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Abstract

The objective of this thesis is to improve the understanding and robustness of large deforma-
tion contact simulations by developing new formulations and strategies suitable for real-world
problems. For this purpose, a finite element discretization together with a mortar-like contact for-
mulation will be in focus. The combination of both approaches currently represents one of the
most promising ways to handle complex contact scenarios in a truly non-linear realm. The neces-
sary constraint enforcement strategy will be realized with both Lagrange multiplier and penalty
methods, with a clear emphasis on the first one. The focused development of a robust non-linear
solution strategy is complemented by a profound mathematical foundation, since otherwise the
necessary universality would not be achievable.

Therefore, the first two steps in this work consist of the classification of the state-of-the-art for-
mulations and in the investigation of the non-linear solution paths taken by these methods. Upon
this knowledge, two distinct mortar-like contact formulations are developed. The first one will
be a truly variationally consistent formulation, which leads to a completely symmetric system
matrix with respect to all active contact contributions. This variationally consistent frictionless
contact formulation immediately opens the way to the entire classical inequality constrained op-
timization literature. However, since the evaluation of the necessary second order derivatives can
become computational very expensive, a second approach is introduced, which neglects certain
terms during the variation, but still fulfills important properties such as the balance of linear
and angular momentum. It will be shown that their final converged solutions are very similar
to currently well-established mortar-like contact formulations, however, the path to the solution
might be severely different. To demonstrate this, a number of numerical investigations will be
performed revealing drawbacks and advantages of each approach.

The next step will be to use the developed formulations as well as the newly established transi-
tion to the mathematical constrained optimization literature such that meaningful modifications
can be made, which allow a significantly improved overall robustness of contact simulations.
This will be achieved by introducing a small but very effective modification to the consistently
linearized saddle point system of equations. The applied modification will not only improve the
performance for large initial penetrations, but it will also allow the condensation of the addi-
tional Lagrange multipliers from the linear system of equation without the need for any special
dual Lagrange multiplier shape functions. Nevertheless, such a modification of the linear sys-
tem will influence the local convergence behavior such that an appropriate detailed analysis will
become necessary. Furthermore, the often problematic choice of the complementarity parameter
cn will be resolved by the novel modification approach. Therefore, a suitable dynamic correction
method for this parameter together with a precise study of its boundedness will be included. Ad-
ditionally, an analysis of possible changes regarding the conditioning of the system matrix will
follow including a comparison between the saddle-point and the condensed system of equations.
This contribution, which leads to an improved robustness of the non-linear solver performance,
will be concluded with novel switching conditions allowing a smooth transition back to the con-
sistently linearized method close to the solution.

The final corner stone on the way to an improved robustness will be the consideration of ad-
vanced globally convergent optimization strategies. Thereby, a line search filter method will be
chosen, which is inherently capable of inequality constraint problems, and in this thesis its ideas
will be carried over to discretized dynamic contact problems with large deformations. The differ-



ent adaptions will be presented and comprehensively discussed. One example is the correction
of the linear system of equations to overcome non-positive definite points on the way to the so-
lution. Despite the fact that there are already powerful correction algorithms, the challenge will
be to make them applicable to large, parallel distributed sparse systems. These systems often
do not provide a directly accessible detailed inertia analysis and thus other strategies must be
developed. Furthermore, special problems related to a finite element discretization will be taken
into account such as locally invalid elements, which are not sufficiently represented in the global
filter acceptability tests. Other points are the controlled decrease of the cy parameter under rare,
but critical, circumstances or the correct scaling of the filter entries and many more. Finally, more
advanced topics such as the enhanced assumed strains (EAS) formulation or the consideration of
dynamic contact formulations will be discussed and adapted for the use with a line search filter
method.

In total, this thesis contributes with a number of multi-purpose non-linear solver tools, which
simplify the daily use of mortar-like contact or other constrained methods for upcoming complex
real-world problems.
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Zusammenfassung

Das Ziel dieser Arbeit ist es, das Verstindnis und die Robustheit von Kontaktsimulationen mit
groflen Deformationen zu verbesseren, indem neue Formulierungen und Strategien entwickelt
werden, die fiir reale Problemstellungen geeignet sind. Zu diesem Zweck wird eine Finite-
Elemente-Diskretisierung zusammen mit einer mortar-artigen Kontaktformulierung im Fokus
stehen. Die Kombination beider Ansitze stellt derzeit einen der vielversprechendsten Wege dar,
um komplizierte Kontaktszenarien in einem echten nichtlinearen Umfeld zu bewiltigen. Die
notwendige Behandlung von Nebenbedingungen wird sowohl mit Lagrange-Multiplikator- als
auch mit Penalty-Methoden realisiert, wobei der Schwerpunkt eindeutig auf den Ersteren liegt.
Die im Fokus stehende Entwicklung einer robusten nichtlinearen Losungsstrategie erfordert
eine fundierte mathematische Grundlage, da sonst die notwendige Allgemeingiiltigkeit nicht
gewihrleistbar wire.

Die ersten beiden Schritte dieser Arbeit bestehen daher in der Klassifizierung der aktuellen For-
mulierungen und in der Untersuchung der nichtlinearen Losungswege dieser Methoden. Auf der
Grundlage dieser Erkenntnisse werden zwei unterschiedliche mortar-artige Kontaktformulierun-
gen entwickelt. Die erste wird eine echt variationell konsistente Formulierung sein, die zu einer
vollstandig symmetrischen Systemmatrix in Bezug auf alle aktiven Kontaktbeitrdge fiihrt. Diese
variationell konsistente, reibungslose Kontaktformulierung 6ffnet gleichzeitig den Weg zur ge-
samten klassischen Literatur bzgl. Optimierung unter Ungleichheitsnebenbedingungen. Da die
Auswertung der notwendigen Ableitungen zweiter Ordnung jedoch sehr teuer werden kann,
wird ein zweiter Ansatz eingefiihrt, der bestimmte Terme wihrend der Variation vernachléssigt,
aber dennoch wichtige Eigenschaften wie die Impuls- und Drehimpulserhaltung erfiillt. Es wird
gezeigt, dass ihre endgiiltigen konvergierten Losungen den derzeit etablierten mortar-artigen
Kontaktformulierungen sehr dhnlich sind, jedoch kann der Weg zur Losung sehr unterschiedlich
sein. Um dies zu demonstrieren, werden eine Reihe von numerischen Untersuchungen durchge-
fiihrt, die die Nachteile und Vorteile der einzelnen Ansétze aufzeigen.

Im niichsten Schritt werden die entwickelten Formulierungen sowie der Ubergang zur mathema-
tischen Literatur fiir die Optimierung unter Nebenbedingungen so genutzt, dass sinnvolle Mod-
ifikationen vorgenommen werden konnen, die insgesamt eine deutlich verbesserte Robustheit
der Kontaktsimulationen ermdglichen. Dies wird durch eine kleine, aber sehr effektive Mod-
ifikation des konsistent linearisierten Sattelpunkt-Gleichungssystems erreicht. Die angewandte
Modifikation wird nicht nur die Leistung bei groBen Anfangsdurchdringungen verbessern, son-
dern auch die Kondensation der zusitzlichen Lagrange-Multiplikatoren aus dem linearen Gle-
ichungssystem ermoglichen, ohne dass spezielle duale Lagrange-Multiplikatorformfunktionen
erforderlich sind. Jedoch wird eine solche Modifikation des linearen Gleichungssystems das
lokale Konvergenzverhalten derart beeinflussen, dass eine entsprechende Detailanalyse erforder-
lich wird. Dariiber hinaus wird die oft problematische Wahl des Komplementaritdtsparameters cy
durch den neuartigen Modifikationsansatz gelost. Dafiir wird eine geeignete dynamische Korrek-
turmethode fiir diesen Parameter zusammen mit einer genauen Untersuchung seiner Beschréinkt-
heit miteinbezogen. Zusitzlich folgt eine Analyse moglicher Anderungen hinsichtlich der Kon-
dition der Systemmatrix mit einem Vergleich zwischen dem Sattel-Punkt und dem kondensierten
Gleichungssystem. Dieser Beitrag, der zu einer verbesserten Robustheit der nichtlinearen Loser-
leistung fiihrt, wird mit neuartigen Umschaltbedingungen abgerundet, die einen reibungslosen
Ubergang zuriick zu der konsistent linearisierten Methode nahe der Losung ermoglichen.
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Der letzte Grundstein auf dem Weg zu einer verbesserten Robustheit wird die Beriicksichti-
gung fortschrittlicher global konvergenter Optimierungsstrategien sein. Dafiir wird eine Line
Search Filter Methode gewihlt, die von Natur aus fiir Probleme mit Ungleichheitsnebenbedin-
gungen geeignet ist, und in dieser Arbeit werden diese Ideen auf diskretisierte dynamische Kon-
taktprobleme mit groen Verformungen iibertragen. Die verschiedenen Anpassungen werden
vorgestellt und ausfiihrlich diskutiert. Ein Beispiel ist die Korrektur des linearen Gleichungssys-
tems zur Uberwindung von nicht positiv definiten Punkten auf dem Weg zur Losung. Trotz
der Tatsache, dass es bereits gute Korrekturalgorithmen gibt, wird die Herausforderung darin
bestehen, sie auf grofle, parallel verteilte, diinnbesetzte Systeme anzuwenden. Diese Systeme
bieten oft keine direkt zugéngliche detaillierte Analyse ihrer Trigheitseigenschaften, d.h. ihrer
Eigenwertverteilung, und so miissen andere Strategien entwickelt werden. Dariiber hinaus wer-
den spezielle Probleme im Zusammenhang mit einer Finite-Elemente-Diskretisierung beriick-
sichtigt, wie z.B. lokal ungiiltige Elemente, die in den globalen Filterakzeptanztests nicht aus-
reichend reprisentiert sind. Weitere Punkte sind die kontrollierte Reduktion des cy-Parameters
unter seltenen, aber kritischen Umstédnden oder die korrekte Skalierung der Filtereintrige und
vieles mehr. SchlieBlich werden weiterfithrende Themen wie die Formulierung mit Enhanced
Assumed Strains (EAS) oder die Beriicksichtigung dynamischer Kontaktformulierungen disku-
tiert und fiir die Verwendung mit einer Line Search Filter Methode angepasst.

Insgesamt bringt diese Arbeit eine Reihe von Mehrzweck-Werkzeugen fiir nichtlineare Loser mit
sich, die den téglichen Gebrauch von mortar-artigen Kontaktmethoden oder anderen Verfahren
unter Nebenbedingungen fiir anstehende komplizierte Probleme in der realen Welt vereinfachen.
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Nomenclature

General Representation of Scalars, Vectors and Tensors

Note: A more comprehensive introduction into the general notation-specific aspects of this thesis
can be found at the very beginning of Chapter 2.

Scalar quantity
Vector
Dyadic tensor, or matrix

Operators and Symbols
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NG
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Consistent gradient with respect to (-)

Consistent Hessian or second order derivative matrix
(In)consistent gradient with respect to (), see Remark 4.1
(In)consistent Hessian or second order derivative matrix, see Remark 4.1
Determinant

Inverse

Transpose, see (2.7) for the definition in case of dyadic tensors
Virtual quantity, variation of a quantity (-)

Pure co-variant definition of a tensor

Dyadic product

Cross product

Inner product

Identity tensor

Kronecker delta

First order directional derivative in v direction, see (4.25)
Second order directional derivative in v and w directions, see (4.25)
First and second time derivatives at a fixed reference position
Prescribed quantity

Material divergence operator w.r.t. reference coordinates
Material divergence operator w.r.t. current coordinates

Dot product of two tensors

Double-dot product of two tensors

Natural logarithm

Minimum and maximum function
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Nomenclature

minimize(-)
argmin

d()

Find the minimum of a function

Arguments of the minimum

Infinitesimal increment of a quantity

Increment or direction

First order derivative w.r.t. a scalar

Second order derivative w.r.t. a scalar

ly-norm, if not explicitly defined differently

Diagonal matrix with the vector (-) on the diagonal

Assembly operator

If (-) is a set, the cardinality of this set; otherwise, the absolute value
Selecting vector entries located at degrees of freedom for which the vector
@QQAAQ contains values unequal to zero

Sine and cosine functions

Compute the null space of a matrix

Denoting [ ]; — [,

Volume of a tetrahedron

Superscripts and Subscripts

Note: Many of these can occur either as super- or as subscripts depending on the surrounding
context and the actual variable (-).

—
=
—

Body index, mostly b € {1, 2}

Value at the solution

Quantity associated to an element

Quantity in normal direction

Quantity in tangential direction

Explicit marking of discrete quantities (for convenience often dropped)
Quantity associated to the discrete point in time ¢,,; equivalently for ¢,, | etc.
Quantity associated to the Newton iteration k; equivalently for £ + 1 etc.
Quantity associated to the line search iteration [ of Newton iteration &
Quantity associated to the Generalized-o method

Contributions associated to the active set

Contributions associated to the inactive set

Second order correction quantities

Element load balancing

Near field

Far field
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Nomenclature

Kinematics

oi( X, 1) Mapping operator from reference to current configuration
oYX, 1) Pull-back operator from current to reference configuration
Spatial position in current configuration
Spatial position in reference configuration
Displacement

Velocity

Acceleration

Deformation gradient

Rotation tensor

Right stretch tensor

Left stretch tensor

Right Cauchy—Green tensor
Green—Lagrange strain

Material velocity gradient

Principal elongation

Volume in current configuration

Volume in reference configuration

Area in current configuration

Area in reference configuration

Normal in current configuration

Normal in reference configuration

Base vectors of Cartesian coordinate system
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|
-

1
[\

[e)
w

Stresses and Material Properties

E Young’s modulus

v Poisson’s ratio

A, Mol Lamé constants

0 Material density in current configuration

00 Material density in reference configuration

0, 0o Material density rate in current/reference configuration
t Surface force in current configuration

to Surface force in reference configuration

b Body force in current configuration

by Body force in reference configuration

o Cauchy stress tensor

E First Piola—Kirchhoff stress tensor

‘,]_3 First Piola—Kirchhoff stress function for pure elastic materials, see Sec-
- tion 2.1.3

S Second Piola—Kirchhoff stress tensor
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Nomenclature

v

\I]nH
\IjnHlog
\I[tv

I, Iy, I
Iy, I5

a

Oy, 6tv, Vv

Strain energy function

Strain energy function for the coupled neo-Hookean material law
Strain energy function for the logarithmic neo-Hookean material law
Additive part of a simple orthotropic, transversely isotropic material law
Scalar valued invariants of the right Cauchy—Green tensor

Pseudo invariants of the right Cauchy—Green tensor

Fiber direction

Auxiliary variables for Wy,

Young’s modulus in fiber direction

Young’s modulus in the plane normal to the fiber direction

Shear modulus in a plane parallel to the fiber direction

Poisson’s ratio for tension in fiber direction

Poisson’s ratio in a plane orthogonal to the fiber direction

Domains and Boundaries

Current domain

Reference domain

Neumann boundary zone in reference configuration
Dirichlet boundary zone in reference configuration
Contact boundary zone in reference configuration
Contact boundary zone in current configuration

Function Spaces

w
le
le/2
H_1/2
U
My

Weighting function space

Sobolev function space

Trace space of W

Dual space of H '/

Solution function space

Lagrange multiplier function space

General Spatial and Temporal Discretization
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i

Set of all elements

Shape function matrix

Single shape function

Discrete (nodal) displacement vector



Nomenclature

~

ext

[ |2 |2

5
=+

===

=
09
g
&
Q

Oy, Of
Poo

Discrete (nodal) velocity

Discrete (nodal) acceleration
Parametric directions/coordinates
Nodal external force vector

Nodal internal force vector

Stiffness matrix

Damping matrix

Mass matrix

Residual vector

Parameters of the Newmark-/ method
Parameters of the Generalized-o method
Spectral radius

Element Jacobian determinant

Structural Dynamics

Time

Discrete points in time

Discrete time step

Kinetic energy

Rate of external mechanical work

Rate of internal mechanical work, stress power
Total potential energy

Potential energy of external loading

Total strain energy

Auxiliary potentials for surface and volume loading
Lagrangian density function

Enhanced assumed strains

Bliss[lie

Deformation dependent Green—Lagrange strain part

Additive enhancement of the Green—Lagrange strains

Coefficients of the discretized Green—Lagrange strain enhancement
Associated mapping operator based on the shape functions for o
Coefficients of the independently discretized second Piola—Kirchhoff stresses

Associated mapping operator based on the shape functions for [

—eas
Element-wise residual vector w.r.t. a coefficients
Mixed linearization matrix w.r.t. & _coefficients and the displacements

Linearization matrix w.r.t. a coefficients
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Nomenclature

Frictionless Contact Mechanics

T, Covariant base vectors of the convective coordinates
¢k Contravariant convective coordinates

X Ray-tracing projection operator

EX Auxiliary distance factor of the projection operator
gN Normal gap

DN Normal pressure

AN Normal Lagrange multiplier

(2 Standard frictionless contact potential

€ Standard frictionless contact energy density

Con Augmented frictionless contact potential

‘K;N Augmented frictionless contact energy density

CN Regularization/Complementarity parameter for frictionless contact

Frictional Contact Mechanics

Uyl Relative velocity

UN rel Normal component of the relative velocity

Ur rel Tangential component of the relative velocity

QT Tangential slip rate

Dr Frictional shear

5 Friction coefficient

Z.. Frictional contact Lagrangian

CK;T Frictional contact energy density function

(é;,,snck Stick component of the frictional energy density function
CKNCT slip Slip component of the frictional energy density function
Cr Regularization/Complementarity parameter for frictional contact

Mortar-based Contact Methods
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Outward-pointing (non-unit) normal of an element e

Outward-pointing unit normal of an element e

Outward-pointing unit normal of an element e evaluated at a slave node &
Averaged outward-pointing nodal (non-unit) normal at a slave node £
Averaged outward-pointing nodal unit normal at a slave node k

Smooth C°-continuous normal field
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Nomenclature

>
el
S

% o

9N, Gy
NN
A AT A

=

ey

g =M

[
8
&

Smooth C°-continuous normal field with unit length
Set of all slave nodes

Set of all master nodes

Set of all slave elements

Weighted gap

Averaged weighted gap
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1. Introduction

1.1. Motivation

Elastodynamics including contact problems play a major role in our all daily lives. A demon-
strative example can be any imaginable connection between two distinct parts via screws, rivets
or nails. Quite often these connections can become the most vulnerable spot in large assemblies
leading to malfunctions with severe consequences. Such classical mechanical failures require a
detailed and on-point mechanical analysis where two main options come into play: The exper-
imental validation and the prediction via numerical simulations. Since the experimental valida-
tion can become very expensive, the numerical simulation grows more and more in importance
and is now an established tool of the preliminary design and during the final quality check of
safety-related components. In the last decades large progress has been made to cover many of
the critical scenarios in a consistent and reliable way. For example finite wear problems [86, 255]
have quite recently been addressed.

However, one point that seems to become rather less attractive for researchers is the further
development of the algorithmic foundation for theses methods. But, exactly there seems to be
still a lot of room for improvements. Therefore, the specific application topics shall be put aside
throughout this thesis and, instead, the entire attention is on the field of implicit non-linear solu-
tion methods for non-linear contact problems. A big motivational aspect is hereby the objective
to find a way to improve and simplify the work with contact algorithms and to make them ac-
cessible to a greater number of interested users without the demand to become an expert in
computational contact mechanics.

In the following, the difficulties encountered in contact simulations are divided into three
main topics. The first topic is related to an insufficiently posed problem and can be summarized
under the point problem modeling. Examples are badly chosen contact boundary conditions,
insufficient consideration of dynamic contact aspects, or just a wrong parametrization. Let us
look a little bit closer at the last point: issues with the chosen parameters. Some of them might
just lead to wrong results. This is typical for all parameters which are directly linked to the
used materials as well as to special surface properties which can be tough to model and often
ask for a number of conscientiously conducted experiments. Think for example of friction and
all the possible variables which can influence the frictional behavior between two contacting
bodies, such as temperature, moisture or changing material properties (melting point, changes
in the lattice structure, etc.). A demonstrative example of such a real world application is shown
in Figure 1.1. The presented structural simulation of an automated fiber placement process in
Figure 1.1b has been performed with an early version of the finite deformation contact solution
strategy presented later.

On the other hand, there are parameters which have no effect on the simulation outcome but
play a crucial role for the behavior of the simulation procedure itself. These parameters are re-
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heated table winding axis linear axis

(a) (b)

Figure 1.1.: Example of a complex real-world problem: the automated fiber placement process. Hereby, a robot and
a radiative heat source (i.e. a laser) is used for the automated manufacturing of high-performance, near-net shape
carbon fiber reinforced plastic parts, see Figure 1.1a. On the other hand, Figure 1.1b shows the non-linear structural
contact simulation among multiple bodies, namely the elastic roller and carbon fiber reinforced plastic tape, and a
third body, the rigid table.

lated to the second main source of difficulties: the applied non-linear solution technique. While
the first source, viz. the modeling part, depends strongly on the individual simulation task, it is
this second source of errors which can be addressed by a number of very general improvement
strategies. These strategies shall be introduced and comprehensively discussed in this thesis and
are linked to the proper choice of certain parameters as well as the proper choice of the best
solution strategy at the right moment on the way to the solution. However, it is necessary to
understand the effects of the different choices first, before an educated guess becomes possible.
Therefore, it is a major goal of this thesis to encourage and support the knowledge gain. In addi-
tion, a number of simple rules will be introduced which shall help the user towards a meaningful
parameter choice and to identify the problem in numerous different, sometimes quite compli-
cated, contact scenarios.

Finally, the third and last source of error shall be addressed: the inherent imperfections and
simplifications of the applied contact formulations. They can cause inherent instabilities in the
respective discretized formulation. These issues are rare in modern formulations and are strongly
linked to the individually applied contact scheme or the considered finite element formulation.
Since there exists a huge variety of different formulations, it is not possible to discuss and inves-
tigate all of them. Instead, the focus of this work lies on mortar-like formulations which enforce
the constraints with Lagrange multipliers. A more precious classification will follow in the next
section.
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1.2. Fundamental Approaches

In this section a brief summary of the fundamental approaches towards a trustworthy and efficient
contact simulation together with a robust non-linear solution strategy is made and presented.

1.2.1. Computational Contact Methods

The overall objective is to find a way how the robustness of numerical contact simulations can
be drastically improved and the improvement shall be independent of the considered specific
contact problem. Therefore, it is required that the applied strategies are designed in such a way
that they are easily applicable to many of the established contact algorithms (see [214] for a
recent overview). Nevertheless, some restrictions must be made: Firstly, the thesis puts its focus
on only one specific discretization method: the finite element method (FEM). However, this can
be seen as a rather weak restriction since the FEM is probably the method of choice in the field
of elastic contact simulations, either under consideration of small or large deformations.

The triumph of the FEM is based on its beneficial universal applicability and its strong math-
ematical convergence properties as comprehensively described in Brenner and Scott [35]. This
has helped to outperform its early competitors, such as the finite difference method described in
Collatz [51], Samarskii [233], in many important research fields. Even though there were cer-
tain efforts which should help the finite difference method to regain importance by resolving
issues such as the regular mesh requirement [148, 177]. Nevertheless, the success of the FEM
could not be stopped in the numerical treatment of non-linear structural problems. Therefore, it
is not surprising that there exists a huge number of well-written text books. Examples are Bathe
[12], Belytschko et al. [18], Hughes [140], Oden [206], Zienkiewicz and Taylor [297]. A more
recent development is the observation that the inherent shape functions of the defining finite ele-
ments are replaced by non-uniform rational basis splines (NURBS) instead of the more familiar
Lagrange polynomials. This development started with Hughes et al. [141] and, indeed, it brings
some appealing properties especially in the context of numerical contact and interface problems
discussed here. However, there are also some drawbacks such as the rather intricate construction
of proper general-purpose meshes for complex real world geometries. This is a topic which finds
exemplarily very recent resonance in the research area of fluid structure interaction [210]. Since
the isogeometric analysis (IGA) literature is of rather minor interest for this thesis, the discus-
sion of this topic shall be restricted to only certain specific sub-topics which will be addressed at
the respective points, e.g., within the discussion in Sections 4.7.2 and 4.7.3. However, there are
many more discretization methods, such as the virtual element method (VEM) allowing arbitrar-
ily shaped elements. A general overview as well as a brief introduction with focus on contact
mechanics can be found in Wriggers [284] and the literature therein. For a more comprehen-
sive list of alternative spatial discretization methods the interested reader is kindly referred to
Section 2.3.

At this point the attention shall be drawn to the numerical treatment of contact mechanics
under consideration of the FEM. Early approaches considered simple node-to-node (NTN) ap-
proaches. Examples can be found in [100, 143]. Due to its simplicity the NTN method finds also
application in a few more recent publications such as [197], however, it stays always restricted
to rather simple problems and linear elasticity. The restriction comes from the fact that the nodes
on the two opposing contact surfaces must exactly match which can not be guaranteed for ar-
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bitrary large deformations. Other early approaches are based on the so-called node-to-segment
or node-to-surface (NTS) formulations [1, 14, 143]. These methods have been extended to large
deformations as well as friticonal contact (see e.g. Pietrzak and Curnier [212]) and are still
widely spread in many commercial tools, but also in recent research codes (see e.g. Zavarise
et al. [294]). The idea is to monitor the penetration of the nodes into the segments formed by
the elements of the opposing body. Since the penetration is only tracked for one node set of both
surfaces, namely the so-called slave surface or contactor, it is possible that the nodes of the sec-
ond surface, the so-called master or target surface, can still penetrate the segments of the slave
body. This is one of the obvious drawbacks which leads to the general advise that the surface
with the finer discretization should be considered as the contactor [76]. Some other difficulties
in certain geometrical scenarios together with possible solutions are summarized in Zavarise and
De Lorenzis [293]. Besides this classical NTS approaches there exist also a number of modified
methods. For example the surface smoothing approaches described in Crisfield [58], El-Abbasi
et al. [77]. A discussion of other examples for NTS algorithms, such as the two-pass variants
[58, 260], can be found in [76]. Therein, also the stability of all these contact algorithms as well
as their patch test performances are addressed in detail. In general, NTS formulations are not
able to pass the patch test and some of their modified versions might have stability problems due
to overconstraining [76]. However, they have also a big advantage compared to the up-coming
methods. That is their simplicity. The implementation as well as the necessary computational
effort is easier manageable and leads to faster run-times.

The final class of algorithms belong to the so-called segment-to-segment (STS) approaches.
These methods are mainly considered in this thesis. The later discussed variant is a so-called
mortar-type or mortar-like contact method. The mortar methods have their origin in the research
field of non-overlapping domain decomposition (DD) approaches. These methods are used to
allow a consistent coupling among different domains at non-conforming discretized interfaces.
One of the first articles pointing in this direction is given by Maday et al. [184]. Herein, the mor-
tar method has been discussed in context with the spectral element method. Further publications
followed quickly such as Belgacem [15], Bernardi et al. [20], Seshaiyer and Suri [245]. In Bel-
gacem [15] the Lagrange multiplier method is applied to enforce the constraints and in Seshaiyer
and Suri [245] a closer look at the superior convergence properties is taken. The success of the
mortar method for finite elements is probably due to its underlying idea. It is constructed in such
a way that the continuity condition is fulfilled in a weak sense over the domain boundaries and,
therefore, it fits perfectly into the context of the FEM. The choice of the correct mortar function
spaces can become crucial. However, in these early publications the spaces have often been cho-
sen as a sub-space of the finite element space considered for the interior of the domains. This
started to change with Wohlmuth [280, 281] where the so-called dual-spaces for the Lagrange
multipliers have been introduced. These dual spaces allow the condensation of the additional La-
grange multiplier degrees of freedom from the linear system of equations without worsening the
convergence properties of the domain decomposition methods and, indeed, this can be seen as
a great advantage for problems with many separate domains or volumetric coupling approaches
for multi-physics problems as discussed in Farah and Vuong [84].

All these DD methods are usually concerned with equality constrained problems. Now, for
contact problems a reasonable extension to inequality constrained problems becomes necessary.
The first necessary steps have been taken by Belgacem et al. [16], Hild [133], McDevitt and
Laursen [192]. Afterwards, also large deformation problems have been exemplarily addressed
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by Fischer and Wriggers [90], Yang et al. [290]. Both articles are pretty interesting, since Fischer
and Wriggers [90] discusses the still relevant Gauss-point-to-surface (GPTS) penalty methods
(see e.g. Dimitri et al. [71]), while Yang et al. [290] addresses the important topic of objectiv-
ity in the context of mortar methods and frictional sliding. Also the very important topic of a
meaningful spatial integration scheme is considered by these early publications. The extension
to 3-dimensional problems follows then in Puso and Laursen [222], Puso et al. [223]. At this
point one advantage of the mortar contact methods compared to the previously mentioned NTS
methods must be addressed: As nicely shown in El-Abbasi and Bathe [76], STS methods are able
to pass the patch test, however, to do so a suitable integration scheme must be applied which is
able to handle possible weak or strong discontinuities. A well-suited so-called segmented based
integration scheme is introduced and refined by Puso and Laursen [222], Puso et al. [223], Wilk-
ing and Bischoff [278], Yang et al. [290]. However, these integration schemes can become nu-
merically pretty expensive. Therefore, also less expensive so-called element-based integration
schemes have been developed and applied [65, 90] with the obvious drawback that the patch test
can not be completely satisfied and the choice of slave and master can become decisive, espe-
cially, in the presence of strong discontinuities. This has been pointed out, e.g., by Farah et al.
[83]. Therein, a new approach is proposed which uses the segment-based integration only along
the boundaries of the active contact zone. In this way the bad influence of strong discontinuities
can be completely avoided, while the minor impact of weak discontinuities is tolerated, thus, an
overall computational more efficient algorithm is achieved. A number of publications consider
also the dual-Lagrange multipliers and transfer this idea to contact mechanics. A certain selec-
tion of publications concerning small deformations is given by Brunssen et al. [39], Flemisch
and Wohlmuth [91], Hiieber [138]. The extension to the regime of large deformations follows in
Gitterle [109], Gitterle et al. [110], Popp et al. [215, 216, 217, 218], Wohlmuth [279]. Also the
combination of IGA and mortar methods has been extensively considered in the last decade, e.g.,
by De Lorenzis et al. [65], Dimitri et al. [71], Seitz et al. [241], Temizer et al. [261]. In summary,
the mortar method becomes more and more important and has already achieved to catch up or
even pass the NTS methods in the research sector. But also in the field of industrial applications,
it starts to gain more attention. An advantage of the mortar method is the naturally quite ro-
bust numerical performance and the high quality results for smooth contact scenarios. However,
in the presence of sharp edges or corners, a STS approach might not be the right choice and
NTS or even a NTN method are probably much better suited. However, also this problem has
been recently tackled by a new approach which combines mortar, NTS and NTN methods in a
new framework proposed by Farah et al. [85]. In this thesis, however, the focus is on the pure
mortar-like contact algorithms.

Another well-known issue of discretized contact formulations is the insufficient representation
of the active contact zone boundary. The classical contact methods suffer under the circumstance
that the resolution of the a priori unknown boundary of the active contact zone is inherently
limited by the finite element mesh used. Therefore, the mesh dependent convergence order for
the displacements and Lagrange multiplier values is bound away from the optimal rates expected
for pure unconstrained structural problems. This is true even for higher order function spaces,
see Wohlmuth [279, Remark 4.13] and the references therein for more information. The work
of Graveleau et al. [119] shows a way out of this misery, which builds upon the ideas of Bonfils
et al. [33]. The fundamental new idea is to split the contact problem into two parts: The first part
is achieved by temporarily fixing the unknown contact domain, thus, only equality constraints
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must be considered. In a subsequent step, a so-called shape optimization of this contact domain
is initiated, which results in an update of the set domain. These two sub-problems are iterated
up to convergence. Details for simple linear contact problems can be found in [119]. These steps
include level-sets [209] coupled with X-FEM to represent the changing a priori unknown contact
zone without the need for repetitive remeshing, which leads to the name inequality level-set (ILS)
approach. In the master thesis of Hofer [135], first steps towards non-linear contact problems
have been made based on the ILS approach and the mortar-like contact formulation presented in
this thesis. However, the consideration of X-FEM introduces new complexity, e.g., by additional
Lagrange multipliers [199]. Other successful X-FEM methods circumvent this lastly mentioned
problem by using Nitsche’s method as exemplarily discussed by Schott [237] in the context of
complex interface coupled flow problems.

Quite recently a similar approach is followed by [73, 74]. Therefore, a so-called refined bound-
ary quadrature method is developed in Duong and Sauer [74]. This method also relies on an ac-
curate localization of the contact boundary via a level-set approach. Subsequently, the gained in-
formation is used to apply a special segmentation at the identified contact boundary zone to han-
dle physical discontinuities. The associated contact boundary detection algorithm is described
in great detail. Subsequently, a uniform and an adaptive quadrature method are compared to the
new approach. This work considers a GPTS approach for large deformations and shows also
an accurate post-processing of the contact pressure via enriched nodal values base on a X-FEM
representation. In Duong et al. [73], the idea is revisited and extended by an enriched interpola-
tion of the contact pressure which is incorporated into an extended mortar method to address the
physical discontinuities. Furthermore, a so-called two-half-pass approach is used. This approach
is used to achieve an unbiased contact formulation that does no longer contain the mortar cou-
pling term. In this way, the problem with artificial discontinuities due to discontinuities in the
normal vectors or of the shape functions and their products can be avoided without the need for
an expensive segmentation during the numerical integration inside the contact zone. Therefore,
the segmentation is limited to the contact zone boundary. However, in contrast to Bonfils et al.
[33], only the contact pressure is enriched while the resolution of the contact zone boundary is
handled by the refined boundary quadrature. Again, Duong et al. [73] uses the GPTS method
and considers large deformations.

An alternative is the mesh refinement approach without X-FEM, which can be also used to
counteract the insufficient localization of the active contact zone boundary. A comparison of
different strategies of this kind can be found in Franke et al. [101], for instance. These methods
use a number of remeshing and/or relocation steps to obtain the desired goal. A comprehensive
introduction to so-called adaptive mesh refinement methods for contact problems can be found
in Rieger et al. [226]. Therein, the topic of reliable error estimators and indicators is addressed
in detail. Despite the fact, that the distortion of the convergence rates and the reduction of ap-
proximation errors remain important issues, it must be said that this thesis will put no emphasize
on resolving them. Hence, the interested reader is referred to the mentioned literature for more
information.

Lastly, the different ways of incorporating the constraints into the governing equations shall
be briefly discussed. On the one hand, the Lagrange multiplier method exists, which will also be
mainly used within this thesis. This method introduces additional unknowns, the name-giving
Lagrange multipliers, which can be interpreted as the applied contact pressure. The classical
mortar-like contact methods are based on this Lagrange multiplier method and lead to a mixed
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discretization, including displacements and stresses as unknowns. These methods fulfill the non-
penetration condition not point-wise, but in an integral sense as it is expected for a STS approach.
Examples can be found in [90, 130, 131, 222], for instance. However, the Lagrange multiplier
as well as the augmented Lagrange multiplier methods are not restricted to STS-methods, but
can also be used together with other approaches such as the NTS method, see [1, 212]. Fur-
thermore, there are the already addressed dual-Lagrange methods, which are able to remove
the additional unknowns from the linear system of equations by a consistent condensation step
[123, 139, 215, 216, 218]. A much more comprehensive introduction into the field of Lagrange
multiplier methods will follow in Section 2.2, Section 3.2 and Chapter 4. On the other hand,
there exists a second set of methods which does not introduce additional variables. The first,
still widely used, representative is the classical penalty method. Its idea is to penalize a viola-
tion of the non-penetration condition by adding a large stiffness and a corresponding force to
all interface elements which are in active contact, see [90, 290] for a mortar-like formulation or
[293, 294] for a NTS approach. The advantage of the penalty method compared to the Lagrange
multiplier method is its simplicity, due to the fact that no additional unknowns must be consid-
ered. Its drawback is that the contact constraints are generally not exactly fulfilled. Only in the
limit case of an infinite value of the penalty parameter, but a large number for the penalty param-
eter can cause an ill-conditioned system matrix. This point will be reconsidered in Chapter 5.
The penalty method can also be combined with the Lagrange multiplier method leading to the
already mentioned augmented Lagrange multiplier method, see [1, 65, 131, 212, 222]. Here, it
is not necessary to increase the associated penalty parameter to infinite, however, these methods
also introduce Lagrange multipliers as additional unknowns. Finally, a last alternative for the
constraint enforcement in computational contact mechanics shall be mentioned: Nitsche’s meth-
ods. These methods are designed in such a way that there is no need for additional unknowns just
similar to the penalty methods. However, they add additional terms to weakly enforce the con-
straints, including a consistent penalty term, instead. In contrast to the classical penalty methods,
Nitsche’s methods have the advantage that they converge to the exact solution for sufficient mesh
refinement without the demand for an infinite penalty parameter. However, the renunciation of
Lagrange multipliers does not come for free. A new complexity can be found in the evaluation of
the boundary traction, which is obtained by evaluating the interface-near bulk elements. Another
difference is that the consistent penalty parameter asks for the solution of a local Eigenvalue
problem. This Eigenvalue problem is necessary to account for the possible stiffness dependence.
In case of non-linear elasticity, the stiffness actually depends on the current deformation state,
such that the Eigenvalue problem must be updated during the non-linear iteration procedure.
Furthermore, so-called harmonic weights must be introduced to preserve the high accuracy of
Nitsche’s method. A more detailed introduction into Nitsche’s method for computational contact
mechanics can be found in [40, 46, 240, 244]. In this thesis, the focus is mainly on Lagrange
multiplier and less on penalty methods. Nitsche’s method will not be further considered within
this work and was only mentioned for the sake of completeness.

1.2.2. Robust Non-Linear Solution Strategies

Another important ingredient for this thesis is the research towards globally convergent non-
linear solution strategies. In many of the previously mentioned publications, the solution strategy
is an important part of the applied contact method. This is especially true for large deformations,
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but, the strategy is often taken for granted. This was also the case at the beginning of this thesis.
For large deformations in computational mechanics usually the Newton Raphson method is ap-
plied, see Kelley [154] for an introduction. The reason is the appealing property that the Newton
method converges quadratically near the solution. However, this property is only available in a
limited region around the desired solution point. If the initial guess for the solution, i.e., the start-
ing point for the simulation, is not inside this neighborhood, the Newton method might diverge.
Now, whenever this should happen in a structural simulation, the typical strategy is to manually
or automatically halve the last time step and to restart the simulation. Alternatively, it might
be also necessary to tweak other parameters. Typical candidates in case of mortar-like contact
simulations are the cy or ¢, values, see e.g. [87, 213]. Even though this might quickly become a
quite frustrating task, it is often possible to find a proper parameter set. However, it can be also
impossible to find a solution with a plain Newton method. These examples show often structural
instabilities or, mathematically speaking, an indefinite or semi-definite system matrix block. In
case of (quasi-)static simulations, the equilibrium path can still be found by applying so-called
continuation methods [2]. Typical representatives, such as the classical arc-length method, are
described in Crisfield [56, 57], Hellweg and Crisfield [126], Ramm [224]. Some early extensions
towards contact mechanics can be also found, e.g., in [163, 251]. However, similar problems can
occur in dynamic simulation as well where sudden changes in the displacement field can be
cumbersome and might ask for an extremely small time step.

In this thesis, a different direction shall be taken. A look at the mathematical optimization
literature on globally convergent algorithms helps to find alternative remedies. Actually, there
are several well-written text-books available. If unconstrained such as pure structural problems
shall be addressed a look into the text books by Boyd and Vandenberghe [34], Dahmen and
Reusken [60], Kelley [153], Schnabel and Frank [236] is advisable or a book completely devoted
to continuation methods such as Allgower and Georg [2] might be helpful. However, if more
complicated equality and inequality constrained problems are considered, other books must be
taken into account. A great general overview of unconstrained and constrained globalization
methods is given by Nocedal and Wright [204], while Fletcher [93] provides a number of useful
practical tips helping to decide which method might be better suited for certain problems. Other
books put their focus on specific sub-topics, e.g., the optimization for non-smooth problems
is addressed by Clarke [49], while Bertsekas [23] gives a comprehensive introduction into the
optimization with Lagrange multiplier methods.

Since a more detailed introduction into the general field of numerical optimization would go
beyond the scope of this introductory section, the interested reader is kindly referred to Chapter 3
and the references therein. Instead, the remainder of this section shall be used to put the focus on
the most important methods and strategies for this thesis. The used (augmented) Lagrangian for-
mulation is based on Glad and Polak [111], Rockafellar [230]. While the extension for inequality
constraints via slack variables has its origin in Rockafellar [229] and is nicely described in Gill
et al. [107]. The advantage of slack variables is that they allow a smooth transition between
equality and inequality constrained problems. Under certain restriction this can also be used to
formulate the contact problem in a way which is more convenient if the mathematical literature
shall be applied. By doing so, the related convergence results become easier accessible as well.
A great example is given by Facchinei and Lucidi [79] where the therein described Low-Cost
Newton-Like Methods fits pretty well with the usually applied solution strategies for (mortar)
contact problems [65, 212]. The local solution scheme used here can be obtained either by ap-
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plying Newton’s method to the underlying Karush-Kuhn-Tucker (KKT) optimality conditions or
under direct consideration of the so-called Sequential Quadratic Programming (SQP) method.
The idea of the SQP method is basically to solve the non-linear optimization problem by solving
a sequence of quadratic sub-problems. These quadratic sub-problems are obtained by replacing
the non-linear constraints by a linear model and the non-linear objective function by a quadratic
model which is additional augmented by second order information of the constraints. The sec-
ond part is the same result one would obtain when the gradient of the Lagrangian as part of the
KKT conditions is linearized, while the linear constraint model follows from the linearization
of the (active) constraint equations as part of the KKT conditions. However, the interpretation
as a sequential quadratic programming task creates another, often helpful point of view on the
original non-linear optimization problem. This SQP idea dates back to Han [125] and remains
one of the most popular approaches. Nevertheless, it is not the only local solution method which
shall be considered in this thesis. For example the discussion about differentiable penalty func-
tions in Gould [113] will become as well handy, or a certain variant of Newton’s method for
constrained problems described and briefly discussed in Bertsekas [23]. Furthermore, there are
other local solution methods such as the interior point method which are not considered in this
thesis but are still worth mentioning. A brief introduction into the interior point method will
follow in Section 3.2.3.3.

In addition to these local solution strategies, globalization strategies must be addressed as
well. These globalization strategies are the key to gain the property of global convergence. The
classical way to achieve a globally convergent solution method has been for many years the
construction of a so-called penalty function. These penalty functions consist of a simple linear
combination of the objective function value and the constraints, where the weighting of the two
contributions can be controlled by a penalty parameter. There exists a huge variety of different
penalty functions. One often used representative is the augmented Lagrangian merit function
Gill et al. [107], Glad and Polak [111], Lucidi [182], but there are many more such as the ¢; or /5
penalty functions, see also [204, Sec. 15.4] and the references therein. However, the application
of penalty functions has the drawback that the penalty parameter must exceed a certain positive
scalar such that the penalty function becomes exact, i.e., otherwise the location of the minimum
of the penalty function does not coincide with the KKT point. This positive scalar might be de-
fined by the magnitude of the unknown associated Lagrange multiplier value at the solution (as
it is the case for the ¢; penalty function). However, since this threshold is unknown as long as
the solution is unknown, the algorithms based on these penalty functions must adapt the penalty
value whenever it might seem necessary. Furthermore, it is to note that the penalty value can also
not be chosen excessively high since this puts too much weight on the constraints resulting in
a very poor convergence since the iteration sequence is forced to stay on the (possibly curved)
boundary of the feasible region. Therefore, the use of the watchdog method for constrained prob-
lems, as introduced by Chamberlain et al. [45], gained some attention. This method allows the
increase of the penalty function values for a pre-defined finite number of iterations and thus is
less restrictive. However, its dependence on a suitable penalty parameter makes the penalty func-
tion as general optimality measure less universal and asks for an problem dependent educated
guess if the performance shall be improved.

Due to this drawback another method started to become very popular in the last decade. This
new approach is based on ideas stemming from multi-objective optimization and avoids the ne-
cessity of a correctly chosen penalty parameter. Instead, the two goals of minimization of an
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objective function and maintaining feasibility of the solution are considered more or less sepa-
rately. The fundamental idea for the so-called filter method has been proposed in Fletcher and
Leyffer [96] and subsequently refined in Fletcher et al. [94], Fletcher and Leyffer [97], Fletcher
et al. [98]. All these early attempts have been restricted to trust region algorithms [53]. There
exist many more publications on this new class of algorithms. For example the interior point
implementation by Ulbrich et al. [263] which has been later improved in Silva et al. [246] by
replacing the second filter entry with a more reliable optimality measure. Another example is
a bundle method for non-smooth optimization by Fletcher and Leyffer [95] or a globalization
method for a direct, derivative-free algorithm by Audet and Dennis Jr. [8] to name only a few.
Again, all based on the trust region idea. A line search filter method is described in-depth by
Wiichter and Biegler [270, 271, 272] and this line search approach will also build the foundation
for the globalization method used in this thesis. As a side note it is to mention that the filter
method is not limited to constrained problems only. The basic idea of a multidimensional filter
globalization method has also been successfully extended to unconstrained (Gauss-)Newton-
based methods for least-squares problems and non-linear equations [114] and to ¢;-optimization
problems as proposed by Milzarek and Ulbrich [196]. This underlines once more the great uni-
versality of this idea. At the end of this section it shall be mentioned that this thesis is not the first
contribution which considers mortar contact formulations and is heading in this direction. There
is at least one further author who recently applied the filter method to large deformation contact
problems, viz. Youett et al. [291], Youett [292]. These publications put the focus on a trust region
implementation in combination with a suitable multigrid linear solver method. Despite the fact
that the mortar contact formulation used therein is inspired by the work of Popp [213], Popp et al.
[215, 218] which is also the case for this thesis, it shall be emphasized that the mentioned work
and this thesis have things in common but have been developed independently. Nevertheless,
since both use successfully the filter method as trustworthy globalization strategy, the potential
of this method for the research field of large scale contact simulations seems promising.

1.3. Research Objective

The overall objective of this thesis is to develop a robust and efficient simulation toolbox for
finite deformation mortar-like contact problems. Therefore, a number of important aspects are
addressed, investigated and will be briefly presented in the following. The goal of these investi-
gations is to obtain a better understanding of the underlying connections. The gained scientific
insights are then used to improve existing formulations. Thereby, it is an important point that
the resulting simulation toolbox consisting of an adapted contact formulation and certain special
non-linear solution strategies stays controllable: The number of parameters shall be limited and
in the best case a set of default parameters shall be defined which works fine in most of the
cases. In the end, the solution of frictionless contact problems with the proposed mortar-type fi-
nite element based contact framework shall become less challenging. Furthermore, many of the
introduced modifications are described in a very general way such that the adaption to other con-
tact formulations or even completely different equality or inequality constrained (multi-physics)
problems should be straight forward.
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1.3.1. Specification of Requirements

Since the beginning of computational contact mechanics there has been always the deep wish to
develop a universally applicable, robust and efficient simulation framework for large non-linear
real world contact problems. However, this has been proven to be such a big obstacle that it is
not possible to resolve it at once but it is rather necessary to make small reliable steps towards
a better solution strategy. A number of unresolved and, in the opinion of the author, important
currently remaining issues on this way will be summarized next.

Non-symmetry of Frictionless Contact Formulations. While it is well-known that frictional
contact formulations lead naturally to a non-symmetric system of equations, the opposite can
be expected for the frictionless case. In contact scenarios where friction plays only an insignif-
icant role, the modeling without friction is often a reasonable simplification. Now, if friction
is neglected, the arising non-linear contact problem can be completely formulated as an op-
timization problem subject to inequality constraints. In such a case, it is well-known that the
evolving KKT system of equations is symmetric. However, there are numerous large deforma-
tion contact formulations which violate this assumption (cf. Popp [213], Popp et al. [218], Puso
and Laursen [222], Puso et al. [223]). In fact the list can be extended by all large deformation
contact formulations considering dual Lagrange multipliers. The reasons for this fact can be
traced back to certain assumptions and simplifications in the variational approach. However,
the implications of these modifications are rather less well documented. One exemplary obvi-
ous consequence is the greater limitation in the choice of suitable linear iterative solvers (see
e.g. [275-277)).

Conservation of Angular Momentum. The previously mentioned publications as well as their
frictional extensions such as Gitterle [109], Gitterle et al. [110], Yang and Laursen [288], Yang
et al. [290] lack additionally the conservation of angular momentum as described in Popp [213],
Puso and Laursen [222]. Therefore, the question may rise which steps must be taken to regain
this important property. Especially, in case of a ray-tracing projection algorithm, where the
smooth normal field is completely defined on the slave side, a detailed investigation is missing.

Unpredictable Behavior of the Applied (Inconsistent) Variational Contact Methods. The
next point can be also seen as part of the investigation procedure in this thesis. Before an
improvement of existing methods is conceivable, the method itself must be studied and under-
stood. As part of the knowledge gain, it is especially important to detect possible scenarios
where the existing methods fail due to inherent imperfections and simplifications. This is also
a point which can be hardly found in the literature. In general it is more convenient to show
examples where everything is working great instead of presenting failing simulations or set-
tings. However, the simplifications in the variational approach of the mentioned mortar-like
contact formulations can have severe consequences under certain circumstances and need to be
discussed and documented.

Reliable Handling of Large Initial Penetrations. The treatment of large initial penetrations
and suitable start-up procedures have been proposed quite recently by Zavarise et al. [294].
Therein, a NTS penalty formulation is addressed and the necessary switch between a consistent
and non-consistent method is explained in detail. However, the proposed strategy asks for an
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user provided guess of the expected contact pressure. Furthermore, the presented work is not
directly applicable to mortar-like contact formulations using Lagrange multipliers.

Treatment of Structural Instabilities in (Quasi-Static) Contact Simulations. The treatment
of structural instabilities is still a difficult task. This is even more true in case of finite deforma-
tion contact problems. Furthermore, the proposed arc-length methods (see e.g. Koo and Kwak
[163], Simo et al. [251]) can not be transferred to the case of dynamic simulations. There, the
problem might be less severe due to the inherent inertia effects, however, it is still possible that
a structural instability leads to a sudden unexpected structural response which then needs very
small time steps to be resolvable with the common locally convergent approaches. Furthermore,
the appropriate treatment of these instabilities can also help to improve the solvability of the
related linear systems of equations or it may be used to improve the applicability of certain
finite element technologies such as the enhanced assumed strain (EAS) formulation.

General Globalization Strategy for a Globally Convergent Simulation Framework. Most
of the literature on computational contact mechanics addresses the contact formulations itself
or the local solution strategy. It is not so common to address the global convergence behavior
besides some exceptions (see e.g. [291, 292]). However, the development of a truly globally
convergent strategy asks for many different ingredients since already small changes to the for-
mulation can have a huge impact on the non-linear solver performance. It starts with the choice
of suitable optimality and feasibility measures, goes over to a meaningful inertia correction
scheme for the KKT matrix [246, 272] and ends with things like the influence of special el-
ement technologies or the reliable identification of heavily deformed invalid finite elements
[150, 151].

1.3.2. Contributions of this Work

In this thesis a novel non-linear solution strategy for large deformation contact problems is com-
prehensively described and developed which addresses all of the aforementioned requirements.
Hereby, the true novelty lies not so much in the different ingredients themselves but in the pre-
sented combination of all the small parts to a new reliable simulation tool. The most important
new scientific contributions and ideas of the developed non-linear solution techniques for fric-
tionless contact mechanics are summarized in the following:

e development of a truly variationally consistent and symmetric mortar-based contact for-
mulation for finite deformation solid mechanics. Therein, a detailed investigation of the
newly added terms is contained and a comparison to an additionally developed slightly in-
consistent approach is presented alongside to this investigation, see Hiermeier et al. [131].

e a detailed proof of the conservation of angular momentum for the variationally consistent
and slightly inconsistent mortar-based contact formulation including a comparison with
existing and well-established formulations, see Hiermeier et al. [131].

e first presentation and description of an inherent instability of certain variationally incon-
sistent mortar-based STS contact formulations, see Section 4.7.4.

12
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e development of a variant of Newton’s method which is suitable to very robustly solve large
penetration contact problems. The constraints are enforced with Lagrange multipliers, see
Chapter 5.

e presentation of a self-adaptive update scheme for the regularization parameter cy. This
novel strategy finally helps to resolve the often cumbersome choice of this parameter.
In addition, it is proven that the proposed update scheme together with the variant of
Newton’s method developed in this thesis generates a bounded sequence of ¢y parameters,
see Sections 5.3.2 and 5.4.

e introduction of a novel switching strategy which allows to easily switch between a robust
pre-asymptotic and a fast locally convergent asymptotic strategy, i.e., between the variant
of Newton’s method of Chapter 5 and the consistently linearized system developed in
Chapter 4, see Section 5.5.

e development of a new line search filter method for large deformation mortar-based contact
formulations. The novel method combines well-established ideas with important new in-
gredients which significantly improve the applicability to finite element large scale contact
simulations. The new method is capable of handling structural instabilities in quasi-static
and dynamic contact simulations, see Chapter 6.

e development of a correction scheme for the linear system of equations. The proposed
strategy is self-adaptive and helps to overcome non-positive definite points on the way to
the solution. It is designed to be applicable to large scale parallel distributed systems and
to be consistent with the proposed filter method, see Section 6.6.

e improvement of the parallel redistribution approach originally proposed by Popp [213].
The novel strategy is superior in case of large initial penetration, see Section 6.9.3.

All the different contributions build on top of each other and complement each other in order
to reach the final goal of a globally convergent non-linear solution strategy for computational
contact mechanics. Thereby, many more ingredients contribute to the final proposed algorithm
such as the correct handling of certain finite element technologies or the detection of invalid
elements.

All the presented methods, formulations and algorithms have been implemented in the in-
house finite element software package BACI (see Wall and Kronbichler [274]) of the Institute for
Computational Mechanics at the Technical University in Munich. The mentioned research code
is completely written in C++, well suited for high performance computing (HPC) and takes ad-
vantage of third party libraries such as the LAPACK [4] or the Trilinos project (see Heroux et al.
[127] for a general overview). Hereby, one package of the Trilinos project must be mentioned
more explicitly since it has been used as the foundation for the non-linear solver framework for
large-scale contact problems which will be developed throughout this thesis: the NOX package.
NOX stands for Object-Oriented Nonlinear Solutions and is an object-oriented C++ library for
the solution of large-scale systems of (unconstrained) non-linear equations. It has been chosen
due to its great universality, modularity and HPC qualities. In total, the work presented here
is built on top of an already existing multi-physics large scale finite element framework which
contains already a mortar-based finite element formulation which has been largely implemented
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by Popp [213]. However, the algorithms presented therein have been extended in many ways.
Not only the contact formulation but even the underlying structural time integration framework
underwent a reimplementation to satisfy the new requirements and improvements.

1.4. Outline of the Thesis

This thesis considers three major pillars of a globally convergent mortar-based contact frame-
work in finite deformation structural dynamics. These three pillars are presented in the Chap-
ters 4 to 6. Large parts of the first pillar, wherein a reliable mortar-based contact formulation is
developed, have been already published and are taken from Hiermeier et al. [131]. The other two
pillars are planned to be published in the near future. However, before more details are given, let
us start from the beginning.

In Chapter 2 a brief introduction into the field of computational structural mechanics is pre-
sented. Therein, a number of well-known relationships will be introduced and discussed. Further-
more, another objective of this chapter is to build the bridge to classical numerical optimization
literature. Therefore, the mechanical variational problems are often motivated by the correspond-
ing minimization problems. This is also extended to frictionless and frictional contact problems.
Additionally, a brief introduction into the used spatial discretization methods including enhanced
locking preventing formulations as well as discrete time integration schemes are addressed.

Next, in Chapter 3, a far more detailed mathematical introduction into the field of numerical
optimization is presented. Beginning with unconstrained problems and the presentation of a se-
lection of available local and global solution strategies. Afterwards, the attention is drawn to the
research area of constrained optimization problems. This chapter is mainly used to discuss many
of the used as well as other possible solution approaches in a more general context. However, the
focus is always on Lagrange multiplier methods and, to a smaller extent, on penalty methods.

In Chapter 4 the main part of this thesis is starting with the development of two new reliable
mortar-based contact formulations side by side which are derived from Popp [213] and largely
inspired by Alart and Curnier [1], De Lorenzis et al. [65], Pietrzak and Curnier [212]. The dis-
cussion considers a fully symmetric variationally consistent mortar-based contact formulation
as well as a slightly less consistent variational approach. The latter one has much in common
with the referenced mortar-based strategies by [87, 109, 110, 213, 218, 222, 223, 288, 290], for
instance. The major difference will be that the mortar-based contact formulation presented here
satisfies the conservation of linear and angular momentum with the obvious drawback that con-
densation using dual Lagrange multipliers is no longer possible. The opportunity will be taken to
compare the symmetric variationally consistent, the new variationally inconsistent and the well-
established mortar-based contact formulation [213] with each other. Many parts of this chapter
can also be found in Hiermeier et al. [131].

After the knowledge gain in Chapter 4 has been accomplished, the next Chapter 5 will address
a specific variant of Newton’s method which is suited for both previously introduced mortar-
based contact formulations. The basic idea of the newly introduced solution strategy can be also
found in [23] and is also often part of globalization methods to correct the inertia of the linear
system of equations, see e.g. [246, 272]. In Chapter 5, however, the method is applied to finite de-
formation contact problems and is extended to a self-reliant (local) non-linear solution strategy.
Therefore, a number of adjustments are made, e.g. the meaningful adaption of the internal regu-
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larization parameter cy. In this way, the cy value becomes self-adaptive which is a very beneficial
side effect. The newly developed updating rule plays also a decisive role when it comes to the
numerical performance of the modified Newton method. Furthermore, a comprehensive mathe-
matical study is made with focus on the local convergence properties. Additionally, a switching
scheme is added which allows to regain the quadratic convergence property near the solution.
All in all, the presented algorithms in Chapter 5 allow a much larger initial penetration. The
effect can be compared with the proposed method in [294], but the method presented here rep-
resents the extension to Lagrange multiplier methods and is filled with a reliable mathematical
foundation which does not worry about any solution estimates to fit certain parameters.

In the last major Chapter 6 the step towards a globally convergent non-linear solution strategy
is taken. This chapter is mainly devoted to the filter approach and is largely inspired by the great
work of [270-272]. The previous chapters addressing the mortar-based contact formulation as
well as the modified Newton approach are important corner stones of the finally proposed al-
gorithms. Additionally, the considered computational contact mechanics problems together with
the (enhanced) finite element discretization ask for specific modifications of the classical opti-
mization algorithms. For example, it is of severe importance to detect any invalid finite elements,
since they are often not sufficiently represented in the filter measures. Another very important
point is the reliable modification of the linear system of equations. These modifications play a
crucial role when it comes to structural or algorithmic instabilities (e.g. due to hour-glass modes
in case of the EAS formulation under pressure [67, 273, 285]).

Finally, a summary as well as a selection listing possible improvements for future work can
be found in Chapter 7.
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2. Computational Mechanics for Large
Deformations

The first two chapters are supposed to give an introduction into the mechanical and mathemat-
ical foundations necessary for this thesis. Therefore, this chapter is used to start with a brief
summary of the finite deformation solid mechanics, followed by a more detailed description of
the basic contact mechanics and some further background about the used discretization methods.
The ongoing discussion will quickly require a solid mathematical background in numerical opti-
mization. Thus, an introduction into the field of unconstrained and constrained optimization will
be given in Chapter 3. The overall objective of this introductory part is to present enough details,
thus, everyone with a profound background in mechanical engineering is able to understand the
upcoming discussions without problems.

Notation

Before the actual introduction into the mathematical fields can take place, a short explanation of
the used mathematical notation is mandatory:

A scalar ¢ € R is indicated by non-underlined mostly small letter, a vector v € R" is indicated
by once underlined mostly small letters and a matrix A € R"*™ is indicated by double under-
lined mostly capital letters. This is inspired by the typical tensor notation where the number
of underlines correlates directly to the dimension of the respective variable. The contravariant
components of a vector v € R™ shall be denoted by v?, while the contravariant matrix entry i, j
is denoted by A“. Here is i the row index and j the column index. The i-th unit covariant coor-
dinate vector is called ¢;. It is taken advantage of the Einstein notation such that a sum ), v'u;
can be defined as v'u;. Accordingly, a vector can be written as v = v’e,. The inner product of
two contravariant vectors v, u € R™ is denoted by (v, u) = v'm;u/ = v'u; with the metric
m;, while (v, uya = v" Au = v'my A mjul = v’ A/ u; denotes an inner product scaled by a
typically quadratic matrix A € R"*". The gradient of a contravariant vectorial quantity v € R
with respect to a contravariant vectorial quantity v € R™ is denoted by Vo = v e ® e,
Vie {1,...,n}and Vj € {1,...,m}. An equivalent type of notation is used for lower, or higher
order contravariant, covariant, or mixed tensors. If not defined differently, a three-dimensional
Cartesian coordinate system with base vectors {e,, e,, €5} is used and, consequently, the metric
m,; usually degenerates to the Kronecker delta d;; = 0 = 67 = o4,
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2.1. Non-Linear Solid Mechanics

Besides the main topic of this thesis, viz. the efficient and robust treatment of finite deforma-
tion contact mechanics, also the underlying non-linear solid mechanics must be addressed in
some detail. Since actually the combination of both, i.e., complex contact interactions between
multiple bodies undergoing large translations and rotations, and the additional occurrence of
huge elastic deformations, introduces the final high complexity, which makes this work even
necessary. However, not everything what is happening behind the scenes can be considered in
detail, such that the presentation is restricted to the basic relationships. But, most of the more
sophisticated elastic models such as presented in Bonet and Wood [32], Holzapfel [136], Ogden
[208], or plastic models such as described in Bertram [21], Lubarda [180], Lubliner [181] are
built upon the same fundamental ideas that are also addressed in the following. Furthermore, the
text-book by Marsden et al. [188] must be mentioned in terms of a rigorous tensor notation and
comprehensive introduction into the field of non-linear elasticity.

2.1.1. Kinematics

Firstly, a classical Boltzmann continuum model in a three-dimensional Euclidean space shall be
considered. The related 2-D equations can be easily derived in a straight-forward manner. How-
ever, the direct transition to reduced models embedded in a higher dimensional space such as the
non-linear beam or shell theories is not straight forward and is therefore explicitly excluded from
the discussion. Furthermore, if not defined differently, a classical Cartesian coordinate system
will be assumed. At least two distinct observer frames become necessary for the comprehensive
spatial description. These frames are given once for the reference configuration )y = R? at time
t = 0 and, secondly, for the current configuration ) — R3 at time ¢t > 0. The mapping between
these two domain configurations is denoted by x = (X, ), or in the opposite direction by
X = ¢; *(z,t). The absolute displacement field can be deduced directly from these definitions,
viz.

2.1

u(X,t) =z(X,t) - X

Usually, all terms directly linked to pure structural contributions are evaluated in the reference
configuration. This strategy is also followed throughout this thesis. This quite convenient ap-
proach makes use of the mentioned pull-back operator o; '. This operator is one of the ways
the current displacement field comes into play. The difference in the primary field between the
reference configuration and the current configuration given in (2.1) defines the set of unknowns
in each considered time or load step: the displacement field w. Thus, it is shown that the impor-
tant role of the primary solution variables is taken over by the displacements in case of classical
elasticity.

Now, to define the mapping between the configurations, the so-called deformation gradient
holds a crucial role. The deformation gradient is a quantity which puts the current state into direct
relation to the reference state. Therefore, the partial derivative of the current spatial position z of
a given material point with respect to the reference configuration X must be computed, yielding
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ox’
0X’
Bijectivity (i.e., one-to-one correspondence between the two configurations) and sufficient smooth-

ness must be assumed for the map ¢; to formally compute this quantity. Under these assumptions
the inverse deformation gradient £’1 is always well-defined. The same holds true for the exis-

E=Vxa(X,t)=F,¢®E = 6 QE’. (2.2)

tence of the pull-back operator ¢; '. The requirement of these assumptions can be summarized
in the demand that the determinant of the deformation gradient det(£’) must stay positive. Keep-

ing this in mind and by taking (2.1) into account, an infinitesimal line segment in the current
configuration can be expressed as

=ail dXT e +due, (2.3)

where ¢ is introduced as a mixed metric living in the current and the reference configuration.
However, since the same Cartesian base vectors for the reference and the current configuration
are used, m = a = ¢ holds and thus the expression can be simplified. The deformation gradient
follows directly as

I 'S 7

i]% & ®E1 + a(i;(jij C € ®EJ = 5iJ €; ®EJ + 86;;‘] €; ®EJ (2.4)
This derivation demonstrates the actual mathematical meaning of the deformation gradient: It
represents the mapping operator for an infinitesimal line segment between the current and the
reference configuration via dz = F - dX known as push-forward operation. While the so-called
pull-back operation of this line segment defined by d.X = F~'.dz has been already used in (2.3).
By using these definitions, it becomes quite easily possible to define suitable transformations for
an infinitesimal volume element by

dv = det(F) dVj. (2.5)

Another possible application is the mapping of an infinitesimal area element between its current
da and its reference configuration d A, under consideration of the so-called Nanson’s formula
yielding

da = det(F) F~" - dA,, (2.6)

where the area quantities da and d 4, are defined in terms of a scalar and its corresponding unit
normal vector, viz. da = da n and dA, = dAy NN. The introduced transpose of the deformation
gradient is given as

F' = (F, e, @ BN = (F") E,®¢ = F,' E,®¢' 2.7)
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following the comprehensive index notation of Marsden et al. [188]. This at hand and by applying
the polar decomposition theorem, it is further possible to state the deformation gradient F° by its
decomposition into

=
I
I
[S
I
I
I

; (2.8)

where ﬁ is an orthogonal rotation tensor and g is the so-called right stretch tensor, whereas z
is the left stretch tensor. Now, since ET = g T. @T and, further, ET . § = é hold, it is possible
to define a tensor describing the material stretch in the reference configuration by

I

= F' F=U'"UE®E’ (2.9)
It shall be noted that a pure co-variant definition C' ’ of the right Cauchy—Green tensor can readily
be obtained by accordingly pre-multiplying (2.9) with the respective metric. The right Cauchy—
Green tensor has a number of appealing properties: Compared to the deformation gradient, the
right Cauchy—Green tensor lives completely in the reference configuration what simplifies its
interpretation a lot. Furthermore, it has the advantage that it is an objective measure, i.e., any
superimposed rigid body motion does not change its definition. Lastly, it can be used to map
the squares of the infinitesimal line elements including their enclosed angle, viz. dz - dz =
dX - C - dX. Now, if a pure rigid body motion is applied and no stretching is involved, the
right Cauchy—Green tensor degenerates to the identity tensor, thus the following strain measure,
named Green—Lagrange strain, is obtained

1 1 1

E=5C-D)=5EE-1) =5, U =d5) E;®E, (2.10)
where [ is the mentioned identity tensor. This is, as expected, equal to zero for the undeformed
state and, again, by accordingly pre-multiplying the necessary metric a pure co-variant Green—

Lagrange strain g’ can be derived.

Remark 2.1. The one-dimensional equivalent to the quite abstract general Green—Lagrange
strain definition (2.10) is £ = 1/2(I?/L3 — 1) = 1/2(A? — 1), where L, is the initial length,
[ the current length and A the so-called principal elongation. This principal elongation corre-
lates linearly with the more convenient technical strain e, = A — 1 known from linear elasticity
and, therefore, the principal elongation is not surprisingly often the preferred quantity when it
comes to find a strain representative for large deformation experiments, see large deformation
stress-strain plots, for instance.

However, the shown Green—Lagrange strain is by far not the only applicable strain measure,
instead there are many more, all with benefits for different applications. For example, the typical
strain measure for large strains, which is often used in the context of plasticity, is the logarithmic
strain.

The inherent time dependency of the quantities has stayed unconsidered until now, thus, the
necessary steps shall be quickly presented. It is straight forward to define a suitable velocity and

20



2.1. Non-Linear Solid Mechanics

acceleration measure for the primary field variables by simply applying the corresponding time
derivatives, viz.

. ou(X,t du(X,t

wX,t) = ‘<07t )| - (dt >, (2.11)
X

. Cou(X, )| du(X.t)  dPu(X,t)

WX, t) = —5 R T (2.12)

Accordingly, it is also possible to define a rate dependent equivalent for the deformation gradient,
called the material velocity gradient L = F. For more detailed information the reader is kindly
referred to the literature mentioned at the beginning of this chapter.

2.1.2. Balance Equations

There are different fundamental balance equations which have to hold for a consistent contin-
uum mechanics approach. In the following a brief overview will be given. This basic governing
equations form the foundation of the non-linear structural finite element approach considered
throughout this thesis. In particular, the later derived potential formulation will become impor-
tant in the context of more sophisticated globalization methods. In fact, the potential formulation
will help to build the bridge between mechanics and mathematics, since it can be used as a nat-
ural representative of a well-posed objective function without the possible drawback of least
square estimates (see Byrd et al. [42]).

Conservation of Mass

Under consideration of the already introduced motion ;(X,t) applied to the considered ref-
erence domain €y, the mass densities o(z,t) in the current configuration at time ¢ as well as
00(X), denoting the mass density of the body in its reference configuration, shall be given. Now,
conservation of mass implies that

mass(€2) = mass({2) < JQ(L t)dv = Jgo(i)d% (2.13)
Q Qo

holds for all involved bodies summarized by the mentioned domains €2y and €2. This is com-
pletely plausible for classical elastodynamics, since mass loss during a motion should be always
prohibited. Next, the mass density in the reference configuration can be also expressed by its
counterpart in the current state, by simply following the introduced volume relationship (2.5).
Thus, g9 = ¢ det F is obtained. Furthermore, the time derivative of the determinant yields
d/dt(det F) = det F div(w), where the divergence of 1 is introduced. Next, since ¢o(X) = 0
must hold, it is straight forward to derive the equation of continuity by inserting this demand into
(2.13) which leads to

0= Jgo(g)dvo - Jdetg o+ o det F div(a)dV, =’ J@ + o div(i)dv. (2.14)

Qo Qo Q
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2. Computational Mechanics for Large Deformations

Finally, the divergence theorem provides the last step to obtain

Jgdvz—Jgg-ndm (2.15)

Q o2

or in simpler words: No mass is allowed to leave the body over time.

Balance of Momentum

While a body follows its path through time and space, it is typically externally loaded. In general,
this load can be split into two contributions, the surface force i(g, n,t) acting on a current unit
surface element at time ¢ across a surface element defined by its unit normal n, and, secondly,
there exists a body force b acting per current unit volume element. Alternatively, it is also possible
to define the body force per unit mass element, see e.g. Marsden et al. [188]. Besides these
usually prescribed forces, there are additionally the so-called internal forces acting across any
possible surface. These at hand, the balance of linear momentum is obtained by

d . .
G et [@noaos [ba (2.16)

dt
Q oQ Q
as the continuum mechanic’s counterpart to Newton’s second law. In addition, this equation can

be easily extended to the balance of angular momentum with respect to the origin of coordinates,
ViZ.

d y .
&fgxggdv:ngg(g,ﬂ,t)da—kjgxl_)dv. (2.17)
Q oQ Q

Now, if the balance of linear momentum (2.16) holds, it can be concluded under application of
Cauchy’s theorem [188, ch. 2.1] that the vector field £ depends linearly on the current normal
vector field n, thus, { = g(g, t) - n follows. Here, 0 denotes one of the components of the so-
called Cauchy stress tensor g € R3*3, which is completely defined in the current configuration.
By inserting this relation together with div(g)’ = do*/ /07 into (2.16) and by applying the well-
known Reynolds transport theorem to the left hand side of (2.16), which for a given vector field
f(z,t) and a time dependent integration domain €2 generally yields

d .
T Ji dv = Ji + fdiv(a) do, (2.18)
Q Q

it directly follows that

Jgg dv = Jdiv(g) dv + Jé dv. (2.19)
Q Q Q
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2.1. Non-Linear Solid Mechanics

Here, the left hand side has been additionally simplified by applying (2.14). This balance demand
has to hold for each material point in the current as well as in the reference configuration, thus,

0 i = div(o) + b, (2.20a)

= 00 it = Div(P) + by, (2.20b)

must hold, where (2.20b) denotes exactly the same relationship as (2.20a) just formulated in the
reference configuration. The therein newly introduced stress tensor P is the so-called first Piola-

Kirchhoff stress which can be derived by P = det(F) o - F~". The first Piola-Kirchhoff stress
tensor is again a mixed tensor, potentially living in two different vector spaces. This brings us to
the definition of the so-called 2nd-order Piola—Kirchhoff stress S = F~'- P, which is completely
defined in the reference configuration and thus it has also the symmetry property of the Cauchy
stresses 0/ = ¢7%. This symmetry of the Cauchy stress tensor can be easily shown by repeating

the steps which led from (2.16) to (2.19) for the balance of angular momentum (2.17).

2.1.3. Constitutive Laws: Hyperelasticity

The previously defined balance equations are the classical starting point if the Hamiltonian or
variational principle shall be studied. However, it is not possible to solve these equations without
any knowledge about the stress and strain relationship, i.e., the respective constitutive law. In
this section the necessary content shall be presented for pure elastic materials. This allows us
to express the first Piola—Kirchhoff stress as a function P(X,t) = ‘B(X, F(X,t)) depending

solely on the material position vector X and the deformation gradient with det(F) > 0. If
additionally a homogeneous material is considered, the local dependence on the position X can
be dropped as well. In this thesis the theory for finite elasticity shall be restricted to the theory
of hyperelasticity such that the existence of a suitable scalar valued strain energy function W
per unit reference volume can be postulated. This circumstance is very convenient for the later
discussed optimization and globalization schemes. Furthermore, the discussion shall be further
restricted to perfectly elastic materials, i.e., any internal dissipation effects such as damage,
plasticity or viscous mechanisms are excluded. Furthermore, it shall hold that the strain energy
function reaches its absolute minimum for the undeformed state and this minimum shall be
equal to zero, thus, ¥(J) = 0 and W(F) > 0. This demand W(§) = 0 is equivalent to a stress
free reference configuration. Another fundamental assumption is that the strain energy function
value tends to infinity if the respective volume unit is expanded to infinity or compressed to zero
volume. For further information about the existence of a solution, the reader is kindly referred to
the corresponding literature about polyconvexity , e.g., Ball [11] or Marsden et al. [188, Ch. 6.4].

By computing the first order derivative of the strain energy with respect to the deformation

gradient, the first Piola—Kirchhoff stress tensor is obtained, viz.

()}

V(£)

= P’ = 8\11' .
é’g ! oF",

P=P(E) = (2:21)

Now, since objectivity or also known as frame indifference must hold, the following relationships
are revealed
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2. Computational Mechanics for Large Deformations

U(E)=¥(U) =¥(C) = V(E), (2.22)

i.e., the strain energy can be equivalently expressed in terms of the deformation gradient (2.2),
the right stretch tensor (2.8), the right Cauchy Green tensor (2.9), or the Green—-Lagrange strain
(2.10). Finally, the derivative of the strain energy function with respect to the deformation gradi-
ent (2.21) leading to first Piola—Kirchhoff stress definition can also be stated as

o (
B

2

) () 0v(E)

P =2F , 5=2 - = (2.23)

@

Now, if the description is further limited to the special case of isotropy such that the material
behavior is supposed to be identical in any material direction, the strain density function becomes
independent of the defined material axes and is only a function of the scalar-valued invariants of
g , which are defined as

L—t(C), Ih— % [(C) — (C?)], Iy = det(C) = (det(E)2.  (2.24)

Thus, the second Piola—Kirchhoff stress can also be expressed as

3
S = Y _ 2 oV 0k (2.25)

under these assumptions. The necessary derivatives of the presented invariants can be found in
the related literature, e.g., Bonet and Wood [32], Holzapfel [136]. Now, under consideration
of this very basic hyperelasicity framework for homogeneous, isotropic constitutive laws, two
examples shall be presented which are widely used during the simulations in this thesis. Both
of them can be summarized as compressible neo-Hookean materials. The big advantage of these
materials is that their free parameters can easily be identified by the material parameters known
from linear elasticity, such as the Young’s modulus E, the Poisson’s ratio v, or the directly
related shear modulus g The first one is the strain density function for the coupled neo-Hookean
material given in Holzapfel [136, p. 247]

MnH [, 7—Bun HnH
\Iln = _[ _1 .[ - 9 /6 = . 2'26
H 26nH( 3 ) 2 ( ! 3) 14 ( )

The second neo-Hookean material law follows the closely related definition provided in Bonet
and Wood [32, p. 162], viz.

n n )\n vE
Voo = MTHUl —3) - “2H In(fy) + “2 (B, Aun = TR
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2.1. Non-Linear Solid Mechanics

here denoted as logarithmic neo-Hookean. However, the material choice is not limited to these
two examples, instead, any hyperelastic material can be chosen as long as it is polyconvex and
capable of large deformations. An example for an ill-suited material law might be the very simple
St. Venant-Kirchhoff material which exhibits serious difficulties if it is used for large strain
problems. In fact, it is unable to predict a realistic deformation pattern under such circumstances,
see Bonet and Burton [31] for a demonstrative example.

2.1.4. Weak Form

In the preliminary sections the fundamental relations of classical non-linear continuum mechan-
ics have been presented. However, if the goal is to solve complex elastodynamical problems it
is often not possible to find a closed analytical solution for these equations. Instead, numerical
methods start to become important and propose a way to find an approximate solution. Now, in
this section two possible ways to the so-called weak form shall be presented. The weak form
represents the reformulation which is necessary such that the proposed general continuum’s me-
chanics equations become applicable to numerical schemes.

Based on the Strong Form

First, the classical way is shown. Starting with the initial boundary value problem for the under-
lying partial differential equations, it is quite simple to obtain the necessary reformulation. In
elastodynamics the strong form follows as

oot = DivP + b, in Qo x [0, 77, (2.28a)
u=1 onT, x [0,T], (2.28b)
P-N =1, onT, x [0,T], (2.28¢)

in ), (2.284d)
in €. (2.28¢e)

The stress tensor P still denotes the first Piola—Kirchhoff stress (2.21), the vector éo summarizes
the acting volume forces, and the vector £, all applied Neumann loads on the Neumann bound-
ary I',. These last two quantities have already been introduced in Section 2.1.2. In addition,
4 denotes prescribed values of the primary field variables. Namely, the displacement field on
the Dirichlet boundary I',,. If a dynamic problem is considered, additional values for the initial
displacements % and velocities 4 must be provided in the entire domain )y at ¢ = 0. Next, an
arbitrary weighting function du is introduced, such that the given strong form directly leads to

0- f (avii — DivP — y) - 6u dVy + f (PN 1) dudA,. (2.29)

Qo Ty
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2. Computational Mechanics for Large Deformations

In the given structural mechanics context the introduced weighting function can be interpreted
as a virtual displacement vector with

dueW = {0ue H' (Q): du=0onT,}, (2.30)

where W is the weighting function space. In addition, H'(§)) is the so-called Sobolev function
space following

HY(Q) = {f € Ly(Q) : f||Vf|2dQ < oo}, where Ly(Q) = {f : szdQ <}, (2.31)

Qo Q0

Therefore, the meaning as well as the solution have not changed from (2.28) to (2.29). Next, the
divergence theorem is applied to the boundary integral in (2.29) yielding

[ x-t) uds = | PVt + [ du-Div(RIaV~ [ 5uda @32

To Q0 Q0 Te

This is inserted into (2.29) together with the identities Vx (du) = 0(du)’/0X”’ = §F'; and
P = F - S such that

0= [(oi =8 ouavy— [1y-ouang+ [(£-8)or . @3

Qo T's Qo

where the last term can be reformulated as

r

(F-8):0F dVy = JF@A SAB §F,p dVj

J p— =
Qo Qo
r

1
= E(F“A 6F,p S4B + F*, 6F,5 SP*) dVj

I
|
>
B!

H
B!
_|_

i

F'-6F):SdV, = f&g : S dVg, (2.34)

Qo Q0

In (2.34) the symmetry of the second Piola—Kirchhoff stress tensor has been used explicitly.
Thus, the final weak form is obtained by

U = f@og-éngOJrfé:dngD—Jéo-égd%—Jio-égdAozo. (2.35)

Qo ) Qo Lo
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This is also known as the demand that the virtual work §%/ vanishes at the solution. The notation
07/ already implies the second possibility to derive this result: as variation of a scalar valued
potential function %/. However, it must be highly emphasized that the principle of virtual work
derived here does not need an underlying potential and is therefore also applicable to problems
involving non-conservative contributions such as frictional contact, plasticity, viscoelasticity, or
air resistance to name only a few. Consequently, it does neither need the existence of a strain
energy function (see Section 2.1.3 for a brief introduction into this topic). Thus, the presented
principle can be seen as a much more general starting point for the derivation of the structural
finite element method in contrast to the following derivation from a potential formulation.

Based on the Balance of Mechanical Energy

Even though the next derivation is less general, it brings another advantage: It introduces a
scalar-valued mechanical energy function which can be used as an objective function later on.
The existence of such a function brings a lot of useful properties, e.g., many publications about
sophisticated optimization algorithms need some kind of merit function (see Nocedal and Wright
[204] for an overview). In addition, the consistent variation starting from an objective function
preserves a symmetric Hessian matrix. This simplifies on the one hand many theoretical consid-
erations since a clear definition for positive definiteness is available and, on the other hand, it
opens a much wider field for iterative linear solvers.

In this section as well as in the entire thesis only mechanical sources of energy shall be con-
sidered, i.e. any other chemical, thermal, electric or magnetic source is excluded from the dis-
cussion. Furthermore, the balance of mechanical energy shown here does not contribute with a
new balance equation to the discussion in Section 2.1.2, but instead the balance of mechanical
energy can be derived from the balance of linear momentum (2.16).

First, the kinetic energy £ of the considered continuum problem shall be investigated. There-
fore, the well-known relationship of Newton’s mechanics is generalized for the continuum me-
chanics approach proposed here leading to

H(0) = | oot iV = 5 [ g1 i 236
Qo Q

Next, the rate of external mechanical work P,y shall be introduced by

Poalt) = [ Byl [ dy-idto= [Boidos [ 1o da (2.37)
Qo ) Q o0

This is the rate form of the introduced energy by the externally applied loads. Now, only the rate
of internal mechanical work Pj, 1s missing. This term represents the mechanical response, i.e.,
the rate of change of internally stored energy due to deformation, also called stress power, and
is generally obtained by

Put(t) = | P+ EdV, =JS:£dV0=fg:(£-£_l) dv. (2.38)
Q
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2. Computational Mechanics for Large Deformations

Finally, the often called balance of mechanical energy, or more precisely the theorem of power
expended can be stated as

E%%@+RM®=RMﬂ (2.39)

Hence, the rate of external mechanical work is balanced by the rate of internal work and kinetic
work. In other words: The rate of the kinetic energy contains contributions from the external
as well as from the internal work and is consequently not generally conserved. A closer look
at (2.39) reveals some well-known simplifications of this balance equation: First, if the rate of
external work Pey; vanishes, a problem of free vibrations is obtained. Secondly, if the rate of
change with respect to the kinetic energy d/d¢(# (t)) vanishes a quasi-static problem becomes
present. However, the latter one still allows time dependence of other terms. An example would
be a quasi-static creep deformation modeled by a time dependent material law. The proof that
the left and right hand side of (2.39) are indeed equal can be found in Holzapfel [136, p. 154], for
instance. This formulation in terms of rates rather than conserved absolute quantities is generally
holding. However, it shall be taken one step further: The consideration of conservative systems.
The existence of a conservative system implies that a scalar-valued total potential energy

Uso (1) = Uext (1) + Ui (1) (2.40)

can be formulated, such that the rate of external mechanical work (2.37) can be deduced from
the potential energy of the external loading by

mawz—f%%ﬁz—%mw, (2.41)

and the stress power (2.38) from the total strain energy

= U1, with % () = J v dvs. (2.42)

Qo

The function V in (2.42) represents the strain energy function introduced in Section 2.1.3. Next,
with all this at hand, the explicit form of the total potential energy in elastostatics can be given
by

s () = f U(X, F) — by(X) - u(X) dVp — f LX) - u(X)dAg.  (243)

Qo s

Note that it is assumed in the following, that all considered loads are dead (see e.g.VMarsden
et al. [188, p. 212]), i.e., the prescribed traction £(X) = P - N and the volume load b shall be
constant during the considered motion. Thus, the directional derivative of (2.43) reveals
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d
Dég(%ot(ﬂ)) = _%cot<ﬂ + 55@)

d&f e=0
oV - ;
= | 55 Var(0u) — by - du dVo - f ty - du dAy (2.44)
Qo — (2]

and this coincides with the quasi-static part of 6%/ in (2.35). Additionally, if others than dead
loads are considered and, consequently, the load depends on the current point position z, it
must be ensured that these loads are conservative, i.e., derivable from a potential such that
Dsy (% (u)) = —b - du and Dy, (#(w)) = —f - du hold.

The existence of such a total energy formulation can be mathematically very precisely formu-
lated by the demand that

Dy (Dy (%ot (1)) = Dy (Du (%ot (1)) (2.45)

holds for all v,w € W defined in (2.30). This is equivalent to the demand, that the Jacobian
matrix D3, (Zot(w)) is symmetric. The strain energy fulfills this demand if the fourth order
elasticity tensor C has the symmetry C,4,Z = C, B 4 which can be directly concluded if a strain
energy function is used. For more information the reader is kindly referred to Marsden et al.
[188, Ch. 5.1].

The extension to elastodynamics can be achieved in different ways. One possibility is to add
up (2.36) and (2.40) and formulate the demand

H (t) + et (t) = const. (2.46)

Remark 2.2. For the sake of completeness it should be mentioned that the total potential (2.43)
can be extended by an additional additive term representing the energy input into the system by
the prescribed displacements. This term lives completely on the Dirichlet boundary I', and is
defined as

f £(X) - (& — u(X)) dAo.

However, it is not relevant for the upcoming discussion and, therefore, it is neglected.

Based on the Lagrangian Field Theory

Another way is based on the more general Lagrangian field theory which shall be applied here.
This theory provides a smooth transition from elastostatics to the elastodynamics. For instance,
a comprehensive derivation can be found in Marsden et al. [188, Ch. 5.4, p. 275]. Here, only the
final result shall be presented:

Under consideration of the Lagrangian density function

L(X,u,uF) L(XT ul b, FY), (2.47)
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the structural Lagrangian can be defined by

U (u, 1) = JE(X, w(X),u(X), F(X))dVy — f Yi(u(X))dA, (2.48)
Q0 Qo
where as previously introduced V, #;(u(X) = —t holds, and, therefore, allows the consideration

of conservative Neumann loads. The Piola—Kirchhoff stress tensor can be derived by

oL oL
= pl—=__=
oF z OF",

(2.49)

llav
I

The weak form of the Lagrange density equations follows then as

0 .
f@u (u, 0, F)] - 6udVO—Ja L(u,u, )] - du dVy + J—E (w,0, )] : 0F dVg
Qo Qo Q

+ J Lo - Ou dA,. (2.50)
00

Additionally, the strong form is obtained by

0oL oL oL .
a@ = %—Dlva—F EM:ZO OHFU. (251)

Finally, in the case of hyperelasticity the Lagrange density function can be directly identified by

: ..
L(w, i, F) = S0t~ i = U(E) = ¥(u). (2.52)
These functions describe precisely the problem stated in the strong (2.28) and weak form (2.35),
however, under stricter assumptions due to the dependence on a scalar-valued Lagrange density
function (2.52) and the demand for a potential formulation to include the external loads, which
together form the Lagrangian in (2.48).

Remark 2.3. The request for conservative systems stated here can actually be weakened for
the Lagrange equations by consideration of so-called generialized or velocity-dependent poten-
tials. A interesting discussion on this topic can be exemplarily found in Goldstein et al. [112,
Ch. 1.5]. In the cited chapter two different velocity dependent forces are discussed, namely, the
electromagnetic forces on moving charges and, secondly, friction forces following the so-called
Rayleigh’s dissipation function. Furthermore, in terms of frictional contact problems in contin-
uum mechanics the quasi-augmented Lagrangian function in Alart and Curnier [1] or the exten-
sion to large deformations in Pietrzak and Curnier [212] is worth mentioning. A more detailed
description of the latter one will follow in Section 2.2.3.
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Figure 2.1.: Basic notations and kinematics for a unilateral large deformation contact problem in 2-D. The potential
contact boundary zone is enclosed by square brackets in the reference and current configuration, respectively.

2.2. Contact Mechanics

Next, the attention is drawn to the field of contact mechanics. First the basic kinematic relation-
ships between two contacting bodies shall be presented where the focus is put on frictionless
contact scenarios. However, the interested reader is referred to the comprehensive literature on
contact mechanics such as Kikuchi and Oden [157], Laursen [170], Wriggers [283] for a much
deeper insight into the basic relationships. After the kinematics have been discussed, the funda-
mental contact problem will be introduced. The used notation is chosen in such a way that the
transition to the following constrained numerical optimization chapter is as easy as possible. For
convenience, the up-coming introduction is restricted to unilateral contact between two elastic
bodies. However, the extension to more involved problems such as self-contact or multi-body
contact is possible and should be straight forward. Finally, the possible extension to frictional
contact is briefly presented as well.

2.2.1. Contact Kinematics

At the beginning the introduction shall be started with a brief overview of the underlying kine-
matic equations where a classical Boltzmann continuum model in a three-dimensional Euclidean
space is considered. Since this is the most general case, the related 2-D equations can be easily
derived. Furthermore, a Cartesian coordinate system will be used, if not explicitly defined differ-
ently. For the spatial description, two distinct observer frames are defined: One for the reference
configuration Qg < R? at ¢ = 0 and one for the current configuration 2 = R? at time ¢ > 0.
The mapping between these two configurations is - as already previously defined - given by
= @ (X,t) or X = ¢; (x,t). The absolute displacement of a material point is then obtained
by u(X,t) = x(X,t) — X. For a more detailed description of non-linear continuum mechanics
aspects the reader is referred to the first part of this chapter.
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As mentioned in the introduction to this section, the description is restricted to the unilateral
contact case between two elastic bodies. The current spatial configuration of each body is de-
noted by 2P = X LI ul’! where b = 1 identifies the so-called slave or non-mortar and b = 2
the so-called master or mortar body. The potential contact interfaces in the reference configu-
ration are given by " er? Q([)b] for each body b € {1, 2}. Their counterparts in the current
configuration are represented by fy([,l], ([,2], respectively.

Before the contact details are presented, a more general convective coordinate system in the
current configuration on the respective contact surface shall be defined by the covariant base
[b]l., i € {1,2}. The associated contravariant coordinates are given by {( [b]"}ie{m}, such

that the definition of the covariant base vectors follows as z[b] = g[b] ol = ozl /0C [le —

vectors 7

agogb] (X, t)/0¢!’l. Thus, a point z!*! on the slave surface can be expressed as a function of the
convective coordinates via zl'l = (¢, ¢MM2) = (¢1). Furthermore, the outward pointing
unit surface normal on the slave side is easily obtained by

(z(c™)) T xT

(NI 1z x M

!l = n(z(cM) = (2.53)

[SRISE

Equivalent definitions can be derived for the master side.

A key ingredient of any frictionless contact formulation is the normal gap definition between
the two bodies. There are several options how to define this function. They mostly differ in
the definition of the involved normal vector, which is either defined on the slave as in Popp
et al. [215], Yang et al. [290] or on the master surface, viz. Laursen [170], Wriggers [283]. The
latter variant is closely related to the so-called closest point projection. Nonetheless, whichever
definition is in use, the normals are supposed to coincide in the converged active contact zone.

In this thesis a normal field defined on the slave side as given in Popp et al. [215], Yang et al.

[290] is used. With this definition it is possible to define the projection of a position z!*! on %[1]

onto an arbitrary point located at z[2) = z21(¢21") on 7! as the root of

o

X(@& ¢ )|y = {2 = & — ayn(@)}],_m = 0, (2.54)

2=gl]

where n!!! is the continuous normal field defined in (2.53) and o, denotes an auxiliary distance
factor. It is obvious that there is more than one possible definition of this projection procedure.
See for example Popp et al. [215] for an alternative definition based on the cross-product in the
two-dimensional case. Nevertheless, one advantage of (2.54) is that the auxiliary distance factor
can be helpful to define a unique projection point on the master side if more than one candidate
was found. In such a case, the point with the smallest ¢, value and the correct orientation rela-
tive to the employed normal is most likely the correct choice (see Figure 2.2 for an illustrative
example). All projection rules have in common that, in general, a non-linear system of equations
has to be solved. Here, a local Newton scheme is used for this task. The solution of the projection
is often denoted by variables with a bar symbol such as z2l = z[2(¢[?F¥) and &,. Throughout
this thesis this rule will be followed in conjunction with contact related terms, but it is still stated
here that all variables z[?! are meant to be the projected counterparts of some point z!, if not
explicitly defined differently.
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Figure 2.2.: Tllustration of a difficult projection scenario during a non-linear solution procedure with three possible

master point candidates (o) for the slave point (4). While ig] can be excluded due to the enclosed angle of the

master and slave normals, the point @52] disqualifies due to the corresponding positive auxiliary distance factor,

such that @,[2] is the only remaining unique projection point.

Finally, the continuous normal gap function definition for contact follows as

gn(z (M), 2((®V)) = M (), 2 — 20, (2.55)

where (-, -) denotes the inner product of two vector quantities. Note that a positive value of
gn(z) : R? — R indicates an open gap between the two bodies, while a negative value corre-
sponds to some kind of overlap.

2.2.2. General Frictionless Contact Problem

There are different ways to derive the general contact problem. In Hiermeier et al. [131] first the
different continuously formulated contributions have been discretized and, afterwards, inserted
into a Lagrangian functional. Alternatively, it is possible to start at the strong form, given by
the initial boundary value problem of elastodynamics (2.28) for each subdomain Q([)b]. This at
hand, the corresponding constraints have to be defined to prevent a non-physical overlap of the
considered bodies. Therefore, the so-called Karush—Kuhn—Tucker conditions or in the context of
contact problems also known as Hertz—Signorini—Moreau conditions are introduced

oNn(z(X,1) =0, pn(a(X1) <0, py(a(X ) gn(z(X, 1) = 0, (2.56)

on %1] x [0, T'], where py represents the contact pressure acting on the potential contact bound-

ary %[b] in the current configuration. This boundary zone is the counterpart to I'" in the reference
configuration which represents one sub-set of the entire surface of each body 6(2([)6]. The remain-

g

ing surface can be subdivided into the already defined Dirichlet boundary [';," and the Neumann

boundary zones re ], respectively. The last equality in (2.56) is the so-called complementarity
condition which ensures that the gap is always equal to zero as long as the contact pressure is
unequal to zero and the other way around. To put it differently: There can only exist a contact
pressure as long as the bodies are in contact (gx = 0). Furthermore, the first inequality in (2.56)
claims that the bodies are not allowed to overlap, while the second inequality has the task to
avoid tensile forces between the contacting bodies. This is totally meaningful as long as the
modeling of adhesion effects is not part of the formulation. For an extension in this direction the

reader is referred to Sauer and De Lorenzis [234], Sauer and Wriggers [235].
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Using the presented strong form (2.28), the well-known principle of virtual work can be di-
rectly applied, thus,

2
ZJ il” — DivP? — §) . syl dv0+f(§[blﬂ[]—t0) sul® d A}

b
ol )

— f AN (Ogn — 08) + 0An (gn — s) da (2.57)
i

is obtained, where the new primary variables Ay and s have been introduced. While the first
one represents the Lagrange multiplier for the non-penetration constraints and can be directly
identified as Ay = —pn, the second one is a so-called slack variable s which allows to replace the
inequality constraint (2.56) by an equality constraint as explained in Gill et al. [107], Rockafellar
[229]. The optimal choice for s can be easily derived by s* = max{0, gx — Ax/cn}, where ¢y
is a so-called complementarity or regularization parameter. A detailed introduction will follow
at the beginning of Section 3.2. This allows the integral over the current potential contact zone
%[1] to be divided into two parts: The first, so-called inactive, part is defined by gy > An/cn and

denoted by V(E”I. The complementary, so-called active, sub-domain is denoted by 7([,1]“4. After
all, it can be concluded with the final weak form

2
:Z J PPl sult 4 s B — B sullav; — f i sultl 440

ol rlb]

2
— J AN 591\] + 0\N [N da — J C—)\N(SAN da. (2.58)
N

Mol e

The reformulation of the structural part is comprehensively described in Section 2.1.4. The first
line in (2.58) is identified as the variation of the structural potential 6%/ (under the prerequisite
of potential based loads) and the second line as the variation of the contact potential 6% yielding
0L = U — 0% = 0, where L (u, \x) : R¥*! — R with the spatial dimension d € {2, 3}
denotes the so-called Lagrangian functional

L, M) = U (u) f A [g (1) — max{0, gx (u) — 2—§}] da (2.59)

f (2N 22 \y) da. (2.59b)

Next, a brief discussion of the frictionless contact energy density term

¢ (a2 Ax) = Ax [gN(z[”,z[ﬂ)—max{o,gN@[”,z[?])—i—N}] (2.60)
N
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—0C O

(b)

Figure 2.3.: Visualization of the frictionless contact energy density function for cx = 1. Figure 2.3b shows the first
order derivative of %4 with respect to A\ which reveals the C°-smoothness of the standard variant.

follows. An interesting observation is that the contribution to the Lagrangian disappears at the
solution, i.e. .£* = %/*. This follows directly from the complementarity condition in (2.56).
Furthermore, by taking a look at an illustrative visualization for cy = 1 in Figure 2.3, it is
obvious that this function is only C°-continuous.

However, there exists an alternative formulation which is C''-continuous. Therefore, the fric-

tionless contact energy density % is replaced by its augmented counterpart %N compactly de-
fined by

Cox

(2™ 2P Ay) =

. ()\N [max{0, A\x — exgn}]?). (2.61)
This function as well as the associated derivative with respect to the frictionless Lagrange multi-
plier are shown in Figure 2.4. It is C'*-continuous since the kink along the active-inactive decision
can be now found in the first order derivative. A similar result could have been also obtained if
the derivative with respect to the displacements was visualized, instead.

Remark 2.4. It is important to note that the first order derivative of the augmented frictionless
contact energy density function %ZCN is equivalent to the so-called non-linear complementar-
ity function (NCP) which is often mentioned in the context of primal-dual active set strategies
[134, 257] and plays also a major role in case of the variational inequality approach applied to
mortar contact problems such as followed by [87, 138, 213, 215, 218] and the references therein.
Straight forward calculation reveals

- 1 !
—CKCN (:p[ .f )\N) [)\N — maX{O >\N - CNgN}] = (262)
8)\N CN

Thus, only the augmented formulation contains the NCP as a natural part while the standard
Lagrangian functional has a kink and is therefore less smooth but has still the same solution.
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— 0%, /ONx

Figure 2.4.: Visualization of the augmented frictionless contact energy density. Figure 2.3b shows the first order
derivative of ., with respect to Ay which indicates the C'* smoothness of the augmented variant.

This underlines that the augmented formulation is to some extent the more consistent formula-
tion, as it fits better the overall pre-asymptotic active set decision. However, in this thesis both
approaches will be followed, i.e., the augmented as well as the standard contact Lagrangian are
taken into account and will be compared to each other in Chapter 4.

For a much more comprehensive introduction into the general treatment of inequality con-
straints as well as for the derivation of the optimal slacks and the augmented formulation, the
reader is kindly referred to Section 3.2 and the references therein.

2.2.3. Extension to Frictional Contact Problems

This section follows closely the publications of Alart and Curnier [1], Pietrzak and Curnier
[212], wherein a general framework for the treatment of frictional contact problems is presented.
This framework can be also applied to the formulation used in this thesis. Friction is a very
important topic which increases the complexity severely. However, since the focus of this thesis
is on frictionless contact problems, a detailed description would go far beyond the scope of this
work and the topic shall therefore be only briefly addressed. The following investigations are
given as basis for potential future work which eventually extends the later proposed methods to
frictional contact.

First, one additional important kinematic quantity must be addressed: the relative velocity of a
slave point X e T with its current position z!1 € %[1] defined with respect to a master point
X e 1 j0cated at zP(X 2 (XM 1), 1) e 7(?] at time ¢. This quantity is typically given by

v = (X, t) — 5@[2]@[2](&[1]’75)7?5) = UNrel 4y

~re T,rely

(2.63)

where 0,z1%(X 2 (XM 1), ) denotes the current velocity at a fixed material point X Bl e, at
the material point associated to X [ via the applied projection at time ¢. The components in the
tangential directions are defined by

36



2.2. Contact Mechanics

Urrel = (_ ®n ) Uyel (2~64)

As discussed in Laursen [170], Yang et al. [290] this quantity is only frame indifferent (also
called objective) as long as gn = 0 holds at the location where v, is evaluated. In other words:
The relative velocity is not well-defined when the contacting bodies are not effectively in con-
tact such as in case of a slight separation or penetration. However, it would be advantageous that
the objectivity holds also in these cases, since it allows the formulation of the contact condi-
tions as a tribological law instead of a boundary condition. This is beneficial when it comes to
numerical solution procedures where a small local gap at an evaluation point, such as a Gauss
point, might be unavoidable. From a continuum mechanical perspective an excellent explana-
tion of the issue is provided by Curnier et al. [59], where the interested reader is referred to for
more information. Possible modifications for mortar contact implementations can be found in
Gitterle [109], Yang et al. [290], for instance. However, to what extent these modifications are
also suitable for the later introduced mortar-like contact formulation is a question which needs
further investigations. An alternative is the formulation in so-called slip advected bases which is
often applied in the context of node-to-segment contact formulations considering a closest point
projection, see Laursen [170], Pietrzak and Curnier [212] for further details. This approach is
discussed in Curnier et al. [59] as well. Basically, the idea is to augment (2.64) by an additive
term which vanishes in the case of perfect sliding, i.e. gn = 0.

Objectivity plays a major role for large deformations since it guarantees that a change of refer-
ence frame, consisting of a translation and/or rotation, does not change the considered quantity.
It is obvious that this prerequisite must be satisfied. In the following it shall be assumed that a
suitable objective representation of the relative velocity is available (at least in its discrete form),
which shall be denoted by g and is called the rangential slip rate. The quantity can either coin-
cide with (2.64) and is only "modified in the discrete form to become objective in case of slight
penetrations or positive gaps following [109, 290] or it is modified in such a way that it becomes
objective also in its continuum representation as suggested by [59, 170, 212]. Under considera-
tion of this tangential slip rate and the friction shear p_ (X [, t), which implicitly relies on the
normal pressure py introduced in (2.56), the tangential Coulomb friction law can be defined by
three conditions:

o slip rule: The first condition claims that the friction shear p _is collinear with the tangential

relative velocity vector QT. This demand is formulated by

o =[2 o 2
g (XML X)) p (X)) = Jp (xW 1)) g (X1, X 1), (2.65)

e friction (Coulomb) criterion: The second condition is used to limit the magnitude of the
friction shear via

lp (XM 4)] + § pn(XM 1) <0, (2.66)
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g, dt Ar g, dt
(a) (b)

Figure 2.5.: Illustration of the C''-continuous incremental frictional contact energy density function for ¢, = 1 and
pn = —1. Presented is the dimensional reduced case, i.e., only one sliding direction is considered. In (2.5b) the
first order derivative with respect to the tangential Lagrange multiplier is shown. This function is also known as the
frictional nonlinear complementarity function.

where pn(X (1 t) < 0 holds as defined in (2.56) and the scalar § > 0 is the so-called
friction coefficient. The inequality in (2.66) can be illustrated as Coulomb’s cone. A slice
through this cone for a fixed value of the normal pressure py is a convex disk Cz(pn) =
{pT | HPTH < —Fpn} where the disk radius is given by —§ pn. The boundary of the
disk defines the upper bound of the friction shear magnitude at a certain level of normal
pressure.

e complementarity condition: There also exists a complementarity condition for the fric-
tional conditions, just similar to the frictionless case. This condition states that either the
magnitude of the friction shear is equal to —F pn (X XM ¢ t) allowing a finite slip rate g or
the magnitude of the friction shear is smaller than thls upper bound and the slip rate is
consequently equal to zero. This can be formulated as

lg, (X LI, (XM, 8] + Fpn(X1, 1)} = 0. (2.67)

These three conditions (2.65), (2.66), and (2.67) can be summarized in two possible friction
states: The first one is called stick and is present as long as the /5-norm of the friction shear is
smaller or equal to the current disk radius —§ pn. It is characterized by a slip rate equal to zero.
The second state is called s/ip which in turn is characterized by a slip rate unequal to zero and
makes it simultaneously necessary that the magnitude of the friction shear is exactly equal to the
disk radius —§ pn.

The discussion already starts to reveal the cumbersome part of the Coulomb friction law in
contrast to a frictionless formulation: The friction conditions depend explicitly on the normal
pressure and this normal pressure is the Lagrange multiplier of the constrained optimization
problem. This direct coupling makes it far more complicated to find a suitable Lagrangian. In
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Pietrzak and Curnier [212], however, an elegant suggestion is made by a so-called incremental
augmented Lagrangian formulation. This idea shall be briefly presented in the following: The
first part is represented by the augmented Lagrangian formulation of the frictionless contact
formulation (2.61), while the second part follows from the aforementioned friction conditions.
The finally proposed augmented frictional contact Lagrangian is defined as

2
1
[ M A ] Z J L (maf0, A — exgn 12— Mlda (2.684)
26N
- i
JQT,Q dt>+—Hg dt[*da (2.68b)
ne
1 )
- f 5o (max{0, A + §pn}]*da, (2.68¢)
A

where dt denotes an infinitesimal time increment and, consequently, éT dt is an infinitesimal slip
increment. Furthermore, the abbreviation

A=A +eg dt (2.69)

is introduced. This shortcut is often called augmented tangential Lagrange multiplier. The aug-
mented contact pressure py is also introduced. Its value is defined by px = pn + cngn. Alterna-
tively, it can be also identified by pn = —(Ax — cngn) under consideration of the relationship
between pressure and frictionless Lagrange multiplier. However, the important point is that py
enters (2.68) as an independent variable which is kept constant during the variation and lineariza-
tion, see [212].

Furthermore, just similar to the frictionless case, it is possible to extract a frictional contact
energy density function from (2.68) given by

Gl M i) = Qg )+ S e = {0, 3] + sk @70
T

A demonstrative illustration is presented in Figure 2.5. By taking a closer look numerous facts
become immediately aware: The contributions of the friction conditions to £ at the solution
(denoted by (-)*) vanish only in case of stick, i.e. ‘é’:’stick = 0. However, in the case of slip
the frictional contribution to the incremental augmented Lagrangian value is independent of
the regularization parameter ¢, and, consequently, c; is really only a regularization parameter
which is important for the pre-asymptotic stick/slip decision. Similar to cy in case of frictionless
contact, ¢, has no direct influence on the solution. Finally, the remaining frictional contribution
to the total value of the incremental augmented Lagrangian at the solution is given by

ng:f slip — |pN| H g dt” (271)
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Another interesting point is that the first order derivative of %NCT with respect to )\, reveals once
more the associated frictional nonlinear complementarity function as shown in Figure 2.5b. For
further information on the frictional NCP the reader is kindly referred to Farah [87], Gitterle
[109], Hiieber [138], Seitz et al. [243], Sitzmann [252] and the references therein. In addition, it
shall be briefly mentioned that the formulation as NCP can be also found in other research fields.
One example is plasticity which has much in common with Coulomb friction [124, 242]. At this
point the discussion of the frictional contact problem shall be stopped. However, the presented
incremental augmented Lagrangian formulation (2.68) can be considered as a starting point for
a possible augmentation of the up-coming modifications from the frictionless case to frictional
problems. Furthermore, the interested reader is referred to Pietrzak and Curnier [212] for further
details concerning the variation and linearization of the frictional approach presented here.

2.3. Spatial Discretization

The discretization method for the spatial domain is another important topic. There exists a huge
variety of applicable methods for this task, just similar to the later discussed numerical time in-
tegration. In the early days the finite difference method was quite popular as described in Collatz
[51], Samarskii [233], even though it had initially shown a number of unfavorable drawbacks
such as the restriction to regular meshes. However, this could be resolved in later publications
by Jensen [148], Liszka and Orkisz [177]. Nevertheless, in structural dynamics the finite differ-
ence method has been replaced almost entirely by the now very popular finite element method
[206, 297] due to many advantages of the latter one. Examples are its universality and strong
mathematical convergence properties [35]. Nowadays, there can be found numerous well-written
text books on this topic, e.g., Bathe [12], Belytschko et al. [ 18], Hughes [140]. The finite element
method will be also the method of choice throughout this thesis. However, before the discussion
goes deeper into this, it shall be mentioned that there exists another discretization class which
has gained increasing attention during the last couple of decades. That is the class of mesh-free
methods. While its popularity in fluid dynamics starts to rise more and more [179], there are
also interesting publications on mesh-free methods in the field of structural dynamics. On the
one hand, there are the so-called discrete element methods (DEM) which mainly deal with the
interaction between freely moving particles such as in granular flow [121] or, as a more spe-
cific example, in the application during powder bed metal additive manufacturing [193]. But,
there are many more applications of DEM such as fracture mechanics [200], where it is used
in combination with FEM. Additionally, the class of meshfree methods which are more similar
to the classical finite elements shall be briefly addressed: Examples are (generalized) moving
least squares or element free Galerkin methods. For an introduction into this topic the interested
reader is referred to review publications such as [17, 102]. Some of the therein discussed meth-
ods have very promising properties but make it difficult to impose Dirichlet boundary conditions
(DBC) [88] or introduce a new issue with respect to the numerical integration as exemplarily
discussed in [64, 72]. More recently, however, the so-called local maximum entropy method has
been proposed by Arroyo and Ortiz [7], Sukumar and Wright [256], which resolves at least the
DBC problem by its convex hull property. Its convergence properties [30] as well as its smooth
transition to the finite element method [7] makes it quite appealing for structural problems and
thus it is not surprising that the maximum entropy method has been applied successfully to the
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thin shell analysis [194, 195]. In the author’s opinion this new type of methods are well-suited
for certain research fields which naturally come along with large structural deformations such as
cell migration in the biomedical sector [225].

2.3.1. Finite Element Discretization

The fundamental idea of the finite element method or even any discretization method is to re-
duce the complexity of the original problem by limiting the number of degrees of freedom. In
case of the finite element method, this is achieved by subdividing the continuous body into a
finite number of small elements N, where each element occupies a closed sub-domain of the
entire structural body Q(()e) < Qo,n. Now, the disjoint union of all element domains denotes the
domain estimate of the respective body. Under the assumption of a regular mesh refinement as
well as certain smoothness assumptions with respect to the solution, it can be expected that the
approximation error decreases with an increasing number of finite elements. This is called A-
convergence. However, the definition of the discrete degrees of freedom is still missing. There-
fore, the attention is drawn to one arbitrary element e € £ = {1,...,N.}. Such an element
contains a number of defining nodes (or control points) N,, and at these nodes a certain number
of degrees of freedom (DOF) can be specified. For instance, in case of a 3-dimensional dis-
cretized pure structural problem these degrees of freedom are given by the three coordinates of
a displacement vector associated to each of the element nodes. Having said this, the value of any
arbitrary nodal quantity inside an element e can be computed by interpolating between its nodal
values. A simple example would be the current position vector (X, t) at (X, t) € Qg x [0,7]
yielding

2(€@F) = N g7 = N (X 1 gy, vje{l,... N}, (2.72)

j n

where N is the number of nodes per element and {N (e)j} is the set of shape functions, where

each shape functon is associated to one node j of element e. In addition, {X”} is the set of the
nodal reference position vectors. The finally remaining unknown quantities are summarized in
the set of nodal displacement vectors {d’}. One reason for the great success of the finite element
method is that this element-wise view can be utilized to design computer codes which are suitable
for a large variety of different problems. This is achieved by splitting the global problem into
smaller parts related to each element. Subsequently, a assembly strategy is applied which brings
the distinct parts back together by simple summation. Therefore, a special numbering scheme is
invoked which is known as the global-to-local index [35]. This indexing scheme given by i(e, j)
is used to assign a local node number j of a specific element e to its global position index ¢ in the
considered system. Therefore, the finite element method offers a very systematic way to solve
complex problems. Another beneficial effect is the locality of the used shape functions which
lead to a so-called sparsity pattern of the system matrices. These sparse matrices need severely
less memory than their dense counterparts and, therefore, the related system of equations can be
efficiently solved, e.g., under consideration of iterative linear solvers such as the GMRES based
methods [153, 232].
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2.3.2. Important Requirements for Convergence

There is a number of very important requirements with respect to the finite element formulation
in the context of structural problems. Without these requirements monotonic convergence can not
be expected, i.e., the accuracy of the solution might not improve by successive mesh refinement.
The first requirement asks for completeness of the considered function space. This means that the
used shape functions of the elements must be able to represent all rigid body modes and constant
strain states [12, Sec. 4.3.2]. Rigid body modes are deformation modes which induce no strain
(or stress). For example a pure translation or rotation is not allowed to cause any stresses in a
finite element. An interesting side note is that the number of straining or natural modes of a
element can be easily obtained by subtracting the number of rigid body modes from the number
of degrees of freedom (DOF) of the respective element. Thus, a 2-dimensional quadrilateral
element with four nodes (and, therefore, linear shape functions) has 2 - 4 = 8 DOF and there
exist three rigid body modes: Translation in z- and y-direction as well as rotation around the
outward pointing normal. Therefore, it can represent 8 — 3 = 5 natural modes. This result can
also be obtained by solving the eigenvalue problem of the element stiffness matrix. Three of the
eigenvalues will be zero and the associated eigenvectors are the rigid body modes. The remaining
eigenvalues are unequal zero and represent the stiffness for the corresponding mode given by the
eigenvector [12]. These straining modes will become also important with respect to the undesired
phenomenon of locking which is discussed in Section 2.3.3.

The second requirement asks for compatibility. In other words, the displacements in the in-
terior of an element and across its boundaries is supposed to be continuous, i.e., non-physical
gaps inside the domain shall be avoided. For elements with displacement DOF only, this can be
achieved by claiming a continuity of the nodal displacement DOF. However, in case of reduced
formulations such as shells or beams embedded into a higher dimensional space, rotational DOF
are often additionally introduced. In such a case the enforcement of compatibility with respect to
the kinematic assumptions can become much more involved (see for example Bischoff [27], Gee
[104]).

These are two important requirements concerning the finite element function space. However,
there are even more criteria which must be considered. For example, the stability of the dis-
crete solution must be maintained. This stability issue plays a role in different areas: On the one
hand, stability problems can arise in form of so-called zero-energy modes. Zero-energy modes
are related to further zero eigenvalues of the element stiffness matrix and are consequently math-
ematically spoken equivalent to a rank deficiency of this matrix, i.e., there are more zero eigen-
values than rigid body modes. Different types of zero energy modes exist: Some of them are
non-communicable and it is therefore less likely that they occur in a mesh consisting of mul-
tiple elements. However, there are also so-called communicable zero-energy modes which can
become a severe problem since they are not blocked by their surrounding neighbors. These zero-
energy modes can lead to a locally singular system matrix and might prevent convergence. It
is a phenomenon which sometimes occurs during the application of so-called selective reduced
integration which has been firstly proposed by Zienkiewicz et al. [298] to avoid certain kinds
of locking. An excellent overview of the zero-energy problem during reduced integration can be
found in Koschnick [164]. However, selective reduced integration is not the only instance where
zero-energy modes can occur. It can also occur in the field of finite elasticity when a consistent
numerical integration scheme is considered but certain enhanced assumed strain (EAS) formu-
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lations are added. This has been detected and discussed in de Souza Neto et al. [67], Wriggers
and Reese [285]. Since the latter case can be of crucial importance for the application of EAS
during contact simulations, it will be addressed again in Section 2.3.4.

Another origin of instabilities is given by the inproper choice of the Lagrange multiplier func-
tion spaces. The correct choice of these function spaces becomes not only important with respect
to the contact algorithms discussed here but plays also an important role in conjunction with the
modeling of totally incompressible conditions, i.e., for materials where Poisson’s ratio tends to
0.5. In such a case, the pressure becomes an independent variable leading to a saddle-point prob-
lem, thus, the pressure can be interpreted as a Lagrange multiplier. Other examples are given by
multi-field functionals such as the three-field Hu-Waishizu functional or the two-field Hellinger
Reissner principle, see Koschnick [164] for more information. Furthermore, also the pressure de-
gree of freedom in case of fluid simulations is of this kind. Stability for those mixed formulation
is obtained, if the ellipticity as well as the inf-sup conditions are satisfied [9, 36].

The attention is now on the treatment of structural contact problems with the finite element
method and the inherent Lagrange multiplier as introduced in Section 2.2.2. The so-called ellip-
ticity condition is independent of the contact conditions and is fulfilled as soon as appropriate
finite elements and boundary conditions are applied, see El-Abbasi and Bathe [76]. The second
important condition is the inf-sup condition, which is a topic on its own. A nice introduction
for contact problems can be found in Bathe and Brezzi [13]. Furthermore, a comprehensive in-
troduction into the field of (dual) mortar contact methods is given in Wohlmuth [279]. Under
reconsideration of the weighting function space (2.30) which is chosen as a subspace of the
solution space defined by

ueld ={weH (Q): w=1uonTl,}, (2.73)

the function space for the Lagrange multiplier Ay follows as

Ax € M, = {wy € H 2y -y = 0}, (2.74)

Note that the function space M, does not implicitly depend on the Lagrange multiplier value
since only frictionless problems shall be considered. A very brief introduction into the notation

of functional analysis becomes necessary to clarify (2.74): H'/? (%[1]) is known as the trace space

of W and H~Y2(~4") denotes the dual space of H'/2(y}"). For more detailed information the
reader is kindly referred to Brezzi and Fortin [37, Ch. 3]. Throughout this thesis, the discrete
Lagrange multiplier shape functions are chosen equal to the discrete solution space functions
in the interior domain by restricting them to the contact boundary. This choice is inf-sup stable
as stated in Bathe and Brezzi [13, Theorem 3] or numerically shown in El-Abbasi and Bathe
[76]. However, there are choices which are not inf-sup stable, e.g., a linear interpolation of the
solution but a constant interpolation of the Lagrange multiplier field would not be inf-sup stable.
Possible remedies are suggested in Wohlmuth [279, Remark 3.2]. Another interesting fact is
that the inf-sup stability result for the contact mortar methods discussed in [279] is independent
of the degrees of freedom on the master side. Consequently, the inf-sup result is completely
independent of the ratio of the element sizes on the slave and master sides which indicates that
the non-matching character of the meshes does not affect the stability.
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2.3.3. Locking of Structural Elements

In the previous section the most important requirements have been discussed which are nec-
essary to maintain convergence of the finite element solution for consecutive mesh refinement.
Even though, a detailed analysis of the expected convergence speed shall not be topic of this
thesis (see e.g. Bathe [12], Brenner and Scott [35] for a detailed description), there are certain
influences which can vastly decrease the convergence rate and thus badly affect the expected so-
lution quality. Nowadays, there is a high interest in understanding these effects and developing
remedies. The first important work in this direction has been given by Babuska and Suri [10].
First as a technical report and later published in the cited journal.

The convergence rate can be affected by many different parameters. However, in this section
the discussion is restricted to the so-called locking effect of finite element formulations. There
is not really one unique definition for locking, but all of them have in common that they can be
characterized in dependence on one critical parameter. With respect to this critical parameter,
locking can be further subdivided into artificial stiffening effects based on material or geometri-
cal parameters. However, in both cases the main reason for the bad performance is often given
by the fact that the used shape function space is not sufficiently well-suited to represent certain
element deflections which would be necessary to represent the deformation without introducing
unwanted strains and stresses. For a really comprehensive overview and discussion the reader is
kindly referred to Koschnick [164]. Some locking effects are mainly related to structural finite
element formulations, i.e., special elements which use some kind of kinematic assumptions to
reduce their spatial dimensions. Examples are beam, shell and plate elements. The focus of this
thesis is clearly on classical continua elements. The main locking effects are here:

e Shear locking: Shear locking affects 2-dimensional as well as 3-dimensional continua el-
ements and has a severe impact for shape functions based on low order polynomials. The
classical example are four-node quadrilateral elements (QUAD4) and eight-node hexa-
hedral elements (HEX8) for 2- and 3-dimensional problems, respectively. The influence
of the parasitic linear shear stresses becomes obvious in case of bending deformations.
However, the critical parameter is the aspect ratio of the element edges, e.g., the ratio of
element width to height in case of QUAD4 elements, for instance.

e Trapezoidal locking: This is a locking phenomenon which can be observed for curved
structures discretized by continua elements. Note that the definition for small deformations
is restricted to initially curved structures to avoid a mix-up with the influences related to
mesh distortion. However, in case of large deformations this effect can also become appar-
ent for initially straight structures which become curved through the applied deformation.
Once more a bending deformation shall be assumed. A trapezoidal shaped QUAD4 ele-
ment would imply a number of parasitic strains in dependence on the degree of curvature.
First, it would again show a linear shear strain which vanishes at the element center, but
also the expected strain in parametric &; -direction would be slightly affected. Furthermore,
a quadratic artificial strain in the parametric &;- direction would occur as well which van-
ishes only at the element boundaries for £, = +1. For a fixed curvature the element aspect
ratio can be identified as the critical parameter.
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e Volumetric locking: While the first two locking phenomena are purely influenced by geo-
metrical parameters, the volume locking is one representative of a parasitic effect due to
a material parameter. The critical parameter is the Poisson’s ratio v. The effect disappears
for v = 0 and will be the worst for v — 0.5, i.e., for the limit case of incompressibility.
The underlying constraint can be formulated as div(u) = 0. This effect is apparent in
2-dimensional and 3-dimensional solid elements and can be explained by the inability of
the simple elements to represent this constraint point-wise. The result is a stiffening effect
due to very high artificial normal stresses.

More information can be found in [164, Chapter 5]. Possible remedies for the discussed un-
wanted effects follow in the next Section 2.3.4.

2.3.4. Enhanced Assumed Strain Formulation

The main focus of this section will lie on the enhanced assumed strain (EAS) formulation since
it will also be considered throughout the later discussed globalization techniques for large de-
formation contact problems in Chapter 6. However, this is not the only possibility. As already
mentioned there is for instance the selective reduced integration [298] and even though it seems
unlikely it is indeed possible to show equivalence to mixed finite element methods for this simple
idea as demonstrated in Malkus and Hughes [185]. Another well-suited anti-locking technique is
the assumed natural strain (ANS) method which can also be derived from variational principles
as described in Simo and Hughes [248]. The basic idea is to specify so-called collocation or
sampling points in the element which are then used to interpolate and evaluate the correct strains
for critical deformation states [164]. A great example for large deformations is given in Vu-Quoc
and Tan [269]. Therein, a big advantage of the ANS formulation compared to EAS is given as
well: That is the much better handling of transverse shear strains. In Vu-Quoc and Tan [269] is
shown that even a 30 parameter EAS formulation as proposed by Klinkel and Wagner [158] is not
able to fulfill the out-of-plane bending patch test without an additional ANS modification. The
drawback of the ANS methods is that the location, the number as well as suitable interpolation
functions must be newly defined for each considered element and stiffening effect [164]. This
drawback is supposed to be resolved by the proposed discrete strain gap (DSG) method which is
comprehensively described and discussed in Koschnick [164]. For small deformations the ANS
as well as the DSG method can be summarized in the so-called B-bar methods as proposed by
[248], while for large deformations rather the deformation gradient instead of the B-operator has
to be considered. A drawback of these B-bar methods, i.e. ANS as well as DSG, is the fact that
they are not capable of avoiding volumetric locking. However, it must be noted that there exist
more methods than the EAS method to avoid volumetric locking completely, even in presence
of large deformations. For instance, one method has been proposed by De Souza Neto et al. [66]
and uses a multiplicative split of the deformation gradient into a deviatoric and volumetric part.
The volumetric part is then only evaluated at the center point of the element and subsequently,
the two parts are recombined resulting in the F-bar deformation gradient. The drawback is that
this method helps only against volumetric but not against shear locking or any other geometrical
locking effect.

This brings us finally to the EAS formulation which is able to avoid shear and volumetric
locking, but fails to avoid transversal shear-locking (see e.g. solid shell elements [269]). The up-
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coming brief description of the EAS method for large deformations follows Simo and Armero
[247], Simo and Rifai [249] and Wall et al. [273]. Let us start with the variational view on the
three-field Hu-Washizu functional which yields

V(wES) - [WEW+ [ S GEWTEW - D) - B

QO QO
- féo udVp - fi-u dAy, (2.75)
Qo I's

where three different unknowns are specified: the displacement vector u, the Green—-Lagrange
strain tensor E and the second Piola-Kirchhoff stress tensor S. Next, the EAS method introduces
a reparametrization of the free Green Lagrange strain tensor by an additive split

=E"+ E, with E" = l(F(u)TF(u) —I). (2.76)

Il

Now, E denotes the additive enhancement to the deformation dependent strain part F E". This
inserted into (2.75) results in

U(u,E,S) - f\p(g+§)dvo+ JS Bdv, - Jb CudVj — Jf-gdAo. 2.77)
Qo Qo Qo I's

This functional will be discretized by a suitable interpolation scheme which is given by

z=N (X +d), E'=0Qa_, =B (2.78)

- —eas —eas

where N, O; and Q, denote appropriate mapping operators based on the respective shape func-

tions. Furthermore, a and B represent the related unknown coefficients of the strains and

stresses, while d denotes the unknown nodal displacements. Please note that it is tried to mini-
mize the explicit marking of individual variables as discretized by the superscript h. Therefore,
it is only introduced where it actively supports the understanding. Next, Simo and Rifai [249]
suggest to choose the interpolation of the stresses and strains orthogonal to each other such that

f Sh: E'dvy =0 (2.79)
Qo

holds. Another prerequisite is that the enhanced strains are not linearly dependent of the compat-
ible strains to avoid any unwanted rank deficiency of the related stiffness matrices. By inserting
(2.79) into (2.77), the new discretized functional follows as

%, )= f\p[ﬁu(d) + Eh(geas)] dvg — dTiext’ (2.80)

Qo
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where i ot is the nodal external force vector. Next, the variation and linearization of this function
with respect to the displacements and the EAS strain parameters follow. Details can be found for
instance in Wall et al. [273]. The important part for this thesis are the contributions of each
element to the global system of equations and the global right hand side vector which look like

G FO _ f©
= Te%ﬁ and —ext 5 ~—int (281)
2“7 B —#©

L Zeas
—eas —eas

for each element e. See again [273] for the detailed definition of the matrices and right hand side
contributions. Finally, since the enhanced strains do not need to be compatible over the element
boundaries, it is possible to condensate the additional degrees of freedom on element level, i.e.,
before the global system matrix is assembled, resulting in the already condensed contributions

©1-1 @) (2.82)

—eas
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The enhanced strain increment can be computed in a post-processing step for each element:

AGL) = —[D] {7l + (L,

where Ad'® is the part of the global displacement increment related to the DOF of element
e and A@'® the internal enhanced strain increment in Voigt notation. The changed notation

—eas

is indicated by the tilde superscript. Therefore, compared to other methods such as ANS and

DSG, the EAS method includes an additional effort in form of evaluating these extra matrices,
(e)

NT1AdE), (2.83)

—eas

the condensation and the necessary inversion of the matrix D . The dimension of this matrix
depends on the number of used enhanced strain modes per element In this thesis 21 additional

modes for linear hexahedron elements will be considered, thus, D e R2>2! Nevertheless, the
EAS formulation still shares the advantage that the size of the global system of equations remains
unchanged and that the evaluation of the internal energy contributions stays also unchanged from
a global point of view. This makes the application of the globalization techniques later introduced
in Section 6.8.2 much easier.

Remark 2.5. The section is closed by an important remark concerning the EAS formulation.
The enhanced assumed strain formulation is not completely stable for large deformations. This
is something which is already known for quite some time since it had been demonstrated by
de Souza Neto et al. [67] and Wriggers and Reese [285]. However, most of the EAS literature
is written with respect to small deformations and therein this phenomenon is hardly mentioned
since it does not appear. This leads to the situation that not everyone is aware of this problem. Re-
sponsible for the instabilities are the additional modes addressing shear locking and, as reported
in Wall et al. [273], these shear modes can lead to hour-glassing (i.e. zero energy modes). How-
ever, in contrast to the selective reduced integration method where these effects are somewhat
expected due to the insufficient integration, they will occur also for an analytical exact integra-
tion. The instability will occur for large compression strains and also for large tensile strains. In
combination with contact the compression is more likely, consequently, it is not surprising that
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the hour-glassing might become apparent during large deformation contact simulation consider-
ing EAS. For the simple 2-dimensional example discussed in [273] the critical state is reached
for a height reduction of the QUAD4 element by a factor of 1/4/3. It is also stated that the
instability can be alternatively detected by an eigenvalue analysis of the element stiffness ma-
trix (see also the analytical derivations in [285]). This entire EAS instability problem is mainly
mentioned in this thesis, since it probably explains some of the necessary matrix modifications in
Section 6.10. The there used algorithm will naturally counteract any negative or zero eigenvalues
in the global system matrix. However, in the author’s opinion it might be a better idea to tackle
the problem at its origin by the suggested stabilization approach in Wall et al. [273]. Therefore,
it is recommended to implement the stabilization in the future.

2.4. Discrete Time Integration

The discrete treatment of time integrals and time dependency is a topic on its own. Therefore, the
discussion in this thesis is restricted to only one representative which is quite popular in struc-
tural dynamics. The so-called Generalized-a method, firstly introduced by Chung and Hulbert
[48]. One of the big advantages of this method is that it allows a controlled numerical dissipation
which acts in such a way that mainly contributions stemming from high-frequencies in the struc-
tural energy are damped while the more important low frequency response stays almost unbiased.
This is an important property for contact problems, where the discrete resolution of the impact
from one body into the other leads almost always to a non-continuous scenario coming along
with some artificial high-frequency solution artifacts. However, it is by far not the only possible
time integration scheme. Actually, there exists a huge variety of different methods. For instance,
the for the spatial discretization preferred finite element method (FEM) can also be applied to
the time domain resulting in so-called space-time finite element methods. These methods have
also promising properties. The interested reader is referred to Hughes and Hulbert [142], Hulbert
[144] for an early example in the field of elastodynamics. However, also the application to other
research fields is possible such as the fluid-structure interaction, see also Hiibner et al. [137] and
the references therein.

Before the attention is drawn to a detailed description of the Generalized-o method considered
here, the very basic idea of almost any time integration scheme shall be explained. First of all,
the goal is to find a numerical scheme which is able to reproduce a transient solution path while
maintaining important properties of the solution such as its magnitude or its phase angle. Think
for example of a harmonic oscillation. To achieve this it becomes necessary to split the desired
time interval [0, 7] into discrete smaller sections. The size of these sections is given by the
user-defined time step At. Now, concerning this time step two things should not be mixed up:

e Firstly, a too large chosen time step size can lead, under certain circumstances, to a blow-
up of the simulation due to inherent instabilities of the discrete time integration scheme. One
well-known example is the explicit forward-Euler scheme. For example, this simple numerical
scheme cannot be applied to a harmonic oscillation since it will always lead to an increasing
amplitude even for an extremely small time step size. However, there are ways to avoid these
problems, e.g., by considering appropriate implicit time integration schemes. But, nothing
comes for free and thus implicit schemes have the drawback that they ask for a much higher
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computational effort. Nevertheless, if large time steps are sufficient to accurately represent
the solution, the implementation and computational effort might pay off by in the end much
smaller total simulation times (even though one single time step might take much longer com-
pared to an explicit scheme).

e This brings us to the second distinct point: The solution accuracy. While implicit schemes
might allow an artificially large time step, the solution quality is not necessarily superior
compared to an explicit scheme and consequently the time step shows a second upper bound
which relies on the demanded solution quality. In fact, the error order depends heavily on the
definition of the different schemes, e.g., it plays a decisive role which information is used
for the construction: Only the solution of the previous time step at ¢,,, e.g. explicit Euler, the
information of the current time step ¢,,.1 leading to implicit schemes, or shall also information
from previous steps be taken into account {¢,,_1,%,_2, ... } such as for BDF, Adams—Bashforth
or Adams—Moulton methods. Furthermore, it is also possible to use information from artificial
points placed at locations in time between ¢, and ¢,,,1, see the Runge—Kutta schemes. As a
rule of thumb one can say that with rising complexity by considering more and more solution
points in time also the solution accuracy can be expected to be improved. But again: A high
error-order, i.e. small errors, does not automatically mean that the chosen solution step is free
of instabilities. These are two very different issues.

Now, with the previously said in mind, the application field for implicit methods are for exam-
ple stiff differential equations. One might think of a system which contains a high-frequency
response which naturally fades out very quickly and a second overlaid response which is of a
low-frequency harmonic character. In this case an implicit scheme in conjunction with an adap-
tive time step can be much faster than an explicit scheme with the same error order, since it
allows to switch to a larger time step as soon as the high frequency response disappears. In con-
trast: An explicit scheme would be bound to the small time step just because of the instability
issue. On the other hand, if the solution is mainly defined by high-frequency contributions over
the entire time interval of interest, it might be much more efficient to use an explicit scheme since
the implicit scheme would be also bound to a small time step, which is computationally much
more expensive. For further information the reader is referred to the literature on the treatment
of numerical initial value problems such as Gear [103].

2.4.1. Generalized-a Method

After this short introduction into numerical time integration the remaining part of this section is
solely devoted to the Generalized-o method. It is an implicit one-step, three-stage time integra-
tion scheme, i.e., it needs only information from ¢,, and ¢,,,; to be constructed and is described
by the three stages corresponding to the displacement da™, velocity v!™ and acceleration a{™
fields. Under these circumstances the accuracy can become maximally second order and, indeed,
the Generalized-o method is second order accurate. The construction of the three stage vectors
relies on the Newmark-3 methods which provide simple update rules for the discrete approxi-

mate velocity v!"*"} ~ d(t,,) and acceleration a!"*"} ~ d(t, ) fields depending on the three
old stage vectors and the current displacement field. These updating formulas are namely
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Figure 2.6.: Generalized-a parameters in dependency on the spectral radius po,. The hatched areas highlight the
domains where g, € [0,0.5] and 4, € [0, 1.0] exceed their bounds, respectively.
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where v, € [0,1] and (,, € [0, 0.5] are two important parameters of the Newmark-/5 meth-
ods which significantly control the character and accuracy of these updating rules. Now, the
Generalized-a method makes use of these equations, but introduces additional special mid-
points based on the parameters ay € [0.0, 0.5] and «,,, < 4. Thus, the evaluation is shifted
to a time-point ¢,41_q,, and t,4;_,. In accordance to these mid-points the linear momentum
balance equations can be stated in matrix form, viz.

Mg{n-&-l am} +Cr,U{n-i-l ag} Jrf{n-&-l af} f{n+1—af}

Zint “ext

=0, (2.85)

where M is the so-called mass matrix and C' the so-called damping matrix. In the framework
discussed here, /., can be identified by the gradient of the internal energy with respect to the
displacements evaluated at the mid-point ¢,,1;_,,. In a similar way, the external force vector
i:;l % can be interpreted as the gradient of a conservative external potential which considers
tractions and/or volume forces. However, the balance equations stay valid also in a more general
context in which these scalar-valued potentials might not exist. Now, to be able to apply these
equations, the corresponding mid-point state vectors must be defined. Typically a simple linear
interpolation is used, yielding

Ao — (1= ag)d™ Y+ ard™, (2.86)
vlrtimed = (1 — ap)p™ Y 4 g™, (2.87)
Q{Tlr‘rl*am} _ (1 _ Oém)Q{nJrl} + OKmQ{n} (2.88)
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The original paper by Chung and Hulbert [48] proposes an elegant and meaningful way to de-
fine the free parameters o, o, Vgo and Bg, all in dependency to the desired high-frequency
dissipation. This is achieved by a new scalar parameter, the so-called spectral radius py. The
remaining parameters can be defined with respect to p,, < 1 such that the algorithm reaches an
optimal and controllable combination of high-frequency and low-frequency dissipation, while
additional conditions ensure second order accuracy and an unconditionally stable behavior of
the algorithm. The parameters are finally given by

2p0 — 1 Poo 1
Oy = ——, Qf = ) a — 1_am+05 y o = = — Qi + Of. 2.89
Poo + 1 f P + 1 Be ( 0% Y 5 £ (2.89)

One special case is p, = 1. Then, no numerical dissipation is activated. However, the domains
for By, € [0, 0.5] and 4, € [0, 1.0] introduce additional lower bounds for p,, (see Figure 2.6 for
an illustration). Thus, it follows that (v/2 — 1) < p,, < 1.0 must hold.

One further open question is how to evaluate f {:tH 2} in (2.85). There exist two usual vari-
ants. The first one is the so-called implicit mid-point rule resulting in

flntl-arh Vd%‘d{n“*af} ’ (2.90)

~—int

where the gradient of the internal energy is evaluated with respect to the linearily interpolated
displacement field defined in (2.86). The second option, which will also be followed throughout
this thesis, is based on a trapezoidal rule, i.e.,

flotlzarh — (1 — @) Val | gy + s Val | yoy - (2.91)

Zint

There is no doubt that both formulations (2.90) and (2.91) do coincide in the special case of
small deformations and linear elasticity. However, the difference becomes also generally smaller
and smaller in case of a decreasing time step size. Furthermore, in case of a general non-linear
material behavior it is hard to guess which one is favorable. The same holds true for the external
forces introduced in f ”tl “. The only difference is that the simple underlying external potential
law often naturally leads to a result similar to (2.91).

2.4.2. Linearization of the Generalized-a« Method

In the following brief discussion the basic steps of the fundamental linearization approach are
demonstrated. Even though this approach is by no means restricted to the Generalized-a method,
it shall be introduced in this context, since (2.85) represents one of the more advanced structural
balance equations in terms of all the considered contributions. Furthermore, it contains the quasi-
static case as special case. However, the discussion in this section is solely restricted to a pure
structural dynamic simulation, i.e., contact contributions are not considered, yet. The necessary
extensions will follow in Sections 4.6 and 6.8.1.

For now the in (2.85) stated balance equations in matrix-vector form under consideration of
the trapezoidal rule shall be considered as the underlying residual and the task will be to find a

solution which fulfills these non-linear equations such that r,, (d?,:r}l) = (0 with
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Zga(dizrl}) :ﬂ ((1 - Qm) QEZ}:H} + O Q{n}) (2923)
+C (1 +anuiy Y + appt™) (2.92b)
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Again, as already mentioned multiple times, the gradient of an external potential can also directly
be replaced by a suitable external force vector. The balance equations stay valid. The advantage
of the notation as an (auxiliary) external potential will become obvious later in Section 6.8.1.

With (2.92) at hand the further steps follow closely the classical Newton-Raphson method for
a set of non-linear equations. Here, only the basic idea and the related system of equations will
be presented, while a much more general discussion follows in Section 3.1.1. Now, to find the
desired solution the demand is formulated that the linear model of Equation (2.92) with respect
to the unknown gl”“ vector shall be equal to zero, thus,

rea(diy )+ (d = di T Var

diyy galgom = 0. (2.93)

Obviously, this represents only an approximation. However, under certain circumstances it can

be expected that the obtained sequence c_lg;rg = c_iinﬂ} with & = {0,1,...} will converge to
{n+1}

the solution vector d and as soon as c_liz;r Y enters a region close enough to the solution, the
sequence will stay in the neighborhood and will converge g-quadratically. For more information
the reader is kindly referred to Chapter 3 and the information therein. Typically, (2.93) is written
as

K (@) Ay = —r (i), (2.94)

where K co is the so-called Jacobian matrix which is defined as the transpose of Vdfga. In

addition, the incremental vector Ac_l{fﬂ} is used as an abbreviation for c_iinﬂ} — d}:; 1} leading

to the simple update formula

Therefore, two questions remain: What is the actual definition of the Jacobian matrix and, sec-
ondly, how to solve (2.94)? For a general answer to the latter question the reader is kindly
referred to the comprehensive literature on linear systems of equations. However, during this
thesis special techniques will be proposed which not only improve the non-linear but also the
linear solvability of the related systems. The thereby improved conditioning of the correspond-
ing system of equations can become very important when large problems are considered and,
consequently, linear iterative solvers must be applied. For more information see Chapter 5 and,
especially, Section 6.6.
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The answer to the first question is briefly addressed in the following:

(1 —am), (L= 1) Yo

K = 1 - 2 Tn 1 2.
—ga Bga(At)QZ Bga At g + ( Oéf) vdd%‘dh; b ( 96)

where the first two additive terms can be easily derived under consideration of (2.84). The last
term is the so-called tangential stiffness matrix which is also of major importance for the static
case. Theoretically, it is also possible that the derivative of the external forces with respect to
the currently unknown displacement field must be taken into account, if the loads depend on the
current deformation. However, this case shall be excluded during this thesis.

In summary, the solution approach via the Newton Raphson scheme asks for two expensive
operations: The first one is the evaluation of the tangential stiffness matrix which will get in-
creasingly expensive as soon as the later discussed contact contributions have to be considered
as well. Secondly, the solution of the linear system of equations can be a time consuming point.
However, throughout this thesis a preconditioned linear solver method based on the Generalized
Minimal Residual (GMRES) approach will be used as soon as a direct solver becomes too ex-
pensive or non-applicable due to a too high memory consumption. The GMRES based methods
proved to be quite efficient for large linear systems. Further information about this linear solver
strategy can be found in Saad and Schultz [232], and Kelley [153, Chapter 3], for instance.

53






3. Numerical Optimization

The second part of the mathematical fundamentals is covered by the field of numerical optimiza-
tion. This field is extremely wide and can be separated into a large number of different sub-topics.
Actually, even the classification is not unique, since it can be done with respect to very different
aspects. In this thesis it is all about the development of a robust and efficient solution method
for frictionless contact problems. Thus, the following introduction starts with the solution of
unconstrained problems to then focus on the class of inequality constrained problems.

3.1. Unconstrained Optimization

The basic objective of any non-linear solution method is to find a root of a generally non-linear
set of equations r(z) = 0, where r(z) : R™ — R™. The case m < n is valid and aims for so-
called least-squares problems (see Marquardt [187] for a classical example, or Conn et al. [53,
Ch. 16] for a great introduction). However, at this point the discussion shall be restricted to the
special case m = n. If further V,r(z) = [V,r(z)]" holds, i.e., the associated Jacobian matrix is
symmetric, then it is possible to directly obtain a scalar-valued objective function f(z) : R" —
R by

1

flz) = f@(@), x) dt, (3.1)

0

such that V. f(z) = r(z) and V2 f(z) = V,r(z) hold. The derived objective function is not
unique since it can be manipulated by multiplication or summation with some arbitrary scalar
without changing the root of r or V, f. Furthermore, whenever the derivation of an objective
function is possible, the Jacobian matrix becomes the so-called Hessian matrix and the root
finding objective can be reformulated as a search for an extremum of f. This is probably an
unusual approach at first glance, since typically not the gradient is used to start the discussion
but the objective function. However, it is done in this order to close the cycle with (2.45). In
the finite element community it is typically more convenient to start with the strong (2.28) and
weak forms (2.35) rather than with a scalar-valued objective, or potential function. Especially,
the consideration of non-conservative (constraint) forces like friction will automatically lead to
a non-symmetric Hessian such that (3.1) is no longer valid. Nevertheless, in case of a pure struc-
tural problem and under consideration of conservative forces (e.g. dead loads), the derivation of
a suitable objective function is meaningful (see Section 2.1.4). Additionally, if the reconstruction
of a suitable objective function is no option, there is still the possibility to consider an “artificial”
merit function, e.g., leading to the already mentioned least-squares problem
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0.5

—-0.5

—— f(z) = a* -4 f/(x) = 423 —+— ' (x) = 1222

Figure 3.1.: A simple example for a one-dimensional optimization problem is presented. The goal is to find the
(global) minimizer of the objective function f(z) = z*. The obvious solution is * = 0. However, the function is
special with respect to Theorem 3.3: Despite the fact that the solution point is a global minimizer, the mentioned
theorem is not satisfied since the second order derivative f” is zero at x*. This underlines the important difference
between sufficient and necessary second order conditions.

1 2
min o r(z)|" (3.2)
However, such a formulation introduces other drawbacks which will also be briefly addressed
within this chapter. For now, it shall be assumed that a suitable scalar-valued objective function
f is available, such that the necessary first order conditions for optimality are given by:

Theorem 3.1. First-Order Necessary Conditions for Unconstrained Optimization. If x* is a local
minimizer and the objective function f is continuously differentiable in an open neighborhood
of the solution point z*, then V f(z*) = 0.

This very basic theorem is taken from Nocedal and Wright [204], where the proof can be found
as well. Now, these necessary conditions make a point z to a stationary point, but not necessarily
to a local minimizer of the considered problem, at least not if the problem is not strictly convex
as discussed in Boyd and Vandenberghe [34]. Luckily, convexity can be often taken as granted
which significantly simplifies the search for a (global) minimizer. Typical convex problems are
classical pure structural problems (without instabilities). A general problem is called convex iff

flaz + (1 —a)y) < af(z) + (1 -a)f(y), Y,y e E,a¢€l0,1], (3.3)

where E defines the domain of convexity. Strict convexity means that the inequality (3.3) be-
comes strict for any z # y € F and o € (0,1). A function f : £ — R is called concave if
— f is convex. However, if strict convexity does not hold, the given conditions in Theorem 3.1
must be extended to obtain sufficient conditions for the identification of a local minimizer of f.
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Therefore, first, the so-called second-order necessary conditions for unconstrained optimization
are introduced.

Theorem 3.2. Second-Order Necessary Conditions for Unconstrained Optimization. If z* is a
local minimizer of f and the Hessian V2 _ f exists and is continuous in an open neighborhood
around z*, then V, f(z*) = 0 and (v, V2 f(z*)v) = 0 hold for all v # 0, i.e., the Hessian is at
least positive semi-definite. o

If one of the two theorems, i.e., Theorem 3.1 or 3.2, should be violated, the point £* cannot
be a local minimizer. However, the stated necessary conditions are still not sufficient for a strict
local minimizer. Therefore, it is possible that both theorems hold and the considered point is still
just a stationary point. To obtain sufficient conditions which guarantee that the point z* is a local
minimizer, the so-called second order sufficient conditions must hold.

Theorem 3.3. Second Order Sufficient Conditions for Unconstrained Optimization. The point

* is a strict local minimizer of f if the Hessian V2 f exists and is continuous in an open
neighborhood around z*, and if V,.f(z*) = 0 and (v, V2 f(z*)v) > 0 hold for all v # 0, i.e.
the Hessian must be positive definite. o

This is a slightly stricter definition as the stated second order necessary conditions in The-
orem 3.2, since now the considered Hessian must be strictly positive definite. However, even
though this guarantees a local minimizer, it is not said that any strict local minimizer must fulfill
these stronger assumptions. A easy counter-example is the function f(z) = x* which has a strict
minimum at z = 0, although its second order derivative is zero at this point (see Figure 3.1 for a
visualization).

3.1.1. Local lterative Solution Methods

After this brief introduction into unconstrained optimization where some of the most important
basic theorems have already been given, the attention is drawn to the numerical treatment of
such optimization problems. In its most general form, the problem

minimize f(z) (3.4)
TER™

shall be solved. The following text gives a short overview of different methods which are able to
solve these problems. As a starting point an iterate g{k} shall be considered, and, for the moment,
only the coordinates of this point and its associated function value f{*} = f(z{*}) shall be taken
into account. The overall objective is to find a sequence of iterates {z{*}} which leads to smaller
function values, such that at least for some k& > k the new function value f{*} shows a sufficient
reduction compared to the current value f{+}.

3.1.1.1. Direct Methods

Direct, or derivative-free, algorithms aim for applications where it is not possible, or too expen-
sive, to compute a reliable gradient information. Examples are manifold and can be found in
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many different research fields such as medical, engineering or location problems. Furthermore,
based on the early work of Nelder and Mead [201], Spendley et al. [253], a sub-set of the most re-
cent algorithms are not only able to find local minimizers, but are also designed in such a way that
they are capable of searching for global minimizers in non-convex problems. That is something
which goes beyond the scope of this thesis, but is very important in other fields. Furthermore,
since no derivatives of the objective function must be computed, it becomes possible to consider
non-smooth problems to a much greater extent. The treatment of constrained problems is an on-
going research field. For a comprehensive introduction and review on these interesting methods
the reader is referred to Conn et al. [54], Kolda et al. [162], Rios and Sahinidis [227]. Especially,
Rios and Sahinidis [227] provide a recent insight by performing some extensive studies. Finally,
it is to mention that not all of these methods are entirely restricted to pure objective function
evaluations. A group of direct methods uses gradient information as well, but not of the actual
objective function but instead for a so-called surrogate function. Basically, surrogate functions
are model functions which are supposed to be as simple as possible while still maintaining the
main features of the actual objective function. The consideration of such surrogate functions can
even reopen—under certain assumptions—the field of the later discussed globalization methods.

3.1.1.2. Fixed-Point Methods

Before discussing the classical gradient-based methods, the idea of fixed-point iterations shall
be presented. Fixed-point methods are not restricted to problems where a scalar-valued objective
function is readily available. Instead, they represent classical root-finding methods which can
directly be applied to the initial problem 7 (z) < 0, where r : R"™ — IRR"™ denotes the previ-
ously introduced system of non-linear equations. The desired sequence of iterates {z{*}} can be
obtained by

g — g L AR — B Bt (218 = @ (21, (3.5)

where the iteration matrix B(z) is chosen in such a way that it is invertible in a neighborhood
around the solution z* and ® : R" — R" is a so-called fix-point mapping or fixed-point func-
tion. Note that at the solution z* = z* — [é*]_lf = z* follows, since r(z*) = 0 holds. The
generated sequence {z!¥}} will converge to a fixed point z* if ®(x) is Lipschitz continuous on
the considered domain {2 < R™ with a Lipschitz constant L. < 1. In this case ® is a so-called
contraction mapping such that {2 — €2 holds. The classical result is known as the Banach Fixed-
Point Theorem as exemplarily presented in Dahmen and Reusken [60], Kelley [153]. Further
note that (3.5) is the non-linear variant of the so-called Richardson iteration which provides the
foundation for many linear iterative methods [153]. Furthermore, there has been an effort to
increase the convergence speed of the generated vector sequence, since the convergence speed
of the classical fixed-point method is closely related to the Lipschitz constant where a constant
close to 1 can lead to a very poor performance. For more information on this topic the reader is
referred to the literature on the so-called Aitken relaxation (see e.g. Irons and Tuck [146], Kfizek
et al. [165], Macleod [183]). These ideas have, for instance, successfully been applied to fluid
structure interaction problems as demonstrated in Kiittler [168], Kiittler and Wall [169].
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3.1.1.3. Gradient-Based Methods

If the gradient information is available, another large variety of different methods becomes ac-
cessible. First, it shall be assumed that besides the function value at the current iterate f{*! only
the gradient information V, f {k} = Va.f (z{*}) is additionally available. In such a case, e.g., the
steepest descent method can be used. Variants of this method are all based on the idea that a
sufficient reduction of the objective function value must be achievable if the direction with the
locally fastest decrease is chosen, i.e., the direction orthogonal to the current function value iso-
lines. Therefore, the local rate of change in f must be identified. This is possible by considering
the mean value theorem following from the Taylor series expansion

2
f@™ +ap) = ™+ alp, Vo ™) + %@, V2 f@™ +tp) p, (3.6)

with t € (0, ). Here, the term scaled by the single step length « denotes the considered rate of
change. The desired direction is obtained by pt*} = —V, f{*}, This direction is by construction
perpendicular to the contour lines. However, a closer look at this direction reveals that the con-
vergence rate can become arbitrarily slow if this search direction is used in an iterative method,
i.e., by applying the update rule z{**1} = i} — aV,f {k} Additionally, a suitable step length
« must be obtained, since the gradient alone holds no length information for a meaningful step.
How this step length can be obtained will be explained in Section 3.1.2. A detailed discussion of
the steepest descent method can be found in almost all of the text books on this topic, e.g. Deu-
flhard [69], Fletcher [93], Nocedal and Wright [204]. Finally, it is to mention that the presented
update routine is a special case of (3.5), where B is set to o I with the identity matrix /.

Besides the basic steepest descent method, there are also better options which are still based
on the pure gradient information but choose a more sophisticated search direction. One example
are the non-linear conjugate direction methods (see Fletcher [93, Ch. 4] or Nocedal and Wright
[204, Ch. 5]).

3.1.1.4. Newton-Like Methods

Next, it is assumed that not only the gradient information, i.e., information about the local slope
of the currently considered objective function, but also information about its curvature at the
current iterate =%} are available.

Newton-Raphson Method

If the second order derivative of the underlying objective function can be evaluated, the well-
known Newton-Raphson method is obtained. Furthermore, the Newton method is not limited
to the case of a scalar valued objective function, but can also be applied if a set of non-linear
equations is considered as described in Dennis Jr. and Schnabel [68], Kelley [153, 154]. The
fundamental update rule for the iterates follows again from (3.5), where the iteration matrix B
is now set to the Jacobian J = szT, 1.e., the transposed gradient of the residual vector r with
respect to the solution variables. Thus, if the following standard assumptions hold,

AS 3.1. The considered problem r(x) = 0 has a solution z*;
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AS 3.2. The matrix and the corresponding mapping J : € — R"*" is Lipschitz continu-
ous with a Lipschitz constant L;

AS 3.3. The Jacobian J(2*) is non-singular at the solution;

it can be shown that the generated sequence {z{*}} converges q-quadratically as long as the initial
point z{*} is inside a ball around the solution point z*, i.e., 2!} € V(§) = {z e R* : |z —2*| <
d}. The proof can be found in the mentioned text books. The term g-quadratic means that

|z — 2| < Clz™ — 2*|%, vatt e V(6) 3.7)

holds, where the “q” stands for quotient. In other words: Close to the solution, each newly com-
puted iterate coincides by roughly twice as many digits with the desired result vector z*. Conse-
quently, if the quadratic convergence is activated by z{*} entering V(9), a very fast convergence
can be expected. However, an actual implementation will suffer from rounding errors at some
point, thus convergence to the analytical result can in general not be guaranteed. For details on
these numerical issues the reader is kindly referred to Higham [132]. The computed Newton
direction is well-suited for some of the following discussed globalization methods as long as the
descent property

(A, Vyf) = —(Vyof, B Vyuf) <0 (3.8)

holds. This criterion ensures that the enclosed angle between the introduced steepest descent
direction and the search direction is smaller than 7/2 and, therefore, a decrease of the objective
function can be (at least locally) expected. However, the descent condition (3.8) is naturally
fulfilled when the matrix B is positive definite. Otherwise, an appropriate adaption must be
considered. Examples can be found in Conn et al. [53], Nocedal and Wright [204], Wichter and
Biegler [272] and will also be discussed in Section 6.6. Another point which must be mentioned
is that the Newton method contains a meaningful inherent step length information. This is in
contrast to the pure gradient methods, such as the conjugate gradient or steepest descent method,
and also in contrast to approximate methods like the up-coming quasi-Newton methods. This
property of the Newton method becomes obvious by the following consideration: Starting with
the case where a scalar-valued objective function is readily available, a quadratic model equation
can be derived and follows directly from the Taylor series expansion similar to (3.6). This model
yields

i) = F@¥) + G- 2 Vaf @) + S -2, V2 )@ - ). 39)

Now, the search direction of the classical full Newton method, where “full” means that a full
step length of @ = 1 is considered, with é{k} = V;Q {1} minimizes this quadratic model, since

minimize m;}(g)

xeR™
N z" =2 = VL, (") V(@) (3.10)
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Under the assumption that the quadratic model (3.9) represents a good approximation of the un-
derlying objective function, it makes sense to stick to the unmodified computed step and exploit
the possible quadratic convergence. Obviously that is only a good idea close to the solution, i.e.,
as soon as the influence of the higher order terms neglected in (3.9) starts to vanish.

In contrast, the same interpretation gets a little bit more involved for a given system of non-
linear equations. In such a case there are different possibilities how to construct a suitable objec-
tive function. Probably the most common one is the so-called Gauss-Newton model, where the
initial step is a linear model for the set of non-linear equations rather than a quadratic model for
the least-squares problem, viz.

mﬁ’“}(z) _ E(z{k}) +é@{k})@ _ z{’“}), (3.11)

where J is again the associated Jacobian matrix. This at hand, the (quasi-)quadratic model can
easily be formed by

1
mif (@) =2 lmB @)|? = 2 + 14 (@~ 2P
1
=§HZ{’“}HQ + ™ S (@ = 2™+ 1L @ - 2 (3.12)

The first-order optimality conditions for a minimization problem based on the model (3.12)
deliver

Ve (z) = [JFT o 4 [T 8 (@ - o) 2,
Ol (VAR U A P L RV A B P L) R A CRE)

where the last step () becomes possible, since it is assumed that the Jacobian matrix J is square.
This concludes the initial statement that the Newton method for a system of non-linear equations
can also be interpreted as the minimization of a scalar valued (model) function. Furthermore, it
is also possible to use other norms than the presented ¢5-norm. The ¢>-norm has the advantage
that it minimizes the variance and, therefore, has some statistical relevance. However, there are
also circumstances where other norms are preferable as explained in Conn et al. [54, Sec. 16.2].

Remark 3.1. The Gauss-Newton model is used quite often in the optimization literature, even
though it has an obvious drawback: The pure convexity of the model does not necessarily re-
model the true second order derivative, which would be given by

1
viz[_

Slr@)1= 2"+ Z ) V2, ri(z), (3.14)

and can consequently lead to convergence to stationary but not second-order optimal points
(saddle-points). However, this drawback can be resolved by considering the actual second-order
model, known as the Newton model, of the least squares problem (3.2), or even more sophisti-
cated models, such as tensor methods as discussed in Schnabel and Frank [236]. The reader is
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kindly referred to Conn et al. [54, Sec. 6.5 and Sec. 16.1] for a detailed explanation of this issue
in the context of Trust Region methods. Otherwise, if pure line search methods are used and the
Jacobian matrix shows some degree of rank deficiency, it is possible that the solution procedure
is attracted by non-stationary points as presented in Byrd et al. [42]. This can even happen for
regularized Newton methods [68, Sec. 6.5].

Quasi-Newton Methods

The next short paragraph is dedicated to the so-called quasi-Newton methods. The idea of quasi-
Newton methods is to replace the calculation of the second order derivatives, i.e., the Jacobian
or Hessian matrix, by a well-defined estimate in order to reduce the high associated costs. Alter-
natively, it is also possible to compute an estimate for the inverse of these matrices, which has
the additional advantage that not only the expensive evaluation but also the solution of the linear
system of equations becomes much cheaper. In the case of a symmetric Hessian matrix, suitable
methods can be found under the key-word BFGS (abbreviation for Broyden, Fletcher, Goldfarb
and Shanno), which is the dual spin-off of the previously published Davidon-Fletcher-Powell
algorithm [61]. These methods are based on the idea that the proposed estimate is symmetric
positive-definite, fulfills the secant equation and the deviation from the previous estimate is ex-
pected to be minimized. This can be summarized for the BFGS methods by

mininllize |B~' — [E{’“}]”H,
11t o) 2

s.t.  B7'=B"Tand BNV fF — v, fH) = glEt g8, (3.15)

However, the BFGS method is not considered in this thesis, since it asks for a symmetric Jacobian
matrix and this prerequisite is not always satisfied due to the later applied and discussed modifi-
cations to the variational form of the frictionless contact problem (see Chapter 4). Nevertheless,
it is an interesting topic. Especially the fact that the algorithm maintains a positive-definite sys-
tem matrix can be very helpful if the minimization of non-convex problems is considered. For
more information, especially concerning the low-memory variant (L-BFGS), the reader is kindly
referred to Erway and Marcia [78], Li and Fukushima [176], Liu and Nocedal [178]. Addition-
ally, there are also more recent publications concerning non-smooth problems, e.g. Lewis and
Overton [175].

Besides the well-known BFGS method, another class of inexact Newton methods is appli-
cable to non-symmetric system matrices as well. These methods are called Broyden methods
named after Broyden [38]. A summary of different variants for this family of methods can be
found in Martinez [189]. Furthermore, the important treatment of sparse matrices is addressed
in Bogle and Perkins [28], Martinez and Zambaldi [190], Marwil [191], Schubert [238]. This
sub-class is often called Schubert’s method. However, all of the cited methods concerning sparse
matrices expect a constant sparsity pattern which is generally not available for contact problems.
Nevertheless, the idea to approximate the system matrix or a part of the system matrix by these
methods can be an interesting future research topic.
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3.1.2. Globalization Techniques

This thesis is mainly about improved robustness in the field of non-linear solution techniques.
Therefore, after a short introduction into the local solution schemes in Section 3.1.1, the attention
is on globalization strategies. For the time being, the focus is still on unconstrained optimization.
First of all, there are two major strategies to construct globally convergent methods: Once, the
so-called line search methods which will be used throughout this thesis and, secondly, the trust
region, or Levenberg-Marquardt methods. Even though both of them follow the same objective
and provide a meaningful safe-guarding strategy throughout the non-linear solution procedure,
they are still very different in their properties and fundamental idea. To highlight the main dif-
ferences, both approaches shall be discussed in the following.

3.1.2.1. Line Search Methods

The fundamental idea of line search methods is that as long as the descent property (3.8) is
fulfilled, it must be possible to find a new iterate ¥4 = 2t 4+ Az with Azt = olFptH
along the given search direction 1_9{’“} such that the objective function (or a suitable merit function)
is sufficiently reduced. Sufficiently reduced means that the step length o} > 0 is chosen such
that

f@{k} + oz{k}]_?{k}) < fr{ekf} + Cla{k}<vif{k}7 B{k}>’ (3.16)

where ¢; € (0, 0.5) is a constant scalar. The reference function value fr{ekf} is classically chosen

as the previously accepted function value fr{ekf} = f(z'*). However, other choices are possible as
well. The explanation for the fact that the constant ¢; must be smaller than 0.5 can exemplarily
be found in Boyd and Vandenberghe [34, Sec. 9.2 and 9.5]. The demand behind the inequality
(3.16) can be summarized in words as follows: The objective function value must be reduced
proportional to the step length. The inequality (3.16) is called the Armijo rule. Theoretically,
there is of course the option to perform an exact line search, i.e.,

o® = arg min f(g{k} + tp{k}). (3.17)
t=0 -
In general, (3.17) asks for a one-dimensional optimization problem on its own. Even if a local,
instead of a global, minimizer in search direction is sufficient, the solution of this problem will
come along with a number of additional, probably very expensive, evaluate calls. Fortunately,
another less expensive inexact, so-called backtracking, approach is available as well and is pre-
sented in Algorithm 3.1.

Extensive studies (see e.g. Boyd and Vandenberghe [34, Sec. 9.5.4]) reveal that exact line
search shows typically only a small improvement in terms of the total necessary iteration counts
of the non-linear solution procedure compared to the backtracking line search approach. There-
fore, and due to the smaller implementation burden, the backtracking line search scheme is used
throughout this thesis.

The formulated demand in (3.17) asks in its usual variant for a monotone solution path, where
the additional reduction proportional to the step length is introduced to prevent the acceptance of
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Algorithm 3.1 BACKTRACKING LINE-SEARCH
Given. Assume that a constant ¢; € (0, %) and a second constant § € (0, 1) are given. Further-

more, a reference merit function value fjekf} and the evaluated gradient at the last accepted iterate,
ie, V,f (g{’“}), as well as the current search direction p{k} are known.
0. Initialize. Set the line search iteration counter [ = 0, initialize the step-length parameter
at®! = 1.0 and compute the directional derivative D ,u (f1*) = (V, f(z"), pt*).
1. Evaluate. Compute the new trial point z+ = z¥} 4 o% Uptk} and evaluate f(z*).
2. Check the Armijo rule. Check (3.16). B
2.1. If the inequality is not fulfilled, set a!®!*1} = Balk!} increase the line-search iteration
counter [ < [ + 1 and go to Step 1.
2.2. Otherwise, accept the current trial point and set z{*+1 = 2+,

steps which are only infinitesimal better than the current iterate even though the local information
based on the gradient signalize a possible much better progress. A good explanation can be found
in Nocedal and Wright [204, Sec. 3.1]: Imagine an objective function with a minimal function
value f* equal to —1 and, now, imagine at the same time that the chosen algorithm generates
a sequence of successively smaller function values in form of f{*} = 5/k, fork =1, 2,....
The given sequence is monotonically decreasing, but would converge to the wrong, non-optimal
function value of zero. To avoid such an unfavorable behavior, the so-called sufficient decrease
condition in (3.16) is necessary. There are also circumstances where such a strict demand for
a monotone sequence can be troublesome since it might lead to a much greater number of it-
erations, just because the algorithm is not allowed to move freely. This observation leads to a
number of so-called non-monotone line search algorithms. One of the first publications is given
by Grippo et al. [120]. The idea therein is easily explained by a slight modification of (3.16).
Instead of setting the reference function value equal to the last accepted function value, the ex-
pression

fid = max {f) (3.18)
is used, where m(k) is initialized by m(0) = 0 in Step 0 of Algorithm 3.1. Subsequently, if the
iterate is accepted in Step 2, the variable is updated by m(k + 1) = min{m(k) + 1, M }. Thus,
only the largest value of the last M accepted function values is considered for the modified
Armijo rule. That is one way how a controllable non-monotone behavior can be added to the
algorithm. However, there are more possibilities. See for example Zhang and Hager [295], where
an averaging approach of previously accepted function values is followed and, then, the demand
is formulated with respect to the averaged reference value. Furthermore, a review over different
non-monotone algorithms, including also a derivative-free variant, is given in Eisentrager [75].

In case of a Newton direction the Armijo rule is usually sufficient to achieve global conver-
gence. This is mainly due to the fact that the Newton method already contains a inherent step
length information. On the other hand, if a pure gradient or a quasi-Newton method is used, it
is possible that the step is not too long, but can be also too short to reach sufficient progress.
In such a case, the Armijo rule can be extended to the so-called (strong) Wolfe conditions by
additionally considering one variant of the following curvature conditions
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<v£f@{k} + a{k}g{k})’ B{k}> > 02<ng(£{k})7 B{k}> (3.192)
or |<V£f(§{k} + a{k}g_a{k}), B{k}>‘ < CzKng(@{k}), B{k}>" (3.19b)

where co € (0, 1). The inequality (3.19a) is the default variant which avoids too small steps by
the demand that the slope at the new trial point must be less negative or even positive compared
to the reference point. This condition can be strengthened by (3.19b): The so-called strong Wolfe
conditions avoid additionally too long steps, i.e., the positive slope at the new trial point is
also not allowed to be too steep. Note that the satisfaction of the Wolfe conditions asks for the
fulfillment of the presented curvature conditions (3.19) in combination with the Armijo rule
(3.16). The Wolfe conditions also play a decisive role for the BFGS method where the curvature
condition enforces the positive definiteness of the matrix estimate as explained in Nocedal and
Wright [204].

Finally, it is worth to mention that there are a variety of possible modifications for the case
that the assumption of a descent property is violated, the considered Jacobian matrix is (nearly)
singular, or the computed Newton direction is in some way too small or too large [120]. See also
Nocedal and Wright [204, Sec. 3.4], Wichter and Biegler [272] and Section 6.6 for suggestions
on a possible modification of the system matrix or Remark 3.1 for tips concerning a singular
Jacobian matrix stemming from a non-linear set of equations.

3.1.2.2. Trust Region Methods

Trust region methods represent the second big family of globalization methods. However, since a
line search approach is followed in this thesis, only the basic idea of trust region methods shall be
explained here. A much more comprehensive overview of the trust region method is given in the
excellent text-book by Conn et al. [54]. However, here the discussion begins by the assumption
that a meaningful initial trust region radius A%% is given. Information on how this initial radius
can be obtained is also given in Conn et al. [54, Sec. 17.2]. With the initial radius at hand, the

following spherical trust region can be defined

VAR = {zeR" | |z — 2] < A} (3.20)

The region can also have a non-spherical shape by inserting a different norm. However, the dis-
cussion shall be restricted to the /,-norm. Next, a suitable model function is considered, e.g.,
(3.9) or (3.12), which is supposed to be a valid approximation for the underlying objective func-
tion, as long as z{* € V(A{Tlﬁ). Then, the step to the minimum of the model in the defined trust
region is computed. This step can lead to a solution on the boundary of the trust region, such that
I Q{k} | = A{T’}}{, or, under consideration of the associated full Newton step, it is also possible that
the step ends inside the trust region, such that |p*}| < A{Tkﬁ. Now, the quality of the computed
step is checked by the quotient -

o W=+ pi)
PIR = 0 (2IFT) — m ) (g8 4 plhT)

(3.21)
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The step p'*’ is accepted if ptEl > TR 5 0. Afterwards, the trust region radius is updated by

(Al o0) if plk) > TR
k+1 k k . k
AlY e S yrmalll Al i pli) e R, ™), (3.22)

k k . k
[WTRALL, ATRARY i plfy < i,

and the iteration counter is increased by one, i.e. & < k + 1. Typical values for the introduced
constants are i % = 0.01, ni® = 0.9, 7% = vJ® = 0.5. The trust region algorithm contains the
solution of an inequality constrained minimization problem as a sub-step, namely,

minimize m* (p), (3.23a)
peER™ -

s. t. Ip| < A%, (3.23b)

Possible solution procedures for this problem (3.23) can be found in Conn et al. [54, Ch. 7] and
lead, in case of the /5-norm, to a system of the form

(H™ + AjgD) p™ = =V, ¥, (3.24a)
™2 — (A2 <o, (3.24b)
AN = 0, (3.24¢)

where A} is the optimal Lagrange multiplier for (3.23), which will be equal to zero if the model
minimizer is located inside the trust region. Since the exact solution of this constrained sub-
problem and especially the identification of the correct Lagrange multiplier value can quickly
become very expensive, there exist also a number of truncated algorithms for large systems of
equations which avoid the computation of the exact solution. See for example the truncated
conjugate gradient method, the dogleg or double-dogleg methods, or the Lanczos approach for
more information. All algorithms can be found in the mentioned book chapter. Combinations of
a trust region method and a line search method are also available as proposed by Nocedal and
Yuan [205].

3.1.2.3. Levenberg-Marquardt Method

The Levenberg—Marquardt method named after Levenberg [174], Marquardt [187], or also known
as the damped least-squares method can be seen as a direct ancestor of the trust region algorithm.
The theoretical changes are only minor and, as the second name already suggests, the typical
derivation is based on a least-squares problem, i.e., (3.2) and the Gauss-Newton model (3.12).
Thus, the following system of equations is usually considered

{[é{k}]Ti{k} + MI{j\}I Q 2_9{174} _ _[i{k}]T Z{k}- (3.25)
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As one can see, this system is closely related to (3.24). The only difference is that the position
of the optimal trust region Lagrange multiplier is now taken by the Levenberg-Marquardt pa-
rameter M{m\}4 > 0. In addition, instead of updating the trust-region radius (3.22), the mentioned
parameter is updated. For more information, especially concerning a meaningful choice of the
initial Levenberg-Marquardt parameter, the reader is referred to the literature on this topic. See

for example Fan and Pan [80], Fan [81], Yamashita and Fukushima [287].

3.1.2.4. Pseudo-Transient Continuation

Lastly, the so-called Pseudo-Transient Continuation (PTC) method, also sometimes abbreviated
by WTC, shall be mentioned. A detailed introduction can be found in Fowler and Kelley [99],
Gee et al. [105], Kelley and Keyes [155]. Even though the derivation is very different from
the previously discussed trust region and Levenberg-Marquardt method, the evolving system of
equations shows large similarities. Consequently, it shall be introduced at this point. Again, the

solution of a non-linear set of equations r(z) < 0 shall be determined. The idea is to treat the
way from the initial point z{? to the solution z* as a dynamic transient problem formulated in a
pseudo-time 7 € R with 7 > 0 which is incremented by the pseudo time increment d+ *} The final
solution of the non-linear problem is the steady-state solution of the pseudo dynamic problem,
i.e., it is reached for 7 — oo. Since only the steady-state solution is important, the possibly
introduced time integration error becomes irrelevant. Therefore, the root finding demand can be
reformulated as

L el ), withalr = 0) =2, (.20

oT =

where V' is a newly introduced, invertible square scaling matrix. Next, the so-called Rosenbrock
time integration scheme proposed by Rosenbrock [231] is applied to this problem which is an
extension of the explicit Runge—Kutta process as described in Gear [103, Sec. 11.2, p. 223]. The
simplest form of this scheme is given by

k= 6" f(a™) + B, Az™) k}, (3.27)
2™ = g™y Ok (3.28)

where the vector f(x {k}) represents the right hand side of (3.26) and the matrix A denotes the
Jacobian matrix of this right-hand side, viz. A(z(7)) = [V(7)]"".J(z()), where J denotes the
Jacobian matrix of r. Furthermore, the matrices B, and C' are here identified as the identity
matrix. Thus, after a quick problem reformulation tt the followmg update formula is obtained as

LAy (0 {[(ﬁk}]flz{k} + i{k}}*l ags (3.29)

Note that for a pseudo time step J, — oo the classical Newton scheme is obtained. Additionally,
the presented method shows a similarity with (3.24) and (3.25). The main difference lies in the
fact that no matrix-matrix product must be formed and that the right-hand side remains unmod-
ified. This can have a beneficial impact if the Jacobian matrix is (nearly) singular close to the
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solution such that the right hand side of (3.25) could become distorted and may indicate a non-
stationary point falsely as stationary. Classically, the PTC method uses the so-called switched
evolution relaxation (SER) method or the so-called temporal truncation error (TTE) to update
the pseudo time-step ¢... Further details can be found in Kelley et al. [156]. However, since these
correction schemes are applied after the new step has already been computed, they can still lead
to divergence. This can happen since the evaluation at the new iterate may lead to a non-physical
and highly distorted state.

An alternative interpretation which enables the access via the presented optimization algo-
rithms is given by formulating a so-called transient residual

r(z) = [(FV I (2 — o) 4 r(2) = 0. (3.30)

In this way the PTC method can be accessed by globalization methods such as line search. The
interested reader is referred to Ceze and Fidkowski [44], Modisette [198].

3.2. Constrained Optimization

In this section it will be demonstrated that many of the presented unconstrained optimization
approaches can be generalized such that they become applicable to constrained problems. Since
the focus of this thesis is on contact problems which can be interpreted as a special type of an
inequality constrained optimization problem, the following general problem shall be considered

minimize f(x) (3.31a)

xeR™

subject to g'(z) =0 Vie{l,...,m}, (3.31b)

where m is used to denote the number of considered inequality constraints and m < n shall
hold throughout the entire thesis. In the remainder of this work (z*, \*) € R" x R™ indicates
a so-called Karush—Kuhn—Tucker (KKT) pair of problem (3.31), i.e., a pair of primal and dual
variables which satisfies the following conditions

v£$<£*aé*) = Qa gz<£*) = Oa [/\*]Z = 07 <A*a g(g*)> = 07 (332)

forall i € {1,...,m}. Thus, at the solution all constraints must be feasible and their associated
Lagrange multipliers \* with i € {1,2, ..., m} must be non-negative. Note that the last condition
in (3.32), the so-called complementarity condition, ensures on the one hand that all Lagrange
multipliers associated to inactive constraints, i.e., constraints with a positive value, must be zero.
On the other hand, it enforces that the constraint values of all strictly active constraints, i.e.,
constraints with a positive Lagrange multiplier value, must be zero. Thus, if S is the index set of
all constraints, viz., S = {1,...,m}, then the index set of all active constraints at the solution
x* follows as

Ag={ieS: ¢'(z") =0}, (3.33)
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and the index set of all strongly active constraints can be defined as a sub-set of A, by

A, ={ie Ay : [N >0} (3.34)

If the sets coincide at the solution, i.e., Ay = A, then strict complementarity holds. Finally, the
Lagrangian function, denoted as . : R™*™ — R, is obtained by

Za,0) =fl2) - N minfg(a), A3 L @) -4 gH N 339)

where a new scalar constant ¢ > 0, the so-called regularization parameter, has been introduced.
Furthermore, the current index set A is used in the last step (f) as a superscript which is defined
as

Az, \) ={ieS: N —cg" = 0}. (3.36)

This set can be interpreted as an educated guess for the final active set. This guess is necessary
as long as the final KKT pair has not yet been determined and, hence, the KKT conditions do not
yet hold. As a direct consequence A, < A < A4, can be expected to hold at some point during
the convergence to the optimal KKT pair. Another set is the index set of all inactive constraints
which is directly obtained by Z = S\ A.

A detailed motivation for the regularization parameter or the inequalities in (3.35) and (3.36)
will be presented in a moment. First the attention is on (3.32). The Karush—Kuhn—Tucker condi-
tions represent the necessary first order optimality conditions for constrained problems, where
the first condition in (3.32) yields

0=V, Z(2" X)) = Vo f(z") = Vog' () A = Vof(a') = Vugt(2) A, (3.37)

since \Y = 0, V ¢ € Z. The illustrative meaning of this formula is that the gradient of the ob-
jective function and the gradients of the active constraints must be collinear at the KKT point.
Now, the task of the associated optimal Lagrange multipliers is to scale the magnitudes of the
constraint gradients in such a way that the objective function gradient and the linear combination
of the constraint gradients vanishes at the solution. It is obvious that for this linear combination
a variety of possible very different values of Lagrange multipliers might be suitable. However,
if the so-called linear independence constraint qualification (LICQ) holds, then the optimal La-
grange multiplier vector A" is unique. The definition of this important qualification is stated as
follows:

Definition 3.1. Assume a feasible point z as well as its associated active set A of feasible active
constraints are given. Then the linear independence constraint qualification (LICQ) will hold if
the set of active constraint gradients {V,¢'(z), € A} is linearly independent.

This important definition is taken from Nocedal and Wright [204, Sec. 12.2]. Furthermore, the
interested reader is kindly referred to Nocedal and Wright [204, Sec. 12.4] for more information
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on the proof that the KKT-conditions are indeed the first order optimality conditions. Here,
the attention is next drawn to the necessary second order optimality conditions for constrained
optimization. Firstly, a cone with first order feasible directions at a feasible point x must be
defined. This cone of feasible directions as well as the related cone of critical directions at the
KKT-pair is defined as

Clz) = {v: (v, Vuog'(2)) 20 Vie A}, (3.38a)
C*(z*, \") ={velC(z"): (v, Vog'(z")) =0, Vie A" with \} > 0}. (3.38b)

It must be noted that (3.38) directly implies that (v, V,g¢'(z*)) = 0 for \* = 0 and i € A"
However, these sets need some further explanation: The set of feasible directions given in (3.38a)
is considered first: At the solution it is known from the first order optimality condition that V, f*
is equal to (V,g*, A\*) and, hence, each direction v € C(z*) under consideration of a linear
model for the objective function leads to either an increase or to no change due to (Vyf* v =0.
Therefore, in the latter case this first order information is not enough to identify £* as an optimal
point. Actually, all feasible directions for which this decision is difficult are summarized in the
critical cone (3.38b) due to the fact that from (3.37) it directly follows

vel" = W, Vo f ") = (v, VegA™) = 0. (3.39)
This at hand it becomes possible to state the following theorem:

Theorem 3.4. Second-Order Necessary Conditions for Constrained Optimization. Under the
assumption that the objective function f as well as the constraints ¢’ are twice continuously
differentiable in a neighborhood around the KKT-pair, and by assuming that the LICQ is fulfilled,
then the point z* is a local solution and \* is its associated Lagrange multiplier vector such that
the KKT conditions are satisfied, whenever

(v, V2, Lz, X") v) = 0, VoeCH(z*, A"),v#0 (3.40)
holds.

Finally, similar to the unconstrained case, the second order sufficient conditions are stated.
Note that these conditions do not require that the LICQ hold. They can be formulated as

Theorem 3.5. Second-Order Sufficient Conditions for Constrained Optimization. It shall be
assumed that for some feasible z* there exists a Lagrange multiplier vector \* such that the
KKT conditions are fulfilled. Furthermore,

(v, V2, ZL(z", X)) v) >0, Yo eC*(z*,A"), v+#0 (3.41)

shall hold. Then z* is a strict local minimizer for the constrained problem (3.31) and \* is its
associated optimal Lagrange multiplier.
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For a much deeper insight, for example concerning the Mangasarian—-Fromovitz constraint
qualification (MFCQ) which represents a generalization of the LICQ, as well as for a proof of
all these theorems, the reader is kindly referred to Nocedal and Wright [204, Ch. 12].

Up to here, mainly the KKT point has been considered where A} = 0, Vi € Z holds such that
the inactive part in (3.35) vanishes naturally. However, during an iterative non-linear solution
scheme this inactive part as well as the shown active-set decision in (3.36) is a crucial ingredient.
Therefore, next a short derivation for the used inactive extension is given. This derivation is
achieved by a reformulation of the problem (3.31) as an equality constrained problem. In a first
step, a vector z € R with additional auxiliary variables shall be formally introduced leading to

minimize f(x) (3.42a)

xeR™

subject to g'(z) - ()*=0 Vie{l,...,m}. (3.42b)

Under consideration of this equality constrained problem the so-called augmented Lagrangian
can be stated

Lelw,5,0) = J(@) = A gla) ~ & + S lgle) - 5] (343)

where the vector § with the positive components 3° = (z%)? is inserted. These variables are called
slack variables, or just slacks. Now, the augmented Lagrangian (3.43) is minimized with respect
to these non-negative slack variables yielding the new problem

minimize A\, g(z) - & — Sgla) - 5[, (3.44a)

= —A+c(g(z) —3) =0, (3.44b)
1

= s5=g(x)— -\ (3.44¢)
- C

Under the prerequisite that $ > 0 must hold, the final result follows as (5°)* = max{0, §'}. This
result inserted into (3.43) leads to

L2, )) =L, 5 (@A), A) ziZ {[max{O, N — cg}2 — (X2} (3.452)
=1
=) = O, g+ SIg 1P - IR (3.45b)

From this derivation and under consideration of the optimal slack variable §*, the Lagrangian
stated in (3.35) can be directly deduced. The derivation above can be also found in a slightly
different form in Bertsekas [23, Sec. 3.1]. The augmented Lagrangian for inequality constraints
is well-known in the literature and has also been successfully used by Bertsekas [22], Buys
[41], Gill et al. [107], Glad and Polak [111], Rockafellar [230], for instance.
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3.2.1. Penalty Approach

There are different ways how to tackle the constraints in problem (3.31). Actually, even the
presented way incorporating the constraints by building up a Lagrangian or an augmented La-
grangian function is by far not the only possibility. For example, one truncated variant of the
augmented Lagrangian is the so-called penalty approach. In contrast to (3.43) the slacks de-
pending on the Lagrange multiplier values can no longer be used. Instead the penalty function is
defined as

P(x) gimax{o —g (@)} (3.46)

where ¢ > 0 is now called a penalty parameter rather than regularization parameter. This
quadratic penalty function has been introduced for the first time by Courant [55]. The obvious
advantage is that this function only depends on the primal solution variable x. The big drawback
is that the solution quality depends strongly on the chosen penalty parameter. To reach the ex-
act solution of (3.31), the penalty parameter must tend to infinity, since the enforcement of the
constraints becomes stricter by increasing the penalty parameter.

For the application considered here, it shall be assumed that a first order optimal point for
(3.46) can be found for each global iteration, i.e., for each global iteration k it is possible to
find a solution such that |V, 2| < TOL{k} with V, Z(z) = Vo f(z) + M Vg% (2) gt (2),
where A, = {i € §: ¢' < 0} is deﬁned in accordance with (3.36). Furthermore, for the
considered sequences {c{*}} and {TOLI{J’“}} it shall hold that TOLI{)k} — 0 and ct*t — oo, If these
assumptions are fulfilled then each limit point z* of the generated sequence {z{*}} is either a
non-optimal stationary point of the penalty term | g"‘ |2, or a feasible point. If the point is feasible
and the constraint gradients are linearily 1ndependent then the point z* is the desired KKT point.
For KKT points and under consideration of an infinite sub-sequence of iterations denoted by C},
it follows

1i {k} _ li {khy — \* 4
ké%i T T and kérlél ™ max{0, —g; (™) = AL, (3.47)
where )7 is the associated optimal Lagrange multiplier value (see Nocedal and Wright [204, The-
orem 17.2]). This identification will become handy when the condition number of the Hessian
shall be investigated in more detail. Therefore, (3.47) will be reconsidered in Section 3.2.3.2.

For a more detailed discussion of the penalty approach the reader is again referred to Nocedal
and Wright [204, Ch. 17.1].

3.2.2. Lagrange Multiplier Function

Within this thesis the dual Lagrange multiplier variables will be mainly treated as primary vari-
ables, however, this is not strictly necessary. It is also possible to construct a so-called Lagrange
multiplier function A(z) which is twice continuously differentiable and is expected to converge
to the correct Lagrange multiplier vector A* for z*} — z* as long as the MFCQ hold. This idea
was proposed for equality constraints by Fletcher [92], Tapia [259] and was later extended to
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inequality constrained problems by Glad and Polak [111], Lucidi [182]. At this point the exten-
sion used by Facchinei and Lucidi [79], Lucidi [182] shall be briefly presented which leads to
the following definition of the Lagrange multiplier function

Az) = [N(2)] " [Vag(@)]"Vaf (@), (3.48)

where the matrix N (z) € R™*™ is defined as

N(x) = [Vog(@)]"Veg(a) + 7 diagl[{g' (@)}*] + 72 i max{0, —¢(z)}’L. (3.49)

=1

The presented definition of matrix /N (z) might look quite complex at a first glance, but luckily
the different terms can easily be explained. Therefore, the following least-squares minimization
problem is considered

Az) = arg min = |V, f(z) - Veg(z) A (3.50)
XeRm 2 =
which directly leads to
Az) = {[Vog(@)]"Vaog(@)} ' [Veg(@)] Vot (). (3.51)

This result coincides with (3.48) for 7' = 75 = 0. Next, 77 is set to a value larger than zero
while 75 shall be still equal to zero. Then, the multiplier function introduced in Glad and Po-
lak [111] is revealed which is defined at any point where the gradients of the active constraints
are linearly independent. Finally, the last regularization term is added to ensure a well-defined
Lagrange multiplier function also when at least one constraint is violated. This last term is espe-
cially important if globalization techniques are addressed [182]. The presented Lagrange multi-
plier function asks for the solution of a m x m system of equations. Fortunately, this is easily
achievable in the case of contact problems since the number of constraints is almost always much
smaller than the number of primal degrees of freedom and, hence, the system stays small and
can be solved efficiently.

Remark 3.2. The reason why it is not straight forward to apply this interesting approach to
contact problems is that this method asks for the evaluation of the constraint gradients not only at
infeasible but also at feasible points, i.e., at local positions where the gap is positive. That can be a
problem since the necessary projections between master and slave surface might not be defined,
since the slave body slides over an edge or the projection is not evaluated due to the chosen
search radius of the contact pairing algorithm. However, in a student project by Schulze [239]
this idea has been successfully applied under consideration of the mortar-like contact formulation
presented in Chapter 4. During that study it has become apparent that the regularization terms
are of major importance to avoid non-physical oscillations of the Lagrange multiplier values.
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3.2.3. Local lterative Solution Methods

In this section a basic iterative solution approach for constrained optimization problems shall be
presented. Therefore, the discussion is mainly restricted to Newton’s method. However, some
possible modification will be mentioned as well.

3.2.3.1. Sequential Quadratic Programming

The system of equations which naturally evolves when Newton’s method is applied to (3.31)
can also be interpreted in a different way. The reader is reminded of the quadratic model in
(3.9) and the discussion about the fact that the Newton step represents a step to the minimizer of
the underlying quadratic model function. This idea leads to the so-called Recursive Quadratic
Programming (RQP), Sequential Quadratic Programming or even sometimes called Succes-
sive Quadratic Programming (SQP) approaches. The SQP approach considers the following
quadratic problem in each step

minimize FE (v p)+ <p V4 f{k}p > (3.52a)
p, ER™
5. t. g'(@™) + (Vug'@™), py =0,  ies, (3.52b)

where D, denotes the step of the primal variables. Based on this quadratic constrained minimiza-
tion problem the corresponding Lagrangian function reads

1
L@ +p, M) =+ (VoY p )+ S, VIL M)
(A (T, A
1
— QLD (3:53)

where )\, denotes the (trial) Lagrange multiplier value for the quadratic optimization problem
which is supposed to coincide with the Lagrange multiplier vector at the new iterate ALY fa
simple local scheme is applied, i.e., without considering any globalization technique. Since this
Lagrange multiplier enters the equation only linearly, it is also possible to split the trial Lagrange
multiplier into an old, previously accepted part and an incremental update by replacing A, with
PALLE p,- This split can become handy for globalization methods. Under consideration of the
Lagranglan model (3.53) derived from (3.52), the related first order optimality condition can be
generally written as

K™\ p = SR\ (3.54)

where the matrix K is identified by

KW — [ —[Vyg™T 0 0 (3.55)
0 0 L
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and the right hand side or residual vector is either given by

—V, fik
rSQP — 2A{k} (3.56a)
0
or by
V[ 4 v, g AR Nk
5P _ g (3.56b)

__)\I{k}

depending on the definition of the solution vector p = (]_9“4, QI )T in (3.54). If the active solution
vector is defined as p* = (p , A7)T, then (3.56a) holds. Otherwise, if p* = (p,, p)" holds,
then (3.56b) must be considered. The inactive contributions can be easily added due to the fact
that the corresponding equations are decoupled and dependent solely on the inactive Lagrange
multipliers, thus,

N =0 or pr = -\ (3.57)

follows. As long as the KKT-matrix (3.54) is non-singular, the iteration scheme is well-defined.
In contrast to an equality constrained problem, an inequality constrained formulation asks for
a meaningful guess of the final active set. As long as this current active set A%} following
(3.36) is not yet equal to the final active set, the system of equations shows still a quite heavy
change each time a constraint joins or leaves the current active set estimate. Only as soon as
the active set has converged, the remaining system (3.54) acts like a typical Newton scheme
and quadratic convergence can be expected under certain preliminaries. This is summarized in
a theorem originally proposed by Robinson [228] and restated in Nocedal and Wright [204,
Theorem 18.1]:

Theorem 3.6. Suppose that z* is a local solution of (3.31) at which the KKT conditions are
fulfilled for some A\*. Furthermore, suppose that the LICQ, the strict complementarity condition
and the second-order sufficient conditions hold at the KKT pair (z*, \*). Then, if the iterate
(g{k},g{k}) is sufficiently close to the solution, there exists a local solution of the subproblem
(3.52) whose current active set A} coincides with the active set A(z*) = A, of the non-linear
program (3.31) at z*.

Remark 3.3. The crucial part of Theorem 3.6 for contact problems is the prerequisite that strict
complementarity must hold. If this assumption is not satisfied and the two contacting bodies
are only in touch, i.e., the gap between them is zero, but no (meaningful) force is transferred
between them and thus the final Lagrange multiplier values )\;40 are zero or close to zero, then
the presented iterative method often shows a very poor performance and converges only very
slowly to the final solution or the active set starts to cycle.

By the way, the quasi-Newton methods presented in Section 3.1.1 are also applicable to the
KKT system and are typically used to generate an estimate for the Vzgéf matrix. However,
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the direct application might be more complicated. For example, as long as the matrix V2 .7 is
positive definite, an estimate via the BFGS method will be mostly a good idea. As soon as the
real curvature matrix exhibits negative eigenvalues, the classical BFGS method might perform
poorly. Therefore, different remedies have been proposed. For instance, the BFGS update is
sometimes skipped if the secant condition implies it or a so-called damped BFGS updating is
considered (see Nocedal and Wright [204, Sec. 18.3]). However, even though the last option
seems to work pretty well in many cases, it is still not able to properly represent the case that
the underlying Hessian is no longer positive definite. Therefore, it might be a better idea to
switch to so-called symmetric rank-one (SR1) update routines which do not rely on the positive
definiteness assumption.

Furthermore, the linear system (3.54) together with (3.56a) can also be applied if a Lagrange
multiplier function following (3.48) shall be used. In this case, the second order derivative matrix
is evaluated dependent on this multiplier function, i.e. V2 . Z[z{*} A(2!¥})], and the solution
vector parts A, or p, are just used as auxiliary variables which are discarded after the solution
of the linear system. This approach is quite common, see for example Facchinei and Lucidi
[79], Ulbrich [264]. Alternatively, it is also possible to formulate the entire system completely
in dependence on the primal variable by inserting the Lagrange multiplier function into the
Lagrangian definition. The latter idea has been followed in the original work by Fletcher [92]
subject to equality constrained problems. However, in contrast to (3.54) the latter attempt can
become more involved since terms such as VA must be computed, which is possible but can be
computationally quite expensive.

3.2.3.2. Solution of the Penalty Approach

In case of the penalty method (3.46) a formulation based on the primal variables z is given.
Therefore, the related Hessian follows as

Al
V2. Pel(z) = )+ ¢ Z 9i(x) Vi ,9i(x) + Vag™(2) [Vog™ (@)]".  (3.58)

Typically, the associated Newton system has the drawback that the conditioning of the Hessian
is badly influenced by a rising penalty parameter. Luckily, the impact on the condition number
can actually easily be avoided: Under consideration of (3.47), the first two terms in (3.58) can be
immediately identified as an estimate for V2 __#. Thus, it can be concluded that only the eigen-
values of the rightmost matrix in (3.58) are potentially badly influenced by the penalty parameter
close to the solution. If, as suggested, a penalty parameter sequence {ct*}} with ¢{*! — oo is fol-
lowed, the computation of the Newton direction p will become more and more inaccurate due to
this term. This is especially critical if iterative solution methods for the linear system are applied.
Fortunately, an easy reformulation is possible by introducing an auxiliary vector z = ¢V ,g**p
yielding the new system of equations -

[ Ap|
Vief@ +¢ X 0i(a) Viagi@) Vag(@)| () _ (~VeZ@)) (35
Ve (@)]" Y (2)- (")
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Hence, it can be concluded that (3.59) represents a well conditioned reformulation. However, the
computed Newton direction can still be of bad quality if the identification (3.47) does not (yet)
hold and, thus, the upper left block in the system matrix of (3.59) is only a rough estimate for
the Hessian of the Lagrangian (3.35). Another drawback is that the better conditioning asks for
the solution of a saddle point system of equations which might demand for special solution tech-
niques. The interested reader is referred to Gould [113] for a more comprehensive discussion.

Remark 3.4. The auxiliary vector z,, can be easily identified as an estimate for —A close to the
solution. This idea will be taken into account again in Chapter 5.

3.2.3.3. Interior Point Methods

Within this thesis only ideas from the SQP and the penalty approach will be used. Both of
these approaches rely on an active set strategy, which is either built up on (3.36), or an inactive-
active decision solely based on the constraint value (3.46). However, there is also another class
of methods which circumvents these combinatorial difficulties and transforms these active-set
methods to a continuation method [2] called interior-point or barrier method. Even though these
methods are not used in this thesis, their underlying idea shall be briefly explained and why
they are not used for the contact problems considered here. First of all, there is a number of
different interpretations and ideas which all lead to the final interior-point system of equations,
but probably the best way to start the discussion is by considering an already introduced idea.
Therefore, (3.42) shall be revisited. The reformulation with slacks can be also stated as

minimize f(z) (3.60a)
subject to g'(x) — s =0, s' =0 Vie{l,...,m}. (3.60b)

In this way the inequality constrained problem has been shifted from the constraints g to the
slack vector s and, besides that, not much has changed. However, the KKT conditions for this
reformulated system can be written as

Vaof(z) — Vgg(z) A =0, diag[s] A — pp e = 0, g(z) —s =0, (3.61)

where the vector e € R™ shall be defined by ¢! = 1 for all i € S. Due to the introduction of the
positive scalar pp > 0, the inequality constraints A > 0 and s > 0 must only be explicitly added
if pyp = 0. Now, this parameter pyp is used as a continuation parameter and thus the homotopy
approach follows under consideration of a sequence { ,&{i}} which converges to zero, while the
positivity of M and st s always maintained. A second alternative problem formulation for
(3.60) is given by

minimize f@) = prp ; log(s") (3.62)
subject to g'(z) —s' =0, Vie{l,...,m}. (3.63)
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where the usage of the log-function naturally enforces the positivity of the slack variables and the
combinatoral difficulties of active set strategies are avoided. This formulation leads to slightly
different KKT conditions, namely

Ve f(z) = Vag(z) A =0, A — pp

where the abbreviation S = diag[s] has been introduced.

IICQ

e=0, g(z) —s =0, (3.64)

Remark 3.5. So why is it called interior point method? This question can easily be answered: In
the early publications, e.g. by Fiacco and McCormick [89], no slacks have been used and instead
the inequality constraints have been incorporated by the so-called barrier function, viz.

— pup ) log(g"). (3.65)

That is an additional restriction in contrast to the formulation with slacks, since the natural log-
arithm completely prevents the iterates to leave the feasible region. In other words, the objective
function forces the iterates to become interior points of the feasible region. However, the intro-
duction of slacks relaxes the situation and allows the start also from an infeasible point.

Finally, the evolving system of equations shall be presented, which can be obtained by sim-
ply applying Newton’s method to (3.61) or (3.64), followed by a reformulation such that the
presented symmetric form yields

VieZ 0 Vug\ [, Vof = Vag A
0 x -1 p, |=—[A—mpS'e (3.66)
vlg -1 0 s\ g—=

For the so-called primal-dual system derived from (3.61) the matrix X is identified as S~ é
and for the so-called primal form derived from (3.64) the matrix X can be identified as ,uIPS 2,
Therefore, in the latter case, the Lagrange multiplier matrix A = dlag[)\] is implicitly given by
pwipS™!, such that the Lagrange multiplier is no longer a true independent variable. Note that
it is possible to eliminate p, and p, in (3.66) and obtain a system which must be only solved
for the unknown p vector. For more information the reader is referred to Nocedal and Wright
[204, Ch. 19]. Fmally, a last note shall be added before the discussion about the interior point
method is concluded: In general, the presented system is solved for the search directions and,
subsequently, a line search method must be applied which ensures that the variables s and 2z do
not exceed their lower bound and stay positive. This rule is called fraction to the boundary and
can be found in the related mathematical literature (cf. Gould et al. [115], Nocedal and Wright
[204], Ulbrich et al. [263], Wichter and Biegler [272]).

Next, the question shall be answered why the interior point method is not considered in this
thesis. Therefore, a short summary of the related publications shall be briefly given. For more
information, the reader is also referred to the references in the mentioned publications. The
interior-point method has already been applied to contact problems: One of the first relevant
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references can be found in Oden and Kim [207]. Therein, a barrier function formulation has
been considered for the solution of the 2-D Signorini problem, i.e., contact between a linearily
elastic and a rigid body. The performance has been compared with a classical penalty approach.
Some years later, the interior point method including slack variables has been considered by
Christensen et al. [47] and has been compared to a semi-smooth Newton approach for frictional
contact problems. Those results suggest a superior performance of the semismooth Newton ap-
proach, where especially the treatment of frictional 3-D contact problems has been mentioned as
difficult to achieve with the interior point method. While Christensen et al. [47] only considered
small displacements and linear elasticity, Kloosterman et al. [159] made the step to large defor-
mations. Therein a frictionless 2-D contact problem is discussed. The solution approach uses a
modified barrier function and a special updating scheme for the newly introduced parameters.
In Tanoh et al. [258] one supposed advantage of interior point methods compared to active-set
strategies is addressed, which is the better performance for large scale constrained problems,
1.e., for non-linear problems considering many constraints simultaneously. Therefore, again the
Signorini problem has been used with the mesh successively refined. In this reference the primal-
dual as well as the primal approach including slacks are considered for 2-D and 3-D problems.
Then, Miyamura et al. [197] combined the ideas of interior point methods and active-set strate-
gies in a new algorithm. They proposed a method which uses the interior point method at the
beginning of a new load step to achieve an educated guess for the active set at the solution and
afterwards switch to a semi-smooth Newton approach. Especially interesting are the presented
examples which provide a class of numerical examples with a tough to identify active-set dis-
tribution. In Kucera et al. [166] an approach is presented for frictional 3-dimensional contact
under small deformations. Therein, a primal-dual interior point method is applied and two dif-
ferent condensation strategies are discussed. Furthermore, also the mathematical community has
considered to some extent contact problems, e.g. Herskovits and Mazorche [128], Stadler [254].
Finally, Temizer et al. [261] made the step to large deformations and mortar-type frictionless
contact formulations as they are also considered in this work. The mentioned publication put
much more emphasis on the isogeometric part and the contact formulation uses a closest-point
rather than a ray-tracing approach. However, therein the interior point method in its primal-dual
and primal variant is compared to an augmented Lagrangian formulation. The presented results
suggest that the primal variant is superior. This contradicts the results of many mathematical
publications (see e.g. Nocedal and Wright [204], Wichter and Biegler [272]) and might be due
to the used formulation. Furthermore, another important point is mentioned in Temizer et al.
[261] even though not a lot of emphasis is put on this fact: The interior point method asks for
an integration over the entire potential contact surface in each evaluation step in contrast to an
active set strategy which requires only the evaluation of the active contributions on the slave
and master sides. This and the fact that no significant advantages are proposed but instead the
additional treatment of the interior point parameter becomes necessary, the discussion in this
thesis will be restricted to the SQP and semi-smooth Newton methods. However, an extension to
interior point methods in the future is possible and especially a combination of both approaches
as suggested by Miyamura et al. [197] seems worth trying.
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3.2.4. Globalization Techniques

Similar to the case of unconstrained optimization there exists a variety of methods for con-
strained optimization. Thus, direct methods, as well as gradient based methods are applicable
to constrained problems and these ideas are also often combined with each other. In the field of
gradient-based method two main classes of algorithms can be found once more: the trust region
and the line search methods. Both of them have advantages and disadvantages such that none
is clearly superior to the other. For instance, one drawback of trust region methods is that the
inherent additional constraint, namely the restriction of the step length, might lead to an infeasi-
ble sub-problem. Thus, trust-region methods must implement special strategies to prevent such a
scenario. On the other hand, they have the clear advantage that they can easily handle indefinite
Hessian matrices, while a line search method might be in trouble in such cases and would ask
for a modified Hessian (see Section 5.6.8 for an example).

Another general topic which is much more involved in the constrained case is the decision
about acceptance or rejection of a step. While for unconstrained problems this question is usually
directly answered by the used merit function which often coincides with the objective function,
the constrained optimization has no clear representative measure. Instead, it can be quite diffi-
cult to decide if a step is meaningful or should be rejected. Classically, this decision has been
based on a special merit function which incorporates the constraints via a penalty/regularization
term. Two popular variants of such merit functions are the non-smooth ¢; and ¢, penalty func-
tions which can be directly deduced from (3.46), namely by removing the square, multiplication
of the penalty term by two and inserting the respective norm. The drawback of such penalty
functions is that the inherent penalty parameter must be chosen sufficiently large such that the
prediction of this functions becomes reliable or more precisely exact (see Nocedal and Wright
[204, Definition 15.1]). For the ¢; merit function this is the case if

c;, = max{|Aj|, i € S}. (3.67)

The problem of (3.67) is obvious: In general the value of the optimal Lagrange multipliers is not
known in advance. Thus, it can be a difficult task to provide an educated guess or to implement
an adaptive strategy to increase the penalty parameter if necessary. Under the assumption that
such an update strategy is accessible, the Armijo rule (3.16) can be directly applied where the
directional derivative of the underlying non-smooth merit function in search direction must be
inserted. Similar ideas can be also used for the acceptance by the trust region methods. Here, the
role of the objective function is simply taken by the exact merit function and the quadratic model
is some model for the Lagrangian, for instance.

Since the choice of the penalty parameter is such a crucial ingredient, a different strategy shall
be followed in this thesis. This alternative strategy is the so-called filter method. The filter method
uses ideas from multi-objective optimization. The two goals of minimizing the objective function
and maintaining feasibility of the solution are considered separately, instead of relying on a
scalar merit function which asks for a correctly chosen weighting of the constraints compared
to the objective function. The literature on this topic is huge. A brief summary can be found in
Section 1.2.2. In this thesis a line search filter method shall be considered and the extension to
this type of algorithms has been given in Wéchter and Biegler [270, 271, 272]. The topic will be
comprehensively revisited in Chapter 6.
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Figure 3.2.: In Figure 3.2a the contour lines of (3.68a) are visualized as well as the zero-isoline of the equality con-
straint (3.68b). The solution is marked by @. Furthermore, a slice through the corresponding Lagrangian . (z1, 0, \)
inclusive the KKT pair (z*, \*) is presented in Figure 3.2b.

The Maratos effect

There is another important observation which must be addressed in conjunction with globaliza-
tion techniques for constrained optimization problems. As already mentioned, the two aimed for
goals of minimizing the objective function value and simultaneously maintaining or improving
the feasibility of an iterate can be a conflicting task. In this context, a phenomenon called the
Maratos effect named after its discoverer Maratos [186] exists. It describes the scenario that a
obviously good step, which may even imply a quadratic rate of convergence, is refused due to
the fact that both the objective function value as well as the infeasibility measure are increased
at the new trial point position. Such a case can not be handled by a classical merit function or a
filter approach. Since this scenario is something which is not quite intuitive at first glance, a short
example introduced by Powell [219] shall be presented. Therein, the following simple equality
constrained optimization example is considered:

minimize fz) =2(z§ + 25 — 1) — a4, (3.68a)

zeR2

. t. g(x) =2] + 25 —1=0. (3.68b)

By a look at Figure 3.2a it can be easily seen that the optimal solution point is equal to z* =
(1,0)T and the associated Lagrange multiplier is obtained by \* = 3/2. This fact can be also
checked visually in Figure 3.2b where the associated saddle-point becomes clearly visible. Fur-
thermore, a short calculation reveals that the Hessian V2 __#* at that solution is equal to the
identity matrix I based on the Lagrangian % (z,\) = f(z) — Ag(z), thus the second order
sufficient conditions from Theorem 3.5 hold. Powell [219] suggests now to consider any fea-

sible (non-optimal) point on the circle defined by (3.68b), viz. zt*} = (cos(y), sin(p))T as
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starting point for the calculation. Furthermore, the Lagrange multiplier shall be set to its op-
timal value A*} = X\*. If now the Newton direction is computed, the new trial point z* =
(cos(p) — sin®(ip), sin(p) — sin(p) cos(p))T is obtained. Under consideration of (3.7) it can
be directly shown that the Newton direction for a step length equal to one implies quadratic
convergence since

zt — z* 2sin?(£) 1
H_k _*H2 _ ety 1 (3.69)
|zt — 2> [2]sin($)[]* 2

However, the objective function value as well as the constraint function value rises at the trial
point 2", yielding

f(z™) = sin?(p) — cos(p) > —cos(p) = fH, (3.70)
g(z") = sin’(p) > 0 = g™ (3.71)

Thus, both of the proposed globalization methods would fail and reject the iterate. In the litera-
ture different remedies have been suggested to circumvent this problem, such as:

1. Usage of a merit function which is better suited and does not suffer under the Maratos ef-
fect. One possibility is Fletcher’s augmented Lagrangian function which is a combination
of (3.43) and the Lagrange multiplier function (3.48) for equality constrained problems,
1.e. without the necessity for slacks. See Nocedal and Wright [204] and [53] for more in-
formation. Alternatively, it is also possible to extend the filter method by choosing suitable
filter entries such that the original trust region SQP steps can be applied without the need
for any second order correction. This method is also based on the Lagrange multiplier
function (3.48) and is described in Ulbrich [264].

2. Implementation of a second-order correction step which augments the current search di-
rection and aims for a reduction of the constraint violation. For more information the
reader is referred to the literature on this topic such as Fletcher [93], Nocedal and Wright
[204], Wichter and Biegler [270] as well as to Section 6.4 where the idea of a second order
correction step will be reconsidered in the context of a filter method suitable for contact
problems.

3. Consideration of a non-monotone strategy and allowing a certain increase in the merit
function for a certain number of iterations (see also the discussion in Section 3.1.2). See
for example Chamberlain et al. [45] for a classical introduction.

As already mentioned, the idea of a second-order correction step has been considered in this
thesis and is discussed in Section 6.4. Furthermore, it should be noted that the presented example
might seem some what artificial due to the explicit choice of the Lagrange multiplier equal to
its optimal value at iteration k. In the original work [219] a quasi-Newton method is considered
and the actual Hessian is estimated by the optimal Hessian at the solution, i.e., by the identity
matrix. In this way the point of view changes slightly. However, the observation stays valid also
for a classical Newton approach and similar problems could also be observed during numerical
experiments in the field of contact mechanics (see Section 6.10).
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Finite Deformation Solid Mechanics

In this chapter two mortar-based segment-to-segment contact formulations will be developed
for the frictionless finite deformation case: While the first one is derived by consistent varia-
tion of all active contributions of a scalar-valued potential subject to inequality constraints, thus
resulting in a truly variationally consistent and symmetric formulation, the second approach is
designed in such a way that it is less computationally expensive, but still conserves important
quantities such as linear and angular momentum. Since both formulations are derived side by
side, the introduced simplifications can be specifically analyzed and quantified. Based on a La-
grange multiplier approach the corresponding inequality constraint terms are introduced in two
popular ways: Firstly, in form of a standard Lagrangian formulation and, secondly, via an aug-
mented Lagrangian formulation. Both variational forms as well as both solution procedures will
be consistently linearized and discussed. Finally, the obtained results will be compared to each
other as well as to a well-established, yet slightly inconsistent, mortar-based contact formulation.
It must be noted that the content of this chapter has already been published in Hiermeier et al.
[131] with exception of the discussion of the inherent instability of variationally inconsistent
contact formulations presented in Section 4.7.4.

4.1. Motivation

Contact mechanics is a field of continuing wide interest. This research interest often stems from
problems arising during the numerical simulation of complex real-world applications, where
one source of complexity is the efficient computational treatment of the non-linear contact con-
ditions. Therefore, it is not surprising that many researchers have an engineering background
and several interesting research developments are primarily built up on heuristic observations
and ideas. One outstanding and very successful representative of such a heuristic idea is e.g.
[294], where a start-up procedure for contact problems with large load steps is presented. Even
though interesting results are often given, the underlying theory may lack rigorous mathematical
proofs. At the same time, the mathematical community of constrained optimization also con-
tributes very interesting improvements, but often demonstrates the effectiveness only with a set
of standardized examples (see e.g. Gould and Toint [116], Wachter and Biegler [272]). This is
of course beneficial with regard to a better comparability of different approaches, but the direct
transferability of the results to other disciplines may be limited. Even though it is to say that there
are recently some very promising first attempts which aim in this direction such as Temizer et al.
[261], Youett et al. [291], the observation still raises the question why the two research fields
seem to develop almost independently from each other without much deeper interaction? One
reason for the lack of interdisciplinary exchange might be the fact that it is not always possible to
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quantify the introduced errors in the different discretized contact formulations. This is especially
true when large deformations are considered. Almost all available proofs and theoretical theo-
rems concern the small deformation case (see e.g. Kikuchi and Oden [157], Wohlmuth [279]),
which is on the one hand obvious, since it is far more difficult to find general mathematical re-
sults when there are strong non-linearities involved. On the other hand, however, it might also
be due to certain underlying assumptions of some formulations, which are hidden at first sight.

For example, it is not immediately obvious why most mortar-type contact formulations for
frictionless contact lead to a non-symmetric Jacobian matrix in their consistently linearized
form (e.g., Popp et al. [215, 216]), even though the formulation is usually based on a scalar
valued potential formulation. Another question might be why some formulations lack exact an-
gular momentum conservation even in the quasi-static case (e.g. Popp et al. [215, 216], Puso
and Laursen [222]). Only a deeper insight reveals the neglected terms and certain assumptions
in the published formulations. Therefore, a rigorous and consistent mortar-based contact for-
mulation will be developed in this work, which leads to a symmetric system of equations with
respect to all active set contributions. The constraints will be enforced by Lagrange multipliers,
thus leading to a standard Lagrange saddle-point system as well as an augmented Lagrangian
formulation [1, 65, 212]. Specifically, all variations of the active contributions will be consid-
ered and the related second order derivative terms are given as well. Since the arising terms can
become computationally quite expensive, a second, incomplete formulation is developed simul-
taneously, which leads to a non-symmetric Jacobian, but still fulfills conservation of linear and
angular momentum. Since both formulations are derived side by side, the introduced errors and
simplifications can be quantified, and the final formulations will be compared in terms of ro-
bustness and accuracy. It will also be shown that a completely consistent variational approach
can actually lead to unwanted side effects when the numerical evaluation of interface integrals
is addressed. Finally, a comparison to one exemplary implementation of a well-established and
widely spread mortar-type contact formulation is given by considering the work of Popp et al.
[215, 216, 218]. In summary, the intention of this work is by no means to show that certain
published formulations lead to inaccurate results or lack consistency, but instead the primary
objective is to provide a deeper understanding of the different formulations and their respective
limitations. It is the authors’ firm belief that this will lead to new interdisciplinary progress in
the mentioned fields.

The remainder of this chapter is organized as follows: Section 4.2 gives a summary of the
employed frictionless contact formulation and the general discretized problem statement. Fur-
thermore, the differences between the two constraint enforcement strategies, namely the standard
and the augmented Lagrangian formulation, are discussed in detail in Section 4.3. Section 4.4
puts the focus on the complete and incomplete variational approaches, emphasizes their dif-
ferences and presents the consistent linearization of the derived terms. Section 4.5 is entirely
devoted to mechanical conservation laws: In particular, the conservation of angular momentum
of both discretized variational formulations is proven theoretically. In Section 4.6 the attention is
on the numerical time integration for contact problems and the discussion started in Section 2.4
about the Generalized-o time integration scheme is continued. Next, three representative nu-
merical examples with varying objectives are discussed in Section 4.7. Therein, the previously
derived contact formulations and constraint enforcement strategies are compared to each other as
well as to the already mentioned well-established mortar-based formulation from the literature
Popp et al. [215, 216]. Finally, some conclusions are drawn in Section 4.8.
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4.2. Contact Formulation

This section is meant to give a brief summary of the numerical background of the employed
frictionless contact formulation. For convenience, the presented formulation only considers the
special case of unilateral contact between two elastic bodies undergoing large deformations.
Nevertheless, the presented algorithms are also capable of more complex contact situations,
such as self-contact or contact between multiple bodies. A detailed description of the continuous
frictionless contact formulation can be found in 2.2.2. Therefore, the attention is next directly
drawn to the discretized formulation.

4.2.1. Discretized Contact Kinematics

Before the full discrete contact problem is stated, a finite element discretization of all important
contact quantities shall be introduced. This way is taken to give a better insight into the actual
implementation. Moreover, the number of necessary redefinitions of continuous quantities is
reduced to a minimum. Starting with a very brief summary of the basic ideas of the finite element
method and, right after, it will be applied to the contact problem. For more information, the
interested reader is referred to the corresponding literature (see e.g. Bathe [12], Zienkiewicz and
Taylor [297]) and the introduction in Section 2.3. Throughout this chapter mainly a Lagrange
interpolation for the shape functions will be considered. Consequently, the problem description
is restricted to Lagrange interpolations only, even though a Non-Uniform Rational Basis Spline
(NURBS) discretization would be possible as well (see e.g. De Lorenzis et al. [65], Farah et al.
[82], Hughes et al. [141], Seitz et al. [241]). One reason is that a pure NURBS discretization
does not exhibit some of the typical error sources, since some neglected terms would vanish
naturally, which is not the case for Lagrange shape functions. However, one numerical example
with a NURBS discretization is also given and will be discussed in Section 4.7.3.

The basic idea of the finite element method is that the considered problem is not solved on
the potentially geometrically very complex domain €2, but instead a finite number of degrees of
freedom are defined at N,, discrete points. These points are called nodes and are connected by
N, elements, where each element occupies a closed sub-domain of the entire problem domain
Q(()e) < Qo 1. The disjoint union of all element domains represents the domain estimate for each
body. The approximation error of the solution is supposed to decrease with an increasing number
of elements N, (known as h-convergence). Since the formulation proposed here is restricted to
Lagrange basis polynomials as shape functions, the value of an arbitrary nodal quantity inside an
element e can be computed by interpolating its nodal values. For instance, the current position
z(X [b], t)at X [b] ¢ F([;b] on the contact boundaries is, just in accordance with (2.72), obtained by

z(ELNOR) = NI [bl(e)i — pLb) (X0 +c_l[b]j), Vje{1,... NPy (4.1)

n

where (4.1) takes advantage of the Einstein summation convention. In the final step, the element
dependency has been omitted for the sake of brevity. The index e identifies one of the surface
elements on I, The set of all surface nodes on the contact interfaces shall be split into one set
S={le{l,... ,NE]} | X'e F([;l]} containing all slave nodes, and a second set M containing

all master nodes following an equivalent set definition for body b = 2. The matrices, e.g. g[b](e),
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Figure 4.1.: Visualization of the smooth nodal unit normal given in (4.3) at the node k.

contain in each column the current coordinates of the respective quantity at one node of the
element e. The coordinates {£[P)()F} ke{1,2y denote the surface parametrization of the element e
on body Q) and N7 (¢1PI(©F) . R? — R is one of the nodal Lagrange basis polynomials at node
j of the surface element e. Equivalent to (4.1), the discrete covariant base vectors can be defined
as

I[b](e)j _ —a G _ N[b](e)k,gj Ik — N[b]k,gj AdL 4.2)
The contravariant counterparts as well as the according metrics can be computed by following
the continuous definitions.

The discretization of the contact quantities is based on the mortar method. In contrast to Popp
et al. [218], where first the weak form is derived from the strong form and, in a second step,
Lagrange interpolation of each term is inserted, here, the discretized nodal contact quantities are
defined first and, subsequently, they are directly inserted into the discrete potential. However, the
details concerning the continuous approach can be found again in Section 2.2.2. The attentive
reader will notice that in the case of a Lagrangian functional the difference will be restricted
to the interpretation of the different terms. However, if an augmented Lagrangian formulation
De Lorenzis et al. [65] or a penalty formulation Yang et al. [290] is considered, this approach
will make the consistent introduction of regularization terms much easier. Another advantage is
that all introduced simplifications can be easily identified, especially the possible loss of symme-
try of the evolving system of equations. Lastly, the transition to the mathematical optimization
literature seems more fluent with this choice.

Let us start with the definition of the considered smooth normal field Popp et al. [215], Yang
et al. [290]. At each slave node k € S an averaged nodal unit normal A!* is obtained by

Nadj
e _ A e N ek
- e=1

where nl'1(9* is the outward-pointing unit normal vector following the definitions (2.53) and
(4.2) of the adjacent slave element e evaluated at the slave node k (see Figure 4.1 for a visual-
ization). It is also possible to use weights for the different element normals. Still, the simplest,
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so-called mean weighted equally, variant is used here Gouraud [117]. A comprehensive study of
the different weightings can be found, e.g. in Jin et al. [149], Neto et al. [202]. Through Lagrange
interpolation of the averaged nodal unit normals (4.3), a C' O_continuous normal field is achieved,
Viz.

il = () = NI gl ieS. (4.4)

—_ (2

In general, the interpolation scheme does not maintain the unit length property of the nodal
normal vectors inside the element, and thus an additional normalization will become necessary if
the unit length property of the interpolated normal field needs to be maintained. This interpolated
unit length smooth normal field is denoted by

ﬁ[l] _

ied. (4.5)

all o Nl
E 1

T e

7 =

By inserting (4.1) and (4.5) into (2.55), the discrete normal gap definition is obtained by

on (2, 212y = <ﬁ[1], NI (ER1Eny E[QJ(é)j — NF(elem i[l](e)k>’ (4.6)

where k € S and 7 € M. The element superscript ¢ denotes the slave element index, while the
superscript e represents the index of the master element which has been found by the projection
and search algorithm as described in Yang and Laursen [288]. The function gy : R? — R repre-
sents the discrete form of the geometrical gap evaluated at the slave parameter space coordinates
{€M1},c(1 o) and their corresponding projected parametric coordinates {12/};c(; 5y on the master
side. In the spirit of the mortar method, the nodal averaged weighted gap g of a slave node
1 € S is defined as

~1

o= B where = [[ N gyda a4 [N @)
[1] [1]

Ye,n Ye,h

where da is an infinitesimal interface area segment on the slave side. The quantity gy, is called the
weighted gap of the slave node and A’ is its tributary area. For more details, especially related
to the tributary area, the interested reader is kindly referred to De Lorenzis et al. [65]. A more
mathematical explanation for the necessity of this additional scaling can be found in Hiieber
[138, Remark 2.5]: The additional scaling is especially important when the standard Lagrangian
shape functions are considered for the discrete test function space of the Lagrange multipliers,
instead of the bi-orthogonal shape functions as e.g. applied by [87, 138, 218, 279].

4.2.2. Problem Statement

In this section, the problem statement shall be reviewed from a mathematical point of view as an
optimization problem subject to inequality constraints. The already discretized problem can be
stated in a similar way as (3.31) by
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mﬂign U(z) = gy 1] @[1]) + g2 @[2])’ (4.8a)
zeR™
subjectto g (z) =0, (4.8b)

where the objective function % (z) : R™ — R contains the sum of the elastic potentials of
the considered elastic bodies. For the sake of brevity, the abbreviation z = ((z[')7, (z21)")7,
introduced in (4.8a), is used also in connection with all contact related terms, where it becomes
z = ((zM)7, (@P)T)T such that g (z) € R™ with m < n represents the global vector of
averaged weighted normal gap constraints. Note that n denotes the number of displacement
degrees of freedom and is equal to 3 - N, while m is equal to the cardinality of the slave set |S]|.
Moreover, any additional labeling of global quantities is intentionally omitted, since the author
is convinced that the meaning can easily be derived from the context. Furthermore, it is assumed
for now that the objective function as well as the constraint equations are sufficiently smooth.

In the sequel, (z*, A}) € R™ x R™ will indicate a KKT pair of problem (4.8), i.e. a pair of
primal and dual variables, which satisfies the following conditions

VaZ(@ M) =0, g @) =0, A0, Qb g @ha=0,  (49)

where Ay € R™ is the vector of nodal Lagrange multiplier values and the notation {u,v), =

gTé v denotes an inner product of two vectors scaled by the quadratic diagonal matrix A contain-
ing the tributary area values. The Lagrangian for inequality constraints .2’ (z, Ay) : R" x R™ —
R is defined as

L2, M) = U (z) — € (2, M)
= U (x) — QAn, 9y (@) —s(z, A withs'(z,Ay) = 0, (4.10)

where the components of the vector s(z, Ay) € R follow as

(4.11)

c

. max {0, gk (z)} ifen =0,
s'(z, Ay) = Ny A )
max {0, gk (z) — —g} otherwise,

and cy € R with ey > 0 is a regularization parameter. This notation follows Gill et al. [107],
Rockafellar [229] and is closely related to the comprehensive introduction in 3.2. In conjunction
with the inherent active-set decision, a steady transition between the active and the inactive
branch of the Lagrangian function becomes possible (see Figures 2.3 and 2.4). Again, A denotes
the set of active constraints, i.e., the index set of contact constraints with positive augmented
Lagrangian multipliers, viz.

A={ie{l,...,m} |\ —engk = 0}. (4.12)
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and further, Z = {1,...,m}\A with Z n A = ¥ indicates the set of the remaining inactive
constraints. This is the discrete contact variant of (3.36). Alternatively, it is also possible to
formulate an augmented Lagrangian rather than a standard Lagrangian. Therefore, the discrete
form of (2.61) together with (2.59) results in

A N N CN | ~ N
Lon(22x.8) = U (2) = O, Gy (2) = D + 3 (2) — 3] (4.13)

where s takes on the role of a formally still independent variable. This becomes more important
in Chapter 6.

Either way, if the Mangasarian-Fromowitz constraint qualifications are fulfilled, the KKT con-
ditions (4.9) are the first order optimality conditions for the problem (4.8), see also Nocedal and
Wright [204] and Section 3.2 for more details. The mentioned qualifications are typical assump-
tions for many optimization algorithms. Important to note is that these qualifications only need
to be fulfilled at the solution (z*, \Y). If the gradients of the constraints become (nearly) lin-
ear dependent during the solution procedure, a fall-back solving strategy (see e.g. Wichter and
Biegler [272]) can take care. For more information on the mathematical background the reader
is referred to Section 3.2 and the references therein.

4.3. Non-Linear and Linearized Systems of Equations

In this section the optimality conditions given in (4.9) will be discussed in more detail with
the focus on the Lagrangian formulation. Since the augmented Lagrangian formulation, first
introduced in the context of contact problems by Alart and Curnier [1], is also quite often in
use, the necessary augmentation steps will be briefly given afterwards in Section 4.3.2. Possible
advantages and drawbacks of the two formulations during the non-linear solution procedure will
be discussed in Section 4.7.

4.3.1. Lagrangian Formulation

For the computation of the first order optimality conditions (4.9), the directional derivative of
the Lagrangian (4.10) become necessary, which follows as

D.Z((z, Ay): (6d,0Ay)) =D% (z:6d) — DE((z, Ax): (5d, GAx)), (4.14a)
where
D% (; 6d) Z<v 12 (), 5al®Ty, (4.14b)
DE (2, 2, Ay); (6, 6™, 6Ay)) = <Vdm<5(33 Ax), 6dMy
+ (Vg1 6 (2" )\N) 6dy
+ (V) (g[l L2 A0), A (4.14¢)
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Equation (4.14b) describes the virtual work contributions of the two bodies QL b € {1,2} in
their already discretized form. These are assumed to be known at this point. However, a detailed
derivation can be found e.g. in Bathe [12], Holzapfel [136] as well as in Section 2.1.4. Here,
the focus is solely put on the contact contributions summarized in the directional derivative
of the contact potential (4.14c), therefore representing the contact virtual work generated by
the contact forces acting on the contact interfaces between the slave and master bodies. Under
renewed consideration of the abbreviation z = ((z™)”, (z[2)7)7, it can be stated

VclgN( ) )‘N - [gN] dJ [)‘N] =2 Vie 'Av

Sl ) = . 4.15
Vi€ (2, Ay) {CNW@ Lo = L ] AW '/ 20 VielZ, (4.15)

where the respective set affiliation of the vector components is indicated by the corresponding
superscript. Note that the neglected gradient calculation of the tributary diagonal matrix A% (z[!)
is an usual assumption, since otherwise the inactive contact forces would influence the balance
of linear momentum during the non-linear solution scheme, which is clearly non-physical. How-
ever, at the solution point, [A\}]" = 0 Vi € Z holds true and the contributions would vanish
anyway.

Remark 4.1. The operator V(-) is introduced to distinguish between two different variational
approaches. While the first one is based on the rigorous variation of the underlying potential, thus
leading to a fully symmetric linearized system of equations with respect to all active quantities,
the second approach will introduce some simplifications. These simplifications cause on the
one hand slightly different results, but also a non-symmetric linearized system. The introduced
operator is supposed to emphasize the influence of these two options. Anyway, in the first case
(i.e. consistent variation), it can be read as the well-known gradient operator. The details will be
discussed in Section 4.4.1.

The gradient with respect to the Lagrange multipliers follows as

gy(z) = 63 [an]' e = [an]'e; Vie A,

i . 4.16
ZAT X = 20, AT [Mx] € = ZAT e, Viel (4.16)

7=

VAN%(L An) = {

Under consideration of the fact that the virtual quantities dd and J\y are arbitrary, the first
order optimality conditions can be split into displacement related equations, representing the
contact virtual work principle, and equations for the Lagrange multipliers, which incorporate the
constraint equations. The set of non-linear equations is given by

D.Z((zM £ Ax U 5™ o)) =
5c_l[1] 1]% ) \V/ 1]9?(@1];@[2]) Aié
5d? 2Pl) — Ve g (M, 2P0) AS
d I\ 5L 4N |
A [ 702 - @
% g (et 2)
2% R4 N

CN —
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4.3. Non-Linear and Linearized Systems of Equations

The unknowns in the set of non-linear equations (4.17) are all nodal values (gl[l],dm,AN). Usu-
ally, these equations are solved by applying a variant of Newton’s method, thus incorporating
some kind of information about the second order derivatives. For this purpose, a consistent lin-
earization of the involved terms at the current iterate (c_i[l] ,d?, Ax)| ¢k has to be computed, where
k = 1,2, ... denotes the current Newton iteration index and is placed into curly braces to dis-
tinguish it more easily from the other indices. The linearized form of (4.17) is formally obtained
by

0 =D2Z((z, Ay); (4d, 5AN))|{I<} + ADL((z, Ay); (0d, 0Ay)); (Ad, AAN)H{k} , (4182

where the linearized contact term follows as

ADE (", 2, 20); (007, 84, 50)): (Ad™, AL, AM))|

sdl! T AdM
5412 Ad?
B Tl I T CTIN d

5A£ :%(E y L )_N) (k} AA? ’

N AN/ iy

(Ve (Vg X (Ve (Vi KT Vi 0
i || T (Vamgd X0)T (Ve (Vg XNT Vg 0 (4.18b)
=k (V3" (Vaag0)" 0 0

(7 (ATAL)) 0 0 4

CN

S
Z

{k}

Equivalent to (4.15), the variation of the diagonal tributary area matrix A% with respect to the dis-
placement degrees of freedom is omitted during the derivation of the set of non-linear equations.
A direct consequence of this simplification is that the inactive solution part can be condensed
from the evolving system of equations (4.18) by a simple post-processing step, i.e.

— {aF + (A7) (T (A @M)a%) T ad | (4.19)
Since the matrix A is diagonal, the inverse can easily be formed. It is also quite common in the
literature [65] to omit the linearization of the tributary area matrix in the linear system of equa-
tions (4.18). In this case, the inactive nodal Lagrange multipliers would be set to zero within one
full Newton step. However, it has been noticed that the second term on the right hand side of
(4.19) can improve the robustness of the applied non-linear solution method, since it delays the
decrease of the absolute value of the inactive nodal Lagrange multipliers. In numerical examples
it could be observed that this delay can avoid unnecessary active set changes and therefore im-
proves the overall performance of the algorithm. Furthermore, the gradient computation is cheap,
since it depends only on variables completely defined on the slave side. Due to these beneficial
features, this term is kept in the system of equations. Finally, it is to mention that the introduced
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non-symmetry has no effect whatsoever on iterative linear solution strategies, which expect a
symmetric linear system of equations, since the non-symmetry can be easily removed from the
system under consideration of (4.19).

4.3.2. Augmented Formulation

As mentioned by (4.13), another possibility is to derive the system of equations from the aug-
mented Lagrangian potential (4.13) including the regularization term resulting in equations very
similar to the derivations in Alart and Curnier [1], De Lorenzis et al. [65], Pietrzak and Curnier
[212]. In the following, the corresponding equations will be derived. First of all, the virtual work
expression in (4.14a) stays formally unchanged except for the fact that the Lagrangian potential
Z is replaced by its augmented counterpart %, and the contact potential ¢ by the augmented
contact potential 4,,. Next, the gradient with respect to the displacements of the augmented
contact potential is considered, i.e.

vat — 10T 0 Dl = exlond gl + 34 sl [l e vie A
) A" i D i@ 20 VieT,

where the contributions are again split into their active and inactive part. As before, the depen-
dency on the displacements of the tributary area in the inactive part is ignored and the tilde accent
over the displacement derivatives again represents the @() operator (see Remark 4.1).

The gradient with respect to the Lagrange multipliers stays almost untouched and only the
inactive part exhibits a small variation in terms of the appearing scaling factor. But since the
inactive displacement dependency is ignored in (4.20), the influence of the changed factor on the
linear system of equations will vanish. Now, the augmented set of non-linear equations can be
stated as

DD%N<<£[1]7£[2],AN)7 (5C_l[1], 5@[1]7 6AN)) _ D.ﬁ/ﬂ((&[l],&[ﬂ,AN)? ((SC_i[lL (5d[1], 5AN)>
T ~
S %Nvdm@N(x[l]@[z]), QA@[l]@[?]»éA
s5d2! B v $[1]73§[2] : ~A z, 72
N _A 2 Vdl ]<9N<— ) g (— )>7 ; O, (421)
oM g
5N A" A%

where the directional derivative of the Lagrangian potential defined in (4.17) is included as well.
It can easily be seen that the influence of the regularization term vanishes at the solution. The
inactive Lagrange multipliers are forced to zero, while the active weighted gap values and, con-
sequently, the active averaged weighted gap values are equal to zero at the KKT pair fulfilling
(4.9). Hence, the effect on the non-linear solution strategy is restricted to the pre-asymptotic
solution path and does not change the final result.

The unknowns in the regularized set of non-linear equations are the same as in the standard
Lagrangian case. Again, the intention is to use a consistently linearized Newton scheme to solve
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(4.21). The augmented tangential stiffness matrix of the contact potential follows from a super-
position of the Lagrangian contributions and the augmented contributions, i.e.

K | = g®_ W 4.22
—ben k _(6/ _%/CN7 ( )
with the augmentation matrix
OV (VG G0N 5 (Ve (Tynash g™ 0 0
- (Vg (Vdm@ﬁ’ Q@y))T %N(Vd[z](vdm@ﬁ, g£>éA))T 0 0
e 0 0 0 0
L (Vi (A7) 0 0 4"

First, it is to note that the introduced condensation of the inactive part (4.19) stays unchanged.
Secondly, the involved second order derivatives of the scaled inner product of two averaged
weighted gap vectors stand out and can be expressed by quantities also occurring in the standard
approach. Therefore, the already implicitly used first order derivative of the averaged weighted
gap is reconsidered, viz.

VdgN = [QN]i,dj €; ®§j = [A_l]ii {[S}N]i7dj - Aii,dj [EIN]Z} €; ®Qj- (4.23)

Keeping this in mind, the second order derivative of the scaled inner product results in

¢ = e A ~ i . - i N
7NV¢[V¢<QN, QN>é] = CN{[QN] i d¥ [9x]i + [9n] i [9x]i 0
1

AT L [onli [anli = A laxliar [9n)i} €@ @b, (4.24)

2

One final note concerning the regularization parameter: In contrast to the standard Lagrangian
scheme, cy has a direct influence on the augmented Lagrangian solution procedure. In the stan-
dard Lagrangian case, cy only has a minor effect, since the only row of the linear system (4.18)
that contains the regularization parameter is the last row. This row, however, corresponds to the
inactive Lagrange multipliers, where the parameter will cancel out as (4.19) shows. Thus, the
only remaining impact is during the active set decision. In contrast, the augmented system of
equations is directly influenced in form of the scaled regularization term. In summary, it can be
concluded that a change of ¢y should have a more remarkable impact on the non-linear solver
performance.

Remark 4.2. Finally, the opportunity is taken to motivate the introduced, but maybe unfamiliar,
averaged weighted gap notation in combination with the tributary area once again. First of all,
the active part of the discretized Lagrangian given in (4.10) coincides completely with the result
of a traditional successive variation and discretization approach. The element-wise interpolated
Lagrange multiplier \{© (z) = N@i(2)[ALY9)]; evolves naturally from the formulation even
though a pure node-based one in combination with an averaged weighted gap and a tributary

93



4. Mortar-Based Contact Methods for Finite Deformation Solid Mechanics

area has been inserted. The main reasons for the used definition can be found in the active set
decision, which develops more fluently from the mathematical formulation (see Hiermeier et al.
[131]). Furthermore, the extension to an augmented Lagrangian formulation is also much easier
to achieve, since the formal lumping via the tributary area acts beneficially here [138]. Also, with
regard to more sophisticated non-linear solution strategies, the approach presented here is much
more accessible as e.g. shown by Temizer et al. [261]. Since mainly linearly interpolated finite
elements will be considered, the positivity property remains. If a higher order interpolation is
necessary, the Lagrange interpolation can be replaced by a NURBS interpolation as proposed by
De Lorenzis et al. [65], Temizer et al. [261], or, alternatively, a bi-orthogonal lumping approach
in combination with the necessary adaptions for higher order interpolation schemes has to be
taken into account Popp et al. [218].

Concerning the convergence properties, the formulation shown here is supposed to behave
exactly as the formulations summarized in Wohlmuth [279]. The only difference is the conver-
gence to a different solution in the case of strong geometrical non-linearities due to the more
consistent formulation.

4.4. Variation and Linearization of Discretized Contact
Kinematics

This section is meant to provide a brief summary of all involved contact variations and lin-
earizations. The focus is on the differences between the complete and incomplete variational
approaches as already mentioned in Remark 4.1. It is important to understand what the underly-
ing assumptions and simplifications are and what the direct consequences will be.

Remark 4.3. The numerical integration is performed in the parameter space of each slave el-
ement using the well-known Gaussian quadrature. In general, this will introduce an integration
error. For a comparison between element-based and segment-based integration in the context of
mortar methods in contact mechanics the interested reader is referred to Farah et al. [83]. Since
the influence of the introduced integration error on the full variational approach is remarkable,
this topic will be discussed in Section 4.7.2.

The following notation is introduced for the first and second order total directional derivatives,
for example in v and w direction:

D,(-) = (Va(-), v, Dy (Dy(+)) = (v, [VZ4(-)] w). (4.25)

4.4.1. Variation

In (4.17), the variation of the normal gap vector occurs, which can be expressed as the consistent
directional derivative of the weighted gap vector
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e
Dig( A{ f f ) Dy, (g (21, g2@)) 51116 ettt (4.26a)
7[1[](81)1]
N f f NI g (200 421@)) D (116 geltlen) (4.26b)

A2,

Note that the integration is executed in the parameter space of each slave interface element in
its current configuration, which is supposed to be indicated by the given integration bounds.
Afterwards, the element contributions are assembled over all slave elements M to form the
global directional derivative. The first summand (4.26a) contains the directional derivative of
the discrete gap (4.6). To improve the readability, the element superscript will be omitted in the
following and the derivative yields

Dsu(gn (2, 21)) = (Ds, (M), 22 — 21y + (A D, (212 — Dy (). (4.27)

Here, the directional derivative of the interpolated smooth normal field is obtained by

v [1] 1
SMY n _ Al oy A0y Ll o [1]i
Dy (") = Doy <| |> TRl (L—-a"@a)  NUDau ("),  (4.28)

where (4.3) and (4.4) have been inserted. For more details, the reader is referred to Popp et al.
[215], Yang et al. [290]. Since the distance vector between a slave point and its projected coun-
terpart on the master side is parallel to the smooth normal vector, the first summand in (4.27)
vanishes. At this point it must be emphasized, however, that this will only be strictly true if
the (more costly) smooth unit normal (4.5) is considered, while for the projection algorithm the
smooth non-unit normal (4.4) would be sufficient. If the second order derivative of (4.5) has to
be evaluated as well, this can lead to a significant performance loss based on the actual imple-
mentation. The second summand of (4.27) contains the variation of the slave point 21 and its
projected counterpart z1?). Yielding

Oxlbli ] ,
D (z!!) = gu su” + 7" Dy, (€)= sul® 4 7. D, (11, (4.29)

where the last term is equal to zero for the slave side contribution. However, for the master side,
the parametric coordinates are deformation dependent and the projection (2.54) has to be taken
into account. This leads to a local system of equations, which has to be solved to obtain the
directional derivatives. For more details the interested reader is referred to Appendix A.1.

The second term (4 26b) depends on the directional derivative of the determinant of the slave
element Jacobian jI© := det(J(¢M©7)) : R? — R. This and all remaining variations can
be also found in the already mentioned Appendix A.l. Thus, all necessary terms have been
computed and the consistent variation of the weighted normal gap is fully defined.
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4.4.2. Incomplete Variational Approach

If the consistent first order directional derivative of the weighted gap vector is considered in
the set of non-linear equations (4.17), the necessary second order derivatives in (4.18) can be-
come computationally expensive (see Section 4.4.3). Due to this fact, a second, so-called incom-
plete, but computationally much cheaper variational approach is introduced with respect to the
weighted gap in (4.26). By skipping the variation of the element Jacobian determinant and the
variation of the master parameter space coordinate, the following expression is obtained:

D5d(§N) _ eiAl f Ni(f[l](e)j) ]j(m(gl(\?)) j[l](e) dg[l](e)j’ (4.30)

where f)gg(gl(\f )) = <@[1], sul? — sul'y holds. In doing so, the derived linear system of equations
(4.18) will become non-symmetric (see also Remark 4.1). For a short explanation and interpre-
tation of the used assumptions leading to (4.30), two major simplifications of the variation have
to be considered. The first one is the variation of the Jacobian determinant. By consideration of
(4.26b), it can be argued that the influence of this term will vanish at the solution point, since it is
demanded that the weighted gap g, (z*) is equal to zero and therefore gx(z*) is equal to zero as
well, at least in a weak sense. The second simplification concerns the variation of the projected
parametric master coordinates. With respect to the correct variational form defined in (4.27) and
by insertion of (4.29), it can be seen that the cumbersome directional derivatives are pointing in
the tangential directions of the active master contact interface denoted by the corresponding con-
vective base vectors. Now, the assumption is used that in the converged state and under the pre-
requisite that the slave and master sides are discretized sufficiently fine, (Al (2*), I[Q]i (z*)) ~ 0,
Vi € {1,2} holds true. But anyhow, this is only strictly true if a non-smooth closest point pro-
jection is used (see e.g. Laursen [170]) or if the special case of infinitesimal sliding occurs Puso
and Laursen [222]. In any other case it remains an approximation, which, however, becomes
better and better with an increasing number of elements, such that the spatial solutions of both
cases are supposed to asymptotically coincide. Since the influence of the neglected terms on the
discrete solution cannot be fully predicted, both approaches will be followed. To the best of the
author’s knowledge, this is together with [131] the first comprehensive comparison of numeri-
cal results for both approaches. The comparison can be found within Section 4.7. Furthermore,
an additional example has been added in Section 4.7.4 revealing a possible instability which is
clearly based on the neglected variation of the projected parametric master coordinate.

4.4.3. Linearization
In the following, the directional derivatives of the set of non-linear equations (4.17) are going

to be derived. Starting with the linearization of the product of the tributary area matrix and the
nodal inactive Lagrange multiplier vector, which is defined as
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Daa(A(zM)AR) = (Vi AT (@)%, Ad)
£0)

- Apger ” N, (€€ Dy, (1)) delile) Vies, (4.31)

where again the directional derivative of the already known slave element Jacobian determinant
comes into play. Next, the consistent mixed second order directional derivative of the weighted
gap vector is obtained by repeated application of the chain rule

Bl
{ [ AEip na(Dsa(6€ (@M, 221))) j1) el (4.32a)

( . 1
] N Dy (60 1, 2)) Dy (1) IO 4320)

[ V0O Doy (o, 22) Dy (10) agOr 320

+ f N e 91(\16) @[1],@[2]) DA@(D@U[I](E))) dg[l](e)j}. (4.324d)
JJ
'Yc[,l[]iel),l]

The element affiliation is omitted and the consistent second order directional derivative of the
variation of the discrete gap is derived by

Dy (Dsy (gn (2, 2P1))) = <DAu(D5u(ﬁ[1] )’2[2] - $[1]>

)
+ <ﬂ DAu<D6 (Z[Q )) E(Déﬂ<£[1]))>7 (4.33)

where the first order directional derivative of the interpolated smooth normal is given in (4.28),
while the mixed second order directional derivative is given by

n 1 n - n
Dau(Dau(2')) = ﬁT]”{ — (@Y, Day (")) D, ()
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The mixed second order directional derivative of the variation of an interface point, defined in
(4.29), follows as

Dau(Dsu (@) = Dau(6u”) + Day (2) D (619 + 7. DA, (D5 (€1),  (4.35)
(0]
D au(6ul®) (quu ) Dag (€10, (4.36)

The entire derivative (4.35) is equal to zero for the slave side. However, for a point on the master
body the terms do not vanish. The last term can be derived from the linearized version of the
variation of the projection, which involves the second order derivative of the smooth normal
field (4.4). Under consideration of all zero-terms on the slave side, (4.33) can be simplified and

DAM(D5Q(9N)) = <DA2(D5H(ﬁ[1]))7i[Q] - £[1]> + <D5g(@[1])> DAM<E[2]> - AQ[1]>
+ <DAy(ﬁ[1])> Dﬁg(im) - 52[1]> + <ﬁ[1]: DA@(D@(E[Q])» (4-37)

is obtained. The remaining linearized variation of the element Jacobian in (4.32d), as well as
all other relations, such as the detailed derivation of the linearized variation of the projection,
including the smooth normal field, can be found in Appendix A.2.

4.4.4. Linearization of the Incomplete Variational Approach

Finally, the consistently linearized version of the simplified variational approach yields

1]|
DAd(Dad Iz 1{ ff NI D L, (Dsu (95 ©))) 1) qelie)

1](5)
~1,1]

U NI Dy, () Dag (1) del©i}, (4.38)

1](6)
—1,1]

where the directional derivative of the incomplete variation of the normal gap follows as

[1]))@[2] _ x[1]> 4 <D5u(”[1]), DAQ(EP]) _ Au[1]>

+<D;E@ﬁ1 oul? — sulty + (Al D, (67?)). (4.39)

The linearized smooth normal field is defined in (4.28), while the derivative of the variation of
the master point is given in (4.36).

4.5. Conservation Laws

In this section, it will be shown that the complete as well as the incomplete approach both ful-
fill the conservation of angular momentum with respect to the semi-discrete system, i.e. only
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the spatially discretized system will be considered and any side-effects of an underlying time
integration scheme are excluded for this discussion. The conservation of linear and angular mo-
mentum of the semi-discrete system provides a basis for the consistency proof of the employed
finite element discretization scheme. In detail, all contact contributions to the force balance of
the non-linear set of equations given in (4.17) and (4.21) will be investigated: On the one hand,
there is the Lagrange multiplier term and on the other hand the regularization term.

In the following, it will be firstly demonstrated that it is easily possible to prove conservation
of linear momentum for both formulations and all terms, subsequently, the focus is turned to the
conservation of angular momentum. The reader is also kindly referred to the literature on this
topic (e.g. Laursen [170], Puso and Laursen [222]).

4.5.1. Linear Momentum

As proposed by Puso and Laursen [222], conservation of linear momentum can be shown by
inserting a constant discrete vector w # 0 into (4.17) and (4.21) for all nodal displacement
weighting coefficients, i.e. 6d°F, Vi e {1,...,n}, b € {1,2} is replaced by the vector w, such
that

(W, Vo) =, [n] gy AW — exlin]ib &) + T, A7 3 [an]: [ax]ied) = 0, (4.40)

where the definition of (4.20) is inserted. The proof of the linear momentum conservation begins
under consideration of the second inner product in (4.40). For this term, it is sufficient to consider
only one arbitrary slave element. Thus, the demand

([gf\?\]z)? fj N[l]i(f[l]j) <ﬂ[l] (g[l]jLD&(ﬁ[l] (g[l]j)» dg[l]j =0 (4.41)
—1,1]

il
can be formulated. Now, solely the inner product of the directional derivative of the non-unit
element normal and the unit element normal are taken into account and (A.6) is inserted. This
yields

X T
(b, Dﬂ(ﬁm)) _ <|—[1]1 —[1]2” ’ D&(z[lll) X 1[1]2 + 1[1]l x D£(1[1]2)> =0 (4.42)
T XT 7y
since the following holds
Dy () = N, = SN =0, Vw € R?, (4.43)
]

where the partition of unity is used such that )}, V [ e =0 is true for each element.
Next, the first term in (4.40) is considered leading to
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i J J NULAM, D (2 - gy 1 qeltl

[1](e)
Ye,[-1,1]

N Jf NG 221 _ gy p 00y dg[l]j} — 0, (4.44)

1\ —= =

[1)(e)
Ye,[-1.1]

where the abbreviation [Ax]* = ([Ax]? — ex[gn]?) is introduced and, further, the second term
in (4.44) vanishes following the same idea as above. Now, the attention is drawn to the first
summand in (4.44). Inserting (4.27) and (4.29), the term yields

Dwl{ U NLAM, Nk — Nty 10 el

(6)

HN

[1](5)
—1,1]

21 D, (€2ryy i1 aglli} — o, (4.45)

I\w

where the first term is equal to zero since the partition of unity holds for each element resulting
in

NB b — Nt = (2 N =N ) w=(1-Nw=0  YweR’ (446
k l

Concerning the second term in (4.45), the reformulation

f[Q]Dw(émi) =f[2],[L;1]ij <N[1]lwlj _ N[Q]kwkj + a, D,y (ﬁ[ﬂ))

1 = 2

[L:']7D, (M), (4.47)

—7P (L1 <(1 —1) w’ + @Dy (ﬁ[”)> = a, 7
is possible, where again the partition of unity for the first part comes into play. Finally, it is
shown that the directional derivative of the non-unit smooth normal field will become zero, if a

constant direction w is considered for all nodes. Indeed, this is the case since

v [1]y _ arl1] 1 v 1]k o »[1]k
Dy(ﬂ[ ]) k Hﬁ[l]kH (I Q[ ] ®_[ ] )
le:dj
3 L (1= gl g ey, (a1 (4.48)
e=1 Hﬁ[l (E)H N n

and
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Dw(ﬁ[l]) :Dy(l[l]l) . I[1]2 + I[1]1 X Dw(l[1]2)
=Y N x 2, 2SI =0 M, 4+ 2 <0 =0 (4.49)

hold true. Hence, the conservation of the linear momentum is satisfied.

4.5.2. Angular Momentum

To prove the conservation of angular momentum, w x 2?7 is inserted into &_Z[b]i, Vie{l,...,Np},
b € {1, 2}. In summary, the former demand (4.40) slightly changes to

wx o, (o] A = exlinli} ) + Tw x 2, A" 5 [n]; o]y = 0. 450)

The discussion shall begin with the gradient of the tributary area as part of the regularization
term. Under consideration of the Jacobian identity

—w x Al — 7 s (w x M) — (w x M) x M (4.51)

Dy (A1) =(w x 7'[1]1) X 7[1]2 + 7'[1]1 X (w X 7-[1]2) =w x A, (4.52)

1 1
where D, .+ (/")) = NI ],ag[ui(w xzh) = wx 1
directional derivative of the Jacobian results in

, has been used. Inserting (4.52) into the

(M, Dy (M) = (M, w x a1y = 0, (4.53)

since the unit slave element normal and the non-unit slave element normal point into the same
direction and therefore the enclosed volume of the triple product is zero. Looking at the first
term in (4.50) reveals that the angular momentum check for (4.26b), as the part of the weighted
gap variation concerning the variation of the slave Jacobian determinant, vanishes for the same
reason. Only the directional derivative of the discrete gap remains and can be expressed as

)\N { fj N [] ( % ik) . N[l]z@ % £1)> j[l] df[lh

[1] 8)

J f NM@M 23 p @y jaghliy = o, (4.54)

(6’)
—1,1]
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4. Mortar-Based Contact Methods for Finite Deformation Solid Mechanics

where again the abbreviation [Ax]* = ([Ax]’ — ex[§x]?) is used. Due to the fact that this must
hold for all constant w # 0, the demand (a, w x by = 0 for two given vectors a, b € R becomes
equivalent to the alternative demand a x b = 0, i.e. the two vectors must be parallel. Following
this idea,

[S\N]Z J N[l]i [@[1] % (N[Z]kik - N[l]lgl)] j[ll dﬁ[l]j =0, (4.55)
758551),1]

is obtained from the first summand, where (4.55) vanishes since the vectors ﬁ[l] and z1?! — g1

are collinear at each evaluation point as a result of the employed projection rule (2.54). Further,

the reformulated inner product of the second summand in (4.54) leads to

(@M, 72Dy, (E27)) =

{ AW, 72y Pl

det
- <ﬁ 1 7i 2> <i 1 X El tﬁxz>} = 07 (456)

where the identities of the first and second row of the £_1 e R3*3 matrix have been inserted

(see (A.10)). For the proof, a closer look at the introduced residual expression of the fulfilled
projection becomes necessary following as

= w x (2 — 2% + &, Dyun (M), (4.57)

I

where the directional derivative of the interpolated smooth non-unit normal field is given by

1

v [1]y _ arl1] w1k o > [1]k
Dwxg(ﬂ[ ]) k Hﬁ[l]kH (L ﬂ[ ] ®_[ ] )
NE,.
adj 1
= (] — pllle [1](e) 5 [1](e)
2, jamey L= @D ) 59

under consideration of (4.52). In the next considered derivation, the abbreviation v = T [2]2. X ﬁ[l],

fori = {1, 2} is used. Again, the fact comes into play that (4.56) has to hold for all vectors w # 0,
such that it can be written as

adJ
v x (2 =z + a0 ’“H ™, { o e’“mqﬁ@q}gr =0, (459
e=1

where £”,,  denotes the Levi-Civita symbol. The matrix 7" is the node-wise orthographic pro-
jection matrix onto the smooth tangential plain
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T = (69 — Rk ¢ @, (4.60)
while z(e) is the element-wise orthographic projection matrix onto the tangential plain of each
adjacent element e € {1, ..., N’gdj} evaluated at the current node £, i.e.

T = (67 — pME plET) ¢ @ e (4.61)

To prove (4.59), first, the following identity has to be considered

Nk

adj adl
511k 1 elm r o m o1 e
Ex - Z { Hﬁ[l](e) H T( ! mq } &) ® €, = Z {T el n( )q} € ®§'r
e=1 -
Nagj 0 ﬁ[ ]k3 k2
=, Z O xe)@e = als 0 —plk ], (4.62)
e=11i=1 —_plk2 1]k 0

where W * denotes the so-called skew- symmetric cross-product matrix [A1*], of each ele-
ment node k. Inserting (4.62) into the second part of (4.59) yields

v

SEPIRRY ’fn THIVI e, = au W e, = ay(wx i), 4.63)

r

v [1 . o . . . .
where l[x] denotes the cross-product matrix [ﬂ[l]] « - Finally, under consideration of the distance

relation @[1] — 2[2]) = —@Xﬁ[l] that follows from the satisfied projection rule (2.54), the left hand
side of (4.59) vanishes for all vectors v € R®. Hence, the conservation of angular momentum is
fulfilled for all involved terms.

4.5.3. Final Remarks

Towards the end of this section, it is highly emphasized that the conservation of both, linear
and angular momentum, is not automatically true for all contact formulations. Especially for the
case of mortar-based methods, the fulfillment is strongly coupled to the way how the normal gap
definition is integrated into the force balance equations. But at the same time, it is also not nec-
essarily true that all variations have to be considered to achieve full conservation properties for
the semi-discrete system. The incomplete approach provides full conservation, while it neglects
parts of the full variation. Thus, even the approach denoted here as incomplete can actually be
considered as being more consistent for large deformations than many well-established mortar-
based approaches in the literature (e.g. Popp et al. [215, 216], Puso and Laursen [222], Yang
and Laursen [288], Yang et al. [290]), which use similar simplifications, but additionally lack
the conservation of angular momentum as discussed in Puso and Laursen [222]. In all cases, the
conservation of angular momentum can become troublesome, if the fully discrete system, i.e.,
discretized in space and time, is considered. For more details the reader is kindly referred to the
literature on energy-momentum conserving time integrators, e.g. Hesch and Betsch [129, 130],
as well as to the discussion about numerical time integration following in the next Section 4.6.
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4. Mortar-Based Contact Methods for Finite Deformation Solid Mechanics

4.6. Numerical Time Integration

Next, the attention is on the necessary extensions for the treatment of dynamic structural con-
tact problems under consideration of the Generalized-« time integration scheme. Other schemes
are not considered. The discussion starts where Section 2.4 has ended. By adding the contact
contributions, the dynamic balance equations (2.85) become

Tego = Mal"t7om) 4 Colntized 4y, gy @+ o) (4.642)
+ Vd%xt(d{n+l_af}> . VdgN(C_i{n—H_af})(AI{\jn-H_af} gl{\ln+1 af}) (464b)

This is the most general version which also considers the regularization term of the augmented
Lagrangian formulation. As already mentioned in Section 2.4, there exist at least two possibil-
ities to evaluate the different terms at the respective mid-time points ¢,,41_,, and ¢,+1_,,,. The
first one is the so-called implicit mid-point rule, which asks for the evaluation of the different
terms at these time points. The second one uses a trapezoidal rule to approximate the corre-
sponding quantities. Throughout this thesis only the second variant is followed, thus, (4.64a) can
be rewritten as

Tego MM [(1 = oi)a™ M + o™ ] (4.652)
+ (1 =) VaZ | yorry + e Val | iy (4.65b)
+ (1= o) VaPext| gy + ot VaPext| gon (4.65¢)

— (

1 —ar) Vg, o AT — g™ ) — 0 Vg, . AL~ engl™). @65d)

This is the implemented residual which is also consistently linearized. Consequently, the solution
is reached as soon as ., = 0 holds and the remaining KKT-conditions (4.9) are fulfilled as well.
Now, while the choice of the contact contributions in (4.65) seems completely reasonable, the
question may rise how to formulate the constraint conditions. In a continuous, time dependent
set-up the Hertz-Signorini-Moreau conditions proposed in (2.56) must be extended by

pr(z(X, 1) gx(z(X, 1)) = 0, (4.66)

where this newly added condition is the so-called persistency condition, which demands for non-
zero contact pressure only during persistent contact. This equation plays a crucial role when it
comes to the construction of energy conserving discrete time integration schemes incorporating
contact. For a much deeper insight the reader is referred to Laursen and Chawla [171], Laursen
and Love [172]. Therein, the so-called discrete energy-momentum method, firstly introduced by
Simo and Tarnow [250], has been applied to contact problems. In their first publication [170] the
energy conservation has been achieved with the drawback of a remaining finite interpenetration
of the contacting bodies. Although this penetration does not affect the energy and momentum
transfer, it is still something which should be avoided. Therefore, in their second work [172]
the penetration issue could be resolved but this time the used velocity update scheme destroyed
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4.6. Numerical Time Integration

the second order accuracy of the underlying time integration scheme. With regard to the energy
momentum method a variety of extensions can be found in the literature. The interested reader
is for instance referred to [5, 6, 167] and the references therein. A method which combines
energy momentum conservation and second order accuracy in the context of mortar-type contact
formulations is presented in Hesch and Betsch [129, 130].

There are even more issues, however, which ask for a special algorithmic treatment when it
comes to unilateral dynamic contact and all of them are somehow related to the force balance
and the constraint equations. For example, significant artificial oscillations might be produced
at the contact interface. This problem can be even more severe when the time step size and/or
the spatial discretization are refined as described in Carpenter [43]. One possible counteraction
can be found in Deuflhard et al. [70] based on Kane et al. [152]. In Deuflhard et al. [70] the
force balance is modified by an additional predictor displacement state. This modification asks
for a necessary Lo-projection. In order to avoid this additional computational effort, the authors
of [70] suggest to use a lumped mass matrix. A completely different idea is proposed by Hager
et al. [122], Hager and Wohlmuth [123]. Herein, a modified integration scheme is used to remove
the mass from the contact interface.

This short interlude had just the purpose to highlight some of the difficulties which come
along with dynamic contact simulations. However, the topic of this thesis is the robust treatment
of contact simulations with the focus on the non-linear solver part, therefore, all these mentioned
possible modifications shall be excluded for now. Nevertheless, they are not forgotten and should
be addressed in the future. In this thesis the satisfaction of the constraints is enforced at the new
point in time ?,,,1, yielding

[x(@)] =0, [T =0, [T [A@)]E [an(d)] 0 =0, VieS. (4.67)
So, at first glance this stands in contrast to the contact force balance presented in (4.65d) and,
indeed, the unsatisfied persistency condition (4.66) is one of the major drawbacks of this for-
mulation. In Section 6.8.1, however, a possible extension of the complementarity condition will
be proposed which makes it possible to find a capable objective function which allows a consis-
tent derivation of (4.65) and (4.67). Thus, in combination with the velocity update method [172]
and the energy momentum method [167, 250], an extension to a globally convergent, energy
conserving scheme should be possible. The remaining drawback would be still only first order
accuracy in time. An advantage of (4.67) is that gﬁ{”} = ( holds, thus, (4.65d) can be simplified.

To conclude this section the resulting system of equations for dynamic contact problems shall
be briefly presented. Therefore, the system is horizontally split into one part corresponding to
the variation with respect to displacements and the second one corresponding to the variation
with respect to the Lagrange multipliers. The first part becomes

S

£, — (- an){[Va(VagiA)]" (4.682)
CN ~ R n
~ VAV GO s TN oy ey Al (4.68b)
- (iry " Angry )
(1 — o) [T A Ay _
(1 — o) [VdgN]‘(diz}“}uA&”{Z;”) ANk Legal (gly+1) alnn)) (4.68¢)
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Figure 4.2.: Left: reference configuration of the circular segment pressed onto a rectangle; right: Contour lines of
the parametrized objective function % (o', al?l). The points ¢ and ® denote the solutions of the incomplete and
complete variational approaches, respectively. The zero isolines ——, —#—_ —®— correspond to the nodal weighted
gap constraints of the slave nodes 1, 2 and 3.

where &' has been defined in (2.96). The second part stays unchanged in comparison with
(4.67), i.e., the constraint rows coincide with the (quasi-)static formulation. By neglecting all
terms in (4.65) and (4.68) which are explicitly multiplied with cy, the system of equations for
the standard Lagrangian case is obtained. Further investigations will follow in Section 6.8.1 and
within the examples in the Sections 6.10.6 and 6.10.7.

4.7. Numerical Examples

In the following, four different examples with varying objectives are presented. In the first ex-
ample, the incomplete and complete approach are compared to each other and a detailed error
analysis is presented. In the second example, the influence of the numerical integration error
is investigated and possible remedies are provided. The third example is supposed to demon-
strate the numerical robustness of the different methods and constraint enforcement strategies.
Furthermore, a comparison between a well-established mortar method Popp et al. [215, 216]
and the incomplete variational approach is drawn. Finally, a possible instability of variationally
inconsistent formulation will be revealed in the last example. All presented results have been
computed with the in-house C++ research code of the Institute for Computational Mechanics
Wall and Kronbichler [274]. Finally, it is mentioned that more information about the often ap-
plied tangential predictor at iteration zero can be found in Appendix B.

4.7.1. Circular Segment and Rectangle

First, the influence of the different variational approaches onto the final numerical results shall be
investigated. Therefore, a very simple two dimensional example is considered, which is shown
in Figure 4.2. The master body is a rectangle of height 2 and length 10. The slave body is a
segment of a circle, where the xy-coordinates of the center point M are chosen as (7, 7), while
the angle ¢ is equal to /5. The radius r, is 5 and r; is 3. The circled nodes ® denote Dirichlet

106



4.7. Numerical Examples

2 \ 2 2
o NN S o XX&& ~ He | > —» —»
S 0N S S O\XX‘A:& S N dndubdnd
WY }< \X:&K L | >
| <\\TA NUBENEE N
0 2 0 2 0 2
a1 a1 a1

Figure 4.3.: Left to right: Contour lines of the weighted gap constraints incl. their corresponding gradients for the
slave nodes 1, 2 and 3. The consistently computed gradients are denoted by black arrows, while the incomplete
gradients are represented by gray arrows. Note that the gradient magnitudes of slave node 2 are scaled differently
with a ratio of incomplete to complete of 1 : 8.

nodes. The bottom degrees of freedom of the master body are completely fixed and the degrees
of freedom at the top of the slave body are fixed in z-direction, while in y-direction a prescribed
displacement is applied. First the displacement is ramped from 0 to —1 in one load step. A simple
compressible Neo-Hookean material law (2.27) under a plane strain assumption is used, where
Il = 0.27 and EMM = EI? > 0 hold.

For the following discussion, the coarse mesh from Figure 4.2 will be considered, where the
final displacement vectors d’ of the complete variational approach and d of the incomplete
approach differ in the /5-norm to the amount of 8.226 E—2. For illustration reasons the two-
dimensional parametrization

di (ol all) = dr + " altl(gll — gy (4.69)

—1—C 1

shall be introduced. If both parameters are zero, the incomplete solution is obtained, while both
parameters equal to one recover the complete solution. The parameterization makes it possible to
visualize a two-dimensional slice through the underlying multi-dimensional objective function
X : RS - R,

As visualized in the right part of Figure 4.2, the solution of the complete approach reaches the
minimal feasible energy level, while the incomplete approach converges to a non-optimal point.
Nevertheless, both solutions are feasible with respect to the active constraints. Note that the con-
straint of slave node 3 is inactive at the solution. A closer look at the directional derivatives in
Figure 4.3 reveals the reason for the different solutions. The varying directions of the gradients
cause a different displacement solution, while any perturbation in magnitude and direction be-
comes manifest in different values of the corresponding Lagrange multipliers. In this case the
normalized Lagrange multiplier values A} of the active slave nodes i € {1,2} for the complete
approach result in Ay = 1.642e—1, \% = 1.0, while A\ = 1.271e—1, A% = 1.027 are obtained
for the incomplete approach.

In a next step, this very simple example is taken into account for quantitative error estimation.
Therefore, the slave body is successively refined while the master body stays discretized with
only one quadrilateral linear finite element. As mentioned in Section 4.4.2 two major influences
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can be distinguished: The first one stems from the neglected variation of the Jacobian determi-
nant. Measures for the introduced error per active slave node as well as for the total mean square
error are given by

. g[l
ZLA‘<€?aC)2 z’ 1](e e)ij
Ejac = T%J’ €loe = H N M e dgt@d), (4.70)

1](6)
c [—1,1]

The second error source is the neglected variation of the convective master parameter coordinate,
which is measured by

Ml i 2
Con = Zz (ema) ’
A

g[l]|

(4.71a)

J f NII@F (I L2 ]r 5[2]T,4k>j[1](e) et (4.71b)

o
Both quantities are evaluated in Figure 4.4. In Figures 4.4a and 4.4b the evolution of the two
nodal errors is plotted over a total of eleven Newton iterations and over the reference position
angles of the active nodes expressed in terms of the angle ¢ € (0, T) defined in Figure 4.2.
Additionally, the predictor step, i.e. #0, is highlighted in red. Here, a 100 x 100 element mesh
for the slave body has been considered as well as a reduced prescribed displacement of —0.4 in
y-direction that is applied in one load step.

The error due to the missing Jacobian determinant in Figure 4.4a flattens over the iterations.
The exponentially decreasing error of the Jacobian determinant towards the center of the active
contact zone seems to be originating from a slight oscillation of the discrete gap (4.6), which
decays with a sufficient distance to the contact zone boundary. Note that these oscillations of the
discrete gap can occur even though the norm of the accumulated weighted gap vector already
more than fulfills the predefined tolerance with a value below 1.0E—17 in the final converged
configuration.

The variation of the parametric master coordinate does also include a direct linear coupling to
the current penetration in terms of the auxiliary distance factor &, (see e.g. (4.56) and (4.57)).
Nevertheless, the effect is almost completely canceled out during the Newton iterations. The
explanation becomes obvious by looking at the corresponding deformed configurations. Only
the very first predictor step shows a characteristic penetration shape (see Figure 4.4d), which is
also clearly represented in the related error plot (see the red highlighted curve in Figure 4.4b). In
all following Newton iterations the active slave surface is approximately parallel to the master
surface (see Figures 4.4e and 4.4f). Hence, the only remaining error contributions are almost
completely based on constant geometrical quantities.

A convergence study of the two mean square error measures reveals that both terms decay
slowly in linear fashion. This is shown in Figure 4.4c. Further investigations show that a re-
finement of the master side only has a very slight influence on the error magnitude. The slope
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Figure 4.4.: Figure 4.4a shows the nodal errors due to the neglected variation of the Jacobian determinant and
Figure 4.4b due to the neglected projected parametric master coordinates. The predictor iteration (#0) is highlighted
in red. Figure 4.4c shows the total errors over the characteristic slave element length k. All three plots in the first
row use a logarithmic scale on the z-axis. In Figures 4.4d to 4.4f the corresponding deformed configurations of the
predictor (#0), the first Newton iteration (#1) and the final converged iteration (#11) are presented, respectively,
where the two last figures show a close-up view around the slave body.
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(a) (b)

Figure 4.5.: Figure 4.5a sketches the geometrical initial configuration, while Figure 4.5b shows the final deformed
configuration for 8 equal to 1.0.

remains at one. Finally, the difference in the total strain energy of the two approaches is ob-
served. Interestingly, the strain energy difference decays very rapidly with a slope of 3.5 in the
double logarithmic convergence plot.

In summary it can be concluded that the final solution is almost not changed for a sufficiently
fine mesh and the example considered here. Furthermore, the necessary level of refinement is not
extraordinarily high to achieve reliable results with the incomplete approach. However, during
the pre-asymptotic phase the impact of these errors can be remarkably higher. Therefore, even
so the solution might stay almost the same, the way to the solution can severely change. The
possible impact will be presented in Section 4.7.4.

4.7.2. Influence of the Integration Error

Before the discussion moves on to more complex examples, the influence of the integration error
mentioned in Remark 4.3 must be addressed. Therefore, the very simple example in Figure 4.5
is going to be investigated. The displacement field d* = d* = S and d*° = 23 for 3 € (0, 1) shall
be considered. The remaining displacements shall be equal to zero. The lower body is supposed
to be the slave body and the upper is the master body, respectively. The analytically calculated
contribution of the slave element e;, between node 1 and 2 to the parametrized weighted gap
value of node 1 yields

1
N () = f NI (M) gy (€M, 5) dgt = %(/34 +30°+35° + 6+ 12), (4.72)
-1

with respect to the piecewise defined gap function

gn (€M, 8) = 1+ max{0, B(1 + (M)} = 1+ max{0, (B + M)} (4.73)
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for all £[' € [—1, 1]. Since the analytically calculated weighted gap expression is readily avail-
able, the exact derivative with respect to the deformation parameter [ is easily obtained as

d (e _

1 3 2
@gN E(46 + 96+ 66 +1). 4.74)

To achieve the same exact result in a finite element context, a lot more effort has to be taken.
The Jacobian determinant of the slave element is deformation independent in this example. Nev-
ertheless, the projection onto two master elements makes it necessary to introduce two new
parameter coordinates for the evolving segments, namely 7, ¢ € [—1, 1]: The first one for the
segment between nodes 1 and 4, and the second one for the segment between nodes 4 and 2. The
contribution of the first segment to the total variation of the weighted gap of node 1 follows as

dn = —<(1+ B), (4.75)

1
i~(612)1,80g1 _ J oNU aglil gl 4+ N 02¢l]

dﬁgN

-1

where the gap is equal to one over the whole segment. The second segment contributes with

1
seg2
A enyses _ f oNt o¢l] oo oft g dox® o oo o] d¢
dg’y J oclll op N ¢ dg o Noocop
1 3 7
=§53 + ;162 +8+ 35 (4.76)
where the total derivative of the gap function is given by
AgR™ _ [0 | agi™ o | g gl ogly Wi
g | o8 oE2l op ocl2l o¢ll 0B |- '

By summation of both contributions, the result in (4.74) is recovered. A closer look at the part
coming from the first segment (4.75) shows, that in the limit case § = 1 the integral degenerates
to a point evaluation, which has to be considered since the second Jacobian determinant is now
deformation dependent and contributes to the final derivative value. To compute a comparative
solution for the incomplete approach, the total derivative given in (4.77) is reduced to the first
term and all derivatives with respect to the slave parameter space coordinate are neglected as
well. This yields

1

%gﬁmﬂ = J NU(EMY max{o, 8 + ¢y dell = %(53 +3624+36+1). (4.78)

Next, the attention is drawn to the element-wise Gaussian quadrature used here and the following
expression
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Figure 4.6.: Visualization of the weighted gap and the related gradients with respect to the deformation parameter
B. (a): Result of Gaussian quadrature with 2 Gauss-points for the weighted gap —©—, the complete weighted gap
gradient —=— and the incomplete weighted gap gradient —&—. (b): The results for a Gaussian quadrature with 32
Gauss-points. The corresponding analytical solutions from (4.72), (4.74) and (4.78) are plotted with solid, dashed
and dotted red lines, respectively.

g Neg (1]

d _. 0, f < -

=g = Y NI (ElY) g o =0 (4.79)
dg = af + &', otherwise

is obtained for this simple example, where a = 1 represents the integrand for the incomplete and
a = 2 for the complete variational approach. N, is the number of used Gauss points. A short
examination reveals that the integrand for the first case shows a weak discontinuity, and for the
second case a strong discontinuity at €1 equal to — .

The results are illustrated in Figure 4.6. While a segment-based integration leads to a smooth
deformation dependent gradient, the element-wise integration causes discontinuities in the ap-
proximated gradient fields. The kink or jump discontinuity appears each time a slave side Gauss-
point switches its master target element during its motion from left to right (see Figure 4.5).
While the amplitude of the jump decreases with an increasing number of Gauss-points, the num-
ber of discontinuities increases. For example, the jump/kink for two Gauss-points appears ex-
actly for 3 = 1/+/3. In the case with 32 Gauss points, there are already 16 jumps for this simple
example. The complete approach converges to the exact gradient solution, while the incomplete
gradient approximation converges to (4.78). In summary, the appearing discontinuities are part
of both variational approaches, but only for the complete variational approach the strong discon-
tinuity becomes a part of the right-hand side and deteriorates convergence. In some cases the
scheme even fails entirely, because the insufficient continuity can cause a never ending cycling
of the non-linear solution method.

At first glance, the easiest solution for this problem is to use a smooth representation of the
master side, e.g. with Hermite splines in 2-D [262], or via Gregory patches [221] in 3-D. It is
also possible to use discretization methods based on NURBS firstly introduced by Hughes et al.
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Figure 4.7.: (a): initial configuration, (b): structured mesh of the indentor.

[141]. A possible approach for arbitrary 3-D surface meshes has been given by Neto et al. [202].
But unfortunately, all of these approaches bring along some kind of burden. The application of
Gregory patches is bound to quadrilateral meshes only. The Hermite spline interpolation is hardly
extendable to 3-D and in the case of NURBS the construction of suitable patches for complex ge-
ometries is quite intricate. Finally, the approach in Neto et al. [202] has its restriction if inflection
points appear. The necessary modification destroys locally the C'*-continuity [203]. Furthermore,
a pure smoothing approach would encounter its limits as soon as a strong discontinuity in the
real geometry appears leading to the possible circumstance that a slave facet slides off the edge
of the opposing master surface. Therefore, on second sight, the only real solution to counter the
problem is to use a fully segment-based integration as proposed by Puso and Laursen [222] and
[290]. Nevertheless, all given contact references with segment-based integration schemes only
deal with a simplified variational approach and cannot be applied directly to the formulations
considered here, without the loss of some properties. For instance, the 3-D segment-based in-
tegration typically introduces a so-called auxiliary plane [222]. These planes are defined by the
normals at the center of each considered slave element. Now, this auxiliary normal rather than
the smooth normal field is used for the projection and, subsequently, a tessellation algorithm
is applied to obtain non-warped, usually triangle-, or recently also quadrilateral-shaped integra-
tion domains [278]. The introduction of such an auxiliary plane can imply the loss of angular
momentum conservation if the contact variation is not adapted accordingly. In general, the adap-
tion becomes necessary since the projection is no longer collinear to the smooth normal field.
Consequently, (4.55) will no longer hold. To regain conservation the first term in (4.27) must be
reintroduced into the system. Furthermore, higher order derivatives would become necessary if
the problematic full variational approach is to be addressed.

4.7.3. Sliding Hemisphere

Next, a 3-D example is investigated: A hemisphere of radius 5 is pressed onto a plate of dimen-
sion 20 x 20 x 2.25, which is oriented along the Cartesian axes. In the reference position, the
hemisphere lies exactly in the center of the plate surface and is in forceless contact, i.e. gap and
contact pressure are both zero (see Figure 4.7). All degrees of freedom of the plate at the four
sides are fixed, while the remaining degrees of freedom are still free to move. In the first load

113



4. Mortar-Based Contact Methods for Finite Deformation Solid Mechanics

» ~ 106
= BLag. Baug. Lag. =
E |
8 20 |- a i
= T 10°¢
2 10| 4 0°
: 2
d a

0 T\HH‘ \\HHH‘ \\HHH‘ \\HHH‘ T 1111 10_14

10-1 10° 10t 107
CN #Newton iterations

(a) (b)

Figure 4.8.: (a): Number of Newton iterations for varying cy values. The light colors represent the sliding step, the
dark colors the penetration step. (b): Evolution of the incremental norms w.r.t. the Lagrange multipliers —— and the
displacements —&—. The cardinality of the active set is shown by —©—. Filled, red stands for the Lagrange, unfilled,
blue for the augmented incomplete formulation.

step, the nodes on the circular top surface of the hemisphere are moved downwards by an amount
of 2.5. In a subsequent load step, they are moved in the in-plane x- and y-directions by an amount
of 1.5, respectively. The material parameters are chosen as £ = 25,000 and v = 0.25 for the
stiffer spherical indentor, while the plate consists of softer material (E?] = 2,500, v[2 = 0.25).
As material model, the coupled form of the compressible neo-Hookean material model (2.26) is
considered. The top surface of the plate shall be the master and the opposing spherical surface
the slave side. All chosen parameters are, as far as possible, equivalent to the 2-D semicircular
indentor example in Zavarise et al. [294]. Only the thickness as well as the boundary conditions
of the plate were changed to reduce the computational costs. Nevertheless, the initial contact sit-
uation stays comparable, since a tangential predictor is used, which causes a rigid body motion
of the initially unconstrained indentor (see Figure 4.9). Also, the mesh of the hemisphere was
adapted to fit the reference 2-D test case (see Figure 4.7). The plate is discretized by 32 elements
in x- and y-direction and with 3 elements in thickness direction. The test case is supposed to
demonstrate the superior robustness of the mortar-type contact formulations. To detect conver-
gence, the relevant criterion is that the relative ¢5-norm of the Lagrange multiplier increment
becomes lower than 1.0E—10.

First, the influence of the regularization parameter cyx on the performance of the incomplete
formulation will be investigated. The complete formulation is skipped for the moment due to the
problems mentioned in the previous subsection. The regularization parameter is varied within
a range from 0.1 to 200. For a cy value equal to 300 and higher, neither the Lagrangian nor
the augmented Lagrangian formulation did converge. The comparison in Figure 4.8 shows no
noteworthy difference in the dependence on the regularization parameter with respect to the two
formulations. While the augmented Lagrangian formulation needs one iteration less in the first
load step for a cx = 100, it is the other way around for ¢y = 200. The second load step seems
almost completely independent from the chosen regularization parameter. In another study, cy is
chosen as 10 and the behavior for more moderate load states is investigated. Therefore, the load
is reduced by a factor of 2 multiple times and the number of necessary iterations are summarized

114



4.7. Numerical Examples

loadfac. | 1 | 1/2 | 1/4 \ 1/8 | 1/16 | 1/32
16 10 (17,9) | (13, 9) (7,4) | (7, 3)
aug Lag (17,9) | (13, 9) (7,4) | (7, 3)

Table 4.1.: Newton iteration study for the incomplete variational approach by steady reduction of the load. The first
braced value corresponds to the penetration load step, the second one to the sliding step.

in Table 4.1. While the first reduction even leads to an increasing number of iterations for the first
load step, a monotonically decreasing behavior can be observed for all subsequent reductions.
Again, the Lagrangian and the augmented Lagrangian formulations show an almost identical
behavior in terms of Newton iterations.

Next, the maximal possible initial penetration is tested. In Zavarise et al. [294], a 2-dimensional
penalty node-to-segment formulation was investigated. For the consistent linearization a maxi-
mum initial penetration of 0.8 has been reported, while the there newly developed large pene-
tration approach reaches convergence up to a penetration of 4.0. The variationally incomplete
mortar-based approach presented here shows convergence up to an initial penetration of 2.9,
whether applied as standard Lagrangian or augmented Lagrangian formulation. Both formula-
tions are consistently linearized and the Lagrangian takes 17, while the augmented scheme takes
16 iterations. The tangential predictor step and the first three Newton steps as well as the con-
verged state for the Lagrangian formulation are shown in Figure 4.9. The arrows represent the
scalar nodal Lagrange multiplier values mapped onto the surface normal direction of the spher-
ical indentor. The color-map corresponds to the projected forces acting on the master surface.
Furthermore, the detailed step lengths with respect to the displacements and Lagrange multiplier
degrees of freedom as well as the cardinality of the active set are shown in the right part of
Figure 4.8. Again, no severe differences besides a slightly stronger fluctuating active set in the
augmented case can be noticed.

Figure 4.9 reveals that the magnitude and the distribution of the Lagrange multiplier values in
the non-converged states can be far off from the final values. In turn, the corresponding forces
lead to severe mesh distortions and the simulation is close to crash. The reason is the considered
second order update scheme for the Lagrange multipliers, which is known for fast convergence
near the solution, but inferior performance during the pre-asymptotic phase compared to a first
order update scheme (see Bertsekas [23] and Chapter 5 for more details). For a constant penetra-
tion of 2.9, the sliding step could be increased up to a movement of 1.9 in the z- and y-directions,
respectively, until divergence would hit. Both formulations took 10 Newton iterations for the sec-
ond load step.

In summary, the segment-to-segment approach shows a superior robustness compared to the
consistently linearized node-to-segment approach in Zavarise et al. [294]. The obvious drawback
is its higher computational cost.

Second Order NURBS Discretization

To be able to investigate also the variationally complete approach, the soft block is now dis-
cretized with second order NURBS, while the linear Lagrange discretization of the indentor
stays unchanged. The sufficiently smooth master surface now makes it possible to apply the
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Figure 4.9.: Visualization of 1/8 of the indentor and 1/4 of the soft plate. The initial configuration after the tangential
predictor step is shown in Figure 4.9a and the first three Newton iterations in Figures 4.9b to 4.9d, as well as
the converged configuration in Figure 4.9e. The color-map represents the logarithmic scaled projected Lagrange
multiplier forces acting on the master side, while the arrows represent the Lagrange multiplier values on the slave
side mapped onto the smooth normal direction. Black arrows correspond to active, white to inactive nodes.

penetration sliding
load step 1 2 3 | 4 5 | 6 7 | 8
NURBSc. | 13(4) | 5(12) | 4(16) | 8(52) | 7(80) | 5(100) 13(112)
NURBSi. | 17&) | 512) | 4(16) | 7(52) | 8(80) | 5(100) 12 (112)
LIN i. 13(12) [9(28) | 6(28) | 7(52) | 7(76) | 7(96) | 8(96) | 10 (98)
LIN Popp | 12(12) | 6(28) | 6(28) | 7(52) | 7(76) | 7(96) | 8(96) | 9 (96)

Table 4.2.: Comparison of the plain Newton performance for different formulations. "c." refers to the complete, "i."
to the incomplete augmented formulation and "Popp" to the reference formulation described in Popp [213], Popp
etal. [215, 216]. The values in braces are the final numbers of active nodes at the end of each load step.
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Figure 4.10.: In Figure 4.10a the converged configuration for the half NURBS, half Lagrange discretization is
visualized. The indentor was moved 3.0 in z-direction and 2.0 in z- and y-direction. In Figure 4.10b a comparison
of the final active set distribution for the pure linear Lagrange discretization mapped into the XY -reference plain
is performed. The X markers refer to the reference formulation by Popp [213], Popp et al. [215, 216], while the U
markers represent the active set for the incomplete variational approach.

complete variational approach. Furthermore, cy is set to 10 and the augmented formulation is
used for all following investigations. A short study of the incomplete approach reveals that the
maximal step size of the first step must be reduced to 2.2. For higher loads divergence has been
detected. In contrast, the complete approach only allows an initial step size up to 0.5. For slightly
higher initial loads, a cycling of the active set could be observed, thus leading to a stagnation
of the plain Newton approach. Interestingly, in a follow-up step the load can be increased much
further, such that the supposition is obvious that the cycling is caused by the initial geometrical
configuration rather than due to any numerical integration issues. However, the incomplete ap-
proach does not show this undesirable behavior. To compare the performance of both variational
approaches the total penetration is set to 3.0 and will be applied in 6 load steps. In a seventh
step, the indentor is then moved by 2.0 in x- and y-direction. The final configuration is shown in
Figure 4.10a. The required numbers of iterations per load step are given in Table 4.2. For these
moderate load levels, both algorithms perform quite similar for the mixed discretizations. Only
in the very first step, the complete approach manages to take 4 iterations less.

In Section 4.5, the conservation of linear and angular momentum was proven theoretically.
As mentioned, the conservation of angular momentum is strongly bound to the way how the
gradient of the active weighted gap is incorporated into the force balance. Here, the opportunity
is taken to demonstrate conservation of linear and angular momentum for the sliding load step
in Figures 4.11a, 4.11b, 4.12a and 4.12b. Since the test for conservation involves subtraction
operations of the nodal forces, loss of significant digits plays a role and the values are bound
somewhere below 1.1E—11 for this example. Another source of error for the angular momentum
conservation is the local Newton scheme for the projection algorithm where the tolerance is set
to 1.0E—12. Nonetheless, the results confirm the conservation of linear and angular momentum
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Figure 4.11.: Conservation of linear momentum under consideration of the half NURBS, half Lagrange example.

conservation practically to machine precision. Furthermore, a closer look will reveal that some
points are missing in the balance plots. In these cases, the numerical result was equal to 0.0, 1.e.
all significant digits vanished.

Comparison with an Established Mortar Contact Formulation

In the following, the results are compared to the well-established mortar contact formulation
of Popp [213], Popp et al. [215, 216]. For the comparison, standard first order Lagrange shape
functions are considered. Again, only the incomplete variational approach is taken into account.
In terms of Newton iterations, both approaches are very similar with some slight advantages for
the well-established formulation for this specific example, see Table 4.2. The sliding step had to
be halved in step size to obtain convergence. Interestingly, in the very last step even the number of
active nodes differs. The related distribution can be seen in Figure 4.10b. The scattered pattern
originates from the linear discretization. In the case of the combined NURBS and Lagrange
discretization, the pattern changes to a more continuous distribution. The conservation of angular
momentum, however, is not achieved by the reference formulation (see Figures 4.12c and 4.12d).
The relative difference in the converged resultant forces and moments is around 1%. A look at
the final internally stored elastic energy of the two bodies reveals a value of 6247.40 for the
reference solution and a value of 6247.36 for the incomplete variant. Again, the latter one is
slightly more consistent, but the absolute difference in the results is negligible. In summary, the
introduced errors seem to behave as in the 2-D example (see Figure 4.4).

4.7.4. Instability of the Variationally Inconsistent Formulation

In the last example of this chapter, a rare but intrinsic instability of the variationally inconsistent
formulation is presented and briefly discussed. Therefore, a stiff wedge indentor is taken into
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Figure 4.12.: Conservation of angular momentum. In Figures 4.12a and 4.12b the half NURBS, half Lagrange
example is considered, while Figures 4.12c and 4.12d address linear Lagrange elements.
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Figure 4.13.: In Figure 4.13a the geometries of a wedge indentor and a chamfered plate are presented. The potential
slave contact surface is marked by a blue dashed line - - - , while its master counterpart is represented by a green
solid line . The considered projection is sketched in Figure 4.13b. Highlighted in blue is the uncritical and

in red the critical projection zone of the two adjacent elements contributing to the newly active node A. Finally,
Figure 4.13c shows the magnitude of the missing parameteric master coordinate variation for all active nodes. The
stated nodal position is measured from the reference point R in Figure 4.13a.
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account which is moved into a ten times softer plate. The plate has a chamfer angle of 45°
at the upper left corner. The dimensioned geometry as well as the used mesh are presented
in Figure 4.13a. The boundary conditions are chosen such that the plate is compressed in x-
direction through the applied deformations. Therefore, the right edge of the plate must be fixed
in z- and y-direction and the wedge indentor is restrained on its left edge in z-direction, while
the top edge is moved by a prescribed motion in negative y-direction. The material parameters
are chosen as EM = 2500, 2! = 250 and vV = »[2l = 0.25 based on a compressible
Neo-Hookean material law as introduced in (2.27). Furthermore, quadraliteral two-dimensional
elements under a plane strain assumption are used.

In a first step the variationally inconsistent formulation is applied to the problem. A variation
of the initial penetration reveals that the consistently linearized incomplete approach shows con-
vergence only up to a penetration of 1.36. For a constant regularization parameter cy of 10 around
8 to 9 Newton iterations are necessary to solve this problem dependent on the actual penetration.
Similar to the observations in Section 4.7.3 no noteworthy difference between a standard La-
grangian and an augmented Lagrangian formulation could be detected. An incremental increase
of only 0.01 to an initial penetration of 1.37 leads to divergence. Surprisingly, the standard La-
grangian as well as the augmented formulation converge again for a higher penetration between
1.40 to 1.60. Afterwards no convergence can be achieved with both formulations for another
six incremental load increases between 1.61 and 1.65. For even higher load increases, however,
convergence is again observed.

This pattern repeats for further increases and can be also noticed for smaller penetrations.
The only difference lies in the fact that the non-linear solver does not fail entirely for smaller
overlaps. In order to understand the origin of this phenomenon, the number of Gauss points (GP)
has been set to 50 per slave element for the consistently linearized approaches to exclude any
artifacts caused by the numerical integration scheme. However, the higher GP number provokes
no change in behavior. Furthermore, the well-established mortar method introduced in [213, 215]
shows exactly the same undesired convergence pattern for a segment-based integration. Deeper
investigations reveal that the variationally consistent mortar contact formulation does not show
this initially devastating distortion, see Figure 4.14b for a comparison. It is therefore reasonable
to assume that the origin can be found in the neglected terms of the incomplete variational
approach. Thus, the associated nodal error due to the neglected variation of the convective master
parameter coordinate (4.71) has been calculated and is presented in Figure 4.13c. Therein, the
suddenly rising influence of this missing variation can be clearly recognized each time a new
slave node becomes active during the motion from the initial wedge position in negative y-
direction. A look at Figure 4.13b helps to understand what is happening: The sketch shows the
geometrical configuration right after the tangential predictor step for an initial motion of 1.6 in
negative y-direction. Node A newly joins the active set between a prescribed displacement of
1.59 and 1.60, since the corresponding averaged weighted gap value becomes negative.

It is now important to underline that the used contact interface considers the blue as well as the
red projections for the necessary integrations. The critical contribution is the red one: A slightly
changing slave displacement field drastically changes the position of the projected Gauss point
position on the master side due to the flat angle between slave normal and top master surface.
Exactly this effect is considered by the neglected variation of the projected parametric master
coordinate. Since this variation is missing in both, i.e., the incomplete approach introduced in
Chapter 4 as well as in the mentioned well-established variant of [213, 215], the heavy mesh
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distortions appear right after the tangential predictor step. Although this effect could have been
avoided by a different interface pairing, it seems important to address this issue since it is an
impressive demonstration for the possible influence of the neglected variations. Furthermore, it
must be mentioned that a simple node-to-segment approach would not suffer from this problem,
since only the slave node position and no longer the surrounding Gauss point positions on the
adjacent elements would play a role. In the same turn it is further to highlight that this is one of
the rare issues which gets worse with a better integration method or a higher number of Gauss
points, since a high Gauss point number uncovers the missing variational parts even to a greater
extent by adding more and more contributions as part of the red projection zone in Figure 4.13b.

In Figures 4.14a to 4.14c, a few snap shots of the simulations for an initial penetration of 1.37
can be found, where Figure 4.14b shows a comparison of the very first Newton step right after
the predictor step. The variationally consistent approach works, as expected, flawlessly and the
incomplete approach shows a devastating mesh distortion near the newly active node next to the
upper boundary of the active contact zone.

Fortunately, it is possible to resolve the issue at least partly by either changing the coupling
and interface conditions or by considering a special modification of the system of equations,
which will be discussed in Chapter 5. This modified approach will allow to solve this specific
example even with the variationally inconsistent formulation by making the entire non-linear
solution approach significantly more robust. A comparison of the obtained results can be found
in Figure 4.14c, where next to the displacement fields also the associated Lagrange multiplier
values are shown. Thus, if the first critical point can be passed, the final results differ again only
slightly. However, the method presented in Chapter 5 does not resolve the origin of the instability
but rather helps to pass the cumbersome regime during the way to the solution. That means
that the instability will not be completely gone by adding the modification. Another possible
remedy might be given by a switch to a closest point projection instead of the ray-tracing method
considered within this thesis. To put it in a nutshell: The presented issue asks definitely for further
investigations in the future.

4.8. Conclusion

Two new discrete contact formulations based on mortar finite element methods have been de-
veloped and analyzed in detail: the so-called variationally complete and incomplete approaches.
While the version with a fully consistent variation leads to a symmetric system of equations
for all active contributions, it could be shown that the often neglected variations indeed do not
significantly distort the converged solution if sufficiently fine meshes are used. In the analyzed
examples, this level of refinement has not been inconveniently high for most of the examples.
The introduced errors due to the missing variation of the Jacobian determinant and the missing
variation of the projected master coordinate as well as the influence on the internally stored strain
energy have been quantified. Furthermore, a proof for the conservation of angular momentum
for both formulations has been given.

The variationally consistent formulation exhibits severe problems for C°-continuous Lagrange
discretizations if an element-based rather than a segment-based numerical integration scheme
is considered. The origin could be traced back to the integration error, which leads to strong
discontinuities in the gradient field of the weighted gap. Different remedies have been proposed.
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Figure 4.14.: Wedge indentor for an initial penetration of 1.37. Figure 4.14a shows the initial configuration directly
after the tangential predictor step; in Figure 4.14b a comparison of the first non-linear iteration among the three
listed methods is presented. Note that the solution method from [213] coincides completely with the variationally
inconsistent solution in this very first step. The final converged states are shown in Figure 4.14c, where the solution
of the incomplete variant could only be reached for the modified approach of Chapter 5.

To put it in a nutshell, the influence of the two variational formulations on the non-linear
solution approach (Newton-Raphson method) can be very different. For example, a load level
that is slightly too high could lead to a cycling of the active set in case of the complete variational
approach, while no such behavior became apparent for the incomplete variational approach. A
comparison of the incomplete approach with an established mortar method Popp et al. [215, 216]
even revealed a slightly different active set distribution in the converged state, although the global
results were very similar.

Concerning the two variational approaches, it can be concluded that for many examples the
differences in the results are negligible. Yet, there are rare cases where the neglected variational
terms can lead to truly troublesome situations. This is impressively shown in Section 4.7.4. Fur-
thermore, since the influence on the non-linear solver can be remarkable, the behavior of an
incomplete approach might become less predictive when optimization methods based on scalar-
valued merit functions are transferred to contact problems. Within this context most model equa-
tions assume that at least the gradient of the merit function is consistent, but exactly this is not
the case if the shown simplifications are applied. This will be also a sub-topic of Chapter 6.

Concerning the two constraint enforcement strategies, namely the standard Lagrangian and
the augmented Lagrangian formulations, only a very slight difference could be observed, with-
out any clear tendency for one or the other. Even the influence of a varying regularization pa-
rameter was rather weak for the investigated problems. However, this observation might change
in the future as soon as the variationally consistent formulation can be applied more easily to a
larger number of problems. Currently, mainly the variationally incomplete formulation has been
investigated in depth.
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5. A Variant of Newton’s Method for
Constrained Problems

In this chapter a novel modification of the classical implicit non-linear Newton-Raphson solu-
tion scheme will be developed. The modification is easily applicable to a wide range of existing
algorithms which use Lagrange multipliers to enforce active constraints. Furthermore, it does
not require any specific discretization type. Instead, the variant of the classical Newton’s method
shown here has a number of appealing properties: Firstly, it enables a formulation completely
restricted to the primal degrees of freedom without the need for any special shape functions.
The underlying Lagrange multiplier update follows in a post-processing step. Alternatively, a
modified saddle-point formulation, which simultaneously contains displacements and Lagrange
multipliers as solution variables, is described. The differences concerning the solvability of the
two linear system types are studied and discussed. Secondly, the new variant significantly im-
proves robustness and reliability of the non-linear solution method compared to a plain Newton-
Raphson approach. Thirdly, the new solution method is based on a strong mathematical founda-
tion leading to reliable local convergence results. Finally, a novel switching strategy will be pro-
posed that can be used to switch from the modified to the classical Newton’s method close to the
solution. In this way the typical second order convergence rate can be elegantly combined with
a higher robustness and predictability of the non-linear solution behavior in the pre-asymptotic
regime. For a meaningful switching a number of necessary conditions will be given.

5.1. Motivation

The work presented in this chapter is inspired by Zavarise et al. [294] and Bertsekas [23]. In
[294] a non-consistent start-up procedure for a penalty contact formulation was proposed and
discussed. However, in contrast to [294], a formulation based on Lagrange multipliers is con-
sidered here. In particular, the focus lies on the solution of the variationally incomplete variant
comprehensively discussed in Chapter 4, even though the method is not restricted to this for-
mulation. Another difference is that the approach proposed here is entirely based on a standard
Lagrangian contact formulation and, instead of removing terms from the consistently linearized
system during the pre-asymptotic phase, a single term is added. In the following it will be shown
that this term alone is sufficient to significantly improve the robustness of the underlying contact
formulation. Furthermore, the introduced term allows a smooth transition between the modified
system and the original one. The necessary adaption as well as appropriate switching strategies
will be comprehensively discussed. Furthermore, the conditioning and solvability of the emerg-
ing linear systems of equations will be addressed in detail. The mathematical foundation of the
presented method is mainly based on the work of Bertsekas [23]. Thus, it is to emphasize that
the presented modification is not restricted to contact problems but can be applied to any con-
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strained optimization problem which uses Lagrange multipliers. In fact, it should be straight
forward modifying the node-to-segment approach presented in [1, 212] or a mortar-type contact
formulation considering a closest-point projection, e.g., used by [65, 261]. Furthermore, it can
be also applied to the complete variational approach introduced in [131] and Chapter 4. This
would be very appealing as soon as the numerical integration issue is resolved by considering a
suitable integration scheme, see the discussion in Section 4.7.2 for more details. However, first
attempts of applying the method discussed here to a simple example, which uses the consistent
formulation, led to some new unexpected, but interesting observations which will be described
and discussed in Section 5.6.8.

The remainder of this chapter is organized as follows: In Section 5.2, the modified system of
equations will be presented by starting with a derivation and a subsequent discussion. Since the
modification and its performance are strongly coupled to the regularization parameter cy and
its reliable correction during the non-linear solution procedure, two novel correction schemes
will be presented and discussed in Section 5.3. Subsequently, the attention is on the convergence
analysis of the modified formulation in Section 5.4. Local convergence as well as the bounded-
ness of the regularization parameter cy will be proven in dependence on one of the proposed
correction schemes. In Section 5.5 a method for switching from the modified system to the con-
sistently linearized system of equations will be presented. Afterwards, the Numerical Examples
Section 5.6 will demonstrate the great applicability and performance of the proposed method.
Therein, a comprehensive numerical study of the newly proposed method will be given. In addi-
tion, a detailed analysis concerning the conditioning of the modified system matrix will follow
in Section 5.6.7 based on a challenging 3-D example. A short conclusion can be found at the end
of this chapter in Section 5.7.

5.2. Modification of Newton’s Method

The consistently linearized second order systems of equations presented in Section 4.3 will only
show a second order rate of convergence, if the current state is close enough to the solution
point. In general, however, convergence towards the solution is only guaranteed if the initial
state, consisting of displacements and Lagrange multiplier values, is part of a bounded region
around the solution. This behavior is well-known and thus it is not surprising that a similar
observation was also documented for a node-to-segment penalty algorithm in Zavarise et al.
[294]. The mentioned paper suggested a non-consistent start-up procedure to overcome possible
convergence problems during the first Newton iterations in the case of large initial penetrations.
As soon as a state sufficiently close to the actual solution had been reached, the algorithm was
supposed to switch to a consistently linearized scheme. A major part of [294] was about the
proper switching point. The proposed criterion was based on an user-specified estimate of the
maximally expected contact pressure. This value was then used for the switch as well as a cut-off
for the maximal admissible contact pressure during the non-linear solution scheme. Since a good
estimate was not always readily available, an adaptive update routine was additionally proposed.

Even though the problem origin is the same, a mathematically more profound approach is
developed here in order to also address the additional complexity arising from the Lagrange
multipliers. The goal is to achieve a superior performance during the pre-asymptotic phase com-
pared to the standard consistently linearized Newton approach from Chapter 4 without the need

126



5.2. Modification of Newton’s Method

for any problem dependent tuning parameters, or user-specified estimates. Meanwhile the cor-
rectness of the solution is supposed to be maintained under all circumstances.

Furthermore, the algorithm presented here also shows convergence for the modified system
of equations, however, with a reduced convergence rate, i.e., maximal (super-)linear. Thus, it
is to underline that it is not necessary to switch to a consistent linearization to reach the (nu-
merical) exact solution. However, the switch is very beneficial since it helps to circumvent an
ill-conditioned system matrix and it is very beneficial with respect to the local convergence rate.
A meaningful set of switching criteria will be presented in Section 5.5.

5.2.1. Modified Linear System of Equations

The discussion starts with the Lagrangian potential defined in (4.10). Its consistently linearized
form with respect to all active contributions follows as

{Viﬂ/ — [Va(Vag? Aﬁ)]T} Ad = VagiAN ==V (2) + Vagids,  (5.la)
— [Vag{]"Ad =75 (5.1b)
The idea is to adopt a modification described in [23] for the linearization of the active constraints

(5.1b) by adding the relaxation term —- AAA)\ﬁ, where A* denotes again the tributary area
matrix introduced for the first time in (4. 7) In this way, (5. lb) becomes

~ 1 )
(Vg Ad = — AN = 5 (5.2)

There are now two options how to progress: The first one is that (5.1a) and (5.2) are combined
and the emerging modified saddle-point system is used throughout the non-linear solution pro-
cedure. Alternatively, a condensation approach is applied to develop a system completely for-
mulated in displacement degrees of freedom. For the latter approach it is necessary to multiply
(5.2) by —CN@QQS [é““]‘1 and add the result to (5.1a). This yields

(V32 ~ [V a(Vagt XOIT + exVagl A% [Vagl]" | Ad
= — Vo (z) + Vi (AR — engl)- (5.3)

In this way the saddle-point structure is removed. In a post-processing step the corresponding
Lagrange multiplier increments can be calculated via

AM = —ex[A4] ( [VdgN]TAd) (5.4)

Both approaches, i.e., the modified saddle-point formulation and the condensed formulation,
have advantages, however, the modified saddle-point system can be seen as beneficial with re-
spect to the solvability of the linear system of equations in case of larger problems. For a detailed
discussion the reader is kindly referred to Section 3.2.3.2 where a similar observation is made
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5. A Variant of Newton’s Method for Constrained Problems

during the discussion of the penalty method. Especially, (3.47) in connection with (3.58) and
(3.59) reveal a close relationship between the method proposed here and the penalty approach.
A more comprehensive computational investigation of the conditioning of the system matrix will
follow in Section 5.6.7.

Remark 5.1. Note that the modified saddle point system will still simply be denoted as saddle
point system in the following. In fact, this nomenclature agrees with the classification provided
in Benzi et al. [19]. Furthermore, the modified system changes back into the original one defined
in (5.1) or (4.18) when cxy — 0. Lastly, it should be noted that in the case of a non-symmetric
saddle-point system, which occurs here in case of the incomplete variational approach, the ex-
pression generalized saddle-point system is often used. This additional term, however, is avoided
for simplicity’s sake.

5.2.2. Properties of the Modified System

The post-processing step (5.4) is closely related to Uzawa’s well-known staggered augmented
Lagrangian method [170, 267], but instead of solving the displacement problem for a fixed set
of Lagrange multipliers, the update is performed on the fly during the non-linear iteration. This
type of update is called a first order iteration scheme, which comes in theory with a superior
robustness in comparison to a second order iteration scheme [23]. Furthermore, the entire modi-
fication has a number of appealing properties as originally stated by Bertsekas [23, pp. 240-241]:

1. As the regularization parameter cy tends to infinity, the system becomes in the limit the one
corresponding to the consistent Newton’s method for the Lagrangian (4.10). Furthermore,
if cy — 00, a super-linear convergence rate can be expected.

2. If ey is sufficiently large, then the sequences {d*'} and { Al{f}} converge locally to a KKT-
pair fulfilling (4.9). Note that this does not necessarily mean that cx must be infinite at
the solution. However, if ¢y does not tend to infinity, the convergence rate will decrease.
Further information will follow in Section 5.4.1.

3. The system of equations has a unique solution if either

V3L 20T = {(VE2 @) - Ve T 69)

or

- - . ~1

[V3aZon " 207" = { V32" + exVagd ()[4 @) [Vagd@)]'} 5.6)

exists at the solution. Note that (5.6) is truly the incomplete second order derivative of the

augmented Lagrangian at the solution with respect to the displacement degrees of freedom,
since g (z*) = O holds.

4. The gradient of the active constraints is allowed to become partially linear dependent and

a unique solution is still maintained. This weakens the Mangasarian-Fromowitz constraint

qualifications [204].
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5.2. Modification of Newton’s Method

5. If the matrix defined in (5.6) is positive definite, then the calculated search direction for
the displacements, i.e. Ad, is a descent direction for the augmented Lagranigan functional
(4.13).

6. The condensed system matrix can be easily identified as an approximated Hessian of the
augmented Lagrangian functional.

However, to understand the later shown highly beneficial effect on the non-linear solver behavior
of this simple modification, the active part of the modified saddle-point system of equations
proposed in (5.1a) and (5.2) shall be reformulated once more. Therefore, (5.1a) is reordered
such that it becomes possible to express Ad in terms of A\ by

Ad = —V23,L UV — Vgt O + Ax), (5.7)

where it is assumed that V ;-2 1s non-singular. Now, by inserting (5.7) into (5.2) a new system
of equations is obtained which can be solved for ANG, viz.

{IVagd " V3,2 'V agd + —AA} AN
= — G+ [Vagl"VieZ ™ Wﬂ/ — Vi X} (5.8)

The idea for this reformulation can also be found in Gould [113], for instance. These equations,
i.e., (5.8) and (5.7), are known as the range-space equations. A more detailed discussion of the
range-space and the closely related null-space method can be found in Conn and Gould [52] and
Gill et al. [108, p. 183]. In a nutshell: In the application discussed here, the range-space method
is theoretically more appealing than the null-space method, since the number of constraints m is
almost always much smaller than the number of displacement degrees of freedom n. Therefore,
if the inverse of the Hessian matrix is readily at hand, the system (5.8) will become small. A
possible variant, where this approach can become very attractive for the practical use, is given if
the exact Hessian is replaced by an approximation, e.g., obtained by a suitable BFGS or Broyden
method, see Section 3.1.1. A discussion of range-space methods which use a suitable positive
definite approximation of V2, can be found in Biggs [24, 25, 26]. However, even though
the range-space method itself does not play a practical role in this thesis, the reformulation
(5.8) reveals the true nature of the modification: The scaled tributary area matrix 1NAA acts as
an additive regularization which helps to make the entire matrix on the left hand side of (5.8)
more positive definite. The influence of the regularization becomes smaller and smaller with a
rising regularization parameter cy. Furthermore, (5.8) reveals that the step length of the Lagrange
multiplier increment can be expected to become smaller compared to the non-modified system
as long as the Lagrangian Hessian matrix mapped into the range space of the constraint gradients
is positive definite. In fact, the structure of (5.8) reminds one of the trust region or Levenberg—
Marquardt method presented in Sections 3.1.2.2 and 3.1.2.3, respectively. A major difference is
only that it is formulated with respect to the Lagrange multipliers instead of the primal variables.

Another effect can be shown by looking at the range-space part of the displacement solution
vector. Therefore, the solution vector shall be formally split into a range-space and a null-space
part
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5. A Variant of Newton’s Method for Constrained Problems

Ad = BAdy, + ZAdy, (5.9)

where R € R™*™ is a matrix whose columns span the range space of Vdgﬁ, while Z e R (=)
is a matrix whose columns span the null space of [Vdgﬁ]T, Le. @TZ = 0. A suitable choice

for R is V@Qﬁa for instance. The null space matrix Z can not so easily be obtained and asks

for a singular value decomposition or the reduced row echelon form of the matrix [Vdgﬁ]T. For
more information the reader is kindly referred to Gill et al. [108] and Nocedal and Wright [204,
p. 457 and p. 538]. However, the split makes it possible to write the displacement solution as two
distinct parts. The first part belongs to the range-space of the constraint gradients and is obtained
by inserting (5.9) into (5.2) yielding

. _ 1
[Vag{]' R Ady = —g3; — aéAAAfG‘- (5.10)
The second part belongs to the null-space of the constraint gradients and follows after inserting
(5.9) into (5.1a) and multiplying the obtained equation by Z T from left resulting in

Z' N3l ZNdy = —2"VU — 2" V5, R Ady. (5.11)

Especially, (5.10) reveals a second regulative effect of the modification. Under certain assump-
tions, such as the positive definiteness of the modified matrix on the left side of (5.8), it can be
expected that the Lagrange multiplier increments point in the opposite direction of the active
constraint violations and thus reduce the right-hand side in (5.10). This reduces also the solution
increment Ady. In summary, a damped but, therefore, more reliable system answer to (huge)
constraint violations, i.e. large initial penetrations, can be expected which is very beneficial dur-
ing the pre-asymptotic phase of displacement controlled problems. For the overall performance
of the method, the updating strategy for the cy parameter will be of major importance. This is
going to be discussed in Section 5.3.

Remark 5.2. Notice that the split of the displacement solution vector into null-space and range-
space as presented in (5.9), (5.10) and (5.11) is technically only possible as long as the complete
variational approach is used. However, the made observations hold also for the incomplete ap-
proach. After all, the incomplete approach is a truncated variant of its variationally consistent
counterpart and, interestingly, the modified approach works even better for the variationally in-
consistent than for the consistent approach. This will be further investigated in Section 5.6.8.

5.3. Dynamic Correction of the Regularization
Parameter

A crucial point for the applicability of the modified system is a reliable correction strategy for
the involved regularization parameter cx > 0. This correction routine must avoid updates during
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gx
I

~1
U

Figure 5.1.: Fundamental idea of the sufficient angle demand for S2¥ = 0.8. The cn parameter would stay un-

changed as long as the directional derivative of the weighted gap <@¢ gﬁ{k}, Ad) is part of the green cone.

the non-linear solution procedure in already cumbersome situations, but has to be activated as
soon as the modification of the system of equations leads to a remarkable performance loss.
Most of the proposed update routines in the literature are based on heuristic considerations and
include some initially unknown tuning parameters. See for example Bertsekas [23, Sec. 2.2.5] or
Glad and Polak [111]. These heuristics make it often difficult to transfer the routine to another
application. In the following, two novel approaches are presented which make it possible to carry
out a correction without such heuristics.

Both ideas rely on the fact that the computed displacement increment as solution of (5.3) must
be at least a descent direction for the active constraint equations, such that

(G%, [Vagd] " Ady < 0 (5.12)

holds true. This very basic demand is always fulfilled for the consistently linearized system (5.1)
since

~A1T . ~A
[Vag{ ] Ad = —g% (5.13)

is enforced by (5.1b). However, in the modified case it can be used to derive a reliable correction
routine for the regularization parameter.

5.3.1. Sufficient Enclosed Angle

The first correction strategy can be derived by reordering the terms in the solved modified lin-
ear system of equations (5.3). Therefore, the system is multiplied by the displacement solution
increment vector from the left side, bringing up the scalar-valued demand
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(@ [Vagd]"Ad) = = (AL, Va — NVagide) — (Ad, Vi, % Ad)
+ (AL, [Va(Vaggd)] A — ex|[Vagg] " AdS - <0, (5.14)

where the scaled quadratic norm |v HQA = (v, Av) is used. Notice that the reformulation (5.14)
proposed here contains a slight simplification compared to (5.3), since in general

I[VaggTAd|% -1 # A"V g A [Vag]"Ad (5.15)

for the incomplete formulation, see Remark 4.1 for more information. The simplified inequality
(5.14) asks for a descent direction of the active constraints, but in a quite weak sense: Any descent
direction will be admissible, even if it is almost orthogonal to the steepest descent direction. In
order to become more applicable, the original inequality must be strengthened by introducing a
control parameter 3¢~ € (0, 1), such that the following new demand is obtained

cos(£(93, [Vaga]"Ad)) < =82 < (g5 [Vagl]"Ad) < =B g5) ITVagi]™ Ad). (5.16)

See also Figure 5.1 for an illustrative sketch of the condition. By inserting (5.16) into (5.14), the
new request

—e{I B G2 (Vagd, AD| 2(AL, [Va(Vagi AT Ay — (Ad, V3, % Ad)
— (AL VU = VG A — exl(Ad VagDlh 1 (5.17)

is created. This relation can now be used to define a correction equation for the regularization
parameter, Viz.

! 1
N = =
KA, Vag )l

{82138 Vg Ad) + (Ad, [V Vagad)]" Ad)

— (AL Va¥ ~ Vagid) — (AL, V3,2 M) (5.18)

Under the typical assumption that the Hessians of the elastic bodies are symmetric and positive
definite [297], i.e., (Ad, V2, % Ad) > 0 for Ad # 0 holds true, the inequality can be further
simplified. In fact, the expensive matrix vector multiplication can be removed from the lower
bound estimate of the regularization parameter cy and the final, computationally less expensive
estimate follows as

& BN IVagAT Ad) + (AL, [Va(Vagi M)A — (A, V% — Vg A
I[VagdITAd|% - |

oV =

(5.19)
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The evaluation of each term can be performed with limited effort. The most expensive remaining
operation is the vector matrix product, where the dimensions of the matrix are bounded by the
displacement degrees of freedom on the slave and master interfaces. While the denominator is
always positive, the numerator can become both, positive and negative. For the latter case no
action is necessary, while for positive values an adaption may be initiated. Furthermore, it is
to note that the numerator tends to zero close to the solution. Unfortunately, the denominator
follows the same trend, since the displacement increment tends to zero as well and some safe
guarding strategy should be invoked to avoid numerical issues. Finally, the correction routine is

given by c{ h

max{cN , v

Remark 5.3. The two simplifications introduced during the derivation, namely once (5.15) and
secondly the disregard of (Ad, V3 ,% Ad)y makes the behavior of this control mechanism less
predictive. Actually, (5.15) causes an inconsistency throughout the entire derivation since even
the demands (5.16) and (5.12) do not coincide for the incomplete formulation. The later con-
sidered examples in Section 5.6.2 will reveal that these slight inconsistencies can, at least un-
der certain circumstances, lead to a bad performance of the correction scheme proposed here.
Therefore, an alternative will be presented in Section 5.3.2 which does not suffer from these
fundamental problems. However, the sufficient enclosed angle (SEA) scheme will be useful for
comparison reasons.

5.3.2. Sufficient Infeasibility Reduction

The second idea is based on a model for the infeasibility measure, for example

O™ = g2 (™)) = /@ 50 (520

The reduction of such a model can be enforced by introducing a regularization parameter and
choosing an appropriate value for this parameter. For instance, the predicted model reduction for
a step length of one is claimed to be at least

O™ +me(1) < (1 - Y)W, (5.21)

where 2" € (0, 1) is a given constant. This basic idea is inspired by the literature on filter meth-
ods, see e.g. [96, 98, 270, 271] and Chapter 6. In the following, a linear model mg(a) : R — R
1s used, such that

me(a) = <<gN, [Vag ]TAd>) (5.22)

follows. First of all, it should be noted that mg(1) = — O} holds for the fully consistent
Newton approach due to (5.13) and, therefore, the inequality (5.21) is always fulfilled in this
case. However, this is no longer true for the modified approach. Instead, the inequality (5.21)
yields
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1
(1- 5CN)9{k} > otk 4 {k}<gA{k}7 g.A{k} . &é{k}Aéﬁ{k}>

_ ~ Ak} AA{K} A ALK}
CN@{k} <QN 74 AAN >7 (523)

where (5.2) is used to replace the term [Vdgﬁ]TAgl in (5.22). The idea is now to choose the

regularization parameter cy = ci{\lkﬂ} for the next step in such a way that it would have been at
least sufficient for the current step, i.e.

(he) _ <gA{k} AA{k}A)\A{k‘}>
N (B8 — D[OH]?

Finally, by reinserting (5.4) into (5.24), it is possible to obtain an explicit relationship between
the previous regularization parameter and the new one
} . (5.25)

An alternative interpretation of this result is that the regularization parameter will be increased
as soon as the current search direction is or is close to be no longer a descent direction for the
currently active constraints. This is true, since the cosine of the enclosed angle between the active
constraints and their respective directional derivatives is claimed to be bounded in the negative
half plane:

(5.24)

CN

o

Ak} o H ALK
" " 1 Gt Vg™, Ady)
ek = e’ max {1’ = [1 ~ oWy

. ek}
cos(4 (9N> <VdgN, Ad))) < QNM <0. (5.26)
N7

As soon as this condition is violated, the regularization parameter is going to be increased. Fur-
thermore, it is possible to deduce a lower bound for the norm of the Lagrange multiplier in-
crement by assuming that (5.21) does not hold in a Newton iteration k. By multiplication with
1G5, (5.21) yields

<gA{k}’gN{k} +[Vy gA{k}]TAd{k}> > (1— ><9N{k}7§§{k}> (5.27)

Under the stated assumption the following simple estimate can be derived

A{k
0 < (1-B2)|gM)? < <gN{k} AAEANGT
CN
1 .. Alk
< ang{“uug‘{kmw 4

A
w0 G LA AN (5.28)
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which instantly leads to the lower bound for the Lagrange multiplier increment norm

7|
N

|9
AN S (1 = gy 2= .

(5.29)

Thus, a minimal slope of (1 — ') can be expected, if the regularization parameter is continu-
ously corrected during the non-linear solution approach. To reach this minimal slope, however,
the generated sequence of regularization parameters {cl{é€ }} must stay (nearly) constant. This, at
first glance, opposing result will become clearer under consideration of Section 5.4.2. Further-
more, it 18 demonstrated in Section 5.6.5.

Visualization

To get an idea of the SIR method a short visualization shall be presented and discussed. The
underlying contact problem will follow in Section 5.6.1.2. For the moment, the details are of
minor importance. Let us assume that the simulation reached Newton iteration #4 and the cor-
rection parameter J¢ is set to 0.9 for the entire solution sequence. Now, two different directions
are considered: Once the modified direction (Ad, 4, AAR?) obtained from (5.3) and (5.4) and,

secondly, the default/unmodified direction (Ad.;, AMY") obtained from (5.1). These two direc-
tions span the space for Figure 5.2a by

O, ) = Oz + o Ad, g + aAdyy). (5.30)

The one-dimensional slices along these directions, i.e. ©(cy, 0) and O(0, ), are shown in (5.2b)
and (5.2c¢), respectively. Notice that the Lagrange multiplier direction influences the function
indirectly since the Lagrange multipliers are part of the active set decision (4.12). First, the
attention is on the default direction: As expected, for a linear model this direction will reduce
the infeasibility measure to zero (see the red line in Figure 5.2¢). However, the true behavior of
the function can be severely different. In this case the linear model fits well for a, < 0.8, but
afterwards the true function values follow a highly non-linear path, thus, the gap between both
curves rises rapidly. In contrast, if the modified direction is followed the difference between the
linear model and the actual infeasibility value is only very small, i.e., the model quality is high in
this direction and for the considered step-length. At the end of iteration #4 the inequality (5.21)
is tested and fails, since

o +mi (1) = 2.617 — 1.966 = 0.651 £ 0.2617 = (1 — 52 ) O, (5.31)

Thus, cx must be increased by a factor 01{\15 s / cl{\f b = 2.062 following (5.25). This brief example
demonstrates two things: Firstly, the SIR update is easy to execute. Secondly, the modified di-
rection might lead to less change in the linear model but can still be superior compared to the
default direction. This is very obvious in Figure 5.2a, where the modified direction is clearly
advantageous compared to the default direction by coming much closer to the local sub-space
minimum.
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Figure 5.2.: Figure 5.2a shows the colorful sub-space contour lines of (5.30) as well as the two parametrized search
directions. The gray solid lines surround areas with a constant active set. In addition, one-dimensional slices through
the two-dimensional function (5.30) are presented in the Figures 5.2b and 5.2c. In these figures not only the function
graph is shown as - - - , but also the linear model is given by —— as well as the initial function value —— and the
at least expected reduction level —.
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Remark 5.4. It must be noticed that the discontinuities of (5.20) visualized in Figure 5.2 are
partially expected whenever the active set changes. The reason is that only the active weighted
gap values are considered in (5.20) and as long as the corresponding scaled nodal Lagrange
multipliers, i.e. Aﬁ/ cn, are unequal to zero, the active set decision (4.12) will cause a jump in
(5.20) during the transition from active to inactive and vice versa. However, not all of these jumps
are caused solely by this effect. Others are triggered by a distorted mesh and missing projections.
However, the important point is that the SIR correction stays in all cases unaffected since it is
completely based on the local linear model.

5.4. Local Convergence Analysis and Boundedness of
the SIR Correction Scheme

The main objective of this section is to prove the boundedness of the sequence {cl{\f }} for k — 0.
However, the proof relies on the convergence properties of the entire modified sequence of gen-
erated iterates {(d'*}, Al{\f})}. In a first step, the attention is on the local convergence analysis. To
begin with, required key properties of the constrained optimization introduction in Section 3.2
are briefly recapitulated. For example, the active set definition given in (4.12) can be seen as an
educated guess of the true active set at the solution pair (d*, \Y,), defined by

Ao =1{ieS|[on(@)]i =0} and A, ={ie Ay|[\e]s > 0. (5.32)

This is just in accordance with (3.33) and (3.34). The optimization algorithm often performs
poorly near the solution, if any of the active constraints have a Lagrange multiplier near zero,
i.e., if they are not strongly active, see also Theorem 3.6 and the associated Remark 3.3. There-
fore, it shall be assumed during the following derivations that x* and its associated Lagrange
multipliers Ay represent a strict local minimizer of the considered optimization problem pre-
sented in Section 4.2.2. Furthermore, z* shall be a regular point, i.e., the active constraints are
linearly independent at the solution. In addition, the functions % and gy, shall be twice contin-
uously differentiable in some open neighborhood V* centered at the solution point and defined
by

V* = V*(51a52)EN) = {(da AN? CN) : HQZ—C_i*H < 617 HAN _A;IH < 5QCN7 CN > EN}? (533)

with the positive scalars 91, d» and ¢y. The neighborhood V* is chosen such that the correspond-
ing active set, viz.

Ay (d Ax) = {10 An —exgy(d) > 0}, V(d Ay, ex) € V7 (5.34)

is a subset of the active set at the solution, i.e., 4, < A. (d,A\y) € Ap. Furthermore, Theo-
rem 3.5 shall hold, which is captured in the following assumption:

AS 5.1. The Karush-Kuhn-Tucker (KKT) pair (d*, AY) satisfies

~ ~ T
VL) v >0, Yo 0with Vet (d)| v=0.  (539)
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For more details the reader is referred to Section 3.2 and references therein.

Remark 5.5. Note that a slightly different function declaration will be used within this section.
The current displacement field d is used as an input variable rather then the current position
vector z. However, this is only a small notation detail to denote the displacement dependencies
since x = X + d holds and X is constant. This slight change has been applied to reduce the
number of additional auxiliary variables during the following proof and does in no way affect
the meaning of the expressions, i.e. £ (d, \y) = -Z(z, \y) etc.

5.4.1. Local Convergence Rate

In the following, important local convergence results for the modified Newton approach are
stated and proven. These results as well as their asscoiated proofs are largely inspired by Propo-
sition 2.4 and the related proof in [23]. However, a different update scheme for the Lagrange
multipliers is considered here which implies some modifications. Furthermore, the proof shall
be formally extended to the considered inequality constrained problem.

Theorem 5.1. Under consideration of Assumption 5.1, let ¢y be a positive regularization param-
eter such that

VgL (d*, Ax) > 0. (5.36)

In addition, it is assumed that the tributary area matrix A(d) contains only positive values as well
as that it has full rank |S|.
Then, positive scalars d1, do, € and M exist such that:

a) The considered problem
m(}n max Lo (d, Ax), V(d, A\n,cN) € VT (5.37)
= 2N
has a unique solution Qu(c_i, AN, On) and ZN (d, Ay, ¢x)- These functions du(, -, ) and XN(-, )
are continuously differentiable in the interior of V* defined in (5.33).
b) Forall (d, Ay, cx) € V*, the inequalities

[An — Axl

] ] N
ld(d. A ex) — d*|| < AT Ay — M

L Al A en) — Ay] < ATIA AN s 5
CN CN

hold, where ZN is defined as in (5.4):

An(d Axsox) = Ay — ex[Ad)] g (@) + [Vagy (D]"[d(d, Ay, ox) — d]}. (5.39)
¢) For all (d, Ay, cn) in V*, the matrix @é aLox [j, EN] is positive definite and the gradient of

the active constraints Vdgﬁ(du) as well as the incomplete gradient @dgﬁ(c_lu) have full rank

Al
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5.4. Local Convergence Analysis and Boundedness of the SIR Correction Scheme

Proof. For the following proof the modified system of eguatiouns defined by (5.1a) and (5.2) is
replaced by its continuous counterpart formulated in (d, d, Ay, Ay, cn). Hence, the ansatz

0 =V (d) = Vg (d) My, (5.40a)
0 =3 (d) + (Vaiy (d)"(d — d*) — (Vag,(d)"(d — d*)
FAQR TN g g AT A (5.40b)
- CN - CN

follows, where (5.40b) represents the continuous counterpart of (5.2), since it can be easily
rewritten as

V)

0 =3 (d) + (Vago (d))7(d — d) + ()N 2N (5.41)

= <N 22N = cN

Next, a reparametrization of (5.40) is introduced under consideration of

A=d-da, 1= ,_ L (5.42)
CN CN
This yields
0 =V (d) = Vag (d) Ay, (5.432)
0 =g [d(A)] + (Vg [d(A)])T(d — d*) — (Vg [d(A)])TA
+ wA[d(A)[{Ay — A} — Ald(A)]L, (5.43b)
where d(A) = A + d* and thus d(0) = d* holds. At the solution point, i.e., for A = 0, = 0 and

w € [0,1/¢ex], (5.43) leads to

Va? (d) — Vagy(d) Ax = 0, (5.44a)
Gy (@) + (Vagy (d)T(d — d*) + wA(d){Ay — Ak} = 0. (5.44b)

This system has the solution d = d* and ZN = AN, while the Jacobian with respect to d and iN
at such an optimal point follows as

(5.45)

<V§ﬂ/ (d") = Va(Vagy (d)A0)" —VdQN(d*))

Vg (d)! —wA(d"),
where A(d") represents the diagonal tributary area matrix evaluated at the displacement solution.
For convenience, the second row has been multiplied by —1. Now, (5.45) is multiplied from the
right side by a vector (v, w)" with v € R” and w € R™ and the emerging system of equations is
set equal to zero, yielding
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(U ) ©)-() o

Next, the condensation step which leads to (5.3) can be directly applied to (5.46), leading to

{VaaZ (d", M) + w ' Vag (d7) A7) (Vagy (d))" v = 0. (5.47)

At the solution, i.e. for g (d") = g, (d") = 0, this matrix completely coincides with the Jacobian
with respect to the displacements of the incomplete augmented Lagrangian approach presented
in Section 4.3.2. Consequently, since 6@ Lo (d, AN) > 0 for ex > &n (see (5.36)), it follows
v = 0 and thus system (5.46) directly implies w = 0. Thus, (5.45) is invertible for all w €
[0,1/¢x].

This, together with the second implicit function theorem defined in Bertsekas [23, p. 12],
enables the existence of a neighborhood around the solution (d*, AY). Thus, it exists a number
of scalars € > 0, 9; > 0, d5 > 0 as well as continuously differentiable functions D (A,l,w) and
Ay(A, L, w) defined on

V*(élu 6275N) = {(é? l? w) : Hé” < 517 HLH < 527 w e [OJ 1/EN]}7 (548)

such that (|D(A, L, w) — d*|* + [Ax(A, L w) — AY[?)Y? < e forall (A, I, w) € V*(81, 02, Ex).
Further, these continuously differentiable functions fulfill (5.40) resulting in

0 =V4%[D(A,L,w)] = Vag [D(A, Lw)] Ay(A, L w), (5.492)
0 =g, [dA)] + (Vag [dAN (DA, Lw) — d*) = (Vg [dA)]) A
+ wA[A(A) AN (A, Lw) — A} — A[d(D)]L, (5.49b)

where again the relationship d(A) = A + d* is used. Without loss of generality, the introduced
scalars 01, 0o and € can be set sufficiently small such that matrix (5.45) remains invertible and
Vdg as well as the incomplete gradient Vdg have full rank |.A| in the entire neighborhood
(A, I, w) € V*(d1, 02, cn). Consequently, the considered Jacobian matrix (5.45) stays positive
definite.

Thus, only the proof for the convergence rate result (5.38) is still missing. To obtain this,
(5.49) is differentiated with respect to A, [ and w. First, (5.49a) is considered yielding

0 =V34Z[D,A\] VaD(A, Lw)" = Vg [D] Vahy(A, Lw)", (5.50a)
0=V, Z[D,A\] VID(A, Lw)" = Vg [D] ViAy (A, Lw)", (5.50b)
0 =V34Z[D, A\] VuD(A, Lw)" = Vg [D] Vuhy (A Lw)". (5.50c)
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Secondly, (5.49b) leads to

v

0 =Vag [dA)]" + (D(A, Lw) —d*)" ddgN[ (A)] + Vagy [d(A)]T VaD(A, Lw)"
— ATV349,[d(A)] = Vag [d(A)]T + w(An(A, Lw) = A0) T VaA[d(L)]"
~"

+ wA[d(A)]VaAy (A, Lw)" = I"V4A[d(A)], (5.51a)
0 =Vagy[dQ)]" ViD(A, Lw)" + wA[d(A)] VAN (A, Lw)T — Ald(A)], (5.51b)
0 =Vag[d(A)]" VuD(A,Lw)" + A[d(A)] (Ag(A,Lw)" = AY)

+ wA[d(A)] Vuhy (A, Lw)". (5.51c)

These equations can be reformulated such that a closed form for the desired derivatives is ob-
tained, viz.

||
4
IE
€
|Im<

(AL w), (5.52a)

where
~ ~ -1
—1 _ Vzdg(éa la W) _VQQN<A)
5S4 Lw) = < i INLy/N) , (5.52b)
g 0 0
y D—d —AYV2 g (A
R(A L w) = (L= 4 = A} Vady(8) (5.52¢)

+o(hy = A)TVAA)T  —AQ) AL A - Ak}
—["V4AN)T

By applying equation (5.52a), it becomes possible to express the distance between the continu-
ously differentiable function values and the solution as

D(éu L CL)) - C_i* _ D(é; L w) - D(Q; QJ 0)
AN (é) La W) - A]tI AN (éa L w) - AN (Q? Q7 0)

W

1 A
fé H(¢A, ¢l ¢w) R(CA, L, (w) (z)dc. (5.53)
0

Since (5.45) is invertible for all w € [0,1/éx], d; and Jy can be sufficiently small, such that
S™Y(A, L, w) is uniformly bounded in V*. Defining a ji thus [S™"(A, L w)| < /i holds, leads to
the estimate
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5. A Variant of Newton’s Method for Constrained Problems

(ID(A Lw) = d&'[* + |Ax (A, Lw) = ALY
<ji{ max HVddQN(Cé)H[maX |D(CA,CL Cw) — | + max(ClaD]IA]

¢el0,1]
+ [Cm[gwf (Cw) max |AN(CA, ¢l (w) — A + max (CHlH)] max [VLACA) A
+ ax JACA)[]IZ] + w max IA(CA)] max |Ax(CA, ¢, CW) — A} (5.54)

By the positivity property of the tributary area matrix, there must exist a 6; > 0 such that

max {[Vad(C A)TA[, JACA) |} < a (5.55)

¢el0,1]

holds for all |A| < d;. Furthermore, a upper bound for maxcejo 11 [V 49, (CA)| < G is intro-
duced and all terms linearly scaled by ( are approximated by their maximal absolute value. This
is achieved by setting ¢ equal to one in all linear terms. This yields

(ID(A, L,w) — &[> + [ Ax (A, L w) — Ag[H)Y?
<2 a |l + 7 GA| [max ID(CA, L, ¢w) — d*|| + | A]

+2fiaw max |AN(CA, CL Cw) — A (5.56)

Without loss of generality, d, > 0 is sufficiently small such that at least 2/iad5 < 1 holds. Next,
the demand

IDALw) —d'| < 2a |l + i G A max ID(CA, ¢l ¢w) = d'| + 2 G A

+ 2/ 6w max |Ax(CA, ¢l (w) — A (5.57)
¢el0,1]

is formulated and the left hand side is evaluated at (CA, (I, (w), thus, the estimate

o . 20 a { X }
max [D(CA ¢l cw) = &' < o max [Ay(CA, (L w) ~ A
max [ D(CA, L, (w) | TN 12 + [AN(CA, ¢ Cw) — AN
e 2
N uGzHuéH (5.58)
1—aG A

is obtained from which §; < min{(iG)™*, (4G) "2} can be directly deduced. Next, this result
is inserted into (5.56) and the procedure is repeated to get an estimate for [Ay — Ay . Inserting
into (5.56) and replacing the left hand side yields
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2] = w mece JAx(CA L Gw) = A4
max [Ay(CA, L (w) = M| < 2pa ’

et L= jiG 4]
eI 550
1—aG A
and, subsequently,
2nall| + pG| A2
mase [y (CA. CL () — 2 < b+ ACIS (5.60)

e T T 1= (G A] + 20w)

Finally, the results (5.58) and (5.60) can be combined by inserting them together into (5.56) to
obtain

2jiall] + pGlAJ12
— UG[A] + 2aw)
where w € [0, 1/¢éx] and additionally the demand 0 < w < §; must hold. By taking 0; suffi-

ciently small if necessary, such that ji(G|A| + 2dw) < 1/2 and |A|? < ||I| hold, the following
reformulation becomes valid:

(ID(A, Lw) = &P + AN (A, Lw) = A5 < (5.61)

(ID(A, L w) — d** + AN (A, L w) — APV < 4pall] + 2aG))
= 2ji(2a + G)|1]. (5.62)

It can be concluded that for

& < min{[2/u(2a + G)] 7 A8} 6y <[22 + )] 7Y, ex > max{en, 1/6,)  (5.63)
with [ A — A*| < d2cn, the following holds

[An — AN

ld(d: Ay, ex) = d°|| < 2(2a + G) ==
N

(5.64a)

o Ax
(A en) — 240 < 2020+ Gy 2250
This directly implies that (5.38) holds for M = 2i(2a + G) and ¢y > max{éy, 1/6,}. Further-
more, it is also possible to find a M such that (5.38) holds for ey < ex < max{cn, 1/01}, since
d and \y are continuous functions. Hence, the proof is complete. [

(5.64b)

Note that the assumptions concerning matrix A(d) are crucial for the proof: The tributary area
matrix must always have full rank, i.e. rank(A4) = m = |S|. However, this must hold for any
finite element discretized contact problem. Otherwise the underlying mesh would be already so
heavily distorted that it is impossible to find a solution. Therefore, the requirements concerning
A do not restrict the applicability of Theorem 5.1 and are rather mandatory prerequisites for any
finite element simulation.
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5.4.2. Bounded Regularization Parameter

In the following the SIR update of Section 5.3.2 is considered. Under the prerequisite that the se-
quence { Al{\f }} remains bounded, it is possible to show that the sequence {cl{\f} } remains bounded
as well. This can be summarized in the following theorem:

Theorem 5.2. Let { Al{\f}} be a bounded sequence and assume that the inequalities

ce(1 = Lg% | < 1+, (5.65)
Hé“‘““}[é““}] ' < ea (5.66)

hold for some 0 < ﬁfN < 1, where ¢4, ¢, € (0,00) are positive scalars, which are bounded
away from zero and infinity. Furthermore, let |g, || > 0 hold and let (5.21) be violated for all
considered iterations k € K, where IC,, is a finite sub-sequence of all iterations, such that cy
must be increased. Lastly, assume that Theorem 5.1 holds.

Then, for all (d, Ay, ex) € V*(61, 02, &), Where 01, 2, &x > 0 are defined in Theorem 5.1, the
regularization parameter is bounded by

y 2
A <M {1 + ﬁ} . (5.67)
CN

Proof. To prove Theorem 5.2, assume that the sequence of the regularization parameter {cl{éc }}
becomes unbounded. Then, at some ﬁnite k > k the corresponding c{ b will be large enough,

such that 01{\1} > ¢y and, additionally, c }' = M hold. For all k > % and due to the fact that cN 18

increased in each considered iteration k: € K.y, (5.21) is multiplied by ©*} resulting in

T
(1= Bo)lay’ P < gy o + VdgN‘{k’} (@ — dt*h)

T
<1118y + Vagy| @ - d®)), (5.68)

where the Cauchy-Schwarz inequality has been applied. Next, (5.68) is divided by || gl{\f} | on both
sides and (5.4) is used to reformulate the right side, such that

b ~(k} H: 2N 2N
(1- 517" < .
N

k * k "
_1AMORT =20+ 1AM O - )]
h R

N

k *
2| AB A — A0
ol

(5.69)
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5.4. Local Convergence Analysis and Boundedness of the SIR Correction Scheme

follows under consideration of the triangle inequality. The last inequality follows since cl{\f Vs M
holds, which implies HAI{\fH} — Al < HAI{\f} — ANl according to (5.38) of Theorem 5.1. Now,
under consideration of (d, Ay, cn) € V*(d1, 2, Cn) together with (5.34) and by applying the

reverse triangle inequality, a second estimate is obtained

AL = A
{k}

T
® > (60 4 V6 ‘ g gty
A= 17 all,,, (d )| =

N
JAB AL =201 1AM LT = A
- ol ot
> (; - i) AR LY~ x)). (5.70)
M cl{\lk} -

In a next step, the iteration counter % in (5.69) is increased by one and the result is combined
with (5.70), yielding

1 9 {k+1}1 A{k}1=1| =1 =~{k+1} 01{\1k+1} 01{\1k+1} {k}
5 (1= ALIAN AW gl < | Fem - B N
N

{k} {k+1

To conclude the proof, ¢’ is set equal to ¢y Vin (5.71) resulting in

2 AT AN gl 2c
At < {1+ <M {1 + —“} (5.72)
{ =iy g (= L)
where Hgf\fH}H > (1 — )Hg{k}H and |A¥U[AM]7L] < ¢, have been inserted to obtain the

last inequality. Thus, from (5.72) follows that the assumption, that {cl{\f}} is unbounded, together
with cl{\IkH} = cl{\f }, 1.e., no increase of cy, leads to a finite upper bound for the regularization

parameter as long as 5fN < 1 holds. This contradicts the assumption. Hence, it is proven for the

SIR correction scheme that the sequence of regularization parameters {cl{\f}} is indeed bounded
as long as 53N < 1. In addition, it is obvious that this upper bound rises with BfN — 1. The proof
is thus complete. O

Now, the results and assumptions stated in Theorem 5.2 shall be examined in more detail.
First, the positive scalar ¢, shall be considered. This constant accounts for possible influences
of neglected higher order terms, since (5.21) considers only a linear extension. However, this
influence will decay with at least second order if the sequence {c_l{k}} converges towards the
solution d*. Therefore, it can be assumed that ¢ tends to 1 close enough to the solution and,
consequently, it is reasonable to assume that it is bounded away from zero as long as the sequence
{d™} converges and | gy | > 0holds. Note that if ||g || = 0, the solution is reached or there are
no active constraints. In both cases, ¢y would not be increased.

Next, the attention is on the positive scalar c,: It is introduced with respect to the convergence
of the tributary area diagonal matrix entries. All of these entries must be positive and the matrix
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5. A Variant of Newton’s Method for Constrained Problems

has always full rank. Thus, it stays invertible. In addition, the change of the tributary area matrix
also decays as {gl{k}} converges, i.e., ¢, tends to 1 close to the solution and is surely bounded
away from infinity.

Finally, to the assumption that the demand (5.21) is violated for all considered iterations k €
KCcy - If this prerequisite does not hold, cy is not increased. Thus, without loss of generality, the
considered sequence K., with k € IC, is a well-defined sub-sequence of all possible iterations.
In fact, since cy is bounded for 0 < BfN < 1, the sub-sequence K., must be finite.

Inequality (5.67) clearly shows that the upper bound rises if /BfN — 1. This can be also seen
in Figure 5.15a. Furthermore, (5.67) contains the limit case as well, since for the fulfillment of
(5.21) with 509N = 1 the modification in (5.2) must vanish and (5.1b) is reobtained. However, the
modification vanishes only for cxy — 0.

Remark 5.6. The entire convergence analysis presented in this section aims for Theorem 5.2.
This result is of great importance, because it guarantees that the regularization parameter cy
does not rise to infinity on the way to the solution. This is crucial because in this case it is much
more likely that the corresponding linear system of equations will remain solvable due to the
bounded condition number of the system matrix. Without an upper bound, it could theoretically
happen that the system matrix is conditioned increasingly worse with a steadily rising cy value
and the closer one comes to the solution until it is no longer possible to apply a meaningful
iterative solver. This is especially true for the condensed system matrix, see also the discussion
about the penalty method in Sections 3.2.1 and 3.2.3.2. Even though Theorem 5.2 guarantees an
upper bound for cy, the actual impact on the solvability remains an open question that strongly
depends on the considered contact problem. Therefore, the issue of a potentially ill-conditioned
system matrix will be further investigated in Section 5.6.7.

5.5. Switching Back to a Consistently Linearized
System

The presented approach is advantageous as long as the discrete solution is far away from the op-
timal KKT-pair. If the non-linear solution procedure has already achieved a good approximation
for the current load step, a switch to a consistently linearized, unmodified system of equations is
still the best choice in terms of the necessary amount of Newton iterations. Despite the fact that
the modification proposed here is suitable to converge comparably fast, the convergence speed
is still maximally linear and strongly coupled to the applied regularization parameter correction
scheme (see Sections 5.3 and 5.4). Therefore, the following switching strategy may avoid unnec-
essary solver steps. In addition, a well-timed switch can help to significantly reduce the impact
of an increasingly worse conditioned linear system of equations, see Section 5.6.7.

First, a set of different criteria must be formulated which can be consulted to reliably identify
the asymptotic regime. Therefore, three different conditions are proposed. These are tested in a
consecutive manner, i.e., if one of them is not fulfilled the others can be skipped. The first one
is the so-called gap criterion, which is quite cheap to perform. A upper bound for the absolute
values of the active nodal gaps is defined dependent on the current discretization by
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Bl = - min (L.}, (5.73)
where 7, € (0,1) is a scaling factor for the minimal detected element edge length Lgdge of

all contact surface elements on the slave and master bodies combined in the set £M. More
precisely, the minimal element edge length in the reference configuration is considered. The first
criterion is fulfilled as soon as the maximal value of the absolute nodal averaged weighted gap
values of all active nodes is smaller than the given lower bound

max{ gn|} < B (5.74)

The consideration of the absolute value addresses two possible scenarios: On the one hand, this
bound can be violated by a strongly overlapping region leading to large negative values. On the
other hand, if the bodies are moved apart after a previous contact load step, this value can also
be dominated by the still active but now positive gap values. An illustrative example will follow
in Section 5.6.5.

However, since this represents a quite rough criterion, the contact contributions to the force
balance are investigated in a subsequent step whenever the gap criterion is fulfilled. For this
purpose, the magnitude as well as the angle of the structural and the contact gradients shall be
considered. Note that only a subset of the entire structural gradient vector is considered. Namely,
only entries located at degrees of freedom for which the vector @d gggﬁ contains values unequal

to zero. This is denoted by (-)|4y, in the following. The angle criterion will be fulfilled, iff

Bie = | Va |5 IV agi XS] = (Va [0 Vagidi), (5.75a)
B, = ToLy | VaZ |5, IV agi M| (5.75b)

pre

holds, where TOL,, > 0 is a bound for the value of 1 — cos(y) and ¢ is the angle between the
structural gradient and the product of weighted gap gradients and Lagrange multiplier values.
The last criterion concerns the magnitude of the interface residual. The magnitude criterion will
be fulfilled, iff

| Vo [, — Vagi M| < B (5.762)

pre’

B = TOLy| Ve |2, | (5.76b)

pre

holds, where TOL,,s > 0 denotes a relative tolerance for the interface contributions. Finally, the
switch from the asymptotic to the pre-asymptotic phase has to be mentioned as well: Firstly,
the switch back is automatically performed once at the beginning of each load step. Secondly,
it is also initiated whenever the gap criterion is violated, or the absolute value of the averaged
weighted gap value reaches a value twice as high as the smallest absolute averaged weighted gap
value during the pre-asymptotic phase. The latter ones are mainly safe-guarding rules. If they
are activated, the user-specified tolerances are probably too loose and should be adapted, e.g., by
halving the values TOL,¢s and TOL,,.
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Remark 5.7. Note that in the special case A} = ¢ all considered contributions vanish due to
the proposed selection of the considered degrees of freedom indicated by (-)|4y,. In such a case,
the algorithm switches to the asymptotic phase. However, this will become only important if the
bodies come back into contact during the current load/time step.

Extensions for the Generalized-o Method

In case of dynamic contact problems the switching conditions must be slightly modified. While
the gap criterion stays unchanged, the angle criterion and the magnitude criterion must be
adapted. The first modification concerns the structural gradient V% ]éM vector which must
be replaced by its dynamic counterpart, viz.

A
{n}]

A = .
KSgO“SM = [(1 - Oéf) vi%‘d{”Jrl} + Qf Vi%‘d{”} — Oy Vdﬂﬁ 4 2N

, (5.77)
SM

where the DOF selection (-)|4,, is again based on the location of all non-zero values in the
vector [%gggﬁ]{m}. The second modification is related to this current contact force vector
(containing all forces related to the Lagrange multiplier values) which must be simply scaled
by its respective time integration parameter (1 — «y). Otherwise, even a possible solution point
would not satisfy (5.76).

Under consideration of these two simple modifications the conditions (5.75) and (5.76) stay
also valid in the dynamic case. Examples will follow in Section 6.10.6 and Section 6.10.7.

5.6. Numerical Examples

In this section the appealing properties of the novel modified approach shall be demonstrated.
Therefore, the modified incomplete method will be compared to the consistently linearized
method presented in Chapter 4. Firstly, a set of two-dimensional examples is presented whose
purpose is to demonstrate the superior non-linear solver performance of the newly developed
method. Subsequently, a detailed parameter study follows to identify an optimal parameter range
for 3", BN € (0,1). Additionally, the following points are covered: the influence of the numer-
ical integration scheme, the major importance of the second order derivatives of the unit smooth
normal field for large initial gaps as introduced in (4.34) and used in (4.39), the linear conver-
gence rate of the plain modified Newton approach discussed in Section 5.4, as well as the impact
of a possible switching strategy in the asymptotic phase which has been derived in Section 5.5.
The discussion of these points is followed by a deeper look into the conditioning of the linear
system of equations. Hereby, the practical difference between the condensed and the modified
saddle-point formulation is going to be addressed in detail.

Finally, as already briefly mentioned in Remark 5.2, observations have been made that the
modification works impressively well for the inconsistently varied approach considered here,
while unexpected convergence problems occur when it is applied to the variationally consistent
approach also introduced in Chapter 4. These observations will be further investigated in a final
example. All presented results have been solely computed with the in-house high performance
C++ code of the Institute for Computational Mechanics [274].
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Figure 5.3.: Visualization of the geometry and mesh for the semicircular indentor onto plate example.

The stopping criteria for the non-linear solution strategy as well as the applied numerical
integration scheme shall be presented next, since they will not change in the remainder of this
section. The stopping criteria are given by

IVa# = Vag (X < LOE—6,  [Ad*Y ] < max{1.0,|d|} - 1.0E — 10,
1g2] < 1.0E - 10, JAMTY) < max{1.0, [AY!]} - 1.OE - 10,

where | - | denotes always the ¢;-norm. The used numerical integration scheme will be the
well-known element-based integration with 7 Gauss points per slave element in each dimen-
sional direction. In other words: For two-dimensional examples 7 GPs are used and for three-
dimensional examples and quadrilateral shaped surface elements 49 GPs are taken into account.
A more detailed discussion about the influence of the used numerical integration scheme follows
in Section 5.6.3. Finally, all of the considered example will use the so-called tangential predictor
at iteration zero. A more comprehensive discussion of this predictor can be found in Appendix B.

5.6.1. Superior Performance for Large Initial Penetrations

Before a comprehensive parameter study of 5~ and BN € (0, 1) is presented, the two underlying

examples shall be introduced. Therefore, the regularization parameter is set to cl{\? } = 1 at the
beginning of each load step. Furthermore, the attention is restricted to the sufficient infeasibility
reduction (SIR) correction introduced in Section 5.3.2 for now and the related parameter 3" is
set to 0.9.

5.6.1.1. Wedge Indentor

As a first example the splitting wedge shown in Figure 4.13a shall be reconsidered. Let us briefly
repeat the result stated at the end of Section 4.7.4: The plain modified Newton approach con-
verges very smoothly to the desired solution in exactly 22 iterations despite the fact that it is
based on the variationally inconsistent approach. The reason is the less severe impact of the miss-
ing variations right at the beginning due to the small initial regularization parameter cl{\? b= 1.0.
Then, after this critical start-up, the master body starts to bend to the right such that the red
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Figure 5.4.: Different snap-shots of the modified Newton approach for an initial penetration of 6.8.

150



5.6. Numerical Examples

projection zone slowly fades out and, finally, disappears. This circumstance helps to resolve
the problem. However, since mainly the deformation helps to overcome the problem, it seems
possible to construct an example where the problem remains even at the final solution, see the
discussion in Section 4.7.4 for more information.

Next, the maximal possible initial penetration for the modified system of equations shall be
identified. Therefore, the penetration has been increased by steps of 0.1. The results is that the
simulation is still converging up to an initial penetration equal to 6.8 for the given set of boundary
conditions, the stated initial parameters and the shown level of mesh refinement. At this stage,
the wedge indentor has already been moved into the plate by far more than its reference height as
Figure 5.4a impressively demonstrates. Obviously, such a huge penetration is challenging for the
considered mesh, however, the converged solution is still successfully reached after 19 iterations.
It is to highlight that this is a lower iteration number than for the only a fifth as high initial
penetration which had been considered previously in Section 4.7.4. This undoubtedly indicates
a superior robust performance. Furthermore, the Figures 5.4b to 5.4e show a sequence of four
consecutive non-linear solver iterations which demonstrate how the approach is able to smoothly
resolve an intermediate heavily distorted mesh. Actually it is possible to go even further if the
correction parameter 3y~ is slightly reduced. Convergence up to 7.0 could be assured for an
exemplary value of 5, equal to 0.8. However, an increase of the penetration gets at some level
pointless, since the finally converged mesh is already quite heavily distorted for a value equal to
6.8 as Figure 5.4f demonstrates. Therefore, a further mesh refinement would become necessary,
which would naturally lead to a lower barrier for the consistently linearized as well as for the
modified approach.

5.6.1.2. Semicircular Indentor

As a second example the semicircular indentor from Zavarise et al. [294] shall be considered.
The dimensioned geometry can be found in Figure 5.3, where the lower curved line of the semi-
circular body is the slave and the upper flat line of the rectangular body is the master side.
The Young’s moduli as well as the Poisson’s ratios of the slave and master bodies are set to
EM = 25,000, B2 = 2,500 and v = »[2l = 0.25. The top line of the semicircular indentor is
fixed in z-direction, while a prescribed displacement in y-direction is applied. The master body
is completely fixed at its bottom line. Under consideration of the consistently linearized system
of equations both, the standard Lagrangian as well as the augmented Lagrangian formulation,
achieve convergence up to an initial penetration of 3.5 in 12 and 11 iterations, respectively. It is
to say that the reached possible initial penetration is already very high compared to the stated
values in [294]. The therein used node-to-segment penalty approach converged in its consistently
linearized form only up to a value of 0.8 and in its inconsistent variant up to 4.0. Anyhow, the
impression can be deceiving. First of all, the chosen regularization parameter cy plays a cru-
cial role. In the case presented here, cy has been set to 1.0. A value one magnitude higher, i.e.
cx = 10, leads to divergence. Secondly, the intermediate deformation states of the contact inter-
faces during the non-linear iteration procedure show an already distorted displacement field. At
the same time the Lagrange multiplier values scatter over a large range of non-physical values.
All this can be seen in Figure 5.5. The red contour corresponds to the augmented Lagrangian
solution while the black contour represents the standard Lagrangian solution. The related La-
grange multipliers are plotted over the left and right halve of the slave indentor, respectively.

151



5. A Variant of Newton’s Method for Constrained Problems

N

(a) pred. (pen=3.5) (b) #3 (pen=3.5) (c) pred. (pen=3.6) (d) #2 (pen=3.6)

Figure 5.5.: Figures 5.5a and 5.5b show the maximal possible initial penetration for the consistently linearized
standard (black) and augmented Lagrangian (red) formulation. Figures 5.5¢ and 5.5d show the poor result of a
further slight increase in initial penetration.

Even though the augmented Lagrangian formulation shows a slightly less severe mesh distor-
tion on the master side, both consistently linearized formulations act very similar. This coincides
with observation presented in [131]. To put it in a nutshell: The mesh distortion can become
quite strong for large initial penetrations and the successful convergence can become a matter
of luck. In this special case the success seems to rely largely on the simple geometry and the
specifically used mesh. This becomes even more obvious if the second step for a slightly higher
initial penetration is observed as presented in Figures 5.5¢ and 5.5d.

A selection of non-linear solution iterations of the modified Newton approach are presented in
Figure 5.6. As one can easily see, no heavy mesh distortions are present. Instead, the deforma-
tion process is very smooth and predictable during the entire non-linear solution procedure. The
maximal initial penetration is not restricted by the modified Newton approach, but instead by the
used smooth normal field which is defined on the slave side (see also [131] and Chapter 4), i.e.,
on the semicircular indentor. In the limit case shown here, this leads to a concentration of the
projected nodal reactive contact forces in only three master nodes, where the major part of the
reaction forces is concentrated in the central node as shown in Figure 5.6a. Since the Lagrange
multiplier values are initially all zero, the shown forces originate solely from the augmentation
term on the modified right hand side (5.3) in form of CN[@dgﬁ] gﬁ For an initial penetration
larger than the circle radius the used ray-tracing along the smooth normal field would project the
forces onto master elements that are not physically meaningful, such that the solution procedure
is likely to fail. To make a long story short: This issue can be resolved by a smooth closest point
projection or by switching the slave and master sides and has nothing to do with the modification
of the linear system of equations presented here. In fact, by switching the slave and master sides
an initial penetration up to —8.0 becomes possible and if at the same time the correction param-
eter 5~ is relaxed from 0.9 to 0.8 even an initial penetration of —9.0 still converges flawlessly.
Only afterwards the heavily compressed bulk elements close to the master interface start to pre-
vent a further convergence. In order to keep things fair, the simulations are also repeated for the
consistently linearized formulations. Here a switch of slave and master increases the maximal
possible initial penetration up to a value of —5.4 for the standard as well as for the augmented
Lagrangian formulation. A further increase leads to such a heavily distorted slave side that the
iteration sequence starts to diverge. The remarkable thing is that divergence strikes very sudden
in case of the consistently linearized case. While a penetration of —5.4 converges almost flaw-
lessly, a slightly higher load completely destroys the simulation. This makes these methods hard
to control, even with more sophisticated globalization approaches like line search, for example.
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Figure 5.6.: A selection of non-linear iterations for the modified variant and an initial penetration of 5.0. The
semicircular indentor acts as slave. Figure 5.6a shows the forces acting on the slave and master side due to the large
initial penetration (originating from the gap). In Figures 5.6b and 5.6¢ the Lagrange multiplier values are visualized.

In summary it is to say that the modified Newton approach shows a superior behavior for
this type of displacement controlled problems and leads to a very natural evolution of the La-
grange multiplier and displacement fields. Furthermore, the presented dynamic correction ap-
proach enormously simplifies the choice of the regularization parameter.

5.6.2. Parameter Study

The two shown examples will be now used to identify the optimal range of operation for the
correction parameters 3, and 53\1. Since it has been observable that a switch of slave and master
in case of the semicircular indentor example can severely change the results, this variant will be
included as well. In all cases the initial regularization parameter C1{\? }is set to 1.0. The initial
penetration is varied between 10 and 100 percent of the maximal possible penetration of the
respective example.

5.6.2.1. Sufficient Infeasibility Reduction (SIR) Correction

The correction strategy called sufficient infeasibility reduction (SIR), which has been introduced
in Section 5.3.2, comes first. Therefore, the initial penetration for the wedge indentor is in the
range between (.68 and 6.8, for the semicircular indentor as slave side, between 0.5 and 5.0 and
for the switched side example, i.e., the semicircular indentor becomes the master side, between
0.9 and 9.0. The correction parameter (" is varied between 0.1 and 0.98. Note that a value of
1.0 is not possible for the SIR correction since it would lead to a division by zero (5.25) and in
theory to a transition to the consistently linearized system of equations. In total around 340 runs
per example have been performed. The comprehensive results in terms of the necessary Newton
iterations are summarized in Figure 5.7. Figure 5.7a gives an overview of the global develop-
ment of the iterations over the entire range. At the beginning the necessary non-linear iterations
are exponentially falling with a rising parameter 3,~. However, close to one the differences start
to flatten out. In the Figures 5.7b to 5.7d a close-up view of the iterations for a Sy~ value in
the range of 0.8 and 0.98 are shown. The wedge example in Figure 5.7b shows, in contrast to
the semicircular examples, a slightly more inhomogeneous decreasing behavior to the end. For
combinations of very high correction parameters, i.e. beyond 0.85, with high initial penetrations,
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Figure 5.7.: Results of the parameter study for the SIR correction. While Figure 5.7a shows an overview over the
results of the parameter study, Figures 5.7b to 5.7d present a detailed view for the higher correction parameter
regime. Each figure includes a view from above such that failing simulations can be easily identified by missing

squares.
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Figure 5.8.: Selection of non-linear iterations for different correction parameters and an initial penetration of 9.0.
The semicircular indentor represents the master side. —— corresponds to 55~ equal to 0.85, — to 0.86 and —
to 0.99. The intermediate deformation states for the largest value, i.e. 0.99, are only shown in Figures 5.8a and 5.8b.

the simulations start to become unstable. In more detail, the first failing wedge simulation is de-
tected for an initial penetration of 6.8 and a regularization parameter of 0.88. For the semicircular
indentor example the first failure arises for a maximal penetration of 5.0 and a 5, value of 0.93.
Finally, the switched slave master example reaches its first limit for an initial penetration of 9.0
and a correction parameter of 0.86. In all cases the reason is a too quickly rising regularization
parameter coming along with a too strong mesh distortion which leads to an undesired displace-
ment field, see Figure 5.8 for a demonstrative example. However, the behavior stays predictable
since the first failure is always detected for a combination of maximally considered penetration
and high regularization parameter. Therefore, a smaller correction parameter will always lead to
a more stable result.

It can be concluded that the SIR correction strategy provides a very reliable and robust update.
However, the parameter /5, must be chosen wisely dependent on the investigated example. For
very high penetrations a value around 0.8 seems to be a good compromise between fast con-
vergence and robust mesh deformation. For more usual penetrations a value around 0.9 delivers
most times stable results and is slightly more efficient.

5.6.2.2. Sufficient Enclosed Angle (SEA) Correction

Now, the attention is on the sufficient enclosed angle (SEA) criterion which has been introduced
in Section 5.3.1. The parameter study is repeated, while this time the over-all results are sum-
marized in Figure 5.9. In Figure 5.9b a view from above is added which reveals a more unstable
behavior in comparison to the SIR approach for initial penetrations above 70% of the maximal
possible penetration. This is especially true in case of the wedge example. One can easily see
that the method diverges, e.g., for an initial penetration of 4.08, i.e. 80%, and a correction fac-
tor of 0.6. The reason for the bad non-linear solver behavior is a too fast rising regularization
parameter.

However, this unfavorable behavior is only observable for the wedge example. In case of
the semicircular examples the SEA correction works competitively well compared to the SIR
method. Therefore, the minimal necessary non-linear iteration numbers which still rely on a
continuously stable non-linear solution path with respect to the used correction method are sum-
marized in Table 5.1. That means if the corresponding method has been already diverged for a
lower BE”; value, a higher regularization parameter leading to a lower iteration count is ignored in
the list, since the outlier on the monotone increasing ﬁ(q; path indicates some kind of instability.
First of all, Table 5.1 shows that the SIR correction leads to better or comparably good results
in all considered cases. Hence, it is the better choice not only for very large penetrations but
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Figure 5.9.: Results of the parameter study for the SEA correction scheme. Right: necessary iterations; left: view
from above where failing simulations can be identified by missing squares.

wedge semicircular s. semicircular
rel. pen. SIR SEA SIR SEA SIR SEA
it. | BN it | BN it | BN [t | BN it | BN |t | BN

0.5 14 1098 [ 231099 | 181|096 |24 |0.99 | 14 | 0.97 | 18 | 1.00
0.6 18 {091 [ 231099 | 15|098 |24 |1.00 | 15| 0.96 | 23| 0.97
0.7 151096 {20099 |17 |097 |26 |0.98 | 16 | 0.95 | 23 | 0.97
0.8 151093 (41 055|17(097 126|098 |17 | 093 | 23 | 0.96
0.9 17 1092 {421 035|19|095 |27 |097 |21 |0.87|22]|0.99
1.0 21 | 087 | — - 1221092 (43| 05 |230.84|22|0.89

Table 5.1.: Comparison of the SIR and SEA correction schemes. Listed are the lowest iteration numbers in a sta-
ble sequence of consecutive increases of the related correction parameter together with the associated correction
parameter value. In green highlighted is the lower iteration number of the SIR or SEA approach, respectively.
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Figure 5.10.: Figure 5.10a shows the dimensioned geometry as well as the mesh in the reference configuration.
Figure 5.10b presents the four considered load steps. The prescribed displacements are applied on top of the semi-
circular indentor.

also for more common ones. Nevertheless, it is to say that almost all investigated cases could
also be solved under consideration of the SEA correction. Only for the wedge example severe
problems arose for the maximal penetration, which might be caused by the inherent instability
of the incomplete variational approach as comprehensively discussed in Section 4.7.4. This sus-
picion comes up, since the SEA correction relies in a much greater extent on the incomplete /
missing variational contributions than the SIR correction. Furthermore, for the semicircular ex-
amples, SEA performed with a quite comparable efficiency. In order to get more clarity in this
point, the modified Newton approach should be transferred to the complete variational approach
in the future. In addition, a formulation based on the closest-point projection should be far less
affected.

To put it in a nutshell: The unambiguous result of the parameter study is that in the currently
considered set-up the SIR approach is advantageous in all investigated cases and should be the
method of choice. Therefore, in all up-coming examples exclusively the SIR correction scheme
will be applied.

5.6.3. Successive Quasi-Static Load Steps

All previous discussions considered only the very first contact load step. During these examples
an impressive performance of the modified Newton method could be observed. Nevertheless, the
presented method is not restricted to the very first load step, but can also be used in all subse-
quent steps. However, a new ingredient must be considered which has only been mentioned very
briefly: the underlying numerical integration scheme. It is to remember that the entire shown
analysis is built up on the assumption that all terms are at least twice continuously differentiable.
Unfortunately, this assumption does in reality not automatically hold. This assumption is ex-
emplarily violated as soon as the quite common element-based integration is considerd for the
evaluation of the active contact contributions. Even though, the underlying approach is based on
the incomplete variational scheme introduced in [131], the element-based integration can still
introduce artificial discontinuities in the second order derivatives of the incomplete weighted
gap gradient, i.e., discontinuities which are only caused by the insufficient numerical integra-
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Figure 5.11.: Visualization of the predictor step for different numbers of Gauss points (GP) used for the evaluation
of the contact contributions. The lower GP numbers in Figure 5.11a cause heavy mesh distortion on the master side,
while the higher GP numbers in Figure 5.11b show a smooth initial deformation field. The gray colored transparent
silhouette in the background shows the converged configuration of the previous step, i.e. the starting point of the
predictor step. Shown is the predictor step of the second load step.

tion scheme. Therefore, any discontinuities related to the active/inactive set decision is of minor
importance at this point (see Figure 2.3b).

A new example shall be considered to illustrate the influence of this flaw between theory and
application. The example consists of two bodies. Both use a Neo-Hookean material law. The
hollow brick represents the slave body and is ten times stiffer than the semicircular body with a
Young’s modulus of £ = 2,500 and E?l = 250, respectively. Poisson’s ratio is for both bodies
set equal to 0.25. While the hollow brick is fixed on the bottom line in all directions, the upper
semicircular body is moved via a prescribed displacement field in z- and y-direction. The corre-
sponding prescribed displacements are shown in Figure 5.10b. The different load steps have been
chosen in such a way that they cover a wide variety of possible loading and unloading scenarios.
The 55~ value is set to 0.8. The crucial load step is the second one where the semicircular inden-
tor is moved even further into the stiffer hollow brick while at the same time a sliding in positive
x-direction is initiated. The integration is completely performed on the slave side, i.e., on the top
surface of the hollow brick, and the contributions of the master side are considered by applica-
tion of the well-known ray-tracing projection algorithm. Since no segment-based integration is
used, the Gauss point projection from the slave onto the master surface leads to an unfavorable
integration over kinks stemming from the element-wise defined Lagrangian polynomials on the
master side. These kinks cannot be completely resolved by this simple integration approach and
lead to a distortion of the derived derivatives and, finally, distort the (intermediate) solutions. To
demonstrate this, the element-based integration is performed with respect to a changing number
of Gauss points, where the range goes from 2 Gauss points per slave element to 50.

Each single load step is restarted from the solution achieved with 50 GPs, such that a coin-
ciding initial state is given. In Figures 5.11a and 5.11b the deformed configurations after the
tangential predictor load step at the very beginning of the second load step are presented (see
also Figure 5.10b). The now initially active contact zone can lead to quite heavy distortions of
the master surface, while the slave surface is integrated in an almost exact manner (besides the
rational smooth normal expressions) and thus is not influenced in the very first tangential non-
linear solver step. Especially, in case of very low GP numbers the distortion of the master surface
can become cumbersome and gets worse for a softer master body as chosen in this example. For-
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Figure 5.12.: Comparison of the L2-error among the different Gauss point numbers, the reference being the 50 GP
solution. The L2-error is computed with respect to the displacement field. Figure 5.12a shows the comparison for
the second load step, Figure 5.12b for the fourth load step.

tunately, the zig-zag deformation of the active master contact surface is smoothed out with an
increasing number of GPs. Furthermore, also for small numbers of GPs the zig-zagging disap-
pears quite rapidly in subsequent Newton steps. However, in the presented example the shown
configuration is close to a structural instability, since the curved semicircular shaped beam tends
to snap through. This circumstance can lead to a divergence of the non-linear solution method if
the bodies are only slightly deflected in a wrong direction. Actually, exactly this is happening in
case of the lower numbers of GPs, i.e., for 2, 3 or 4. Even though, 4 GPs are already very close
to succeed. On the other hand, there is almost no detectable difference if the tangential predictor
solutions between the 7 and 50 GP solutions are compared to each other in Figure 5.11b.

To put the quite rough visual comparison into perspective, the Lo-error among the displace-
ment fields of the different GP solutions has been evaluated over the entire sequence of non-linear
solution iterates. As illustrated in Figures 5.12a and 5.12b, the difficulties of the second load step
are also manifested in the development of the Lo-error. In load step 2, all attempts show a rising
difference in the first four non-linear iterations compared to the 50 GP solution path. This holds
independently of the used number of GPs causing even a better result for 7 GPs than for 10
compared to the 50 GP result. Therefore, a non-deterministic behavior is revealed which can be
traced back to the mentioned near snap through scenario. Afterwards the differences drop almost
monotonically to their final values, which relates to a stable behavior. In contrast, the fourth load
step presented in Figure 5.12b shows only a rise in the very first non-linear iteration, i.e., imme-
diately after the tangential predictor, and subsequently Ls-error drops almost monotonically to
its final value. Here, a high number of Gauss points correlates with a smaller error also for the
pre-asymptotic phase. This is a typical deterministic behavior.

As a general rule, it can be concluded that a sufficient number of Gauss points has to be
provided to achieve a meaningful behavior for successive contact loading steps. The reason why
this is not crucial in the very first load step, which had been exclusively considered beforehand,
is the scaling of the critical second order weighted gap derivatives by the Lagrange multipliers.
In the very first step, all the Lagrange multipliers start at zero and their values are only slowly
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Figure 5.13.: Figure 5.13a shows three different ellipses for a varying parameter a. Figures 5.13b and 5.13c show
the norm of the first and second order derivatives with respect to this parameter a.

rising, such that the influence stays almost entirely undetected. The solution is already close to
the asymptotic phase as soon as the Lagrange multiplier values reach a meaningful magnitude. In
the asymptotic phase the inexact integration seems to play only a less significant role. As a rule
of thumb: seven Gauss points for linear shape functions seem to represent a good compromise
between efficiency and accuracy.

5.6.4. Second Order Derivatives of the Unit Smooth Normal Field

A detailed study of the presented formulation reveals that the introduced second order derivative
term of the unit normal field in (4.39), namely,

(Day(Dsy (M), 27 — 21 (5.78)

can lead to a severely high evaluation time of the considered tangential stiffness contact contri-
butions. Thus, the question may raise how important is this term for the presented formulation?
Especially, since it enters the final system of equations scaled by the current Lagrange multiplier
value as shown in (5.1) or (5.3). In a first attempt, the previous examples have been executed
once more without the second order derivatives of the smooth normal field and, indeed, all tests
indicated that it is possible to remove this term with only minor influence on the non-linear
solver behavior. But, such an empiric procedure might give a wrong idea, since the risk remains
that a crucial situation is simply not triggered by the applied benchmark examples. Therefore,
the following analytical investigations were initiated to obtain a better understanding of this
term. An example with one degree of freedom shall be considered, given by an ellipse, viz.,
e(t,a) = [acos(t),sin(t)]T for t € [0,27) and @ > 0. In Figure 5.13a three different ellipses
with three different values for the parameter a are shown. Obviously, a value equal to one leads
to a circle, while a value greater than one stretches the ellipse in z-direction, whereas, a value
between zero and one compresses the ellipse. Carried over to the contact problems discussed
here, the different configurations can be interpreted as deformation states. One advantage of this
simple example is that it is possible to directly state the unit normal field:
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n(t,a) = where A(t,a) = (cos(t), asin(t))T. (5.79)

Again, the corresponding results are exemplarily shown in Figure 5.13a. Next, the first and sec-
ond order derivatives with respect to the free parameter a are obtained by

0 ~ sin(?) —a cos(t) sin(t)
Ere G e FYRATE (\ﬁ(t,a)]z ~a?sind(t) (5-30)
and
02 _sin®(t)  (3cos(t)a®sin®(t) — cos(t)|n(t, a)|?
2t @) = m( 3a* sin’ (1) — 3asin(1)|A(t, @) | ) (5:81)

respectively. The corresponding plots can be found in Figures 5.13b and 5.13c. The roots can
immediately be identified at a multiple of 7/2, i.e., t € {0,7/2,37/2,...}. This makes sense,
since a stretch or compression in z-direction does not change the normals at these angular po-
sitions. But the most interesting result of this study is that the ellipse with a equal to 0.5 shows
much higher first and second order derivatives than a circle or a stretched ellipse with a equal to
2. Actually, the stretched ellipse shows only a very small magnitude with respect to the second
order derivatives. This means that the unit normals change for the compressed ellipse much more
rapidly in comparison to an already stretched ellipse. The position of the related maxima are also
quite interesting and are highlighted by black straight lines in Figures 5.13b and 5.13c. For ex-
ample., the highest first order derivative in the case of a perfect circle is reached for t = 7/4. In
general, it can be said that with an increasing a the maxima of the first and second order deriva-
tives move from the intersection point between ellipse and the x-axis towards the intersection
point with the y-axis.

Now, these results are transferred to the contact problems considered here. Actually, one
example has already been close to the discussed ellipse, viz. the semicircular indentor. If the
semicircular indentor takes the slave role, the related smooth unit normal field has very similar
properties than the previously discussed analytical example. Furthermore, the following prereq-
uisites must be satisfied to maximize the influence of the second order derivative: The shape of
the semicircular indentor is in a compressed configuration and the Lagrange multiplier values
should be unequal to zero. Furthermore, the distance between slave and master should be prefer-
ably high. These requirements lead to the following scenario: The Young’s modulus of the slave
side is reduced to 2,500, such that it becomes equal to the master body, and a high compression is
generated by using the initial maximal overlap of 5.0. This creates the desired shape of the slave
body and leads to high values for the active Lagrange multipliers. After this starting position
has been reached at the end of the first load step, the influence of the second order derivatives
can be triggered by providing a sufficiently high gap and a quickly changing radial shape in the
second load step. However, the decrease of the Lagrange multiplier values should not happen
too quickly. The easiest way to achieve all these points is by moving the indentor upwards, i.e.,
by reducing the previously applied penetration. If this happens at the correct speed, i.e, not too
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Figure 5.14.: Comparison between simulations including the second order derivatives of the unit smooth normal
field — and without these second order derivatives —.

fast and not too slow (in this special case the penetration is reduced to a value of 3.0), the impact
of the second order derivative can become tremendously high as shown in Figure 5.14.

However, in the first load step the simulation without the second order derivatives of the
smooth normal field converges even one iteration faster, in 20 iterations, than the consistently
linearized one. Only in the second step, the consistent variant reaches the solution in 20 iterations
while the inconsistent one diverges.

In order to complete this section, it is to say that the second order derivatives of the smooth
normal field are influenced by a variety of very different parameters. But, the presented detailed
investigations undoubtedly reveal that they play a crucial role for the non-linear solver behavior.
Especially, since in real world problems, i.e., for more complex geometries and loadings, such
critical configurations may occur very localized even for quite small and more common load
steps.

5.6.5. Convergence Rates of the Plain Modified System

In this section, the actual achieved convergence rates as well as the in Section 5.4.2 analytically
predicted upper bound for the regularization parameter shall be verified. The discussion starts
with the latter one and it is again noted that all computations use an initial regularization parame-
ter of one, i.e., 01{\? b =10. Figure 5.15a demonstratively shows the results for the wedge example
of Section 5.6.1.1. The increase of the regularization parameter is indeed bounded from above
and as shown by (5.72) this upper bound is increased by a rising 5, value. While the lowest 5~
value leads to an upper bound around 7.27E+02, a S5 value of 0.9 leads to a much higher upper
bound around 5.89E+04. Besides the different upper bounds, the shown curves in Figure 5.15a
have a very similar characteristic. For example, all of them show a short plateau of constant
regularization parameters over a short period of a few non-linear iterations before the value rises
to the final upper bound. One reason for this behavior is the still changing active set distribution
in the pre-asymtotic phase of the non-linear solution path. This can lead to a scenario where the
previously estimated cy value represents a sufficient guess to reach the necessary reduction of
the linear model for a short sequence of successive iterations. Only close to the solution, as soon
as all constraints are part of A, and the model prediction becomes reliable, the fulfillment of
the linear reduction demands again a higher regularization parameter, until finally a monotonic
convergence to an upper bound can be observed as derived in Section 5.4.2. Since the last obser-
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Figure 5.15.: In Figure 5.15a the influence on the upper bound for the regularization parameter cy in case of a
rising ﬁfN value is shown. Here, the wedge example with an initial penetration of 6.8 is used. In Figure 5.15b the
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vation is also true for all the other 2-D examples, i.e., the upper bound is in the asymptotic phase
consistently slightly underestimated, the convergence rates are bounded from below by (5.29)
and thus Figure 5.15b shows for all considered examples a linear convergence rate with a slope
close to (1 — 3g") in the asymptotic region, i.e., for an almost constant regularization parameter.
This is in accordance with the predicted behavior in (5.29).

5.6.6. Effect of the Switching Condition

Within the scope of the current discussion, the opportunity is taken and the influence of the
proposed switching conditions presented in Section 5.5 shall be also investigated in more detail.
The basic idea of these switching conditions is to combine the benefits of the modified approach,
viz. the higher robustness during the pre-asymptotic phase, with the fast local convergence of the
classical consistently linearized system of equations. In total three different switching conditions
have been proposed based on the current nodal gap, the relative residual of the active slave
and master contributions and the angle between the incomplete weighted gap gradient and the
structural potential gradient. To demonstrate the effectiveness the attention is exemplarily drawn
to the soft semicircular example of Section 5.6.4. Thus, two load steps are considered. In the first
step, the two bodies are pressed into each other leading to large initial penetration. In the follow-
up step, the load is quickly reduced by an upward motion of the semicircular indentor, as shown
in Figure 5.14. This leads to two very different developments of the considered conditions. To
initiate a switch from the modified variant to the default system, all three conditions must be
fulfilled simultaneously. This asymptotic phase is highlighted in blue in Figure 5.16. The dashed
line in Figure 5.16a represents the right side of (5.74) with v, = 0.5. The smallest element edge
length is around 0.4486. In Figure 5.16b the residual criterion defined in (5.76) is considered.
Here, the TOL,.s has been set to 1.0e—3. However, the dashed line is also influenced by the
gradient of the structural potential and, therefore, not constant. Finally, the tolerance for the angle
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Figure 5.16.: Visualization of the three switching conditions presented in Section 5.5 for the example introduced in
Section 5.6.4. In the red hatched areas the corresponding criterion is not fulfilled. In the green areas it is fulfilled and
in the blue highlighted regions the method has been switched from the modified approach to the standard Lagrangian
approach.

criterion, namely TOL,, in (5.75) has been set to 1.0e—6. This is equivalent to an admissible
angle below 0.08103 deg or 1.414e—3 rad. The tolerances shown here worked also well for all
the other tested examples. However, as already mentioned in Section 5.5 an adaptive strategy
might be reasonable in some cases. For the considered first loading step, all considered criteria
behave very predictively and show a monotonically decreasing trend after a first slight rise of the
considered quantities. The total number of iterations could be reduced from 21 to 12. That is a
reduction of almost 43%. On the other hand, the second unloading step is more challenging for
the proposed switching conditions. As one might see in Figures 5.16b and 5.16¢, the angle as
well as the residual conditions show a sudden drop in the second Newton iteration, before they
start to rise again. Thus, in this scenario the rough criterion considering the nodal gaps becomes
crucial and avoids an unnecessary switch in a much too early iteration state. Actually, the switch
in Newton iteration two would lead to divergence. In the second load step, the total number of
non-linear iterations could be reduced from 20 to 12, i.e., about 40%.

5.6.7. Conditioning of the Tangential Stiffness Matrix

Finally, the attention is drawn to the condition number of the tangential stiffness matrix. These
condition numbers play a crucial role whenever it comes to finer meshes or more complex models
which ask for rising memory consumption. At some point it is no longer possible to solve the
evolving linear system of equations directly and iterative linear solvers must be considered.
Theory and practice show that penalty methods can lead to severe problems since the introduced
penalty parameter influences beyond a specific threshold the condition number in such a way
that the linear solver performance becomes increasingly worse, see Sections 3.2.1 and 3.2.3.2
for more information and references on this topic. One may have noticed that in the formulation
presented here, as stated in Section 5.2.1, the modified system of equations becomes in the limit
equal to the system of equations for the unmodified case, i.e., the standard Lagrangian approach.
Furthermore, it has been said that the ¢y value must rise sufficiently fast to achieve (super-)
linear convergence. However, it can be expected that a extremely high ¢y value will lead to
an increasingly high condition number, similar to a traditional penalty approach, see also [23]
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for a short analysis. Fortunately, it is possible to achieve fast convergence by simultaneously
maintaining a comparatively low condition number of the system matrix. In order to prove this,
the condition number estimates x, of the rather small sparse matrices will be directly computed
with dGECON routine from the LAPACK distribution [4].

5.6.7.1. Semicircular Indentor

The discussion is started with the semicircular indentor example which has been already intro-
duced in Figure 5.3 and Section 5.6.1.2. The only difference is that the mesh has been refined
by a factor of two and both Young’s moduli of the slave and master body are set to 25,000. The
considered three loading steps are:

1. The indentor is moved 4.0 units into the block.
2. The indentor is moved 2.0 units in the opposite direction.
3. The indentor travels by constant penetration 1.0 unit in x-direction.

During these steps the condition number of the tangential system matrix will be affected by
a variety of very different factors, such as the mesh distortion, the increasing and decreasing
Lagrange multiplier values, the chosen material parameters, the chosen slave and master side,
and the magnitudes of the different derivatives to name only a few. But it is also influenced by the
actual magnitude of the cy value and, therefore, indirectly by the chosen 5fN value. The reader
is encouraged to revisit Figure 5.15a: A high BfN value may lead to a faster convergence but also
to a higher upper bound of the regularization parameter and thus also a higher condition number
at least in the end of the load step, i.e., in the asymptotic phase.

To get a feeling for the different influences on the actual evolution of the condition number,
the k., value has been computed for each non-linear iteration along to the three mentioned load
steps. In Figure 5.17a the first results are visualized for the case that the correction parameter
ﬁfN is set to 0.45, i.e. very low, leading to a high number of non-linear iterations. But there is
no verifiable bad impact on the condition number. Actually, rather the opposite is the case: The
condition number noticeably decreases for high cy values at the end of each load step. This
can be noticed in the rise between the last iteration of load step 1 and the initial iteration of
load step 2, where the cy value is reset to 1.0. The same holds true between the end of step
2 and the beginning of step 3. In a next attempt, the same example has been recomputed with
an increased correction parameter, i.e. BfN = 0.9, see Figure 5.17b. In this case the rising cx
values undoubtedly start to increase the condition number. Compared to the condition number
of the unloaded initial state, the value is increased up to a factor of 15.7. On the other hand,
the necessary number of non-linear iterations is drastically reduced in contrast to Figure 5.17a.
Leading to the first conclusion: a high ﬂfN parameter has a bad impact on the condition number,
since it inevitably leads to high conditioning in the asymptotic phase.

To obtain a more complete picture, it has been also tried to switch the slave and master side,
such that the block becomes slave and the indentor master. The correction parameter BfN is kept
constant at 0.9. The condition number still rises to the end of the load step, but interestingly the
maximal reached values in each load step become smaller, see Figure 5.17c. Instead, of a factor
of 15.7 a maximal increase by a factor of 5.86 is observable. That is remarkable since the maxi-
mal cy value drops only slightly between the two cases. While in load step one a maximal value
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Figure 5.17.: Investigation of the conditioning for the semicircular indentor example. In Figures 5.17a to 5.17d the
results for a variety of different parameters and setting are presented. While in Figure 5.17e the coupling between
the correction parameter BfN, the maximal arising cy value and the conditioning is shown. Finally, Figure 5.17f
demonstrates the beneficial effect of the switching strategy on the maximal arising regularization parameter values

in each load step.
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of 1.01E+7 has been reached for the case shown in Figure 5.17b, the corresponding maximal
value in Figure 5.17c is 9.06E+6, i.e., only around 10% lower.

All of the so far discussed examples considered the same Young’s modulus for both bodies. To
demonstrate the impact of this choice, the simulation is repeated once more with almost the set-
up used in Section 5.6.1.2. Only the actual penetration has been reduced from 5.0 to 4.0 units. As
in the mentioned section, the slave and master side are interchangeable. The results are shown in
Figure 5.17d, again with a ﬂfN equal to 0.9. The switch of the slave and master surfaces causes
a severely different non-linear solver behavior for this case. Not only the condition number and
the maximal cy value drop but also the non-linear iteration numbers. The reason might be the
very different intermediate smoothed slave normal fields.

In summary, it could be seen that in general a @f'N value of 0.9 makes the conditioning worse,
while a 53N of 0.45 seems to be even slightly beneficial. So the question might raise: Where is
the break-even point? How long can the correction parameter be increased without worsening
the linear solver behavior? At least for the first discussed example, i.e., equal Young’s modu-
lus for both bodies and indentor as slave, the answer is given in Figure 5.17e. The maximally
reached condition number starts to rise at a BfN value around 0.6. But, unfortunately, that is an
intolerable low value since it would lead to high non-linear iteration numbers between 43 and
48 iterations per load step. Thus, the decrease of the BfN value is not really a meaningful option.
Instead, the already discussed possibility to switch to a different system of equations during the
(modified) Newton scheme can be used to obtain a system of equations which is less influenced
by a high ¢y value. This leads to an even faster asymptotic convergence without the constraint
that the regularization parameter must be increased any further. The drawback is the switch from
a condensed system of equations to a saddle point system of equations. However, this is mainly
a technical issue, since it demands for a different preconditioning for the linear system of equa-
tions. Furthermore, it might be also possible to switch to another condensed system, namely to
the dual Lagrange multiplier formulation proposed in [215, 218, 279]. A very comprehensive
discussion totally dedicated to this linear solver problematic can be found in [276].

This topic will be reconsidered in a moment. For now, the reader is kindly referred to Fig-
ure 5.17f where the beneficial effect of the switching strategy becomes very obvious. Here, the
during each load step maximally reached cy value of the switching strategy is compared with
the values of the previously discussed condensed plain modified Newton method. As one can
easily see, the maximally occurring cy values are dramatically reduced. They stay even under
the maximal value of the plain method corresponding to 5§N equal to 0.4 for the entire range of
considered 5§N values. Thus, the given investigations have a clear result: Fast and robust con-
vergence in combination with a low conditioning can be achieved by combining the modified
Newton method and the consistently linearized system of equations.

Remark 5.8. Note that the condition numbers of the saddle point system of equations are not
shown, since they would lead to an incorrect impression. In case of a saddle point system of
equations, it makes no sense to consider the entire KKT system of equations to compute the
condition number, since this would lead to very high values which do not really indicate much
about the actual solvability of such systems. Instead, saddle-point systems asks for a special type
of preconditioners which take advantage of the individual block structure (see e.g. Nocedal and
Wright [204, Ch. 16] for more details).
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Figure 5.18.: In Figure 5.18a the reference configuration of the sliding hemisphere on the hollow block including
its dimensions and the mesh is presented. Figure 5.18b shows the deformed configuration for the first load step.
The color bar white to pink represents the deformation of the hollow block, while the second color bar shows the
magnitude of the Lagrange multiplier values living on the hollow block surface (slave).

5.6.7.2. Hollow Hemisphere on Hollow Block

So far the discussion has been restricted to observations and theoretical considerations, but it
has not yet been proven that an iterative linear solver truly benefits from the presented switching
strategy. For this purpose a more advanced test case presented in Figure 5.18 shall be investi-
gated. Before the comprehensive examination can start, the setting is described in more detail:
The actual geometrical configuration in the reference state can be seen in Figure 5.18a. Basically
it is the 3-D version of the example considered in Section 5.6.3. The hollow block as well as the
hemisphere have a Young’s modulus equal to 2,500 and a Poisson’s ratio equal to 0.25. The ex-
ample consists of 46,712 hexhedral linear finite elements with around 160,000 primal degrees of
freedom. No anti-locking strategy is applied. The considered load steps are:

1. The hemispherical indentor is moved equally by 5.0 units in the negative z-, y- and z-
direction.

2. Subsequently, the penetration in z-direction is relaxed from 5.0 to 4.0.

3. The penetration is kept constant and sliding by 1.5 units in the positive z- and y-directions
is initiated.

4. Finally, the penetration is again slightly relaxed to 3.5 units and the hemispherical indentor
1s moved to its final xy-position, viz. x equal to —2.5 and y equal to —3.5.

Thus, the last step combines sliding in x-direction with a simultaneous relaxation of the pene-
tration. The final deformation state of the very first load step can be seen in Figure 5.18b, where
besides the displacement field of the hollow block also the Lagrange multiplier field living on
the block’s slave surface are visualized.
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Formulation as Condensed System

Since the presented method is currently based on the variationally incomplete approach from
[131], the arising linear systems of equations become non-symmetric as soon as active contact
contributions must be considered. Therefore, a suitable iterative solver, which can handle these
non-symmetric systems, is chosen. In this example the generalized minimal residual (GMRES)
algorithm is applied. However, in most cases the GMRES algorithm cannot directly be applied,
since the bad conditioned system matrix would demand for a high iteration number and a high
dimensional Krylov subspace [153, 232, 275]. Instead, a suitable preconditioner must be chosen.
However, the correct choice of such a preconditioner is a research topic on its own and can
become quickly very challenging.

In this work so-called algebraic multigrid preconditioners shall be considered. The foundation
for the used linear solvers are the corresponding Trilinos packages [106, 145, 220]. Furthermore,
the necessary adaptions for the algorithms to become usable for contact problems are entirely
based on the work of [275-277]. Referring to the performance tips in [220], which state that
"it can be very challenging to find an appropriate set of multigrid parameters for a specific
problem”, the following shown set of parameters is by far not optimal and should be rather un-
derstood as a first attempt to solve the arising linear systems in an efficient way. Additionally, the
linear system used here does not coincide with the system matrix arising from [215, 218, 279],
nevertheless, the used linear solving strategies were specifically designed to fit these systems.
Thus, not all developed methods could be successfully adapted in this work. Instead, the adap-
tion is part of future work. First and foremost, the objective of this example is to demonstrate a
beneficial effect of the described switching strategy.

The basic parameter set for the different preconditioners can be found in Table 5.2. In all cases
the incomplete LU-factorization is used as a smoother for the fine and mediate levels, while a
direct solver is applied to the coarsest level, such as KLU [63] or UMFPACK [62].

The condensed system during the pre-asymptotic phase is solved with a special implemen-
tation which is based on similar ideas as described in [282]. Details to the used permutations
and much more can be found in [276]. Finally, the saddle-point system of equations during the
aymptotic phase is preconditioned by a so-called cheap semi-implicit method for pressure linked
equations (CheapSIMPLE). The basic idea is described in [211]. During this algorithm the in-
verses of the matrix blocks on the diagonal must be computed and exactly this computation is
replaced by applying a fixed number of smoothing sweeps. The theory for this cheaper variant
can be found for instance in [299]. All shown simulations have been performed on a dual socket
Intel Xeon E5-2630 v3 node (with 2 x 8 cores) and 64 GByte RAM.

The correction parameter BfN is set to 0.8 for the following simulations and, additionally, only
the condensed modified system of equations is considered in a first run. As expected: the behav-
ior is very similar to the smaller 2-D examples of Section 5.6.7.1. In Figure 5.19 the GMRES
iteration number stays quite constant at the beginning of each load step, till all of a sudden the
necessary iterations heavily rise. In this example the increase is roughly by a factor of 2. How-
ever, with the gained knowledge of the previous condition number analysis the reason can be
clearly traced back to increasing cy values which are also shown in Figure 5.19 (see the dashed
lines). Again, the effect on the conditioning is only detectable as soon as the cy value passes
some threshold.
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| pure structure | cond. system (mN) |

SP system (std)

SOLVER GMRES

solve tolerance 1.0E—6 ‘ 1.0E-8 ‘ 1.0E-9
convergence test relative to initial residual

max. Krylov subspace size 200 (no restart necessary)
PRECONDITIONER ML | MueLu (contact) | CheapSIMPLE/ML

fine/med. level smoother

incomplete LU factorization (ILU)

GMRES iter.

fine/med. level damping 1.0 0.7

coarse level smoother Umfpack KLU

max. coarse level size 15,000 10,000
permutation no ‘ yes no
aggregation type uncoupled (UC)

Table 5.2.: Linear solver parameters for the hollow block on hollow hemisphere example.
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Figure 5.19.: Necessary GMRES iterations in each non-linear iteration of the four considered load steps. Compari-
son between the pure modified Newton approach (mN) and the switching approach (mN-std). Besides the GMRES
iterations, also the rising cx values are shown by dashed and dotted dashed lines.
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In a second run, the switching strategy is applied. See Figure 5.19 for an overview. As expected
the dramatic increase of the linear solver iterations can be prevented, even though the necessary
solver switch causes a slight increase in iteration numbers. This effect can surely be resolved by
a different set of linear solver parameters. Furthermore, Figure 5.19 shows especially in load step
2 some heavy outliers, which cannot totally be explained. Actually, the iteration numbers should
coincide with the previous simulation in this pre-asymptotic phase. As one can see the cy values
of the SIR update are identical which underlines this point, but the probably slightly different
parallel distribution seems to cause some unpredictable effects. However, the main message stays
valid: The presented switching strategy combines the new modified Newton method and the
consistently linearized approach from [131] in a meaningful way, such that the non-linear solver
robustness could be successfully increased while the solvability of the arising linear systems of
equations stays well controllable.

Formulation as Saddle Point System

A second possibility to resolve the bad conditioning has been already mentioned in Section 3.2.3.2
and Section 5.2.1: All of the previous investigations were based on the condensed system of
equations. From a mathematical point of view the derived modified saddle point formulation,
which is defined in (5.1a) and (5.2), and the condensed formulation coincide. However, for nu-
merical iterative solution methods which deal with rounding errors and heavily rely on a low
condition number to become competitive, this might be no longer true. Furthermore, the original
modified saddle point system shows this nice and clear transition from the modified linear system
of equations to the default system of equations for cx — 0. This is an observation which has
also been made by Gould [113] and led to the reformulation of the penalty system of equations
as given in (3.59). Another advantage of dealing rather with a saddle point system instead of the
condensed system of equations is the simple fact that there is already a well-suited method at
hand to solve these systems, namely the mentioned CheapSIMPLE method, see also Table 5.2.
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The obtained results are presented in Figure 5.20. A rough comparison with Figure 5.19
reveals that the saddle-point formulation is working better at the beginning and the end, i.e.,
for small and very high values of cy. The first lower bound seems to lie somewhere near
cl{\f } = 1.0e+4 for this specific example. The second bound can be found near the actual solution,
i.e., in the asymptotic regime when the {cl{\f}} sequence has already reached its upper limit. Then,
the GMRES iterations start to drop again in the last few Newton iterations. Especially, this drop
at the end is a promising indicator that the linear solver performance can probably be improved
by a better suited preconditioner. However, this has not been further investigated in this thesis.

5.6.8. Incomplete Versus Complete Variation

In the last example of this chapter the applicability of the modified approach to the variationally
consistent and symmetric contact formulation as introduced in Chapter 4 shall be addressed. It
must be firmly underlined that the entire derivation of the method holds also for the variationally
consistent formulation and to some extent many of the used ideas become even more reliable,
since there is no longer any difference between the operators V(,(-) and @(.)(-). However, as
already mentioned in Remark 5.2 there seem to be additionally cumbersome influences which are
not revealed by the incomplete approach. For a comprehensive comparison of the two variational
formulations the reader is referred to Section 4.4.

The example from Section 4.7.1 shall be reconsidered to demonstrate these differences. This
simple example has the advantage that the need of discussing any further numerical integra-
tion artifacts is avoided. Precisely, exactly the same set-up is used, only the solving strategy is
changed. Instead of the consistently linearized system, the modified system under consideration
of the SIR correction scheme shall be applied. Furthermore, only the coarsest mesh as presented
in Figure 4.2 is addressed.

First, the variationally incomplete and afterwards the complete formulation is applied to the
problem. Each formulation is run in two configurations: Once with a §g' value equal to 0.5
and once equal to 0.9. All simulations use an initial cy value of 1.0. This stands in contrast
to the results of Section 4.7.1 where cy had been set to a constant value of 100 to avoid any
cycling of the active set. The expected behavior is a stable but slow performance for the smaller
value of 5’ and a fast but possible unstable performance for the higher value. This would be
in accordance with the parameter study of Section 5.6.2. However, for this very simple example
a stable result for both variants can be expected, since the initially set penetration of 1.0 is also
solvable with the consistently linearized system (i.e. for the limit case cx — o0 in (5.2)). Thus
far to the expectations.

Starting with the incomplete variational approach, all expectations are fulfilled. The algorithm
takes 39 iterations for 5 = 0.5 and 17 iterations for Sg' = 0.9. The final nodal displacements
coincide with the results of Section 5.6.2 to at least 10 digits. Next, the attention is drawn to the
variationally consistent formulation. If 5’ is set to 0.9 the expectations are satisfied once more
and the solution is reached in only 15 iterations. Again, the result coincides to at least 10 digits
with the displacement results of the consistently linearized approach. Also the sequence {cl{\;’C }}
stays bounded and at a first glance everything seems to line up with the expectations. However,
if the B¢ value is reduced to 0.5 the solution procedure will start to diverge for the variationally
consistent approach. The corresponding deformation states are shown in Figure 5.21a. It begins
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Figure 5.21.: In Figure 5.21a a selection of four deformation states for a variationally consistent simulation with
B&" = 0.5 are shown. In Figure 5.21b the related Lagrangian values are presented along the displacement search
direction starting from iteration #11 together with the quadratic displacement model (see also the black line in
Figure 5.21c). This reveals clearly the negative curvature around iteration #11. The surface plot of the Lagrangian
under additional consideration of the varying Lagrange multiplier values between iteration #11 and #12 is shown
in Figure 5.21c. Finally, Figure 5.21d shows a slice through the multidimensional Lagrangian function along the
step from the initial predictor state to the final KKT-point which reveals nicely the saddle point structure.
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in iteration #10 where already a slight shift to the right side can be observed. In iteration #11 the
very right slave node slides extremely to the right, just to swing back in iteration #12 to the other
side. A similar behavior has been never apparent for the variationally inconsistent formulation.
What is the cause for this strange solution path? To answer this question the attention is drawn
to the Hessian of the Lagrangian with respect to the displacements, i.e., V2 ,.Z. Exemplarily, the
eigenvalues of V2 . {11} are analyzed and it is revealed that the Hessian contains one negative
eigenvalue, namely AL~ —37.84. All remaining eigenvalues are positive, thus the matrix is
indefinite. Notice that an indefinite Hessian is allowed in theory and is not a bad thing in first
place. For instance, the Hessian might become negative because of the strongly positive curvature
of the active weighted gap contributions. This might also explain the different behavior of the
two variational approaches, since only the variationally consistent formulation contains the true
second order derivatives of the active constraints.

The corresponding Lagrangian .Z(aq, ) = Z(d"Y + apAdMY, AI{VH} + agAgl{\%l}) for
ap,ay € [—0.5,1.1] is shown in Figure 5.21c. Furthermore, Figure 5.21b demonstrates that
the quadratic model fits well to the Lagrangian function, where the curvature in the current dis-
placement direction is indeed negative.

Remark 5.9. The attentive reader might have noticed that there is a kink for a; < 0 in the
plotted Lagrangian functions presented in Figures 5.21b and 5.21c. The reason for this kink is
a changing active set. A look at Figure 5.21a reveals that the gap of the very right slave node is
positive, however, for (c_i{ll} , Al{\% 1}) this node is still active due to the large Lagrange multiplier
value. Nevertheless, if the gap is further increased while the Lagrange multiplier is decreased or
is hardly increased, the node becomes inactive at some point. This is also marked by the gray
line in the contour plot in Figure 5.21c. On the other hand, if the gap is further increased and
the Lagrange multiplier is also sufficiently increased, the node will stay active. But, at some
point the projections of the corresponding slave element will no longer hit the underlying master
element. This phenomenon is also visible in Figure 5.21c: The unsteady part becomes obvious
near the left edge by oy — —0.5.

However, it is pretty obvious that the computed step is not well suited: Instead of moving
forward to the saddle point the step goes far beyond. The reason why the behavior of the modified
approach gets suddenly so disastrous can be probably best explained under consideration of
(5.8). The into the range-space of the constraint gradients mapped inverse Hessian matrix has
also one negative eigenvalue and the applied regularization is not enough to remove it, since
cf\ll Y = 6.1822E+04 is already too large. In fact a ten times smaller cx value would be adequate
to make the matrix on the left side of (5.8) sufficiently positive definite. However, if there is a
negative definite matrix and another insufficient positive definite matrix is added, the resulting
matrix is shifted closer to be singular, which makes things often even worse. Furthermore, it can
be observed that the negative definite matrix in (5.8) results in Lagrange multiplier increments
which point no longer in the opposite direction of the active constraints g and this leads to a
negative effect in (5.10) by increasing the displacement increments compared to the unmodified
case instead of decreasing them (see also Section 5.2.2). The combination of all these effects
seems to cause the undesirable behavior in Figure 5.21a. However, there is a way how this
problem can be resolved by making the Hessian V? ,.Z sufficiently positive definite, at least in
the current search direction. A suitable algorithm for this task is given by Algorithm 6.3 and will
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be presented in Section 6.6. By applying this algorithm (without considering any line-search),
the method becomes stable again and the solution is reached in 38 iterations for the variationally
consistent formulation and a 5g' equal to 0.5. Algorithm 6.3 can be also applied to the case
Ba = 0.9, where the necessary iteration number rises slightly from 15 to 20. In contrast, if the
additional regularization of the Hessian is applied to the incomplete approach, the results will
not change. This underlines the initial hypothesis that the variationally inconsistent formulation
is rather unaffected by this issue.

Remark 5.10. The discussed issue makes one wonder if the Hessian at the solution point
(d*, AY) is also indefinite and if so, what would be the consequences? A brief investigation
reveals that the Hessian V2 ,.Z* stays indefinite and still contains one negative eigenvalue. How-
ever, two of the constraints are active at the solution (d*, \y) and the associated gradients are
linearly independent, i.e. rank(Vigﬁ*) = 2. Consequently, the LICQ from Definition 3.1 holds.
In addition, strict complementarity holds as well since [A%]* > 0 Vi € A*. Under these circum-
stances Theorem 3.5 can be reformulated as

Z'N5 L2 >0, (5.82)

i.e., the Hessian projected into the null-space of the active constraint gradients shall be positive
definite, where Z = null([V4g{*]") with Z € R***! in this specific case. And, indeed, all
eigenvalues of the projected Hessian are vastly positive, with the consequence that Theorem 3.5
is satisfied and the solution is an optimal point. For more information on (5.82) the reader is
referred to Nocedal and Wright [204, Sec. 12.5, p. 337]. See also Figure 5.21d for a visualization
of the Lagrangian around the solution point. At least in the presented 2-dimensional slice the
saddle-point can be noticed very clearly.

5.7. Conclusion

In this chapter a new modification of the classical Newton’s method has been proposed which
can be used to solve non-linear contact problems under consideration of finite deformations.
The presented algorithm has been designed on a strong mathematical foundation provided by
the work of Bertsekas [23]. In this way, not only a significant improved non-linear solver be-
havior could be achieved, but also a reliable convergence analysis. Furthermore, the proposed
algorithm uses a novel correction scheme and a sophisticated switching strategy which both help
to successfully remove former drawbacks such as the dependency on an unknown regularization
parameter cy, the restricted (super-)linear convergence rate or the increasingly bad condition-
ing of the system matrix close to the solution. The provided profound theoretical and numerical
analysis clearly indicate an advanced robustness and controllability.

However, there is still place for improvements: Currently, the proposed method has been only
applied to quasi-static displacement controlled problems. While the treatment of dynamic prob-
lems will follow in the Sections 6.10.6 and 6.10.7, there is still the open question how to ef-
ficiently tackle contact problems considering Neumann loads. A key ingredient might be an
improved choice of the initial regularization parameter C1{\? ). First attempts in this direction have
shown promising results. Alternatively, it is possible to switch the modification off in case of
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pure Neumann boundary conditions (see Section 6.10.2). Furthermore, the current method is
in successive sliding load steps still unnecessarily bounded by the applied tangential predictor
step. Therefore, a better performance in successive load steps seems achievable by improving
the prediction method.
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The first two cornerstones on the way to a globally convergent contact algorithm have been
presented in the Chapters 4 and 5 by constructing a robust, locally convergent computational
contact method. The next important ingredient is the actual globalization procedure itself which
will be considered now. Therefore, more sophisticated ideas from the numerical optimization
literature shall be considered and thus help to improve the overall reliability of the proposed
algorithms.

6.1. Motivation

The literature about numerical optimization methods offers a wide range of possibilities for
incorporating a robust and globally convergent solution strategy into a numerical algorithm. For
an overview the reader is kindly referred to Section 3.2 and the references therein. Here, a line
search filter approach shall be considered. The used algorithm is closely related to the work
of Wichter and Biegler [270, 271]. The filter method is based on ideas from multi-objective
optimization, where, in the case of frictionless contact problems, the first objective is to minimize
the structural energy, and the second objective is the fulfillment of the posed constraints with
some emphasis on the latter one. By separating these goals instead of combining them into one
merit-function (see Section 3.2.4), the algorithm becomes more flexible. The filter method will
accept a trial point as soon as either the objective function could be decreased by a sufficient
amount or the infeasibility measure has been sufficiently reduced. In this way the acceptability
1s less strict than the claimed reduction of a linear combination of both measures, such as it is the
case for methods based on a merit function including some penalty parameter. A comparison of
an interior-point line search filter algorithm and a penalty merit-function approach can be found,
e.g., in Wichter and Biegler [272], whereas a comparison of a trust region and a filter trust region
approach can be found in Gould and Toint [116], for instance. Unfortunately, this simple splitting
idea is not enough to create a truly robust and globally convergent algorithm, such that additional
ideas must be introduced from the constrained optimization literature and carried over to contact
problems. It will be shown that the presented algorithms are able to overcome typical problems
like cycling of the active set. In addition, the filter method provides a simple way to calculate
minimal step-length estimates as long as there remain active constraints. If the step length drops
below this barrier, it is very likely that the solution can not be improved in the current search
direction. At this point a so-called feasibility restoration phase would come into play. Details on
how to implement such a rescue strategy can be found, e.g., in Ulbrich et al. [263], Wichter and
Biegler [272]. If the feasibility restoration phase should fail as well, such that the algorithm can
not achieve the overall objective of finding a feasible local-minimum, the algorithm is supposed
to stop at a local minimizer, or an at least stationary point with respect to some measure of
infeasibility. In this case, there is a strong indication that the given problem seems at least locally
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infeasible. It is to note here that more than that is hardly to obtain, since proving infeasibility
is as difficult as finding a global minimizer and therefore beyond the capabilities of methods
finding a local solution like those discussed here. Furthermore, it must be emphasized that the
method presented here does not contain a feasibility restoration phase but a set of additional
improvements which helps to avoid a stagnation of the line search filter method. In case of the
studied computational contact problems, a drop below the minimal step length bound has always
indicated a mistake at a different point in the algorithm, e.g., due to ill-posed boundary conditions
or an insufficient mesh such that currently no feasibility restoration phase is needed. However,
there might remain situations where such a feasibility restoration phase becomes necessary and,
therefore, it should be considered in future work.

The remainder of this chapter is organized as follows: In Section 6.2 the basic idea of the
filter method will be presented by introducing the underlying sufficient decrease criteria as well
as by discussing a possible non-linear solution path visualized in the sub-space spanned by the
two filter coordinates. Subsequently, the computation of the minimal step length estimates will
be considered more deeply in Section 6.3. Afterwards, in Section 6.4, the attention is drawn to
the Maratos effect (cf. Section 3.2.4) where one possible remedy will be studied in more detail:
the second order correction (SOC) step. The SOC-step is constructed as an augmentation of the
previously computed (insufficient) Newton step. The idea is that the combined step holds enough
second order information to avoid the unnecessary step rejection. In Section 6.5 the steps of the
used globalization algorithm will be presented. In the following sections some steps of the algo-
rithm will be considered in more depth, starting with the applied correction of the linear system
in Section 6.6. This correction is of major importance for a number of crucial scenarios such as
the occurrence of structural or algorithmic instabilities. In this context, not only the used correc-
tion algorithm and the applied linear solver parameters are addressed, but the identification of
invalid elements is also considered and a very general and reliable algorithm will be presented.
In Section 6.7 further details of the globalization algorithm are addressed. Many of these smaller
enhancements might seem unnecessarily complicated at a first glance, but without these small
adaptions almost all of the results presented later would not have been achievable. Therein a
number of necessary extensions are discussed such as a pre-testing approach to identify local
mesh distortions which can not be detected by the global filter criteria. Another important point
is the reinitialization of the filter in rare cumbersome situations or the scaling of the filter coordi-
nates. In Section 6.8 an extension of the used filter coordinates to dynamic contact problems will
be presented as well as the extension to EAS formulations. Then, before the numerical examples
are addressed, some final practical remarks follow in Section 6.9. In Section 6.10 a number of
challenging examples will be presented. Finally, a brief conclusion follows in Section 6.11.

6.2. Basic Idea of the Filter Method

The derivation of the line search filter method for finite deformation contact problems shall be
begun by restating the problem in terms of an augmented Lagrangian formulation

A A A CN || A N
Lo, Mx,8) = U (2) = Qs (@) = Da + 7 (@) — 3, (6.1)
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where the slack components 5° will be defined in Section 6.2.1. The consideration of (6.1) is
commonly used as a technical step to define the coordinates of a filter-point (., ©) € R2,
where the first coordinate is the Lagrangian function value (2.59) as proposed by Ulbrich [264],
Wichter and Biegler [271] and the second coordinate is an infeasibility measure ©(z, §) : R™ x
R™ — R proportional to the last term in equation (6.1), which shall be defined as

O(z,3) = |3(x) = 3l = /Gy — A5 5, — AS). 62)

The choice of suitable slacks is again suspended to the next section. Alternatively, it is also
possible to replace the first coordinate by the objective function value as exemplarily proposed
by the original work of Fletcher et al. [98] or to define a linear model consisting of the objective
function gradient and the complementarity condition to replace the first filter entry as proposed
by Ulbrich et al. [263], even though this latter choice might have certain drawbacks since it
would be based only on first order principles [246]. However, the usage of the Lagrangian can
be favorable especially in combination with a Lagrange multiplier function (3.48), since the
necessity for a second order correction (SOC) step might be circumvented. See Ulbrich [264]
for a more detailed discussion on this more sophisticated avoidance strategy and Section 6.4
for the SOC approach considered here. Furthermore, since the definition of these coordinates is
very flexible it is also possible to add more coordinates than just two. This approach has been
suggested by Gould et al. [114], Gould and Toint [116] and is also followed in Milzarek and
Ulbrich [196] for an unconstrained ¢, -regularized optimization problem. The definition of such
additional filter point coordinates might become important if friction is considered in the future
and, therefore, has been already kept in mind during the implementation of the framework.

6.2.1. Sufficient Reduction Criteria

In general, each of all the different globalization methods uses some kind of quality measure
to assess a calculated trial step. This measure must fulfill some prerequisites, see Sections 3.1.2
and 3.2.4, which ensure a sufficient progress of an accepted trial step towards the solution. Typ-
ical examples are the comparison of the decrease of a model function to the actual achieved
reduction as in trust region methods (see Conn et al. [53] or Section 3.1.2.2 for an overview), or
the sufficient reduction of a merit function by enforcing the well-known (strong) Wolfe condi-
tions (3.19a) or just the Armijo-rule (3.16). The latter one in combination with ideas originally
proposed by Fletcher and Leyffer [96], Fletcher et al. [98] will be used here. A new trial point
is going to be accepted, if it accomplishes either a sufficient decrease in the objective function
value, i.e., the Lagrangian function defined in (2.59) and (4.10) , or if it reduces the infeasibility
measure (6.2) by at least a factor proportional to the last accepted infeasibility measure value.
The scaling factors for the infeasibility measure are denoted by 7, v € (0, 1/+/2) with respect
to the two filter point coordinates, where the reason for the stated upper bound will be given in
Section 6.7.6. In accordance with Wiichter and Biegler [271], the sufficient reduction criteria are
defined as

O(z(a®), 5(a™)) < (1 — y9)O (™, 5, (6.3a)
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or

Z(z(®h), A (), 5(a*H) < f@{k},él{\]k},ﬁ{k}) — 7,0z 51, (6.3b)
where (z(a!®), Ay (1)) denotes a trial point evaluated for a step length at*#} > 0. The used
index k € N indicates the current Newton iteration, while the index [ € N* indicates the current
line search step during the Newton iteration k. As previously, all iteration superscripts are put
in curly braces to avoid any confusion with other indices. In the following it is made use of the
abbreviations

o) i= B(a(al™), 5(a"),
(@) 1= Z(a(a), Ag(a), 5(a ),

)y L2

533N
and o .= gz, ),

respectively. An alternative definition of the sufficient reduction criteria (6.3) which is also suit-
able for a set of (unconstrained) non-linear equations can be found in Gould and Toint [116].

In Wichter and Biegler [271] a second criterion is defined which is necessary since the defined
acceptability checks (6.3) would allow a sequence of iterates {z{*!} to be accepted only by
reducing the infeasibility measure and never the objective function value. In the worst case such
a behavior could lead to a convergence to a feasible but non-optimal solution point. To avoid
such a scenario the following .Z-type switching condition is proposed

mg(a*B) <0 and (—mg(atBB))ss (aB)1=sr 5 pg(@H)se, (6.4)

where sy > 1, sg > 1 and vg > 0 are fixed constants. In equation (6.4) a model equation
mg(a) : R — R for the Lagrangian objective function is introduced which asks for further
specification. This will follow in a moment. Whenever the switching condition (6.4) is fulfilled,
the Armijo rule (3.16) is enforced

ZL(a*) < 28 4 pm g (alkl), (6.5)

rather than the sufficient reduction criteria in (6.3). As soon as another trial step [ € {1,2,...}
violates the switching condition, the algorithm switches back to the sufficient reduction criteria
(6.3). The fixed scaling parameter 7y € (0, 0.5) in (6.5) is a well-known constant for the Armijo
rule which has been already introduced in Section 3.1.2.

A detailed explanation, especially of the second part of the switching criterion (6.4) can be
found in Wichter and Biegler [271]. The idea is that the switching criterion is only activated if
the reduction of the objective function is not arbitrarily small compared to the current infeasiblity
measure. Another important ingredient are the introduced fixed constants s and s¢. In the work
by Wichter and Biegler [270], concerning the local convergence behavior, the authors propose
that the relation sy > 2s¢ should hold. If this condition is satisfied, the switching condition (6.4)
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close to a local solution will only become true, if a full (or second order corrected) step satisfies
the Armijo rule. In accordance to the literature, a step at*!} is called a .%-type step if it fulfills
the .Z-type switching condition and consequently a decrease solely due to the objective function
value is demanded.

Now, the stated model equation m ¢ («) for the Lagrangian is addressed. In this thesis the
Lagrangian function is modeled by a saddle-point model which is obtained by

myg(a) =a DL ((z, Ay, 8); (Ad, Ady, A3))
+a® A(DZL((z, Ay, 3); (Ad, Ady, A3)); (Ady))
= {<v£%7 AC_Z> - <v£gNAN7 AC_i> - <QN - é; AAN>§ + <AN7 A§>é}
— o {(Ad, (V2 g,)" A — (A8, Al A}, (6.6)

where the dependency of the matrix A on the displacements shall be ignored and the vector
5 € R’ replaces the positive minimizer s* (x,\y), defined in equation (4.11), by the original
set of independent, non-negative slack variables. This becomes only necessary during the line
search and allows a smooth transition between inactive and active constraints as discussed in
Gill et al. [107]. The search direction of the slack variables is obtained by

0= {A(gy —9)}|, + (A, — ) (Ad, Ag))|,
{3, + Vug, M- A+ 29} 6.7)
and finally
A5 = {g, + ANV,5,. Ad) - 5} . (6:8)

This follows directly from the linear model of equation (3.42b) transferred to contact problems
and evaluated at the last accepted iteration, where (2%)? is substituted by §°. It can be seen in
equation (6.7) that the term S+ A3 corresponds to the residual of the linear form for the weighted
gap. One remaining parameter is the choice of the slack variable § at the current iteration k. One
possibility would again be the minimizer given in (4.11). The drawback of this choice would be
the dependency of the function value on the non-physical regularization parameter cy. Therefore,
it is claimed that the objective function at the current iteration is independent of this parameter
and is instead formulated only with respect to physically meaningful active contact contributions,
Viz.

okt _ gk _ <AI{\Ik}7g1{\1k} — ARy Lok _ L A, (6.9)

7IN

Solving for 5% yields
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<>\{k} ~{1<:}> <)\{k} A{k} {k}> <>\A{k} ~A{k}>’

N >IN In

<)\{k} A{k} {k}> <)\I{k} ~I{’“}>’

- stk — (Q gi{k}> 7 (6.10)
where it shall be assumed that the vector entries are sorted in such a way that all active contribu-
tions build up the first half and all inactive contributions the second half of the vector. Note that

f@{k},ﬁl{\f},ﬁ{k}) > Z(g{k},gﬁ},g(@k},gﬁ})) holds in general, since

2™\ 5 - 2@ AP s @™, A) = }@ﬁ“laﬁ% >0. (611
N A

This is a very important result, since exactly this relation is the key to avoid the acceptance of
bad Newton steps. Otherwise, if the optimal slack variables s* are used, it is possible that just
an active set change causes a sufficient reduction of the Lagrangian function: A change from
active to inactive can come along with a set of largely negative Lagrange multiplier values at
the previously active nodes. These Lagrange multiplier values would cause an accordingly artifi-
cially high decrease of the Lagrangian function, completely dominating any increase due to, e.g.,
mesh distortion. The influence would be higher for smaller values of the regularization param-
eter cy and therefore, the acceptance criterion would be unintentionally bound to the choice of
this parameter. A similar observation suggests to use (6.10) for the infeasibility measure defined
in (6.2) as well. In this case the use of §* can cause a rejection of good Newton steps, since

Oz.8) > 6,3 <« O(z8)-0z3 = Ciz<4 MAXD =0, (612)
N

and, therefore, the inactive Lagrange multipliers would artificially increase the infeasibility mea-
sure value. Finally, it is to mention that the derived choice 5{’“} for the slack variables is during
the pre-asymptotic phase no longer strictly positive since Q;I > é/\fv, Vi € T} holds. Anyway,
at the solution point, fulfilling (4.9), the positivity assumption is reobtained and the desired in-
equalities are enforced. The discussed choice of the slack variable is also in accordance with the
literature, see e.g. Ulbrich [264].

In a next step, 5t} is inserted for 5™ into (6.8) and the equation is separated into its active
and inactive part, yielding

As* = gL+ (AN TNVLGL Ad) = 0, (6.13a)
As" = (A) (V.35 Ad). (6.13b)
Note that the active part (6.13a) is equal to zero, due to the linearized demand in (3.54) which
can be directly transferred to the contact problem. However, in case of a modified system such as

the modified variant of Newton’s method introduced in Chapter 5, this equation might no longer
be satisfied. Next, (6.13) is inserted into the saddle point model (6.6) and it follows
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m(a) =a {(Va  Ad) ~ (Vg Ad) — (G AN |
- a? {(Ad V. gtaxd} (6.14)

An important observation is that there is no need to evaluate the gap or the corresponding gradi-
ent for any inactive constraint. This is crucial, since there are geometrical constellations where
the evaluation of these quantities cannot be performed because of a missing feasible projection,
or due to the chosen search radius of the given contact pair detection algorithm [288]. The latter
one can not be chosen too large since otherwise a loss in efficiency would be the consequence.
Thus, if the search radius is chosen in the correct manner, the gap evaluation of inactive contri-
butions could easily fail.

6.2.2. Filter Definition

The proposed rule would still allow a sequence of iterations which fulfills criterion (6.3a) and
(6.3b) on a rotating basis and, hence, could lead to an undesirable cycle of accepted iterates with-
out any progress towards the solution. To avoid this, a taboo region in the half-plane {(.Z, ©) €
R?: © > 0} is proposed by Fletcher et al. [98]. This taboo region consists of a list of (£, 0),
value pairs, called a filter-point. A new trial point is rejected by the filter as soon as both of its co-
ordinates are larger than both coordinates of one of the previously added points in the list. More
precisely, a trial point must fulfill at least one of the two conditions defined in (6.3) for each
single filter point contained in the list to be accepted. According to Wichter and Biegler [271],
the filter can also be defined as a set 7} < R x R, containing all prohibited coordinate pairs
at iteration k. Consequently, a new trial point will be accepted by the filter, if the corresponding
filter point is not part of the defined taboo region

(L (a'"), O(altH)) ¢ FiH, (6.15)

There are different options how to initialize such a filter. For example, an empty filter F{% = ¢
can be used, or a pre-defined upper-bound for the constraint violation F{® = {(.Z,0) e
R? | © > Op.y] is possible, where O, is chosen such that 6% < @, holds true. Dur-
ing the subsequent iterations the filter is for some iterates augmented by

Fhh — 7l G (2,0)eR? | L > 2 — 4,0 and 6 = (1 —v9)0). (6.16)

If the filter is not supposed to be updated, the algorithm will stick to the previous one by setting
FU+1}.— Fik} This strategy provides that 7} < F{&+1} holds true for all k. One remaining
open question is when to augment the filter? First, it must be considered that if the filter is
augmented in each iteration, the algorithm might become too strict and too many “good” iterates
will be rejected. Otherwise, if the algorithm is too loose, the problematic cycling can occur.
Fortunately, Wichter and Biegler propose also a meaningful rule for this case. First, feasible
points are never added to the filter. Second, the filter will be augmented only for all non-.Z-
type iterates. If the switching condition (6.4) holds, the Armijo rule (6.5) must be satisfied and a
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Figure 6.1.: Draft of a solution path in the filter sub-space spanned by the Lagrangian function value as first coordi-
nate and the infeasibility measure as second coordinate.

monotone decreasing path with respect to the objective function values is followed. The reader is
referred to Wachter and Biegler [271] for the proof that this augmentation strategy indeed avoids
cycling.

Even though all of this sounds very intuitive, the filter draft in Figure 6.1 demonstrates that
these simple rules can quickly lead to a quite complex solution path in the (., ©)-space. It is to
emphasize that all these iterates would have been accepted by the filter without invoking any step
length modification. This alone is already pretty impressive since most globalization methods
demand some kind of monotonicity. With respect to the filter method there is also a taboo region
which grows over the iterations as illustrated in Figure 6.1 by the growing red/orange area where
a darker, less transparent color corresponds to an older part of the taboo region. However, the
filter allows in each iteration a rise in the .Z or © value to a certain level. But, it does never
allow a rise in both coordinates at once from one iteration to the next. This is prevented by the
sufficient reduction conditions (6.3) or the Armijo rule (6.5) according to the result of the .£-
type switching condition. Furthermore, it shall be assumed that all points marked by O represent
ZL-type steps, i.e., the filter set is not augmented. The explicit role of ©,,;, will be addressed in
6.7.2 and is of minor importance at the moment.

The sketch of a solution path presented in Figure 6.1 is now discussed in more detail, since a
deep understanding of possible scenarios is essential for the later presented tweaks and adaptions
of the classic filter method. In this example, the initial filter set is empty, i.e., F {0} = . Now, the
first trial point with coordinates (1, 6) is accepted and added to the filter. The second trial point
has the coordinates (6, 5) and thus shows a rise in the objective function .Z, but a decrease in
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the infeasibility measure © what is enough to be accepted. Next, the trial point (4, 4.5) follows,
which shows a decrease in both coordinates compared to the previous iterate and is at least in one
coordinates smaller than the first point. Consequently, it is not blocked by the filter and accepted
by the sufficient decrease check. The same is true for the following iterations 4, 5, ..., 8. All of
them show a decrease in at least one coordinate compared to the previous iterate and none of
them is blocked by the information stored in the filter. However, iteration 9 with the coordinates
(3.5, 5) is a special case: Firstly, in comparison to the previous iteration 8 it shows the demanded
decrease in at least one coordinate. In this case the constraint violation © is getting smaller. But,
if iteration 7 would not be marked as .Z-type step, its coordinates (2.75,2.75) would be part of
the filter set and would block iteration 9, since 2.75 < 3.5 and 2.75 < 5. Therefore, iteration
9 is only accepted by the filter due to the used .Z-type switching strategy in conjunction with
the augmentation strategy. The same holds true for the iterations 11 and 12. Both of them would
be blocked by iteration 7. Afterwards the solution path shows a last slight rise in the constraint
violation till it starts to drop to very small constraint violations and iteration 15 is already called
feasible since its constraint violation coordinate is already below the specified tolerance TOL,.
Feasible points are not used to augment the filter set. Actually, this is a quite usual solution path
which has been chosen to demonstrate that all ingredients of the filter method are important for
the over-all performance. Fortunately, it is possible to find a set of parameters which works very
well for a large variety of examples. This will be further addressed in Section 6.10.

6.3. Minimal Step Length Estimates

Even though the algorithm avoids the need for an increasing penalty parameter and defines a
looser acceptability criterion than a classical line search algorithm based on a merit function
[96], there is still the possibility that there is no admissible step-length in the current calculated
search direction. In such a case an alternative fall-back strategy must be provided. But before any
counteraction can be initialized, such a bad search direction must be reliably detected. This can
be achieved by consideration of the defined acceptability and switching conditions. Each of them
contains an inherent minimal step length estimate. It must be highlighted that the possibility to
estimate a minimal step length is a big advantage of the proposed method since it avoids the
definition of a heuristic stopping criterion such as a maximal allowed number of line search
reductions, for example.

6.3.1. Sufficient Infeasibility Reduction

Beginning with (6.3a) an approximate value of the infeasibility measure (6.2) at the trial point
can be obtained by a linear model

O™ 4 me(a™) < (1 —~9)6H, (6.17)

where the linear model of the infeasibility measure follows as
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Figure 6.2.: Visualization of the minimal step length estimates for the sufficient decrease conditions. In Figure 6.2a
the minimal step length estimate deduced from the linear infeasibility model is shown. In Figure 6.2b the three
different cases for the quadratic Lagrangian model are illustrated.

me(a) =a D(O(z, 8); (Az, A))
=5 {0 (Vb DD = 6, (Vai M)A = Gy D)4 + (3. D80} . (618)

By splitting (6.18) in an active and an inactive part and inserting (6.10), as well as (6.13), the
following result is obtained

mo(a) = 5 { @ (Vagt AD) (6.19)

see also the SIR correction scheme and (5.22). Under the prerequisite that m’,(0) < 0 holds,
where the number of prime superscripts denotes the order of the considered derivative with
respect to a, the equation (6.17) can be solved for the step length parameter, yielding

{k}
{k,1} min _ /O o
o > alp" = — . (6.20)
? m' (0)
Note that for the unmodified system of equations, (6.20) yields '3 = ~g. A visualization of

the stated relation is given in Figure 6.2a.

6.3.2. Sufficient Lagrangian Function Reduction

The second estimate is derived from equation (6.3b). Under consideration of the saddle-point
model the mentioned criterion can be rewritten as

1
m',(0) atb 4 5mj’g(()) (a2 4y 0 <. (6.21)
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6.3. Minimal Step Length Estimates

Again, a minimal step length estimate can only be obtained, if the current search direction is
a descent direction for the considered criterion, i.e., mg(a) < 0. In general there are three
possible cases:

1. Z-reduction case: m',(0) < 0 and m",(0) < 0. The parabola opens downward. Since only
descent directions are considered, the desired result is obtained by the positive root. There
exists always a minimal step length estimate, but it is possible that it is larger than the default
step length. The minimal step length estimate is obtained by

win _ ~M2(0) = A/ (m'(0)) — 2 ' (0)7, 6
ay” = m : (6.22)
m’y(0)
2. Z-reduction case: m',(0) > 0 and m',(0) < 0. In this case the linear model would predict
no descent direction. However, the negative curvature may lead to a decrease of the objective

function values as long as m (%) < 0 holds. In this case the relevant root is again defined
by (6.22).

3. ZL-reduction case: m'y,(0) < 0 and m’,(0) > 0. In the last case the parabola defined in (6.21)
opens upward. Here, the minimizer of the mixed second order 1-D model plays an important
role. There exists no root, if the minimum value of the parabola is larger than —~ O ie.,
there is a root only if

/ 2
(W0 g

2 (0) ~ (6.23)

Then two positive roots can be expected and the minimal step length estimate is obtained by
the smaller one, which corresponds to (6.22). Note that there can be a reasonable root even if
m.y(a®%) > 0 holds.

In summary the following results are obtained

min

o' = min{a "%, —ml(0) = /(£ (0))* — 2 m/y (0)y, O

m'e (0)

if either m/,(0) < 0 and m.y(at®%) < 0, or if m",(0) > 0 and (6.23) holds. Otherwise there
is no minimal step length estimate for the objective function criterion and the used linear model
predicts that all trial steps will be rejected by criterion (6.3b). In this case o’Z™ is set equal to the
default step-length {*:*}, See Figure 6.2b for a visualization of the different cases.

} (6.24)

6.3.3. .Z-type Condition

Finally, the last estimate is obtained under consideration of the .Z-type switching condition (6.4).
Since this function is in general non-linear due to the chosen exponential parameters s; and sg,
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Figure 6.3.: In Figure 6.3a the three general cases for the .Z-type condition are visualized. While for the 1. case the
desired estimate is initially searched in the entire domain « € (0, 1], the cases 2 and 3 restrict the search domain to
the related hatched regions. In Figure 6.3b the two meaningful degenerated cases together with their minimal step
length estimates are presented. Note that sy = 2.3 and sg = 1.1 have been chosen for all shown curves.

a local Newton approach shall be implemented to compute the desired estimate. Therefore, the
local residual is defined as

ro(a) = (—m/y(0) — = m'(0)* @ — ve O (6.25)

and its first derivative with respect to the step length parameter « as

Q "

rip(a) = (=mly (0) — 5 m'y (0))* 2m/y (0) + (1 + s7) amly (0)

2m/y,(0) + am’,(0)

(6.26)

For now it shall be assumed that neither m',,(0) = 0, nor m’,(0) = 0 holds. These degenerated
cases are addressed afterwards. Before the Newton scheme is entered, it must be guaranteed that
a solution exists. Due to the non-linearity, there are three possible scenarios, which can all be
treated in one algorithm under consideration of different lower and upper bounds.

1. Z-type case: m',(0) < 0 and m",(0) < 0. This is the easiest case. Here, m () < 0 holds
for all a € (0, 1] and, consequently, the first part of (6.4) is always fulfilled. The attention is
drawn to the first derivative of the residual with respect to the step length parameter given in
(6.26). This derivative has two possible roots

2 ! O 2 / O
&, = -z and  ap, = —2mzl0) (6.27)
’ (1 + s5)m’,(0) ’ m'y(0)

Note that the second root denotes a limit case, since for a positive non-integer value of s the
evaluation of (6.25) will fail on the left side of & , and (6.26) will fail at & , due to a division
by zero. Actually, in the considered case a;, < &;; < 0 holds and thus both roots lie in the
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6.3. Minimal Step Length Estimates

negative half plane. Now, the evaluation at a7 ; of the second derivative of (6.25) with respect
to «v yields

m',(0)ss ) *f
(14 57)? (—2822) " m (0)

25ym/y,(0)

ri’%(d;I) = (6.28)

and for the considered case 7', (d;;) > 0 holds, thus, &;; denotes a minimizer of (6.25) for
the first case and the slope to the right side of & ; is always positive. Furthermore, as long as
6 > 0 is satisfied, 7 (0) < 0 must hold and it can be concluded: If m/,(0) < 0, m,(0) < 0
and r & (%% > 0 holds, the minimal step length estimate for the .Z-type condition must lie
between

Qlow = 0 and Gryp = a0, (6.29)

These two values are then used as initial upper and lower bounds for the following Algo-
rithm 6.1. Otherwise, if 7 (a*%) < 0 holds, the minimal step length estimate for the .-
type condition is set to the default step length, i.e. a/f™ = at*0},

. ZL-type case: m',(0) > 0 and m’,(0) < 0. Again, it shall be started under consideration of
the first part of (6.4). The used model indicates a descent direction only if

2, (0)
m'y(0)
This is equal to the second root a; , of (6.26) which is defined in (6.27). Furthermore, due to

the changed assumptions, now 0 < &;; < &, holds. Next, the sign of the slope of (6.25)
right to &; , is obtained by

(6.30)

_Em 0 Sf _2 /( O + 1 + ” 0
lin 1y (60 + ) = Tim 3O I=287m () + 1+ )l (O]

> 0. (6.31
e—0+ e—0+ em’y,(0) (6.3

Thus, it can be concluded: If m’,,(0) > 0, m’,(0) < 0 and r.»(a!*) > 0 holds, the minimal
step length estimate for the -Z’-type condition must lie between

2 (0)
' (0)

Qow = Gy = — and bryp = a0 (6.32)

These values are used as initial upper and lower bounds in the 2. case. Again, if 7 (a!%%) <
0 holds, the minimal step length estimate for the .Z-type condition is set to the default step
length, i.e. afmi“ = k03,
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3. Z-type case: m'y(0) < 0 and m',(0) > 0. This time mg(a) < 0 holds if « € (0, & ,) and,
furthermore, &; ; € (0, A ,) holds as well. Now, with the additional demand that & (45 ;) > 0
1s satisfied, it follows

srm/., (0
2 (272 ) iy (0)

~ % _ . @5@
e (S ) I
2kmy, (O .
= — r'e(ar ) —ve0%® >0, (6.33)
T+ s P )
where (6.28) has been inserted. This directly yields
1 3 " (0 2
(any) < L Ame OF ) go g (6.34)

2[m’,(0)]?

if © # 0 and thus &7, denotes a maximizer in this case. Finally, it can be concluded: If
m'y,(0) < 0, m"%(0) > 0 and 7#(d&y;) > 0 holds, the minimal step length estimate for the
Z-type condition must lie between

. 2m/y,(0)
Qlow = 0 and Qup = Gy = — i+ Sf)mgf(())' (6.35)

These values are used as initial upper and lower bounds in the 3. case. If 7#(4;.;) < 0 holds,

the minimal step length estimate for the .Z’-type condition is set to the default step length, i.e.
O{}nin _ Oé{k’o}.

If one of these cases occurs and the related conditions for the existence of a solution are
satisfied, the local Newton scheme must converge. If the conditions are not fulfilled the estimate
is defined as the default step-length ozj?in = al®%, The complete local safe-guarded Newton
algorithm is provided in Algorithm 6.1. The stated safe-guarding strategy ensures that the local
Newton scheme converges to a solution in the correct interval. The starting point is chosen as
the secant approximation based on the lower and upper bound values. Note that the start value
is always positive and part of the desired interval. See also Figure 6.3a for a representative
visualization of the three discussed general cases. Note that due to the chosen exponents it is
not possible to evaluate function (6.25) in the entire domain for the cases 2 and 3. However, the
evaluation is completely uncritical inside the hatched regions. Furthermore, the used algorithm
avoids a evaluation of (6.26) at the boundary positions such that these points are also uncritical
for Algorithm 6.1.

As mentioned at the beginning this Newton approach is only necessary for the general case.
If a degenerated case occurs, i.e., either m/y,(0) or m’,(0) is equal to zero, the solution can be
obtained without considering a Newton scheme:

1. Degenerated Z-type case: m’,(0) < 0 and m',(0) = 0. Here, m () < 0 holds for all
a € (0, "] and the estimate for the minimal step length follows as
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6.3. Minimal Step Length Estimates

Algorithm 6.1 MINIMAL STEP LENGTH FOR THE .Z-TYPE CONDITION

Given. Newton stopping tolerance TOL € R .

0.

Initialize. Set the iteration counter j < 0; depending on the current .Z-type case, set the
lower Aoy, and upper bound &, in accordance to the given definition in (6.29), (6.32) or

(6.35); define a starting point 417} = W (Gow)

75 (Qlow) —7 5 (G
Evaluation. Evaluate the residual (6. 25) and derlvatlve (6.26) for the current iterate.

. Update bounds. Update the lower and upper bound values. If 7« (417}) < 0 and 4V} > G4y,

set o = A1, else if 7o (a17}) > 0 and 4V} < Gy, set dy, = a1,
Trial point. Compute the Newton trial estimate

G _ gt _ 2@ (6.36)
'y (&) 401

Safe-guarding. Check the lower and upper bounds. If &} < &y, or 417} > G, set a7 =
0.5 (Qlow + Grup). Otherwise use the Newton iterate GV +H = 417},

Check convergence. Increase the iteration counter j «— j + 1 and check the convergence
criterion. If

\d{j} _ d{j71}| < ToL - ’@{j}‘ (6.37)

stop the local Newton scheme and set o/ = a7}, otherwise go to Step 1.

; Vo ese
auin = 97 (6.38)
T (=mly(0))
Degenerated £-type case: m',(0) = 0 and m",(0) < 0. This case is more or less mainly
of theoretical importance. However, m.¢(a)) < 0 still holds for all & € (0, at*%}] and the
estimate yields

Vo ese :| ﬁ
o = e . (6.39)
! [(—%mz(o))sf

. Degenerated Z-type case: m',(0) > 0 and m’,(0) = 0 or m',(0) = 0 and m",(0) > 0.

No solution can be obtained, and the minimal step length estimate is set to the default step
a}nin _ a{k,O}_

For an example of the first two meaningful degenerated cases the reader is kindly referred to
Figure 6.3b.

In summary, three different minimal trial step size estimates have been derived in the Sec-

tions 6.3.1 to 6.3.3. Thus, the final estimate is obtained by choosing the minimal value of all
estimates
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o

min

= Yo - min{ag™, aP", af"}, (6.40)

where v, € (0, 1] is a safety-factor to account for the used assumptions and neglected higher
order terms during the derivation of the estimates. Alternatively, it is possible to use even more
sophisticated estimates and models. However, in contrast to Wichter and Biegler [271], where
estimates for pure linear models can be found, here already more complex models are considered
and a further improvement of the used models seems not necessary based on the gained experi-
ence. Furthermore, the generated effort is still acceptable, since only one dimensional functions
are involved and the estimates are computed only once per Newton step. As soon as the trial
step size is below ar{fi}n, a strong indication is given that there is no solution in the current search
direction and either a feasiblity restoration phase must be activated or the simulation is stopped
at a non-optimal point.

6.4. Second Order Correction

First, the reader is kindly referred to Section 3.2.4 and the therein provided discussion about the
Maratos effect [186]. In the following one possible remedy for this problem shall be proposed
which can avoid the unnecessary rejection of good steps. The so-called second order correction
step, or short, SOC step. The idea is that the previously computed Newton step is augmented by
an additional increment such that the new displacement iterate

C_lSOC — C_l{k} + Ac_l{k} + AC_ZSOC (6.41)

can be easier accepted by the filter since it improves the entire step quality by reducing the
error order. The main reason why the Maratos effect even occurs is given by an insufficient
representation of the constraint curvatures in the applied linear model of the Newton or SQP
framework, see e.g. (3.52b) or the active constraint rows in (4.18). This is revealed by a simple
Taylor series expansion leading to

GAd+ Ad) = GA(d) + [Vagl ()] Ad + O(|ad)”) L o(|ad)?), (6.42)

where the iteration superscript k& has been omitted and () holds under the assumption that the
unmodified system of equations is solved. Furthermore, it shall be assumed for now that the
active set did not change during the last Newton step, i.e. A(d, A\y) = A(d + Ad, A\y + A)\y)
and that each constraint is at least twice continuously differentiable. In addition, it is to note
that the entire SOC discussion is mainly a topic concerning local convergence and aims for
avoidance of unnecessary rejections close to the solution by the filter, since in the pre-asymptotic
phase the occurring errors are hardly quantifiable. Thus, in order to avoid this phenomenon
close to the solution, this second order error must be reduced or corrected. For this task a large
variety of different methods are available. See for example Conn et al. [53, Sec. 15.3.2.3] for a
comprehensive overview. One quite intuitive option taken from this reference is to consider the
following subproblem
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6.4. Second Order Correction

1
minimize 5 |Ag5C ||2£ (6.43a)
5. t. G (d + Ad) + [AdC)T Vi (d + Ad) = 0, Vie A. (6.43b)

In words: The additional second order correction step shall reduce the active constraints evalu-
ated at the trial iterate while minimizing the distance measured in a given matrix norm to this
new auxiliary iterate. There are different possibilities how to choose the matrix B, for instance,
if the identity is inserted the distance in (6.43a) is measured in the classical {5-norm. Under the
assumption that the LICQ holds close to the solution it can be concluded that the solution of
(6.43) yields

GL(d + Ad + Ad™°Y) = g{(d + Ad) + [Vag(d + Ad) T AdOC + O(| A%
= O(|Ad*°?) (6.44)

and, consequently, the constrained least-squares minimization implies that

AFOC=O(JadP) = gid+ Ad+ AP 2 O(|Ad]) (6.45)

holds. Therefore, with respect to (6.42) the desired improvement can be achieved. However,
the shown optimization problem (6.43) asks for the evaluation of the weighted gap gradients
at the trial point d + Ad which can be pretty expensive, especially since there is always the
possibility that the second order correction step might not lead to the desired reduction and
must be rejected afterwards. Fortunately, the additional evaluation of the constraint gradients is
not necessary, since (6.44) can be reformulated by applying the mean-value theorem to the gap
gradients [53, 79] such that

GA(d + Ad + AdO) =g2(d + Ad) + [V gl (d)]"Ad>°
+ O(|A*C| max{|Ad>C|, |Ad]}). (6.46)

Now, if the old gradient V4 gﬁ (d) is inserted into the least squares problem (6.43), the left relation
in (6.45) still holds, only the right side must be adapted to

GA(d + Ad + AOY) =7 O(|Ad)?). (6.47)

Thus, Ad°C stays a valid second order correction step. The related system of equations which
must be solved is given by

Cogar 1) (350) - (guton) oo
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where \3°C represents the Lagrange multiplier associated to the modified least squares problem

(6.43). Thus, only the constraints at the new iterate d + Ad must be evaluated. This happens
anyway since they are needed for the acceptability check. Even though this would be a reliable
option to compute a SOC step, the obtained system matrix in (6.48) is still quite different from
the usual case and asks for a new matrix assembly. It would be favorable if the already assembled
system matrix can be reused.

Coming back to the least squares approach in a moment, an alternative ansatz shall be pre-
sented now. Instead of searching for a correction of the already computed step based on a linear
model for the constraints, it might be a better idea to replace the linear model simply by a
quadratic model, thus, the new demand

. 1
N+ (VNN (Ad + AO0) + S(Ad + A V3N T(Ad + AO) = 0 (649)

can be formulated for all active constraints i € A!*}. The obvious drawback of such an attempt is
that it explicitly asks for the Hessians of the active constraints, however, they are available since
they are necessary for the evaluation of the Hessian V3 ,.%. Nevertheless, a direct insertion of
(6.49) into the system of equations by replacing (3.52b) might lead to a much more difficult to
solve linear system. Therefore, Nocedal and Wright [204, Sec. 18.3, p. 544] suggest another ap-
proximation based on the Taylor series expansion. By neglecting third order terms, the following
estimate is deduced

Gud+ Ad) ~ G5 + (VoG TAd + A0V A (6.50)
Under the assumption that the original Newton step Ad and the augmented step Ad + Ad°°°
are not too different, the second order term in (6.49) shall be approximated by
1 1 ;
5(Ad + ATV (Ad + A) = ATV N Ad
O 5 (d+ Ad) — G — [V, Ad. (6.51)
Next, this estimate is inserted into (6.49) and the new optimization problem is revealed
1
minimize [V,% ™T(AL7) + E(AfOC)Tvgdg{’f}(AfOC) (6.52)

AdPOCeRrn

subjectto i (d + Ad) — [Vagi T Ad + [VgidPTAd™© =0,  VieS,  (6.53)

where Ac_ZS oC _ Ad+ Ad®°° has been inserted to simplify the notation. This at hand the related
system of equations follows to

Wid«i”““} Vg™ [ Ad+AdC N Vﬂ/{k} LT g{k} AW o5
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where the Hessian of the Lagrangian as well as the gradients of the weighted gap have been
replaced by their potentially slightly inconsistent counterparts introduced in Chapter 4 and only
active contributions have been considered. The first row in (6.54) can be easily rewritten as

@zdg{k}AdSOC o @ggf\]k}AA?\IOC
= v, W -2, LMD+ Vg P O+ A Do, (6.55)

where (1) follows since (Ad, Agl{\f }) fulfill the default linearized system of equations. Similarly,
the second row in (6.54) can be reformulated, leading to the final system of equations

V2,2 _@dgl{\f} Ad0C 0
(—[Vdgfé“}]T 0 <AA§OC> - (QN(C_H Ad)) | (6.56)

A short comparison between (6.48) and (6.56) instantly reveals the huge similarity between these
two approaches. Thus, if the matrix B is replaced by @3 +Z the systems would completely
coincide in case of the variationally consistent approach. In the inconsistent case, system (6.56)
represents a truncated variant of its consistent counterpart, which works often well in practice.
Furthermore, the initial derivation via the least squares problem (6.43) confirms the assumption
that the difference between Ad + Ad°°° and Ad°° can indeed be expected as being minimal,
at least near the solution. System (6.56) is in the following considered as the CheapSOC-step.
Another possibility is to do one more additional default step with the system of equations newly
evaluated at d + Ad. Thus, two consecutive full Newton steps can also be used as a second-order
correction step, see Wichter and Biegler [270] and Conn et al. [53, 15.3.2.3] for more informa-
tion about this approach. This possibility is in the following called FullSOC-step and coincides
with the idea of a watch-dog or non-monotone Newton method [45]. The default second order
correction strategy in this thesis is that the CheapSOC step is always used, whenever the active
set did not change between d and d + Ad, otherwise the FullSOC step is applied. Nevertheless,
the CheapSOC step can theoretically also be applied if the active set changed. Further discussion
on this topic will follow in Section 6.10.

6.5. Globalization Algorithm

At this point the full line search filter algorithm for contact problems can be presented. The
algorithm is closely related to the algorithms proposed in Wichter and Biegler [270, 271, 272].

Algorithm 6.2 LINE SEARCH FILTER ALGORITHM

Given. Assume that a suitable pair (x, Ay)io} is given, e.g., obtained from a predictor step;

constants Oy, € (0% ), Opin > 0,74, 76 € (0, 1/4/2), v5%> € (0, 1), 7, € (0,1]; s > 1;

sf>2se;mr€(0,05),0 <0y <oy <1,{ToL;} e Ry, Vie{l,... 4}

0. Initialize. Initialize the filter to F1¥} := {(Z,0) € R? | O = Oax} or F# := f and the
Newton iteration counter k < 0.
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1. Check convergence. Stop if the pair (z, Ay) fulfills the KKT conditions (4.9). The current
implementation performs the following set of residual tests

V% (@)~ Vi) M| <ToL  and 6 < To, (6.57)

In addition, it is required that the step size of the last accepted step is the default step length.
Under this prerequisite, the demands

|d% —d* < ToLs  and AT - AFTY < Tons - AFY) (6.58)

must be satisfied as well. Finally, the solution method is only denoted as converged if the

active-set is converged as well, i.e., the active set A} must be identical to A1},

2. Compute search direction. Evaluate the tangential stiffness matrix and compute the search
directions (Ad, A)y) from the linear system currently used. If the system of equations is
too ill-conditioned, modify the system of equations according to Algorithm 6.3. Otherwise,

determine the minimal step length estimate ocr{fiL defined in (6.40) and initialize the pre-testing

of Step 3.3 by calculating the necessary reference volumes, see also Section 6.7.1.

3. Backtracking line search.

3.1. Initialize line search. Set | — 0, and o!*" = 1 or alternatively use a user-defined default
step length. Create a back-up of internally stored condensed variables with respect to the
lastly accepted iteration. Furthermore, set the boolean flag isSOC to FALSE.

3.2. Trial point. Compute the new trial point d(a*%) = d* + o *8 Ad* and Ay (at!) =
Al{\lk} + Ol{k’l}AA]{\f}-

3.3. Pre-testing. Perform a pre-testing, e.g., as described in Section 6.7.1, which is supposed
to avoid a locally largely distorted mesh. If the pre-testing is successful, go to Step 3.4.
Otherwise, if isSOC = TRUE, recover any internally stored condensed variables first,
and go directly to Step 3.12.

3.4. Check acceptability to the filter. Compute £ (at*#) and ©(a!®!}). If the trial pair is
not a part of the current filter (£ (a!*!), O(at®)) ¢ F*, go to Step 3.5. Otherwise
update the filter-blocking criteria and go to Step 3.6.

3.5. Check the sufficient decrease criteria.

3.5.1. O < O, and switching condition (6.4) holds. If the Armijo condition (6.5) is
satisfied, go to Step 4. Otherwise go to Step 3.6.

3.5.2. O > O, or switching condition is not fulfilled. If one of the acceptance
criteria defined in (6.3) holds, go to Step 4. Otherwise go to Step 3.6.

3.6. Initialize the SOC strategy. If | # 0 go to Step 3.10. Else if isSOC = TRUE the cur-
rent trial point has been already corrected, first recover any internally stored condensed
variables and go to Step 3.12. Otherwise, set isSOC to TRUE and evaluate the SOC
system. If the current trial point indicates a converged active set and there are infeasible
constraints left, the CheapSOC system is considered, otherwise the FullSOC strategy is
followed.

3.7. Compute the SOC step. Solve the SOC system of equations under consideration of the
same modification as used in Step 2. If the linear solver fails, recover internally stored
condensed variables from the back-up state and go to Step 3.12.

196



6.6. Correction of the Linear System of Equations

3.8. Replace the current trial pair by the second order corrected pair. Replace the trial points
from Step 3.2 by d(at*) = d(a®1) + olFB AT and M\ (atP) = A (alFd) +
albl ANSOC,

3.9. Check acceptability of the SOC trial point. Use the new second order corrected trial
point pair and go to Step 3.3.

3.10. Reinitialize the filter. If the blocking criteria are fulfilled, the filter is reinitialized. There-
fore, the maximally allowed constraint violation G,y is reduced to Opax <— V6™ Omax
and the filter is reset to F* := {(Z, 0) € R? | © = Oy }. Go to Step 3.12. Other-
wise, if the current filter does not block good iterates, go to Step 3.11.

3.11. Check for the minimal allowed step length. If o!*!} < ai]fi}n, the simulation will be
stopped.

3.12. Adapt the trial step size. Choose oy .1 € [o1at*8 ) oyatk8] and increase the counter
[ — [+ 1. Go back to Step 3.2.

4. Accept the trial point. Set z**1} = z(a!*!) and AI{\fH} = Ay (ad®t).
5. Augment the filter. If k is not a .Z-type step and the current point is not a feasible point, i.e.

O+ > ToL,, augment the filter using (6.16). Otherwise, FF+1} .— Fik},

6. Continue with next iteration. Update the regularization parameter c{ i

counter £ — k + 1 and go to the convergence checks in Step 1.

, increase the iteration

6.6. Correction of the Linear System of Equations

The first crucial ingredient of Algorithm 6.2 is the treatment of non-positive definite systems
of equations during the computation of the search direction in Step 2 of Algorithm 6.2. Theory
and practice show that a singular or closely singular system often occurs in the neighborhood
of instabilities such as buckling or snap-through scenarios. While a trust-region algorithm can
naturally treat these systems due to the underlying idea of such methods, this is not true for a
line search method. Instead, an algorithm is needed which reliably detects these cumbersome
situations and provides a meaningful strategy to handle them without asking for too much addi-
tional computational effort. Especially, the solution of an Eigenvalue problem shall be avoided
in the following. Instead, a set of heuristic criteria is presented which proved to be successful
in practice. To reach this goal the following linear system of equations is considered throughout
this chapter

Ve +wM  —Vgd 0 Ad V4 + VdgA)\N
—(Vagd)t —£A% 0 AN = % . (6.59)
2 AININT - 2 i = V2

_gvd(é AN) Q c—é (5} AAN a _N (K}

Fundamentally, this is the same system of equations as derived in Chapter 5. However, with one
important difference: While the modification of the active constraint rows is, as already shown,
very favorable in the pre-asymptotic phase, an additional modification of the top-left block has
been introduced. This modification is well-known in the literature and becomes beneficial as
soon as the projection of this matrix onto the null space of the active constraint gradients becomes
positive semi-definite or even indefinite, see also the discussion in Section 5.6.8. The addition of
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a positive-definite matrix M e R™*™ scaled by a positive scalar w helps to shift the eigenvalues
of the top-left matrix block to more positive values. In this thesis a simple identity matrix I €
R™" is inserted for matrix M. This is a very common choice and has the additional advantage
that the diagonal dominance will be increased by a sufficiently high regularization parameter
w. In fact, the active lower-right block can be interpreted in a very similar way: As long as
the contact regularization parameter cy is chosen small enough, this block helps to avoid any
rank-deficiency of the constraint gradients. For more information the reader is kindly referred
to Section 5.2.2. However, in contrast to the so-called Inertia Correction algorithm proposed in
Wiichter and Biegler [272, Sec. 3.1], the parameter cy is defined by the SIR correction strategy
proposed in Section 5.3.2. While in the mentioned reference [272] this block is only touched
if the iteration matrix shows zero eigenvalues, it has become evident that the SIR update is
crucial to create a meaningful sequence of iterates {d*'} and {Al{\f}} which do not lead to a
heavily distorted mesh for contact problems. In fact, it might be even necessary to reduce the
cny value again during the non-linear solution procedure, since otherwise the algorithm might
not show the desired progress or even fails to fulfill the described sufficient decrease conditions
of the filter method in some rare scenarios. This point will be reconsidered in Section 6.7.4.
Furthermore, the shown saddle-point system is used instead of the possible condensed version
due to the beneficial properties with regard to the conditioning of the iteration matrix. In this way,
the following modifications of the system matrix will generally lead to a decreasing number of
GMRES iterations if the regularization parameter w is sufficiently high and cy sufficiently low.
However, to reach quadratic convergence, it is still favorable to set w equal to zero whenever
possible and to switch to the standard Lagrangian system as soon as the proposed switching
conditions from 5.5 are satisfied. Otherwise, only a linear convergence can be expected. Firstly,
the correction strategy of the parameter w shall be discussed. Therefore, a modified variant of
the Inertia Correction algorithm of Wichter and Biegler [272] is applied which is summarized
in Algorithm 6.3.

The presented algorithm uses a heuristic acceptance test which works well in practice with-
out being too restrictive. One important ingredient is the reliable detection of invalid or bad
elements. While invalid means that the element Jacobian determinant becomes negative some-
where in the parametric domain, a bad element is identified by a fast changing element volume
(or element area in 2-D). Therefore, first each element undergoes a validity check based on the
trial displacement field c_l{k by Ad which is described in Section 6.6.2. If the element is valid then
the reference and current volumes of each element are computed and, subsequently, the ratio
between previous and new trial volume is calculated. If this ratio is higher than r,,, or lower
than 7,,;,, then the bad element counter ny,q 1S increased.

This is one of the applied tests. However, Algorithm 6.3 is only concerned with the com-
putation of a reliable search direction and a too restrictive set of criteria might lead to a slow
convergence, since the correction algorithm might start to turn the search direction too far away
from the original Newton direction. Even though, it should never be allowed to accept a step
leading to invalid elements, this might be better handled afterwards by the line search capability
of Algorithm 6.2.

Therefore, another acceptance test is added which consists of an upper bound for the current
step length and a simple additional matrix check. The simple matrix check inlucdes a positive
definiteness test claiming J,, > J. > 0, thus it is stronger than the wrapping positive definite-
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6.6. Correction of the Linear System of Equations

Algorithm 6.3 CORRECTION OF THE ITERATION MATRIX

Given. The following constants wWyin < Wy < Wmax, 0 < K, < 1 < k) < KI*, N, > 0,
Tmin < 1< Tmax> Slast ~ 07 0< 55 < 5w~

0.

Initialize. The very first time entering the algorithm the variable wy,; is set to zero and the
successive iteration counter n,, is set to /V,,. Furthermore, each time the algorithm is entered,
the correction counter c,, < 0 will be reset.

. Solve the linear system of equations. If n, = N, try to solve the unmodified system of

equations, i.e., w = 0 and cy is chosen in accordance to the SIR-correction strategy. If the
linear solver succeeds, go to Step 2. Otherwise, if either n,, < N, or the linear solver fails,
go directly to Step 3.

Check search direction.

2.1. Compute element volumes. Firstly, the reference element volumes vfg for all solid el-
ements e € £ with respect to the previously accepted iterate d™ are computed. After-
wards, the current element volumes véﬁ)rr with respect to c_l{k} + Ad are evaluated.

2.2. Identify bad elements. Initialize the bad element counter ny,,q to zero. If either

a) the evaluation of the current element volumes fails due to a negative determinant
of the deformation gradient or a negative determinant of the element Jacobian or

b) the ratio v\, / vg is for any element e € £ greater than 7,,,, or smaller than r,,;,

the bad element counter ny,,q shall be increased by one for each identified element.
2.3. Compute default step length measure. Compute the quadratic ¢5-norm of the current
search direction, viz. Scyr = (Ad, Ad).
2.4. Acceptance test. The first part of the acceptance test will be passed, if either
a) there are no bad elements, i.e. Np.q = 0, or

b) the step length decreases S¢u;y < Siast and the top-left block of (6.59) fulfills
(A, (V2L + w)A) > 6,5 cum-

As second part of the test, the matrix must stay sufficiently positive definite in the

current search direction. This is enforced by the additional demand (Ad, (@?Id,f +

wI)Ad) > d.Scur- If these tests are successfully passed, the current direction will

be accepted. Then, set S5t < Scur and go to Step 7. Otherwise, if there are bad

elements and simultaneously either the step length increases or the (stronger) matrix

test is violated or, alternatively, the direction is no descent direction, go to Step 3.

. Initialize or decrease the correction. If c,, > 0 go to Step 5. Else if wj,ss = 0, set w «— wy.

Otherwise, set w < max{wmnin, K_Wst }- Increase the correction counter ¢, < ¢, + 1.
Solve the modified system of equations. Solve the modified system of equations. If the linear
solver succeeds, go to Step 2. Otherwise, go to Step 5.

Increase the correction. If wy,gy = 0 set w «— kK Tw. Otherwise, set w < £ w. Increase the
correction counter ¢, < ¢, + 1.

Check upper correction bound. If w > wy,ax, stop the simulation. Otherwise, go directly back
to Step 4.

Acceptance. If ¢, < 1, setn,, < n,, + 1. Otherwise, reset n,, < 0. Furthermore, if ¢, # 0 set
Wiast <— w. Accept the computed search direction and use it for the following backtracking
line search algorithm.
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ness test, which will be addressed in a moment. This enhancement is reasonable without being
unnecessarily restrictive since it can be only triggered if the violation comes along with a bad
element counter greater than zero. Back to the first part of this second test, the quadratic /5-norm
of the current step is computed and compared to the previous step length. If now the current
step-length is smaller than the step length of the last applied search direction and the stronger
positive definiteness test is passed as well, then the search direction is accepted even if some
elements are still invalid or show a huge volume change. It is assumed that one of both criteria
is fulfilled after a sufficient number of corrections. This can be expected, since the modified sys-
tem of equations will lead to a smaller and smaller step-length for a sufficiently high value of w.
This is in accordance to the derivation leading to trust region (3.24) and Levenberg-Marquardt
(3.23) schemes. Thus, the regularization parameter w can be also interpreted as a representative
estimate of the optimal trust-region Lagrange multiplier which is necessary to restrain the step
length. An increasing trust region Lagrange multiplier value leads to a smaller and smaller trust-
region. Similar ideas lead to the Levenberg-Marquardt method [174]. In fact, the step length
test of Algorithm 6.3 proposed here is designed in such a way, that it takes advantage of these
well-known strategies.

However, due to the used or-combination in Step 2.4, the step-length is not restrained if no
bad elements have been detected. That means, under the assumption that the problem is well-
posed and the Newton iteration does not lead to any bad elements, the algorithm is still able to
increase the s, value such that it is in a meaningful range. Otherwise, if the Newton iteration
leads to invalid or bad elements and s),5; has been chosen too large such that the matrix might
no longer be positive definite in the computed search direction, the value of sj,¢; will be adapted
accordingly. Furthermore, due to the fact that it is very unlikely that s.,, is exactly equal to s,
the algorithm will lead to a decreasing sequence each time bad elements occur. On the other hand,
the value of s),i; will stay bounded from above since the update in Step 2.4 is executed for each
accepted search direction and the length of these search directions must be bounded as long as a
progress to the solution can be achieved. In summary, the value of s),5; will automatically become
smaller and smaller as soon as the iteration sequence {c_l{k}} starts to approach the solution point
and can only become larger if no bad elements are detected and the upper left matrix block is
sufficiently positive definite.

This last part is enforced by the surrounding positive definiteness test. Its main task is to
detect a negative definite upper left block in (6.59). Otherwise, the algorithm might not modify
the system of equations in cases where the matrix-block is negative definite but the bad element
counter is equal to zero. Such a case would very likely lead to a stagnation of the entire solution
procedure. An example can be found in Section 6.10.2. It can be concluded that the proposed
algorithm has a well-designed self-correction property which works very well in practice (cf.
Section 6.10).

Remark 6.1. At this point one important remark must be made concerning the surrounding pos-
itive definiteness tests in Step 2.4 of Algorithm 6.3. The example 5.6.8 has shown that there
are scenarios in which the positive definiteness test used here will fail, but the projection of
the gradients of the active constraints into the null space stays positive definite, as described in
Remark 5.10. In such a case, the matrix modification might be unnecessary or even counter-
productive in the sense of a higher number of Newton iterations. However, there are two points
which must be kept in mind:
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e Firstly, the example in Section 5.6.8 has shown that the method proposed in Chapter 5 ben-
efits from a positive definite upper left block. Actually, a negative definite matrix in search
direction might lead to a disastrous outcome. Furthermore, this is independent of the pos-
itive definite matrix property of the projected matrix. That means: If the modified Newton
approach of Chapter 5 is applied, the convergence properties are rather improved by the
positive definiteness test in Step 2.4 of Algorithm 6.3 and this is true for the variationally
consistent as well as for the variationally inconsistent contact formulation.

e Secondly, it is to mention that the case of a negative curvature in search direction due to the
influence of the second order derivatives of the active constraints could only be observed
for the complete variational approach. In case of the incomplete variational approach,
which is solely considered throughout this chapter, a negative definite system matrix seems
rather connected to some kind of structural instability such as buckling or a snap-through
scenarios. These instabilities need the matrix modification and are detected correctly by
Algorithm 6.3.

To put it in a nutshell: Even though the true curvature of the underlying Lagrangian might be
sufficiently positive definite in sense of (5.82), the line search method and contact formulation,
i.e., the variationally inconsistent approach from Chapter 4, used here seem to benefit from the
enforced stronger demand in Algorithm 6.3. This impression is also supported by various numer-
ical experiments which will be presented in Section 6.10. The brief application to the complete
formulation in Section 5.6.8 also revealed a stable but maybe slightly slower convergence be-
havior.

Now, the attention is drawn to some further details of Algorithm 6.3: Two counters ¢, and
n, are introduced. The first one, namely the correction counter c,, is set to zero each time
Algorithm 6.3 is entered and is incremented by one, each time the regularization parameter w is
updated in Step 3 or Step 5. This parameter has two main tasks: Firstly, it allows the identification
of the first modification and initiates the decrease of the regularization parameter in Step 3. If the
decrease is unsuccessful, the next and all subsequent modifications increase the regularization
parameter until a new search direction is found which satisfies the acceptance tests. Beside this
switching task between decrease and increase, the parameter ¢, has another purpose: It is used
to detect a sequence of Newton iterations which were accepted with a decreasing regularization
parameter. Therefore, each time acceptance is achieved and the correction counter is below or
equal to 1, the second counter n,, the so-called successive decrease counter, is incremented
by one. If an increase of the regularization parameter becomes necessary and thus c,, > 1 the
successive decrease counter is reset. This counter is used to switch back to the unmodified system
of equations in Step 1, but only when it seems promising. Otherwise, if the last increase of the
regularization parameter was in the recent past, the solution attempt of the unmodified system
of equations is skipped and the algorithm tries directly whether a slightly smaller regularization
parameter might be successful in Step 3. In summary, the counter n,, has been introduced to
avoid unnecessary attempts to solve the unmodified system of equations whenever the recent
history indicates that it is unlikely to be successful.

The remaining part of Algorithm 6.3 is quite similar to the inertia correction algorithm pro-
posed by Wichter and Biegler [272]. Note that the update of the regularization parameter cy is
not part of Algorithm 6.3, but is instead moved to Step 6 of Algorithm 6.2. Some further details

201



6. Line Search Filter Approach

on this topic will be given in Section 6.7.4. Before the discussion on Algorithm 6.2 is continued,
the attention is drawn to the used linear solver parameters and the invalid element identification.

6.6.1. Linear Solver Parameters

This section is supposed to give a brief overview of the applied linear solver parameters which
are considered in this chapter to solve the probably very large system of equations given in (6.59).
However, if the problem size is small enough, a simple direct solver will be applied. Possible
choices would be the UMFPACK [62] or the KLU [63] solver, for instance. In this thesis, the
UMFPACK solver will be preferred.

However, if a larger problem is addressed, the choice of a suitable set of linear solver param-
eters can become far more complicated. A similar issue has already been discussed during the
presentation in Section 5.6.7.2. However, the new system of equations (6.59) in combination
with Algorithm 6.3 can be helpful to simplify this choice. With the applied regularization of the
upper left matrix block in combination with the regularization of the lower right block under
consideration of the SIR correction scheme, two methods are now accessible which increase the
diagonal dominance of the system matrix whenever necessary. Therefore, the regularization of
the upper left matrix block discussed here will be further increased whenever the linear solver
fails in Step 1 or Step 4, and, indeed, this helps in many cumbersome situations to find a solution
of the linear system without tweaking any parameters. To demonstrate this, all large examples
in Section 6.10 will be solved with the same set of linear solver parameters. Furthermore, only
small changes have been made compared to Table 5.2:

e The max. coarse level size is reduced to 5,000 for all examples.

e In case of any active contact contributions solely the CheapSIMPLE preconditioner for the
saddle point formulation will be considered. This is independent of the fact whether the
modified contact system or the standard Lagrangian system are in use.

e The max. Krylov subspace size is increased to 300.

The remaining parameters in Table 5.2 stay unchanged . It must be emphasized that especially
the smaller max. coarse level size makes it rather more difficult, but also computational less
expensive, to find a solution of the linear systems. For further information concerning the linear
solver performance the reader is referred to Section 6.10 and the graphs concerning the GMRES
iterations therein.

6.6.2. Invalid Element Identification

The invalid element identification which is for example used in Step 2.2 a) of Algorithm 6.3, can
be quite involved, since it might not always be straight forward to reliably detect all elements
with a locally negative Jacobian determinant. However, it is important to detect them since oth-
erwise the non-linear iteration might start to stagnate. Such a stagnation can occur if even one
single element is overseen. This especially happens for very thin walled structures more often
than one might think. To avoid this undesirable situation it is not enough to track the value of the
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Jacobian or deformation gradient determinant at each evaluated Gauss point, instead the deter-
minant is supposed to be positive in the entire feasible parametric domain. In the current imple-
mentation 4-noded quadrilateral and 8-noded hexahedral elements for 2- or 3-D, respectively, are
considered. These elements are based on the classical linear Lagrange shape functions. Before
the 3-D case is addressed, the attention is drawn to the easier 2-D case. Typically, the paramet-
ric space for the 2-D QUAD4 elements is defined as the domain [—1,1] x [—1,1]. Since the
following presentation is leaned on Johnen et al. [150, 151], the domain shall be redefined as
[0, 1] x [0, 1]. This does in no way affect the validation criteria and thus is just a technical step.
The corresponding Lagrangian polynomials are then given by

Li(€h,€%) = (1=¢H(1 - ¢, Ly(€',€%) = (1 - &), (6.60)
Ls(€h, &) = £'¢, Ly(€4,8%) = (1= ¢, (6.61)
(6.62)

As one can easily reproduce, the Jacobian follows as

(L’l 1 Z,Ul 2
i(e)(glag) = < 2* ) )

T Ve

(Al ]12(1 - &) + Al 438 Ala']u(1 — &) + Azt ]os€!
- (A[x2]12(1 —€2) 4+ A[2?]43€2 Al2]ia(1 — €Y + A[Iz]ﬁgl) (6.63)

and the associated determinant yields

det(J (€', €%)) =L1(€", ) { A2 12 Al*]1a — Al2]12 Alz']14}
+ Lo(&h, ) {Alz' |12 Ale?]as — Alz?]1o Al ]}
+ La(&h, ) { Al |as Al2]1s — Al2]as Alz'] 14}
+ Ly(€, @) A ]as Al2?]as — Al2]4s Alz']2s}
=YL&, &) T, (6.64)

where A[-];; denotes [-];—[]; and J* represents one of the Jacobian determinant values evaluated
at the four corners of the QUAD4 element. The representation in (6.64) clearly reveals that the
value of the Jacobian determinant can be formulated as a bilinear interpolation of its values at the
corners. Consequently, if the Jacobian determinant at the four corner nodes is greater than zero,
then the Jacobian determinant in the entire element is greater than zero. This allows the definition
of an easy validation criterion in 2-D: Evaluate the Jacobian determinant at the corners of the
QUAD4 element. If all four values are positive, the entire element will be valid.

Unfortunately, the situation is much more complicated in 3-D. For a linear hexahedron, in the
following called HEXS, the Jacobian determinant can be expressed as

det(J(¢",€%,6%) = eujp ' @ o ¥, (6.65)
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where ¢;;;, 1s again the Levi-Civita symbol. Consequently, it is no longer a simple bilinear func-
tion, but instead a triquadratic one. Therefore, it is not enough to test only the corner points for
validity. As stated in [147, 160], the positivity at the corner points can only be seen as a necessary
condition. Furthermore, Knupp [160] has shown that it is also not enough to maintain positiv-
ity at the twelve edges of the HEX8 element. Therefore, he proposed that it might be sufficient
to demand positivity on the six faces without giving a proof. However, this does not lead to a
straight forward computation, since this new criterion asks for the minimization of a biquadratic
function on each face subject to additional bound constraints given by the parametric domain.
Since it shall be used as a fast and reliable pre-test in the filter method this seems unnecessarily
complicated and to the best of the author’s knowledge no usable algorithm for this minimization
task has been published, yet. An alternative is the sub-division of the hexahedron into tetrahedra
based on the eight corner nodes. This idea is exemplarily followed by [118, 147, 265, 268, 296].
These algorithms range from 8 to 64 computed tetrahedra. In Ushakova [266], the different ap-
proaches have been compared to each other and as a result it has been concluded that at least
58 tetrahedral volumes must be computed to obtain a sufficient criterion. This is quite a high
number, and thus it might not be surprising that at the beginning a simpler remedy has been used
in this thesis: The volume of the hexahedron in combination with the Jacobian determinant at
the eight corners has been evaluated and checked for positivity. This is a approach which is also
quite often followed in commercial packages [151, 161, 286]. If neither the volume calculation
nor the evaluation at the corner nodes indicated an invalid element, the element has been de-
clared valid. This worked in most cases very well, especially when it has been combined with
an additional restriction of the volume change as proposed in Algorithms 6.2 and 6.3. However,
a study of the related literature indicates that there are invalid configurations which might not
be detected by such a simple approach. Fortunately, a further review has revealed that it is pos-
sible to improve the algorithm in an efficient way. The necessary steps have been implemented
and shall be proposed in the following. Therefore, the spotlight is pointed onto the articles of
Johnen et al. [150, 151]. In the first publication [150], a method has been proposed which is
capable of reliably checking the validity of curved finite elements of any type. This is achieved
by expanding the Jacobian determinant into the Bézier space. Due to the convex hull property
of the Bézier expansion, the associated Bézier coefficients can be used to define an upper and
lower bound for the minimum of the actual Jacobian determinant in the element. Subsequently,
a divide et impera strategy is followed, which recursively divides the element into smaller sub-
divisions coming along with tighter and tighter bounds. This approach can be easily modified
in such a way that it can be efficiently applied to the linear hexahedral element, since it is a
special case of the more general framework discussed in [150]. This step has been done in [151]
and will also be followed here. Furthermore, it is to note that this algorithm is to the best of the
author’s knowledge the only one which can truly be used as a reliable test since it works also if
the minimum lies inside the element. Thus, it is not based on any unproven assumption.

Since a detailed description of the method can be found in [150, 151] only the most general
steps shall be discussed here. Therefore, first, the necessary one-dimensional second order Bézier
functions are stated

Bo(€) = (1—-¢)?, Bi(§) = 26(1 - ¢), By(€) = (£)?, (6.66)
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Figure 6.4.: In Figure 6.4a the one-dimensional second order Bézier polynomials are visualized. Furthermore, the
considered numbering of the sampling points for the HEXS8 element is presented in Figure 6.4b. The color scheme is
supposed to highlight the positioning more clearly: gray points denote corners, blue points are placed in the middle
between two corner points on each edge, green points are positioned on the surface centers and the red point is
located in the center of the HEX8 element.

for all £ € [0,1]. A visualization can be found in Figure 6.4a. These at hand, their three-
dimensional counterparts follow immediately as

Bijr(€',€%,€%) = Bi(€') B;(€%) Bi(€?), (6.67)

where 0 < 7,7, k < 2. Next, the node numbering given in [151] is introduced by Figure 6.4b.
Under consideration of this numbering the three indices of the Buk functions can also be as-
signed to the related point indices. For example, By, becomes B, and B, is identical to Bl5
This said it is now possible to express the triquadratic Jacobian determinant (6.65) simply by

27

det(J (¢, €, ¢)) Z ' Bi(¢', €%, 6%), (6.68)

where ' are the coefficients or control values related to the corresponding Bézier basis function.
Since the 27 Bézier functions are all positive over the entire parametric domain and due to the
fact that the partition of unity holds, it can be concluded that the convex hull property holds and
the coefficients can be used to define a lower bound of the Jacobian determinant value, viz.

min_ {0’} < min  {det(J(€))}. (6.69)

i€{1,2,...,27} €€[0,1]x[0,1]
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Figure 6.5.: In Figure 6.5a the tetrahedron related to the corner point 3 is given, while Figure 6.5b shows the
tetrahedron belonging to the sampling point 19, i.e., the mid-point between the corners 7 and 8.

Furthermore, the Bézier coefficients corresponding to the corner points of the HEXS8 element co-
incide with the values of the Jacobian determinant at these positions. This fact becomes obvious
by looking at (6.66). While the partition of unity holds in the entire domain of definition, only
at the boundaries of the domain all Bézier functions are zero except for the one corresponding
to the related coefficient. Thus, with respect to the numbering introduced in Figure 6.4b the first
eight Bézier coefficients correspond to the eight values of the Jacobian determinant at these cor-
ners. Now, the minimum of these first eight coefficients can consequently be used to define an
upper bound for the minimal determinant value in the hexahedron. Assuming that one of these
first eight values is negative, it is proven that the considered HEXS is invalid. On the other hand,
if all 27 Bézier coefficients should be positive, it is proven that the entire HEXS8 is valid. Finally,
in the last case, when the first eight coefficients are positive and at least one of the remaining
19 coeffizients is negative, the current information is insufficient and a subdivision algorithm is
initiated to tighten the bounds. The details of this subdivision algorithm are provided in [150]
and will be discussed in a moment. Important to note is that such a strategy is proven to be
successful, since the subdivision algorithm always stops and the bounds are expected to con-
verge quadratically with the size of the subdomains. For more details the reader is referred to the
literature on this topic [50, 173].

Now, the first question is how to obtain the 27 Bézier coefficients which are necessary for the
algorithm. Therefore, following the derivation, it is easily possible to obtain a linear mapping
between the Jacobian determinant values and the Bézier coefficients by

k(gi)gk’ Vi,ke{1,2,...,27},
b, (6.70)

206



6.6. Correction of the Linear System of Equations

where §’ denote the 27 parametric position vectors of the points defined in Figure 6.4b, e.g., § -
(0,0,0)T and £** = (0.5,0,0.5)". Following (6.70), the B;; entries of the matrix B € R*™*?"
are given by the function values Bj (§Z) Thus, if the vector j is known, i.e., if the values of the

Jacobian determiant at the 27 points are known, then system (6.70) can be solved for the desired
Bézier coefficients. Since this mapping has an important role in the up-coming subdivision al-

gorithm, it makes sense to explicitly compute the inverse 1" = B_l once at the beginning of the
simulation, or to take it from Johnen et al. [151]. This m_atriX_I e R27™*%7 maps the values of
the Jacobian determinant evaluated at the 27 sampling points given in Figure 6.4b onto the 27
Bézier coefficients.

Moreover, Johnen et al. [151] nicely explain that there are only 20 independent Bézier coef-
ficients as well as 20 independent entries in the vector j. This can be used to construct a linear
mapping from these 20 Jacobian determinant values onto the 27 Bézier coefficients, such that

1S

Joo (6.71)

1

where the vector j 20 holds the Jacobian determinant values of the first 20 sampling points. The
actual definition of @ € R*™*® can again be found in [151]. Note that this matrix Q is also
stored as a static member in the algorithm. Thus, neither the matrix z nor the matrix ¢ Q must
be recomputed after the initial setup call. However, the first 20 entries of the vector j remain
outstanding and are, therefore, considered next. The first eight values in the vector j co;respond
to the eight corners and are equal to the volumes of the tetrahedra constructed from the three
edges of the respective corner scaled by a factor of six. For example, the entry three of the vector
J follows as

j* = det(i(e)(l, 1,0)) = 6 vola (2*, 2*, 2%, 2"). (6.72)
In a similar way it is also possible to obtain the remaining 12 entries corresponding to the edges.
Therefore, the corresponding tetrahedra can be constructed as exemplarily shown for the entry
19 which is defined by

1 1
7' = det(J\9(0.5,1,1)) = 6 vola(z”, z°, é(f + 2%, 5@3 + z*)). (6.73)

A demonstrative visualization of the TET4 corresponding to (6.72) can be found in Figure 6.5a,
while an illustration of the TET4 related to (6.73) can be seen in Figure 6.5b. These 20 vol-
umes must be computed at the beginning of each validity check under consideration of the cur-
rent nodal positions of the HEX8 element. In fact this is the only point in the algorithm where
the current nodal coordinates are considered. Now, if either one of the 20 computed Jacobian
determinant values is negative or if all the subsequently computed Bézier coefficients bt for
i €1{9,10,...,27} following (6.71) are positive, the algorithm is finished. Only if all of the 20
Jacobian determinant values are positive and at least one of the remaining 19 Bézier coefficients
are negative, the subdivision is started. This subdivision algorithm is based on the following
relationship
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U (glalty = Bl [eldi) glak — B, e(¢l)] 3, (6.74)

where § [} how denotes one of the 27 parametric position vectors in one of the eight subdomains
ge{l,2,...,8},ie., similar to (6.70), (" = (0,0,0)T and £7** = (0.5,0,0.5)" for example
Additionally, the linear mapping &(§ [y = gld 4 (pl1l — gl ])§ [9) i inserted, where al4l and b[?

denote the lower left and upper right boundary point of the ¢*" subdomain cube. Thus, (6.74)
yields

plali = 7% B [ald + (pla) — gla) §["]j] B (6.75)
for i j,k; e {1,2 ...,27} and ¢ € {1,2,...,8} where the necessary inverse of the matrix
Blalik — [ ¢ldl "] has been replaced by the already computed matrix 7". Furthermore, under

the assumptlon that a previously boundary point pair @ and b is given, the new eight sub-boundary
pairs can be computed instantly and very inexpensively by

b
c _a ;_ 2 (6.76)
Q[l] = a, [_)[1] = ¢, QD] - (Cla a2, a3)T7 Z_)[Q] (bl? C2, C3)T’
Q[?)] = (017 C, a/3> ) Q[?’] = (b17 b27 03)T7 Q[4] = (a17 Ca, a3)T7 Z_)[4] = (Cl? b27 C3)T’
Q[5] = (a1 a2,03) ) Q[S] = (017021b3>T7 Q[G] = (01,a2,03)T7 5_7[6] = (bl>c2=b3)Tv
Q[ﬂ =G b[ﬂ = b7 Q[S] = (a/ly Co, C3)Ta Z_)[S] - (017 b27 b3>T

Note that the initial boundary point pair is given by a = 0 and b = (1,1, 1)". Thus, the com-
putational cost of the subdivision procedure lies in the evaluation of the 729 function values
By [£ (5 *)] and the execution of the subsequent two matrix-vector products in (6.75).

At this point, it is possible to summarize the necessary steps in Algorithm 6.4 which is closely
linked to the algorithms proposed in [150, 151]. Note that in Step 3 it is sufficient to check the
last 19 Bézier coefficients, since the first eight have already been tested in Step 2. To verify the
implementation, the unit tests proposed in [151] have been applied. In Figure 6.6 one heavily
distorted element is shown, which would pass the old test, i.e., the Jacobian determinant values
at the eight corners as well as at the Gauss point positions are all positive. In fact, if the minimum
of the scaled Jacobian determinant at the eight corners is computed the value 0.647 is obtained.
For more details how this scaled Jacobian determinant can be computed the interested reader is
referred to Knupp [161]. Anyway, that’s far away from being zero or critical. Thus, the previously
used simple check would fail in this case, since as Figure 6.6b shows, the element is indeed
invalid. It is to mention that this is detected by Algorithm 6.4 already in Step 2, since the volume
of the TET4 associated to sampling point 14 in Figure 6.4b is negative. Thus, this example is not
really challenging for the proposed method. Therefore, another test from [151] shall be discussed
which is shown in Figure 6.7. Again the simple corner node and Gauss point check would tell
us that the element is valid. However, Algorithm 6.4 reliably detects the location of a negative
Jacobian determinant value by three successive subdivisions which are shown in Figure 6.7b.
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Algorithm 6.4 ANALYSIS OF THE HEX8 JACOBIAN DETERMINANT
Given. The matrix T as well as the matrix () are either given or must be constructed once at the

beginning when the method is called the very first time. See Johnen et al. [151] for a detailed
description.
1. Compute TET4 volumes. Compute the 20 TET4 volumes corresponding to the eight corners
and the 12 edges of the hexahedron element. Store these volumes scaled by a factor of six in
a vector j, .
2. Check the volumes. If at least one entry ji, fori € {1,2,...,20} is negative or zero, return
false and leave the algorithm.
3. Compute the corresponding 27 Bézier coefficients. Evaluate (6.71). If all entries in b are pos-
itive, return true and leave the algorithm.
4. Subdivision. Set the parent sub-domain boundaries to @ = 0 and b = (1, 1, 1)T.
4.1. Create 8 sub-cubes. Compute the sub-cube borders following (6.76).
4.2. Loop. Loop over g € {1,2,...,8}.
a) Compute Bézier coefficients. Evaluate B[£(€[9)], Vi k e {1,2,...,27} and use
(6.75) to compute the associated Bézier coefficients.
b) Check Bézier coefficients. If bl4li < 0 for any i € {1,2,...,8}, return false and leave
the algorithm. Else if b4/ > 0 for all i e {9,8,...,27}, go to the next sub-cube, i.e.
q < q+ 1, and go to Step 4.2a). If all coefficients are positive and no other sub-cube
is left, return true.
¢) Recursive subdivision. Seta = al9, b = Q[Q] and go to Step 4.1.

The seventh corner node of the smallest sub-cube has been correctly identified as invalid. Note
that the subdivisions indicate that the Jacobian determinant values associated to the corners of
the evaluated surrounding sub-cubes are all positive. Thus, the Jacobian determinant is only very
locally invalid.

6.7. Further Details on the Globalization Algorithm

In the following more details of Algorithm 6.2 shall be discussed. Despite the fact that the fol-
lowing points might in theory not be strictly necessary, all of them represent crucial ingredients
to obtain an algorithm which is practically applicable and successful. The different points are
discussed hierarchically following the step order in Algorithm 6.2.

6.7.1. Pre-Testing

The attention is on Step 3.3 of Algorithm 6.2. Here, an optional pre-testing is inserted which is
not part of the original line search filter algorithm proposed by Wichter and Biegler [270, 271,
272], but becomes important for discretized problems. The subsequent filter method completely
relies on the fact that a bad iterate can be detected based on the objective function value and
the used infeasibility measure. Unfortunately, the gained experience in the area of computational
contact problems reveals that this is not always true. There exist Newton iterates which globally
lead to a decreasing infeasibility violation or a decreasing structural energy such that they sat-
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Figure 6.6.: Figure 6.6a shows a heavily distorted element taken from Johnen et al. [151, Fig. 7]. In Figure 6.6b the
associated graph of the scaled Jacobian determinant along a critical edge (highlighted in Figure 6.6a) is shown.
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Figure 6.7.: Figure 6.7a shows a heavily distorted element taken from Johnen et al. [151, Fig. 5]. In Figure 6.7b the
result of the subdivision algorithm is shown. For this element three successive subdivisions must be executed before
the computed bounds reliably indicate that the element is invalid. The corner node of the smallest sub-cube with a
negative value is marked by @.
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isfy the acceptability criteria of the filter method, but come along with a very localized heavily
distorted mesh. If such an iterate is accepted by the filter method, any further progress might
be prohibited. Thus, the simulation stops, just because it might become very difficult or even
impossible to resolve the heavily distorted geometrical configuration of a few or maybe only one
element. Therefore, the already in Algorithm 6.3 applied bad element identification is placed in
front of the filter method as a reliable pre-testing which identifies these rare unwanted cases.
Now, since the search direction is kept constant and only the step length is further varied or, to
say it clearer, potentially shortened, the demand is formulated that neither any solid element is
allowed to have an invalid Jacobian determinant nor is any element allowed to show a drastically
changing volume. If one of these criteria is violated, the current trial point will be rejected and
the backtracking routine is directly initiated without even entering the filter method. Therefore,
again a lower and an upper bound 0 < r0.° < 1 < rPr for the volume ratios of reference
to current volume with respect to each element must be defined. In general, these bounds can
differ from the ones used in Algorithm 6.3. Then, if any ratio 08, / 0! for e € € lies outside the

ref

domain [r2° rPre ], the current trial point will be rejected. A nice side-effect of this approach
is that this volume testing is computationally much cheaper than a possible attempt of evaluat-
ing all structural and contact contributions. Consequently, this pre-testing can not only avoid a

stagnation of the algorithm but might also save some time.

6.7.2. Bypassing of the .Z-type Test

A small modification inherent in Algorithm 6.2, which has not been mentioned yet, is the addi-
tional condition during the check of the sufficient decrease criteria in Step 3.5. What has been
added is the additional demand that not only the .Z-type conditions formulated in (6.4) must be
satisfied to fulfill the switching criterion but at the same time also the lastly accepted constraint
violation is not allowed to be too big. Therefore, the so far unmentioned parameter 6,,;, > 0
has been introduced (see also Figure 6.1). This adaption has been originally proposed by [272].
Even though this is only a very small change the consequences can be remarkable. In an earlier
version of the algorithm this additional condition was missing. The result was that in some sim-
ulations the switching condition has been activated in a very early pre-asymptotic state. Now, an
active .Z-type condition demands more from the non-linear solution method than just to achieve
a decrease in the constraint violation or the objective function value since the Armijo rule (6.5)
must be satisfied. Actually, this can be a by far stricter condition which might lead to a very
small step-length till acceptability is reached. Especially, as long as the underlying model is not
able to reflect the actual objective function in a sufficient way. Exactly this is very likely during
the pre-asymptotic phase. For a well-posed problem, it is almost always much easier to decrease
the constraint violation than the objective function value in this early stage. The problem is that
this small step-length will in turn indicate a repetitive satisfaction of the .Z-type switching con-
dition as long as the method does not succeed to leave this region. To put it in a nutshell, this
might result in a very slow convergence even though the steps are all good and would be directly
accepted by (6.3) without any step-length adaption. Due to the fact that generally no good ac-
cordance of the model and the actual objective function during the pre-asymptotic phase can be
expected, it is a much better idea to skip the .Z-type condition in this early stage. Therefore,
Omin 1 used. It is assumed that as soon as the constraint violation is below this value the model
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Figure 6.8.: In Figure 6.8a an example is shown, where between iteration #18 and #19 the constraint violation
strongly rises while the objective function value is only slightly decreased. Subsequently, iteration #21 is com-
pletely blocked by historical information stored in the filter set. The problem can only be resolved by reinitializing
the filter. The result is shown in Figure 6.8b. The green (upper left to lower right) hatched area marks the region
defined by Q(ak’l) = 76™ Omax before and after the reinitialization, respectively.

becomes trustworthy. Another side-effect is that the minimal step-length estimate for the .Z-type
condition described in Section 6.3.3 must not be evaluated during this pre-asymptotic iterates.

6.7.3. Reinitialization of the Filter

There is another problem which may arise during the application of the filter method. This time
the filter might refuse to accept good iterates because of outdated historical information. This
is something that is well-known in the literature and for instance mentioned by Wichter and
Biegler [271, Remark 7] and later addressed in [272, Sec. 3.2]. The historical information might
belong to a very different deformation state of the elastic bodies but, however, the associated
filter point coordinates might be very similar to the coordinates of the currently considered filter
point. To explain why this is actually not only an academic issue, let us consider the following
scenario: The algorithm is on its way to the equilibrium state and during the previous Newton it-
erations the regularization parameter cy has successively been updated based on the SIR-update.
However, during the last iterations the active set drastically changed such that the number of
active nodes and thus the active contact zone shrank to a very small region. Now, a bigger than
expected change in the displacement field, for example induced by a slight structural instability,
in combination with a rising contact force due to the high regularization parameter might lead
to the undesired case that the two bodies come locally out of contact at the end of an accepted
Newton iteration. Since the SIR update has led to a high cy value, the active-set decision (4.12)
mainly relies on the weighted gap value and, consequently, a small positive gap can be enough to
locally set the previously active nodes inactive for the next Newton iteration. The consequence
might be that the structures collapse in the next iteration due to the missing constraint and the
new configuration indicates a large penetration but simultaneously comes along with a much
smaller structural energy value, such that this new iteration might be again accepted by the filter.
It is further to say that the previously discussed pre-testing might not detect such a case as long
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as the collapsing is not attended by a heavily distorted mesh or large changes in the element vol-
umes (see Section 6.7.1). A demonstrative example for such a scenario is shown in Figure 6.8a:
As described the bodies come out of contact in Newton iteration #18 and collapse in Newton
iteration #19 coming along with a much higher © value but also a lower . value. So one might
think that this is no problem for the filter method, since nothing happened what can not be with-
drawn. However, there are actual two severe problems with such a scenario which can even lead
to complete failure of the algorithm:

e The first problem is that the current cy value is probably much too high for the newly appeared
large penetration state. This will be addressed in Section 6.7.4.

e The second problem are the filter points which have been already added to the filter during
the filter augmentations in Step 5 of Algorithm 6.2. Actually, if as described this situation
occurs only locally, i.e., the bodies collapse only at one contact point of many such that there
are still other active contact zones left, then even the filter point referring to the collapse
might be added to the filter (see Figure 6.8a). Especially, if the bypassing of the .Z-type
check is still activated due to the remaining constraints, and thus the last iterate can not be a
Z-type and is also no feasible step. Now, after this collapsing scenario the algorithm tries to
resolve the issue by pushing the bodies apart again, however, this will lead to a rising objective
function coordinate of the associated filter point under almost all circumstances. And even
though the constraint violation is supposed to be decreased compared to the previous iteration,
there might be other filter points in the filter which show much smaller infeasibility values.
These older points have the power to prohibit any further progress or recovery and, finally, the
method will fail.

By looking at Figure 6.8a the situation seems a little bit different since the following itera-
tion #20 shows a decrease in the objective function and rather no change in the infeasibility
measure. However, this originates from the mentioned too high cx value which leads to a quite
bad iterate. Thus, the cy value is reset between Newton iteration #20 and #21 as described in
Section 6.7.4. The scenario now becomes critical if points currently contained in the filter block
the new iteration from acceptance. It is enough that one filter point is part of the set which com-
bines a lower constraint violation value with a lower objective function value compared to the
current iteration, independently from the fact that this new trial point might be a very good step
in the sense that it tries to withdraw the previous unintended collapsing. Actually, exactly this is
the case in Figure 6.8a. The good iteration #21 is blocked by the filter points associated to the
older Newton iterations #14 and #18. All belonging to deformation states before the collapsing
occurred. In this special case, even the line search path indicated by the red line in Figure 6.8a is
not able to resolve the issue and to leave the taboo-region of the filter.

Remark 6.2. One might expect that the line search path is approaching the previous filter point
corresponding to iteration #20 for very small step length values. The reason, why this is not the
case here, will be given in Section 6.7.4.

The remedy implemented here is leaned on an idea proposed in Wichter and Biegler [272,
Sec. 3.2], but it has been slightly extended. However, the basic strategy stays the same: The al-
gorithm needs some counting mechanism such that it is able to detect such a situation. Therefore,
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the filter method checks each time a trial point is rejected by the filter acceptability test in Step
3.4 of Algorithm 6.2, if the current trial filter point would have been accepted by the following
sufficient decrease criteria in Step 3.5. Now, in the case that the filter rejected the trial point, but
the sufficient decrease criteria, which are solely based on the previously accepted iterate, would
have accepted the trial point, an additional condition is tested: If (9(04{’“’”) < V5™ Onax holds,
then a new blocking point is created and added to a so-called blocking list. The lastly mentioned
condition has the important task to avoid an infinite number of reinitializations as will become
clear in a moment. But first back to the blocking list: In the current implementation this block-
ing list contains two values per iteration. The first coordinate of such a blocking point is the
current identification number of the Newton iteration. This value is used to identify successive
blocking scenarios, i.e., the list will be cleared again if the next Newton iteration would not indi-
cate a blocking scenario and is otherwise augmented. The second coordinate of a blocking point
counts the successive number of blocks during the line search. In more details: Assuming that
all blocking criteria are fulfilled, the first time the algorithm enters Step 3.4 during the current
Newton iteration, it will be tested whether the list is continuous or not. If yes, then the new
blocking point is added to the end of the list and the line search step counter is set to one. If the
list is not continuous, it is cleared and a new list is initiated containing only the current point.
Nevertheless, the second coordinate is initially set to one. If the algorithm enters now multiple
times in one Newton iteration this check in Step 3.4 and fulfills each single time all blocking
criteria, then the second coordinate associated to the current Newton iteration is incremented for
each blocking line search step by one. Finally, the filter may be reinitialized in Step 3.10 either if
the length of the list indicates that the last 2 Newton iterations have been blocked at least

newton
once by the filter or if the second coordinate of the lastly added blocking point is larger than
nplock je., a pre-defined allowed number of consecutive blocking line search steps is exceeded.
The filter is reset by setting F1¥ = {(£,0) : O > y50,,,.}. Now, to avoid an infinite
number of reinitializations, the ©,,,x is set after the reinitialization to G0y «— V5™ Omax. This
algorithm showed to be very successful in practice in combination with the following adaption
of the regularization parameter cy. In Figure 6.8a the region ©(a*!) > yB2x@Q, .. is represented
by the green hatched area. As one can easily see the points corresponding to Newton iteration
#21 are all below this hatched area and are also below the taboo region defined by the lastly
accepted iteration #20. Thus, the entire red line search path fulfills the blocking criteria and,
consequently, the second criterion based on nP!°¥ is activated. In this special case nP°® is equal
to 10 and the initial ©,,,, had been set to 2.0, while y{5** had been chosen as 0.25. The result of
the reinitialization can be seen in Figure 6.8b. The filter has now a clear upper bound for the in-
feasibility measure. Furthermore, the filter point corresponding to iteration #21 has been added
and, additionally, the filter point associated with the next Newton iteration is shown. The reini-
tialization was successful and allows progress to the equilibrium again. Otherwise, i.e. without

the reinitialization, iteration #22 would have been blocked as well.

6.7.4. Decrease of the Contact Regularization Parameter

In Section 5.3.2 the SIR update has been presented and represents a reliable method to obtain
a new cy value as long as the solution path is well-defined and no unforeseen situation occurs
which would contradict the used linear infeasibility model. Therefore, it is a meaningful ap-
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proach to use the SIR update as a monotone rule, i.e. c{ s {k} . Especially, since near the

solution the upper bound of the cy value is usually approached from beneath. However, the ex-
amples discussed in Section 5.6 showed that the correction parameter BfN should not be chosen
too high, since otherwise a default Newton scheme might fail. Now, in contrast to Chapter 5,
the examples considered here might show severe instabilities and as discussed beforehand in
Section 6.7.3 it might happen that the filter method accepts a step which leads to a drastic rise of
the infeasibility measure. In such a case it is quite likely that the previously computed cy value
might be a bad choice since it is based on older historical information. Thus, the new penetration
state might ask for a smaller cy value. But how is it possible to reliably detect these quite rare
cases? Especially, since an unnecessary reduction of the regularization parameter can lead to a
decreased convergence speed as Section 5.4 underlines.

The strategy used in this thesis is initiated by information collected over the last Newton
iteration. Only if the last Newton iteration asked for a correction of the linear system of equations
in Algorithm 6.3, indicated by n,, > 0 and the Newton step asked as well for a step length
correction via the line search method, only then a possible reduction of the regularization is even
considered in Step 7 of Algorithm 6.2. It is briefly to note that n,, equal to zero can be used
to identify the first part, since the mechanism in Algorithm 6.3 ensures that n,, is only equal
to zero if the unmodified system of equations is used. In this way a decrease of the cy value is
only applied if the algorithm was in trouble during the last Newton iteration, where n,, > 0 also
indicates some instability. Now, the derivation of the cy decrease is very close to the derivation
of the cy update derivation. The initial demand is just formulated differently, viz.

T !
O + Gy Vi, Ad > (1= 55.,) 01, (6.77)

@{k} 9%
where the switched inequality sign is the important change. Thus, the linear model is used
to define a bound for the maximally allowed reduction, where the new parameter 3., with
Ba < Bowi < 1is introduced. The collected experience during the parameter study in Sec-
tion 5.6.2 indicates that a 5} ;, value greater than 0.9 seems meaningful. In the example shown
in Figure 6.8 the (increasing) correction parameter g has been set to 0.8, while the critical
(decreasing) correction parameter 5¢. ., had been set to 0.95. Now, following the same steps as
in Section 5.3.2, the final ¢y decrease updating rule is given by

<gN{k} VdgN « }Ad>

(k+1) (K} . 1
ey = cy min{l, = @Cm(l + CIGE )} (6.78)
as long as
T
G, g™ + Vgl <l }A@ >0 (6.79)
holds. Otherwise, c{kH} = cl{\f} is used. Note that (6.79) is theoretically supposed to be equal

to zero in the limit case ¢y — o0. Thus, (6.79) is used as a safe-guarding condition to avoid
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negative cy values which seem to occur in some scenarios if the active set changes severely from
one Newton iteration to the next.

The attention is now back on the example in Figure 6.8: The correction rule (6.78) is activated
and applied in the end of Newton iteration #20. Iteration #20 fulfills the prerequisites since
n, is equal to 4, i.e., the linear system had to be corrected four times and the step-length had
to be reduced three times, such that (6.78) initiates a drop of the regularization parameter from
cl{\?o} = 3.56E+04 to cl{\?l} = 1.88E+03. That is almost a factor 19 smaller. However, due to
the described collapsing scenario it seems justified. As described in (6.10) and explained in the
subsequent discussion: The used filter point coordinates .’ and © do not explicitly rely on the
cn value. This is a very important point since otherwise adaptions of the filter points already
contained in the filter would become necessary, if the regularization parameter is touched during
the Newton iterations. Nevertheless, a changing ¢y value can still have an implicit impact on the
filter point coordinates due to the active set decision (4.12). By keeping this active set decision
in mind, it is possible to explain the different filter points in Figure 6.8: The drop in the .’ value
as well as the rise in O in iteration #19 has already been explained by the collapsing scenario.
Now, the further drop of . from iteration #19 to #20 seems not logical at first glance. However,
the origin can be traced back to the high cy value. First of all, the ¢y value is much too high for
the large penetration state. This leads to a highly distorted mesh and non-physical high Lagrange
multiplier values. This is actually very similar to the observations made in Chapter 5 with respect
to the default standard Lagrangian system of equations. Now, due to the high cy value, the chance
is also high that at the end of iteration #20 nodes with a negative averaged weighted gap value
(i.e., showing a penetration and, therefore, indicating that they are active) and negative Lagrange
multiplier values (i.e., contradictorily indicating that they are inactive) stay active. These nodes
contribute to the active Lagrangian value (6.9) now in such a way, that they reduce the function
value and are consequently the main reason for the smaller .’ value of iteration #20 compared to
#19 in Figure 6.8a. On the other hand, since the linear system as well as the step-length had to be
adapted in iteration #20, the progress in terms of © are only marginal compared to #19. When
at the end of iteration #20 the cy value is now drastically reduced, such as in this case by a factor
around 19, the former mentioned nodes with a negative Lagrange multiplier value and a negative
averaged weighted gap value might change their status from active to inactive just because of this
reduction of the regularization parameter. Actually, exactly this happens such that the cardinality
of A changes from 1928 to 1886 without any change of the primal or dual variables. Since these
nodes decreased the objective function value .7, it is no longer surprisingly that the path of the
line search method ends somewhere on the right side of #20. Furthermore, it also fits into the
explanation that the © coordinate is slightly smaller since contributions of the previously active
nodes are missing. To conclude the explanation it must be mentioned that a decrease of the cx
value can theoretically also lead to the opposite effect: a decrease of the objective function value.
This would happen if previously inactive nodes joined the active set because of a high positive
Lagrange multiplier value and small positive averaged weighted gap value. However, in this
specific case the first effect is much stronger than the second one. Thus, all ingredients leading
to Figure 6.8 are finally explained. This example demonstrates how complicated the interaction
between the different parameters can actually be. Therefore, the importance of the modifications
described here is hopefully emphasized. Many if not all of the numerical examples presented
later would fail if only one of these modifications is left out.
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6.7.5. Scaling of the Filter Coordinates

A scaling of the filter coordinates has already been applied in Figure 6.8 but was not mentioned
so far. Such a re-scaling becomes necessary since the two coordinates defining a filter point are
probably very differently scaled. While the first coordinate represents some energy or potential
measure of all considered elastic bodies, the second coordinate is a pure geometric quantity rep-
resenting the distance between the bodies. In the current implementation a very simple approach
is followed: For all the presented examples a tangential predictor is used to obtain a meaningful
initial deflection. The unscaled .Z value after this step is probably very low, especially if the
contact detection is off during the predictor iteration #0. Thus, it is a bad idea to use this value
as a reference value for the scaling. Instead, the scaling is activated after this very first iteration.
Consequently, the related scaling of the first coordinate is currently always defined as

1
SNEZEE)

However, this rule might be adapted if the very first trial point after the tangential predictor leads
to a severely distorted mesh, such that .2 (a{1%}) might indicate a by far too large value. This
case is excluded for now. The scaling of the second coordinate follows a quite similar approach.
It is also skipped for iteration #0. Furthermore, since it is possible that the follow-up iteration is
a feasible iteration, an additional condition becomes necessary, viz.

(6.80)

1 1
— — i {k.1}
Ko Bl 8ol if k > 0and O(a'™) > TOL,. (6.81)
This scaling approach implicitly implies smaller changes to some of the already presented equa-
tions which shall be briefly addressed in the following. The first equation which slightly changes

is (6.3b). It becomes

kL (@) Ao (@®)) < k. L(@™ M) — ypr0 02 AL, (6.82)

Py

where especially the allowed margin benefits from the scaling by becoming more reliable. Note
that the minimal step length estimation in Section 6.3.2 must be adapted accordingly. For in-
stance, (6.21) becomes

Fe okt < . (6.83)

1
e (0) a4 Sty (0) ()P 40

Another point where the scaling plays a role is the .Z-type switching condition (6.4). The second
part changes to

K59
S ve, (6.84)
o
where all changes are hidden in a changed constant 7. This constant must be also inserted in
the related equations for the minimal step length estimation in Section 6.3.3.

(—mg(a®h))sr (@tbhi=sr > g (0H)e with D =
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Figure 6.9.: If Assumption 6.1 is fulfilled, only trial points with a smaller /o-norm than the already added filter
points are able to strongly dominate one of these points. This is visualized in Figure 6.9a. However, only points in
the red (bottom left to top right) hatched rectangle truly dominate the filter point [. Figure 6.9b shows an example
for (6.86). This test can be used to speed-up the acceptability check, since as soon as a filter point [ is found which
fulfills (6.86), only the filter points with a smaller /-norm must be considered by the point-to-point comparison.

6.7.6. Pre-Filtering

A minor implementation feature is a so-called pre-filtering approach which has been proposed
by Gould and Toint [116] and is also applied here in Step 3.4 of Algorithm 6.2, but in a slightly
different way. It has two distinct purposes: Firstly, it shall identify all points in the filter which
are certainly not dominated by the new trial point. Secondly, it shall pre-identify all filter-points
in the filter which would certainly accept the new trial point. To apply this pre-filtering technique
the following assumption must hold:

AS 6.1. All coordinates of the current trial point as well as of the filter points defining the
filter are positive or equal to zero.

If Assumption 6.1 does not hold, the pre-filtering is skipped and a point-wise comparison is
applied to identify dominated filter points and to test the acceptance to the filter. However, in
the following it shall be assumed that Assumption 6.1 holds. Drawing the attention to the first
goal: A filter point (£, 0); = (£7,07) € F with j = 1,2,...,|F| is meant to be strongly
dominated by a new trial point if all of its coordinates are larger than the coordinates of the
current filter point, i.e.,

L)y < 23 and (ot < 67, (6.85)

If (6.85) holds, the old filter point j does no longer contribute any meaningful information, such
that it can be removed. Now, while the strong dominance can only be checked by looking at
the coordinates itself, it is possible to efficiently test the opposite, i.e., whether an already added
filter point is certainly not dominated by a new trial point. Therefore, it is sufficient to look at

218



6.7. Further Details on the Globalization Algorithm

the />-norm of such a point. If the /5-norm of the trial point is larger than the ¢s-norm of a
point currently in the filter, the already added filter point can not be dominated by the new one.
However, it is not true that a new trial point dominates all filter points in the filter, if it has a
smaller /5-norm than these points. This fact is visualized in Figure 6.9a: All points with a {5-
norm smaller than the filter point (., ©); = (1,2) lie inside the dashed circle, but only points
in the red hatched rectangle can strongly dominate the filter point with the index /. Note that it is
also not possible if the /5-norm is replaced by the /,,-norm. To show this, a new trial point with
the coordinates (1.9, 1) shall be considered. Even though the trial point has a smaller ¢.,-norm
as the point j in Figure 6.9a, since 1.9 < 2.0, it still does not dominate the filter point j.

Now, to make this test efficient the filter points already in the filter set are stored in an ascend-
ing list with respect to the /5-norm of their entries. Next, the norm of a new trial filter point is
compared to the norms of the already added filter points in the list and only if the norm of the
trial point is smaller than the norm of one point in the filter, it is tested if this filter point and all
subsequent points with a larger norm are potentially dominated by the new trial point. This is the
first part of the pre-filtering approach. The second part is based on the inequality

[(Z (™), 0™, < (L, 0)|2 — V2 max{y;, v} 67, (6.86)

which can be easily derived under consideration of (6.3). To obtain (6.86), the ¢,-norm of the
left and right side of (6.3) are taken, such that

(L), (™), < (£ =76, (1—76)0)] |
<|IZ.0)] ]2 l(vs,76)" 267
< [(Z, 0)] |2 — V2 max{y;, vo} 67, (6.87)

where the last step becomes possible under the assumption that yg,v; < 1/ v/2 holds. Now,
still under the assumption that the algorithm loops over all filter points contained in the filter
F in ascending order with respect to their ¢5-norms, the filter point j, which fulfills (6.86) for
the first time, defines the lower bound of filter points which will certainly accept the new trial
point. Therefore, only the first 7 — 1 filter points must be tested by point-to-point comparison of
their coordinates against the new trial point. The reader is kindly referred to Figure 6.9b, where
this test is visualized. A look at this figure reveals that filter points with a smaller /5-norm are
still able to block a new trial point lying in the blue shaded quadrant. See filter point 7 — 1 for
example.

A final remark: This pre-filtering approach might seem unnecessarily complicated due to the
small number of only two coordinates, but it has been implemented with a possible extension
of filter point coordinates in mind. One scenario are frictional contact problems. In addition,
the framework allows to define many more meaningful coordinates based on the entries of the
residual vector. For examples and possible applications the interested reader is referred to Gould
and Toint [116] or Milzarek and Ulbrich [196].
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6.8. Special Extensions for Structural Contact Problems

Up to this point, the description has been limited to a quasi-static frictionless contact formulation
based on unmodified HEXS finite elements. In this section two extensions shall be presented
which are often necessary for real world applications: First, the treatment of dynamic contact
problems with the line search filter method is addressed. Secondly, the EAS formulation will be
considered and possible implications will be identified and discussed.

6.8.1. Dynamic Problems

To be more specific, the attention is on necessary adaptions for the treatment of dynamic struc-
tural problems under consideration of the Generalized-« time integration scheme. Other schemes
are not considered. However, the adaptions would probably follow a quite similar pattern. The
discussion starts where Section 4.6 has ended. By investigating the considered system of equa-
tions, where the focus lies on the residual (4.64a). To keep things simple any damping effects
as well as the augmented regularization are excluded from the following discussion. As already
mentioned, there exist at least two possibilities to evaluate the different terms at the respective
mid-points ¢, 1, and t,41_,,,, where the variant implemented here is based on the trapezoidal
rule. The used residual is given in (4.65), which is also consistently linearized as presented in
(4.68). Consequently, the solution is reached as soon as Tega = 0 holds and the remaining KKT-
conditions (4.67) are fulfilled as well. On the other hand, however, coming from a theoretical
view point, the solution path is expected to follow Hamilton’s principle, i.e.,

5 f W (A1) + Yo (dlt)) — H (w(t))dt = 0, (6.88)

in

where the kinetic energy .# has been defined in (2.36). In words: The total variation of the
action integral shall vanish along the solution path through time and space. Following the pre-
sented derivation steps in Section 2.1.4 concerning the Lagrangian field theory, it is obvious that
(4.65) indeed represents an approximation of (6.88) with all the issues mentioned in Section 4.6.
However, with respect to the filter method discussed here one important question is still open:
What is a meaningful representative for the first filter point coordinate? During the previous dis-
cussion the (quasi-static) Lagrangian functional has been used. This is no longer possible since
it does not consider any time dependency and, furthermore, its derivative with respect to the
displacements does not lead to (4.65). Consequently, it can not be used as a reliable objective
function value. On the other hand, (6.88) would provide a theoretical possibility, but the involved
time integral is not really suitable. Furthermore, the question remains how to choose the correct
evaluation state to be in accordance with (4.65).

Therefore, (4.65) shall be directly considered and an auxiliary time dependent Lagrangian is
constructed which delivers the Generalized-a residual when its derivatives with respect to the
displacements are computed. This idea yields the scalar-valued Generalized-o Lagrangian, viz.
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o (AD)?

o n+1 n]T _ n+1 n
Lo 21— o) [(1 —am)a™™ + apa”] M [(1 —am)a™™ + apa”] (6.89a)
+ (1= an)% (@) + e (d™)" Va | (6.89b)
+ (1= an) Ve (d") + ar(d™) VPl | g (6.89¢)
— (1= ar){g (@), A8 — ar(d™)" Vagy, o AN (6.89d)

where auy,, o, Bg, are the Generalized-o parameters and At denotes the discrete time step (see
Section 2.4 for more information). The function (6.89) is one representative for a possible objec-
tive function. Actually, there exists an infinite number of suitable Lagrangians, e.g., the explicitly
used displacement vector (d"*") in front of the gradients, which depends on the previously con-
verged state, can be also replaced by (d"*' — d"). This would only lead to a constant shift of
the objective function values throughout one time step and, therefore, it would only marginally
influence the filter method. One point would be the used scaling factors (see Section 6.7.5). How-
ever, in this thesis solely (6.89) shall be considered. The proof that (6.89) is indeed a suitable
objective function for (4.65) can be given by direct calculation. While the necessary derivatives
of (6.89b) to (6.89d) obviously lead to the gradients in (4.65b) to (4.65d), the correctness of the
first term can be validated under consideration of (2.84b). The consideration of a damping term
seems possible in a similar straight forward manner.

6.8.2. Handling of Enhanced Assumed Strains

The idea of enhanced assumed strains has been briefly introduced in Section 2.3.4. It is one
possible way to avoid certain kinds of locking, see Section 2.3.3. During the brief derivation it
becomes obvious that crucial points are the condensation and post-processing steps described
in (2.82) and (2.83). For a classical local Newton approach these steps are completely unprob-
lematic. The algorithm will condensate the matrix and right hand side contributions on element
level, afterwards the global system is assembled, the Dirichilet boundary conditions are applied
and the system is solved. As soon as the solution vector containing (d, Ay)x is updated, the
recovery of the enhanced strain increment as well as the update of the enhanced strains in each
element will be executed in a post-operation. Thus, everything stays simple.

Now, let us consider the line search case: As long as the step length is not modified the previ-
ous approach stays valid. However, if the step length is modified in Step 3.12, the procedure will
slightly change. The computation of the trial point in Step 3.2 takes place in the same method as
the default update for a classical Newton approach. The ingredient that changes is the step length
which is now smaller than the default step length. This will become important for the enhanced
strain update. Again, the post-operation in each element is executed, but this time, instead of
recomputing the EAS increment and updating the internal stored strains, the routine

Gons(@F) = @, (B 4 (@B — oy AGH vie(1,2,...} (6.90)

—eas —eas

is applied, where d,,.(af*"}) denotes the enhanced trial strains for the current step length %!},
The alternative would obviously be
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Gogs (@) = 65T + oM AGE] (6:91)
as it is done for the global state vectors. From a pure mathematical perspective there is no differ-
ence between (6.90) and (6.91). However, from a numerical point of view both approaches are
different. First of all, the latter one is numerically more stable than the first one since it is hardly
affected by any round-off or cancellation errors. But, (6.91) asks for the additional storage of
the previous enhanced strain vector &, (a!*~'}) and since the element does not know if a line
search step is expected or not, due to the fact that the decision is solely based on the comparison
of current step length information ot and a{*°}, the old EAS state would have to be stored
for each element in any scenario. To avoid this, (6.90) is considered, instead. As already men-
tioned, this approach might suffer from cancellation and round-off errors. This negative effect
depends on many factors such as the ratio between a*-!} and Aa!*} for example and has never
become severe throughout any considered numerical experiment such that (6.90) is used for the
line search trial point update of the internally stored enhanced strains.

Now, there is another point which is only necessary for Algorithm 6.2 and needs to be ad-
dressed here. The first hint for this additional adaptions can be found in Step 3.1: In this step the
creation of a backup of internally stored variables is claimed. Why is this necessary? The answer
is given by the second order correction step. Let us assume that the first trial point based on the
default step is not accepted by the filter, i.e., the pre-testing was successful since otherwise the
entire filter including the SOC step would have been directly skipped. In such a case the SOC
is initialized in Step 3.6. If the SOC system could be successfully solved, the state variables are
modified in Step 3.8, where the original trial point is augmented by the SOC direction (see Sec-
tion 6.4 for more information). However, while the original state directions (Ac_l{k}, Agl{f }) are

stored in vectors different from (Ad>°¢, ANICC), this might not be automatically true for Actt]
which are stored element-wise. Therefore, the back-up routine is called which stores a copy of
A5 =1} and a copy of Aaf}. One might wonder since this is actually something which had been

geas —eas *

tried to be avoided by (6.90). However, in contrast to the EAS update, this back-up is really only
evoked if a line search filter method is used. In all other cases no extra storage is needed.

Back to the SOC step: If the second order correction fails in Step 3.7, Step 3.3 or during the
filter acceptability tests, the &, (") is replaced by the backup value of a{*7!} and Aaf*!
is replaced by its stored backup counterpart, respectively. Since the algorithm jumps afterwards
directly to the step length adaption, a final ingredient must be added to avoid an incorrect update
in (6.90) for [ = 1. If a recovery from the backup was necessary, the previous scalar valued step
length parameter a'®0} which is stored in each element, is set to zero, thus the update for [ = 1
will lead to the correct result. The presented way of handling additional EAS degrees of freedom
will be applied to several examples in Section 6.10.

6.9. Final Practical Considerations

Finally, some concluding practical remarks follow before the numerical examples are considered.
Therefore, numerical issues due to cancellation errors, the applied parameter sets or performance
issues in parallel on high-performance computing (HPC) systems shall be discussed more deeply.
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6.9.1. Numerical Issues

The treatment of numerical issues such as round-off errors must be discussed as one of the
final implementation details. The loss of significant digits during floating point operations is a
well-known issue which can become cumbersome close to solution points for the globalization
strategy discussed here. If it is not addressed appropriately, it can happen that the fast local
convergence is avoided by the line search method since the used checks, either based on the
Lagrangian function value or the infeasibility measure, might indicate a slightly rising value
even though the step is a very good step. Furthermore, if the origin are rather cancellation errors
than influences of the Maratos effect, it is not guaranteed that a second order correction step
resolves the problem. Fortunately, two very simple modifications help to avoid this problem
completely:

e The first modification is already part of the line search algorithm and is based on the fact
that feasible points shall not be used to augment the filter set. In case of a constrained opti-
mization problem this can become significantly important. For the actual implementation
a possible scaling as introduced in Section 6.7.5 should not be forgotten, i.e., a point is
called feasible as soon as

ke O < koToL, (6.92)
holds.

e The first modification is able to avoid that the filter set becomes too restrictive. However,
it can not avoid that good iterates are blocked by the sufficient decrease checks or the
Armijo-rule in case of a .Z-type step. Therefore, a second modification is applied based
on the residual norm check. Throughout this thesis the structural force/gradient residual
norm as presented in (6.57) is tested first for the default step length, i.e., a!®%, if this
single convergence criterion is satisfied, the line search method is skipped and the filter
method is not entered, instead, the step is directly accepted. This works very well in all
considered cases what might be owed to the fact that a rather weak absolute value for TOL,
about 1.0e—6 is used compared to the other tolerances. This strategy is recommended due
to its simplicity and success in all performed experiments.

Other similar adaptions are based on the machine precision and can be found in Wichter and
Biegler [272, Sec. 3.10], for instance.

6.9.2. Parameter Sets

Most if not all of the provided globalization algorithms rely on sets of user specified parameters.
These sets are quite overwhelming at the beginning and might indicate that the provided methods
can not be used in daily practice without being an expert on the topic. Fortunately, this is not true.
In the following a set of meaningful parameter choices will be presented which have been used
for almost all of the provided numerical examples. The only sub-set of parameters which might
ask for adaptions are the ones concerning the filter reinitialization presented in Section 6.7.3.
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| IVa?% = Vagdali=1] 6,i=2 ||Ad],i=3] A\, i=4]
norm-type {5, absolute {5, absolute | ¢, absolute 05, relative
ToL; 1.0e—6 1.0e—10 1.0e—10 1.0e—10

Table 6.1.: Tolerances and norm types for the global convergence tests.

s ‘ Ve ‘ Vo ‘ Sf ‘ Se ‘SOC—type‘
1.0e—6 | 1.0e—6 | 0.05 | 2.3 | 1.1 | automatic |

Table 6.2.: Basic default parameters for Algorithm 6.2.

If the parameters differ from the default sets presented here, the changes will be named in the
corresponding example section.

All tolerances for the global convergence tests are listed in Table 6.1. Note that these tolerances
do not only specify when the solution is reached but also decide whether an iterate is feasible or
not. Furthermore, TOL, is used to skip the filter method. See Section 6.9.1 for more information.

The basic default parameters for Algorithm 6.2 can be found in Table 6.2. These parameters
are taken from [272] and work very well in practice. Note that the condition sy > 2s¢ is ful-
filled by the proposed choice. This condition is important for the local convergence behavior as
described in [270]. Another important parameter is ©,,;, which is used to by-pass the .Z-type
switching condition during the pre-asymptotic phase (see Section 6.7.2). This parameter is set to

Omin = 107 max{1.0, O}, (6.93)

where O} denotes the unscaled infeasibility violation in the first Newton iteration. If the in-
feasibility violation is zero in the first Newton iteration or the value of ©1} is smaller than one,
the value of O,,;, will be set to 1.0e—4. The Armijo rule uses the typical parameters for a line
search method based on Newton directions, i.e., the slope parameter c; is set to 1.0e—4 and the
step length reduction parameter to 8 = 0.5, see also Algorithm 3.1.

Now, the parameters for the correction of the upper left block in (6.59) as part of Algorithm 6.3
are presented in Table 6.3. Most of these parameters have again been taken from [272]. Note that
Algorithm 6.3 always starts with a reduction equal to x_ before the correction parameter is
increased, i.e., the actual increase considered first is limited to x_ x; = 8/3 ~ 2.667.

The same volume change parameters as in Table 6.3 are also applied to the pre-testing pro-
posed in 6.7.1, i.e., 2 is set to 0.5 and 72*¢_to 2.0. For more information the reader is kindly

min max

referred to Section 6.7.1.

"min ‘ T'max ‘ 6w ‘ 56 ‘ Wo ‘ Wmin ‘ Wmax ‘ ’f:j ‘ ’i:;_ ‘ ’i:;_+ ‘ Nw

0.5 [ 20 | 1.0 | 10+ €macn | 1.0e—4 | 1.0e—20 | 1.0e40 | 1/3 | 8 | 100 | 3

Table 6.3.: Default parameters for Algorithm 6.3. Note that the machine precision €, depends on the used data
type. Throughout this thesis all examples have been computed with double precision.
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Omas (scaled) | 8™ | nicit, | nio
2.0 1025 4 | 7

Table 6.4.: Default parameter set for the reinitialization strategy proposed in Section 6.7.3.

Another set of open parameters are g’ as part of the constraint modification discussed in
Chapter 5 and 3¢\, ;, introduced in Section 6.7.4. For all the examples discussed in this chapter
that will actually use the modified constraints approach, the parameter g has been set to 0.8,
while Y. ., has been set to 0.95.

Finally the last set of parameters is associated with the blocking criteria and the possible
reinitialization of the filter set as discussed in Section 6.7.3. These are the only parameters which
had to be modified for some of the examples. The default choice is presented in Table 6.4.

6.9.3. Parallel Redistribution

Reliability and robustness play an important role for the applicability of the presented methods,
but it is also very important that the methods are efficient. A bottleneck for the methods consid-
ered here is clearly the evaluation of the derivatives associated to the contact terms. Especially,
the necessary second order derivatives can be very expensive. Besides the fact that there is still
plenty of room for improvements in the actual implementation of these evaluation procedures,
there is the hope that a higher number of working horses represented by the used processors and
enough physical memory can help to significantly reduce the computation time. It is obvious
that a meaningful parallel treatment asks for a meaningful parallel distribution. This task can be
accomplished with a number of well-established packages for the pure structural part. For ex-
ample, in this thesis the load balancing and partitioning is achieved with the Zoltan toolkit, see
Boman et al. [29] for an introduction. This approach works very well for the bulk material and
thus it is often sufficient to find a meaningful distribution of the volume finite elements once at
the beginning. The crux of this problem is to find a distribution which minimizes the necessary
communication effort and redundancy of element evaluations, also known as ghosting, while
simultaneously leading to a well balanced utilization of available resources.

However, in case of contact problems, it must be dealt with another problem that is directly
related to the contact interaction among the contacting bodies. This redistribution issue has al-
ready been discussed in Popp [213, Sec. 4.6.1]. In the following, an algorithm will be presented
which is based on this original work but contains important enhancements which are critical
for the considered examples. But, before the new ingredients will be discussed, the basic idea
shall be quickly recapitulated: First, a simple and naive distribution of the entire contact inter-
face over all available processors would lead to a bad performance, since the specific differences
between slave and master would stay unaccounted. Actually, the master elements have only a
passive role when it comes to the evaluation of the contact contributions. In fact, they are mainly
necessary for the projection and distance calculation within the (weighted) gap evaluation. The
main load lies solely on the slave elements. Therefore, a meaningful processor distribution must
take this into account. That is the first point. However, this issue can easily be solved at the very
beginning, since the slave/master distribution does usually not change over a simulation (with
the exception of self-contact [289]). Thus, this initial redistribution can be referred as a static
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redistribution approach. The term redistribution is used since the interface distribution will gen-
erally differ from the parallel distribution of the underlying bulk elements, i.e., for the assembly
of the final system matrix and right-hand-side vector additional communication is unavoidable.
However, this communications can be performed very efficiently with the methods provided in
the Epetra package as part of the Trilinos library [127].

Now, a simple uniform distribution of the processors over the slave side is still not sufficient
to reach an efficient load balancing. The reason is that not all slave elements participate at a
contact scenario. In fact, the slave and master elements define only the potential contact zone.
Therefore, an efficient redistribution approach must also address this circumstance. This is the
point at which the approach presented and applied in [213] and the strategy considered here
start to diverge. In common is the fact that a dynamic redistribution will only take place if the
ratio of the maximum and minimum processors time over all individual time measurements t}{,k}
with p € {0,1,..., N, — 1}, where IV, is the number of available processor cores, exceeds a
pre-defined threshold. This can be summarized as

max{t]{gk}}
p

—————— > B0, (6.94)

min{t}ak}} ’
p

where By, > 1. Throughout this thesis the bound B, has been set to 2.0, i.e., a redistribution
is only initiated if there is a processor core which takes more than twice as long as another
core, which indicates a clearly bad load balancing. However, it should be mentioned that the
redistribution itself is also a quite expensive operation and, therefore, it should not be executed
more often than absolutely necessary. As always, it is a matter of finding the best compromise.
The difference between this thesis and [213] lies firstly in the measurement of the individual
processor times t;,k} in each Newton iteration k. While Popp [213] uses more of a global time
measurement, a more locally restricted time measurement is used in this thesis. “Locally” refers
hereby to the location in the source code. Here, only the accumulated time passed during the
integration over the individual slave elements is considered. In this way it shall be ensured that
the time measurements are reliable and are not disturbed by any internal communication calls
among the processors. Secondly, the definition of the near and far field is severely different in
this thesis. Near and far field relates to an additional split of the slave element sets. The near field
contains all slave elements which actually contribute to the current evaluation, while the far field
contains the remaining slave elements. For example, all elements without a valid projection. The
definition of these two sets relied on the number of detected contact partners in the work of Popp
[213] and was heavily based on the search algorithm and the therein set parameters [288]. This
is surely a meaningful approach as long as the search radius is sufficiently small. However, in
case of the examples discussed here, the search radius is often set to a quite large value since
otherwise the contact detection for large initial penetration would fail. This has already been
mentioned in Section 5.6 and is even more true for this chapter. Therefore, another strategy must
be applied.

The novel simple idea is to measure the evaluation times of each individual slave element.
Then the global maximum time spent for one single element is detected and all slave elements
which spent at least a sufficient percentage of the maximum evaluation time are inserted into
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Figure 6.10.: Here, the effectiveness of the applied parallel redistribution approach is demonstrated for the upcom-
ing example from Section 6.10.5. Figure 6.10a shows the relative evaluation times t]{gk} / Zp t;{,k} of each partic-
ipating processor p € {0,1,...,15} with respect to the total evaluation time of the respective Newton iteration
k € {0,1,...,73}. A parallel redistribution took place subsequently to each of the boxed iterations. The corre-
sponding ownership distribution of the slave elements is presented in Figures 6.10b to 6.10k.
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the near field set. All slave elements which stayed a shorter period in the integration methods
will be moved to the far field. Afterwards, the individual sets, including the set of all master
elements, are distributed evenly across all available processor cores. Thereby, each set is treated
independently. In this way, the following sets can be defined

& = Jlee £ 100 > e max{tl ™)y, €], = £9\83 (6.95)
p

where elb is the abbreviation for element load balancing, while nf and ff denote near and far
field, respectively. The set £° is simply the set of all slave elements. Just similar to the set of
all slave nodes which is known to be defined as S. The parameter 7,,.. has been set constantly
to 0.1 during all numerical examples, i.e., only slave elements which took less than 10% of the
time with respect to the “slowest” slave element are moved to the far field. Furthermore, the
original criterion based on the number of contact search partners is applied at the very beginning
of a new load/time step, as well as whenever no valid evaluation times are at hand. Finally, an
interval in terms of Newton iterations must be defined. After each of these intervals, which is set
to 5 Newton iterations for example, (6.94) is checked and if the criterion is satisfied, the contact
elements will be redistributed. The bad quality of the pure contact search based distribution in
case of a very large search radius can be seen in Figure 6.10a, where the exemplary results for the
example of Section 6.10.5 are presented. After every fifth Newton iteration, the evaluation times
are checked. As a result, the evaluation times are far more evenly spread over the processors after
iteration 5, for instance. However, the presented example undergoes very large deformations
such that the parallel redistribution must take place several more times until a state of almost
constant load distribution over all 16 cores is achieved (see Figure 6.10a). The last necessary
redistribution takes place in iteration 50. The actual ownership of the individual slave elements
after each redistribution can be seen in Figures 6.10b to 6.10k. At the end of the simulation only
the tips of the sine waved membrane will be in contact. The gradual localization of the processors
around these four tips is quite obvious in these figures.

The parallel redistribution approach presented here is not crucial for the simulation itself, but it
is of major importance if the available resources shall be used as efficiently as possible. All of the
following large examples, such that a parallel computation makes sense, will use the presented
strategies.

6.10. Numerical Examples

In this section examples are provided which demonstrate the superior performance of the new
globalization strategy. Furthermore, each of the following examples is supposed to focus on
another feature of the algorithm such that the necessity of the introduced adaptions becomes
clearer. All numerical examples rely on a self-implemented non-linear solver framework as part
of Baci [274]. The framework on its own is based on the NOX package (see Heroux et al. [127]).

6.10.1. Pair of Plates

The first example demonstrates that the filter method is not unnecessarily restrictive. Therefore,
an example is chosen which might seem simple at first glance but is hard to solve with the
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Figure 6.11.: Geometrical configuration of the pair of plates example. The red dash dotted lines indicate the hinge
joints which are used to mount the lower plate. The example is taken from Miyamura et al. [197].

proposed active-set semi-smooth Newton method. The difficult part is the identification of the
correct active-set. This issue has been already described by Miyamura et al. [197] where an in-
terior point method, a semi-smooth Newton method as well as a newly proposed combination
of both approaches have been compared to each other. They only consider linear elasticity and a
node-to-node contact formulation, nevertheless, their results stay valid. The geometrical config-
uration is illustrated in Figure 6.11. The dimensions of the two plates are 1 x 10 x 0.1 (width x
length x thickness). Initially, both plates lie on top of each other as demonstrated in Figure 6.11.
Furthermore, the lower plate is completely fixed on its two lower edges pointing in z-direction,
1.e., also the displacements in z-direction are completely restrained. Consequently, only a rota-
tional degree of freedom around the hinge support is possible. The Young’s modulus is £ = 6.0
and the Poisson’s ratio is set to v = 0.27 [197]. Again, the simple coupled form of the compress-
ible neo-Hookean material model is considered as defined in (2.26), see also [136, p. 247]. Now,
a displacement controlled loading is applied. All degrees of freedom of nodes on the top surface
are fixed in z— and y—direction and are additionally applied with a prescribed shift of 0.1 units
in negative z-direction. Finally, the contact condition needs to be specified: The top surface of
the lower plate is the slave surface, while the bottom surface of the upper plate is the master sur-
face. Note that this choice is not arbitrary. The reason is given in Remark 6.3. Another important
point is that all slave nodes are initially declared as active. Otherwise, numerical round-off er-
rors switch some nodes active and some inactive which would lead to a non-symmetric active set
distribution in subsequent iterations due to the non-deterministic initial state. Now, with all these
ingredients at hand the simulation can be started for two mesh options proposed by Miyamura
et al. [197]. The first mesh variant considers 5 elements in z-direction, 100 in y-direction and 4
in z-direction. The second variant increases the element number in y-direction to 200. However,
these choices lead to a bad aspect ratio of the HEXS8 elements, such that the EAS-21 formulation
is applied here as well, see also Andelfinger and Ramm [3] for more information.

A selection of five iterations for the coarser mesh is presented in Figure 6.12. The first 38
iterations are necessary to find the correct active set. In these iterations, the active nodal distri-
bution propagates somehow in waves towards the center while the lower plate starts to peel off
from the top plate. This behavior is demonstrated in the Figures 6.12a to 6.12c. In iteration #38,
the correct active set is identified, but the lower plate still shows this sine-shaped deformation.
Finally, in iteration #39, the structure starts to move towards its final state. Note that iteration
#39 is the only one which activates the line search leading to a reduction of the step-length by
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P e e

(a) |A0}|/|S| = 282/606 (predictor)

w

(b) | AT /|S| = 124/606

(©) AP /S| = 14/606

0.0 0.06 0.12 0.18 0.25

(e) | A6} |/|S| = 12/606 (converged)

Figure 6.12.: Figures 6.12a to 6.12d visualize four non-equilibrium displacement states corresponding to different
Newton iterations. In Figure 6.12e the converged state is shown. The active nodes are highlighted as well. Note that
the shown deformation state in Figure 6.12d already includes the line search correction.
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0.5. All previous and subsequent iterations are accepted by the filter method without modifying
the step-length. This is a notable fact which would be hardly achievable with a merit function
combining both goals. For example in Miyamura et al. [197], a simple merit function is used.
However, to achieve the minimal reported iteration number, the minimal step length must be
restricted to a lower limit of 0.2 for this example, i.e., the step length is chosen as 0.2 if the line
search indicates a smaller step-length. Consequently, no monotonically decreasing solution path
is followed with respect to the merit function. This heuristic adaption is not necessary in case of
the filter method considered here.

To demonstrate this superior behavior, the solution paths in the filter space are visualized in
Figure 6.13. Even though these paths look very scattered, all of them are valid in the sense of
the filter approach. Three different settings have been investigated. In Figures 6.13a and 6.13b
the coarser mesh is considered. Figure 6.13a belongs to a simulation where the SIR-update has
been used during the initial pre-asymptotic phase. Interestingly, the switching condition is never
satisfied during the peeling phase, i.e., from iteration O to 38. But right after this phase, at the
beginning of iteration 39, the method switches to the standard Lagrangian formulation. This im-
pressively underlines the meaning and importance of these switching conditions. Following this
strategy the method manages to achieve the solution in 46 iterations. In contrast, if the standard
Lagrangian system matrix with a constant cy value equal to 1.0 is taken into account, the solution
path presented in Figure 6.13b is followed. Again, only one line search adaption is necessary.
Furthermore, the entire path indicates a monotonically decreasing first filter coordinate, i.e., the
Lagrangian function value is reduced from iteration to iteration. The drawback is that it takes
longer to reach the solution. In total, 60 Newton iterations are necessary.

Finally, the finer mesh is considered. This time only the combined method has been applied.
The method follows the solution path presented in Figures 6.13c and 6.13d. Note that except for
one iteration, all the other points belong to a full Newton iteration. Thus, the in [197] already
reported observation is verified that a finer mesh results in a slower convergence in case of the
semi-smooth Newton method. Precisely, 78 iterations are necessary to reach the final converged
state. This is very obvious in the detailed view given in Figure 6.13d where almost no progress
with respect to the constraint norm can be obtained between iteration #11 and #69. Only the
Lagrangian function value is slowly decreasing.

Furthermore, some points corresponding to special parts of Algorithm 6.2 are marked in Fig-
ure 6.13. For instance, in all settings except for Figure 6.13a one iteration asks for a second order
correction (marked by /) before becoming acceptable to the filter. Since these cases are part of
the pre-asymptotic phase, the FullSOC approach from Section 6.4 is applied. In addition, the
iterates which fulfill the .Z-type condition are marked by O. Interestingly, the first iterate which
satisfies (6.4) always asks for line search subsequently. However, this is not necessarily a bad
thing, since the line search is always successful and helps to stick to a meaningful solution path.

To conclude: This example has not been chosen to demonstrate that the filter method resolves
issues inherent in the underlying semi-smooth Newton method, Thus, it is not surprising that the
iteration number is such high. Nevertheless, it should demonstrate that the filter method stays
reliable even in such cumbersome circumstances. The filter method is able to tell the user that
the algorithm is still making progress to the solution even though the non-monotonic behavior
of the norms and the active set might not immediately indicate it (see Figures 6.12 and 6.13).
In addition, it also verifies that this progress is mathematically sufficient. This is exemplarily
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Figure 6.13.: Solution paths for the pair of plates example in the filter sub-space. Figure 6.13a shows the solution
path for the coarse mesh and the activated switching condition, i.e., the modified Newton approach is used for the
pre-asymptotic phase while the strategy switches to the consistent linearization near the solution. This combined
strategy is denoted by (combo). In Figure 6.13b the same configuration is solved with the consistently linearized
standard strategy (std). In Figures 6.13c and 6.13d the (detailed) solution path for the fine mesh in conjunction with
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Figure 6.14.: Geometrical configuration of the snap-through example. The small circle is pressed via a Neumann
load onto the large circular segment. The potential contact boundary segments are highlighted in two different colors
where the slave side is represented by the solid and the master side by the dashed line, respectively.

enforced by the used margin in (6.3). This property alone makes the filter method truly valuable
for any contact simulation.

Remark 6.3. It has been mentioned at the beginning of the problem description that the choice
of slave and master side is not arbitrary. Indeed, a switch of slave and master side will lead to
problems for one of the two meshes dependent on the actual interface definition. However, it is
important to highlight that these issues are not based on the filter method but are again rather
a problem of the applied element-wise numerical integration scheme. If the lower side of the
top plate becomes slave and the ray-tracing projection is used, there are non-projectable parts
of the boundary elements which might lead to convergence problems due to Gauss points which
find a projection in one iteration and fail in the next. The locations of these critical Gauss points
can be found close to the hinge supports (cf. Figure 6.11) and are directly linked to the inwards
rotating upper edge of the lower plate. This is something which can easily be circumvented by
the applied slave/master assignment.

6.10.2. Snap-Through Buckling of Circular Structures

The next example demonstrates the ability of the proposed method to handle a snap-through
instability. This is something which is mainly treated by Algorithm 6.3, since it asks for a reliable
modification of the system matrix close to the instability. The considered initial geometric setup
is presented in Figure 6.14. The example consists of a small circle which is pressed onto a larger
circular segment. Therefore, a Neumann boundary condition is used on top of the small circle.
Furthermore, the two marked nodes ~ on the symmetry line in the middle of the circle membrane
are fixed in z-direction. The large circle segment is fixed on the two short cut edges left and right
in z- and y-direction. Finally, the contact interfaces are defined between the light blue solid and
dashed lines on the inner surface of the circle and between the solid and dashed lines on the outer
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surfaces of the small and large circle (magenta color). As material law the already introduced
logarithmic neo-Hookean material model (2.27) is considered. The Young’s modulus is set to
1.0E+3 for both bodies and the Poisson’s ratio to 0.25. Now, two load steps are reviewed to
trigger the snap-through behavior. In the first load step the magnitude of the Neumann load is
set to 0.4 and in the second load step it is doubled to 0.8. Since it is a pure Neumann loading
and, consequently, no large penetrations are expected, the SIR-update is switched off for this
simulation, i.e., there is no regularization term in the lower right block of (6.59). In addition,
it is to highlight that the Neumann loading will lead to a negative total energy and Lagrangian
value, i.e., the first coordinate of the filter points is expected to become negative which will
automatically deactivate the pre-filtering introduced in Section 6.7.6.

As already mentioned: This example aims for Algorithm 6.3. Therefore, the main focus is
on the correction of the upper left block in (6.59). In the first load step, the correction algo-
rithm is triggered in iteration #5 by the surrounding positive definiteness check of Step 2.4. The
corresponding deformed (non-equilibrium) shape is presented in Figure 6.15a. It is obviously
a configuration which is very close to the snap-through. The final equilibrium configuration is
given in Figure 6.15b. Thus, the algorithm has the task to guide the two bodies through this lo-
cally unstable point to a new stable configuration. Therefore, the introduced positive definiteness
check is performed and the unmodified system matrix (6.59) indicates a negative definite upper
left block. Now, Algorithm 6.3 increases the correction factor w until the acceptance check in
Step 2.4 is successfully passed. This example takes 2 corrections. In the following linear solver
attempts, a decreasing correction factor is sufficient, such that the counter n, is increased in
each call during Step 7 of Algorithm 6.3, till n, exceeds N,. Afterwards, the unmodified sys-
tem of equations is reconsidered. For this example this happens in iteration #10 of load step
#1. Since the snap through point of the large circle segment has been successfully passed, no
further corrections of the system matrix are necessary until the end of the first load step. The
matrix corrections are shown in Figure 6.16a, while the entire safe-guarded solution path in the
filter domain is given in Figure 6.16b. The converged configuration for load step #1 is visual-
ized in Figure 6.15b. In total, 20 Newton, 2 second order corrections steps (/) and 2 line search
corrections (®) are necessary.

In the second load step the magnitude of the Neumann load acting on the small circle is fur-
ther increased to 0.8. The Algorithm 6.3 asks again for a regularization in iteration #6 and #7
(see Figure 6.16a). But, in contrast to the previous load step, the correction is triggered by a bad
element counter of 32 and a much larger step length compared to the previous iteration. Since the
correction reduction in iteration #7 leads to renewed failure, the regularization parameter is in-
creased once more. Afterwards the critical point seems to be successfully passed, as from thereon
a decreasing correction parameter is sufficient until the modification is finally switched off in it-
eration #11. The reason for the necessary regularization is shown in Figure 6.15c. This time,
the small circle snaps through. However, a look at the solution path in Figures 6.16c and 6.16d
reveals an unexpected pattern. Further investigations point out that the found pattern is related
to a scenario after the snap-through, roughly initiated in iteration #11. The reason is that the
small circle comes into self-contact in iteration #11. This leads to the rising © coordinate in
Figure 6.16d. Afterwards the active-set strategy has a tough time to identify the correct active
set which comes along with a slow progress towards the solution (see iteration 13 to 24 in Fig-
ure 6.16d). The point which is remarkable here is that the shown solution path becomes only
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(a) load step #1, iteration #5

displacement magnitude |d|| Lagrange multiplier magnitude |y
0.0 2.0 4.0 6.0 8.0 11.0 0 04 08 12 16 2 22
Do Coowhe ' — ey

(b) load step #1, iteration #20 (converged)

(c) load step #2, iteration #7

displacement magnitude |d| Lagrange multiplier magnitude |Ay|
0.0 4.0 8.0 12.0 0 2 4 6 8.2
B | — _— | .

(d) load step #2, iteration #29 (converged)

Figure 6.15.: In Figure 6.15a the critical Newton iterate of load step #1 is shown. The pink solid lines represent the
deformation state of the previous iteration #4. The applied matrix correction is just enough to push the intermediate
state into the right direction to the final solution presented in Figure 6.15b. The second snap-through scenario, now
concerning the small circle, is shown in Figure 6.15c. The final self-contacting solution state at the end of load step
#2 can be found in Figure 6.15d.

235



6. Line Search Filter Approach

: —a—step 1 100 100
10-2 | —o—step 2 I
3 E E ® 1075} N ® 1075 | B
107 ¢
L | | ] —10 | | —10 | |
0 10 20 077 00 —02 0 U5 T T o
Newton iteration < A4
(a) matrix corrections (b) path of load step #1 (c) path of load step #2
109 T — I T T T T T E
1071 E
g 9 7
1072 ¢ E
107° ¢ E
® 1074 ! S 2 ]
i 9) i
107° ¢ E
107° ¢ E
1077 ¢ E
10_8 i ‘ ‘ \ | \ | |

| | | |
—56.74—56.72 —56.7 —56.68—56.66—56.64—56.62 —56.6 —56.58—56.56
Z
(d) path of load step #2 (detailed view)
Figure 6.16.: The necessary system matrix corrections of the upper left block are shown in Figure 6.16a, while the

solution paths of load step #1 and #2 in the respective filter sub-spaces are shown in Figures 6.16b and 6.16c.
Additionally, a detailed view on the cumbersome part of load step #2 is given in Figure 6.16d.
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Figure 6.17.: Visualization of the clamped carbon fiber tube example. Herein, respective domains, boundary condi-
tions, orientations and positions as well as dimensions of the three tubes are given.

possible due to the fact that iteration 5 to 11 are all .£-type iterations (U). Consequently, the cor-
responding points are not added to the filter as illustrated in Figure 6.16d. If these points were
added to the filter, the points corresponding to iteration 9 to 10 would block many of the sub-
sequent iterates and a reinitialization of the filter would become inevitable (see Section 6.7.3).
This can be avoided by the presented strategy. Furthermore, the filter method does not intervene
during the difficult active-set identification, i.e., the line search stays inactive. Only at the end of
this cumbersome section the step length is halved once in iteration #24. In total 29 Newton and 3
second order correction steps (/) are necessary to reach the final solution shown in Figure 6.15d
where only 4 steps ask for a line search correction (®).

6.10.3. Clamped Carbon Fiber Tube

Next, a more complex 3-D example is considered. The dimensioned geometry is presented in
Figure 6.17. This time the focus lies, firstly, on the treatment of single bad elements which oc-
cur during the simulation. Secondly, the considered large tube will show again some kind of
buckling. Thirdly, an anisotropic material model will be applied and, finally, the performance
of iterative linear solvers will be reviewed. The discussion begins with a closer look at the used
boundary conditions. The large blue tube oriented along the z-axis and corresponding to body
QM1 is fixed in all directions on the entire cut surface at z = 0. Now, the turquoise tube corre-
sponding to Q1% is fixed on the cut surface at = —5 in - and z-direction. In the third direction
a prescribed motion will be applied. Quite similar Dirichlet boundary conditions hold also for
QB3] But this time the cut surface at + = 5, i.e., the opposing tube end, is considered. Again,
a motion in y-direction will be applied. See Figure 6.17b for a visualization of the setting. The
contact is detected on the outer side surfaces of the three cylinders, where the surface of Q[ acts
always as slave and the others as master. To avoid projection errors due to the large penetrations,
the contact surface of Q! is split into two halves. The half pointing in positive y-direction is
defined as slave for the contact between body Q1 and Q21 while the other half is considered
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as the slave surface for the contact between body Q[ and QU®l. Furthermore, the two smaller
cylinders shall be moved in y-direction by a magnitude of 2.5 to the center line of the large tube.

Next, the used material laws are discussed. The two shorter tubes Q[ and Q3] use again
a coupled neo-Hookean material law as defined in (2.26). The Young’s modulus is defined as
172,000 and the Poisson’s ratio as 0.25. This is motivated by aluminium alloy. Now, in case of
the big tube QM), a more complicated material law is applied. The material law is an additive
combination of (2.27) and

\Ijtv = (CYW + %IH(IQJ,) + Vv (I4 — 1))([4 — 1) — % (]5 — 1)7 (696)

where the first three invariants have already been introduced in (2.24), while the two missing
pseudo invariants are given by

-a, Is=a-C* a. (6.97)

Iy =a-

@

Here, the vector a € R? denotes the considered fiber direction. The reader is kindly referred to the
appropriate literature for more information, see e.g. Holzapfel [136] for a general introduction
or Bonet and Burton [31] for a detailed derivation of (6.96). The complete material law contains
five parameters and is consequently suitable to model a transversely isotropic material behavior.
For this specific example the parameters are set to

At = 5736.552135, Lo = 3454.231434, oy = —2045.768566, (6.98)
Bev = —386.764504, Yo = 19,424.87514. (6.99)

This choice corresponds to a carbon fiber reinforced plastic material with a PEEK matrix. The
related more familiar parameters of the linear elastic regime are

Ej = 172,000, E, =10,000, vy =027, Gy =5500, v, =04475.  (6.100)

The derivation of these parameters is based on the demand that the non-linear material law
coincides with the linear theory for the small strain regime. The reader is again referred to Bonet
and Burton [31] for more information. The z-axis is chosen as the reference fiber direction.

The first tube QM is subdivided into 120 elements in longitudinal direction and 96 elements
in circumferential direction. The two smaller tubes Q212 and Q%] are subdivided into 60 elements
in longitudinal and 48 elements in circumferential direction. In radial direction only one element
layer is used, respectively. Consequently, the entire problem consists of 120 - 96 + 2 - (60 - 48) =
17,280 hexahedra elements, 34,944 nodes and 104,832 DOFs. Furthermore, the elements are
enhanced by the EAS-21 formulation taken from Allgower and Georg [2] to avoid unwanted
locking effects .

The considered boundary conditions in connection with the material laws and the element
technology lead to a complicated problem. The proposed line search filter algorithm 6.2 takes in
total 62 iterations to convergence. Thereby, many of the discussed potential issues occur and are

238



6.10. Numerical Examples

displ. magnitude ||d| displ. magnitude |d|
0.0 ~ 18 . 00__ 22

(a) iteration #3 (b) iteration #8

N . . .
“location of invalid elements

(c) iteration #14 (d) iteration #18

master force magnitude
05 1 15 2 25 3.3
— d g i

2z displacement magnitude |d|
0 05 1 15 2 25 3.
| — e

(e) iteration #62 (converged)

Figure 6.18.: A number of difficult intermediate deformation states occurring on the non-linear solution path are
shown in Figures 6.18a to 6.18d. The difficulty arises from buckling phenomena and/or local mesh distortions. The
final converged equilibrium state including the forces acting on the master bodies is shown in Figure 6.18e.
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Figure 6.19.: The necessary matrix correction factors w as well as the necessary GMRES iteration numbers are

shown in Figure 6.19a. The used color coding follows X, <,

, X, %X, X in consecutive order corresponding to the

index of the linear solver attempt taken in the respective Newton iteration. Note that not only Algorithm 6.3 might
make an additional linear solver attempt necessary, but also a SOC step can ask for another solution of the linear
system of equations. The non-linear solution path in the filter subspace is given in Figures 6.19b and 6.19¢c, where
the almost complete stagnation between iteration #18 and #23 must be highlighted in Figure 6.19c. ©,;, value as
well as the therewith defined region {© € R, | ©® < Oy, } is shown in Figure 6.19¢ to underline the importance

of this value for the .Z-type step activation, see also 0.
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resolved by the algorithm. A small collection of critical situations is presented in Figure 6.18.
The associated solution path in the filter domain is given in Figures 6.19b and 6.19c, while the
corrections and the necessary GMRES iterations are shown in Figure 6.19a.

The first critical situation occurs already in iteration #3. Here, the tube corresponding to
QU starts to buckle for the first time as Figure 6.18a demonstrates. This comes along with a
rising regularization parameter due to a negative definite matrix block (see Figure 6.19a). The
next buckling occurs between QI and Q%! in iteration #8 and is again attended by a negative
definite upper left matrix block (see Figure 6.18b). This time, Algorithm 6.3 takes six iterations
to reach the regularization w which finally satisfies the acceptance criteria defined in Step 2.4
of the respective algorithm. Afterwards, a critical phase of the solution procedure starts. First,
a heavy mesh distortion appears because of a negative definite system in iteration #14 which
initiates a decrease of the cy-parameter at the end of iteration #15. This decrease is guided by
the strategy proposed in Section 6.7.4. However, the ¢y parameter is only reduced very slightly
by a factor equal to 0.978. This helps to temporally resolve the distortion. Unfortunately, a few
iterations later the mesh gets locally distorted once more as visualized in Figure 6.18d. Actually,
this time the mesh distortion leads to two invalid elements which are highlighted in red in this
figure. These elements avoid any further progress for the next five iterations. The regularization
parameter w is successively increased, once, due to the invalid element counter which is equal to
two and, secondly, due to the fact that the subsequent reduction of the regularization parameter
w does always increase the step length compared to the previous iteration. This is a great feature
of Algorithm 6.3: As long as a rising regularization parameter and the line search are insufficient
to resolve the distorted elements during an iteration, the parameter w is probably increased once
more in the subsequent attempt since w is initially decreased in Step 3 and thus it is likely
that s.,,; becomes larger than sj,4. This is also what finally helps to resolve the locally heavily
distorted mesh. In iteration #24 the regularization parameter w reaches its maximum at a value
of 302.72. Note that this cumbersome situation led almost to a complete stagnation of the entire
globalization method between iteration 18 and 23. This is visible in Figure 6.19c. The step length
has been reduced consecutively till a minimal value of o239} = 1.90735¢—06 is reached before
the rising w value finally helps to overcome this point. This is a remarkable example of how one
element out of 17,280 has the power to cause a complete break-down of the algorithm. Therefore,
it is very important to detect these elements as described in Section 6.6.2. Afterwards, the path
pattern becomes more complex and hard to follow as demonstrated in Figure 6.19c. The origin
can be again traced back to the correct active-set identification. In this specific case, the applied
frictionless contact situation makes it more complicated: While tube Q[?! pushes the big tube
QM in positive x-direction, tube QU creates a counter force and, consequently, a forth and
back sliding in x-direction is initiated. The active-set finally converges in iteration #58. Note
that the last correction of the upper-left matrix block in iteration #59 is not initiated by the
acceptance tests in Step 2.4 but rather by a failing linear solver call in Step 1 of Algorithm 6.3.
This underlines once more that the proposed algorithm can significantly improve the solvability
of the underlying saddle-point system by increasing the diagonal dominance of the upper-left
block (see the GMRES iteration numbers in Figure 6.19a). In addition it is to mention that at
the end of iteration #58 the switching criteria are fulfilled and the system matrix changes to the
standard Lagrangian system which is necessary for a fast local convergence.
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Figure 6.20.: Visualization of the sine-shaped membranes defined by (6.101) and (6.102) including their thicknesses
and their initial position which is specified in (6.105). Figure 6.20b shows a detailed view on a quarter of one sine
hill to give a better impression of the used mesh.

6.10.4. Sine-Shaped Membranes

The following example demonstrates the necessity of the reinitialization routine proposed in
Section 6.7.3. The filter reinitialization is something which should be avoided, however, under
certain circumstances, it is not possible to reliably predict and resolve the undesired solution be-
havior without the risk of being too restrictive in other cases. Thus, the filter reinitialization is in
some way a fall-back strategy when all the other strategies fail. Fortunately, this does not happen
too often as the previous examples demonstrated. To trigger the reinitialization, two contacting
membranes shall be considered. The mid-surface of the upper membrane corresponding to (12!
(i.e. master body) is defined by

3.1
w(r,s) = —S(zr +3) sin(lior + )L+ Cos(;—o(r — 9], (6.101)
which is intentionally chosen in such a way that it becomes non-symmetric. The mid-surface of
the lower membrane corresponding to Q1Y (i.e. slave body) is given by

2 3 2 3
v(r,s) =[1+ sin(—ﬂr + j)][l + sin(—Ws + —W)], (6.102)
5 2 5 2
and represents a sine-waved thin body. Due to its shape, it can be expected that multiple separated
contact zones will occur between the two bodies. To obtain the top and bottom surfaces of these
membranes, the associated normal fields must be computed. These are directly obtained by
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Ny(r,s - 0X (o(r;8)  0X (1,8

-;QL—l with N, (r,s) = @9) | X ), (6.103)
No(r,s)|

|V o) (7

Ney(r;s) = or 0s

where X (r, s) is meant as a placeholder and is supposed to be replaced by

X,(r,s)=(r s w(r,s))T or X, (rs)=(r s v(r,s))T (6.104)

to obtain IV, (r, s) and N, (r, s), respectively. Next, a thickness for each membrane is specified
via t = 0.2 and, finally, the top and bottom surface pairs follow as

r+ %N(l.)(r, s)
X{.)(r,s) = s+ 5Ny (1) , (6.105)
(o) (r,s) £ §NG,) (1, 8) + o)

where () is a again a placeholder for the respective identifier. The constant o(,) is used to specify
the initial offset between both membranes. In this example o,, = 7.2 and 0, = 0 are inserted.
Furthermore, the domain is restricted to

(r,s)e{(r,s) e RxR: [XE—:)]l(r, s) € [0, 10] and [Xz—:)]g(r, s) € [0, 10]}, (6.106)
i.e., restricted to [0, 10] x [0, 10] in the XY -plane. The geometrical reference configuration as
well as the used mesh are presented in Figure 6.20. Once more, hexahedral elements are used.
The subdivisions are as follows: In thickness direction three elements are considered, per quarter
of a sine-shaped hill 32 elements in z- and y-direction are used as shown in Figure 6.20b and
for the upper body corresponding to (6.101) 64 elements in z- and y- direction are inserted. In
summary:

4-[4-(32-32-3)] +64-64-3 =61,440 elements, 83,464 nodes, 250,392 DOFs.

This time no additional element technology is applied, even though it might be advisable to avoid
possible shear locking due to the bad aspect ratio of some elements. Both bodies use once more
(2.26) with EIY = 2,500, E[?) = 12,500 and v = 0.25. Dirichlet boundary conditions are applied
to all DOFs of nodes on the surrounding cut surfaces at X,y € {X"' € {0, 10}, X? € [0, 10]}
as well as X, € {X? € {0, 10}, X" € [0, 10]} of both bodies. While body Q"] stays fixed at
these DOFs during the entire simulation, a prescribed motion in negative z-direction is applied
to Q2. The magnitude of this motion is set to 4.0 and is applied in one load step.

The resulting initial penetration state is presented in Figure 6.20a. All nodes highlighted in
pink are set active by a negative averaged weighted gap value. A closer look reveals that some
tips of the sine-shaped body Q! stay white. The reason is that an insufficient search parameter
is chosen for the contact pair detection in this specific large penetration scenario [288]. This is
done to demonstrate one source of failure which is completely unrelated to the filter method. A
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Figure 6.21.: Active-set distribution during the initial phase of the sine-shaped membranes example. The Fig-
ures 6.21a to 6.21f show the impact of an insufficiently (i.e. here too small) chosen search parameter during contact

pair detection. In such a case, it might happen that the initially missing and later progressively joining active nodes
distort the filter measures and make them unreliable.
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simple remedy would be to increase the according parameter, however, the search radius might
be restricted by other considerations, such as efficiency or unwanted projection scenarios. In
the following, the impact of this insufficiency on the filter method is discussed. Therefore, Fig-
ure 6.21 provides a detailed view of the situation. The insufficient search radius is less severe in
the iterations 1 to 4. However, in iteration 5, the method is close to failure. This is obvious in
Figure 6.21b. Even though the related displacement shows a clear progress into the right direc-
tion (see Figure 6.21d), the filter will block the iteration. Consequently, Algorithm 6.2 initiates a
SOC step, however, the second order correction fails as well. Next, the line search begins and the
algorithm finds an acceptable iteration point with a slightly smaller Lagrangian value after four
backtracking steps (see Figures 6.21b, 6.21d and 6.21€). As it has been said at the outset, the
problematic point is not the filter method but the provided truncated information. Although the
solution proceeds in the right direction, the used infeasibility measure indicates a rising penetra-
tion since more and more nodes join the active-set which should have been already identified as
active at the very beginning. This is highlighted in the Figures 6.21c to 6.21f. This circumstance
becomes crucial in iteration #b5. Fortunately, iteration #6 manages to leave this critical zone,
since the gap between the two bodies starts to open at several other locations (see the green
encircled regions in Figure 6.21f). This short interlude serves as a reminder that the origin of
acceptance issues can be manifold and may be related to completely distinct parts of the used
methods or algorithms.

Now, the attention is drawn to the filter reinitialization. In total the reinitialization is triggered
twice for this example: Firstly, in iteration #27 and, secondly, in iteration #39. The solution
path between iteration 1 and 27, between 27 and 39, as well as between 39 and 66 have been
marked with different colors and line styles in Figures 6.22b and 6.22c. This highlights the fact
that after a reinitialization, the previous filter points are erased from the filter and only one point
solely based on the infeasibility measure acting as upper bound, as well as the current iterate
itself are left. Therefore, the previous information loses its power to block new iterates. The
related displacement field is given in Figure 6.23. Here, the sequence of iterations is shown
which initiates the troublesome situation. In iteration #34 everything looks still fine, in iteration
#35 already one line search step is necessary and the active set in the encircled region shows a
severe change. Finally, in iteration #36 the tip of this marked sine hill pops through the master
body. As Figure 6.22c shows this leads to the scenario of a rising infeasibility measure while the
Lagrangian value drops significantly at the same time, such that the new point is accepted without
any modifications or corrections. The rest of the story has been already told in Section 6.7.3
and can be just transferred to this case. Also the first reinitialization in iteration 27 is caused
by a similar circumstance. The related iterations #23 and #24 are marked in Figure 6.22c.
However, even though the related path segments are very characteristic it would be false to say
that a reinitialization becomes necessary each time when the infeasibility measure rises and the
objective function value drops significantly. Many counter examples can be found in the already
presented path graphs. Thus, the initial sentence of this section is underlined once more: It is
not always possible to predict and prevent each and every cumbersome situation beforehand.
Sometimes it is necessary to resolve it afterwards.

Furthermore, Figure 6.22a reveals again that the success of the filter method relies heavily
on the proper regularization of the system matrix. Some kind of correction has been necessary
almost throughout the entire simulation. Thereby, all of the regularizations have been initiated
by a bad element counter greater than zero and an increasing step length. This strategy works
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(c) detailed view on the solution path

Figure 6.22.: In Figure 6.22a the necessary matrix correction factor w as well as the associated GMRES iteration
numbers are shown for the first sine shaped membranes example. The used color coding follows the description
provided in Figure 6.19. The complete solution path is presented in Figure 6.22b while Figure 6.22¢ shows only
a smaller segment. The color and line style have been changed each time a reinitialization took place, i.e., after
iteration #27 and after iteration #39.

(a) iteration #34 (b) iteration #35/1 (c) iteration #36

Figure 6.23.: A sequence of three accepted deformation states is shown which finally leads to a reinitialization in
iteration #39.
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Figure 6.24.: Figure 6.24a shows the final deformation state for EM") = 2,500 and E[?l = 12,500. The line search
filter method proposed here takes 66 Newton iterations to find this solution. In Figure 6.24b a converged solution
is presented which is revealed after 73 Newton iterations if the Young’s modulus of the master body is reduced to
ER = 4500.

really well and leads to a subsequent successful pre-testing in Step 3.3 of Algorithm 6.2 in
many cases. Nevertheless, there are circumstances where pre-testing is still necessary. One ex-
ample is iteration #30 where a local mesh distortion has been slowly developed over a few
previously accepted Newton iterations and is finally safely resolved by the pre-testing strategy.
Only in the very end, the correction of the system matrix becomes dispensable and allows a
quadratic convergence near the solution. However, the back side of the missing regularization is
a higher number of GMRES iterations. The sudden jump in GMRES iterations at iteration #64
in Figure 6.22a coincides again with the switching point to the standard Lagrangian saddle-point
system of equations. The converged solution is reached at iteration #66. The associated final
converged deformation state is presented in Figure 6.24a.

6.10.5. Sine-Shaped Membranes: Snap-Through

Now, the previous example is reconsidered with the only difference that the Young’s modulus of
body Q%! is reduced. Instead of 12,500, a value equal to 4,500 is used. Thus, the stiffness gap
between body Q! and Q1?] becomes severely smaller. This leads to a drastically changed system
response as illustrated in Figure 6.24b. The reinitialization approach plays again an important
role, but in contrast to the previous setting, another algorithmic feature becomes apparent: This
time the decrease of the contact regularization parameter cy introduced in Section 6.7.4 is trig-
gered three times throughout the simulation, while the reinitialization is only executed once
during iteration #55 after historic information in the filter blocked a new iterate in four con-
secutive Newton iterations. Note that the default parameter set for the reinitialization has been
slightly changed in this example: The parameter v3** has been increased from 0.25 to 0.5 and
the necessary number of consecutive Newton iterations has been also increased from 3 to 4 com-
pared to Table 6.4. The development of the cy parameter is illustrated in Figure 6.25b. The cx
regularization parameter is decreased at the end of iteration #30, #37 and #54. As described
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Figure 6.25.: In Figure 6.25a the matrix correction parameter w, which is computed by 6.3, is shown for the case
that the sine shaped membranes example is solved with E[2] = 4,500. The used color coding follows again the
legend described in Figure 6.19. Figure 6.25b shows the development of the contact regularization parameter cy.
Especially, the decrease of this parameter under certain circumstances as described in 6.7.4 becomes visible.

in Section 6.7.4 these decreases are initiated by a correction number unequal to zero as well as
the necessity of line search step length reductions. If (6.77) additionally indicates a decrease, the
parameter is reduced accordingly. However, as originally intended, the decrease of the regular-
ization parameter takes also place during the troublesome situation where again the tip of one
sine shaped hill pops through the master body. Fortunately, all the implemented strategies such
as the regularization of the main displacement matrix block, the adapted regularization of the
contact matrix block as well as the reinitialization strategy successfully manage to resolve the
issue. Especially, the drop of the cy parameter in the end of iteration #54 is drastic and very
important for the over-all performance. As soon as the algorithm finds its way back to a mean-
ingful solution path, the cy parameter starts to rise again in accordance to the SIR-update rule
(see Figure 6.25). Finally, at the beginning of iteration #70 the cy-regularization is switched
off and the asymptotic region is entered. This time the GMRES iterations do not rise during the
switch as visualized in Figure 6.25 due to the different equilibrium configuration.

To the end of this example, some more general information about the actual solution path shall
be given. In contrast to Section 6.10.4, the search parameter of the contact pair detection has
been increased such that the problems displayed in Figure 6.21 could be successfully avoided.
However, for the very large penetration at the beginning, probably even a larger search radius
would be necessary to reach a level from which on any further increase does no longer change the
initial active-set. Since the convergence seems not to be significantly influenced by the current
choice, a further investigation has been prevented.

In total 73 Newton iterations and 8 successful second order correction steps were necessary
to reach the equilibrium state shown in Figure 6.24b. The changed setup led to the circumstance
that now the master body shows a much heavier deformation and the slave body is only deformed
very little. Also the contact points are restricted to very small regions near the top of each sine
hill. The related solution path is shown in Figure 6.26a. Furthermore, some critical deformation
states are visualized as well in Figures 6.26b and 6.26c¢.
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Figure 6.26.: Visualization of the solution path of the sine shaped membranes example with E[?! = 4,500. The
path after the reinitialization in iteration #55 is again plotted with a different color and line style. Furthermore,
Figure 6.26b shows a deformation state which asks for a decrease of the cx value and Figure 6.26¢ shows a sine hill
popping through the master body which will lead to the reinitialization and drastic reduction of the ¢y parameter
later on.
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In summary, the sine-shaped example proposed here is a great way to challenge the filter
method and to trigger many of the exceptional cases, which often do not occur in simpler settings.

6.10.6. Grazing Tori

The attention is now drawn to dynamic contact problems with all the restrictions mentioned in
Section 4.6, i.e., the focus is not on energy conserving algorithms but instead on the robust and
efficient treatment of contact dynamics. The first considered example consists of two tori of equal
shape and material. The major and minor radii are 76 and 24, respectively. The Young’s modulus
and the Poisson’s ratio are set to £/ = 2,250, v = 0.3 under consideration of (2.26), while the
density is set to oo = 0.1. The wall thickness is equal to 4.5. All this is in accordance with the
tori example presented in Yang and Laursen [288]. In this first example the same coarse mesh
as in the mentioned reference is used, thus, there are 3200 HEXS8 elements, where 2 elements
in thickness direction are used, 4800 nodes and 14,400 DOFs. The mesh as well as the initial
configuration is shown in Figure 6.27a. Furthermore, the EAS-21 formulation is applied to avoid
any shear locking effects due to the thin walled structure and the high element aspect ratio [3].
The 800 outer surface elements of the blue torus represent the slave side. At ¢ = 0 the center
of this torus is at the origin and lies in the xy-plane. The red torus is moved 140 units in z
and 140 units in y direction and is subsequently rotated about 45° around the y-axis as shown
in the respective initial configuration in Figure 6.27a. The blue torus has an initial velocity of
v(t = 0) = (30.0,0.0,23.0)*. The time step size is chosen to At = 0.5 and the parameter p, of
the Generalized-a method is set to 0.75 (see Section 2.4). A selection of converged equilibrium
states can be found in Figures 6.27b to 6.27f. As one can see: The two tori are only grazing each
other. This is to demonstrate that the filter method can switch smoothly between a contact and a
non-contact state, or to put it differently: It can switch smoothly between a constrained and an
unconstrained optimization problem. The main ingredient which allows this switch is the .Z-type
switching condition (6.4). As soon as the constraints become feasible or inactive, i.e., O} ~ 0
holds, (6.4) is always fulfilled as long as the direction is a valid descent direction. However, this
is guaranteed by the applied regularization of the system matrix in Algorithm 6.3. Here, the two
tori are between t; = 0.5 and ¢1; = 5.5 in contact. Furthermore, this example includes some
necessary linear system adaptions since the upper left block of (6.59) becomes multiple times
either negative definite during the non-linear solution procedure or elements become invalid
while the step length rises. This illustrates that the additional natural regularization by the mass
matrix can be insufficient in the pre-asymptotic phase if the time step size is not sufficiently
small (see (2.96)). In addition it is not only a problem during the contact phase, since time step
#14 asks for a regularization as well due to a negative definite system matrix. As demonstrated
in Figure 6.28a the regularization term w reaches its maximal value 26,666.67 in time step #4.
Furthermore, the simulation asks for a reinitialization in two time steps. At this point, it is
again to note that the default parameters for the reinitialization have been slightly adapted for
this example: The parameter 4 has been increased from 0.25 to 0.5 and the necessary number
of consecutive Newton iterations has been also increased from 3 to 4 compared to Table 6.4.
Furthermore, ©,,,, has been increased from 2.0 to 3.0. The reinitialization is triggered twice
in time step 3, once the bound n}’SIOCk i1s exceeded and, the second time, 4 Newton iterations
in a row are blocked, thus, nP°%€ initiates the reinitialization. The blocking behavior has the
additional drawback that it is likely that a SOC step fails as well. This explains the high number

newton
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Figure 6.27.: Visualization of the grazing tori example. Figure 6.27a shows the initial positioning of the two tori
(|d|| = 0,¢t = 0), while Figures 6.27b to 6.27f give impressions of different time steps. Note that the color coding
in Figure 6.27a is only used to separate both tori more clearly, while the colors in the remaining images indicate the
current displacement field.
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Figure 6.28.: Figure 6.28a shows the necessary matrix corrections as well as the needed GMRES iterations for the
first 15 time steps. The first number of the z-axis labels denotes the time step, while the following number repre-
sents the non-linear iteration counter, where zero is meant to indicate the start of a new time step. In Figure 6.28b
interesting statistics are given about the non-liner solver behavior. Figure 6.28c shows the development of different
contributions to (6.89) over time step #13, while Figure 6.28d presents the normalized energy balance for the the

(c) step #13

grazing tori example.
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of unsuccessful SOC attempts in this time step. In addition, it is again triggered in time step
#4 also due to nP°%k A summary of all necessary Newton and line search iterations per time
step, as well as the accumulated number of matrix corrections and the second order correction
steps are shown in Figure 6.28b. Additionally, the number of successful, i.e., accepted SOC steps
are presented as well. Finally, the attention is drawn to the newly introduced objective function
(6.89) which becomes significantly important as soon as the two tori are getting out of contact. In
Figure 6.28c the development of the different contributions to (6.89) are presented for time step
#13. This example demonstrates that not all contributions decrease monotonically. The kinetic
incremental energy (6.89a) as well as the contributions (6.89b) related to the previous time step
show also some temporary increase, while in this special case, the internal energy related to
the current iteration is always decreasing. However, that is not in general true: Exemplarily,
another pure structural load step (i.e., without contact contributions) between iteration 16 and
20 shows a different behavior. In these iterations the current internal energy decreases no longer
monotonically. The explanation can be easily found in the global rise of the internal energy
during these iterations as shown in Figure 6.28d. Nevertheless, the decisive point is that the sum
of all these contributions is able to always follow a monotonically decreasing solution path as
long as the non-linear solution method is controlled by the line search filter method proposed
here.

Remark 6.4. The total energy drop in Figure 6.28d is small but still obvious for this example.
The reasons for the drop are manifold and have been already discussed in Section 4.6. The rather
small energy loss is caused by the only weak impact. In addition, the shown energies are scaled
with respect to different quantities: While the internal energy is divided by its maximally reached
value of 1.121e+06 in time step #38, the kinetic and total energy is scaled by the recursive value
of the analytically calculated kinetic energy of the initially moving torus, viz.

1
H(t=0) = SeoVi ot = 0)[7 = 2.0082¢+7, 6.107)

where Vo[l] = 29,75472. The initial offset between the analytical kinetic energy and the initial

energy of the finite element model shown in Figure 6.28d can be traced back to the coarse mesh
and the only approximative representation of the true volume by the used linear HEX8 elements.

6.10.7. Colliding Tori

As a final example the tori are considered once more but this time they shall collide directly and
more widely with each other. The material parameters as well as the initial velocity field stay
unchanged. The mesh is refined by a factor of two in all circumferential directions ending up
with 12,800 HEXS8 elements, 19,200 nodes and 57,600 degrees of freedom. Again the EAS-21
formulation of Andelfinger and Ramm [3] is applied. The first torus is again placed at the origin,
but now the second torus is moved 140 units in 2- and z-direction and, subsequently, rotated by
45° around its new center point at (140, 0, 140)T. The time step size has been halved to 0.25,
while po, is again set to 0.75. The changed setup makes it necessary to detect contact not only
between the outer surfaces of the two distinct tori but also among the inner surface of each of
the two torus tubes itself. The initial configuration as well as a selection of converged time step

253



6. Line Search Filter Approach

8
5 20 s
=
o
2
E 10 - .
=
g
3 0 it
= 0 10 20 30 40 50 60
# step
x Newton o linesearch W-COIT. all SOC o accept. SOC

Figure 6.29.: Summary of different statistics about the impacting tori example.

solutions are presented in Figure 6.30. The self contact occurs for ¢ € {4.25,4.75,5.0} and is
exemplarily shown in Figure 6.30c.

A summary concerning the non-linear solver performance can be found in Figure 6.29. Even
though the time step size has been halved, there are still time steps which need a matrix cor-
rection. However, the adaption becomes often necessary directly after the predictor step. This
indicates that the performance might be further improved by a better predictor. The line search
is only activated in load step 18 and the second order correction step helps to avoid a step length
reduction in load step 18 and 19. In summary, this and the previous examples demonstrate im-
pressively how well the line search filter method can handle a set of very different cumbersome
situations which would fail otherwise.

6.11. Conclusion

A line search filter method for large deformation frictionless contact problems has been pre-
sented in this chapter. Thereby, a number of challenging issues have been revealed and compre-
hensively discussed. While the core functionality of the filter method considered here is largely
inspired by [270-272], numerical experiments have indicated that further extensions and modi-
fications are necessary to reach a robust and reliable globally convergent optimization algorithm
for computational contact problems. One very important ingredient is the correction algorithm
of the linear system of equations including the reliable identification of invalid elements, see
Section 6.6, as well as the incorporation of the modified Newton method presented in Chapter 5.
Algorithm 6.3 helps not only in case of the filter method, but it is also supportive in case of
structural instabilities or whenever the iterative linear solver might face convergence problems.
A wide variety of further important extensions has been summarized in Section 6.7. For exam-
ple, since the method is applied to an already discretized problem, it is also important to tackle
local issues which might not be noticeable on a global level. Therefore, pre-testing strategies
have been introduced which help to identify locally distorted elements before the actual filter
method is entered. Known issues which can be solved by bypassing of the .Z-type test or the
reinitialization of the filter have been addressed as well. These additional strategies are not al-
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Figure 6.30.: Visualization of the impacting tori example. Figure 6.30a shows the initial positioning of the two tori
(Id]| = 0,t = 0), while Figures 6.30b to 6.30f give impressions of different time steps. The color coding follows
again the same purpose as in Figure 6.27.
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ways necessary, but under certain circumstances they might be the only way to a solution. This
is for the implementation shown here especially true, since currently no feasibility restoration
phase can be used as fallback strategy. This point needs to be addressed in the future.

At the beginning of this chapter it has been stated that for all considered examples the solution
could be found without such a strategy and that all failing simulations failed because of other
issues, e.g., badly chosen boundary conditions. However, there might be cases were a feasibility
restoration phase would still be beneficial. For example, it might help to avoid the necessary
adaption of the reinitialization parameters for certain examples and thus the usability of the
method could be further improved. Examples for a meaningful feasibility restoration phase can
be found in [263, 272], for instance.

Additionally, the successful treatment of advanced computational contact topics such as dy-
namic problems with focus on the Generalized-a method or the consideration of the EAS method
have been addressed. Thereby, the numerical examples gave the impression that the correction
of the linear system of equations can have a beneficial impact on the applicability of the EAS
method in the presence of large compression, see also the stability issue described in Remark 2.5.

In summary, the presented line search filter method shows an impressive performance in all
discussed numerical examples. The solvability of all the proposed simulations could be improved
with the new line search filter method. For some examples it might have been possible to find a
solution with a full Newton method by adapting the load/time step size, however, other examples
which face structural instabilities are hardly solvable with classical pure Newton-Raphson ap-
proaches. Therefore, the new line search filter method can help to significantly improve the
solvability of non-linear large scale (static or dynamic) contact problems by simultaneously
generating only minimal overhead. Furthermore, the non-linear solution method does not be-
come excessively restrictive due to the used acceptability checks, see exemplarily Section 6.10.1.
Therefore, it seems promising to transfer the algorithms to other complex problems. An obvious
candidate is the frictional contact problem, see Section 2.2.3 for a starting point.
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7. Summary and Outlook

This thesis has dealt with the very important topic of finding ways to improve the robust-
ness of existing computational contact simulation tools. Thereby, the focus has mainly lain on
mortar-like contact formulation. The discretization methods of choice have been based on linear
Lagrangian polynomials or non-linear rational B-splines. However, the specific discretization
method itself has been of rather minor importance besides the single exception of the presented
integration issue in Section 4.7.2 where the enhanced smoothness of the NURBS function can
become handy to overcome certain issues.

But, before the most important achievements of this thesis are going to be recapitulated, the
attention shall be drawn back to the beginning of this thesis. The entire story has begun with
a brief introduction into the field of computational mechanics for large deformations. Already
during these introductory words the idea has been to give a different point of view by shifting to
a more mathematical instead of a pure engineering perspective. This had the important task to
build and strenghten the bridge between both disciplines. Therefore, the derivation of the weak
form has been discussed more comprehensively. Afterwards, the attention has been on contact
mechanics and its special characteristics. However, the idea has always remained to provide
a mathematical discussion which fits well with the constrained optimization literature. After a
short interlude about frictional contact problems, which can be understood as a first foretaste
for future developments, Chapter 2 ended with some further insights into spatial and temporal
discretization methods. This part has been restricted to the essential key points which felt most
important for this thesis.

Then, in the next Chapter 3, the discussion turned to the mathematical foundation of this
work: the field of numerical (un-)constrained optimization. This is a vast and quickly developing
research field, which is almost impossible to capture in its full extent. Therefore, this second
introductory chapter summarized first important local and global techniques for the simpler case
of unconstrained optimization, right before the focus had been shifted to the more complex field
of constrained optimization. All in all, the provided content is still only scratching on the surface
of all the therein mentioned locally and globally convergent methods and strategies. For a deeper
insight, it is highly recommended to take a look at the referred literature.

Next, with these tools at hand, the main part of this thesis starts in Chapter 4. Therein, two
novel contact formulations have been derived side by side which have much in common with
the publications of Alart and Curnier [1], De Lorenzis et al. [65] and Pietrzak and Curnier [212].
However, the main difference is the combination of a mortar-based formulation together with
a so-called ray-tracing normal field and a thereon based projection method. The ray tracing
approach has been chosen in contrast to the often used closest-point projection. The applied
smoothed ray-tracing approach can be also found in Popp [213] or Yang et al. [290], for in-
stance. Actually, this method is often used in conjunction with a dual-mortar method for large
deformation contact formulations. Despite the fact that the choice of the normal definition is of
only minor importance for the actual final converged solution, it can be of essential importance
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7. Summary and Outlook

for the non-linear solver behavior. In summary, there exist many reasons why this thesis has
chosen the ray-tracing approach. For example, the ray tracing, which is mainly defined on the
slave side, can be beneficial when it comes to the actual implementation in a high performance
computing framework which relies on an efficient parallel treatment of its individual ingredients.
Another point is that this choice allowed to build directly on top of the work of Popp [213], Popp
etal. [215, 216, 217, 218] and to utilize as many synergies as possible with the already existing
mortar-based contact formulations in BACI (cf. Wall and Kronbichler [274]) at the Institute for
Computational Mechanics.

The two approaches which have been developed in Chapter 4 contain firstly a symmetric and
truly variationally consistent formulation and, secondly, a slightly variationally inconsistent vari-
ant, see also Hiermeier et al. [131]. The latter one has the advantage to be computationally much
more efficient. Throughout the discussion and derivation, however, it could be shown that both
approaches satisfy the balance of linear and angular momentum up to numerical precision. Es-
pecially, the balance of angular momentum is remarkable since this point is violated by many
mortar-like formulations as comprehensively discussed in Section 4.5. Afterwards a comparison
of the two noval methods with a well-established implementation summarized in Popp [213] is
given. The mortar-like contact method proposed by Popp [213] is one of the candidates which,
due to the applied variational approach, lack the conservation of angular momentum. Further-
more, one drawback of the variationally consistent formulation derived in this thesis is revealed,
namely, the much stronger demand for a numerical exact integration. Certain remedies on this
issue have been discussed as well. Finally, in the end of Chapter 4, another new discovery has
been presented: Here, precisely in Section 4.7.4, an inherent instability of the variationally in-
consistent as well as of the well-established formulation by [213] has been presented. To the
author’s knowledge this is the first time that the phenomenon has been discussed and explained.
Additionally, the entire chapter comes a long with a comprehensive and detailed derivation of all
necessary variations and linearizations, thus that both presented approaches fulfill the require-
ments for a locally quadratic convergence.

After this strongly contact related discussion, the attention has been drawn to one of the weak-
nesses of the previous chapter: the not always reliable convergence behavior, especially for large
initial penetrations. In Chapter 5, a modified variant of Newton’s method for constrained prob-
lems has been introduced. The foundation for this chapter can be found in Bertsekas [23]. How-
ever, many of the therein discussed steps represent completely novel extensions to the already
existing literature. For example, the dynamic correction schemes for the regularization parameter
cy in Section 5.3. These schemes allow for the first time a much easier definition of the regular-
ization parameter. Instead of choosing it in dependence on the problem dependent requirements,
it is now possible to set the initial cx value always to 1.0 and the associated dynamic correction
increases its value on demand while always staying bounded. This alone is a significant improve-
ment concerning usability. However, the modification of the linear system of equations allows
also a much higher degree of initial penetration in case of displacement controlled problems. Fur-
thermore, in combination with the mentioned dynamic cy parameter correction, it has become
possible to prove local convergence based on the ideas given in Bertsekas [23]. Furthermore, a
novel switching strategy has been proposed which relies only on mathematically motivated con-
ditions such as angles between certain gradient directions and relative residual measures rather
than on problem dependent parameters. This stands in clear contrast to the ideas which can be
found in other publications dealing with similar problems, see e.g. [294]. The new modified lin-
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ear system of equations has additionally the advantage that the Lagrange multiplier can be quite
easily condensed from the original saddle-point structure. This option has been also discussed
in Chapter 5. Furthermore, the implications of such a procedure have been investigated under
consideration of a detailed numerical study concerning the conditioning of the linear system.
This study had the result that the original saddle-point system of equations might be beneficial
as long as no special preconditioning strategy is available. The main part of the examples in
Section 5.6 have put the focus on the variationally inconsistent formulation of Chapter 5. This
stems mainly from the fact that the variationally consistent formulation suffers from the dis-
cussed numerical integration issues. However, the modification of the linear system presented in
Chapter 5 does not depend on the inconsistencies introduced by the related contact formulation
and in order to underline this, one more example has been added which considers the truly vari-
ationally consistent formulation. This example has revealed further interesting properties of the
modified Newton method and has further expanded the knowledge about the differences of the
two mortar-like contact formulations.

To this point all discussed methods and novel ideas have severely helped to improve the un-
derstanding of the mortar-like contact formulations and helped to improve the robustness of the
methods, however, all of them are just locally convergent. In Chapter 6, therefore, the next log-
ical step has been made towards a globally convergent method. For this thesis the so-called line
search filter method has been chosen as one representative of a globally convergent constrained
optimization strategy. The main algorithm presented in Chapter 6 has been largely inspired by
the work of Wichter and Biegler [270, 271, 272]. However, the meaningful formulation of the
filter coordinates as well as certain smaller enhancements in the calculation of the minimal step
length estimates represent first smaller adjustments to the original algorithm. Furthermore, the
consideration of a second order correction step has become necessary and had to be adapted
to fit the requirements of the large-scale contact simulations considered here. Next, the inertia
correction algorithm for the linear system of equations proposed in Wichter and Biegler [272]
had to be significantly changed since certain information about the linear system of equations
were just not at hand for the very huge parallel distributed linear systems of equations which
have been solved within this thesis. Therefore, another strategy had to be developed which pro-
vided similar information about the solvability and quality of the search direction. Thereby, it
has been decisive to detect and compensate a non-positive definite search direction since other-
wise the following line search method would have been unable to find a sufficient step length
to improve one of the filter measures. The novel linear system correction method contains fur-
ther ingredients such as the reliable detection of invalid finite elements. This add-on is based
on the work of Johnen et al. [150, 151] and represents another important contribution of this
thesis when it comes to the treatment of globalization method for discretized highly non-linear
(contact) problems. Additionally, it could be shown that the correction of the linear system is
also beneficial for the general application of iterative linear solvers, such as GMRES, since the
convergence of these solvers is no longer strictly bound to the correct initial parameter choice.
Instead, the algorithm gains the power to heal itself. Furthermore, the invalid element detection
has also been used as a pre-testing mechanism for the filter method. This is necessary, since
numerical experiments have revealed that the typically used filter measures are not always able
to reliably identify bad steps which lead to a very localized heavy mesh distortion. Besides this
pre-testing approach many more small adjustments to the original line search filter method have
been introduced. Some of them can also be found in the related literature such as the bypassing
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of the .Z-type switching test which is also mentioned in Wichter and Biegler [272], the reinitial-
ization of the filter as discussed in [271, 272], or the pre-filtering which can be found in Gould
and Toint [116] and Milzarek and Ulbrich [196]. These ideas have been only adapted for the
contact problems considered here. However, there are also completely new ingredients such as
the controlled decrease of the regularization parameter cx which is discussed in Section 6.7.4,
the scaling approach mentioned in Section 6.7.5, or the extensions of the filter measures for the
treatment of dynamic contact problems which has been introduced in 6.8.1. Furthermore, the
handling of enhanced assumed strains (EAS), which has been mentioned in Section 6.8.2, might
seem to be only a small improvement, but is actually a very important contribution to the whole
picture. When it comes to efficiency, the newly developed dynamic parallel redistribution must
be mentioned as well.

All in all, the methods and algorithms discussed and presented in this thesis have proven
to significantly improve the performance of classical non-linear solution approaches in numer-
ous examples. Furthermore, the detailed discussions and provided background information have
helped at many points to explain the observed behavior and to improve the understanding of the
frictionless computational contact mechanics. Nevertheless, many points are still remaining on
the agenda which ask for further investigations and extensions. Some of the most important open
issues are summarized in the following in chronological order.

The numerical integration of the variationally consistent mortar-like contact formulation pre-
sented in Chapter 4 should be further investigated and resolved by a suitable extension of
the segment-based integration approach (cf. Puso and Laursen [222], Wilking and Bischoff
[278], Yang et al. [290]). Afterwards, it might be advisable to put more effort into the inves-
tigation of the inherent instability presented in Section 4.7.4. Furthermore, a stable, truly vari-
ationally consistent formulation would also allow a more distinct investigation of the modified
Newton approach discussed in Chapter 5 as well as the line search filter method discussed in
Chapter 6. The latter one has only been considered together with the variationally inconsistent
formulation until now.

Another interesting research topic could be the extension of certain general ideas presented
within this thesis to frictional contact problems. For example, it would be a great step forward if
the dynamic correction of the cy regularization parameter presented in Chapter 5 could also be
carried over to the ¢, parameter of the frictional case, since the appropriate identification of this
parameter is often much more difficult. Furthermore, also the application of the filter method
could be of great interest. A possible suitable extension to a frictional contact formulation has
been already presented in Section 2.2.3.

With respect to Chapter 5 and Chapter 6, it could be also beneficial to improve the used
tangential predictor further, since some numerical experiments have become harder to solve just
because of a bad initial displacement and/or Lagrange multiplier field. Furthermore, the modified
Newton approach asks for further input to become applicable to problems with pure Neumann
loads or mixed Neumann/Dirichlet boundary conditions.

Finally, the filter method itself can be improved by introducing a meaningful feasibility restora-
tion phase. Even though all of the examples could be solved without a feasibility restoration
phase, some of them asked for a special adaption of the default reinitialization parameters. A
feasibility restoration might be the proper remedy here, since it would become only active as
soon as the filter method parameterized with the default parameters given in Section 6.9.2 starts
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failing. First ideas for a possible feasibility restoration phase can be found in Ulbrich et al.
[263], Wichter and Biegler [272], for instance.

In conclusion, it can be said that the thesis has succeeded in achieving the initial goals. The
presented methods help to create a more robust non-linear solver behavior. At the same time,
however, it was also possible to explain in more detail inconsistencies in some formulations
that had existed for some time and to point out possible solutions. The gap between engineer-
ing and mathematics could also be reduced again. This provides a promising basis for further
improvements in the future.
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A. Variation and Linearization of Basic
Contact Terms

In this Appendix details to certain variations and linearizations introduced or mentioned in Chap-
ter 4 are given. These additional details, together with the equations in the aforementioned chap-
ter, should be enough to give a complete picture of the underlying mathematical relations neces-
sary for the variationally complete and incomplete mortar-like contact formulations.

A.1. Variation of Basic Contact Terms

This section contains all remaining first order derivatives of Section 4.4.1. In the following, the
element superscript will be omitted and the variation of the convective covariant base vectors
follows first. The associated first order directional derivative yields

bli oy, [l (6]
- 0 o(XP + b >(5ur + _(31 " Dy (11
(}g[b]k ou” ag[b]l u

(6]
o(oult) T
=gl T Gl Dy, (1) (A1)

The occurring directional derivative of the parameter space coordinate is equal to zero on the
slave side. Further, the discretized form for u!*! is inserted and

b
Dy (r",)

o(ull) AT

D€ sex0d"e A-2)

is obtained. The next step is the calculation of the nodal averaged normal 7!'l’, which is defined in
(4.3) as the sum over the outward-pointing unit normals () of the adjacent elements evaluated
at the parameter space coordinates of node ¢. Thus, the relation

Nadi
Dy, (i) = 3 Dy, () (A3)

e=1

is received, where
Al 1
Dsy(nlY) = Dsy | = | = —- (L — M @ nlY) Dy, (M), (A4)
B S\ M) | = -

Déum[l]) = D6U(T[1]1 X 1[1]2) = D52(1[1]1) X 1[1]2 + I[1]1 X D5B<I[1]2)' (A.5)
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The directional derivative of the element Jacobian determinant on the slave side follows as

Dsy (1) =Dy (|2l1]) = n'! - Dy, (1)

1 m n
=— {(T[l] T[l] — 7_[1] 1T[l]n2) 7—[1] 2 Déﬂ(T[l] 1)
N (r[” ) > A M(T[Hg)} . (A.6)

Finally, the projection rule from (2.54) is restated as

x(@(EM), (€, ay) = 2(6P) — z() — a (gl (A7)

and the directional derivative at the solution point is calculated for the derivation of the missing
derivative of the master parametric coordinates. The directional derivative at the solution point
(z1%, @, ) with respect to the displacement degrees of freedom follows as

0 =Dsu (x(z(£M), z(£P), &)
=0al 4 7, Dy (€P1) — sul'! — Dyy(ay) 2" — Dy (). (A8)

By inserting the directional derivative of the smooth normal field (4.28), (A.8) can be solved for
the unknown directional derivatives of the master parameter space coordinates and the distance
factor o, :

Dfm@[z]l) _
Dy (€22) | = L '+ (0ul + 6, Dy (@) — 57@) ¥ ou, (A.9)
D@(O_‘x)

3x3 ;

where the matrix éx eR is defined as

I = (ﬂﬂ 712 _ﬁm), (A.10)

It is noted that the actual right and left hand sides are matrices of row dimension three and
problem dependent column dimension.

A.2. Linearization of Basic Contact Terms

This section contains all remaining first and second order derivatives from Section 4.4.3. At the
beginning the linearized first derivative of the virtual displacement shall be considered, i.e.

o(Sul®l 02 (Sul®)) '
DA“( ' ) B ag[b]iag[b]jDAu(f[bh)- (A.11)
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The term will vanish for all slave contributions. Next, the linearization of the first order derivative
of the convective element base vectors is derived as

aT[b]A 0201 PQ(Au[b]) azT[b]
R I z _ P(Au "
Day <a£[b]k) Dau <3§[b]7;35[b]k) o€l eIk 85 Tk ogl DAu(é‘ ). (A.12)

The second term is equal to zero for linear polynomials as well as for convective base vectors on
the slave side. For the master side, the directional derivative of the projected coordinates, defined
in (A.9), has to be taken into account.

The linearization of the total variation of the base vectors follows as

o(5ul” or!”,
DAu(D5u( []@)) :DAQ ( gf_[b]z)) + DAH (W DM(f[b]k)

(37'
55

All terms are again equal to zero on the slave side. The last term depends on the linearization
of the variation of the projection. The linearization of the variation of the element normal vector
U defined in (A.5) is computed by

* D (D (E17)). (A.13)

+ DAE(ID]J X DM(ID]Q) + 7[1]1 X DAg(Day(I[l]g))

= D@(IMJ X DAE(I[I]Q) + DA@(I[HJ X Déy(l[l]z)a (A.14)

Dau(Dsy (M) = DAE(DM(ID]I)) % I[1]2 n D&u(l[l]l) y DAQ(ID]Q)

where all zero terms have been removed in the last step. By consideration of (A.4), (A.5) and
(A.14) the linearized form of the variation of the element Jacobian on the slave side is derived
by

DA2<D5y(j[l])> = DAg<ﬂ[1]) ) Déy(ﬁm) + 2[1] ) DAy(D@<ﬁ[1]))- (A.15)

The linearized variation of the smooth non-unit normal field is still missing. Therefore, the fol-
lowing equations are obtained

1 . .
D au (D (")) =N { =G, D (1) D (i)

T ——
+[L - @il Day (Day(ﬁ““))} , (A.16)

where the directional derivative of the smooth and averaged normals are defined in (4.28) and
(A.3), respectively, and

265



A. Variation and Linearization of Basic Contact Terms

Nad]

DAu(DJU(ﬁ[l]» = 2 DAQ<D5Q(H[1](6))); (A17)

e=1
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I~

The last two equations are supposed to be evaluated at the parameter space coordinates of the
current node ¢ with regard to the sum in (A.16). As a last step, the linearization of the variation
of the projection at the solution point (z?, @, ) must be calculated. The directional derivative of
(A.8) follows as

) + 7 D au(Dsu (€77)) — Dy (6ulM)

- DAE(DM(ax))ﬁm - D5E(dX)DAE(ﬁ[1]> - DA2<5‘><)D52@[1]) - @XDAQ(D@(ED]»
(A.19)

By inserting the second order directional derivatives of the smooth normal field (A.16) the de-
rived set of linear equations (A.19) can be solved for the unknown second order directional
derivatives and the following result is obtained:

)|=L"'r ¥ ou, Au, (A.20)

)
7 =Dsu (@) Dau(@M) + Daw(@y)Dsu(M) + ayDau(Dsu(i")) — Dau(6ul?)
— Dau (7)) Dgy (€9, (A21)

where the matrix LX is defined in (A.10). In addition, the fact can be used that D, (dul'l) is
equal to zero. It is to note once more that the left and right hand sides represent tensors of order
three and only the first dimension is a-priori known to be equal to three. The remaining two
dimensions are problem dependent.
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B. Tangential Predictor for Large
Sliding Steps

Since the predictor step is a crucial ingredient of the non-linear solution procedure discussed in
this thesis, this topic will be explicitly taken up and explained in context of the modified system
of equations introduced in Chapter 5. First of all, it is to emphasize that there are many ways to
define a meaningful predictor and, therefore, only one possibility will be addressed. However,
the algorithm presented here performs pretty well in all considered numerical studies. Before
the discussion can be started two new sets D and D shall be introduced to distinguish between
the unknown and the prescribed degrees of freedom (DoF). The first set contains all DoF which
are affected by applied Dirichlet boundary conditions while the latter one contains all free and,
therefore, unknown DoF. The cardinality of each set is denoted by |D| = # and |D| = n,
respectively. Note that the following assumptions shall hold:

AS B.1. All godes with prescribed ]?OF shall be excluded from the slave set, i.e. {i €
S| 3N =g~ :je{1,2,3) A ke D}

AS B.2. A static simulation is considered and only steady-state solutions shall be com-
puted.

AS B.3. All applied Neumann conditions f_ are independent from the deformation and,
therefore, must not be considered during the linearization.

However, it is possible to relax all of these assumptions by applying the necessary modifi-
cations to the system of equations. The discussion starts at the beginning of a new load step.
The most general case is that the Neumann load as well as the prescribed displacements are si-
multaneously changed. Let us assume that from step s to s + 1 the following changes shall be

applied
Jls+1.0} s} 0
a N = {s+1,0} _ p{s} {s}
(d““” “\d) T lad” ) Lo =L+ AL BD

where Ad{s} € R™ might be unequal to zero for some Dirichlet degrees of freedom and the
external force increment A f {S} e R"™ might be as well unequal to zero for some Neumann
degrees of freedom. Under these prerequisites, the following system of equations is obtained

=2 A - ~ .
Vie? Vi 0 M\ (9.2 - [VAV.L)TAd - AL
o AT 1A VA S nxn AL
Vagel" ~ed0 2 S = gy IVl Ad , (B.2)
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where the rows with respect to the variation of the inactive Lagrange multipliers have been
simplified under the assumption that all inactive Lagrange multipliers are equal to zero at the
beginning of a new load step. This follows directly from the applied algorithm. Again, it is
possible to condense the Lagrange multipliers of the active contributions following (5.2) and
(5.4), such that the active part of (B.2) yields

V33Zoy Ad = —{[Vg(VaD)" + exVag AN Vg™ Ad — Af (B.3)

where @43 —CN gﬁ = 0 has been inserted, which follows under the assumption that the reached
balance among the internal, external and contact forces at the end of the previous load step
has been successfully reached. Note that the second part of the remaining contribution on the
right hand side, which represents the tangentially approximated reaction due to the changing gap
induced by the Dirichlet conditions, has only relevance in one scenario: If the master contact
surface is moved by a prescribed displacement. In all other cases the influence vanishes as direct
consequence of Assumption B.1: The interface integrals will not contribute to the corresponding
columns in the tangential stiffness matrix . The tangential predictor introduced here is used in
many of the numerical examples presented in this thesis.
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