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Abstract

Hand pose estimation with objects is challenging due to object occlusion and the
lack of large annotated datasets. To tackle these issues, we propose an Augmented
Autoencoder based deep learning method using augmented clean hand data. Our
method takes 3D point cloud of a hand with an augmented object as input and
encodes the input to latent representation of the hand. From the latent representa-
tion, our method decodes 3D hand pose and we propose to use an auxiliary point
cloud decoder to assist the formation of the latent space. Through quantitative and
qualitative evaluation on both synthetic dataset and real captured data containing
objects, we demonstrate state-of-the-art performance for hand pose estimation with
objects.
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Chapter 1

Introduction

Hand pose estimation plays an important role in many human-robot interaction
tasks, such as teleoperation, virtual/augmented reality and robot imitation learning
[ZRG+07][JNC+15][PCBC13][ACVB09]. These applications require real-time and
accurate hand pose estimation in 3D space. Recently, deep learning based methods
have made significant progress in this area, which can be categorized to depth-based
approaches [LL19][GCWY18][GLYT16][GLYT17][WPVGY17][WPVGY18][OWL15]
and RGB-based approaches [ZB17][YY19][BBT19][POA18][MBS+18][lLLY19]. De-
spite the success of these methods, they rarely concern the hand-object interaction
cases. These methods typically fail in manipulation tasks because of the occlusions
caused by the grasped object. (Fig. 1.1)

Figure 1.1: A previous hand pose estimation work [LL19] fails in hand-object inter-
action tasks.

Recently, several works start to take object occlusion problems for hand pose es-
timation task into consideration. The majority are tracking based approaches
[SMZ+16][KA13][TBS+16][HSKMVG09][OKA11b]. The robust performance of these
methods relies on tracking algorithms to exploit the temporal constraints between
consecutive frames in input sequence. However, a good initialization is required for
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Figure 1.2: The raw data are captured from a RGB-D camera. We use only the depth
image to acquire the input cloud. The RGB image is used for visualization. For the
output, besides the predicted pose, a clean hand is simultaneously reconstructed.
(Brightness in point cloud indicates depth, i.e. darker denotes further.)

the first frame, and sometimes tracking drift happens. Other conventional methods
[OKA11b][BTG+12][TBS+16] resort to multi-camera setups to reduce the influence
of object occlusions from multiple viewpoints. However, it is expensive and complex
to set up a synchronous and calibrated system with multiple sensors.

Currently, hand pose estimation for hand-object interaction cases is limited by ex-
isting available datasets. Public large-scale datasets with reliable 3D ground-truth
annotations are lacking due to the complexity of annotating 3D hand pose. Although
some large-scale datasets, like Hands2017Challenge [YYGHK17], have accurate 3D
pose annotations, they are entirely composed from clean hand samples. Therefore,
it is worth considering how to utilize existing clean hand datasets for hand-object
cases.

In this work, we propose a novel deep learning framework using Augmented Au-
toencoder to tackle hand-object interaction problem in hand pose estimation tasks.
Our method takes 3D occluded hand point cloud as input, which is obtained by a
random data augmentation process from clean hand samples. The encoder extracts
point-wise features and fuses them to a latent vector. Addressing the problem of
object occlusion in hand-object interaction cases, we use an auxiliary decoder to
reconstruct the clean hand point cloud from the latent vector, and another decoder
estimates simultaneously the 3D hand pose from it. To the best of our knowledge,
this is the first work that uses 3D point cloud data to tackle object occlusion prob-
lem in hand-object interaction tasks (Fig. 1.2).

Our contribution can be summarized as follows:
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• We present an augmentation strategy to simulate hand-object interaction cases
utilizing existing large clean hand datasets. Since unlimited types of objects
could be augmented, the trained model is more generalizable on unknown
objects.

• We propose an auxiliary clean hand reconstruction decoder to improve the
quality of the latent space, which in turn improves the hand pose accuracy.

• We demonstrate the advantages of the proposed augmentation and reconstruc-
tion approaches both qualitatively and quantitatively through multiple exper-
iments.
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Chapter 2

Related Work

In this chapter, we first review some hand pose estimation works on both clean
hand and hand-object interaction cases. Then we briefly introduce the backbone
of our framework, Augmented Autoencoder. Finally, we review some 3D point
cloud reconstruction works, where the utilized 3D shape reconstruction method,
FoldingNet, is introduced.

Clean Hand Pose Estimation

In the past few years, a lot of 2D deep learning based research for clean hand pose es-
timation has been done [WPVGY18][OWL15][WPVGY17][ZB17][SSPH18][YY19].
In particular, 2D depth image based methods demonstrate robust performance.
Oberweger et al. [OWL15] use 2D CNN to estimate the hand pose from the image
features, where they introduce a bottleneck layer to force the predicted pose obey
certain prior distribution. Wan et al. [WPVGY18] estimate hand pose with a pro-
posed pose parameterization strategy, which decomposes the pose parameters into
a set of per-pixel estimations, i.e. 2D/3D heat maps and unit 3D directional vector
fields, to leverage the 2D and 3D properties of the input depth map.

Recently, 3D deep learning methods gain more attention due to the abundant in-
formation in input data [LL19][QYSG17][GLYT16][GLYT17]. Ge et al. [GCWY18]
present a PointNet [QYSG17] based approach that directly takes point clouds as
input to regress 3D hand joint locations. In order to handle variations of hand
global orientations, they introduce the oriented bounding box (OBB) to normalize
the hand point clouds. Li et al. [LL19] propose a point-to-pose voting based resid-
ual permutation equivariant network for hand pose estimation task. Without the
need of complex preprocessing steps, their method takes unordered 3D point cloud
as input to compute point-wise features and through weighted fusion to obtain final
hand pose estimates. Despite their good performance on hand pose estimation, they
commonly ignore the crucial hand-object interaction cases.
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Hand Pose Estimation with Object Interaction

There are some previous works that have taken the problem of object occlusion in
hand pose estimation task into account [CHYCR17][TA18][ZBYX19][YK18][GWF+19]
[MEC+17][TBP19].

The work by Tekin et al. [TBP19] has impressive success of 3D hand pose estimation
jointly with other parallel tasks. Their method takes a sequence of frames as input
and outputs per-frame 3D hand and object pose predictions along with the estimates
of object and action categories for the entire sequence, whereas it relies too much
on frame sequence rather than single image. Gao et al. [GWF+19] propose an
object-aware method to estimate 3D hand pose from a single RGB image, where
they rely on a deep structure to infer the category of the grasped object shape
under the assumption that objects of a similar category are grasped in a similar
way. Boukhayma et al. [BBT19] propose to use extracted hand parameters to
control a mesh deformation hand model MANO [RTB17] and project it into image
domain to train the network. A similar hand model based work by Hasson et al.
[HVT+19] uses a contact loss to describe the spatial state of hand and object when a
hand manipulates object, i.e. using a repulsion loss to penalize interpenetration and
an attraction loss to encourage the hand to be in contact with the object. These
methods require complex annotation process and could not fully utilize existing
annotated clean hand datasets for hand-object interaction cases.

From Autoencoder to Augmented Autoencoder

Originally, the Autoencoder model introduced by Hinton et al. [RHW85] is used for
dimensionality reduction for high dimensional data. The training objective of Au-
toencoder is to reconstruct the input after passing through a low dimensional space.
With the success of deep learning networks, many variants [HYW+15][CKS+16][N+11]
of Autoencoder emerged and have shown robust performance. Particularly, Vincent
et al. [VLL+10] propose a Denoising Autoencoder to reconstruct denoised test data.
Their strategy proposes to apply artificial random noise to input data while the
reconstruction stays clean. Their work shows that the latent representation can be
invariant to the insignificant input noise.

In 2018, Sundermeyer et al. proposed a real-time RGB-based pipeline for object
detection and 6D pose estimation [SMD+18]. In their work, to remove the ef-
fects of object occlusions and background clutters, a random augmentation process
with artificial occlusions and clutters is applied to the training data, by which they
demonstrate that this training procedure enforces invariance not only against noise
but also against a variety of different input augmentations. Encouraged by the idea
of augmentation invariance, we apply a random augmentation process on clean hand
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samples of existing datasets to generate our input, and recover corresponding clean
hand samples with an auxiliary 3D shape reconstruction decoder.

3D Shape Reconstruction

3D Shape Reconstruction using deep learning has made a lot of advancement in
recent years [SUHR17][CXG+16][GFK+18][YFST18][FSG17]. Fan et al. [FSG17]
propose a conditional shape sampler, capable of predicting multiple plausible 3D
point clouds from the input pair of a 2D image and an additional random vector,
which is used to perturb the prediction from the image. Yang et al. [YFST18] pro-
pose a folding-based network, FoldingNet, which deforms a canonical 2D grid onto
the underlying 3D target surface of a point cloud with two consecutive folding op-
erations. FoldingNet consumes only about 7% parameters of a fully-connected layer
based neural network to reconstruct a 3D target. Their method achieves low recon-
struction errors even for targets with delicate structures. Groueix et al. propose
a shape generation framework, AtlasNet [GFK+18]. Compared with FoldingNet,
AtlasNet represents a 3D shape as a collection of multiple parametric surface ele-
ments instead of a single surface element. Their method achieves state-of-the-art
reconstruction performance with multiple patches.

A critical challenge in 3D shape reconstruction is to evaluate the predicted point
cloud. The loss function should be not only computationally efficient but also dif-
ferentiable with respect to point coordinates. The Chamfer Distance (CD) and the
Earth Mover’s Distance (EMD) [RTG00] are two outstanding candidates to compare
the reconstructed clean hand point cloud with ground-truth in our work.
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Chapter 3

Methodology

In this chapter, the technical approaches of our method are presented. Firstly, we
give an overview of the proposed framework. Then, the detailed data processing
approach is introduced. Finally, in the implementation subsection, we introduce the
theoretical models behind our model, based on which we show how we implement our
networks, such as the encoder, the clean hand reconstruction decoder and the pose
estimation decoder. Additionally, the corresponding training losses are expanded in
details.

3.1 Overview

The framework of our method is illustrated in Fig. 3.1. For visual convenience of 3D
points, all points are painted with color of different levels of brightness with respect
to the distance to camera. That is, a point is darker when it is more distanced, and
vice versa. In the later sections, we obey this rule by default.

As depicted, our method takes an occluded hand point cloud as input, which is
generated by a random augmentation process. For the encoder, we use a residual
network version of Permutation Equivariant Layer (PEL) to extract point-wise fea-
tures and a voting-based scheme [LL18] followed by a fully-connected layer to merge
valuable information from individual point to final Gaussian distributed latent vec-
tor. Then, the acquired latent vector is used to reconstruct clean hand point cloud
and estimate hand pose by the decoder side. The auxiliary Decoder 1 is a folding-
based deep network named FoldingNet [YFST18], which expressively folds out the
reconstructed clean hand point cloud, while Decoder 2 estimates hand pose with
a deep fully-connected network. Alternatively, we also try an AtlasNet [GFK+18]
based reconstruction decoder for the auxiliary Decoder 1. Correspondingly, they
have their own loss functions, reconstruction loss and pose loss. Since this archi-
tecture is based on the VAE [KW14] theory, a KL loss for latent variables is also
crucial in our method.
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Figure 3.1: Overview of our method. The input of our network is an occluded hand
point cloud, which is obtained by a random augmentation process from a clean hand
point cloud. The encoder encodes the input hand to a latent vector. The obtained
latent vector is then used to reconstruct clean hand point cloud by the auxiliary
Decoder 1 and predict 3D hand pose by Decoder 2. There are three losses in our
VAE based framework, which are the KL loss, reconstruction loss and pose loss.
(Brightness in point cloud indicates depth, i.e. darker denotes further.)

3.2 Data Processing

For data processing, two significant approaches are the view normalization (Section
3.2.1) of the hand point clouds obtained from depth images and the data augmen-
tation process (Section 3.2.2) for clean hand point clouds.

3.2.1 View Normalization

For pre-processing of the data frames, firstly, the depth pixels in the raw depth
images are converted to 3D points. Then, a 3D bounding box is created for the
hand points to obtain normalized coordinates of these points. The commonly used
method will simply create a bounding box aligned with the camera coordinate sys-
tem. However, this will lead to different set of observation points for the exact same
pose label, which causes one-to-many mapping of the input-output pairs (Fig. 3.2a).

In order to maintain the one-to-one mapping relation of the input-output pairs, we
use a view normalization process on each hand point cloud to align the the bound-
ing box’s z-axis [0, 0, 1]T with the view direction towards the hand centroid point
c ∈ R3. The alignment is performed by rotating the hand points with the rotation
matrix Rcam:
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Figure 3.2: View normalization for hand point clouds. Red skeletons indicate
ground-truth pose, green points indicate observed points of the camera. a) Due
to different view directions, different observations lead to the same hand pose, thus
the resulted training samples will contain one-to-many mappings. b) With view
normalization, the different observations will also have different pose labels, thus
the input-output pairs have the one-to-one mapping relation. [LL18]

αy = atan2(cx, cz),

c̃ = Ry(−αy) · c,
αx = atan2(c̃y, c̃z),

Rcam = Ry(−αy) ·Rx(αx),

(3.1)

where Rx, Ry are the rotation matrices around the x-axis and y-axis respectively.
If the rotation angle is θ, Rx, Ry are defined as:

Rx(θ) =

 1 0 0
0 cosθ −sinθ
0 sinθ cosθ

 ,
Ry(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 .
(3.2)

After rotating the observation points and ground truth pose with the rotation matrix
Rcam, the hand is rotated such that it appears right in front of the camera. As
illustrated in Fig. 3.2b, the one-to-many mapping problem is avoided.

3.2.2 Data Augmentation

The motivation behind our Augmented Autoencoder based hand pose estimation
framework is to control what the latent vector encodes and which properties are
ignored. To take advantages of current large-scale clean hand dataset, we apply
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Figure 3.3: Combination results. (Brightness in point cloud indicates depth, i.e.
darker denotes further.)

a random augmentation process by superimposing random objects from ShapeNet
[CFG+15] on clean hands to simulate hand-object interaction scenarios in reality.
Simultaneously, the clean hand point cloud also serves as the ground-truth for re-
constructed points by the auxiliary Decoder 1. Through this approach, we make the
latent representation invariant against object occlusions when a hand is in contact
with an object.

Specifically, the augmentation work contains mainly three steps, which are ”combine
hand point cloud and object”, ”project combined point cloud to depth image” and
”project depth image to occluded hand point cloud”.

Combine hand point cloud and object

For the variability of training samples, we randomly select a normalized object point
cloud from the preprocessed ShapeNet dataset. In addition to this, we perform some
basic transformations, i.e. random rotation, scaling and translation on the object.
The random scaling operation resizes the object to the comparative size with a hand.
Then, with a random translation, we shift the object around the average center of
all joints to simulate real case when people grab an object.

For the rotation operation, firstly, we sample three random angles θx, θy, θz within
[−π, π] radian. Then the object points are rotated by θx, θy and θz around the x-,
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y- and z-axis respectively using the rotation matrix R:

R = Rx(θx) ·Ry(θy) ·Rz(θz), (3.3)

where Rx, Ry are defined in Equation 3.2, and the rotation matrix Rz is defined as:

Rz(θ) =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 . (3.4)

For each point p = [x, y, z]T in the object point cloud, the obtained point p′ =
[x′, y′, z′]T after the basic transformations is: x′

y′

z′

 = γR

 x
y
z

+ t, (3.5)

where γ is the scaling factor and t = [tx, ty, tz]
T denotes the random translation.

The last step is to superimpose the object on a hand sample. Some combination
results are depicted in Fig. 3.3.

Project combined point cloud to depth image

Generally, 3D data are collected in the form of depth image by various cameras in
reality. Therefore, we next render the combination results to depth images, where
we only keep the point which is the closest to the camera among those projected
to the same 2D image grid. Meanwhile, in order to acquire good occlusion quality,
we take three measures. First, we sample as many points as possible from the 3D
meshes in ShapeNet during the previous pre-processing. Second, within an appro-
priate range, we make the distance of the camera from the point cloud far enough
during projection. The last one is that we adjust the size of pixel grid to a suitable
value, which is 80×80 depth image.

For each 3D point [x, y, z]T , the location of the corresponding pixel on the depth
image is in column u and row v with the value d:

u =
x

z
· fx + u0,

v =
y

z
· fy + v0,

d = z,

(3.6)

where u0, v0, fx, fy are the intrinsic parameters of the depth camera. The trans-
formed depth images corresponding to the combinations in Fig. 3.3 are illustrated
in Fig. 3.4. As mentioned before (Section 3.1), brightness indicates depth value.
Brighter pixel represents smaller depth value, and vice versa.
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Figure 3.4: Project combination results to depth images. (Brightness indicates
depth, i.e. darker denotes further.)

Project depth image to occluded hand point cloud

For the last step of data augmentation, we convert depth images to occluded hand
point clouds, which is the inverse transformation of Equation 3.6:

x =
z

fx
· (u− u0),

y =
z

fy
· (v − v0),

z = d,

(3.7)

Fig. 3.5 shows the occluded hand point clouds corresponding to those depth images
in Fig. 3.4.

Figure 3.5: Project depth images to final occluded hand point clouds. Brightness
indicates depth value, namely, darker point denotes that the point is more distanced
to camera, and vice versa.

3.3 Implementation

As depicted in Fig. 3.1, the whole framework consists of a clean hand point cloud
reconstruction network and a hand pose estimation pipeline. In this section, we
will firstly introduce the theoretical models behind our method, Augmented Au-
toencoder (Section 3.3.1) and Variational Autoencoder (Section 3.3.2). Then, all
invoked components in this network are elaborate in respective subsections, such
as Residual Permutation Equivariant Layer based Encoder (Section 3.3.3), Folding-
based Decoder for Points Reconstruction (Section 3.3.4), and Fully-connected Layer
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based Decoder for Pose Estimation (Section 3.3.5). Furthermore, three training
losses in our method are expanded in details in Section 3.3.6.

3.3.1 Augmented Autoencoder

Augmented Autoencoder (AAE) serves as the backbone of our method, which is
from the work Implicit 3D Orientation Learning for 6D Object Detection from RGB
Images [SMD+18] by Sundermeyer et al..

In the first part of this work, an augmented training model is proposed to remove
the effects of object occlusions and background clutter. The training architecture is
illustrated in Fig. 3.6. The target batch is reconstructed after the augmented input
passing through a low-dimensional bottleneck, referred to as the latent representa-
tion. And the loss function is simply a sum over the pixel-wise L2 distance between
the reconstruction result and the original training data.

Figure 3.6: Training process for the AAE. a) reconstruction target batch of uni-
formly sampled SO(3) object views; b) geometric and color augmented input; c)
reconstruction results. [SMD+18]

Actually, the motivation behind the AAE is to control what the latent representa-
tion encodes and which properties are ignored. In this work, random augmentation
is applied to the input images against which the encoding shall be invariant. Sun-
dermeyer et al. successfully confirm that this training strategy produces latent
representations which are able to be invariant to a variety of different input aug-
mentations. Encouraged by this, we introduce this strategy to our framework by
the data augmentation process in Section 3.2, to make the encodings invariant to
the insignificant objects.
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3.3.2 Variational Autoencoder

In our work, we have a modified training procedure for the AAE. Considering
the excellent adaptability and generative ability of Variational Autoencoder (VAE)
[KW14] to various data, we construct our network based on the theoretical model
of VAE.

Figure 3.7: A training-time VAE with reparameterization trick. Dash line box shows
loss layers, µ(x) and Σ(x) denote the mean and the variance of the latent variable
z, φ and θ signify model parameters.

Fig. 3.7 shows the probabilistic model of a training-time VAE. The VAE framework
consists of a recognition model qφ(z|x) and a generative model pθ(x|z), where x
is the observed random variable, z denotes latent variable, φ and θ signify the re-
spective model parameters. Here, since the true posterior pθ(z|x) is intractable, it
invokes the variational approximate posterior qφ(z|x) to be multivariate Gaussian
with a diagonal covariance structure. The probabilistic encoder qφ(z|x) produces
a distribution over the possible values of the code z given data x. Note that the
latent variable z is assumed to be the centered isotropic multivariate Gaussian, i.e.
pθ(z) = N (z; 0, I). And given code z the probabilistic decoder pθ(z|x) produces a
distribution over the corresponding values of x.

The optimization objective for VAE is to maximize the variational lower bound
L(φ, θ; x), which is the sum of a KL divergence term −DKL(qφ(z|x)||pθ(z)) and
a negative reconstruction error term in autoencoder parlance. The KL divergence
term can be interpreted as regularizing φ, encouraging the approximate posterior to
be close to the prior pθ(z).

VAE model exhibits excellent performance in implementing efficient approximate
posterior inference of the latent variable given an observed value and allows us to
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perform all kinds of inference tasks where a prior over observed data is required.
Therefore, it is an outstanding solution for our use case, i.e. to remove the effects
of object occlusions.

3.3.3 Residual Permutation Equivariant Layer based En-
coder

The encoder in our method is a modified structure based on Residual Permutation
Equivariant Layer (PEL) in Point-to-pose Voting based Hand Pose Estimation using
Residual Permutation Equivariant Layer [LL18]. In this paper, Li et al. utilize PEL
as basic element for a deep network to extract point-wise features of an unordered
point cloud and merge these features with a novel point-to-pose voting scheme to
final hand pose. Considering the similarity of the hand pose estimation problem, we
invoke this method as part of our encoder components to extract latent variables of
the hidden random process.

Figure 3.8: Residual PEL based encoder network. K denotes the number of dimen-
sions of latent variables, dash line box describes the detailed structure for one of the
residual blocks.

As illustrated in Fig. 3.8, the encoder in our method is a modified structure based
on Residual Permutation Equivariant Layer (PEL) [LL19]. The input occluded hand
point cloud Pa ∈ RN×3 represented byN unoredered 3D points passes firstly through
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a residual PEL module, which consists of 3 residual PEL blocks. Then point-wise
feature F1 ∈ RN×1024 is computed for each individual input point, where each row
of F1 represents the local feature for one point. The obtained F1 is imported to
two separate point-wise fully-connected modules respectively. Correspondingly, two
separate terms are computed, an importance term G ∈ RN×256 and a new feature
term F2 ∈ RN×256, where the local feature dimension for each point is shrunk to
256. Each element of G indicates the weight for corresponding feature value in F2

and provides vital information of the importance of current feature value. Then, by
a weight fusion module, we merge the information of both terms to F3 ∈ R256:

fi =

∑N
n=1(GniF2ni)∑N

n=1 Gni

, (3.8)

where fi is the i-th feature value in F3.

In order to extract complex features, we use a 5-layer perceptron to encode F3 to the
final K-dimensional latent vector, which consists of a latent mean vector µ ∈ RK ,
and a latent standard deviation vector σ ∈ RK .

During training stage, a reparameterization process to sample from the distribution
of the latent vector [KW13] is needed:

z = µ + σ � ε, (3.9)

where ε ∈ RK , ε ∼ N (0, I) and � denotes element-wise multiplication. The final
latent vector z ∈ RK is Gaussian distributed and z ∼ N (µ,σ2).

3.3.4 Decoders for Points Reconstruction

For clean hand point cloud reconstruction, we have two candidates, which are Fold-
ingNet and AtlasNet, respectively. In this section, the modified versions of both
approaches are introduced.

FoldingNet based Decoder

The folding based decoding operation proposed by Yang et al. in FoldingNet: Point
Cloud Auto-encoder via Deep Grid Deformation [YFST18] is strongly expressive and
universal in constructing point clouds. In our work, we use a modified version of
the folding-based method to implement 3D clean hand point cloud reconstruction
for Decoder 1. The architecture of this deep decoder network is illustrated in Fig.
3.9.

The obtained latent vector z from encoder is fed into Decoder 1. Assume that we use
N points to represent the reconstructed clean hand point cloud P̂ ∈ RN×3, besides
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Figure 3.9: FoldingNet based decoder network for points reconstruction. K denotes
the number of dimensions of latent variables.

z, N fixed 2D grid points uniformly sampled from a unit square are needed. Addi-
tionally, the latent vector z is replicated N times. Totally, we perform 2 consecutive
folding operations in this decoder network. The 1st folding is started by concate-
nating the 2D grid points to the replicated latent variables, and the 2nd folding
concatenates the intermediate point cloud from 1st folding to the replicated latent
variables again. We call the concatenated results feature vectors. Both the feature
vectors from concatenation are then processed through a 5-layer perceptron. Each
perceptron layer is independently applied to the feature vector of a single point, i.e.
each row of the feature vectors.

After two consecutive folding operation, the reconstructed clean hand point cloud
P̂ is produced.

AtlasNet based Decoder

AtlasNet proposed by Groueix et al. [GFK+18] represents a 3D shape as a collec-
tion of parametric surface elements, which is obtained from a set of 2D squares. The
model is illustrated in Fig. 3.10.

For the approach with one batch, their method is actually similar to the architecture
of FoldingNet with one time folding operation. Besides the latent shape represen-
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tation, the approach takes a set of 2D grid points as additional input, which are
uniformly sampled in the unit square. These points are used to generate points on
the 3D shape surface (Fig. 3.10(a)). This approach can be repeated multiple times
to represent a 3D shape as the union of several surface elements (Fig. 3.10(b)).
AtlasNet achieves state-of-the-art performance with multiple patches.

(a) AtlasNet with one patch.

(b) AtlasNet with K patches.

Figure 3.10: The shape generation approach for AtlasNet. [GFK+18]

In our work, we use a modified version of AtlaNet with 5 patches to reconstruct
the clean hand point clouds for Decoder 1. The architecture of this deep network is
illustrated in Fig. 3.11.

The obtained latent vector z from encoder is fed into Decoder 1. Assume that we
use N points to represent the reconstructed clean hand point cloud P̂ ∈ RN×3, be-
sides z, N/5 fixed 2D grid points uniformly sampled from a unit square are needed.
For each patch, the latent vector z is replicated N/5 times and then concatenated
with the grid points to obtain the feature vectors. Then, the feature vectors from
concatenation are processed through a 5-layer perceptron. Each perceptron layer is
independently applied to the feature vector of a single point, i.e. each row of the
feature vectors. After 5 parallel pipelines for these feature vectors, 5 patches are
acquired and combined to the final reconstructed clean hand point cloud P̂.

Note that, in order to compare the two candidates for clean hand points recon-
struction, for the AtlasNet based decoder we use comparative number of parameters
to the FoldingNet based decoder. As we can see from the structure of the Atlas-
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Figure 3.11: AtlasNet based decoder network for points reconstruction. K denotes
the number of dimensions of latent variables.

Net based decoder network, 3 more 5-layer perceptrons are used compared to the
FoldingNet based decoder.

3.3.5 Fully-connected Layer based Decoder for Pose Esti-
mation

For 3D hand pose prediction, Decoder 2, which consists of 5 fully-connected layers,
takes the reparameterized latent vector z as input and outputs the vectorized 3D
hand pose ŷ ∈ RJ , where J = 3×#joints. Since we present human hand using 21
joints, the output 3D hand pose is in a vectorized form R63, and #joints = 21.

3.3.6 Training Loss

As mentioned in Section 3.1, there are three training loss in our method, which are
Reconstruction Loss, Pose Loss and KL Loss, respectively.

Reconstruction Loss

The design of loss function for comparing the reconstructed clean hand point cloud
P̂ ∈ RN×3 and the ground truth P ∈ RN×3 is crucial for points reconstruction. The
basic requirement for the reconstruction loss function is differentiability with respect
to point locations. Since data will be forward and backward propagated for many
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times, it must be efficient to compute. Furthermore, it should be robust enough
against small number of outlier points in the sets.

In our work, we have two loss functions to evaluate the points reconstruction results:
Chamfer Distance (CD) and Earth Mover’s Distance (EMD) [FSG17].

The Chamfer Distance is defined as:

LCD
(
P̂,P

)
=

1

|P̂|

∑
p̂∈P̂

min
p∈P
‖p̂− p‖+

1

|P|
∑
p∈P

min
p̂∈P̂
‖p̂− p‖ , (3.10)

where the CD algorithm finds for each point the nearest neighbor in the other point
cloud and sums up the Euclidean distances.

The Earth Mover’s Distance requires that P̂ and P have the same size, i.e. |P̂| = |P|,
and it is defined as:

LEMD

(
P̂,P

)
=

1

|P|
min
φ:P→P̂

∑
p∈P

‖p− φ (p)‖ , (3.11)

where φ denotes one-to-one bijective correspondences from the ground-truth P to
the predicted point set P̂. The Euclidean distances of all matched point pairs are
then summed.

Both loss functions have their own intrinsic characteristics. For example, while
EMD roughly captures the shape corresponding to the mean value of the hidden
variable of the hand point cloud, CD tends to give a splashy shape that blurs the
shape’s geometric structure [FSG17]. To make the reconstruction by Decoder 1
more expressive, we combine both loss functions during training time. Therefore,
implicitly, our method requires the reconstructed clean hand points have the same
size N as the ground-truth.

Pose Loss

The training loss for hand pose is simply the L2 loss between the predicted pose ŷ
and the ground truth pose ygt ∈ RJ .

The L2 loss is defined as:

Lpose =
1

2

J∑
j=1

(
ŷj − ygtj

)2
, (3.12)

where J is the number of dimensions of the hand pose vector, i.e. J = 3×#joints.
Since we present human hand using 21 joints, the output 3D hand pose is in a
vectorized form R63, and #joints = 21.
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KL Loss

KL loss is also called KL divergence in the variational lower bound. Based on the
VAE theory, a KL loss is essential to force the computed latent vector z given ob-
served occluded data to be close to the centered isotropic multivariate Gaussian
N (z; 0, I).

The KL loss is defined as:

LKL =
1

2

K∑
k=1

(
µ2
k + σ2

k − log
(
σ2
k

)
− 1
)
, (3.13)

where K denotes the number of dimensions of the latent vector z, µk is the k-th
dimension of the latent mean µ and σk denotes the k-th dimension of the latent
standard deviation σ.

The resulting total loss for our method is the summation of LCD, LEMD, Lpose and
weighted LKL terms:

Ltotal = LCD + LEMD + Lpose + αLKL, (3.14)

where α is the weighting factor.
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Chapter 4

Experiment and Evaluation

In this chapter, we firstly introduce the training details of our method where the
parameter configuration is given. Then, the used datasets are described. Based
on these datasets we present different experiments and evaluate the performance of
different methods both qualitatively and quantitatively, where different evaluation
metrics are used.

4.1 Training Details

Our method is implemented using the TensorFlow framework [ABC+16] with the
ADAM optimizer. The learning rate is tapered down from 0.01 to 0.00001 during
the course of training. For all experiments, we use an input and reconstruction point
size of N = 625 for training, and N = 900 for testing. For the latent vector z ∈ RK ,
we set the number of dimension K = 64 and the KL Loss is weighted using a factor
of α = 0.001. Before our object augmentation process, we perform for each hand
sample random translation in all three dimensions within [−15, 15] mm, random
scaling within [0.75, 1.25] and random rotation around z-axis within [−π, π] radian.

4.2 Datasets

For training and evaluating the proposed network, we use the Hands2017Challenge
dataset [YYGHK17], the SynthHands dataset [MMS+17] and also the EgoDexter
dataset [MMS+17].

As introduced previously, the input data of our framework are artificial occluded
hand point clouds, which are acquired by combination of a random clean hand point
cloud from the existing datasets (Hands2017Challenge, SynthHands) and an arbi-
trary object from the repository ShapeNet [CFG+15]. We use the EgoDexter dataset
to compare our method with the state-of-the-art method in [MMS+17]. For data
augmentation, we use the object repository ShapeNet. This section presents some
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meaningful details about these data collections and explains some pre-processing on
them.

Hands2017Challenge

The Hands2017Challenge dataset is collected from parts of the BigHand2.2M [YYS+17]
and the First-Person Hand Action (FHAD) [GHYBK18]. The training set contains
957032 depth images, and the test set contains 295510 depth images. All samples
in Hands2017Challenge are clean hands, where the hands are not in contact with
objects.

The dataset is fully annotated (21-joints) using an automatic annotating system with
6D magnetic sensors and inverse kinematics. The depth images are captured with
the latest Intel RealSense SR300 camera at 640×480-pixel resolution. This dataset
has accurate annotations and exhibits a significantly wider and denser range of hand
poses.

Figure 4.1: Joint annotation [YYGHK17]

The joint annotations for each hand image follow the following format: [Wrist,
TMCP, IMCP, MMCP, RMCP, PMCP, TPIP, TDIP, TTIP, IPIP, IDIP, ITIP, MPIP,
MDIP, MTIP, RPIP, RDIP, RTIP, PPIP, PDIP, PTIP], where ’T’, ’I’, ’M’, ’R’, ’P’
denote ’Thumb’, ’Index’, ’Middle’, ’Ring’, ’Pinky’ fingers. ’MCP’, ’PIP’, ’DIP’,
’TIP’ are joints’ names as shown in Fig. 4.1. In all experiments of this work, we
will follow this format of joint annotation.

Since our network takes unordered points as input, first and foremost, we perform
a projection to transform the raw depth images to clean hand point clouds.
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SynthHands

The egocentric dataset SynthHands is a synthetic dataset created by posing a pho-
torealistic hand model with real hand motion data. It captures multiple variations
in natural hand motion, such as pose, skin color, shape, texture, background clutter
as well as camera viewpoint.

This dataset contains accurate annotated 92536 RGB-D images of clean hands and
91600 RGB-D images of hands interacting with objects, of which we use 69402 clean
samples and 68700 interacting hand samples for training. Except the training sam-
ples, the rest 23134 clean samples serve as our clean test set and 22900 interacting
samples as our interacting test set.

EgoDexter

The benchmark dataset EgoDexter consists of 3190 frames of natural hand interac-
tions with objects in real cluttered scenes, moving egocentric viewpoints, complex
hand-object interactions and natural lighting. In total 4 sequences are gathered
(Rotunda, Desk, Kitchen, Fruits) featuring 4 different users (2 female), skin color
variation, background variation, different objects and camera motion. Of these,
1485 frames are annotated with 3D finger tip positions.

We compare the 3D pose accuracy of our method to the state-of-the-art method in
[MMS+17] using this dataset. Furthermore, we exclude the Kitchen sequence due
to its many annotation errors, and use the other three sequences for evaluation.

ShapeNet

For the random augmentation process for clean hand samples, we use objects from
ShapeNetCore, which is a subset of the object repository ShapeNet [CFG+15] and
covers 55 object categories with about 51300 unique 3D models.

All 3D CAD shapes in this repository are presented in the format of ’.obj’. With an
offline preprocessing, we sample these 3D meshes to point clouds in the format of
’.pcd’ using pcl-tools, as illustrated in Fig. 4.2. After this, we perform centralization
to set the geometrical center of each object at the origin. And the last operation of
this preprocessing is normalization for each object point cloud.

4.3 Evaluation Metrics

To identify the success and failure modes of different approaches, different error
metrics are used to evaluate the hand pose results. In our work, we evaluate
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Figure 4.2: Sample meshes to point clouds. The top row shows the 3D CAD meshes
from ShapeNet and the bottom is the obtained point clouds.

the performance both qualitatively and quantitatively. Following the literature
[TSSF12][OKA11a][SKR+15], we use the following error metrics for quantitative
evaluation:

1. Mean joint error for all joints for each frame and average across all test frames in
millimeter (mm), which measures the average Euclidean distance error for all joints
across the whole test set and is defined as:

Error =

∑N
j=1

∑21
i=1 |jointi − joint

gt
i |/21

N
, (4.1)

where N is the total number of frames, jointi denotes the 3D coordinate of the i-th
joint for curren frame and jointgti is the corresponding ground truth.

2. Mean finger tip error. Similarly to mean joint error, since some datasets contain
only finger tip annotations, the mean joint error for 3D finger tip positions is used
to evaluate these test datasets.

3. Correct frame proportion, which is the ratio of frames rf that have all joints
within a certain distance to ground truth annotation defined as:

rf =
Nf

N
, (4.2)

where N is the total number of frames, Nf = g(ε) is the number of frames whose
joints are all within euclidean distance of ε to the ground truth.
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Figure 4.3: Segmentation results based on importance term. The hand-object point
cloud is indicated with different color. Blue: important hand part for pose estima-
tion, Red: less important part for pose estimation.

We evaluate the performance of our method only qualitatively on real data for the
trained model on Hands2017Challenge, because it contains no annotated samples
for hand-object interaction cases.

For the SynthHands dataset, two standard metrics are used for evaluation. The first
one is the mean joint error in millimeter (mm) that measures the average Euclidean
distance error for all joints across the whole test set. The second metric is correct
frame proportion that indicates the percentage of frames that have all joint errors
within a certain threshold compared to the ground-truth. The correct frame propor-
tion metric is challenging, since a single joint violation will cause an incorrect frame.

For the EgoDexter dataset with only finger tip annotations, we use finger tip error
for evaluation, which is the mean joint error for 3D finger tip positions.

4.4 Segmentation using Importance Term

In our Residual PEL based encoder, an importance term G ∈ RN×256 is computed
with respect to the feature term F2 ∈ RN×256. Each element of G indicates the
weight for corresponding feature value in F2 and provides vital information of the
importance of current feature value. For the input point cloud Pa ∈ RN×3, we can
get the importance vector g ∈ RN for all points by the Equation 4.3. By comparing
this importance vector g with a certain threshold, the hand-object point cloud can
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be segmented into different parts.

g =
256∑
i=1

Gni, (4.3)

Based on the Hands2017Challenge dataset, some segmentation results for the aug-
mented point clouds are shown in Fig. 4.3. The significant part of the hand is
painted with blue. The points that have less contribution to pose estimation are
indicated with red, such as the arm part and the object part. This result shows that
our method is able to recognize insignificant object and arm parts of the occluded
hand point cloud by applying smaller weights on those points.

4.5 Comparison of Reconstruction Decoders

We have tried two different 3D shape reconstruction methods in this work, which
are the FoldingNet based decoder and the AtlasNet based decoder, respectively. In
this section, we perform an experiment to compare the performance of the methods.
We train the networks on SynthHands. Specifically, the training dataset composes
of 75% clean hand samples and 25% interacting hand samples.

The qualitative results of both reconstruction decoders are shown in Fig. 4.4. As we
can see from the illustration, more detailed structures of the hands are reconstructed
by the FoldingNet based decoder compared to the AtlasNet based decoder. Intu-
itively, the 3D pose accuracy of the model using FoldingNet reconstruction decoder
is much better. The detailed quantitative comparison can be found in Table 4.1.

Table 4.1: Quantitative comparison of FoldingNet and AtlasNet based decoders on
SynthHands.

Decoders
Error on Test Dataset (mm)
clean hand interacting hand

FoldingNet 9.63 14.16
AtlasNet 22.72 29.41

On clean hand test set, the mean joint error of FoldingNet is 9.63 mm compared to
22.72 mm of AtlasNet. On interacting test set, the mean joint error of AtlasNet is
15.25 mm more compared to FoldingNet.

We find that the pose accuracy of AtlasNet is much worse than FoldingNet, although
it uses three more 5-layer perceptrons. Compared to AtlasNet, FoldingNet shows its
outperformance with fewer parameters. The possible reason for this is that AtlasNet
achieves state-of-the-art performance only with sufficient patches at the cost of more
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Figure 4.4: Qualitative comparison of FoldingNet and AtlasNet based decoders on
SynthHands. (Brightness in point cloud indicates depth, i.e. darker denotes further.)

parameters.

In our work, extremely high quality of clean hand reconstruction is not strictly
required. Predicting the hand pose with the help of the auxiliary reconstruction
Decoder 1 is our main objective. Considering the clean hand reconstruction quality
and the complexity of our network, we choose FoldingNet based decoder as the clean
hand reconstruction decoder in our framework and next experiments.

4.6 Comparison to state-of-the-art Method

To compare the performance of our method with state-of-the-art methods, we use
the benchmark dataset EgoDexter.

Since the EgoDexter dataset is only annotated on 3D finger tip positions, we use the
finger tip error to compare the performance of our method with the kinematic pose
tracking method proposed by Mueller et al. [MMS+17]. We follow the same training
dataset in their work, where all samples in SynthHands are used. As shown in Fig.
4.5, our method outperforms the state-of-the-art method on the test sequences,
achieving the average error of 28.70 mm. Compared to 32.6 mm by Mueller et al.,
our method reduces the average error by 3.9 mm.
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Figure 4.5: Comparison to state-of-the-art method on EgoDexter benchmark.

Note that the objects in EgoDexter are different from the objects in SynthHands
training data. It shows the generalization ability of our method to unknown objects.

4.7 Ablation Studies

In this section, we perform two ablation experiments to investigate the effects of the
augmentation component and the reconstruction component in our method.

Ablation Study 1

In the first ablation experiment, we mix different proportions of interacting hand
samples to training set to compare the performance of different trained models.
Then we use the optimal mixing proportion for the next experiments.

Using the training samples from SynthHands, we set 4 different training datasets
with varying percentages of hand-object interaction samples:

• Dataset A: 100% clean hand samples.

• Dataset B: 75% clean + 25% interacting hand samples.

• Dataset C: 50% clean + 50% interacting hand samples.

• Dataset D: 25% clean + 75% interacting hand samples.

Note that the interacting hand samples are not augmented during training time. In
other words, we only perform data augmentation on clean hand samples.
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The detailed comparison of mean joint errors on our both test sets can be found
in Table 4.2. We can already obtain a reasonably good result on 100% clean hand
Dataset A. Even if using only augmented hand samples from clean hand without
any interacting hand samples, the error on interacting test set is 19.13 mm, which
indicates the effectiveness of the augmentation strategy.

Table 4.2: Comparison of different training methods on SynthHands.

Training Dataset
Error on Test Dataset (mm)
clean hand interacting hand

A 9.67 19.13
B 9.63 14.16
C 10.69 14.35
D 12.52 15.99

Furthermore, the best performance is achieved with training Dataset B, which con-
tains 25% interacting hand samples. Compared to Dataset A, the mean joint error
is decreased from 19.13 mm to 14.16 mm on interacting hand test set by mixing
only a small proportion of real interacting hand samples in the training dataset.

However, with the increasing proportion of interacting hand for training, the results
become slightly worse, even on the interacting test set. The possible reason for this
is that the decrease of clean hand proportion leads to less data augmentation, which
means less random objects are seen for the training process, resulting in less gen-
eralizability on the unseen objects in the test set. Furthermore, for the interacting
training samples, hand reconstruction is not performed since there is no available
clean hand ground-truth for reconstruction, this leads to insufficient training of the
reconstruction decoder and in turn influences the quality of the latent space.

This experiment shows that, in practice, we can utilize large clean hand dataset
and mix a small proportion of interacting hand samples, which are expensive to
annotate, to achieve robust performance.

Ablation Study 2

In the second experiment, for ablation study, we set the following baselines to show
the effects of the data augmentation and points reconstruction approaches:

• Baseline 1. From the proposed method, we remove the random data augmen-
tation process for the input clean hand point clouds.

• Baseline 2. From the proposed method, we remove the Decoder 1 in our
framework, which is used to reconstruct clean hand point clouds for augmented
input clean hands.
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Table 4.3: Comparison with baselines on SynthHands.

Model
Error on Test Dataset (mm)
clean hand interacting hand

Our method 9.63 14.16
Baseline 1 15.44 20.78
Baseline 2 19.60 23.46

Both baselines are trained using Dataset B. As seen in Fig. 4.6, our method out-
performs the two baselines on both clean hand test set and interacting hand test
set. Table 4.3 shows that the results of baselines are worse even on clean hand
test set. The possible reason for this is that the latent representation in baselines
is implicitly correlated to the mixture of clean hands and interacting hands rather
than clean hands alone in our Augmented Autoencoder based framework. By this
result, we demonstrate the significant effects of the augmentation component and
the reconstruction component in our method.

4.8 Qualitative Results

Based on the Hands2017Challenge dataset, the reconstructed clean hand point
clouds corresponding to the augmented occluded hands are illustrated in Fig. 4.7.

For the SynthHands dataset, the qualitative comparison of our method with two
baselines is shown in Fig. 4.8 on the interacting test set.

For the Hands2017Challenge dataset, as the training set and test set contain only
clean hands, we train our model without mixing any interacting hands. Further-
more, we just give a qualitative result on the trained model with this dataset for
evaluation. Fig. 4.9 shows qualitative results on real data, where the hand interacts
with different objects, such as ball, bucket, phone, paper box. Although the model
is trained only with clean hand data on the Hands2017Challenge dataset, the results
shows good performance.

Note that high quality point cloud reconstruction is not strictly required in our
method. Fig. 4.9 shows that occluded objects are roughly removed after recon-
struction, indicating the importance of Decoder 1 for the formation of the latent
space of the clean hand.

4.9 Runtime

Our method runs on a PC with an AMD FX-4300 Quad-Core CPU and an Nvidia
GeForce GTX1060 6GB GPU. For the testing stage, the runtime of our method is
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25.4 ms per frame with N = 900 points as input, which is able to run at real-time
speed. The runtime can be further reduced only with a small performance loss when
less points are used.
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(a) Proportion of correct frames with respect to different error thresholds.

(b) Mean errors of different joints.

Figure 4.6: Comparison to baselines on SynthHandsTest.
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Figure 4.7: Reconstruction results corresponding the augmented occluded hands on
Hands2017Challenge. (Brightness in point cloud indicates depth, i.e. darker denotes
further.)
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Figure 4.8: Qualitative results compared with baselines on SynthHands. (Brightness
in point cloud indicates depth, i.e. darker denotes further.)
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Figure 4.9: Qualitative results on real data. (Brightness in point cloud indicates
depth, i.e. darker denotes further.)
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Chapter 5

Future Work

Although our method achieves the state-of-the-art performance, there exist some
disadvantages in the deep network model, which deserve to be improved by future
work.

5.1 Disadvantages of Our Method

As introduced in this paper, the most important two components in our method
are the data augmentation strategy, which simulates hand-object interaction cases
utilizing existing clean hand datasets, and the auxiliary decoder, which reconstructs
clean hand point clouds. However, both coarse components limit the performance
of our method to some extent and can be further optimized.

For the data augmentation process, we simply superimpose an object on a clean
hand sample after random rotation, scaling and translation, where the physical con-
straints of hand-object interaction are not utilized. Specifically, the prior knowledge
that contacts occur at the surface between the hand and object when grasping an
object is not accounted. In other words, interpenetration happens in our coarse
augmentation method. Moreover, the surfaces of the hand and object are occasion-
ally not in contact. These cases violate the constrains of hand-object interaction in
physical world and result in poor augmentation quality.

The clean hand reconstruction decoder plays an important role in our Augmented
Autoencoder based method, however, as shown in Fig. 4.9, the occluded objects are
only roughly removed from the input and the quality of reconstructed hand point
clouds is not ideal as expected. For example, the delicate fingers are sometimes not
clearly reconstructed and there are some joint angle violations with strange hand
shape. Although high quality reconstruction of the clean hand point cloud is not
the main objective in our method, the coarse reconstruction decreases the accuracy
of the predicted pose.
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5.2 Optimization Methods

Addressing the disadvantages stated above, we propose the following optimization
approaches.

Offline augmentation to obtain realistic data

Figure 5.1: Offline augmentation using contact loss to acquire realistic data. (Bright-
ness in point cloud indicates depth, i.e. darker denotes further.)

For the violation of physical constraints for hand-object interaction cases, we in-
troduce an offline augmentation approach with contact loss [HVT+19], which is
illustrated in Fig. 5.1. The new augmentation approach uses both the clean hand
sample and the object to regress a set of basic transformation parameters for the
object, which are the scaling (γ), rotation (R) and translation (t) parameters. Sim-
ilarly, after these basic transformations, the combined hand point cloud is obtained,
which is then followed by rendering and sampling. The encoder for this offline aug-
mentation pipeline is trained using the contact loss LContact(γ,R, t), which is defined
as the weighted sum of a repulsion term LR and an attraction term LA:

LContact(γ,R, t) = (1− λ)LA + λLR, (5.1)

and the optimization goal is:

min
γ,R,t
LContact(γ,R, t) (5.2)

where λ is the weighting coefficient, e.g. λ = 1 means only the repulsion term is
active. During training, a balance point for λ is supposed to be found to achieve
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satisfactory physical quality of augmentation.

During training stage, the repulsion loss LR will penalize hand and object interpen-
etration. To detect interpenetration, we count the number of hand points that are
inside the object. The attraction loss LA will penalize the cases in which the key
surface regions of a hand are not in contact with the surface of an object. The key
surface regions are defined as the areas on the hand which are frequently involved in
contacts. The attraction term LA penalizes distances from each of these key regions
to the object surface.

Model-based Reconstruction Decoder

Figure 5.2: Hand model (MANO) based clean hand reconstruction decoder. (Bright-
ness in point cloud indicates depth, i.e. darker denotes further.)

To improve the quality of reconstructed clean hand point clouds, one possible method
is to use more folding operations in the FoldingNet based decoder. For AtlasNet
based decoder, more patches can be invoked to construct more delicate hand struc-
ture. However, this kind of methods are computationally expensive at the cost of
more parameters. In this section, we propose a hand model-based reconstruction
decoder to replace the pure deep learning based decoder network. The structure of
the proposed decoder network is illustrated in Fig. 5.2.
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We can use the MANO hand model [RTB17] which is based on the SMPL model
for human bodies [LMR+15]. It is an articulate deformation hand model that maps
the pose parameter (θ) and the shape parameter (β) to a mesh with a differentiable
mapping function. While the pose parameter captures the the angles between the
hand joints, the shape parameter controls the person-specific deformations of the
hand.

As shown in Fig. 5.2, a parameter extraction deep network processes the input
latent vector and generates the pose parameter θ, the shape parameter β and also
a set of view parameters γ, R, t. The hand parameters are fed to the mesh defor-
mation hand model to generate a 3D mesh. Through a perspective camera model
controlled by the view parameters, we sample the hand mesh to final points, which
is our reconstructed clean hand point cloud.

This proposed model-based method removes the cases of joint angle violations and
also strange hand shapes in the current reconstructed hands. The quality of the
latent space can be further optimized, which in turn improves the hand pose accu-
racy.
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Chapter 6

Conclusion

In this paper, we propose a novel deep learning framework using Augmented Au-
toencoder to handle hand pose estimation tasks for hand-object interaction cases.
Our method consumes 3D hand point cloud and predicts accurate 3D hand pose.
The proposed augmentation process and auxiliary clean hand reconstruction decoder
implicitly force the latent representation of the pose only to be correlated to clean
hand and the reconstructed clean hand despite the object occlusion in hand-object
interaction cases. Furthermore, the proposed hand pose estimation training strat-
egy is able to utilize existing clean hand datasets to tackle hand-object interaction
cases. Quantitative and qualitative evaluation results show that our framework is
capable of achieving low joint errors on both clean hand input (∼ 9 mm) and inter-
acting hand input (∼ 14 mm) on the SynthHandsTest. Our method demonstrates
state-of-the-art performance for hand pose estimation with objects.

The proposed data augmentation strategy is able to utilize existing large clean hand
datasets to simulate hand-object interaction cases in manipulation tasks. This strat-
egy provides a good solution for the lack of existing available hand-object interaction
datasets. Furthermore, since unlimited types of objects can be used for augmenta-
tion, the proposed model is more generalizable on unknown objects. By ablation
experiments, we show that, in practice, a small proportion of real interacting hand
samples can be mixed into the training dataset to acquire much robuster perfor-
mance.

In our method, the proposed auxiliary decoder is of great importance to achieve
high hand pose estimation accuracy for hand-object interaction cases. The encoder
takes occluded hand point cloud as input and outputs the latent representation of
the hand pose. The novel auxiliary decoder reconstructs corresponding clean hand
points simultaneously, which makes the latent representation only be correlated to
clean hands alone instead of the mixture of clean hands and interacting hands.
Although high quality of clean hand reconstruction is not strictly required, this 3D
point cloud reconstruction operation implicitly improves the quality of the latent
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space a lot. In turn, the hand pose accuracy for hand-object interaction cases is
improved.
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