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Problem description:

Human Pose Estimation is of vital importance for tracking human subjects in public surveillance
applications or for establishing human safety in robotic environments. A plethora of work has been
devoted to human pose estimation from RGB images, depth sensors and a combination of both.
Thereby, the methods can be primarily grouped into sparse skeleton-based [2][3] and lately also dense
approaches [1], the latter trying to establish correspondences between pixels in 2D images and 3D
points on a human surface model. In this project, the ultimate goal is to identify human pose from 3D
point clouds rather than 2D data, and to establish a mapping of these points to a 3D canonical human
surface model. Therefore, State-of-the-Art (SOTA) methods first have to be examined and potentially
transfered to the domain of 3D data. Moreover, for dense correspondence estimation among 3D
points, labeled training data is not readily available. Existing 2D<+3D correspondence methods [1]
can potentially be leveraged to create such a ground-truth, which is also subject to investigation.

Tasks:

e Literature review on Human Pose Estimation and search for a suitable dataset

e Setup of the development environment and reproducing suitable state-of-the-art on RGB/RGB-D
data

e Adapting and exploring the applicability of SOTA methods for 3D point clouds

e Wrap-Up
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Abstract

In this work, we present multiple approaches for establishing correspondences be-
tween the human body surface and a canonical representation of it via human pose
estimation, formulated as body part segmentation task. To address the lack of a
suitable and sufficiently large data set, showing point clouds of walking people with-
out clothes, we propose a fully automatic data synthesis pipeline based on classical
animation approaches and also provide a method for automatic segmentation label
creation. Based on this pipeline we create a data set of 60 thousand samples show-
ing 200 different synthetic people in 40 different walking scenarios. For the human
pose estimation itself, we adapt multiple convolutional neural network architectures
from the domain of segmentation working on textureless point clouds, as well as
on volumetric representations of these point clouds. Furthermore, we evaluate our
models on the synthesized data and provide quantitative results for all architectures
as well as qualitative results in terms of visualizations of predictions of the net-
works. Thereby we show that the proposed architectures are capable of solving the
human pose estimation task and discover that the proposed 3D CNN architectures
are superior to the point-based approaches in terms of segmentation performance,
but suffer from much higher inference time.

Zusammenfassung

In dieser Arbeit stellen wir mehrere Ansatze zur Ermittlung von Korresponden-
zen zwischen der menschlichen Korperoberflache und einer kanonischen Darstellung
derselben mittels menschlicher Posenschétzung vor, die als Aufgabe der Segmen-
tierung von Korperteilen formuliert ist. Um dem Mangel an geeigneten und ausre-
ichend grofien Datensatzen, die Punktwolken von gehenden Menschen ohne Kleidung
zeigen, zu begegnen, schlagen wir eine vollautomatische Datensynthesepipeline vor,
die auf klassischen Animationsansatzen basiert und auch ein Verfahren zur automa-
tischen Segmentierungslabelerstellung bereitstellen. Basierend auf dieser Pipeline
erstellen wir einen Datensatz von 60.000 Proben, der 200 verschiedene synthetis-
che Menschen in 40 verschiedenen Gehszenarien zeigt. Fiir die menschliche Posen-
schatzung selbst adaptieren wir mehrere faltungsneuronale Netzwerkarchitekturen
aus dem Bereich der Segmentierung, die auf texturlosen Punktwolken arbeiten, sowie
auf volumetrischen Darstellungen dieser Punktwolken. Dartiber hinaus bewerten wir
unsere Modelle auf den synthetisierten Daten und liefern quantitative Ergebnisse fiir
alle Architekturen sowie qualitative Ergebnisse in Form von Vorhersagen der Net-
zwerke. Dabei zeigen wir, dass die vorgeschlagenen Architekturen in der Lage sind,
die Aufgabe der menschlichen Posenschétzung zu 16sen und entdecken, dass die
vorgeschlagenen 3D-CNN-Architekturen den punktbasierten Anséatzen in Bezug auf
die Segmentierungsleistung tiberlegen sind, aber eine viel hoheren Verarbeitungszeit
bendtigen.
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Chapter 1

Introduction

While security regulations are tightened in many public places such as airports, sta-
diums and also on concerts and other events, security scanners gain in importance
and attention. Due to the lack of the ability of metal scanners to detect non-metallic
material per definition, other approaches based on microwave imaging technology
are in the focus through their capability of detecting a large variety of other po-
tentially dangerous materials. These scanners create an image of the human body
surface by transmitting electromagnetic waves in the microwave range and by cap-
turing their reflection. From the fact that waves of these wavelengths can’t pass
the human skin and hence be reflected, a detailed 3D radar image of the human
body surface is created. A special type of these scanners, which are investigated in
this thesis, use the multistatic radar principle, that distinguishes themselves from
others by surrendering moving parts, hence the name static. These devices use a
large number of antennas to scan a volumetric area.

For most applications, there is security personnel that has to operate the device. In
order to protect the scanned people’s privacy the microwave images aren’t shown
to the security personnel directly. Instead, a canonical avatar is shown, which cre-
ates the necessity for software that detects potential threats automatically in the
image, as well as to locate the threat on the avatar. The latter is addressed by
human pose estimation. It also has been shown that pose estimation as a feature for
the detection software is beneficial to improve detection results. This further moti-
vates the need for human pose estimation and leads to the problem statement in

But human pose estimation is not a problem that is specific for body scanners,
it is one of the great problems in Computer Vision and is as well not only applied
to point clouds. It is of great practical value in paradigms such as human-robot
interaction, surveillance or healthcare. Recent years have seen a vast amount of suc-
cessful approaches towards human pose estimation from primarily RGB and RGB-D
data (see section [3.1]), thanks to great advancements in the field of Machine Learn-
ing. The main facilitator behind these approaches is Deep Learning, which allows
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(a) Point Cloud (b) Avatar

Figure 1.1: Problem Statement Data

establishing highly complex mappings to a desired output via learning a powerful,
non-linear feature extraction pipeline. Motivated by progresses that were made in
Pose Estimation via Machine Learning on RGB or RGB-D and due to the little effort
that was invested into working on pose estimation from point clouds, the following
problem statement and research questions were formulated.

1.1 Problem Statement and Research Questions

Given a 3D point cloud with regular spacing, the goal is to estimate the correspon-
dences between points in the point cloud and points on the surface model of the
human body.

These correspondences define a mapping between a point in the point cloud and
another one, located on an avatar.

Or mathematically formulated: The point cloud can be interpreted as a set A C R3,
which undergoes the map:

¢:x— d(x),x €A (1.1)

onto another set B C R3, ¢ (x) € B. This makes this map a vector field assigning
each point of the input set again a vector. Therefore the goal of the master thesis
is to find an approach that estimates the map ¢ (x) for a given point cloud.

Considering the huge amount of data in point clouds of such body scanner ( 67 Mio
Voxels) and the therefore required immense effort for creating the ground truth, also
an approach is considered where the map is not estimated directly. Instead, each
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point is classified into a class corresponding to a body part or background. This can
be viewed as a rough estimate of the correspondence. These body part segmenta-
tion can then also ultimately be used to estimate the map ¢ (). Creating labels for
body zones instead of a per voxel vector map eases up the labeling effort significantly.

This thesis aims to build CNN models coping with the body part segmentation task
without using additional algorithms or processing steps slowing down the applica-
tion’s speed. 3D CNNs were successfully applied to perform a binary segmentation
on medical data [I8] 53], as well as point-based 2D CNNs were applied for other
segmentation tasks [41) [67]. But it is the first attempt (to my knowledge) to utilize
such networks for the formulated classification task. Therefore, the question that
arises is: Can 3D and 2D CNNs be successfully applied to the formulated classifica-
tion task? How do they compare in terms of timing?

1.2 Thesis Structure

The thesis is structured in 8 chapters including the introduction, where the problem
statement was motivated:

e A quick introduction into the imaging system, pose estimation, machine learn-
ing, neural networks and CNNs is given in Chapter

e Chapter |3| reviews the related literature in pose estimation and point cloud
segmentation

e Chapter {4| describes the novel dataset creation pipeline

e A detailed description of the proposed CNN architectures and their implemen-
tations are given in Chapter

e Chapter [0] and [7] explain completed experiments, provide technical details and
discuss obtained results

e Finally, Chapter [§| concludes this thesis stating the goals achieved, limitations
and future work
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Chapter 2

Theoretical Background

2.1 Imaging System

Driven by the enormous advances in semiconductor technology, achieved in the years
before 2012, a modern imaging system in the millimeter-wave (mm-wave) rangeﬂ
with a high number of channels was developed [1]. The imaging system works com-
pletely contact-less (in comp. to ultrasonic imaging) and also free of health concerns
(in comp. to X-Ray Technology). It’s capable of a spatial resolution up to 2mm
in the lateral direction, therefore it is well suited for personal screening at airport
security checkpoints. The resolution and dynamic range are the main performance
measures for imaging devices, talking about both no comparable device is on the
market so far. For such mm-wave imaging systems it is possible to work with pas-
sive or active imaging concepts. A passive concept would use the characteristic
radiation of an object and the reflected background radiation without the need for
illumination by electromagnetic energy. But for indoor applications this concept
suffers from low radiometric contrast and is hence not applicable. This is why the
imaging system was designed to use an active concept, i.e. the system is emitting
electromagnetic waves and capturing their reflections.

2.1.1 Basic Imaging Principle

Looking a little bit closer at the basic principle of the imaging system, it can be
derived from Maxwell’s equations (appendix with certain assumptions about
the imaged material and certain approximations. A quick overview of the derivation
of the basic imaging equations according to [79] is given in the following.

Assuming material with negligible conductivity, one can assume the scattering re-

11-10mm (30-300 GHz)
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gionﬂ to be source-free. Further assumption of time-harmonic electrical and magnetic
field, leads to the following equation, which can be derived from Maxwell’s equation
as in [79):

VE+w? e(r)u(r)E=—(Vinu(r)) x (VxE)+V((Vine(r))-E), (2.1)

where V denotes the nabla operator, - the scalar product, x the cross product and
w the angular frequency. E denotes the electrical field, e (r) the permittivity and
p (r) the permeability, which in general all can depend on their position in space r.

With further assumption of x(r) being constant and equal to g, i.e. the permittivity
in vacuum and the term VIn(e(r)) being low compared to E, one can completely
remove the right hand side of , as a approximation, which leads to the following
equation, which is called the homogeneous Helmholtz equation:

V?E + ket (r) E = 0, (2.2)

where ky = w/Jiggg denotes the wave-number in free space and €f (r) the complex
relative permittivity. From that equation it can be observed that Cartesian field
components of E are decoupled, which suggests to work just with a scalar field, that
can stand for any Cartesian component in E and will be denoted as U = U*® + U?,
where U® and U' are the scattered wave and the incident wave respectively, resulting
in:

V2U + ket (r) U = 0. (2.3)

When incorporating that U’ is a solution to (2.3, where €¢ (r) = 1, then (2.3) can
be rewritten to:

V2U* + K2U* = —O (1) U, (2.4)

where O (r) = ko (e — 1), which is called the scattering potential and describes
spatial variations in permittivity, and thus is the target function one wants to capture
to create an image.

When the right hand side is replaced by a negative dirac delta —d (r), the solution

for U® in ({2.4)) is given by the green function G (r) = W, and therefore , since

(2.4) is linear, the solution for U® in general for (2.3) is given by the convolution
between G (r) and O (r) U:

U(r) = (0 (r)U(r))«G(r) = (O(r)U'(r)) G (r), (2.5)

where the right part of (2.5)) is achieved by applying the Born approximation to get
a solution for U”.

lyegion where the electromagnetic wave is reflected
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To solve for the desired quantity O (r) one has to invert (2.5)), this can be done be
deconvolution or Fourier transform.

An estimate of O (r) can be achieved through spatial sampling of U® with the help
of an antenna array, which is given by:

O(r) = 33 ST U (xe, i, k) eIl (2.6)
k. nt n

where n; and n, denote the number of transmit and receive antennas and r; and r,
the positions of the corresponding transmit and receive antennas in space.

This is called the focusing equation, where the backscattered signals U?®, that are
received by the receive antennas, are superimposed linearly after weighting by a
phase term, that incorporates the distance between transmit/receive antennas to
the target, one wants to image.

2.1.2 Relation to Human Pose Estimation

The values O (r), as determined with , give then the image of the object, one
wants to reconstruct. This values can be interpreted as a three-dimensional point
cloud with reflection values assigned that are represented by 0.

The reconstruction according to ([2.6|) is performed on a regular grid for r, such that
the final point cloud has a regular spacing, resulting in a volume.

As already mentioned above this imaging system is used for security scanner appli-
cations (figure , where it is utilized to picture the human body.

In figure 2.1 also a so-called maximum intensity projection (MIP) of this point cloud
can be seen, showing a person in standard pose for airport application. For that
application, it is necessary to determine the body pose of the people visible in such
a reconstructed images.

2.2 Human Pose Estimation

Definition:
"Human pose estimation is the process of estimating the configuration of the body
(pose) from a single, typically monocular, image.” [81]

Nevertheless, there are different kind of images/data types (see Section [3)) and also
variants of estimating the body pose, which are described in the following.
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(a) QPS201 Security Scanner (b) MIP projection of a mm-wave-
image

Figure 2.1: Imaging System

2D Skeleton Pose Estimation. Quite a huge amount of work was done on es-
timating the 2D skeleton pose, which refers to the task of finding the 2D location
of a certain number of body joints in an image. This task can be considered to be
solved, since there are many well working solutions out there, as stated in [37].

3D Skeleton Pose Estimation. But there is also 3D skeleton pose estimation,
which refers to the task of estimating body joints in a 3D space. Since there exist
quite less labelled datasets and estimating the 3D pose is challenging depending on
the underlying data types, there is still work to be done in that area.

3D Shape Estimation. Another variant is shape estimation as used in [3], where
it is introduced as the registration process, that maps the body joints of the SMPL
model [48] onto the estimated body joints of people in an image. Therefore it can
be viewed as a two-step procedure, where first a 2D skeleton pose estimation is per-
formed, and then a registration of body joints of the SMPL model is used to align
the shape of the model with the shape of a person in the image. This gives in the
end also a mapping for pixel coordinates.



2.3. MACHINE LEARNING (ML) 13

Dense Pose Estimation. Dense Pose Estimation as introduced in [71], [72] is most
related to the problem statement of this master thesis, it also refers to a direct map-
ping of the coordinates of the input data to a canonical representation. But there
the mapping refers to mapping 2-dimensional coordinates of pixels onto coordinates
of a 2-dimensional space describing the surface of a human body model.

But in the end it all boils down to assigning some kind of input data coordinates to
a model of the human body, which could be 2D or 3D joints as well as models used
for dense pose estimation or shape estimation.

2.3 Machine Learning (ML)

As with any concept, machine learning may have a slightly different definition, de-
pending on whom you ask. There is a collection of valid definitions:

”Machine learning is the science of getting computers to act without being explicitly
programmed.” - Stanford

”Machine learning is based on algorithms that can learn from data without relying
on rules-based programming.” - McKinsey & Co.

”"Machine learning algorithms can figure out how to perform important tasks by
generalizing from examples.” - University of Washington

"The field of Machine Learning seeks to answer the question 'How can we build
computer systems that automatically improve with experience, and what are the
fundamental laws that govern all learning processes?’” - Carnegie Mellon University

”Machine learning research is part of research on artificial intelligence, seeking to
provide knowledge to computers through data, observations and interacting with
the world. That acquired knowledge allows computers to correctly generalize to
new settings.” - Dr. Yoshua Bengio

For the thesis, we stick with the last definition, since it seems to stay most general
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and hence might be applicable to a wide range of learning algorithms.

There are many different types of machine learning algorithms, with hundreds pub-
lished each day, and they’re typically grouped by either learning style (i.e. supervised
learning, unsupervised learning, semi-supervised learning) or by similarity in form or
function (i.e. classification, regression, decision tree, clustering, deep learning, etc. ).

Since a neural network is some special form of ML algorithm, which will be utilized
in this thesis, the basics of such a network will be described in the following.

2.4 Neural Networks and Deep Learning

One very interesting field of machine learning are neural networks. This concept
is inspired by biology and the human brain, where neurons are the basic building
blocks that are connected via synapses. Depending on their received signal neurons
start to "fire”, i.e. emit signals to connected neurons.

2.4.1 Artificial Neurons

Similarly one can copy this concept and define a so called artificial neuron[59], which
algebraic structure is defined as follows :

y=g (WTX + b) , (2.7)

where x, y denote the input and output of the neuron and w, b the parameters called
weight and bias respectively. The so called activation function g () is successively
applied onto the affine function wix + b.

Nowadays there are different activation functions in use, a famous one is e.g. the
sigmoid activation function, which is defined as:

1
o) = T
But due to the problem of vanishing gradients, which appears, when |z| gets big, the
sigmoid activation is not widely used in practice, instead the ReLU, leakyReLU or

tanh activations are used.

(2.8)

if £ >0
ReLU(z) =" " 7= (2.9)
0 else
if x>0
leakyReLU (x) = {x hr= (2.10)
ar else
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+ x

et —e”

tCLTLh(.I') = m7

(2.11)

2.4.2 Multilayer Perceptron (MLP)

It is straight forward to define a network from its basic building block the neuron.
One can just use them in parallel on the same input x to create different features of
the same data, which results in a so-called layer with vector-valued output y, where
all the scalar outputs y of each neuron are stacked together. Cascading such layers
results in a network which is called multilayer perceptron, which characterized by
having fully connected layers, i.e. each neuron is connected to each neuron in the
next layer.

The overall mathematical description of a MLP with N hidden layers is given by the
following equation:

MLP(X) =8N (WNgN—l (WN—l---go (WOX + bo) et bN—l) + bN) ) (2-12)

where g; : is the element-wise applied activation function at layer i and W, the
weight matrix and b; the bias vector.

One very interesting property of such an MLP is, that an MLP with a single hidden
layer and a finite number of neurons can approximate any continuous function on a
compact subset of IR", which is stated by the universal approximation theorem[I4]
21].

2.4.3 Deep Learning (DL)

To get something useful of such a MLP, one has to determine its parameters W; and
b;, this is what is called training or learning. Therefore the gradients of the objective
functions with respect to W; and b; are of interest and can be calculated via back-
propagation very efficiently. The objective functions are a measure of performance
of the network and hence are optimized.

Experience has shown that building such networks very deeply improves their perfor-
mance. The field dealing with such networks is called Deep Learning. But actually,
there is no number of how many layers such a network must have to be called ”deep”.

2.5 Convolutional Neural Networks (CNNs)

Convolutional neural networks can be viewed as a special type of an MLP, where the
weight matrices are sparse, such that each neuron does not depend on all neurons of
the previous layer. As a further restriction, weights are shared for several neurons,
e.g. the weight matrices W; have a structure such that certain weights within that
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matrices are forced to be the same. This weight sharing and sparseness leads to a
less overall effective number of parameters and is hence easier to train.

Becoming more clear convolutional neural networks use convolutions to realize a
linear relationship between input and output. Thereby the input of each layer is
convolved with a filter, which results in the above mentioned weight sharing and
less connections, since each neuron then just depends on as many neurons from the
previous layer as the filters have weights and all the neurons within one feature map
share the same filter and hence the same weights. After filtering also activations are
applied to each neuron.

This kind of network has been very successfully applied in the area of image process-
ing and computer vision, where one has to deal with images, which are 2D structures.
For images, 2D convolutions have always been a useful operation to detect local fea-
tures, as for example, corners and edges. And as these classical feature detectors
make use of this local dependencies in an image also neural networks can exploit
these dependencies by going from fully connected layers to convolutional layers.
But not only 2D convolutions are of interest in general, 3D convolutions can be very
useful when dealing with 3D data. That is why they are utilized for the task of
human pose estimation in this thesis, where we are working with 3D body scans.
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Chapter 3
Related Work

In this chapter a quick overview about the literature in human pose estimation is
given as well as literature for segmentation is reviewed.

By doing so, the related work section is structured in a way such that the discussed
literature is getting more related to the thesis problem statement while proceeding
through the sections.

3.1 Human Pose Estimation

Due to the rich literature on human pose estimation, a full review, giving a complete
overview of the literature in human pose estimation of the last 20 years is out of
the scope of the thesis. In order to get a wider overview, consult [55, [66, 64 [77].
Nevertheless, several related approaches shall be reviewed in the following.

Pose estimation on the human body and its parts has gotten a lot of attention in the
last 10 - 20 years, which was for sure supported by the fact that machine learning
found application in a wide range of problems, such as pose estimation. A huge
amount of work has been done on human pose estimation in the last years, people
worked not only on estimating the whole body pose [3|, [13], 50l 51} 211 22, 23] 31],
32, 33, 34, 135, 42| [44), [48), (541, 58, [72], 80, [85], 88, 00, 93, 94, 100], but also focused on
specific parts, such as the hand [46, [60, 92] 05, O8] and the face [T1].

Latest works focus on improving multi-person pose estimation[58], the performance
in more realistic backgrounds (in the wild)[90], occlusion handling [78], exploitation
of temporal information [28] or new forms of pose estimation like Shape Estimation
[3] or Dense Pose Estimation [711 [72].

Nie et al.[58] seeks to improve multi-person pose estimation with a single-stage
approach, meaning instead of splitting the problem into people detection and subse-
quent joint prediction or wise-versa, he estimates multiple skeletons at once by using
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dense confidence and displacement maps for root and body joints. Wang et al.[90]
improves human pose estimation in more realistic backgrounds and environments
with help of data set synthesized through 2D to 3D Joint uplifting. Sarandis et al.
[78] also uses data synthesis to augment images with occlusion for improved occlu-
sion handling. On the other hand Hossain et al.[28] tries to improve the uplifting of
body joints from 2D to 3D by exploiting temporal information. A two-step approach
for simultaneous 3D pose and shape estimation is developed by Zanfir et al.[3] by
first estimating 2D and 3D Joints and subsequently fit them with additional silhou-
ette information to the SMPL model. Giiler et al.[72] formulates pose estimation on
RGB images in a new way, first for estimation on the face and then on the whole
body by using massive data annotation to create UV-maps on real images for part
segmentation and simultaneous UV-map prediction, resulting in a dense map.
Furthermore, there is work done on many different types of data such as RGB
images, Depth images, point clouds, volumetric data and combinations of them. In
the following approaches on different data types will be described more closely.

Human Pose Estimation on RGB

On RGB data it is very challenging to infer the 3D pose, since an image results
from a 2D perspective projection of the real world and hence a single RGB image
doesn’t contain real 3D information. To infer 3D information and pose from RGB
images it is necessary to have prior knowledge about the object visible in a scene.
What a neural network can do is for example to recognize certain patterns of the
human body and with the help of prior knowledge, which can be a body model
one can infer a 3D pose. This is for example done in the approach of [3], where
he estimates the shape of the human body in an RGB images with the help of
the SMPL model. Also Giiler et al.[72] uses a body model but in a more implicit
way. He uses a surface model for annotation to create UV-map ground truth data.
The creation of rich ground truth for the COCO-Dataset is the main contribution of
that approach apart from the dense formulation of pose estimation and the proposed
network architecture for simultaneous prediction of part segmentation and UV-map.
In contrast to that newer forms of pose estimation there still is a huge amount of
work focusing on the classical approach, predicting skeleton joints from RGB images
[0, 2, 11, 50l 511, 22, 26], 28|, 54], 58, [77, 78], 86l 00, O3], 94].

Human Pose Estimation on Depth Images and RGB-D

Working on depth images directly [15], 23] 33], 34, [42], 31], (44} 46}, 60, 80|, 88, 92, 95,
98] or exploiting additional depth information through RGB-D images[I3], 47, [52]
eases up the problem significantly, since real 3D information is used. But still, self-
occlusion and sparseness due to the viewpoint hinder the data to provide full 3D
information.

Where [15], 23, [33], 34, 42] estimate the pose in a dense sense, other approaches on
depth images estimate the classical skeleton [31], [44] [46] 60], 80, 88 [©2] ©5] OF].
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Through the very popular application in console games the RGB-D camera system
Kinect has gotten a lot of attention. The algorithm used for pose estimation in
Kinect was developed by Shotton et al.[31] based on pure depth information. He
solves the 3D Pose estimation problem by using as intermediate representation a
body part segmentation to finally predict body joints.

For estimating the body pose in a dense sense Wei et al.[42] provides an algorithm for
establishing dense correspondences. He is learning a per depth image pixel descriptor
by training a neural network on a body part classification task. Correspondences
between images are then established by a nearest neighbour search in the descriptor
space.

Human Pose Estimation on Point Clouds and Volumes

Pose Estimation on Point Clouds [32 61}, 62], 85], 32], [61], [62] 85] and volumes[56] has
seen less effort. This and the fact that complete body scans of the human body
provide full 3D information and are best represented as point clouds or volumes
motivate the research in that area and the proposed method of the thesis.

3.2 Segmentation

Segmentation on 3D Point Clouds and volumes

As mentioned before it is beneficial to think about a way how to partition the human
body into zones, which in fact gives rough correspondences. That directly leads to
the task of point cloud segmentation. So far there is a lot of work in this area. Several
approaches directly work on point clouds such as PointNet, [67],PointNet+-+[68], 3D
Capsule Net[96] and AtlasNet[25], whereas other approaches like Vnet[53], VoxNet[49],
3D-Unet[89] are designed to work on volumes.
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Chapter 4

Data set

In order to be able to develop and test algorithms for pose estimation at least one
data set is necessary. First of all the requirements on the data set are given in
Section [4.1] then Section [4.2] contains a quick summary of the results of the research
on data sets and synthesis methods in the area of pose estimation. Finally, the data
set synthesis is described in detail in Section |4.3]

4.1 Requirements on the data set

The following requirements have been set to meet the actual data format of the
body scanner

Point cloud in volumetric representation, i.e. regular spaced 3D grid
Resolution: 512x256x512 Voxels
Voxelsize: 0.5mm x 0.5mm x 0.5mm

The point cloud in volumetric representation can be written as a tensor

D e {d|de R"»®02 g € {0,1}Vi, j, k}, (4.1)

where D contains the complete surface of different human bodies in varying
walking poses (see figure and the d;;, represent the scattering potential as
introduced in for a volume representation a certain space. It has to be
noted, that the tensor D was restricted to be binary, whereas the scattering
potential is not binary in general. But to get a non-binary output, the
imaging property of the imaging system, which is mainly set by the antenna
array geometry and the imaged material, would have to be incorporated for
data synthesis, which is out of the scope of the thesis. Nevertheless, this
restriction rather makes the problem of pose estimation a little harder, because
clues from the imaging properties, which are space depended are not being
used.
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Figure 4.1: Exemplary Point Cloud in volumetric representation

e The labels for every point in the point cloud are given by the tensor
Le{l|le R 1 e {1,..,C} Vi, j, k}, (4.2)

hereby the label indicates a certain body part.

4.2 Related Data Sets and Synthesis methods

In literature there can be found a lot of data sets in pose estimation, but no data set
addressing the actual identical problem. The data sets are examined in Subsection
[4.2.1] Also related methods for synthesis, that inspired the suggested method for
data set synthesis, are described in Subsection and finally the motivation for
the proposed data set synthesis method is given in Subsection [4.2.3

4.2.1 Related Data Sets

The main problem with the existing data sets is that they rather are based on
different physical data, e.g. RGB, RGB-D, pure depth images, sparse point clouds
from ToF-Sensors or Laser Scans, or that they have no appropriate labels showing a
clustering of the human body in a regular spaced dense point cloud format. As well
the data sets don’t exclusively contain humans for that very constrained walking
scene in a clutter-free environment.

Through the table an overview of several datasets, found through our research,
is given.

MPII-HUMAN POSFE[4] is a benchmark data set for 2D skeleton human pose esti-
mation on RGB images. It was created by performing Youtube queries on certain
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activities structured in a hierarchical way. Afterward, the relevant frames were ex-
tracted manually by human annotators to end up with 40522 images of different
humans. These humans were annotated manually with 2D body joints and 3D
viewpoint of the head and torso.

On the other side, there are also purely synthetic data sets like SURREAL [87],
which was created with a focus on creating a large scale data set with realistic
images of people. To create the data set the SMPL model[4§] was used. Shape pa-
rameter were extracted from CAESAR[73] data set and for animation MoCap data
was used from the CMU MoCap database. From these 3D animations, RGB images
were rendered with background from the LSUN data set.

Providing also 3D meshes for humans captured with RGB cameras UP-3D [37] is a
data set that builds on existing data sets like MPII-HUMAN POSE[4] to estimate
3D shape in RGB images with an extended version of the SMPlify[21] method. It
also provides 3D Joints and body part segmentation in 2D.

A further data set dealing with meshes is the SCAPE[5] dataset, which contains
71 registered meshes of a single subject in different poses. Since the meshes are re-
constructed from real data, they are more realistic (e.g., they do not have the same
local shape features). The meshes were registered using only geometric information.
Hence it is unclear how accurate the deformations in this dataset are.

Speaking of shape information and mesh data FAUST]T7] is a data set of registered
human body meshes, that was built with the aim to accurately provide correspon-
dence information between different persons and poses. These meshes are registered
using a novel texture-based registration technique, where real humans had to place
a certain high-frequency texture on to their skin. The humans then are recorded by
a 3D multi-stereo system and a single RGB camera. One limitation of FAUST is
that is restricted for research purposes.

DYNA[65] is an extension to the SCAPE model, that was build from the SCAPE
data set. Where SCAPFE only approximates static surface deformation, DYNA was
build to include full body deformations driven by the motion of the body. The model
used to build DYNA is a mathematical model that relates deformations of the hu-
man body surface to changing the poses in time. In order to build that model from
data, the DYNA dataset with 40k registered meshes was captured. For registration
only geometry information was used.
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Building on ideas from FAUST and DYNA, D-FAUSTI§| can be viewed as exten-
sion to FAUST that also takes care of soft-tissue deformations and hence captures
information of the human body in dynamic situations. For the creation of the reg-
istered meshes, D-FAUST combines 2D correspondences in texture space with a
model-based registration approach dealing with temporally-offset streams of geom-
etry and texture data. But it lacks in a dense sampling of the shape space since it
also provides just 10 people.

A further data set with registered mesh data is the CAESAR [73] data set, which
build with the purpose to create a database about civilian anthropometry. It was
captured with a laser-driven triangulation system, that creates a full-body scan and
also rough correspondences from 100 landmarks.

TOSCA [10] is a synthetic dataset that is widely used for evaluation of mesh reg-
istration methods. It provides 80 artificially created meshes of animals and people
(with 3 subjects in a dozen different poses each). Meshes in the same class share
the same topology, so ground-truth correspondences are immediately defined. The
meshes and the deformations, however, are unrealistic and there is no noise or miss-
ing data.

Further data sets build for 3D Joint estimation are the HUMAN3.6M [30] data set
and the HUMANEVA[R2] data set. HUMANS.6M and HUMANEVA are both data
sets that were build in a laboratory setup. In HUMANS.6M 11 people were recorded
with 4 digital video cameras, one ToF-Sensor and 10 motion capture cameras. In
HUMANEVA only 6 people were recorded in various activities and also with simul-
taneous capture of video and motion information. HUMANEVA with about 40k
images is a rather small data set compared to HUMANS.6M with 3600k images.

To summarize, as can be seen from the table, many data sets are build to have
RGB images as input provide no body shape information in form of meshes at
all[4, 30], 82, R7] and hence are not useful. Some data sets with RGB images lever-
age [87] or provide[37] mesh models. But the latter data set is very small and the
meshes are just built with the help of another shape estimation approach|2I] and
hence are inaccurate and also don’t fit the required pose. Also, depth images are
provided through some data sets[87, [30], but they don’t cover the human body com-
pletely and also don’t provide any correspondence information among the depth
images.
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Synthetic

Data Set Input Type Scenes Clothes | Labels (input /label) #Samples
ifé—’é]E—HL“MAN RGB Images 800 activities Yes 2D Joints No/No ~40k Images
. Indoor with varying . 3D Joints, Depth Map, § . o .
SURREAL RGB Images poses Yes Part Segmentation 2D Yes/Yes 6536k Images
D« o SRS . 3D Joints, 3D Meshes, ) . L
UP-3D RGB Images Various activities Yes Part Segmentation 2D No/Yes 8,5k Images
Full Body Scans . Registered 3D Meshes 0,3k scans
y ; /a S poses o8 > o8 ;
FAUST (static, 172k points) Various poses Yes (very accurate) No/Yes of 10 people
Full Body Scans . . . e AN
D-FAUST ( motion Sequences, ;;Ii(t)lt]l%r(l]szquen(,es Yes giilft:zﬁsrzi)h[%h% No/ Yes i?li (;’Ld:ob lo
150k points) ' P y ' peop
~C / P
Various activities o [.‘)f{] k):‘(o-/ilima,,es
HUMANS3.6M | RGB Images (‘urban and office Yes 3D Joints, Depth Map No/No ( 641{1 i i o/f
scenes) X
walking)
Various activities 40k Tmages
HUMANEVA | RGB Images (jogging, gesturing, | Yes 3D Joints No/No o &
y of 6 people
boxing,combo,...)
., ) . . . Texture information, 4,8k x 3 Scans
CAESAR Full Body Scans 3 static poses Yes 3D Mesh (100 landmarks) No/No of 4.8k people
. ST ) 3D Joints, . 1x704 37x1 scans
SCAPE Full Body Scans Various poses Yes Registered 3D Meshes No/Yes (people x pose)
TOSCA Meshes - - - Yes/- 80 Meshes of
people and animals
Full Body Scans Motion Sequences . Registered 3D Meshes . ~40k scans
DYNA as motion Sequences | with 60fps Yes (not accurate) No,Yes of 10 people

Table 4.1: Overview about related data sets

Then there are the data sets[5], [7, 8, 65 [73] that provide full body scans with regis-
tered mesh models or pure mesh models [10]. Where the SCAPE and TOSCA data
set are simply too small, the CAESAR data set lags in variance in the poses. This
leaves us with FAUST, D-FAUST and DYNA. All three of them lack in sampling
the shape space densely, since they all provide only scans from 10 different persons.
Furthermore, FAUST doesn’t suit, because it captures just various static poses.
The most interesting data set is D-FAUST since it captures humans in dynamic
scenes like walking and outperforms DYNA in terms of registration precision, but it
still lacks in sampling the shape space and pose space for that walking scene densely.

To conclude, no data set is meeting the requirement to fit the input tensor D or L
and the problem setting directly. Hence, in any case, one has to build a pipeline to
create the tensors D and L.

4.2.2 Related Data Set Synthesis methods

Even if explaining related data sets also means describing how they are created or
synthesized, in the following a quick overview about related synthesis methods uti-
lizing mesh models for various applications shall be given.

For the training of the pose estimation algorithm of Kinect Shotton et al.[31] renders
2D depth images based on MoCap data and meshes of human bodies to create a
data set. Also for optical flow estimation, 3D models of chairs have been used
and rendered by [16] into RGB images. Furthermore, real RGB images have been
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augmented by rendered 3D models for object detection[63] and viewpoint estimation
has been profited from augmenting real images with 3D models of different objects
in different viewpoints[84]. Fanello et al.[I9] renders infra-red and depth images
from 3D models using Poser to generate 100K hand and face image pairs. Also for
modeling of hands with a subsequent rendering of depth images 3D models were
used by [57] for hand pose estimation.

When it comes to modelling of the human body meshes were used by several re-
searcher for creating synthetic data for 2D pose estimation[39, [75, O1] , 3D pose
estimation[12], 17, 20}, 24, [74, 83, [07], detection[38, [40, 45] or action recognition[69,
70].

4.2.3 Motivation for Data Set Synthesis

The most important reason for creating an own pipeline for data synthesis is the fact
that no other data set meets all the requirements discussed in Section [.1] Hence it
is not possible to use these data sets out of the box.

The main focus in creating the data set lies not in creating a very detailed model of
all highly realistic deformations of real human bodies, where the data sets [7, 8, [65]
have focused on, since voxelization, which is necessary for that problem, reduces
the shape information in the models. The focus rather lies in a dense sampling of
possible shape and pose variations for that very constrained walking scene, where
the mentioned data sets have a lack in. As well as the people for that walking scene,
should not wear clothes, since they are not visible through the imaging technology.
But all mentioned data sets show dressed people. A further benefit for the release
and use of a data set, that avoids scans or images of real people, is that one does
not run into anonymity issues.

To get more real-world deformations of the meshes into the scans the SMPL model
could have been used since it is compatible with the synthesis process, that will be
explained in [£.3] But as we focus not on creating highly realistic real-world models
and using the SMPL commercially could mean some license issues, it was not used.

And there are the general benefits of data synthesis as well. Data synthesis makes
the data creation very flexible. Through the provided pipeline, it is just necessary
to sample some human body models and with the help of MOCAP data, thousands
of samples can be created immediately without any further effort. This means we
end up with a nearly infinite data source, which is just limited by the number of
mesh models and MOCAP data. As a further benefit, the pipeline provides skeleton
and mesh information, which could be used for multi-task learning.

Furthermore, the creation of some data sets involves manual human annotation,
which is always questionable, since it depends on the annotator itself and introduces
errors. Therefore by using data synthesis human annotation was avoided.



4.3. DATA SET SYNTHESIS 27

Point Cloud and Label
Dy

Topology / Skeleton
Models

Human Sample Posed Mesh

H,, (OT) M(a™,jT)

Animation via ‘
Retargeting
and Skinning ‘

Voxelization
and Labeling

Human Body ‘
Modelling ‘

e
T
~

QT

MOCAP Data

Canonical Avatar
(Reference Mesh+Clustered Volume)

Figure 4.2: Overview about the data synthesis pipeline, the basic parts are depicted
as red boxes

4.3 Data Set Synthesis

To be flexible in terms of synthesis, a completely automatic toolchain for data set
synthesis was developed. This toolchain allows creating point clouds of humans
posing arbitrary in space, as well as to create segmentation labels for an arbitrary
number of body zones. This toolchain was developed as a first step to create a
dataset according to the needs of the problem setting, i.e. according to Section 4.1
An overview of the parts of the synthesis pipeline is given in figure 4.2

Human Body Modelling is discussed in [£.3.2] while Animation is explained in detail
in [4.3.3] and Voxelization and Labelling is described in [4.3.4]

4.3.1 Tooling

In order to be able to create sequences of different humans walking differently
through the body scanner, a good tooling was necessary for every step in the data
synthesis pipeline. For the selection of tools freeware or open source solutions were
preferred.

Human Body Modelling

For the creation of human body models according to Section the only free tool
with appropriate degrees of freedom (age, gender, height, weight, proportions,etc.)
in modelling humans was MakeHuman [0, [43] according to the results of our research,
hence it was used for modeling.
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Further Tools that were examined are Poser, Manuel Bastioni Lab, and Virtual
Caliper.

Motion Capture Data

For the acquisition of motion capture data, i.e. time sequences of skeletons, one
could use databases like Cologne Motion Capture Database or any other database.
To make the dataset suit the application custom MOCAP data was collected by
using Kinect and a tool for MOCAP data recording, called Brekel.

Animation

The landscape of tools for animation is huge through the wide use of these tools in
the gaming industry. Considered tools were Blender, Poser, Unity, Collada, Maya,
3DS and Lightwave.

Through the interfaces provided to MakeHuman and the compatibility between
MakeHuman and Blender, Blender was chosen to be the tool used for animation. It
also provided a plugin for automatic retargeting of motion capture skeletons onto
the skeletons of the human body model.

Mesh Processing

For Voxelization and mesh processing the Visualization Tool Kit (VTK) was used
in python.

4.3.2 Human Body Modelling

One big sub-field of Computer Graphics is 3D Modelling, which refers to the task
of finding a mathematical representation of any surface of an object. The resulting
surface model is described by a so-called mesh, which consists of vertices and edges,
both together define faces and normals on the faces .

Such a polygonal mesh representation was used to describe the human body surface,
i.e. a human body model consisted of:

e a skeleton S ={B, J}

— B: Bones
— J: Joints (points were bones meet)
e amesh M ={V,E, F}

— V' Vertices (points on the skin)
— FE: Edges (lines between vertices)

— F: Faces (closed sets of edges)
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(a) Mesh M of the model (b) Skeleton S of the model

Figure 4.3: Human Body Model

e a group GG
— Control skinning through weights w in animation

This results in a model m = {S, M, G} with a certain mesh topology defined through
vertices and edges and also a topology for the skeleton. These topologies are fixed
ones before the animation and shape modeling process is done.

The shape modelling process of human mesh models can be a very tedious task.
Designing different meshes by hand through adjusting manually vertices positions
in space is not only very time consuming but also difficult when we want to achieve
natural-looking results.

Therefore good tools are necessary, that enable the alignment of points and morphing
of a mesh into natural-looking shapes. Such tools are still really time-consuming
when it comes to modelling individual humans in detail, with different body shapes,
considering differences like height, weight, proportions and shapes, etc. For that
degree of detail in designing mesh models, tools like MakeHuman[9] help to model
people by just adjusting different shape parameters. Humans H,, («) therefor all
share the same m, but differ in their shape parameters «. If one still wants to save
time in modelling through adjusting shape parameters, one can randomly sample
parameters in the parameter space, after defining a certain distribution over the
parameters.

In the easiest case the parameters are sampled from a uniform distribution. This
approach was actually taken, but in order to be able to sample and adjust these
parameters, it was necessary to adapt the source code from MakeHuman to handle
the automatic adjustment of relevant parameters through scripts.
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Through the tool it was possible to select from a set of 8 mesh topologies. The
topology was chosen to be generic in gender, which just left us with 2 topologies,
from which the one with the higher number of vertices (|V| = 13378) was chosen to
achieve a more detailed modelling, which helped for further processing.

The skeleton ”Cmu MB” was chosen in order to be compatible with further anima-
tion of the meshes.

4.3.3 Animation

The following steps in the animation process are necessary to create a single anima-
tion scene corresponding to one human H,, (o) and one skeletal animation sequence.
Acquisition of MOCAP data

In order to consider the real scenario of walking through a body scanner, Kinect
and its 3D pose estimation software was used to acquire motion capture data, i.e.
an estimate of the skeleton joints JMOYAP for each RGB-D image. This resulted in
a time series of joint positions and rotations:

MOt = {35t ayt i ) (4.3)

Retargeting

The goal of retargeting is to match a motion of the skeleton joints J9C4F onto
the target skeleton joints of the model JTARCET  For retargeting the MakeWalk
Add-On in Blender was applied, which resulted in an equivalent series for the target
skeleton:

JIARGET = {3133 38 -0k } (4.4)

Skinning

The task of skinning is the calculation of vertices corresponding to the underlying
skeleton. When talking of time step k with target joint positions and rotations j;
skinning calculates the corresponding vertex coordinates v}, resulting in a series:

v ARGET {VIT,V2T,V3T, ...,V?} (4.5)

Here the vertex coordinates can be calculated with one of the following methods:
e Rigid Skinning (RS):

— Each vertex V;T at time step k with position Vgl corresponds to only one
bone B;
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— If bone B, gets transformed by a euclidean transform given by Ay ;, the
new vertex position calculates to:

Vi =Agve, Vke{l, . K} le{l,. |V]}, (4.6)

where VOTJ denotes the position of vertex V' in a reference pose defined
by ji. The transformation Aj; can be calculated from ji, and j§; by
traversing through a kinematic tree.

e Linear Blend Skinning(LBS):

— Each vertex V| at time step k with position Vgl corresponds to several
bones

— The influence of bone B; onto vertex V; is controlled by weights w;; and
the position of vertex V;* in time step k calculates to:

vie =Y wAgvy, Vke{l,. K} le{l, . |V]}, (4.7)

e Dual Quaternion Skinning (DQS) and others

For animation in blender the LBS algorithm was used.

4.3.4 Voxelization and Labeling
Voxelization

Given a time series of meshes MTARGET — N[, My, Ms, ..., Mg} with a correspond-
ing time series of vertex coordinates vI4#¢ET a5 in ([4.5]), one has to voxelize the
meshes for each time step to get a point cloud with regular spacing.

This voxelization is performed with a linear extrusion filter on the mesh and sub-
sequent application of a stencil function. The extrusion filter expands the mesh
into two meshes, where the volume between the two meshes defines the skin of the
human. The stencil function then sets the voxels within the skin to one, the rest is
left to be zero. So from each time frame in MTARCET we get a tensor D as described
in , hence we end up with a series of tensors

DTARGET I Dl DY DY, ..,D}} (4.8)

Definition of a reference avatar

For the creation of the labels the definition of a reference mesh was necessary. Shape
parameters o and reference pose j& were chosen, ending up with a reference mesh
M (a®, ji). This mesh then also was rendered into a volume given by the tensor DZ.
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(a) Reference mesh M (a®, jlt) (b) Reference volume D% (c) Reference label L%

Figure 4.4: Reference avatar

To create body part labels the k-Means clustering algorithm was applied on the
coordinate vectors of the non-zero voxels in D® | such that we end up with a Voronoi
tesselation of the body surface as depicted in figure [4.4] which gives the labels L.

Labeling of a target tensor

With the help of this tensor D} the labels L} were created. To create labels for
different time steps and persons H,,(«), one has to re-identify the same body zones
from the reference avatar on different poses and persons. To do so the fixed topology
of the mesh was used, i.e. through the fixed topology, there exists a correspondence
of vertices.

This correspondence defines a map between the surfaces of different people and
poses, i.e. for each vertex V; in vi, there exists a displacement vector vgl — Vit

where vt is the position of vertex V; of the reference mesh M (o', ji).

These displacement vectors can be interpreted as resulting from the map ¢ (x) (1.1,
such that we can define a displacement map

vix—=yx) =¢(x)—x €R’ xR} (4.9)

which maps a vertex of the reference mesh M (o, jI*) with position v{* onto its dis-
placement vector Vgl — v Through the |V| displacement vectors the displacement
map is just defined at positions v/¥, hence we have to interpolate the displacement

field onto the positions of the non-zero voxels in tensor D to transfer the labels L
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onto the labels LY for each frame.

Interpolation can be understood as finding the underlying map ~, which was esti-
mated with the help of thin plate spline interpolation. The overall vector valued
interpolation function - is split into three scalar functions:

Yo () = Y wiap (Ix =) ne {123}, (4.10)
1=0

where ¢ denotes the radial basis function(RBF), which was chosen to be ¢ (1) =
r?log (r), such that we get a thin plate spline. Enforcing the following

(Vi) = (Vi =), Vie{l,..|V]},ne{1,23}, (4.11)

results in three linear system of equations, that are solved to get the parameters wy,,
for the three scalar interpolation functions. The interpolated displacement map -~y
can then be evaluated at the non-zero voxel positions of D to transform the labels
L to their position in time step k and then apply a further INN interpolation to
get the labels at non-zero voxel positions of D] resulting in L. Repeating this for
all k yields the time series:

LPARGET — (T LY LY, .. Ly} (4.12)

The schematic figure gives an overview about the voxelization and labeling pro-
cess.

4.3.5 Timing improvements on the Labeling Process

The problem with implementing the labeling process directly as described in the
previous section is the immense amount of time the label creation needs per frame.
This time is caused by the fact, that for finding the interpolation function three
linear systems of equations with |V| unknowns and |V| equations each have to be
solved. Hence we have chosen the number of vertices for the mesh to be |V| = 13380,
we get huge linear systems of equations, where finding a solution for all systems of
equations needs several minutes on the working machine.

With the help of the k-Means clustering algorithm the number of points was reduced.
Through empirically adapting the number of clusters/points for k-Means, it was
found that a number of 1000 vertices was sufficient for transferring the labels.

In figure it can be seen what happens if the number of vertices used for the
interpolation function is too small. No precise transfer of the labels is possible,
when choosing just 200 vertices for interpolation.

By reducing the number of vertices by a factor of 13 the time needed for interpolation
on the target pc was just 6 seconds. By parallelizing the solution of the three systems
of equations or the whole computation of one system of equations, the time could
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M(a® ) DF
-
M(a” jf) DT

Figure 4.5: Voxelization and Labeling

have been reduced further, but due to the fact that the time for voxelization lies in
the same order of magnitude as the time for interpolation then, further improvements
on interpolation, wouldn’t have had a big impact anymore.

4.4 Definition of a Data Set

With the help of the synthesis pipeline as described in Section we are able to
create a data set very flexible by just collecting motion capture data and sampling
humans from the body model to feed both into the pipeline.

The composition of the introduced dataset can be taken from table .

The parameter sets Aj, Ay, A3 ,where the shape parameters airein € A1, Qepar €
Ao, ey € Ag originate from, and the motion capture data sets €2y, €)s, (23 with
GMOCAP ¢ ) jMOCAP ¢ ), jMOCAP ¢ (s are mutually disjoint each, i.e. it holds
the following:

ANA =0 Vi,je{l,2,3VNi#j (4.13)
QLN =0 Vije{l,2,3}Ai#] (4.14)
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(a) Labeling with 200 vertices (b) Labeling with 1000 vertices (c¢) Labeling with 13000 ver-
tices

Figure 4.6: Timing improvements

Motion Capture Overall tensor pairs
Body Models Sequences ’ (D,L) g
Training 100 Humans Ho,(Ctrain) | 20 5MC9AP 6 20 frames | 40k
Evaluation | 50 Humans H,,(0cpar) 10 jMOCAP 4 20 frames | 10k
Testing 50 Humans Hy,(Qest) 10 jMOCAP 4 20 frames | 10k
Cumulative | 200 Humans 40 a 20 frames 60k

Table 4.2: Data Set Composition
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Chapter 5

Technical Approaches

For the formulated body part segmentation problem several approaches were incor-
porated. Point-based approaches, working directly on point clouds are explained in
Section [5.2)and also volumetric approaches, that work on a volumetric representation
of the point cloud, are presented in Section

5.1 3D Convolutional Neural Networks

3D convolutions, as a natural extension to in image processing widely used 2D con-
volutions, are perfectly suited to 3-dimensional data and hence extensively utilized
in the proposed methods.

5.1.1 Basic Building Blocks

The symbols for the basic building blocks of the utilized networks can be taken from
figure [5.6 and will be explained in the following.

3D Convolution. If in context of deep learning someone is speaking of convolution,
he means cross-correlation, which just differs in a flipped sign, which changes the

T 4
R @ & [wl p [ § [

3D 3D 3D 3D ACT BN STACK

Figure 5.1: Basic Building Blocks from left to right: 3D Convolution, 3D Transposed
Convolution, 3D Convolution with stride, 3D Maxpooling, Activation Function,
Batch Normalization, Stacking



38 CHAPTER 5. TECHNICAL APPROACHES

direction in which the filter slides over the input. The 3D discrete cross-correlation
is given by the following equation:

gl-z,—y, =2 =hlr.y,2] =D Y > hlkilmlglr+ky+lz+m] (51)

k=0 1=0 m=0

where g and h denote 3-dimensional discrete functions, that are cross-correlated.
The cross-correlation is expressed as a convolution between h and a point reflected
g. Hereby * denotes the convolution operation. One of the signals g or A can be
viewed as one channel of the feature map of the input and the other signal represents
one filter learned by the neural network. The output for one channel of the output
feature map is then defined by the element-wise sum over all input channels after

application of (5.1]).

3D Convolution with stride. The 3D convolution with stride is equivalent to
first applying equation (5.1]) and then sub-sampling the resulting signal by a certain
factor, called stride(for filter size equal to the sampling factor). The factor used
in the proposed methods is 2. Additionally the number of output channels is kept
equal to the number of input channels.

3D Transposed Convolution. The transposed convolution, sometimes called De-
Convolution is not the inverse operation to convolution with or without stride. It just
reverses the downsizing effect of strided convolution, by expanding the signals again.
The name transposed convolution stems from the fact that the 3D convolution can
be expressed by a matrix multiplication between a matrix originating from the filter
and an into a vector flattened input. The transposed convolution then just uses the
transposed of this matrix to again enlarge the volume. For a better understanding,
the 3D transposed convolution can be viewed as the 3D equivalent of what the
Kronecker product is in 2D. For illustration the Kronecker product between two
matrices is defined as:

CLHB cee alnB
A® B = : - : (5.2)
amB - amnB

thereby B would denote the filter matrix that is applied on a 2-dimensional input
represented by the matrix A.

3D max-pooling. 3D max-pooling with filter size equal to the stride, splits a vol-
ume into sub-regions equal to the filter size. In these sub-regions just the maximum
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value is kept. We use filter size of 2.

Activation Functions. The activation function is a scalar function applied element-
wise to a volume, introducing non-linearities, as already introduced in [2.4.1]

3D Batch Normalization. Batch normalization is the operation that normalizes
each activation in a layer by first subtracting the sample mean and then dividing by
the sample variance. As proposed by Ioffe et al.[29] for batch normalization in con-
volutional neural networks the mean and variance are calculated overall dimensions
except the channel dimension of the corresponding tensor, which is passed into the
batchnorm layer.

3D Stacking. The 3D stacking stacks two 4D tensors along the channel dimension.

3D Softmax. The softmax activation function is scaling the input between 0 and
1, producing an output that can be interpreted as a probability for a certain class.
The softmax function is therby amplifying high values and weakening low value.
That is why it is called the softmax function. The formula relating the input to the
output of the softmax function is given by:

e

N ZkK:1 e

Note that for a volumetric input the softmax is applied along the channel dimension.

o(z); j=1,..K (5.3)

5.1.2 V-net and variants

V-net[53] is a architecture used for prostate segmentation in MRT images. As seg-
mentation of prostates is a binary segmentation problem, modifications were neces-
sary to apply the network to our body part segmentation problem. Thus we first
describe the baseline architecture as introduced in the paper and then the necessary
modifications.

Baseline Architecture

The V-net as depicted in figure is, in general, an encoder-decoder architec-
ture. The left part of the model is the encoder path that compresses the input of
128x64x128 down to a resolution of 8x4x8. This is achieved through 3D convolutions
with stride. On the right part there is the decoder path, that up-samples the volume
back to a resolution of 128x64x128. The up-sampling is computed via transposed
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Figure 5.2: V-net Baseline Model for Binary Segmentation(~70Mio par.)

convolutions. Thus each stage produces features at different resolutions, at both
the compression and decompression path. Stages from the encoder and the decoder
path are connected where they share the same resolutions, i.e. features from the
encoder path are directly forwarded to the decoder path. These connections enable
the network to "skip” a further way down the network. This improves convergence
due to short-cuts the gradient flow can take, while back-propagating through the
network, as well as information from the feature maps of the compression path is
provided, which would have been lost due to compression. The stages are formulated
to learn residual functions by first forwarding the signal to several convolutional lay-
ers and then adding the unprocessed signal to the result of the convolutional layers.
All convolutions use 5xbxb filter kernels except the ones, used for down-sampling,
and the one convolution at the output layer. The convolutions for down-sampling
have a kernel of size 2x2x2 and the kernel at the output layer is 1x1x1. For all
convolutions, zero-padding is used. As the filter in each convolution with stride is
only applied once for each non-overlapping region of 2x2x2 the size of the feature
maps is halved. The activation function used for the network is leakyReLU. For
each class of the segmentation problem, a channel in the output layer is provided.
Since for the prostate, the segmentation is binary, two channels are provided with
subsequent softmax activation to scale the value into a range between 0 and 1.
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Figure 5.3: V-net Model with Modifications (~4.4Mio,~17.8Mio,~39.9Mio,~70Mio
and ~3.3Mio par. )

Modified Architectures

To apply the network to our pose estimation problem, we developed different variants
of the network and adapted where necessary. To handle 31 classes(30 body parts
and 1 background class) the last layer was extended to have 31 output channels.
Furthermore, each convolutional layer was extended with a batchnorm layer for
faster convergence. Furthermore, several networks with 25, 50, 75 and 100 percent
of the original number of channels were examined as can be seen in figure

Furthermore, a shallower version of V-net was implemented which is just a version for
K=4, where after the second down-sampling stage, an up-sampling stage is following
again. By doing so, we try to explore if 2 down-sampling stages are sufficient to still
achieve a good performance of the network.

5.1.3 3D U-Net

Also coming from the medical domain, the 3D U-Net architecture proposed by Wang
et al.[89] uses 3D convolutions extensively but was applied for a 3 class segmenta-
tion problem on a 3 Channel input. It builds on the 2D U-Net architecture by
Ronneberger et al.[76] by replacing all 2D operations with their 3D counterparts. In
particular, it uses 3D convolutions, 3D max-pooling and 3D transposed convolutions.
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Figure 5.4: 3D U-Net Baseline Model (~19 Mio par.)

Baseline Architecture

The baseline architecture as depicted in figure [5.4] consists as well as the V-net ar-
chitecture of an encoder-decoder structure. But it disclaims to learn residual blocks.
Furthermore, it uses 3D max-pooling instead of strided convolution and just con-
tains 4 different stages with different resolutions compared to V-net with 5 stages.
Each stage of the encoder path contains two 3x3x3 convolutional layers followed by
a 2x2x2 max-pooling layer with stride 2, whereas each stage of the decoder path
contains two 3x3x3 convolutional layers and one 2x2x2 transposed convolutional
layer with stride 2. Batch normalization followed by the ReLU activation function
is applied after each convolutional layer, except the last convolutional layer. Fur-
thermore similar as in V-net skip-connections are provided between the encoder and
decoder path at stages with identical resolution.

Modified Architecture

The modifications at the network can be taken from figure[5.5, The ReLU activations
were replaced by leakyReLLU and also additional batchnorm and activation layers
were introduced after each transposed convolution. In order to cope with our body
part segmentation class the output layer got 31 channels, one for each body part
and background.
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Figure 5.5: 3D U-Net Model with Modifications (~19Mio par.)
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Figure 5.6: Basic Building Blocks from left to right: 2D Convolution, 1D Maxpool-
ing, Activation Function, Batch Normalization, Stacking, Softmax, Tiling

5.2 Point Based Neural Networks

Instead of representing the space with a volumetric voxel grid, one can code the
volume in a format that just points with a certain property are represented. In
our case background points are ignored. Only points representing the human body
surface are represented with their coordinate, hence we end up with a point cloud. To
process such point clouds other forms of networks are necessary. The main challenge
of such a network is that it has to deal with an arbitrary number of unordered points.
In the following two architectures dealing with that challenge are explained. But
first, the basic building blocks are described.

5.2.1 Basic Building Blocks

The symbols for the basic building blocks of the utilized networks can be taken from
figure and will be explained in the following.

2D Convolutions. Similar to the 3D convolution as introduced in Subsection B.1.1]
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we can define the 2D convolution in deep learning as:

K L
g[—z,—vy] *hxy:Zthl [z +k,y+1] (5.4)

k=0 =0

1D max-pooling. The 1D max-pooling with filter size Nx1 takes the maximum
value along the axis the feature vectors are stacked. Thereby it reduces a tensor of
shape Nx1xK to 1x1xK.

Activation Functions. The activation function again is a scalar function applied
element-wise to a volume, introducing non-linearities.

2D Batch Normalization. Batch normalization again is implemented as proposed
in[29] with normalization overall dimensions except the channel dimension.

Tile. The tile block repeats the tensor along one dimension. In our case, it repeats
it along the first dimension.

5.2.2 PointNet

PointNet[67], compared to other approaches, is a network that can work directly on
an irregular format such as a point cloud. It is invariant to permutation the input
points and also can take an arbitrary number of points. The basic idea is to use a
symmetric function on identically transformed elements of the point set, i.e. we get
a overall function describing the network:

fHz,zn}) =g(h(z1),....,h(xN)), (5.5)

where {z1, ..., zx} is the point set and g is a composition of a single variable function
and a symmetric function, which was chosen to be the max-pooling function. The
function h is realized with a series of layers with 2D convolutions and subsequent
activation function. In this way, a stack of MLPs is realized that takes the point
cloud as an input and outputs a feature vector for each point. The MPLs all share
the same weights hence our function h is one MLP itself.

The original network was applied on data sets for semantic segmentation on indoor
scenes to classify a room into its parts like furniture, chair, floor, table, etc. and
also on part segmentation problems for diverse rigid objects such as bags, laptops,
airplanes, etc.



5.2. POINT BASED NEURAL NETWORKS 45

onehot
Nx1x16

Q> X0 X ®|]D [sotma]

2D 2D 2D
1x1 1x1 1x1 1x

Nx1x3024 Nx1x256 Nx1x256 Nx1x128 Nx1x50

PCDH%UDH%DDH?UDU.H %I]DD@I]DD L] = H

1x1
Nx1x3 Nx1x3 Nx1x64 Nx1x128 Nx1x128 Nx1x128 Nx1x512 Nx1x2048  1x1x2048  Nx1x2048

Figure 5.7: PointNet Baseline (~2Mio par. without T1 and T2)

Baseline Architecture

The baseline architecture (see figure contains five 1x1 2D convolutional layers
with subsequent batch normalization and activation function at the first stage until
the max-pooling layer. On the input the transformation T1 and after the third con-
volutional layer the transformation T2 is applied to achieve invariance of the features
against rigid transformations of the objects that shall be segmented. At the end of
the first stage, the 1D max-pooling is applied and the result is replicated for every
point and stacked together with local point-wise features from earlier layers and a
one-hot vector describing the object class. Then in the second stage, this Nx1x3024
tensor again is passed into a stack of MLPs realized through 2D convolutions and
finally, a softmax activation is applied.

Modified Architecture

The modifications to the baseline model are the removal of transformation networks
T1 and T2 as well as an additional convolutional layer. Also for our body part
segmentation problem stacking a one-hot vector with an object category was not
necessary as well as the last layer was adapted to have 31 output channels. Thus
we end up the model as depicted in figure

5.2.3 Residual PEL Network

A further architecture proposed by Li et al.[41] was utilized for the formulated
segmentation task. Similar as PointNet the concept of permutation invariant lay-
ers(PEL) is used with the help of an MLP and 1D max-pooling. But instead of
using very deep MLPs he introduces a layer just containing a single layer MLP
stack, which can again be implemented through 2D convolution and max pooling
layer. Furthermore instead of stacking he aims at learning a residual function by
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Figure 5.8: PointNet Modified (~2Mio par.)

adding the unprocessed signal to the signal passed through max-pooling, tiling, 2D
convolution and the activation function. With this layer, which he calls PEL layer,
he builds a very deep network consisting of 39 PEL layers, which can be seen in

figure [5.9]

Baseline Architecture

The baseline architecture, as depicted in figure[5.9| consists of 3 residual blocks with
64, 256 and 2048 channels at the output. Each residual block itself consists of 13
PEL layers, that contain as many channels as the output of the residual block has
channels.

Modified Architecture

In order to be able to train the network on larger point clouds, the network was
reduced by the last residual block compared to the baseline model. Furthermore,
additional batchnormalization layers were introduced, one after each 2D convolution.
Additionally, an output layer with a 2D convolution and softmax was added to end
up with tensor of shape Nx1x31, which can be seen from figure [5.10]
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Figure 5.9: Residual PEL Network Baseline (~13Mio par.)
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Figure 5.10: Residual PEL Network Modified (~0.8Mio par.)
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Chapter 6

Evaluation

6.1 Training

For training and evaluation of the neural networks, an NVidia Quadro P5000 with
16GB graphics memory was used. The time measurements were performed with
an NVidia GTX 1070. The parameters for training can be taken from table
To optimize the networks a cross-entropy loss was applied to the outputs of the
networks, described in Section [5] Furthermore, the data set used for training can
be taken from table in Chapter 4. Note, that to make training possible for all
networks in terms of graphics memory, the original resolution of 512x256x512 was
reduced to 128x64x128 by a simple downsampling procedure. This lower resolution
was then used to train all networks. Also, random shuffling of the data set was

applied for training.

Residual PEL

Parameters V-net 3D U-Net | PointNet

Network
initial 0.05 0.05 0.0005 0.0001
learning rate
optimizer SGD SGD SGD SGD
learning rate decay 0.7 0.7 0.7 0.7
learning rate decay step | 5000 5000 5000 5000
momentum 0.99 0.99 0.99 0.99
batch size 4 1 16 16
points for training 10k 10k 10k 10k
resolution 128x64x128 | 128x64x128 | 128x64x128 | 128x64x128

Table 6.1: Training Parameters
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6.2 Evaluation Measures

To evaluate the performance of the investigated networks on the segmentation task
classical evaluation measures for segmentation were applied such as the true positive

rate (TPR) (6.4) and the dice score (6.2)).

TP

TPR= —— 1

I TP+ FN (6-1)
oT P

F, = 2

""" OTP+ FP+FN (6-2)

Hereby the TP, TN, FP and FN denote the true positives, true negatives, false
positives and false negatives respectively.
The macro average TPR for class K calculates to:

N

1

K _ K

TPRy, =+ > TPR} (6.3)
n=1

where N denotes the number of samples and TPRE the true positive rate for class

K of a sample with index n . Similarly the macro average dice score is defined:

N
1
Ff., = ~ > R (6.4)

n=1

In addition to these performance measures of the segmentation the inference time
was measured for all network types as well.

6.3 Quantitative Results

After training, the proposed networks were evaluated on the test set according to
the table[d In figure[6.1one can see the distribution of the macro average T PR over
the classes for all proposed networks, achieved on the test set. In terms of macro
average T PR, the best network is the shallow version of the V-net with a mean
TPR of 0.943. But all V-net architectures perform quite similar. The 3D U-net and
PoinNet lie a little behind with around 0.90 and 0.89 TPR. The modified residual
PEL architecture seems to be the bottom of the proposed architectures. The F}-
score gives an identical ranking as the TPR in terms of segmentation performance
as can be seen from table |6.2] and figure [6.2

Also for measurements of the inference time, one can take a look at table It has
to be noted that the point-based approaches outperform the volumetric approaches
significantly.
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V-net shallower PointNet ResPELNet

II

3D U-Net

V-net . Residual PEL
Measures (25/50/75/100/Shallow) 3D U-Net | PointNet Network
mean TPRE | 0.019/0.928,/0.934/0.941,/0.943 | 0.902 0.807 0.794
mean FE,, 0.918/0.927,/0.933/0.940,/0.943 | 0.900 0.895 0.790
inference time(ms) | ~83/~222/~400/~544/~430 | ~719 ~18 ~25
Table 6.2: Measurements
Label V-net 25 V-net 50 V-net 75 V-net

Figure 6.3: Visualization of Predictions and Label Image 1

6.4 Visual Results

In order to gain a visual impression of the performance of the networks several
predictions with their corresponding ground truth are provided in figure [6.3}6.5] It
can be seen that images show visible errors for the V-net 25 and both point-based
approaches. Furthermore, a difference between the point-based networks and the 3D
convolutional networks has to be noted. The point-based networks tend to keep the
topology the same, whereas speckle occurs at some positions at the convolutional
networks, e.g. at the V-net 25.
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Figure 6.4: Visualization of Predictions and Label Image 2
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Figure 6.5: Visualization of Predictions and Label Image 3
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Chapter 7

Discussion

As can be seen from the results all networks achieve quite good TPR/F1-score on
the test set, both measures are around 0.9 and above for all networks except the
second point based architecture. That’s why they are suitable for the formulated
segmentation task. Furthermore from the fact that the performance measures for
the V-net decrease when the number of filters is reduced, but even increases when
the network is built shallower, we can conclude, that we can reduce the number
of parameters significantly for the formulated body part segmentation task. But
instead of reducing the number of filters it is more beneficial to build the network
shallower to achieve less complexity. The fact that a shallower network performs
well, also makes sense from the viewpoint of scales, since people usually never differ
in height more than in a factor of 4 (baby with 50 cm compared to a full-grown man
of 200cm height). Hence two down-sampling steps are sufficient. As a further result
we can conclude, that it is beneficial to learn residual functions in 3D networks
since V-net outperforms the 3D U-Net slightly. The fact that PointNet outperforms
the residual PEL network significantly has the following reason. The residual PEL
network was built to perform on a lower number of points compared to 10k points. As
more points contain more information about the scene, the compression bottleneck
should be wider. This compression bottleneck is given by the length of the feature
vector after the max-pooling layer and the length of this vector is crucial for a good
segmentation performance, as also stated in [67] for general permutation invariant
layers. Due to the fact that we reduced the length of this feature vector from
2048 to 64, we end up with a worse segmentation performance. As can be seen
from the presented timing measurements the point-based approaches outperform
the 3D CNN approaches. That can be explained from the fact that the point-based
approaches act on a more compact representation of the volume and hence need
fewer computations for inference.
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Chapter 8

Conclusion

8.1 Summary and Findings

To sum things up, as a first step we approached the formulated problem statement
as body part segmentation problem, which was inspired by extensive literature re-
search in human pose estimation. To cope with the problem of having no suitable
public data set or appropriate labels for real-world body scans, we developed a fully
automatic pipeline for data set synthesis based on classical animation methods. Fur-
thermore, we approached the problem of having no labels by developing a method
for generating rich ground truth for volumetric rendered dense point clouds for an
arbitrary number of body parts. Then there is the data set itself which was built
by defining a canonical avatar, sampling persons from the body model, recording
MOCAP data and finally feeding that data into the synthesis pipeline. Thereby we
also defined a further restriction on the data set, namely being textureless. Learning
on textureless data enables us to directly apply those methods on real-world body
scans after binarization.

For approaching the problem of correspondence estimation itself, we combined in-
spirations like the body part problem formulation and network architectures from
various domains such as the medical domain, the general segmentation domain, and
the human pose estimation domain.

To conclude we propose several methods for the body part segmentation problem.
Whereas the point-based approaches are superior in terms of timing, the 3D CNNs
outperform point base approaches in precision. In the context of the described body
scanners real-time approaches are preferred and hence the point-based approaches
are more suitable for that application.

8.2 Limitations

The proposed data set is limited by the realism of the animations. i.e. it does not
include real word soft-tissue deformations as the data sets like FAUST[7], DYNA[65]
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and D-FAUST[R]. Also, MOCAP data was only captured with Kinect, and not a
professional motion capture setup. Furthermore, no information from the texture
space is used, which might be beneficial for the correspondence estimation.

Since these limitations affect the data set they also affect the data-driven models
and the performance on real-world scans.

Furthermore, from a conceptional point of view only rough correspondences are
provided due to the body part segmentation approach. Nevertheless, by increasing
the number of body parts the correspondences become more dense.

8.3 Future Work

To address the shortcomings of realism one could try to incorporate the SMPL model
if it comes to non-commercial use or try to register meshes on real-world body scans
from the imaging system. This both would increase the realism of the data set.
Furthermore, a professional motion capture setup could be considered for animation
to gain more naturally looking skeleton motions without jitter.

To address the dense correspondence limitation one could build on work from [I5]
30], which both try to establish shape correspondences. For establishing dense
correspondences also UV-maps as utilized from Giiler et al.[72] could be used to
estimate correspondences or a direct estimation of an underlying mesh could be
targeted.

Finally, future work could go into the direction of the incorporation of texture,
which is provided by the body scans. This, for example, could be done via design-
ing a CycleGANs[99] for mapping between synthesized data and real data or via
registration of meshes onto real-world scans.
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Appendix A

Electromagnetics

A.1 Maxwell’s Equations in differential form

The following equations, called Maxwell’s equations, describe the basic electrical
field relations in a differential form.

V-E=— (A1)
€o
V-B=0 (A.2)
0B
= —— A.
V xE 5 (A.3)

VxB= Ho (J + 80%—?) <A4>
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