
Online Path Generation from Sensor Data for Highly Automated
Driving Functions

Tim Salzmann1, Julian Thomas2, Thomas Kühbeck3, Jou-ching Sung3, Sebastian Wagner1 and Alois Knoll1

Abstract— State-of-the-art autonomous driving systems rely
on high precision map data. These map data are crucial to
the driving function and therefore need to be validated during
drive time. This work describes a probabilistic neural model
inferring information about the road in front of an automated
vehicle from sensory data. This problem is modeled as a pixel-
wise classification problem. Thereby, the limitations of systems
relying on pre-processed map data are overcome by replacing
navigation related map data with online sensor information. The
proposed model is trained based on recorded driving traces and
allows the facilitation of the vehicle odometry as input label.
Two use cases, namely Path Planning and Map Validation are
presented and evaluated.

Index Terms— Path planning, Machine learning, Decision
making, Autonomous systems

I. INTRODUCTION

Toady’s developed autonomous driving systems [1] [2] are
often designed to rely on prior knowledge, namely accurate
maps and precise localization. However, the accuracy and
validity of both cannot always be guaranteed. The map can
become outdated due to road changes followed by failure
in localization based on inaccurate GPS measures. In most
applications localization is performed sensor based by trian-
gulating map features, therefore changes in the environment
or weather-related degradation of the used sensor can lead
to inaccurate extracted information. This degradation of
information leads to two problems.
• Overall unavailability decreases the functional behaviour.
• Inaccuracies leading to wrong or misbehaviour of the

automated driving function.
The second more complex problem demands the mainte-
nance of the functionality of the automated driving function
until the prior knowledge is available again or the car has
come to a safe stop. For these problems, the requirement for
an online road model from sensor data is inevitable in order
to sustain an overall safe function behavior.

Pixel-wise segmentation and deep learning facilitate many
online road model approaches which have been developed
during recent years to segment camera images for the gen-
eration of road models [3] [4]. A large number of these
algorithms rely on camera images as input signal which are
subsequently segmented into drivable and not drivable space
by algorithms. Cameras, however, being passive sensors

Department of Informatics, Technical University of Munich, Germany1

BMW Group, Munich, Germany2

BMW Technology Office, Mountain View, CA, USA3

E-Mail: {Tim.Salzmann, Sebastian.Wagner}@tum.de, Knoll@in.tum.de
{Julian.Thomas, Thomas.Kuehbeck, George.Sung}@bmw.de

This work was supported by the Technology Office in Mountain View, CA
of the BMW Group.

are very sensitive to environment conditions. Caltagirone et
al. [5] therefore moved the problem of road segmentation
from an image to a grid space. They use a single grid
representation of a LIDAR point cloud to detect free space
around the vehicle. However, they train as well as evaluate
solely on the human labeled KITTI dataset [6] (less than
300 data points). The result is a spatial representation of
drivable space in the vehicle plane. However, no information
on where the vehicle is allowed or should drive is inferred.
Further, state-of-the-art algorithms in sensor based navigation
rely on end-to-end approaches [7] leveraging the advantage
of freely-labeled training data during drive-time. Extending
this, Barnes et al. [8] use label efficient semi-supervised
data generation to label the ego-vehicle path. While multiple
sensors (camera and LIDAR) are used for automatic labeling,
prediction again is exposed to the uncertainty of a single
camera.

Definitions: In this work, knowledge about the road is
also referred to as a road or path model as it represents
the road and/or drivable paths in an abstracted way. Paths
incorporating a width are called (driving) tubes. Navigating
an automated driving system using mainly offline defined
knowledge is referred to as global or high prior knowledge
navigation information [9]. A typical manifestation of such
is an HD (High Definition) map. In contrast, the term low
prior knowledge if referred to if only offline defined routing
information is used which itself would not be sufficient for
navigation. Furthermore, this work is depicted along the
terms of scenes and situations in autonomous driving as
defined by Ulbrich [10].

Statement of Contributions: The contribution of this pa-
per is twofold. First, a new approach to path planning is
presented which uses a Fully Convolutional Network (FCN)
inferring multiple possible paths for the vehicle based on a
variety of input features. For robustness, it relies on fused
data from multiple sensors. The FCN can be conditioned
on low prior knowledge to only infer the most suited path
based on a defined goal. The training data is automatically
generated during driving without additional human labeling
effort. Second, we demonstrate the usefulness of such a
model illustrating post-processing algorithms for the FCN
output for sensor based (and possibly map influenced) path
planning and map validation.

Organization: In Section II the design and training of
neural models are explained which infer the knowledge about
the road environment. Possible input features for such models
are presented. Further post-processing algorithms using the
model output towards certain use cases are portrayed. Sub-

2019 IEEE Intelligent Transportation Systems Conference (ITSC)
Auckland, NZ, October 27-30, 2019

978-1-5386-7024-8/19/$31.00 ©2019 IEEE 1807

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:45:28 UTC from IEEE Xplore. Restrictions apply.

sequently, the result is presented and evaluated in section III.
Then conclusions are drawn and future work is suggested in
Section IV.

II. APPROACH

Independent of the use case the general approach of this
work consists of three steps:
1) Pre-processing of raw sensor data being fused and de-

rived into a grid representation.
2) FCN model is designed and trained for the desired use

case.
3) Post-processing generates the output of the FCN path

model for the respective use case.
Accordingly to these topics, this section is structured starting
with depicting the pre-processing steps which result in a
variety of possible input grids. These generalize over all
use cases. Then the model architecture, as well as the
training procedure, is explained. Finally, use case specific
post-processing steps are explained.

A. Pre-Processing

One of the main goals of this work is to increase the
robustness against environmental influences including light
or weather changes which influence the used types of sensors
in different ways. Thus, we want to overcome one of the lim-
itations of typically single sensor based end-to-end learning
systems. Therefore, a focus is set on sensor data processing
and fusion, where each input to the network can be created
redundantly from at least two sensor types. The processed
grids facilitate different resolution in their two axes. This
enables the usage of grids of a reasonable size for all possible
environments. For example, a highway environment requires
more foresight in longitudinal than in lateral direction due
to the higher speeds and straightened roads. This results
in a decreased resolution in lateral direction (r). For proof
of concept, the four following possible input grids are
presented. However, all sensor data which can be represented
as a two-dimensional grid around the vehicle are valid inputs
to the model and may improve its capabilities. The model can
be easily adapted to a varying number of inputs. Furthermore,
we present a condition grid, which when fed as an additional
input to the model can be seen as a conditional on the FCN
model.

1) Objects Grid: A lot of information can be inferred
from other road participants especially from those in front
of the ego vehicle. They are included as an object grid
(Figure 1b). In addition, not only the last position of an object
but also its interpolated history is displayed on the grid. This
results in a driving tube for each object on the road. This is
achieved by keeping track of the absolute position of all
objects around the ego vehicle.

2) Boundaries Grid: Other important input features are
the boundaries of the road as well as static obstacles along
the road. These can be extracted by any kind of active sensors
including computer vision algorithms on camera images.
Each sensor produces detections (for example point cloud of
a LIDAR system) at every point in time. Detections which

(a) Reference Image (b) Dynamic objects

(c) Road boundary
extraction

(d) Lane markings

(e) Free space
detection

(f) Condition; in this
case provided from
routing information

Fig. 1: Picture of a scene from the reference camera (a) and
different extracted features depicted as grids ((b) - (f)). It can
be seen in (a) that there are no actual lane markings present,
the change of color on the road on the left as well as the
curb on the right side are detected as markings (d). Even
though such detections are noisy they can still be used. (f)
shows routing information inferred from a navigation system.
Though there is an option to go straight as seen in (a) the
routing determines the left option as goal.

do not change their position in consecutive timesteps are
assumed static and represent boundaries [11]. These static
detections are transformed into the coordinate system of
the ego vehicle and projected onto the grid as boolean or
probability values of occupancy (Figure 1c).

3) Lane Markings Grid: Lane markings are commonly
extracted by vision systems though current research exists
extracting these out of the street painting reflectivity through
LIDAR [12]. Therefore, this grid also fulfills the redundancy
requirement. The detected lane markings are approximated
using a polynomial fit. This polynomial is then plotted onto
a grid (Figure 1d). If a certain line type is detected by
the camera system, it is depicted in the grid using varying
intensities. For example, double solid lines are displayed with
higher intensity than single dashed lines.

4) Free Space Grid: The most abstract input feature
considered is a free space estimation around the ego vehicle
(Figure 1e) which can be created by deep learning and

1808

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:45:28 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)

Fig. 2: Comparison between training label grid and output
grid of an (un-)conditioned FCN path model. (a) Orthoim-
agery for scene. (b) Label for a scene: Driving tube along
the driven odometry points. (c) Output of FCN model condi-
tioned on taking a left turn. (d) Output of unconditioned FCN
model where both possible driving tubes are inferred. The
blurring on the edges of the tube in (c) and (d) exemplifies
the uncertainty of the model (c)

semantic segmentation on a calibrated camera or by extract-
ing convex surfaces from LIDAR point clouds [13]. The
outcome of a free space detection is a 2D plane extending
the sensors field of view indicating free drivable space. This
plane is represented as either points, describing the convex
boundaries, or as pairs of distance d and angle azimuth ν
from a fixed origin and is depicted as a 2-D surface on the
grid.

5) Condition Grid: Some use cases require a certain
minimum level of prior knowledge. Navigation, for example,
becomes redundant if no goal for the vehicle exists. There-
fore, this grid provides a way to include low prior knowledge
as input to the FCN model and can be seen as a conditional
to the FCN model outputting the best path conditioned on the
information on this grid. It can have multiple manifestations.
For example, a certain marking on the grid depicting an
intermediate goal is possible. However, we had good expe-
riences implementing this grid as over-approximated routing
information. Thereby, the planned routing by a navigation
system is plotted as straight lines. The width of these lines
incorporates the inaccuracy of the GPS localization and the
map itself (Figure 1f).

In order to train the model, a desired output for the model
needs to be designed. Therefore, two additional grids are
derived: The label for the training of the FCN and its output:

1) Training Label Grid: The labels used to train the
model are automatically generated by keeping track of the
ego vehicles odometry during data collection. This odometry
trace is projected as a path, with an orthogonal gradient
in intensity away from the center, into a grid. However,
this leads to the training label only containing one possible
driving tube. Specifically, the one which was actually driven
during data collection. Therefore, this grid is called a training
label and not the ”ground truth” as often done in machine
learning applications. For unconditioned FCNs the aim is to
train models which are able to generalize to output multiple
driving tubes even though the training labels only contain a
single one. The gradient on the path is set discrete: For a
width of 0.5 meters around the center of the vehicle, the
intensity of 1 is drawn on the grid. This also represents
a probability of 1 of being part of a driving tube. For the
remaining width of the vehicle, a probability of 0.9 is used.

Additionally, for the immediate surrounding of the vehicle
of 1m the probability of 0.8 is used (Figure 2b). Thus, every
pixel in the grid contains a label L(c, r) resembling the
probability of being part of a driving tube yc,r = 1. The
gradient is important for path extraction along the center of
driving tubes for the navigation use case further described in
Section II-C.2.

2) Output Grid (FCN Path Model Grid): The inferred
output from the model contains possible driving tubes from
the perspective of the ego vehicle. The grid values represent
a probability of the pixel being part of a driving tube or not
ŷc,r = {0, 1}. Even though the training data only consists of
a single driving tube per data point, the output of the model
will generalizes over all possible paths. Figure 2 shows
a comparison between the training label grid and desired
output grid without conditioning. While the driver during
data collection took a left turn (b) all possible paths (d) for
the scene are the output of the FCN if unconditioned. If
conditioning is applied the condition has to be consistent
with the drivers’ decision and the conditioned output of the
FCN would only be the driving tube to the left (c).

B. Model & Training

This problem is modeled as a pixelwise classification
problem, assigning each pixel of the output grid a probability
of being part of a driving tube. Naturally, there are many
similarities with classic pixelwise segmentation approaches.
However, there are some major differences too.

Different input features resulting out of diverse sensors
and fusion techniques add to the problem space of the input
vector. Furthermore, as described in Section II-A, the labels
for each pixel are not binary class labels but the probabilities
of these ([0, 1]). Furthermore, the recorded path model labels
only represent part of the ground truth. If the driver took a
left turn at a crossing only this driving tube is represented
in the label. For unconditioned models the main difficulty
is to train the model in a way that it generalizes to infer
all possible driving tubes even though it was only trained
on a single one per scene. Also, very sparse information is
fed into the network. The information to identify a pixel as
being part of a driving tube might come from a large spatial
distance compared to classical image segmentation where
the information necessary to classify a pixel on the output is
normally given in close proximity around the corresponding
pixel location in the input image.

Two concepts, downsampling, and dilation, originating
from pixelwise segmentation are transferred to this problem.
The most popular implementation of the first concept is
called U-Net [14]. It is originally used for biomedical image
segmentation and is designed to segment a single input image
with one or three (colored) channels. However, in this work,
a segmentation of the environment around the vehicle is
inferred from multiple input grids. For the FCN path model
all of these grids are single channel and have the same size
((b) - (f) from Figure 1). Therefore, the U-Net architecture
is altered (Figure 3) to have multiple downsampling feature
lines which get concatenated at the maximal depth. The

1809

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:45:28 UTC from IEEE Xplore. Restrictions apply.

Depth 0 Depth 1 Depth 2 Depth 1 Depth 0

i c0 c0

c0 c1 c1

c1 c2 c2

Fe
at

ur
e

1

i c0 c0

c0 c1 c1

c1 c2 c2

Fe
at

ur
e

2
...

i c0 c0

c0 c1 c1

c1 c2 c2

Fe
at

ur
e

n

n ∗ c2

(n + 1)c1 c1 c1

(n + 1)c0 c0 c0 1

O
utput

...

Fig. 3: Adapted U-Net architecture with multiple feature
lines. Arrows: blue - Convolution (or Parallel Dilated Con-
volutional layer as shown in Figure 4), red - Downsampling,
yellow - Upsampling, grey - copy and concatenate. cx:
number of convolution filters on depth x.

Previous layer

Dilation Rate 1 Dilation Rate 2 Dilation Rate n

Filter
concatenation

...

Fig. 4: Parallel dilated layer parallelizing convolutions with
different dilation rates. (Adapted from [15])

single upsampling line is adapted so that on each depth level
features in the original resolution are bridged (grey arrows)
from each feature line.

This concept of downsampling is combined with the
concept of dilated filter masks. Without dilation, the adapted
U-Net can only increase the receptive field by increasing
depth which implies an increase in the size of the network.
Dilated convolutional masks are a way to decrease the size of
the network while keeping its functionality. To overcome the
limitation of fixed dilation rates, a new type of convolutional
layer introduced in [15] is used. Similar to the inception layer
[16], which uses parallel convolutions with different filter
sizes, a layer is used which incorporates parallel convolutions
with different dilation rates (Figure 4).

The final layer of the network uses a pixelwise sigmoid
activation to output values in the range of [0, 1] for each pixel
with 0 indicating that a pixel is not part of a driving tube and
1 indicating that a pixel is part of a driving tube. Therefore,
the output values represent a probability of the pixel being

0 2 4 6 8 10 12 14
0.75

0.8

0.85

0.9

Epoch

A
cc

ur
ac

y

Fig. 5: Comparison between adapted U-Net using parallel
dilated convolutional layers (blue) and no dilation (red) for
small depth of 2 downsampling steps. Both models are
trained until the accuracy converges.

part of a driving tube.
The cross-entropy loss function is selected as loss function

to optimize the FCN model towards matching the distribution
of the training data. Additionally a weighting factor between
the two classes ŷc,r = {0, 1} is introduced as most pixels
in an output grid are not part of the road the ŷc,r = 0
class overweights. To counteract, a factor ω1 is introduced
to increase the weight on the ŷc,r = 1 class which results in
the finally used loss function

L =

C∑
c=0

R∑
r=0

−(ω1 ∗ (Lc,r ∗ logFθ,c,r(x))

+ ((1− Lc,r) ∗ log (1− Fθ,c,r(x))))
(1)

with Lc,r being the label assigned in Section II-A-Training
Label Grid and F being the output of the network.

C. Post-Processing for Navigation Use Case

For the navigation use case, the output of the FCN model
requires further processing. To control the vehicle a trajectory
has to be calculated. First, a path and its boundaries are
calculated before a trajectory is optimized through that path.
For this use case, we are conditioning the FCN model on low
prior knowledge as it improves the certainty of the model on
a single path.

1) Goal Selection: Independent of the model being condi-
tioned and outputting only a single driving tube or multiple,
in order to extract the paths, a goal on the grid has to be
defined. Low prior knowledge in the form of offline planned
desired routing is used similar to the model conditional. The
desired route is projected onto the grid as single pixel width
lines. The point where the desired route intersects with the
border of the output grid is taken as the start point for a
goal search. Around this point, with a search radius of the
approximated uncertainty of the low knowledge data source,
the point with the maximum probability of being part of a
driving tube is found. This point is defined as the goal point.

2) Path Extraction and Smoothing: After a goal is de-
termined a path from the position of the ego vehicle in the
output grid to the goal is calculated. First, the output grid
O (Section II-A-Output Grid) is converted into a cost grid
C = 1 − O. As the vehicle has a spatial dimension larger
than a single pixel the final cost grid for path extraction is
created by a uniform convolution for each pixel on C with

1810

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:45:28 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 6: Generation of convoluted cost grid. (a) Artificialy cre-
ated optimal output grid with narrow passage by obstacle. (b)
Cost grid created by inverting (a). If a path would be planned,
this path would be too close to the obstacle. (c) Convoluted
cost grid. The convolution considers the surrounding of each
pixel. Pixels close to the obstacle receiver higher cost.

the convolution mask dimension equaling the length of the
vehicle (Figure 6). Note that this is over-approximating as
the vehicle is longer than it is wide. On this cost grid, a
Dijkstra search is performed. If the total or the maximum
cost of a single pixel along the found path is above a certain
threshold a new goal must be selected (re-routing).

This path in grid coordinates is transformed into the ego
vehicle coordinate system, in which the path is smoothed by
fitting cubic splines to multiple waypoints while maximizing
the closeness of the fit with the given points and also maxi-
mizing a smoothing criterion (the full fitting and smoothing
algorithm is described in [17]). If alternatively a search
algorithm which considers the holonomic constraints of the
vehicle is used, smoothing would no longer be necessary.
A similar approach used in [18] would be feasible where
reachability maps taking holonomic constraints into account
are generated offline and are then online used to plan a path
through a cost grid.

3) Boundary Extraction: The smoothed path points are
transformed back onto the output grid to calculate the
boundaries of the driving tube for each point. The probability
threshold for which a pixel in the output grid is still assumed
to be part of the driving tube, is defined offline. From
each interpolated point on the path, a binary search in
two spatial directions orthogonal to the path is performed
to find the pixel furthest away in the respective direction
with a probability value still higher than the threshold. The
output towards the trajectory planner is then the desired path
consisting of waypoints, heading as well as boundaries left
and right orthogonal towards the heading.

4) Trajectory Planning: A path-tracking controller using
a Model Predictive Control (MPC) approach [19] is used to
generate an optimized trajectory subject to vehicle dynamics
and moving objects. In doing so, the controller optimizes
a forecast of the system behavior. Generally, a defined
weighted quadratic cost function is minimized with respect
to all system constraints. The output from the FCN model
can be incorporated into the MPC controller in two ways.
Either the cost grid C from Section II-C.2 is directly used
as a weighted minimization target for the tracking controller
or the extracted boundaries from Section II-C.3 are added
as additional constraints for the controller. An example

Fig. 7: Planned trajectory based on the output of the FCN
path model. Part of the road is blocked by traffic cones (red
circles). The trajectory is planned around them.

(a) (b) (c)

Fig. 8: FCN path model compared to high prior knowledge
for blocked road using traffic cones. (a) Picture of the scene:
Blue cones block the right turn. (b) Overlay of high prior
knowledge (HD map) with output of driving tubes of the
FCN path model. (Cones are manually inserted as red circles)
(c) Same road but without cones. This time the FCN path
model shows a right turn.

of a planned trajectory projected into the camera image
is shown in Figure 7. By optimizing the trajectory with
an MPC controller another problem of typical end-to-end
systems which output direct actor commands is solved. Using
MPC, additional safety and verification constraints can be
incorporated into the optimization process [20].

D. Post-Processing for Knowledge Validation Use Case

Prior high accuracy knowledge can be validated to a cer-
tain extent using the output grid of the FCN path model (Fig-
ure 8). For this use case, the FCN model is not conditioned
on any prior knowledge as the model shall generalize over all
possible driving tubes for the vehicle. We are using common
methods in machine learning to enforce generalization to
multiple paths instead of overfitting to a single: Increase
dropout, decrease model capacity, and early stopping. A
simple way to validate the map is to compare the driving
tubes outputted by the FCN path model with driving tubes
inferred by an HD map. The absolute difference between the
two grids gives a heat map of where the two models differ.
Taking the average of these differences gives an indicator of
the divergence of the two models. High deviations between
prior knowledge and newly inferred knowledge from sensor
data have to be evaluated to take appropriate actions which
are out of the scope of this paper.

1811

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:45:28 UTC from IEEE Xplore. Restrictions apply.

III. RESULTS

Training the FCN model conditioned for the Navigation
Use Case we reach a pixelwise softmax accuracy of above
90% for our specific scene-based data set. For the uncon-
ditioned FCN we found empirically that a well-generalizing
model only has an accuracy of 79±5% as the label does not
include all possible paths. However, the authors acknowledge
that these accuracies are hard to interpret in context as
they are not calculated on a standardized data set. Before
a trained FCN path model is integrated into the vehicle for
real world closed loop driving, we applied intensive testing
on three levels. First, a simple closed-loop simulation for a
virtual vehicle is created. Then a re-simulation algorithm is
developed and implemented to ensure the system is able to
deal with real-world sensor noise. Finally, open loop analysis
for the scenes is conducted before closed loop is engaged.
For this proof of concept, two driving scenes are selected and
two models are trained with data collected from these. The
first scene is a neighborhood environment typical for the US.
This includes sections with varying road width, mostly no
lane markings, and parked vehicles as well as other obstacles
on the street. This scene is selected as it is a representative
unstructured environment for sensor based-navigation. The
second scene for which a model is trained is a highway
environment. Here specifically the situation of lane keeping
is chosen in order to compare our approach to standard
driver assistance systems. Both scenes were successfully
navigated using the respectively trained FCN path model.
Even in environments where no lane markings are present
the navigation function is maintained as the model orientates
itself on the other input features it receives. For our test-
ing closed-loop was only engaged on proving grounds and
most of the evaluation is being done within our simulation
pipeline. While the results to this point are mostly qualitative,
we work towards a quantitative comparison against other
approaches on standardized test sets. However, we showed
that the model is able to maintain a driving function relying
on input features solely from redundant sources and no raw
images.

IV. CONCLUSION

In this work, a new approach is being presented to generate
an online path model from sensor data which can be condi-
tioned on prior knowledge. We applied and further developed
state of the art algorithms from semantic segmentation and
path planning. The model can be trained in an end-to-end
fashion using data from recorded traces without having the
disadvantages of direct model to actor output or raw/single
sensor dependencies. The benefit of this approach is shown
by implementing two separate use cases. One of the use
cases included building a functional autonomous driving
architecture where all necessary steps from data collection
over model implementation and training to (re-)simulation
are performed before testing the system in closed loop in
the real world. While the navigation use case was originally
designed to take over navigation from global navigation for
a short limited time period until high prior knowledge is

available again, the system is able to drive multiple miles
solely on the online system. The second use case showed the
first steps towards the feasibility of such a model to detect
inaccuracies in map data.

Further Work: For comparability and better analytic eval-
uation the FCN model should be adapted using standardized
data sets such as KITTI [6]. Also, an empirical analysis of
the contribution of each input towards the FCN performance
would be interesting. As described, the FCN models are
trained scene specific. As a further consideration, the diver-
sity of scene data will be analyzed and used to train mod-
els which maintain their overall performance over multiple
scenes. To better assess this performance, an analytical evalu-
ation of the results and outputs against a ground truth should
be performed. Such a ground truth can be produced from
an HD map and high precision dGPS localization. While
the map validation process was presented conceptually, the
performance of this approach requires further evaluation.

ACKNOWLEDGMENT

The authors thank the BMW Group for the support of this
work.

REFERENCES
[1] M. Aeberhard, S. Rauch, et al., “Experience, Results and Lessons Learned from

Automated Driving on Germany’s Highways,” IEEE Intelligent Transportation
Systems Magazine, 2015.

[2] J. Ziegler, P. Bender, et al., “Making bertha drive-an autonomous journey on
a historic route,” IEEE Intelligent Transportation Systems Magazine, 2014.

[3] S. Bittel, V. Kaiser, et al., “Pixel-wise Segmentation of Street with Neural
Networks,” 2015.

[4] V. Badrinarayanan, A. Handa, et al., “SegNet: A Deep Convolutional Encoder-
Decoder Architecture for Robust Semantic Pixel-Wise Labelling,” 2015.

[5] L. Caltagirone, S. Scheidegger, et al., “Fast LIDAR-based road detection using
fully convolutional neural networks,” IEEE Intelligent Vehicles Symposium,
Proceedings, 2017.

[6] J. Fritsch, T. Kuehnl, et al., “A New Performance Measure and Evaluation
Benchmark for Road Detection Algorithms,” in International Conference on
Intelligent Transportation Systems (ITSC), 2013.

[7] M. Bojarski, D. Del Testa, et al., “End to End Learning for Self-Driving Cars,”
2016.

[8] D. Barnes, W. Maddern, et al., “Find Your Own Way : Weakly-Supervised
Segmentation of Path Proposals for Urban Autonomy,”

[9] T. Luettel, M. Himmelsbach, et al., “Autonomous Ground Vehicles - Concepts
and a Path to the Future,” Proceedings of the IEEE, 2012.

[10] S. Ulbrich, T. Menzel, et al., “Defining and Substantiating the Terms Scene,
Situation, and Scenario for Automated Driving,” IEEE Conference on Intelli-
gent Transportation Systems, Proceedings, ITSC, 2015.

[11] G. Tanzmeister, M. Friedl, et al., “Road course estimation in unknown,
structured environments,” in IEEE Intelligent Vehicles Symposium, 2013.

[12] F. Ghallabi, F. Nashashibi, et al., “LIDAR-Based Lane Marking Detection For
Vehicle Positioning in an HD Map,” 2018.

[13] C. Fernández, M. Gavilán, et al., “Free space and speed humps detection
using lidar and vision for urban autonomous navigation,” in Intelligent Vehicles
Symposium (IV), 2012 IEEE, IEEE, 2012.

[14] O. Ronneberger, P. Fischer, et al., “U-Net: Convolutional Networks for Biomed-
ical Image Segmentation,” 2015.

[15] W. Shi, F. Jiang, et al., “Single image super-resolution with dilated convolution
based multi-scale information learning inception module,” in 2017 IEEE
International Conference on Image Processing (ICIP), IEEE, 2017.

[16] C. Szegedy, W. Liu, et al., “Going deeper with convolutions,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015.

[17] P. Dierckx, “Algorithms for smoothing data with periodic and parametric
splines,” Computer Graphics and Image Processing, 1982.

[18] D. Ferguson and M. Likhachev, “Efficiently Using Cost Maps For Planning
Complex Maneuvers Efficiently Using Cost Maps For Planning Complex Ma-
neuvers,” in International Conference on Robotics and Automation Workshop
on Planning with Cost Maps, 2008.

[19] B. Gutjahr, L. Groll, et al., “Lateral Vehicle Trajectory Optimization Using
Constrained Linear Time-Varying MPC,” IEEE Transactions on Intelligent
Transportation Systems, 2016.

[20] K. Leung, E. Schmerling, et al., “On Infusing Reachability-Based Safety
Assurance within Probabilistic Planning Frameworks for Human-Robot Vehicle
Interactions,” 2018.

1812

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:45:28 UTC from IEEE Xplore. Restrictions apply.

