate a 2-fold turnover difference of the modified compared to the unmodified site. The up-
per left panel identifies sites that are located within ordered secondary structures, followed by a proline, or 
regulated upon KDAC or KAT inhibitor (KDACi/KATi) treatment. (D) Scatter plots display the same data as in 
(C) but discriminating between members of different protein classes. 
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preclude artefacts from combining different pulse datasets, only sites that were detected in all 

three states within the same single pulse time-point were considered resulting in 253 lysine sites 

available for analysis (Figure V-8 A). Despite being small, this subset of ac-K and GG-K sites ap-

peared to be a reasonably representative selection of sites indicated by a comparison to listed ac-

K/GG-K pairs within the PSP database (Figure V-8 B). Interestingly, the proportion of acetylated 

sites shifted towards a decreased turnover was much larger than the fraction of Ubiquitin-rem-

nant sites featuring an increased turnover. Only 9 sites were identified with significantly higher 

turnover in the di-glycine state and, at the same time, significantly slower turnover as acetylated 

version (note that a quarter of site pairs could not be tested for significant turnover differences 

due to missing replicate quantifications, Figure V-8 C). More than half of these oppositely regu-

lated sites were located within α-helices or β-strands (HSPB1_K123, ENO1_K193, PKM_K89, 

S100A6_K40/47), while none was followed by a proline. Generally, ac-K sites with decreased turn-

over and followed by proline did typically not exhibit an accelerated turnover upon ubiquitination 

within the tested data subset, but many of the ac/GG-K pairs with counteracting effects were lo-

cated within ordered, secondary structures. Noteworthy, similar differences were also observed 

among several protein classes (Figure V-8 D). A marked fraction lysine sites mapping to metabolic 

enzymes displayed decreased ac-K, but increased GG-K turnover. For translation initiation and 

elongation factors, however, ac-K sites often featured a slower turnover compared to the unmod-

ified site, but ubiquitination did not clearly increase peptidoform turnover. In line with previous 

observations, modification of lysines within ribosomes frequently led to an accelerated turnover 

in particular for ubiquitination but in some cases also for acetylation. The direct comparison of 

turnover for acetylated, ubiquitin-remnant and unmodified sites suggests that, for a fraction of 

lysine sites, acetylation and ubiquitination indeed have opposing effects on protein stability. How-

ever, often a decreased turnover of ac-K sites was observed without any impact of the di-glycine 

counterpart modification on turnover implying that these lysine modifications do not function 

necessarily and globally in a competitive manner. 
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4 Discussion and conclusion 

4.1 Robust determination of modification-specific protein turnover 

For the study of modification-specific peptidoform turnover, two approaches were employed. Us-

ing the pSILAC-TMT method, label incorporation and loss are measured in a time-dependent man-

ner and turnover rates of peptidoforms are estimated via curve fitting. In contrast, N/O ratios 

obtained in single pulse experiments provide the relative pace of turnover within a certain pulse 

time-point. Hence, no curve fitting and filtering is necessary which clearly simplifies overall data 

processing. However, the observable turnover range within a single time-point is more limited 

since relatively high or low turnover peptides more likely escape analysis due to missing quantita-

tive information for one of the two SILAC channels. For pSILAC-TMT time-course experiments, 

extreme turnover behaviour will only affect the likelihood of fragmenting and obtaining a curve 

for only the newly synthesized (very high turnover) or only the ‘old’ SILAC labelled peptide species 

(very low turnover). While those peptidoforms with considerably faster or slower turnover may 

be the most interesting ones, they cannot be rescued for quantitative assessment in single pulse 

data in a reliable way because data imputation could strongly influence and bias results [328, 343] 

(see also pp. 87). The limitation of such missing quantitative data was particularly apparent for 

the earliest and latest single time-points, which showed overall decreased numbers of peptides 

quantified in both labelling states. Notably, this also entails the quantification of more distinct 

selections of peptides across different time-points than within replicates of the same time-point. 

This is important to mention since the subset of peptides identified for a protein or protein group 

will affect the overall assessment of protein turnover. Similarly, this can also impede the identifi-

cation of peptidoforms with utterly differing turnover within the same pulse time-point because, 

the greater their difference, the less likely they are quantified in both labelling states. This may 

also explain the comparably small number of acetyl-K and GG-K peptides available for the investi-

gation of their interplay within the same pulse time-point (during IP optimizations more than 

1,700 lysine sites with both PTMs were identified). In earlier time-points, more ubiquitin-remnant 

peptides were quantified, while later time-points showed increasing quantifications of ac-K pep-

tidoforms. It would have been possible to combine results from different time-points and as well 

include ac-K data from pSILAC-TMT experiments to increase the overlap between acetylated and 

di-glycine modified lysine residues, but it was decided to consider only sites within the same da-

taset to avoid potential artefacts based on the partly observed systematic shifts between turnover 

datasets. Likewise, 1 h pulse data were excluded due to the alarming poor correlations across label 

swap experiments, which were caused by distinct sub-populations of peptides that deteriorate 

the otherwise excellent concordance of remaining peptides. While this was most notable for 1 h 

pulse data, the other pulse time-points showed similar, albeit less profound biases. Quantitative 

discordance between label-swap experiments has already been reported in cross-linking experi-

ments as a result of large peptide mass, low intensity, and heavily overlapping isotope clusters of 

light and heavy signals [419]. In addition, quantification accuracy may be impaired to some extent 

by isotope impurities of SILAC amino acids, but this is unlikely to produce such strong effects. 

Further systematic analyses are required to clarify the chief cause for erroneous quantification in 

single pulse SILAC experiments. 

In contrast to single time-points pulses, the time-course characteristic of pSILAC-TMT data re-

quired more sophisticated data processing and curve fitting. Noteworthy, curve fitting and filter-

ing constitutes an additional level of quality control. The prior knowledge about which labelled 

peptide should exhibit label incorporation and which one should resemble label loss, and their 
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automatic removal if they do not show the expected quantitative trend, can further decrease false 

identifications and poor quantifications. However, peptides that do not adhere well enough to the 

assumptions underlying the curve-fitting algorithm despite representing valid identifications are 

equally removed and thereby observable turnover behaviour is limited to a priori suppositions. 

The high proportion of evidence entries that did not pass the KRAB filter criteria suggested that 

this might have been a prevalent issue. To improve overall data quality and fraction of successful 

curve fits, two major adjustments in data processing were carried out compared to the initial es-

tablishment of the pSILAC-TMT approach (see Chapter IV). First, co-isolated, potentially distorting 

intensities from peptides with opposing characteristics (label loss vs. incorporation) were re-

moved in silico. Several approaches have already been described for computational reduction of 

co-isolated intensities, but they rely on either spike-in standards [420] or the estimation of the 

precursor intensity fraction within the isolation window [245, 326], and the assumption of a con-

stant, co-isolated background. The later prerequisite renders such approaches inapplicable to 

pSILAC-TMT data since co-isolated peptides in such experiments always feature decreasing or in-

creasing intensities. Hence, instead of removing a constant background, average label incorpora-

tion and loss curves were subtracted from curves with apparent ratio compression (i.e. showing 

residual intensities in the necessarily empty channel). Of note, co-isolation of peptides with the 

same behaviour (e.g. both indicating label loss) would not result in a measurable ratio compres-

sion and thus cannot be corrected. In such cases, however, quantification accuracy would anyway 

only be influenced to a minor degree. As expected, removal of co-isolated intensities increased 

the number of successful curve fits especially for low abundant, modified peptides (ac-K and ph-

Y) that suffered most from ratio distortion. In a second step, peptide intensities were corrected 

for abundance changes during the time-course of the experiment to improve accordance with 

steady-state assumptions underlying the curve-fitting algorithm (see pp. 52). Importantly, such 

corrections must be assessed carefully to minimize potential processing artefacts. For example, if 

only one entry for each curve is available, label incorporation and loss curves would be inevitably 

forced to yield identical turnover rates after correction. This would artificially improve correlations 

for comparisons of label loss and incorporation. Therefore, it was decided to require at least four 

curves per peptide and calculate correction factors globally (not separately for each replicate) 

thereby correcting primarily abundance changes that were reproducible across replicates. Conse-

quently, only a fraction of peptides was subjected to such intensity adjustments, but the overall 

correlation across replicates still increased considerably. 

Despite these improvements, the number of successful curve fits for acetylated peptides in the 

pSILAC-TMT approach was still comparably low. This was also caused by the drop in ID rates com-

pared to single pulse experiments, which is commonly observed for TMT data [325, 349, 350, 355-

357] (see also pp. 89). The acetylome coverage in turnover measurements can generally be im-

proved in the future using larger input amounts (10-20 mg) and fractionation prior to acetyl-pep-

tide enrichments [207]. With the optimized TMT protocol described above (pp. 77), it would still 

be feasible to perform such experiments in a pSILAC-TMT-like fashion and label large input 

amounts at reasonable costs. Labelling before fractionation would also minimize technical varia-

tion and maintain relative quantification accuracy across conditions. Alternatively, it is also con-

ceivable to label peptides only after immunopurification to reduce overall reagent amounts and 

costs. This is also the only way to study ubiquitination with the pulsed SILAC-TMT approach. Ubiq-

uitin-remnant peptides cannot be enriched after TMT labelling since the N-terminus of the di-

glycine is masked by TMT. A TMT setup for turnover measurements of di-glycine remnant peptides 

would hold great promise since it would facilitate the detection of very high-turnover modification 
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sites compared to single time-point pulses (see above) especially when pulse time-points are ad-

justed accordingly. The feasibility of TMT labelling of di-glycine enriched peptides has been shown 

recently [421] and suggests that such workflows can readily be employed for time-dependent 

turnover measurements with increased coverage of acetylated and di-glycine peptides.  

Utilization of Ubiquitin linkage-specific antibodies [422] in combination with turnover measure-

ments could further help to deconvolute effects of different poly-ubiquitin chains and yield inter-

esting insights in their possibly protein- and site-specific functions. This level of resolution is not 

provided in the data presented here, and it is possible that the N/O ratios measured in different 

time-points are indeed derived from a mix of several mono- and poly-ubiquitin chains. Modifica-

tion enrichments on protein level could also initially separate different proteoforms (ubiquitinated 

and non-ubiquitinated ones) and enable an assessment of PTM crosstalk after enrichment of ad-

ditional modifications (e.g. phosphorylation) in these different sub-populations [412]. In addition, 

PTM crosstalk can be investigated if several modifications within the same PTM subproteome are 

allowed in the database search (e.g. ubiquitination in the phosphoproteome). However, it is im-

portant to note that such strategies require careful and critical evaluation since they will exponen-

tially enlarge the combinatorial search space that is already comparably large for pSILAC-TMT data 

(due to variable K8 and R10 modifications). Thus, the probability of high scoring random matches 

and false positive identifications of modified peptides will be increased as well [259, 423]. 

4.2 Uncovering unknown global and protein-specific regulatory mechanisms 

The combination of the pSILAC-TMT and single pulse time-point approaches detected a multitude 

of peptidoforms and PTMs that featured a differential turnover compared to the whole protein or 

counterpart peptides. The data provided additional evidence for findings that have been de-

scribed previously such as the overrepresentation of degron sequences on protein termini [119, 

413], the degron activity of a doubly phosphorylated motif on UNG [416], and the destabilizing 

nature of  glutamine in second position [117]. Further, hints on numerous, hitherto unknown, 

cellular regulations were implied by the data, of which only a limited number of examples could 

be presented here.  

Generally, one could have expected to observe an enrichment of known (phospho)degron motifs 

among peptides with increased turnover. However, only the small category of tertiary N-degrons 

was overrepresented. The incapacity to identify destabilizing motifs predominantly on sequences 

with accelerated turnover likely illustrates the conditional nature of degrons and the negligence 

of information about relevant cellular context when analysing merely peptides. To induce degra-

dation much more than only the short E3 ligase binding motif is required. The degron needs to be 

exposed to enable actual interaction with the E3 ligase, which also needs to be present in the 

same cellular compartment. Moreover, an Ubiquitin acceptor site must be available, and a loosely 

folded, degradation initiating region is required for interaction with the proteasome [108]. How-

ever, for annotation of degrons, the exclusive information utilized was the linear degron se-

quence. Additionally, degrons can often be switched on and off by modifications adding another 

layer of complex control. Potential degron motifs, quite unexpectedly, were frequently even iden-

tified on peptides with decreased turnover, and often those included additionally modifications 

within or around the degron sequence (e.g. phosphorylation was observed on 2/3rd of seemingly 

stabilized peptides containing a SPOP-binding degron). This suggests that these modifications 

might inhibit specific binding of E3 ligases to non-modified, constitutively active degrons and thus 

prevent degradation, a mechanism that has been described before [132]. Despite the challenges 
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for detection of degrons in a global approach, several candidates for hitherto unknown, poten-

tially active degron motifs were identified when data were examined on a case-by-case level, in-

cluding a SPOP-binding motif on EIF3H and a FBW7-binding phosphodegron on TKT. 

Noteworthy, identification of modification-specific turnover of degron sequences (and other pep-

tidoform in general) was greatly facilitated when modified and non-modified peptides were com-

pared directly. Naturally, this analysis should yield larger differences than the comparison of the 

turnover of a modified peptide to the whole protein since the latter will partially include peptides 

originating from the proteoform(s) that contained the modified peptide thereby attenuating the 

effect size. This becomes especially relevant for PTMs with high occupancies. It is worth mention-

ing that the influence of very high stoichiometry modifications is generally more difficult to deter-

mine with the employed experimental setup because, in such cases, the turnover of the corre-

sponding protein will largely resemble the turnover of the modified peptide. At the same time, 

the non-modified peptidoform has a high probability of escaping detection due to its low abun-

dance, which in turn precludes a comparison of modified and non-modified counterpart peptides. 

Of all examined modifications, lysine acetylation showed the most profound, global turnover 

changes and yielded the highest fraction of sites with significantly altered turnover. So far protein 

stability-regulating acetyl-modifications have been described mainly for transcription factors 

[409]. As suggested by the large group of acetylation sites located within α-helices and β-sheets 

and exhibiting a decreased turnover, such a regulatory mechanism might be much more common 

than currently anticipated and, for instance, also largely relevant for cytoskeleton proteins, met-

abolic enzymes, and chaperones. For a fraction of these ac-K sites, destabilizing di-glycine counter-

sites were identified supporting the notion of a direct competitive crosstalk between acetylation 

and ubiquitination by blocking ε-amino groups of lysine residues [409]. Yet, there was also a large 

proportion of apparently stabilizing ac-K sites, for which the ubiquitin counterpart displayed a 

similar turnover as the non-modified site, suggesting alternative mechanisms might slow down 

the turnover of the acetylated peptidoform. These could include crosstalk to more distant sites 

within the same protein, altered protein conformations, active stabilization of secondary struc-

tures, or regulation of protein interactions. As an example, acetylation of PDHA1 on K321, which 

resulted in decreased turnover, has been reported to mediate interactions to PDK1 thereby regu-

lating the activity of the mitochondrial pyruvate dehydrogenase complex [424]. It remains to be 

determined which of these mechanisms explain slower turnover for individual proteins, but evi-

dence so far suggests that multiple processes may lead to the observed deceleration in turnover.  

The fact that acetylation occupancies are typically very low [205] makes it at least unlikely that ac-

K modifications within secondary structures are indispensable for protein folding and structural 

maintenance in a global level. Further, this raises the question how relevant the turnover-increas-

ing effect may be in a cellular context if only a tiny fraction of respective proteins exists in an 

acetylated state. While such mechanisms may not play a significant role under normal conditions, 

they could become crucial in disease states when modification stoichiometries may change con-

siderably. Decreased activity of the deacetylating enzyme Sirtuin 3, for example, has been associ-

ated to the survival-promoting initiation of the Warburg effect in cancer cells involving increased 

abundances of PDHA1_acK321, PGK1, and LDHA (for which several stabilizing ac-K sites were iden-

tified) [424, 425]. Further, acetylation of Tau protein on different sites has been linked with pro-

motion as well as prevention of its aggregation, which is a marker for Alzheimer’s disease and 

other neurological pathologies [426, 427]. Likewise, drug treatments can markedly change abun-

dances of acetylated proteoforms (e.g. 20 x increase on PKM_acK433 upon CUDC-101 treatment). 
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In conjunction with the huge turnover changes that have been measured frequently for acetyla-

tion (e.g. 6 x slower turnover of PKM_acK433), such alterations in the modification landscape 

could dramatically alter functional states of target proteins. Even if effect sizes of turnover 

changes are comparably small, the impact on protein stability could be significant if they affect 

proteins with very high default turnover (such as the Ubiquitin-conjugating enzyme UBE2A1). 

These examples illustrate that measured turnover differences may be highly relevant to gain 

mechanistic insights into disease states and drug mode of actions even for sites that feature a low 

occupancy in steady state. 

The observation of widespread non-enzymatic acetylation in certain cellular contexts [72, 73, 428] 

begs the question whether observed differentially, turned-over ac-K sites are subject to enzymatic 

control and thus can potentially be manipulated by drug interventions. It has been suggested that 

non-enzymatic modifications predominantly take place within clusters of basic residues on mito-

chondrial proteins favoured by elevated ac-CoA concentrations and a slightly higher pH in mito-

chondria compared to other cell compartments [73, 429]. Of note, the minority (11 %) of ac-K sites 

with significantly different turnover mapped to proteins associated with mitochondria (according 

to MitoCharta [291]). Further, motif enrichment analyses indicated that basic residues around the 

modification site are rather underrepresented, and there was evidence that numerous ac-K sites 

with decreased turnover are regulated by KATs [208]. Together this suggests that most ac-K sites 

with differential turnover are under control of writer enzymes. Nevertheless, it cannot be ex-

cluded that they are at least partly subject to non-enzymatic acetylation, as well. 

Besides acetylation within ordered secondary structures, ac-K sites followed by a proline were 

identified as a second group of acetylation with slower turnover. Integration of turnover data with 

acetylome profiles after HDAC inhibitor treatments suggested that these modifications might be 

difficult to remove enzymatically, possibly due to the strong structural constraints implicated by 

proline. Thus, acetylation on KP motifs likely accumulates over the lifetime of respective proteins. 

Importantly, such events would be in discordance with the steady-state assumption that is the 

basis for interpreting measured peptide turnover as proxy for proteoform lifetime. This requires 

modifications to occur reversibly and be observable on recently synthesized and long-existing pro-

teins with the same likelihood. Consequently, the observed decrease in turnover most likely does 

not imply an increase in protein stability upon acetylation (though, conversely, this cannot be ex-

cluded), but rather reflects precisely the imbalance of the acetylation writing and erasing pro-

cesses (i.e. the dynamics of the modification process). The high fraction of slower-turnover ac-KP 

sites suggests that the inability to remove such modifications may be prevalent and calls for an 

investigation of potential functional consequences of this disturbance of the writer-eraser equi-

librium. Noteworthy, the discordance with steady-state assumptions could also explain in part the 

low success rate of acetylated peptides for passing curve-fitting criteria. If ac-KP acetylation accu-

mulates on proteins with already very slow turnover, observed label incorporation and loss of 

acetyl-peptides easily can be much slower than one would expect from cell doubling alone and 

such shallow “curves” may yield poor curve fits and be filtered out.  

Interestingly, proline in +1 position was also enriched among ph-ST sites with decreased turnover. 

Little is known about phosphatase motif specificities, but it can be speculated that a fraction of 

these slower turning-over sites is also a result of accumulation of phosphorylation due to a lack of 

phosphatase activity towards the structurally very distinct S/TP sites. As an example, S390 and 

S392 in Lamin A are followed by proline and featured slower turnover upon phosphorylation. An 

induction of these modification sites has been reported to lead to the disassembly of the nuclear 

lamina, which is crucial during mitosis [414] and for the release of viral nucleocapsids [415]. It 
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appears unlikely that Lamin A in monomeric state is more stable than in its assembled form since 

protein-protein (complex-like) interactions typically lead to a stabilization of proteins [376, 386]. 

This renders the hypothesis of a missing phosphatase activity appealing. This would lead to the 

observed decrease in turnover and imply that LMNA_pS290/292 is irrecoverable and that Lamin 

A re-synthesis is required for functional recovery of the nuclear lamina. 

Some of the examples described above illustrate that a detected difference in turnover among 

peptidoforms/modifications does not necessarily indicate a direct protein stabilizing or destabiliz-

ing effect, but could be a result of a multitude of cellular regulations (or the lack thereof, see also 

p. 123). Logically, however, it becomes clear that differential turnover of modified peptidoforms 

must be based on some form of a potentially interesting and relevant, cellular process. This con-

sideration is intriguing especially because the majority of modified peptidoforms with significantly 

different turnover comprised PTMs with unknown function. Fructose-bisphosphate Aldolase A, 

for instance, was heavily modified and numerous modified peptides featured a differential turno-

ver, which is astonishing considering that not a single modification site is annotated with a func-

tion in the PSP database [294]. Likewise, the proteasome comprised an extraordinary high fraction 

of differentially turned-over peptidoforms, but PSP lists a function for only six modifications sites 

(exclusively phosphorylations) and none of them was identified here. This applies similarly to the 

ribosome, which featured numerous modified peptides with increased turnover. Interestingly, 

two studies reported profound differences in turnover of the proteasome across several primary, 

hematopoietic cell types [114] and a poor correlation of protein and mRNA levels across HeLa cell 

lines specifically for ribosomal proteins [403]. The data suggest that this may be caused by varying 

levels of PTMs that tightly control protein abundance and activity. 

4.3 Conclusion 

Here, turnover of thousands of phosphorylated, acetylated and ubiquitin-remnant peptides was 

analysed for the first time, and a large body of differentially turned-over modified peptidoforms 

was identified. The possible mechanisms underlying turnover differences are diverse in nature 

rendering the interpretation of the data non-trivial. However, sites with differential turnover are 

believed to represent a rich resource of PTMs with supposedly regulatory function. The detection 

of such modification sites could be in particular helpful for acetylation and ubiquitination sites, 

which are chronically underrepresented among annotated regulatory sites. Certainly, a discrimi-

nation of ubiquitin-linkage types in the future would prove useful to advance the understanding 

of their functional distinctions. Moreover, effects of modifications on turnover may be cell type 

and context dependent demanding investigations on modification-specific turnover in several dif-

ferent cell systems. Finally, the coverage on lysine PTMs can be readily improved employing larger 

input amounts, which should enable conclusion also about low occupancy modifications on lower 

abundant proteins. Importantly, an integration of such turnover data with results of PTM-based, 

drug treatment studies can lay the foundation to prioritize functionally relevant sites within drug-

responsive PTMs. The complexity of cellular processes makes the inference of the type of function 

from turnover measurements alone difficult, but drug-responsive sites with significantly different 

turnover represent prime candidates for further molecular investigations of their function. By nar-

rowing down the number of relevant prospects, mechanistic studies on the mode of action or 

resistance of drugs can be greatly facilitated, demonstrating the tremendous potential of modifi-

cation-specific turnover analyses.
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1 Protein turnover as new dimension in drug research 

The dimensions of protein turnover reflect the cellular proteostasis state, which is critically con-

trolled by complex cellular machineries such as ribosomes, chaperones, and proteasomes. Since 

it became increasingly apparent in recent years that many diseases and ageing are hallmarked by 

deregulations of the proteostasis network [84, 135], proteomic turnover studies are gaining at-

tention in the drug research field. Further, numerous drugs that target important proteostasis 

players have been developed to exploit the connection of proteome imbalance and diseases like 

cancer therapeutically. As maybe most prominent examples of proteostasis drugs, proteasome 

inhibitors (e.g. Bortezomib, Carfilzomib, Ixazomib) and HSP90 inhibitors (Geldanamycin, Tanespi-

mycin) have proven effective, for instance, for treatment of multiple myeloma [146-148]. In addi-

tion, molecules targeting other members of the UPS [430] have been approved or are currently 

under (pre)clinical investigation for cancer treatment, including E3 enzyme modulators (e.g. Nut-

lins [431], Lenalidomide [432]), DUB inhibitors (e.g. P5091 [433]), and proteasome substrate 

recognition inhibitors (e.g. Ubistatin A/B [434]). Owing to their target molecules, some of these 

drugs affect large subsets of the proteome broadening their applicability for various indications 

but potentially also increasing the risk for toxic side effects [435]. As more targeted approach, 

proteolysis targeting chimeras (PROTACs) are emerging for selective protein degradation (re-

viewed in [436]). They consist of two moieties, one small molecule inhibitor binding to the protein 

of interest and one ligand recruiting an E3 ubiquitin ligase, which then ubiquitinates the target 

protein and marks it for degradation. Although PROTACs typically feature excellent target selec-

tivity, some have shown off-targets effects [436], illustrating the importance of a global evaluation 

of PROTAC effects. Moreover, the molecular basis of sensitivity, resistance, and toxic side effects 

oftentimes is not well understood for proteostasis-regulating agents, further emphasizing the 

need for unbiased methods to investigate proteostasis mechanisms and drug responses on a mo-

lecular and proteome-wide level. 

Considerations for analyses of non-steady-state turnover – Studying changes in protein 

turnover upon drug treatment can broaden our understanding of molecular actions of drugs and 

of the principles underlying the regulation of proteostasis. However, the analysis of drug pertur-

bation experiments is complicated by inherent violations of steady-state assumptions, such as the 

potential discordance of synthesis and degradation rates. Consequently, first-order equations may 

not describe labelling kinetics properly. Curve-filtering procedures applied to time-resolved label-

ling data, like those obtained with the pSILAC-TMT approach, potentially will remove exactly the 

most interesting candidates (for examples see HSP90 inhibitor treatment in [375]). Alternatively 

to time-dependent analyses, single time-point measurements and more straightforward SILAC ra-

tio comparisons can be performed [437]. This comes with the downside of losing the time resolu-

tion unless the analysis is carried out for several time-points separately. Within this thesis, major 

differences in computed turnover rates have been observed for different time-points already un-

der assumed steady-state conditions (see Chapter V). This demonstrates that multiple time-point 

measurements may be advisable to obtain a more comprehensive picture of ongoing regulations. 

As already outlined earlier, drug perturbations are further typically accompanied by changes in 

cell proliferation, which can significantly alter measured turnover rates. Hence, a correction across 

different drug treatment experiments is indispensable. Importantly, adjustments need to be un-

dertaken with great care since small variations (e.g. measurement uncertainties in the cell-dou-

bling rate) can have a big impact on corrected degradation rates and protein half-lives in a com-

parative setup. It could also be expedient to correct for changes in cell doubling behaviour via 



VI | GENERAL DISCUSSION AND CONCLUSION 

164 | P a g e  

mean or median normalization approaches (i.e. equalizing medians of SILAC ratio or turnover rate 

distributions for different cellular conditions) [375]. It is worth mentioning though that, from per-

sonal experience, overall shapes of ratio or rate distributions can change dramatically for drug 

treatments that have extensive effects on proteostasis and thus cell doubling (e.g. proteasome 

inhibitors). This can impede meaningful normalization and interpretation of data on the level of 

single proteins. Generally, the requirement for a correction of cell doubling differences could be 

circumvented by utilizing cell systems that reside in a non-dividing state like primary, differenti-

ated, or growth-arrested cells [114, 169, 302]. However, this entails the disadvantage of typically 

slow label incorporation, and large ratios are difficult to measure (accurately) in classical pulsed 

SILAC experiments. Therefore, advanced experimental designs have been used to study turnover 

in non-dividing cells, for example by starting the pulse with a 50 % labelled cell line [169]. Note-

worthy, pSILAC-TMT measurements could prove beneficial in such setups as well, due to the high 

precision of TMT and the less biased identification and quantification of high and slow turnover 

proteins. On the other side, perturbation experiments pose another challenge specifically for pSI-

LAC-TMT experiments since data normalization for mixing errors across channels is built on the 

assumption that the overall abundance of most proteins does not change during the course of the 

experiment. This may not be true for investigations of drugs with very broad effects. However, it 

might be possible to omit this normalization step with minor impact on data quality, if mixing 

errors are minimized by careful evaluation of peptide content before pooling of TMT labelled sam-

ples. 

Besides proper data processing, another crucial step for turnover studies in perturbed systems is 

the interpretation of measured turnover changes. Although incorporation and loss curves com-

monly are referred to as synthesis and degradation curves, it is important to understand that they 

cannot measure synthesis and degradation independently. Determined label incorporation and 

loss reflect the net turnover, which means a change in either degradation or synthesis will affect 

dynamics for both labels. More precisely, if the degradation rate decreases while the synthesis 

rate stays the same, the absolute amount of proteins with the new label will still increase because 

overall less proteins including the newly synthesized ones will be degraded (based on an identical 

probability of degradation for pre-existing and newly synthesized proteins). As a result, one will 

observe a slower decrease (i.e. a relative increase) in proteins carrying the old label and a faster 

increase in proteins with the new label. This can be misinterpreted easily as induced protein syn-

thesis. Of note, an induction of synthesis without any change in the degradation rate actually will 

result in a similar trend because proportionally less of the pre-existing proteins will be degraded 

when more proteins with a new label are available for degradation. The same rules apply to an 

induction of degradation or a reduction in synthesis, which will both lead to interdependent 

slower increases in proteins with the new label, and a faster decrease of proteins with the pre-

existing label. Naturally, the extent and dynamics of respective changes will indeed very much 

dependent on the actual process that changed. Yet, it might still be difficult to model dynamics 

accurately in a time-dependent manner, as cellular protein degradation and synthesis are likely to 

change dynamically and in an interrelated manner over time after drug treatment.  

Elucidating molecular actions of (proteostasis) drugs – Theoretical considerations left aside, 

conclusions about whether synthesis or degradation change can still be drawn if data are utilized 

adequately. To this end, information about a SILAC label ratio and a protein abundance is required 

for both conditions to decipher doubtlessly whether and how synthesis or degradation have 

changed upon perturbation. This may become clearer with an example using ratios of newly syn-

thesized to pre-existing proteins (in this thesis named N/O ratios, e.g. as determined in [113]) and 
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total protein levels (N+O). If N/O ratios are elevated upon perturbation, this can reflect an increase 

in protein synthesis (more N is synthesized) or in degradation (proportionally more O is degraded). 

Taking additionally the actual total protein expression (N+O) into account can reveal which pro-

cess is affected. An increase, for instance, will identify synthesis as the altered process. Notably, 

the same interpretation is possible from absolute abundances of newly synthesized proteins and 

ratios of newly synthesized to total proteins (in this thesis named abundance-corrected label in-

corporation ratios, e.g. similar to [170]). Multiple other combinations of ratio and abundance in-

formation can be exploited, but their interpretation can change depending on the variables used 

(e.g. abundance corrected ratios are different from ratios of SILAC label abundance to initial pro-

tein abundance as determined in label incorporation curves of the pSILAC-TMT experiment). This 

demonstrates the importance of a careful assessment of all information that is provided within 

different experimental setups. Recently, Savitski et al. designed a method for evaluation of 

PROTAC targets and off-targets that employs TMT-labelling of pSILAC samples but combines dif-

ferent treatments and label swaps instead of pulse times within one TMT-plex [437]. This ap-

proach provides all necessary information to deduce the type of proteostasis regulation upon drug 

treatment and can be adjusted flexibly to include several treatment time-points or drug concen-

trations. Hence, it certainly will be very useful for a wide range of research questions in the future. 

Evidently, comparative turnover studies in non-steady-state systems can be quite challenging and 

can lead to misinterpretation if they are not conducted thoroughly. Furthermore, a proper and 

informative assessment of drugs that can cause extensive proteome remodelling and induce cell 

death very quickly may even be impractical within a pulsed SILAC setup that requires a certain 

duration of label incorporation. Therefore, alternative approaches are needed for proteome-wide 

evaluation of proteostasis drugs’ mode of actions. One such strategy is provided by the measure-

ment of PTM changes upon drug perturbation. This can yield insights into immediate responses 

upon very short treatment times and thus potentially disclose molecular mechanisms that drive 

drug efficacy as well as resistance mechanisms. If such experiments are performed in a concen-

tration-dependent manner, another level of important information is added, namely the potency 

with which certain effects are induced. Typically, however, PTM readouts upon drug perturbation 

are only conducted after single-dose treatments, occasionally adding a time dimension (e.g. see 

for Bortezomib [421, 438]). Noteworthy, time- and concentration-dependent PTM response anal-

yses using Bortezomib and Carfilzomib (and concentration-dependent treatments with ~20 addi-

tional drugs and drug combination) have been carried out already during this PhD work, but results 

could not be covered within this thesis due to time and space constraints. An integration of these 

large datasets of drug-responsive PTMs with modifications sites that feature differential turnover 

in the here presented modification-specific turnover atlas is of utmost interest. This could consid-

erably aid interpretation of drug perturbation experiments and identify altered PTMs that are of 

particular, functional relevance. As outlined in Chapter V, differential turnover does not neces-

sarily reflect a cellular stabilization or destabilization of the corresponding protein itself, but it 

should generally spot sites that regulate or are regulated by notable cellular mechanisms. As an 

example, a change in the occupancy of ac-KP sites that were observed to decrease turnover can 

indicate the enhanced or reduced activity of a corresponding writer enzyme. Efforts to conduct 

and systematically integrate such drug concentration-dependent, proteome-wide screens of PTM 

changes are ongoing and hold great promise for the elucidation of mode of actions of all kinds of 

drugs as well as of principles underlying cellular signalling. 

Identifying molecular vulnerabilities of diseases – In addition to the investigation of drug 

effects, turnover measurements can also uncover differences in the steady-state dynamics across 
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cellular systems [114, 171, 302]. Since this default turnover is an important determinant of a cell’s 

flexibility to react rapidly to changed environments and mirrors its overall proteostasis state, such 

comparative analyses may provide clues on potential molecular vulnerabilities that are specific to 

certain disease states. As an example, an overall very high turnover may mark diseases that are 

particularly vulnerable towards proteasome inhibition [84]. Further, disease-relevant proteins 

that exhibit a very slow turnover could be prime targets for PROTAC drugs [436]. Similarly, global 

turnover comparisons may also reveal causes for drug resistance. Proteins that are turned over 

very rapidly in a specific disease, for instance, would be poor targets for covalently binding mole-

cules [439], which therefore likely would not be effective in this disease. For this certain class of 

drugs, turnover profiles are of general interest since different stabilities of targets and off-targets 

can influence their effective, cellular selectivity and efficacy. To elucidate relationships between 

turnover and drug sensitivity/resistance in a systematic way and potentially identify molecular 

turnover markers, one could acquire turnover profiles, at best resolved for modified pepti-

doforms, for a large panel of cell lines and correlate them with drug response data (according to 

similar approaches using protein abundance profiles [440, 441]). Of note, such comparisons would 

again require a careful evaluation how (or if at all) measured turnover rates should be corrected 

for overall differences in cell doubling.  

Future efforts should be directed towards the identification of particularly fast turnover proteins, 

though these might be difficult to study not least due to their presumed low abundance. However, 

these proteins might be of particular interest considering that short-lived proteins are enriched in 

molecules that regulate primary cell functions (like transcription factors). Further, quickly turned-

over proteins bear a high chance of being effectively regulated in abundance via post-translational 

stabilization, for instance, resulting from drug interventions. Finally, the time may have come for 

more systematic, comparative turnover studies, be it across cell line panels or upon drug pertur-

bations, and simultaneously acquiring information about modification-specific turnover in that 

process could also help to elucidate fundamental regulatory mechanisms of cellular proteostasis. 

2 The proteoform challenge 

The expression of the same gene can have diverse functional consequences depending on post-

transcriptional alterations [29, 33, 85-88] and post-translational modifications of the amino acid 

sequence [89, 91, 93]. This demonstrates the importance of protein analyses for the understand-

ing of the molecular processes of life. Yet, several challenges have to be faced in proteomics in 

particular for proteoform analyses. 

Interrogations on protein versus peptide level – As outlined in the introduction, it can be 

difficult to identify different splice variants unambiguously with bottom-up proteomic approaches 

due to their often largely conserved sequence stretches and the protein inference problem [264]. 

Consequently, peptides mapping to differing subsets of isoforms frequently end up in the same 

protein group. Despite reasonable proteome coverage, this was also commonly the case for the 

turnover dataset presented here, and differential turnover was not only detected across distinct 

protein groups containing different splice forms, but occasionally also across peptides within a 

single protein group, which were assigned to varying splice variants. This illustrates the merits of 

studying bottom-up proteomes on peptide instead of protein group level for identification of iso-

form-specific regulations. Of note, this also applies to differential protein expression surveys 

where diverging abundance ratios of different peptides may suggest some interesting, underlying 

biology [264].  
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Additionally, the information on co-occurrence of functionally interacting PTMs within the same 

protein [14, 96] is lost upon protein digestion if those PTMs are not in close proximity and covered 

by the same peptide. Noteworthy, cleverly combined PTM enrichment methods on protein and 

peptide level can tackle this issue and enable an investigation of PTM crosstalk on more distant 

sites of a protein [412]. Alternatively, top-down approaches allow for the analysis of whole pro-

teins preserving the information on proteoform sequence and modifications and thus simplifying 

quantitative comparisons [442]. However, they often have difficulties to identify and localize PTMs 

precisely [443], suffer more severely from sensitivity limitations than peptide-centric approaches, 

and are not yet capable of disentangling complex proteoform mixtures efficiently [179]. Generally, 

several challenges in the analysis of proteoforms and their functional interpretation largely apply 

to both approaches. 

Detection and identification challenges – Unlike genomics and transcriptomics, proteomic 

methodologies cannot benefit from in vitro amplification of analyte molecules, thus excellent an-

alytical sensitivity is crucial for the analyses of proteins and peptides. In addition, a comprehensive 

detection is complicated by the much higher dynamic range of the expression of proteins com-

pared to transcripts [113]. Especially modified proteoforms can be of low abundance but yet of 

high functional relevance. This is exemplified by the well-known sub-stoichiometric nature of ty-

rosine phosphorylation even within the phospho-subproteome, which most likely reflects its tight 

regulation within signalling networks and otherwise low structural importance [63, 64]. Hence, it 

is not surprising that only a small number of phospho-tyrosine peptides has been identified in the 

PTM turnover datasets. With enrichment approaches specific for phospho-tyrosine sites [203, 

204] their coverage can be enhanced in future studies. In general, analytical sensitivity and dy-

namic range of proteomic analyses are being improved perpetually by advances in sample prepa-

ration workflows [189, 207, 444], instrumentation [445, 446], and computational data processing 

[255, 344].  

Global proteoform analyses are further typically based on protein sequence databases for identi-

fication of isoforms. However, such reference proteomes often still lack annotations in particular 

for less common or individual events such as rare splice variants, alternative TIS, SAPs or somatic 

cancer mutations. For example, publications report ~100,000 minor human splice forms in me-

dium to high abundance [30], but standard databases commonly only include ~50,000 [447]. This 

can be overcome partly with the use of repositories tailored to specialized research questions (e.g. 

TISdb [448], dbSNP [449], COSMIC [450]), or sample-specific databases that can be generated from 

genomic or transcriptomic data. Such proteogenomic approaches have been applied successfully 

to reduce the number of potentially translated splice variants for peptide mapping to the se-

quence database and thus increased the number of protein groups containing only a single iso-

form [188]. They also verified expression of genomic variants on protein level albeit with rather 

low success rate especially after manual curation [188, 274]. It remains to be clarified whether 

this reflects cellular control mechanisms preventing high expression of potentially dysfunctional 

proteins or whether this is mainly a result of technical constraints like incomplete ion series in 

MS2 spectra and increased FDRs for searches including large databases and highly homologous 

peptide sequences [451].  

Similar FDR issues arise when too many variable modifications are allowed for database searches 

due to an exponential enlargement of the combinatorial search space and a concomitantly in-

creased likelihood of random matches [259, 423]. It is conceivable that this to some extent also 

applied to the PTM data of pulsed SILAC-TMT experiments since 5 to 6 variable modifications were 

included (e.g. K8, R10, ac-K, ac-K8, ox-M, ac-Nterm for acetylomes), and score and delta score cut-
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offs for modified peptides were lowered to default values for non-modified sequences to avoid 

penalizing heavy labelled peptides. Subsequent data processing and filtering likely reduced false 

identifications (see also Chapter IV and V), and global insights will not be distorted by slightly 

higher FDRs, but single observations still can be wrong. More generally, this applies to all proba-

bility-based searches and pinpoints that individual findings that are highlighted when reporting 

results require careful examination of the identification and quantification quality on a case-by-

case basis. This can be of particular relevance when it comes to localization of PTMs, which is 

oftentimes accounted for by applying additional filters for localization probabilities on site level 

(e.g. >0.75 for so-called class I sites [263]). Noteworthy, in the presented work, identifications of 

modified peptides were not filtered for localization probabilities. Likewise, for integration of data 

on site level, always only the most likely site within an identified peptide was included irrespective 

of its localization probability. Second (and third etc.) most likely sites were not considered. This 

practice was based on the following considerations: (i) For global, peptide-centric analyses, the 

simple information that a modification is present was sufficient and the exact localization was 

initially negligible; (ii) Acetylation and Ubiquitin-remnants typically anyway showed overall very 

high localization probabilities (average close to 1) due to the limited number of lysine residues 

within tryptic peptides; (iii) Filtering for localization probability would have led to an underrepre-

sentation of phosphopeptides with (multiple) neighbouring serine and threonine residues since 

precise localization is particularly challenging within such sequences. One could even argue that, 

from a biological perspective, it may be of minor importance where exactly a phosphorylation 

occurs within a serine and threonine-rich sequence patch. Still, this strategy inevitably will result 

in an increased number of false site localizations compared to more stringent filtering approaches. 

Synthetic peptide pools (employed for dynamic range analyses in Chapter III), for instance, showed 

3 to 14 % false localizations for MS3-TMT samples without filtering, which decreased to 2 to 11 % 

after filtering for a localization probability higher than 0.75 (6-16 % vs. 4-10 % for label free quan-

tification). Importantly, all examples for individual modification sites that were pointed out to al-

ter turnover (Chapter V) were examined for localization probabilities of all evidence entries in-

cluded for their quantification. Localization probabilities were typically higher than 0.90 with the 

exception of the phosphodegron in UNG for which localization probabilities of 0.53 to 0.76 were 

observed for serine 64 (due to the neighbouring serine 63). 

In recent years, so-called mass-tolerant, open, or blind database searches have gained attention 

[255, 452, 453]. Here, MS1 mass tolerances are increased and thus matching of peptides with 

unknown modifications is allowed within several 100 Da of mass difference. Thereby, the identi-

fication of unexpected and novel modifications reported as delta masses is facilitated. Open 

searches can provide hints on general differences in the modification landscape across tissues 

[454] and be very useful to assess potential artefacts of different sample processing protocols 

[455]. However, the likelihood of random matches within these searches again is increased limit-

ing their broad applicability. It is important to point out that false identifications can also emerge 

from the omission of modifications that are present in samples in significant quantities, most no-

tably if very similar modifications are allowed in the search at the same time. This relation forms 

the basis of the on-going debate as to whether the identifications of non-canonical phosphoryla-

tions on histidine, aspartate, glutamate, lysine, arginine, and cysteine using mass spectrometry 

are genuine [65]. The relevance of such false positive hits was illustrated in overlabelling searches 

during optimization of the TMT protocol (Chapter III). A high number of TMT-labelled histidine 

residues was identified (within S/T/Y peptides) when TMT-labelled serine, threonine and tyrosine 

residues were excluded from the list of variable modifications. It becomes clear that employed 
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search parameters and sequence databases are crucial for the quality of identification and subse-

quent quantification of MS data. The completeness and the size of the search space have to be 

balanced carefully and adapted appropriately to the specific sample type.  

Missing functional links – Databases searches typically yield large amounts of identifications for 

proteins and modifications that have to be put into meaningful biological context. To aid interpre-

tation of proteomic data, numerous knowledge repositories provide information on protein func-

tions, structures, localizations, and interactions, and on functions, effects, and writers of modifi-

cation sites [43, 285, 286, 289-294]. While such resources are tremendously helpful, they are nat-

urally incomplete despite all efforts to assemble as many curated information from experiments 

and published literature as possible. This becomes especially apparent for PTM databases such as 

PhosphoSitePlus [294], which is often utilized to annotate regulatory functions of identified pro-

tein modifications. Typically, MS experiments detect many modification sites that are not listed in 

the database and even those that are included rarely provide an assigned regulatory function (e.g. 

<10 % of PTMs on human proteins in PhosphoSitePlus). In addition, such databases are inherently 

biased in their information content towards certain well-studied proteins thereby complicating 

the discovery of hitherto unknown regulatory mechanisms. Even though not all PTMs may neces-

sarily feature a specific biological function at all, it is rather unlikely that most modification events 

are just "noise in the system" [456]. Yet, unravelling regulatory site functions can be laborious, 

time-consuming, and sometimes unsuccessful, illustrating the need for methods that can spot and 

prioritize functionally relevant modification sites in a time- and cost-efficient manner. Measuring 

the turnover of modified peptidoforms could be one such approach. An integration of sites regu-

lating peptide turnover and sites changing, for instance, in certain disease states or upon drug 

treatment could greatly facilitate the decision on which site alterations may be worthwhile to fol-

low up on. Increasing the depth of the modification-specific protein turnover analysis and expand-

ing it to other cell systems and modifications could considerably supplement the here presented 

modification-regulated turnover atlas and further facilitate identification of functionally relevant 

modification sites. 

During exploitation of turnover data, it was also attempted to integrate information on writer and 

eraser relationships with detected modification sites. However, similar to regulatory functions, 

annotations of (de)modifying enzymes are sparse in data repositories. Ultimately, three recently 

published datasets were utilized, one measuring the acetylome response after treatment with 

19 KDAC inhibitors [310], the second assessing alteration in the acetylome after knockout or se-

lective inhibition of CBP/p300 [208], and the third screening for kinase substrates in vitro [309]. In 

the latter approach, HeLa lysate was dephosphorylated using alkaline phosphatase, heat-treated 

to inactivate the added enzyme, and then supplemented with one of 385 purified kinases. Conse-

quently, the information about substrate structure and intracellular localization is lost, which can 

limit the identification of biologically meaningful kinases substrates. On the other hand, drug 

treatment approaches take place in the cellular context, but the correct inference of substrates 

can be complicated by a limited selectivity of utilized drugs or secondary effects caused by down-

stream signalling especially for longer treatment times (here 16 h). Indeed, many HDAC inhibitors 

are assumed to feature poor selectivity [310] and even many allegedly very selective drugs have 

been found to be remarkably unselective [457]. Hence, all these approaches suffer from some 

inherent biases, but they still represent an enormous step forward for the elucidation of enzyme-

substrate relations, and especially the HDAC inhibitor screen proved useful for the interpretation 

of the decreased turnover observed for ac-KP sites.  
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Altogether, this illustrates that the analysis of proteoforms with proteomics and, above all, their 

functionalization pose major analytical challenges. Despite much progress made in recent years, 

further technical improvements are expected to accelerate the speed at which new biological 

knowledge is gained in the future. 

3 New proteomic technologies on the rise 

Several challenges in proteoform analyses, such as the unambiguous identification of single 

isoforms or the robust quantification of individual (modified) peptides across multiple conditions, 

can be tackled partly by enhancing the depth, reproducibility, consistency, and specificity of bot-

tom-up proteomic measurements. In this context, several (new) approaches for data acquisition 

and subsequent data analyses have shown enormous capabilities to broaden and deepen overall 

peptide and thus proteoform coverage.  

Alternative strategies for data acquisition – An acquisition regime that is specifically aiming 

at alleviating missing quantitative values across label-free samples, is represented by data inde-

pendent acquisition (DIA). The idea of DIA has been established 15 years ago [458], but due to 

improved instrumentation and computational strategies it is gaining attention recently. In con-

trast to DDA, DIA methods record a comprehensive map of all fragment ions over retention time 

without the selection of certain MS1 precursors and independent of the sample content. This is 

typically achieved by repeated cycling through several consecutive and comparably wide isolation 

and fragmentation windows (usually >10 m/z) which together completely cover a desired MS1 

mass range [459]. While DIA can theoretically overcome the inconsistent sampling of DDA, it en-

tails complex data analysis workflows that have to disentangle the highly chimeric spectra pro-

duced by co-fragmentation of 10s to 100s of peptide precursors. Further, the analysis of DIA data 

commonly relies on spectral libraries containing information on previously acquired fragment 

spectra and retention times of peptides that are expected to be present in the sample [459]. Gen-

eration of appropriate decoy spectral libraries considering all peptide query parameters is far from 

being trivial and it is under debate whether current approaches [460-462] underestimate true 

FDRs. Nevertheless, recent studies yielded excellent proteome coverage with >10,000 proteins in 

a 6 h single shot [462] illustrating the great potential of DIA analyses for comprehensive proteome 

interrogation in the future. 

The BoxCar acquisition method has achieved similar coverage within 100 min gradient time and 

increased the number of peptides consistently quantified across ten replicates by >40 % compared 

to standard DDA [463]. It successfully combines the principles of gas-phase fractionation [464] and 

match-between-runs [255, 465]. The method essentially relies on compiling an accurate m/z and 

retention time map with high dynamic range and transferring peptide identifications from a library 

that was previously acquired using deeply fractionated samples. More precisely, the entire MS1 

mass range is sub-divided (‘fractionated’) into multiple narrow segments (‘boxes’) that are ad-

justed for the overall m/z density and recorded in subsequent MS1 scans. Hence, the total number 

of collected ions per MS1 scan is distributed among a smaller number of precursors thereby in-

creasing the signal-to-noise and dynamic range. Meanwhile overall longer MS1 acquisition times 

are balanced by reducing the number of MS2 scans. This makes the identification performance 

highly dependent on the project-specific peptide library and a reproducible chromatography to 

ensure a high quality of the feature matching procedure. Noteworthy, currently no control for 

false matches is implemented. Yet, the BoxCar method demonstrates how the combination of 



GENERAL DISCUSSION AND FUTURE PERSPECTIVE | VI 

P a g e | 171 

different concepts can considerably improve proteome coverage within single shot analyses and 

might be especially useful when only limited sample amounts are available. 

Other acquisition strategies that have shown improvements for peptide and protein coverage aim 

at enhancing identification rates and utilizing MS measurement time more efficiently via smart 

acquisition schemes. Most of these approaches are facilitated by decision tree-based MS methods 

that allow flexible settings for instrument parameters such as injection times and fragmentation 

modes depending on features of peptide precursors. This is exemplified by the CHOPIN (CHarge 

Ordered Parallel Ion aNalysis) method, which can readily be implemented on Lumos instruments. 

It routes precursors for fragment spectra acquisition to either the Orbitrap or the ion trap depend-

ing on their charge state and intensity [466]. Thereby, the advantages of both mass analysers are 

exploited in an optimal fashion. The concept of intelligent data acquisition is taken one step fur-

ther by methods that employ real-time database searches to aid a decision on fragmentation of 

precursors. Recently, such approaches have demonstrated clear benefits for MS3-based measure-

ments of TMT-labelled peptides [467]. Based on the identification of an MS2 spectrum, real-time 

decisions are taken on whether an MS3 scan should be triggered (only if the peptide was identi-

fied) and which fragments should be selected for the SPS (only fragments belonging to the target 

peptide and still carrying a TMT). Thus, needless and time-consuming MS3 scans are avoided, and 

both the peptide coverage and the quantification accuracy are improved markedly, which renders 

this novel method particularly attractive for PTM-subproteomes of pSILAC-TMT samples. 

Quantification accuracy of isobaric tag-labelled samples further has been increased by utilizing ion 

mobility devices [278, 279]. Those minimize co-isolation by separating peptides based on their 

collisional cross sections (size and shape) in addition to retention time and m/z. Generally, the 

concept of ion mobility separation, which had been developed already half a century ago [468], 

has recently experienced a renaissance for proteomic applications. The additional dimension of 

separation has shown merit also for label-free samples in certain settings [469, 470] and is now 

available on new instrument platforms [471, 472] enabling a broader application in the future. 

Advanced approaches for data processing – Above outlined DIA and BoxCar methods illus-

trate that data acquisition and processing approaches are often closely linked. Yet, there are sev-

eral strategies for sophisticated analyses that are suitable for different types of raw data irrespec-

tive of the acquisition schemes. An example can be provided by the prediction of fragment spectra 

including accurate intensity information that can enhance the confidence in a PSM compared to 

mere m/z information. However, the rules dictating intensity ratios for a given peptide sequence, 

charge state, fragmentation mode, and energy are in their entirety so complex that they cannot 

be grasped by manual exploration of spectra. Hence, it was only recently that the deep neural 

networks like Prosit, which was trained on large amounts of spectra from synthetic peptides [231], 

accomplished the goal to compile high-quality spectra and retention time information for any de-

sired (non-modified) peptide, also those that were not present in the training dataset [473-475]. 

The in silico generated spectra have demonstrated usability for DIA analyses and drastically im-

proved the discrimination of target from decoy hits in DDA approaches thereby partly overcoming 

the above mentioned limitations of very large search spaces [475]. Further expansions of such 

neural networks to post-translationally (and chemically) modified peptides can incredibly enhance 

the confidence with which PTMs can be identified and thus have enormous potential to reshape 

how analyses of acquired spectra will be performed in the future. 
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Similar to the spectra identification strategy by Prosit, several advanced approaches for quantifi-

cation are useful independent of specialized data acquisition. The processing pipeline of the Ion-

Star method [476], for instance, should be applicable to any label-free DDA data (or other MS1 

based quantification methods). Via chromatographic alignment in the 3D space (retention time, 

m/z, intensity), sensitive feature detection, and subsequent stringent outlier filtering, IonStar has 

achieved remarkably better sensitivity, accuracy, and precision, and a much lower rate of missing 

values (<0.2 % across 100 samples) compared to other processing software for label-free data. 

Likewise, a data processing procedure for enhanced detection of large SILAC ratios has been re-

ported recently [114]. It was able to better disentangle overlapping isotope peaks and thus con-

siderably increased coverage and quality of turnover estimations for very long-lived proteins. 

Hence, this method also may be able to improve the depth and quantitative accuracy for N/O 

peptide ratios derived from single time-point pulses, in particular for the 1 h SILAC pulse (see 

Chapter V). It has yet to be examined how these algorithms behave regarding peptide-level quan-

tification for peptidoform analyses (e.g. the outlier filtering in the IonStar workflow could remove 

potentially interesting peptides), but generally these examples illustrate the crucial contribution 

of sophisticated computational methods to the overall performance of proteomic workflows. 

4 The future of proteomics: Higher, faster, further? 

Owing to the ongoing rapid advances in technologies, MS-based proteomics has revolutionized 

the breadth and depth with which protein expression can be studied in diverse cellular systems. 

However, functional interpretation of the large amounts of data generated from proteomic pro-

filing oftentimes remains difficult. A major future challenge for biomedical research, in general, 

will be posed by the systematic assignment of protein functions and dysfunctions to health and 

disease states [16]. The integration of results from different techniques and research questions 

(e.g. proteoform turnover and PTM responses upon drug treatment) could hold great potential to 

facilitate the elucidation of functional relations and underlying causes of disease. To this end, ad-

vanced computational methods will be indispensable to enable systematic data analysis and inte-

gration. Very recently, there have been astonishing developments in the area of computational 

proteomics especially regarding deep learning, and this field will very likely become a new im-

portant driver of future progress. Besides the mentioned artificial neuronal networks for spectra 

prediction, computational deep learning approaches are emerging for all kind of biomedical re-

search including drug discovery and structural biology [477]. It is conceivable that advanced ma-

chine learning algorithms will soon also extensively aid and accelerate data interpretation on a 

functional level. Yet, the usefulness of such algorithms will considerably dependent on the quality 

of training data and the accessibility for non-computer scientist, which both necessitates a close 

collaboration of scientists with distinct expertise. Ultimately, computational approaches can be of 

incredible help for generation of hypothesis, but their validation still has to be carried out in a real 

biological setting.  

Further advancements in the understanding of molecular mechanisms underlying different dis-

ease states on the level of proteomes could also enable a broader and more immediate utility of 

proteomics methodologies for clinical applications. While genomic approaches are increasingly 

involved in the clinical decision-making for cancer therapies, clinical cancer proteomics so far 

mostly has been a retrospective analysis of patient cohorts, which typically merely results in the 

classification of molecular subgroups in an attempt to identify therapeutic targets [274, 340]. 

However, the ultimate goal for clinical proteomics should be to provide meaningful guidance on 
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treatment decisions in real-time. Yet, many questions regarding time, costs, details of implemen-

tation, and most importantly benefit remain to be answered before proteomic approaches can 

enter the daily clinical routine and lead to recommendations for therapeutic interventions based 

on proteomic profiles of a patients’ tumour material. Despite all these challenges, recent innova-

tions in sample preparation, instrumentation, and computational proteomics justify cautious op-

timism that the application of proteomics for precision medicine is within reach. 
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1 A case for robust peptide quantification 

1.1 A compromise between accurate dynamic range and reproducible coverage 

 

Figure 0-1 | Qualitative and quantitative bias in the label-free measured samples with the highest phos-
phopeptide spike-in. (A) A retention time shift for early eluting peptides is visible in the sample with the 
highest quantity of spiked-in peptides (1,000 fmol estimated starting amount per peptide). (B) Pearson’s 
correlation coefficients are displayed for the correlations of Hela peptides that are supposed to be present 
in constant amounts in label-free samples containing increasing amounts of synthetic phosphopeptides. (C) 
MS2 spectra identification rates are shown for samples with different quantities of phosphopeptide spike-
ins. 

 

 

Figure 0-2 | Comparison of label-free and MS3-TMT based phosphopeptide identification for time-de-
pendent 17-AAG treatments. (A) Spectra identification rate and selectivity (fraction of phosphopeptides of 
all identified peptides) are shown for the two quantification approaches. (B) Boxplots illustrate intensities of 
peptides with increasing numbers of missing values in the label-free dataset. Asterisks mark distributions 
that are significantly different from all other distribution in a Kruskal-Wallis and Dunn’s post hoc test 
(α=0.01; box: 25th-50th-75th percentile; whiskers: 10th and 90th percentile). 
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1.2 A versatile TMT standard 

 

Figure 0-3 | Comparison of TMT-based quantification of non-phosphopeptides in MS2 and MS3 mode 
using a yeast-human species-mix sample. (A) The overlap of identified yeast peptides is shown. (B) TMT 
intensity distributions of yeast peptides are displayed for different channels containing different amounts of 
yeast sample. Intensities detected in the first and the last channel arise from co-isolation of human peptides. 
The number of peptides with zero intensities in these channels is indicated. (C) Distributions of measured 
peptide intensity ratios (calculated from intensity averages of each group) are illustrated in comparison to 
the expected ratios for different yeast amounts. (D) Coefficients of variation (CV) are shown for HeLa and 
yeast peptides. Asterisks denote significantly different distributions (Mann-Whitney p-value < 0.0001). 

 

 

Figure 0-4 | Statistical recovery of differential non-phosphopeptide abundances in the yeast-human spe-

cies mixed sample. Sensitivity (significant yeast fraction) and specificity (non-significant human fraction) 

and corresponding false negative and positive rates are shown for different expected ratios and MS2 and 

MS3 mode measurements. Numbers are based on results of one-sided student’s t-tests comparing groups of 

TMT channels that contain different yeast quantities and applying a 5% permutation based FDR and S0 cut-

off. (B) ROC curves computed from corrected p-values (A) are displayed (AUC: area under the curve). 
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Figure 0-5 | Evaluation of MS2 isolation windows (A-C) and number of fragment precursors for SPS (D-E) 
on quantitative performance of MS3 mode measurements. (A, D) The distributions of summed TMT inten-
sities of all shared, identified peptides are displayed. (B, E) Bar charts indicate the median coefficients of 
variation (CVs). (C, F) Boxplots show the distributions of log ratios (calculated from intensity averages of 
each group) which would be expected to be 3. Only peptide shared across different methods were included. 

1.3 A robust and cost-efficient TMT-labelling protocol 

 
Figure 0-6 | Peptide and TMT titration experiments using the vendor recommended (A) and downscaled 
(B, C) TMT labelling strategies. (A) MS1 intensities of fully, over- and underlabelled peptides are shown for 
the labelling experiment series illustrated in main Figure III-10 A. Intensities of fully labelled peptides were 
extracted from the underlabelling search. (B) Same as (A) but for the peptide titration experiments displayed 
in main figure Figure III-10 E. (C) Same as (A) but for the intra-lab, TMT titration experiments shown in main 
Figure III-12 A. 
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Table 0-1 | Overview of LC-MS parameters for measurement of TMT titration samples. The length of the 

effective gradient and method are specified in min, mass range, isolation window, and fixed first mass in 

m/z, and maxITs in ms. Material for trap (2 cm x 75 µm, 5 µm C18 resin, Reprosil PUR AQ) and analytical 

columns (1.9 or 3 µm C18 resin, Reprosil Gold) was purchased from Dr. Maisch GmbH (QE: Q Exactive). 

  
VENDOR / 

DOWN-
SCALED 1 

DOWN-
SCALED 2 

JURKAT/P
DX 

LOW IN-

PUT 
INTER-
LAB 1 

INTER-
LAB 2 

INTER-
LAB 

DEEP-

SCALE 

LC system 
EASY-nLC 

1200 

Ultimate 
3000 RSLC-

nano 

EASY-nLC 
1200 

EASY-nLC 
1200 

EASY-nLC 
1200 

EASY-nLC 
1200 

Ultimate 
3000 RSLC-

nano 

EASY-nLC 
1200 

Trap column ----- Yes ----- ----- ----- ----- Yes ----- 

Analytical 
column 

20 cm x 
75 um, 
1.9 um 

45 cm x 
75 um,     
3 um 

22 cm x 
75 um, 
1.9 um 

22 cm x 
75 um, 
1.9 um 

22 cm x 
75 um, 
1.9 um 

20 cm x 
75 um, 
1.9 um 

45 cm x 
75 um,     
3 um 

22 cm x 
75 um, 
1.9 um 

Flow rate 
(nL/min) 

250 300 200 200 200 250 300 200 

Solvent A 
0.1 % FA, 
3 % ACN 

0.1 % FA, 
5 % DMSO 

0.1 % FA, 
3 % ACN 

0.1 % FA, 
3 % ACN 

0.1 % FA, 
3 % ACN 

0.1 % FA, 
3 % ACN 

0.1 % FA, 
5 % DMSO 

0.1 % FA, 
3 % ACN 

Solvent B 
0.1 % FA, 
90 % ACN 

0.1 % FA,      
5 % DMSO     

in ACN 

0.1 % FA, 
90 % ACN 

0.1 % FA, 
90 % ACN 

0.1 % FA, 
90 % ACN 

0.1 % FA, 
90 % ACN 

0.1 % FA,      
5 % DMSO 

in ACN 

0.1 % FA, 
90 % ACN 

Gradient    
(B in A) 

4-60 % 8-34 % 3-55 % 3-55 % 2-55 % 5-60 % 8-34 % 6 to 30 % 

Effective 
gradient 

97 20 20 20 20 17 20 84 

Method 
length 

110 30 30 30 30 30 30 110 

MS system QE Plus Lumos QE Plus QE Plus QE HF-X QE HF-X QE HF-X Lumos 

MS1 resolu-
tion 

70k 60k 70k 70k 60k 60k 60k 60k 

MS1 AGC 3.E+06 4.E+05 1.E+06 3.E+06 3.E+06 3.E+06 3.E+06 4.E+05 

MS1 maxIT 50 10 5 5 10 10 10 50 

MS1 mass 
range 

350-
2,000 

360-
1,500 

300-
2,000 

300-
1,800 

300-
2,000 

300-
2,000 

300-
2,000 

350-
1,800 

MS2 resolu-
tion 

70k 15k 35k 15.5k 30k 30k 30k 50k 

MS2 AGC 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 5.E+04 6.E+04 

MS2 maxIT 50 22 120 120 30 30 30 105 

Precursor 
mode 

Top10 Top20 Top10 Top10 Top10 Top10 Top10 2 s 

Isolation 
window 

0.7 0.7 2.5 2.5 0.7 0.7 0.7 0.7 

Fixed first 
mass 

120 100 100 100 ---- ---- ---- 110 

NCE 32 31 31 30 31 32 31 36/38 

Dynamic ex-
clusion (s) 

30 10 20 20 10 10 10 45 
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1.4 Confining the dynamic range of peptide quantification 

Table 0-2 | Dynamic range constraints for TMT quantification due to its compositional nature. Theoretical 
considerations reveal the influence of the experimental design on maximal detectable dynamic range of TMT 
quantification (encircled). The 5-fold dilution corresponds to the above conducted experiment including one 
empty TMT channel. Calculations are based on the employed AGC target value of 1e5 and the assumption 
that only TMT reporter ions are present, no co-isolation and ratio compression exists and ~100 charges are 
sufficient to induce a signal in the Orbitrap. 

TMT CHANNEL 1 2 3 4 5 6 7 8 9 TOTAL 

2
-F

O
LD

 
D

IL
U

T
IO

N
 INTENSITY 

FRACTION 
0.50 0.25 0.13 0.063 0.031 0.016 8.0e-3 4.0e-3 2.0e-3 1 

CHARGES 5.0e4 2.5e4 1.3e4 6,300 3,100 1,600 800 400 200 1.0e5 

DYNAMIC 

RANGE 
-- 2 4 8 16 32 64 130 260  

5
-F

O
LD

 
D

IL
U

T
IO

N
 INTENSITY 

FRACTION 
0.80 0.16 0.032 6.4e-3 1.3e-3 2.6e-4 5.1e-5 1.0e-5 2.0e-6 1 

CHARGES 8.0e4 1.6e4 3.2e3 640 130 26 5 1 -- 1.0e5 

DYNAMIC 

RANGE 
-- 5 25 130 630 3,100 1.6e4 7.8e4 3.9e5  

1
0

-F
O

LD
 

D
IL

U
T

IO
N

 INTENSITY 

FRACTION 
0.90 0.090 9.0e-3 9.0e-4 9.0e-5 9.0e-6 9.0e-7 9.0e-8 9.0e-9 1 

CHARGES 9.0e4 9,000 900 90 9 1 -- -- -- 1.0e5 

DYNAMIC 

RANGE 
-- 10 100 1,000 1e4 1e5 1e5 1e6 1e7  
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2 Towards proteoform-resolved analysis of turnover 

2.1 Design of a pulsed SILAC-TMT experiment 

Figure 0-7 | Normalization 
procedure and filtering criteria for 
pulsed SILAC-TMT data. In order to 
correct for potential mixing errors, 
TMT data were normalized based on 
the assumption that the total protein 
amount (light and heavy labelled 
protein) is equal across time-points. 
For this means, only peptides found 
in both labelling states were 
considered. This procedure 
decreased the variance of the data 
and improved the coefficient of 
determination (R2) of the curve fit, 
ultimately increasing the number of 
peptide evidence entries passing the 
filter criteria after curve fitting for 
the rate K, the coefficient of 
determination R2, the curve 
maximum A and the offset B 
(“KRAB”-filter). 

 

 

 

 

 

 

 

 

 

 

 

Figure 0-8 | Cell doubling of HeLa cells in different cell culture 
replicates. For half-life calculations, rates of cell doubling were 
determined by cell counting for all four cell culture replicates 
separately in order to account for even minor differences in growth 
behaviour, for instance, due to variation in cell density before cell 
passage or initial seeding density. 
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2.2 Benchmarking the pulsed SILAC-TMT approach 

 

Figure 0-9 | Comparison of MS1, MS2 and MS3-based methods for protein turnover rate estimation. (A) 
TMT-labelled pulsed SILAC lysates were fractionated into 6 fractions and measured using a MS2 and MS3-
based method. Boxplots (25th-50th-75th percentile) of TMT intensity ratios show that MS2-based quantifica-
tion suffered from ratio compression which severely distorted subsequent curve fittings and rate estimations. 
(B) Correlation matrix depicts color-coded Pearson’s correlation coefficients for log transformed protein 
rates between the present work (Zecha et al.) and previously published datasets. Numbers inside cells indi-
cate the number of proteins available for each correlation analysis. 
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Figure 0-10 | Reproducibility of peptide rate determination by pulsed SILAC-TMT. (A) Correlation matrix 
depicts color-coded Pearson’s correlation coefficients for log transformed peptide turnover rates determined 
from synthesis and degradation curves for cell culture (R1-R4) and MS injection (R2 and R2’) replicates. The 
boxplots (25th-50th-75th percentile) show the coefficients of variation of peptide turnover rates of label incor-
poration and label loss rates across MS injections, curves pairs within a sample and cell culture replicates. 
For some peptides, the precision of rate determination from increasing versus decreasing curves was com-
promised by residual ratio compression that deteriorated correlations. (B) Ratio distortion more likely affects 
curves of high turnover peptides (large values for K) as suggested by the weak positive correlation of rates 
and CVs computed from synthesis and degradation curve pairs (R: Pearson’s correlation coefficient). (C) CVs 
across technical replicates did not correlate with rates indicating that synthesis and degradation behaviour 
of fast and slow turnover peptides can be identified with a comparably high precision. (D) Good agreement 
of peptide curve fits across cell culture replicates is exemplified for the fast turnover protein G2/mitotic-
specific cyclin-B1 (CCNB1) and the very stable 60S ribosomal protein L32 (RPL32). 
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2.3 Evaluation of determinants of turnover 

 

Figure 0-11 | Biophysical and functional determinants of cellular protein stability. (A) The percentage of 
canonical protein isoforms in functional Gene Ontology (GO) and UniProt Keyword categories was highly 
correlated for all proteins from the database and the subset of proteins for which turnover rates were deter-
mined in this study (BP: biological process; MF: molecular function; CC: cellular compartment). Only mem-
brane associated and extracellular proteins were underrepresented in the set of identified proteins. (B) Pro-
tein copies per cell, which were computed utilizing TMT and MS1 intensity information showed a strong 
correlation with data published by Nagaraj et al.[307] and Zeiler et al. [306]. (C) Copies of proteins for which 
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rates of turnover were determined spanned seven orders of magnitude. (D) Violin plots display that the 10 % 
most and least stable proteins (n=700) differed significantly in the proportion of hydrophobic and polar 
amino acids as well as in the fraction of disordered secondary structure. (E) Correlation matrix indicates 
Spearman rank correlation coefficients illustrating that protein features are interdependent. (F) No signifi-
cant difference of cellular protein half-lives was identified between the three categories of thermal stability 
determined by Leuenberger et al. [308]. Numbers display the number of proteins in the respective category. 
(G) Enzymes, which were significantly enriched in stable proteins, differed in abundance, and primary and 
secondary structure from transcription factors that were on average much less stable. 

 

 

Figure 0-12 | Influence of oxidative stress on the turnover of respiratory chain complex I proteins. Volcano 
plots illustrate that, after a 3 and 8h pulse with K8R10 medium, the heavy-to-light ratios of peptides belong-
ing to NADH dehydrogenase proteins exhibited an overall shift towards higher ratios upon rotenone inhibi-
tion compared to the control treatments. This suggests an accelerated turnover due to increased oxidative 
stress. Significantly changing peptides are displayed by filled circles (two-sided t-test, n=3). 
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2.4 Turnover diversity of peptidoforms 

 

Figure 0-13 | Analysis of peptidoform-resolved protein turnover. (A) Correlation analysis of log trans-
formed labelling rates for oxidized peptides and their non-oxidized counterparts showed no global influence 
of detected oxidation on turnover. The analysis included peptide pairs from all 4 replicates (11,314 in total). 
(B) Turnover rates of all peptides were matched to corresponding protein rates and tested for significant 
differences in a two-sided t-test (S0=0.048, 5 % FDR). Peptides exhibiting significantly differing rates are col-
oured in blue. (C) N-terminal peptides rates were compared against each other and the associated protein 
rates in a two-sided t-test (S0=0.04, 5 % FDR). Significantly different pairs are annotated and also displayed 
in main Figure IV-8 C. (D) The propeptides of Prosaposin appeared to be much less stable than the mature 
saposins. Peptides encompassing the cleavage site of Saposin B and the following propeptide showed a 
slower turnover comparable to Saposin A, C and D, whereas peptides comprising the cleavage site of Saposin 
A and the successive propeptide showed a faster turnover matching that of propeptides (for Saposin B no 
peptides were detected, dotted lines indicate peptides that span cleavage sites). (E) The proposed stabilizing 
mechanism for the chaperone HSP8 via trimethylation of lysine 561 is displayed. This modification has also 
been described to lead to a reduced interaction with α-Synuclein (SNCA) and a subsequently increased ag-
gregation [383]. (F) The connection between helicase BLM and CDK1 that likely destabilizes the helicase via 
a phosphorylation on threonine 766 is illustrated. 
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3 Deciphering modification-regulated turnover 

3.1 Optimization of acetyl and di-glycine remnant enrichments 

 

Figure 0-14 | Optimization of immunoprecipitations for acetyl-peptides. Differing wash protocols 
(3 washes: 1x IAP buffer + 2x water: 5 washes: 2x IAP buffer + 3x PBS), antibody bead amounts, peptide 
quantities, and elution steps were tested using label-free HeLa digest in singlicates in independent experi-
ment series. Match-between-runs was disabled for comparison in (A-C) but enabled for analysis in (D-E). (A) 
Numbers of acetylated (acK) and unmodified peptides, Class I acetyl-sites, and selectivity are plotted for 
indicated wash protocols, bead and peptide amounts. (B) Intensities of acetylated and unmodified peptides, 
and intensity-based selectivity are displayed for indicated wash protocols, bead and peptide amounts. (C) 
Score distributions of acetylated peptides are illustrated for indicated wash protocols, bead and peptide 
amounts. (D) Numbers and intensities of acetylated and unmodified peptides in the wash fractions of differ-
ent wash protocols are shown (5 % injected into the MS). The first wash fraction was not measured. (E) 
Bound acetyl-peptides were eluted twice (E1+2) and then another two times (E3+E4). The desalting flow 
through of the first two elutions was loaded onto a second STAGE tip and desalted again (E1+2, D2). The 
intensity of acetylated peptides in different samples and their overlap is plotted. (F) Correlations (R: Pearson 
coefficient) and overlaps between 3 acetyl IP replicates are displayed. 
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Figure 0-15 | Optimization of immunoprecipitations of di-glycine remnant peptides. Differing wash proto-
cols (3 washes: 1x IAP buffer + 2x water: 5 washes: 2x IAP buffer + 3x PBS), antibody bead amounts, peptide 
quantities, and elution steps were tested using label-free HeLa digest in singlicates in independent experi-
ment series. Match-between-runs was disabled for comparison in (A-C) but enabled for analysis in (D-E). (A) 
Numbers of di-glycine remnant (GG-K) and unmodified peptides, Class I GG-K sites, and selectivity are plotted 
for indicated wash protocols, bead and peptide amounts. (B) Intensities of di-glycine remnant and unmodi-
fied peptides, and intensity-based selectivity are displayed for indicated wash protocols, bead and peptide 
amounts. (C) Score distributions of di-glycine remnant peptides are illustrated for indicated wash protocols, 
bead and peptide amounts. (D) Numbers and intensities of di-glycine remnant and unmodified peptides in 
the wash fractions of different wash protocols are shown (5 % injected into the MS). The first wash fraction 
was not measured. (E) Bound di-glycine peptides were eluted twice (E1+2) and then another two times 
(E3+E4). The desalting flow through of the first two elutions was loaded onto a second STAGE tip and de-
salted again (E1+2, D2). The intensity of di-glycine peptides in different samples and their overlap is plotted. 
(F) Correlations (R: Pearson coefficient) and overlaps between 3 di-glycine IP replicates are displayed. 
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3.2 Two approaches for the investigation of PTM-specific turnover 

 

Figure 0-16 | Refinement of pulsed SILAC-TMT data processing. (A) Pearson correlation coefficients and 
coefficients of variation are displayed for the former and refined KRAB-filter) that is applied to parameters 
of fitted curves (K: 0-5; B: -0-0.3; A: 0.67-1.5; R2≥0.8 vs. K: 0-5; B: -0.15-0.25; A: 0.7-1.4; R2≥0.7, see also Fig-
ure 0-7). (B) The principle of the computational removal of ratio compression is illustrated. It was based on 
the assumption that ratio compression of increasing/decreasing curves was caused by co-isolation of a pep-
tide exhibiting the opposite, label loss/incorporation behaviour. To remove these co-isolated intensities, av-
erage label loss or incorporation curves were subtracted from individual peptide intensities. (C) The principle 
of the correction for abundance changes is shown. Instead of employing the channel indicating 100 % label 
incorporation as total peptide abundance (0 h or infinite h time-point) to calculate intensity ratios for each 
time-point, the actual peptide abundance at the respective time-point was derived from the sum of the heavy 
and light version of the peptide and used to compute respective ratios. 

 

 

Figure 0-17 | Estimation of turnover rates from single time-point pulse data. (A) Boxplots (25th-50th-75th 
percentile) illustrate the recycled fraction calculated from missed cleavage peptides that contained at least 
one isotopically heavy and light amino acid and were identified in the pulsed SILAC-TMT dataset (n=383). 
The median of the distributions at different time-points (indicated by a red box and number) was utilized to 
calculate turnover rates from single time-point pulse data. (B) The distributions of turnover rates obtained 
from different pulse time-points showed global shifts. Only peptides that were shared among all time-point 
were included for the analysis (n=18,661). 
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3.3 Characterization of peptidoforms with differential turnover  

 

Figure 0-18 | Peptides included in significance and enrichment analyses. (A) Pie diagrams illustrate the 
fraction of quantified peptides used to test statistical significance of turnover differences of (modified) pep-
tides to their assigned proteins or counterpart peptides. Stacked bar charts show the same but discriminating 
between different modified peptides. Peptides not included for significance analyses did not fulfil criteria 
such as at least 2 quantifications per statistical group and at least 3 quantified peptides per protein. The 
total number of peptides for each dataset is indicated on top. (B) Significance of turnover differences be-
tween (modified) peptides and their proteins or counterpart peptides was tested for all datasets separately 
using two-sided Student’s t-tests at 1 % permutation-based FDR (S0 shown in italics). Numbers of pairwise 
comparisons (vertical number), fractions of significant peptide hits (percentages), and their modification 
types (pie diagrams) are illustrated for each of the 10 statistical analyses. Note that for the modified peptide-
counterpart comparison, modified peptides can be included in the analysis more than once if several non-
modified counterpart peptides were quantified. The total number of significant hits for each test is indicated 
in bold font, and the numbers of significant, distinct modified peptides for the modified peptide-counterpart 
tests are displayed in brackets. The total numbers of tested and significant peptides are shown on the left 
and right side, respectively. (C) Venn diagrams display the number and overlap of peptides that were identi-
fied with significantly faster or slower turnover compared to their protein (left site) or counterpart peptide 
(right side) in all five datasets combined. Peptides that were found in conflicting groups (faster and slower, 
red boxes) in different datasets were discarded from enrichment analyses.  
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Figure 0-19 | Peptides with significantly different turnover in subunits of the 19S proteasome forming the 
regulatory particle of the proteasome. The position of peptides within their corresponding 19S proteasome 
subunit is plotted against the turnover difference to their protein. Proteasomal proteins were enriched in 
both, significantly slower and faster degrading peptides. The length of the major isoform is displayed in 
italics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



APPENDIX 

P a g e | XLVII 

3.4 Functional perspective on modification-specific turnover  

 

 

Figure 0-20 | Ubiquitin-remnant and acetylation sites leading to significantly different turnover. Average 
turnover is illustrated for modification sites (circles) within Ku domains (GG-sites) and α-helices or β-strands 
(ac-sites), and their corresponding proteins (squares). All peptides mapping to a modified or non-modified 
site were included for calculation of average N/O ratios or turnover rates K. Amino acids surrounding the 
modification site are indicated in brackets.  
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Figure 0-21 | Enzymatic regulated acetyl-lysine sites. (A) Concentration-dependent increase of lysine acet-
ylation upon HDAC inhibitor treatment of HeLa cells is displayed for ac-K sites that exhibited a decreased 
turnover (4 h for SAHA and CUDC-101, 16 h for Romidepsin). Samples were prepared equivalent to pSILAC-
TMT experiments, but combining drug concentrations within a TMT-plex. (B) Probability logos for 11 amino 
acid long sequence windows of ac-K sites identified in the five turnover datasets were plotted using pLogo 
[322] and are illustrated for ac-K sites that showed an at least 2-fold increase upon KDAC inhibitor treatment 
(left panel), or more than a 2-fold regulation upon CBP/p300 inhibitor treatment or p300 transfection (right 
panel) in previously published data [208, 310] (red horizontal line: p=0.05). 

 

 

 



 

 

  



 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Glück ist das einzige, das sich verdoppelt, wenn man es teilt.” 

- Albert Schweitzer 

 

“If I have seen further, it is by standing on the shoulders of giants.” 

- Isaac Newton 
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