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Abstract

Molecular dynamics simulations are very compute-intensive tasks. In order to speed
them up, massive parallelization for the force calculation is necessary. Verlet Lists are a
data structure capable of reducing the naively seen quadratic computational complexity
to a linear one. A library that solves the force calculation of these simulations is the C+-+
template library AutoPas [GSTT19]. It includes many different approaches for this problem
and automatically chooses the fastest one of them for the current state of the system at run
time.

This thesis extends AutoPas by adding several new approaches. All of them are built on
the idea of Verlet Lists and are parallelized using OpenMP 4.5. Small parts of the library
are refactored to prepare it for these new algorithms.

The new approaches are tested on their Time to Solution and Strong Scaling behavior for
different simulation settings on two different platforms. They are compared to an existing
solution, and it is shown that they outperform it on many occasions.

ix






Zusammenfassung

Molekulardynamiksimulationen sind sehr rechenintensive Programme. Um sie zu beschle-
unigen ist eine starke Parallelisierung der Kraftberechnung erforderlich. Verlet Listen sind
eine Datenstruktur die fahig ist, den naiv gesehen quadratischen Rechenaufwand auf einen
linearen zu reduzieren. Eine Bibliothek, die die Kraftberechnung fiir diese Simulationen 10st,
ist die C++ template Bibliothek AutoPas. Sie umfasst viele unterschiedliche Losungsanséatze
fir dieses Problem und wahlt zur Laufzeit automatisch den Schnellsten fiir den aktuellen
Zustand des Systems aus.

Diese Arbeit erweitert AutoPas um einige neue Losungsanséitze. All diese bauen auf der
Idee von Verlet Listen auf und werden mit OpenMP 4.5 parallelisiert. Kleine Teile der
Bibliothek werden umstrukturiert um sie auf diese neuen Algorithmen vorzubereiten.

Die neuen Losungsansétze werden auf ihre Schnelligkeit und starke Skalierbarkeit in
verschiedenen Simulationsumgebungen auf zwei verschiedenen Plattformen getestet. Sie
werden mit einer existierenden Losung verglichen und es wird gezeigt, dass sie diese in vielen
Fillen ibertreffen.
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Part |I.

Introduction and Background




1. Introduction

In today’s science, molecular dynamics simulations help to tackle many problems of great
importance. They assist in medicine, for example in drug research [PGLT18], in battery
research [MCPR18], or in studying the behavior of nanotubes [PC17] that are themselves
used in many applications as fighting water scarcity [IAAA116]. They provide closed,
reproducible environments and complete observability over its processes and can, therefore,
aid in multiple steps of the scientific method.

A molecular dynamics simulation calculates the movement of particles inside a domain
over time, according to certain basic rules. Since in theory every pairwise particle-interaction
needs to be considered, they are an instance of the general N-body problem. Direct methods
for solving these have a computational complexity of O(N?). Verlet Lists are capable of
reducing this to a linear computational complexity in certain conditions. Since the particles
in these simulations are free to move in the whole domain, simulating their movement is
a problem of highly dynamic nature. With particle numbers in the millions, countless
different situations occur and having one simulation code that performs efficiently in all
these situations gets unlikely.

For that reason, the C++ node-level template library AutoPas is developed. It is applicable
to the general N-body problem. To tackle the highly dynamic nature of the problem, the
library employs many different approaches to solve it. Depending on the current state of
the simulation, it automatically chooses the fastest one.

In this work, several new approaches are added to AutoPas. They are all based on the
idea of Verlet Lists and are parallelized using OpenMP 4.5 in order to utilize all available
hardware resources fully. Up until now, there have not been many efficient Verlet Lists
parallelizations in the library. Having them available enriches its pool of distinct algorithms
and makes it more viable in simulation settings where Verlet Lists are the most promising
approach. In the library, small parts are refactored to prepare it for the new approaches.

In the end, the performance of all new approaches is measured in different simulation
environments and on different platforms. The results are analyzed for strengths and
weaknesses and compared to an existing solution.




2. Theoretical Background

2.1. Intermolecular Potentials

The interaction between particles is described by a pairwise potential. This potential defines
the force that particles exert on each other, depending on their relative position. In this
work, only short-ranged potentials are considered. We call a potential short-ranged, if the
force decays faster than 1/r3, with r being the distance between two particles. For this
subclass of potentials, a certain cutoff radius for each potential can be introduced. Since
the force decays so fast, all forces between particles further apart than this cutoff radius can
be neglected [GKZ10]. This is a significant advantage, as these particle interactions do not
have to be considered for force calculation.

A common potential for Molecular Dynamics Simulations is the Lennard-Jones potential.
For two particles with distance 7;; and parameters € and o, it is:

oo (7))

Since its decay is of order 6, it is a short-ranged potential. The cutoff for it is typically
chosen to be 2.5 - o. Figure 2.1 visualizes the potential for e = ¢ = 1. It can be seen that
the potential for r > 2.5 is very close to zero.

u(r)

-05

Figure 2.1.: Lennard-Jones Potential with e = ¢ = 1. Source: [GKZ10]

When calculating the forces between particles, an optimization to divide the number of
force calculations by two can be made. This is due to Newton’s third law [New87]:

”To every action there is always opposed an equal reaction: or the mutual actions
of two bodies upon each other are always equal, and directed to contrary parts.”




2. Theoretical Background

This states that if a particle p; exerts a force on a particle ps, po always exerts the same
force with opposite direction on particle p;. For this reason, it is enough to calculate the
force from p; to ps, and use that value negated as force from po to p;.

2.2. Algorithm Types for Calculating the Forces

There are three classical archetypes for algorithms that calculate forces of short-range
pairwise interactions. Ordered by implementation complexity from low to high, they are
Direct Sum, Linked Cells, and Verlet Lists. The two more complex algorithm types can be
built on top of the simpler ones. All of them are explained in this section. Additionally, an
enhancement of Verlet Lists is discussed, the Verlet Cluster Lists.

Algorithm 1: Force Calculation Between Two Particles
Input: pl, p2, potential, cutoff

Output: force particle p2 exerts on particle pl using the given potential and
cutoff

1 Function forceFromToCut (p1, p2, potential, cutoff):
2 if distance (p1, p2) < cutoff then

3 L return potential.forceFromTo (pl.position, p2.position)
4 else
L return 0

All algorithms explained now will use Algorithm 1 to calculate the force that one particle
acts on another. It implements the cutoff for the force between two particles. If the particles
are closer together than the cutoff, it returns the force that the potential defines. Otherwise,
it returns zero.

2.2.1. Direct Sum

The first algorithm type is the trivial approach for iterating over the pairwise interactions.
Algorithm 2 shows an example implementation in pseudo-code. The algorithm gets the

Algorithm 2: Direct Sum Algorithm
Input: particles, potential, cutoff
Output: particles with added forces

1 Function calculateForces (particles, potential, cutoff):
for i <— 0 to particles.size() - 1 do
for j + 0 to particles.size() - 1 do
if i # j then
force = forceFromToCut (particles[i], particles[j], potential, cutoff)
particles[i].force += force

[S. SN R




2.2. Algorithm Types for Calculating the Forces

array of particles and a potential for the force calculation as input. It then iterates over
all particle pairs using a double for loop. In this case, both particle pairs (pl,p2) and
(p2, pl) are visited, so we do not take advantage of Newton’s third law. All pairs (pl,pl) are
excluded by the if statement, as particles do not interact with themselves. For each of these
pairs, the force between the first and the second particle is added to the force accumulator
of the first particle. Since in each iteration of the inner for loop, the only variable that is
written to is the force accumulator of the first particle, all iterations of the outer loop are
independent of each other, which makes the code embarrassingly parallel.

Algorithm 3: Direct Sum Algorithm With Newton 3
Input: particles, potential, cutoff
Output: particles with added forces

Function calculateForcesDirectSum(particles, potential):
for i < 0 to particles.size() - 1 do
for j < i + 1 to particles.size() - 1 do
force = forceFromToCut (particles[i], particles[j], potential, cutoff)
particles|[i].force += force
particles[j].force —= force

(=23, BNV V.

Algorithm 3 shows an example implementation that utilizes Newton’s third law. Since
Newton’s third law states that for all particle p; and pj;, f(pi,p;) = —f(pj, pi), the double
for loop is now written to only iterate over particle pairs (p;,p;) with j > ¢ and to use
this symmetry. This essentially halves the number of iterations of the inner for loop, but
introduces dependencies between iterations of the outer for loop, since each iteration accesses
both the force accumulator of the first and second particle of each pair. Unfortunately, this
makes exploiting Newton’s third law more difficult.

Overall, while this approach is easy and fast to implement, it scales O(n?) with n being
the number of particles, because of the double for loop with an outer and inner iteration
count of O(n). This, of course, can not be used for particle numbers in the millions and
higher, so more sophisticated approaches are needed.

2.2.2. Linked Cells

When observing the behavior of the Direct Sum algorithm, one quickly notices that it iterates
over all particle pairs existing, no matter how far away the particles are, although the force
between those further away from each other than the given cutoff radius is always zero. The
second algorithm type, called Linked Cells [AT87], heavily takes advantage of this property
of the potential. Assuming that, in all areas of the simulation domain containing n particles,
each particle does not have more than a fixed number of neighbors ¢ within the cutoff radius,
it effectively reduces the run time from O(n?) to O(c- n).

In order to achieve this, the Linked Cells algorithm divides the simulation domain into
cells with a minimum side length of the cutoff radius. Then, the particles are sorted into
their cell, according to their position. Now, for each particle, only the particles in the same
cell and in all neighbor cells can exert a force greater than zero on the particle, so the




2. Theoretical Background

Figure 2.2.: Visualization of the Linked Cells algorithm. The red particle interacts with all
particles in the red cutoff circle. Only particles in the green cells are considered
as potential neighbors by the Linked Cells algorithm.

Figure 2.3.: CO8 Traversal: Base Step Interactions for cell 0 in 3D. Colors visualize interac-
tions along one (blue), two (green), and three (red) dimensions. The numbers
indicate the color of each cell. Source: [GST19]

algorithm only iterates over those. This is illustrated in Figure 2.2. Algorithm 4 shows
an example implementation. First, all particles are sorted into their cells. Then, for each
cell, first the pairwise interactions within, and then those with its neighbors are calculated.
These steps are both extracted into other methods.

Utilizing Newton’s third law while calculating the forces in parallel requires a bit more
work here, than for Direct Sum. One possible way is the c08 traversal. This approach is
now explained shortly since it is used in some implementations and as a comparison in the
benchmarks in later chapters.

The c08 traversal works the following way: To ensure that no data races occur while
updating the force of the particles using Newton’s third law in parallel, an eight-way
cell-coloring of the domain is introduced. To avoid race conditions, two neighboring cells
are not allowed to have the same color. Then, each color is worked on separately with
OpenMP barriers between them. During the processing of each color, the cells of that color
are distributed to the different threads using dynamic scheduling. For each cell, a thread
executes the base step shown in Figure 2.3. Doing this for all cells in all colors yields the
forces between all particles [GSTT19].

Overall, the Linked Cells algorithm reduces the number of particle neighbor candidates
massively, compared to the Direct Sum algorithm. However, while this is already significant,




2.2. Algorithm Types for Calculating the Forces

Algorithm 4: Linked Cells implementation

1

o A W N

®

10
11

12
13
14
15
16
17

Input: particles, potential, cutoff
Output: particles with added forces

Function handleCell (cell, potential, cutoff):
foreach particlel € cell do
foreach particle2 € cell do
if particlel # particle2 then
force = forceFromToCut (particlesl, particles2, potential, cutoff)
particlel.force += force

Function handleCellPair (celll, cell2, potential, cutoff):
foreach particlel € celll do
foreach particle2 € cell2 do
force = forceFromToCut (particlesl, particles2, potential, cutoff)
L particlel.force += force

Function calculateForcesLinkedCells (particles, potential, cutoff):
cells = sortParticlesIntoCells (particles, cutoff)
foreach cell € cells do
handleCell (cell, potential, cutoff)
foreach neighborCell € cell.neighbors do
L handleCellPair (cell, neighborCell, potential, cutoff)




2. Theoretical Background

Figure 2.4.: Visualization of the VerletLists algorithm. The red particle interacts with all
particles in the red cutoff circle. All particles in the green skin circle are saved
in the neighbor list of the red particle.

a simple calculation shows that even here, with uniformly distributed particles in the domain,
only around 16% of the potential neighbors are within the cutoff radius.

Volume of cells C' = 27 - cutoff® (2.2)

4
Volume of sphere with radius cutoft S = gwcutoﬁ?’ (2.3)

4 3 4
§ _ gmeutoff” 37

== - _ = ~ 15.5% 2.4
C 27 cutoff> 27 ! (2.4)

Decreasing the number of unnecessary neighbor calculations and thereby increasing this
hit rate of neighbors for a particle is the idea of the final algorithm archetype.

2.2.3. Verlet Lists

The third algorithm archetype for pairwise interactions is called Verlet Lists [Ver67], named
after Loup Verlet. Its idea is to save references to all particles in the neighborhood of a
particle in the particle’s neighbor list. These neighbor lists are then used for the next few
force calculation iterations and are renewed once the particles have moved so far that their
neighbor lists are not valid anymore. Assuming a fixed maximum number of neighbors ¢
similar to Linked Cells, this also leads to a performance of O(c - n) for each iteration of the
force calculation.

So how far are the particles allowed to move? This depends on how the neighborhood
of a particle is defined. Of course, the neighborhood has to contain all particles that are
within the cutoff radius. To allow some movement of the particles without invalidating the
neighbor lists, a skin radius is added to the cutoff radius, so that the neighborhood for a
particle is defined as all particles that are within interaction_length = cutoff + skin distance.
Figure 2.4 shows that. The neighbor lists are then valid as long as all particles have not
moved more than skin/2 units. This ensures that even if two particles both move away from
each other this maximum distance, the neighbor list is still valid.




2.2. Algorithm Types for Calculating the Forces

Additionally, to calculating the forces, the neighbor lists have to be built. This is often
done using the Linked Cells algorithm with a cell side length of interaction_length, which
also has run time O(c - n), making that the final run time of the Verlet Lists algorithm.

Algorithm 5: Verlet Lists Implementation
Input: particles, potential, cutoff, skin
Output: particles with added forces

Function generateNeighborLists (particles, interactionLength):

cells = sortParticlesIntoCells (particles, interactionLength)

foreach cell € cells do

foreach otherCell € cell.neighbors U cell do

foreach particle € cell do

foreach possibleNeighbor in otherCell do

if particle # possibleNeighbor then

if distance (particle, possibleNeighbor) < interactionLength
then

9 L particle.neighbors.append(possibleNeighbor)

o N O Uk W N

10 Function calculateForcesVerletLists (particles, potential, cutoff, skin,

shouldRebuild):
11 if shouldRebuild then
12 L generateNeighborLists (particles, cutoff + skin)
13 foreach particle € particles do
14 foreach neighbor € particle.neighbors do
15 L force = forceFromToCut (particle, neighbor, potential, cutoff)
particle.force += force

Algorithm 5 shows an example implementation of VerletLists. It gives the caller an option
if the neighbor lists should be rebuilt or not. At the first time, this has to be true. The
generation of new neighbor lists is extracted into another method. There, similar to the
Linked Cells algorithm, the particles are sorted into cells. For each particle, its outer cell and
all neighboring cells are searched for neighbor particles that are closer than the interaction
length. These are then saved in the particle’s neighbor list. The actual force calculation
then only iterates over all neighbors for each particle and adds up the forces from these
pairwise interactions. In contrast to the Linked Cells algorithm, no unnecessary neighbor
distance calculations happen during the force calculation.

Attentive readers will probably already have noticed how significant the additional memory
usage is compared to Linked Cells or Direct Sum. Whether this is worth it compared to Linked
Cells depends on the hardware used and on the implementations, but also on the simulation.
Furthermore, using SIMD instructions and being cache efficient in implementations of Verlet
Lists is a huge challenge [AMS™15]. Since this is very important for achieving excellent
performance, modifications of Verlet Lists have been invented.




2. Theoretical Background

2.2.4. Verlet Cluster Lists

One modification of the Verlet Lists algorithm is the Verlet Cluster Lists algorithm. The
introduction of particle clusters for Verlet Lists was first done by GROMACS [AMS™'15].
This algorithm allows easy vectorization by design while reducing the memory footprint
compared to traditional Verlet Lists. The key idea is that particles close together have
similar neighbors. These particles then form a cluster. So, instead of constructing neighbor
lists for each particle and calculating the interactions in pairs of particles, the neighbor
lists are constructed for clusters of particles, and the interactions are calculated between
two clusters and within each cluster. Two clusters are neighbors if a particle in one cluster
contains at least one neighbor in the other cluster.

Since in each cluster interaction, the interactions between a fixed number of multiple
particle pairs are calculated, these interactions can be vectorized. For this, the cluster size is
chosen to fit the characteristics of the SIMD hardware used. Furthermore, as the number of
clusters is considerably smaller than the number of particles, the total number of neighbors
to save decreases, too. This leads to a significant improvement in memory usage.

10



3. Introduction to AutoPas

AutoPas [GSTT19] is a C++ template library that aims to achieve optimal node-level
performance for calculating the pairwise-forces in N-body simulations. It meets this claim
by implementing multiple algorithms to solve the force calculation and choosing the fastest
one of them for the current state of the simulation dynamically at run time. This is called
auto-tuning. The user only has to provide the pairwise force calculation kernel, called
Functor, and the particles. In order to fully utilize a node, massive parallelization is needed.
Every algorithm implements its own parallelization strategy with OpenMP.

3.1. Non-Functional Goals of the Library

The library has mainly four non-functional goals:

1. Ease of Use

2. Modularity

3. Platform Independence
4

. Good Performance

Since this work extends the library, it also takes them into account. At first, the library
should be easy to use. Users should be able to use the library without first understanding
the whole implementation and without any knowledge of the strengths of certain algorithms.
The library automatically chooses the best algorithm available. Secondly, the library-internal
code should be organized very modularly. Each part of the library should be interchangeable
to allow flexible adjustments to the needs of the current simulation state. Third, the library
should be platform-independent to be able to run on many different architectures and
be compiled with all major compilers. As the last point, the library should yield good
performance in as many cases as possible, independent of the hardware, the number of
threads, the simulation size, or particle distribution.

3.2. Software Design

3.2.1. Library Interface

To be easy to use, the library uses the Facade Pattern. Its entire interface is represented
by the AutoPas class. It has a template parameter to determine what type of particles it
should work on. To this class, the user provides instances of a custom particle class and
of a custom functor class that represents the potential to use. For this, the AutoPas class
provides methods to add particles, iterate over them, and traverse the particle pairs with a

11



3. Introduction to AutoPas

given functor. It further gives many options to configure more details about the domain,
cutoff, skin, the tuning strategy, and more. Figure 3.1 visualizes that.

|
AutoPas Interface
| : Particle 1I
AutoPas T
+init()
+addParticle(p : Particle&) ParticleBase ———
+addOrUpdateHaloParticle(p : Particle&) -_force | particle
+deleteAllParticles() -id Functor I
+iteratePairwise(f : Functor*) -_position +initTraversal()
+updateContainer() -_velocity +endTraversal(newton : bool)
+begin() +getF() +AoSFunctor(i : Particle&, j : Particle&, newton3 : bool)
+getRegionlterator() +setF(force) +SoAFunctor(soa : SoAView, newton3 : bool)
+getNumberOfParticles() +getld() +SoAFunctor(soal : SoAView, soa2 : SoAView, newton3 : bool)
+setVerletRebuildFrequency(f : unsigned int) +set1d(id) +SoAFunctor(soa : SoAView, first : size_t, neighbors : std::vector<size_t>, newton3 : bool)
+setBoxMin(min : std::array<double, 3>) getR() +SoALoader(cell : ParticleCell, soa : SoA, offset : size_t)
max : std::array<double, 3>) +setR(position) +SoAExtractor(cell : ParticleCell, soa : SoA, offset : size_t)
+setCutoff(cutoff : double) +getV() A
+setVerletSkin(skin : double) +setv(velocity)
+setTuni Option(t : Tuni Option)
[

CustomParticle CustomFunctor
-material +AoSFunctor(i : CustomParticle&, j : CustomParticle&, newton3 : bool)
+getMaterial() +SoAFunctor(soa : SoAView, newton3 : bool)
+setMaterial(material) : void +SoAFunctor(soal : SoAView, soa2 : SoAView, newton3 : bool)
+SoAFunctor(soa : SoAView, first : size_t, neighbors : std::vector<size_t>, newton3 : bool)

Figure 3.1.: UML Class Diagram of the interface of AutoPas and User Code that utilizes
the library for own simulations.

3.2.2. Containers and Traversals

Internally, each algorithm to drive the force calculation consists of a container type and a
traversal type. This combination is also called a configuration. The container is responsible
for saving the particles in a certain manner. Examples include the DirectSum container,
that saves all particles inside one cell, the LinkedCells container that saves all particles in
cells with a certain cell length, and the VerletLists container that saves its particles in
an underlying LinkedCells container, but additionally saves neighbor lists for its particles.
These containers are implementations of the algorithm types outlined in Section 2.2.

The traversal is responsible for the order the particle pairs in a container are processed
in. Its main challenge is parallelizing the force calculation efficiently. One container type
can have multiple traversal types, but a traversal type always belongs to only one container
type. Examples for traversals are the C08 traversal, shortly in explained in Subsection 2.2.2
or the Sliced traversal [GST*19] for the LinkedCells container.

Figure 3.2 shows the base interfaces for all containers and traversals. The container mostly
has methods to specify the domain it should represent, and to add, remove, or iterate over
particles. Its most important methods for this thesis are rebuildNeighborLists() and
iteratePairwise(). In the first method, the container has the opportunity to prepare for
upcoming force calculations by building the neighbor lists. It receives the traversal it builds
the neighbor lists for to decide, for example, if the neighbor lists should be built for a traversal
that uses Newton’s third law or not. This method is called periodically and always before

12
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—————

| Particle |
<<Interface>> T <<Interface>>
ParticleContainerInterface TraversalInterface
+iteratePairwise(t : Traversallnterface*) +initTraversal()
+addParticle(p : Particle&) +traverseParticlePairs()
+addHaloParticle(p : Particle&) +endTraversal()
+updateHaloParticle(p : Particle&) +getUseNewton3()
+rebuildNeighborlLists(t : Traversallnterface*) +getTraversalType()
+deleteHaloParticles() +getDatalayout()
+deleteAllParticles() +isApplicable()
+getNumParticles() | T NS
+begin(iteratorBehavior) A N i_Pa rticle !
+getRegionlIterator(l : lowerCorner, h : higherCorner, b : iteratorBehavior) - \ | DataLayout : DatalayoutOption :
+getContainerType() <<enumerat|on.>> v luseNewton3 : bool |
+getBoxMax() DataLayoutOption M——=——— e
+getBoxMin() AoS -_functor
+setBoxMax() SoA
- +ExampleTraversal(f : Functor*)
+getCutoff() +initTraversal()
+setCutoff() +traverseParticlePairs()
+getskin) +endTraversal()
+oetsking) +getUseNewton3()
+getinteractionLength() COHIBTEEEY
+updateContainer() +'getDa!l:aLayout()
+isContainerUpdateNeeded() SEEIEED
+getTraversalSelectorInfo()

Figure 3.2.: UML Class Diagram of the interfaces for all containers and traversals.

the first call to the second method, iteratePairwise(). There, the container calls the
initTraversal(), traverseParticlePairs(), and endTraversal () methods on the given
traversal. These are the most important methods for a traversal. While the first and the
last one prepare and finalize the traversal, the second method, traverseParticlePairs(),
contains the whole logic of how the particle pairs in the container are iterated over. Internally,
the traversal contains the functor to use for the pair interactions, as it can be seen in Figure 3.2.
The main focus of this work is to add new containers and traversals as new configuration
options for the auto-tuning.

Each traversal also has template parameters that specify what data layout it should work
on and if it is supposed to use Newton’s third law. In the isApplicable() method, the
traversal can check whether it can be applied with the current template arguments. In
this thesis, two different data layout options are used. The Array-of-Structures data layout
(AoS), and the Structure-of-Arrays data layout (SoA). These data layouts specify how the
particles are saved in memory. The following codes explain the difference between both data
layouts:

class ParticleContainerSoA {
static constexpr size_t N = 10;

class ParticleContainerAoS {
static constexpr size_t N = 10;
class Particle {
array<double, 3>
array <double, 3>
array<double, 3> v;
size_t id;

array<array<double, 3>, N> r;
array<array<double, 3>, N> f;
array<array<double, 3>, N> v;
array<size_-t , N> id;

-

,.,.)
0O Utk W

array<Particle , N> particles;

}
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3. Introduction to AutoPas

In the AoS case, the data of one particle lies continuously in memory. In the SoA case, this
particle is split up to have the member variables of all elements of the array lie continuously
in memory. The data layout of SoAs matches the data layout in the vector registers for the
force calculation. Therefore, amongst other things, the SoA data layout helps greatly in
getting the best performance out of vectorization!.

Since in C++4, arrays of objects normally use the AoS data layout, this is the default layout
that all containers use. If the SoA data layout is selected for a traversal, the traversal copies
the data needed for the force calculation from the AoS into a SoA. A SoA is represented by
the class SoA.

"https://software.intel.com/en-us/articles/memory-layout-transformations
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Part Il.

Towards Parallelization of Verlet Lists
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After the introduction to the theoretical backgrounds, the outcomes of this work are now
described in this chapter. For most containers and parallelizations, some refactoring of
the existing code had to be done in order to implement them properly. These changes are
attended first. Then, all new containers and their parallelizations are covered. Finally, the
performance of each new configuration is analyzed.
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4. Refactoring of Existing Code

Let us start with the refactorings. All following changes were done to increase the main-
tainability and extensibility of existing code. Most of it was preparatory refactoring for
implementing the new containers and traversals, following the suggestion of Kent Beck!:

"for each desired change, make the change easy (warning: this may be hard),
then make the easy change”

4.1. Removal of Template Parameters from iteratePairwise()

Previously, the iteratePairwise(Traversallnterface* traversal) method that every
container has to have had legacy template parameters and legacy parameters. Its original
signature was:

template <class ParticleFunctor, class Traversal>
void iteratePairwise (ParticleFunctor *f, Traversal straversal , bool newton3)

Especially the template parameters prevented the method from being declared pure
virtual in the ParticleContainerInterface. Therefore, all containers had to implement it
themselves and calling it required the code shown in Listing 4.1. The code uses the container
type returned by getContainerType() to dynamically cast the given ParticleContainer
pointer to its actual class. The resulting object is then passed to a generic lambda that calls
the iteratePairwise() method on it. This is possible since the lambda deduces the actual
container class from the dynamic cast.

template <typename Particle , typename ParticleCell , typename FunctionType>
void withStaticContainerType (std::shared_ptr<ParticleContainer<Particle ,
ParticleCell >> &container , FunctionType &&func) {
auto container_ptr = container.get();
switch (container—>getContainerType()) {
case ContainerOption:: directSum:
func (dynamic_cast<DirectSum<Particle , ParticleCell> x>(container_ptr));
return;
// ... all container options
case ContainerOption::linkedCells:
func (dynamic_cast<LinkedCells<Particle , ParticleCell > *>(container_ptr));
return;

}
}

// Calling statement
withStaticContainerType (container, [](auto cont){cont.iteratePairwise (...)});

Listing 4.1: Code originally necessary for calling the iteratePairwise() method.

1https ://twitter.com/kentbeck/status/250733358307500032
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4. Refactoring of Existing Code

In the body of the iteratePairwise() method, actually, only the traversal itself is
necessary as a parameter, as long as the traversal saves its data layout and Newton 3
option and the underlying functor. Additionally, it has to provide methods for initializing
the traversal, traversing the particle pairs, and finalizing the traversal. For this, the
Traversallnterface was extended, as it can be seen in Figure 4.1.

<<Interface>>
TraversalInterface

+initTraversal()
+traverseParticlePairs()
+endTraversal()
+getUseNewton3()
+getTraversalType()
+getDatalayout()
+isApplicable()

Figure 4.1.: UML Class Diagram of the new Traversallnterface.

Now, the new signature of the method is iteratePairwise(Traversallnterface* traversal),
and it is added as a pure virtual to the ParticleContainerInterface. This makes calling
it as easy as any other method.

4.2. Centralizing the Traversal Instantiation

The previous way of instantiating traversals was through a TraversalSelector object.
Every container provided a method generateTraversalSelector () that would return such
an object properly initialized with the dimensions, the cutoff, and the cell length used in the
container. This TraversalSelector object then provided a method generateTraversal()
that instantiated a traversal given a functor and a TraversalOption.

Since this method could instantiate all traversals from all containers, the TraversalSelector
class introduced dependencies from every container to every traversal. Utilizing traversals in
a container implementation, therefore, produced circular dependencies.

This was resolved by replacing the TraversalSelector object in the container with a
TraversalSelectorInfo object that only holds the container-specific info of the dimension,
the cutoff, and the cell length used. The generateTraversal() method from before is now
a static method that additionally gets one of these info objects. Thereby, the containers have
no dependency on any traversal, but only on the info object, and the dependency problems
are resolved.

4.3. Introduction of SoA Views

In the previous implementation, the Functor class provided methods that calculated the
pairwise interactions for all particles in one SoA and between two SoAs. The signatures were
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4.4. Neighbor Lists SoAFunctor Refactoring

SoAFunctor (SoA &soa, bool useNewton3) and SoAFunctor (SoA& soal, SoA& soa2, bool
useNewton3).

While this was sufficient for most Linked Cells implementations, some new configurations
need finer-grained control. They need the possibility only to pass parts of SoAs to these
functions. The easiest solution for this problem would be copying these parts into a new SoA,
but this costs valuable performance. Instead, we introduced the class SoAView to replace the
SoA parameters of the Functor. The new signatures are now SoAFunctor (SoAView soa,
bool useNewton3) and SoAFunctor (SoAView soal, SoAView soa2, bool useNewton3).

A SoAView is a lightweight view on a certain part of a SoA. It provides the same methods
as the SoA for accessing the particles within (begin() and getNumParticles()), so the
implementation of the functors did not need to be changed. Internally, it just holds a pointer
to the beginning of the actual SoA to view, a start index and an end index. Furthermore,
the SoAView provides an implicit conversion from a SoA. That way, no calls to the methods
that now have a different signature had to be changed. Figure 4.2 shows the new class.

SoAView SoA
-_startIndex +begin() .
-_endIndex - - - - <<access>> ~— -~ ~2 +get.NumPart|cIes() .
- soaPtr +resizeArrays(length : size_t)

- +write(particleld : size_t, value : ValueType)

+begin() +clear()
+getNumParticles() +popBack()
+S0AView(soa : SoAR) +constructView(start : size_t, end : size_t)

Figure 4.2.: UML Class Diagram of SoAView and SoA

4.4. Neighbor Lists SoAFunctor Refactoring

Originally, the signature of the SoAFunctor () method intended for Verlet Lists traversals of
the Functor class was:

virtual void SoAFunctor(SoA soa, const std::vector<std::vector<size_t>> &
neighborList , size_t iFrom, size_t iTo, bool newton3)

This type for the neighbor list is exactly the type which the VerletLists container, the
first Verlet Lists container of the library, uses as the type for the SoA neighbor list. It
works in the following way: For each particle of the given SoA, the neighbor list contains a
std: :vector<size_t>> with the same index. This vector holds all the indices in the SoA
from all neighbors of the particle. iFrom and iTo specify a range of these indices. Inside this
range, the method should calculate all pair interactions of the particles with its neighbors.
The VerletLists container was the only container that used this method.

The problem with this signature comes, when a container uses multiple smaller neighbor
lists instead of one big neighbor list. This, for example, will happen in the VarVerletListsAsBuild
container (see Section 5.2). To be able to use this method with a neighbor list that only
contains the neighbors for a part of all particles, an empty vector has to be inserted into
the neighbor list for every particle the neighbor list does not contain neighbors for. As an
example, the VarVerletListsAsBuild container will have 8 - num_threads neighbor lists.
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4. Refactoring of Existing Code

This makes the memory usage scale linearly with the number of threads used, just because
of empty vectors.
Our solution for this problem is to change to signature of the SoAFunctor () to:

virtual void SoAFunctor(SoAView soa, const size_-t indexFirst, const std::
vector<size_t> &neighborList , bool newton3)

Here, the functor only gets the index of a particle in the SoA and a vector of the indices
of all its neighbors, instead of the neighbor list for all particles. In the implementation,
this changes only the location of the loop over the particles from inside the functor to the
caller. That way, no empty vectors have to be generated to fill up the neighbor list, and the
signature of the method is better understandable, too.

4.5. Automated Common Unit Tests for all Containers and
Traversals

For testing its components, AutoPas uses GoogleTest. The most important unit tests for the
traversals are the tests where their result of one simulation step is compared to the result
of a reference traversal. Also, for each container, there are some tests that check adding
particles, deleting them, and iterating over them. These tests have been written manually
for many containers and traversals, but most of the code is copy-and-paste, and the reference
traversal is calculated many times.

Changing these tests is very error-prone because of the copy-and-paste, since it is easy to
forget one of the tests. Also, the tests run quite slow.

For this reason, we added two parameterized test suites. The first automatically calculates
the same simulation step for all traversals and compares the results to one reference traversal.
The second one automatically executes some standard tests for all containers in the library.
When new traversals and containers are added to the library, the test suites automatically
generate the tests for those. In the future, many more tests can be pulled out from special
container tests into these common test suites.
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5. Containers and their Parallelizations

In the following sections, all new containers and their new traversals are described. Two
containers are covered. The first container, called VerletClusterLists, was there be-
fore, but was rewritten, and three traversals were added. The other container, the
VarVerletListsAsBuild is new and has one traversal.

5.1. VerletClusterLists Container

The VerletClusterLists container is an implementation of the Verlet Cluster Lists algo-
rithm outlined in Subsection 2.2.4. As explained there, it divides the particles into clusters
of a fixed size (a fixed number of particles per cluster) and saves neighbor clusters, instead
of neighbor particles. Compared to other Verlet containers, it is expected that this container
performs better with the SoA data layout and benefits more from vectorization units the
hardware provides since the Verlet Cluster Lists algorithm was designed for that [AMS™*15].
Before this work, there has already been an unfinished implementation of this container that
only supported the AoS data layout and was written monolithic with high coupling and
low cohesion. Extending it with support for SoA and different traversals resulted in poor
performance. Therefore, the container was mostly rewritten to achieve better extensibility
and maintainability, as well as better performance. The performance improvement can be
seen in Section 6.3. Some essential parts like handling halo particles and deleting particles
are still missing, but no features have been broken.

5.1.1. Creating Clusters

Before the structure and implementation is described, our algorithm to create clusters of
particles is explained. This container, as in the previous implementation [Ngul8], solves
that with the following approach: First, the domain is divided into towers along the x- and
y-axis. The side length of those towers depends on the number of particles in the domain.
Inside each tower, the particles are sorted into clusters of a fixed size along the z-axis. If the
last cluster (the topmost) does not contain enough particles, dummy particles are added to
ensure that each cluster has the same size. Figure 5.1 illustrates this in 2D with a cluster
size of four.

5.1.2. Class Structure

Now, the class structure of the VerletClusterLists container is outlined. The class
diagram in Figure 5.2 shows some important elements. The container divides its domain
into many ClusterTowers, using the scheme from above. Each tower is responsible for all
particles within it. A tower provides methods for adding particles, building and accessing its
clusters. Internally, it saves all particles in a FullParticleCell. The clusters are generated
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Figure 5.1.: Clustering of particles in 2D

as an index structure over the FullParticleCell. The tower is also responsible for filling
in dummy particles if the last cluster is not full. A Cluster provides access to the particles
it contains and to its neighbors. If the data layout is AoS, the particles can be accessed
through the getParticle() method. If the data layout is SoA, the cluster additionally
supplies a SoAView on its particles. The VerletClusterLists container provides a method
for the traversals to generate a SoA for all particles and to initialize these SoAViews for each
cluster, as well as to extract this SoA again.

5.1.3. Building the Container and Neighbor Lists

At this point, we know the overall class structure of the container. We know where particles
and neighbors are saved, and how the container supports using the SoA data layout. It
provides methods for loading and extracting the particles into a SoA and provides access to
it through SoAViews for each cluster. Since traversals are responsible for the iteration over
the particle pairs, the only unknown part left is how the container and its neighbor lists
are built when rebuildNeighborLists() is called on the container. As this step involves
several non-trivial sub tasks, the Replace Method with Method Object refactoring was used
while rewriting the container, to ensure low coupling and high cohesion. Now, a special class
VerletClusterListsRebuilder is responsible for rebuilding the container and its neighbor
lists. The steps are:

1. Collect all particles from old towers and delete the towers.
2. Add new particles handed to addParticle().

3. (Delete pending particles marked by ParticleIterator: :deleteCurrentParticle().)
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I Particle |

VerletClusterLi build

+VerletClusterListsRebuilder(container : VerletClusterLists, newParticles : std::vector<Particle>&, newton3 : bool)
+rebuild()
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1
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' | Particle |
VerletClusterLists
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* I Particle |
ClusterTower

P> divides its domain in [+ addparticle(p : Particleg)

+iteratePairwise(traversal : Traversallnterface*)
+rebuildNeighborLists(traversal : Traversallnterface*) 1
+addParticle(particle : Particle)
+getClusterThreadPartition()

+loadParticlesIntoSoAs(f : Functor*) FEEER()

+extractParticlesFromSoAs(f : Functor*) +generateClusters()
+fillUpWithDummyParticles()

+collectAllActualParticles()

———

!_Pa_rtge :4 assigns particles to +getClusters()
Cluster . 1 <€
-_neighborClusters : std::vector<Cluster*>
-_soaView : SoAView
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+getParticle(index : size_t) !fa_rti_cle_|
+getSoAView() FullParticleCell
+getNeighbors() +_particles : std::vector<Particle>
+addNeighbor(neighbor : Cluster&) <<access>> +addParticle(p : Particle&)
provides access to +clear()

Figure 5.2.: UML Class Diagram of the VerletClusterLists container.

Estimate new optimal tower side length using the particle collection.
Generate new towers and sort particles into them.
Make towers generate the cluster index structures.

Calculate the neighbors for each cluster.

® N o o

Make towers add dummy particles to fill up last cluster.

In detail, the following happens: At first, all particles of the container are collected from
the old towers so that the towers can be deleted. This is done using move semantics to avoid
copying all particles. To this collection, new particles that were passed to addParticle()
are added. At this point, the particle deletion of the container should happen, but this is
not implemented at the moment. Then, the new optimal tower side length is estimated.
The heuristic for this has been taken from the previous implementation. It is:

5| cluster_size - domain_volume

new _tower_side_length = (5.1)

num_particles

Using this, the new towers are instantiated, and the particles are sorted into them. This
is done in parallel with a lock for each tower. Now, the clusters are generated as an index
structure for each tower, also in parallel. The seventh step, the neighbor list generation,
is the most complicated. It is also done in parallel per tower. The neighbor lists can be
generated to contain symmetric pairs of clusters or not, depending on whether Newton’s
third law is used by the traversal they are generated for. A detailed description of that can
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be found in Subsection 5.1.7. For each tower, all towers that hold potential neighbor clusters
are calculated first. Since the tower side length has no lower bound, they can be arbitrary
many in each direction. For each cluster of the current tower, the distance to the clusters
of all neighbor towers is now calculated. If the potential neighbor cluster is in range, it is
added as a neighbor. Two clusters are in range if there is a particle in one cluster that is
within the interaction length of one particle of the other cluster. The last step is to fill up
the last cluster of each tower with dummy particles, to ensure that each cluster has the
same size. These dummy particles are placed far away from the domain and each other to
ensure that no additional pairwise interactions are calculated. Each tower remembers how
many of the last particles are dummy particles. That way, they can be differentiated from
real particles. Compared to the total amount of particles, there are negligible many dummy
particles with this approach, but having them allows to not check the size of a cluster before
working with it every time.

From all these steps, the seventh, the neighbor list generation, takes the longest by far.
Optimizing the build time should, therefore, aim to optimize the neighbor list generation.
For example, Newton’s third law could also be used for that.

5.1.4. Traversal Interface

As a short preparation for the description of the traversals for this container, the abstract
class they have to inherit from are covered. Traversals for this container have to inherit
from the VerletClustersTraversalInterface. This abstract base class provides access to
the VerletClusterLists object to traverse through a protected member. Furthermore, it
allows traversals to opt-in to calculate a static cluster-thread-partitioning when the neighbor
lists are rebuilt. This will be further explained in Subsection 5.1.6. Additionally, as required
by the library, all traversals have to implement the TraversalInterface.

5.1.5. verlet-clusters Traversal

The verlet-clusters traversal exists as the first easy idea of how a traversal over this container
could be parallelized. Its AoS variant was used by the previous container implementation
in the iteratePairwise() method. In this implementation, it supports both the AoS and
the SoA data layout, but can not exploit Newton’s third law in general. In the SoA case,
the traversal uses the methods provided by the container for loading and extracting the
particles in a SoA during initTraversal() and endTraversal().

Parallelizing the force calculation is done in the following way by this traversal: Since
Newton’s third law is not utilized, there is no dependency between different towers. These
towers can, therefore, be distributed to all threads using OpenMP dynamic scheduling. This
ensures propergood load-balancing, as the number of clusters contained can greatly vary
between towers. Each thread calculates the forces for all clusters (which is equal to all
particles) in its current tower. For that, it iterates over all clusters. For each cluster, it first
calculates the interactions of the particles within itself. This is done using Newton’s third
law since this is the only thread that writes to these particles. Then, the thread iterates
over all neighbor clusters of this cluster and calculates the forces between the particles of
both of them. Here, since, the neighbor clusters may be part of a different tower, Newton’s
third law must not be used to rule out potential race conditions.
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5.1. VerletClusterLists Container

A future improvement could also use Newton’s third law for cluster pairs that lie both
inside the same tower since the same thread calculates the forces for both of them. In
the current implementation, the necessary information is not saved in the neighbor lists or
clusters. Therefore it is not possible without the performance loss of calculating the tower
for the clusters.

5.1.6. verlet-clusters-static Traversal

The verlet-clusters-static traversal works very similar to the verlet-clusters traversal. It
therefore also supports AoS and SoA, but not using Newton’s third law. The only difference
lies in the distribution of clusters to the threads. It aims to calculate a static distribution of
clusters to threads after the container builds the neighbor lists to get rid of the scheduling
overhead of the OpenMP dynamic scheduling.

This static distribution of clusters to threads tries to partition the amount of work that
needs to be done during the force calculation as equally as possible. For this, the work
is divided into many small chunks with a certain cost. In the end, all chunks should be
distributed to the threads, and each thread should have around the same amount of cost.
Here, one chunk will exactly be the calculation of all forces acting on one cluster. That
includes the pair interactions within the cluster and with all its neighbors without Newton’s
third law. There are several possible ways to determine the cost of one such chunk. The
easiest would be to assign them all the same cost because it is always one cluster. This
heuristic for the run time cost is wrong in most cases since the number of pair interactions
vastly depends on how many neighbors the cluster has. Therefore, we chose the number of
neighbor clusters as a heuristic for the cost.

Having this, we still need to calculate the distribution. This is done by the container of
traversals opt-in. At first, the total cost for all chunks of work is calculated by iterating over
all clusters and summing up the number of their neighbors. The optimal amount of cost per
thread is then calculated by:

total_cost = Z num_neighbors_of cluster(c) (5.2)
c€ Clusters

total_cost

optimal_cost_per_thread = (5.3)

num_threads

Knowing this, the clusters can now be distributed to the threads by iterating over them
once more. For each thread, the starting cluster and the number of clusters to work on are
saved. Each thread gets the minimum number of clusters assigned so that the accumulated
cost of those clusters is greater than the optimal_cost_per_thread. Unfortunately, this will
result in a slight imbalance, since the threads do not get exactly the same amount of work
and the last thread will get considerably less than the others. However, assuming that
the chunks of work are small and there are very many, this load imbalance is acceptable.
Figure 5.3 illustrates this distribution.
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8 clusters with total cost of 86:

10 13 9 11 12 8 10 13
neighbors|neighbors|neighbors|neighbors|neighbors|neighbors|neighbors|neighbors

3 threads with optimal cost of 29:

32 cost { >31 cost 23 cost

first threads have little more than optimal cost last thread has smaller cost

Figure 5.3.: Small Example of the Static Distribution of Clusters to Threads

As a final note, sometimes, the traversal chooses the number of threads to be strictly less
than the maximum number of threads. This is done when there is only a small amount of
chunks and spawning more threads would probably cause more overhead than it speeds up
the calculation. Currently, this estimation is done very trivially. Each thread will at least
get one thousand clusters assigned.

The future improvement from the verlet-clusters traversal also applies here. Additionally,
it might be worth it to allow some threads with a little less than the optimal cost to align
the workload of the last thread with the others.

5.1.7. verlet-clusters-coloring Traversal

The third traversal of the VerletClusterLists container is the wverlet-clusters-coloring
traversal. Its goal is to utilize Newton’s third law for the VerletClusterLists container. It
supports both the AoS and the SoA data layout and works with and without Newton’s third
law. Similar to the other traversals for the VerletClusterLists container, this traversal
uses the methods provided by the container to load and extract a SoA and accesses it only
through the SoAViews provided by the Cluster objects.

To avoid data races while using Newton’s third law, this traversal uses a 6-way coloring of
the towers. For this coloring, the notion of a color cell has to be introduced. The general
idea of domain coloring is to mark elements with the same color that can be processed in
parallel without data races. Here, these elements are the color cells. The color cells cover
the XY-plane of the domain. A color cell has at least a side length greater or equal to
the interaction length, but it must also be a multiple of the tower side length. Now, each
tower belongs to a color cell, according to its position. Because of the way we chose the side
length of a color cell, all clusters inside the towers of the cells that are not direct neighbors
(including diagonal neighborhood) are never neighbors of each other. The color cells at the
border may contain fewer towers than other color cells due to the arbitrary tower side length.
Figure 5.4 visualizes this layout.
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Figure 5.4.: Color Cells covering Towers

Since we want to use Newton’s third law, we have to make sure that towers that can be
traversed in parallel do not share the same neighbors. This is guaranteed using the coloring
of these color cells and the base step for the interaction of each color cell shown in Figure 5.5
and Figure 5.6.

Figure 5.5.: 6-way Coloring of the Color
Cells

Figure 5.6.: Base Step of the Coloring

Within each color, we can now distribute the color cells of that color to all threads using
OpenMP dynamic scheduling. To calculate all forces, we iterate over each color one by one
and introduce a barrier between them.

How do we guarantee that each thread only calculates the pair interactions that it is
supposed to while it is working on one color cell? Our solution is to generate the neighbor
lists with Newton’s third law enabled appropriately. The container saves them in a way so
that a thread working on a color cell only has to calculate the pair interactions between
all clusters of all towers within that cell and their neighbors with Newton’s third law. The
neighbor lists with Newton’s third law are built in a way to contain the base step of the
coloring already.

To build the neighbor lists in this way, the VerletClusterListsRebuilder introduces
an order of the towers inside the domain. In one step during the neighbor list generation, for
each tower, all towers that contain potential neighbors for the clusters within it are calculated.
In this step, all towers with a lower index in that order are excluded. Furthermore, if the
neighborhood of two clusters inside the same tower is considered, only the cluster that is
lower in z-direction saves the other cluster as its neighbor. The order of the towers is defined
as follows: At first, all towers within a color cell that is more to the left or to the top of
another color cell are lower in the order than the towers of the other color cell. Secondly,
within a color cell, a tower that is more to the left or to the top is lower in the order. An
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Figure 5.8.: VarVerletListsAsBuild neighbor lists

example is given in Figure 5.7. For the clusters in tower 19, the towers 20, 23, 25, 26, 27, 28,
29, 30, 31, 32, 33, and 35 contain potential neighbor clusters.

Figure 5.7.: Order of towers for neighbor lists with Newton’s third law

Comparing Figure 5.7 with Figure 5.6, the reader will notice that if the towers of the red
cell contain only towers with a higher index in their neighborhood, the resulting neighbor
lists represent exactly the base step of the coloring.

5.2. VarVerletListAsBuild Container

The primary goal of this container is to be able to use Newton’s third law for classical Verlet
Lists. This is difficult to achieve since neighbor lists alone do not contain enough information
to judge if two particles can be traversed in parallel by different threads without data races.

The VarVerletListsAsBuild container therefore saves additional information within its
neighbor lists. It stores the particles in an underlying Linked Cells container and uses the
C08 traversal for building the neighbor lists with Newton’s third law. The functor provided
to the traversal generates a distinct neighbor list per thread and per color. Each of these
neighbor lists then maps traversed particles to a vector of their neighbors.

This is illustrated by Figure 5.8. Depending on the data layout, the data type stored by
this data structure is different. For the Array-of-Structures data layout, the reference to
a particle is saved using a Particle*. For the Structure-of-Arrays data layout, it is saved
using the index of the particle in a global SoA containing all particles. In the neighbor
list build phase, the neighbor lists are built using the AoS data type. Only if a traversal
is configured to use SoA, the SoA neighbor lists are additionally generated from the AoS
neighbor lists.
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LinkedCells ParticleContainer <<Interface>>
+getContainerType() +deleteAllParticles() ParticleContainerInterface
+addParticle(p : Particle&) +getNumParticles() +getContainerType()
+addHaloParticle(p : Particle&) +getBoxMax() +addparticle(p : Particle&)
+updateHaloParticle(p : Particle8) +getBoxMin() -+addHaloParticle(p : Particle&)
+rebuildNeighborLists(t : TraversalInterface*) +setBoxMax() +updateHaloParticle(p : Particle&)
+deleteHaloParticles() +setBoxMin() ildNei ists(t : )
+begin(iteratorBehavior) +getCutoff() [ --- - >\ +deleteHaloparticles()
+getRegionlterator(l : lowerCorner, h : higherCorner, b : iteratorBehavior) +setCutoff() +deleteAllParticles()

i irwise(t : face®) +getskin() +getNumParticles()
+updateContainer() ] +setskin() +begin(iteratorBehavior)
+isContainerUpdateNeeded() +getInteractionLength() +getRegionlIterator(l : lowerCorner, h : higherCorner, b : iteratorBehavior)
+getTraversalSelectorInfo() it irwise(t : Tr )
+getBoxMax()
+getBoxMin()
+setBoxMax()
+setBoxMin()
VerletListsLinkedBase +getCutoff()
+addParticle(p : Particle&) +setCutoff()
+addHaloParticle(p : Particleg) +getSkin()
+updateHaloParticle(p : Particle&) +setSkin()
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+updateContainer() +getTraversalSelectorInfo()
+isContainerUpdateNeeded()
+getTraversalSelectorInfo()
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VarVerletLists
template +getContainerType() <<Interface>>
il Lists(t : face*) VerletNeighborListInterface
+iteratePairwise(t : TraversalInterface*) F +getContainerType()
+getNumberOfNeighborPairs() +buildNeighborList(particles : LinkedCells, useNewton3 : bool)

+generateSoAFromAoS()
=== - .
! NelghborList J +isSoAListValid()

[ VarVerletTraversallnterface T +getNumberOfiveighborPairs()

| +setNeighborListToTraverse(neighborList : NeighborList) |

Figure 5.9.: VarVerletLists template

This generation of the SoA neighbor list consists of copying the neighbor lists and replacing
the Particlex with the corresponding index. Since the traversal is responsible for loading
the particles in a SoA, the mapping between particles and their indices has to be defined
commonly for the container and its traversals. As this mapping is essentially just an ordering,
the order of the particle iterator of the underlying Linked Cells container is used.

This underlying container, as well as the implementation of the ParticleContainerInterface,
is provided by the VarVerletLists template.

5.2.1. The VarVerletLists template

The VarVerletLists template, as seen in Figure 5.9, was added to ensure code reuse between
different Linked Cells based Verlet Lists containers without increasing the inheritance
hierarchies even more. It detaches the implementation of new neighbor list types from the
complex container hierarchy. These neighbor lists may then store additional information
or use other data types in their internal implementation. More precisely, it introduces
a new VerletNeighborListInterface that encompasses all important functionality of
neighbor lists and separates it from the actual container. Internally, this container uses
Linked Cells as underlying storage of the particles and provides this data structure to the
VerletNeighborListInterface during the building process.

Traversals for the container using such a neighbor list NeighborList have to inherit from
the VarVerletTraversalInterface<NeighborList>, next to the common TraversalInterface.
This parent class provides the traversal with access to the neighbor list of the container.
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5.2.2. Container Creation using the VarVerletLists template

To create the VarVerletListsAsBuild container, one new class VerletNeighborListAsBuild
which implements the VerletNeighborListInterface has to be added. This class contains
and builds the neighbor list described above, so the final container is now available using
the type VarVerletLists<VerletNeighborListAsBuild>. Traversals for this container are
subclasses of the VarVerletTraversalIlnterface<VerletNeighborListAsBuild> and the
common TraversalInterface. Figure 5.10 shows both the new neighbor list class and one
traversal.

VarVerletLists NeighborLis |
<<Interface>> VarVerletLists
TraversalInterface template +getContainerType() <<Interface>>
+initTraversal() +rebuildNeighborLists(t : Traversallnterface*) VerletNeighborListInterface
+traverseParticlePairs() +iteratePairwise(t : TraversalInterface*) F +getContainerType()
+endTraversal() +getNumberOfieighborPairs() +buildNeighborList(particles : LinkedCells, useNewton3 : bool)
+getUseNewton3() +generateSoAFromAoS()
e T
| VarVerletTraversallnterface getNumberOfieighborPairs()
+isApplicable()

+setNeighborListToTraverse(neighborList : NeighborList) A
i
i
i
t
i
i
i
i
i

> VarVerletTraversalAsBuild
~ +initTraversal()

- |+traverseParticlePairs()
+endTraversal()
+getUseNewton3()
+getTraversalType()

VerletNeighborListAsBuild

+getContainerType()

+buildNeighborList(particles : LinkedCells, useNewton3 : bool)
“+generateSoAFromA0S()

+isSoAListValid()

+getNumberOfNeighborPairs()

+getDataLayout()
+isApplicable()

Figure 5.10.: VarVerletLists: Adding a new neighbor list

5.2.3. Future Improvements

In the future, the container could be rewritten to support all Linked Cells traversals instead
of just the C08 traversal. That would make this container valuable in many more situations,
since C'08 is not optimal in all simulations. On the other hand, it would make auto-tuning
considerably more complicated since many configurations would be added, which increases
the search space significantly. This might be countered by studying the relationship between
the performance of a Linked Cells traversal and the VarVerletListsAsBuild container that
uses it. If there was a known relationship, it could be included in the auto-tuning.

5.2.4. var-verlet-lists-as-build Traversal

The var-verlet-lists-as-build traversal utilizes the additional information provided by the
neighbor list to statically give each thread the same neighbor lists to traverse as it had built
before. Since the C08 traversal is used for building, Newton’s third law is supported. This
comes at the cost of having thread barriers between the neighbor lists of each of the eight
colors.

Why do we expect this static load-balancing to achieve good performance? The heuristic
is based on the following assumption, where NeighborList, is the neighbor list of thread t
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during color c:
time_to_build(NeighborList,)

actor’, = 5.4
f ¢ time_to_traverse(NeighborList}) (5.4)
Factors = {factor', : t € Threads,c € Colors} (5.5)

Fact
proportion_ratio = max(Factors) (5.6)

min(Factors)

Equation 5.6 states that the time to build a neighbor list is proportional to the time needed
to traverse it. proportion_ratio quantifies how much this relationship fits. It is assumed
that there is only a small error, thus it is expected to be almost 1.

Further, let us look at the load-balancing during build (times are without scheduling
overhead):

) ) time_to_traverse
balancing ratio = — : , (5.7)
time_to_traverse_with_perfect _load _balancing

The time_to_traverse_with_perfect_load_balancing is the time it takes with optimal load
balancing that distributes all work to the threads such that all threads need the same time
for their part. Considering that our implementation of the C08 traversal uses dynamic
scheduling with a chunk size of one cell, we can expect its load balancing to be near to the
theoretical optimum. Thus, this error is probably nearly 1, too.

If each thread now statically gets the same neighbor lists to traverse as to build, the error
in load balancing for the traversal is proportional to proportion_ratio - balancing_ratio.

traversal_balancing_error o« proportion_ratio - balancing_ratio (5.8)

According to this, and assuming that indeed proportion_ratio ~ 1 holds, we can use a
time consuming dynamic scheduling for the load balancing during the build and perform
equally good during the traversal with static load balancing.

Furthermore and next to AoS, this traversal also supports the SoA data layout. For this,
during initTraversal(), it loads all particles of the underlying Linked Cells container into
a global SoA, in the same order as the neighbor list expects, that is the order of the iterator
provided by the Linked Cells container. After the force calculation, during endTraversal (),
it extracts those particles into the Linked Cells container again.
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6. Experiments and Analysis

6.1. Computation Platforms

All traversals were tested on two machines, the two partitions CooLMUC2 and CooLMUC3
of the Linux cluster at Leibnitz Supercomputing Centre. The CooLMUC2 uses Intel Xeon
E5-2697 v3 CPUs with Haswell Architecture, 28 cores, and 64GB RAM per node. For the
CooLMUCS, it is an Intel Xeon Phi CPU with Knights Landing architecture, 16GB High
Bandwidth Memory, 96GB RAM, 64 cores and four-way hyper-threading per node.

6.2. Automated Performance Measurement

For measuring the performance of all traversals, a script was written that automatically tests
given traversals in certain situations. In this script, md-flexible was used, a simulation tool
contained in the AutoPas project to test configurations in different simulation environments
easy and fast.

There are two modes in which the new configurations were tested, Time to Solution and
Strong Scaling. In the first mode, Time To Solution, the time needed for completing a
certain number of force calculation iterations with a given number of particles is measured.
The number of threads to use is fixed at the number of hardware threads available on
the machine. Multiple iterations, depending on their expected duration, are done to
compensate measurement errors and Verlet Lists building times. In each test of this mode,
the combinations shown in Table 6.1 are measured.

Particles ‘ 210 211 212 213 214 215 216 217 218 219 220
Iterations ‘ 10000 5000 2000 1000 500 400 100 50 25 15 15

Table 6.1.: Combinations of Particles and Iterations for Time To Solution Measurements.

In the second mode, Strong Scaling, a problem with the fixed size of 2'® particles and 30
iterations is calculated with different numbers of threads. These are listed in Table 6.2. For
the CooLMUCS, it is noteworthy that 128 and 256 threads only work with hyper-threading.
This has to be kept in mind when looking at the measurement results.

CooLMUC2 ‘ 1
CooLMUC3 ‘ 1

8 16 28
8§ 16 32 64 128 256

2 4
2 4
Table 6.2.: Number of Threads used for each Machine in the Strong Scaling Measurements.

In all diagrams, the measured time is displayed as Million Force Updates Per Second
(MFUPS). One force update is the calculation of all forces acting on one particle in one
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iteration. The MFUPS of a simulation run are therefore calculated as:

MFUPS = total_number_of _particles - number_of _iterations

6.1
simulation_duration_in_seconds - 106 (6.1)

The denser the particles in the domain are, the more time one force update needs, as a
particle then has more neighbors within the cutoff radius. Because of that, the MFUPS are
expected to decrease with static domain size, but increasing numbers of particles as in the
Time To Solution measurement mode.

For all test runs, the following simulation parameters are used: The domain size is fixed
at 2525 - 25, the cutoff is 1.0, and the skin is 0.2. For a Linked Cells container with cell
length 1.2, this means that the average cell contains between ~ 0.11 and ~ 115.96 particles
for 210 to 220 particles in the domain.

These particles are distributed in two different ways. The first is a uniform distribution.
This represents a simulation environment where the particles are distributed very evenly
across the whole domain, for example the simulation of a gas. The second is a gaussian
distribution with a mean of 10.5 and a standard deviation of 5.5. Here, the particles are
heavily centered around (10.5,10.5,10.5), and there are fewer particles at the border. This
roughly forms a droplet. It challenges the traversals with a very unbalanced simulation
domain.

In the upcoming sections, diagrams of measurements for all four new traversals in Time To
Solution and Strong Scaling with all allowed data layouts and Newton 3 options, with both
particle distributions, and on both machines are shown. Each configuration of a traversal
will first be compared to the reference c08 traversal of the LinkedCells container of the
library. Then, all those configurations are compared against each other for both particle
distributions.

6.3. Verlet Cluster Lists Refactoring

Before showing the performance measurements for all traversals in their current implemen-
tation, the performance improvement gained through rewriting the VerletClusterLists
container is shortly covered. As mentioned in Section 5.1, the reason for rewriting the
container came from the poor performance that the SoA implementation for the old container
yielded. Figure 6.1a shows the maximum performance gain from all configurations after the
refactoring. Here, the new implementation is, depending on the number of particles, around
an order of magnitude faster. To illustrate that this performance increase is not gained at
the cost of other configurations for this container, its worst change is shown in Figure 6.1b.
It can be seen that the overall performance there is slightly worse in this strong scaling, but
the overall behavior has stayed the same.
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Figure 6.1.: Best and Worst Case Performance Change through the VerletClusterLists
Refactoring.
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6.4. Time to Solution

6.4.1. verlet-clusters Traversal
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Figure 6.2.: Comparison of Time To Solution between verlet-clusters and c08.
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Figure 6.3.: Comparison of Time To Solution between all data layout and Newton 3 options
of wverlet-clusters.

Overall, the performance of the wverlet-clusters traversal here is always better than the
c08 traversal for a low number of particles, as it can be seen in Figure 6.2. Especially
with very few particles, it sometimes is up to 20 times faster. With increasing numbers of
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particles, only the AoS configuration is still competitive, as Figure 6.2a and Figure 6.2b
show. The configuration using the SoA data layout gets considerably worse compared
to the c08 traversal, starting from around 2'° particles, as pictured in Figure 6.2a and
Figure 6.2b. Figure 6.2 also shows that the performance difference between the two particle
distributions is always around factor two, often smaller. This is quite different than for
the ¢c08 traversal, where there is almost no difference with few particles, but a massive
one of factors 2.5 — 4 for the maximum number of 220 particles. This suggests that the
load-balancing of the werlet-clusters traversal works better than that of the c08 traversal.
Since both traversals use dynamic scheduling, the improvement probably comes from the
smaller chunk size. Comparing the two machines, it seems that the traversal utilizes the
CooLMUC2 a little bit better, since the performance of the c08 traversal is a lot better
than the verlet-clusters traversal on the CooLMUCS3, especially with the SoA data layout.
This can be seen in Figure 6.2d. Since this is more noticeable in the SoA data layout,
the reason for this might be the overhead generated by this layout through loading the
particles in the SoA, generating the SoAViews, and extracting them out again. This code is
not enough optimized for many slow cores. Overall, the additional benefit of vectorization
does not seem to make the SoA data layout better than the AoS data layout. It is just
enough to compensate for the additional overhead in most cases, but sometimes not even
that. The more particles the simulation contains, the better the SoA data layout gets. This
is illustrated by Figure 6.3. Since both graphs in Figure 6.3a and in Figure 6.3c, as well as
in Figure 6.3b and in Figure 6.3d, take a similar course, the particle distribution does not
seem to influence the performance of the data layouts for this traversal.
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6.4.2. verlet-clusters-static Traversal

AoS with Newton3 disabled
64

i
) %««\

8 RN
AN

©

[2]

o

z

= 4 %
2 \)\
1 »

05

< 54 A A A <
NumpParticles
—»— verlet-clusters-static, gaussian distr.
—a&— verlet-clusters-static, uniform distr.
c08, gaussian distr.
c08, uniform distr.

(a) CooLMUC2: AoS with Newton3 disabled

SoA with Newton3 disabled

32

16 ;\6\

<

o {

. \\

AR
N

1 N

0.5

MFUPs/s
N
N

<% 4 R e e <2
NumParticles
—— verlet-clusters-static, gaussian distr.
—a&— verlet-clusters-static, uniform distr.
¢08, gaussian distr.
c08, uniform distr.

(¢) CooLMUC2: SoA with Newton3 disabled

AoS with Newton3 disabled
32

16 e

e

MFUPs/s

i N
\

0.5

0.25

<% <% s e ) <2

NumParticles
—»— verlet-clusters-static, gaussian distr.

—a&— verlet-clusters-static, uniform distr.
c08, gaussian distr.
c08, uniform distr.

(b) CooLMUC3: AoS with Newton3 disabled

SoA with Newton3 disabled
16 i

o A
ZER\N

MFUPs/s
N

N
1 )
\

0.5

0.25

<% S R s <% <
NumParticles
—— verlet-clusters-static, gaussian distr.
—a&— verlet-clusters-static, uniform distr.
¢08, gaussian distr.
c08, uniform distr.

(d) CooLMUC3: SoA with Newton3 disabled

Figure 6.4.: Comparison of Time To Solution between verlet-clusters-static and c08.
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Figure 6.5.: Comparison of Time To Solution between all data layout and Newton 3 options
of verlet-clusters-static.

The performance of the wverlet-clusters-static traversal is expected to be similar to the
performance of the wverlet-clusters traversal. This is mostly true. It is also significantly
better with a low to medium number of particles on most configurations and at least similar
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with the SoA data layout on the CooLMUCS3, compared with the c08 traversal. This is
pictured in Figure 6.4. In the AoS data layout, it even outperforms the wverlet-clusters
traversal. While the verlet-clusters traversal always stays below 32 MFUPs in Figure 6.2a,
the wverlet-clusters-static traversal exceeds it for 2'2 — 215 particles in Figure 6.4a. However,
it shares the same problems as its predecessor of the SoA data layout and is worse on
CooLMUCS3, as it can be seen in Figure 6.4c and Figure 6.4d. One distinction is that the
difference between both particle distributions is more similar to the c08 traversal than to the
verlet-clusters traversal for only a few particles. This holds for all machines and data layouts
as illustrated by Figure 6.4. The reason for this might be the absence of the scheduling
overhead. Comparing the data layouts against each other with both particle distributions
shows, similar to the verlet-clusters traversal, that the SoA data layout performs worse
overall, but gets more competitive with a higher number of particles, as pictured in Figure 6.5.
Looking at these figures, one also notices that changing the particle distribution does not
change how the data layouts perform relative to each other. Figure 6.5a and Figure 6.5¢
look very similar, and so do Figure 6.5b and Figure 6.5d. Overall, all this suggests that the
static load balancing for this traversal works very well and the performance gained through
less scheduling overhead is greater than the loss through unbalanced threads.
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6.4.3. verlet-clusters-coloring Traversal
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Figure 6.7.: Comparison of Time To Solution between verlet-clusters-coloring and c08 with

Newton 3.

42



6.4. Time to Solution

gaussian distribution

gaussian distribution

16 4 ‘
4 1 a//
© / k © ,/E/
2] 2]
% 2 % 05 \R"/}
= 4 e \ = 3\9/{\
1 0.25 \)\
05 \51 0.125 \
0.25 0.0625
% 2% 4, % 4% 22 <% % A 22 < <
NumParticles NumParticles
A0S, No Newton3 A0S, No Newton3
A0S, Newton3 A0S, Newton3
—&— So0A, No Newton3 —&— SoA, No Newton3
—— S0A, Newton3 —— So0A, Newton3
(a) CooLMUC2: gaussian distribution (b) CooLMUC3: gaussian distribution
uniform distribution uniform distribution
64 32
32 16
g /// \\ Iy / \
4 \s\ 1 o \'\
2 1 \
1 0.5
) <% e ) <% ) <% <% O ) < )

NumParticles
A0S, No Newton3

AoS, Newton3
—&— So0A, No Newton3
—— SO0A, Newton3

(¢) CooLMUC2: uniform distribution

NumParticles
A0S, No Newton3

AoS, Newton3
—&— So0A, No Newton3
—— SO0A, Newton3

(d) CooLMUCS: uniform distribution
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The Time To Solution of the verlet-clusters-coloring traversal follows a curious course. No
graph is smooth, but almost all have steps in it. This can be noticed in Figure 6.6 and
Figure 6.7. Starting at 2'° particles, the performance decreases rapidly. Only between
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216 and 2'8 particles it stays about the same. When comparing the uniform particle
distribution on both machines Figure 6.8c and Figure 6.8d with the gaussian distributions
Figure 6.8a and Figure 6.8b, one quickly notices that this behavior occurs way stronger on
the gaussian distribution. In the uniform distribution, this behavior almost only appears
on the CooLMUC3. This suggests that bad load-balancing is the cause for the steps since
this is the main challenge of the gaussian distribution and the CooLMUC3 with more, but
slower cores. However, further research is required to find the exact cause of this behavior.
Subsection 6.4.4 describes a reason for why the performance starts to decrease at 2'° particles
in all test runs, as it can be seen in Figure 6.6 and Figure 6.7.

From all configurations, the configuration with the AoS data layout that uses Newton’s
third law works best. Figure 6.6 and Figure 6.7 show that it is the only configuration capable
of constantly outperforming the c08 traversal with uniform particle distribution on the
CooLMUC2. In Figure 6.8, it also outperforms all other configurations for both data layouts
on both machines. As using Newton’s third law for the VerletClusterLists container was
the objective for this traversal, it is nice to see that this expectation was fulfilled. The
SoA data layout only performs acceptably with small numbers of particles, as Figure 6.6¢,
Figure 6.6d, Figure 6.7c, and Figure 6.7d show. Especially for the gaussian data layout, the
performance is very bad. Overall, AoS works faster than SoA for all configurations, as it can
be seen in Figure 6.8. Furthermore, there is a wide difference between the two distributions
in all graphs of Figure 6.6 and Figure 6.7. This suggests that the load-balancing in this
traversal works not as good as hoped. The reason for this is probably the chunk size. Since
in the gaussian distribution, most particles are centered in the middle, only a few color cells
contain almost all particles. Since these are additionally neighbors and cannot be worked
on in parallel, the load-balancing there is very bad. Although they are two very different
machines, the traversal behaves nearly equally on CooLMUC2 and CooLMUCS3.

6.4.4. Overall Interpretation for the VerletClusterLists Container

The VerletClusterLists container definitely holds more potential to use vectorization for
Verlet Lists, as the VarVerletListsAsBuild container performs worse there. A problem
that probably holds back performance for larger numbers of particles is the calculation of the
tower side length. In all traversals of this container, the performance starts to decrease more
rapidly after 2! particles. The reader may verify that in Figure 6.2, Figure 6.4, Figure 6.6,
and Figure 6.7. Figure 6.9 shows how the tower side length develops with increasing particles
in the test simulations. It can be seen that the tower side length starts to be lower than the
interaction length at almost exactly these 21° particles. This conspicuity might be the reason
for why the performance falls so rapidly at this point. In the future, other heuristics for
calculating the tower side length for the VerletClusterLists container should be tested to
overcome this.
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6.4.5. var-verlet-lists-as-build Traversal
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Figure 6.12.: Comparison of Time To Solution between all data layout and Newton 3 options
of var-verlet-lists-as-build.

The wvar-verlet-lists-as-build traversal also works best for small to medium numbers of
particles in the AoS data layout, as it can be seen in Figure 6.10a, Figure 6.10b, Figure 6.11a,
and Figure 6.11a. In these cases, it outperforms the c08 traversal. The SoA data layout is
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not competitive at all at medium numbers of particles. With a very high number of particles,
it closes the distance to the AoS variant a little, but performs worse in all test runs, as
shown by Figure 6.12. The reason for this is not known. Since comparing Figure 6.10c and
Figure 6.10d, as well as Figure 6.11c and Figure 6.11d, shows that the SoA data layout
performs especially bad on the CooLMUC3 and the load-balancing is the same for both data
layouts, the reason might be related to loading and extracting the SoA, or generating and
accessing the SoA neighbor lists. The overall behavior of using Newton’s third law or not is
very similar, with using it having a noticeable performance gain of up to almost factor 2
with a higher number of particles, as visualized in Figure 6.12. The performance differences
between both distributions, especially for higher numbers of particles, are mostly similar
to the c08 traversal, as shown in Figure 6.10 and Figure 6.11. This was expected as the
load-balancing of both traversals is the same.
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6.5. Strong Scaling

6.5.1. verlet-clusters Traversal
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Figure 6.13.: Comparison of Strong Scaling between verlet-clusters and c08.
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Figure 6.14.: Comparison of Strong Scaling between all data layout and Newton 3 options
of wverlet-clusters.

The Strong Scaling of the verlet-clusters traversal is quite good. On the CooLMUC?2, it is
linear in all test runs with a gradient slightly less than one, as shown in Figure 6.14a and
Figure 6.14¢c. On the CooLMUCS3, it starts equally but gets a little worse starting from 32
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threads and more starting from 64, as it can be seen in Figure 6.14b and Figure 6.14d. At
64 threads, hyper-threading begins, so it is expected to get worse at this point. Nevertheless,
the traversal’s speed increases until the maximum of 256 threads for both distributions. As
pictured in Figure 6.14b, the SoA layout even scales better to 256 threads than the AoS
data layout. Compared to the c08 traversal, Figure 6.13a and Figure 6.13b show that the
performance and scaling for the AoS data layout and uniform distribution is competitive.
When the particle distribution is gaussian, the verlet-clusters traversal is able to even better
scale up to 256 threads on CooLMUC3 than the c08 traversal, since it is able to benefit
from hyper-threading. The c08 traversal loses speed when attempting that. Figure 6.13b
and Figure 6.13d illustrate that. While the overall performance of the SoA data layout is
worse compared to the c08 traversal, it scales equally good or better on the CooLMUC3, as
it can be seen in Figure 6.13d and Figure 6.13c. Impressing are the nearly similar courses
of the graphs for both distributions in all diagrams of Figure 6.13. The chunk sizes in this
traversal are small enough to even scale well for 256 threads and the gaussian distribution.
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6.5.2. verlet-clusters-static Traversal
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Figure 6.15.: Comparison of Strong Scaling between verlet-clusters-static and c08.
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Figure 6.16.: Comparison of Strong Scaling between all data layout and Newton 3 options
of verlet-clusters-static.

The strong scaling of the verlet-cluster-static is important to examine since it describes how
well the static load-balancing is calculated for different numbers of threads. Figure 6.16
shows that it works. On CooLMUC2, all graphs are linear with a gradient slightly less
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than one, as it can be seen in Figure 6.16a and Figure 6.16c. Even on CooLMUCS3, it
scales linearly until 32 threads and almost until 64 threads for both particle distributions,
and also benefits from hyper-threading, as it is pictured in Figure 6.16b and Figure 6.16d.
The overall scaling of the verlet-clusters-static traversal is very similar to the scaling of the
verlet-clusters traversal. When comparing Figure 6.13 with Figure 6.15, almost no difference
exists, although the first uses dynamic scheduling, and the second uses static scheduling.
This confirms that the correct heuristic for the cost was chosen for generating the static
cluster-thread distribution.
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6.5.3. verlet-clusters-coloring Traversal
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Figure 6.17.: Comparison of Strong Scaling between verlet-clusters-coloring and c08 without

Newton 3.
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Figure 6.18.: Comparison of Strong Scaling between verlet-clusters-coloring and c08 with

Newton 3.
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Figure 6.19.: Comparison of Strong Scaling between all data layout and Newton 3 options
of werlet-clusters-coloring.

In the wverlet-clusters-coloring traversal, all data layout and Newton 3 options scale very
similarly, with the SoA data layout having a slight advantage when hyper-threading is used
in CooLMUC3. This is demonstrated in Figure 6.19. Between both particle distributions,
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there is a big difference. In the uniform distribution, the traversal scales linearly up until
32 threads and almost until 64 threads, as it can be seen in Figure 6.19c and Figure 6.19d.
Hyper-threading then decreases this performance. In the gaussian particle distribution,
the traversal not even scales linearly until 16 threads on the CooLMUC2, as pictured in
Figure 6.19a. On the CooLMUC?2, it almost reaches its performance peak with 16 out of
256 threads and starts to lose performance after 32 threads. This makes this traversal
not viable at all in this situation. The reason for this is most probably the big chunk size
of this distribution, similar to the problem in Subsection 6.4.3. Comparing the traversal
with the c08 traversal, only the AoS data layout with uniform distribution on CooLMUC2
can somewhat keep up with the scaling, as it can be seen in Figure 6.17a, Figure 6.17c,
Figure 6.18a, and Figure 6.18c. The configuration not using Newton’s third law is slightly
closer to the c08 traversal. All other configurations are strictly worse than for the c08
traversal, as it can be seen in Figure 6.17 and Figure 6.18.
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6.5.4. var-verlet-lists-as-build Traversal
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Figure 6.20.: Comparison of Strong Scaling between var-verlet-lists-as-build and c08 without

Newton 3.
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Figure 6.22.: Comparison of Strong Scaling between all data layout and Newton 3 options

of var-verlet-lists-as-build.

In the var-verlet-lists-as-build traversal, the AoS data layout scales linearly on CooLMUC2
and until 32 threads on CooLMUC3, as it can be seen in Figure 6.20a, Figure 6.21a,
Figure 6.20b, and Figure 6.21b. The SoA data layout behaves similar, but with a noticeably
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lower gradient, as the diagrams in Figure 6.22 show. Its scaling is way better than its
performance in the Time To Solution measurements in Subsection 6.4.5. Comparing
Figure 6.22a with Figure 6.22¢, and Figure 6.22b with Figure 6.22d shows that the load-
balancing in this traversal seems to work properly, since the scaling with uniform and
gaussian particle distributions looks very similar for both machines. However, using more
than 32 threads on CooLMUC3 always seems to impair the performance, more drastically
in the SoA layout, as Figure 6.22b and Figure 6.22d show. This behavior is very unexpected
as this traversal is based on the c0§ traversal which scales linearly until 64 threads and is
able to even benefit from hyper-threading with a uniform particle distribution. Figure 6.20b,
Figure 6.20d, Figure 6.21b, and Figure 6.21d set both traversals in contrast. It requires
further research to find the cause of this behavior.
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7. Summary

In this thesis, several new approaches for calculating the pairwise forces between particles
were added to the C++ template library AutoPas.

For this, at first, some preparatory refactoring was done to the existing code. This included
cleaning up old code through the removal of legacy template parameters and parameters
from a central method in the container hierarchy. Furthermore, the traversal instantiation
was centralized and the library was prepared for new implementations that use the SoA data
layout. This was achieved by adding SoAViews and changing the neighbor list type given to
one of the SoAFunctor methods in the Functor class. Furthermore, some unit tests have
been generalized so that they are instantiated for all containers automatically.

Then, the new containers and traversals were developed, based on the Verlet Lists algorithm
type. The VerletClusterLists container was rewritten to support the efficient use of the
SoA data layout, be maintainable, and extensible. Three traversals were developed for this
container. The first traversal, the verlet-clusters traversal, was the previous implementation’s
iteratePairwise () method. It distributes the towers of the container to the threads using
dynamic scheduling, but could not use Newton’s third law. The second traversal, called
verlet-clusters-static, aimed to get rid of the scheduling overhead of the first traversal by
calculating a static cluster-thread-distribution when rebuilding the neighbor lists. The third
traversal verlet-clusters-coloring was developed to use Newton’s third law. It uses a 6-way
coloring of the towers to prevent data races of threads.

Additionally, a new container called VarVerletListsAsBuild was implemented. Its idea
is to work on top of the LinkedCells of the library. The underlying container contains the
particles and is used to build the neighbor lists. In order to allow developers to quickly
add new Verlet Lists containers that work similar in the future a template for this called
VarVerletLists was developed. It detaches the implementation of new neighbor list types
from the container hierarchy and encourages code reuse. For the VarVerletListsAsBuild
container, the c08 traversal was used to build the neighbor list. This neighbor list remembers
which thread added which pair of particles during which color. The traversal for this container,
called var-verlet-lists-as-build uses this information to assign each thread the same pairs at
the same time during the force calculation. This allows using Newton’s third law for Verlet
Lists.

Summed up, 12 new configurations were added, since all traversals support both the
AoS and the SoA data layout, and the verlet-clusters-coloring and var-verlet-lists-as-build
traversals support using Newton’s third law. Finally, the performance of all these configu-
rations was measured in different simulation settings and on different hardware, and their
strengths and weaknesses were analyzed. These measurements showed that each traversal
outperformed the previously available c08 traversal in at least one environment, sometimes
even many times over. Overall, efficiently using the SoA data layout for Verlet Lists and
achieving good strong scaling with while utilizing Newton’s third law remains a challenge.
However, especially the VerletClusterLists container with the verlet-clusters and the
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7. Summary

verlet-clusters-static traversal seems to be well suited for this problem. In the AoS data
layout, the VarVerletListsAsBuild container with its traversal exploits all advantages the
c08 offers. On some machines, it is competitive even for a large number of particles, but it
seems to outperform the c08 traversal with a low to medium number of particles under all
conditions. For these numbers of particles, the Verlet Lists algorithms are the better choice
in AutoPas, compared to the Linked Cells algorithms.
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8. Future Work

There are still many improvements that can be made for the containers and traversals
developed in this thesis. The neighbor list building in the VerletClusterLists container
takes much time. Optimizing it, for example through using Newton’s third law, could
potentially yield better performance. Finding a heuristic for the optimum number of threads
building it instead of just taking all, might help, too. The tower side length for towers in the
same container is probably also not optimal, as shown in Subsection 6.4.4. Developing other
heuristics for that could also give better results. Synchronizing the tower side length with
the cutoff might also bring benefits, especially to the verlet-clusters-coloring traversal, since
its color cells depend on it. Furthermore, the static cluster-thread-distribution of the verlet-
clusters-static traversal is not optimal, as the last thread gets considerably less work than the
others. As a new traversal, we can imagine a region growing for the VerletClusterLists
container, that works similar to the wverlet-clusters-static traversal, but each thread gets a
coherent region in the domain and is able to use Newton’s third law for clusters interactions
inside. This might also increase the cache efficiency compared to the coloring approach.

The VarVerletListsAsBuild container could be extended to support all traversals of the
LinkedCells container, especially the other colorings, as described in Subsection 5.2.3. This
would generate lots of new configurations and the benefits of each LinkedCells traversal
would be used for a Verlet Lists traversal. Before implementing this, efficient techniques to
reduce the search space for the auto-tuning have to be found, since this would enlarge it
considerably.
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