
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik

Lehrstuhl für Kommunikationsnetze

Fine-grained Isolation and Filtering of
Network traffic using SDN and NFV

Raphael Durner, M.Sc.

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Georg Sigl
Prüfer der Dissertation: 1. Prof. Dr.-Ing. Wolfgang Kellerer

2. Prof. Dr.-Ing. Georg Carle

Die Dissertation wurde am 29.10.2019 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 21.09.2020 angenom-
men.





Abstract

With increasing importance of computer networks in general, also intentionally adverse
activities have increased. In order to protect the integrity of the clients and data in a network,
network security concepts have been developed in the last decades. Nevertheless, network
security today is mostly enforced on the edge of the network. Thus, connections and packets
in the network cannot be checked and security within one network cannot be enforced. An
adversary that has breached the boundaries of the network can spread in the network. Large
scale incidents like carried out by the WannaCry malware have shown that this is a major
shortcoming of today’s network security concepts.

With the advent of Software-Defined Networking (SDN) a unique possibility arises to
resolve this issue. SDN can be used to provide fine-grained filtering in the network. With
SDN the control of the network and the network view is centralized. The header of the
network packets can be used directly to isolate different virtual networks. This enables a
connection level isolation within the network. However, the filtering capabilities of this
SDN approach are limited by the capabilities of the SDN hardware devices. Thus, Network
Function Virtualization (NFV) is used in addition to provide filtering options such as stateful
and application layer filtering.

Several challenges arise:

SDN is not yet a mature technology. However, it is integral part of the envisioned security
architecture. Therefore, in this thesis at first security issues that arise in the SDN architecture
are shown and selected security improvements are introduced.

Due to its roots in a security project, virtual network isolation in terms of access is quite
straight forward in SDN networks. Nevertheless, access isolation is not sufficient as an
overload of one virtual network leads to contention in other networks if physical links are
shared.

The NFV concept utilizes IT virtualization technologies for network processing purposes.
In contrast to classical workloads in this field, Virtualized Network Functions (VNFs) are quite
different as they require high throughput of network packets. This work analyzes performance
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issues of the employed hardware and introduces improvements for a better performance of the
VNFs.

VNFs run in a centralized manner utilizing the data center like Network Function Virtual-
ization Infrastructure (NFVI). The presented architecture features filtering using NFV. Thus
all traffic must be routed through the NFVI which causes detours. An approach is analyzed
that reduces the load in the network using SDN offloading. One main challenge in this area is
to identify those flows that are worth offloading.



Kurzfassung

Mit der zunehmenden Bedeutung von Computernetzen im Allgemeinen haben auch die An-
griffe auf diese Netze zugenommen. Um die Integrität der Teilnehmer in einem Netz und die
dort gespeicherten Daten zu schützen, wurden in den letzten Jahrzehnten Netzsicherheitskon-
zepte entwickelt. Trotzdem wird die Netzsicherheit heutzutage meist nur am Rand des Netzes
durchgesetzt. Daher können Verbindungen im Netz nicht überprüft und die Sicherheit inner-
halb eines Netzes nicht durchgesetzt werden. Ein Angreifer, der diese Sicherheitsmaßnahmen
am Rand des Netzes überwunden hat, kann sich frei im Netz ausbreiten. Groß angelegte Vor-
fälle wie die WannaCry-Malware haben gezeigt, dass dies ein wesentlicher Mangel heutiger
Netzsicherheitskonzepte ist.

Mit dem Aufkommen von Software-Defined Networking (SDN) entsteht eine neue Mög-
lichkeit, diese Herausforderung zu lösen. In dieser Arbeit zeigen wir, wie SDN verwendet
werden kann, um eine feinkörnige Filterung im Netz bereitzustellen. Mit SDN wird die Kon-
trolle über das Netz und die Netzsicht zentralisiert. Der Header der Netzpakete kann direkt
verwendet werden um verschiedene virtuelle Netze zu isolieren. Dies ermöglicht eine Isolation
auf Verbindungsebene innerhalb des Netzes.

Die Filterfunktionen dieses SDN-Ansatzes sind jedoch durch die Funktionen der SDN-
Hardwaregeräte beschränkt. Daher wird zusätzlich Network Function Virtualization (NFV)
verwendet, um Optionen wie zustandsbehaftete Filterung und Filterung der Anwendungs-
schicht bereitzustellen.

Hieraus ergeben sich mehrere Herausforderungen:

SDN ist noch keine ausgereifte Technologie. Es ist jedoch integraler Bestandteil der
gezeigten Sicherheitsarchitektur. Daher werden in dieser Arbeit Sicherheitsprobleme, die
in der SDN Architektur auftreten, aufgezeigt und ausgewählte Sicherheitsverbesserungen
vorgestellt.

Aufgrund der Wurzeln von SDN in einem Sicherheitsprojekt ist die Isolierung virtueller
Netze in Bezug auf den Zugriff in SDN Netzen ohne große Herausforderungen möglich. Die
Zugriffsisolation ist jedoch nicht ausreichend, da eine Überlastung eines virtuellen Netzes zu
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Konflikten in anderen Netzen führt, wenn physische Netzverbindungen gemeinsam genutzt
werden.

Das NFV-Konzept nutzt IT-Virtualisierungstechnologien zur Bereitstellung von Netz-
funktionen. Im Gegensatz zu klassischen Workloads in diesem Bereich haben VNFs andere
Anforderungen an die Infrastruktur, da sie einen hohen Durchsatz von Netzpaketen erfordern.
Diese Arbeit analysiert Leistungsprobleme der genutzten Hardware und führt Verbesserungen
der Leistung der VNFs ein.

VNFs werden zentral mithilfe einer Infrastruktur bereitgestellt, die einem Rechenzentrum
ähnelt. Die vorgestellte Architektur bietet mit dieser Hilfe eine Filterung an. Daher muss
der gesamte Datenverkehr über die Infrastruktur geleitet werden, dies verursacht Umwege.
Wir zeigen und analysieren einen Ansatz, der die Netzlast mithilfe von SDN Offloading
reduziert. Eine Hauptherausforderung in diesem Bereich besteht darin, diejenigen Flüsse zu
identifizieren, die es wert sind, auf die SDN Geräte umgelenkt zu werden.
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Chapter 1

Introduction

Digital services and especially the internet have changed society and economy fundamentally.
Many aspects of life and work, like for example communication, trading and entertainment
already depend on digital services. Upcoming trends like IoT, Industry 4.0 or automated
driving will increase the dependency even more. Thus attacks can have more and more severe
consequences and network security becomes even more important.

At the time of the introduction of the internet and the development of its main protocols,
network security was not considered. During that time the number of users was very low
and nobody could foresee the growth in importance nor the technological developments since
then. This explains why some of the very basic protocols like ARP, TCP, or IP have no
security built in.

In order to overcome these issues, firewalls and other security network functions were
introduced. These functions are used to filter the traffic (allow some packets while dropping
others) based on security rules that are provided by the security administrator as Access
Control List (ACL). Though these security functions are a mere workaround and do not
solve the underlying shortcomings completely. To make things worse, firewalls are nowadays
mostly deployed between different network segments. Consequently, packets within one
network segment can not be filtered and only connections and packets leaving and entering
the network are filtered.

Figure 1.1 shows a widely used approach for a security architecture in an enterprise
network: The perimeter gateway firewall is filtering the packets between the external network,
i.e. the internet, and the private, local network. The perimeter gateway firewall can be realized
in conjunction with the gateway to the external network. The gateway as such forwards all
packets that are exchanged between the external and the private network. This approach has
the drawback, that an adversary that has breached the boundaries of the network, can spread
in the network without any countermeasures by the network administrator.
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Client Client

Client

Private, local networkPerimeter

Firewall

Legacy Enterprise Network

External

network

Figure 1.1: Conventional legacy security architecture of an enterprise network

As a result, new security vulnerabilities like the smb vulnerability used by the WannaCry
worm [10] can only be resolved with security updates for all clients in the network. Especially
for embedded devices like printers, Smart-TVs or IoT devices is this a tedious duty and
sometimes even impossible if the device is no longer supported by the vendor.

This is especially urgent in enterprise networks as these networks have to deal with a wide
range of different clients that are needed by the employees. Further the security demands of
enterprise networks are higher compared to home or provider networks.

Fortunately, the advent of Software-Defined Networking (SDN) provides a unique pos-
sibility to overcome these issues: SDN centralizes the control of the network and therefore
provides means to filter all packets in the whole network from a central perspective. Central-
ization is reached by separating the control from the data plane. The control plane is logically
centralized in one or more software entities refereed as SDN- or Network controller(s) [11].
The data plane is realized by simple switches with low complexity that forward the packets
according to rules given by the controller. Communication between control and data-plane
is realized using a communication protocol. One of the first appearances of this concept was
presented with the network architecture Ethane [12], that lead to the most prominent SDN
protocol OpenFlow [13]. One main advantage of this concept is the centralized visibility and
control of the network. In contrast to legacy networks that are controlled in a distributed
manner, SDN provides means to control the network centrally. This enables an improved
network security as packets can be filtered without using middle boxes, such as perimeter
gateway firewalls using the SDN devices. Moreover SDN switches can also provide filtering
in the network as they connect all hosts. Furthermore the visibility is increased, which can
lead to improvements in terms of attack detection.
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Figure 1.2: SDN/NFV enabled security architecture with fine-grained isolation

In addition Network Function Virtualization (NFV) [14] provides a novel way to implement
and deploy security network functions: With the move to NFV, network functions are realized
in software using commodity hardware. This reduces costs and increases the flexibility, as
virtualization techniques can be used. Further, compute, storage and networking resources are
virtualized. Network functions are no longer deployed on fixed appliances but are deployed
as Virtualized Network Functions (VNFs) utilizing the virtualized resources. NFV greatly
increases the flexibility of the network functions. The network functions can be scaled and
migrated to fit to the demands of the network traffic. Furthermore new network functions can
be deployed and developed faster. In terms of network security filtering options open up that
were not feasible in the past due to performance restrictions. For example application layer
firewalls or Intrusion Detection Systems (IDSs) requires substantial compute resources that
can be provided more easily using NFV.

As a drawback NFV and SDN also open up security threats. For instance the virtualization
introduced by NFV gives up on physical isolation of the security instances. Also SDN
introduces new attack vectors: E.g., the centralization of the control plane introduces a single
point that gives an adversary many possibilities if he manages to take it over.

Based on these enablers our aim is to develop an SDN/NFV security architecture for
enterprise networks as shown in Figure 1.2. In contrast to legacy network we aim to filter
traffic not only at the boundaries of the network but also in the network. SDN provides the
necessary tools to isolate traffic on a connection level. Further the architecture shall provide
means to filter the traffic on a stateful or application level. Due to the large amount of traffic
and the large number of connections that must be filtered, the performance of the security
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solution can be an issue. The architecture shall use the NFV paradigm in order to provide the
necessary performance. With NFV security network functions can be deployed in Network
Function Virtualization Infrastructure (NFVI) flexibly based on the network demand. The
functions of NFV Management and Orchestration (MANO) framework control the VNFs and
other software functions in the NFVI.

1.1 Requirements

Thus, the architecture shall fulfill the following requirements:

R1 Isolation of virtual networks The first requirement is the effectiveness of the isolation
between the different virtual networks, in terms of access and performance. Access
isolation hinders adversarys from spreading in the network and performance isolation
prohibits that overloading of one virtual network by an adversary has adversarial effects
to other virtual networks in the same physical network. The architecture shall support an
omni-present fine grained access control throughout the network that is a new measure
for securing campus and enterprise networks within the boundaries of the network. The
solution aims at providing isolation between connections, both in terms of access and
in terms of performance.

R2 Stateful and application layer filtering The proposed architecture shall not be limited
to stateless filtering, instead we also aim in supporting stateful and application layer
filtering. Packet filters can be categorized into stateless, stateful and application layer
packet filters. A simple packet filter that can only drop or allow packets based on the
header of packets is called stateless. Stateful packet filters are also able to track the
state of a network connection and provide filtering capabilities based on the state of
connections, e.g., only drop packets from new connections. Further application layer
filters support more advanced filtering possibilities, one example would be the filtering
of JavaScript content in an Hypertext Transfer Protocol (HTTP) connection. Stateless
filtering can be provided by means of SDN. Stateful and application layer filtering can
not be done by current hardware SDN switches, instead we propose to use security
VNFs.

R3 Performance Both security requirements, fine-grained and application layer filtering
of the network traffic, increase the load on the respective VNFs. However, security
solutions are only deployed if they can fulfill the performance demand of the users.
Consequently the scalability of the proposed solution is another key requirement.
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1.2 Research Challenges

The described requirements for an SDN/NFV enabled network security architectures raise
several research questions, both in terms of security and in terms of performance.

C1 Secure Operation of SDN By adding new technologies like SDN it has to be ensured
that the technology can be operated in a secure way. SDN splits the control from
the data plane, this causes new attack vectors that must be investigated. Further,
SDN as technology is still in an early stage and even the support of basic security
measures is not self-evident. In this work, we show the main security consideration and
show improvements to the SDN architecture in order to support Requirement R1 of an
increased network security using SDN and NFV.

C2 Isolation of SDN Based on the secure operation of the SDN connections can be isolated
in a fine-grained manner. However, isolation in terms of access is not sufficient for all
applications as it does not guarantee performance isolation as requested by Requirement
R1. Therefore besides access isolation also performance isolation techniques have to
be studied. Specifically performance isolation suffers from hardware effects, as the
underlying physical hardware is shared due to virtualization.

C3 Performance of security VNFs Using SDN we can provide a fine-grained isolation of
the connections, which corresponds to a stateless filtering of network packets. Never-
theless, stateless filtering is not enough to secure the network against attacks that can
only be averted using stateful or application layer filtering. Hence in order to fulfill
Requirement R2 we utilize the NFV concept in order to provide the resources to use
stateful and application layer filtering in the network. However, the move to NFV has
its own challenges as now general purpose hardware is used for packet filtering. In this
work we show how the performance demands of security network functions can be met
nevertheless.

C4 Hardware Offloading The proposed architecture increases the load on the security
VNFs as packet filtering is not only provided between different networks but also in
the network. Additionally the load in the network is increased as the filtering is not
performed by network nodes but by VNFs in the NFVI. NFV features flexibility using
hardware virtualization and abstraction. Naturally these concepts counteract hardware
usage, as hardware is abstracted away by the virtualization. To overcome these issues
we propose new implementation options for hardware offloading in SDN and NFV.
First we propose to use offloading of traffic to SDN. Secondly we show how Network
Interface Card (NIC) offloading can reduce the load on the VNFs.
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1.3 Contributions

The contributions of this thesis can be divided into contributions regarding SDN, contributions
with regard to NFV and contributions w.r.t. SDN and NFV offloading.

1.3.1 Software Defined Networking

Security Analysis and Enhancements in SDN In Chapter 3, we revisit the main attack vectors
and how they affect a secure operation of an SDN network. We measure and evaluate the
overheads in terms of latency that are introduced by encryption of the control plane. Further,
we propose a Denial of Service (DoS) attack detection method and evaluate its effectiveness.

Evaluation of the Isolation of SDNs We show how SDN can be used to provide fine grained
security in enterprise and campus networks in Chapter 4. As access isolation is not sufficient
for providing full isolation between virtual networks, we also shed light on performance
isolation in SDN networks. More specifically we compare and evaluate different Quality of
Service (QoS) mechanisms on a number of hardware and software switches.

1.3.2 Network Function Virtualization

Performance aspects of the CPU architecture In order to achieve high throughput per-
formance with security VNFs, fast packet processing frameworks can be used. It is known
that packet processing performance is very sensitive regarding copying of packets. As mod-
ern servers are often built up of multiple CPUs with segregated memory we evaluate the
performance penalties resulting from this segregation in conjunction with packet processing
frameworks. Additionally we evaluate the effects of cache misses on packet processing in
detail in Chapter 5.

Design of a Last Level Cache Scheduler for NFV In order to increase the resource utilization,
multiple VNFs are co-located on one single server. Current virtualization techniques do not
fully isolate all resources, thus co-location of VNFs causes interference effects. Interference
effects can degrade the performance of VNFs in terms of throughput and delay severely.
We aim to gather the potential that lies in reduction of the interference due to the shared
Last-Level-Cache (LLC) by introducing a novel LLC scheduler in Chapter 5.

1.3.3 SDN and NFV Offloading

Evaluation of SDN Offloading algorithms A solution that combines SDN and NFV is
provided in Chapter 6. In this concept, the SDN hardware’s properties (line rate throughput
but limited programmability) are combined with NFV properties (full programmability but
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high resource consumption). Flows can be directed to network functions realized on NFV
servers or offloaded via SDN to SDN-based network elements offering line rate hardware
forwarding. Specifically we are addressing one challenge of such a combination: identifying
those flows that benefit most of the hardware acceleration. We are introducing two approaches:
A machine learning approach takes its decision with the first packet of a flow. A fundamentally
different approach is using packet sampling for the offloading decision. We are evaluating
both approaches in terms of precision, complexity and regarding the metrics of the combined
NFV/SDN system.

NIC Offloading Modern packet processing frameworks that are used for NFV, such as the Data
Plane Development Kit (DPDK), deliver high performance compared to older approaches. On
the other hand, common NICs can provide additional matching capabilities that can be utilized
for increasing the performance even further and in turn reduce the necessary server resources.
Therefore, we propose the hybrid hardware software approach utilizing the NIC offloading
hardware matching capabilities in Chapter 7. The results of our performance evaluations
show that the throughput using NIC offloading can be increased by up to 50%, compared to a
high performance software-only implementation.

1.3.4 Thesis Outline

The remaining chapters are outlined in the following:

Chapter 2: Background and Related Work In this chapter we first introduce the most
important networking concepts SDN and NFV. Further we show related security architectures
in literature and commercial solutions that approach the problem of providing fine grained
isolation and filtering.

Chapter 3: Securing SDNs In the proposed architecture we are using SDN for providing
fine grained virtual networks. Like this the security of SDN is an important condition for the
security of the architecture. We analyze main attack vectors of SDN networks and show and
analyze selected improvements to the overall SDN security.

Chapter 4: Isolation of SDNs Increased security using virtual networks is based on
isolation between the networks. We study the isolation of virtual networks in SDN networks
in terms of access and performance isolation.

Chapter 5: Performance of Security VNFs In this chapter we study the performance of
security VNFs. We focus on low level effects caused by the memory architecture of modern
CPUs. This is especially important as VNFs have a low compute complexity but high demands
on I/O performance and the memory access.
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Figure 1.3: Overview of the topics covered in this thesis in relation to different modules of the security
architecture

Chapter 6: SDN Offloading This chapter introduces an SDN Offloading approach that
aims in reducing the load on the VNFs. As the capacity of SDN hardware tables is not
sufficient to offload every connections, we analyze how different offload algorithms affect the
offloading performance.

Chapter 7: VNF NIC Offloading An orthogonal approach aiming in an increase of the
VNF performance is offloading functions to Smart-NICs. We introduce an approach that can
reduce the CPU load significantly using NICs already available in deployed hardware today.

Chapter 8: Conclusion and Future work Finally a conclusion of the thesis that summa-
rizes the findings is provided.



Chapter 2

Background and Related Work

In this thesis a novel security architecture for enterprise and campus networks is proposed. This
chapter recapitulates the most important technologies that are used. Further it describes how
the requirements described in the previous chapter were approached in the literature. Finally
relevant commercial solutions that are sold by network equipment vendors are described.

2.1 Software Defined Networking

Network devices such as switches, routers or middle-boxes contain a control plane and a
data plane. The data plane is responsible for processing the packets, while the control plane
is responsible for providing more complex, higher level functions. We want to precise this
definition by using the example of a IP router. In a router the data plane is responsible for
forwarding the packets according to the routing table. The control plane on the other hand is
responsible for configuring the routing table. This split is useful as the control plane changes
are relatively few compared to the number of packets processed by a network device. Further
the control functionality logic is more complex than the data plane logic. In a traditional IP
router the control plane provides the routing protocol e.g., OSPF or IS-IS. The data plane
however, only implements the relatively simple longest prefix match lookup. Traditionally
both planes are co-located in the same system. With the Software-Defined Networking (SDN)
architecture the control plane is logically centralized. This facilitates the implementation of
new approaches as the network state is more easily accessible. Further the control plane is
realized in software referred to as controller. The implementation of new features in one
central software instance is also easier than the implementation in a distributed architecture
where all devices need to support new features.

Figure 2.1 shows the SDN architecture [11]. The data plane consists of the SDN switches
that process and forward the packets according to their forwarding tables. The forwarding

9
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Figure 2.1: Software defined networking architecture

tables are filled by the SDN controllers. Centralization of the control plane does not mean
that a single controller is responsible for the complete network, instead multiple controllers
share the state between each other. Nevertheless for the network algorithms the distribution
is abstracted away using specific approaches [15]. Applications that are specific for a certain
network are not implemented in the SDN controller but in the application plane. They access
the centralized control plane using the northbound API. The protocol between control and
data plane is called southbound API. The best known southbound protocol is OpenFlow [13].
A similar protocol is the ForCES protocol [16]. With OpenFlow packets are processed using
a match action semantic for the entries of the forwarding table. The entries are referred to as
flows. The match of a flow defines which packets are processed by the entry. It is defined
as a set of header fields, e.g. a certain source IP address. Fields from the set can also be
partially ignored, e.g. to match an IP subnet. The action defines the steps that should be
applied to the packet. This can be e.g. forward the packet to a certain port or change a header
field. A full description of the possible matches and actions can be found in the OpenFlow
specification [17]. OpenFlow aims at overcoming incompatibilities that arise with networks
that use different vendors. Devices from multiple vendors support OpenFlow now, however
many only support the mandatory parts of the standard.

The SDN controller provides a centralized point to command the network. This can be
used for novel innovations in the field of network security. For instance SDN improves the
visibility and control in the network such that filtering within the network is possible.
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2.2 Network Function Virtualization

Network functions, such as routers, firewalls or load balancers, are commonly realized using
integrated solutions which contain the hardware as well as the software in one box. As a result
networks contain a large number of different systems from multiple vendors. With increasing
complexity of the networks, these systems are getting more difficult to manage. Furthermore
any change or addition of a network service requires the addition of new systems that have to
be placed, powered and maintained. Thus changes in the networks are getting increasingly
difficult.

As a relief ETSI proposed Network Function Virtualization (NFV) in a white paper [14]
in 2012. NFV is designed to enable network functions using commodity servers and IT
virtualization techniques. Different services can be run using a unified NFV environment.
NFV is complementary to SDN as SDN is focused, even though not limited, to forwarding and
routing, while NFV aims in virtualizing more complex network functions such as Deep Packet
Inspection (DPI), Network Address Translation (NAT) or Virtual Private Network (VPN)
gateways. Both concept can be combined or used exclusively. NFV promises an increase in
flexibility as services can be added without change of the infrastructure. Further the services
can be scaled up and down as required by the network conditions. Additionally, standard
components, such as commercial off-the-shelf servers, promise a reduction of investment
costs and energy consumption if compared to traditional hardware appliances.

2.3 SDN and NFV

SDN and NFV do not rely on each other but can be used in combination beneficially. For
instance NFV favors rapid scaling and deployment of Virtualized Network Functions (VNFs)
to provide middle box functionalities such as firewall, NAT or VPN gateways. Several VNFs
are connected to realize more complex use cases in service function chains. Due to this
approach routing must be more adaptable and flexible. SDN is one possible approach to meet
this requirement, it can provide flexible routing mechanisms to steer the traffic as necessary.

2.4 Related security architectures in literature

The architecture proposed in this thesis promises fine-grained isolation and protection of
networks using SDN and NFV. In the following related work that takes steps towards the
same goal as in this thesis is presented.
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End-host based approaches such as Shield [18] or distributed firewalls [19], filter the net-
work traffic in the network stack of the end-host. As these approaches require the modification
of the end-host they are difficult to manage and are not a reasonable measure to integrate fine-
grained isolation into the network security concepts as no software can be installed on some
devices such as printers. Furthermore if an adversary can gain full access to the end-host he is
able to circumvent all measures taken directly on the end host. Thus end-host based solutions
can not fulfill Requirement R1.

Ethane [12] opened the path towards SDN and OpenFlow. A centralized controller
is checking the first packet of a flow and setups the path in the network if the flow is
allowed by network policy. The novelty of ethane’s approach is to use the full header for the
identification of the virtual network. As such it fulfills requirement R1 in a similar manner
as we propose. However, it does not consider performance isolation in detail, as we do in
chapter 4. Furthermore, it is lacking the integration of stateful and application layer filtering
as asked by requirement R2.

Resonance [20] is a network architecture for access control, that is building upon Open-
Flow. Hosts are authenticated using a web-portal using a stateful registration procedure. They
can provide fine grained isolation using OpenFlow, however in contrast to our work they
do not isolate on connection level but on host level using MAC addresses. The work also
concentrates on the access control and isolation and does not consider firewalling as required
by R2.

ROFL [21] uses routing protocols to provide a fine grained isolation of flows. The authors
propose to extend routing tables by adding ports to the routing entries. In order to block
certain entries they propose to use special blocking entries in the routing table. Although
they can provide flow level isolation in routed networks with this approach, it is difficult to
integrate different transport protocols into the approach.

A combination of SDN and NFV is provided by VNGuard [22]. Similar to the approach
that is discussed here, they are also using SDN to provide network isolation. Their focus lies
on the virtual firewalls that are implemented using NFV. In this manner they are fulfilling
the requirements R1 and R2. Many of the contributions described in this thesis can also be
applied to the VNGuard architecture. For example network function offloading could enhance
the performance of the virtual firewalls.

Even though all requirements were approached in related work, this thesis enhances the
related work by improving upon the state of the art solution as detailed in Section 1.3. Detailed
related work is also listed in each chapter respectively.
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2.5 Commercial solutions

As described in Chapter 1, organizations and companies are facing security problems due to
a diverse IT landscape. In order to solve this issues a number of commercial solutions came
up.

Identity Service Engine (ISE) [23] is Cisco’s solution to support fine-grained network
access security. It supports fine grained access control for the devices in the network, different
access profiles for the devices can be defined in a centralized manner. The devices can
be authenticated using the RADIUS protocol. Isolation between the different networks is
achieved using an additional header to identify the network membership. As such it support
the requirements R1 and R2, moreover as a commercial solution it also provides more mature
methods for the management of the access policies. On the other hand the header limits the
number of possible virtual networks to 64K, while our approach directly uses the network
header and as such the number of virtual networks is practically not limited. Furthermore the
header used for network virtualization is proprietary and as such the solution is not a good fit
for multi-vendor networks.

Aruba ClearPass [24] is the respective solution from HP Enterprise. Its focus is on the
management of network access. Unknown devices can register via a captive portal and can be
authenticated by a built-in certificate authority. Similarly, the security company Forescout [25]
offers a solution that can be integrated with not clearly defined devices from other vendors.
For both solutions the isolation is achieved with legacy VLAN using the 802.1Q standard [26].
Further they support the integration with 802.1X [27] supporting devices, which supports the
authentication at the edge of the network. Through the use of 802.1Q and, together with
802.1X a complete isolation from the first hop is possible. On the other hand the number of
possible VLANs is limited to 4096 due to the length of the header. This means Requirement
R1 is fulfilled to some extent. Furthermore VLANs are often used for different purposes, like
e.g., prioritization of voice packets. Thus the use of VLANs requires manual coordination if
different systems are involved. R2 can be supported by using conventional firewalls between
the virtual networks with limited flexibility as the solution does not provide any means for
setting up the virtual networks in the physical network.

None of the above solutions can provide an isolation on the flow level as it can be offered
through SDN. Furthermore the number of virtual networks is limited, as all commercial
solutions add headers for the identification of the virtual network membership.
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2.6 Summary

In this chapter firstly the main technology building blocks SDN and NFV were introduced.
They provide new possibilities for realizing network security, by enhancing programmability
and flexibility of the network. The available commercial solution can also provide some level
of isolation. This shows that there is a need for isolation in enterprise networks. Though,
current solutions are limited in flexibility. E.g., most solutions can only provide a quite small
number of virtual networks due to technological restrictions.

The analysis of the related work shows that some approaches with similar goals exist
in literature. Though several challenges in the field of performance of the solution and
the security of SDN remain open. In the following chapters it is shown how the research
challenges were approached individually.



Chapter 3

Secure Operation of Software Defined
Networks

The upraise of Software-Defined Networking (SDN) is an opportunity to enhance network
security. The fine-grained security architecture presented in this work relies on the isolation
made available through SDN. On the other hand novel attack vectors are introduced via SDN
and some attack vectors that also exist in legacy networks continue to exist. Although network
security has received increased attention in the last years, security is still largely ignored in
many novel network concepts and not considered from the beginning. This also holds for the
SDN concept.

Our goal is to design an security architecture for fine grained access control. SDN is used
as main virtualization technology in the network and can be used to provide isolation between
the virtual networks. We present this in Chapter 4. Consequently SDN is a crucial technology
in the overall architecture. Thus, in this chapter we are studying security concerns. Attack
vectors and countermeasures in SDN networks necessary to operate the network securely are
described.

The contributions presented in this chapter are as follows:

First we introduce main attack vectors in an SDN network. SDN differs to legacy ap-
proaches by centralizing the control plane. On the one hand the centralization causes some
novel attack vectors, on the other hand these attack vectors can also be mitigated easier using
the increased flexibility of such a software based solution. Further some vectors are inherited
from legacy networks as many protocols and approaches are still used as well in SDN.

As the control plane is no longer co-located with the data plane devices, the centralized
controllers must be connected to the SDN devices using a control plane data plane connection.
This opens an crucial attack vector by making Man in the Middle (MitM) attacks to the control
plane data plane connection possible. Fortunately this can be mitigated using Transpor Layer

15
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Security (TLS). However the cost of encryption was not clear before, therefore we explore the
cost of TLS encryption in terms of delay.

Further we introduce a detection and mitigation algorithm for Denial of Service (DoS) in
SDN. This attack can cause failures of the switches, the controller or the control plane con-
nectivity. We propose a tailored statistical detection approach as well as a lightweight coun-
termeasure. We evaluate the detection by simulation and an analytical approach. Throughout
this evaluation, we highlight the trade-off between detection speed and adaptability and show
a way to tune the solution analytically.

Section 3.1 introduces the main attack vectors in an SDN network. Section 3.2 gives an
overview on related work on attack vectors and countermeasures in SDN networks. Further
Section 3.3 and Section 3.4 introduce and analyze important countermeasures that are neces-
sary for a secure operation of SDN networks. Finally Section 3.5 concludes the chapter and
summarizes the main findings.

This chapter is partially based on measurements results regarding the encryption of the
SDN control plane presented in [1]. Further the approach for a DoS countermeasure was
presented in [2]. The summary of attack vectors in SDN networks was not published before,
except Section 3.1.5 which was presented as part of [2].

[1] R. Durner and W. Kellerer. “The cost of security in the SDN control plane.” In: ACM
International Conference on emerging Networking EXperiments and Technologies
(CoNEXT) - Student Workshop. 2015.

[2] R. Durner, C. Lorenz, M. Wiedemann, and W. Kellerer. “Detecting and mitigating
denial of service attacks against the data plane in software defined networks.” In:
IEEE Conference on Network Softwarization (NetSoft). 2017.

3.1 Attack vectors in Software Defined Networks

First, in this section we categorize the different attack vectors in an SDN network. We only
show attack vectors that are specific for SDN networks even though some vectors exist in a
similar fashion in legacy networks. Figure 3.1 describes the main attack vectors in an SDN
network.

3.1.1 Rogue SDN Application

In addition to introducing a split between control and data plane, SDN also features the
introduction of SDN applications. These apps can extend the functionality of the network
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Figure 3.1: Attack vectors in SDNs. Attack vectors can be grouped into attacks from the data, control
and application plane.

in order to support very specific use-cases. According to the Open Networking Foundation
SDN applications are connected to the controller via a northbound API. In order to support a
wide range of use-cases northbound APIs of common controllers like, Ryu, OpenDaylight or
ONOS provide rich functionality to the applications, e.g. the APIs allow to write OpenFlow
rules. In general this can allow a rogue SDN application to circumvent the security policies
of the network. Additionally legitimate applications could also harm the network by adding
rules that are in conflict with the security policy or conflict with rules from other apps.

3.1.2 Man in the Middle Attack to the Control Connection

With SDN the control plane is logically centralized in an SDN controller and the forwarding
devices, the SDN switches, are controlled remotely using a protocol such as OpenFlow. If an
adversary succeeds to break into the control connection using a MitM attack, the adversary
can control the switch(es) in the same manner as the controller. To make things worse the
adversary can even modify the messages send to the controller and mask his attack using
forged messages.
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3.1.3 Rogue SDN Controller

The SDN controller is connected with the SDN switches over the network. We refer to the
network that carries this control traffic as control network. The control can either be operated
in-band or out-of-band. Using out-of-band control, the control network is either a separate
physical or virtual network. The deployment and operation of this network causes an overhead
to the network operator. With an in-band control this overhead can be avoided as the control
network is the same network as the data plane network.

If the adversary can gain access to the control network in either cases, it can launch a
rogue controller. Without other precautions the rogue controller can connect to the switch as
primary or secondary controller. As a result the adversary can reroute flows or undermine
the security policies of the network by allowing connections between hosts that should be
isolated.

Many popular controllers, such as ONOS [28], are realized distributed to enhance re-
liability and scalability. The control plane consists of multiple distributed controllers that
share the state in different manners. The different possible realizations [15] have in common
that network state is shared between the instances. If an adversary succeeds in connecting a
rogue controller to the legit instances, he can inject manipulated network state and undermine
network security in this way.

3.1.4 Spoofing Attack

Spoofing attacks are an unresolved issue in legacy networks, the adversary impersonates a
communication partner, e.g. by spoofing its IP or MAC address. Usually such an attack is used
to become MitM, which can then be used for other attacks such as eavesdropping. Spoofing
attacks are possible due to a lack of authentication. In general every communication is
vulnerable to spoofing if its communication partners are not authenticated using cryptographic
methods.

Also functionalities of SDN networks are subject to this vulnerability. Specifically the
topology discovery process is not authenticated per se. Clients are discovered using their
communication which is based on the Ethernet and the Internet Protocol (IP) protocol. An
adversary can easily spoof the addresses of these protocols and consequently manipulate
network state also in an SDN. Furthermore the links between the nodes in the network are
discovered using Link Layer Discovery Protocol (LLDP). Each switch is commanded by the
controller to send an LLDP packet with an identifier that is specific for each switch. Other
switches in the network receive the packets and forward it to the controller. By comparing
the send and the receive location, the controller can then detect links in the network. On the
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other hand an adversary can easily produce fake links by injecting LLDP packets according
to his will. This can then be used for launching a MitM attack to other hosts in the network.

3.1.5 Denial of Service Attacks

If an adversary has already access to an SDN device, he can launch well known DoS attacks,
such as SYN flooding, against the controller. On the other hand SDN introduces an attack
vector that is not existing in legacy networks: DoS attacks against the data plane. DoS attacks
against the data plane use the reactive mode for attacking. This attack class was first described
in 2013 by [29] and [30].

SDN switches process traffic according to the entries in their forwarding tables which are
set by a logically centralized controller. SDN offers two major modes of operation – proactive
and reactive. In the former case the controller presets all forwarding rules according to the
configuration of the networking applications which provide the networking functionality, e.g.
switching or routing. Packets that do not match any entry in the forwarding table are dropped
by the networking element.

In reactive setups, on the other hand, a table miss results in a query to the controller. In
the controller, the networking applications can make a decision based on a global view of the
network’s state. Then, they are able to enforce a network policy, e.g. routing, by individually
forwarding packets, sending out packets, or setting up forwarding rules. The most prominent
SDN protocol allowing both modes of operation is OpenFlow (see [13]) which also enables
any hybrid approach with proactive and reactive elements.

Figure 3.2 shows the typical behavior of a reactive SDN setup:
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Figure 3.2: Normal behavior of a reactive SDN.
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Figure 3.3: DoS attack against a reactive SDN.

1. A host sends a packet for a new connection which reaches an SDN switch. Then, the
switch performs a lookup in its forwarding table.

2. Since the packet belongs to a new flow which is unknown to the switch, the packet is
encapsulated into a PacketIn message and sent to the controller.

3. In the controller the PacketIn is processed by an SDN application which provides
networking functionality like switching or routing. The applications decision may
include sending a FlowMod message which installs a rule in the forwarding table. Also,
the switch may be instructed to forward the original packet through any of its ports.

4. If the controller application has set up a rule in the switch to handle the flow, further
packets belonging to that flow will be processed in the fast forwarding hardware without
the need for additional communication with the controller.

As previously seen in Figure 3.2, upon the incoming of an unknown flow the switch
typically consults the controller for further decisions by encapsulating the first packet of the
flow into a PacketIn message. Then, the controller can inspect the packet, make a forwarding
decision, and set new flow rules in the switch using FlowMod messages if necessary.

There are different ways for a controller to handle this decision making, especially regard-
ing the granularity of flow definitions. For instance, flows could be setup using the quintuple
Source IP, Destination IP, Source Port, Destination Port, Protocol or just Layer-2 addresses.
An adversary knowing about the controller’s decision making and flow rule setting behavior
is able to craft packets that trigger those modifications of the forwarding table. For the switch
these packets appear as unseen flows and therefore, are handled by the controller resulting in
an increasing number of forwarding rules in the switching tables as depicted in Figure 3.3.
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The adversary continues triggering additions to the flow table causing the table to fill up.
The specific impact of a switch with full switching tables is not generally defined and highly
depends on the model. Typical behavior includes the dropping of older switching entries or
ignoring new rule setting requests. Especially hardware devices rely on a limited forwarding
table in order to be able to process packets at line rate. On the other hand software tables have
a nearly unlimited capacity, though a large table can also cause performance degradation in
this case [31].

3.2 Related Work

Security in SDN was studied widely in the past years. This chapter of the thesis describes
the main attack vectors and countermeasures necessary in order to operate SDN networks
securely. Thus we also concentrate on this subset of SDN security research. The presented
related work is structured in the following fields: Security Analyses and Attacks to SDN
networks and its countermeasures.

3.2.1 Security Analyses

Systematic security analyses aim in showing weaknesses of SDN and OpenFlow in a general
way. On the other hand they do not propose improvements or countermeasures in detail.

One of the first comprehensive security analyses of SDN and OpenFlow specifically was
published by Klöti et. al. [32]. The authors analyze security using STRIDE Method [33].
The paper shows that SDN is vulnerable towards DoS attacks against the flow table of the
switches. Furthermore, it also analyses information disclosure due to flow aggregation by the
SDN controller.

Another analyses studies vulnerabilities of OpenFlow [34] and especially highlights the
importance of transport encryption for the connection between the SDN switches and the
controller. Specifically the paper highlights the need for authentication of both switches and
controller in the SDN network.

Further Schehlmann et. al. [35] weight the security risks of SDN networks against the
potential improvements to security. The study compares SDN networks to conventional
networks. It is concluded that the increased risks that are introduced by SDN can be solved
using existing security concepts and approaches such as authentication. On the other hand
authors claim that SDN can improve security in the network substantially.
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3.2.2 Attacks and Countermeasures

There are quite a number of works that study specific attacks to SDN networks and their
countermeasures.

An attack that can compromise cloud systems from the inside of the Virtual Machine (VM)
is severe as the adversary can gain access to many other systems running in the same cloud.
Such an attack is possible by exploiting weaknesses in software switches [36]. The attack
exploits weaknesses in the packet parsing functionality of the software switch to compromise
the hypervisor. This can be used in a second step to compromise the controller and finally
also other VMs and services running on the same cloud environment.

A first feasibility study for DoS attacks on an SDN network was done in [37]. Authors
show that the granularity of rule aggregation can be detected using time differences in the
Round Trip Time (RTT) of connections. Further a successful DoS attack in a test bed shows
the feasibility of the attack and its required attack time.

In [38] an approach for the detection of distributed DoS attacks against the controller is
presented that relies on detecting deviations from a normal distribution of PacketIns in terms
of destination addresses. An attack is indicated by a significant growth of new flows to a
single host compared to the normal situation where new flows reach hosts evenly distributed.
Therefore, an attack is indicated by a lower entropy calculated over a window of PacketIns.
The authors used windows of size 50 and viewed five consecutive entropy values below a
threshold to be an attack resulting in a sample of only 250 PacketIns. The emulation results
look promising offering a detection rate between 95 to 100%, although most parameters like
arrival distribution and network settings remain unclear. Nevertheless, they evaluated their
approach using the destination address as fixed and the source address as varied parameter.
The more parameters an adversary can shuffle the higher the entropy of the attack packets will
be. As is, an adversary who can address the whole subnet under supervision is likely able
to circumvent the detection completely. Therefore, it remains unclear whether this approach
can be scaled to scenarios with manifold variable header fields, e.g. if the adversary controls
a virtual machine in a cloud data center. Further, the approach does not yield information to
quickly apply countermeasures against the attack. Additionally, the authors did not consider
scenarios where new services are started on a host and publicly announced resulting in a lower
entropy for a short time since numerous external clients start to use this service.

A very notable approach called FlowRanger is provided by [39]. The basic idea is to
classify PacketIns using a trust-level metric and enqueueing them with different priorities.
This leads to a faster processing of PacketIns triggered by trusted hosts and a higher probability
of untrusted PacketIns being dropped in high load situations. A host’s trust level may be
adapted over time due to its behavior. Although, invented for mitigating DoS attacks against
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the controller, this approach also helps to reduce the impact of attacks against the data plane.
Since fewer malicious PacketIns are processed by the controller, this also reduces the rate of
FlowMods. Nevertheless, FlowRanger reduces the attack’s impact without removing its root
cause – the initial triggering of PacketIns by an adversary. Also, with sufficient resources
granted to the controller the approach becomes less effective since also the low priority queues
are processed fast. However FlowRanger might be a suitable supplement to the work presented
in this Section 3.4 since it helps to reduce an attack’s impact before its detection due to its
different focus.

In [40] a technique is proposed to minimize the impact of a DoS against the controller and
the switch tables by optimizing rule expiration and rule aggregation in the switches. These
measures lower the impact of attacks flooding the flow tables by reducing the overall resource
usage without tackling the attacks’ root cause. Additionally, the reduction of the expiration
time could increase the load of the controller and may add delays to flows which timeout
prematurely. Nevertheless, this approach is complementary to our efforts and could help in
building a robust and efficient system.

Further, [41, 42] propose FloodGuard, an approach that tries to anticipate the behavior of
the controller as well as the applications and set up rules in the switches proactively. These
rules try to reduce the amount of PacketIn events and therefore restrict the abilities of an
adversary to be successful. Occurring PacketIns are cached and served using rate limiting
to further reduce the impact of an attack. As a side effect this approach causes unfavorable
delays due to the caching of packets.

In [43] a mechanism is proposed to safely remove entries from full flow tables. The ratio
of PacketIns and FlowMods is supervised and if the table is going to be full, rules are removed
using a least-frequently-used scheme. As a disadvantage the approach causes potentially high
load on the switches due to aggressive usage of OpenFlow’s statistical features.

A different kind of attack is a MitM to the controller switch connection [44]. The work
describes an attack to the OpenDaylight controller using ARPspoofing in detail. Authors
show that also large SDN projects like the OpenDaylight do not consider security as a primary
goal.

SDN controllers are extendable by SDN applications that are connected to the controller
using the northbound API. FortNox [45] and SE-Floodlight are security kernels that are im-
plemented in the controller. Their main goal is to restrict access to the northbound API in
order to prevent applications from circumventing security requirements. Besides authenticat-
ing applications they also aim in avoiding rule conflicts that can arise if multiple applications
are used.
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In most cases multiple SDN controllers are used for reliability reasons. Byzantine fault
tolerance is an approach that can improve security of a control plane consisting of multiple
controllers as well. Sakic et.al [46] show that 2m + n + 1 controllers are sufficient to tolerate
m malicious and n faulty controllers.

Finally many SDN controllers also lack protection against replay attacks in the data plane.
This can be exploited to compromise network visibility [47]. The authors show how forged
LLDP packets can be used to create fake links. Further it is shown that host locations can
be faked using MAC Spoofing. As a countermeasure the authors propose authentication for
LLDP packets and hosts.

3.2.3 Summary

From the given security analysis and the related work we can see that the main attack vectors
introduced with the SDN paradigm are twofold. Firstly the split of data plane and control
plane introduces a new powerful MitM attack. Secondly with SDN the network is managed
more autonomously following higher level policies, while legacy networks are still often
managed with lots of manual interaction. This is especially true if reactive SDN paradigm
is considered. On the other hand the increased automation enables DoS attacks. Thus in the
following we are focusing on these two attacks. In Section 3.3 we shed light on the encryption
of the control plane that can prevent MitM attacks. In Section 3.4 we study the detection of
DoS attacks in SDN networks.

3.3 Securing the Control Plane of Software Defined
Networks

In order to operate an SDN securely it is essential that the control plane is not corrupted either
by a rogue controller or a MitM attack. Therefore it is necessary to authenticate the controller
to the switch and vice versa and furthermore to encrypt the communication between controller
and switch. Both can be provided by the TLS protocol. In fact for OpenFlow connections
TLS encryption is recommended by the specification.

Thus we analyze the TLS support in the OpenFlow eco-system. In particular, we imple-
mented a performance measurement tool for encrypted OpenFlow connections, as there is
non available. The results show that security comes at an extra cost and hence further work
is needed to design efficient mechanisms taking the security-delay trade-off into account.
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the hardware table.Thus all packets have to traverse the shown path.

3.3.1 Measurement Setup

We investigated the packet-in delay that occurs for the first packet of a flow in reactively
managed SDN networks. In this case the first packet of each connection is forwarded to the
controller. The controller setups the path in the network upon this packet, i.e. installs the
corresponding rules in the SDN switches, and outputs the packet using packet out. As a result
the delay to and from the controller directly affects the setup delay of new connections.

We developed a measurement setup specifically to measure this delay. The measurement
setup is shown in Figure 3.4. Packets are send from Host 1 to Host 2 via an SDN switch that is
controlled by an SDN controller running on a VM. In general we always measured round-trip
times, directly at Host 1.

We are verifying the effects of encryption to the OpenFlow performance with an experi-
ment using different hardware and software SDN switches: An NEC PF5240, a Pica 8 P3290,
a Pica 8 P3297 and the software switch Open vSwitch.

Beforehand, we measured the delay of packets with matching flows (DP Delay) and the
delay from switch to controller (CP Delay) separately. The CP Delay was directly measured at
the controller machine NIC. The DP Delay was measured accordingly using round trip times.

In the measurements our controller acts as a relay. On a packet-in the controller replies
with an appropriate packet-out message but no forwarding rule is inserted.
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At Host1 we measured the round trip-time of packets using this setup. The additional
switch processing delay for the first packet of a flow is then determined out of the DP, CP and
controller delays subtracted from the end to end delay. In general the total delay is dominated
by the switch delay. More detailed results for the different devices are shown in the next
section.

3.3.2 Measurement Results and discussion

We did independent measurements for TLS and TCP for the different switches, the results
are shown in Figure 3.5. We conducted 1000 measurements for each result. This leads to
confidence intervals <0.05 ms of all measured latencies that are omitted in the figure. As
can be seen the switch adds by far the dominant part to the complete latency. The delay
of the controller in comparison is small. Both PICA8 Switches run PICOS, however the
P3297 has a more powerful CPU than the P3290, therefore latencies are smaller in general.
Specifically the TLS overhead for the P3297 is much smaller with less than 1 ms latency as
it has hardware acceleration for encryption built in the CPU. The results of Open vSwitch
supports this observation, as also low latencies and low overhead were measured and the Intel
CPU is more powerful than the ones of the switches. In contrast to that, the packet-in delays
of the NEC and the P3290, without hardware acceleration, differ significantly if encryption is
used or not.

The delays of the controller differs, as for some switches the payload of the respective
packet is not sent to the controller along with the packet-in message. This can be seen at the
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delay consumed at the controller side for the NEC and the P3290 are larger than the OVS
and the P3297. This different behavior of course also influences the time consumed of the
switches.

In general it can be seen that the delays are quite significant with at least 1 ms for the
hardware switches, this is equivalent to a distance of 200 km in terms of propagation delay.
Thus it can be seen that delay sensitive flows should be set-up in a pro-active manner, as
re-active operation of SDN requires signaling to the controller which delays flow setup.

3.4 Securing Software Defined Networks against DoS
attacks

The uprise of SDN as a paradigm that separates the data from the control plane introduces new
challenges in network security. Especially, in modern cloud environments where an attacker
can get access to the network by simply renting a virtual machine, DoS attacks pose a serious
threat.

Forwarding tables of SDN switches have limited memory capacities. Typically, switches
rely on Content Addressable Memory (CAM) that performs table lookups at line rate. Espe-
cially, Ternary Content Addressable Memory (TCAM) is expensive and therefore very small,
ranging in the region of 1k to 2k entries. But also, regular and cheaper Binary Content
Addressable Memory (BCAM) is limited to only a couple of 100k entries. An attacker with
the ability to remotely trigger flow handling modifications that add entries to the flow tables
can cause a DoS by exhausting the switches memory. Some works extend the available table
size by using a combination of software and hardware flow tables [48, 49]. If the attacked
devices make use of such techniques, the severity of the DoS is reduced, as software tables
allow far more entries. Although, also software tables suffer from performance penalties for
big table sizes, e.g. Open vSwitch uses a linear search to handle wildcard rules [31]. To deal
with this threat we propose a tailored statistical approach for the detection of such an attack.

Therefore, our main contributions are:

• A problem specific detection mechanism for attacks on the data plane, that is more
comprehensive than existing approaches.

• A lightweight counter measure to stop attacking flows with one or very few flow rules.

• A novel evaluation by analytic means and simulation.
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a b c
0 0 0
0 0 1
0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 0

a b c
0 0 0
0 0 1
0 0 0
0 0 1
2 0 0
0 0 0
0 2 0
0 0 0
0 0 0

. . .

a b c
0 0 1
0 0 1
0 0 1
0 0 1
10 0 1
0 0 1
0 10 1
0 0 1
0 0 1

Table 3.1: Simple example showing the growth of a counter table over time for ten consecutive packets
with three header fields a, b, c where c is varied while a and b remain fix.

3.4.1 Detection and Mitigation of DoS attacks against SDNs

In this section, we first present a novel statistical detection approach specifically tailored to
the problem presented in section 3.1.5. Secondly, we introduce a novel lightweight method to
mitigate a detected attack with only small restrictions to the networks’ functionality.

3.4.1.1 Detection

The general idea for the detection of DoS attacks against the data plane aims at localizing the
fixed header fields of the attacking flow. These impose a regularity that is not observed in
normal traffic since PacketIn events are just seen once upon flow establishment. The approach
uses a table of counters with the different header fields as columns. The table is regularly,
i.e. in fixed time intervals, inspected statistically and the maximum entry is abnormally large
in case of an attack. To normalize the table size the header fields are hashed by a uniformly
dispersing function with fixed output size. The digest of an input determines the row where
to increment the counter. During an attack the entries which correspond to fixed fields of the
attacking flow grow very fast and are used for the detection.

Table 3.1 shows a simplified example with three header fields a, b and c where the latter is
varied. The columns represent the different header fields, while the rows are accessed using
the hashed values of the particular header field. After a couple of PacketIns the fixed fields of
the attacking flow are clearly distinguishable from the varied fields.

For further explanations we formalize the necessary terms as follows. H is the set
of all header fields considered by the detection algorithm, e.g., H ={src_mac, dst_mac,
src_ip, dst_ip, proto, src_port, dst_port, ...}. A packet 𝑝 is characterized by a set of tu-
ples (ℎ, 𝑣) of header fields ℎ ∈ H where ℎ acts as a key and 𝑣 as value, e.g., 𝑝 =

{(src_mac, 11:22:33:44:55:66), (dst_mac, 66:55:44:33:22:11), (src_ip, 1.2.3.4), ...}. The
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Algorithm 1: Book-keeping of seen PacketIn messages.
Input: Counter table 𝑇

1 while true do
2 receive PacketIn and unwrap packet 𝑝;
3 forall ℎ ∈ {ℎ |ℎ ∈ H ∧ (ℎ, 𝑣) ∈ 𝑝} do
4 𝑆 ← ℎ𝑎𝑠ℎ(𝑣ℎ,𝑝);
5 (𝑐, 𝑣ℎ,𝑝−1) ← 𝑇(𝑆,ℎ);
6 𝑇(𝑆,ℎ) ← (𝑐 + 1, 𝑣ℎ,𝑝));
7 end
8 end

concrete value of a field ℎ in the packet 𝑝 is denoted by 𝑣ℎ,𝑝. Using these terms, a hash
function is defined as

ℎ𝑎𝑠ℎ : 𝑣ℎ,𝑝 → N< |ℎ𝑎𝑠ℎ|
0

where |ℎ𝑎𝑠ℎ | is the size of the hash function’s image set. The table 𝑇 is a matrix of the
dimension N|ℎ𝑎𝑠ℎ|,|H |.

We used the 32Bit FNV-1a hashing function (see [50]) folded to an output size of 16Bit
by applying an XOR operation of the upper half to the lower half of the hash sum. The
chosen hash function is designed to be fast while having a low collision rate which is evenly
distributed itself. This results in 216 rows in the counter table.

Every incoming PacketIn is unwrapped and the included packet is handled by the method
shown in Algorithm 1. For each field its value is hashed. The hash sum is now used as an index
in the table where the counter is incremented. Additionally, the corresponding fields of the
most recent packets are stored with the counter for later usage by the mitigation routine upon
a detected attack. The employed FNV-1a hash function is designed to have a low collision
rate. Thus we can assume that storing of one field is enough in practice.

Since the application of the hash function can be bounded to the largest field size and the
field updates run in O(1), the overall update time is in O(|H |). The table may require quite
a large amount of memory. Depending on the implementation the memory consumption can
be bound to

O(|ℎ𝑎𝑠ℎ| · ( |𝑐𝑜𝑢𝑛𝑡𝑒𝑟 | + | 𝑓 𝑖𝑒𝑙𝑑 |) · |H |)
where |𝑐𝑜𝑢𝑛𝑡𝑒𝑟 | is the size of the counter (in Bytes) and |ℎ𝑒𝑎𝑑𝑒𝑟 𝑓 𝑖𝑒𝑙𝑑 | is the size of the
structure holding the most recent header field value. If the table is statically allocated it would
require exactly this amount of memory. Some implementations allow a dynamic allocation at
run time which optimizes memory consumption at the cost of slower data access and allocation
overhead. We consider a statically sized table to be the preferable approach since the usage
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Algorithm 2: Attack detection and mitigation.
Input: Counter table 𝑇 , time interval 𝑡𝑊

1 𝑃← {};
2 for every 𝑡𝑊 seconds do
3 for ℎ ∈ H do
4 for 𝑆 ∈ N< |ℎ𝑎𝑠ℎ|

0 do
5 (𝑐, 𝑣ℎ,𝑝) ← 𝑇𝑆,ℎ;
6 if 𝑐 > \𝑚 then
7 𝑃← 𝑃 ∪ {(ℎ, 𝑣ℎ,𝑝)};
8 end
9 end

10 end
11 if 𝑃 ≠ ∅ then
12 Block all packets that match headers in 𝑃;
13 end
14 reset 𝑇 ;
15 end

of hash functions distributes the counter updates evenly. Therefore, there should not be too
many untouched fields with counters equaling zero.

As seen in Algorithm 2, the detection routine runs independently of the book keeping on a
regular basis and statistically evaluates the counter values. The table is evaluated every fixed
time interval 𝑡𝑊 . The counter is evaluated for every header ℎ and every hash value 𝑆, i.e. for
every field in the table. If the value of a counter is higher than a predefined threshold \𝑚, an
attack is indicated and the corresponding field 𝑣ℎ,𝑝 is appended to list 𝑃.

The detection algorithm has a complexity of O(|ℎ𝑎𝑠ℎ| · |H |). In conjunction with the
data collection seen above, the overall detection is lightweight. Especially, since it can be
executed concurrently and thus, no stalling of the packet pipeline is necessary.

3.4.1.2 Counter Measures

After detecting an attack the set 𝑃 contains the fixed headers of the attacker. From this set it is
easy to craft a flow rule that matches the fields from 𝑃 while treating the others as wildcards.
If one header or more headers is in the set with different values, multiple rules have to be
installed. For this the existing rule with the singular headers from 𝑃 has to be copied and for
each value of one header a rule has to be created. This could for example be the case if the
attacker leverages a bot net and as a result more than one IP-Source address has to be blocked.
When installed as a low prioritized dropping rule in the switch it is now able to handle further
attacking packets at line rate and without additional interaction with the controller. The impact
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Figure 3.6: Abstracted simulation of the detection system.

on the network is negligible since only regular hosts falling in the detected flow characteristics
are affected by the mitigation which is considered unlikely concerning our attack model.

3.4.2 Evaluation of the approach

This section describes the abstracted simulation method which was used to validate the
detection algorithm. Besides the simulation results, an analytic evaluation of the false positive
and false negative probabilities is provided which can be used to determine the correct
parameters of the detection algorithm.

3.4.2.1 Abstracted Simulation

In order to evaluate the detection method we built a simulation based on the widely used
OMNeT++ framework [51]. One feature of our simulation is that we did not simulate on a data
plane level, but only on a control plane level. The abstracted view is shown in Figure 3.6: In
the simulated system a host causes a new PacketIn when a new connection is started, i.e. with
the first packet. Afterwards, all packets which belong to the same flow would be handled in
hardware (i.e. the data plane) in the real system and are not simulated. This greatly reduces
the number of simulated packets, while retaining all important effects of the attack. In our
simulation we used for the legitimate users negative exponentially distributed arrivals with an
expected mean inter arrival time 𝑇𝑙 , which correspond to an arrival rate _𝑙 = 1

𝑇𝑙
. The attacker

arrival rate is called _𝑎. Other important parameters are the window size 𝑡𝑊 , i.e. the time
between two consecutive runs of the detection algorithm and the detection threshold \𝑚. The
parameters are also summarized in Table 3.2.



32 Chapter 3. Securing SDNs

Normal Traffic Arrival Rate _𝑙
Attack Arrival Rate _𝑎

Window time 𝑇𝑊
Number of Hosts 𝐻

Max value threshold \𝑚

Table 3.2: Parameters of simulation and Analysis

3.4.2.2 Analytic Evaluation of the Detection Performance

The detection mechanism of our approach labels the state of the system as under attack if
the table maximum 𝑚𝑇 = 𝑚𝑎𝑥(𝑇𝑆,ℎ) ∀𝑆, ℎ exceeds some threshold \𝑚. The threshold should
be low enough to detect attacks, but it should not raise an alarm if no attack is attempted.
As usual, we call these false alarms False Positive (FP) while undetected attacks are False
Negative (FN). The threshold could be set empirically by just trying different thresholds and
measuring the effects.

In this section, we try to give a more systematic approach for determining the threshold.
The expected 𝑚𝑇 corresponds with the maximum expected collisions of a header value. For
example, if all headers of the incoming connections of one host are uniformly distributed,
except for the source IP, this results in a high value in the corresponding table entry 𝑠, ℎ

and therefore this entry 𝑇 (𝑠, ℎ) dominates 𝑚𝑠 = 𝑚𝑎𝑥(𝑇𝑠), the maximum of row 𝑠. For this
system, we can compute the probability 𝑃𝑚𝑠

(𝑛) of the maximum of row 𝑇𝑠 with the help of the
Erlang distribution: The Erlang Cumulative Distribution Function (CDF) 𝐹𝑛,_ (𝑥) describes
the probability of 𝑛 events occurring in a certain time interval x with 0 ≤ 𝑋 ≤ 𝑥, if the events
are exponentially distributed in time with a rate _.

𝐹𝑛,_ (𝑥) = 1 − 𝑒−_·𝑥
𝑛−1∑︁
𝑖=0

(_ · 𝑥)𝑖
𝑖!

For our case the interval is always 0 ≤ 𝑋 ≤ 𝑡𝑊 . For a fixed event rate, the probability of more
than 𝑛 events is:

𝑃𝑚𝑠
(𝑛) = 1 − 𝐹𝑛,_ (𝑡𝑊 ) = 𝑒−_·𝑡𝑊

𝑛−1∑︁
𝑖=0

(_ · 𝑡𝑊 )𝑖
𝑖!

The probability of 𝑛 events is then:

𝑝𝑚𝑠
(𝑛) = 𝑃𝑚𝑠

(𝑛 + 1) − 𝑃𝑚𝑠
(𝑛)

𝑝𝑚𝑖
(𝑛) corresponds with the probability of a value of 𝑛 for row 𝑚𝑠 if the entry 𝑠, 𝑡 of the

counter table is hit by the repeated header field, which is the source IP in our case. Now,
our algorithm determines maximum of the table 𝑚𝑇 . The network consists of 𝐻 hosts which
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Normal Traffic 10% Rate Attack
Arrival Rate _𝑙 = 1 𝑠−1 _𝑎 = 10 𝑠−1

\𝑚 20.00 20.00
H 100 100

Simulation
Mean max 11.40 52.58

Maximum max 18.00 84.00
Theory

Expected max 11.41 50.00
FP Propability 0.035% 0.035%
FN Propability - 0.000048 %

Table 3.3: Exemplary simulation results for a network with 100 Hosts

generate flows statistically independent, therefore the cumulative probability of 𝑚𝑇 is:

𝑃𝑚𝑇
(𝑛) = (𝑃𝑚𝑠

(𝑛))𝐻 = (1 − 𝐹𝑛,_ (𝑡𝑊 ))𝐻

and the corresponding probability density is:

𝑝𝑚𝑇
(𝑛) = 𝑃𝑚𝑇

(𝑛 + 1) − 𝑃𝑚𝑇 ) (𝑛)

From this density the expected maximum can be derived with:

𝐸 (𝑚𝑇 ) =
∞∑︁
𝑛=0

𝑛 · 𝑝𝑚𝑇
(𝑛)

The results shown in Figure 3.7 support this theoretic model, the simulation fits the theoretical
results very well, i.e. the analytical expected value matches the simulated mean.

With the help of this probability we can also get the FP probability for a given threshold
\𝑚, as this is the probability to reach a value of more than \𝑚:

𝑃𝐹𝑃 = 1 − 𝑃𝑚𝑇
(\𝑚) = 1 − (1 − 𝐹\𝑚,_𝑙 (𝑡𝑊 ))𝐻

On the other hand, an attacker with the rate _𝑎 is not detected with the probability indicated
by the FN rate:

𝑃𝐹𝑁 = 𝑃𝑚𝑇
(\𝑚) = 1 − 𝐹\𝑚,_𝑎 (𝑡𝑊 )

As we assume only one attacker 𝐻 = 1 for 𝑃𝐹𝑁 .

3.4.2.3 Simulation Results

We evaluated our system with a network of legitimate 𝐻 = 100 hosts. We simulated 10
repetitions for each setting with a duration of 1000 s per run.
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Figure 3.7: Results of the maximum table value for different inter arrival times.
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Table 3.3 shows a comparison of the behavior without and with attack, in this simulation
the maximum did not exceed a value of 18 so we did not have any false positives for the given
threshold. As can be seen from the results, if an attack adds only 10% additional load to the
system, it can be detected easily. Even with this relatively small additional load, the expected
maximum value is about five times higher than the normal traffic. This large difference results
in very small FN and FP probabilities. A 10% increase means that the table of the switch
is filled 10% faster than usual, or if we take timeouts into account the table has 10% more
entries. Usually, this comparably small increase should not affect the system’s behavior.

Figure 3.7 shows the behavior of the max value for different traffic intensities. The
simulation results match almost exactly the theoretic forecast. It can be observed that the table
maximum is highly dependent on the traffic rate of one host. Therefore, it can be necessary
to set the detection threshold according to the specific network environment.

Figure 3.8 shows the sum of the false negative and false positive probabilities. When the
sum is close to 0 (darker) the algorithm is performing well. The lighter upper right region is
caused by a high false positive probability the lower left by false negatives. For a given arrival
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Figure 3.9: Results for the slope for different inter arrival times

rate a small detection window is beneficial as this improves the detection speed. Although if
the product of window time and rate of legitimate hosts is big we have a very broad detection
range, i.e. we have a big region where we can choose a good threshold while sacrificing the
detection speed. On the other hand for a small product and consequently a small threshold
the system is very sensitive for changes in the arrival rate of the users as this can cause false
positives. As described in Algorithm 2, the maximum value is not the only detection metric.
Also the difference between two consecutive maximas, the slope is considered. The results
shown in Figure 3.9 show that the slope is not affected as much of the inter arrival time. On
the other hand the results are much less stable and therefore are less dependable. Therefore
the slope can be used if the protected network is largely unknown.

3.5 Summary and Discussion

In this chapter we introduced main attack vectors in SDN networks. Some attack vectors
like attacks using rogue controller or a rogue app are inherent to SDN. Although they are not
unprecedented as they are common for extensible software systems. One example are mobile
operating systems and their applications. As the applications should be developed from a
large number of developers, in order to increase the diversity and number of applications,
some developers might not be trust worthy. In the network context the controller takes the
role of the operating system and SDN apps take the role of mobile apps. Solutions are on the
one hand a strict examination of the apps before they are made accessible to the users [52].
On the other hand solution like the SDN security kernel FortNox [45] that are restricting the
access rights of the applications are viable solutions.

Further the network operator should always respect security best practices like authen-
tication and encryption of the control connection. Even though the evaluation of the delay
measurements indicate the importance of CPU power for a good OpenFlow control plane
performance of a switch, specifically using encryption. We found that the software solution
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Open vSwitch adds the lowest packet-in delay, this could give implications to future network
device designs: Hardware acceleration support for encryption should be added to future SDN
switches to keep delays small. Currently the OpenFlow testing tools do not support TLS,
although our results show that encryption may have a noticeable impact on control plane
performance.

Finally attacks that have been there in legacy networks, like e.g. spoofing or DoS attacks
keep existing in SDN. Fortunately these issues can be solved more easily than in legacy
networks, as additional software components can be employed. We developed and analyzed
such a countermeasure aiming against DoS attacks. Our work concentrates on attacks which
aim to overflow the hardware tables of SDN switches. The attacker causes a high number of
PacketIn messages by changing header fields. Our proposed detection approach is based on
the observation that an attacker cannot change all header fields. This allows us to identify the
attack. Our approach uses a table with the header fields as columns and hashes of the header
fields as rows. If an attack occurs the table entries corresponding to the unchanged fields grow
tremendously. After identifying the attack, we propose to use an OpenFlow rule which drops
further attack packets. Our evaluation shows that the algorithm can detect attacks reliably and
with low false positive probability with the correct parameters. Using the proposed formulas
it is possible to analytically determine a good choice of these parameters. For example for
a mean arrival rate _𝑙 of 100 connections per second and a window time 𝑇𝑊 of 40 ms, the
detection threshold Θ𝑚 should be between 15 and 40. The choice of these parameters yields
a detection error that is lower than 5%.



Chapter 4

Isolation in Software Defined Networks

Network virtualization enables the use of multiple virtual networks using one physical network.
The virtualization should provide networks to the hosts such that it matches the functionality
and performance of multiple physical networks. Thus the networks must be isolated from
each other.

Isolation in terms of security firstly means connectivity, respectively the circumvention
of connectivity. In general Internet Protocol (IP) networks are designed to connect clients
rather than prevent connections. However, not all clients in a network have good intentions.
Therefore from a security perspective it is desirable to only allow as much connectivity in
the network as strictly necessary for the respective purpose. To achieve this, the clients are
logically grouped, e.g. in employee clients and guest clients. Further, connections are only
allowed within one group, i.e. the groups must be isolated from each other. Thus, isolation
between clients in multiple virtual networks is advisable and the separation in multiple
networks is necessary.

Using multiple physical networks for each user group can provide the necessary isolation.
Due to the overhead in terms of costs and overall complexity this is often not desirable. The
task of network virtualization is therefore to provide an isolation that is equivalent to the
isolation provided by physical networks.

In many companies and organization nowadays the network virtualization is provided by
the IEEE 802.1Q standard [26]. It supports virtual networks by adding an extra header to the
Ethernet frame header, a so called VLAN tag, which is then used by the switches and routers to
enforce the isolation. The use of VLAN tags is well established though it is often tedious and
error prone as the VLAN configuration of the network nodes is maintained mostly manually.
Furthermore 802.1Q standard [26] itself does not include any authentication mechanisms for
the clients. This means that, the virtual networks are configured interface based and everyone
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that has access to the configured interface physically, can connect to the virtual network(s)
configured on this interface.

Another problem arises due to the limited number of VLANs possible, 802.1Q provides
only 4096 virtual networks, which is not sufficient in networks with many tenants, e.g., in
cloud networks. Though this restriction is avoided often with the use of overlay networks like
VXLAN [53]. VXLAN encapsulates the packet within an User Datagram Protocol (UDP)
packet, this additional header can be used for tagging. The drawback of this approach is that
the payload per packet is reduced due to the limited Maximum Transmission Unit (MTU) size.

Both protocols do not provide performance isolation between the virtual networks. Thus
an adversary in one virtual network can overload the physical network and cause performance
issues up to a complete denial of service in other virtual networks that share the same physical
network.

In this chapter we show how Software-Defined Networking (SDN) networks can provide
isolation. OpenFlow was developed based upon Ethane [12], that also introduces new filtering
capabilities in the network. Thus it is also fairly straight forward to achieve isolation in
OpenFlow. Nevertheless we want to introduce the basic concepts isolation in OpenFlow
networks by defining virtual networks in general and how they can be realized using OpenFlow
in Section 4.1. We use this capabilities for an approach that realizes fine grained filtering
using SDN presented in Section 4.1.2. Further performance isolation between different virtual
networks can be realized in Section 4.2. Performance isolation is more difficult to achieve in
practice, thus the main contributions described in this chapter lay in this field. We show how
different OpenFlow devices perform in this case and what is necessary to improve upon it.
Finally, in Section 4.3 we conclude the chapter.

The performance isolation of OpenFlow switches that is described in this chapter was
presented first in [3]. The detailed discussion regarding isolation using OpenFlow in Sec-
tion 4.1 was not published before, however the general concept of isolation using SDN was
demonstrated in [4, 5].

[3] R. Durner, A. Blenk, and W. Kellerer. “Performance study of dynamic QoS man-
agement for OpenFlow-enabled SDN switches.” In: 2015 IEEE 23rd International
Symposium on Quality of Service (IWQoS). 2015, pp. 177–182. doi: 10.1109/IWQoS.
2015.7404730.

[4] S. Gebert, T. Zinner, N. Gray, R. Durner, C. Lorenz, and S. Lange. “Demonstrating a
Personalized Secure-by-Default Bring Your Own Device Solution Based on Software
Defined Networking.” In: 28th International Teletraffic Congress (ITC 28). 2016,
pp. 197–200. doi: 10.1109/ITC-28.2016.133.

https://doi.org/10.1109/IWQoS.2015.7404730
https://doi.org/10.1109/IWQoS.2015.7404730
https://doi.org/10.1109/ITC-28.2016.133
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[5] B. Pfaff, J. Scherer, D. Hock, N. Gray, T. Zinner, P. Tran-Gia, R. Durner, W. Kellerer,
and C. Lorenz. “SDN/NFV-enabled Security Architecture for Fine-grained Policy
Enforcement and Threat Mitigation for Enterprise Networks.” In: Proceedings of
the ACM SIGCOMM Posters and Demos. 2017, pp. 15–16. doi: 10.1145/3123878.
3131970.

4.1 Isolation in OpenFlow enabled Networks

In this section, we will focus on isolation in terms of connectivity. Within this scope, isolation
for virtual networks can be defined as the ability of the network operator or management system
to deny or allow the connectivity between different clients. Clients can be physical clients or
virtual machines or even more fine granular applications using the network. Furthermore the
virtual network consists of a subset of the links of the physical network. In packet switched
networks this means that the forwarding nodes in the network (switches, routers etc.) need to
be able execute two main tasks:

A) Detect the membership of a packet to a virtual network.

B) Accept or deny sending and receiving a packet on a link depending on the membership
of the link and packet to the virtual network.

These tasks must be executed for incoming packets and for outgoing packets after the
forwarding decision as only then the outgoing link is known. In the case of 802.1Q [26] task
A is realized with the VLAN tag that is added to the Ethernet header. This header is evaluated
by the forwarding nodes. Task B is realized with port memberships, if a port is member of a
VLAN corresponding packets can be sent and received with this port.

SDN and especially OpenFlow isolation can be used as follows: The basic concept of the
OpenFlow packet pipeline is the match action semantic. Incoming packets are checked against
the rule table, if a rule matches the packet the defined actions are performed. The match part
of a rule can consist of arbitrary header fields like e.g. Ethernet addresses, IP addresses or
also higher layer fields like TCP and UDP ports. The possible actions include forwarding to
a port and dropping. This pipeline of OpenFlow supports all necessary tasks to implement
isolation of virtual networks. Through matching, a node can detect a membership of a packet
to a virtual network. The action can then be either drop or forward depending on if the link is
a member of the respective virtual network. Dropping received packets from links that are not
part of the virtual network can be realized by adding rules that contain the input port as part of
the match. In contrast to other widely used approaches like 802.1Q and VXLAN, OpenFlow

https://doi.org/10.1145/3123878.3131970
https://doi.org/10.1145/3123878.3131970
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does not rely on additional headers in order to map a packet to a virtual network. Instead the
complete header can be used for that purpose. Additionally many OpenFlow capable devices
provide hardware support for these tasks.

This native support is a direct consequence of the history of OpenFlow. OpenFlow was
introduced 2008 [13] aiming for more flexible and innovative networks in general. Though
the basic concept was already introduced with Ethane [12]. Ethane was introduced to improve
visibility and security in enterprise networks. It introduces a controller that holds the network
policy, all first packets are presented to the controller and the connection is only allowed if
it is allowed by the policy. This largely improves manageability, as the policy is centralized
in one location, furthermore this also improves security as the Ethane architecture provides
means to control the connectivity between hosts. OpenFlow as a standard, has inherited these
isolation features of Ethane.

To summarize, OpenFlow can provide the tools for network virtualization and isolation
between the virtual networks. Though OpenFlow does not specify how the virtual networks
should be managed and which header fields should be used to identify the virtual network.

4.1.1 Related Work

Besides the isolation that is supported by the OpenFlow architecture, also the management
of the virtual networks has to be provided. Especially in more complex scenarios with lots
of virtual networks and also networks that include rewriting of headers, the isolation can be
violated.

In order to avoid inconsistencies in the network like e.g. conflicting rules or routing loops
formal methods were proposed. FlowChecker [54] was one of the first proposed approaches
to solve this issues: Networks are represented as state machines where the state represents
the header fields and the location of a packet. Network devices may change the state by
changing some header fields, changing the location of a packet or removing the packet from
the network. Using this framework the isolation of virtual networks can be verified. Other
works also included other network protocols like Multi Protocol Label Switching (MPLS)
into the verification [55] and increased the speed of the verification to support real-time
verification[56, 57]. Furthermore Policy Graph Abstraction [58] is a framework that supports
simpler high level policies and additionally supports service chains composed of multiple
middle boxes.

Fresco [59] introduces a scripting language that can be utilized to develop SDN security
applications while guaranteeing isolation and conflict free network rules.
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Figure 4.1: Virtual networks are provisioned for each service. By default the user has only access to
the portal.

An orthogonal approach are SDN Hypervisors, this concept was presented first with
FlowVisor [60]. With this approach each of the virtual networks can use its own SDN
Controller, while the SDN Hypervisor has to guarantee the isolation between the networks.
The main advantage of this approach is that different virtual networks can be tailored to
different needs of the virtual networks using multiple SDN controllers. A more detailed
description of this field of network virtualization can be found in a recent survey by Blenk et.
al [61].

4.1.2 Fine-grained virtual networks with OpenFlow

The proposed architecture aims at achieving a fine grained isolation in order to reduce attack
surface as much as possible. The isolation is designed to use a Virtual Network (VN) for
every user service relation. More concrete, five tuples are used as identifier for the VN, as
most services require bidirectional communication, we also use the five tuple with switched
direction in the same VN. An example for a VN for the user 10.0.0.25 with port 23560 to
access a web server at 10.0.1.60 on port 80 using TCP would include all packets with the five
tuples (TCP, 10.0.0.25,23560, 10.0.1.60, 80) and (TCP, 10.0.1.60, 80, 10.0.0.25, 235600) in
the VN. The concept is sketched in Figure 4.1. The picture shows how SDN can be used to
allow the packets of the specific VN only on the necessary physical links between the user
and the service.

In practice this is implemented as follows: By default each user can only access the portal.
The portal can be used to enable services like printing, groupware or email. If a service
is enabled at the portal the controller is commanded to allow the provisioning of the VN
using the Northbound API. When the user tries to connect to the service the first packet of
the respective connection is forwarded to the SDN controller. The SDN controller checks if
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the VN is allowed and provisions the virtual network upon a positive result. This two step
approach is necessary as the user port is only chosen when the user actually starts the service
on his device, furthermore this also reduces the number of necessary rules as only rules that
are actually used are configured in the tables of the devices. If rules are not used anymore
they are removed automatically using soft timeout functionality of the switches. We envision
to use a private cloud system in order to host the portal and other company services such as
Email or Groupware.

The functionality in the SDN controller was implemented as an application running in the
ONOS Controller in the Demos [4, 5]. An implementation using the Northbound API was
not possible, as the Northbound API does not provide access to packet-in messages. This
approach has the drawback that the solution is not easily portable to other controllers.

The portal can be used to implement access levels for user groups, e.g. an ERP system
that should be only available for certain users. Further the portal can as well be used to map
organizations business processes, e.g. approvals of superiors and logging into the solution.
As a summary the presented VN approach provides a rich toolbox that can make enterprise
networks more secure and manageable. It can be seen that isolation in OpenFlow networks
can be achieved without large modifications. On the other hand performance isolation as
shown in the next section is more difficult to achieve in practice.

4.2 Performance Isolation in OpenFlow enabled Networks

The previous section showed that SDN and especially OpenFlow can provide isolation in
terms of connectability. On the other hand this is not the full scope of isolation as the different
virtual networks still interfere w.r.t. the performance. E.g. if a link is shared between two
virtual networks one virtual network can exhaust the full link and thus cause outages in the
other virtual network. With the emergence of SDN, a new flexible network operation and
control is possible. Such a flexible operation and control demands the realization of well
established Quality of Service (QoS) concepts. SDN promises to provide a powerful way
to introduce QoS concepts in today’s communication networks. Using SDN and OpenFlow
for realizing new resource management, existing studies, such as [62–64], have shown that
applications benefit from a fast and frequent change of network resource allocations, which we
call dynamic QoS management. For instance, for progressive video streaming applications,
[63] showed that changing the queue assignment of video flows based on the currently buffered
playtime avoids stalling. Stalling has a high negative impact on perceived application quality
of network users.
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Prior research on dynamic QoS management in SDN-based networks, e.g., [62–64], has
neglected the diversity of existing hardware, i.e., switch diversity. However, in existing
work [65, 66], it was shown that switches from different vendors show different behaviors,
e.g., for flow installation times or for different order of OpenFlow rule operations. Ignoring
such switch diversities may lead to significant performance degradations in SDN networks
and can cause performance interference between virtual networks. Accordingly, the diverse
behavior has to be taken into account when designing SDN applications in general, and when
designing SDN applications based on dynamic QoS management in particular.

In the following, we study effects on network traffic when applying dynamic QoS manage-
ment in OpenFlow-based SDN networks. We measure the impact on TCP network flows when
changing the queue assignment of multiple flows at runtime. Our measurement study is done
for different configurations of two fundamental quality of service concepts, namely priority
queuing and bandwidth guaranteeing, which are deployed on three switches. The switches are
the NEC PF5250, the P3290 from PICA8, and the software switch Open vSwitch (OVS) [67].
Furthermore, as OVS is implemented in software, it provides detailed information on the
used queuing disciplines and the used queue implementations, e.g., First-In-First-Out (FIFO)
queues or Stochastic Fairness Queuing (SFQ) queues. Using the OVS behavior as reference
allows us to draw conclusions about the used queue implementations of the hardware switches,
which is only rarely publicly available.

4.2.1 Related Work

Previous work on providing QoS guarantees using OpenFlow can be partitioned in three
categories. First, studies deploying dynamic QoS in an SDN environment [62, 63, 68].
Second, studies on switch diversity [65, 66, 69, 70]. Third, research on network performance
resulting from QoS with OpenFlow-enabled switches [71, 72].

The OpenFlow-assisted Quality of Experience Fairness Framework (QFF) provides user-
level fairness for adaptive-video streaming such as Dynamic Adaptive Streaming over HTTP
(DASH). QFF guarantees QoS in the network in order to provide users suitable and more
stable bandwidths. As DASH also utilizes long living TCP flows, we expect the appearance of
the same effects as we show in this paper with the use of QFF. The study [62] only considers
effects on the video application, while we measure effects in the network.

[64] introduces a QoS controller prototype that guarantees end-to-end QoS by routing the
flows based on performance requirements. With the arrival of a new flow, the controller calcu-
lates the resource allocation and installs the necessary rules with QoS guarantees. Although
the controller prototype is examined using one hardware and one software switch, the focus
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of the analysis lies on the QoS control framework and not on the effects that these guarantees
cause when they are applied dynamically.

VMPatrol [68] employs a framework that limits the used portion of the available bandwidth
when migrating Virtual Machines (VMs) in a cloud environment, for the sake of the productive
traffic. The conclusion is that QoS mechanisms can decrease the adverse impact of VM
migrations on other network flows. This is an important use case for dynamic QoS with
OpenFlow, as many SDN researchers currently focus on virtualized environments.

The study [63] examines bandwidth management depending on the currently buffered
playback time of YouTube progressive video streams. The study also measures and compares
the impact of different queuing strategies. Different queuing strategies are found to lead to
varying buffered playback times of the videos. In contrast to our study, [63] does not use
OpenFlow and does not compare different switches. Additionally, [63] focuses on resource
management, while we concentrate on detailed measurements of different dynamic QoS
settings.

Tango [65] is a switch probing engine that aims at countering problems that result from
switch diversity. In contrast to our approach, Tango analyzes the diversity regarding flow
installation and manipulation timing in the control plane, while we focus on the effects
that rule changing has on ongoing flows in the data plane. However, we believe that our
observations can also be integrated in a framework such as Tango.

Recent studies [66, 69, 70] analyze the diversity of switches regarding the SDN control
plane behavior. For instance, [66, 70] analyze rule installations in combination with barrier
replies that should confirm the rule installation and show that some switches confirm the
installation of rules prematurely. The barrier reply is sent out before the OpenFlow rules
are actually active. Additionally, the relationship between the number of flow rules and data
plane performance, as well as the impact of rule priorities is measured. [69] measures the
processing capabilities of hardware and software switches for specific OpenFlow message
rates.

[72] investigates data-rate guarantees equipped at the Pica8 P3290 switch. The influence
of short living UDP flows, also called bursts, to a long living UDP flow is measured. The
main result is that bandwidth guarantees of the P3290 switch are not fully enforced against
such bursts. Therefore, isolation between the data flows can not be guaranteed. While this
work focuses on UDP traffic, we investigate the behavior of TCP traffic and use a dynamic
resource management instead of static QoS, which does not change over the course of the
experiment.

The study [71] examines the OpenFlow metering feature. The metering feature limits
the data rate of a flow to a desired data rate. In this study, meters are applied to TCP
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flows on a bottleneck link. The authors observe that bursts of packets are dropped, which
wastes resources and causes TCP to leave the congestion avoidance state and regress to the
slow start state frequently. Although the setup is quite similar to our setup, the study is
limited to measurements based on the network emulator Mininet and does not evaluate real
hardware. Besides only static QoS setups are studied, while we analyze the dynamic behavior.
Nevertheless, to our best knowledge, this study is most closely related to our analysis.

4.2.2 Background on Queuing Disciplines

As OpenFlow is only an API for the forwarding of packets, differences between switches may
show different behaviors with respect to QoS. In this section, we explain queuing techniques
that are used by the studied switches. OpenFlow claims to be vendor neutral, but as OpenFlow
is only an API for the forwarding of packets, differences between switches may show different
behaviors w.r.t. QoS. In this section, we explain queuing techniques that are used by the
studied switches.

Classless Queuing Disciplines Classless queuing disciplines forward traffic neutrally.
Neutrally has different meanings for packets and for flows, which lead to different implemen-
tations:

• First-In-First-Out (FIFO) queues have a very simple structure. The item that was first
put into the queue leaves it first. In the case of a full queue, incoming packets are
dropped. FIFO is fair in the sense of individual packets, as every packet is processed
equally.

• Stochastic Fairness Queuing (SFQ) [73], in contrast, is a queuing mechanism that tries
to ensure fairness between several flows. The basic structure is shown in Figure 4.2.
In order to provide fairness, incoming packets are enqueued to several queues. The
selection of the queue is based upon a hash of the source and destination IP plus the
source port. Packets are dequeued using the round-robin scheme between the queues.
This mechanism results in a high probability that flows are processed fairly, although
the fairness is not deterministically guaranteed. Consequently, the mechanism is called
Stochastic Fairness Queuing.

Classful Queuing Disciplines In contrast to the previous disciplines, Classful Queuing
Disciplines forward packets according to a scheduling algorithm.

• Priority Queuing (PQ) uses queues with different priorities. The packets of the queues
are dequeued according to their assigned priority, i.e., a queue is only served if no queue
with higher priority has packets.
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Figure 4.2: Stochastic Fairness Queuing Algorithm

• Weighted Fair Queuing (WFQ) guarantees a specific, configured minimum bandwidth
for each queue. The remaining unused bandwidth is shared between the queues.

• Hierarchical Token Bucket (HTB) is used by OVS for providing bandwidth guarantees
(BG). While HTB affects the rate at which packets are sent from each queue, the type
of the underlying queue affects the order of the sent packets. This underlying queuing
discipline can be, for example, FIFO or SFQ.

4.2.3 Measurement Setup

In this section, we describe the measurement setup and procedure and some background on
queuing disciplines. We designed an experiment that examines dynamic QoS support of
OpenFlow specifically for TCP Flows. We probe and compare different queuing techniques
on multiple switches.

4.2.3.1 Experiment Setup

As shown in Figure 4.3, two physical hosts act as TCP traffic source and TCP traffic sink.
The hosts are connected via the SDN switch. An additional host runs the SDN Floodlight
controller, which is connected to the SDN switch. The Round Trip Times (RTTs) in the
measurement network are <1 ms. The application iperf [74] is used in version 2.0.5 for the
generation of the TCP traffic. The hosts run Ubuntu Linux 14.04 and Linux kernel version
3.13. The data flows are recorded with tcpdump [75] and analyzed afterwards. We use TCP
CUBIC and disable the features segmentation offloading and TCP metrics save.

As QoS mechanisms are only useful if multiple flows interact with each other, we use
two TCP flows that are routed via a single bottleneck link. This link’s data rate is limited
to 10 MBit/s, while the other link is unrestricted and has a maximum rate of 1 GBit/s. The
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Figure 4.3: OpenFlow-based testbed setup. Queue 0 (𝑞0), Queue 1 (𝑞1), and Scheduler are configured
for each experiment accordingly.

bottleneck causes that packets are enqueued at the switch. The OpenFlow rules that are
necessary for the experiments are set via Floodlight’s REST-API [76].

The course of the experiment is presented in Figure 4.4, It is divided in three stages. At
time 𝑡 = 0, both TCP flows are started and forwarded over the same queue (𝑞0). As TCP
provides fairness, they share the bandwidth approximately equally. At time 𝑡 = 𝑇1, one flow
is rerouted via a different queue (𝑞1). Depending on the settings of the queues, one flow has
more bandwidth than the other in the second stage (𝑇1 < 𝑡 < 𝑇2). In the third stage, from time
T2 onward, the flows are again forwarded together in 𝑞0. Each of the stages has a duration of
30 s, which means that T1 is 30 s and T2 60 s after the start of the run.
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Figure 4.4: Time sequence of the experiments
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Figure 4.5: Measured mean bandwidth over time using different switches and priority queuing. 95%
confidence intervals for the mean values are added to all plots.

4.2.3.2 Investigated Switches

In our studies, we investigate two hardware switches from different vendors, namely an NEC
PF5240 and a PICA8 P3290, and the OVS [67], which can run on commodity hardware.

The NEC switch supports multiple QoS techniques, while only PQ and WFQ are studied
in this paper. WFQ is used to provide Bandwidth Guarantees Each queue has a length of 64
packets. The P3290 is a so called bare metal switch and supports different network operating
systems. In our setup, the P3290 runs PicOS in version 2.1.5 in OVS-mode. In the OVS-mode,
Open vSwitch is running on top of PicOS and provides the OpenFlow interface. Regarding the
configuration of the queues, priorities and a predefined minimum and maximum bandwidth
can be set. The OVS runs version 2.1.0 on the traffic sink. The advantage of OVS is that we
can change the settings of the queues with the Linux application TC [77].

4.2.4 Measurement Results

The following figures show the results of 50 runs. We studys the bandwidth of the flow over
time and the sum of the duplicated packets for intervals with a length of 10 s around T1 and
T2. We examined Queues using PQ and Bandwidth Guarantees.

4.2.4.1 Priority Queuing

Figure 4.5 shows the results for PQ. In the first stage, both flows are in 𝑞0 and share the
bandwidth equally. 𝑞1 is set to have a higher priority than 𝑞0, therefore Flow 2 is depleted
very fast after T1. After T2, Flow 1 is again together in 𝑞0 with Flow 2. For the PICA8 switch,
we can observe that Flow 2 recovers pretty fast. This can be explained as follows: In the first
stage, Flow 1 via 𝑞1 prevents the submission of packets from Flow 2 via 𝑞0. In the meantime,
as the source of Flow 2 still tries to reestablish the connection, these packets are enqueued at
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𝑞0 but can not be forwarded and are not dropped. After T2 both Flows are forwarded via 𝑞0

and thus these packets of Flow 2 are flushed to the sink. The sink acknowledges these packets,
which causes the congestion window and, thus, the bandwidth of Flow 2 to increase quickly.

The number of duplicated packets at the sink, that is shown in Figure 4.6 confirms the
observation. Packets of Flow 1 are duplicated at both switchover points (T1, T2). At time T1
the packets in 𝑞1 pass packets that are enqueued in 𝑞0 and cause the sink to request the slower
packets again, which results in duplicated packets. This means that short after T1 packets
from both queues are sent, in contrast to the rest of the second stage. At time T2 packets from
𝑞0 are submitted again, at this time some retransmission packets from Flow 2 are enqueued
that were sent during the second stage and appear at T2 as duplicates.

The NEC Switch shows a different behavior in the third stage. When Flow 1 is rerouted
to 𝑞0 at T2, the average bandwidth of Flow 2 grows fast first, until it again reduces. The
time until fairness between the two competing flows is regained is longer than 30 seconds.
The number and distribution of duplicated packets are similar to the results with the PICA8
switch, although fewer packets are duplicated at T1. On the other hand, duplicated packets
of Flow 1 are measured at T2. A detailed analysis shows that these packets were stuck in the
queue since T1. The very steep ascent of Flow 1 at T1 causes this behavior.

For comparison, we have examined OVS with two different classless queuing disciplines,
namely SFQ and FIFO, which handle the transmission of packets out of 𝑞0 and 𝑞1. The FIFO
queues are configured with a length of 64 packets. The SFQ queues have a length of 128
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Figure 4.6: Mean number of duplicated packets of Flow 1 (F1) and Flow 2 (F2) in an interval of 10 s
around T1 and T2. 95% confidence intervals are included. Measurement at the sink of the flows.
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Figure 4.7: Measured mean bandwidth over time using different switches and bandwidth guarantees
settings. 95% confidence intervals for the mean values are added to all plots.

packets, which is fixed at compile time. Until T2 the differences between FIFO and SFQ are
marginal. After T2, fairness is established very fast and accurate, if SFQ is used. This is
the expected behavior as SFQ tries to ensure fairness between all flows. However, the results
for FIFO are quite different: The time until the two flows have again approximately the same
bandwidth is in the range of 20 to 30 seconds. We can observe a higher number of duplicated
packets when OVS is used at both switchover points. Especially SFQ causes a high number
of duplicated packets. This can be justified with the bigger size of the queues.

From the results we can see that only OVS with SFQ behaves as one would naively expect.
In a network with different switches, the discovered diversities will degrade the performance
of QoS-oriented SDN applications, if they are not prepared accordingly. Duplicated packets
need to be taken into account when deploying and using QoS mechanisms, as they cause a
waste of bandwidth.

4.2.4.2 Queuing Disciplines with Guaranteed Bandwidth

One of the key features of SDN is Network Virtualization. Virtual Networks can be allocated
to different queues. Queues receive a data rate guarantee and, therefore, provide network
resource isolation. In the following, we investigate queues with performance guarantees. The
basic setup stays the same, although now, the bandwidth in the second stage (𝑇1 < 𝑡 < 𝑇2) is
to be shared according to a 1:9 ratio. The sum of the guaranteed rate equals the link speed.
This results in 1 Mbit/s guarantee for 𝑞0 and 9 Mbit/s for 𝑞1. The NEC switch supports WFQ,
while the other switches can employ bandwidth guarantees for their queues.

Using the PICA8 switch, after T1 the bandwidth of Flow 2 decreases very fast to the
configured 1 Mbit/s. After T2, fairness is reestablished quickly. The number and distribution
of duplicated packets is comparable to the PQ experiment.
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In the second stage the bandwidth guarantees are violated for a short instance using the
NEC product. The drop is visible for approximately 6% of the measurements always 8 seconds
after T1. This regularity indicates some switch fault. As no packets of Flow 2 are accumulated
during stage 2, fairness is established more steadily compared to the PQ case. Regarding the
duplicated packets, one can see the same behavior as for the PICA8 switch, although more
packets are duplicated in total.

The bandwidth results for the experiments with OVS and SFQ are close to ideal: at T1
the bandwidth of Flow 1 increases in less than two seconds to the predefined level and at T2
fairness is reestablished very fast. OVS and FIFO shows a different run of the bandwidth.
Especially interesting is the behavior at T2: the bandwidth of Flow 2 overshoots Flow 1 and
afterwards both flows oscillate around the fair distribution. The number of duplicated packets
is much higher, when compared to the hardware switches.

Summarizing the results, we can see that the guarantees, as they do not cause the depletion
of one flow, do not harm the overall connectivity of the network. Vendor dependencies for this
setting are less distinctive compared to priority queuing, although with bandwidth guarantees
none of the flows can use the full bandwidth of the link, which might be desired for some
applications.

0 10 20 30 40 50

F1 T1

F1 T2

F2 T1

F2 T2

Duplicated packets in %

P8 BG
NEC BG

OVS FIFO BG
OVS SFQ BG

Figure 4.8: Mean number of duplicated packets of Flow 1 (F1) and Flow 2 (F2) in an interval of 10 s
around T1 and T2. 95% confidence intervals are included. Measurement at the sink of the flows.
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Figure 4.9: Smoothed round trip time of Flow 1 from two different measurements using priority
queuing on the NEC Switch

4.2.4.3 PQ and TCP’s Retransmission Behavior

The results show that Priority Queuing with TCP flows can lead to the depletion of the flow
in the lower priority queue. As TCP always interprets packet loss as congestion, the complete
depletion causes the source to throttle its sending rate to almost zero. When a TCP flow is
depleted, only some retransmissions are sent in an exponentially increasing interval starting
with 1 s according to the retransmission timeout (RTO) timer definition in RFC6298 [78]. If
we choose 𝑇2 − 𝑇1 = 30 s Flow 2 is blocked for 30 seconds and retransmission are sent 1 s,
3 s, 7 s and 15 s after T1. This results in an RTO of 24 = 16 s at the end of the blocked section.
When the transmission restarts at 𝑡 = 60 s, RTO is not reset immediately. Instead RTO is
computed out of RTT measurements at the source, which are averaged out and result in the
so called Smoothed Round Trip Time (SRTT).

SRTT of Flow 2 is plotted for two different runs in Figure 4.9. Until T1, SRTT moves
around about 20. Between T1 and T2, no packets are transmitted, therefore RTT measurement
is not possible and SRTT is constant. At time T2, the packets that were stuck in 𝑞0 are flushed to
the sink, which acknowledges these packets. This leads to some very high RTT measurements
at the source and, thus, a very large SRTT. When no further packets are lost, SRTT gets small
again pretty fast as more and more RTT measurements after T2 are successful. On the other
hand, if the reconnect after T2 fails, due to packet loss, this results in a subsequent connection
interruption. The TCP stack of the source waits RTO until it sends another reconnect. As
SRTT is still high, RTO is also big and it can take many seconds until the TCP flow restarts
again. In the pictured measurement it took 60 seconds until the connection was finally
reestablished.

Altogether this can lead to an interruption of the TCP connection. In the worst case, the
application running the TCP connection does not restart the connection on its own and a user
intervention is necessary. This means that in case of PQ starvation of flows should be avoided
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Figure 4.10: Bandwidth of 50 runs using OVS employing inverted PQ and SFQ

or at least kept short. An active notification to the source host from the switch at T2 could
avoid the problem.

4.2.4.4 Inverted Priority Queuing

This behavior has a major influence on the result with "inverted" priorities. "Inverted"
priorities means that first both flows are routed over the queue with the higher priority, then
one flow is routed over the lower priority queue until both flows are again together on the higher
priority queue. We performed experiments with inverted PQ for all switches, as the results are
all comparable with some minor differences, we only show the results for OVS with SFQ in
Figure 4.10. The mean result gives the impression that the time until fairness is reestablished
is very long. But in this case the superposed single results give a better insight. These plots
show that if Flow 1 is reconnected, fairness is restored pretty fast. But the time when Flow 1 is
reconnected is very divergent. Between T1 and T2 no packets can be transmitted from Flow 1,
the source tries to reestablish the connection with retransmissions. In contrast to the previous
experiments, these packets are still retained also after T2. Therefore the only way that Flow
1 reconnects is a retransmission packet after T2, although, as Flow 1 was disconnected fairly
long, the frequency of retransmissions is very low. The link is still well loaded by Flow 2,
therefore the probability is high, that one or more of these packets are dropped, which can
stop the TCP connection again for many seconds. As this is a non-deterministic process
each experiment is different. Summarizing this it must be noted that the queuing approach
regarding PQ makes a major difference.
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4.3 Summary and Discussion

In this chapter we show how SDN and more specifically OpenFlow can provide isolation for
virtual networks. We study isolation on two different levels: Firstly isolation must prohibit
access between different hosts that are not in the same virtual network. We discuss the general
fitness of OpenFlow regarding access isolation. Further we show how a fine-grained access
control using VNs can be realized.

Secondly the performance of the slices must be decoupled as well, i.e. depletion of the
bandwidth resources in one virtual network must not influence the performance of other
virtual networks. Performance isolation can be realized using dynamic QoS mechanisms in
SDN networks. Although SDN and, in particular, OpenFlow claims to provide a standardized
interface, the existing diversity of OpenFlow-enabled switches leads to varying behavior for
the same QoS mechanisms. Existing work on realizing QoS mechanisms and on OpenFlow
switch diversity has neglected the impact of dynamic QoS mechanisms on network traffic.

Accordingly, in this chapter, we study switch diversity while deploying dynamic QoS
mechanisms for TCP flows in an OpenFlow-based network. Our measurement results for two
fundamentally different QoS techniques, namely priority queuing and bandwidth guarantee-
ing, show severe performance variations for two hardware and one software switch. Using
priority queuing, the different switches lead to different, even unfair, bandwidth shares be-
tween TCP flows. Furthermore, the use of priority queuing can interrupt TCP connections,
which can result in nondeterministic flow behavior. Besides, our results for the software switch
show that different queue implementations, i.e., FIFO queues or SFQ queues, also impact the
network performance. In case of bandwidth guarantees that can be used for performance
isolation between virtual networks, one hardware switch violates the configured bandwidth
guarantees. This means even though OpenFlow is standardized, performance isolation can not
be guaranteed for all devices. Instead for a real deployment the fitness must be determined for
each device. More specifically we saw that rescheduling of queues due to QoS requirements
can cause duplicates and performance degradation. SFQ can reduce this issues, though it is
not supported by the employed hardware switches. Thus, a realization depends on the used
devices, which evidently hinders flexibility.



Chapter 5

Performance of Security Virtual Network
Functions

In the previous chapter it was described how Software-Defined Networking (SDN) can be
used to provide fine-grained isolation on a connection level. This kind of isolation provides
stateless filtering as the network packets are separated based on their header fields, without
considering connection state or payload of the packets. However according to requirement
R2, the security architecture presented in this work shall also provide stateful and application
layer filtering of packets. The architecture uses Network Function Virtualization (NFV) in
order to provide the necessary performance, fulfilling requirement R3. Further NFV also
provides increased flexibility as it supports scaling of the network functions depending on the
network traffic.

One main challenge in the field of NFV is the performance and more specifically lack of
performance guarantees of the NFV environment. In contrast to traditional solutions, hardware
and software are no longer developed together, but the Virtualized Network Functions (VNFs)
should run on commodity hardware. One issue is the large number of packets that have to be
processed. For simple VNFs, like for example a load balancer, the complexity of processing
one packet is very low. If a hash table is used, it can be as low as O(1). Because of that, other
effects which can be usually neglected gain more importance. E.g., [79] shows that shuffling
a packet processing workload between cores can reduce the packet rate significantly, as the
data locality is not kept.

In this chapter the memory architecture of modern CPUs with regard to packet processing is
evaluated. VNFs are I/O intensive applications as they mostly do not make many computations
but rather handle a lot of data. This data is first the packets that need to be loaded to the CPU
to be changed or accessed by the CPU. Secondly stateful or higher layer network functions
that need to trace connections like e.g. stateful firewalls or application layer gateways need

55



56 Chapter 5. Performance of Security VNFs

to access the data corresponding to the processed packets. The data can be for instance a
connections state. Consequently the memory architecture of the hardware performing all
these operations is very important.

The server market is dominated by Intel, e.g. it is reported that Intel has a market share of
98% of all the server CPU market in 2018 [80]. As also the second in market AMD uses an
x86 architecture this architecture can be assumed to be dominant for NFV as well.

One important concept of this architecture is the Non Uniform Memory Access (NUMA),
that is used to support multiple CPU chips in one system. On the other hand this architecture
causes performance penalties due to copy operations between the CPU chips.

Further, CPU caches are used to improve the access times to memory that is needed
regularly for the execution of a program. As the CPU caches take a large share of the chip
area, they are very costly. As a result, most modern chip designs share the largest cache, the
Last-Level-Cache (LLC), between multiple cores.

In this chapter we take steps towards quantifying the efficiency of NFV regarding packet
copying overhead at hardware level. Additionally we aim to gather the potential that lies in
reduction of the interference due to the shared LLC. We can show which factors influence
the gain of LLC scheduling in NFV deployments. We propose a scheduler which optimally
allocates the LLC in order to reduce the maximum CPU utilization of all VNFs.

The content of this chapter is partially based on an analysis of performance impacts of
CPU memory architectures presented in [6]. This work was written in close collaboration
between the first two authors. Nevertheless respective core contributions can be identified:
The core contribution of C. Sieber in the work was towards a novel metric that can be used for
quantifying the efficiency of a network function. This contribution is not used in this thesis.
The core part of the author of this thesis was on the measurements regarding overheads in the
NUMA architecture and especially overheads caused by cache exhaustion as presented in this
chapter.

Furthermore the work on LLC interference and its management was presented first in [7].

[6] C. Sieber, R. Durner, M. Ehm, W. Kellerer, and P. Sharma. “Towards Optimal Adap-
tation of NFV Packet Processing to Modern CPU Memory Architectures.” In: Pro-
ceedings of the 2Nd Workshop on Cloud-Assisted Networking (CAN). 2017, pp. 7–12.
doi: 10.1145/3155921.3158429.

[7] R. Durner, C. Sieber, and W. Kellerer. “Towards Reducing Last-Level-Cache Inter-
ference of Co-located Virtual Network Functions.” In: 28th International Conference
on Computer Communication and Networks (ICCCN). 2019.

https://doi.org/10.1145/3155921.3158429
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Figure 5.1: NUMA architecture with DDIO for the NIC-local NUMA node. DDIO allows direct
access to the local LLC. DMA is used for packets destined to the remote node. Each Core has a L1
and L2 cache, the LLC is shared between all cores on one node. A Quick-Path Interconnect (QPI) bus
with 2x19.2 GBps connects the nodes.

The structure of this chapter is as follows. First, in Section 5.1 we introduce the NUMA
architecture and its cache hierarchy. Section 5.2 introduces related work on VNF perfor-
mance using the NUMA Architecture and LLC interference management. Then we study
performance impacts of the NUMA architecture to VNF performance. More specifically,
we introduce a measurement methodology and show measurement results quantifying the
overheads associated with different VNF placements. The results show that cache exhaustion
and cache interference degrade the performance of VNFs. As a relief, we outline and evaluate
the design of an optimal LLC scheduler for static VNFs in Section 5.4. Finally we summarize
and discuss the findings of this chapter in Section 5.5.

5.1 Server Memory Architecture

The x86 architecture is the dominant CPU architecture in data centers. As NFV largely builds
upon data center technologies such as compute and network virtualization, it can be expected
that NFV environments will also consist of servers using such CPUs. In this market, Intel is the
clear leader, thus in the following we concentrate on Intel’s architecture and more specifically
on the CPUs employed in our test-bed. The testbed consists of multiple Dell PowerEdge R530
servers with Intel Xeon E5-2650 v4 2.2GHz CPUs and Intel C610 chipsets. In the following
we describe the memory architecture of x86 CPUs by example of this specific platform.
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Figure 5.2: Simplified depiction of the Intel Xeon processor’s cache hierarchy. Each core is equipped
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of 30 MByte is shared. Access times are cumulative and range from roughly 2 ns if the memory access
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5.1.1 NUMA Architecture

First we describe the NUMA architecture. As the fabrication of large chips is expensive,
multi-processor systems are used for high end servers. Each socket houses one processor with
multiple cores. The sockets are then connected using high speed bus connections.

Figure 5.1 illustrates the NUMA cache hierarchy and interconnection technologies of
the aforementioned test-bed hardware. The servers have two CPUs called NUMA node
connected via two bi-directional Intel Quick-Path Interconnect (QPI) lanes with a bandwidth
of 19,2 Gbyte/s each. An Intel Ethernet X540 Network Interface Card (NIC) is connected to
one NUMA node via PCI-express 2.1 x8. Each physical core is equipped with two exclusive
cache levels, an L1 cache of 64 KByte and an L2 cache of 256 KByte. A LLC with a capacity
of 30 Mbyte is shared among the CPU cores of a NUMA node. The caches are much faster
than the system memory. Therefore if multiple VNFs share the LLC, the performance is
degraded compared to the VNF running alone on the processor, due to interference effects.
32 GByte of DDR4 RAM capacity is attached to each node with a bandwidth of 38,4 GBytes/s.
We disabled hyper threading on our server to eliminate another source of interference.

5.1.2 Cache Hierarchy

Figure 5.2 illustrates the cache hierarchy of the Intel Xeon processor and the connection to the
RAM in more detail. Data from the main memory is accessed in chunks, denoted as cache
lines, of 64 Bytes. When a CPU core accesses a particular memory location, the caches are
checked incrementally starting from L1, through the shared LLC and up to the main memory.
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The caches of our CPU are inclusive, i.e., every line that is cached in L1 is also cached
in L2 and LLC. The shared LLC cache is 20-way associative, hence data of every memory
location can be cached at 20 locations in the LLC cache and each cache way has a capacity of
1536 KBytes.

Intel Data Direct I/O (DDIO) allows NICs to copy packets straight to the LLC-cache of
the NIC-local NUMA node, instead of doing the round-trip to the main memory and back
to the LLC-cache when the processing application tries to read the packets. However, this is
only possible for the NUMA node where the NIC is attached to, not for the remote NUMA
node. For the remote node the packets are copied to the RAM using Direct Memory Access
(DMA).

5.2 Related Work

This section presents related work performance aspects and improvements of security VNFs.
The section is structured as follows: On the one hand related work focusing NUMA archi-
tecture is presented. Additionally we introduce work related to LLC interference in NFV
environments.

5.2.1 NUMA Architecture

Some works that study the performance of NFV with focus on memory and data locality
bottlenecks regarding the NUMA architecture already exist: Authors of [81] study the perfor-
mance of Data Plane Development Kit (DPDK) in conjunction with single-root input/output
virtualization (SR-IOV). SR-IOV is a pass through I/O technology which enables Virtual
Machines (VMs) to access the NIC hardware directly. The work shows the sensibility of the
performance to the NUMA placement, although the focus of the study is on the performance
impact of the number of VMs.

Authors of [82] study the usage of DPDK for very high packet rates. Their results show
that a data rate of 100Gb/s can be achieved using a single server. For multi threaded packet
processing multi queue NICs are used. Authors evaluate the effects of different queue to core
mapping strategies. They evaluate their system in terms of packet drop rate. Cerrato et. al [83]
study the performance of VNFs using DPDK and different memory architectures. Their results
show that a DPDK-based packet processing system with a high number (>100) of tiny network
functions can deliver satisfactory throughput performance, although the experienced delay
becomes high. Authors of [84] developed a NUMA aware thread scheduling approach, that
reduces the slowdown caused by the NUMA architecture. The authors propose a performance
slowdown index based on the inter-socket overhead caused by LLC cache misses.
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Banerjee et. al [85] and Dobrescu et al. [86] show the performance impacts on VMs when
comparing the VM on the same NUMA node as the NIC versus the remote node. Their results
show a high number of cache misses when placing the VM on the remote node. They also
provide an approach for determining a NUMA aware placement in virtualized environments.
In [87], Kulkarni et al. introduce NFVnice, a framework for scheduling network functions
on a server. They look at the problem of how computing resources can be allocated to VNFs
using rate-cost proportional fair shares.

In contrast to the works above we concentrate on the performance bottlenecks in the CPU
architecture and therefore do not use any virtualization techniques to avoid side effects. In
addition we introduce a novel algorithm to quantify the load on a VNF in polling mode.

5.2.2 LLC Interference Management

LLC interference in NFV environments was not widely studied yet, nevertheless there are
some works which study LLC interference and aim to reduce LLC interference [88–91]. NFV
also emerged from cloud compute concepts, but LLC interference scheduling is studied more
in depth with respect to compute cloud environments.

A number of works considers LLC contention effects in compute cloud environments
[92–97], i.e. not considering NFV. One main difference is the performance metric employed:
this is commonly the completion time of a program. NFVs are different in nature as they are
event based, an incoming packet is an event that has to be processed. Consequently a VNF
program never completes its task and no completion time metric exists. Though some works
can also give indications to the problem we are addressing here and were helpful during our
work.

[93] studies performance degradation due to LLC interference. It is shown that programs
that have many LLC references degrade stronger while other programs that are more compute
intensive are less affected. We cover this diversity as we emulate VNFs with a larger and a
smaller working set and show that the same findings are also true in NFV environments.

Heracles [96] reduces contention between batch tasks and event based tasks in order to
improve the utilization of shared server resources. Heracles considers different resources such
as network bandwidth, memory bandwidth CPU cores and also the LLC. The approach uses
Intel Cache Allocation Technology (CAT) in order to isolate between the two types of tasks
but does not consider interference between tasks of the same type. In contrast to that we study
contention between multiple latency sensitive tasks, in our case VNF.

Another work [92] aims to build a fair LLC scheduler. Fairness is defined such that the
performance degradation due to LLC interference is equal for all programs. Authors show that
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the degradation is higher for some programs than for others and that the developed scheduler
can avoid this effect. Compared to our work there are two main differences: On the one hand
a different optimization objective is chosen and, on the other hand, authors focus on compute
workloads rather than VNF.

PACMan [97] places VMs on different servers such that the interference between the
programs is reduced. The approach first profiles the VMs and then consolidates the VMs on
different servers. The approach doesn’t consider a controllable LLC like we do and does not
optimize online, but uses the VM’s profile to optimize the VM placement. As the profile
of VNFs strongly depends on the traffic profiling is more difficult in an NFV environment.
Nevertheless VNF profiling an placement/LLC optimization would be an interesting extension
to our work, which we also consider to study more in deep in the future.

Recently authors of [88] studied the interference effects of co-located VNFs in depth.
They consider contention of network I/O bandwidth, CPU, memory and cache. With there
measurements they can show that different types of VNF cause different effects. A VNF that
only read packets but does not modify them, like a gateway, has a different patterns than a
VNF that modifies the packet, e.g. a load balancer. This is in line with our results that show
that the cache interference effects depend on the memory access patterns.

A different possibility than CAT that prevents cache interference is page coloring. Authors
of [89] study cache coloring to avoid cache interference in an NFV environment. Page coloring
enables the separation of the cache in different cache regions as pages with different colors do
not contend for the same cache ways. The authors cluster different memory buffer pages to
different colors. Different clustering methods are applied: Element-based clustering, groups
functions of the same type together, while flow based buffering uses the same page colors
for groups of flows. We are studying a different approach that does not cluster but schedules
individual VNFs independently and without any knowledge about the VNF implementation.

Veitch et. al [90] showed that Intel CAT can improve the performance of VNFs when
a noisy neighbor is present. A noisy neighbor is a VNF or program that evicts cache lines
regularly and therefore causes high interference and performance degradation to other VNF
co-located on the CPU. The authors study different static CAT configurations and show that
the latency of VNFs can be decreased with CAT. In contrast to our work they aim to show
the benefits that CAT can give in an NFV environment rather than aiming for an optimal
allocation. Nevertheless this work was an important starting point for our work.

The work of Dobrescu et. al [91] studies interference effects of software packet processing
systems (i.e. VNFs). The authors show that there exist different types of VNFs that use the
cache in different manners. Some VNF types have only a low amount of LLC accesses while
others have a high number of accesses. It is shown that these types impact the performance
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degradation when they are co-located on one CPU. This strongly supports our findings from
Section 5.4.3. On the other hand the authors do not study LLC scheduling, but suggest an
orchestration that places the VNF on different servers and CPUs such that the interference is
reduced.

ResQ [98] proposes to use CAT in order to enforce performance guarantees. The authors
show that CAT can be successfully used to enforce throughput and latency guarantees. A 2-
step offline approach with pre-profiled network functions is used. First the network functions
have to be profiled using a variety of traffic profiles. In the second step the profiles can be
used to improve the placement of the network functions and the allocation of the LLC.

NFV environments that are the target of this work are quite dynamic systems. State of the
art has shown that the performance and LLC interference depends on the type of the VNF,
the packet rate but also the traffic mix. Thus a LLC scheduler that can work without a priori
knowledge of the VNFs and the environment is desirable. Nevertheless none of the above
works shows such an scheduler, which we propose in the following. Before doing that we
analyze the performance impact of the NUMA architecture to VNF performance.

5.3 Impacts of the NUMA architecture to VNF
performance

In the following we evaluate the influence of the memory architecture on the packet receiving
performance. We evaluate the effects of the memory architecture to the packet processing
performance. The results show that copying packets between the NUMA nodes increases
the CPU load drastically and should be avoided if possible. The measurements using an
increasing Access Control List (ACL) size in memory show that the effects of CPU cache
exhaustion should be considered when designing VNFs. Additionally, we show that the CPU
cycles needed for memory access follow the Average Memory Access Time (AMAT) model.
Overall performance penalty of copying between NUMA nodes is bigger than accessing the
memory at the local socket.

5.3.1 Methodology

In this section we discuss the measurement setup, the implementation of the VNFs and how
the CPU load is measured.
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Figure 5.3: Test environment: A PC running a load generator is connected with the DUT, a x86 server.
Both devices are connected using one 10G Ethernet link.

5.3.1.1 Scenario and Test Environment

The test environment is shown in Figure 5.3. It consists of the load generation PC which
runs DPDK-Pktgen Application and the Device-under-test (DUT), which is one of the servers
described in Section 5.1.1 in detail. The PC generates packets with a limit of 2 Mpps and
sends it to the DUT with a constant rate. At the DUT the packets are processed from one of the
VNFs described in Section 5.3.1 and sent back to the PC. Fast packet processing frameworks
address this and other issues to provide high packet rates on commodity servers. We utilize
virtual network functions realized with the DPDK [99]. The DPDK is a set of libraries for
Linux to facilitate fast packet-processing on common server hardware. It was first introduced
by Intel in 2013 and since then has become a Linux Foundation Project with broadening
vendor-support.

As we concentrate on CPU metrics in this work, no packets are received by the load
generation machine, i.e. they are dropped by the NIC. Our study concentrates on CPU
performance metrics, like core utilization and cache hit rates. In consequence, all statistics
are gathered directly on the DUT. For all memory and cache related measurements we are
using Processor Counter Monitor Tool.

5.3.1.2 Minimal VNF

First we consider a minimal network function that only receives packets and does not do any
processing or forwarding. Using this implementation we can show the overhead of the NUMA
communication for packet processing without any side effects. The minimal VNF drops all
packets after receiving.
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Figure 5.4: The function chain consisting of one RX, one ACL and one TX process. Each process
runs exclusively on one core. The RX and TX processes move the packets between the respective
buffers and rings. The ACL process checks each packets against the its rule set.

5.3.1.3 Function Chain Implementation

The chain implementation consists of three separate entities as illustrated by Figure 5.4. Our
results are based on the use case of a virtualized firewall. A receiving, a sending and a
packet classification process, each running exclusively on one CPU core following the DPDK
best-practices. Two receiving rings, one for each physical NIC port, are connected to a
software switch, which writes the packet pointers to a buffer. The interconnection between
the three entities is implemented via a rte_string data structure. A rte_ring is a lock-less, fixed-
size queue implementation provided by the DPDK. The ACL classification core matches the
received packets against the loaded ACL rules and decides to either forward or drop the
packets. The sending core moves the packets to be forwarded to the TX rings of the physical
NIC ports.

5.3.1.4 Measuring CPU Load with Polling

One of the techniques that DPDK uses to increase the packet throughput is the change from
an interrupt-based packet retrieval to a polling-based packet retrieval. Usually if a packet
arrives on the NIC, the CPU is interrupted and the packet is then copied and processed by the
kernel of the operating system. DPDK does not use interrupts, instead it checks for packets
at the NIC, processes these packets and then checks again for packets in an infinite loop. As
a consequence conventional CPU utilization tools do not work as the CPU is always fully
utilized by the loop. Because of that we developed an algorithm shown in Algorithm 3 to
evaluate the current CPU load.

The main idea is to rely on the cycles reported by the CPU, as they are available without
much overhead. During the main processing loop, the cycles are read before and after the
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Algorithm 3: Measure CPU Utilization
1 OPS, REF = 0
2 cyc_last← read CPU cycles from register
3 while True do
4 cyc_before← read CPU cycles from register
5 REF + = cyc_before - cyc_last
6 cyc_last← cyc_before
7 if packets received then
8 process packets
9 cyc_processed← read CPU cycles from register

10 OPS + = cyc_processed- cyc_before
11 end
12 end

packet processing to determine the cycles needed for processing, i.e. the OPS. Additionally,
the cycles needed for each loop are measured as reference counter REF. Both counters are
reported regularly to the monitor. The CPU utilization can then be computed with the
following formula:

𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑂𝑃𝑆

𝑅𝐸𝐹

Using this definition of CPU utilization, a utilization of 100 % is reached with the maximum
possible packet rate. As can be observed in the results plotted in Figure 3, the utilization is
roughly linearly dependent on the packet rate.

5.3.2 Evaluation

In this section we evaluate the impacts of modern x86 processor architectures on NFV
performance. In the first and second part we evaluate the impact of the NUMA architecture
with the minimal VNF and the function chain. The third part evaluates the performance
degradation when using VNFs with a large working set in the memory, i.e. when the caches
of the processor are exhausted.

5.3.2.1 NUMA Impact - Minimal VNF

In the first scenario, the receiver is placed on the same node as the NIC is attached to, denoted
as node 0 in the following. In the second scenario, the receiver is placed on the remote NUMA
node, in the following denoted as node 1. Figure 5.5 illustrates the receiver’s core utilization
for packet rates from 0 to 1 million packets per second for both scenarios. Confidence intervals
are not visible as the measurements showed little variation.
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Figure 5.5: Simple Receiver: Utilization of the core for increasing packet rates and two different
placements (node 0 and node 1). The nic is attached to node 0. A 41 % increase in utilization is
observed when the receiver is executed on node 1 (20.8 % utilization compared to 14.7 %), due to the
overhead in fetching packets from the nic through the QPI.
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Figure 5.6: LLC cache hit ratio and memory read rate on node 1 for two placements of the minimal
VNF for increasing packet rates up to 1 million packets per second. The figure confirms that a
placement on the remote NUMA node without DDIO support results in cache misses and high main
memory access rates.

The figure shows that the core utilization increases by 41 % (14.7 % utilization compared
to 20.8 %) when the NIC is attached to a different NUMA node than the RX process. This is
due to overhead which is required for transferring the packets first to the remote memory and
afterwards to the processor cache. In case the NIC is attached to the same node, DDIO allows
a direct transfer to the processor cache as shown in Figure 5.1.

Subsequently we take a look at the LLC hit ratio and memory read throughput for the two
placements to confirm the source of the bottleneck described above. Figure 5.6 shows the hit
ratio (5.6a) and the memory throughput (5.6b) for packet rates up to 1 million packets per
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second. For packet rates close to zero (200 packets per second) we observe a LLC hit ratio
of 40 % for the node 0 placement and 20 % for the node 1 placement. For higher packet rates
the hit ratio increases rapidly to about 100 % for the node 0 placement and 0 % for the node
1 placement. The unexpected hit ratios for low packet rates are due to the influence of the
underlying operating system and measurement scripts. That influence diminishes with higher
packet rates. Figure 5.6b gives the memory read throughput for the node 1 placement. The
figure shows that the throughput increases linearly with the packet rate. The results confirm
the previous statement that DDIO allows a direct transfer of the packets from the NIC to the
LLC cache of the processor, which results in a 100 % cache hit ratio. In case of the placement
on node 1, the packets are transferred via DMA to the main memory of the node first. The
access by the receiver results in a cache miss for every packet and therefore the memory read
throughput increases.

5.3.2.2 NUMA Impact - Function Chain

The influence of the NUMA placement on the performance of the function chain is described
in the following. We place a chain of 3 elements on two possible locations, which results in
9 possible placements. The placements are denoted with RX-ACL-TX on the two NUMA
nodes 0 and 1. E.g. 0-1-0 indicates a placement where the RX function is put on NUMA
node 0, the ACL function on NUMA node 1 and the TX function is placed on NUMA node 0.
The NIC is connected again to node 0. With placement 0-0-0 no packet copying between the
NUMA nodes is necessary, therefore this placement is expected to be the best case. On the
other hand, placement 0-1-0 is expected to be the worst case regarding the ACL utilization,
as the packets first have to be copied to NUMA node 1 for ACL classification and then back
to node 0 for transmitting.

Figure 5.7 illustrates the utilization of the ACL core for the four placements (0-0-0, 0-1-0,
1-0-1 and 1-1-1) of the function chain. The figure shows a linear increase of the core’s
utilization for increasing packet rates up to 2 million packets per second. For 2 Mpps, the
measurements show an utilization of about 29 % for the worst case 0-1-0 and 17 % for the best
case 0-0-0. Hence, there is a penalty of roughly 73 % regarding the CPU load between best case
and worst case placement This means that NUMA-level copying caused by a non-optimized
placement has severe performance impacts.

5.3.2.3 Impact of Cache Exhaustion

Next, we discuss the performance impact of cache exhaustion on the ability of a core to process
packets. For this we keep the packet rate constant at 2 Mpps and increase the size of the ACL.
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Figure 5.7: ACL core utilization for four different placements of the firewall function chain (RX-ACL-
TX) depending on packet rates. Placement 0-0-0 represents the best case placement without remote
NUMA access and 0-1-0 the worst case where remote NUMA memory has to be accessed. The results
shows an increase in utilization for the worst case placement of roughly 73 % compared to the best
case.

We evaluate ACL sizes from 64 KB to 320 MB. For an LLC size of 30 MB, an ACL size of
320 MB results in a 10.6 times over-subscribed LLC.

Core utilization of the ACL function is caused by packet processing (copying packets,
accessing headers, etc.) and additionally by accesses to the memory for the ACL. The
performance penalty for accessing data in the memory, largely depends on the locality of the
data, i.e. if it is in a L1, L2 or LLC or if it is in RAM, as the processing core has to wait for
the data [100].

Figure 5.8 illustrates the ACL core cache hit ratios of the L2 and LLC depending on the
ACL size for the four different placements 0-0-0, 0-1-0, 1-0-1 and 1-1-1. As expected, the hit
ratio of the small L2 cache falls fast to about 0 % for all four placements. As the core does
not access the packet before the classification, the packet can not be available in the L2 cache.
Furthermore, the chance that a specific ACL rule was accessed before decreases fast as the
quotient between L2 size and ACL size gets very small.

For the LLC, we measure a hit ratio of 7 % for the worst case placements 0-1-0 and 0-1-0
where the packet is not yet in the LLC. For the best case placements 0-0-0 and 1-1-1, where
the packet is already available in the LLC due to the TX process being placed on the same
NUMA node, we measure a hit ratio of 30 %.

Figure 5.9a illustrates the ACL core utilization penalty for increasing ACL size for the
four placements of the RX, TX and ACL cores. The two horizontal lines mark the capacities
of the L2 and LLC. The Figure shows that for the 0-0-0 placement, the utilization increases
about linearly for an ACL size between the L2 and LLC capacity. For the 0-1-0 and 1-0-1
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Figure 5.8: ACL core cache hit ratios of the L2 and LLC depending on the ACL size for the four
different placements. As expected, the hit ratio of the small L2 cache falls fast to about 0 % for all four
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Figure 5.9: Impact of memory accesses on the core utilization of the ACL core. Increasing ACL size
for a constant packet rate. L2 cache capacity is 256 KB and LLC cache capacity is 30 MB. The Figure
shows the additional utilization caused by memory access. The additional utilization follows for the
placements 1-0-1 and 0-1-0 roughly the trend of a simple AMAT model (right figure). The dots in the
right figure are the measurement points of the 0-1-0 placement.

placement, the penalty first jumps from 0 % to 1.2 % and subsequently stagnates until the
LLC is exhausted. The stagnation is due to the fact that the 0-1-0 and 1-0-1 placements
allow the ACL core to use the NUMA 1 node’s LLC exclusively. Therefor, the impact of
the LLC exhaustion is only visible for larger ACL sizes compared to the 0-0-0 and 1-1-1
placements where the LLC is shared between the RX, TX and ACL cores. After the LLC
cache is exhausted, the utilization increase depends, in addition to the ACL size, on the cost
in terms of time for accessing the memory hierarchy and on the cache hit ratios.
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The behavior follows roughly the recursive AMAT model from [101]. Equation (5.1) and
Equation (5.2) define the AMAT model. 𝐻𝑥 denotes the hit time, the time the processor needs
to access the data on cache level 𝑥, if it is available in the cache. 𝑀𝑅𝑥 denotes the miss rate.
We assume in our model that one ACL rule can be fetched by one cache access and that every
packet triggers the same amount of cache accesses uniformly. Hence, we define 𝑀𝑅𝑥 as the
chance of missing the cache based on the size of the cache 𝑆𝑥 and size of ACL rule set 𝑆𝐴𝐶𝐿:
𝑀𝑅𝑥 = 𝑚𝑎𝑥(0, 1 − 𝑆𝑥

𝑆𝐴𝐶𝐿
).

𝐴𝑀𝐴𝑇 = 𝐻𝐿1 + 𝑀𝑅𝐿1 · 𝐴𝑀𝑃𝐿1 (5.1)

with 𝐴𝑀𝑃𝑥 as average miss penalty of cache level 𝑥:

𝐴𝑀𝑃𝑥 = 𝐻𝑥+1 + 𝑀𝑅𝑥+1 · 𝐴𝑀𝑃𝑥+1 (5.2)

The CPU load 𝐿𝐶𝑃𝑈 for accessing data depending on the packet rate 𝑅𝑃 can then be computed
with Equation (5.3), where 𝑓𝐶𝑃𝑈 is the CPU frequency.

𝐿𝐶𝑃𝑈 = 𝐴𝑀𝐴𝑇 · 𝑅𝑃

𝑓𝐶𝑃𝑈

(5.3)

Due to performance optimizations and pipelining in modern CPUs, the timings can not be
named easily, we fitted the the cache timings to the measuring results using least squares
method. Figure 5.9b illustrates the memory access penalty as a function of the ACL size 𝑆𝐴𝐶𝐿

according to the AMAT model. The dots show the measurements with placement 0-1-0, the
line denotes the model. From the figure follows, that the core utilization penalty in general
follows the AMAT model, a small offset is visible for smaller ACL sizes < 30 𝑀𝐵.

To summarize the findings, we can see that the additional CPU utilization caused by cache
exhaustion is clearly visible but smaller than the NUMA penalty (roughly 15 % vs 7 %).

5.4 NFV Last Level Cache Scheduler

In the last section we saw that VNF is sensitive to the performance of the CPU caches. Within
the NFV concept resources are virtualized and multiple VNFs are sharing one server. This
pattern causes interference between the consolidated VNFs at different places in the shared
system. In this section we concentrate on one specific interference effect caused by the
co-location of VNFs on one single CPU chip: the LLC interference. In modern multi-core
processors, some of the on-chip resources such as the LLC are shared between all cores,
which causes interference. To resolve this issue some chip manufacturers like Intel [102] or
Qualcomm [103] are providing means to explicitly allocate shares of the LLC to specific cores
and processes.
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Figure 5.10: LLC scheduling in the bigger picture of NFV Management and Orchestration (MANO).
Horizontal scaling of VNF instances for a specific service, e.g., a firewall, is performed by the VNF
manager through the VIM. Through the routing/load-balancing functionality of the network, the VNFM
dictates which fraction of the traffic is assigned to a specific VNF. Network elements then forward and
distribute traffic to the running VNFs. The VNFs have to share the available LLC and only part of the
working set S of each VNF can be kept in the LLC.

We first describes the role of LLC scheduling in the bigger picture of NFV. Afterwards, a
brief description of the Intel Cache Allocation Technology and the cache monitoring mech-
anisms provided by Intel is given. Then we give the memory model that we used to derive
our optimal scheduler. Finally we show the gains that can be achieved with the introduced
scheduler.

5.4.1 NFV MANO

Figure 5.10 depicts the LLC scheduler in the bigger picture of NFV Management and Orches-
tration (MANO). The architecture has been proposed by the ETSI NFV working group [104].
The architecture describes the components required in all stages of the life-cycle of a VNF,
from the definition in terms of deployment and operational requirements, to the allocation and
the release of the required resources. The proposed LLC scheduler can be implemented as
part of the Virtualized Infrastructure Manager (VIM), the MANO component which manages
the available resources of the physical infrastructure. With the presented scheduler, the VIM
can optimize the distribution of the LLC to the active VNFs on the physical server. The
amount of memory that is required from the VNF to fulfill its functionality is called working
set. The working set consists of the binary and as well the state of the VNF such as tables,
rules etc.
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Commonly, a CPU core is assigned exclusively to a VNF to benefit most from processor
register, L1 and L2 caching [105]. A load balancer on the data-plane, either in the network or
in software on the host, distributes the network packets to the available instances. The goal of
such packet load balancers is to keep the utilization homogeneous between the instances. Down
and up-scaling of VNFs is done by the Virtualized Network Function Manager (VNFM) by
stopping or starting additional VNF instances [106] in order to improve resource utilization.
For example the VNFM may add a new instance at an average utilization of 90 % for all
instances and remove an instance if the average utilization of all cores drops below 60 %.

5.4.2 Cache Allocation Technology

The Intel CAT [102] enables the allocation of the LLC to specific CPU cores. The allocation
can be done shared, i.e., multiple cores share specific parts of the cache, or exclusively, i.e.,
parts of the cache are allocated to specific cores. In detail, CAT introduces 16 Classes of
Service (COS) for CPU cores. Each core has to be assigned exactly to one class, but multiple
cores can be assigned to the same class. The LLC is organized in cache ways, each cache
way has a size of 1536 KByte. A bit-mask per class configures which of the available 20
cache ways can be used by which COS. In a nutshell, CAT enables the allocation of 20 LLC
chunks to specific CPU cores. Due to limitations of the technology CAT only restricts write
accesses to the LLC. This means that a core that had access to a larger share of the cache
before a reallocation can still access cached data stored in ways that are allocated to a different
COS. This restriction causes an transient behavior of the cache after CAT changes. A detailed
evaluation of the transient phase of the LLC is done in Section 5.4.5.3.

5.4.3 Memory Access Model

The sensitivity of VNFs to LLC contention, and also the interference caused by a VNF,
depends on a number of factors, such as the size of the accessed memory range and also how
often each memory location is accessed. In this section, we introduce a memory model that
serves us for the derivation of the scheduler algorithm and which led us in the design of the
memory access emulator.

A VNF, or any program, accesses different data with different frequencies, e.g., parts
of the binary are accessed often while some other data might only be accessed for startup.
Theoretically, we split the complete allocated memory of a VNF in chunks, e.g., each chunk
is 64 Bytes large as in the cache lines. With this abstraction we can assign every chunk of
memory a distinct access frequency and we can sort the chunks in decreasing order by the
access frequency. In this work we denote this as access pattern.
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Figure 5.11 abstractly visualizes three different possible access patterns (P1, P2, P3).
The x-axis represents the different memory chunks and the y-axis of the plot represent the
corresponding access frequency. Pattern P1 represents a program that accesses all its memory
chunks with the same frequency. This is not realistic, but resembles the behavior of a memory
stressing benchmark. Pattern P2 is more fitting to VNFs: some chunks are accessed frequently
while others are only accessed seldom. It is known that network traffic commonly has elephant
flows and mice flows. If we imagine a router with a routing table in memory, the entries that
are matched by elephant flows are accessed more often than mice flow packets. This could
cause an access pattern like P2. We do not want to restrict ourselves to specific patterns, as
there might also be patterns like P3 that do not have smooth transitions, but rather a step at
some point.

In the figure we also sketched how this relates to the caches. As the caches mainly work in
a Least-recently-used (LRU) manner, this pattern translates to hit rates of the caches. The hit
rate of a cache measures what ratio of the accesses to the cache were served from the cache.
Thus the hit rate of the LLC is proportional to the following formula:

𝐿𝐿𝐶 𝐻𝑖𝑡𝑟𝑎𝑡𝑒 ∼ 𝐴𝑟𝑒𝑎 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶𝑎𝑐ℎ𝑒

𝐴𝑟𝑒𝑎 𝑛𝑜𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶𝑎𝑐ℎ𝑒

In the figure we marked the area within cache as A1 and the area not within cache as
A2 for pattern P1. With CAT we can influence how much LLC each VNF can use. In the
depicted case the cache is more useful to the VNFs with P2 and P3 than the VNF with P1 as
they have a higher access frequency in this region. Further, as the LLC is limited, not all of
the data accessed by the VNF might fit even in the complete LLC. As a consequence, a hit
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rate of 100% is only possible if and only if the size of the memory that is accessed by the VNF
is smaller than the complete LLC. This memory is often referred as working set, meaning the
set of data that is used by the VNF. The working set can be equal to the allocated memory,
but it can also be smaller, e.g. if some data is only used for the initialization of the VNF. Note
that the optimal allocation also depends on the optimization objective of the scheduler and
thus cannot only be derived from the access pattern. Further, the access pattern depends also
on the network condition, e.g., an Intrusion Detection System (IDS) serving highly diverse
traffic has a different access pattern than an IDS that only filters a single connection [88].

The CPU utilization is the share of the CPU cycles where the CPU is active, i.e., not in
a sleep state. Besides actual processing cycles the CPU is also active while waiting for data.
Consequently, the CPU utilization increases for the same number of executed instructions if
the 𝐿𝐿𝐶 𝐻𝑖𝑡𝑟𝑎𝑡𝑒 decreases.

In order to emulate different possible behaviors of VNFs, we propose simplified memory
access patterns which can be described with the allocated memory 𝑀 , the maximum access
frequency 𝑅 and a distribution parameter 𝛼. The access pattern can be described with the
function 𝑟 (𝑚), which is the access rate at memory location 𝑚:

𝑟 (𝑚) = 𝑅 · (𝛼 + 1) · (1 − 𝑚/𝑀)𝛼 𝑤𝑖𝑡ℎ 𝑚 ∈ [0, 𝑀] (5.4)

The parameter 𝑅 models the packet rate, as the memory access rate of VNFs is propor-
tional to the packet rate. 𝑀 is the working set in both the emulation and for real VNFs. Finally
parameter 𝛼 describes a probability distribution that allows us to emulate a range of different
access patterns. By setting 𝑅 = 1 and 𝑀 = 1 in 𝑟 (𝑚), we get the underlying probability dis-
tribution, with the Propability Density Function (PDF) 𝑓 (𝑥) and the Cumulative Distribution
Function (CDF) 𝐹 (𝑥):

𝑓 (𝑥) = (𝛼 + 1) · (1 − 𝑥)𝛼 (5.5)

𝐹 (𝑥) = 1 − (1 − 𝑥)𝛼+1 (5.6)

Figure 5.12 shows the PDF and CDF for different parameters 𝛼. If we chose for example
𝛼 = 0, the distribution becomes uniform and we get an uniform access pattern with constant
rate 𝑅 for all memory positions 𝑚 ∈ [0, 𝑀]. This kind of access pattern is also sketched
in Figure 5.11 as P1 (solid line). For other values of the parameters 𝑅, 𝑀 and 𝛼, we obtain
different access patterns.

We only considered a quasi-static set of VNFs such that the access pattern 𝑟 (𝑚) is not time
dependent. This means that the VNFs and the traffic pattern of the VNFs does not change
over time. This enables us to study the potential gains of LLC scheduling in deep.
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Figure 5.12: CDF and PDF of the developed memory access distribution.

5.4.4 Optimal Scheduler Design

In this section we first describe the developed algorithm which determines the optimal allo-
cation for the static case.

5.4.4.1 Optimization objective

There are different optimization objectives possible. We imagine to use the scheduler in an
NFV environment enabling scaling as described in Section 5.4.1. In this environment the
NFV orchestration would scale up, i.e., launch new instances, if some threshold is exceeded.
As a result it makes sense to reduce the CPU utilization and thus make the scaling unnecessary,
consequently saving resources. Hence, we choose to minimize the maximum CPU utilization
of all cores. But the objective could also be, e.g., to minimize the sum of utilizations of
all cores, or the reduction of memory access delays for selected VNFs. Furthermore, with
a CPU utilization of 100%, packet loss is caused that should be avoided. Summarizing, an
optimization towards the reduction of the maximum CPU utilization of all cores is desirable.

5.4.4.2 Algorithm

Algorithm 4 defines the algorithm that finds the LLC allocation which minimizes the maximum
CPU utilization of all cores (𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛∗). The system is initialized with the default allocation,
i.e. all cores compete for the LLC.𝑊𝑐 denotes the number of exclusively assigned cache ways
of core 𝑐. No core has exclusive cache ways in the beginning (line 2). Before starting the
algorithm loop, the upper bound for the minimal maximum CPU utilization of all cores 𝑍

is 1, as this is the maximum value of utilization. The algorithm also remembers the current
allocation to cover cases where the initial allocation is already the optimal allocation (line
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Algorithm 4: Min-max scheduler determining the LLC allocation that minimizes
the maximum CPU utilization
1 initialize: all cores share the LLC;
2 𝑊𝑐 = 0 ∀𝑐;
3 𝑍 = 1;
4 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛∗ ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛;
5 while

∑
𝑐𝑊𝑐 < 𝐿𝐿𝐶𝑡𝑜𝑡 do

6 𝑐∗ = arg max𝑐 (𝑈𝑐);
7 if 𝑊𝑐∗! = 0 then
8 𝑊𝑐∗ ← 𝑊𝑐∗ + 1;
9 end

10 else
11 𝑊𝑐∗ ← ⌊𝐿𝐿𝐶𝑐∗/1.5𝑀𝐵𝑦𝑡𝑒⌋
12 end
13 if max(𝑈𝑐) < 𝑍 then
14 𝑍 = max(𝑈𝑐);
15 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛∗ ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛;
16 end
17 end

4). The following steps are repeated until all possible cache ways are distributed. First the
core that has currently the highest CPU utilization is determined, this core is called 𝑐∗. If this
core was already scheduled before, i.e., there are already cache ways exclusively assigned,
the number of exclusive cache ways is increased by 1. Otherwise it is measured how much
LLC the core currently uses and this value is used to determine an initial number of ways.
Each cache way corresponds to 1.5 MB of LLC, as the number of ways has to be integer
the algorithm applies the floor operation. In most cases the LLC for the initialized core is
increased in a subsequent step. The floor operation is a conservative choice in this case, as it
guarantees that not too many cache ways are allocated.

After each schedule update, the algorithm checks if the step resulted in a new upper bound
𝑍 . In this case, the new bound and the new allocation are saved (lines 14 & 15).

The algorithm assigns at least one cache way in each step until all cache ways are assigned.
In our set-up the LLC is 20-way associative, at minimum 2 ways must be left for cores without
exclusive ways. This results in a maximum of 18 steps for the algorithm to find the optimal
allocation. In general the algorithm is of linear complexity with the number of cache ways.

5.4.4.3 Example Run

Figure 5.13 shows one example run of the scheduler as presented in Algorithm 4. The upper
graph shows the CPU utilization of the used cores, the lower one shows the LLC occupation
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Figure 5.13: CPU utilization and LLC occupation of an exemplary scheduler run with 5 cores. The
duration of each step is 12 seconds.

of each core. The LLC Occupation metric measures how much LLC each core is currently
using.

At time 𝑡 = 0 𝑠 the system is initialized with the LLC shared by all cores.Before doing
anything the scheduler determines the CPU utilization of all cores using PCM as described in
section 5.4.5.2.

In the first LLC allocation update at 𝑡 = 13𝑠, the highest core, in this case Core 3, is
assigned exclusive ways. The number of ways for this first allocation is computed as in line
11 of Algorithm 4. As Core 3 can use less LLC than before, the CPU utilization of Core 3 is
increased after this step. After this update, the scheduler waits until the CPU utilization has
stabilized and measures again the CPU utilization of the Cores.

The next schedule update is done at 𝑡 = 26 and increases the LLC of Core 3 by one
way. After further updates at 𝑡 = 38 and 𝑡 = 59, the CPU utilization of Core 3 is below the
utilization of Core 5, thus Core 5 is now scheduled in the updates at 𝑡 = 62, 𝑡 = 74 and 𝑡 = 86.

This scheme continues until the optimum allocation is reached at 𝑡 = 147 after 12 steps of
the algorithm. It can be seen that we reached an absolute gain of 10.5% with respect to the
maximum CPU utilization of all cores in this run. This is the difference between the utilization
of core 3 in the beginning (83%) and the utilization of core 7 with the final allocation (72.5%).
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Table 5.1: Notation

Symbol Description
𝑐 ∈ {0, ...𝐶 − 1} core number
𝐶 number of cores of the CPU
𝐿𝐿𝐶𝑐 LLC allocation to core 𝑐

𝐿𝐿𝐶 =


𝐿𝐿𝐶0

...

𝐿𝐿𝐶𝐶−1

 LLC allocation of the CPU as a vector

𝑈𝑐 (𝐿𝐿𝐶𝑐) ∈ [0, 1] CPU utilization of core 𝑐

𝑓 (𝐿𝐿𝐶) = 𝑚𝑎𝑥
𝑐
(𝑈𝑐 (𝐿𝐿𝐶𝑐) Maximum CPU utilization of all cores

𝐿𝐿𝐶𝑡𝑜𝑡 Total Last Level Cache available

5.4.4.4 Optimality Discussion

The scheduler minimizes the maximum CPU utilization of all cores for the static case. The
CPU utilization of a core depends only on the allocated LLC if the memory access pattern is
static. Thus the CPU utilization of core 𝑐 is given with the function 𝑈𝑐 (𝐿𝐿𝐶𝑐) where 𝐿𝐿𝐶𝑐

denotes the share of the LLC usable by core 𝑐. The maximum CPU utilization of all cores is
then:

𝑓 (𝐿𝐿𝐶) = 𝑚𝑎𝑥
𝑐
(𝑈𝑐 (𝐿𝐿𝐶𝑐)) (5.7)

𝐿𝐿𝐶 is a vector with length 𝐶, that denotes the current allocation of the LLC to the cores.
Therefore, our optimization problem is:

𝑚𝑖𝑛 𝑓 (𝐿𝐿𝐶)
s.t.

∑︁
𝑐

𝐿𝐿𝐶𝑐 ≤ 𝐿𝐿𝐶𝑡𝑜𝑡 ,∀𝑐

𝐿𝐿𝐶𝑐 ≥ 0 ,∀𝑐
(5.8)

The constraints are due to the limitation of the total LLC of the chip 𝐿𝐿𝐶𝑡𝑜𝑡 and that the
LLC allocated to one core must be non-negative.

The CPU utilization 𝑈𝑐 (𝐿𝐿𝐶𝑐) is monotonically decreasing with 𝐿𝐿𝐶𝑐. More cache can
only decrease the CPU utilization, as the CPU has to wait less for data. This means that the
minimum 𝑓 ∗ must be on the edge of the feasibility space, as we could otherwise increase
𝐿𝐿𝐶𝑐 for any 𝑐 and at least reach the same or a lower value of 𝑓 .

The gradient of 𝑓 , ∇ 𝑓 is a vector with ∇ 𝑓𝑐 =
𝑑𝑓

𝑑𝐿𝐿𝐶𝑐
. 𝑓 in some point 𝐿𝐿𝐶◦ is the

maximum of the functions 𝑈 (𝐿𝐿𝐶𝑐) in this point. It only depends on one dimension 𝑐◦ =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑐

(𝑈 (𝐿𝐿𝐶𝑐)).
Consequently it holds:
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Table 5.2: Experimental parameters used for evaluation.

Parameter Range Description
𝛼 {0.3, 1.01, 2.5, 5} Distribution parameter
𝑀 [1, 30] [MB] Working set size
𝑅 [2000, 7000] [𝑠−1] Access rate
𝐶 5 Number of VNFs
𝑈𝑐 40% < 𝑈𝑐 < 90% CPU utilization constraints

∇ 𝑓𝑐 =

𝑔, if 𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑐

(𝑈𝑐 (𝐿𝐿𝐶𝑐))

0, otherwise
(5.9)

As all functions 𝑈𝑐 are monotonically decreasing, we can state that 𝑔 ≤ 0. Note that we
do not consider edge cases where the utilization of two cores is exactly equal, as they are
obviously very rare in reality.

In each step the scheduler increases 𝐿𝐿𝐶𝑐 for the core with the highest value and decreases
it for the not scheduled cores. This means that the scheduler is moving along a line on
the edge of the feasible space in every step. It always increases the LLC in dimension 𝑐 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑐 (𝑈𝑐 (𝐿𝐿𝐶𝑐)) and reduces it for the not scheduled dimensions 𝑐− ∈ 𝑁𝑆 ⊂ {0, ...𝐶−1}
and thus the scheduler is doing a gradient descent on the surface of the feasible space.

The step size is set to the size of one LLC way, which means we could overshoot in the
case the step before was closer to the minimum. The scheduler takes this into account by
saving the last valid 𝑍 (𝑍 can never increase due to the conditions). Additionally, we argue
that due to the characteristics of 𝑓 and ∇ 𝑓 , in every point the final Z is close (within one step)
to the global minimum 𝑓 ∗. We can not guarantee to reach 𝑓 ∗ as the scheduler uses integer
number of ways for scheduled cores.

5.4.5 Evaluation

This section first discusses the experiment design used for evaluation. First, we present the
results that indicate a transient phase of the LLC after an update. Secondly the convergence
of the scheduler is presented and finally, we show the scheduler gain depending on different
parameters of the co-located VNFs.
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5.4.5.1 Experiment Design

In order to evaluate the developed LLC scheduler, we evaluate 4000 scheduler runs. Depending
on how many steps of the algorithm are needed each run has a duration of 150-200 s with one
measurement point per second yielding an extensive data set.

One example scheduler run is shown in Figure 5.13. In every run, 5 VNFs are active
and each one running pinned to one core. As explained before we consider a static scenario,
i.e. within one run, the CPU utilization is constant, if the LLC allocation is not changed.
Obviously this assumption is not realistic in real deployments, as e.g. the packet rate changes
continuously, but it enables us to analyze the scheduler gain and the inertial behavior of the
CPU utilization after an LLC allocation update. We emulate VNFs using a C++ program
running inside a VM virtualized with KVM. The program is allocating a table of size 𝑀 and
accessing the memory with rate 𝑅 using the distribution given in Equation 5.6. The code for
the emulation is published for reference 1.

The scenarios are generated such that they are in accordance with the NFV MANO
architecture that is described in Section 5.4.1. Hence, no VNF should be underutilized or
overloaded. As a result, all VNFs in one scenario have a CPU utilization in the interval
[40%, 90%]. The runs are generated as follows. The settings of each emulated VNF namely
𝑅 and 𝑀 are chosen randomly within the interval shown in Table 5.2, 𝛼 is chosen randomly
from the set shown. Note that 𝛼 = 1.01 is used, as otherwise with 𝛼 = 1 Equation 5.6 is
much less complex to compute and thus the emulated VNF behaves different. Afterwards the
5 chosen VNFs are executed on our measurement server and the CPU utilization is measured.
If the CPU utilization of an VNF is not within the defined interval 𝑅 is increased or decreased.
Then the CPU utilization is measured again. This pattern is repeated until the CPU utilization
of all VNFs fall into the defined interval.

5.4.5.2 Monitoring

Intel processors provide low-level cache statistics via performance counters. These low-level
counters can be read and interpreted using the Processor Counter Monitor (PCM) tool [107].
The developed algorithm uses the following metrics provided per core: current CPU utilization
and LLC occupation.

5.4.5.3 Transient phase of the LLC

As we are dealing with a real system, the CPU utilization is always not fully constant over
time. Reasons for this can be, e.g., periodic tasks the operating system or the hypervisor is

1VNF emulation source code: https://github.com/tum-lkn/vnf-emu
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Figure 5.14: Transient phase after an LLC allocation update: Difference between the CPU utilization
at a certain time after the update with respect to the median utilization of the CPU utilization in the
interval [7,10].

performing. More importantly, the CPU utilization shows a transient behavior after an update
of the LLC allocation: Cache lines are only evicted if other data not cached yet, is accessed by
the CPU. Furthermore, the CPU gain from LLC cache only shows if the cache line is accessed
after that a second time, as only then the accessing delay is reduced.

Figure 5.14 visualizes this transient phase. Results were gathered from 500 scheduler
runs with one measurement point per second, each scheduler run needs multiple steps and
thus yielding multiple transient phases. We define the median of the CPU utilization in the
interval [7,10] s after a reallocation of the LLC as baseline or true utilization after the update.
Next we compute the difference of each measurement value with the baseline and show the
distribution as a contour plot showing the percentiles of the outcomes. It can be seen that the
CPU utilization can differ significantly from the baseline for the first four seconds, after this
the CPU utilization clearly stabilizes.

In line 6 of Algorithm 4, the scheduler measures the current CPU utilization of all cores.
As this measurement must not be influenced by the last iteration of the scheduler, the algorithm
has to wait until the CPU utilization is in a steady state. As we are aiming for the optimal
allocation, we used a conservative time of 12 seconds for each step. Though in real systems
one might trade off the step time for a faster scheduler convergence.

5.4.5.4 Scheduler Convergence

The presented scheduler is not optimized to converge quickly, rather than that it is designed
to find the optimum. Nevertheless, we evaluate how long it takes until the optimum is found.
As the scheduler gives exclusive ways until all cache ways are distributed, the maximum is
18 steps (as 2 ways have to be kept back for all other cores without exclusive ways). In our
measurements this does not happen, as the scheduler assigns already more than one way to a
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Figure 5.15: Number of steps the scheduler needs until the maximum is found. The scheduler needs
on average 12 steps until all ways are distributed.
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Figure 5.16: Relation between gain and difference between the CPU utilization of the highest core
and the mean of the CPU utilization of all cores

core if the core gets exclusive ways for the first time (line 11) based on the current LLC usage
in the shared case. Figure 5.15 shows the histogram of the frequency for a certain number of
steps. It can be seen that for most of the runs 11 to 14 steps where necessary. On average the
scheduler needs about 12 steps to find the optimum allocation.

5.4.5.5 Scheduler Gain

Next we evaluate how much gain can be expected from such an approach in a real system. In
order to analyze this we evaluate 4000 different sets of 5 VNFs and determine the optimal
allocation with our scheduler. From this sets we compute the gain as:

𝐺𝑎𝑖𝑛 = 𝑚𝑎𝑥(𝑈𝑐)𝑆ℎ𝑎𝑟𝑒𝑑 − 𝑚𝑎𝑥(𝑈𝑐)𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑
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Figure 5.17: Relation between gain and the (mean) allocated memory of the scheduled VNF(s)

where 𝑚𝑎𝑥(𝑈𝑐)𝑆ℎ𝑎𝑟𝑒𝑑 is the maximum CPU utilization with no LLC allocation (LLC is
shared) and 𝑚𝑎𝑥(𝑈𝑐)𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 is the maximum CPU utilization in the optimized case.

Figure 5.16 shows the gain with respect to the difference between the maximum CPU
utilization and the mean utilization for the shared allocation. The linear fit line shows that
for every percent of difference between max and mean one can expect 0.4 percent more gain.
In the extreme case, where the maximum is equal to the mean, the scheduler cannot achieve
anything as a reduction of the utilization of one core increases the utilization of other cores.
This means that a real system needs a certain degree of variability between the VNFs running
on one server, otherwise no scheduling is possible. Consequently setups that deploy only
equal VNFs on one server and additionally load-balance between the instances, such that the
utilization is as well equal for all VNFs, cannot reduce CPU utilization with LLC scheduling.

On the other hand, the outliers without gain show that this metric can not solely explain
the achievable gain, but also depends on other metrics. One of these metrics is the allocated
memory of the VNFs. The scheduler increases the LLC share for the core that has the
maximum CPU utilization. If the complete working set already fits into the share of the LLC,
a further increase of the allocated LLC does not yield any further gain. As a consequence
it can be expected that LLC scheduling works worse for VNFs with a small working set.
Thus we analyze the influence of the mean allocated memory of the scheduled set to the gain.
We define the scheduled set as the VNF(s) that have exclusive ways in the final state of the
scheduler. This means that each of the VNFs in the set is pinned to a CPU core which had the
highest utilization in at least one scheduler interval.

Figure 5.17 shows how the allocated memory of the VNFs influence the gain. It can be
seen that some minimum memory of around 6 MB per VNF is necessary to achieve gains.
As we are using 5 VNFs in our experiments, the total allocated memory sums up to 30 MB
which is the capacity of the LLC. This makes sense as a lower amount of memory doesn’t
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cause contention. As the scheduler is designed to reduce contention effects, it is not useful
without contention.

Between 6 and 12 MB the median gain quickly increases and flattens out for higher
amounts of memory. Consequently VNFs that do not store much data, like for example
a stateless firewall that only needs to access its ACL regularly cannot reduce their CPU
utilization. On the other hand, due to the limited size of the LLC (the LLC is 30 MB in total),
the achievable gain is also limited even for a large working set size. A VNF requiring 30 MB
of data can never cache everything in the LLC as this would leave the other VNFs without
cache, which is technically impossible due to restrictions in the CPU chip architecture.

5.5 Summary and Discussion

With the move from dedicated hardware to multi purpose hardware for packet processing
applications, performance aspects of this hardware are getting increasingly important. In
this chapter we evaluate the effects of the memory architecture to the packet processing
performance. The results show that copying packets between the NUMA nodes increases
the CPU load drastically and should be avoided if possible. Overall performance penalty of
copying between NUMA nodes can be up to 73%. The measurements using an increasing
ACL size in memory show that the effects of CPU cache exhaustion should be considered when
designing security VNFs. Additionally, we show that the CPU cycles needed for memory
access using caches follow the AMAT model. This means that cache exhaustion increases the
load on the CPU.

As multiple CPUs share the same LLC, the performance penalty is also existing for VNFs
that do not exhaust the LLC alone. To mitigate this, we introduce an optimal LLC scheduler for
NFV environments. We show that LLC scheduling can reduce the maximum CPU utilization
of one NFV server by up to 20%. How much gain can be achieved depends on the employed
VNFs and their traffic. As the CPU utilization of one VNF is decreased by increasing the
allocated LLC of this VNF, the other VNFs that are co-located on the same server can use
less LLC. Consequently this increases the CPU utilization of the co-located VNFs. Thus in
order to enable the scheduler to reduce the overall maximum CPU utilization the difference
between mean and maximum CPU utilization of all cores must not be too small. We show that
the working set size of the scheduled VNFs must be large enough to lead to a LLC contention.
Otherwise, with no contention present, LLC scheduling cannot bring any gains as every VNF
can use sufficient LLC.

We have seen that the transient phase of the LLC is around 4 s. Thus the duration of one
step must be about 4 s, as otherwise the measurement for the next step is faulty. In addition
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on average we need 12 steps to find the optimum, thus the time the scheduler needs to find the
optimum is about 48 s. Thus, the developed scheduler algorithm can only be used in static
cases, i.e. traffic and VNFs must not change for some time. This assumption does not old
in many real applications, as network traffic is known to be dynamic over time. Therefore,
based on the static scheduler an adaption is needed, to be able to cope with dynamics in
network traffic. Internet traffic changes in small scales over seconds but also in larger scales
over minutes and hours. The shown approach can not work on a second scale as already the
transient phase, i.e. the time until effects of the LLC allocation are effective is around 4 s.
However, the shown algorithm can cope with more long-term changes.

The shown algorithm assigns more cache to the highest loaded VNF in each step until all
cache is assigned. If the load changes it must be restarted with a completely shared allocation.
This is a good starting point if the load and the VNFs have changed completely. In real cases
the load will change slightly over time, so a better approach is needed. An approach that is
extended with a mechanism that is also able to free up already assigned cache by removing
it from lesser loaded cores would improve this. Otherwise the algorithm can stay the same.
Nevertheless, the presented algorithm shows the necessary preconditions for effective LLC
scheduling in terms of working size set and diversity of the VNFs.





Chapter 6

Connection Offloading using Software
Defined Networking

The security architecture proposed in this work supports an omni-present fine grained access
control throughout the network. Isolation between the virtual networks is provided using
Software-Defined Networking (SDN). On the other hand Network Function Virtualization
(NFV) is used to provide stateful and application layer filtering. Thus the complete traffic
shall be filtered which causes high load on the Virtualized Network Functions (VNFs). As
a relief, we propose in this chapter an offloading method that combines SDN and NFV. It
provides a firewall that secures all connections between any hosts in the network via offloading
specific flows to fast hardware processing on SDN-based network nodes.

With the move to NFV, network functions are realized in software, based on commodity
hardware. On the one hand, costs are reduced and flexibility is increased, as virtualization
techniques can be used and hardware resources are shared. On the other hand, VNFs may
provide lower throughput when compared to hardware based functions, as they are not ben-
efiting of specific hardware features. In the chapter at hand and the following chapter, we
explore combinations of hardware and software network functions.

The Network Function Virtualization Infrastructure (NFVI) is a data center like centralized
infrastructure, hosting the virtualized Firewall (vFW) instances. If every connection is filtered
using the vFWs the capacity of the links to the NFVI must be high. Otherwise a few rate
intense flows can lead to capacity bottlenecks and poor performance. One solution is to offload
the connection filtering to the SDN switches and using the direct path. Offloaded flows are
filtered in SDN hardware, reducing the resource consumption in the NFVI and in the network
by avoiding detours to the NFVI.

In [5] we showcased this solution with a demonstrator using Linux netfilter as a vFW.First
the vFW acts like a normal stateful firewall. With the first packet an entry is added to the
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Figure 6.1: Network Function Offloading in an SDN/NFV Environment. The virtual firewall (vFW)
filters the packets. As the infrastructure is centralized, a detour is caused for internal connections.
After connection initiation the direct path can be used. The packets are still filtered by hardware, but
only connections with high data rate should be offloaded to keep the rule count in the hardware tables
small.

connection table. Subsequent packets are then checked if the protocol’s state machine is
followed. In the demonstrator the offloading decision was realized by detecting the current
run time of a connection. If one connection has been active a certain duration the vFW a flow
is offloaded and a message containing the flow five-tuple is sent via the northbound API to
the SDN controller. The SDN controller then installs the necessary rules in the SDN switches
and the load on the vFWs is reduced.

This simple approach is clearly in need of improvement as it does neither consider the
table size nor it is able to offload connections from the first packet. But it shows that already
a simple approach is of benefit with respect to the achievable data rate.

Due to the high number of connections in the network and limited size hardware tables,
not every connection can be offloaded. The presented offloading algorithms can be used to
decide which connections should be offloaded to the SDN switches.

We evaluate the offloading decision based on the number of rules that are needed and how
much of the overall data rate can be offloaded. The better the offloading decision is, the higher
the rate that is handled in hardware while keeping the table size small enough. Furthermore
elephant flow detection is well known to introduce large monitoring overheads, that must be
taken into account when designing a solution.

Nevertheless, a vFW has more capabilities in terms of filtering the packets, if compared
to SDN network nodes. Software functions can be used for stateful packet filtering or even
application layer filtering of the traffic. SDN devices can provide stateless filtering, but can
not track the state of a protocol nor inspect the packets itself. That is SDN provides stateless
firewalling only. Consequently only flows that do not need higher layer filtering can be
offloaded.
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Further, we belief that the results can be applied in a more general way than our motivated
SDN/NFV firewall use case. Firstly offloading is not limited to firewall VNFs but can also
be applied to other network functions. Depending on the hardware support, offloading can
be used for a wide range of network functions. Secondly the offloading can not be done only
with SDN devices, the same decision mechanism can also be applied for hardware that is
using e.g. P4 [108] or even Network Interface Cards (NICs) that provide additional matching
capabilities as studied in the next chapter of this thesis.

The offloading approach using a simple offloading algorithm that offloaded flows with
a longer runtime than some threshold was demonstrated in [5]. One focus of the author of
this thesis was, among other topics, on the offloading approach. The machine learning based
offloading algorithm and the comparison to a sampling based approach was presented first
in [8].

[5] B. Pfaff, J. Scherer, D. Hock, N. Gray, T. Zinner, P. Tran-Gia, R. Durner, W. Kellerer,
and C. Lorenz. “SDN/NFV-enabled Security Architecture for Fine-grained Policy
Enforcement and Threat Mitigation for Enterprise Networks.” In: Proceedings of
the ACM SIGCOMM Posters and Demos. 2017, pp. 15–16. doi: 10.1145/3123878.
3131970.

[8] R. Durner and W. Kellerer. “Network Function Offloading through Classification
of Elephant Flows.” In: Under Submission in Transactions on Network and Service
Management (TNSM) (2019).

The rest of this chapter is structured as follows:

In Section 6.1 related work in the fields of network function offloading, elephant flow
detection and traffic classification is discussed. Section 6.2 introduces the machine learning
approach, the evaluated algorithms and shows a way how the data can be gathered. Afterwards
the sampling based approach is introduced in Section 6.3. In Section 6.4 and 6.5 both
approaches are evaluated in terms of possible share of the offloaded rate and necessary table
size. Furthermore different parameters are studied in order to fine tune the approaches. We
discuss the findings and compare both approaches directly in Section 6.6.

6.1 Related Work

In this section we give an overview of the related work in the literature. This can be categorized
in three fields:

Some works introduce SDN offloading techniques for network functions, but are not using
machine learning for the decision. Further there is related work in the field of elephant flow

https://doi.org/10.1145/3123878.3131970
https://doi.org/10.1145/3123878.3131970


90 Chapter 6. SDN Offloading

detection. Finally other works examine the usage of machine learning for classification of
network traffic. These works aim to classify the application (HTTP, SMTP, etc.) of the flows,
while we specifically try to decide if a flow should be offloaded, without caring about the
application.

6.1.1 SDN Offloading

SciPass [109] use an OpenFlow switch for the offloading of an institutional firewall in a
science network. The system consists of a 10G Firewall, a 100G OpenFlow switch and the
Bro Intrusion Detection System (IDS) that is used to identify the flows that can be offloaded.
The evaluation shows that a firewall bypass can significantly improve performance of the
network as the OpenFlow switch has a much higher data rate. In contrast to our approach,
SciPass is using a specialized IDS system for identification. The work also focuses on the
very specific use case of a science Demilitarized Zone (DMZ).

NFShunt [110] is a prototype implementation for firewall offloading, realized with a Linux
Netfilter based software firewall and a OpenFlow switch, that is used as hardware accelerator.
The paper details the use-case of a science DMZ and is showing implementation details of
the prototype. In contrast to our analysis, the authors are using static rules for the offloading
decision.

Recently Heimgaertner et. al. [111] published their work on firewall offloading that is
specifically used to avoid congestion at the firewall. The authors are using two different
algorithms for the offloading decision: A random decision choses random flows for offloading
and a so called intelligent algorithm that decides for offloading based on the byte count
of the flow. The results show that the bypassing of the firewall can significantly improve
performance. Furthermore it can be seen that the decision algorithm is important, as more
load is bypassed using fewer rules in the OpenFlow switch with the intelligent algorithm than
with the random algorithm.

Sarrer et. al.[112] propose a heavy hitter detection for offloading traffic from software
routers to hardware. They exploit that the amount of traffic per flow follows Zipf’s law. In
contrast to our work they are focusing on an offloading design for routers, while we focus on
stateless firewalls.

All of the works before are using the history of the flows for a decision and do not consider
prediction and machine learning techniques that try to decide with the first packet, as we do.
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6.1.2 Elephant flow detection

In general there is a lot of work on elephant flow detection, mostly focusing on detecting
elephant flows, while they are already elephants. This means, many works concentrate on
detecting the flows that at a certain time compromise the most to the overall network traffic.
The overall problem is that the number of network packets is too large in modern networks to
be analyzed packet by packet. There are a number of different approaches to tackle this issue:

Widely used approaches such as NetFlow [113] and FlowRadar [114] are using hash based
approaches in the data plane. Other works are using tables of hardware switches to detect
active elephant flows [115, 116]. Both require specific hardware in the data-plane, while our
approach does not rely upon such hardware.

Some works are using sampling based approaches [111, 117–119]. The underlying idea
of these approaches is that the number of packets of an elephant flow is much higher than for
a mice flow. Therefore, the probability to miss an elephant flow is low, while the complexity
of the detection can be greatly reduced.

A number of works consider elephant flow detection for routing improvements in data
center networks: Sarrer et. al. [112] propose a heavy hitter or elephant flow detection for
offloading traffic from software routers to hardware. They exploit that the amount of traffic per
flow follows Zipf’s law. DevoFlow [120] and Mahout [121] improve routing in data-centers
by rerouting elephant flows while mice flows are routed using ECMP. This improves the
scalability of the solutions as fewer flows have to be considered. Mahout is using end-host
based elephant flow detection, which requires modification at the end-hosts. DevoFlow and
Sarrer et al. are using flow statistics, thus they detect elephant flows much later when already
substantial number of packets was routed. Instead, we aim to detect elephant flows with the
first packet. Additionally due to the use cases they do not consider table occupation.

Further there are also a number of works studying machine learning approaches for
elephant flow detection. Pouper et al. [122] propose the use of neural networks, Gaussian
mixture models and Gaussian process regression for the prediction of the flow size. Xiao et
al. [123] use C4.5 decision trees and Viljoen et al. [124] are using a neural network to classify
flows into mice and elephant. Chao et al. [125] uses a 2-stage detection scheme with C4.5
trees as a first stage and stream mining with Hoeffding trees in the second stage. All works
above show the feasibility of machine learning for elephant flow detection, however none aims
at a classification with the first packet. Further their evaluation is based on traffic engineering
use cases as well, i.e. they do not consider table size restrictions.
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6.1.3 Traffic Classification

Some years ago, Nguyen and Armitage have published a survey on using machine learning for
traffic classification [126]. They identify different categories: Port-based classification uses
IANA-Standard ports and suffer from non-standard ports and the use of http for essentially
different applications and not web only. Payload based classification methods use deep packet
inspection and are not able to classify encrypted traffic. Statistical classification uses statistical
features like mean-packet size and is the category which our approach belongs to.

Zhang et. al. [127] propose a traffic classification method, that tries to find the applications,
even if some applications are unknown. They also compare their results with the algorithms
C4.5, NaiveBayes and IBk.

CAIDA presented a traffic identification framework in [128], which includes different
traffic classification approaches. One highlighted use case is the classification of applications
using algorithms like C4.5, K-Nearest Neighbor and NaiveBayes.

More recently [129] and [130] published works on classifying applications from statistical
traffic features. They study RandomForest, C4.5 and NaiveBayes as classification algorithms
and show that the algorithms can yield high accuracy in this field.

All of the works above are tailored to classify the application in order to employ Quality
of Service (QoS), none tries to find heavy hitters or is tailored for SDN offloading.

6.2 Offloading with the first packet

In order to overcome the limitations in the state of the art with respect to flow classification,
we introduce a classification system that decides with the first packet if a flow is worth to be
offloaded to hardware or not. The envisioned VNFs provide stateful and application layer
firewalling; stateful and application layer firewalls have to handle the first packet of a flow
separately anyway. E.g., a stateful firewall tracks the state of each connection and adds a new
entry in its state table with the first packet. In our approach we can make use of this specific
processing path to forward the features of the first packet from the VNF to an SDN controller
can then classify the flow and take the offloading decision.

In this work we introduce a classification system that decides if a flow is worth to be
offloaded to hardware or not with the first packet. The classification system is implemented
using machine learning and includes data gathering and pre-processing.

Figure 6.2 illustrates the steps of the classification system:

1. In a first step the traffic is recorded by a monitoring system. This step is described in
more detail in the next section.
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Figure 6.2: The classification system: The packets from the trace resp. on the line are recorded as
flows. The ground truth is added depending on the gathered statistics. After that some filters are
applied aiming to build a basis for the machine learning algorithm. The algorithm uses the set to train
a model that can be used to classify new connections. These connections are recorded again for the
next iteration.

2. From this raw data, a ground truth is derived: All flows that are bigger than a threshold
are labeled as 1 all others are labeled with 0. This means the class is binary where 0
represents no offloading and 1 offloading.

3. The weights of the classes are equalized by weighting some flows higher than others.
This is necessary as much more flows are of class 0 and the resulting models would
consequently also be biased towards class 0.

4. The feature first packet size is discretized. Infrequent nominal values of all features are
merged.

5. The model is trained by the respective machine learning algorithm.

6. The trained model is used by the SDN Controller to decide if new flows are offloaded
or not.

For the evaluation in this work Step 1 is replaced by a packet-trace parsing script. Step
2-6 are implemented using Weka [131]. Steps 1-5 have to be repeated regularly to retain an
up to date model for the classification.

6.2.1 Gathering the training-data

Gathering of the training-data is not the focus of this work, nevertheless we want to outline an
architecture that could perform this necessary task. In particular, it is about the realization of
the measurement points. At the measurement points the packets have to be grouped to flows
and the features described in 6.2.2 are extracted from the first packet of a flow. Therefore the
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Figure 6.3: Gathering the necessary statistics using multiple points in the network. In a normal case
packets are processed using a function chain located at the NFVI, in this case statistics can be gathered
using a statistics network function. If a flow is offloaded the statistics have to be gathered by the
hardware. All statistics have to be consolidated in the end, e.g. using an SDN controller or a network
management system.

measurement points have to be able to group the flows using their five tuple, gather statistics
and to extract the size of the first packet. After the first packet the accumulated size of the
transmitted data of the flow has to be gathered, this information is needed to get the ground
truth. In order to provide valid data all the network traffic has to be analyzed and not only
a subset. This is especially important for a system with deployed NFV hardware offloading.
As the offloading bypasses the VNFs, in turn these VNFs cannot be used alone for the data
gathering.

A centralized network monitoring system that merges the measurements from hardware
and software systems can solve this problem. Figure 6.3 depicts such an architecture. By
default, offloading is not used, then all statistics, i.e. the size of the first packet and the total
size of the flow can be easily extracted in a statistics network function (Statistics NF) realized
in software. Additionally the hardware has to be capable to count the transmitted data of the
offloaded flows. This is possible with current networking hardware that provides statistics via
OpenFlow or sFlow. Finally statistics from hardware and software have to be merged together
by a central entity, e.g. an SDN controller or a network management system. The resulting
data set can then be used for labeling the ground truth. All flows that have a total size of
more than a threshold Θ 𝑓 are labeled with class 1, all others with class 0. How the threshold
influences the offloading decision is shown in Section 6.4.2.

In the presented work we used a Python script to parse the network traces that are shown
in Section 6.4.1. Dumping the network traffic to a file could also be used in a real system, but
might be problematic in practice, due to high overhead for storing and recording such a trace
and additionally causes privacy issues.
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Feature Type
IP source Nominal

IP destination Nominal
IP protocol number Nominal

L4 source port Nominal
L4 destination port Nominal
Size of first packet Nominal (Discretized)

Table 6.1: Features used for machine learning. All features are available with the first packet of a flow.
This enables early classification and a larger gain compared to other approaches.

6.2.2 Features

Our classification approach essentially tries to separate mice from elephant flows. As the
classification is used as input for the hardware offloading of network function, the decision
should be available from the beginning. This is why only features available with the first
packet are used. Secondly with more and more traffic encrypted, only features that can be
directly deduced from the packet header should be used. Especially upcoming standards like
QUIC and Transpor Layer Security (TLS) 1.3 reduce the clear-text parts of the packets even
further when compared to current standards. The chosen features that are shown in Table 6.1
are available with the first packet even when TLS encryption is used.

IP source and destination combine both IPv6 and IPv4 addresses. L4 source and destination
port are both UDP and TCP ports, for other protocols this feature equals 0. Our notion of flows
is bidirectional, this means the first combination of a five tuple is saved as a flow according
to this packet’s headers. If a packet of the same connection is seen in the opposite direction it
is counted for this flow. The five-tuple features IP source, IP destination, IP protocol number,
source port and destination port are nominal or categorical features, as the information depends
on the specific number and not on the range. In order to avoid over-fitting of the model and
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Figure 6.4: Histogram of the size of the first packet from each flow for the Wide A trace. The
distribution shows high frequency for small packets.
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reduce the complexity of both training and classification we merge all nominal feature values
with a frequency of less than f into one value. An evaluation of parameter f is give in Section
6.4.4

For each flow the size of the first packet in Bytes is stored during flow recording. Figure 6.4
shows a histogram of the size of the first packet from each flow. As can be seen from the figure
the frequency of small packets with a size close to the minimum Maximum Transmission
Unit (MTU) of Ethernet is very high. These small packets can be either e.g. ICMP packets
that constitute a mice flow, or possibly a TCP-Syn resulting in an elephant flow. On the other
hand, bigger first packets can be part of a small or large flow as well (e.g. a Syn with TCP
Fast Open [132] or a DNS request). Therefore using the packet size as a numeric feature will
not give the best classification results. Consequently the size of the first packet is discretized.
We are using equal frequency binning that creates bins with an equal number of instances,
instead of regular discretization where the bins cover the continuous numeric space equally.
This takes into account for the differences regarding the first packet frequencies and results in
more bins for small packet sizes and fewer bins for larger packet sizes. We performed studies
that show a significantly increased performance with equal frequency binning compared to
the numeric feature.

6.2.3 Machine Learning Algorithms

In this section we briefly introduce the employed machine learning algorithms.

NaiveBayes is a simple algorithm for creating a classification model. It is based on Bayes’
theorem. To compute the probabilities NaiveBayes uses the assumption that the value of
one feature given the class is independent of the values of the other feature. For our real
world problem this is an assumption that will not hold as for example the port and IP of a
server are coupled and are clearly not independent. Nevertheless it has been shown in [127]
that NaiveBayes still works well for many real world cases even if the assumptions of Bayes’
theorem do not hold.

On the one hand the machine learning algorithm should be able to build a model that is
accurate, i.e. has a high classification performance. On the other hand it should also build a
model that is fast in classifying new instances and also understandable to support debugging.
Decision tables can support these concerns. For classifying the instances, the table is searched
for an exact match if no match is found, the majority class is returned. For building the table
we used the IDTM algorithm presented in [133]. Note that not all features are included in the
table, the feature subset is chosen using BestFirst heuristic according to [133]. On the other
hand decision tables are known to have a tendency to overfit. This means that the learned
table fits very well to the training set but is bad for predicting new unseen instances.
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This can be solved by using tree algorithms, that can be tuned in a way that avoids
overfitting. Additionally the complexity for the prediction in the offloading logic is low, when
trees are used. J48 is the Java implementation of the C4.5 algorithm presented in [134].
The algorithms generates a decision tree from the training data, that is then used for the
classification. Every decision node in the tree takes a decision based on one attribute. J48
uses the entropy to decide the distance to the root of the different attributes in the decision
tree. Each leaf of the tree identifies a class value, in our case as the class is binary, 0 or 1.
Therefore the maximum number of decisions that have to be made for a classification is p+1,
where p is the number of attributes. For our experiments we set the algorithm such that each
leaf has to contain at least 2 instances. Additionally we used pruning to reduce the tree size
and avoid over fitting with a pruning confidence of 0.5, following best practice.

One way to improve classification performance is to use ensemble methods. Ensemble
methods combine the prediction of multiple other learning algorithms. The drawback is that
complexity is increased, as multiple base models have to be trained or evaluated. We used
two popular ensemble methods namely Random Forest [135] and Adaptive Boost Algorithm
or shortly AdaBoost [136].

The Random Forest algorithm generates an ensemble of trees, the decision is then taken
by voting for the most popular class. Random Forest is designed to improve classification
accuracy while being robust against outliers and noise. The used algorithm uses bagging
together with random feature selection for creating the trees. Bagging is a method to combine
different models created from samples of the training set. We used a bag size of 5 % and
a minimum number of instances of 100 per leaf. Each tree uses 𝐹 = 𝑙𝑜𝑔2𝑝 + 1 randomly
selected features from a total of 𝑝 features.

Random Forest is specifically created to be used with tree algorithms, AdaBoost on the
other hand can be used in conjunction with many other algorithms. It combines team of
multiple inner models in a weighted sum, which is then used for predicting the class. The
AdaBoost algorithm chooses the inner algorithms systematically to find a good classifier for
all instances in the learning set. For each iteration one inner model is chosen such that
the team with the new inner model performs better than the old team. In this work we are
using the M1 variant of the algorithm with 10 iterations. As inner classifiers we are using
DecisionStump. DecisionStump builds a decision tree based on one attribute with only one
level, i.e. it consists of the tree root and the leaves. Nevertheless in conjunction with an
ensemble learner like AdaBoost, the DecisionStump algorithm can be used for building well
performing classifiers [136].
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Figure 6.5: Sampling based Offloading approach: Every 𝑛𝑠 packet is forwarded to the Offloading
logic. If the decision is for offloading the flow of the corresponding packet is offloaded by the SDN
Controller.

6.3 Sampling based approach

An alternative approach for SDN Offloading is a sampling based approach: Instead of being
based on the first packet of a flow the offloading decision is based on randomly sampled
packets. Sampling is a common method for monitoring networks and is realized e.g. by
sFlow [137]. We want to compare our machine learning algorithm with algorithms based on
sampling. The employed algorithms are modified versions of Heimgaertner’s [111] algorithm.
Heimgaertner’s approaches are designed for imminent congestion and therefore not directly
comparable.

In general the sampling based offloading approach shown in Figure 6.5 work as follows:
The sampled packets are forwarded to the decision logic. The logic decides if the flow
corresponding to this packet should be offloaded or not, based on the packet and the internal
state of the logic. If the decision is for offloading a new flow is installed in the OpenFlow
switch by the SDN Controller and the load on the firewall is reduced.

The employed decision algorithms are modified versions of Heimgaertner’s [111] algo-
rithm. Heimgaertner’s approaches are designed for imminent congestion and therefore not
directly comparable. The results show that the offloading algorithm itself is, somehow sur-
prisingly, of minor importance for the sampling based approach if real network traces are
used. Instead, we show in Section 6.5 that the sampling rate is the most important parame-
ter. Therefore, we only show two rather simple algorithms for the offloading decision in the
following.

6.3.1 Baseline Algorithm

One very simple yet effective offloading algorithm is to always decide on offloading for every
sampled packet. We call this algorithm Baseline as it achieves the maximum reachable
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Algorithm 5: Sample+ offloading algorithm

Input: Sampled Packet, t
Output: Offload Decision

1 5𝑡 = get5tuple(packet);
2 if 5𝑡 ∈ 𝑇 then
3 𝑇𝑐 [5𝑡] = 𝑇𝑐 [5𝑡] + 1;
4 else
5 𝑟𝐹 = 𝑢𝑝𝑑𝑎𝑡𝑒𝐹𝑙𝑜𝑤𝑅𝑎𝑡𝑒(𝑟𝐹 , 𝑡);
6 𝑇𝑐 [5𝑡] = 0;
7 end
8 𝑝𝑜 𝑓 𝑓 = 𝑚𝑖𝑛

(
𝑛𝑏𝑦

𝑡𝑜𝑢𝑡 ·𝑟𝐹 ,
𝑛𝑟𝑒𝑚
𝑏𝑦

𝑡𝑜𝑢𝑡 ·𝑟𝐹 ·𝑡ℎ
)
;

9 if 𝑟𝑎𝑛𝑑𝑜𝑚 [0, 1] < 𝑝𝑜 𝑓 𝑓 · 𝑇𝑐 [5𝑡] then
10 return True;
11 else
12 return False;
13 end

offloaded rate for a certain sampling rate. Due to the sampling, not every packet and thus not
every flow is offloaded. Thus, the maximum offloaded rate is limited. The only parameter
of this approach is the sample rate 𝑛𝑠, i.e. only one out of 𝑛𝑠 packets is forwarded to the
offloading algorithm.

6.3.2 Table restricted approach Sample+

In order to restrict the table size necessary for the offloading, the algorithm can be improved.
The following algorithm is based on Heimgaertner’s algorithm. In contrast to our approach,
Heimgaertner’s algorithm is designed for Offloading during immanent congestion and assumes
that this is only there for a fraction of the time. Furthermore it does not adapt the offloading
probability to the number of appearances of a flow.

We denote the algorithm shortly as Sample+. The target offload 𝑟𝑜 𝑓 𝑓 rate should be as
large as the inverse of the usage time of one entry 𝑡𝑟𝑒𝑢𝑠𝑒 multiplied by the target number of
entries in the table 𝑛𝑏𝑦.

𝑟𝑜 𝑓 𝑓 =
𝑛𝑏𝑦

𝑡𝑟𝑒𝑢𝑠𝑒
(6.1)

If Equation 6.1 holds, then the number of rules in the table is exactly as large as targeted.
The reuse time is not known beforehand, it consists of the remaining active time of the flow
after offloading it 𝑡𝑟𝑐𝑡 and the soft timeout 𝑡𝑜𝑢𝑡 of the OpenFlow switch table.

𝑡𝑟𝑒𝑢𝑠𝑒 = 𝑡𝑟𝑐𝑡 + 𝑡𝑜𝑢𝑡 (6.2)
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Therefore it holds 𝑡𝑜𝑢𝑡 < 𝑡𝑟𝑒𝑢𝑠𝑒 and we can upper-bound 𝑟𝑜 𝑓 𝑓 <
𝑛𝑏𝑦
𝑡𝑜𝑢𝑡

. We denote the rate of
new flows seen by the algorithm as 𝑟𝐹 . 𝑟𝐹 is estimated by the offloading logic using UTEMA
method [138]. Further we can then upper bound the offloading probability 𝑝𝑜 𝑓 𝑓 as follows:

𝑝𝑜 𝑓 𝑓 =
𝑟𝑜 𝑓 𝑓

𝑟𝐹
≤ 𝑛𝑏𝑦

𝑡𝑜𝑢𝑡 · 𝑟𝐹 (6.3)

In order to compensate that Equation 6.3 gives only an upper bound we use a decreasing
probability if the table is nearly full. The offloading probability 𝑝𝑜 𝑓 𝑓 is then defined as:

𝑝𝑜 𝑓 𝑓 = 𝑚𝑖𝑛

(
𝑛𝑏𝑦

𝑡𝑜𝑢𝑡 · 𝑟𝐹 ,
𝑛𝑟𝑒𝑚
𝑏𝑦

𝑡𝑜𝑢𝑡 · 𝑟𝐹 · 𝑡ℎ

)
(6.4)

𝑛𝑟𝑒𝑚
𝑏𝑦

denotes the number of remaining entries, i.e. the number of used entries subtracted
from 𝑛𝑏𝑦. The threshold 𝑡ℎ specifies the border between the first and the second term in the
minimum. In our experiment we have set 𝑡ℎ = 0.1, i.e. for a table occupation of 90% both
terms in Equation 6.4 are equally large.

6.4 Evaluation of the Machine Learning approach

For the evaluation of the machine learning approach we initially present the results using
stratified cross-validation. This approach delivers multiple outcomes for one data set and
allows a better grading of the algorithms than a single result for each data set.

6.4.1 Data Sets

As it was not possible to employ the presented system in a real network, we used publicly
available data sets for the evaluation:

Wide Wide WIDE CAIDA CAIDA
A B IX-24h 1 2

Duration 15 min 15 min 24 h 15 min 10 min
Flows 8M 8.6M 344M 45.6M 40.6M

Packets 99M 113M 15965M 977M 874M
Total Traffic 70 GiB 91 GiB 19 TiB 716 GiB 631 GiB

TCP flows share 85.8 % 77.6 % 46.0 % 83.6 % 80.6 %
UDP flows share 12.4 % 22.1 % 48.33 % 16.2 % 19.2 %

Table 6.2: Data sets used in this work

The machine learning approach tries to detect patterns in the network traffic. One such
pattern could be an IP address of a popular video service, connections to this IP would be
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elephant flows regularly. These patterns might be very diverse in nature and therefore hard to
model. As a consequence simulated or emulated traffic can no be used for the evaluation and
we must use real traces.

We have chosen multiple traces among the publicly available traces to evaluate our results
on diverse data sets in terms of link capacity, average flow size and composition. We use five
publicly available data sets from three different measurement points. Main parameters of the
traces are shown in Table 6.2.

The Wide data sets where retrieved from the MAWI Working Group Traffic Archive [139].
The trace is collected from the 1 Gbps transit link of WIDE to their Internet Service Provider
(ISP). The traces from two consecutive days, Thursday and Friday, out of the daily traces
from the MAWI Working group. The daily traces are collected every day at 14:00 to 14:15.
Furthermore we use an 24 hours trace (WIDE IX 24h) to study temporal effects of the machine
learning solution. This trace was gathered from the main link of wide to the internet exchange
point DIX-IE on a Tuesday. The WIDE IX 24h trace has a significant larger share of UDP
flows mostly due to a high number of DNS flows.

The CAIDA data sets were retrieved from the Center for Applied Internet Data Analysis
[140]. The trace was collected at an data center’s link to the backbone link of a Tier 1 provider.
The link has a maximum data rate of 10 Gbps, this yields a much higher data rate and a larger
number of parallel flows.

All traces where anonymized from the respective organizations. As statistical features
were retained by the anonymization, our results are not influenced.

6.4.2 Data Labeling

In this work we are using supervised learning algorithms. This class of algorithms needs
labeled data. Our classification problem is only binary with the class being the offloading
decision that can be True or False. We labeled the data using a threshold with the following
rule:

𝑂 𝑓 𝑓 𝑙𝑜𝑎𝑑 =


𝑇𝑟𝑢𝑒 𝐿𝐹 > Θ𝐹

𝐹𝑎𝑙𝑠𝑒 𝐿𝐹 ≤ Θ𝐹

Where 𝐿𝐹 is the total size of a flow, meaning the sum of the lengths of the packets
belonging to one flow. Figure 6.6 shows the offloaded share and the table occupation for
different thresholds Θ𝐹 in the Wide A and the CAIDA 1 data set. The results in the figure
show the table occupation and offloaded share if the labels are used directly for the decision.
As this requires an all knowing system this is not possible in reality. Nevertheless the results
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Figure 6.6: Data Labeling: Offloaded share and Table occupation if the labels are used for the decision
directly. For a small threshold Θ𝐹 the table occupation is quite high even in this all-knowing case. But
it quickly decreases. We chose Θ𝐹 = 1𝑒4 𝐵 as a compromise between table occupation and offloaded
rate.

show the trade off between required table size and offloaded share. Small thresholds yield a
high table occupation obviously, on the other hand the results show that rate share and table
occupation are not proportional. E.g. in the WIDE A changing the threshold Θ𝐹 from 1𝑒4 to
5𝑒4, reduces the offloaded rate share by only 1.1%, while reducing the necessary table size
by 11%. The threshold should be chosen such that the hardware table is fully utilized but
not over-utilized. In our test-bed we have an OpenFlow enabled NEC PF5240 switch with a
table capacity of 64K entries suitable for the CAIDA data set. Following these guidelines, we
decided to use Θ𝐹 = 1𝑒4 as a threshold in the following reaching an ideal offloading rate of
95% for both data sets.
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6.4.3 Feature selection

Next we evaluate the information gain of the features, in order to understand the main drivers
of a good classification scheme. Additionally the results can be used to reduce the complexity
of training and classification, by omitting features with low gain.

Table 6.3 shows the information gain of each attribute p:

𝐼𝑛 𝑓 𝑜 𝐺𝑎𝑖𝑛(𝐶𝑙𝑎𝑠𝑠, 𝑝) = 𝐻 (𝐶𝑙𝑎𝑠𝑠) − 𝐻 (𝐶𝑙𝑎𝑠𝑠 |𝑝)

where 𝐻 (𝑋) is the entropy of random variable 𝑋 .

Wide Wide WIDE CAIDA CAIDA
A B IX-24h 1 2

IP source 0.009 0.009 0.042 0.030 0.029
IP destination 0.007 0.007 0.029 0.021 0.019

IP protocol number 0.001 0.001 0.017 0.002 0.002
L4 source port 0.001 0.001 0.001 0.006 0.006

L4 destination port 0.009 0.010 0.037 0.008 0.008
Size of first packet 0.009 0.009 0.027 0.023 0.022

Table 6.3: Information gain of the attributes in bit

From the table can be seen that the information gain of each feature is small (maximum
0.042 bit for IP source and WIDE IX-24h) and no single attribute can be used for a decision.
Additionally the gain of attributes depends on the network conditions, as the size of the first
packet has a much higher gain for the CAIDA data sets than for the WIDE data sets. Only
the IP protocol number shows little information gain and could be omitted for performance
reasons. As the notion of 5-tuples is very common in packet processing systems we keep the
feature for the rest of the evaluation nevertheless. On the other hand using only the 5-tuple
features would cause a loss in information for the classification and will therefore reduce the
precision. This complicates data gathering a little as for example sFlow cannot be used to
record the size of the first packet.

6.4.4 Merging infrequent nominal values

The employed features are mainly nominal, e.g. IP addresses which are numerically close
to each other do not necessarily have similar effects on the classification. Consequently the
models have to use single nominal values to give a prediction. As the learning sets can be
build of a large number of flows the value sets for nominal features can be quickly very large.
This is especially a problem for the IP addresses, even if only one packet is sent from one IP,
the models have to keep track of that.
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Figure 6.7: Merging of infrequent values: The Figure shows the performance of the offloading
algorithm with J48 as machine learning algorithm. Nominal features with a lower frequency than the
minimum frequency f are merged. Table Occupation and offloaded bit rate increases with increasing
f. f=500 provides a good compromise.

In order to overcome this issue infrequent nominal feature values are merged to one value.
This is done by merging all values that did occur in the training set less often than the frequency
f into one single nominal value. We apply merging to all nominal features with the same
f. Figure 6.7 shows the trade off between table occupation and offloaded bitrate that occurs
with this parameter. A low f causes over-fitting and elephant flows are not recognized well.
On the other hand a high f under-fits and the table occupation necessary in turn increases.
Additionally the complexity of training and classification largely depends on f. A frequency
of f=500 provides a good compromise between over- and under-fitting for both data sets, even
though they are quite different. Thus f=500 is used for all other results.
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Figure 6.8: Precision of the selected algorithms with the different data sets. The mean precision for
class 0 (offload=No) ranges between 0.84 and 0.96 depending on data set and algorithm. The precision
for class 1 is worse in general. J48 and RandomForest show the best classification precision in general.
The Decision Table classification precision is differing largely for the CAIDA data sets. Boosted
DecisionStump is showing decent performance for the WIDE data sets but has only low accuracy in
the CAIDA data sets.

6.4.5 Algorithm evaluation

The precision of the classification is defined as usual:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
As we want to select those flows that are worth offloading in hardware, we want a high true
positive rate for class 1. On the other hand if we select too many flows for the offloading, we
need a large hardware forwarding table and might exceed its capacity. Figure 6.8 shows the
results for the different data sets and both classes. The boxes are ranging from the lower to
the upper quartile of the outcomes. The whiskers mark the full range of the outcomes. The
line in the box represents the mean.
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Figure 6.9: Offloaded data rate using the different learning schemes. The bit rate that is processed
by hardware is approximately as good as with the all-knowing ideal scheme. This is due to the much
higher number of processed flows compared to the ideal case. In general the lion’s share of the rate
can be processed in hardware.

The mean precision ranges between 0.85 and 0.95 depending on data set and algorithm.
J48 and RandomForest show the best classification precision in general. Especially J48 shows
a high precision for both classes. The precision of the DecisionTable classifier is below 85 %
for some folds in the CAIDA data sets, on the other hand the results for the Wide data sets
are unremarkable. Another outstanding result is the precision of the boosted DecisionStump
algorithm in the CAIDA 1 data set. The model almost always decides for class 0, this results
in a precision of almost 100 % for class 0 and close to 50 % (out of the scale of the figure) for
class 1. For the other data sets the performance is clearly worse than that of other algorithms.
Consequently we did not consider boosted DecisionStump further in the following.

One main drawback of networking hardware compared to software solutions, is the limited
hardware resources especially the tables. In the ideal case we are only using hardware
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Figure 6.10: Mean table occupation. One major limitation is the number of rules in the hardware
table. J48 requires the lowest number of table entries. On the other hand the overhead compared to the
ideal case is quite large for all learning schemes.

offloading for large flows and consequently can treat the lion’s share of the total data rate in
hardware using few matching rules. As the machine learning algorithms are imperfect, we
have to either sacrifice data rate or use a larger hardware table.

For this evaluation we made the simplifying assumption that the flow can be offloaded
from the first packet. As we can not always sense the end of a flow, we always assumed that
one rule has to be kept in the hardware table for additional three seconds after the last packet.
This matches the soft-timeout mechanism used in OpenFlow devices, but could also be used
for other acceleration technologies e.g. using P4. In Figure 6.10 we present the mean table
occupation for the offloading solution, Figure 6.9 shows the offloaded data rate. Specifically
for the CAIDA data sets more than 80% and for the MAWI data sets even more than 90% of
the data rate can be handled in hardware. On the other hand a fairly large hardware table is
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Figure 6.11: Decision tree size and table size when increasing the minimum number of instances per
leaf. The Figure shows the results using WIDE B data set. A reduction of the tree by one magnitude
only increases the table size necessary by 12.5 %.

necessary, 8000 entries in the MAWI case and 45000 in the CAIDA case. This corresponds
to roughly 20 % of all flows handled in hardware. This is surely a significant number, but
as regular Binary Content Addressable Memory (BCAM) can be used instead of expensive
Ternary Content Addressable Memory (TCAM) it is still feasible with the hardware available
today.

6.4.6 Classification Complexity

From the results shown before, we can see that especially the tree algorithms, J48 and
RandomForest, are always in the group of the best performing algorithms. This is why we
want discuss the aspect of the classification complexity. J48 builds a decision tree which makes
a fast classification possible. RandomForest is more complex in general as multiple trees are
evaluated and weighted. As RandomForest does not show a superior performance, J48 seems
to be a better choice. The other algorithms require the evaluation of tables (NaiveBayes and
DecisionTables). This means their classification process is more complex in general.

In case of J48, the complexity of the decision depends on the depth of the leaves and the
degree of the decision nodes. As this metric is not easy to tackle we evaluated the decision
tree of the J48 learned model with the tree size. The tree size is the number of all nodes in
the tree.

We reduced the tree size (and consequently the decision complexity) by allowing only leafs
in the tree that are matching a minimum number of weighted training instances. Figure 6.11
shows the tree size on the left axis and the necessary table size on the right axis for a growing
number of minimum instances per leaf. As the main effect of a modification in the learning
algorithm is visible in the necessary table size only this metric is shown here. The results show
that a reduction of the tree by one magnitude increases the table size necessary by 12.5 %. We



6.4. Evaluation of the Machine Learning approach 109

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(a) Offloaded share

2000 4000 6000 8000

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(b) Table occupation

Figure 6.12: Temporal Stability: Offloading performance when using the Model trained with WIDE A
data set for classifying WIDE B data set. DecisionTable, NaiveBayes and boosted NaiveBayes perform
worse in this scenario. J48 and RandomForest algorithm show less degradation. The offloaded rate is
still in the same range as for the ideal decision, the table occupation is ∼20 % higher when compared
to the model learned by cross validation.

can therefore reduce the complexity significantly while only increasing the necessary table
size gradually. Nevertheless in a deployment scenario it could be more pressing to reduce the
table size while scarifying the decision complexity.

6.4.7 Temporal stability

In this work we are using an offline learning approach. One question that is arising is how
stable the model is regarding a longer period of time between the time the training set was
recorded and the time the model is used. Figure 6.12 shows the results in this case: We have
used the WIDE A data set for training the model and applied it then to the WIDE B data set.
We again stratified the test set to end up with results that can be compared. This way the test
sets are the same as in Figure 6.10b, only the training sets differ.

The results show that the offloaded bit rate does not change much with this delay between
training and classification. Only the offloaded bit rate using DecisionTable classification is
clearly lower, this can be explained by over fitting the training data. Both tree algorithms, J48
and RandomForest, show a slightly higher offloaded rate when compared to NaiveBayes.

A more in deep view can be gained if we apply the approach to a longer trace. Thus we
also applied it to the WIDE IX-24h data set and used different training intervals. Figure 6.13
shows the results for different training intervals, e.g., every 15min means that the model is
retrained every 15 minutes. We use always data from 15 minutes for training. The results
show that the performance is slightly reduced due to the time shift. A more frequent training
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Figure 6.13: Temporal Stability: Offloading performance for the WIDE 24h data set and J48. Perfor-
mance is not impacted largely when different learning intervals are used.
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Figure 6.14: Temporal Stability: Offloading share for the WIDE 24h data set in a heat map. This view
on the results shows that some times of the day have a different traffic pattern than others.

does not yield significantly better results. Further, the spread of both offloading share and
table occupation is quite large.

We see the reason for this result in Figure 6.14. For this figure we split the data into 15
minutes chunks. The figure shows the mean offloading share of all combinations of training
and test sets. From the figure it can be seen that there are more and less challenging times
of the day. While the performance in the morning (until 12:00 pm) and in the night (after
23:00 pm) is above 90% for most of the training sets, it is different for a short interval around
13:00 pm and especially in the evening after 18:00 pm. This indicates that the traffic patterns
change at this time of the day after work time. It should be noted that the pattern reverts to its
normal behavior after 23:00 as can be seen by the high offloading shares even with training
sets in the early morning. On the other hand, training more frequently does not significantly
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Figure 6.15: Offloading using Sampling: For lower sampling rates all flows that belong to sampled
packets are offloaded, thus Sample+ and Baseline algorithm perform equally. Only for higher rates we
can see that sample+ is much more economically regarding table occupation.

improve the performance, as the pattern is changing quite often at this time of the day (visible
by the stripes in the upper right corner of Figure 6.14).

6.5 Evaluation of the sampling approach

In order to evaluate the sampled approach we applied both algorithms described in Section
6.3 for the data sets WIDE A and B and both CAIDA data sets. One main parameter of both
algorithm is the sampling rate 𝑛𝑠, we used different settings for 𝑛𝑠, starting with moderate
sampling of 𝑛𝑠 = 200 up to a high sampling rate with 𝑛𝑠 = 10. This is the only parameter of
the baseline algorithm, from runs with this algorithm we can derive how many table entries
are necessary in the restricted case. We have chosen a table size of 4000 for the data set WIDE
A and 45000 for CAIDA A, this allows for a high offloading rate in both cases.
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Figure 6.15 show the results for both algorithms. It can be seen that for lower rates up
to 𝑛𝑠 = 50 both algorithms have the exact same performance and the table is not filled to the
targeted value. This is due to the fact that many flows are not even seen by the offloading
algorithms as no packet of these flows is sampled. As the heuristic tries to use the table up
to the allowed level it behaves equal to the baseline algorithm. On the other hand it can be
seen that the offloaded rate is quite high if compared to the table occupation. This is due to
the fact that sampling itself already filters the flows as large flows have a higher probability
to be sampled, this directly resembles the fact that elephant flows makeup the major share of
the complete traffic.

The downside of the sampling based approach is that the overhead is quite high. While
the sampling itself can be done in hardware that is deployed quite often nowadays, the rate
that has to be processed by the algorithm is still high. E.g. if the share of the offloaded traffic
should reach 90% it is necessary to set the sampling rate to 𝑛𝑠 = 50, this results in a packet
rate of 110 · 103 packets per second (pps) for the WIDE A data set. Even though it is feasible
to process such a number, it is demanding and can be infeasible for scenarios with higher
rates.

6.6 Summary and Discussion
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Figure 6.16: Overview of the offloaded share for all algorithms and data sets. In order to reach the
performance of the Machine Learning algorithms a high sampling rate is necessary.
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In this section we are summarizing the findings and assess them in context of the NFV
acceleration approach.

In Section 6.2 we are introducing a classification model, that is used to build a model for
the classification of the flows in small flows and large flows used for offloading. We present
a monitoring approach for gathering the necessary training data. We argue that a combined
approach that uses statistics from a NFV based tailored statistics network function for the
first packet size and a conventional monitoring system using OpenFlow statistics or sFlow
can be used. Furthermore, we introduce the features that are used for training and how they
are preprocessed. The preprocessing is based on domain knowledge and is an important step
for a good classification performance. It uses the parameters offloading threshold Θ𝐹 and
the minimum frequency 𝑓 of the nominal features. We tuned the parameters independent of
each other using the data sets CAIDA A and WIDE A. The results are similar for both data
sets even though the data sets are quite different, as CAIDA A has much more data rate and
concurrent flows. Further, we use the same parameters for the data sets CAIDA B, WIDE B
and WIDE IX-24 with good results. This implies that the parameters hold for typical internet
traffic. However, for different network conditions such as, e.g. an industrial network, the
optimal parameters might be different. Nevertheless we argue that the pipeline itself can be
applied to other conditions with minor or no changes.

In Section 6.4 we apply different machine learning algorithms using the presented clas-
sification system. We rely on publicly available data sets. Figures 6.8, 6.9 and 6.10 show
the results. It can be seen that DecisionTable and boosted DecisionStump algorithm do not
provide a reliable performance with the investigated data sets. Therefore we argue that they
are not suitable for the presented application. Overall RandomForest and J48 achieve high
offloaded rates with slightly lower table occupation. We argue that J48 has a lower complexity
than RandomForest and analyze this property more deeply for J48 in Section 6.4.6.

The model is employed in an SDN Controller for classifying new flows with the first packet
and flows can be offloaded using an SDN controller. As the model is network specific and not
static it has to be retrained regularly. In Section 6.4.7 we have shown that a daily retraining is
sufficient for the evaluated network. As the old model can still be used while the new one is
trained we do not have any interruptions of the acceleration.

Section 6.3 introduces two sampling based approaches that can be used alternatively for
the offloading decision. The baseline algorithm always decides for offloading. Due to the
sampling not all flows are offloaded, as it can happen that all packets of a flow are not part of
the sampled subset. The table restricted approach, Sample+ takes a maximum allowed table
size as input and keeps the number of rules below this threshold.
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Figure 6.16 shows an overview of the results for both approaches. We have chosen the best
performing machine learning algorithms namely J48 and RandomForest here. It can be seen
that the offloaded share for the MAWI data sets is significantly higher compared to the CAIDA
data sets. This indicates that large flows have a smaller share in this network. In general both
presented learning algorithms perform better and especially more stable for the MAWI sets.
We can follow that the algorithms are more suitable for smaller scale networks like campus
networks. All results support the finding that the sampling based algorithms require a large
sampling rate to reach the performance of the Machine learning algorithms with sampling
based algorithms: For the MAWI data sets we do not even meet the performance with a
sampling rate of 1:10, for the CAIDA data sets still a sampling rate of 1:50 is necessary. A
high sampling rate requires significant compute resources as all the sampled packets have to
be processed. That is with the presented sampling rate and the MAWI A data set a packet
rate of 110 · 103 pps. Even though the sampling rate for the CAIDA traces can be lower, the
resulting packet rate that must be processed by the sampling approach is higher: 1 · 106 pps.

The traces differ a lot in terms of table occupation. The traces that were retrieved from
the WIDE traffic archive require table sizes in the range of a few thousand entries. In contrast
to that, the traces retrieved from CAIDA require much bigger tables of several ten thousand
entries. This observation holds for both approaches as can be seen from Figure 6.10 and
Figure 6.15. This difference in the order of magnitude stems from the fact, that the WIDE
traces are gathered from a 1G uplink, while the CAIDA traces are gathered at a 10G backbone
link. This indicates that different hardware, in terms of size of the hardware table, is necessary,
depending on how aggregated a link is. On the one hand, highly aggregated links require
acceleration hardware providing large tables. On the other hand less aggregated like those in
the WIDE case links suffice with smaller tables.

In this chapter, we explore the capabilities of different algorithms for deciding if a flow
should be offloaded to hardware or not. We consider two fundamentally different approaches:
First offloading with the first packet of a flow using machine learning. The first packet is
presented by the connected VNF to the algorithm. Secondly offloading with sampling, where
all packets are sampled and the sampled packets are used for the decision.

The results show that the lion’s share of the data rate can be handled in hardware using
our approaches. The drawback is that the necessary hardware table is comparably big, as a
fairly big number of flows are classified for offloading falsely. As regular BCAM can be used
for matching, the approach is feasible nevertheless.

The results show that the J48 algorithm has the best properties of all the investigated
machine learning algorithms. It combines low table occupation with a high offloaded data
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rate and additionally has a low complexity of the classification. On the other hand other
algorithms like RandomForest and NaiveBayes are only slightly worse and could also be used.

The sampling based approach can also reach a quite high offloaded share, though it needs
a high sampling rate to meet the performance of the machine learning approach.





Chapter 7

Offloading Virtual Network Functions to
Smart-NICs

In the previous chapter, we introduced a method that increases the performance of the ar-
chitecture using Software-Defined Networking (SDN) offloading. This reduces overheads
as fewer traffic has to be served by the packet filters in the Network Function Virtualization
Infrastructure (NFVI). On the other hand, SDN offloading is only possible if stateless filtering
is sufficiently secure.

Other network function such as stateful network functions can not be implemented in
SDN, due to lack of support for stateful operations. To overcome this we propose in our
architecture the use of Network Function Virtualization (NFV).

Figure 7.1 shows how higher layer filtering is provided in the security architecture. The
network traffic is routed via the NFVI where the software packet filters reside. An important
feature of NFV is the support of seamless scaling of the Virtualized Network Functions
(VNFs) depending on the traffic demand. Thus the packets have to be distributed between
the different instances using a load balancer. In addition, it is necessary that all packets of
one connection are forwarded to the same instance, in case of stateful or application layer
VNFs. E.g., an application layer firewall needs all packets, in order to reassemble application
layer content, that is split over multiple packets. A stateful load balancer has to keep track of
connection such that all packets of one connection are forwarded to the same VNF.

The use of software packet processing is envisioned to provide higher layer filters. In
contrast to that, packet processing hardware can be more optimized for a certain task. Therefore
performance boosts might be missed. In this chapter we show Network Interface Card (NIC)-
offloading, an implementation which aims to flexibly combine hardware with software packet
processing. For our approach, we do not require specialized hardware, but only utilize NICs
already available on many servers today. We evaluated the stateful NIC offloading approach
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Figure 7.1: Application layer filtering in the SDN/NFV architecture. The traffic is routed through
the NFVI where application layer filters (L7 Filter) check the traffic. In order to provide scaling and
performance the traffic is distributed between multiple instances using a Load Balancer (LB).

using the use case of a load balancer. Nevertheless, we argue that the performance boosts
exists for many network functions that store connection dependent state.

The core idea is as follows: Every stateful network function has to keep a table storing the
state of connections. Using software the network function matches incoming packets against
its software table and forwards the packet to the endpoint responsible for this connection. We
utilize the hardware table of NICs by offloading the software table to this hardware table. This
aims to reduce load on the CPU, since the packet matching is offloaded to fast hardware. Note
that the NIC cannot fully takeover the processing of packets, since it is not able to perform
packet forwarding. Our evaluation results indicate that a reduction of the load on the CPU
can increase the maximum achievable throughput significantly.

This chapter is based on [9] that presented the NIC offloading approach first.

[9] R. Durner, A. Varasteh, M. Stephan, C. Mas Machuca, and W. Kellerer. “HNLB:
Utilizing Hardware Matching Capabilities of NICs for Offloading Stateful Load Bal-
ancers.” In: 2019 IEEE International Conference on Communications (ICC’19). 2019.

This chapter is structured as follows. Section 7.1 introduces related work on NIC of-
floading. Section 7.2 describes background on NIC offloading and stateful load balancing.
Afterwards Section 7.3 introduces the implementation of the hybrid solution. In Section 7.4
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a method for measuring the utilization of the approach is shown. Section 7.5 presents the
results and finally Section 7.6 discusses the findings.

7.1 Related Work

In this section we give an overview on related work in the fields of software network functions,
stateful hardware network functions and also NIC-Offloading.

7.1.1 Software network functions

With the introduction of network softwarization and NFV, many network functions have
started to being deployed as software instances on commodity servers [141]. Thus large
efforts have been undertaken in order to meet the requirements of high data rate networks.

An early concept of software network functions and network softwarization in general is
the click modular router [142]. The authors present an C++ based framework that facilitates
the development of network functions. In order to enhance performance, the original click
router was using a Linux kernel extension. More recently an DPDK back-end was added to
the framework in order to provide up to date performance.

An important performance issue of software packet processing is that network stacks of
current operating systems can not provide high throughput. Thus frameworks have been
implemented to increase network performance:

Netmap [143] provides higher performance while being tightly integrated into the Linux
kernel in contrast to other frameworks that are implemented fully in user space. This can
provide safety by providing checks on the data that was provided by the user space program.

The Data Plane Development Kit (DPDK) [99] is a framework originally developed by
Intel. Besides a basic implementation for sending and receiving packets it also provides other
features such as a hash table or an API for the Intel Flow Director. DPDK applications are
running in user space only and the NIC can not be used for applications with the normal OS
networking stack.

Ntop develops a high packet rate framework called PF_RING [144]. The main focus lies
on network filtering and analysis such as packet captures. Furthermore user space NIC drivers
are provided called PF_RING ZC. While being conceptually similar to DPDK, PF_RING ZC
has worse support for NIC hardware.

PacketShader [145] utilizes GPUs for packet processing. The authors show that the
performance can be significantly increased if a large number of packets can be processed in
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parallel. This is due to the fact that GPUs have a high number of compute units optimized for
parallel processing.

Summarizing this, several frameworks that improve performance of software packet pro-
cessing exist. Nevertheless, packet processing hardware is known to provide superior perfor-
mance for some use cases. This lead to novel hardware and especially hybrid approaches.

7.1.2 Stateful Hardware and Hybrid Network Functions

Despite low cost and high availability/flexibility of software network functions, they suffer
from high latency and high resource consumption. These issues can be tackled by developing
network functions utilizing hardware. A candidate hardware to enhance the performance,
is ASICs in network switches. A popular approach is presented by Bianchi et. al. [146].
The authors extend OpenFlow by adding finite state machines to the API. Like this the SDN
switches are also able to implement stateful network functions such as a stateful firewall. One
drawback is that the hardware table size is limited and thus also the number of parallel flows
that can be supported.

Authors in [147] propose Duet, a hybrid load balancer that proposes to move the load
balancing function to existing hardware network switches (at no extra cost). In fact, network
switches perform traffic splitting (using ECMP) and packet encapsulation tasks of load bal-
ancing. Notably, the state table is stored in switching ASICs, which can contribute to reduce
the latency to several microseconds. In addition to hardware load balancing, they developed
a small software load balancer to act as a backstop, and to provide high availability and
flexibility.

Similar to Duet, SilkRoad [148] also leverages features of programmable ASICs to build
a load balancer for data center networks. In contrast to Duet [147] that stores the (not
stateful) table in switching ASICs, SilkRoad utilizes SRAM in ASICs and like this stores
per-connection state at ASICs. In this way, in addition to providing high throughput and low
latency, SilkRoad ensures per-connection consistency during DIP pool changes. However
SilkRoad requires specialized switching hardware usually not available in DataCenters.

All solutions above claim to provide high throughput and sufficient flexibility. One
disadvantage of the approaches presented above is that they require specialized hardware, like
e.g. stateful OpenFlow devices for [146] or P4 switches for [148]. NICs can be an alternative
that is easier to deploy.
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7.1.3 NIC Offloading

As an example for using NIC offloading, authors in [149] offloaded the firewall logic to a
NIC. They utilized 5-tuple filtering in the NIC and showed that a offloading firewall to NIC
can improve both CPU utilization as well as packet throughput.

Further, authors in [150] proposed NDN-NIC, a network interface card for performing
name-based filtering on the NIC. In this approach, names are maintained in a bloom filter,
which is used as a reference for filtering the incoming packets on NIC. Authors showed that
this approach is able to reduce CPU overhead and energy consumption.

In a recent work, Microsoft researchers [151] presented a NIC Offloading mechanism
which uses custom NICs with a built-in Field Programmable Gate Array (FPGA). Their
solution is used in Microsoft’s Azure cloud to reduce the CPU load caused by networking.
Moreover, their approach uses an offloading method that handles the first packet in software.
In contrast to our work, a more feature-rich FPGA is utilized, while we are only using existing
capabilities of the NIC.

However, to the best of our knowledge, we are the first work that present a hybrid hardware-
software load balancer in which NIC offloading (Intel Flow Director [152]) is utilized for
offloading matching to hardware.

7.2 Background

In this section, we provide background on stateful load balancers and introduce briefly Intel’s
FlowDirector technology.

7.2.1 Stateful Load Balancers

As we evaluate the performance of the NIC offloading approach for a stateful load balancer
we present details about this concept in the following.

The main goal of a load balancer is to distribute the load (i.e., the packets) between
several back-end servers (service instances) that deliver the actual service. The packets can
be either distributed stateless (e.g., using round robin) or stateful (packets belonging to the
same connection are always delivered to the same back-end server). Further, existing load
balancers work on different layers, e.g. layer 4 (L4) and layer 7.

In this work, we utilize connection table offloading on NICs that support header matching.
Thus, we focus on the design and evaluation of a stateful L4 load balancer.

Two different sets of IPs exist in the load balancer concept: i) Virtual IP (VIP), and ii)
Direct IP (DIP). VIPs are the IPs that the users are addressing. They can be seen as the service
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Figure 7.2: Basic working principle of a stateful L4 load balancer. The VIP of the served packet is
highlighted in black, the DIP is highlighted in gray.

addresses. On the other hand, DIPs are the addresses that belong to the actual instances
delivering the service. Consequently, the load balancer distributes the packets destined to one
VIP between several DIPs.

Accordingly, in order to guarantee connection consistency, a stateful L4 load balancer has
to maintain two tables:

I) The VIP table: which contains the VIPs of all services and the respective active DIPs
belonging to this service.

II) The connection table: which holds the mapping of active connections to their designated
DIPs.

The basic working principle of a stateful L4 load balancer is shown in Figure 7.2: Incoming
packets are first checked against the Connection Table. If an entry already exists (hit), the
packet header is rewritten according to the entry, and the packet is forwarded. If the 5-tuple
of the packet does not match any entry (miss) in the Connection Table, a new DIP for the
corresponding VIP is selected from the VIP table. This selection can be based on round robin
algorithm or according to the current load of the DIPs. Afterwards, the packet is rewritten
using the chosen mapping and forwarded. Finally, the new connection is installed in the
Connection Table (install).

The figure shows an incoming packet with the 5-tuple: TCP, 1.1.1.1, 424, 42.3.4.5, 443,
that directly matches an entry in the Connection Table (hit). Thus the packet’s destination is
rewritten to the DIP 10.0.0.1 with destination port 335.

7.2.2 Intel Flow Director

In order to support multi-core packet processing, packets have to be distributed among the
cores. One technique that can achieve this is called Receive Side Scaling (RSS). RSS firstly
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computes the hash of the packet header. It then forwards the packets according to the hash value
to one of the NIC queues. Each core is then processing packets of one queue. This procedure
constitutes a stateless load balancer. The Flow Director technology is originally designed to
expand the RSS functionality, by not only performing load balancing, but also forwarding the
incoming packets to the core where the related application is running. Additionally, the match
table can be programmed using an API. In the hybrid approach, we utilize this functionality
to offload the connection table of the load balancer to the NIC.

Depending on the configuration of the NIC, Flow Director can support between around
2000 and 8000 table entries [153]. As a drawback the NIC’s memory is shared between the
Flow Director and the receive buffer. Therefore, as the number rules is increased, the receive
buffer is shrinked.

We measured the latency of a Flow Director enabled echo software for different number
of filters. The absolute maximum latency that occurred in our tests increased from 95 `𝑠 for
no rules to 105 `𝑠 for 8000 rules. These results clearly show that the induced latency by Flow
Director is marginal, even for 8000 rules.

7.3 Implementation

In this section we present how the Hybrid NIC Offloading Load Balancer (HNLB) and the
Software Load Balancer (SLB) is implemented in detail.

As mentioned before, we use the matching capabilities of the NIC to increase the through-
put of HNLB. Figure 7.3 shows the implementation of HNLB, supporting hardware table
offloading. Accordingly, the load balancing steps can be presented as follows:

(1) Packets from new or unseen connections do not match any rule in the Flow Director
table. Therefore, they are forwarded to the default queue of the NIC, i.e., Queue 0.

(2) The developed software in HNLB polls all queues in a round robin manner for packets.
As packets are processed in bursts, it cannot be guaranteed that the second packet of
one connection is already matched by the hardware table. Therefore, packets’ headers
from the default queue are hashed and checked against the software connection table.

(3) If the packets do not match any entry in the connection table, a DIP is chosen from the
VIP table as usual.

(4) The resulting mapping is installed in the software connection table (4a) and the hardware
table (4b).
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Figure 7.3: Load balancer with hardware table offloading: Packets from unseen connections are put
into queue 0 (1) and polled from the HNLB Software (2). These packets do not match any connection
in the software connection table (3), therefore a DIP is chosen from the VIP table and the mapping
is installed in software (4a) and hardware (4b). The packet header is rewritten and forwarded (5).
Subsequent packets of this connection are put in the queue of the corresponding DIP (6). When they
are polled from the queue the matching for the rewriting is encoded in the queue number already (7).

(5) The packet is rewritten according to the selected VIP-to-DIP mapping and put into the
output buffer of the NIC, where it is forwarded.

(6) Subsequent packets are matching the new rule in the hardware table and put into the
queue that encodes the DIP.

(7) The header of these packets are then rewritten in software accordingly and are put to
the output buffer of the NIC to forward them.

The implementation is based on DPDK [99].

For comparison, we also developed a SLB. To perform this, we use the implementation
from Figure 7.3 without step 4b. This implementation does not use any hardware offloading,
since it is realized only in software. As a result, no hardware table is used, and only the default
queue (Queue 0) is polled.

7.4 Assessing utilization

In this section, we introduce a utilization metric and a novel algorithm to determine it.

One of the techniques that DPDK uses to increase the packet throughput is the change
from an interrupt-based packet retrieval to a polling-based packet retrieval. For instance,
if a packet arrives on the NIC, the CPU is interrupted and the packet is then copied and
processed by the OS. However, DPDK does not use interrupts, instead, it checks for packets
at the NIC, processes these packets and then checks again for packets in an infinite loop. As a



7.4. Assessing utilization 125

consequence, the conventional CPU utilization metric does not reveal the load of the system
as the CPU is always fully utilized by the loop. In fact, our proposed metric can be useful to
monitor the system and also to scale up the load-balancer in high-load conditions.

To overcome the challenges the metric shall fulfill the following conditions for a constant
number of concurrent connections and packet sizes:

(i) The utilization shall reach 100 %, when the maximum possible packet rate is being
processed and there is no packet loss.

(ii) The utilization with no traffic (packet rate of 0 pps) shall be 0.

(iii) Otherwise (when conditions (i) and (ii) are not met), it should be linear with the packet
rate.

To form our metric, we adapt the algorithm presented in Section 5.3.1.4. The gathering
of the metrics works as follows:

The cycles counter is read before every iteration of the loop, the cycles spent in the last
iteration are computed in line 3 and added up to the 𝑅𝐸𝐹 counter. If packets are processed,
these CPU cycles that are used for processing packets are summed up in line 13 and are called
𝑂𝑃𝑆. If we output 𝑅𝐸𝐹 and 𝑂𝑃𝑆, we can compute the utilization in some time interval as:

𝑢𝑡𝑖𝑙 =
𝑂𝑃𝑆

𝑅𝐸𝐹

Therefore, if packets are processed in every iteration, we have 𝑢𝑡𝑖𝑙 = 100%. Otherwise,
with busy waiting iterations present, 𝑢𝑡𝑖𝑙 would be smaller than 100%. However, this simple
definition does not take into account that packets are processed in bursts: If every iteration
of the loop would process exactly one packet, the resulting utilization is 100%, although the
system can cope with higher rates. In fact,we observe these effects in both cases. For instance,
for the offloading case, with more used queues the queues are empty less often when polled.
Therefore 𝑢𝑡𝑖𝑙 overestimates the utilization. As a result, 𝑢𝑡𝑖𝑙 can fulfill conditions (i) and (ii),
but fails for condition (iii).

In order to resolve this, we also count the number of processed bursts 𝑛𝑏 and the number
of processed packets 𝑛𝑝 in the lines 7 and 8. This leads to an improved utilization metric
presented as below:

𝑢𝑡𝑖𝑙+ = 𝑢𝑡𝑖𝑙 · (1 + 𝑛𝑝

𝑛𝑏 · 𝐵 )/2
where 𝐵 is the maximum feasible burst size. Essentially, 𝑢𝑡𝑖𝑙+ weights 𝑢𝑡𝑖𝑙 with the mean
burst utilization.

From our experiments, we can see that 𝐵 = 32 in the SLB case, which is exactly the
maximum number of packets we read in one loop iteration from a queue. For more than one
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Algorithm 6: Receiving-Loop

1 while true do
2 cpu_cycles_before = get_cycles();
3 REF+= (cpu_cycles_before - cpu_cycles_last);
4 cpu_cycles_last = cpu_cycles_before;
5 number_rx_packets = recieve_function();
6 if number_rx_packets > 0 then
7 𝑛𝑝 += number_rx_packets;
8 𝑛𝑏 += 1;
9 · · ·

10 Packet processing
11 · · ·
12 cpu_cycles_proc = get_cycles();
13 OPS += (cpu_cycles_proc - cpu_cycles_before);
14 end
15 end

queue, i.e. HNLB, this value can never be reached without losing packets. Therefore, we set
𝐵 = 16 and adjust the 𝑢𝑡𝑖𝑙+ equation slightly:

𝑢𝑡𝑖𝑙+ = 𝑢𝑡𝑖𝑙 · 𝑚𝑖𝑛(1, (1 + 𝑛𝑝

𝑛𝑏 · 𝐵 )/2)

In Section 7.5.2, we show how the utilization evolves over the packet rate and how 𝑢𝑡𝑖𝑙− differs
from 𝑢𝑡𝑖𝑙+.

7.5 Performance Evaluation

In this section, we compare HNLB with the SLB approach as described in Section 7.3. We
focus on evaluating performance by measuring two metrics: i) maximum throughput (without
loss), and ii) our novel utilization metric defined in Section 7.4. Maximum throughput directly
relates to the resource consumption of the load balancer, as more servers are needed, if less
throughput per core is achievable. The utilization on the other hand, gives more insights into
the reasons of the throughput gain. Additionally, it is necessary for scaling as packet loss
should be avoided in real setups: The utilization can be used as input metric for a scaling
solution. Service instances can be scaled up/down to improve resource efficiency depending
on the utilization.

All results only refer to a single physical CPU core without exploiting parallelisms. All
measurements were repeated 30 times and confidence intervals were derived. Since all results
are very stable, the confidence intervals are not visible and, consequently, not shown. The
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Figure 7.4: Best Case Packet Throughput for a paket size of 64 Byte, a single flow and a single DIP.

results are shown with respect to the sending rate of the traffic generator in million packets
per second (mpps).

Our used testbed includes a Desktop PC which uses DPDK-Pktgen [154] for the load
generation and a server equipped with 2x AMD EPYC 7301 x86 processor. Each of the
processors has 16 Cores and 64MB L3 Cache. The turbo feature was disabled as it mainly
increases the performance of single-threaded applications, which is not a realistic use case
on such a server. Simultanous Multithreading (SMT) support was disabled as well to avoid
possible contention and interference effects, which are inherent of this technology. Moreover,
both devices are equipped with Intel X550 Dual-Port 10G Ethernet interface cards. We note
that only one port of both NICs is used for the measurements.

7.5.1 Maximum Throughput

Let us first explore the maximum achievable throughput in terms of packet rate. To perform
this experiment, we use a single flow and a single DIP.

As it is depicted in Figure 7.4, both solutions can achieve more than 12 mpps of packet
rate. In detail HNLB can achieve packet rates up to more than 13 mpps until it shows some
loss (not shown in the figure). However, in SLB case, packet loss starts when the packet rate
reaches around 12 mpps. This resembles the overhead of reading and hashing the header in
the SLB case, that is not necessary in the HNLB implementation.

The number of queues in HNLB is equal to the number of DIPs per core, i.e.only one
queue is used to explore the best case. For the following experiments, we use 10 queues.

In our next experiment, we investigate the throughput for different number of concurrent
connections (nb_conn). In this case, we use only a packet size equal to 64 Bytes. This
experiment is depicted in Figure 7.5. With an increased number of open connections, the
application has to access a bigger table. This decreases the locality of reference of the
application, such that the processor cannot store the table in the fast on-chip caches anymore;
hence, it has to access the main memory more often. As a result, as is expected, higher number
of connections reduces the maximum rate for both approaches. For HNLB the throughput
decreases from 1 to 100 connections, is constant for 100 to 1000 concurrent connections and
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Figure 7.5: Maximum Throughput for a packet size of 64 Byte and different number of concurrent
connections.
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Figure 7.6: Maximum throughput for different packet sizes. Vertical lines represent the maximum
offered rate of the traffic generator.

even increases very little for 8000 connections. The SLB approach throughput constantly
decreases significantly with increasing number of connections. As a result, the performance
gap between both approaches increases with more connections. For example, for 8000 parallel
connections, HNLB can serve a 50% higher packet rate than the SLB on one core.

We also evaluate the impact of packet sizes on the throughput in both cases. Figure 7.6
shows the maximum throughput of both approaches, where the vertical lines indicate the
maximum rate of the traffic generator. This maximum is not shown for 64 Byte packets as it
is out of the scale. In order to get stable results the maximum rate of the generator is a little
below the NIC limit.

The results show that both solutions can reach the maximum rate of the traffic generator
for packet sizes larger than 128 Bytes without any loss. For a packet size of 128 Bytes the gain
of HNLB is still at least 43%, as HNLB can serve the maximum offered rate while SLB is
already limited beforehand. The packet rate for larger sizes is limited by the rate of the traffic
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Figure 7.7: Comparison of Utilization metrics for different rates, 1000 concurrent connections and 10
Queues. Vertical lines show the measurement values where the first loss occurs.

generator. We expect that the gain of HNLB will be similar for larger packet sizes. This is
supported by the utilization results in the next section.

7.5.2 Utilization

Figure 7.7 shows a comparison of the utilization metrics defined in Section 7.4. The vertical
lines denote the rates where loss occurs first. It can be seen that 𝑢𝑡𝑖𝑙− reaches almost 100%
already for quite low packet rates, which violates condition (iii). This effect is due to the burst
packet processing that is used by DPDK: the overhead of processing one burst is independent
of the number of packets in each burst.

Therefore, the HNLB becomes more efficient if the throughput is close to the limit
(vertical line). Notably, in this context, being efficient means that we do not waste CPU cycles
by processing small bursts. In general, both solutions process bursts. Although the software-
only approach polls a single queue, the HNLB approach polls a number of queues. This
explains why 𝑢𝑡𝑖𝑙− for HNLB is already very high for approximately 50% of the maximum
feasible packet rate.

Especially, we can argue that 𝑢𝑡𝑖𝑙+ is a much better metric for HNLB to measure the
the utilization. This metric also gives a good indication of load and how much more traffic
can possibly be served. Further, it fulfills conditions (i) and (ii) and shows a close to linear
behavior (condition(iii)) as well.

Figure 7.8 shows 𝑢𝑡𝑖𝑙+ for both approaches and different number of concurrent connections.
The vertical lines show the packet rate where the first loss occurs. From the Figure, it can
be derived that HNLB outperforms the SLB approach, especially if a higher number of
concurrent connections are served. For instance, for 1000 connections and a packet rate of
10 mpps, the SLB has already a utilization of 100%, while HNLB has only a utilization of



130 Chapter 7. VNF NIC Offloading

2.5 5.0 7.5 10.0 12.5
TX mpps

0

20

40

60

80

100

U
til

iz
at

io
n

%

nb conn: 1
nb conn: 100
nb conn: 1000
nb conn: 8000

Figure 7.8: 𝑢𝑡𝑖𝑙+ for different rates, different number of concurrent connections, a packet size of 64
Byte and 10 Queues. Vertical lines show the measurement values where the first loss occurs. HNLB
is marked with dashed lines. SLB is shown with solid lines.
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Figure 7.9: 𝑢𝑡𝑖𝑙+ for different rates, different packet sizes, 1000 concurrent connections and 10 Queues.
Vertical lines show the measurement values where the first loss occurs. HNLB is marked with dashed
lines. SLB is shown with solid lines.

70%. Further, we can argue that 𝑢𝑡𝑖𝑙+ is a good metric to measure the utilization. It gives
a good indication of the load and how much more traffic can possibly be served: For 1000
connections 𝑢𝑡𝑖𝑙+ reaches 100% with 10 mpps in the SLB case we and 13 mpps with HNLB.
For the SLB case we have already loss with 10 mpps, for HNLB loss starts with the next
measurement value. This shows that 𝑢𝑡𝑖𝑙+ fulfills conditions (ii) and shows a close to linear
behavior (condition(iii)) as well. Further, 𝑢𝑡𝑖𝑙+ fulfills condition (i) per definition. 𝑢𝑡𝑖𝑙+ with
one connection on HNLB is always lower than 100%, in reality this is not an issue as load
balancing is not possible for one connection.

As our final experiment, Figure 7.9 shows the utilization for larger packet sizes. Since
there is no loss in both cases for packets larger than 128 Bytes, we can observe the scalability
with respect to larger packets using 𝑢𝑡𝑖𝑙+ only. We know that packets have to be copied to
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Figure 7.10: Software packet processing without Offloading and the matching capabilities. The flow
assumes that a DIP table entry exists which holds for all packets of a connection except the first one.

the main memory for processing and forwarding. Thus, larger packet sizes cause a higher
utilization. Nevertheless, we can clearly observe that HNLB does scale better for high packet
rates. However, for low rates, both approaches have a comparable utilization or sometimes
the SLB has even a little lower utilization. This can be explained by the large number of small
bursts that have to be processed by HNLB in these cases. Even though we do not reach the
limit of both approaches for larger packets, we still can observe that 𝑢𝑡𝑖𝑙+ behaves similarly
in regions we can cover with our setup. Consequently a gain that is similar to the gain using
small packets can be expected as well for high packet rates with large packets.

7.6 Discussion

In this chapter we showed that by utilizing hardware matching capabilities the throughput of
stateful network functions can be increased. We used Flow Director technology, available in
modern high-speed server NICs, to perform NIC offloading. More specifically we used the
matching capabilities of the NIC to increase the throughput of the VNF. Especially, if a higher
number of concurrent connections have to be processed, the throughput can be increased quite
significantly. For example, for 8000 concurrent connections, throughput can be increased by
50% compared to the software-only case. This is due to the fact that the software only solution
has to maintain a state table in software. This directly reflects the effects of the CPU cache
overload. For every packet a lookup has to be performed. The table is stored in memory and
more connections lead to a table that cannot be stored in the cache anymore. Thus the lookup
becomes more expensive in terms of CPU time and the throughput is reduced.

One important aspect of the approach is that the first packet of each connection has no entry
in the stateful table. Thus, in our implementation, the first packet must always be processed in
software; therefore, no gains are possible with NIC offloading in this case. Figure 7.10 shows
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the potential gains of the NIC Offloading approach, compared to the software approach with
this restriction. The goal of our approach is to utilize Flow Director matching capabilities
in order to increase the throughput of the stateful load balancer. Since Flow Director is not
able to forward or modify packets, these two steps have to be done in the offloading and
the software processing case. Nevertheless, we can utilize Flow Director for matching and
lookup. In software, this is implemented using a hash over the 5-tuple and a table lookup.
Both operations are considered to be 𝑂 (1). However, the table lookup can be comparatively
costly in reality, as we showed in Section 5.3. These architectures are designed for heavy
computation tasks mainly. One main point is the CPU cache architecture: As long as all the
data that is needed for computation is fitting in the caches, the performance is high. On the
other hand, if the cache size is exceeded e.g. for slightly larger lookup tables in our case, the
performance decreases drastically. Consequently, we can observe a performance drop of the
software implementation if we use larger tables. Additionally, the gain of NIC offloading with
small tables is smaller, as we can only save the computation cost of the hashing, as the cost of
the table lookup in the software case gets smaller.



Chapter 8

Conclusion and Outlook

Traditional network security concepts filter the traffic on the edge of the network. Conse-
quently, traffic between devices in the same network is not filtered. If one client in the network
is exploited, an attack can be started between the clients within the networks without filtering
capabilities of the security administrator. In recent years several attacks used weaknesses in
the protocols used within the network and revealed this lack of filtering options. As a relief, in
this thesis a fine-grained SDN/NFV security architecture is presented. SDN is used to provide
isolation on a connection level. Though splitting the network into many fine grained virtual
networks is not enough to detect all kinds of attacks. Therefore NFV paradigm is used to
provide stateful and application layer filtering. Nevertheless, all traffic must be routed through
the NFVI, even though some connections might not be filtered. Thus SDN offloading is used
to avoid such detours.

8.1 Summary

In Section 1.2 several research challenges were introduces. In the following we will summarize
the contributions and findings of this thesis to resolve these challenges.

C1 Secure Operation of SDN With the centralization introduced by SDN, several attack
vectors are introduced. In this thesis main attack vectors are summarized, the latency
overhead of encryption is evaluated and a Denial of Service (DoS) attack detection
method is introduced.

C2 Isolation of SDN Providing access isolation with SDN is relatively straight forward. In
contrast to that, performance isolation is more difficult to achieve and only some devices
fulfill the requirements. Especially dynamic behaviors of Quality of Service (QoS)
mechanisms cause unfairness. We conducted measurements using several hardware
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and software SDN switches. One device even violated the configured bandwidth
guarantees. We show that Stochastic Fairness Queuing (SFQ) can be a solution to
resolve this issue, unfortunately it is not supported by most hardware devices.

C3 Performance of security VNFs NFV is envisioned to use commodity hardware to
reduce costs. However, this hardware was not designed initially for this purpose. It is
shown that due to the high I/O load of VNFs even architectural details like the placement
of the VNF on the Non Uniform Memory Access (NUMA) nodes matter. Further, as
multiple VNFs are deployed on the same CPU chip, some on chip resources, such as
the Last-Level-Cache (LLC), are shared. This can cause contention and performance
degradation. We show an LLC scheduler that reduces the overall load by giving more
LLC to the VNF that has the highest load.

C4 Hardware Offloading Even though NFV focuses on software packet processing, the
capabilities of hardware packet processing devices shouldn’t be forgotten. In this thesis
two mechanisms that combine hardware and software packet processing are shown.
First we propose to use offloading of traffic to SDN by identifying elephant flows with
a machine learning approach. Secondly we show how NIC offloading can reduce the
load on the VNFs.

8.2 Outlook

With the findings of this thesis different directions for future work can be followed.

SDN provides visibility and central control in the network. As a drawback the complexity
of the SDN controller is high. Furthermore a centralized controller is a single point of failure.
Distributed controllers can be a relief, but increase the complexity of the system further.
Upcoming white label switches and operating systems could be an opportunity to provide fine
grained filtering with simpler means.

In the field of NFV novel and changing technologies can cause new problems and op-
portunities. The trend towards chiplet designs with smaller CPU chips that are composed to
one larger chip for example is such a new technology. The effects on performance of such a
design should be evaluated. Further, the LLC scheduler can be extended to be able to cope
with more dynamic behavior of the VNFs.

Finally opportunities also exist in the field of NIC offloading. The presented approach
offloads the state table to the NIC, the underlying performance gains largely depend on the
improved data locality. Thus it is reasonable to assume that the approach also can improve
performance for other use cases such as Deep Packet Inspection (DPI).
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