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Zusammenfassung

Wir behandeln mithilfe von Γ-Konvergenz eine Verallgemeinerung von zwei
klassischen Modellen für Spin-Wirbel, und zwar dem planaren XY-Modell
und dem Ginzburg-Landau Modell auf zweidimensionalen Riemannschen Man-
nigfaltigkeit. Das kennzeichnende Merkmal beider Verallgemeinerungen ist
die Emergenz von zwei verschiedenen Typen von Singularitäten nach eines
entsprechenden coarse-graining Verfahrens: fraktionellen Wirbeln (null-dimen-
sional) vom Grad 1

m für ein m ∈ N und Liniendefekten, in deren Umge-
bung die Winkel der Spins um ein Vielfaches von 2π

m springen. In beiden
Fällen, berücksichtigt der Γ-Limes beide Beiträge durch eine renormierte En-
ergie, die von der Wirbel-Konfiguration abhängt, und durch die Oberflächen-
Energie des Sprungdefekts. Zuletzt, untersuchen wir einen regularisierten L2-
Gradientenfluss des verallgemeinerten XY -Modells im speziellen Fall von zwei
fraktionellen Wirbeln verbunden durch eine immersierte Kruve in R2. Mithilfe
von minimizing movements zeigen wir maximale Existenz des Flusses.
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Abstract

We propose and analyze through the language of Γ-convergence a generalization
of two classical vortex models, namely the XY model in the plane as well as
the Ginzburg-Landau model on a two-dimensional Riemannian manifold. The
main feature of both generalizations is the emergence of two different types
of singularities after a proper coarse graining procedure: fractional vortices
(zero-dimensional) of degree 1

m for some m ∈ N and string-like defects (one-
dimensional) around which the angles of the spins jump by a multiple of 2π

m . In
both cases, the Γ-limit takes into account both contributions via a renormalized
energy, depending on the vortex configuration, and a surface energy of the
jump defects. Our models allow for a simple description of several topological
singularities arising in Physics and Materials Science, such as: disclinations
and string defects in liquid crystals, fractional vortices and domain walls in
micromagnetics, partial dislocations and stacking faults in crystal plasticity.
Lastly, we study a regularized L2 gradient flow of the generalized XY model
in the case of two fractional vortices connected by an immersed curve in R2.
Employing minimizing movements we prove maximal-time existence of the
flow.
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Chapter 1

Introduction

Many physical systems present symmetry invariances leading to a number of
equivalent ground states. Sometimes two (or more) of such ground states happen
to be forced to coexist, so that each of them describes only locally the system,
or in other words each of them describes only a certain different portion of the
entire system. In this case an additional energy may be required in order to make
this new configuration energetically accessible. The least energy required is
known as transition energy. The fields describing the system in such a transition
configuration are locally similar to those of the ground states, but present defects,
making them less regular in certain region of the space (the transition regions).
In Materials Science these singularities often appear as irregularities in the
microscopic structure of a material and play a fundamental role in explaining
a large variety of phenomena, ranging from plastic deformations in metals to
superconductivity properties of type-I superconductors.

Despite the large interest in phase separation problems, their rigorous varia-
tional analysis has a relatively young life. It can be traced back to the birth of
Γ-convergence [33] and to the analysis of the Allen-Cahn phase-field functional
done by Modica and Mortola in [53, 54]. The passage from the latter scalar prob-
lem to its most significant vectorial analog, the Ginzburg-Landau functional,
has required quite some time and the effort of many mathematicians and the
development of new techniques (see for instance [58, 45, 47, 59, 2] as well as the
books [16, 60]). The overall result has contributed to give solid mathematical
basis to many fundamental problems in the theory of superconductors.

In the last years, the mathematical community has shown an increasing
interest in the derivation of these effective models starting from fundamental
microscopic lattice models (see for instance [13, 3, 57, 4, 6, 7]). The latter results
have helped to understand some basic mechanism of formation, interaction and
evolution of defects pinpointing the presence of additional energy barriers due
to the microscopic length scale and to the essential anisotropic structure of
matter.

The purpose of this thesis is to contribute to the mathematical research in
this field with particular emphasis to a class of models leading to the presence
and interaction of defects of different dimension. More precisely, we will coarse
grain atomistic spin systems whose continuous counterpart will be described by
a spin field presenting point and line singularities. While the point singularities
are associated to fractional vortices, the line singularities represent domain
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2 Chapter 1. Introduction

walls. The main goal of our analysis is to understand the interaction between
the two different types of singularities, both from a static point of view through
Γ-convergence (see [17, 28]) and from a variational evolution point of view
through minimizing movements (see [10, 18]).

The first result of this thesis is in Chapter 2 and concerns the analysis
via Γ-convergence (see also Section 2.1.1 for the necessary definitions) of a
generalization of the classic XY model from condensed matter physics (see [62]
for an elementary introduction of this model). A brief mathematical description
of the XY model is as follows: Fix an open set Ω ⊂ R2 and consider a spin
field u valued in the unit circle S1 ⊂ R2 and living on a portion of the ε-square
lattice belonging to Ω, namely εZ2 ∩ Ω, where ε > 0 is a fixed and usually
very small scalar. Admissible spin configurations try to minimize an energy
functional that is of nearest-neighbor type. Here, given i, j ∈ εZ2 ∩ Ω, we say
that (i, j) is a nearest-neighbor pair if and only if |i− j| = ε. Then, the energy

functional E
(0)
ε modeling the ferromagnetic interaction of the spin system is:

E(0)
ε (u) := −1

2

∑
n.n.

ε2〈u(i), u(j)〉, u : εZ2 ∩ Ω→ S1,

where
∑

n.n. is shorthand notation for the sum over all nearest-neighbor pairs,
and 〈·, ·〉 denotes the standard scalar product in R2. Note that the energy
functional above is minimized for u ≡ const, with its global minimum being
approximately the negative area −|Ω| of Ω. The authors of [4] derive a Γ-
convergence result whose limit is finite on those u satisfying |u(x)| ≤ 1 for
a.e. x ∈ Ω and it is given by −|Ω|. In particular, this result is compatible with
ground states configurations obtained by the unconstrained mixing of arbitrary
uniform states {u = s1} := {x ∈ Ω: u(x) = s1} and {u = s2}, where s1, s2 ∈ S1,
at a mesoscopic scale large enough. To obtain a finer description of the above

model, in [4] the energy E
(0)
ε has been studied after subtracting its minimum

and rescaling by δε → 0:

E(1)
ε (u) := δ−1

ε ·
1

2

∑
n.n.

ε2(1− 〈u(i), u(j)〉). (1.1)

Note that such a procedure is inspired by the so called development by Γ-
convergence introduced in [12] and further developed in [20]. The authors of
[4] show that an interesting scaling is given by the choice δε := ε2|log ε|, in
which case configurations of bounded energy may asymptotically develop a
finite amount of vortices. Each vortex of degree d ∈ Z contributes by π|d| to

the Γ-limit of E
(1)
ε . We remark at this occasion that the emergence of vortices

is a well known result in the statistical physics community, first predicted by
J. M. Kosterlitz and D. J. Thouless in their pioneering paper [48]. An intrigu-
ing question about the above model concerns the interaction energy between
vortices. This is answered in [6] by employing a second-order Γ-convergence
analysis. To be more precise, they fix N ∈ N, which represents the net sum
of the unsigned degrees of limit vortices. Subtracting Nπ from the first-order
energy functional in (1.1) and rescale with δ̃ε := 1

|log ε| :

δ̃ε(E
(1)
ε −Nπ) = |log ε|(E(1)

ε −Nπ) = XYε −Nπ|log ε|,
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with XYε := E
(1)
ε |log ε|, that is:

XYε(u) =
1

2

∑
n.n.

(1− 〈u(i), u(j)〉) (1.2)

for any u : εZ2 ∩Ω→ S1. Note that, by a previous result, Nπ is approximately

equal to the minimum of E
(1)
ε for ε small. By Γ-convergence, the authors of [6]

show that a sequence {uε} of spin fields that keep XYε−Nπ|log ε| bounded from
above, asymptotically develop a system of finitely many vortices, concentrated
at points xk ∈ Ω around which they wind dk ∈ Z times (here the sign of dk
corresponds to either clockwise or counter-clockwise rotation of the spin field)
and represented by the measure:

µ =

K∑
k=1

dkδxk ,

where δxk is the Dirac delta function at xk. Furthermore, the net sum of the

unsigned degrees, i.e. the total variation |µ| = ∑K
k=1|dk| of µ is bounded from

above by N . In the case of equality (|µ| = N) it is shown that all vortices
must be of degree dk = ±1 and that the Γ-limit of XYε −Nπ|log ε| (see also
Theorem 4.2 in [6]) turns out to be:

W(µ) +Nγ, (1.3)

where W is the so-called renormalized energy, inducing an attractive force
between vortices of different sign, and a repulsive one between vortices of the
same sign as well as any vortex and the boundary ∂Ω, and γ ∈ R is a scalar
independent of µ known as the core energy. In this setting, a slightly stronger
Γ-convergence result holds true, that not only keeps track of the vorticity but
the whole spin field (identified with a proper piecewise affine interpolation)
altogether, in the limit ε→ 0. Denoting the limit spin configuration by u, the
Γ-limit of XYε −Nπ|log ε| is:

W(u) +Nγ, (1.4)

with W being an extension of the renormalized energy from vortex measures
to continuum spin fields u : Ω→ S1, qualitatively inducing the same attractive
as well as repulsive forces, and γ being the core energy from before. Note that
minimizing W(u) over all spin fields u with vortices given by the measure µ
reduces to W(µ) from (1.3).

In [15], the author together with M. Cicalese, L. De Luca, and M. Ponsiglione
investigate a possible generalization of the XY model.
More precisely, they consider a 2π-periodic potential fε : R→ R (depending on
ε), such as the one depicted in Figure 1.1, and define for u : εZ2 ∩ Ω→ S1:

˜XYε(u) :=
1

2

∑
n.n.

fε(ϕ(i)− ϕ(j)), (1.5)

where ϕ : εZ2∩Ω→ R is an angular lift of u (i.e., eıϕ = u where we conveniently
identify R2 with C). Notice that taking f(t) := 1− cos(t) instead of fε in (1.5)
results in the classic XY functional defined in (1.2). The main difference
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−2π −π 0 π 2π
0
ε

1

Figure 1.1: Angular potential in the fractional setting.

between XYε and ˜XYε is that the latter not only prefers parallel spins whose
interaction pays 0 energy, but also antiparallel ones (u(i) ≈ −u(j)). In fact,
each such pair contributes approximately ε to the energy. The preference of

˜XYε for fractional vortices instead of usual ones can be formally explained as
follows: A prototypical single vortex configuration such as the one given by
u(x) := x

|x| restricted to grid points costs π|log ε|+ O(1) classical XYε energy.

As most of the nearest neighbor pairs of u have small difference-angles (of
order O(ε)) and fε(t) ≥ g(2t) ≈ 1

2 (2t)2 ≈ 4g(t) for small t it follows that
˜XYε(u) = 4π|log ε|+ O(1), a four times larger leading order term as before. In

Figure 1.2, we can see a spin field v that has the same net vorticity as u but
costs asymptotically less energy.

Figure 1.2: Configuration with two fractional vortices each of degree 1
2 connected

by a domain wall.

More precisely, it has two fractional vortices – each of degree 1
2 and hence

contributing π|log ε| + O(1) to the final ˜XYε energy – connected by a string-
like defect, on which the antiparallel spin pairs accumulate. As the number
of antiparallel spin pairs is of order O( 1

ε ) their contribution to the energy is
O(1). Consequently, for ε > 0 small, v becomes more efficient from an energetic
point of view. In Chapter 2 we illustrate how to make this formal computation
rigorous by through a Γ-convergence analysis. In [15] it is show that spin
fields whose generalized XY energy is bounded by Nπ|log ε| (for some N ∈ N)
asymptotically generate a system of finitely many (possibly fractional) vortices
described by the measure:

µ :=

K∑
k=1

dk
2
δxk , dk ∈ Z

satisfying |µ| ≤ N . In the special case |µ| = N , they further show that
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Figure 1.3: Angular lift of a limit spin configuration in the case N = 2. The
angles jump by exactly π along the sinus shaped curve. Furthermore the spin
field develops 1

2 -vortices at both endpoints of the jump defect.

appropriately chosen interpolations of discrete spin fields accumulate at a limit
spin configuration u, having N vortex centers each of fractional degree ± 1

2 and

satisfying u+ = −u− at H1-a.e. point of the jump-set Ju (see also Figure 1.3).
Here u+ and u− are the approximate jump values of u. The Γ-limit of ˜XYε −
Nπ|log ε| is then given by:

W(u2) +H1
cr(Ju) +Nγ. (1.6)

In the previous formula, W and γ are as in (1.4), H1
cr(Ju) is the crystalline

length of Ju, and in the notation u2 we identify R2 with C. At this point,
we remark that, in fact, the more general case of fractions 1

m (m ∈ N) was
considered in [15] reducing for m = 2 to the one we presented above. In
this thesis, we will investigate a generalized XY model described by the same
energy functional as in (1.5), but with spin fields that are constrained to be
equal to g ∈ C∞(Tδ(∂Ω); S1) (where Tδ(∂Ω) := {x ∈ R2 : dist(x, ∂Ω) < δ} for
some δ > 0 small enough) on points of the grid εZ2 ∩ Ω closest to ∂Ω. As
before, we deal with the case of general fractions 1

m for m ∈ N, but for the
sake of simplicity we only state the result for m = 2. Assuming a nonzero
degree deg(g, ∂Ω) of g around ∂Ω, we will show that proper interpolations of
minimizers of the generalized XY model are asymptotically close to a limit
spin configuration u, having 2|deg(g)| fractional vortices with fractional degree

equal to sgn(deg(g))
2 , and satisfying u+ = −u− at H1-a.e. point of Ju. As it is

typical for Dirichlet constraints on functions that are allowed to jump (more
precisely special functions of bounded variation), these may not be preserved in
the limit. Nevertheless, we still have that u2 = g2 on ∂Ω in the Sobolev sense.
This is possible, since, by the chain rule (u2)+ = (u+)2 = (−u−)2 = (u2)− for
H1-a.e. point of Ju, which in fact shows that u2 is Sobolev regular. The Γ-limit
of ˜XYε − 2|deg(g)||log ε| is given by (see Theorem 2.16):

W(u2) +H1
cr(Ju) +H1

cr({x ∈ ∂Ω: u(x) 6= g(x)}) + 2|deg(g, ∂Ω)|γ. (1.7)
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The main difference between (1.6) and (1.7) is the extra component (third term
in the equation above) penalizes the size of the subset of ∂Ω on which u does
not coincide with g (understood in the sense of traces for functions of bounded
variation).

As the analysis of the evolution of the generalized XY spin system proves
to be a rather large endeavour in its most general formulation, in Chapter 3
we study that of a simplified model of the general case that is (hopefully)
retaining most of the core features. In this regard, instead of the full limit
spin configuration u, we will work with its singularities (vortex centers encoded
by the point measure µ and the jump-set Ju) only. We further assume that
µ = 1

2δη(0) + 1
2δη(1) and Ju = im(η), where η : [0, 1]→ Ω is a curve in Ω. Note

that in order to make this assumption compatible with the boundary condition,
we need to assume that the boundary datum g satisfies deg(g, ∂Ω) = 1. As the
renormalized energy diverges to +∞ whenever two vortices of the same sign
collide, we can assume that throughout the evolution the last term in (1.7) will
remain constant, and hence, can be safely ignored. Minimizing over all spin
fields that have exactly this configuration of singularities results in the analysis
of the following reduced energy functional:

E(η) := W (η(0), η(1)) +H1
cr(η),

W : Ω×Ω\{(x, x) : x ∈ Ω} → R being a Coulomb-type potential (see also (3.17)
for further details). In order to stay in a more classical setting, we exchange
the crystalline length of γ by the Euclidean one, and consider:

E(η) := W (η(0), η(1)) +H1(η).

We tackle the problem of studying the motion of η driven by the energy E above
from the variational point of view via minimizing movements. This technique
was first used (e.g., see aso [9, 49]) in order to model the motion of compact
hypersurfaces whose motion is driven by their surface area. Many of such
results are formulated in rather weak settings, such as the one of rectifiable
currents or sets of finite perimeter, and one cannot a priori exclude phenomena
such as instantaneous fattening of the hypersurface. In this work, we will use
a parametric approach similar to the one of [36, 56, 37]. In this context, it is
necessary to further regularize the energy E by adding a higher-order term:

E(η) := W (η(0), η(1)) +H1(η) +
δ

2

ˆ
η

κ2
η dH1, (1.8)

where δ > 0 is a positive scalar and κη is the curvature of η. Our minimizing
movements scheme is set up in the following way: We consider admissible curves
in AC defined by:

AC :=
{
η ∈W 1,2([0, 1];R2) : |ηx| = Lη, η(0) 6= η(1), η(0) and η(1) ∈ Ω

}
,

where x denotes the curve parameter, and ηx := d
dxη. Starting from an initial

curve η0 ∈ AC such that its image im(η0) ⊂ Ω, we define for fixed λ > 0 the
sequence {ηλn}n ⊂ AC through:{

ηλn ∈ argmin
{
E(η) + λD(η, ηλn−1) : η ∈ AC

}
for all n ∈ N+,

ηλ0 = η0,
(1.9)
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where D : AC2 → R is an L2-type dissipation energy given by:

D(η, η̃) :=
1

4

ˆ 1

0

〈η − η̃, ν̃〉2 dx+
1

4

ˆ 1

0

〈η − η̃, ν〉2 dx

+
1

2
|η(0)− η̃(0)|2 +

1

2
|η(1)− η̃(1)|2,

with ν̃ and ν denoting the unit normals of η̃ and η, respectively. (Using direct
methods of the Calculus of Variations, we will, in fact, show that the problem
in (1.9) attains at least one minimum.)

Our main result is that, up to extracting a subsequence, the piecewise con-
stant interpolations ηλ(t, x) := ηλdλte(x) (dλte being the smallest natural number

bigger than λt) converge as λ→∞ towards a limit evolution η. Denoting for
t ∈ [0,∞) the length of η at time t as L(t) := H1(η(t, ·)) and by s ∈ [0, L(t)]
the arc-length parameter we prove that for a.e. t ∈ [0,∞) and a.e. s ∈ [0, L(t)]
the following equations needs to be satisfied by η (see also Theorem 3.1): With
regard to the geometric evolution of the interior of the curve we have:

V ⊥ = κ− δ(κss + 1
2κ

3), V ⊥ := 〈ηt, η⊥s 〉, (1.10)

where V := ηt := d
dtη is the velocity of η. This is the classic Willmore flow

equation arising when one deals with an L2-type gradient flow of an energy
given by the sum of the perimeter and the squared L2-norm of the curvature.
Furthermore, η satisfies natural boundary conditions κ(t, 0) = κ(t, 1) = 0 at
a.e. t, and:

V (t, 0) = −∇1W (η(t, 0), η(t, 1)) + ηs(t, 0)− δκs(t, 0)η⊥s (t, 0) (1.11)

at the first endpoint, where ∇1W is the gradient of W with respect to the first
point. A similar equations also holds true at the second endpoint of η. Finally,
the following equation in tangential direction (arising from the constant speed
constraint in the definition of AC) holds true:

V >s =
L′

L
+ κη⊥s , V > := 〈ηt, η⊥s 〉, L′ :=

d

dt
L. (1.12)

Note that the motion of the curve is not restrained to remain inside Ω. But we
are able to prove the existence of a maximal existence time T0 > such that for
all t ∈ [0, T0), the curve η(t, ·) is contained in Ω while η(T0, ·) has a nonempty
intersection with the boundary. To the best knowledge of the author, this
is the first successful application of the machinery introduced in works such
as [36, 37] to the case of free endpoints, and may pave the way for studying
more complicated configurations, such as networks of curves with freely moving
junctions. Furthermore, we choose a geometrically motivated constant speed
parametrization. In contrast to this, the authors of previous results such as
for example [36] parametrize the curves as graphs over some fixed interval
[a, b]. In the present setting such a strategy would require to replace [a, b] by a
time dependent interval in order to account for the shortening and elongating
motion of the endpoints making many of the necessary computations quite
lengthy. Finally, we remark that the result presented here is a generalization
of the one found in [14], where the author considered the special case Ω = R2.
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Figure 1.4: Minimizing movements starting from a “”γ-shaped” curve for two
different values of ε (ε = .025 one the left and ε = .005 on the right). The color
of each curve depicts the temporal ordering, starting with violet and ending
with red.

In Figure 1.4, we show a numerical computation of the sequence of step-
by-step minimizers (as defined in (1.9)) for Ω = R2, starting from an initially
“γ-shaped” curve for two different values of ε. In both cases, an interesting long
time behavior can be perceived: the curve does not unfold into a straight line
of length 1 (the global minimizer), and instead converges towards an optimal
“γ-shape.” We can also see the influence of the regularizing term, as the size
of the limit “knot” is smaller for smaller ε. This is also in accordance to the
fact that the regularizing curvature term has less weight in (1.8) for smaller
values of ε. It is worth mentioning at this point that the Willmore flow of
curves (or more generally networks) has been studied from a PDE point of view
in [30, 51, 29, 38, 39, 50], mainly assuming additional boundary conditions.
It is not clear whether these techniques can be used in our free boundary
setting. Furthermore, we finish this paragraph by mentioning an interesting
open problem, namely the study of the long time behavior of the evolution
described above and its asymptotic behavior in the limit ε→ 0.

In the last chapter, we will investigate a generalization of the Ginzburg-
Landau model on a compact oriented 2-dimensional Riemannian manifold. The
classic Ginzburg-Landau model, formulated in the Euclidean setting, is very
well studied model in the mathematical physics community (see e.g. the book
[16]). In the Euclidean setting, we consider functions u ∈ W 1,2(Ω;R2), where
Ω ⊂ R2 is an open set, and assign the following energy to them:

GLε(u) :=
1

2

ˆ
Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 dx, (1.13)

where ε > 0 is a fixed scalar. There is a strong connection between the XY and
the Ginzburg-Landau model, which was investigated in [5]. In fact, under the
same logarithmic energy bounds, one can show similar results to the XY model
(e.g., see also [8]). The authors of [40] study the analog of the generalized XY
model in the context of the Ginzburg-Landau energy. More precisely, given
m ∈ N and an open simply connected set Ω, they consider admissible spin
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Figure 1.5: A singular unit-length vector field on the sphere. Note that χ(S) = 2
in this case.

configurations u ∈ SBV 2(Ω;R2), such that u+ = −u− at H1 a.e. point in Ju,
and u2 = g2 H1-a.e. on ∂Ω in the sense of traces, where g ∈ C∞(∂Ω; S1) is a
fixed boundary datum. For ε > 0 the energy functional is given by:

G̃Lε(u) :=
1

2

ˆ
Ω

|∇u|2 +
1

2ε2
(1− |u|2)2 dx+H1(Ju).

Through a Γ-convergence analysis, they show that minimizers of G̃Lε defined
above converge towards limit spin configurations that have 2|deg(g, ∂Ω)| vor-

tices, each with degree sgn(deg(g,∂Ω))
2 . Furthermore, the Γ-limit of G̃Lε(u) −

|deg(g,∂Ω)|
2 π|log ε| with respect to L1-convergence is given by:

W(u) +H1(Ju) + 2|deg(g, ∂Ω)|γ̃, (1.14)

where W is the renormalized energy from (1.4), H1(Ju) is the Euclidean length
of the jump set of u, and γ̃ is a fixed scalar that possibly differs from γ of
(1.4). Note that the main difference to the XY case is the interchange of the
crystalline length term with the Euclidean one. Both, the XY model and the
Ginzburg-Landau model, already have found their extension to the setting of
compact oriented 2-dimensional Riemannian manifolds (see also [24, 43]). The
mathematical interest for such generalizations lies in the fact that vortices may
naturally arise from the nontrivial topology of the manifold. More precisely, by
the celebrated hairy ball theorem there exist no continuous tangent vector field
on a 2-dimensional Riemannian manifold S with nonzero Euler characteristic
χ(S) (see also Figure 1.5). Consequently, minimizing the analog of (1.13) among
tangent vector fields u ∈W 1,2(TS) results in nontrivial solutions, even without
the use of Dirichlet constraints.

The classical XY and Ginzburg-Landau model already found their gener-
alization to the manifold setting (see [24, 43, 44]). In particular, both results
show the emergence of |χ(S)| vortices, each with degree given by sgn(χ(S))
and compute a similar Γ-limit. In this thesis, we wish to fill in one of the
missing pieces by providing a generalization of the Ginzburg-Landau model on
a compact oriented 2-dimensional Riemannian manifold. The author believes
that the techniques introduced in this regard may also be helpful in a future
generalization of the XY model to a manifold setting.
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In the research literature, important properties of functions of bounded
variation were already successfully generalized to the manifold setting (e.g., see
[52, 41]). As in this thesis we will deal with tangent vector fields the need arises
for a generalization of the above results to the more general case of sections.
To this end we study the fine properties of sections of bounded variation, which
are a natural generalization of vector valued functions of bounded variation in
the plane. We provide a proper intrinsic definition of blow-up quantities such
as the approximate gradient (see also Definition 4.6), and eventually we prove
the decomposition theorem for sections of bounded variation (Theorem 4.3).

An important tool in dealing with vortex models is the ball construction
independently introduced in [58, 46] and one of the technical difficulties is its
generalization to the manifold setting. This was already successfully achieved in
[25] (see also Corollary 1 of Section 5.2), where the authors follow the strategy
of [46]. Ours is more aligned to results such as [58, 60] and we tried to make out
proof as self-contained as possible in order to be accessible also by non-experts.
The main idea behind the ball construction can be shortly described as follows:
Given a tangent vector field u ∈W 1,2(TS) whose Ginzburg-Landau energy is
of order O(|log ε|) and an admissible r > 0, the ball construction allows us to
find a finite family B of disjoint closed geodesic balls surrounding the zeroes of
u, whose radii sum up to r, and:

GLε(u,∪B∈BB) =
1

2

ˆ
S

|∇u|2 +
1

2ε2
(1−|u|2)2 vol ≥ πDr

(
r

Drε
− C

)
, (1.15)

where Dr is the sum of the unsigned degrees of u around each ball B ∈ B, and
C is a universal constant independent of ε and u, and vol denotes the standard
volume form of S (see also Theorem 4.6). We remark that this is exactly the
same estimate (with a possibly larger C) as in the Euclidean case.

The main result of Chapter 4 is the following Γ-convergence result: Given
a manifold S, as above, admissible spin fields are SBV 2 regular tangent vector
fields on S (sections of TS), additionally satisfying u+ = −u− for H1-a.e. point
on Ju. Furthermore, for fixed ε > 0 the generalized Ginzburg-Landau functional
G̃Lε is defined as:

G̃Lε(u) :=
1

2

ˆ
S

|∇u|2 +
1

2ε2
(1− |u|2)2 vol +H1(Ju).

We show by Γ-convergence that minimizers of G̃Lε in ASε converge, up to
extracting a subsequence, towards a limit spin field u, which has 2|χ(S)| isolated

vortices each with fractional degree sgn(χ(S))
2 . The Γ-limit of GLε− |χ(S)|

2 π|log ε|
is equal to (see also Theorem 4.7):

W̃(u) +H1(Ju) + 2|χ(S)|γ̃,

where γ̃ is the scalar from (1.14), and:

W̃(u) := lim
r→0

(
1

2

ˆ
S

|∇u|2 vol−χ(S)

2
π log(r)

)
, (1.16)

with Sr denoting the complement of the union of geodesic balls of radius r
around each vortex center of u (see also Lemma 4.17 for well-definedness). Note
that the more general case of fractions 1

m for m ∈ N is also considered.
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From the statement itself, the above result seems to be a very natural
generalization of the one found in [40]. Nevertheless, our proof strays away
on several occasions from the one in [40]. This is mainly due to the fact that
the crucial trick employed in all results concerning fractional vortices does not
pass over trivially to the manifold setting. In the flat setting we have a simple
procedure at hand that can transform a vector field u with fractional vortices
of degree in 1

2Z, and jumps satisfying u+ = −u− into a vector field v without
jumps and with nonfractional vortices instead. More precisely, given such a
vector field u, we define v(x) by “doubling” the angle of u(x) with respect to the
x1-axis for every x ∈ Ω. By the chain rule, the resulting vector field v satisfies
the desired properties, and we can bound from above the Dirichlet energy of v
with the one of u as follows:ˆ

Ω

|∇v|2 dx ≤ 4

ˆ
Ω

|∇u|2 dx. (1.17)

This procedure is constrained in the case of a compact oriented 2-dimensional
Riemannian manifold S by the following two reasons: The first problem arises
due to the nontrivial topology of S. In order to double angles on S, in each
tangent space TpS, we need to choose a reference unit vector e(p) that represents
the zero angle. By the hairy ball theorem, if S has a nonzero Euler characteristic,
it is impossible to find a smooth unit length vector field e : S → TS.

Figure 1.6: Doubling the angles on a sphere. On the left, one can see a tangent
vector field u on the sphere with 4 fractional vortices, each of degree 1

2 . In the
middle, we depicted the singular frame (vortex of degree 2 at a single point),
with respect to which we double the angles of u. The resulting vector field v
can be seen on the right. Note that not only all the fractional vortices of u
became full ones, but also a new vortex (red dot) was created in this process,
located exactly at the singular point of the frame and having degree equal to
−2. This is in accordance with the Morse index formula, which enforces the
net sum of the vortices to be equal to the Euler characteristic (χ(S) = 2 in this
setting). See (4.38) for the general relation between the vorticity of u, v, and e.

As a result, doubling the angles with respect to a singular field e with
nonzero vorticity may create additional synthetic vortices (see also Figure 1.6).
Hence, a doubling procedure is only available locally. The second problem
stems from the nontrivial geometry of S. More precisely, given a tangent vector
field u ∈ ASε with fractional vortices, a unit vector field e ∈ C∞(TU), and
v : U → TU being the resulting vector field after doubling the angles of u with
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respect to e, the analog of the estimate (1.17) in the present setting turns up
to be more involved (see (4.36) for more details), namely

ˆ
U

|∇v|2 vol ≤ 4

ˆ
U

|∇u|2 vol−4

ˆ
U

〈jac(u), jac(e)〉 vol + Oε→0(1). (1.18)

Here the 1-form jac(u) is called the pre-Jacobian of u defined as jac(e)(X) :=
〈∇Xu, u⊥〉 for X ∈ TM , u⊥ being the vector u rotated by π

2 in anticlockwise
direction. It is not clear a priori if the second term in (1.18) might – compared
to (1.17) – perturb the relation between the Dirichlet energies of v and u in
a non-negligible fashion. But knowledge of the precise scaling of the Dirichlet
energy of v is a crucial component in the proof in the nonfractional result in [43].
We will overcome this hurdle by making a “good” choice for e, more precisely,
we choose a harmonic vector field in U , minimizing the Dirichlet energy:

1

2

ˆ
U

|∇e|2 vol .

For such a choice of e, we will be able to control the second term in (1.18) from
below and above by a constant independent of ε.



Chapter 2

Generalized XY model

2.1 Preliminaries

2.1.1 Gamma-convergence

In this thesis we will investigate several physically motivated problems from the
variational point of view. More precisely, we will investigate pairs (Eε0 , Xε0)
where ε0 > 0 is a fixed parameter, Xε0 a metric space, and Eε0 : Xε0 → R an
energy functional on R. The correct choice for the parameter ε0 > 0 will vary
from problem to problem. Nevertheless, in all cases which are of interest to us,
ε0 will be a small positive scalar (e.g., the lattice spacing in a crystal). The
following prototypical problems are the main interest here:

1) Determine the infimum of Eε0 in Xε0 , classify its minimizers.

2) Starting from a general initial datum u0 ∈ Xε0 , describe a motion of u0

driven by the energy Eε.

As we shall see later on, the first problem will be challenging to solve in the
ε0-dependent setting, at least. One way to approach this difficulty is to consider
a family of models {(Eε, Iε)}ε∈I – instead of the fixed model (Eε0 , Xε0) –, where
I := (0, α) for some α > 0, and pass in the limit ε → 0 to an effective model
(E,X), that may be easier to handle. Once a correct notion of convergence is
chosen, one may aspire that the model described by (Eε0 , Xε0) is “close” (in
a sense that will be specified later on) for 0 < ε0 << 1 to the effective model
(E,X).

It is an ardent wish to shortly comment on a minor technical issue. A
definition of convergence for {(Eε, Xε)}ε could be greatly simplified if we were
to remove the dependence of the metric spaces {Xε}ε on ε from the get-go. In
all cases that interest us, we shall thus be able to isometrically embed Xε into
a common metric space X̃. Without further mention, the functional Eε is then
implicitly assumed to be extended to Ẽε : X̃ → R̄ := R ∪ {∞}, defined as

Ẽε(u) =

{
Eε(u) if u ∈ Xε,

∞ else.

Note that this kind of extension is favorable for variational problems, seeing
that it does not perturb the minimum of Eε. From this point on we will identify
Eε with its extension Ẽε, as well as X with X̃.

13
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The notion of convergence for variational problems is the one of Gamma-
Convergence, first introduced by De Giorgi in the 1970s. Its precise statement
is as follows:

Definition 2.1 (Γ-convergence)
Given a metric space X, we say that a sequence of energy functionals (En)n∈N
with En : X → R̄ Γ-converges towards a functional E : X → R̄ as n → ∞ if
and only if for all u ∈ X the following is satisfied:

(i) (Γ-liminf) For every sequence (un) ⊂ X converging to u

E(u) ≤ lim inf
n→∞

En(un). (2.1)

(ii) (Γ-limsup) There exists a sequence (un) ⊂ X (also called recovery se-
quence for u) converging to u such that

E(u) ≥ lim sup
n→∞

En(un). (2.2)

Remark 2.1. The conditions in (2.1) and (2.2) compete with each other, while
depending on the choice of metric on X. On the one hand, if we weaken
the metric on X, the Gamma-liminf in (2.1) must be tested against more
convergent sequences and, therefore, is harder to satisfy. On the other hand,
if we strengthen the metric on X, we have less sequences converging towards
u, and won’t be able to find a recovery sequence satisfying (2.2) anymore.
Therefore, the correct choice of metric on X – keeping the balance between
the condition in Item (i) and Item (ii) – turns up to be a crucial part of a Γ-
convergence result and should be considered first. Finally, it is worth remarking
that this definition can be generalized to the setting of topological spaces. For
references, see [28].

The main justification for the notion of convergence introduced in Defini-
tion 2.1 is that – given a compact set K ⊂ X – it relates for sufficiently small
ε > 0 the infimum of Eε in K to the minimum of E in K as well as (almost-
)minimizers of Eε|K to the ones of E|K . The following condition allows for a
generalization of this relation in the case of K = X:

Definition 2.2
A sequence (En) of energy functionals on metric space X is called equi-mildly
coercive if and only if there exists a non-empty compact set K ⊂ X so that
infX En = infK En for all n ∈ N.

Then the precise statement of the relation between the relation could be
phrased as follows:

Theorem 2.1
Let X be a metric space and (En) a sequence of equi-mildly coercive energy
functionals on X Γ-converging towards E. Then E attains a minimum (even
though each approximating functional might not attain one) and:

min
X

E = lim
n→∞

inf
X
En. (2.3)

Moreover, if (un) ⊂ X is a precompact sequence such that:

lim
n→∞

(En(un)− inf
X
En) = 0,
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then every limit of a subsequence of (un) is a minimizer of E.

In order to prove that result we need to refer to Theorem 1.21 in [17].

2.1.2 Jump and vortex singularities

(a) Jump discontinuity (b) Vortex discontinuity

Figure 2.1: Two examples of singular vector-fields. The red curve on the left
and the red dot on the right depict the supports of the respective singularities.

Throughout this subsection, m, d ∈ N and Ω ⊂ Rd will denote an open
set. We will shortly discuss several important results concerning two different
types of singularities of (vector-)valued maps u : Ω → Rm. In Figure 2.1, an
example for each of the two types of singular maps can be seen. Figure 2.1(a)
shows the jump discontinuity of the indicator function u(x) := 1A(x) for some
A ⊂ R2, while Figure 2.1(b) shows the vortex created by the vector-valued map
v(x) := x

|x| . Even though, from the geometrical point of view, these two types

of singularities are rather simple, their correct analytical description is quite
challenging and remains an active area of research up to this day. The problem
of main interest to us is the detection of the geometrically or topologically
relevant singularities of vector-fields through analytical means (this will be
made more precise in a moment). A more thorough presentation containing all
relevant proofs can be found in [11] (for the first type of singularities) and in
[1] or [21] (for the second).

Jump-type singularities: The starting point for the study of jump-type
singularities is the definition of the total variation:

Definition 2.3
The total variation of a function u ∈ L1

loc(Ω;Rm) in an open subset U ⊂ Ω is
defined as

var(u, U) := sup

{ˆ
U

〈u,divϕ〉dx : ϕ ∈ C∞c (Ω;Rm×d), ‖ϕ‖∞ ≤ 1

}
, (2.4)

where divϕ : Ω→ Rm has entries

(divϕ)j := divϕj :=

d∑
i=1

∂

∂xi
ϕj , j ∈ {1, . . . ,m}.



16 Chapter 2. Generalized XY model

In the case U = Ω the abbreviation var(u) – instead of var(u,Ω) – will be used,
calling the total variation of u.

Note that the total variation extends to a unique positive measure (still
denoted by var(u, ·)) on Ω. We shall also define:

Definition 2.4 (Functions of bounded variation)
The set BV (Ω;Rm) of functions of bounded variation on Ω with values in Rm
is defined as:

BV (Ω;Rm) :=
{
u ∈ L1(Ω): var(u) <∞

}
. (2.5)

Given u ∈ BV (Ω;Rm) we defined its BV -norm as:

‖u‖BV := ‖u‖L1 + var(u).

Equipped with the norm above BV (Ω;Rm) turns into a separable Ba-
nach space. As we will shortly see, the distributional derivative of a function
u ∈ BV (Ω;Rm) can be identified with a vector-valued Radon measure. Such
measures are defined as follows:

Definition 2.5 (Radon measure)
Let B(Ω) bet the set of Borel subsets of Ω. A function µ : B(Ω)→ Rm is called
a finite (Rm-valued) Radon measure if and only if:

(i) µ is additive, this means that for all A1, A2 ∈ B(Ω):

A1 ∩A2 = ∅ =⇒ µ(A1 ∪A2) = µ(A1) + µ(A2);

(ii) µ is σ-additive, this means that for all (An)h∈N, it holds that:

µ

( ∞⋃
n=0

An

)
=

∞∑
n=0

µ(An).

The set of such measures will be denoted byM(Ω;Rm). In the case m = 1 the
abbreviation M(Ω) – instead of M(Ω,R) – will be used. The set of positive
scalar Radon measures will be called M+(Ω). Finally the total variation |µ| of
a Radon measure µ ∈M(Ω;Rm) is defined for any A ∈ B(Ω) as:

|µ|(A) := sup

{ ∞∑
n=0

|µ(En)| : (En) pairwise disjoint, A =

∞⋃
n=0

An

}

Note that the total variation |µ| turns out to be a positive measure (see also
Theorem 1.6 in [11]). The distributional derivative of (Rm-valued) function of
bounded variation can be identified with a (Rm-valued) Radon measure. Or
more precisely:

Theorem 2.2
For any u ∈ BV (Ω;Rm) there exists a Rm-valued Radon measure Du ∈
M(Ω;Rm×d) such that for any ϕ ∈ C∞c (Ω;Rm×d), it holds that:

ˆ
Ω

〈u,−divϕ〉dx =

ˆ
Ω

ϕdDu =

m∑
i=1

d∑
j=1

ˆ
Ω

ϕji dDiu
j ,
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where Diu
j ∈ M(Ω) := M(Ω;R) the i-th component of Duj or equivalently

the component of Du in the i-th row and j-th column. Furthermore, the total
variation measure var(u, ·) of u coincides in the sense of measures with the total
variation |Du| of Du, as defined in Definition 2.5.

The identification in the theorem above allows us to define a notion of weak*
convergence for a sequence of functions of bounded variation:

Definition 2.6 (weak* convergence)
A sequence {µn} ⊂ M(Ω;Rk), k ∈ N, is weakly*-convergent towards µ ∈
M(Ω;Rk) (µn

∗
⇀ µ) if and only if for any ϕ ∈ Cc(Ω;Rk)

lim
h→∞

ˆ
Ω

ϕdDun =

ˆ
Ω

ϕdDu.

Consequently a sequence {un} ⊂ BV (Ω;Rm) is said to be weak*-convergent

towards u ∈ BV (Ω;Rm) (un
∗
⇀ u) if and only if un → u in L1(Ω;Rm×d) and

Dun
∗
⇀ Du in M(Ω;Rm×d).

A special case of functions of bounded variation are those taking values in
the set {0, 1} only.

Definition 2.7 (Sets of finite (generalized) perimeter)
For an Ld-measurable set A ⊂ Rd we define its (generalized) perimeter in an
open set Ω ⊂ Rd as:

P(A,Ω) := sup

{ˆ
A

divϕdx : ϕ ∈ C∞c (Ω;Rd), ‖ϕ‖∞ ≤ 1

}
.

We say that A has finite (generalized) perimeter in the open set Ω if and only
if P(A,Ω) <∞.

Equivalently, a set A ⊂ Rd has finite perimeter in an open set Ω ⊂ Rd if and
only if the indicator function 1A ∈ BV (Ω) equals a scalar function of bounded
variation in Ω. Furthermore, we have that:

P(A,Ω) = var(1A,Ω).

We will now discuss the fine properties of BV -functions, which allow us
to describe the distributional derivative of a BV -map in a more constructive
fashion. Let us consider two motivating examples: First, let u ∈W 1,1(Ω;Rm).
In this case one can show that u ∈ BV (Ω;Rm) and that its distributional
derivative Du is equal to ∇uLd, where ∇u denotes the Sobolev derivative of u.
Secondly, we consider u := 1A for an open set A ⊂ Rd with smooth boundary.
We can show for any open set Ω ⊂ Rd that 1A ∈ BV (Ω) with a distributional
derivative equal to νAHd−1|∂A∩Ω, νA : ∂A→ Rd denoting the inward-pointing
unit normal-field and Hd−1 the (n− 1)-dimensional Hausdorff-measure in Rd.
In other words for any ϕ ∈ C∞c (Ω;Rd), we have:

ˆ
A

−divϕdx =

ˆ
Ω∩∂A

〈ϕ, νA〉dHd−1 .

This shows in particular how we can recover the singular set of the function u
on the left of Figure 2.1, by investigating the fine properties of its distributional
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derivative. In the following we will show how to generalize the procedure in the
two examples above to the general case. The starting point lies in the definition
of blow-up quantities:

Definition 2.8 (Approximate continuity point)
Given a function u ∈ L1

loc(Ω;Rm) we say that u has an approximate limit z ∈ Rd
at x ∈ Ω if and only if:

lim
r→0

1

|Br(x)|

ˆ
Br(x)

|u(y)− z| dy = 0.

We call x ∈ Ω an approximate continuity point if u has the approximate limit
z = u(x) at x. A point in which u does not attain an approximate limit is
called an approximate discontinuity point of u.

The set of approximate discontinuity points of u will be denoted by Su. The
approximate limit of u at x, if exists, is unique and will be denoted by ũ(x).
One can show (see also Proposition 3.64 in [11]) that Su is an Ld-negligible
(|Ω \ Su| = 0) Borel set and the function ũ : Ω \ Su → Rm is a Borel function
coinciding Ld-a.e. with u. With this notation x ∈ Ω is an approximate continuity
point of u if and only if x /∈ Su and ũ(x) = u(x).

Definition 2.9 (Approximate jump point)
Given u ∈ L1

loc(Ω;Rm) we say that a point x ∈ Su is an approximate jump
point of u if and only if there exists a, b ∈ Rm and ν ∈ Sd−1 such that:

lim
r→0

1

|B+
r (x, ν)|

ˆ
B+
r (x,ν)

|u(y)− a| dy

= lim
r→0

1

|B−r (x, ν)|

ˆ
B−r (x,ν)

|u(y)− b| dy = 0,

where
B+
r (x, ν) := {y ∈ Br(x) : 〈y − x, ν〉 > 0},

B−r (x, ν) := {y ∈ Br(x) : 〈y − x, ν〉 < 0}.
The set of approximate jump points of u will be denoted by Ju. The triple

(a, b, ν) in the definition above is unique up to a permutation of (a, b) and a
change of sign of ν. Implicitly assuming this equivalence, we will write the triple
as (u+(x), u−(x), νu(x)). One can show (see Proposition 3.69 in [11]) that Ju
is a Borel subset of Su and u+ : Ju → Rm, u− : Ju → Rm and νu : Ju → Sd−1

are Borel functions.

Definition 2.10 (Approximate differentiability point)
Given u ∈ L1

loc(Ω;Rm) we say that x ∈ Ω\Su is an approximate differentiability
point of u if and only if there exists a matrix L ∈ Rm×d such that:

1

|Br(x)|

ˆ
Br(x)

1

r
|u(y)− ũ(x)− L(y − x)| dy = 0,

where ũ(x) is the approximate limit of u at x.

The set of approximate differentiability points of u will be written as Du.
The matrix L from the definition above is unique and is therefore usually written
as ∇u(x). We can show (see Proposition 3.71 in [11]) that Du is a Borel set
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and ∇u : Du → Rm×d is a Borel function. We shall continue by discussing
the Lebesgue differentiation of the distributional derivative Du of a BV -map u
which decomposes Du into an absolutely continuous (with respect to Ld) and
singular part. In the general setting of Radon measures these two notions are
defined as follows:

Definition 2.11 (Absoutely continuous & singular)
Let µ ∈ M(Ω,Rm) and λ ∈ M+(Ω). We say µ is absolutely continuous with
respect to λ (µ << λ) if and only if for any Borel set A ∈ B(Ω) with λ(A) = 0
it holds that |µ|(A) = 0. We say µ is singular with respect to λ (µ ⊥ λ) if and
only if there exists a Borel set A ∈ B(Ω) such that |µ|(A) = λ(Ω \A) = 0.

The statement of the Lebesgue differentiation is then as follows:

Theorem 2.3 (Lebesgue differentiation)
For any u ∈ BV (Ω;Rm) there exist unique Radon measures Dau and Dsu ∈
M(Ω;Rm) such that Dau is absolutely continuous with respect to Ld, Dsu is
singular with respect to Ld and Du = Dau+Dsu.

Lastly, we will discuss a notion of regularity for Hd−1-dimensional subsets
of Rd:

Definition 2.12 (Hd−1-rectifiabile set)
Γ ⊂ Rd is called a (n − 1)-dimensional C1-graph if and only if there exists a
(n − 1)-dimensional plane π and a C1-map f : π → π⊥ (,where π⊥ is the line
through the origin orthogonal to π) such that:

Γ = {x+ f(x) : x ∈ π}.

We call an Hd−1-dimensional set E ⊂ Rd is Hd−1-rectifiable if and only if there
exist countably many (n− 1)-dimensional Lipschitz-graphs {Γn}h∈N such that:

Hd−1

(
E \

∞⋃
n=0

Γn

)
= 0.

We are ready to state the decomposition theorem in BV :

Theorem 2.4 (Decomposition in BV )
A function u ∈ BV (Ω;Rd) is approximately differentiable at Ld-a.e. point
(Ld(Ω \Du) = 0) and the absolutely continuous part Dau of Du can be written
as:

Dau = ∇uLd,
where ∇u is the approximate gradient of u. Furthermore, the set of discontinuity
points Su is Hd−1-rectifiable, Hd(Su\Ju) = 0 and the jump part Dju := Dsu|Su
of u satisfies:

Dju = (u+ − u−)⊗ νuHd−1|Ju ,
where ⊗ denotes the tensor product and therefore (u+−u−)⊗νu = (u+−u−)·νTu
in matrix notation. Combining both results leads to the following decomposition:

Du = ∇uLd + (u+ − u−)⊗ νuHd−1|Ju +Dcu, (2.6)

where Dcu := Dsu|Ω\Su is the so called Cantor-part of u.
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The chain rule in the setting of Sobolev functions generalizes in the following
way to the BV setting:

Theorem 2.5 (Chain rule in BV )
Let u ∈ BV (Ω;Rd2) and f ∈ C1(Rd2 ;Rd3), where Ω ⊂ Rd1 is an open and
bounded set and d1, d2, d3 ∈ N. Then v := f ◦ u ∈ BV (Ω;Rd3) with:

Dav = ∇f(u)∇uLd,
Djv = (f(u+)− f(u−))⊗ νuHd−1|Ju ,
Dcv = ∇f(ũ)Dcu,

where ũ(x) is equal to the approximate limit of u for any x ∈ Ω\Su ⊃ spt(Dcu).

For a proof, see Theorem 3.78 and Theorem 3.83 in [11]. Another important
tool is the notion of traces:

Theorem 2.6 (Traces in BV )
Let Ω ⊂ Rd be an open set with Lipschitz boundary and u ∈ BV (Ω;Rm). Then
for Hd−1-a.e. x ∈ ∂Ω there exists Tr∂Ω(x) ∈ Rm such that:

lim
r→0

r−n
ˆ

Ω∩Br(x)

|u(y)− uΩ(x)| dy = 0.

Moreover, the trace is continuous with respect to strict convergence in BV , this
means that if un → u in L1(Ω;Rm) and |Dun|(Ω)→ |Du|(Ω) we have that:

Tr∂Ω(un)→ Tr∂Ω(u) in L1(∂Ω;Rm).

For a proof we refer to Theorem 3.87 in [11]. Finally, we mention the
following lemma:

Lemma 2.1 (Cut and paste)
Let u, v ∈ BV (Ω;Rm) and A ⊂ Ω a set of finite perimeter with ∂∗A oriented
by the inward-pointing normal νA. Let u+

∂∗A and u−∂∗A be the BV -traces on ∂∗A
of u and v, respectively. Then w := u1A + v1Ω\A ∈ BV (Ω;Rm) if and only if:

ˆ
∂∗A∩Ω

|u+
∂∗A − v−∂∗A|dHd−1 <∞.

Also, if w ∈ BV (Ω;Rm) we can decompose Dw as follows:

Dw = Du|A1 +Dv|A0 + (u+
∂∗A − u−∂∗A)⊗ νAHd−1|∂∗A∩Ω,

where A1 (A0) is the measure-theoretic interior (exterior) of A, defined as:

A1 :=

{
x ∈ Rd : lim

r→0

|Br(x) ∩ Ω|
|Br(x)| = 1

}
,

A0 :=

{
x ∈ Rd : lim

r→0

|Br(x) ∩ Ω|
|Br(x)| = 0

}
.

While the blow-up quantities defined above characterize the absolutely con-
tinuous as well as the jump part of a BV function, they provide no information
on the Cantor part. This motivates the definition of the set of special functions
of bounded variation.
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Definition 2.13
We define the space of special (Rm-valued) functions of bounded variation
SBV (Ω;Rm) as:

SBV (Ω;Rm) := {u ∈ BV (Ω;Rm) : Dcu = 0}.

Furthermore, for any p ∈ (1,∞] we set:

SBV p(Ω;Rm) := {u ∈ SBV (Ω;Rm) : ∇u ∈ Lp(Ω;Rm×d), Hd−1(Ju) <∞}.

Note that the space SBV (Ω;Rm) is a closed in BV (Ω;Rm) with respect to
the strong but not the weak* convergence. In fact, for each u ∈ BV (Ω;Rm)
we can find a sequence {un} ⊂ C∞(Ω;Rm) ⊂ SBV (Ω;Rm) weakly converging
towards u (see also Theorem 3.9 in [11]). Therefore, any compactness or
closure statement in SBV with respect to weak* convergence must assure that
no Cantor-part can be created in the limit:

Theorem 2.7 (Compactness in SBV p)
Let {un} ⊂ SBV p(Ω;Rm) for some p ∈ (1,∞] such that:

sup
n

(ˆ
Ω

|∇un|p dLd +Hd−1(Jun) + ‖un‖∞
)
<∞. (2.7)

Then there exists u ∈ SBV p(Ω;Rm) such that, up to a subsequence,
un → u in L1(Ω;Rm),

∇un ⇀ u in Lp(Ω;Rm×d),

Hd−1|Jun
∗
⇀ Hd−1|Ju in M(Ω;Rm×d).

(2.8)

Definition 2.14 (Weak convergence in SBV p)
A sequence {un} ⊂ SBV p(Ω;Rm) is said to be weakly convergent towards u
in SBV p(Ω;Rm) (un ⇀ u) if and only if un → u in L1(Ω;Rm) and (2.7) is
satisfied.

The next theorem identifies a class of integral functionals in SBV p that are
lower-semicontinuous with respect to weak convergence:

Theorem 2.8 (Lower semicontinuity)
Let ϑ ∈ C(K ×K; [c0,∞)), where K ⊂ Rm is a compact set and c0 > 0, be a
positive, symmetric function such that for all a, b, c ∈ K:

ϑ(a, c) ≤ ϑ(a, b) + ϑ(b, c).

Moreover, let ϕ ∈ C(Rd;R+) be an even, convex, and positively 1-homoge-
neous (ϕ(λx) = λϕ(x)) for all x ∈ Rd and λ > 0) such that ϕ(ν) ≥ c0 for
all ν ∈ Sd−1. Then for any sequence {un} ⊂ SBV p(Ω;Rm) weakly convergent
towards u ∈ SBV p(Ω;Rm) for some p ∈ (1,∞] we have

lim inf
h→∞

ˆ
Jun

ϑ(u+
n , u

−
n )ϕ(νun) dHd−1 ≥

ˆ
Ju

ϑ(u+, u−)ϕ(νu) dHd−1 . (2.9)

For a proof we refer to Theorem 5.22 and Example 5.23 in [11]. Lastly, we
mention an approximation result for SBV -functions taking values in a discrete
set:
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0
y

(a) Case: 0 ∈ U .

0
y

x1
y

x2

(b) Case: 0 /∈ U .

Figure 2.2: The Brouwer degree of u(x) := x
|x| , x ∈ R2, around two circles.

Theorem 2.9 (Approximation of finite Caccioppoli partitions)
Let Z ⊂ Rm be finite, Ω ⊂ Rd open and with Lipschitz boundary, and let
u ∈ SBV (Ω;Z). Then there exists a sequence {un} ⊂ SBV (Ω;Z) such that
Jun is polyhedral, un → u in L1(Ω;Rm), and:

lim
h→∞

ˆ
Jun

ψ(u+
n , u

−
n , νun) dHd−1 =

ˆ
Ju

ψ(u+, u−, νu) dHd−1 (2.10)

for any continuous function ψ : Rm × Rm × Sd−1 → R+ (,where R+ := (0,∞))
satisfying ψ(a, b, ν) = ψ(b, a,−ν) for all (a, b, ν) ∈ Rm ×Rm × Sd−1. In partic-
ular, we have that un → u strictly in BV .

For a proof we refer to Theorem 2.1 and Corollary 2.4 in [19].

Vortex-type singularities Firstly, we introduce the classic notion of (see
section 2.10 in [1]):

Definition 2.15 (Brouwer degree)
Let M and M ′ be m-dimensional, oriented, compact manifolds (without bound-
ary) such that M ′ is connected, let u : M → M ′ be a smooth map and let
y ∈ u(M) be an arbitrary regular value of u (i.e., Du(x) 6= 0 for all x ∈ u−1(y).)
Then the degree deg(u,M,M ′) of u is defined as:

deg(u,M,M ′) :=
∑

x∈u−1(y)

sgn(detDu(x)). (2.11)

Remark 2.2. The definition of degree in (2.11) is well defined due to the following
reasoning: As y above is taken to be a regular value of u, the set u−1(y) turns
out to be discrete. By the continuity of f it is also compact and hence finite.
Thus the sum in (2.11) is, in fact, finite. Furthermore, by the connectedness of
M ′ one can show that the degree does not depend on the choice of the regular
value y.

Intuitively the Brouwer degree counts the “number of times” u(M) covers
M ′ where we also have to take into account the orientation of u(M). We
consider an illuminating example: Let u(x) := x

|x| for x ∈ R2 \ {0} and let

U ⊂ R2 be an open, connected set with smooth boundary such that 0 /∈ ∂U .
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We are interested in the Brouwer degree of the map u : ∂U → S1 (see also figure
Figure 2.2). In the case 0 ∈ U we have that for any y ∈ Sd−1 there exists a
unique x ∈ ∂U such that u(x) = y. As u is orientation preserving on ∂U , this
leads to – combined with (2.11) – deg(u, ∂U, Sd−1) = 1. In the case 0 /∈ U we
can find for any regular value y of u|∂U exactly 2 points x1 and x2 such that
u(x1) = u(x2) = y. Moreover, u is orientation-preserving on one point while
being orientation-reversing on the other. This leads to deg(u, ∂U, Sd−1) = 0.
And it also coincides with the idea that u(∂U) covers S1 exactly one time in
the first case and 0 times in the second.

It can further be shown that the Brouwer degree is invariant under uniform
convergence. With that being said, we can extend this very notion of degree
to continuous maps u : M →M ′. Furthermore, the following integral formula
holds true for any u ∈ C∞(M,M ′):

deg(u,M,M ′) =
1

vol′(M ′)

ˆ
M

det(Du) dvol, (2.12)

where vol and vol′ are the volume forms on M and M ′, respectively. (Surpris-
ingly enough, the integral on the right-hand side of (2.12) is invariant under
change of Riemannian metric of M or M ′, respectively.) Hence, by approxima-
tion and the formula in (2.12), we can then extend the notion of degree to the
case of Sobolev maps u ∈W 1,m(M,M ′). Note that the Lm-integrability of Du
is optimal: For a map u ∈W 1,p(M,M ′) with 1 ≤ p < m the integrand in (2.12)
may not be in L1 – so we could possibly not find an approximating sequence
of smooth maps. For further details, see also [21].

Next, we would like to introduce the basics needed in order to study vortex-
type singularities of maps u ∈ W 1,1(Ω;R2) ∩ L∞(Ω;R2), where Ω ⊂ R2 is an
open set. (Note that we could deal more generally with maps u ∈W 1,1(Ω;Rk)∩
L∞(Ω,Rk), where Ω ⊂ Rd is an open set and k ≤ n. For readers who are
more interested in general theory, see also the discussion found in [1].) Due
to the aforementioned remark we cannot define the degree in this setting by
approximation alone. Here we shall take the distributional approach similar
to the one used in the study of functions of bounded variation instead. The
object allowing us to detect singularities is the (signed) Jacobian Jac(u), which
is pointwise defined as follows:

Jac(u) := det(Du) =
∂u1

∂x1

∂u2

∂x2
− ∂u1

∂x2

∂u2

∂x1
,

where u1 and u2 are the components of u. On first glance, this does not seem
to be a desirable choice: For u(x) := x

|x| on some bounded domain Ω containing

the origin we saw that u has a vortex at 0. But as u maps Ω ⊂ R2 into the lower-
dimensional set S1 we have by the area formula that Jacu = 0 for all x 6= 0.
(The very same thing can be observed by direct computation.) Consequently,
the pointwise Jacobian is “blind” to the vortex singularity of u. Thus, we are
motivated to take on a distributional point of view, as in the theory of BV -
functions. In this regard, we will first define the pre-Jacobian of u ∈ C∞(Ω,R2)
as:

jac(u) := 〈∇u, u⊥〉 = (〈∇x1u, u
⊥〉, 〈∇x2u, u

⊥〉)T

=

(
u2
∂u1

∂x1
− u1

∂u2

∂x1
, u2

∂u1

∂x2
− u1

∂u2

∂x2

)T
,



24 Chapter 2. Generalized XY model

where u⊥ := (u2,−u1)T . It follows from Schwartz’s theorem that the pointwise
Jacobian can be rewritten in the following way:

div(jac(u)⊥) =
∂

∂x1

(
−u2

∂u1

∂x2
+ u1

∂u2

∂x2

)
+

∂

∂x2

(
u2
∂u1

∂x1
− u1

∂u2

∂x1

)
= −∂u2

∂x1

∂u1

∂x2
+
∂u1

∂x2

∂u2

∂x1
+
∂u2

∂x2

∂u1

∂x1
− ∂u1

∂x2

∂u2

∂x1

= 2 det(Du) = 2 Jac(u).

Now, if u ∈ L∞ ∩ W 1,1, we still have that jac(u) ∈ L1. As a result, the
divergence above can be taken in the distributional sense. From this point
on we implicitly assume that Jac(u) is defined in this sense. We conclude
this section with the following relation between the Brouwer degree and the
distributional Jacobian:

Proposition 2.1
Let Ω ⊂ R2 be an open set, S := {xk}Kk=1 for some K ∈ N+, and u ∈W 1,2

loc (Ω \
S;S1). Then the distributional Jacobian Jac(u) is a measure supported in S,
and:

Jac(u) = π

K∑
k=1

deg(u, ∂Br(xk),S1) δxi ,

where r > 0 is chosen sufficiently small so that the balls {Br(xk)}k are disjoint.

2.2 Previous work

2.2.1 Binary discrete spin system

Binary spin systems were first investigated from a variational point of view
in [3], based on which we want to present the relevant results for this thesis.
Such spin systems can be shortly described as follows: Let Ω ⊂ Rd be an open
bounded subset with Lipschitz regular boundary. Given ε > 0 we define:

Ω(0)
ε := εZ2 ∩ Ω, (2.13)

Ω(1)
ε := {(i, j) : i, j ∈ Ω(0)

ε , |i− j| = ε}. (2.14)

(We shall retain this notation throughout the entire chapter.) A pair (i, j) ∈ Ω
(0)
ε

is called a nearest neighbor pair. A binary spin system on a square grid in Ω

with grid spacing ε > 0 is a map u : Ω
(0)
ε → {−1, 1} (1 and −1 encoding a binary

choice for the spin.) The set of all such spin configurations will be denoted by
ASε.

The authors of [3] take into account several different choices of energies
defined on ASε in the vanishing ε-limit through a Γ-convergence analysis. How-
ever, here we will only focus on the so called ferro-magnetic interaction with
the energy Eε : ASε → R given by:

Eε(u) := −1

2

∑
(i,j)∈Ω

(1)
ε

ε2u(i)u(j), (2.15)

where the sum above is over all nearest neighbor pairs (i, j) ∈ Ω
(1)
ε without

repetition. The energy in (2.15) prefers the spins on a nearest neighbor pair to
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coincide (ferro-magnetic case). The factor ε2 assures thatEε does not blow up as

ε→ 0. (Note that the number of grid points lying in Ω, this means #Ω
(0)
ε , scales

like ε−2 as ε→ 0.) As already mentioned in the introduction to Γ-convergence,
we first need to embed the sets ASε into a common topological space. In
the limit ε → 0 we expect the discrete spin configurations to accumulate at
continuum spin fields, defined on the whole set Ω. Hence, we must identify
each u ∈ ASε with a map ũ : Ω → R, defined on the whole Ω. In the present
case this is done through a piecewise constant interpolation

ũ(x) := u(i) for all x ∈ i+ εQ, i ∈ Ω(0)
ε ,

where Q := [0, 1)2. In [3] it is shown that L∞(Ω) equipped with the weak*-
topology is the correct embedding space. We extend Eε from (2.15) into L∞(Ω)
by setting it to be ∞ for any u ∈ L∞(Ω) that is not a piecewise constant
interpolation of a discrete spin field in ASε. The following Γ-convergence result
holds true (see also Theorem 3.1 in [3]):

Theorem 2.10 (Zero order Γ-convergence, binary spins)
The functional Eε : L∞(Ω)→ R̄ = R∪{∞} as described above Γ-converges with
respect to the weak*-topology of L∞(Ω) towards the functional E : L∞(Ω)→ R̄,
defined as:

E(u) :=

{
−4|Ω| if u ∈ L∞(Ω; [−1, 1]),

∞ otherwise.

Intuitively speaking, this result shows that a sequence (uε) can arbitrarily
mix the uniform states −1 and 1, respectively, at a mesoscopic scale and with
a negligible variation of the minimal energy as ε → 0. In order to gain more
insights into the model, we will now attempt a Γ-convergence analysis at a next
order where we won’t keep track of the energy but its perturbation from the
minimal value instead, which is restricted to lie in close range δε = o(1) as
ε→ 0. More precisely, we consider sequences (uε) satisfying:

E(uε) = minEε + O(δε).

The minimum of Eε is achieved when all spins are either +1 or −1, respectively,
hence:

minEε = −ε2#Ω(1)
ε .

In [3] the authors choose δε = ε, and we are thus led to study the energy

functional E
(1)
ε : ASε → R:

E(1)
ε (u) =

Eε −minEε
ε

=
∑
〈i,j〉

ε(1− u(i)u(j)),

which is assumed to be extended to L∞(Ω) in the same way as Eε. The following
Γ-convergence result holds true (see also Theorem 4.1 in [3]):

Theorem 2.11 (First order Γ-convergence, binary spins)

The functionals E
(1)
ε : L∞(Ω)→ R̄ Γ-converge with respect to the strong topology

of L1(Ω) towards the functional E(1) : L∞(Ω)→ R̄, defined as:

E(1) :=

{
4
´
Ju
|νu|dHd−1 u ∈ SBV (Ω; {−1, 1}),

∞ otherwise,
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where Ju is the jump set of u, νu the approximate normal and |·|1 denotes the
l1-norm in Rn.

In contrast to the zero-order Γ-convergence result, the spins now accumulate
in domains {u = 1} and {u = −1}, and the limit energy penalizes the l1-
perimeter (also called crystalline perimeter) of the interface between them. As
a further illustration, consider c ∈ (−1, 1) and let {cε} ⊂ R+ be sequence

converging towards c as ε → 0, and such that cε · #Ω
(0)
ε ∈ N for all ε > 0.

Applying the aforementioned result, any sequence (uε) ⊂ L∞(Ω), where uε is
a piecewise constant interpolation of an element of:

argmin{E(1)
ε (u) : Eε(u) = cε}

converges strongly in L1 towards a nonconstant u ∈ SBV (Ω, {−1, 1}) satisfying´
Ω
udx = c while minimizing the crystalline perimeter of the interface Ju

between the two phases.

2.2.2 XY spin system

The respective proofs as well as a more thorough discussion of the results
presented in this subsection can be found in [4] and [6], respectively. Similar to
the previous section we will consider spin configurations living on a rectangular
grid (with spacing ε > 0) contained in an open bounded set Ω ⊂ R2 with
Lipschitz boundary. The crucial difference in the present case of the XY model
is that the spins take values in the continuum S1 ⊂ R2 instead of the discrete
set {−1, 1}. More precisely, we consider the following set of admissible spin
fields:

ASε := {u : Ω(0)
ε → S1}.

The extension of the energy in (2.15) to the XY setting is as follows:

Eε(u) := −1

2

∑
(i,j)∈Ω

(1)
ε

ε2〈u(i), u(j)〉, u ∈ ASε, (2.16)

where 〈·, ·〉 denotes the Euclidean scalar product in R2. As before, we iden-
tify each u ∈ ASε with its piecewise constant interpolation, extending Eε to
L∞(Ω,R2) by ∞ through this identification. The zero-order Γ-convergence
result coincides with the corresponding one for discrete spin systems:

Theorem 2.12 (Zero order Γ-convergence, xy)
The functional Eε : L∞(Ω,R2)→ R̄ as defined above Γ-converges in the weak*-
topology of L∞(Ω;R2) towards E : L∞(Ω;R2)→ R̄, defined as:

E(u) :=

{
−4|Ω| if u ∈ L∞(Ω;B),

∞ otherwise,

where B denotes the closed unit-ball in R2.

Motivated by the similarity to the binary spin setting, we might attempt to
prove a higher-order Γ-convergence result by investigating the following energy
functional:

E(1)
ε :=

Eε − ε2#Ω
(1)
ε

δε
, δε = ε. (2.17)
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(a) sharp interface

πε
ηε

ηε

(b) diffuse interface

Figure 2.3: Sharp vs. diffuse interface in the XY model.

Interestingly enough, the above scaling does not give rise to interfacial surface
energies in the limit. (This fact holds true, even when δε = ω(ε2) as ε → 0
(this means limε→0

δε
ε2 = 0).) In [4] it is shown that instead of developing in

the limit ε → 0 a sharp interface between some vectors a, b ∈ S1 it is more
energy efficient to “continuously transition” at a certain rate ηε from a to b
(see also Figure 2.3 and Example 1 in [4] for further clarification.) Motivated
by this example, the authors of [4] investigate the scaling regime δε = ε2|log ε|
and prove the emergence of vortices instead of interfaces as ε→ 0. In this case

the rescaled energy functional E
(1)
ε is given by:

E(1)
ε (u) =

Eε(u)− ε2#Ω
(1)
ε

ε2|log ε| =
1

2|log ε|
∑

(i,j)∈Ω
(1)
ε

(1− 〈u(i), u(j)〉). (2.18)

One possibility of tracking the vorticity of a sequence {uε} of admissible spin
fields uε ∈ ASε is to employ the distributional Jacobian on a proper interpo-
lation of uε. Since the extension must be at least Sobolev regular, we cannot
simply apply the piecewise constant interpolation. Given u ∈ ASε we define
its piecewise affine interpolation as follows: For any i ∈ εZ2 we let T−i and T+

i

denote the triangles

T−i := Conv{i, i+ εe1, i+ ε(e1 + e2)}, T+
i := Conv{i, i+ ε(e1 + e2), i+ εe2},

respectively, where ConvS stands for the convex hull of the set S. Furthermore,

let Q := [0, 1)2 and Ω
(2)
ε := {i ∈ Ω

(0)
ε : i + εQ ⊂ Ω}. Then for i ∈ Ω

(2)
ε we

consider the discrete differences:

∆1u(i) := u(i+ εe1)− u(i), ∆2u(i) := u(i+ εe2)− u(i).

Given any open set Ω and ε > 0 we set:

Ωε :=
⋃

i∈Ω
(2)
ε

i+ εQ.
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Thus, the piece-wise affine interpolation ũ : Ωε → R2 of u is defined as:

ũ(x) :=

{
u(i) + x1−i1

ε ∆1u(i) + x2−i2
ε ∆2u(i+ εe1) if x ∈ T−i , i ∈ Ω

(2)
ε ,

u(i) + x1−i1
ε ∆1u(i+ εe2) + x2−i2

ε ∆2u(i) if x ∈ T+
i , i ∈ Ω

(2)
ε .

(2.19)
Moreover, let X denote the following set of Dirac measures:

X :=

{
µ =

K∑
k=1

dkδxk : K ∈ N+, dk ∈ Z, xk ∈ Ω

}
.

The following first-order Γ-convergence result holds true (see also Theorem 3
[4]):

Theorem 2.13 (First-order Γ-convergence, xy)

Let E
(1)
ε : ASε → R be defined as in (2.18). Then the following Γ-convergence

result holds true:

(i) (Compactness) Let {uε} be a sequence of admissible spin fields uε ∈ ASε
satisfying supεE

(1)
ε (uε) < ∞, then there exists a measure µ ∈ X such

that, up to a subsequence, Jac(ũε)
[
⇀ πµ, where ũε is the piecewise affine

interpolation of uε as described above.

(ii) (Gamma-liminf) Given a sequence {uε} be a sequence of admissible spin

fields uε ∈ ASε such that Jac(ũε)
[
⇀ πµ for some µ ∈ X, then

lim inf
ε→0

E(1)
ε (uε) ≥ π|µ|, (2.20)

where |µ| denotes the total variation of µ.

(iii) (Gamma-limsup) For any µ ∈ X there exists a sequence {uε} of admis-

sible spin fields uε ∈ ASε such that J(ũε)
[
⇀ πµ, and:

lim sup
ε→0

E(1)
ε (uε) ≤ π|µ|.

Therefore, in the energy regime, where E
(1)
ε (uε) stays bounded (Eε(uε) is

ε2|log ε|-close to minEε), a finite amount of vortices emerge whose total number

(counting multiplicities) cannot exceed supε Eε(uε)
π .

While the above first-order Γ-convergence result can, in fact, be proved in
the general setting of spin fields on the n-dimensional grid (see also [4]), all the
results from this point on are – to the best knowledge of the author, that is –
only available in the two-dimensional setting. Theorem 3.1 in [6] generalizes
Theorem 2.13 in two ways. On the one hand, the authors consider more general
energy functionals:

Definition 2.16 (Admissible angular potentials, classical setting)
We call a 2π-periodic, bounded function f : R → R an admissible angular
potential if and only if:

(i) f(t) ≥ 1− cos(t) for all t ∈ [0, 2π];

(ii) f(t)− 1 + cos(t) = O(|t|3) as t→ 0.



2.2. Previous work 29

Given an admissible angular potential f they investigate the energy func-
tional XYε : ASε → R, defined as:

XYε(u) :=
1

2

∑
(i,j)∈Ω

(1)
ε

f(ϕ(i)− ϕ(j)) (2.21)

where ϕ is an arbitrary angular lift of u. Note that for f(t) := 1 − cos(t) we

recover the energy functional XYε = |log ε|E(1)
ε from Theorem 2.13. Given an

arbitrary open set U ⊂ Ω we also define the localized version of the XY energy:

XYε(u, U) :=
1

2

∑
(i,j)∈U(1)

ε

f(ϕ(i)− ϕ(j)),

for ϕ as before, and U
(1)
ε being the set of nearest-neighbor pairs contained in

U . On the other hand, the authors of [6] choose a “more discrete” notion of

vorticity for a spin field u ∈ ASε where one assigns to each cell i+ εQ i ∈ Ω
(2)
ε

a vorticity value in {−1, 0, 1}. More precisely, given u ∈ ASε we consider an

angular lift ϕ : Ω
(0)
ε → R of u satisfying u = eıϕ, where ı is the imaginary unit.

(We identify R2 with C.) For ϕ and i ∈ Ω
(2)
ε we introduce the so called “elastic”

discrete differences:

∆el
1 ϕ(i) := ∆1ϕ(i)− 2π

⌊
∆1ϕ(i)

2π

⌉
, ∆el

2 ϕ(i) := ∆2ϕ(i)− 2π

⌊
∆2ϕ(i)

2π

⌉
,

where b·e is the rounding function that rounds down in the case of a tie-brake.

Furthermore we will use the following handy notation: For any i ∈ Ω
(2)
ε let us

shortly write for the remaining three vertices of the cell i+ εQ in anticlockwise
order:

j = j(i) := i+ εe1, k = k(i) := i+ ε(e1 + e2), l = l(i) = i+ εe2.

With ϕ still denoting an angular lift of u, we then assign the vorticity αu(i) ∈

i

(a) αϕ(i) = −1

i

(b) αϕ(i) = 0

i

(c) αϕ(i) = 1

Figure 2.4: Discrete vorticity

{−1, 0, 1} to the cell i+ εQ, where αϕ(i) is defined

αu(i) :=
1

2

(
∆el

1 ϕ(i) + ∆el
2 ϕ(j)−∆el

1 ϕ(k)−∆el
2 ϕ(l)

)
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(See also Figure 2.4 for further illustration.) Consequently, we consider the
discrete vorticity measure:

µu :=
∑
i∈Ω

(2)
ε

αu(i) δi

which puts a Dirac with mass αu(i) at the center of each cell i+εQ ⊂ Ω. In [6], it
is shown that for a sequence {uε} of admissible spin fields uε ∈ ASε, satisfying

the energy bound supε
XYε(uε)
|log ε| < ∞ it holds that ‖Jac(ũε) − πµuε‖[ → 0 as

ε → 0. For this reason, the same Γ-convergence result as in Theorem 2.13

holds true with Jac(ũε) replaced by πµuε and E
(1)
ε replaced by XYε

|log ε| (see also

Theorem 3.1 in [6]). The authors also show a stronger, localized version of the
Γ-liminf inequality (see also eq. (3.1) in theorem 3.1 of [6]):

Theorem 2.14 (Localized liminf-inequality)

Given a sequence {uε} of admissible spin fields uε ∈ ASε such that µuε
[
⇀ µ =∑

k=1 dkδxk ∈ X, where dk ∈ Z for all k and xk 6= xl for all k 6= l. Then for
any k ∈ {1, . . . ,K} and r > 0 small enough such that the balls of {Br(xk)}k
are disjoint, it holds that:

lim inf
ε→0

(
XYε(uε, Br(xk))− π|dk| log

(r
ε

))
> −∞. (2.22)

Applying (2.22) for each vortex center thus leads to the improved global
liminf inequality

lim inf
ε→0

(XYε(uε)− π|µ||log ε|) >∞. (2.23)

This version is stronger than the one in (2.20), since it excludes terms that are
diverging towards −∞ at a lower order than |log ε|. So, for example, a scaling
such as:

XYε(uε) ≈ π|µ||log ε| − log|log ε|
would still be compatible with (2.20) but not with (2.23). Note that this does
not specify the divergent part of XYε(uε) completely, as the liminf in (2.23)
may still be equal to +∞. Nevertheless, we can extract a special case wherein
we can fully characterize the divergence of XYε. In this regard, we consider a
sequence {uε} of admissible spin field uε ∈ ASε such that:

XYε(uε) ≤ Kπ|log ε| (2.24)

for some fixed K ∈ N+. By the compactness statement of Theorem 2.13 we
can extract a subsequence without the need of relabeling, such that

µuε
[
⇀ µ =

K∑
k=1

dkδxk ∈ X, xk 6= xl for k 6= l.

Taking the energy bound in (2.24) and the inequality in (2.23) into consideration,
it follows that |µ| ≤ K. If we further assume that |µ| = K, we become able
classify the divergent part of XYε(uε). In fact:

XYε(uε) = Kπ|log ε|+ O(1), as ε→ 0.



2.2. Previous work 31

This is the starting point of an “approximate” second-order Γ-convergence result
for Eε where we study the Γ-limit of the energy functional:

XYε −Kπ|log ε| = E
(1)
ε −Kπ

1
|log ε|

(2.25)

for some K ∈ N+.
Before proceding to the Γ-convergence result for the functionals defined

through (2.25), we first need to introduce several important things. Let K ∈ N+

be fixed; we define X̃K ⊂ X as:

X̃K :=

{
µ =

K∑
k=1

dkδxk : dk ∈ {−1, 1}, xk 6= xl for k 6= l

}
.

Accordinly we set:

DK :=
{
u ∈W 1,1(Ω;S1) : π−1 Jac(u) ∈ X̃K , u ∈W 1,2

loc (Ω \ spt Jac(u);S1)
}
.

Given a meassure µ supported in finitely many points {xk}Kk=1, K ∈ N+, we
define

Ωr(µ) := Ω \
K⋃
k=1

Br(xk). (2.26)

The renormalized energy is then defined W : DK → R:

W(u) := lim
r→0

1

2

ˆ
Ωr(Jac(u))

|∇u|2 dx−Kπ|log r|. (2.27)

One can show that W is well defined on the set DK . Finally, we will introduce
the core energy. Fix ε > 0 and r > 0, and let γ(ε, r) be the scalar given by:

γ(ε, r) := min

{
XYε(uε, Br) : u(x) =

x

|x| on ∂εBr

}
, (2.28)

where Br is the closed ball centered at 0 with radius r, and ∂εBr := ∂(Br)ε∩εZ2.
One can show that there exists a scalar γ ∈ R (core energy) independent of r
such that:

lim
ε→0

(
γ(ε, r)− π log

(ε
r

))
= γ. (2.29)

As a result, the following theorem can be stated (see also Theorem 4.5 in [6]
for a proof):

Theorem 2.15 (Approximate second order Γ-convergence, xy)
Let K ∈ N+ be fixed, then the subsequent Γ-convergence result holds true for
XYε, as defined in (2.21):

(i) (Compactness) Let {uε} be a sequence of admissible spin fields uε ∈ ASε
such that:

XYε(uε) ≤ Kπ|log ε|+ C

for some constant C <∞ independent of ε. Then there exists a measure
µ ∈ X with |µ| ≤ K such that, up to some subsequence, the following
applies:

µuε
[
⇀ µ, Jac(uε)

[
⇀ πµ. (2.30)
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Furthemore, if |µ| = K, then we have µ ∈ X̃K and again, up to some
subsequence, the following applies:

ũε ⇀ u weakly in W 1,2
loc (Ω \ sptµ;R2)

for some u ∈ DK , where ũε is the piecewise affine interpolation of uε, as
defined in (2.19).

(ii) (Γ-liminf) Let {uε} be a sequence of admissible spin field uε ∈ ASε such
that ũε → u in L1(Ω;R2) for some u ∈ DK , then:

lim inf
ε→0

(XYε(uε)−Kπ|log ε|) ≥ W(u) +Kγ. (2.31)

(iii) (Γ-limsup) Given u ∈ DK , there exists a sequence {uε} of admissible spin
fields uε ∈ ASε such that ũε ⇀ u weakly in W 1,2

loc (Ω \ spt Jac(u);R2) and:

lim sup
ε→0

(XYε(uε)−Kπ|log ε|) ≤ W(u) +Kγ.

The above result can be summarized as follows: The only sequences {uε}
whose XY energy scales as

XYε(uε) = Kπ|log ε|+ O(1) for ε→ 0

are exactly those that develop unit vortices in the limit ε → 0. The Γ-
convergence result can be outlined in the following way: Minimizers of XYε
in the logarithmic energy regime Kπ|log ε| + O(1) (as ε → 0) develop K dis-
tinct unit vortices in the limit ε→ 0 with asymptotic energy given by the sum
W(u)+Kγ. Qualitatively speaking, the renormalized energyW prefers vortices
that have the same sign to be located far apart from each other and vortices
of different sign, close to each other (see [16] for further details.) Additionally,
W(u) also measures how “efficiently” u achieves its vortex singularity Jac(u).
In fact, two different limit configurations u, u′ ∈ DK with Jac(u) = Jac(u′)
may have different renormalized energies W(u) and W(u′), repsectively.

2.3 Problem setup

In this section, we will discuss the generalization of the XY model and state the
corresponding Γ-convergence result. Without further mention, m ∈ N+ denotes
a fixed natural number and Ω ⊂ R2 a simply connected, open set with smooth

boundary. We define Ω
(0)
ε , Ω

(1)
ε , Ω

(2)
ε , Ωε, ∂εΩ, ASε and XYε as in Section 2.2.2.

Given u ∈ ASε and an angular lift ϕ of u, we rewrite XYε(u) as follows:

XYε(u) =
∑
〈i,j〉

f(ϕ(i)− ϕ(j)), f(t) = 1− cos(t).

In the case of the generalized XY model, wa have to consider a modified 2π-

periodic functional f
(m)
ε (depending on ε > 0) with m wells at 0, 2π

m , . . . ,

(m − 1) 2π
m such that f

(m)
ε (0) = 0 and f

(m)
ε (k 2π

m ) ≈ ε. More precisely, we take
the following class of admissible families of angular potentials:
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0 π 2π

0
ε

1
1 + ε g

(m)
ε

h
(m)
ε

f
(m)
ε

Figure 2.5: An admissible potential with m = 2 wells.

Definition 2.17 (Admissible angular potentials, fractional setting)
Let f : R→ R be an angular potential as in Definition 2.16 and given ε > 0 let

g
(m)
ε , h

(m)
ε be defined as follows

g(m)
ε (t) := f(mt) ∨ ε1[ πm ,2π− π

m ](t), t ∈
[ π
m
, 2π − π

m

]
,

h(m)
ε (t) := f(mt) + ε1[ πm ,2π− π

m ](t), t ∈
[ π
m
, 2π − π

m

]
,

where x ∨ y := min{x, y} for all x, y ∈ R. We call a sequence {f (m)
ε }ε of 2π-

periodic and uniformly bounded functions f
(m)
ε : R→ R an admissible sequence

of fractional angular potentials, with m wells, if and only if

(i) g
(m)
ε (t) ≤ f (m)

ε (t) ≤ f (m)(t) for all t ∈ [0, 2π];

(ii) |f (m)
ε (t) − 1 + cos(mt)| ≤ C|t|3 for all t ∈ (−t0, t0), where t0 > 0 and C

are independent of ε;

The conditions imposed in Definition 2.17 are more of technical nature. We

single out the very properties of f
(m)
ε that will be necessary for the derivation

of the upcoming Γ-convergence result. The conditions are still flexible enough
to allow for angular potentials appearing in the physics literature (see also

[26]). An example of f
(m)
ε is given in Figure 2.5. Note that the upper bound of

Item (i) in the vicinity of t = 2πk
m and Item (ii) in Definition 2.16 imply that

there exists t̃0 ∈ (0, πm ) and C̃ > 0, which are independent of ε such that for all
k ∈ {1, . . . ,m− 1}, the following applies:

f (m)
ε

(
t− 2πk

m

)
− ε ≤ C

∣∣∣∣t− 2πk

m

∣∣∣∣2 for all t ∈
(

2πk

m
− t̃0,

2πk

m
+ t̃0

)
. (2.32)

Definition 2.18 (Energy functionals)

Given a sequence of fractional angular potentials (f
(m)
ε )ε we define for each

ε > 0 the generalized XY energy functional XY
(m)
ε : ASε → R as:

XY (m)
ε (u) :=

1

2

∑
(i,j)∈Ω

(1)
ε

f (m)
ε (ϕ(i)− ϕ(j)), (2.33)

where ϕ is an angular lift of u. As before, the localized version of XY
(m)
ε is

also taken into consideration for an open set U ⊂ Ω: We also consider for an
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open set U ⊂ Ω the localized version

XY (m)
ε (u, U) :=

1

2

∑
(i,j)∈U(1)

ε

f (m)
ε (ϕ(i)− ϕ(j))

with ϕ as before. From this point on we assume XYε to be defined as in (2.21),
where f is the nonfractional angular potential f from Definition 2.17.

This time, in contrast to the previously discussed models, we will assume a
Dirichlet boundary condition on the admissible spin fields. That is, we will fix
a boundary datum g ∈ C∞(∂Ω;S1). We will then consider the following set of

admissible spin fields AS(g)
ε :

AS(g)
ε := {u ∈ ASε : u(i) = g(i) for i ∈ ∂εΩ},

where ∂εΩ = εZ2 ∩ ∂Ωε, and Ωε is the union of squares i + ε[0, 1]2, i ∈ εZ2

contained in Ω.

Given u ∈ ASε a pair (i, j) ∈ Ω
(1)
ε of nearest neighbors is called a jump pair

(of u) if and only if |∆elϕ(i, j)| > π
m , where ϕ is an arbitrary angular lift of u,

and:

∆elϕ(i, j) = ϕ(i)− ϕ(j)− 2π

⌊
ϕ(i)− ϕ(j)

2π

⌉
. (2.34)

It is important to add that there is nothing special about the choice of π
m indeed.

In fact, any positive scalar in (0, 2π
m ) would have also worked here. A cell i+εQ,

where i ∈ εZ2 lies in Ω, with the other three vertices denoted by j, k and l (in
anticlockwise order starting at i) is called a jump cell if and only if one of the
pairs (i, j), (j, k), (k, l) or (l, i) is a jump pair at least. The set of all indices

i ∈ Ω
(2)
ε such that i+ εQ is a jump cell of u will be denoted by JCu. Let A(u)

denote the piecewise affine interpolation of u ∈ ASε, as defined in (2.19). Let
us then consider the interpolation AC(u) : Ωε → R2:

AC(u)(x) :=

{
u(i) for x ∈ i+ εQ with i ∈ JCu,
A(u)(x) for x ∈ Ωε.

With dg := deg(g, ∂Ω), we shall denote the following set of measures by X
(m)
g :

X(m)
g :=

µ = sgn(dg)

m|dg|∑
k=1

1

m
δxk : xk 6= xl for k 6= l

.
Here the set D(m)

g contains all u ∈ SBV (Ω;S1), additionally satisfying:

(i) (u+)m = (u−)m at H1-a.e. point on Ju;

(ii) H1(Ju) <∞;

(iii) u ∈ SBV 2
loc(Ω \ spt Jac(u);S1) with 1

π Jac(u) ∈ X(m)
g ;

(iv) um = gm on ∂Ω in the trace sense.
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By applying the chain rule in BV (see also Theorem 2.5) and the definition

of D(m)
g , we can show that um ∈ W 1,1(Ω;S1) and Jac(u) = 1

m Jac(um). Let
γ denote the core energy as in the classical XY setting (see (2.29)) and the

renormalized energy W(m) : D(m)
g → R as

W(m)(u) := lim
r→0

(
m2

ˆ
Ωr(Jac(u))

|∇u|2 dx− |dg|πm|log r|
)
, (2.35)

where Ωr(Jac(u)) equals (2.26). According to the chain rule in BV , W(m)(u) =
W(um).

Given a H1-rectifiable set S ⊂ R2 with normal vector field ν we will use the
abbreviation

H1
cr(S) :=

ˆ
S

|ν|1 dH1, (2.36)

for the crystalline length of S, where |·|1 is the l1-norm of R2. Finally, we state
the main theorem of this chapter:

Theorem 2.16
With the notation described above, the following Γ-convergence result holds true:

(i) (Compactness) Let {uε} be sequence of admissible spin fields uε ∈ AS(g)
ε

such that XY
(m)
ε (uε) ≤ m|dg|π|log ε| + C for some constant C < ∞

independent of ε. Then, there exists a measure µ ∈ X(m)
g such that, up to

some subsequence:
1

m
µum

ε

[
⇀ µ.

Furthermore, there also exists u ∈ AS(g)
ε such that, up to taking a subse-

quence:

AC(uε) ⇀ u weakly in SBV 2
loc(Ω \ spt Jac(u);R2).

(ii) (Γ-liminf) Given a sequence {uε} of admissible spin fields uε ∈ AS(g)
ε

such that AC(uε)→ u in L1(Ω;R2) for some u ∈ D(m)
g , then:

lim inf
ε→0

(
XY (m)

ε (uε)−m|dg|π|log ε|
)

≥ W(m)(u) +H1
cr(Ju) +H1

cr({u 6= g} ∩ ∂Ω) + m|dg|γ,
(2.37)

where we shortly wrote

{u 6= g} := {x ∈ ∂Ω: u(x) 6= g(x)},

where the condition u(x) 6= g(x) should be understood in the trace sense.

(iii) (Γ-limsup) For any u ∈ D(m)
g there exists a sequence {uε} of admis-

sible spin fields uε ∈ AS(g)
ε such that AC(umε ) ⇀ u in SBV 2

loc(Ω \
spt Jac(u);R2), and:

lim sup
ε→0

(
XY (m)

ε (uε)−m|dg|π|log ε|
)

=W(m)(u) +H1
cr(Ju) +H1

cr({u 6= g} ∩ ∂Ω) + m|dg|γ.
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The above theorem shows that correctly chosen interpolations of a sequence
of minimizers {uε} converge as ε→ 0 towards a limit spin configuration u with

fractional vortices. Instead of assuming the divergence of {XY (m)
ε (uε)} (e.g.,

as we did in Theorem 2.15), it is the nontrivial degree dg of g that leads to the
emergence of vortices with net-vorticity dg. Similarly to Theorem 2.15, vortices
with the lowest absolute value (in the present case ± 1

m ) are the ones most
energy-efficient. Therefore, 1

π Jac(u) is a sum of m|dg| disjoint Diracs each with

weight
sgn(dg)

m . In addtition to having fractional vortices the limit spin fields

possibly also jump on an H1-rectifiable set Ju such that (u+)m = (u−)m at H1

a.e. point of Ju. Moreover, the boundary condition is not fully preserved in the
limit ε→ 0, which is typical of Dirichlet problems in SBV . Nevertheless, we still
have um = gm in the trace sense ∂Ω (by the discussion above um ∈ W 1,1(Ω)).

For small ε, the O(1)-terms of XY
(m)
ε (uε) are for small ε approximately equal

to the sum of a vortex interaction potential (the same as in the classic setting),
which forces the vortices to stay as much as possible away from each other as
well as the boundary, the crystalline perimeter of Ju, the crystalline perimeter
of the part of the boundary on which u does not attain the boundary condition
g, and a fixed scalar term γ (the same as the classic setting) for each of the
m|dg| vortices.

Together with M. Cicalese, L. De Luca and M. Ponsiglione, the author has
derived a similar result in [15], but without the Dirichlet constraint which can
be seen as a more natural generalization of Theorem 2.15 to the fractional

setting. In this regard, let X̃
(m)
K , for K, m ∈ N+, be the set of measures given

by:

X̃
(m)
K :=

{
µ =

K∑
k=1

dkδxk : dk = ±1, xk 6= xl for k 6= l

}
.

Furthemore, D̃(m)
K contains all u ∈ SBV (Ω;S1) such that:

(i) (u+)m = (u−)m at H1-a.e. point on Ju;

(ii) H1(Ju) <∞;

(iii) u ∈ SBV 2
loc(Ω \ spt Jac(u);S1) with 1

π Jac(u) ∈ X̃(m)
K .

Theorem 2.17
With the notation described above, the following Γ-convergence result holds true:

(i) (Compactness) Let {uε} be a sequence of admissible spin fields uε ∈ ASε
such that XY

(m)
ε (uε) ≤ Kπ|log ε| + C for some K ∈ N, and constant

C <∞ independent of ε. Then there exists a measure:

µ =
1

m

K∑
k=1

dkδxk

with dk ∈ Z and xk 6= xl for k 6= l, such that, up to some subsequence:

1

m
µum

ε

[
⇀ µ.
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The measure µ satisfies |µ| ≤ K, and if we additionally assume that

|µ| ≥ K (and hence |µ| = K) it follows that µ ∈ X̃(m)
K and, up to taking

a further subsequence:

AC(uε) ⇀ u weakly in SBV 2
loc(Ω \ spt Jac(u);R2),

where u ∈ D(m)
k with Jac(u) = πµ.

(ii) (Γ-liminf) Given a sequence {uε} of admissible spin fields uε ∈ ASε such

that AC(uε)→ u in L1(Ω;R2) for some u ∈ D̃(m)
K , we have:

lim inf
ε→0

(
XY (m)

ε (uε)−Kπ|log ε|
)
≥ W(m)(u) +H1

cr(Ju) +Kγ (2.38)

with H1
cr as in Theorem 2.16.

(iii) (Γ-limsup) For any u ∈ D(m)
K there exists a sequence {uε} of admissible

spin fields uε ∈ ASε such that AC(uε) ⇀ u in SBV 2
loc(Ω\ spt Jac(u);R2),

and:

lim
ε→0

(
XY (m)

ε (uε)−Kπ|log ε|
)

=W(m)(u) +H1
cr(Ju) +Kγ.

Regarding the proof of Theorem 2.16, it will be useful to have a shorthand
notation for a tubular neighborhood of ∂Ω. In this regard fix δ > 0 and set:

Tδ = Tδ(∂Ω) := {x ∈ R2 : dist(x, ∂Ω) < δ},
T+
δ = T+

δ (∂Ω) := {x ∈ R2 \ Ω: dist(x, ∂Ω) < δ},
T−δ = T+

δ (∂Ω) := {x ∈ Ω̄ : dist(x, ∂Ω) < δ}.

2.4 Proof of Gamma-convergence

2.4.1 Compactness

In this section, we will prove the compactness statements in Theorem 2.16. We
assume the same notation as in Section 2.3. Furthermore, we set Ng := m|dg|,
and assume without further mention that (uε) is a sequence of admissible spin

fields uε ∈ AS(g)
ε , satisfying the energy bound:

XY (m)
ε (uε) ≤ Ngπ|log ε|+ C, (2.39)

for some constant C <∞ independent of ε. Additionally, we will shortly write
vε := umε , ũε := AC(uε) and ṽε := A(vε), and

Jε :=
⋃

i∈JCuε

i+ ε[0, 1]2,

where JCuε is the union of all grid points i ∈ Ω
(2)
ε such that i + ε[0, 1]2 is

a jump cell. Let δ0 > 0 be chosen sufficiently small such that the projection
Π = Π∂Ω onto ∂Ω is well defined and smooth in T+

2δ0
. Then we implicitly suppose

that g is extended into T+
2δ0

through g(x) := g(Π(x)) and define h := gm in

T+
2δ0

. Furthermore, we will shortly write O := Ωδ0 . Let us start by deriving a
compactness result concerning the sequence (vε):
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Proposition 2.2

There exists a measure ν ∈ X(1)
h such that, up to a subsequence,

µvε
[
⇀ ν flat in Ω. (2.40)

We can also find v ∈ D(1)
h such that Jac(v) = πν, and such that, up to taking a

further subsequence:

A(vε) ⇀ v weakly in W 1,2(Ω \ spt ν,R2). (2.41)

Before getting to the proof of Proposition 2.2 we need to collect several
preliminary results:

Lemma 2.2
For any U ⊂⊂ Ω open, ε > 0 small enough (ε < 1√

2
dist(U, ∂Ω)) and v ∈ ASε,

the following holds true:

1

2

ˆ
Uε

|∇A(v)|2 dx ≤ XYε(v, U) ≤ 1

2

ˆ
Ũε

|∇A(v)|2 dx, (2.42)

where:

XYε(u, U) :=
1

2

∑
(i,j)∈U(1)

ε

f(ϕ(i)− ϕ(j)), eıϕ = u,

and:
Ũε :=

⋃
i∈U(0)

ε

i+ εQ̃, Q̃ := [−1, 1)2.

Proof. The proof can be found in [4] (see also (2.13)).

Lemma 2.3
For any ε > 0, u ∈ ASε and v := um, it holds that:

XYε(v) ≤ XY (m)
ε (u), (2.43)

Proof. Let ϕ be an arbitrary angular lift of u. Following the definition for v,
we know that mϕ is an angular lift of v. Using the lower bound in Item (i) of
Definition 2.17 and the definition of XYε, we conclude:

XY (m)
ε (u) =

1

2

∑
(i,j)∈Ω

(2)
ε

f (m)
ε (ϕ(i)− ϕ(j))

≥ 1

2

∑
(i,j)∈Ω

(2)
ε

f(m(ϕ(i)− ϕ(j))) = XYε(v),

as desired.

Lemma 2.4
Let K ∈ N, v ∈ DK such that W(v) <∞, Jac(v)(Ω) > 0, x0 ∈ spt Jac(v) and
r0 ∈ (0,dist(x0, ∂Ω)) small enough such that spt Jac(v)∩Br0(x0) = {x0}. Then
there exists a sequence (αn) ⊂ S1 such that:

lim
n→∞

∥∥∥∥v|An − αn x− x0

|x− x0|

∥∥∥∥
W 1,2(An)

= 0, (2.44)
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where An is the annulus:

An := A2−(n+1)r0,2−nr0(x0).

Proof. It was shown in [6] (see also the proof of Theorem 4.13) that for any
r > 0

min

{
1

2

ˆ
A r

2
,r(x0)

|∇w|2 dx : w ∈W 1,2(A r
2 ,r

(x0);S1), deg(w, ∂B r
2
(x0)) = 1

}
= π log 2

(2.45)
with the set of minimizers (independent of r) given by:

K :=

{
α
x− x0

|x− x0|
: α ∈ S1

}
.

The authors of [6] have also derived (see also Remark 4.4) the following repre-
sentation for the renormalized energy:

W(v,Br0(x0)) := lim
r→0

(
1

2

ˆ
Ar,r0 (x0)

|∇v|2 dx− π|log r|
)

=

∞∑
h=0

(
1

2

ˆ
An

|∇v|2 dx− π log 2

)
.

By (2.45), each term in the series above is non-negative. Hence as:

W(v,Br0(x0)) ≤ W(v) <∞

the series turns out to be convergent, thus:

lim
n→∞

1

2

ˆ
An

|∇v|2 = π log(2). (2.46)

Let us suppose by contradiction that there exists a δ > 0 such that for all n ∈ N

inf
n∈N

inf
α∈S1

∥∥∥∥v|An − α x− x0

|x− x0|

∥∥∥∥
W 1,2(An)

> δ.

This (see also (4.19) in [6]) implies that there exists a scalar ω(δ) > 0 such that
for all n ∈ N:

1

2

ˆ
An

|∇v|2 dx ≥ π log 2 + ω(δ)

which directly contradicts (2.46).

Lemma 2.5
Let v ∈W 1,2(Ω;R2) (Ω simply connected) such that v = h on ∂Ω (in the trace
sense) for some n ∈ C∞(∂Ω;S1), then:

ˆ
Ω

Jac(v) dx = π deg(h, ∂Ω). (2.47)
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Proof. This is a classic result (see for example (0.3) in [21]).

Lemma 2.6
Let U ⊂ R2 be an open bounded set and (vn), (wn) ⊂W 1,2(U ;R2) such that:

lim
n→∞

‖vn − wn‖L2(‖∇vn‖L2 + ‖∇wn‖L2) = 0,

then:
Jac(vn)− Jac(wn)

[
⇀ 0 flat in Ω.

Proof. See also Lemma 2.1 in [8].

Proof of Proposition 2.2. 1. step: By the estimate in (2.43) and the energy
bound in (2.39), we have that:

XYε(vε) ≤ Ngπ|log ε|+ C (2.48)

for a constant C <∞ independent of ε.
1. step: For each ε > 0, we extend vε into Ω(2δ0) by setting vε(i) := h(i)

outside of Ω
(0)
ε . We will shortly define by ṽε the piecewise affine interpolation

of the extended spin field vε. Let us fix i ∈ O(0)
ε \Ω

(0)
ε and let j, k, l denote the

remaining vertices of the cell i+ ε[0, 1]2 (in anticlockwise order). Furthermore,
let x ∈ T−i := Conv({i, j, k}). By the definition of ṽε (see also (2.19)) and the
mean value theorem we can estimate:

|∇ṽε(x)|2 = |∇e1 ṽε|2 + |∇e2 ṽε|2

= ε−2(|h(j)− h(i)|2 + |h(k)− h(j)|2)

= ε−2(|∇h(ξ)(j − i)|2 + |∇h(ν)(k − j)|2)

= 2‖∇h‖L∞(T+
2δ0

),

where ξ ∈ [i, j] and ν ∈ [j, k]. Hence, by (2.42) and (2.48) the following energy
bound holds true for all ε > 0:

XYε(vε, O) ≤ XYε(vε,Ω) + |T2δ0 |‖∇h‖L∞(T+
2δ0

)

≤ Ngπ|log ε|+ C̃,

where C̃ < ∞ is a constant independent of ε. By Theorem 2.15 applied in
O, we can find a point measure ν ∈ X(O) with |ν| ≤ Ng such that, up to a
subsequence:

µvε
[
⇀ ν =

K∑
k=1

dkδxk , dk ∈ Z, xk ∈ O, xk 6= xl for k 6= l.

Note that for the same subsequence we also have that Jac(ṽε)
[
⇀ πν flat in O.

2. step: Let us fix a δ ∈ (0, δ0) and consider the continuum spin field:

w̃ε(x) :=


ṽε(x) if x ∈ Ω,

(1− 1
δ dist(x, ∂Ω))ṽε(x) + 1

δ dist(x, ∂Ω)h(x), if x ∈ T+
δ

h(x) if x ∈ T+
δ0
\ T+

δ .
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By the definition of ṽε, the bound on XYε(vε, O) from before and (2.42) we see
that:

‖ṽε − w̃ε‖L2(T+
δ0

)(‖ṽε‖L2(T+
δ0

) + ‖w̃ε‖L2(T+
δ0

)) ≤ C(h)ε2
√
|log ε| = o(1)

as ε → 0, where C(h) is a constant independent of ε. Consequently, due
to Lemma 2.6 and the compactness result for (Jac(ṽε))ε we can see that, up

to a subsequence, Jac(w̃ε)
[
⇀ ν flat in O. Let us now consider an arbitrary

test function ρ ∈ C∞c (O) such that ρ ≡ 1 in Ω ∪ Tδ. By definition of weak
convergence, we have:

ˆ
O

Jac(w̃ε)ρdx→ 〈ν, ρ〉 = π

K∑
k=1

dkρ(xk).

As |w̃ε| = |h| = 1 in T+
δ0
\ T+

δ , and hence Jac(w̃ε) = 0 in T+
δ0
\ T+

δ , we can write
by (2.47):

ˆ
O

Jac(w̃ε)ρdx =

ˆ
Ω∪Tδ

Jac(w̃ε) dx = π deg(h, ∂(Ω ∪ Tδ)) = πNg.

Since this reasoning works for any ρ ∈ C∞c (O) as long as ρ ≡ 1 in Ω(δ), we
follow that spt ν ⊂ O(δ) and ν(O) = Ng. By the arbitrariness of δ, we conclude
that spt(ν) ⊂ Ω̄.

3. step: We have already shown that |ν| = Ng. Thus, it follows, by the
compactness statement of Theorem 2.15 applied to the set O instead of Ω, that

there exists v ∈ D(m)
g (O) such that, up to a subsequence:

ṽε ⇀ v weakly in W 1,2
loc (O \ spt Jac(v);R2).

Let us assume by contradiction that there exists a vortex center x0 ∈ spt Jac(v)∩
∂Ω. By the smoothness of ∂Ω, there also exists a scalar r ∈ (0, δ0) and cone C
with vertex x0, as well as an opening angle α ∈ (0, π) such that C∩Br(x0) ⊂ T+

δ0
and Br(x0)∩ spt Jac(v) = {x0}. So, on the one hand, we have by the definition
of extended spin fields (vε) that v = g in T+

δ0
, and hence:

ˆ
C

|∇v|2 dx <∞. (2.49)

On the other hand, with Lemma 2.4 we can find a sequence (λn) ⊂ S1 such
that:

lim
n→∞

∥∥∥∥v|An − λn x− x0

|x− x0|

∥∥∥∥
W 1,2

, (2.50)

where An = A2−(n+1)r,2−nr(x0), and hence:

ˆ
C∩An

|∇v|2 dx ≥
ˆ
C∩An

∣∣∣∣∇(λ x− x0

|x− x0|

)∣∣∣∣2 dx+ on→∞(1)

≥ α

2
log(2)

for n ≥ N , where N ∈ N is chosen sufficiently large enough. This is a contra-
diction to (2.50).
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In the next lemma we will show that H1(JAC(uε)) remains bounded as
ε → 0. This is a nontrivial property since upon first glance the logarithmic
energy bound in (2.39) does not seem to exclude H1(JAC(uε)) ≈ |log(ε)| as
ε→ 0.

Lemma 2.7 (Uniform bound on the length of the jump set)
Let (εn) ⊂ R+ be the subsequence from Proposition 2.2, then:

sup
ε
H1(JAC(uεn )) <∞. (2.51)

Proof. For the sake of simplicity, we will write (uε) instead of (uεn), and (vε)
instead of (vεn). Furthermore, we will set ũε := AC(uε) and ṽε := A(vε).

1. step: By definition Jũε is contained in the edges of jump cells of uε.
Moreover each jump cell must contain one nearest-neighbor pair (i, j) for which
we have, by the lower bound in Item (i) of Definition 2.17, that:

f (m)
ε (ϕε(i)− ϕε(j)) ≥ ε, eıϕε = uε.

Consequently, we can estimate:

H1(Jũε) ≤ 4ε ·#JCuε ≤ 8XY (m)
ε (uε, Jε). (2.52)

Jε :=
⋃

i∈JCuε

i+ ε[0, 1]2.

By the energy bound, (2.39) this leads to:

H1(Jũε) ≤ C|log ε| (2.53)

for a constant C <∞ independent of ε.
2. step: Now our goal is to improve this estimate. Let ν denote the limit

from (2.40), and fix r > 0 such that the balls Br(xk), k = 1, . . . , Ng, are
disjoint, where {xk} = spt(ν). By the convergence in (2.41), the smoothness of
g, (2.43), the localized lower bound in (2.22), (2.42), and (2.52) we have for ε
small enough

C ≥ XY (m)
ε (uε)−Ngπ|log ε|

≥
Ng∑
k=1

(
XYε(vε, Br(xk))− π log

(r
ε

))
+XY (m)

ε (vε,Ωr(ν))−Ngπ|log r|

≥ C̃ +XYε(vε,Ωr(ν) \ Jε) +XY (m)
ε (uε,Ωr(ν) ∩ Jε)−Ngπ|log r|

≥ C̃ +
1

2

ˆ
Ω2r(ν)\Jε

|∇ṽε|2 dx−Ng|log r|+ cH1(Jũε ∩ Ωr) (2.54)

for constants C < ∞, C̃ > −∞ and c > 0 independent of ε. (Note that in
the last estimate above we have used that Ω2r ⊂ (Ωr)ε for sufficiently small ε.)
Also, by (2.52) and (2.41), we see that:

|Jε| ≤ #JCUε · ε2 ≤ 2XY (m)
ε (uε)ε ≤ Cε|log ε|

for a constant C <∞ independent of ε, which implies:

|∇ṽε|1Ω2r(ν)\Jε ⇀ |∇v|1Ω2r(ν) weakly in L2(Ω2r(ν)),
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where v is the limit from (2.40). As a consequence, by the lower semicontinuity
of the norm and the definition of the renormalized energy W, this leads to:

lim
r→0

lim inf
ε→0

(
1

2

ˆ
Ω2r(ν)\Jε

|∇ṽε|2 dx−Ngπ|log r|
)

≥ lim
r→0

(
1

2

ˆ
Ω2r

|∇v|2 dx−Ngπ|log 2r|
)
−Ngπ log 2

≥ W(v)−Ngπ log 2. (2.55)

Combining (2.54) and (2.55), we derive:

H1(Jũε ∩ Ωr) ≤ C(v) + α(ε, r), (2.56)

where C(v) < ∞ is a constant independent of r and ε, and the remainder
α(ε, r) ≥ 0 satisfies: lim supr→0 lim supε→0 α(ε, r) = 0. Passing to the limit
ε→ 0 and r → 0 (precisely in this order) in (2.56) concludes the proof.

The following lemma compares the gradients of AC(uε) and A(vε):

Lemma 2.8
There exists a constant C(m) such that for all ε > 0 and u ∈ AS(g)

ε , it holds for
all x ∈ Ωε, that:

|∇AC(u)(x)|2 ≤ C(m)|A(v)(x)|2, (2.57)

where v := um.

Proof. By the definition of AC(u), all we have to do is check the inequality

for x ∈ i + εQ with i ∈ Ω
(2)
ε \ JCu, as AC(uε) = 0 a.e. in Jε. Let us assume

that x ∈ T−i with vertices denoted by i, j, k (in anticlockwise order) and take
an angular lift ϕ of u. Using half-angle formulas we can express the squared
distance between u(i) and u(j) as

|u(i)− u(j)|2 = 2 sin2

(
ϕ(i)− ϕ(j)

2

)
= 1− cos(ϕ(i)− ϕ(j)).

Similarly we also have

|v(i)− v(j)|2 = 1− cos(m(ϕ(i)− ϕ(j))),

and therefore we can write

|u(i)− u(j)|2
|v(i)− v(j)|2 =

1− cos(ϕ(i)− ϕ(j))

1− cos(m(ϕ(i)− ϕ(j)))
.

The function t 7→ 1−cos(t)
1−cos(mt) has its only singularities at 2π

m + 2πZ. Since (i, j)

is not a jump pair, and hence ∆el
1 ϕ(i) ≤ π

m , the difference angle ϕ(i)− ϕ(j) is
uniformly bounded away from 2π

m + 2πZ and we can bound:

|u(i)− u(j)|2
|v(i)− v(j)|2 ≤ C(m)
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for a constant C(m) < ∞ only depending on m. The same holds true if we
replace (i, j) with (j, k). By the definition of the AC(u)(x) as well as of A(v)(x),
we conclude:

|∇AC(u)(x)|2 = ε−2(|u(j)− u(i)|2 + |u(k)− v(j)|2)

≤ C(m)ε−2(|v(j)− v(i)|2 + |v(k)− v(j)|2)

= C(m)|∇A(v)(x)|2.

The case x ∈ T+
i works similarly.

Starting from a discrete spin field uε we either take the m-th power umε
of uε and interpolate the resulting discrete spins – an operation which would
lead to A(umε ) –, or we could first interpolate uε and then take the m-th power
(AC(uε))

m, respectively. The next lemma shows that (AC(uε))
m and A(umε )

are close in L2-sense for small ε.

Lemma 2.9

lim
ε→0

ˆ
Ω

|(AC(uε))
m −A(umε )|2 dx = 0. (2.58)

Proof. Let us shortly write ũε := AC(uε), ṽε := A(umε ) and w̃ε := ũmε . Consider

i ∈ Ω
(2)
ε \JCuε , and denote the other remaining vortices of i+ ε[1, 1]2 by j, k, l

in anticlockwise order. Let x ∈ T−i := Conv({i, j, k}) (similar as in the case
x ∈ T+

i := Conv({i, k, l})). By (2.57), it follows that:

|∇w̃ε(x)|2 = m2|∇ũε|2 ≤ m2C(m)|∇ṽε|2.

As w̃ε and ṽε coincide at grid points, we derive by the intermediate value
theorem and the bound above:

|w̃ε(x)− ṽε(x)|2 ≤ 2(|w̃ε(x)− wε(i)|2 + |ṽε(x)− ṽε(i)|2)

≤ 2(1 + m2C(m))|x− i|2(|∇wε(ξx)|2 + |∇ṽε(x)|2)

≤ C̃(m)ε2|∇ṽε|2,

for a constant C̃(m) <∞ only depending on m. In the case x ∈ i+ ε[0, 1]2 for
i ∈ JCuε we use the estimate

|w̃ε(x)− ṽε(x)|2 ≤ 4

instead. As each jump cell contains at least one jump-pair, which itself con-
tributes at least ε to the energy, we see, by (2.39), that:

|Jε| = #JCuε · ε2 ≤ Cε|log ε|

for a constant C < ∞ independent of ε. Combining all the aforementioned
estimates leads to:ˆ

Ω

|wε(x)− ṽε(x)|2 dx =

ˆ
Ωε\Jε

|wε(x)− ṽε(x)|2 dx+

ˆ
Jε

|wε(x)− ṽε(x)|2 dx

≤ C(m)ε2

ˆ
Ωε

|∇ṽε|2 dx+ 4|Jε| = oε→0(1)

as is desired.
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Proof of the compactness statement in Theorem 2.16. Set ũε := AC(uε) and
ṽε := A(vε), and assume that we have already selected – without relabeling – the
subsequence from Proposition 2.2. We already know that, up to a subsequence,
1
mµvε

[
⇀ µ := 1

mν ∈ X
(m)
g , where ν is the limit from (2.40). Fix r > 0

small enough such that the balls in Br(xk), k = 1, . . . , Ng are disjoint, where
{xk} = spt(µ). We wish to prove that:

sup
ε>0

(
‖ũε‖L∞(Ωr(µ);R2) +

ˆ
Ωr(µ)

|∇ũε|2 dx+H1(Jũε ∩ Ωr(µ))

)
<∞. (2.59)

By the fact that ‖ũε‖L∞ ≤ 1 and Lemma 2.7, we only need to bound the
approximate gradient in (2.59). With (2.57) and Proposition 2.2 we have:

sup
ε>0

ˆ
Ωr(µ)

|∇ũε|2 dx ≤ C(m) sup
ε>0

ˆ
Ωr(µ)

|∇ṽε|2 dx <∞,

as is desired, where C(m) is the ε-independent constant from (2.57). Using
Theorem 2.7 we can find u = u(r) ∈ SBV 2(Ωr(µ);R2) such that, up to a
subsequence, ũε ⇀ u weakly in SBV 2(Ωr(µ);R2). By a standard diagonal
sequence argument, we can find a common subsequence such that ũε ⇀ u

weakly in SBV 2
loc(Ω \ sptµ;R2). It remains to prove that u ∈ D(m)

g . For this,
note that by Proposition 2.2, we have that, up to a subsequence, ṽε ⇀ v, where
v ∈ D1

gm(Ω). Furthermore, by (2.58) it follows that um = v at a.e. point in Ω.

With Theorem 2.5 this shows that |u| = 1 a.e., (u+)m = (u−)m at H1-a.e. on
Ju, and:

Jac(u) =
1

m
Jac(u)m = µ.

Finally, by the lower semicontinuity of the perimeter with respect to weak
convergence in SBV 2 and (2.51) for any r > 0 small enough, it holds that:

H1(Ju ∩ Ωr(µ)) ≤ lim inf
ε→0

H1(Jũε ∩ Ωr(µ)) ≤ sup
ε>0
H1(Jũε) <∞.

Taking the limit r → 0 in the estimate above, concludes the proof.

2.4.2 Gamma-liminf

In this subsection, we will prove the Γ-liminf inequality stated in Theorem 2.16.
We assume the same notation as in Section 2.4.1. It is not restrictive to assume
that the energy bound in (2.39) is achieved by the sequence (uε), since in the
other case the liminf inequality is trivially satisfied. Furthermore, we select a
subsequence (without relabeling) for which the liminf in (2.37) is, in fact, a
limit. As (2.39) is satisfied, we can apply the compactness statement in Item (i)

of Theorem 2.16, which shows the existence of a u ∈ D(m)
g such that, up to

taking a subsequence:

AC(uε) ⇀ u weakly in SBV 2
loc(Ω \ spt Jac(u);R2),

A(vε) ⇀ v weakly in W 1,2
loc (Ω \ spt Jac(u);R2,

where v := um.
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Let δ0 > 0 be small enough such that the projection Π∂Ω is well defined
and smooth. We extend g into Tδ0 by setting g(x) := g(Π∂Ω(x)), and define
h := gm in Tδ0 . From this point on, we implicitly assume that uε and vε are

extended into (Ω(δ0))
(0)
ε by setting uε(i) := g(i) and vε(i) := h(i) outside of

Ω
(0)
ε , respectively. Directly by the definition and the previous convergences, we

see that:

AC(uε) ⇀ u weakly in SBV 2
loc(Ω(δ0) \ spt Jac(u);R2), (2.60)

A(vε) ⇀ v weakly in W 1,2
loc (Ω(δ0) \ spt Jac(u);R2), (2.61)

where v = um a.e. in Ω(δ0) := and u = g a.e. in T+
δ0

(and hence also v = h

a.e. in T+
δ0

). Our main goal is to show a corresponding liminf inequality for the
sequence (uε) of extended spin fields:

Proposition 2.3
With the notation above, it holds for any δ ∈ (0, δ0):

lim
ε→0

(
XY (m)

ε (uε,Ω
(δ))−Ngπ|log ε|

)
=W(m)(u,Ω(δ)) +

ˆ
Ju∩Ω(δ)

|νu|1 dH1 +Ngγ,
(2.62)

where γ is the core-energy defined in (2.28) and:

W(m)(u,Ω(δ)) := lim
r→0

(
m2

ˆ
(Ω(δ))r(Jac(u))

|∇u|2 dx−Ngπ|log r|
)
.

Before coming to the proof of Proposition 2.3, let us show that it leads
directly to the desired liminf inequality:

Proof of the Γ-liminf of Theorem 2.16. By the definition of W(m)(u,Ω(δ)) and
the smoothness of g, we can write

W(m)(u,Ω(δ)) =W(m)(u) + m2

ˆ
T+
δ

|∇g|2 dx =W(m)(u) + oδ→0(1).

By Lemma 2.1 and the smoothness of g we have that:ˆ
Ju

|νu|1 dH1 =

ˆ
Ju∩Ω

|νu|1 dx+

ˆ
{u 6=g}∩∂Ω

|νΩ|1 dH1,

where νΩ is the outer unit-normal of Ω. Moreover, with (2.42) and the smooth-
ness of g, we see that for δ ∈ (0, δ02 ):

lim sup
ε→0

XY (m)
ε (uε, T

+
δ ) ≤ lim sup

ε→0

ˆ
(T2δ(∂Ω))ε

|∇A(g)|2 dx

≤ C‖∇g‖L∞ |T2δ| = oδ→0(1).

Combining all the aforementioned results with (2.62) then leads to:

lim inf
ε→0

(
XY (m)

ε (uε,Ω)−Ngπ|log ε|
)

≥ lim inf
ε→0

(
XY (m)

ε (uε,Ω
(δ))−Ngπ|log ε|

)
− lim sup

ε→0
XY (m)

ε (uε, T
+
δ )

≥ W(u) +

ˆ
Ju

|νu|1 dH1 +

ˆ
{u 6=g}∩∂Ω

|νΩ|1 dH1 + oδ→0(1).
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The desired liminf inequality follows by sending δ → 0.

The remainder of this subsection will be concerned with the proof of the
convergence in Proposition 2.3. Without further mention, we assume that uε
and vε are properly extended into εZ2 ∩ Ω(δ0) (as described in the beginning
of this subsection), and shortly write ũε := AC(uε) as well as ṽε := A(vε).
Let us also fix δ ∈ (0, δ0) and define O := Ω(δ). The main idea at this point
is to split the domain into two components: a tubular neighborhood around
a part of the jump set Ju and its complement (see also figure Figure 2.6 for
further clarification). More precisely, as Ju is H1-rectifiable, we can find a

r

δ

Figure 2.6: Discretized tubular neighborhood around JN (blue).

family {Ci}i∈N of compact C1-graphs such that H1(Ju \
⋃
i∈N Ci) = 0. Let

µ := 1
π Jac(u), then for fixed d > 0, r > 0, and N ∈ N we define

TNd,r := {x ∈ Or(µ) : dist(x, JNu ) < δ}, JNu := Ju ∩
(

N⋃
i=1

Ci

)
.

From the piecewise C1-regularity of the curves {Ci} we cannot assure a priori
that ∂TNd,r is Lipschitz regular. We will now replace TNd,r by a set T̃Nd,r which

has a Lipschitz boundary and satisfies TNd,r ⊂ T̃Nd,r ⊂ TN2d,r. Note that for all

ε > 0 the set (O \ TNd,r)ε has a Lipschitz regular boundary with:

dist(∂(O \ TNd,r)ε, TNd,r) <
√

2ε.

Consequently:

T̃Nd,r := O \ (O \ TNd,r) d√
2

has all the desired properties. Outside T̃Nd,r, the following estimate holds true:
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Lemma 2.10
Together with the above specified notation, we have:

lim inf
ε→0

(
XY (m)

ε (uε, O \ T̃Nd,r)−Ngπ|log ε|
)

≥ W(m)(u) +Ngγ −
m

2

ˆ
T̃Nd,r

|∇u|2 dx,
(2.63)

where W(m)(u) is the renormalized energy of u in the extended domain O.

Proof. By construction we assured that ∂(O \ T̃Nd,r) has Lipschitz boundary,
hence we can apply the liminf inequality (2.31) for the sequence {vε} restricted
to the set (O \ T̃Nd,r). With Item (i) of Definition 2.16 and the definition of

W(m), this lead to:

lim inf
ε→0

(
XY (m)

ε (uε, O \ T̃Nd,r)−Ngπ|log ε|
)

≥ lim inf
ε→0

(
XYε(ṽε, O \ T̃Nd,r)−Ngπ|log ε|

)
≥ W(ṽ, O \ T̃Nd,r) +Ngγ

≥ W(m)(u) +Ngγ −
m

2

ˆ
T̃Nd,r

|∇u|2 dx,

as desired.

Inside the tubular neighborhood T̃Nd,r the following liminf inequality holds
true:

Proposition 2.4
Together with the above specified notation, the following holds true:

lim inf
ε→0

XY (m)
ε (uε, T̃

N
d,r) ≥

ˆ
JNu ∩Or(µ)

|νu|1 dH1 . (2.64)

Before getting to the proof of Proposition 2.4, let us first show that it leads
together with (2.63) to (2.62):

Proof of Proposition 2.3. Combining (2.63) and (2.64), we derive:

lim
ε→0

(
XY (m)

ε (uε, O)−Ngπ|log ε|
)

≥ lim inf
ε→0

(
XY (m)

ε (uε, O \ T̃Nd,r)−Ngπ|log ε|
)

+ lim inf
ε→0

XY (m)
ε (uε, T̃

N
d,r)

≥ W(m)(u) +

ˆ
Ju

|νu|1 dH1 +Ngγ − α(d, r,N), (2.65)

where:

α(d, r,N) := −m

2

ˆ
T̃Nd,r

|∇u|2 dx− 2H1(Ju \ (JNu ∩Or(µ))).

As |∇u| ∈ L2(Or(µ)), we have that:

lim
d→0

α(d, r,N) = −2H1(Ju \ (JNu ∩Or(µ)))
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By the definition of JNu and the fact that H1(Ju) ≤ H1(Ju ∩Ω) +H1(∂Ω) <∞
(see also (2.51)) it follows that:

lim
r→0

lim
N→∞

lim
d→0

α(d, r,N) = 0.

Thus, letting d→ 0, then N →∞, and finally r → 0 in (2.65) (in exactly this
order) leads to the desired result.

As the proof of Proposition 2.4 is rather technical, we will split it up into
several lemmata. We start by defining exotic nearest-neighbor pairs:

Definition 2.19 (Exotic pairs)

Given w ∈ ASε(O) we call (i, j) ∈ O(1)
ε an exotic nearest-neighbor pair if and

only if:

dist(ϕ(i)− ϕ(j),
2π

m
Z) > 3

√
ε. (2.66)

The set of all exotic pairs will be denoted by Ne(w).

Note that there is nothing special about the choice of the power 1
3 in (2.66).

In fact any power in (0, 1
2 ) would also work. In the next lemma, we estimate

the number of exotic pairs of uε as ε→ 0.

Lemma 2.11
There exists a constant C > 0 independent of ε such that:

#Ne(uε) ≤ Cε−
2
3 |log ε|. (2.67)

Proof. Given any exotic pair (i, j) ∈ Ne(uε), we have by Item (i) of Defini-
tion 2.16 and Taylor expansion:

1

2
m2ε

2
3 ≤ 1− cos(m 3

√
ε)

≤ 1− cos(m(ϕε(i)− ϕε(j))) ≤ f (m)
ε (ϕε(i)− ϕε(j)),

where ϕε is an arbitrary angular lift of uε. Summing the above inequality over
all exotic pairs and employing the energy bound (2.39), we see that:

#Ne(uε) ·
1

2
m2ε

2
3 ≤

∑
(i,j)∈Ne(uε)

f (m)
ε (ϕε(i)− ϕε(j))

≤ 2XY (m)
ε (uε) ≤ 2Ngπ|log ε|.

Dividing both sides of the estimate above by 1
2mε

2
3 , leads to (2.67).

Let us define E
(ng)
ε as the union of ∂(i + ε[0, 1]2) over all cells i + ε[0, 1]2

containing at least one exotic pair of uε. Due to (2.67) we see that the proportion

of the jump set Jũε contained in E
(ng)
ε has negligible perimeter, as ε→ 0:

H1(Jũε ∩ E(ng)
ε ) ≤ H1(E(ng)

ε ) =
1

2
· 8#Ne(uε)ε ≤ C|log ε| 3

√
ε→ 0 as ε→ 0,

(2.68)
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where C <∞ is a constant independent of ε. Hence, in order to prove (2.64),

we can ignore the part of Jũε contained in E
(ng)
ε . Let us finally define the map

J : (R2)
(1)
ε → (R2)

(1)
ε through:

J (i, i+ εe1) = (i− εe1, i) for all i ∈ εZ2,

J (i, i+ εe2) = (i− εe1, i) for all i ∈ εZ2,

J (i, j) = J (j, i) for all (i, j) ∈ (R2)(1)
ε .

Note that we will usually write (̂ı, ̂) instead of J (i, j). In the next lemma, we

will show that given an edge [i, j] such that [i, j] ∩ E(ng)
ε = ∅, the jump of ũε

on [i, j] is equal to |uε(̂ı)− uε(̂)| up to an error that is negligible, as ε→ 0.

Lemma 2.12
Let (i, j) ∈ O(1)

ε such that the edge [i, j] ∩ E(ng)
ε = ∅, then for all x ∈ [i, j] it

holds that:

|uε(̂ı)− uε(̂)| − 2 3
√
ε ≤ |ũ+

ε (x)− ũ−ε (x)| ≤ |uε(̂ı)− uε(̂)|+ 2 3
√
ε. (2.69)

Proof. Without loss of generality, we assume that j = i+εe1 (the proof is similar
in the other case). Furthermore, we choose the normal νũε |[i,j] such that it points

upwards. The estimate in (2.69) is trivially satisfied if H1(Jũε ∩ [i, j]) = 0.
Let us therefore assume that H1(Jũε ∩ [i, j]) > 0, which by the definition of
ũε = AC(uε) can only hold true if at least one of the cells ı̂+ε[0, 1]2 or ̂+ε[0, 1]2

is a jump cell, where in our current setting ı̂ = i− εe2 and ̂ = i.

i j

ı̂

(a) Both cells jump-cells. (b) Bottom cell jump-cell. (c) Top cell jump-cell.

Figure 2.7: Possible cases for cells attached to the edge [i, j]

In the case that both cells are jump cells (see also Figure 2.7(a)), we have
for all x ∈ [i, j]:

|ũ+
ε (x)− ũ−ε (x)| = |uε(̂ı)− uε(̂)|,

and (2.69) is satisfied. In the case that ı̂+ε[0, 1]2 is a jump cell while ı̂+ε[0, 1]2

is not (see also Figure 2.7(b)), we see that for all x ∈ [i, j]:

ũ−ε (x) = uε(̂ı).
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As ı̂+ ε[0, 1]2 is not a jump cell, (i, j) cannot be a jump pair. Furthermore, as

[i, j] ∩ E(ng)
ε = ∅ it follows that:

|uε(i)− uε(j)| ≤ 3
√
ε.

Hence:

|ũ+
ε (x)− ũ−ε (x)| = |ũ+

ε (x)− uε(̂ı)|

= |uε(̂) +
x1 − ̂1

ε
(uε(j)− uε(i))− uε(̂ı)|

≤ |uε(̂)− uε(̂ı)|+ 3
√
ε

which is the desired upper bound in (2.69). The lower bound follows similarly.
Lastly, in the remaining case that ı̂+ ε[0, 1]2 is a jump cell while ̂+ ε[0, 1]2 is
not, we have that:

ũ+
ε (x) = uε(̂).

Moreover, as [i, j] ∩ E(ng)
ε = ∅ we also have [̂ı, ̂] ∩ E(ng)

ε = ∅. Consequently:

max{|uε(j)− uε(i)|, |uε(i)− uε(̂)|} ≤ 3
√
ε.

Combining the aforementioned results, we thus conclude:

|ũ+
ε (x)− ũ−ε (x)| = |uε(̂)− uε(i)−

x1 − i1
ε

(uε(j)− uε(i))|
≤ |uε(i)− uε(j)|
≤ |uε(̂)− uε(̂)|+ |uε(j)− uε(̂ı)|
≤ |uε(̂)− uε(̂)|+ 2 3

√
ε

which is the desired upper bound in (2.69). The lower bound follows similarly.

Let T
(ng)
ε be the union of all cells i + ε[0, 1]2 ⊂ O, each one containing at

least one exotic nearest neighbor pair, and:

Tε := T̃Nd
2 ,r
\ T (ng)

ε .

We also define:

E(s)
ε :=

⋃{
[i, j] : (i, j) ∈ (Tε)

(1)
ε , |ũ+

ε (x)− ũ−ε (x)| ≤ 3 3
√
ε for all x ∈ [i, j]

}
,

as wells as:

E(b)
ε :=

⋃{
[i, j] : (i, j) ∈ (Tε)

(1)
ε , |ũ+

ε (x)− ũ−ε (x)− 2 sin(
lπ

m
)| ≤ 3 3

√
ε

for all x ∈ [i, j] and some l = 1, . . .m− 1

}
.

By Lemma 2.12, we see that for ε small enough any edge [i, j] ⊂ Tε must be

either contained in E
(s)
ε or in E

(b)
ε . We are now well equipped in order to prove

(2.64).
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Proof of Proposition 2.4. 1. step: We wish to employ Theorem 2.8. For this
consider for given t ∈ (0, 1) the function ϑt : R2 × R2 → R defined as

ϑt(a, b) :=

{
t+ 1−t

2 sin( πm ) |a− b| if |a− b| < 2 sin( πm ),

1 otherwise.

By a straightforward computation one can see that ϑt is positive, symmetric,
and satisfies the triangular inequality. As |u+(x) − u−(x)| ≥ 2 sin( πm ) for H1-
a.e. x ∈ Ju we see by (2.9) with ϑt as above and ϕ := |·|1

ˆ
JNu ∩Or(µ)

|ν1|1 dH1 =

ˆ
Ju∩T̃Nd

2
,r

|νu|1 dH1

=

ˆ
Ju∩T̃Nd

2
,r

ϑt(u
+, u−)|ν|1 dH1

≤ lim inf
ε→0

ˆ
Jũε∩T̃Nd

2
,r

ϑt(ũ
+
ε , ũ

−
ε ) dH1 . (2.70)

2. step: We will now show that the last integral in (2.70) can be restricted

to Jũε ∩ E(b)
ε without perturbing the liminf “too much.” In this regard, notice

that by Lemma 2.12, we can write

Jũε ∩ T̃Nd
2 ,r
⊂
(
Jũε ∩ E(b)

ε

)
∪̇
(
Jũε ∩ E(s)

ε

)
∪̇
(
Jũε ∩ E(ng)

ε

)
. (2.71)

By (2.68) and the boundedness of ϑt, we have:

lim sup
ε→0

ˆ
Jũε∩E

(ng)
ε

ϑt(ũ
+
ε , ũ

−
ε ) dH1 ≤ C lim sup

ε→0
|log ε| 3

√
ε = 0, (2.72)

where C < ∞ is a constant independent of ε. Due to (2.51), as well as our

choice of ϑt and E
(s)
ε , we derive that:

lim sup
ε→0

ˆ
Jũε∩E

(s)
ε

ϑt(ũ
+
ε , ũ

−
ε ) dH1 ≤ lim sup

ε→0

(
t+

1− t
2 sin( πm )

3
√
ε

)
H1(Jũε)

≤ Ct (2.73)

for some constant C <∞ independent of ε and t. Combining (2.6), (2.72), and
(2.73) leads to:

ˆ
Jũε∩T̃Nd

2
,r

ϑt(ũ
+
ε , ũ

−
ε ) dH1 ≤ lim inf

ε→0

ˆ
Jũε∩E

(b)
ε

ϑt(ũ
+
ε , ũ

−
ε ) dH1

+ lim sup
ε→0

ˆ
Jũε∩

(
E

(s)
ε ∪E(ng)

ε

) ϑt(ũ+
ε , ũ

−
ε ) dH1

≤ lim inf
ε→0

ˆ
Jũε∩E

(b)
ε

ϑt(ũ
+
ε , ũ

−
ε ) dH1 +Ct (2.74)

for the same constant C as in (2.73).
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3. step: It remains to estimate the liminf in (2.74) from above. Let us

consider an arbitrary edge [i, j] ⊂ E
(b)
ε , then by the definition of E

(b)
ε and

(2.69), we see that the pair (̂ı, ̂) satisfies:

|uε(̂ı)− uε(̂)| ≥ min
x∈[i,j]

|ũ+
ε (x)− ũ−ε (x)| − 2 3

√
ε ≥ 2 sin

( π
m

)
− 5 3
√
ε.

Hence, we can find ε0 > 0 independent of i and j such that for all ε < ε0 the
pair (̂ı, ̂) is forced to be a jump pair. By Item (i) of Definition 2.16, this leads
to: ˆ

Jũε∩[i,j]

ϑt(ũ
+
ε , ũ

−
ε ) dH1 ≤ ε ≤ f (m)

ε (ϕε(̂ı)− ϕε(̂)), (2.75)

where ϕε is an angular lift of uε. Note that for each edge [i, j] ⊂ E(b)
ε we have

that (̂ı, ̂) ∈ (T̃Nd,r)
(1)
ε . Furthermore, the map J is one-to-one, and thus summing

up (2.75) over all edges [i, j] contained in E
(b)
ε and eventually taking the liminf

as ε→ 0 leads to:

lim inf
ε→0

ˆ
Jũε∩E

(b)
ε

ϑt(ũ
+
ε , ũ

−
ε ) dH1 ≤ lim inf

ε→0
XY (m)

ε (uε, T̃
N
d,r). (2.76)

We combine (2.70), (2.74), and (2.76):

lim inf
ε→0

XY (m)
ε (uε, T̃

N
d,r) ≥

ˆ
JNu ∩Or(µ)

|ν1|1 dH1−Ct

for some constant C independent of t. This concludes the proof – after letting
t→ 0.

2.4.3 Gamma-limsup

In this subsection, we will write u ∈ D(m)
g for a general limit spin field and set

µ := 1
m Jac(u) = 1

m

∑Ng
k=1 δxk , where Ng := mdg and define Z := { 2πk

m : k =
1, . . . ,m−1}. Without loss of generality, we will assume that sgn(deg(g, ∂Ω)) >
0 (the other case works in the same manner). Fixing r > 0, we will first
construct the recovery sequence “close” to the vortices of µ. In the case of the
non-fractional theory, the authors of [6] have investigated for fixed ε > 0, r > 0,
x0 ∈ Ω and λ ∈ S1 the following minimum problem:

γε(r, x0, λ)

:= min

{
XYε(v) : v ∈ ASε(Br(x0)), v(x) = λ

x− x0

|x− x0|
on ∂εBr(x0)

}
.

(2.77)
They derive the subsequent limit behavior for γε(r, x0, λ) as defined above:
There exists a scalar γ ∈ R (also called the core energy) independent of r, x0

and λ such that:

lim
ε→0

(
γε(r, x0, λ)− π log

(r
ε

))
= γ. (2.78)
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In our fractional setting, correspondingly, the following minimum problem is of
interest to us:

γ(m)
ε (r, x0, λ)

:= min

{
XY (m)

ε (u) : u ∈ AS(m)
ε (Br(x0)), um(x) = λ

x− x0

|x− x0|
on ∂εBr(x0)

}
(2.79)

We wish to transfer the convergence result in (2.78) to our modified minimum
problem. Let us start with an elementary estimate:

Lemma 2.13
For all ε > 0, r > 0 and x0 ∈ R2:

γ(m)
ε (r, x, λ) ≥ γε(r, x, λ). (2.80)

Proof. Let uε,r,λ ∈ ASε(Br(x0)) be a minimizer for γ
(m)
ε (r, x0, λ) and set

vε,r,λ := um. The boundary condition in (2.79) implies that vε,r,λ = λ x−x0

|x−x0|
on ∂εBr(x0). Consequently, vε,r,λ is a competitor for the minimum problem in
(2.77). By the lower bound in Item (i) in Definition 2.17:

XY (m)
ε (uε,r,λ) ≥ XYε(vε,r,λ)

which leads to (2.80).

In contrast, the reverse inequality to the one stated above is in general
false. We would like to briefly highlight the main difficulty in attempting to
prove the reverse estimate: Given a minimizer vε,r,λ of the problem in (2.77)

with νε,r,λ denoting one of its angular lifts, we might consider uε,r := e
νε,r
m

which by construction satisfies umε,r,λ = vε,r,λ. In particular, this is a competitor
for the minimum problem in (2.79). The crux of the problem is that we

generally have: XY
(m)
ε (uε,r) > XYε(vε,r), as uε,r might have “many jump

pairs”. More precisely, any nearest-neighbor pair (i, j) satisfying νε,r(i) −
νε,r(j) ∈ 2πZ \ 2πmZ is a jump pair of uε,r,λ and contributes ε to the difference

XY
(m)
ε (uε,r)−XYε(vε,r). We will not be able to show that the number of such

nearest-neighbor pairs is negligible, meaning o( 1
ε ), as ε→ 0. Nevertheless, we

will prove that it is of order Oε→0( rε ), and hence small if r > 0 is small. (We will
later see that this estimate will still suffice for the construction of the recovery
sequence.)

The proof of the above estimate partly employs basics from the theory of
1-currents, which we would like to present now (see also [35]): Let Λ1(Rn)
denote the set of linear functionals on Rn and {dxk}nk=1 its canonical basis dual
to the standard basis {ei}nk=1 (dxk(ej) = δij). Given an open set Ω ⊂ Rn, we
define D1(Ω) the set of all smooth, compactly supported differential 1-forms
ω : Ω → Λ1(Rn). An example of such an ω is the differential of a function
ϕ ∈ C∞c (Ω), defined as:

dϕ :=

n∑
k=1

∂ϕ

∂xk
dxk.

A 1-current T is a bounded linear functional on D1(Ω) (,where D1(Ω) is
equipped with the ‖·‖∞-norm). We denote the set of all 1-currents on Ω as
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D1(Ω). For any current T ∈ D1(Ω), we can define a generalized notion of bound-
ary: The boundary ∂T of T is a distribution such that for any ϕ ∈ C∞c (Ω), we
have:

∂T (ϕ) = T (dϕ).

The mass M(T ) of a 1-current T is simply its dual norm:

M(T ) := sup{T (ω) : ω ∈ D1(Ω), ‖ω‖∞ ≤ ∞}.
By an application of Riesz representation theorem one can show that there
exists a unique scalar Radon-measure µT on Ω and a µT -measurable function
~T : Ω→ Λ1(Rn) such that for any ω ∈ D1(Ω) it holds that

T (ω) :=

ˆ
Ω

ω(~T ) dH1 .

Let us consider a simple example: Any regular curve γ : [0, 1] → Ω can be
identified with a 1-current [[γ]] acting on any ω ∈ D1(Ω) as follows:

[[γ]](ω) :=

ˆ 1

0

ω

(
γs
|γs|

)
ds

where s is the curve parameter. We remark that under this identification
and the fundamental theorem of calculus it holds that ∂[[γ]] = δγ(1) − δγ(0).
Furthermore, the mass M(T ) of T is equal to the length of γ.

Lastly, we discuss a relation between 1-currents and the flat norm of a signed
measure µ on Ω, defined as:

‖µ‖[ := sup

{ˆ
Ω

ϕdµ : ϕ ∈ C∞c (Ω), ‖ϕ‖∞ + Lip(ϕ) ≤ 1

}
, (2.81)

where Lip(ϕ) is the Lipschitz constant of ϕ. Moreover, we have that

min
∂T∩Ω=µ

M(T ) := min
{
M(T ) : T ∈ D1(Ω), ∂T = µ

}
= sup

{ˆ
Ω

ϕdµ : ϕ ∈ C∞c (Ω), Lip(ϕ) ≤ 1

}
.

(2.82)

Note that – in contrast to (2.81) – the sup in (2.82) is taken over a larger set
since we only constrain the Lipschitz norm instead of the sum ‖ϕ‖∞ + Lip(Φ).
Nevertheless, for a bounded open Ω, we have:

min
∂T∩Ω=µ

M(T ) ≥ ‖µ‖[ ≥
1

1 + diam(Ω)
min

∂T∩Ω=µ
M(T ). (2.83)

This can be seen as follows: Taking a function ϕ ∈ C∞c with Lip(ϕ), we can
bound:

‖ϕ‖∞ ≤ sup
x∈Ω
|ϕ(x)− ϕ(x0)| ≤ Lip(ϕ) diam(Ω)

where x0 ∈ ∂Ω.

Lemma 2.14
Let γ be the limit in (2.78) and γ

(m)
ε (r, x0, λ) as defined in (2.79), then:

γ = lim sup
r→0

lim sup
ε→0

(
γ(m)
ε (r, x0, λ)− π log

r

ε

)
= lim inf

r→0
lim inf
ε→0

(
γ(m)
ε (r, x0, λ)− π log

r

ε

)
.

(2.84)
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Proof. 1. step: By (2.80) and (2.78), we see that:

lim inf
r→0

lim inf
ε→0

(
γ(m)
ε (r, x0, λ)− π log

r

ε

)
≥ lim inf

r→0
lim inf
ε→0

(
γε(r, x0, λ)− π log

r

ε

)
= γ.

Hence, it is enough to show that there exists a remainder term α(ε, r) such that

lim sup
r→0

lim sup
ε→0

α(ε, r) = 0, (2.85)

γ(m)
ε (r, x, λ) ≤ γε(r, x, λ) + α(ε, r). (2.86)

2. step: For any given r > 0 and ε > 0 let vε,r denote a solution of the
minimization problem in (2.77). By the minimality of vε,r, Item (ii) of Defini-

tion 2.17, as well as the fact that h(x) := λ x−x0

|x−x0| (restricted to (Br)
(0)
ε ) is a

competitor for (2.77), we have for all ε > 0:

XYε(vε,r) ≤ XYε(h) ≤ π|log ε|+ C

for some constant C < ∞ independent of ε. We can therefore apply the
compactness statement in Theorem 2.16 for the sequence (vε,r)ε, where Ω =
Br(x0), g = h and m = 1. Consequently, we can find x∗ ∈ Br(x0) such that,
up to a subsequence:

µvε,r := µvε,r
[
⇀ δx∗ flat in Br(x0),

where µvε,r is the discrete vorticity measure of vε,r. Let us consider a minimal
(with regard to mass) current Tε,r ∈ D1(Ω) such that ∂Tε,r∩Br(x0) = µvε,r−δx∗ .
It is a classic result that such a current exists and is a finite union of oriented
line segments. By (2.83), we see that:

lim
ε→0

M(Tε,r) ≤ 2r lim sup
ε→0

‖µvε,r − δx∗‖[ = 0. (2.87)

Moreover, let S be the oriented segment passing from x∗ to a point on the
boundary ∂Br(x0). Then the current T̃ε,r := Tε,r + S satisfies:

lim sup
ε→0

M(T̃ε,r) ≤ lim sup
ε→0

M(Tε,r) + M(S) ≤ r. (2.88)

3. step: Let us define the set Aε,r:

Aε,r :=
⋃{

i+ ε[0, 1]2 : i ∈ (Br)
2
ε, (i+ ε[0, 1]2) ∩ T̃ε,r 6= ∅

}
as the union of all grid cells that have a nonempty intersection with T̃ε,r. We
will write Uε,r := Br(x0)\Aε,r for its complement in Br(x0). Given a connected
component Vε,r of Uε,r, a seed point i∗ ∈ εZ2 ∩ Vε,r, and an angular lift νε,r of
vε,r, we wish to define a uε,r : εZ2 ∩ Vε,r → S1 without jump pairs such that
umε,r = vε,r. As it is easier to work with angles instead of vectors, we will find
ϕε,r : εZ2 ∩ Vε,r → R such that uε,r := eıϕε,r is the desired spin field. For the
construction, it will be useful to make the following convention: We call a finite
sequence i0, . . . , iK of grid points in Vε,r a discrete path from i to j if and only
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xk

i∗

Br(x0)

−1

−1

−1

+1+1

ξ

Figure 2.8: A closed path around Sε,r.

if i0 = i, iK = j and |ik+1 − ik| = ε for every k = 0, . . . ,K − 1. Now back to
the definition of ϕε,r. We will simply set ϕε,r(i

∗) := 1
mνε,r(i

∗) at the seed point.
For any other i ∈ εZ2 ∩ Vε,r, we first select a discrete path i0, . . . , iK from i∗

to i, and then set:

ϕε,r(i) := ϕε,r(i1) +
1

m

K−1∑
k=0

∆elνε,r(ik, ik+1). (2.89)

By the connectedness of Vε,r there exists at least one such path if we take ε
small enough. We will now check if the definition in (2.89) is path-independent.
Given another discrete path ĩ0, . . . , ĩK from i∗ to i, we need to show that:

ϕε,r(i0) +
1

m

K−1∑
k=0

∆elνε,r(ik, ik+1) = ϕε,r (̃i0) +
1

m

K̃−1∑
k=0

∆elνε,r (̃ik, ĩk+1).

As i0 = ĩ0 = i∗, we can equivalently show:

K−1∑
k=0

∆elνε,r(ik, ik+1) +

0∑
k=K̃−1

∆elνε,r (̃ik+1, ĩk) = 0.

(Note that the ordering is reversed in the second sum.) It remains to show for
any discrete path i0, . . . , iK with i0 = iK = i∗, that:

K−1∑
k=0

∆elνε,r(ik, ik+1) = 0. (2.90)

In this regard, let Wε,r be the interior of the set encircled by the dis-

crete path i0, . . . , iK and let Sε,r := T̃ε,r|Wε,r (see also Figure 2.8 for further
clarification). By construction, Sε,r does not contain S, and hence ∂Sε,r =
µvε,r |Wε,r

. Moreover, as Sε,r is compactly supported in Wε,r, we have that
∂Sε,r(Wε,r) = 0. (This can be seen by testing with ρ ∈ C∞c (Wε,r) such that
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ρ ≡ 1 in spt(∂Sε,r) ∩Wε,r, and using the definition of ∂Sε,r.) Consequently,
µvε,r(Wε,r) = 0 – and by applying a discrete version of Stoke’s theorem (see
also [6]) –, we have:

K−1∑
k=0

∆elνε,r(ik, ik+1) = µvε,r (Wε,r) = 0.

4. step: Let us now show that our choice of uε,r satisfies all the desired
properties. Fix i ∈ εZ2 ∩Vε,r (with Vε,r as before) and consider a discrete path
i0, . . . , iK from i∗ to i. By definition of ϕε,r and the definition of ∆el, it holds
that:

mϕε,r(i) = mϕε,r(i0) +

K−1∑
k=0

∆elνε,r(ik, ik+1)

= νε,r(i0) +

K−1∑
k=0

(νε,r(ik+1)− νε,r(ik)) mod 2π

= νε,r(i) mod 2π,

and therefore umε,r(i) = eı·mϕε,r(i) = vε,r(i). We will now prove that uε,r has no
jump pairs in Vε,r. Let (i, j) be a nearest-neighbor pair in Vε,r, and i0, . . . , iK
a discrete path from i∗ to i. Then, i0, . . . , iK , j is a discrete path from i∗ to j,
and by (2.89) we follow:

|ϕε,r(i)− ϕε,r(j)| = |∆elϕε,r(i, j)| =
1

m
|∆elνε,r(i, j)| ≤

π

m
, (2.91)

as desired. Note that in the last estimate we used ∆elνε,r(i, j) ∈ [−π, π].
Repeating the above construction in each of the connected components of

Uε,r and setting for all i ∈ εZ2 ∩Aε,r:

uε,r(i) := eıϕε,r(i), ϕε,r(i) :=
1

m
νε,r(i)

we end up with a globally defined spin field in (Br(x0))
(1)
ε satisfying umε,r = vε,r.

Furthermore, for any jump pair (i, j) of uε,r, we must have [i, j] ⊂ Aε,r as well
as ∆elϕε,r(i, j) ∈ Z. As each such edge [i, j] must have at least one point of

intersection with T̃ε,r, we derive (using Item (i) of Definition 2.17):

XY (m)
ε (uε,r) =

∑
〈i,j〉

f (m)
ε (ϕε,r(i)− ϕε,r(j))

≤ XYε(vε,r) + #
{

(i, j) ∈ (Br)
(1)
ε : [i, j] ∩ T̃ε,r

}
· ε

≤ XYε(vε,r) + 2M(T̃ε,r).

By passing to the limit ε→ 0 as well as using (2.78) and (2.88), we follow that:

lim sup
ε→0

XY (m)
ε (uε,r) ≤ γ + 4r.

We conclude the proof by consequently passing to the limit r → 0.
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We will now introduce necessary tools for the construction of the recovery
sequence “away” from the vortices. The main idea will be to first find an
appropriate approximation w of u (this will be made more precise in a moment),
and consider (w|(Ωr(µ))ε)ε (r > 0 fixed) as a competitor for the recovery sequence
away from the vortices of u. Let us fix some notation first. For each xk ∈ sptµ
(vort(u) = πµ), we select a closed line segment Lk connecting xk with the
boundary ∂Ω such that all line segments L1, . . . , LNg are pairwise disjoint and:

H1(Ju ∩ L) = 0, where L :=

Ng⋃
k=1

Lk. (2.92)

For fixed r > 0, we define:

Ω(L)
r (µ) := Ωr(µ) \ L (2.93)

with Ωr(µ) as in (2.26). Note that as Ω was assumed to be simply connected

and Ωr(µ) has exactly Ng holes centered in {x1, . . . , xNg}, we see that Ω
(L)
r (µ)

must also be simply connected. The following version of Poincaré’s theorem
will be used later on:

Theorem 2.18 (Poincaré’s theorem)
Let Ω ⊂ R2 be a simply connected set, then for any w ∈ L2(Ω;R2) satisfying
curl(w) = 0 (in the distributional sense) we can find ϕ ∈ W 1,2(Ω) such that
∇ϕ = w at a.e. point in Ω.

Moreover, we assume implicitly that L is oriented by ν such that for each
k ∈ {1, . . . ,m− 1}, the vector field νk := ν|Lk points in anticlockwise direction
with respect to the orientation of Lk. We can decompose u as follows:

Lemma 2.15 (Decomposition of u)

For each u ∈ D(m)
g , there exist α ∈ SBV 2(Ωr(µ)) and ψ ∈ SBV (Ωr(µ);Z) such

that:

Djα = −2π

m
⊗ νH1|L, (2.94)

eı(α+ψ) = u in Ωr(µ). (2.95)

Proof. 1. step: Let us first find an admissible α. By the SBV -lifting result
found in [31], we can find a scalar function ϕ ∈ SBV 2(Ωr(µ)) such that
(sin(ϕ), cos(ϕ))T = eıϕ = u a.e. in Ωr(µ). Furthermore, with the chain rule:

〈∇x1
u, u⊥〉 = u2

∂u1

∂x1
− u1

∂u2

∂x1

= cos(ϕ) cos(ϕ)
∂ϕ

∂x1
− sin(ϕ)(− sin(ϕ))

∂ϕ

∂x1
=

∂ϕ

∂x1

and similarly:

〈∇x2u, u
⊥〉 =

∂ϕ

∂x2
.

Hence, jac(u) = ∇ϕ at a.e. point in Ωr(µ) and curl(w) = 2 Jac(u) = 0 a.e. in

Ωr(µ) for w := ∇ϕ. As Ω
(L)
r (µ) is simply connected, there exists by Theo-

rem 2.18 a scalar function α ∈ W 1,2(Ω
(L)
r (µ)) such that ∇α = w = ∇ϕ in

Ω
(L)
r (µ).
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Let us fix Lk. We wish to show that for almost all x ∈ Lk, we have that
α+(x)−α−(x) = − 2π

m . By slicing theory, we can find for almost every x ∈ Lk a
simple closed curve γ : [0, 1]→ R2 encircling xk (and not the remaining vortex
centers) in anticlockwise direction, and crossing Lk exactly at x such that α ◦ γ
is absolutely continuous on [0, 1]. By possibly removing a set of negligible H1-
measure we can further assume that α+(x) = α(γ(0)) and α−(x) = α(γ(1)).
By the Fundamental Theorem of Calculus and the definition of degree, we then
have:

α−(x)− α+(x) =

ˆ 1

0

(α ◦ γ)′(s) ds =

ˆ
γ

〈∇α, τγ〉dH1

=

ˆ
γ

〈jacu, τγ〉dH1 =
2π

m
.

Hence, α ∈ SBV 2(Ωr(µ)) and (2.94) holds true.
2. step: It remains to find the desired ψ. Notice that by construction,

ϕ − α ∈ SBV 2(Ωr(µ)) has a vanishing approximate gradient. Consequently,
there exists a Caccioppoli partition {Ul}l∈N of Ωr(µ) subordinate to Jϕ∪L and
constants {cl}l∈N ⊂ R such that:

ϕ− α =
∑
l∈N

cl1Ul .

By (2.94) and the fact that um = eımϕ ∈W 1,2(Ωr(µ)), we can find c ∈ R such
that cl − c ∈ 2π

m Z for all l ∈ N. Furthermore, replacing α with α + c we can
without loss of generality assume that cl ∈ 2π

m Z for all l ∈ N. Let us now define
for any k ∈ {1, . . . ,m− 1} the set:

Ek :=
⋃{

Ul : cl ∈
2πk

m
+ 2πZ

}
and set ψ :=

∑m−1
k=1

2πk
m 1Ek . By construction, ψ ∈ SBV (Ωr(µ),Z) and α+ψ−

ϕ ∈ 2πZ a.e. in Ωr(µ). As ϕ is an angular lift for u, this implies that α+ ψ is
one also.

We will approximate α and ψ from the above lemma separately. The former
can be approximated as follows:

Lemma 2.16 (Approximation of α)
Given α as in Lemma 2.15 we can find a sequence:

(αn) ⊂ SBV 2(Ωr(µ)) ∩ C∞(Ω(L)
r (µ))

such that αn → α in SBV 2(Ωr(µ)) and:

Djαn = −2π

m
⊗ νH1|L, (2.96)

H1({αn − α /∈ 2πZ} ∩ ∂Ω)→ 0. (2.97)

Proof. 1. step: Fix z := eımα, then by the chain rule and (2.94), it follows that
z ∈ W 1,2(Ωr(µ)). Being able to find a sequence (zn) ⊂ C∞(Ωr(µ);S1) such
that zn = z on ∂Ω and zn → z strongly in W 1,2(Ωr(µ);R2) is a rather classic
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result (see also, for instance, [61]). By Poincaré’s theorem, for each n ∈ N
there exists a function βn ∈ C∞(Ω

(L)
r (µ)) such that eıβn = zn in Ω

(L)
r (µ) and

βn = mα mod 2π on ∂Ω. By the continuity of the degree with respect to W 1,2-
convergence and an argument similar to the one in the proof of Lemma 2.15,
we also see that β+

n − β−n = −2π on L for n big enough. By possibly removing
finitely many elements from the sequence, we can assume – without loss of
generality – that this is true for the whole sequence.

2. step: We will now show that ∇(βn − β) → 0 in L2(Ω
(L)
r (µ);R2), where

β := mα. Consider:

an := sin(βn)
∂βn
∂x1

, a := sin(β)
∂β

∂x1
,

bn := cos(βn)
∂βn
∂x1

, b := cos(β)
∂β

∂x1
.

From the convergence of ∇(zn − z), we follow that

an → a, bn → b, both strongly in L2(Ω(L)
r (µ)).

By the L2-convergence of zn, we see that, up to a subsequence, sin(βn)→ sin(β)
a.e. in Ωr(µ). Lastly, as the sinus function is bounded and the sequence (an)
convergent in L2, the sequence (sin(βn)an) cannot concentrate mass in L2.
With Vitali’s convergence theorem this leads to:

sin2(βn)
∂βn
∂x1

= sin(βn)an → sin(β)a = sin2(β)
∂β

∂x1
in L2(Ω(L)

r (µ)).

In the same manner, we can show cos2(βn)∂βn∂x1
→ cos2(β) ∂β∂x1

, and hence ∂βn
∂x1
→

∂β
∂x1

in L2(Ω
(L)
r (µ)). The proof of ∂βn∂x2

→ ∂β
∂x2

in L2(Ωr(µ)) works the same way.
2. step: From the convergence of ∇(βn − β) and the Poincaré-Wirtinger

inequality we see for cn := −
´

Ω
(L)
r (µ)

βn − β dx that

βn + cn → β in L2(Ω(L)
r (µ)).

As the angular lifts provided in [31] are uniformly bounded we can therefore
find a constant c ∈ R such that, up to a subsequence:

βn
m

+ c→ α in L2(Ω(L)
r (µ)). (2.98)

Note that by construction, eıβn = zn = z = eımα on ∂Ω, and therefore βn
m −α ∈

2π
m Z H1-a.e. on ∂Ω. Combined with (2.98), this leads to c = 2πk

m for some

k ∈ Z. Let us set αn := βn
m + 2πk

m . By the previous reasoning, αn → α in

SBV 2(Ωr(µ)) and αn(x)− α(x) ∈ 2π
m Z for H1-a.e. point of ∂Ω. Therefore, for

H1-a.e. x ∈ {αn − α /∈ 2πZ} ∩ ∂Ω we must have |αn(x) − α(x)| ≥ 2π
m , and

consequently:

H1({αn 6= α} ∩ ∂Ω) ≤ m

2π

ˆ
∂Ω

|αn − α|dH1 → 0 as n→∞

by the continuity of the trace operator, which shows (2.97).
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The following approximation result holds true for Ψ:

Lemma 2.17 (Approximation of ψ)
Let ψ ∈ SBV (Ωr(µ);Z) as in the statement of Lemma 2.15, then we can find a
sequence (ψn) ⊂ SBV (Ωr(µ);Z) such that Jψn is polyhedral set (being a union
of finitely many line segments) for all n ∈ N, and:

ψn → ψ in L1(Ωr(µ)), (2.99)

H1({ψ±n 6= ψ±} ∩ L)→ 0, H1({ψn 6= ψ} ∩ ∂Ω)→ 0. (2.100)

Moreover, for any continuous bounded function Φ: R2×R2×S1 → R+ satisfying
Φ(a, b, ν) = Φ(b, a,−ν) for all a, b ∈ R2 and ν ∈ S1, it holds that:

lim
n→∞

ˆ
Jψn\L

Φ(ψ+
n , ψ

−
n , νψn) dH1 =

ˆ
Jψ\L

Φ(ψ+, ψ−, νψ) dH1 . (2.101)

Before coming to the proof, we wish to point out one of the main difficulties in
proving the lemma above: It is not possible here to directly apply Theorem 2.9,
since we do not know a priori thatH1(Jψn∩L)→ 0, as n→∞, for the sequence
provided by Theorem 2.9. One possible solution to this problem is to repeat
the proof of [19], and to make sure that the extra condition is satisfied. As
this is rather time-consuming, we take another – more modular – approach by
employing Theorem 2.9 “away” from the segments Lk. In a second step, we
will extend the constructed approximation to the whole domain Ωr(µ), while
also making sure that H1(Jψn ∩ L)→ 0, as n→∞.

Proof of Lemma 2.17. 1. step: Let us start with some notation: The intersec-
tion point of Lk and ∂Ω will be denoted by pk; the length of the segment will
be shortly written as |Lk|. Given t > 0, we define:

Recti(t, η) :=

{
xk + aνi + b

pk − xk
|pk − xk|

: a ∈ [−t, t], b ∈ [r + η, |Lk| − η]

}
as well as

Rect±i (t, η) :=

{
xk ± aνi + b

pk − xk
|pk − xk|

: a ∈ [0, t], b ∈ [r + η, |Lk| − η]

}
,

L±k (t, η) :=

{
xk ± tνi + b

pk − xk
|pk − xk|

: b ∈ [r + η, |Lk| − η]

}
.

Furthermore, we fix η > 0 and δ > 0 small enough such that Recti(2δ, η) ⊂
Ωr(µ). We apply Theorem 2.9 for ψ restricted to the Lipschitz domain Ω

(R)
r,δ,η

given by

Ω
(R)
r,δ,η := Ωr(µ) \

N⋃
k=1

Recti(δ, η).

Hence, there exists a sequence {ψ̃n,δ,η}n ⊂ SBV (Ω
(R)
r,δ,η;Z) such that Jψ̃n,δ,η is

polyhedral, ψ̃n,δ,η → ψ strict in BV (Ω
(R)
r,δ,η), and:

lim
n→∞

ˆ
Jψ̃n,δ,η

Φ(ψ̃+
n,δ,η, ψ̃

−
n,δ,η, νψ̃n,δ,η ) dH1 =

ˆ
Jψ∩Ω

(R)
r,δ,η

Φ(ψ+, ψ−, νψ) dH1,

(2.102)
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∂Ω
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Figure 2.9: Extension of Ψ̃n,δ,η into Recti(δ, η) by reflection.

for all Φ as in the statement of the lemma.

2. step: Let us now extend ψ̃n into the rectangle Recti(δ, η). In this regard,
R±i,δ : R2 → R2 denote the reflections:

R±i,δ(x) := x+ 2 dist(x, L+
i (δ, η))νi.

The extension ψn,δ,η ∈ SBV (Ωr(µ);Z) is then defined as:

ψn,δ,η(x) :=

{
ψ̃n,δ,η(x) if x ∈ Ω

(R)
r,δ,η,

ψ̃n,δ,η(R±i,δ(x)) if x ∈ Rect±i (δ, η).

The jump set Jψn,δ,η remains polyhedral after this extension procedure (see
also figure Figure 2.9). Furthermore, by construction and the L1-convergence
of ψ̃n,δ,η, we see that:

lim sup
δ→0

lim sup
n→∞

‖ψn,δ,η − ψ‖L1(Ωr(µ)) = 0. (2.103)

By the definition of ψn,δ,η and the strict convergence of (ψ̃n,δ,η)n, we also have
that:

lim
n→∞

‖ψ±n,δ,η − ψ±‖L1(L̃k) = ‖ψ(· ± 2δνi)− ψ±‖L1(L̃k),

where L̃k := Lk ∩ Recti(δ, η). Furthermore, as H1(Jψ ∩ L̃k) = 0, we follow:

lim
δ→0
‖ψ(· ± 2δνi)− ψ±‖L1(L̃k) = 0

and consequently:

lim sup
δ→0

lim
n→∞

‖ψ±n,δ,η − ψ±‖L1(L̃) = 0, L̃ :=

Ng⋃
k=1

L̃k. (2.104)
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By construction, we have for H1-a.e. x ∈ L that both ψ±(x) and ψ±n,δ,η(x) lie in
2π
m Z. Hence |ψ±n,δ,η(x)− ψ±(x)| ≥ 2π

m for H1-a.e. x ∈ {ψ±n,δ,η 6= ψ±} ∩ L. With
(2.104), this eventually leads to

lim sup
δ→0

lim
n→∞

H1({ψ±n,δ,η − ψ±} ∩ L)

≤ lim sup
δ→0

lim
n→∞

m

2π
‖ψ±n,δ,η − ψ±‖L1(L̃) + 2η ≤ 2η. (2.105)

3. step: We wish to show (2.101). By (2.102) and the definition of ψn,δ,η,
we see that:

lim
n→∞

ˆ
Jψn,δ,η∩Ω

(R)
r,δ,η

Φ(ψ+
n,δ,η, ψ

−
n,δ,η, νψn,δ,η ) dH1

=

ˆ
Jψ∩Ω

(R)
r,δ,η

Φ(ψ+, ψ−, νψ) dH1 .

Thus, it remains to investigate the situation inside a rectangle Recti(δ, η). More-
over, as we extended ψ̃n,δ,η by reflecting on the lines L±k (δ, η), it follows that:

H1(Jψn,δ,η ∩ L±k (δ, η)) = 0,

H1(Jψn,δ,η ∩ (Recti(δ, η))0) ≤ H1(Jψ̃n,2δ,η ∩ Recti(2δ, η)).

Additionally, ψn,δ,η may jump on the shorter sides of Recti(δ, η) (see also Fig-
ure 2.9.) Hence:

H1(Jψn,δ,η ∩ Recti(δ, η)) ≤ H1(Jψ̃n,δ,η ∩ Recti(2δ, η)) + 4δ,

and by the strict convergence of (ψ̃n,δ,η)n and the fact that H1(Jψ ∩ L) = 0:

lim sup
δ→0

lim sup
n→∞

H1(Jψn,δ,η ∩ Recti(δ, η))

≤
N∑
k=1

lim sup
δ→0

H1(Jψ ∩ Recti(2δ, η)) = 0.

Combining both estimates results in:

lim sup
δ→0

lim sup
n→∞

∣∣∣∣∣
ˆ
Jψn,δ,η

Φ(ψ+
n,δ,η, ψ

−
n,δ,η, νψn,δ,η ) dH1

−
ˆ
Jψ

Φ(ψ+, ψ−, νψ) dH1

∣∣∣∣∣ = 0 (2.106)

With (2.103), (2.105), (2.106), and a standard diagonal sequence argument,
we can select δn → 0 and ηn → 0 such that ψn := ψn,δn,ηn satisfies (2.99),
(2.101), and H1({ψ±n 6= ψ±}∩L)→ 0 as n→∞. It remains to show H1({ψn 6=
ψ} ∩ ∂Ω) → 0. In this regard, we first use (2.101) with Φ(a, b, ν) := |a − b|,
which shows – together with the L1-convergence of (ψn) – that ψn → ψ strictly
in BV (Ωr(µ)). Due to the continuity of the trace in BV with respect to strict
convergence, this implies ψn → ψ in L1(∂Ω). Both ψn and ψ take values in
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Z, and hence for H1-a.e. x ∈ {ψn 6= ψ} ∩ ∂Ω we have |ψn(x)− ψ(x)| ≥ 2π
m . In

conclusion, we see:

H1({ψn 6= ψ} ∩ ∂Ω) ≤ m

2π

ˆ
∂Ω

|ψn − ψ|dH1 → 0.

We are ready to state and prove the desired approximation result for u
outside its vortices:

Lemma 2.18 (Approximation of u away from its vortices)
Given r > 0 small enough, there exists a sequence (un) ⊂ SBV 2(Ωr(µ);S1)
such that each un is smooth outside its polyhedral jump set Jun , and:

lim
n→∞

‖u− un‖L2(Ωr(µ);R2) + ‖∇(un − u)‖L2(Ωr(µ);R2×2) = 0, (2.107)

lim
n→0
H1

cr(Jun) +H1
cr({un 6= g} ∩ ∂Ω) = H1

cr(Ju) +H1
cr({u 6= g}). (2.108)

Proof. 1. step: We start by proving (2.107). Let α and ψ be as in Lemma 2.15,
ϕ := α + ψ, (αn) the sequence from Lemma 2.16, and (ψn) the one from
Lemma 2.17. For each n ∈ N, define un := eıϕn for ϕn := αn + ψn. By
construction, each un is S1-valued and smooth outside its polyhedral jump set
Jun ⊂ Jψn ∪ L. As |un − u| ≤ 2π|αn − α| and αn → α in L2(Ωr(µ)), we have:

lim
n→∞

‖u− un‖L2(Ωr(µ);R2) = 0.

Furthermore, with the L2(Ωr(µ))-convergence of (∂αn∂x1
) and the boundedness

of (sin(αn)), we can show similarly to the 2. step of the proof of Lemma 2.16:

sin(αn)
∂αn
∂x1

→ sin(α)
∂α

∂x1
in L2(Ωr(µ)).

With the chain rule, this leads to:

lim
n→∞

‖∇(u− un)‖L2(Ωr(µ);R2×2) = 0

and (2.107) is proved.
2. step: Let us show (2.108). By (2.97), H1 {ψn 6= ψ} ∩ ∂Ω→ 0, the second

convergence in (2.100), and the fact that

{un 6= g} ∩ ∂Ω ⊂ ({αn 6= α} ∩ ∂Ω) ∪ ({ψn 6= α} ∩ ∂Ω)

we follow that:

lim sup
n→∞

|H1
cr({un 6= g} ∩ ∂Ω)|

≤ 2 lim sup
n→∞

(
H1({αn 6= α} ∩ ∂Ω) +H1({ψn 6= α} ∩ ∂Ω)

)
= 0. (2.109)

As αn is smooth outside L, it follows that Jun \ L = Jψn \ L. Consequently,
with (2.10) for Φ(a, b, ν) := |ν|1, we have:

lim
n→∞

ˆ
Jun\L

|νun |1 dH1 =

ˆ
Ju∩Ω

(L)
r (µ)

|νu|1 dH1 =

ˆ
Ju∩Ωr(µ)

|νu|1 dH1 . (2.110)
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Note that we have used H1(Ju∩L) = 0 in the last equality above. Furthermore,
as α+

n − α−n = α+ − α− and ψ+ = ψ− at H1-a.e. point in L, it holds for
H1-a.e. x ∈ ({ψ+

n = ψ+} ∩ L) ∩ ({ψ−n = ψ−} ∩ L) that:

ϕ+
n (x)− ϕ−n (x) = α+

n (x) + ψ+
n (x)− α−n (x)− ψ−n (x)

= α+(x)− α−(x) = 0 mod 2π

and therefore u+
n (x) = u−n (x). Consequently,

lim sup
n→∞

ˆ
L

|νun |1 dH1

≤ 2 lim sup
n→∞

(
H1({ψ+

n 6= ψ+} ∩ L) +H1({ψ−n 6= ψ−} ∩ L)
)

= 0

which – together with (2.110) – leads to

lim
n→∞

ˆ
Jun

|νun |1 dH1 =

ˆ
Ju∩Ω

(L)
r (µ)

|νu|1 dH1 =

ˆ
Ju∩Ωr(µ)

|νu|1 dH1 . (2.111)

By combining (2.109) and (2.51), we see that (2.108) holds true.

Let δ0 be chosen sufficiently small such that the projection Π∂Ω is well
defined and smooth in T−δ0 := {x ∈ Ω: dist(x, ∂Ω) < δ0}. In the following we
will further modify the approximating sequence (un) from Lemma 2.18 into
another approximating sequence (ũn) with the additional property that each
ũn is equal to g in T−δ for some δ = δ(un) ∈ (0, δ0) possibly depending on un.

Lemma 2.19
Let un be an arbitrary element of the sequence constructed in lemma 2.18.
Given r > 0 small enough and σ > 0, we can find ũn ∈ SBV 2(Ωr(µ)) and
δ = δ(σ, n) such that ũn = g in T−δ , and:∣∣∣∣∣

ˆ
Ωr(µ)

|∇un|2 dx−
ˆ

Ωr(µ)

|∇ũn|2 dx

∣∣∣∣∣ ≤ σ,∣∣H1
cr(Jun ∩ Ωr(µ)) +H1

cr({un 6= g} ∩ ∂Ω)−H1
cr(Jũn)

∣∣ ≤ σ.
Proof. For the sake of clearer notation we will shortly write u for un and ũ for
ũn. 1. step: As the proof employs standard techniques for dealing with Dirichlet
conditions in SBV , we will only provide the crucial ingredients leaving out some
of the technical points (see [40] and the references therein). The idea of the
proof is to dilate the spin field u “away from the boundary” into Ω\T−ρ (Ω) and

to set it equal to g in T−δ for δ ∈ (0, δ0) to be fixed later on. Let us describe more
precisely how ũ is constructed. We first define the signed distance dΩ : R2 → R
in the tubular neighborhood Tδ0 := {x ∈ Ω: dist(x, ∂Ω < δ0)} as:

dΩ(x) :=

{
− dist(x,Ω) if x ∈ Ω,

dist(x,Ω) if x ∈ R2 \ Ω.

In contrast to the standard distance function, dΩ : Tδ0 → R is smooth in Tδ0 .
(As this is a classic result in differential geometry we will not further comment
on this.) By possibly decreasing δ0 we can assure that sptµ ∩ T−δ0 = ∅. Let
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O := {x ∈ R2 : dist(x, ∂Ω) < δ0} and X ∈ C∞c (Tδ0 ;R2) such that X = ∇dΩ

in T δ0
2

. The existence of such a vector field X follows from the smoothness

of dΩ in Tδ0 and a standard cut-off procedure. We consider the integral flow
{Φt}t≥0 generated by the field X. By construction, each Φt : O → O is a
smooth diffeomorphism for each t ≥ 0. A competitor for ũ is constructed in
three steps: First, extend u by setting u := g in T+

δ0
. Second, pre-compose u

with the diffeomorphism Φt (for some fixed t > 0) resulting in ut := u ◦ Φt.
Third, restrict ut to Ω. As sptX ⊂⊂ Tδ0 , we have Φt ≡ Id in Ω \ T−δ0 , and

consequently ut = u in Ω \ T−δ0 .
2. step: In order to conclude the proof, it will suffice to show:

lim
t→0

ˆ
T−δ0

|∇ut|2 dx =

ˆ
T−δ0

|∇u|2 dx, (2.112)

lim
t→0
H1

cr(Jut ∩ T−δ0) = H1
cr(Ju ∩ T−δ0) +H1

cr({u 6= g} ∩ ∂Ω). (2.113)

Note that as X = ∇dΩ, and by the definition of the signed distance, we have
for any t ∈ (0, δ02 ) that ut ≡ g in T−t . Furthermore, by the chain rule, it follows

in T−δ0 \ T
−
t that:

∇ut = ∇u(Φt)∇Φt, (2.114)

(u+
t − u−t )⊗H1|Jut = (u+(Φt)− u−(Φt))⊗H1|Φ−1

t (Ju)

+ (g − u−∂Ω)⊗H1|Φ−1
t
, (2.115)

where in the second equality we implicitly take the approximately continuous
representative of u and u−∂Ω denotes the inner trace of u onto ∂Ω. On the one

hand, this shows that ut ∈ D(m)
g . On the other, we see that – by the smoothness

of t 7→ Φt and by Φ0 = Id in O – (2.112) and (2.113) are satisfied.

Let r > 0 be small enough such that the balls Br(xk), k = 1, . . . , Ng, are
disjoint. For n ∈ N and k ∈ {1, . . . , Ng}, we define the sets:

Ωn := Ω \
Ng⋃
k=1

B2−nr(xk), (2.116)

Ak,n := B2−nr(xk) \B2−n−1r(xk), Ãk,n := Ak,n ∪Ak,n−1.

Proposition 2.5

Let r > 0 be small enough and u ∈ D(m)
g with W(m)(u) <∞, then we are able

to find for every n a spin field un ∈ SBV 2(Ωn;S1), which is smooth outside its
polyhedral jumpset Jun , and λk,n ∈ S1, k = 1, . . . , Ng such that:

(i) un = g in a tubular neighborhood around ∂Ω for every n ∈ N;

(ii) umn (x) = λk,n
x−xk
|x−xk| in Ak,n for every n ∈ N and k ∈ {1, . . . , Ng};

(iii) the following convergences hold true:

lim
n→∞

(
‖u− un‖L2(Ωn;R2) +

∣∣∣∣ˆ
Ωn

|∇un|2 dx−
ˆ

Ωn

|∇u|2 dx

∣∣∣∣) = 0,

(2.117)

lim
n→∞

(
|H1

cr(Jun)−H1
cr(Ju ∩ Ωn)−H1

cr({u 6= g} ∩ ∂Ω)|
)

= 0. (2.118)
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Proof. 1. step: Combining Lemma 2.18 and Lemma 2.19, we can find for each
n ∈ N a spin field un ∈ SBV 2(Ωn;R2) that is smooth outside its jump set Jun
– the latter being a union of finitely many smooth curves such that Item (i) of
the statement and (2.118) are satisfied. Moreover:

lim
n→0

(
‖u− un‖L2(Ωn;R2) + ‖∇(u− un)‖L2(Ωn;R2×2)

)
= 0. (2.119)

Note that in the construction of Lemma 2.19 we may lose the straightness of
the jump set close to ∂Ω. Nevertheless, by a further standard approximation,
we can replace un by a spin field that has all the aforementioned properties and
a polyhedral jump set. We will still denote the resulting spin field by un.

2. step: Let us further modify un in the annuli Ãk,n, k = 1, . . . , Ng in order
to assure that Item (ii) in the statement is satisfied: By Lemma 2.4, we can
find for each n ∈ N vectors λk,n ∈ S1, k = 1, . . . , Ng, such that:∥∥∥∥umn − λk,n x− xk|x− xk|

∥∥∥∥
W 1,2(Ak,n;R2)

→ 0 as n→∞.

Let ϕk,n ∈ SBV 2(Ak,n) denote the angular lift of un provided by [31], then the
above convergence – together with the chain rule – imply:

‖∇(mϕk,n − ϑk,n)‖L2(Ak,n) → 0 as n→∞, (2.120)

where ϑk,n is the angle of x 7→ λk,n
x−xk
|x−xk| with respect to standard polar

coordinates. As ∇(mϕk,n − ϑk,n) is a conservative vector field, we can find

δk,n ∈ W 1,2(Ãk,n \ Lk) with zero average such that ∇δk,n = ∇(mϕk,n − ϑk,n),
where Lk denotes an arbitrary line segment emanating from xk. By the same
argument as in the proof of Lemma 2.15, we can show that δ+

k,n − δ−k,n = 0

on Lk ∩ Ãk,n. (Note that in contrast to Lemma 2.15, we have in the present
setting Jac(u)m − Jac x−xk

|x−xk| = 0 in Br(xk).) Therefore, we can see δk,n also as

a function in W 1,2(Ãk,n). By (2.120) and Poincaré’s inequality, it holds that:

‖δk,n‖W 1,2(Ãk,n) → 0 as n→∞. (2.121)

Let η ∈ C∞(R+; [0, 1]) be a smooth cutoff function with η = 1 in [0, 5
4 ] and

η = 0 in [ 7
4 , 2]. For each k, we redefine each un in Ãk,n as follows:

un := eıψk,n , ψk,n(x) := ϕk,n(x)− η(2hρ−1|x− xk|)δk,n(x).

By (2.121), the modified sequence (un) still has all the aforementioned properties
and additionally satisfies Item (ii) in the statement with λk,n, k = 1, . . . , Ng,
as chosen above.

We are ready to prove the Γ-limsup:

Proof of the Γ-limsup of Theorem 2.16. 1. step: Let (un) be the sequence from
Proposition 2.5. For fixed n ∈ N, we define the following sequence of admissible
discrete spin fields {uε,n}ε:

uε,n(i) =

{
un(i) if i ∈ Ωn,

wε,k,n(i) if i ∈ B2−nr(xk)
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where

wε,k,n ∈ argmin

{
XY (m)

ε (w) : w = λk,n
x− xk
|x− xk|

on ∂εB2−nr(xk)

}
.

By Item (ii) of Proposition 2.5, the sequence (uε,n)ε ⊂ AS(g)
ε is admissible for

ε > 0 small enough.

2. step: Let us now investigate the convergence of XY
(m)
ε (uε,n)−Ngπ|log ε|

as ε→ 0: By the choice of wε,k,n and (2.84), we have that:

lim sup
n→∞

lim sup
ε→0

(
XY (m)

ε (uε,n, B2−nr(µ))−Ngπ log

(
2−nr
ε

))
= Ngγ, (2.122)

where

Br(µ) :=

Ng⋃
k=1

Br(xk).

By the regularity of un, we have the following characterization of the jump pairs

of un: A nearest-neighbor pair (i, j) in (Ωn)
(1)
ε is a jump pair of un and therefore,

by construction, also of uε,n if and only if [i, j] ∩ Jun 6= ∅. Furthermore, we
have – again by the smoothness of un outside its jump-set – that:

dist(∆elϕn(i, j),Z) ≤ C(n)ε,

where ϕn is an angular lift of un and C(n) <∞ a constant not depending on
ε. By (2.32), this leads to∑

(i,j)∈JP (un)

f (m)
ε (ϕn(i)− ϕn(j)) = H1

cr(Jun) + C(n)ε.

For the remaining nearest-neighbor pairs, we see by standard interpolation
estimates and Item (ii) in Definition 2.16 that:∑

(i,j)/∈JP (uε,n)

f (m)
ε (ϕn(i)− ϕn(j)) =

ˆ
Ω2−n−1r(µ)

|∇un|2 dx+ C(n)ε,

again, for a constant C(n) < ∞ independent of ε. Consequently, by also
employing the definition of W(m), (2.117), and (2.118), we see that:

lim sup
n→0

lim sup
ε→0

(
XY (m)

ε (uε,n, B2−nr(µ))−Ngπ|log(2−nr)|
)

≤ W(m)(u) +H1
cr(Ju) +H1

cr({u 6= g} ∩ ∂Ω). (2.123)

Finally, with (2.122), (2.123), and a standard diagonal sequence argument, the
desired result follows.





Chapter 3

Dynamics of the generalized XY
model

3.1 Preliminaries

3.1.1 Minimizing movements for the heat equation

In this section, we wish to introduce the main ideas behind the notion of mini-
mizing movements, introduced by De Giorgi in [32], through an illuminating
example. Consider the energy functional E : W 1,2

0 (Ω)→ R given by

E(u) :=
1

2

ˆ
Ω

|∇u|2 dx for all u ∈W 1,2
0 (Ω),

where Ω ⊂ Rn is a open bounded set with smooth boundary. Furthermore, we
define D : W 1,2

0 (Ω)×W 1,2
0 (Ω)→ R as:

D(u, ũ) :=
1

2

ˆ
Ω

|u− ũ|2 dx.

For fixed u0 ∈ W 1,2
0 (Ω) and λ > 0, we then consider the iteratively defined

sequence (uλn)n as:{
uλn ∈ argmin

{
E(u) + λD(u, uλn−1)

}
for all n ≥ 1,

uλ0 = 0.
(3.1)

The well-definedness of (uλn) follows from a standard application of the direct
method and induction on n ∈ N. The minimization described above is nontrivial
due to the competition between E and D. The former aspires uλn to be as
close as possible to the constant 0-function on Ω (the global minimum of E
in W 1,2

0 (Ω)), while the latter prefers uλn to be as close as possible to uλn−1,
respectively. Furthermore, the bigger we chose λ to be, the more dominant
λD becomes in the minimization, and hence the closer uλn is to uλn−1. We
can therefore think of λ−1 as a discrete time step. The piecewise constant
interpolation uλ : [0,∞)→W 1,2

0 (Ω) is defined as:

uλ(t) := uλdλte for all t ∈ [0,∞),

71
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and piecewise affine interpolation ûλ by:

ûλ(t) := (dλte − λt)uλbλtc + (λt− bλtc)uλdλte.
Note that dxe is the smallest number in Z above x, and bxc is the largest smaller
than x.

In the following, we will study the limit behavior of (uλ) and (ûλ) as λ→
∞. The following basic a priori estimates come into play: Using uλn−1 as a
competitor for the minimizer of (3.1), we can estimate:

E(uλn) + λD(uλn, u
λ
n−1) ≤ E(uλn−1) + λD(uλn−1, u

λ
n−1) = E(uλn−1), (3.2)

and hence by the nonnegativity of D and an inductive argumentˆ
Ω

|∇uλn|2 dx = E(uλn) ≤ E(uλ0 ) = E(u0) <∞ for all n ∈ N.

By standard compactness in Sobolev spaces there exists a u ∈ L2
loc([0,∞);W 1,2

0 )
such that, up to taking a subsequence:

uλ ⇀ u weakly in L2
loc([0,∞);W 1,2

0 ).

Let us now substract E(uλn) from both sides of (3.2) :

λD(uλn, u
λ
n−1) ≤ E(uλn−1)− E(uλn).

We then sum the above inequality over all n ∈ N and unfold the telescopic sum
on the right-hand side. With the non-negativity of E, this leads to:

∞∑
n=1

λD(uλn, u
λ
n−1) ≤

∞∑
n=1

(E(uλn−1)− E(uλn)) ≤ E(u0) <∞.

Note that with the definition of ûλ, the sum on the left-hand side above can be
written as:

∞∑
n=1

λD(uλn, u
λ
n−1) =

1

2

∞∑
n=1

λ−1

ˆ
Ω

∣∣λ(uλn − uλn−1)
∣∣2 dx

=
1

2

ˆ ∞
0

ˆ
Ω

∣∣∂tûλ∣∣2 dxdt,

and hence:
sup
n∈N
‖∂tûλn‖L2([0,∞);L2(Ω)) ≤ C(u0) <∞. (3.3)

Consequently, there exists ũ ∈W 1,2
loc ([0,∞);L2(Ω)]) such that, up to a further

subsequence:
ûλ ⇀ ũ weakly in W 1,2

loc ([0,∞);L2(Ω)).

We wish to show that u = ũ. For this, note that by the fundamental theorem of
calculus, the Cauchy-Schwarz inequality, and (3.3), we have for any t1, t2 ∈ R
such that 0 ≤ t1 < t2 <∞:

‖ûλ(t2, ·)− ûλ(t1, ·)‖2L2(Ω) =

ˆ
Ω

∣∣∣∣ˆ t2

t1

∂tû
λ(t, x) dt

∣∣∣∣2 dx

≤
ˆ

Ω

|t2 − t1|
ˆ t2

t1

∣∣∂tûλ∣∣2 dtdx
≤ C(u0)|t2 − t1|
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with a constant C(u0) <∞ independent from λ, t1, and t2. By the definition
of ûλ and uλ, we can estimate for any t ∈ [0,∞)

‖ûλ(t, ·)− uλ(t, ·)‖L2(Ω) ≤ C(u0)λ
1
2

for the same constant as before. As right-hand side is independent of t it follows
that

‖ûλ − uλ‖L∞([0,∞);L2) → 0 as λ→ 0.

Consequently,

u = ũ ∈ L2
loc([0,∞);W 1,2

0 (Ω)) ∩W 1,2
loc ([0,∞);L2(Ω)).

It is often possible to derive more information on u beyond its mere existence.
As uλn is minimal, it must satisfy the Euler-Lagrange equation corresponding
to the minimum problem in (3.1):

ˆ
Ω

〈∇uλn,∇ϕ〉+ λ(uλn − uλn−1)ϕdx = 0,

for any test function ϕ ∈ C∞c (Ω). With the definition of uλ and ûλ, this relation
can be rewritten as

ˆ ∞
0

ˆ
Ω

〈∇uλ,∇ϕ〉+ 〈∂tûλ, ϕ〉dxdt = 0 (3.4)

for every test function ϕ ∈ C∞c ([0,∞);C∞c (Ω)). Employing the aforementioned
convergence of (ûλ) and (uλ) (up to taking subsequences), we pass to the limit
λ→∞ in (3.4), which results in:

ˆ ∞
0

ˆ
Ω

〈∇u,∇ϕ〉+ 〈∂tu, ϕ〉dxdt = 0

for all test functions ϕ ∈ C∞c ([0,∞);C∞c (Ω)). This is the classic weak formu-
lation of (3.5) and by elliptic theory, we see that u is also a strong solution of
the heat equation:{

∂tu(t, x) = ∆u for all t ∈ (0, T ), x ∈ Ω,

u(0, x) = u0(x) for all x ∈ Ω.
(3.5)

Lastly, we mention that by the uniqueness of the heat equation, any convergent
subsubsequence of (uλ) must converge towards the u found above. Hence,
the full sequence also converges towards u in all the previously mentioned
topologies.

3.2 Problem setup

3.2.1 Reduction to a simpler model

The main task of this chapter is to study – from a variational point of view
– the dynamics of a model related to the one derived in the previous chapter
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through a Γ-convergence analysis. The Γ-limit of Theorem 2.16 was given by

the energy E : D(m)
g → R, defined as:

E(u) :=W(m)(u) +H1
cr(Ju) +H1

cr({u 6= g} ∩ ∂Ω) +Ngγ, (3.6)

where Ω ⊂ R2 is a simply connected set with smooth boundary, m ∈ N+,
g ∈ C∞(∂Ω; S1), Ng := m|deg(g), ∂Ω|, γ > 0 the core energy, H1

cr the crystalline
length (as defined in (2.36)), and W(m) the renormalized energy (as defined in
(2.35)). Admissible spin fields u ∈ DK satisfy the Dirichlet condition um = gm

in the sense of Sobolev traces, and have exactly Ng vortices in Ω, each with

fractional degree sgn(deg(g))
m . (For a more precise definition, see also Section 2.3.)

We wish to study of the evolution of an initial spin field u0 ∈ D(m)
g driven

by the energy functional E. To the best knowledge of the author, this is a very
challenging problem as it would entail to work in the class of SBV -functions
for which – in other well-known cases, such as the Mumford-Shah functional
– satisfactory results concerning dynamics are still missing. In the following,
we will succinctly modify the model. As a first step, let us simplify things by
working with the singularities of u (described by Jacu and Ju) only. Instead
of the whole spin field. The variationally rigorous way to achieve this is to first
fix u ∈ DK , and then consider the following minimization problem:

min
{
E(ũ) : ũ ∈ D(m)

g , Jac ũ = Jacu, Jũ = Ju

}
. (3.7)

In this regard, let us assume – without loss of generality – that deg(g, ∂Ω) > 0

(the other case works similarly), denote by spt(Jacu) = {xk}Ngk=1 the set of
vortex centers of u, and consider for each k ∈ {1, . . . , Ng} a straight line segment

Γk connecting xk with ∂Ω such that Γ :=
⋃N
k=1 Γk satisfies H1(Γ ∩ Ju) = ∅.

Similar to the proof of the Γ-limsup in the previous chapter, we take an angular
lift ϕ ∈ SBV 2

loc(Ω \ spt Jac(u)) such that u = eıϕ a.e. in Ω (see also [31]).
Furthermore, let ϕ̃ ∈ SBV 2

loc(Ω \ spt Jac(u)) with:

∇ϕ̃ = ∇ϕ a.e. in Ω, Djϕ̃ = −2π

m
⊗ νH1|Γ,

where for each k ∈ {1, . . . , N}, the restriction νk := ν|Γk is the normal field
on Γk pointing in anticlockwise direction with respect to the orientation of Γk,
and Djϕ̃ is the jump part. As in the last chapter, we can find a Caccioppoli
partition ψ ∈ SBV (Ω;Z) with Z := {0, 2π

m , . . . , (m− 1) 2π
m } such that:

ψ = ϕ− ϕ̃ mod 2π a.e. in Ω.

Let h := gm. We are ready to show the following reformulation of the minimum
problem in (3.7):

min
{
E(ũ) : ũ ∈ D(m)

g , Jac ũ = Jacu, Jũ = Ju

}
= min{W(v) : v ∈ D(1)

h (Ω), Jac v = m Jacu}
+H1

cr(Ju) +H1
cr({u 6= g} ∩ Ω) +Ngγ.

(3.8)

Given ũ ∈ D(1)
h (Ω) with Jac ũ = Jacu and Jũ = Ju, we see by the chain

rule and the definition of W as well as W(m) that v := ũm ∈ D(1)
h (Ω) with
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Jac v = m Jac ũ = m Jacu, andW(v) =W(m)(ũ). This shows the ”≤” direction
in (3.8). It remains to show the ”≥” direction, respectively. In this regard, let

v ∈ D(1)
h (Ω) with Jac v = m Jacu. We will construct ũ ∈ D(m)

g with Jũ = Ju
and v = ũm. With the definition of W and W(m), this would directly lead to
(3.8). By a similar reasoning as before, we can find ϑ, ϑ̃ ∈ SBV 2

loc(Ω\spt Jac(u))
such that:

eıϑ = v, ∇ϑ̃ = ∇ϑ a.e. in Ω, Dj ϑ̃ = −2π ⊗ νH1|Γ

with ν and Γ as before. In particular we see that Dj ϑ̃
m = Djϕ̃, with ϕ̃ as defined

before, and by the chain rule:

ũ := e
ı
(
ϑ̃
m +ψ

)

satisfies all the desired properties. It remains to investigate the minimum
problem:

min{W(v) : v ∈ D(1)
h (Ω), Jac v = m Jacu}. (3.9)

As this problem was already thoroughly studied by the authors of [16] (see also,
in particular, Chapter 1) we will keep our presentation as short as possible. Let
us write µ := m Jacu, then the minimum in (3.9) can be determined by first
finding the solution Φ of the following auxiliary linear Neumann problem:

1

2
∆Φ = µ in Ω,

∂Φ

∂ν
= h× ∂h

∂τ
on ∂Ω,

(3.10)

where × : R2 × R2 → R is defined as(
a
b

)
×
(
c
d

)
:= ad− bc.

In [16], it is shown that under the additional condition:ˆ
∂Ω

Φ dH1 = 0

there exists a unique solution Φ of (3.10). Given Φ, we also define:

R(x) := Φ(x)−
N∑
k=1

log|x− xk|. (3.11)

Note that as:

1

2
∆

N∑
k=1

log|x− xk| = µ

R turns out to be a harmonic function in Ω. The minimum in (3.9) can be
represented as follows (see also (47) in [16]):

W(x1, . . . , xNg ) := min
{
W(v) : v ∈ D(1)

h (Ω), Jac v = µ
}

= −π
∑
k 6=l

log|xk − xl| − π
N∑
k=1

R(xk) +
1

2

ˆ
∂Ω

Φ

(
h× ∂h

∂τ

)
dH1 . (3.12)
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γ(0)

γ(1)

Γ1

Γ2

γ

Figure 3.1: Caccioppoli partition used in the construction of u.

Generally W cannot be written in a more explicit fashion as this would entail
having explicit expressions for the Green’s functions in Ω. Nevertheless, the
authors of [16] derive the following properties of W:

(i) It is smooth on the set:{
(x1, . . . , xNg ) ∈ ΩNg : xk 6= xl for k 6= l

}
;

(ii) It has the following divergence behavior:

W(x1, . . . , xN )→∞ as min

{
min
k 6=l
|xk − xl|, min

k
dist(xk, ∂Ω)

}
. (3.13)

(For a proof, we refer to Theorem I.10 in [16].) Intuitively, this means that
the vortices repel each other, while also being repelled by the boundary
of Ω.

A minimizer of (3.9) is given by a solution vµ of the following Dirichlet problem:{
jac(vµ) = (∇Φ)⊥ in Ω,

vµ = h on ∂Ω.
(3.14)

Again, the authors of [16] show that such a vµ exists and is, in fact, unique.
We are thus left with studying the dynamics of the reduced energy functional

E1 : D(m)
g → R, defined as:

E1(u) := W(x1, . . . , xN ) +H1
cr(Ju) +H1

cr({u 6= g} ∩ ∂Ω), (3.15)

where Jacu = 2π
m

∑N
k=1 δxk . Note that we have removed the core energy term

as it is the same for all admissible u. This can be justified by (3.13), which
disallows the collision of two vortices or one vortex with ∂Ω during the evolution.

In the next step, we restrict ourselves to the special singularity configuration
where the jump set Ju is parameterized by a curve γ ∈W 1,2([0, 1]; Ω) connecting
two half-vortices at its endpoints γ(0) and γ(1). In order to show that this
singularity configuration is admissible, we need to assume that deg(g, ∂Ω) = 1.
Then, a spin field u with jumpset γ (note that we identify γ with its image
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im(γ)) and two half-vortices at γ(0) and γ(1) can be constructed as follows:
For µ := π(δγ(0) + δγ(1)), let vµ be the solution of (3.14). Moreover, let ϑµ ∈
SBV 2

loc(Ω \ {γ(0), γ(1)}) such that:

∇vµ = ∇eıϑµ a.e. in Ω, Djϑµ = −π ⊗ νH1|Γ

with Γ = Γ1 ∪ Γ2 and ν as before. Then:

u := eı
ϑµ
m eıψ

for the Caccioppoli partition Ψ as depicted in figure Figure 3.1 is the desired
spin configuration with jump set γ and vortices located at γ(0) and γ(1). Lastly,
we replace the crystalline perimeter of γ in (3.15) by the Euclidean one and
add a regularizing second-order term. More precisely, given a fixed scalar ε > 0,
we consider the energy functional E2 : W 1,2 → R given by:

E2(γ) := W (γ(0), γ(1)) + L(γ) +
ε2

2

ˆ
γ

κ2 ds, (3.16)

where L(γ) is the length of γ, κ its curvature, s denotes the arc-length parameter,
and:

W (p, q) := −π log|p− q| − π(R(p) +R(q)) +
1

2

ˆ
∂Ω

Φ

(
h× ∂h

∂τ

)
dH1 . (3.17)

Since from this point on we will only deal with the energy functional E2, we
redefine E := E2 for the sake of shorter notation. The additional curvature
term in (3.16) is a standard regularizing term in the study of the evolution of
the perimeter function (see also, e.g. [27] and [36]). Speaking more generally, it
is also an interesting problem to take networks of curves with multiple junctions
(possibly containing vortices) into consideration. For the sake of clarity, general
networks are not studied in this thesis. Nevertheless, the author believes that
the proof strategy found in this chapter can be generalized to the case of more
complex singularity configurations.

3.2.2 Description of the minimizing movements scheme

Let us first fix some notation: The interval [0, 1] will be shortly written as I.
We will be dealing with curves γ : I → R2 as well as families of curves of the
type γ : I × [0,∞)→ R2 or γ : I × [0, T ]→ R for some T > 0. It will be clear
from the context whether γ denotes a single curve or a family of curves. If
not explicitly stated, γ can have values outside of Ω. The following shorthand
notation for function spaces of such (family of) curves is assumed: The space
F (I;R2) will be shortly written as F . So, for example W 2,2 is the same as
W 2,2(I;R2). Given a space of curves G = G(I;R2) and T > 0, we will shortly
write the following spaces of families of curves as:

FG := F ([0,∞);G), FTG := F ([0, T ];G).

For example:

W 1,2
loc L

2 := W 1,2
loc ([0,∞);L2(I;R2)), W 1,2

T L2 := W 1,2([0, T ];L2(I;R2).
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For a curve γ, we will write x for its curve parameter, s for the arc-length
parameter, κ for its curvature, L = L(γ) for its length, τ for the unit norm
tangent vector, and ν := τ⊥ for the corresponding normal vector field. For
a family of curves γ, we will denote the first parameter (which is the curve
parameter of γ(·, t) for any t) by x, and the second parameter (which corresponds
to time) by t. The same notation will be used for all geometric quantities of γ,
such as κ, L, τ , and ν where we implicitly assume that they all may depend
on time. Derivatives will be written with lower index notation such as for
example: κxx, κx, γt, etc. If γ is weakly differentiable in time, we will shortly
write V := γt, V

> :=:= 〈γt, τ〉, and V ⊥ := 〈γt, ν〉. Furthermore, we will write
γp := γ(0, ·) and γq := γ(1, ·). The same notation will be used for geometric
quantities and their derivatives, respectively. So, for example κp := κ(0, ·) and
κpx = κx(0, ·). Correspondingly, when dealing with two (families of) curves γ
and γ̃, we write the geometric quantities of γ̃ as κ̃, L̃, τ̃ , and ν̃.

We are ready to describe the minimizing movements scheme and state the
main result of this chapter. The set of admissible curves is given by:

AC :=
{
γ ∈W 2,2 : |γx| ≡ const = L, γ(0), γ(1) ∈ Ω, γ(0) 6= γ(1)

}
. (3.18)

Furthermore, for any γ̃ ∈ AC we define:

AC(γ̃) := {γ ∈ AC : 〈γx, γ̃x〉 ≥ 0}. (3.19)

For fixed ε > 0, the energy E : AC → R is given by:

E(γ) := W (γ(0), γ(1)) + L+
ε

2

ˆ
γ

κ2 ds. (3.20)

The dissipation functional D : AC2 → R is defined as:

D(γ, γ̃) :=
1

4

ˆ 1

0

〈γ − γ̃, ν̃〉2 dx+
1

4

ˆ 1

0

〈γ − γ̃, ν〉2 dx

+
1

2
|γ(0)− γ̃(0)|2 +

1

2
|γ(1)− γ̃(1)|2.

(3.21)

For a given initial curve γ0 ∈ AC such that γ0 ⊂ Ω (again, we identify γ and
im(γ)) and a given λ ∈ (0, 1) we define the following sequence of step-by-step
minimizers {γλn}n ⊂ AC as:{

γλn ∈ argmin
{
E(γ) + λD(γ, γλn−1) : γ ∈ AC(γλn−1)

}
for all n ∈ N+,

γλ0 = γ0.
(3.22)

(Note that in the minimization scheme above we do not enforce the curves
{γn}n∈N+

to be contained in Ω.)
For the proof of the well-definedness of (3.22), the following lemma will be

used:

Lemma 3.1
The function W , as defined in (3.17), is bounded from below:

inf
p,q∈Ω

W (p, q) > −∞. (3.23)
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Proof. By the boundedness of Ω and the estimate log t ≤ t, we see that:

inf
p,q∈Ω

−π log|p− q| ≥ −π sup
p,q∈Ω

|p− q| ≥ −π diam(Ω) > −∞.

Moreover, in Lemma I.6 of [16] it was shown that there exists a constant
C = C(Ω, g) <∞, independent of the vortex centers p and q, such that Φ, as
defined in (3.10) with µ = π(δγ(0) + δγ(1)), satisfies:

ˆ
∂Ω

|Φ| ≤ C. (3.24)

Consequently, with the smoothness of g we derive

inf
p,q∈Ω

ˆ
∂Ω

Φ

(
gm × ∂gm

∂τ

)
dH1 > −∞.

Hence, in order to show (3.23), it is enough to prove:

sup
p,q∈Ω

R(p) <∞, (3.25)

where R is as in (3.11). Note that by symmetry, it would also follow that:

sup
p,q∈Ω

R(q) <∞.

By Lemma I.7 in [16]:

R(p)→∞ as min{dist(p, ∂Ω),dist(q, ∂Ω)} → 0.

Thus, we can find δ ∈ (0, 1) small enough such that R(p) ≥ 0, whenever at
least one of the points p and q has distance smaller than δ from the boundary.
It remains to investigate the case min{dist(p, ∂Ω),dist(q, ∂Ω)} > δ. We can
estimate:

sup
x∈∂Ω

(− log|x− p| − log|x− q|) ≤ − log δ <∞.

Hence, with (3.24) and the definition of R (see (3.11)), we see that:

ˆ
∂Ω

|R|dH1 ≤ C = C(δ,Ω, g) <∞

for a constant C independent of p and q. Let G denote the Green’s function of
Ω. By the smoothness of G restricted to {x ∈ Ω: dist(x,Ω) > δ}× ∂Ω and the
estimate above, we derive:

R(p) =

ˆ
∂Ω

R(x)
∂G

∂ν
(x, p) dH1(x) ≤ C = C(δ,Ω, g) <∞

for a constant C independent of p and q, which concludes the proof.

Proposition 3.1 (Existence of step-by-step minimizers)
For any λ > 0 and γ̃ ∈ AC, there exists

γ ∈ argmin{E(γ) + λD(γ, γ̃) : γ ∈ AC(γ̃)}. (3.26)
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Proof. 1. step: Let us fix F : AC ×AC → R as:

F (µ, µ̃) := E(µ) + λD(µ, µ̃).

Using γ̃ as a competitor in (3.26), we see that

inf
γ∈AC(γ̃)

F (γ, γ̃) ≤ F (γ̃, γ̃) = E(γ̃). (3.27)

Let m denote the infimum on the left side of (3.23). By (3.23) and the definition
of F :

−∞ < m ≤ inf
γ∈AC(γ̃)

F (γ, γ̃) ≤ E(γ̃) <∞. (3.28)

Consequently, we can find a minimizing sequence {γn} ⊂ AC(γ̃) such that:

lim
n→∞

F (γn, γ̃) = inf
γ∈AC(γ̃)

F (γ, γ̃), (3.29)

F (γn, γ̃) ≤ E(γ̃) + 1 <∞ for all n ∈ N. (3.30)

2. step: We wish to show that supn‖γn‖W 2,2 <∞. In this regard, by (3.23)
and (3.30), we derive:

E(γ̃) + 1 ≥ F (γn, γ̃) ≥ E(γn) ≥ m+ Ln +
εLn

2

ˆ 1

0

κ2
n dx, (3.31)

where Ln is the length of γn and κn is its curvature. Moreover, by the definition
of D and (3.30):

λ|γn(0)− γ̃(0)|2 ≤ D(γn, γ̃) ≤ F (γn, γ̃)−m ≤ E(γ̃) + 1−m <∞. (3.32)

Thus, by the fundamental theorem of calculus, the fact that |(γn)x| = Ln,
(3.31), and (3.32), we derive:

ˆ 1

0

|γn|2 dx+

ˆ 1

0

|(γn)x|2 dx ≤ (|γn(0)|+ Ln)2 + L2
n

≤ (|γ̃(0)|+ |γn(0)− γ̃(0)|+ Ln)2 + L2
n

≤ 2|γ̃(0)|2 +
4

λ
· λ|γn(0)− γ̃(0)|2 + 3L2

n

≤ 2|γ̃(0)|2 +
4

λ
(E(γ̃) + 1−m)

+ 3(E(γ̃) + 1−m)2 <∞. (3.33)

With (3.31) and the constant speed of γn (|(γn)x| = Ln), we follow that:

ˆ 1

0

|(γn)xx|2 dx =

ˆ 1

0

L4
nκ

2
n dx =

2

ε
L3
n

(
ε

2
Ln

ˆ 1

0

κ2
n dx

)
≤ 2

ε
(E(γ̃) + 1−m)4 <∞. (3.34)

Combining (3.33) and (3.34) eventually leads to supn‖γn‖W 2,2 < ∞, as is
desired. By the weak compactness in W 2,2 and by the Sobolev embedding
theorem, we can find γ ∈W 2,2 such that, up to taking a subsequence:

γn ⇀ γ weakly in W 2,2, (3.35)

γn → γ in C1. (3.36)
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3. step: We continue by showing γ ∈ AC(γ̃). By (3.36) and (γn) ⊂ AC(γ̃),
we already have that:

|γx| ≡ Lγ , 〈γx, γ̃x〉 ≥ 0.

By (3.13) and (3.30), it also follows that there exists a δ > 0 satisfying:

min{|γn(0)− γn(1)|, dist(γn(0), ∂Ω), dist(γn(1), ∂Ω)} ≥ δ for all n ∈ N.

With the smoothness of W outside the diagonal and (3.36), we can pass to the
limit n→∞ which leads to

min{|γ(0)− γ(1)|, dist(γ(0), ∂Ω), dist(γ(1), ∂Ω)} ≥ δ > 0.

With this, we conclude that γ ∈ AC(γ̃).

4. step: It remains to show that γ is also minimizing. To this end, note
that:

ˆ
γn

κ2
n ds =

ˆ 1

0

( 〈(γn)xx, νn〉
|(γn)x|2

)2

|(γn)x|dx

=

ˆ 1

0

〈(γn)xx, L
− 5

2
n νn〉2 dx,

where νn is the unit normal field on γn. By (3.35) and (3.36), the following
convergences hold true:

(γn)xx ⇀ γ weakly in L2,

L
− 5

2
n νn → L−

5
2 ν in L2.

Hence by weak-strong convergence

〈(γn)xx, L
− 5

2
n νn〉⇀ 〈γxx, L−

5
2 ν〉 weakly in L2,

and therefore:

lim inf
n→∞

ε

2

ˆ
γn

κ2
n ds ≥ ε

2

ˆ
γ

κ2 ds. (3.37)

By (3.36), we have that:

lim
n→∞

F (γn, γ̃)− ε

2

ˆ
γn

κ2
ndH1 = F (γ, γ̃)− ε

2

ˆ
γ

κ2
γdH1 . (3.38)

Combining (3.37) and (3.38) as well as using (3.29) eventually leads to:

inf
γ∈AC(γ̃)

F (γ, γ̃) = lim
n→∞

F (γn, γ̃) ≥ F (γ, γ̃). (3.39)

With the scheme described above, we will be able to derive the following
maximal existence result of an L2-type gradient flow of E:
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Theorem 3.1 (Maximal existence)
For any γ0 ∈ AC with γ0 ⊂ Ω, there exists T0 ∈ (0,∞] and a family of curves
γ with the following regularity:

γ ∈ L2
T0
H4 ∩ C0

T0
C1 ∩W 1,2

T0
L2, V > ∈ L2([0, T0);W 1,2(I)),

γp, γq ∈W 1,2([0, T0);R2)
(3.40)

such that γ(·, 0) = γ0, for every t ∈ [0, T0), it holds that γ(t, ·) ⊂ Ω, and for
a.e. t ∈ [0, T0] and a.e. s ∈ [0, L] (s denotes the arc-length parameter):

V ⊥ = κ− ε(κss + 1
2κ

3), (3.41)

V p = −∇pW (γp, γq) + τp − εκpsνp, (3.42)

V q = −∇qW (γp, γq)− τ q + εκqsν
q, (3.43)

κp = κq = 0, (3.44)

as well as:

V >s =
L′

L
+ κγ⊥t . (3.45)

T0 is optimal in the sense that if T0 <∞, we have that γ(·, T0) ∩ ∂Ω 6= ∅.
We remark that a similar result was proved by the author in [14] (see also

Theorem 9). In contrast to the setting described above, the curves in [14] were
not restrained to lie in a bounded domain Ω. The endpoints still repelled each
other, but through the simpler interaction potential:

W̃ (p, q) := −π log|p− q|.

Note that the evolution in [14] satisfied the same system as in (3.41) to (3.45)
up to replacing W with W̃ . Lastly, the existence result in [14] stands in contrast
to Theorem 3.1, which is global in time.

3.3 Proof of the minimizing movements result

3.3.1 Compactness

In this subsection, the sequence (γλn)n will always denote the one from (3.22).
We also assume that λ ≥ 1. (As we are interested in the limit λ→∞, this is
not restrictive.)

Lemma 3.2 (A priori bounds)
There exist constants C = C(γ0), c = c(γ0) independent of λ and n such that:

c < |γλn(1)− γλn(0)| ≤ Lλn ≤ C, (3.46)ˆ 1

0

|(γλn)xx|2 dx ≤ C. (3.47)

Proof. Let us fix n ∈ N and use γλn−1 as a competitor for the minimization in
(3.22) at step n:

E(γλn) + λD(γλn , γ
λ
n−1) ≤ E(γλn−1) + λD(γλn−1, γ

λ
n−1) = E(γλn−1).
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By the nonnegativity of D and an induction argument, this eventually leads to:

E(γλn) ≤ E(γλn−1) ≤ · · · ≤ E(γλ0 ) = E(γ0) (3.48)

for all n ∈ N. Let m denote the infimum in (3.23). By the definition of E:

Lλn + (Lλn)5

ˆ 1

0

|(γλn)xx|2 dx ≤ E(γ0)−m (3.49)

for all n ∈ N. Furthermore, by the nonnegativity of the second term above, this
leads directly to:

Lλn ≤ E(γ0)−m <∞,
again, for all n ∈ N. Notice that as the straight line is the shortest connection
between two points:

Lλn ≥ |γλn(1)− γλn(0)|.
Now we want to show that there exists c > 0 independent of λ and n such that
for all n ∈ N and λ ≥ 1:

|γλn(1)− γλn(0)| ≥ c.
This fact follows from (3.13). More precisely, we can find δ > 0 small enough
such that for all p, q ∈ Ω with |p− q| < δ, it holds that W(p, q) > E(γ0). So let
us suppose by contradiction that |γλn(1)− γλn(0)| < δ. Then, by the choice δ:

W (γλn(0), γλn(1)) > E(γ0).

This contradicts (3.48), which implies by the definition of E

W (γλn(0), γλn(1)) ≤ E(γλn) ≤ E(γ0).

It remains to show (3.47). By the lower bound in (3.46) and (3.49), we see that:

ˆ 1

0

|(γλn)xx|2 dx =
1

(Lλn)5
(Lλn)5

ˆ 1

0

|(γλn)xx|2 dx ≤ 1

c5
(E(γ0)−m) <∞,

as is desired.

Definition 3.1 (Interpolations)
The piecewise constant interpolation γλ : I × [0,∞) → R2 of (γλn)n is defined
as:

γλ(t, x) := γλdλte(x).

Correspondingly, Lλ will denote its length, κλ its curvature, τλ its unit tangent
vector field, and νλ its unit normal vector field. Later, it will be useful to have
a notation for the translation in time :

γ̃λ(t, x) := γλ(x, t− λ−1).

Similarly, L̃λ will denote its length, κ̃λ its curvature, τ̃λ its unit tangent vector
field, and ν̃λ its unit normal vector field. Furthermore, we denote by γ̂λ : I ×
[0,∞)→ R2 the piecewise affine interpolation of (γλn)n, defined as:

γ̂λ(t, x) := (dλte − λt)γλbλtc(x) + (λt− bλtc)γλdλte(x).
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Finally, we also fix the piecewise affine interpolation L̂λ : [0,∞)→ R of (Lγλn )n
as:

L̂λ(t) := (dλte − λt)Lλ(bλtc) + (λt− bλtc)Lλ(dλte),
and V λ : I × [0,∞)→ R2 to be

V λ(t, x) := γ̂λt (t, x).

In the following lemma we will derive an important coupling relation between
the tangential and the orthogonal projection of the velocity. It will eventually
be used in the proof of Proposition 3.2 in order to derive a bound on the
time-discrete velocity.

Lemma 3.3 (Coupling relation)
For every x ∈ I and t ∈ [0,∞), it holds that:

〈V λ, L̃λτ̃λ + Lλτλ〉x = (L̃λ + Lλ)L̂λt + 〈V λ, (L̃λ)2κ̃λν̃λ + (Lλ)2κλνλ〉. (3.50)

Proof. The derivation of the coupling relation (3.50) is the result of the following
computation: Since γn belongs to AC, we have γλx (t, x) = Lλ(t) for all x ∈ I
and t ∈ [0,∞). Defining µλ := γλx + γ̃λx = L̃λτ̃λ + Lτλ, we derive for all x ∈ I
and t ∈ [0,∞):

(L̃λ + Lλ)L̂λt = λ(L̃λ + Lλ)(Lλ − L̃λ)

= λ
(

(Lλ)2 − (L̃λ)2
)

= λ(〈γλx , γλx 〉 − 〈γ̃λx , γ̃λx 〉) = 〈V λx , µλ〉.

Furthermore, by the product rule we have:

〈V λ, µλ〉x = 〈V λx , µλ〉+ 〈V λ, γ̃λxx + γλxx〉
= 〈V λx , µλ〉+ 〈V λ, (L̃λ)2κ̃λν̃λ + (Lλ)2κλνλ〉.

By combining both computations, we conclude the proof.

In the next proposition, we will employ the coupling relation:

Proposition 3.2 (L2-bound on the velocity)
There exists a constant C = C(ε) <∞ independent of λ such that:

ˆ ∞
0

ˆ 1

0

|V λ|2 dxdt+

ˆ ∞
0

|V λ(t, 0)|2 + |V λ(t, 1)|2 dt ≤ C. (3.51)

Proof. 1. Step: In order to shorten notations, we will set µλ := L̃λτ̃λ + Lλτλ.
Note that by (3.46) and the fact that γλn ∈ AC(γλn−1) for all n ∈ N+, we have:

|µλ|2 = (L̃λ)2 + 2〈γ̃λx , γλx 〉+ (Lλ)2

≥ (L̃λ)2 + (Lλ)2 ≥ c > 0 (3.52)

for some constant c > 0 independent of λ. Moreover, by comparison (see also
(3.22)):

λD(γλn , γ
λ
n−1) ≤ E(γλn−1)− E(γλn)
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for all n ∈ N+. Summing the above over n ∈ N+ and using E ≥ m, where m is
the infimum in (3.23), we derive that:

λ

∞∑
n=1

D(γλn , γ
λ
n−1) ≤

∞∑
n=1

(E(γλn−1)− E(γλn))

≤ E(γ0)− lim inf
n→∞

E(γλn) ≤ E(γ0)−m. (3.53)

The sum on the left-hand side of (3.53) can be written as:

λ

∞∑
n=1

D(γλn , γ
λ
n−1)

=

∞∑
n=1

1

4λ

ˆ 1

0

〈λ(γλn − γλn−1), νλn〉2 dx+

∞∑
n=1

1

4λ

ˆ 1

0

〈λ(γλn − γλn−1), ν̃λn〉2 dx

+

∞∑
n=1

1

2λ
|λ(γλn(0)− γλn−1(0))|2 +

∞∑
n=1

1

2λ
|λ(γλn(1)− γλn−1(1))|2

=
1

4

ˆ ∞
0

ˆ 1

0

〈V λ, ν̃λ〉2 + 〈V λ, νλ〉2 dx dt+
1

2

ˆ ∞
0

|V λ(t, 0)|2 + |V λ(t, 1)|2 dt.

(3.54)

Combining (3.53) and (3.54), then leads to:

ˆ ∞
0

ˆ 1

0

〈V λ, ν̃λ〉2+〈V λ, νλ〉2 dxdt+

ˆ ∞
0

|V λ(t, 0)|2+|V λ(t, 1)|2 dt ≤ C (3.55)

for some constant C independent of λ. With (3.52), this shows:

ˆ ∞
0

ˆ 1

0

〈V λ, (µλ)⊥

|µλ| 〉
2 dxdt+

ˆ ∞
0

|V λ(t, 0)|2 + |V λ(t, 1)|2 dt ≤ C,

again, for a constant C independent of λ.

1. Step: In order to obtain (3.51), we are left to control the following
quantity from above:

ˆ ∞
0

ˆ 1

0

〈V λ, µ
λ

|µλ| 〉
2 dxdt.

To this end, we integrate (3.50) in the curve parameter over I and solve for L̂λt :

L̂λt =
1

L̃λ + Lλ

(
〈V λ, µλ〉

∣∣1
t=0
−
ˆ 1

0

〈V λ, (L̃λ)2κ̃λν̃λ + (Lλ)2κλνλ〉dx
)

Squaring both sides of the above equality, integrating them over t ∈ [0,∞) as
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well as using (3.46), (3.47), (3.55), and Hölder’s inequality, we get:

ˆ ∞
0

(L̂λt )2 dt ≤ C
ˆ ∞

0

|V λ(t, 0)|2 + |V λ(t, 1)|2 dt

+ C

ˆ ∞
0

(ˆ 1

0

〈V λ, (L̃λ)2κ̃λν̃λ + (Lλκλ)2νλ〉dx
)2

dt

≤ C + C

ˆ ∞
0

(ˆ 1

0

(κ̃λ)2 dx

)(ˆ 1

0

〈V λ, ν̃λ〉2 dx

)
dt

+ C

ˆ ∞
0

(ˆ 1

0

(κλ)2 dx

)(ˆ 1

0

〈V λ, νλ〉2 dx

)
dt

≤ C(ε)

(
1 +

ˆ ∞
0

ˆ 1

0

〈V λ, ν̃λ〉2 + 〈V λ, νλ〉2 dxdt

)
≤ C(ε),

(3.56)

where C andC(ε) are constants independent of λ. (Note that limε→0 C(ε) =∞.)
Next, we fix t ∈ [0,∞) and again integrate (3.50) in the curve parameter, but
this time over [0, x] for some fixed x ∈ I:

〈V λ, µλ〉(x, t) = 〈V λ, µλ〉(t, 0) + (L̃λ(t) + Lλ(t))L̂λt (t)x

+

ˆ x

0

〈V λ(x̃, t), (L̃λ(t))2κ̃λ(x̃, t)ν̃λ(x̃, t)〉 dx̃

+

ˆ x

0

〈V λ(x̃, t), (Lλ(t))2κλ(x̃, t)νλ(x̃, t)〉 dx̃.

Taking the square of both sides of the equality above, integrating over (t, x)
in I × [0,∞) as well as employing (3.46), (3.47), (3.55), (3.56), and Hölder’s
Inequality, then results in:

ˆ ∞
0

ˆ 1

0

〈V λ, µλ〉2 dxdt

≤ C
ˆ ∞

0

(
|V λ(t, 0)|2 + (̂Lλt )2(t)

)
dt

+ C

ˆ ∞
0

ˆ 1

0

(ˆ x

0

(κ̃λ)2(x̃, t) dx̃

)(ˆ x

0

〈V λ, ν̃λ〉2(x̃, t) dx̃

)
dxdt

+ C

ˆ ∞
0

ˆ 1

0

(ˆ x

0

(κλ)2(x̃, t) dx̃

)(ˆ x

0

〈V λ, νλ〉2(x̃, t) dx̃

)
dxdt

≤ C(ε)

(
1 +

ˆ ∞
0

ˆ 1

0

〈V λ, ν̃λ〉2 + 〈V λ, νλ〉2 dxdt

)
≤ C(ε)

for some constant C(ε) <∞ independent of λ. By (3.52), we conclude:

ˆ ∞
0

ˆ 1

0

〈V λ, µ
λ

|µλ| 〉
2 dxdt ≤ C

ˆ ∞
0

ˆ 1

0

〈V λ, µλ〉2 dx dt ≤ C(ε) (3.57)

for constant C(ε) independent of λ.

With the bounds on the velocity, we can derive the following uniform Hölder
estimates:
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Lemma 3.4 (Uniform Hölder continuity in time)
There exist constants C(ε), C independent of λ such that for all t1, t2 ∈ [0,∞)
with 0 ≤ t1 < t2 <∞, it holds that:

‖γ̂λ(·, t2)− γ̂λ(·, t1)‖L2 ≤ C(ε)(t2 − t1)
1
2 , (3.58)

and:
|γ̂λ(0, t2)− γ̂λ(0, t1)| ≤ C(t2 − t1)

1
2 ,

|γ̂λ(1, t2)− γ̂λ(1, t1)| ≤ C(t2 − t1)
1
2 .

(3.59)

Furthermore, for any T > 0:

‖γλ‖L∞T H2 ≤ C(ε, T ), (3.60)

where C(ε, T ) is a constant independent of λ.

Proof. By the absolute continuity of γ̂λ(x, ·) for every x ∈ I, (3.51), Hölder’s
inequality, and Fubini’s theorem, we derive:

‖γ̂λ(·, t2)− γ̂λ(·, t1)‖2L2 =

ˆ 1

0

∣∣∣∣ˆ t2

t1

V λ dt

∣∣∣∣2 dx

≤
ˆ 1

0

(t2 − t1)

(ˆ t2

t1

|V λ|2 dt

)
dx

≤ (t2 − t1)

ˆ ∞
0

‖V λ‖2L2 dt ≤ C(ε)(t2 − t1)

for some constant C(ε) independent of λ, and (3.58) follows. The proof of (3.59)
is similar.

Let us now fix T > 0, then with the definition of γ̂λ and (3.58), we can
derive for any t ∈ [0, T ]:

‖γ̂λ(·, t)‖L2 ≤ ‖γ̂λ(·, t)− γ̂λ(·, 0)‖L2 +‖γ0‖L2 ≤ C(ε)T
1
2 +C ≤ C(ε, T ) (3.61)

for some constant C(ε, T ) independent of λ. Applying (3.61) for all t ∈ [0, T ]
of the form t = λ−1n with n ∈ N, and using the definition of γ̂λ, we see that:

‖γλ(·, t)‖L2
TL

2 ≤ C(ε, T )

for the same constant C(ε, T ) as in (3.61). Furthermore, by (3.46) and (3.47),
we have:

‖γλx‖L∞H1 ≤ C
for some constant C independent of λ. Using the last two estimates, we conclude
that (3.60) is satisfied.

Throughout the chapter, we will be employing the interpolation inequality
in Sobolev spaces. (For a proof, we refer to Theorem 6.4 in [36].) Its precise
formulation is as follows:

Theorem 3.2 (Interpolation in Sobolev spaces)
Let Ω ⊂ Rn be a bounded open set with smooth boundary, and let i, j, and m be
integers such that 0 ≤ i ≤ j ≤ m. Let p, q ∈ [1,∞] satisfying 1 ≤ p ≤ q <∞ if
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(m− j)p ≥ n, or satisfying 1 ≤ p ≤ q ≤ ∞ if (m− j)p > n. Then, there exists
C = C(Ω) > 0 such that for all u ∈Wm,p(Ω), it holds:

‖Dju‖Lq(Ω) ≤ C
(
‖Dmu‖αLp(Ω)‖Diu‖1−αLp(Ω) + ‖Diu‖Lp(Ω)

)
, (3.62)

where:

α :=
1

m− i

(
n

p
− n

q
+ j − i

)
.

We will employ the interpolation inequality (3.62) for u being a curve pa-
rameterization γ : I → R2 (Ω = I). For the sake of clarity, in the next table
we list all possible combinations of i, j, m, p, q that we are going to encounter
along the way.

i j m p q α
a) 0 1 2 2 ∞ 3

4

b) 2 3 4 3
2

9
4

11
18

c) 2 2 4 3
2

9
2

2
9

d) 2 2 4 3
2 6 1

4

e) 2 3 4 3
2

39
23

7
13

f) 2 3 4 2 3 7
12

g) 2 2 4 2 6 1
6

Table 3.1: Admissible choices for the parameters of the interpolation inequality.

Thanks to the uniform L2 bound on the curvature in (3.47), we will improve
the Hölder continuity results from the previous lemma by interpolation.

Lemma 3.5
For any, α ∈ (0, 1

2 ) and T > 0, there exists a constant C(ε, T ) independent of
λ such that for all t1, t2 ∈ [0, T ) with t1 < t2, it holds that:

‖γ̂λ(·, t2)− γ̂λ(·, t1)‖C1,α ≤ C(ε, T )(t2 − t1)
1−2α

8 . (3.63)

Remark 3.1. Take any α ∈ (0, 1
2 ), and T > 0. Using (3.46) and (3.63), we

derive:

|〈γλx , γ̃λx 〉 − LλL̃λ| = |〈γλx − γ̃λx , γ̃λx 〉+ (L̃λ)2 − LλL̃λ|

≤ L̃λ
(
‖γλx − γ̃λx‖L∞ +

ˆ 1

0

|γλx − γ̃λx |dx
)

≤ C‖γλx − γ̃λx‖L∞ ≤ C(ε, T )λ
2α−1

8 → 0 as λ→∞.

Hence, by (3.46), there exists λ0 := λ0(ε, T ) > 0 independent of ε such that for
all λ > λ0, we have:

〈γλx , γ̃λx 〉 > 0 in I.

In particular, we derive the following crucial result: For λ > λ0 and n ∈
{1, . . . , bT/λc}, the step-by-step minimizer γλn satisfies:

γλn ∈ argmin
{
E(γ) + λD(γ, γλn−1) : γ ∈ AC

}
. (3.64)
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The difference is that γλn is only restrained to lie in AC instead of AC(γλn−1).
This will become relevant once we compute the Euler-Lagrange equation cor-
responding to the step-by-step minimization in (3.22), as (3.64) tells us that
the additional angle constraint coming from the definition of AC(γτn−1) is not
influencing the minimization, at least not for λ > λ0 and n ≤ bT/λc.

Proof. In order to shorten notation, we define:

∆γ̂λ := γ̂λ(·, t2)− γ̂λ(·, t1).

Using the interpolation inequality for the curve ∆γ̂λ with parameters listed in
row a) of Table 3.1, it follows:

‖(∆γ̂λ)x‖L∞ ≤ C
(
‖(∆γ̂λ)xx‖

3
4

L2‖∆γ̂λ‖
1
4

L2 + ‖∆γ̂λ‖L2

)
.

By the very definition of ∆γ̂λ, (3.58), and (3.60), we can control the right-hand
side of the equation above as follows:

‖(∆γ̂λ)x‖L∞ ≤ C(ε, T )
(

(t2 − t1)
1
8 + (t2 − t1)

1
2

)
= C(ε, T )

(
1 + (t2 − t1)

1
2− 1

8

)
(t2 − t1)

1
8

≤ C(ε, T )(t2 − t1)
1
8 (3.65)

for a constant C(ε, T ) independent of λ. Note that in the last inequality we have
used the fact that t1, t2 are in the bounded interval [0, T ]. By the fundamental
theorem of calculus, (3.59), and (3.65), we also derive:

‖∆γ̂λ‖L∞ ≤ |∆γ̂λ(0)|+
ˆ 1

0

|∆γ̂λx |dx

≤ C(t2 − t1)
1
2 + ‖∆γ̂λx‖L∞

≤ C(t2 − t1)
1
2 + C(ε, T )(t2 − t1)

1
8

≤ C(ε, T )(t2 − t1)
1
8 . (3.66)

Thus, in order to conclude on these statements, it remains to control the Hölder
semi-norm |∆γ̂λx |α. By Morrey’s inequality, (3.60), and (3.65), we have for any
x1, x2 ∈ I:

|∆γ̂λx (x2)−∆γ̂λx (x1)|
|x2 − x1|α

=

( |∆γ̂λx (x2)−∆γ̂λx (x1)|
|x2 − x1| 12

)2α

|∆γ̂λx (x2)−∆γ̂λx (x1)|1−2α

≤ C|∆γ̂λx |2α1
2
‖∆γ̂λx‖1−2α

L∞

≤ C‖∆γ̂λ‖2αH2‖∆γ̂λx‖1−2α
L∞ ≤ C(ε, T )(t2 − t1)

1−2α
8

for a constant C(ε, T ) independent of x1, x2, and λ. Taking the supremum over
all x1, x2 ∈ I then leads to:

|∆γ̂λx |α ≤ C(ε, T )(t2 − t1)
1−2α

8 (3.67)

for the same C(ε, T ) as before. Combining (3.66), (3.65), and (3.67), results in
(3.63).
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Theorem 3.3 (Initial compactness)
There exists γ : I × [0,∞)→ R2 such that for any α ∈ (0, 1

2 ) and β ∈ (0, 1−2α
8 ),

up to some subsequences, it holds:

γ̂λ → γ in C0,β
loc C

1,α, (3.68)

γ̂λ ⇀ γ weakly in H1
locL

2, (3.69)

γλ → γ in L∞locC
1,α, (3.70)

as well as
γ̂λ(0, ·) ⇀ γ(0, ·) weakly in H1

loc([0,∞);R2).

γ̂λ(1, ·) ⇀ γ(1, ·) weakly in H1
loc([0,∞);R2).

(3.71)

Proof. The proof of (3.68) follows by a standard diagonal sequence argument.
For this, let (Tk) ⊂ [0,∞) be an auxiliary sequence with Tk ↗ ∞ as k → ∞.

By (3.63) and the Arzelá-Ascoli theorem, there exists (λ
(0)
i ) converging to 0

and γ(0) : I × [0, T0]→ R2 such that for any α ∈ (0, 1
2 ), β ∈ (0, 1−2α

8 ):

γ̂λ
(0)
i → γ(0) in C0,β

T0
C1,α as i→∞.

We continue by applying for every k ∈ N+ the Arzelá-Ascoli theorem to the

sequence (γ̂λ
(k−1)
i )i in order to construct (λ

(k)
i )i as a subsequence of (λ

(k−1)
i )i

and γ(k) : I × [0, Tk+1]→ R2 such that for any α ∈ (0, 1
2 ), β ∈ (0, 1−2α

8 ):

γ̂λ
(k)
i → γ(k) in C0,β

Tk
C1,α as i→∞.

Note that as C0,β
Tk
C1,α convergence implies C0,β

Tk−1
C1,α convergence for any k ≥ 1,

we see:
γ(k)|[0,Tk] = γ(k−1) for all k ≥ 1.

Therefore, we can define γ : I × [0,∞)→ R2 by setting:

γ|[0,Tk] := γ(k) for k ∈ N.

Consequently, along the diagonal sequence λi := λ
(i)
i , it holds for any α ∈ (0, 1

2 ),
β ∈ (0, 1−2α

8 ) that:

γ̂λi → γ in C0,β
loc C

1,α.

From this point on, we assume that we have already extracted the subsequence
(γ̂λi) and will be denoting it, for the sake of abbreviation, just by (γ̂λ). By the
definition of γ̂λ and γλ, and thanks to (3.63), we see that for any α ∈ (0, 1

2 ),
T > 0, and 0 ≤ t ≤ T , it holds that:

‖γλ(·, t)− γ̂λ(·, t)‖C1,α ≤ C(ε, T )λ
2α−1

8
λ→∞→ 0. (3.72)

As a consequence of (3.68) and (3.72), we deduce (3.70). Finally, thanks to
(3.51), and the already proven convergence in (3.68), we have – up to a further
subsequence – that (3.69) and (3.71) hold true.

Next, we wish to compute the first variation of the minimization problem:

min{E + λD(γ, γ̃) : γ ∈ AC}, (3.73)
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for some fixed γ̃ ∈ AC. Due to the nonlinearity of the velocity constraint of AC,
the additive variation γ+ δη, with γ ∈ AC, δ > 0 a small scalar, and η ∈ H2, is
in general not admissible. Consequently, we need to reparametrize γ + δη via
a map Ψ(δ, ·) : I → I (depending on δ) such that (γ + δη) ◦Ψ(δ, ·) ∈ AC. More
precisely:

Lemma 3.6 (Admissible variations in AC)
For any γ ∈ AC, η ∈ H2(I;R2) and δ such that:

0 < δ < ‖ηx‖−1
L∞ min{L,dist({γ(0), γ(1)}, ∂Ω)}

(L length of γ) there exists a unique bijective map Ψ(δ, ·) : I → I such that
µ(δ, ·) : I → R2, defined as

µ(δ, x) := (γ + δη)(Ψ(δ, x)), (3.74)

satisfies:
µ(δ, ·) ∈ AC, µ(δ, 0) = γ(0) + δη(0). (3.75)

Furthermore, we have for every x ∈ I:

∂δΨ(0, x) =
1

L

(
x

ˆ 1

0

〈ηx, τ〉 dx̃−
ˆ x

0

〈ηx, τ〉 dx̃
)
, (3.76)

∂xΨ(0, x) = 1, (3.77)

∂xδΨ(0, x) =
1

L

(ˆ 1

0

〈ηx, τ〉 dx̃− 〈ηx(x), τ(x)〉
)
, (3.78)

where τ is the unit tangent vector field of γ.

Proof. Let δ > 0 be as described in the statement, and µ(δ, ·) as in (3.74), then
with δ < ‖η‖−1

∞ dist(γ(0), ∂Ω), we have that:

dist(µ(δ, 0), ∂Ω) ≥ dist(γ(0), ∂Ω)− δ‖η‖∞ > 0,

and hence µ(δ, 0) ∈ Ω. The same holds true for the other endpoint. Let us
consider the differentiable function F (δ, ·) : I → R given by:

F (δ, y) :=
1

Lδ

ˆ y

0

|γx + δηx| dx̃, (3.79)

where Lδ denotes the length of γ + δη. Then, as long δ < ‖ηx‖−1
L∞L, we have:

|γx + δηx| ≥ |γx| − δ‖ηx‖L∞ = L− δ‖ηx‖L∞ > 0

and consequently Fy(δ, y) > 0 for all y ∈ I. Together with F (δ, 0) = 0 and
F (δ, 1) = 1, this implies that F (δ, ·) is a diffeomorphism from I to I. Given δ
as described in the statement, let us consider Ψ(δ, ·) : I → I, defined as:

Ψ(δ, x) := F (δ, ·)−1(x).

We will show that Ψ is the desired diffeomorphism. As F (δ, 0) = 0, we also
have Ψ(δ, 0) = 0, and therefore:

µ(δ, 0) = γ(0) + δη(0)
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From F (δ,Ψ(δ, x)) = x, we see by the chain rule that:

∂yF (δ,Ψ(δ, x))∂xΨ(δ, x) = 1 (3.80)

∂δF (δ,Ψ(δ, x))+∂yF (δ,Ψ(δ, x))∂δΨ(δ, x) = 0. (3.81)

Moreover, for any y ∈ I:

∂yF (δ, y) =
|γx(y) + δηx(y)|

Lδ
, (3.82)

∂δF (δ, y) =
1

Lδ

ˆ y

0

〈 γx + δηx
|γx + δηx|

, ηx〉 dx̃

− 1

L2
δ

(ˆ y

0

|γx + δηx| dx̃
)(ˆ 1

0

〈 γx + δηx
|γx + δηx|

, ηx〉 dx̃
)
. (3.83)

With (3.80) and (3.82), we derive that:

∂xΨ(δ, x) =
Lδ

|(γx + δηx)(Ψ(δ, x))| , (3.84)

by which (3.77) follows. Furthermore, from the same equation, we also conclude
that:

|(µ(δ, ·))x(x)| = |(γ + δη)(Ψ(δ, x))||∂xΨ(δ, x)| = Lδ

and therefore µ ∈ AC. It remains to check (3.76) and (3.78). We use (3.81),
(3.82), (3.83), and Ψ(0, x) = x in order to compute

∂δΨ(0, x) = −∂δF (0,Ψ(0, x))

∂yF (0,Ψ(0, x))
= −∂δF (0, x)

=
1

L2

(
x

ˆ 1

0

〈ηx, γx〉 dx̃−
ˆ x

0

〈ηx, γx〉 dx̃
)
,

which is (3.76). In order to finish the proof, we differentiate (3.84) with respect
to δ:

∂xδΨ(δ, x) =
1

|(γx + δηx)(Ψ(δ, x))|

ˆ 1

0

〈
γx + δηx
|γx + δηx|

, ηx

〉
dx̃

− Lδ
|(γx + δηx)(Ψ(δ, x))|3

〈
(γx + δηx)(Ψ(δ, x)), ηx(Ψ(δ, x))

+ γxx(Ψ(δ, x))∂δΨ(δ, x) + δηxx(Ψ(δ, x))∂δΨ(δ, x)
〉
.

Plugging in δ = 0 above and using 〈γx, γxx〉 = 0, eventually leads to (3.78).

Remark 3.2. We wish to provide intuition behind formula (3.79). Suppose that
there exists a Ψ(δ, ·) : I → I such that µ(δ, ·), as defined in (3.74), satisfies
(3.75). Hence, we can follow that:

ˆ Ψ(δ,x)

0

|γx + δηx| dx̃ =

ˆ x

0

|µx(δ, x̃)| dx̃ = xLδ

for all x ∈ I. After dividing by Lδ above, we see that Ψ(δ, ·) is the inverse of:

F (δ, y) :=
1

Lδ

ˆ y

0

|γx + δηx| dx̃,

as long as one such inverse exists.
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The above lemma motivates the following definition:

Definition 3.2
Given γ, η ∈ H1, we define the functions P1(η, γ) : I → R and P2(η, γ) : I → R
as:

P1(η, γ)(x) := x

ˆ 1

0

〈ηx, τ〉 dx̃−
ˆ x

0

〈ηx, τ〉 dx̃, (3.85)

P2(η, γ)(x) :=

ˆ 1

0

〈ηx, τ〉 dx̃− 〈ηx(x), τ(x)〉. (3.86)

We are finally ready to compute the first variation of the minimization
problem (3.73), eventually leading to the weak formulation of the time-discrete
evolution in Proposition 3.3.

Lemma 3.7 (First variation)
Fix γ̃ ∈ AC and let γ ∈ AC be a minimizer of (3.73). Then for all η ∈ C∞, it
holds that:

E(η, γ) +D(η, γ) + Err(η, γ) = 0, (3.87)

where:

E(η, γ) :=

ˆ 1

0

(
ε

L2
κ〈ηxx, ν〉+

1

L
(1− 3ε

2
κ2)〈ηx, τ〉

)
Ldx

+ 〈η(0),∇pW (γ(0), γ(1))〉+ 〈η(1),∇qW (γ(0), γ(1))〉,

D(η, γ) :=
1

2

ˆ 1

0

〈λ(γ − γ̃), ν̃〉〈η, ν̃〉 L̃dx+
1

2

ˆ 1

0

〈λ(γ − γ̃), ν〉〈η, ν〉Ldx

+ 〈λ(γ(0)− γ̃(0)), η(0)〉+ 〈λ(γ(1)− γ̃(1)), η(1)〉,

Err(η, γ) :=
1

2

ˆ 1

0

L̃〈λ(γ − γ̃), ν̃〉〈ν̃, τ〉P1(η, γ) dx

+
1

2

ˆ 1

0

〈λ(γ − γ̃), ν̃〉〈γ − γ̃, τ〉(P2(η, γ)− LκP1(η, γ)) dx

+
1

2

ˆ 1

0

〈λ(γ − γ̃), ν̃〉〈(γ − γ̃)⊥, ηx〉dx

− 1

4

(ˆ 1

0

〈ηx, τ〉dx
)(ˆ 1

0

〈λ(γ − γ̃), ν〉〈γ − γ̃, ν〉dx
)
,

where P1(η, γ) and P2(η, γ) are as in (3.85) and (3.86), respectively.

Remark 3.3. It will prove useful to equivalently write E(η, γ) from the statement
of Lemma 3.7 as:

E(η, γ) :=

ˆ 1

0

(
ε

L4
〈ηxx, γxx〉+

1

L2
(1− 3ε

2
κ2)〈ηx, γx〉

)
Ldx

+ 〈∇pW (γ(0), γ(1)), η(0)〉+ 〈∇qW (γ(0), γ(1)), η(1)〉.

Furthermore, one can think of Err(η, γ) as an error term, which should vanish
in the limit λ→∞, as long as we can derive “good enough” compactness for
the sequence (γ̂λ). (The red terms in the definition of Err(η, γ) should be small
for λ >> 1.)
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Proof. For γ, γ̃ ∈ AC, let us shortly write F (γ, γ̃) := E(γ) + λD(γ, γ̃) with E
and D as in (3.73). From this point on, γ will denote a minimizer of (3.73). By
the minimality of γ, it follows that ∂

∂δ |δ=0F (µ(δ, ·)) = 0 with µ(δ, ·) as defined
in (3.74). It remains to show that:

∂

∂δ
|δ=0F (µ(δ, ·)) = E(η, γ) +D(η, γ) + Err(η, γ).

Given µ ∈ AC, for the reader’s convenience, we split the dissipation functional
D into the following three terms:

D1(µ, γ̃) :=
λ

2
|µ(0)− γ̃(0)|2 +

λ

2
|µ(1)− γ̃(1)|2,

D2(µ, γ̃) :=
λ

4L̃

ˆ 1

0

〈µ− γ̃, γ⊥x 〉2 dx,

D3(µ, γ̃) :=
λ

4L(µ)

ˆ 1

0

〈µ− γ̃, µ⊥x 〉2 dx.

Hence, we can split F as follows:

F (µ, γ̃) = E(µ) +D1(µ, γ̃) +D2(µ, γ̃) +D3(µ, γ̃).

In the following, we will separately compute the first variation of E, D1, D2,
and D3. We will repeatedly make use of the fact that all intrinsic quantities,
as well as all quantities depending only on the endpoints, remain unchanged
under the reparametrization of γ + δη into µ(δ, ·).

First variation of E: As:

E(µ(δ, ·)) = W (γ(0) + δη(0), γ(1) + δη(1))

+

ˆ 1

0

ε

2

〈γxx + δηxx, γ
⊥
x + δη⊥x 〉2

|γx + δηx|5
+ |γx + δηx|dx

we derive using the dominated convergence theorem, and γxx = Lκγ⊥x

∂

∂δ
|δ=0E(µ(δ, ·)) =

ˆ 1

0

ε
〈γxx, γ⊥x 〉
|γx|5

(〈γ⊥x , ηxx〉+ 〈γxx, η⊥x 〉) dx

−
ˆ 1

0

5ε

2

〈γxx, γ⊥x 〉2
|γx|7

〈γx, ηx〉+
〈γx, ηx〉
|γx|

dx

+ 〈∇pW (γ(0), γ(1)), η(0)〉+ 〈∇qW (γ(0), γ(1)), η(1)〉

=

ˆ 1

0

(
ε

L2
κ〈ηxx, ν〉+

1

L

(
1− 3ε

2
κ2

)
〈ηx, τ〉

)
Ldx.

+ 〈∇pW (γ(0), γ(1)), η(0)〉+ 〈∇qW (γ(0), γ(1)), η(1)〉.

First variation of D1:

∂

∂δ
|δ=0D1(µ(δ, ·), γ̃) =

∂

∂δ
|δ=0D1(γ + δη, γ̃)

= 〈λ(γ(0)− γ̃(0)), η(0)〉+ 〈λ(γ(1)− γ̃(1)), η(1)〉.
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First variation of D2: Let Ψ(δ, ·) (for δ > 0 small enough) be the diffeomor-
phism from Lemma 3.6. Comparing (3.76) and (3.78) with (3.85) and (3.86),
respectively, we see that:

Ψδ(0, ·) =
1

L
P1(η, γ), Ψxδ(0, ·) =

1

L
P2(η, γ). (3.88)

Furthermore, we preliminary compute:

µδ(δ, x) = Ψδ(δ, x)γx(Ψ(δ, x)) + η(Ψ(δ, x)) + δΨδ(δ, x)ηx(Ψ(δ, x)).

Hence, by the dominated convergence theorem:

∂

∂δ
|δ=0D2(µ(δ, ·)) =

1

2

ˆ 1

0

〈λ(γ − γ̃), ν̃〉〈η, ν̃〉 L̃dx

+
1

2

ˆ 1

0

L̃〈λ(γ − γ̃), ν̃〉〈ν̃, τ〉P1(η, γ) dx

First variation of D3: We preliminary compute:

µx(δ, x) = Ψx(δ, x)γx(Ψ(δ, x)) + δΨx(δ, x)ηx(Ψ(δ, x)),

µxδ(δ, x) = Ψx(δ, x)Ψδ(δ, x)γxx(Ψ(δ, x)) + Ψxδ(δ, x)γx(Ψ(δ, x))

+ Ψx(δ, x)ηx(Ψ(δ, x)) + δΨx(δ, x)Ψδ(δ, x)ηxx(Ψ(δ, x))

+ δΨxδ(δ, x)ηx(Ψ(δ, x)),

and:
∂

∂δ
|δ=0

1

L(µ(δ, ·)) = − 1

L2

ˆ 1

0

〈ηx, τ〉dx.

Therefore, by the dominated convergence theorem and (3.88), we see that:

∂

∂δ
|δ=0D3(µ(δ, ·))

=
λ

4L

ˆ 1

0

2〈γ − γ̃, γ⊥x 〉〈
1

L
P1(η, γ)γx + η, γ⊥x 〉dx

+
λ

4L

ˆ 1

0

2〈γ − γ̃, γ⊥x 〉〈γ − γ̃,
1

L
P1(η, γ)γ⊥xx +

1

L
P2(η, γ)γ⊥x + η⊥x 〉dx

− 1

L2

ˆ 1

0

〈γx
L
, ηx〉dx

ˆ 1

0

1

4λ
〈γ − γ̃, γ⊥x 〉2 dx.

The above equality can be further simplified to:

∂

∂δ
|δ=0D3(µ(δ, ·)) =

1

2

ˆ 1

0

〈λ(γ − γ̃), τ〉〈η, ν〉Ldx

+
1

2

ˆ 1

0

〈λ(γ − γ̃), ν̃〉〈γ − γ̃, τ〉(P2(η, γ)− LκP1(η, γ)) dx

+
1

2

ˆ 1

0

〈λ(γ − γ̃), ν̃〉〈(γ − γ̃)⊥, ηx〉dx

− 1

4

(ˆ 1

0

〈ηx, τ〉dx
)(ˆ 1

0

〈λ(γ − γ̃), ν〉〈γ − γ̃, ν〉dx
)

Combining all the aforementioned computations, we conclude the proof.
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Proposition 3.3 (Time-discrete evolution)
For any T > 0, there exists a λ0 = λ0(ε, T ) > 0 such that for every η ∈ C∞T C∞
and every λ > λ0, it holds that:

ˆ T

0

E(γλ(t, ·), η(t, ·)) +D(γλ(t, ·), η(t, ·)) +Err(γλ(t, ·), η(t, ·)) dt = 0, (3.89)

where E, D, and Err are as in the statement of Lemma 3.7.

Proof. The proof follows by using Remark 3.1, (3.87), and a simple induction
argument.

The weak formulation (3.89) of the time-discrete evolution will now be used
to derive further compactness results. We start with

Proposition 3.4
Up to a subsequence, it holds that:

γλ → γ strongly in L2
locH

2. (3.90)

Proof. Fix T > 0 and let λ0 be as in Remark 3.1. We wish to show that
(γλ) is a Cauchy sequence in L2

TH
2. A standard diagonal sequence argument

would then conclude the proof. Let us fix δ > 0. Due to (3.69), there exists
λ1 = λ1(δ) > 0 such that for all 0 < λ < Λ < λ1, we have for ∆γ := γΛ − γλ

‖∆γ‖L∞T C1 < δ. (3.91)

Given 0 < λ < Λ < min{λ0, λ1}, we write:

ε

(LΛ)3

ˆ T

0

ˆ 1

0

|∆γxx|2 dx dt

=

ˆ T

0

ˆ 1

0

ε

(LΛ)3
〈∆γxx, γΛ

xx〉 −
ε

(Lλ)3
〈∆γxx, γλxx〉dxdt

+

ˆ T

0

ˆ 1

0

ε

(
1

(LΛ)3
− 1

(Lλ)3

)
〈∆γxx, γλxx〉dxdt.

(3.92)

Subtracting (3.89) with time step Λ−1 and η = ∆γ from (3.89) with time step
λ−1, and again η = ∆γ, we can reformulate (3.92) as the sum:

ε

(LΛ)3

ˆ T

0

ˆ 1

0

|∆γxx|2 dx dt = A+Bλ1 −BΛ
1 +Bλ2 −BΛ

2 +Bλ3 −BΛ
3 , (3.93)

where

A =

ˆ T

0

ˆ 1

0

ε

(
1

(Lλ)3
− 1

(LΛ)3

)
〈∆γxx, γλxx〉dxdt,

Bλ1 =

ˆ T

0

ˆ 1

0

(1− 3ε

2
(κλ)2)〈∆γx, τλ〉dxdt

+

ˆ T

0

〈∇pW (γλ(t, 0), γλ(t, 1)),∆γ(t, 0)〉dt

+

ˆ T

0

〈∇qW (γλ(t, 0), γλ(t, 1)),∆γ(t, 1)〉dt,
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Bλ2 =
L̃λ

2

ˆ T

0

ˆ 1

0

〈V λ, ν̃λ〉〈∆γ, ν̃λ〉dxdt+
Lλ

2

ˆ T

0

ˆ 1

0

〈V λ, νλ〉〈∆γ, νλ〉dxdt

+

ˆ T

0

〈V λ(t, 0),∆γ(t, 0)〉+ 〈V λ(t, 1),∆γ(t, 1)〉dt,

Bλ3 =
Lλ

2

ˆ T

0

ˆ 1

0

〈V λ, ν̃〉〈ν̃, τ〉P1(∆γ, γλ) dxdt

+
1

2

ˆ T

0

ˆ 1

0

〈V λ, ν̃λ〉〈γλ − γ̃λ, P2(∆γ, γλ)− LλκλP1(∆γ, γλ)〉dxdt

+
1

2

ˆ 1

0

〈V λ, ν〉(γλ − γ̃λ)⊥∆γx dxdt

− 1

4

ˆ T

0

(ˆ 1

0

〈∆γx, τ〉dx
)(ˆ 1

0

〈V λ, νλ〉〈γλ − γ̃λ, νλ〉dx
)

dt,

and BΛ
i , i ∈ {1, 2, 3}, defined by the same formula as Bλi , but with each λ

exchanged with Λ. We wish to bound the right-hand side of (3.93). This will
be achieved by taking advantage of (3.91), thanks to which we can estimate
every ∆γ -and ∆γx-term appearing on the right-hand side of (3.93) by δ from
above. For all the remaining terms, it will be enough to find an upper bound
C(ε, T ) <∞ independent of Λ and λ. Without further mention, all constants
encountered in the following will be independent from the choice of λ and Λ:

A-term: Since Lλ, LΛ ≥ c > 0, due to the Lipschitz continuity of x 7→ x−3

away from 0, we have:

∣∣∣∣ 1

(Lλ)3
− 1

(LΛ)3

∣∣∣∣ ≤ C|Lλ − LΛ| = C

∣∣∣∣ˆ 1

0

|γλx | − |γΛ
x |dx

∣∣∣∣
≤ C(ε)

ˆ 1

0

|γλx − γΛ
x |dx ≤ C(ε)δ.

Combining this with the bound on the curvature in (3.47), we have:

|A| ≤ C(ε)

ˆ T

0

ˆ 1

0

|γλxx|2 + |γΛ
xx|2 dxdt ≤ C(ε)δ.

Bλ1 -term: Thanks to (3.46) and (3.47), we have:

|Bλ1 | ≤ C(ε)

ˆ T

0

ˆ 1

0

(
1 + (κλ)2

)
|∆γx|dxdt

+ C

ˆ T

0

|∆γ(t, 1)|+ |∆γ(t, 0)|dt

≤ C(ε)δ + Cδ = C(ε)δ.
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Bλ2 -term: Due to (3.46), (3.47), and (3.51), we have that:

|Bλ2 | ≤ C
ˆ T

0

ˆ 1

0

(|V λ|+ |V Λ|)|∆γ|dxdt

+

ˆ T

0

|V λ(t, 0)||∆γ(t, 0)|+ |V λ(t, 1)||∆γ(t, 1)|dt

≤
√
Tδ

(ˆ T

0

ˆ 1

0

|V λ|2 dt

) 1
2

+
√
Tδ

(ˆ T

0

|V λ(t, 0)|2 + |V λ(t, 1)|2 dt

) 1
2

≤ C(ε, T )δ.

Bλ3 -term: The bound on the Bλ3 -term can be obtained, by arguing as in the
estimate for Bλ2 and noticing that Pi(γ

λ,∆γ), i ∈ {1, 2}, can be bounded as
follows:

max
i
|Pi(∆γ, γλ)| ≤ C

ˆ 1

0

|〈γλx ,∆γx〉|dx ≤ Cδ.

Similarly, one can bound the BΛ
i -terms by Cδ.

Exploiting once more (3.46), and taking into account all the previous esti-
mates, we can find a constant c(ε) > 0 such that

c(ε)

ˆ T

0

ˆ 1

0

|∆γxx|2 dxdt ≤ ε

(LΛ)3

ˆ T

0

ˆ 1

0

|∆γxx|2 dxdt ≤ C(ε, T )δ.

With all the aforementioned bounds, we see that (γλ)λ is a Cauchy-sequence
in L2

TH
2, whose limit must be γ due to (3.70). This concludes the proof.

Corollary 3.1
As γλ(·, t) ∈ AC for all t and by the convergence in (3.70) and in (3.90), we
see that the limit evolution γ(t, ·) ∈ AC for almost all t.

In the following, we will continue by employing the ellipticity of (3.89), as
well as a boot-strapping argument, in order to show the uniform boundedness
of higher order x-derivatives of (γλ).

Proposition 3.5 (Boot-strapping)
Let T > 0 be fixed and λ > λ0 = λ0(ε, T ) with λ0 as in Remark 3.1. Then
γλxxxx(·, t) exists for all t ∈ [0, T ] and

‖γλxxxx‖
L

3
2
T L

3
2
≤ C(ε, T ) <∞ (3.94)

for a constant C(ε, T ) independent of λ.

Proof. Let us fix t ∈ [0, T ]. In order to keep the notation compact, we will
not explicitly write out the dependence of quantities such as γλ on t. So, for
example, γλ(·) := γλ(t, ·) for the fixed t ∈ [0, T ] from above. We define for any
f : [0, 1]→ R2:

D−1
x f(x) :=

ˆ s

0

f(x̃) dx̃
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and D−nx , for n ∈ N+, recursively as D−1
x D

−(n−1)
x . Integrating by parts in the

terms E(η, γλ) and D(η, γλ) from Lemma 3.7 for a fixed η ∈ C∞c , leads to:

E(η, γλ) =

ˆ 1

0

〈
ε

(Lλ)3
γλxx +D−1

x A1, ηxx

〉
dx (3.95)

D(η, γλ) =

ˆ 1

0

〈D−2
x A2, ηxx〉dx, (3.96)

where

A1 := −(1− 3ε

2
(κλ)2)τλ, A2 :=

L̃λ

2
〈V λ, ν̃λ〉ν̃λ +

Lλ

2
〈V λ, νλ〉νλ.

Using the definition of P1 and P2 (see also (3.85) and (3.86)), Fubini’s theorem,
and integrating by parts in the term Err(η, γλ) from Lemma 3.7 for the same
η as before, we derive:

Err(γλ, η) =

ˆ 1

0

〈
D−1
x Ã, ηxx

〉
dx (3.97)

where:

Ã :=

(ˆ 1

x

A3 dx̃−
ˆ 1

0

x̃A3 dx̃+A4 −
ˆ 1

0

A4 dx̃+A5

)
τλ +A6,

A3 :=
L̃λ

2
〈V λ, ν̃λ〉〈ν̃λ, τλ〉+

1

2
κ〈V λ, ν̃λ〉〈γλ − γ̃λ, ν〉,

A4 :=
1

2
〈V λ, ν̃λ〉〈γλ − γ̃λ, νλ〉,

A5 :=
1

4

ˆ 1

0

〈V λ, νλ〉〈γλ − γ̃λ, νλ〉dx,

A6 := −L
λ

2
〈V λ, ν̃λ〉(γλ − γ̃λ)⊥.

By (3.95), (3.96), (3.97), and (3.89), there exists vλ = vλ(t), wλ = wλ(t) ∈ R2

such that:

− ε

(Lλ)3
γλxx(x) = vλ + wλx+D−1

x A7(x) +D−2
x A2(x), (3.98)

where:

A7 := A1 +

(ˆ 1

x

A3 dx̃−
ˆ 1

0

x̃A3 dx̃+A4 −
ˆ 1

0

A4 dx̃+A5

)
γλx +A6.

As the right-hand side of (3.98) is weakly differentiable (with respect to x), we
can further differentiate γλxx to obtain:

− ε

(Lλ)3
γλxxx = wλ +A7 +D−1

x A2.

By the very definition of A7 and the regularity of γλ, this shows that γλ is four
times weakly differentiable and:

− ε

(Lλ)3
γλxxxx = (A7)x +A2.
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For convenience, we will now split up the right-hand side of the above equation
as follows:

− ε

(Lλ)3
γλxxxx =

5∑
i=1

Bi, (3.99)

where

B1 := (A1)x =
1

Lλ

(
3εκλκλxγ

λ
x − (1− 3ε

2
(κλ)2)γλxx

)
,

B2 := A2,

B3 := A3γ
λ
x +

(ˆ 1

x

A3 dx̃−
ˆ 1

0

x̃A3 dx̃

)
γλxx,

B4 := (A4)xγ
λ
x +

(
A4 −

ˆ 1

0

A4 dx̃

)
γλxx,

B5 := (A5)xγ
λ
x +A5γ

λ
xx + (A6)x.

Let us separately estimate each term on the right-hand side of (3.99). We
note that we will repeatedly make use of (3.46), (3.47), (3.63), as well as the
boundedness implied by the convergence in (3.70). Furthermore, all constants
appearing in the following estimates will be independent of λ.

B1-term:

ˆ 1

0

|B1|
3
2 dx ≤ C(ε)

ˆ 1

0

|κλ| 32 |κλx|
3
2 + |γλxx|

3
2 + |κλ|3|γλxx|

3
2 dx

≤ C(ε)

ˆ 1

0

|γλxx|
3
2 (|γλxxx|

3
2 + 1) + |γλxx|

9
2 dx

≤ C(ε)

ˆ 1

0

1 + |γλxxx|
9
4 + |γλxx|

9
2 dx,

where in the third line we employed Young’s inequality. Using the interpolation
inequality (3.62) with parameters given by row b) and c) in Table 3.1, and
eventually Young’s inequality with arbitrary δ > 0, leads to:

‖γλxxx‖
9
4

L
9
4
≤ C

(
‖γλxxxx‖

11
8

L
3
2
‖γλxx‖

7
8

L
3
2

+ ‖γλxx‖
9
4

L
3
2

)
.

≤ C
(
δ‖γλxxxx‖

3
2

L
3
2

+ C(δ)‖γλxx‖
21
2

L
3
2

+ ‖γλxx‖
9
4

L
3
2

)
≤ Cδ‖γλxxxx‖

3
2

L
3
2

+ C(δ, ε)

as well as:

‖γλxx‖
9
2

L
9
2
≤ C

(
‖γλxxxx‖L 3

2
‖γλxx‖

7
2

L
3
2

+ ‖γλxx‖
9
2

L
3
2

)
≤ C

(
δ‖γλxxxx‖

3
2

L
3
2

+ C(δ)‖γλxx‖
21
2

L
3
2

+ ‖γλxx‖
9
2

L
3
2

)
≤ Cδ‖γλxxxx‖

3
2

L
3
2

+ C(δ, ε).

Consequently, we derive:

ˆ 1

0

|B1|
3
2 dx ≤ C(ε, δ) + C(ε)δ‖γλxxxx‖

3
2

L
3
2
.
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B2-term:

ˆ 1

0

|B2|
3
2 dx ≤ C‖B2‖

3
2

L2 ≤ C‖V λ‖
3
2

L2 ≤ C(1 + ‖V λ‖2L2).

B3-term:

ˆ 1

0

|B3|
3
2 dx ≤ C

ˆ 1

0

(
|A3|

3
2 +

(ˆ 1

0

|A3| dx̃
) 3

2

|γλxx|
3
2

)
dx

≤ C(T )

ˆ 1

0

|V λ| 32 (1 + |γλxx|
3
2 ) dx

+ C(T )

ˆ 1

0

(‖V λ‖
3
2

L1 + ‖V λ‖
3
2

L2‖γλxx‖
3
2

L2)|γλxx|
3
2 dx

≤ C(T )

ˆ 1

0

(
1 + C(δ)|V λ|2 + δ|γλxx|6

)
dx

+ C(T )(‖V λ‖
3
2

L1 + ‖V λ‖
3
2

L2‖γλxx‖
3
2

L2)‖γλxx‖
3
2

L
3
2

≤ C(T, δ)
(
1 + ‖V λ‖2L2

)
+ C(ε, T )δ‖γλxx‖6L6 + C(ε, T )‖V λ‖

3
2

L2

≤ C(ε, T, δ)
(
1 + ‖V λ‖2L2

)
+ C(ε, T )δ‖γλxx‖6L6 ,

where in the third line we used Young’s inequality with arbitrary δ > 0 in order
to estimate |V λ| 32 (1 + |γλxx|

3
2 ). Making use of the interpolation inequality (3.62)

with parameters given by row d) of Table 3.1, it follows that:

‖γλxx‖6L6 ≤ C
(
‖γλxxxx‖

3
2

L
3
2
‖γλxx‖

9
2

L
3
2

+ ‖γλxx‖6
L

3
2

)
≤ C

(
‖γλxxxx‖

3
2

L
3
2
‖γλxx‖

9
2

L2 + ‖γλxx‖6L2

)
. (3.100)

Combining the last two estimates then results in:

ˆ 1

0

|B3|
3
2 dx ≤ C(ε, T, δ)(1 + ‖V λ‖2L2) + C(ε, T )δ‖γλxxxx‖

3
2

L
3
2
.

B4-term:

ˆ 1

0

|B4|
3
2 dx

≤ C
ˆ 1

0

(
|(A4)x|

3
2 +

(ˆ 1

0

|A4| dx̃
) 3

2

|γλxx|
3
2 + |A4|

3
2 |γλxx|

3
2

)
dx. (3.101)

With:

2Lλ(A4)x = 〈γλx − γ̃λx , ν̃λ〉〈V λ, νλ〉+ L̃λκ̃λ〈V λ, ν̃λ〉〈γλ − γ̃λ, νλ〉
+ 〈V λ, ν̃λ〉〈γλx − γ̃λx , νλ〉+ Lλκλ〈V λ, ν̃λ〉〈γλ − γ̃λ, νλ〉,
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and (3.100), we follow that:

ˆ 1

0

|(A4)x|
3
2 dx ≤ C(T )

ˆ 1

0

|V λ| 32 (1 + |γλxx|
3
2 ) dx

≤ C(T )

ˆ 1

0

1 + C(δ)|V λ|2 + δ|γλxx|6 dx

= C(T, δ)(1 + ‖V λ‖2L2) + C(ε, T )δ‖γλxxxx‖
3
2

L
3
2
.

Furthermore, by (3.100) and again Young’s inequality:

ˆ 1

0

(ˆ 1

0

|A4| dx̃
) 3

2

|γλxx|
3
2 + |A4|

3
2 |γλxx|

3
2 dx

≤ C(T )

(
‖V λ‖

3
2

L1‖γλxx‖
3
2

L
3
2

+

ˆ 1

0

|V λ| 32 |γλxx|
3
2 dx

)
≤ C(ε, T )(1 + ‖V λ‖2L2) + C(T, δ)‖V λ‖2L2 + δ‖γλxx‖6L6

≤ C(ε, T, δ)(1 + ‖V λ‖2L2) + C(ε, T )δ‖γλxxxx‖
3
2

L
3
2
.

Combining the last three estimates, results in:

ˆ 1

0

|B4|
3
2 dx ≤ C(ε, T, δ)(1 + ‖V λ‖2L2) + C(ε, T )δ‖γλxxxx‖

3
2

L
3
2
.

B5-term: Repeating the same argument as in the previous steps, we derive
that: ˆ 1

0

|B5|
3
2 dx ≤ C(ε, T, δ)(1 + ‖V λ‖2L2) + C(ε, T )δ‖γλxxxx‖

3
2

L
3
2
.

Hence, with (3.99) and the bounds we found for the Bi-terms, we have:

c(ε)‖γλxxxx‖
3
2

L
3
2
≤ C(ε, T, δ)

(
1 + ‖V λ‖2L2

)
+ C(ε, T )δ‖γλxxxx‖

3
2

L
3
2
.

Taking δ > 0 small enough, we then see:

‖γλxxxx‖
3
2

L
3
2
≤ C(ε, T )

(
1 + ‖V λ‖2L2

)
.

As t ∈ [0, T ] was arbitrary:

‖γλxxxx(t, ·)‖
3
2

L
3
2
≤ C(ε, T )

(
1 + ‖V λ(t, ·)‖2L2

)
(3.102)

for all t ∈ [0, T ]. Integrating (3.102) over t ∈ [0, T ] and employing the velocity
bound in (3.51), finally leads to (3.94).

The previously derived bound results in the following compactness result:

Theorem 3.4
Up to taking subsequences, it holds that:

γλ ⇀ γ weakly in L
3
2

locW
4, 32 (3.103)

γλ → γ strongly in L
39
23

locW
3, 39

23 , (3.104)
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where γ is the limit from Theorem 3.3. In particular, we have that for almost
all t:

γλ(t, ·)→ γ(t, ·) in C2. (3.105)

Proof. Let us fix T > 0, and suppose that we have selected (without renum-
bering) the subsequence from Theorem 3.3. Then, directly from the bound in
(3.94), we see that:

γλ ⇀ γ weakly in L
3
2

TW
4, 32 .

In the following: we will show that (γλ) is Cauchy in L
39
23

T W 2, 39
23 . For this,

fix δ̃, δ ∈ R such that δ ≥ δ̃ > 0. From (3.90), we know that there exists
λ0 = λ0(δ̃) > 0 big enough such that for any λ,Λ ∈ R with Λ > λ > λ0 and for
∆γ := γΛ − γλ, it holds that:

‖∆γ‖
L

39
23
T W 2, 39

23
≤ C‖∆γ‖L2

TH
2 < δ̃, (3.106)

where we have employed Hölder’s inequality in the first step above. By the
interpolation inequality (3.62) with parameters given by row e) in Table 3.1,
we have:

‖∆γxxx‖
L

39
23
≤ C

(
‖∆γxxxx‖

7
13

L
3
2
‖∆γxx‖

6
13

L
3
2

+ ‖∆γxx‖
L

3
2

)
.

Hence by Hölder’s inequality, (3.94), and (3.106), we derive for all Λ > λ > λ0:

ˆ T

0

‖∆γxxx‖
39
23

L
39
23

dt

≤ C
ˆ T

0

(
‖∆γxxxx‖

21
23

L
3
2
‖∆γxx‖

18
23

L
3
2

+ ‖∆γxx‖
39
23

L
3
2

)
dt

≤ C‖∆γxxxx‖
L

3
2
T L

3
2
‖∆γxx‖L2

TL
2 + C(T )‖∆γxx‖

39
46

L2
TL

2

≤ C(ε, T )(δ̃ + δ̃
39
46 ).

Therefore, for δ̃ small enough, we have for Λ > λ > λ0:

‖∆γxxx‖
L

39
23
T L

39
23
< δ. (3.107)

Thanks to (3.106) and (3.107), we conclude (3.104) through a diagonal sequence
argument. Note that (3.105) follows from the Sobolev’s embedding Theorem.

Our last compactness result is derived from the coupling relation (3.50),
which will also lead to the equation (compare with (3.110)) satisfied by the
tangential component of the velocity of γ.

Theorem 3.5
Let V := γt, where γ is the limit from Theorem 3.3, and L̂λ be defined as in
Definition 3.1. Then, up to a subsequence, it holds:

L̂λ ⇀ L weakly in H1
loc([0,∞)), (3.108)

〈V λ, γ̃λx + γλx 〉⇀ 2LV > weakly in L
3
2

loc([0,∞);W 1, 32 ). (3.109)
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Furthermore, for almost all t ≥ 0 and x ∈ I, the limit γ satisfies:

V >x (t, x) = L′(t) + L(t)κ(t, x)V ⊥(t, x). (3.110)

Proof. Let us fix T > 0. We start by integrating (3.50) for fixed t ∈ [0, T ] over
x ∈ I, and consequently solving for L̂λt :

(L̃λ + Lλ)L̂λt = 〈V λ, γ̃λx + γλx 〉|1t=0 −
ˆ 1

0

〈V λ, L̃λκ̃λR(γ̃λx ) + LλκλR(γλx )〉dx.

Integrating the square of the above equation over t ∈ [0, T ] and using (3.46),
(3.47), and (3.51), we derive:

ˆ T

0

(L̂λt )2 dt

≤ C
ˆ T

0

(
|V λ(t, 0)|2 + |V λ(t, 1)|2

)
dt

+ C

ˆ T

0

((ˆ 1

0

|κ̃λV λ|dx
)2

+

(ˆ 1

0

|κλV λ|dx
)2
)

dt

≤ C
ˆ T

0

(
|V λ(t, 0)|2 + |V λ(t, 1)|2

)
dt+ C

ˆ T

0

(ˆ 1

0

(κ̃λ)2 dx

ˆ 1

0

|V λ|2 dx

)
dt

+ C

ˆ T

0

(ˆ 1

0

(κλ)2 dx

ˆ 1

0

|V λ|2 dx

)
dt

≤ C(ε)

ˆ T

0

(
|V λ(t, 0)|2 + |V λ(t, 1)|2

)
dt+ C(ε)

ˆ T

0

ˆ 1

0

|V λ|2 dxdt

≤ C(ε, T ).

Hence, (L̂λ) is uniformly bounded in H1(0, T ) and, up to choosing a subse-
quence:

L̂λ ⇀ L weakly in H1(0, T ).

Next, we take the absolute value of both sides of (3.50) to the power 3
2 and

integrate over x ∈ I and t ∈ [0, T ]. By the L2([0, T ]) bound on (Lλt )λ, (3.51),
(3.100), and (3.94), we have:

ˆ T

0

ˆ 1

0

|〈V λ, γ̃λx + γλx 〉x|
3
2 dxdt

≤ C
ˆ T

0

(L̂λt )
3
2 dt+ C

ˆ T

0

ˆ 1

0

|V λ| 32 |γλxx|
3
2 dx dt

≤ C(T )‖L̂λt ‖
3
2

L2 +

ˆ T

0

‖V λ‖2L2 + ‖γλxx‖6L6 dt ≤ C(ε, T ),

where in the third line we have employed Young’s inequality. Hence, 〈V λ, γ̃λx +

γλx 〉x is bounded in L
3
2

TL
3
2 and, up to taking a further subsequence:

〈V λ, γ̃λx + γλx 〉⇀ 〈V, 2γx〉 = 2LV > weakly in L
3
2 (0, T ;W 1, 32 ).

By a diagonal sequence argument, we conclude (3.108) and (3.109). Finally,
equation (3.110) follows by combining these two convergences with (3.50).
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3.3.2 Convergence

In this subsection, we proof the main result of this chapter stated in Theorem 3.1.
Let us start by employing the compactness results of the previous subsection
in order to pass to the limit λ → ∞ in the weak formulation (3.89) of the
time-discrete evolution.

Theorem 3.6 (Weak form of the geometric evolution)
Let γ be the limit of Theorem 3.3, then for all test functions η ∈ C∞c C∞, it
holds that:

ˆ ∞
0

ˆ 1

0

(
ε

L2
κ〈ηxx, ν〉+

1

L
(1− 3ε

2
κ2)〈ηx, τ〉

)
Ldxdt

+

ˆ ∞
0

〈∇pW (γ(t, 0), γ(t, 1)), η(t, 0)〉+ 〈∇qW (γ(t, 0), γ(t, 1)), η(t, 1)〉dt

+

ˆ T

0

ˆ 1

0

V ⊥〈η, ν〉Ldxdt

+

ˆ ∞
0

〈V (t, 0), η(t, 0)〉+ 〈V (t, 1), η(t, 1)〉dt = 0.

(3.111)

Proof. By (3.89), in order to show (3.111) it is enough to prove the following
convergences as λ→∞ (up to taking subsequences):

ˆ ∞
0

E(γλ, η) dt→
ˆ ∞

0

E(γ, η), (3.112)

ˆ ∞
0

D(γλ, η) dt→
ˆ ∞

0

ˆ 1

0

〈V, ν〉〈η, ν〉Ldxdt

+

ˆ ∞
0

〈V (t, 0), η(t, 0)〉+ 〈V (t, 1), η(t, 1)〉dt (3.113)

ˆ ∞
0

Err(γλ, η) dt→ 0. (3.114)

In the following, let T > 0 be big enough such that spt(η) ⊂ [0, T ]×I. Without
renumbering, we suppose that we have already selected a subsequence such that
all the compactness statements from the previous subsection hold true for the
whole sequence (γλ) with the limit denoted by γ.

Proof of (3.112): By (3.46), there exists a constant d0 > 0 such that for all
λ:

|γλ(t, 0)− γλ(t, 1)| ≥ c.
With (3.68), this is also satisfied for the limit γ. Consequently by the smoothness
of W in the set {(p, q) ∈ Ω2 : |p− q| ≥ d0}, we see that:

|〈∇pW (γλ(t, 0), γλ(t, 1)), η(t, 0)〉 − 〈∇pW (γ(t, 0), γ(t, 1)), η(t, 0)〉|
≤ C(d0)(|γλ(t, 0)− γ(t, 0)|+ |γλ(t, 1) + γ(t, 1)|)‖η‖L∞T L∞
≤ C(d0, η)‖γ̂λ − γ‖C0

TC
0 → 0 as λ→ 0.

In the same way, one can also show that:

〈∇qW (γλ(t, 0), γλ(t, 1)), η(t, 0)〉 → 〈∇qW (γλ(t, 0), γλ(t, 1)), η(t, 0)〉.
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Employing (3.46) and (3.47), we can find C(ε, η) < ∞ independent of λ such
that: ˆ 1

0

(
ε

(Lλ)2
κλ〈ηxx, νλ〉+

1

Lλ
(1− 3ε

2
(κλ)2)〈ηx, τ〉

)
Lλdx ≤ C(ε, η).

Thus, (3.105), the dominated convergence theorem, and the previous conver-
gence of the renormalized energy terms lead to (3.112).

Proof of (3.113): By (3.70), we have that:

L̃λ〈η, ν̃λ〉ν̃λ → L〈η, ν〉ν, Lλ〈η, νλ〉νλ → 〈η, ν〉ν

strongly in L∞T L
∞, and therefore also strongly in L2

TL
2. Hence, by weak-strong

convergence, we derive:

1

2

ˆ T

0

ˆ 1

0

L̃λ〈V λ, 〈η, ν̃λ〉ν̃λ〉+ Lλ〈V λ, 〈η, νλ〉νλ〉dxdt

→
ˆ T

0

ˆ 1

0

〈V, ν〉〈η, ν〉Ldx dt.

Therefore, by additionally using (3.71), we follow (3.113).
Proof of (3.114): From (3.70) and the definition of P1 and P2 (see also

(3.85) and (3.86)), we derive that:

P1(η, γλ)→ P1(η, γ), P2(η, γλ)→ P2(η, γ)

strongly in L∞([0, T ];L∞(I)). Thus, (3.70) and (3.90) imply that:

L̃λ〈ν̃λ, τλ〉P1(η, γλ)ν̃λ → 0,

〈γλ − γ̃λ, τλ〉(P2(η, γλ)− LκP1(η, γλ))ν̃λ → 0,(ˆ 1

0

〈ηx, τλ〉dx
)
〈γλ − γ̃λ, νλ〉νλ → 0,

strongly in L2
TL

2. Therefore, as in the previous step, the result follows by
weak-strong convergence.

In the next corollary, we will show that the regularity of the limit evolution
can be improved:

Corollary 3.2
For the time-continuous evolution γ from Theorem 3.6, it holds that γ ∈ L2

locH
4.

From (3.94), only γ ∈ L
3
2

locW
4, 32 can be deduced a priori. In order to improve

the integrability from 3
2 to 2, we have to repeat the strategy of the proof of

Proposition 3.5 in the time-continuous setting. Instead of (3.89), we will employ
(3.111) which – in contrast to (3.89) – is simpler as it misses the Err-term. More
precisely:

Proof. Testing (3.111) with η(t, x) := ψ(t)ϕ(x), where ψ ∈ C∞c ([0,∞) and
ϕ ∈ C∞c ((0, 1);R2), as well as using the arbitrariness of ψ, we derive that for
a.e. t ∈ [0,∞), it follows that:

ˆ 1

0

ε

L3
〈γxx, ϕxx〉+ (1− 3ε

2
κ2)〈ϕx, τ〉+ L〈V, ν〉〈ϕ, ν〉dx = 0.
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Integrating by parts in the above equation and employing the notation from
the proof of Proposition 3.5, then leads to:

ˆ 1

0

〈
ε

L3
γxx −D−1

x ((1− 3ε

2
κ2)τ) +D−2

x (L〈V, ν〉ν), ϕxx

〉
dx = 0

for a.e. t ∈ [0,∞). Hence, for all such t, there exist v(t), w(t) ∈ R2 satisfying
for a.e. x ∈ I:

− ε

L3
γxx = v + wx−D−1

x ((1− 3ε

2
κ2)τ) +D−2

x (L〈V, ν〉ν).

We then twice differentiate the equation above which leads to:

− ε

L3
γxxxx = 3εκκxγx − L(1− 3ε

2
κ2)κν + L〈V, ν〉ν,

again, for a.e. t ≥ 0 and a.e x ∈ I. Consequently, by Young’s Inequality, (3.46)
and (3.47) we have for a.e. t ∈ [0,∞):

‖γxxxx‖2L2 ≤ C(ε)

ˆ 1

0

|κ|2|κx|2 + |γxx|2 + |κ|4|γxx|2 + |V |2 dx

≤ C(ε)

ˆ 1

0

|γxx|2(|γxxx|2 + 1) + |γxx|6 + |V |2 dx

≤ C(ε)

ˆ 1

0

1 + |γxx|6 + |γxxx|3 + |V |2 dx.

Employing the interpolation inequality (3.62) with parameters given by rows
f) and g) in Table 3.1, Young’s inequality with δ > 0, and (3.47), we have:

‖γxxx‖3L3 ≤ C
(
‖γxxxx‖

21
12

L2‖γxx‖
5
4

L2 + ‖γxx‖3L2

)
≤ C

(
δ‖γxxxx‖2L2 + C(δ)‖γxx‖

35
12

L2 + ‖γxx‖3L2

)
≤ Cδ‖γxxxx‖2L2 + C(δ, ε),

as well as:

‖γxx‖6L6 ≤ C
(
‖γxxxx‖1L2‖γxx‖5L2 + ‖γxx‖6L2

)
≤ C

(
δ‖γxxxx‖2L2 + C(δ)‖γxx‖10

L2 + ‖γxx‖6L2

)
≤ Cδ‖γxxxx‖2L2 + C(δ, ε).

We combine the last two estimates:

‖γxxxx‖2L2 ≤ C(ε)δ‖γxxxx‖2L2 + C(δ, ε)

ˆ 1

0

1 + |V |2 dx.

Hence, choosing δ small enough, we have for a.e. t ∈ [0,∞):

‖γxxxx‖2L2 ≤ C(ε)

ˆ 1

0

1 + |V |2 dx.

Integrating the above inequality over t ∈ [0, T ] with arbitrary T > 0 and using
the velocity bound in (3.51), we conclude the proof.
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We are finally ready to prove the main result of this chapter (see also
Theorem 3.1):

Proof of Theorem 3.1. The regularity statements in (3.40) directly follow from
(3.68), (3.69), (3.71), and Corollary 3.2. We wish to show that γ satisfies all
five equations stated in Theorem 3.1 at a.e. t ∈ [0,∞) and a.e. x ∈ I. Due to
Corollary 3.2, we can find a sequence (µi) ⊂ C∞c C∞ ∩ L2

locH
4 such that:

µi → γ strongly in L2
locH

4 as i→∞.

So, in particular:

µi → γ strongly in L2
locC

3. (3.115)

Furthermore, by (3.68), we can also assume that:

µi → γ strongly in C0
cC

1. (3.116)

1. step: We will first show the geometric evolution of the interior of the curve.
Fix ϕ ∈ C∞([0, T ]× I) for some arbitrary T > 0. By (3.115), the definition of
E from Lemma 3.7, Hölder’s inequality, (3.46), and the interpolation estimate
in (3.100), we derive:∣∣∣∣ˆ ∞

0

E(γ, ϕ(µix)⊥) dt−
ˆ ∞

0

E(γ, ϕγ⊥x ) dt

∣∣∣∣
≤
ˆ T

0

ˆ 1

0

C(ϕ)(1 + |γxx|+ |γxx|2)‖µi(t, ·)− γ(t, ·)‖C3 dxdt

≤ C(ϕ)

(ˆ T

0

1 + ‖γxx(t, ·)‖6L6 dt

) 1
3
(ˆ T

0

‖µi(t, ·)− γ(t, ·)‖
3
2

C3 dt

) 2
3

≤ C(ϕ, ε, T )‖µi − γ‖L2
TC

3
h→∞→ 0.

Furthermore, by (3.46) and (3.116), we also see that:∣∣∣∣∣
ˆ T

0

ˆ 1

0

LV ⊥〈ϕ(µix)⊥, ν〉dxdt

∣∣∣∣∣
≤ C(ϕ)‖V ⊥‖L2

TL
2‖µi − γ‖L∞T C1

h→∞→ 0.

In a similar fashion, we can show;∣∣∣∣ˆ ∞
0

〈V (t, 0), ϕ(t, 0)(µix)⊥〉+ 〈V (t, 0), ϕ(t, 0)(µix)⊥〉dt

−
ˆ ∞

0

〈V (t, 0), ϕ(t, 0)γ⊥x 〉 − 〈V (t, 0), ϕ(t, 0)γ⊥x 〉dt
∣∣∣∣→ 0 as i→∞.
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Let us now test (3.111) with η = ϕ(µix)⊥ and pass to the limit i→∞:

ˆ ∞
0

ˆ 1

0

εκϕxx − εL2κ3ϕ− L2(κ− 3ε

2
κ3)ϕ+ L2V ⊥ϕdxdt

+

ˆ T

0

Lϕ(t, 0)〈∇pW (γ(t, 0), γ(t, 1)), ν(t, 0)〉dt

+

ˆ T

0

Lϕ(t, 1)〈∇qW (γ(t, 0), γ(t, 1)), ν(t, 1)〉dt

+

ˆ T

0

(
ϕ(t, 0)V ⊥(t, 0) + ϕ(t, 1)V ⊥(t, 1)

)
Ldt = 0

(3.117)

Assuming additionally ϕ(t, 0) = ϕ(t, 1) = 0 for all t ∈ [0,∞) and integrating by
parts in (3.117), then leads to:

ˆ ∞
0

ˆ 1

0

( ε

L2
κxx +

ε

2
κ3 − κ+ V ⊥

)
L2ϕdxdt = 0.

By the arbitrariness of ϕ, we see that (3.41) holds true.
2. step: We wish to investigate the equations governing the evolution of the

endpoints. Let us now take ϕ ∈ C∞c ([0,∞);C∞(I)), possibly nonzero at ∂I.
Integrating by parts in (3.117) and using (3.41), we derive that:

ˆ T

0

εκϕx dt− εκxϕ|1t=0

+

ˆ T

0

Lϕ(t, 0)〈∇pW (γ(t, 0), γ(t, 1)), ν(t, 0)〉dt

+

ˆ T

0

Lϕ(t, 1)〈∇qW (γ(t, 0), γ(t, 1)), ν(t, 1)〉dt

+

ˆ T

0

(
ϕ(t, 0)V ⊥(t, 0) + ϕ(t, 1)V ⊥(t, 1)

)
Ldt = 0

(3.118)

Choosing ϕ such that ϕ(·, 0) = ϕ(·, 1) = ϕx(·, 1) = 0 in (3.118) leads to:

ˆ T

0

εκ(t, 0)ϕx(t, 0) dt = 0,

and due to the arbitrariness of ϕx(·, 0) and T to:

κ(t, 0) = 0

for a.e. t ∈ [0,∞). In a similar fashion, we can derive the same natural boundary
condition at x = 1 which leads to (3.44). Using the natural boundary conditions
of (3.44) in (3.118) for ϕ additionally satisfying ϕ(·, 1) = 0, we see that:

ˆ T

0

εκx(t, 0)ϕ(t, 0) dt

+

ˆ T

0

ϕ(t, 0)〈∇pW (γ(t, 0), γ(t, 1)), ν(t, 0)〉dt

+

ˆ ∞
0

V ⊥(t, 0)ϕ(t, 0)Ldt = 0.
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Hence, by the arbitrariness of ϕ(·, 0) and T , we have for a.e. t ∈ [0,∞):

V ⊥(t, 0) = −〈∇pW (γ(t, 0), γ(t, 1)), ν(t, 0)〉 − ε 1

L
κx(t, 0). (3.119)

We continue by testing (3.111) with η = ϕµix, where (µi) is the approximating
sequence from before and ϕ ∈ C∞c ([0,∞);C∞) with ϕ(·, 1) ≡ 0. Passing to the
limit i→∞, as done previously, then leads to:

0 =

ˆ ∞
0

ˆ 1

0

((
1 +

ε

2
κ2
)
ϕx + εκκxϕ

)
Ldxdt

+

ˆ ∞
0

(
〈∇pW (γ(t, 0), γ(t, 0)), τ(t, 0)〉+ V >(t, 0)

)
ϕ(t, 0)Ldt

=

ˆ ∞
0

(
−1 + 〈∇pW (γ(t, 0), γ(t, 0)), τ(t, 0)〉+ V >(t, 0)

)
ϕ(t, 0)Ldt.

By the arbitrariness of ϕ(·, 0), we have:

V >(t, 0) = 1− 〈∇pW (γ(t, 0), γ(t, 1)), τ〉 (3.120)

for a.e. t ∈ [0,∞). We can show (3.42) by combining (3.119) and (3.120). The
proof of (3.43) works similarly. Moreover, (3.45) follows directly from (3.110).

3. step: It is important to note at this point that even though γ exists for all
times t ∈ [0,∞) and satisfies all the equations stated in Theorem 3.1, it is not
guaranteed that γ ⊂ Ω for all t ∈ [0,∞) (the definition of AC does not enforce
this). Let us define the function d : [0,∞)→ R as:

d(t) := dist(γ(t, ·), ∂Ω),

which is well defined due to the compactness of γ and ∂Ω. Furthermore, as
γ(0, ·) = γ0 ⊂ Ω, we have that d(0) > 0. Define:

T0 := sup{t ≥ 0: d(t) > 0}.

By the C0
cC

1 regularity of γ and the smoothness of ∂Ω, we see that d is
continuous, and therefore T0 ∈ (0,∞]. Moreover, in the case T0 <∞, we must
have d(T0) = 0, and thus γ(T0, ·) ∩ ∂Ω 6= ∅ which concludes the proof.



Chapter 4

Generalized Ginzburg-Landau on
a manifold

4.1 Preliminaries

In this chapter, it is assumed that the reader is familiar with basics of differential
geometry (see also, e.g. [63] and [64]). Let us fix some notation: We denote
by S a two-dimensional oriented compact (without boundary) and connected
Riemannian manifold. The letter M will be reserved to a more general d-
dimensional oriented Riemannian manifold (possibly with boundary). In both
cases, g will be the metric tensor, and vol the corresponding volume form.
Provided with local coordinates, we will denote by

√
|g| the corresponding

area factor. Furthermore, E will denote an r-dimensional vector bundle over
M with its own metric tensor written as h. TM will be the tangent vector
bundle on M , and T ∗M the cotangent vector bundle both with their natural
metrics induced by g. We will write the set of smooth sections of TM as
C∞(TM) and, more generally, the set of all smooth sections of E as C∞(E).
The interior product with X ∈ C∞(TM) will be written as Xx. Where no
danger of confusion is present, we will denote the Levi-Civita connection on
M as well as E by ∇, and we will denote by Γ the Christoffel tensor (in both
cases, respectively). Furthermore, ⊗ will be the tensor product, ∧ the wedge
product, and ? the Hodge star. A subset U ⊂ M is called a domain if and
only if it is open, connected, and E|U is trivial. In particular, any coordinate
neighborhood U is a domain. In this case, let us write (ϕ,Ω), where Ω ⊂ Rd
and ϕ : Ω→ U , for the chart on U . For the sake of simpler notation, we identify
a function u on U with its coordinate representation u ◦ ϕ living on Ω. We
call ∇∗ : C∞(T ∗M ⊗E)→ C∞(E) a formal adjoint to the covariant derivative
∇ if and only if the following integration by parts formula holds true for all
u ∈ C∞c (E) and v ∈ C∞c (T ∗M ⊗ E):ˆ

M

〈u,∇∗v〉 vol =

ˆ
M

〈∇u, v〉 vol .

It is a classic result in differential geometry (see also, e.g. Proposition 10.1.30
and (10.1.8) in [55]) that such an adjoint exists, is unique, and has the following
local representation inside a domain U :

∇∗ = −
[√
|g|−1

∂xk
(√
|g|gki

)
+ gki∇∂

xk

]
∂xix. (4.1)

111
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Note that (gki) denotes the inverse of the metric tensor. As was already done
above, we use the Einstein summation convention where any index appearing
twice is implicitly summed over. With regard to indices, we will use Latin
letters such as k and i for indices running in {1, . . . , d} and Greek letters such
as α and β for indices running in {1, . . . , r}. In general, we denote by F (M ;S1)
the set of all sections u : M → TM with |u| = 1 and the regularity given by F .
So, for example, W 1,1(M ;S1) is the set of all W 1,1 sections u : M → TM with
|u| = 1 at a.e. point. Norms will be usually written in short-hand notation;
so, for instance ‖u‖W 1,1 := ‖u‖W 1,1(TM). We define B̄(x, r) to be the closed
Euclidean ball centered at x ∈ R2 with radius r, and by B(p, r) the geodesic
ball centered at p ∈ M with radius r. Finally, for any 0 < r1 < r2 < r∗ (r∗

will denote the injectivity radius of M) and p ∈M we denote by Ar1,r2(p) the
geodesic annulus given by:

Ar1,r2(p) := Br2(p) \Br1(p).

4.1.1 Sections of bounded variation

In this subsection, we wish to introduce all the necessary results with regard
to sections of bounded variation of a general vector bundle E over M ; this
means Borel regular sections u of E that have bounded variation (this will
be defined in a moment). They can be seen as a natural generalization of
vector-valued functions of bounded variation. Our main goal will be the correct
intrinsic definition of the blow-up quantities of u as well as the statement and
proof of the decomposition theorem for sections of bounded variation (see also
Theorem 4.3).

Let us start by defining the total variation of an L1-section:

Definition 4.1 (Total variation)
The total variation of a section u ∈ L1

loc(E) is defined as

var(u) := sup

{ˆ
M

〈u,∇∗v〉 vol : v ∈ C∞(TM ⊗ E), ‖v‖∞ ≤ 1

}
. (4.2)

For any open subset U ⊂M , we define the total variation var(u, U) of u in U
as

var(u, U) := sup

{ˆ
U

〈u,∇∗v〉 vol : v ∈ C∞c (T ∗U ⊗ E|U ), ‖v‖∞ ≤ 1

}
. (4.3)

The definition of sections of bounded variation then naturally follows:

Definition 4.2 (Sections of bounded variation)
A section u ∈ L1

loc(E) is of bounded variation if and only if var(u) <∞. The
set of all sections of E with bounded variation will be denoted by BV (E). This
space is equipped with the following norm:

‖u‖BV := ‖u‖L1 + var(u), for all u ∈ BV (E).

Using (4.1), a simple computation leads to the following local representation
for the integral term in (4.2):
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Lemma 4.1
Given a coordinate neighborhood U with coordinates {x1, . . . , xd} and orthonor-
mal frame {e1, . . . , er} (of E|U ), u ∈ L1

loc(E|U ), and v ∈ C∞(TU ⊗ E|U ), we
have:ˆ

U

〈u,∇∗v〉 vol = −
ˆ

Ω

uα∂xk
(√
|g|gkivαi

)
dx−

ˆ
Ω

Γβkαu
βgkivαi dx. (4.4)

Furthermore, there exist constants C1, C2 ∈ (0,∞) only depending on M such
that:

C1(‖u‖L1(Ω) + v̄ar(u)) ≤ var(u) ≤ C2(‖u‖L1(Ω) + v̄ar(u)), (4.5)

where v̄ar(u) denotes the Euclidean total variation of the coordinate represen-
tation of u. In particular, this shows that u ∈ BV (E|U ) if and only if its
coordinate representation is in BV (Ω;Rr).

By (4.2) and an approximation argument, any u ∈ BV (E) can be identified
with a bounded linear functional T on C(TM ⊗ E) with its operator norm
satisfying: ‖T‖ = var(u). In the next theorem, we will identify such a functional
T with a generalized vector measure in M(E), which is defined as follows:

Definition 4.3 (Generalized vector measures)
LetM+(M) be the set of finite positive Radon measures on M , and B(TM⊗E)
the set of Borel regular sections on TM ⊗ E. We define the set M(E) of
generalized vector-valued measures as:

M(E) := {(σ, µ) : µ ∈M+(M), σ ∈ B(TM ⊗ E) with |σ| = 1 µ-a.e.}.

Given a generalized vector-valued measure ν = (σ, µ) ∈M(E) we call µ the
total variation of ν, and σ the polar density of ν. (This will be motivated in
Theorem 4.1.)

Theorem 4.1 (Riesz’s representation)
For any u ∈ BV (E), there exist µ ∈ M+(M) and σu ∈ B(TM ⊗ E) with
|σu| = 1 at µ-a.e. point such that for any v ∈ C∞(TM ⊗ E):

ˆ
M

〈u,∇∗v〉 vol =

ˆ
M

〈σu, v〉 dµ. (4.6)

In particular, for any open subset U ⊂M , we have that µ(U) = var(u, U) with
var(u, U), as defined in (4.3).

The measure µ and the section σ are unique in the following sense: Suppose
that there exist another µ′ ∈ M+(M) and σ′ ∈ B(TM ⊗ E) with |σ′| = 1 at
µ-a.e. such that (4.6) is satisfied for any v ∈ C∞(TM ⊗ E). Then µ′ = µ in
the sense of measures and σ′ = σu at µ-a.e. point in M .

Proof. In [41], the authors have proved (see also Theorem 2.5) the statement
in the special case E = M × R. We will extend their result to the setting of a
general vector bundle by closely following their reasoning.

1. step: We will first prove existence of the positive Radon measure µ in
(4.6). Let us consider the linear functional T : C∞(TM ⊗ E)→ R, defined as:

T (v) :=

ˆ
M

〈u,∇∗v〉 vol .
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From (4.2), we follow that T is a bounded functional on C∞(TM⊗E) equipped
with the L∞-norm, and that its operator norm satisfies ‖T‖ = var(u). Conse-
quently, we can extend T by approximation to a bounded linear functional on
C(TM⊗E), while leaving its norm unchanged. Let T̃ : C+(M)→ R be defined
as:

T̃ (f) := sup
‖v‖∞≤1

T (fv),

where the supremum above is over v ∈ C(TM ⊗E). Furthermore, extend T̃ to
the functional T̂ : C(M)→ R defined as

T̂ (f) = T̃ (f+)− T̃ (f−),

where f+ and f− are the positive and negative part of f , respectively. The
following intuition lies behind our choice of T̂ : Suppose that there exist µ ∈
M+(M) and σu ∈ B(TM ⊗ E) with |σu| = 1 at µ-a.e. point such that (4.6) is
satisfied for any v ∈ C∞(TM ⊗ E). Then for any f ∈ C∞+ (M), it holds that:

T̃ (f) = sup
‖v‖∞≤1

ˆ
M

〈∇∗(fv), u〉 vol = sup
‖v‖∞≤1

ˆ
M

f〈v, σu〉 dµ =

ˆ
M

f dµ.

By approximation, the above statement also holds true for any f ∈ C+(M).
With the definition of T̂ , we therefore derive for any f ∈ C(M):

T̂ (f) = T̃ (f+)− T̃ (f−) =

ˆ
M

f+ dµ−
ˆ
M

f− dµ =

ˆ
M

f dµ.

Applying the classic Riesz representation theorem on the functional T̂ would
result in the existence of a desired measure µ. For its application, we need to
check that T̂ is a positive linear functional. Let λ ≥ 0 and f ∈ C+(M), then:

T̃ (λf) = sup
‖v‖∞≤1

T (λfv) = sup
‖v‖∞≤1

λT (fv) = λT̃ (f).

Furthermore, for any f, g ∈ C+(M), we have that:

T̃ (f + g) = sup
‖v‖∞≤1

T ((f + g)v) = sup
‖v‖∞≤1

T (fv) + T (gv) ≤ T̃ (f) + T̃ (g).

It remains to prove the reverse inequality: Let v, w ∈ C(TM ⊗ E) with ‖v‖∞,
‖w‖∞ ≤ 1. Let ρ ∈ C(M) be a cutoff function with ρ ≡ 1 in {f + g > ε} for
some fixed ε > 0, and spt(ρ) ⊂⊂ {f + g > 0}. Then by linearity of T :

T (fv) + T (gw) = T (f(1− ρ)v) + T (fρv) + T (g(1− ρ)w) + T (gρw)

≤ 2‖T‖ε+ T

(
(f + g)

(
ρf

f + g
v +

ρg

f + g
w

))
≤ 2‖T‖ε+ T̃ (f + g),

where in the last estimate we employed:∥∥∥∥ ρf

f + g
v +

ρg

f + g
w

∥∥∥∥
∞
≤ ρf

f + g
‖v‖∞ +

ρg

f + g
‖w‖∞ ≤ 1.
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Also note that the cutoff function ρ assures the continuity of ρf
f+gv+ ρg

f+gw. By
the arbitrariness of v, w, and ε > 0 this leads to the desired inequality. Hence,
T̂ is a positive linear functional on the space C(TM ⊗ E) and by the scalar
version of Riesz representation Theorem there exists a positive bounded Radon
measure µ on M such that for all f ∈ C(M), it holds that:

T̂ (f) =

ˆ
M

f dµ.

2. step: We continue by proving the existence of σu in (4.6). Let {Uh}Nh=1 be
a finite cover of M with domains, and let {ρh}Nh=1 be a subordinate partition
of unity. For each h ∈ {1, . . . , N} let {ϕhi }nri=1 be an orthonormal frame on

T ∗Uh ⊗E|Uh . By Riesz representation for T̂ , we have for any f ∈ Cc(Uh) that:

|T (fρhϕ
h
i )| = |T (f+ρhϕ

h
i )|+ |T (f−ρhϕ

h
i )|

≤ T̃ (f+) + T̃ (f−)

= T̂ (|f |) =

ˆ
M

|f |dµ.

Therefore, by approximation, the map f 7→ T (fρhϕ
h
i ) is a linear bounded

functional on L1(Uh, µ). Consequently, we can find σhi ∈ L∞(Uh, µ) with
|σhi | ≤ 1 µ-a.e. and:

T (fρhϕ
h
i ) =

ˆ
Uh

fσhi dµ.

Setting:

σu :=

N∑
h=1

nr∑
i=1

ρhσ
h
i ϕ

h
i .

we then have for any v ∈ C∞(TM ⊗E) with coefficients given by {vhi }i in the
local frame {ϕhi }i of TM ⊗ E from before that:

T (v) =

N∑
h=1

nr∑
i=1

T (ρhv
h
i ϕ

h
i )

=

ˆ
M

N∑
h=1

ρh

nr∑
i=1

vhi σ
h
i dµ

=

ˆ
M

N∑
h=1

ρh〈v, σu〉 dµ =

ˆ
M

〈v, σu〉 dµ,

which shows (4.6). As |σhi | ≤ 1 µ-a.e., we see that:

|σu| ≤
N∑
h=1

ρh|σhi | ≤
N∑
h=1

ρh = 1.

The reverse inequality can be proved as follows:

µ(M) ≥
ˆ
M

|σu| dµ = sup
‖v‖∞≤1

T (v) ≥ sup
‖f‖∞≤1

T̂ (f) = ‖T̂‖ = µ(M).
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By the definition of var(u, U), (4.6), and an approximation procedure, we see
that µ(U) = var(u, U) for any open subset U ⊂M .

3. step: It remains to prove uniqueness. Let µ′ and σ′ be as in the statement
of this theorem. Then, for any v ∈ C(TM ⊗ E):

ˆ
M

〈v, σu〉 dµ =

ˆ
M

〈v, σ′〉 dµ′.

By the arbitrariness of v and an approximation argument:

µ(B) =

ˆ
B

〈σu, σu〉 dµ =

ˆ
B

〈σu, σ′〉 dµ′ ≤ µ′(B).

Note that we have used |σu|, |σ′| ≤ 1 above. By symmetry, this leads to the
uniqueness of µ. Finally, testing the above equation with B = M , implies that
〈σu, σ′〉 = 1 at µ-a.e. point.

Definition 4.4
We say that ν ∈ M(E) is absolutely continuous with respect to µ ∈ M+(M)
(shortly written as ν << µ) if and only if for every Borel set A ⊂ M with
µ(A) = 0, it holds that |ν|(A), where |ν| is the total variation of ν.

Furthermore, ν is said to be singular with respect to µ (shortly written
as ν ⊥ µ) if and only if there exists a Borel set A ⊂ M satisfying |ν|(A) =
µ(M \A) = 0.

Theorem 4.2 (Lebesgue decomposition)
For any ν ∈ M(TM ⊗ E) and µ ∈ M+(M) there exists νa ∈ M(T ∗M ⊗ E)
with νa << µ, as well as νs ∈M(T ∗M ⊗E) with νs ⊥ µ such that ν = νa+νs.
Both νa and νs, are unique in the sense of measures. Furthermore, we can find
a unique σa ∈ L1(TM ⊗ E,µ) such that νa = σaµ.

Proof. Let |ν| be the total variation of ν, and σ the polar density of ν. As |ν|
is a scalar Radon measure, we can apply the classical Lebesgue decomposition
theorem to the pair |ν| and µ. Consequently, there exist unique scalar measures
|ν|a and |ν|s such that |ν|a << µ, |ν|s ⊥ µ and |ν| = |ν|a + |ν|s. We can also
find σ̃a ∈ L1(µ) satisfying |ν|a = σ̃aµ. Let us define:

νa := σ|ν|a, νs := σ|ν|s, σa := σσ̃a.

As |ν|a << µ and |σ| ≤ 1 µ-a.e., we see that νa << µ. Similarly, we can show
that νs ⊥ µ. As σ̃a ∈ L1(µ) and |σ| = 1 at |ν|a-a.e. point, we follow that
σa ∈ L1(TM ⊗ E,µ). Hence, νa, νs, and σa satisfy all the desired properties.
The uniqueness of νa, νs, σa follows from the uniqueness of |ν|a, |ν|s, σ̃a, and
σ, respectively.

Definition 4.5
For any u ∈ BV (E), we will denote the unique generalized vector-valued mea-
sure provided by Theorem 4.1 as Du. Furthermore |Du|, will stand for the
total variation of Du, and Du

|Du| will be the polar density of Du. We write Dau

and Dsu for the absolutely continuous and the singular port of Du with respect
to |Du| (see also Theorem 4.2). Lastly, Dau

|Du| will stand for the density of Dau

with respect to |Du|.
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We wish to prove the decomposition theorem for sections of bounded varia-
tion. Given u ∈ BV (E), it provides an explicit representation of Dau, as well
as the (n− 1)-dimensional part of Dsu through quantities defined by blow-ups
at certain points p ∈M . For the intrinsic definition of these blow-up quantities,
we will need to compare – in an intrinsic fashion – a vector in Ep with another
vector in Eq, where p, q ∈ M . This can be achieved – at least for points p, q
close enough to each other – through parallel transport on M , which can be
defined as follows: Given a smooth curve γ : [0, 1]→M , and vector v0 ∈ Eγ(0),
there exists a unique family {Pt}t∈[0,1] of linear isomorphisms:

Pt = P
(γ)
t : Eγ(0) → Eγ(t)

such that v(t) := Pt(v0) satisfies:{
∇ d

dt
v(t) = 0, t ∈ (0, 1),

v(0) = v0.

Given a local orthonormal frame in a neighborhood of γ(0), we can identify
Pt (for t > 0 small enough) with a matrix (still denoted by Pt) whose Taylor
expansion at t = 0 is given by:

Pt = Id− tΓ0 +O(t2), Γ0 := (γ̇(0)xΓ)|γ(0). (4.7)

For any p0 ∈M and r < r∗, we can then define the smooth map T : E|Br(p0) →
Ep0

as:

T (v) := P
(γp)
1 (v), v ∈ Ep,

where γp : [0, 1]→M is the geodesic starting at p and ending at p0 with constant
speed equal to the geodesic distance dist(p0, p) between p0 and p.

Definition 4.6 (Blow-up quantities)
Given u ∈ L1(E), a point p ∈M is called an approximate continuity point of u
if and only if:

lim
r→0

 
Br(p)

|T (u(q))− u(p)| vol(q) = 0.

The set of approximate continuity points of u will be denoted by Su.
A point p ∈ M is called an approximate jump point of u if and only if

there exist u+ = u+(p), u− = u−(p) ∈ Ep with u+ 6= u−, and a unit vector
ν = ν(p) ∈ TpM such that:

lim
r→0

 
B+
r (p,ν)

|T (u(q))− u+| vol(q) = 0,

lim
r→0

 
B−r (p,ν)

|T (u(q))− u−| vol(q) = 0,

where:

B+
r (p, ν) := expp({X ∈ TpM : |X| ≤ 1, 〈X, ν〉 ≥ 0)},

B−r (p, ν) := expp({X ∈ TpM : |X| ≤ 1, 〈X, ν〉 ≤ 0)}

– expp being the exponential map at p – are geodesic half-balls. The set of
approximate jump points of u will be denoted by Ju.
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Lastly, p ∈ M is called an approximate differentiability point of u if there
exists ∇u = ∇u(p) ∈ T ∗pM ⊗ Ep such that:

lim
r→0

 
Br(p)

r−1|T (u(q))− u(p)−∇u(exp−1
p (q))| vol(q) = 0.

Proposition 4.1 (Blow-up and coordinates)
Let u ∈ L1

loc(E|U ), where U is a domain with coordinate chart (ϕ,Ω) and a fixed
orthonormal frame. Then a point p0 ∈ U is an approximate continuity (jump,
differentiability) point of u if and only if x0 := ϕ−1(p0) is an approximate
continuity (jump, differentiability) in the Euclidean sense of the coordinate
representation of u.

Additionally, if p0 is an approximate jump point of u, we have:

(u±)k = (uk)±, νk = |µ|−1
g µk with µk := gkiν̄i, (4.8)

where ν is the approximate normal of u at p0 and ν̄ the approximate normal of
the coordinate representation ū := u : ϕ of u. If p0 is an approximate differen-
tiability point of u, it holds that:

(∇u)αk = ∂xku
α + Γαkβu

β . (4.9)

Proof. Let λ,Λ ∈ R such that:

B̄λr ⊂ ϕ−1(Br(p)) ⊂ B̄Λr, (4.10)

for all r > 0 small enough. Furthermore, let v : Ω→ Rr be defined as v(x) :=
T (u(ϕ(x))) and w : Ω→ Rn denote the map w(x) := exp−1

p (ϕ(x)). From (4.7),
we have the following Taylor expansion of v at 0:

v(x) = u(x) + Γβiα(0)wi(x) +O(|x|2) = u(x) +O(|x|). (4.11)

1. step: Let us assume that p is an approximate continuity point for u. By
the smoothness of g and (4.11), we can find a universal constant C such that:

 
Br(p)

|T (u(q))− u(p)| vol(q)

=

(ˆ
ϕ−1(Br(p))

√
|g|dx

)−1 ˆ
ϕ−1(Br(p))

|v(x)− u(0)|
√
|g|dx

≥
√
|g(0)| − Cr√
|g(0)|+ Cr

 
ϕ−1(Br(p))

|u(x)− u(0)|dx− Cr.

With (4.10) and the definition of approximate continuity on M , we follow:
 
Bλr(0)

|u(x)− u(0)|dx =
Λn

λn
1

|B̄Λr|

ˆ
B̄λr

|u(x)− u(0)|dx

≤ C
 
ϕ−1(Br(p))

|u(x)− u(0)|dx→ 0 as r → 0.

As for any sequence (rh)h converging to 0, we also have that ( 1
λrh)h is convergent

to 0 and (vice versa) it follows that 0 is an approximate continuity point of u.
The reverse direction can be proved in a similar fashion.
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ν̄

Figure 4.1: Geodesic half-ball in coordinates. The light gray area represents
CαΛr while the dark gray area corresponds to H̄+

λr∆H
+
r .

2. step: Let p be an approximate jump point of u. As before we can prove
that:

lim
r→0

 
ϕ−1(B±r (p,νu(p)))

|u(x)− ϕ∗u±(p)|dx = 0. (4.12)

To show that 0 is a jump point of u we, first and foremost, need to choose the
appropriate Euclidean normal ν̄. In this regard, consider the geodesic disk:

Dr(p, νu(p)) := expp({X ∈ TpM : |X| ≤ 1, 〈X, ν〉 = 0)}
= B+

r (p, ν(p)) ∩B−r (p, ν(p)).

Its preimage ϕ−1(Dr(p, νu(p))) is an (n − 1)-dimensional submanifold of Rn
and we choose ν̄ as its Euclidean normal at the origin. Using the fact that
ϕ∗νu(p) is g-normal to ϕ−1(Dr(p, νu(p))), we can derive the following relation
between ϕ∗νu(p) and ν̄:

ϕ∗νu(p) = ‖µ‖−1
g µ, with µk := gki(0)ν̄i. (4.13)

For the sake of shorter notation, we will write for any admissible r, α > 0 (with
r small enough):

H̄±r := B̄±r (0, ν̄), H±r := ϕ−1(B±r (p, νu(p))),

Cαr :=

{
x ∈ Br : 〈X, ν̄〉2 ≤ α

1 + α
|x|2
}
.

As ϕ−1(Dr(p, νu(p))) and the hyperplane orthogonal to ν̄ have first-order
contact, we can find α > 0 such that for r > 0 small enough (see also Figure 4.1)
such that H̄+

λr∆H
+
r ⊂ CαΛr and therefore:

|H̄+
λr∆H

+
r | ≤ |CαΛr| ≤ C(α,Λ)rn+1.
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Consequently, by (4.10) and (4.12), we can estimate:

 
H̄+
λr

|u(x)− ϕ∗u+(p)|dx =
2Λn

λn
1

|B̄+
Λr(0)|

ˆ
H̄+
λr

|u(x)− ϕ∗u+(p)|dx

≤ 2Λn

λn

 
H+
r

|u(x)− ϕ∗u+(p)|dx

+
2Λn

λn
1

|B̄+
Λr(0)|

ˆ
H−r ∩H̄+

λr

|u(x)− ϕ∗u+(p)|dx

≤ C
 
H+
r

|u(x)− ϕ∗u+(p)|dx

+

 
H−r

|u(x)− ϕ∗u−(p)|dx

+ C|ϕ∗u+(p)− ϕ∗u−(p)| |C
α
Λr|

|B+
Λr|

r→0→ 0.

In a similar fashion, we can also show:

lim
r→0

 
H̄−λr

|u(x)− ϕ∗u−(p)|dx = 0.

It follows that 0 is an approximate jump point of u. Furthermore, (4.13) leads
directly to (4.8). The reverse direction follows similarly.

3. step: Let us assume that p is an approximate differentiability point. We
will first show that p must also be an approximate continuity point: By the
definition of approximate differentiability, we have:

 
Br(p)

|u(q)− T (q, u(p))| vol(q)

≤ r
 
Br(p)

r−1|u(q)− T (q, u(p))−∇u(p)(exp−1
p (q))| vol(q)

+ r

 
Br(p)

|∇u(p)| vol(q)
r→0
→ 0

which implies that 0 is an approximate continuity point of u. In particular, it
makes sense to evaluate u at 0 (where we may need to redefine u(0) to be equal
to the approximate limit). Passing to coordinates, we can derive in the same
fashion as was done before:

lim
r→0

 
ϕ−1(Br(p))

r−1|u(x)− T (x, u(0))− distg(x, 0)L(γ̇x(0))|dx = 0, (4.14)

where distg(x, 0) is the geodesic distance between x and the origin, L is the
coordinate representation of ∇u(p), and γx denotes the coordinate represen-
tation of the unit speed geodesic starting at p and ending in ϕ(x) (γx(0) = 0,
γx(distg(x, 0)) = x). By the definition of γx and the smoothness of the map
(s, x) 7→ γx(s), we have:

x = γx(distg(x, 0)) = distg(x, 0)γ̇x(0) +O(|x|2).
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Therefore, using (4.11) we can write:

u(x)− T (x, u(0))− distg(x, 0)L(γ̇x(0))

= u(x)− u(0) + distg(x, 0)Γαiβ(0)uβ(0)γ̇xi (0)eα +O(|x|2)

− distg(x, 0)L(γ̇x(0))

= u(x)− u(0)− distg(x, 0)L̄(γ̇x(0)) +O(|x|2)

= u(x)− u(0)− L̄(x) +O(|x|2),

where:

L̄ = L− (Γαiβ(0)uβ(0))iα. (4.15)

By (4.10), it follows:

 
B̄λr

r−1|u(x)− u(0)− L̄(x)|dx

≤ Λn

λn+1

1

|B̄Λr|

ˆ
B̄λr

r−1|u(x)− T (x, u(0))− distg(x, 0)L̄(γ̇x(0))|dx+ Cr

≤ C
 
ϕ−1(Br(p))

r−1|u(x)− T (u(x), u(0))− distg(x, 0)L(γ̇x(0))|dx+ Cr.

With (4.14), we see that u is approximately differentiable at 0 with approximate
gradient given by L̄. Moreover, (4.9) is satisfied by (4.15). The reverse direction
can be shown in a similar fashion.

Lemma 4.2
For differential forms α ∈ Ωk−1(M) and β ∈ Ωk(M) as well as an (n − 1)-
dimensional oriented embedded C1 submanifold N of M with unit normal de-
noted by ν, it holds that:

(α ∧ ?β)|N = α|N ∧ ?N (νxβ)|N , (4.16)

where ? is the Hodge star operator on M , while ?N denotes the corresponding
Hodge star on N , induced by the restriction of g onto N .

Proof. For a proof, we refer, for example, to Proposition 4.1.54 in [55].

Lemma 4.3 (Integration on submanifolds in coordinates)
Let N be an (n− 1)-dimensional oriented embedded C1-submanifold of M and
U a coordinate neighborhood with orientation preserving chart ϕ. Then for any
integrable f : N → R, it holds that:

ˆ
N∩U

f volN =

ˆ
ϕ−1(N∩U)

f‖µ‖g
√
|g|dx,

where µk := gkiν̄i and ν̄ is the upper normal onto ϕ−1(N ∩ U).
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Proof. We will shortly write N̄ := ϕ−1(N ∩ U). Using (4.16) with α = f ∈
Ω0(M) and β = αν := 〈ν, ·〉 ∈ Ω1(M) and a change of coordinates, leads to:

ˆ
N∩U

f volN =

ˆ
N∩U

f ∧ ?N (αν(ν))

=

ˆ
N∩U

f ∧ ?N (νxαν)

=

ˆ
N∩U

?(fαν) =

ˆ
N̄

ϕ∗(?fαν).

Note that by the definition of ? for any differential form α, it holds that:

(?α) ∧ α = vol .

Now we take the pullback with respect to ϕ on both sides of the above equation:

ϕ∗(?α) ∧ ϕ∗α =
√
|g|Ln.

Hence:
ϕ∗(?α) =

√
|g| ?̄(ϕ∗α),

where ?̄ is the Euclidean Hodge star operator. Substituting α = fαν , and
employing (4.16) in the Euclidean setting leads to:

ˆ
N∩U

f volN =

ˆ
N̄

f
√
|g|?̄ανi dxi =

ˆ
N̄

f
√
|g|(ανi ν̄i)−1 dxi,

where ν̄ is the Euclidean normal onto N̄ having the same orientation ν. Fur-
thermore, by the definition of αν it holds that ανi ν̄

i = 〈ϕ∗ν, ν̄〉g. The following
relation holds true between ϕ∗ν and ν̄:

ϕ∗ν = ‖µ‖−1
g µ, µk := gkiν̄i.

In conclusion:
〈ν, ν̄〉g = ‖µ‖−1

g gklg
kiν̄iν̄l = ‖µ‖−1

g ,

which leads to the desired result.

Definition 4.7 (H1-rectifiable sets)
A set J ⊂M is calledH1-rectifiable if and only if there exists a countable family
{Ni} of compact embedded C1 manifolds with or without boundary such that:

H1(J \
N⋃
i=1

) = 0.

Let u ∈ BV (E); applying the Lebesgue decomposition theorem (see also
Theorem 4.2) leads to:

Du = Dau+Dsu,

where Dua denotes the absolutely continuous part of Du with respect to |Du|,
and Dus the singular part of Du with respect to |Du|. The following theorem
provides a more explicit version of the above decomposition, employing the
blow-up quantities introduced in Definition 4.6.
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Theorem 4.3 (Decomposition in BV (E))
Let u ∈ BV (E), then u is approximately differentiable at almost every point,
and the approximate gradient ∇u is the density of Dau with respect to vol:

Dau = ∇u vol . (4.17)

The set Ju of approximate jump points is (n− 1)-rectifiable. Furthermore, it is
H1-a.e. contained in Su; this means Hn−1(Su \ Ju) = 0, and Dju, which is the
singular part Dsu restricted to Su, can be written as:

Dju := Dsu|Su = νu ⊗ (u+ − u−)Hn−1|Ju , (4.18)

where we implicitly identify νu with ανu := 〈νu, ·〉. Note that we will usually
write this decomposition as:

Du = ∇u vol +νu ⊗ (u+ − u−)Hn−1|Ju +Dcu, (4.19)

Dcu = Dsu|M\Su denoting the Cantor part of u.

Proof. It is enough to prove a localized version of the theorem in a coordinate
neighborhood U with an orientation preserving chart (ϕ,Ω). The general result
then follows by a partition of unity argument.

As the coordinate representation of u (which will be identified with u) is
a BV regular vector field in the Euclidean sense, we can employ the classic
decomposition theorem (see also (3.89) in [11]). This implies that the coordi-
nate representation of u is approximately differentiable at a.e. point in Ω, the
Euclidean approximate jump set J̄u is (n−1)-rectifiable withHn−1(S̄u\ J̄u) = 0
(S̄u denotes the Euclidean singular set), and:

D̄u = ∇̄u+ (u+ − u−)⊗ ν̄u + D̄cu. (4.20)

With Proposition 4.1, it follows that u is approximately differentiable at a.e. in
U , Ju ∩ U is H1-rectifiable, and H1((Su \ Ju) ∩ U) = 0.

Fix a general v ∈ C∞c (T ∗U⊗E|U ). On the one hand, (4.4) and the Euclidean
Lebesgue decomposition, we derive that:

ˆ
U

〈u,∇∗v〉 vol =

ˆ
ϕ−1(U)

gkivαi
√
|g|dD̄a

ku
α −

ˆ
ϕ−1(U)

Γβkαu
βgkivαi

√
|g|dx

+

ˆ
ϕ−1(U)

gkivαi
√
|g|dD̄s

ku
α,

where

gki
√
|g|D̄a

ku
α − Γβkαu

βgki
√
|g|Ln << Ln,

gki
√
|g|D̄s

ku
α ⊥ Ln.

On the other hand, by the Lebesgue decomposition on M , we can also write:

ˆ
U

〈u,∇∗v〉 vol =

ˆ
ϕ−1(U)

vαi d(ϕ−1)#D
a
i u

α +

ˆ
ϕ−1(U)

vαi d(ϕ−1)#D
s
i u
α,
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where (ϕ−1)# is the pushforward with respect to ϕ−1. With the uniqueness of
the Lebesgue decomposition, we then derive that:ˆ

U

v dDau =

ˆ
ϕ−1(U)

gkivαi
√
|g|dD̄a

ku
α −

ˆ
ϕ−1(U)

Γβkαu
βgkivαi

√
|g|dx, (4.21)

ˆ
U

v dDju =

ˆ
ϕ−1(U)

gkivαi
√
|g|dD̄j

ku
α. (4.22)

By (4.21), (4.20), and (4.9) as well as the relation Γβkα = −Γαkβ , we conclude
that:ˆ

U

v dDau =

ˆ
ϕ−1(U)

gki
(
∂xku

α − Γβkαu
β
)
vαi
√
|g|dx =

ˆ
U

〈∇u, v〉 vol

which shows by the arbitrariness of v that (4.17) is satisfied in U . Note that
the following identity was employed:

〈∇u, v〉 = 〈∇∂
xk
uαdxk ⊗ eα, vβi dxi ⊗ eβ〉

= ∇∂
xk
uαvβi 〈dxk, dxi〉〈eα, eβ〉

= gki∇∂
xk
uαvαi .

As J̄u ∩ U is (n − 1)-rectifiable, we can assume without loss of generality
that it is,in fact, a C1 submanifold of ϕ−1(U) whose normal we will denoted
by ν̄u. (The precise argument here follows by approximation of J̄u with finite
unions of compact C1 manifolds.) The following relation holds true between
ϕ∗νu and ν̄u:

ϕ∗νu = ‖µ‖−1
g µ, µi = gkiν̄ku.

We see that:

〈αν ⊗ (u+ − u−), v〉 = 〈(u+ − u−)αeα, v
β
i µ

ieβ〉
= gki(u+ − u−)αvαi ν̄

k
u‖µ‖−1

g ,

where αν := 〈ν, ·〉. Consequently, by Lemma 4.3, (4.20), and (4.8), we have:ˆ
U

v dDju =

ˆ
J̄u

gki(u+ − u−)αν̄kuv
α
i ‖µ‖−1

g ‖µ‖g
√
|g|dH̄n−1

=

ˆ
Ju∩U

〈αν ⊗ (u+ − u−), v〉,

where H̄n−1
is the (n − 1)-dimensional Hausdorff measure in Rn. By the

arbitrariness of v, this shows (4.18) locally in U .

We will now discuss two last important theorems: the chain rule as well
as a compactness theorem concerning the space of special sections of bounded
variation (shortly written as SBV ).

Theorem 4.4 (Chain rule in BV )
Let G : E → E be a smooth bundle map (πE ◦ G = πE, where πE is the
projection onto M) and u ∈ BV (E). Then v := G ◦ u ∈ BV (E) and in any
local coordinates (x1, . . . , xd, a1, . . . , ar) of E|U for a domain U ⊂M :

∇∂xi v
α =

∂

∂aβ
Gα(u)∂xku

β + Γαiβv
β + ∂xiG

α(u). (4.23)
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Here {aβ}rβ=1 Furthermore, Jv ⊂ Ju with:

Dsv|Jv = νu ⊗ (G(u+)−G(u−))Hn−1|Ju . (4.24)

Definition 4.8 (Special sections of bounded variation)
We define the set SBV (E) of special sections of bounded variation as:

SBV (E) := {u ∈ BV (E) : Dcu = 0},

as well as for any p ∈ (1,∞) the space:

SBV p(E) := {u ∈ SBV (E) : ∇u ∈ Lp, Hn−1(Ju) <∞}.

We say that a sequence {uh} ⊂ SBV p(E) if and only if

uh → u in Lp(E),

∇uh ⇀ ∇u in Lp(T ∗M ⊗ E), Djuh
∗
⇀ Dju in M(E).

Theorem 4.5 (Compactness in SBV )
Let p ∈ (1,∞) and {uh} ⊂ SBV p(E) satisfying the following bound:

sup
h

(
‖uh‖∞ + ‖∇uh‖p +Hn−1(Juh)

)
<∞. (4.25)

Then, up to a subsequence, we have that uh ⇀ u weakly in SBV p(E).

Both theorems follow from their Euclidean counterparts and a standard
partition of unity argument.

4.1.2 Vortices on surfaces

From this point on, m ∈ N+ will denote a positive natural number. Given a
unit vector e ∈ TpM for some p ∈ M , we identify any vector X ∈ TpM with
the complex number:

z = z(X) := 〈X, e〉+ 〈X, e⊥〉i. (4.26)

Under this identification, we have |X| = |z|, where |X| is the length of X
measured with 〈·, ·〉g(p), and |z| is the absolute value of z ∈ C. Similarly, we
will identify any complex number z with the vector:

X = X(z) := <(z)e+ =(z)e⊥.

Note that both maps depend on the choice of unit vector e. Let us now consider
a domain U ⊂ M such that there exists e ∈ C∞(U ;S1). Then we can define
the map Pe : TU → TU as:

Pe(v) := <(z(v)m)e+ =(z(v)m)e⊥, (4.27)

with z(v) as in (4.26).
In the following, we wish to introduce a notion of degree on two-dimensional

compact oriented Riemannian manifolds (see also [21] and [22]). First note that
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the volume form induces a unique map (·)⊥ : TS → TS that is characterized
by the following properties:

(v⊥)⊥ = −v, 〈v⊥, w〉 = −〈v, w⊥〉 for all v, w ∈ TS.

Intuitively speaking, it is the map that rotates each vector v ∈ TpM , for p ∈M ,
by π

2 in positive direction (which is induced by the orientation of M). As
in the flat setting, we first define the pre-Jacobian: Given u ∈ C∞(TS), the
pre-Jacobian jac(u) is a 1-form on M defined as

jac(u)(X) := 〈∇Xu, u⊥〉 for any X ∈ C∞(TS).

In the flat setting, we saw that for any simply connected set Ω ⊂ R2 such that
|u| = 1 on ∂Ω, it holds that:

ˆ
∂Ω

jac(u)(τ) dH1 ∈ 2πZ,

where τ is the unit tangent vector-field pointing in anticlockwise direction. In
the case of a manifold, this is not true in general. In fact, given a simply
connected domain U ⊂M , we can parallelly transport a unit vector u0 ∈ Tp0

M
with p0 ∈ ∂U along ∂U such that the integral above satisfies:

ˆ
∂U

jac(u) = −
ˆ
U

κ vol .

This motivates the following definition of degree of a map u ∈ C∞(TS) around
∂U , where U is a simply connected domain, and |u| = 1 on ∂U :

deg(u, ∂U) :=
1

2π

(ˆ
∂U

jac(u) +

ˆ
U

κ vol

)
. (4.28)

In fact, it is a classic result (see also [34]) that the degree defined above is
valued in Z. As boundary integrals can be problematic once generalized to less
regular settings such as Sobolev spaces, we wish to express the degree in (4.28)
through a single integral of a 2-form. This can be achieved by an application
of Stokes’ theorem, which allows us to rewrite deg(u, ∂B) as follows:

deg(u, ∂U) =
1

2π

ˆ
U

djac(u) + κ vol . (4.29)

This motivates the definition of the vorticity 2-form:

vort(u) :=
1

2π
(djac(u) + κ vol). (4.30)

In the following, we will generalize vorticity defined in (4.30) to the less
regular setting of vector fields u ∈ W 1,1(TS) ∩ L∞(TS). In this case, by the
Cauchy-Schwarz inequality, we can bound |jac(u)| at a.e. point as follows:

|jac(u)| = |〈∇u, u⊥〉| ≤ |∇u||u| ∈ L1(M).

Hence, jac(u) ∈ L1(T ∗S) and we can define djac(u) as well as vort(u) in the
distributional sense. More precisely, assume for the moment that u is smooth
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and take ϕ ∈ C∞(S). Then by integration by parts on S (see also Proposition
4.1.54 in [55]) and the fact that the adjoint differential satisfies d∗ := ?d?, we
can write: ˆ

S

ϕdjac(u) =

ˆ
S

〈ϕ vol,djac(u)〉 vol

=

ˆ
S

〈? d(ϕ ? vol), jac(u)〉 vol

=

ˆ
S

〈? dϕ, jac(u)〉 vol

=

ˆ
S

dϕ ∧ jac(u), (4.31)

where in the last line we have used that 〈?α, β〉 vol = α∧β for any pair of 1-forms
α and β. As the integral in (4.31) is still well defined for u ∈W 1,1(TS)∩L∞(TS),
we can use it to define vort(u) in the distributional sense as follows: On a given
test function ϕ ∈ C∞(S) the distributional vorticity vort(u) acts as:

1

2π
〈vort(u), ϕ〉 :=

ˆ
S

dϕ ∧ jac(u) + κ vol . (4.32)

In the above construction, we have only employed that ∇u ∈ L1 and u ∈ L∞.
Hence, in the same manner, we can define the distributional vorticity for u ∈
SBV (TS) ∩ L∞(TS) by replacing the Sobolev gradient with the approximate
gradient of u. It is possible to define distributional vorticity locally in a domain
U by restricting the test functions to lie in C∞c (U).

Note that in the Euclidean setting it was seen that for v ∈W 1,2(Ω;R2) with
Ω ⊂ R2 open the distributional Jacobian was defined in the pointwise sense.
The same holds true in our setting:

Lemma 4.4
Let v ∈W 1,2(TU) for some domain U ⊂ S, then vort(v) ∈ L1(Λ2(U)) and:

|vort(v)| ≤ C‖v‖2W 1,2 , (4.33)

where C = C(S) is a universal constant only depending on S.

Proof. Let us first consider v ∈ C∞(TU) ∩W 1,2(TU). In a coordinate neigh-
borhood, we derive by employing Proposition 2 of Chapter 5.3 in [34] that at
any point in {v 6= 0}:

djac(v) = d(|v|2 jac(|v|−1v))

= d(|v|2) ∧ jac(|v|−1v) + |v|2 djac(|v|−1v)

= 〈∇v, |v|−1v〉 ∧ 〈∇v, |v|−1v⊥〉 − |v|2κ vol .

For almost all points in {v = 0}, the equality above still remains true. By the
equivalence of norms, we can find λ > 0 such that for any ϕ = ϕidx

i it holds
that:

gijϕiϕj ≥ λϕiϕj ≥ λδijϕiϕj , (4.34)

where δij denotes the Kronecker delta. Setting α := 〈∇v, |v|−1v〉 and β :=
〈∇v, |v|−1v⊥〉, we derive by using the definition of ∧, Young’s inequality, and
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(4.34):

|〈∇v, |v|−1v〉 ∧ 〈∇v, |v|−1v⊥〉| ≤ 1√
|g|
|α1β2 − α2β1|

≤ 1

2
√
|g|

(α2
1 + α2

2 + β2
1 + β2

2)

≤ 1

2λ
√
|g|

(|α|2 + |β|2) =
1

2λc
|∇v|2.

Note that in the last line above, we have used
√
|g| ≥ c > 0 for some constant

depending on the coordinate neighborhood. As S is compact, we can cover it
by finitely many coordinate neighborhoods. Consequently, all constants above
can be chosen uniformly over S. Thus, we derive:

|djac(v)| ≤ C(|∇v|2 + |v|2‖κ‖∞) ≤ C‖v‖2W 1,2 ,

for a constant C = C(S). This shows (4.33) which leads directly to vort(v) ∈
L1(Λ2(U)) by integrating (4.33) over U . The general case of nonsmooth v can
be shown by a standard approximation procedure.

In the next lemma, we study how geometric quantities such as, for example,
the covariant derivative ∇ change under composition with the map Pe.

Lemma 4.5
Given a domain U , let u ∈ SBV (TU) ∩ L∞(TU) satisfying (u+)m = (u−)m at
H1-a.e. point in Ju, and let e ∈ C∞(U ;S1) for some domain U . Then, setting
v := Pe(u), the following relation holds true between ∇v and ∇u at a.e. point
in U :

∇v = |u|−1 d|u| ⊗ v + (m|u|−2 jac(u)− (m− 1) jac(e))⊗ v⊥, (4.35)

where the right-hand side above is defined to be 0 in {u = 0}. Furthermore, we
also have a.e. point in U :

|∇v|2 = m2|∇u|2 + (1−m2)|d|u||2 + (m− 1)2|u|2|∇e|2
− 2m(m− 1)〈jac(u), jac(e)〉, (4.36)

jac(v) = m jac(u) + (1−m)|u|2 jac(e)

= m jac(u)− (m− 1) jac(|u|e), (4.37)

vort(v) = m vort(u)− (m− 1) vort(|u|e). (4.38)

We shortly remark that the condition (u+)m = (u−)m in the statement of
the lemma above is independent of the choice of base vector e.

Proof. 1. Step: By the smoothness of Pe and the chain rule in BV (see also
Theorem 4.4) v ∈ SBV (TU) with v+ = Pe(u

+) = Pe(u
−) = v− atH1-a.e. point

in Jv ⊂ Ju. (We employed the fact that the equality (u+(p))m = (u−(p))m

locally at a point p does not depend on the choice of e(p).) Consequently,
H1(Ju) = 0, and hence v ∈ W 1,1(TU). As |v| = |u|, we have ∇v = 0 at
a.e. point in {|u| = 0}. Thus, it is enough to show (4.35) at every approximate
differentiability point of u contained in {|u| 6= 0}. The coordinate representation
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P̄e of Pe in a neighborhood of such a point can be expressed in polar coordinates
as follows:

P̄e(r, ϕ) =

(
r cos(mϕ)
r sin(mϕ)

)
.

By the chain rule in the Euclidean setting, we compute:

∇̄x1
P̄e =

x1

x2
1 + x2

2

P̄e −m
x2

x2
1 + x2

2

P⊥e ,

∇̄x2
P̄e =

x1

x2
1 + x2

2

P̄e + m
x1

x2
1 + x2

2

P̄⊥e .

With (4.23), this leads for i ∈ {1, 2} to:

∇∂xi v = |u|−2
[
(u1∂xiu

1 + u2∂xiu
2)v + m(−u2∂xiu

1 + u1∂xiu
2v⊥)

]
+ v1∇∂xi e+ v2∇∂xi e

⊥

= |u|−1d|u|(∂xi)v + jac(e)(∂xi)v
⊥ + m|u|−2(−u2∂xiu

1 + u1∂xiu
2)v⊥.

With:

jac(u)(∂xi) = 〈∇∂xiu+ u1∇∂xi e+ u2∇∂xi e
⊥, u⊥〉

= −u2∂xiu
1 + u1∂xiu

2 + |u|2 jac(e)(∂xi),

we complete the proof of (4.35).
2. Step: We now take the norm squared of both sides of (4.35) and employ

|u| = |v|:

|∇v|2 = |d|u||2 + m2|u|−2|jac(u)|
+ (m− 1)2|u|2|jac(e)|2 − 2m(m− 1)〈jac(u), jac(e)〉.

By:

|∇u|2 =
∣∣|u|−2 jac(u)⊗ u⊥ + |u|−2〈∇u, u〉 ⊗ u

∣∣2 = |u|−2|jac(u)|2 + |d |u||2,

(4.36) is satisfied. Using (4.35), the pre-jacobian of v can be written as

jac(v) = m jac(u)− (m− 1)|u|2 jac(e)

which combined with:

jac(|u|e) = 〈|u|d|u| ⊗ e+ |u|∇e, |u|e⊥〉 = |u|2 jac(e)

leads to (4.37). Finally, by the linearity of the distributional exterior derivative
and (4.37), we have:

vort(v) =
1

2π
(mdjac(u)− (m− 1) djac(|u|e) + κ vol)

= m vort(u)− (m− 1) vort(|u|e)

which is (4.38).

The following lemma relates the vorticity of a spin field and the topology
of S:
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Lemma 4.6 (Morse index formula)
For any or u ∈W 1,1(TS)∩L∞(TS) or u ∈ SBV (TS)∩L∞(TS) with (u+)m =
(u−)m on H1-a.e. point in Ju, it holds that:

vort(u)(S) := 〈vort(u),1S〉 = χ(S), (4.39)

where χ(S) is the Euler characteristic of S.

Proof. With the definition of vort(u) and the Gauss-Bonnet theorem we have

〈vort(u),1S〉 =
1

2π

ˆ
S

d1S ∧ jac(u) + κ vol

=
1

2π

ˆ
S

0 ∧ jac(u) + κ vol = χ(S).

Note that the distributional vorticity satisfies the index formula, even in
cases where one cannot find a sensible notion for the vorticity (such as u ≡ 0
on S).

Lastly, we directly follow from (4.32):

Lemma 4.7
Let (uε) ⊂ W 1,1(TS) (or (uε) ⊂ SBV (TS)) such that ∇uε ⇀ ∇u weakly in
W 1,1(TS) (or SBV (TS)), then vort(uε) converges flat towards vort(u).

4.1.3 Ball construction on a compact surface

In this subsection, we will generalize the celebrated ball construction – inde-
pendently introduced in [58] and [46] – from the Euclidean to the manifold
setting. The presentation closely follows the one in Chapter 4 of [60]. All balls
we encounter in this subsection are assumed to have a radius smaller than the
injectivity radius of S. If not otherwise stated, all families B of geodesic balls
are assumed to contain only finitely many disjoint closed balls. The radius of a
ball B will be written as rB ; the sum of the radii of all balls in a family B will
be denoted by r(B), and for any set A ⊂ S with a slight abuse of notation, we
will write:

B ∩A := {B ∈ B : B ⊂ A}.

Fixing an open connected set U and a map v ∈ C∞(U \ ωo; S1), where ω :=⋃
B∈BB and ωo is the interior of ω. We define the degree dB(U) (also depending

on v) of a ball B in U as:

dB(U) :=

{
deg(v, ∂B) if ∂B ⊂ U \ ωo,

0 else,
(4.40)

and the degree DB(U) of the family B in U as:

DB(U) :=
∑
B∈B

dB(U). (4.41)
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Note that the degree of v around ∂B in (4.40) is defined as described in the
previous subsection (see also (4.28)):

deg(v, ∂B) :=
1

2π

(ˆ
∂B

jac(v) +

ˆ
B

κ vol

)
.

Our main goal in this subsection is to prove the following theorem:

Theorem 4.6
Given an open connected set U ⊂ S, α ∈ (0, 1) and β ∈ (0, 1−α

2 ), there exist
ε0 = ε0(S, α, β) ∈ (0, 1) and a universal constant C = C(S) such that for any
ε ∈ (0, ε0) and u ∈ C∞(TU), whose energy is bounded by:

1

2

ˆ
U

|∇u|2 +
1

2ε2
(1− |u|2)2 vol ≤ C0|log ε| (4.42)

for some universal constant C0 = C0(S) and r ∈ [εα, r′] with:

r′ := min
{
r∗, C−1, 1

}
(r∗ being the injectivity radius of S), we can find a finite family B of disjoint
closed balls satisfying:

(i) r(B) = r.

(ii) For r1, r2 ∈ [εα, r′] with r1 < r2 and the corresponding families B1 and
B2, respectively, there exists for any B ∈ B1 a ball B̃ ∈ B2 such that
B ⊂ B̃.

(iii) Setting V := Uε ∩
⋃
B∈BB, where Uε := {p ∈ U : dist(p, ∂U) > ε}, we

have:
{|1− |u|| ≥ εβ} ∩ Uε ⊂ V.

(iv) The following energy lower bound holds true:

1

2

ˆ
V

|∇u|2 +
1

2ε2
(1− |u|2)2 vol ≥ πDr

(
log

r

Drε
− C

)
, (4.43)

where Dr := DB(Uε) (with DB(Uε) defined in (4.41)) satisfies:

sup{Dr : r ∈ [εα, r′], ε ∈ (0, ε0)} <∞. (4.44)

In the following, we will describe the central construction of this section.
Simply speaking, given an initial family B0, we wish to grow the balls contained
in B0 into larger and larger balls (see also Figure 4.2) More precisely, setting
T := log r∗

r0
(r0 := r(B0)), we will construct for each t ∈ [0, T ) a family B(t) of

balls as follows: For t = 0, we set B(0) := B0. Given t > 0 small enough, we
let B(t) := {etB : B ∈ B0}. We continue this either until t = T or there exists
(a smallest) t1 ∈ (0, T ) such that at least two balls in B(t) have a nonempty
intersection. In the latter case, we stop the growing phase and initiate the
merging phase. In the merging phase, we select an arbitrary pair of balls
B1 := Br1(p1), B2 := Br2(p2) ∈ B(t1) such that B1 ∩B2 6= ∅. Then we define
the geodesic ball B̃ = B̃(p̃, r̃), where r̃ = r1 + r2, and p̃ is defined as

p̃ := γp1,p2
(min{r2,dist(p1, p2)}),
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(a) First growing phase (b) First merging phase

(c) Second growing phase

Figure 4.2: The first three phases of the ball growing procedure.

γp1,p2
denotes the unique, unit-speed geodesic from p1 to p2. (Uniqueness

follows from r1 + r2 ≤ r(B(t)) < r∗.) Note that for any p ∈ B1, we have by the
triangular inequality and the definition of p̃ that:

dist(p, p̃) ≤ dist(p, p1) + dist(p1, p̃) < r1 + r2 = r̃,

which implies B1 ⊂ B̃. One can also show B2 ⊂ B̃, and hence B1 ∪ B2 ⊂ B̃.
We remove B1, B2, as well as any other ball B ∈ B(t1), which is contained in B̃
from B(t1), and add B̃ to the collection B(t1) instead. As the number of balls
in B(t1) decreases in each such merging steps by at least one, we will arrive after
finitely many steps at a collection B(t1), which is again disjoint and has the
same total radius as the family B(t−1 ) we started with. We have completed the
first merging phase and initiate the second growing phase by again setting for
t > t1, close enough to t1, B(t) := {et−t1B : C ∈ B(t1)}. As before, we continue
doing this either until t = T or there exists a (smallest) t2 ∈ (t1, T ) such that
we can find two balls B1, B2 ∈ B(t2) that have a nonempty intersection. In
the latter case, we stop the second growing phase and enter the second merging
phase. As in each merging phase the number of balls decreases at least by
one, we finish the construction after finitely many collision times t1, . . . , tN ,
N ∈ N. In conclusion, we end up with families of balls {B(t)}t∈[0,T ) (T as
before) satisfying the following properties:

(i) B(0) = B0.

(ii) B(t) is a finite union of disjoint balls for any t ∈ [0, T ).
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(iii) For any t, t̃ ∈ [0, T ) such that t < t̃, it holds that for any ball B̃ ∈ B(t̃),
we can find at least one ball B in B(t) such that B ⊂ B̃.

(iv) There exists a finite set {t1, . . . , tN} ⊂ [0, T ) (exactly the collision times
from before), where N ∈ N and 0 < t1 < · · · < tN such that for any
t ∈ [tk, tk+1), k ∈ {1, . . . , N − 1}, it holds that:

B(t) = et−tkB(tk) := {et−tkB : B ∈ B(tk)}.

(v) For all t ∈ [0, T ):
r(B(t)) = etr(B(0)). (4.45)

In the next lemma, we relate the degree between two different families of
balls where one covers the other:

Lemma 4.8
Given an open set U , two families B and B̃ such that B̃ covers

⋃
B∈BB, and

a map v ∈ C∞(U \ ωo;S1), where ω :=
⋃
B∈B0

B, it holds that:

|dB̃(U)| ≤
∑

B∈B(t)∩B̃
|dB(U)|, (4.46)

DB̃(U) ≤ DB(U). (4.47)

Proof. First, we wish to prove (4.46). Therefore, let us first consider the case
B̃ ⊂ U and B ∩ B̃ 6= ∅. As v is smooth in B̃ \⋃B∈B∩B̃ B and has unit length,
we see by the definition of dB(U) and dB̃(U):

dB̃(U) = deg(v, ∂B̃) =
∑

B∈B(t)∩B̃
deg(v, ∂B) =

∑
B∈B(t)∩B̃

dB(U).

Hence, by the triangular inequality (4.46) follows. In the remaining cases
(B̃ \ U 6= ∅ or B̃ ⊂ U but B ∩ B̃ = ∅), the inequality in (4.46) is trivially
satisfied as dB̃(U) = 0. Summing up (4.46) over all B̃ ∈ B(t̃), we derive
(4.47).

Later, it will be useful to have a generalized notion of radius for closed
subsets of S at hand. We will implicitly assume that all sets ω, for which we
will define a generalized radius, are closed and can be covered by finite disjoint
union of closed balls with their sum of radii strictly smaller than r∗. The precise
definition of the generalized radius is as follows: For an admissible set ω, we
define:

r(ω) := inf

{
N∑
i=1

rBi : , n ∈ N, ω ⊂ ∪Ni=1Bi

}
, (4.48)

where the infimum is taken over all finite families (of possibly nondisjoint) balls.
Note that by our implicit assumptions on ω, we always have that r(ω) < r∗.
Applying the merging procedure from before, we can equivalently take the
infimum in (4.48) over disjoint families of closed balls. Furthermore, for ω as
before and an open set U ⊂ S, we define the localized radius rU (ω) as:

rU (ω) := sup{r(K ∩ ω) : K ⊂⊂ U compact , ∂K ∩ ω = ∅}. (4.49)
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We can show that in the case of ω =
⋃
B∈BB for a finite family of disjoint

closed balls, we have:

rU (ω) = r(B ∩ U) =
∑

B∈B∩U
rB .

Lemma 4.9 (Properties of the generalized radius)
The generalized radius enjoys the following properties:

(i) It is monotone; that means given admissible sets ω and ω̃ with ω ⊂ ω̃, we
have r(ω) ≤ r(ω̃).

(ii) It is subadditive; that means given admissible sets ω and ω̃, it holds that
r(ω ∪ ω̃) ≤ r(ω) + r(ω̃).

(iii) Given an admissible set ω such that:

|ω|+ Λπ

4
(H1(∂ω))2 < |S|, Λ := sup

{ |Br(p)|
πr2

: p ∈ S, r ∈ [0, r∗]
}
,

(4.50)
we have:

r(ω) ≤ 1

2
H1(∂ω), (4.51)

as well as for any open subset U :

rU (ω) ≤ 1

2
H1(∂ω ∩ U). (4.52)

Proof. Monotonicity and subadditivity follow directly from the definition of the
generalized radius. It remains to prove (iii). In this regard, fix δ > 0 and take
a cover of ∂ω by a (possibly infinite) family B of open balls such that:

2r(B) ≤ H1(∂ω) + δ. (4.53)

That such a cover exists, simply follows from the definition of the Hausdorff
measure. By the compactness of ω, we can assume – without loss of generality
– that B is finite. Taking the closure of each ball in B and employing a merging
procedure results in a disjoint collections B̃, whose radius r(B̃) = r(B) such
that each ball of B is contained in a ball from B̃. As the balls in B̃ are disjoint
and S was assumed to be connected, we follow that A := S \ ⋃B∈B̃B is an
open connected subset of S with ∂ω ∩ A = ∅. Furthermore, A must be either
contained in S \ ω or in ωo, as else A ∩ (S \ ωo), A ∩ ωo would be a nontrivial
open partition of A contradicting the connectedness of A. We wish to exclude
the case A ⊂ ωo. Note that in the Euclidean setting this simply followed from
the compactness of ω and the unboundedness of A. In the manifold, this is not
generally true. In fact, if ω is too “large”, it may happen that A ⊂ ω. (On this
occasion we will employ the condition in (4.50).) Assume by contradiction that
A ⊂ ωo, then using (4.53), we derive:

|ω| ≥ |A| = |S| −
∑
B∈B̃

|B| ≥ |S| − Λπr(B)2 ≥ |S| − Λπ

4
(H1(∂ω) + δ)2.
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For δ > 0 small enough, this is a contradiction to (4.50). Consequently, the
balls in B̃ must cover ω. Hence, by the definition of r(ω) (see also (4.48)):

r(ω) ≤ r(B̃) = r(B) ≤ H1(∂ω) + δ.

(4.51) follows by passing to the limit δ → 0. Now consider a compact set
K ⊂⊂ U such that ∂K ∩ω = ∅, then ω ∩K is closed, ∂(ω ∩K) = ∂ω ∩K, and
by (4.51):

2r(K ∩ ω) ≤ H1(∂(ω ∩K)) = H1(∂ω ∩K) ≤ H1(∂ω ∩ U).

The inequality (4.52) follows by taking the supremum over all such sets K.

In the next proposition, we provide an estimate on the Dirichlet energy of
unit length spin fields:

Proposition 4.2 (Lower bounds for unit length spin fields)
Let U ⊂ S be an open connected subset of S, B0 be a finite family of closed
disjoint balls with r0 := r(B0) < r∗, and {B(t)}t∈[0,T ), where T := log r∗

r0
be

the corresponding collection of families of balls arising from the aforementioned
ball growing procedure starting at B0. Furthermore, set ω :=

⋃
B∈B0

B and fix

v ∈ C∞(U \ ωo;S1). We can then find a universal constant C = C(S) such
that for any t ∈ [0, T ) and B ∈ B(t) contained in U , it holds that:

1

2

ˆ
B\ω
|∇v|2 vol ≥ π|dB(U)|

(
log

(
r1

r0

)
− C(r1 − r0)

)
, (4.54)

where r1 := r(B(t)) and dB is defined in (4.40).

Proof. For any closed ball B = Br(p) such that ∂B ⊂ U \ ωo and r < r∗, we
set:

F(p, r) :=
1

2

ˆ
B\ωo

|∇v|2 vol .

We can show that F is nondecreasing in r (wherever it is defined), and:

∂

∂r
F(p, r) =

1

2

ˆ
∂B

|∇v|2.

In [24] the authors proved the following lower bound for the derivative above
(see Lemma 21):

1

2

ˆ
∂B

|∇v|2 ≥ 1

4πr + C1r2

∣∣∣∣2πdB − ˆ
B

κ vol

∣∣∣∣2,
where C1 = C1(S) > 0 is a universal constant. By the compactness of S, we
have that ‖κ‖∞ <∞, and hence we can bound:

ˆ
B

κ vol ≤ ‖κ‖∞|B| ≤ ‖κ‖∞Λπr2 = C2r
2,
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with Λ as in (4.50) and a universal constant C2 = C2(S). In the case dB 6= 0
(and therefore |dB | ≥ 1), we can estimate:

1

4πr + C1r2

∣∣∣∣2πdB − ˆ
B

κ vol

∣∣∣∣2 ≥ 1

4πr + C1r2
(4π2d2

B − 4π|dB |C2r
2)

≥ πd2
B ·

1− C2

π|dB |r
2

r + C1

4π r
2

≥ πd2
B ·

1− C3r
2

r + C3r2
,

with C3 := max{C2

π ,
C1

4π }. Hence:

∂

∂r
F(p, r) ≥ πd2

B ·
1− C3r

2

r + C3r2

= πd2
B

(
1

r
− C3(1 + r)

1 + C3r

)
≥ πd2

B

(
1

r
− C

)
, (4.55)

where C4 := C3(1 + r∗). Note that the above estimate is trivially satisfied in

the case dB = 0. Let s = log
(
r1
r0

)
and fix a balls B ∈ B(s) such that B ⊂ U .

By the choice of s, we have that r(B(s)) = esr0 = r1. Using the estimate (4.6)
in Lemma 4.1 of [60] for the functional F above, (4.55), (4.46), and (4.45), we
derive that:ˆ

B\ω
|∇v|2 vol ≥

ˆ t

0

∑
Br(p)∈B(s)∩B

r
∂

∂r
F(p, r) ds

≥
ˆ t

0

∑
B′∈B(s)∩B

πd2
B(1− C4rB′) ds

≥ π
ˆ t

0

(1− C4r(B(s)))
∑

B′∈B(s)∩B
|dB′ | ds,

≥ π|dB |(log(t)− C4(et − 1)r0)

= π|dB |
(

log

(
r1

r0

)
− C4(r1 − r0)

)
,

which leads to the desired estimate in (4.54) with C := C4.

In the next lemma, we will estimate the generalized radius of the set of
points where |u| (for u ∈ C∞(TU)) strays away from 1.

Lemma 4.10
There exists a universal constant C = C(S) such that for any M > 0, any
ε, δ ∈ (0, 1) with:

ε2M2

δ4
≤ |S|

C
, (4.56)

and any u ∈ C∞(TU) (,where U ⊂ S is an open connected set) satisfying the
energy bound:

1

2

ˆ
U

|∇u|2 +
1

2ε2
(1− |u|2)2 vol ≤M, (4.57)
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we have:

r({|1− |u|| ≥ δ} ∩ Uε) ≤ C
εM

δ2
, (4.58)

with Uε := {p ∈ U : dist(p, ∂U) > ε}.

Proof. By the Cauchy-Schwarz inequality, we derive:

2|u|d|u| = d〈u, u〉 = 2〈∇u, u〉 ≤ 2|∇u||u|.

In the case |u| > 0, we can divide the above inequality by 2|u|, which leads to:

d|u| ≤ |∇u|. (4.59)

As d|u| = 0 at a.e. point in {u = 0}, equation (4.59) holds true a.e. in U .
Moreover, due to the energy bound in (4.57):

1

2

ˆ
U

|d|u||2 +
1

2ε2
(1− |u|2)2 vol ≤M.

Using the Cauchy-Schwarz inequality, it follows that:

ˆ
U

|d|u|| |1− |u|
2|√

2ε
vol ≤M.

With the coarea formula on manifolds (see also, e.g. example [23]), this estimate
turns into: ˆ ∞

0

|1− t2|
ε

H1({|u| = t}) dt ≤
√

2M. (4.60)

Note that the integrand in (4.60) cannot be strictly bigger than 2
√

2M
δ at

a.e. point in (1− δ, 1− δ
2 ), as otherwise:

ˆ 1− δ2

1−δ

|1− t2|
ε

H1({|u| = t}) dt >
√

2M,

contradicts (4.60). Consequently, we can find a regular value t∗ ∈ (1− δ, 1− δ
2 )

of |u|; this means {|u| = t∗} = ∂ω with ω := {|u| ≥ t∗}) such that:

H1(∂ω ∩ U) ≤ 2
√

2εM

δ|1− (t∗)2| .

Note that as t∗ ∈ (1− δ, 1− δ
2 ), we can estimate |1− (t∗)2| = |1+ t∗||1− t∗| ≥ δ

2 ,
and therefore derive that:

H1(∂ω ∩ U) ≤ 4
√

2
εM

δ2
. (4.61)

From (4.59), the definition of ω, and |1− (t∗)2|2 ≥ δ2

4 , we then follow:

δ2

16ε2
|ω| ≤ 1

4ε2

ˆ
U

(1− |u|2)2 vol ≤M,

and by solving for |ω|:
|ω| ≤ 16εM2

δ2
. (4.62)
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We wish to employ Lemma 4.9 in order to show (4.58). But in order to do so,
we need an estimate on H1(∂ω ∩Uε) instead of H1(∂ω ∩U). In this regard, by
(4.62) and Fubini’s theorem, we can find an s ∈ (0, ε) such that:

H1(ω ∩ Us) ≤
16εM

δ2
(4.63)

with Us := {p ∈ U : dist(p, ∂U) > s}, and therefore:

H1(∂(ω ∩ Us)) ≤ H1(∂ω ∩ U) +H1(ω ∩ Us) = C1
εM

δ2
, (4.64)

where C1 = 16 + 4
√

2. By (4.64) and (4.62), we can estimate:

|ω ∩ Us|+
Λπ

4

(
H1(∂(ω ∩ Us))

)2 ≤ C2
εM2

δ4
,

where Λ is the universal constant defined in (4.50) and C2 := 16(1 +
C2

1Λπ
4 ).

Hence, setting C := max{ 1
2C1, C2}, we see by (4.56) that (4.50) is satisfied for

the set ω ∩ Us ⊂⊂ U . Consequently, by (4.51), (4.64), the definition of C, and
the monotonicity of the generalized radius, we finally derive:

r(ω ∩ Uε) ≤ r(ω ∩ Us) ≤
1

2
H1(∂(ω ∩ Us)) ≤ C

εM

δ2
,

as is desired.

In the following proposition, we will select the initial family of balls. More
precisely:

Proposition 4.3 (Initial ball selection)
Let α ∈ (0, 1) and β ∈ (0, 1−α

2 ), then there exists an universal scalar ε0 =
ε0(S, α, β) ∈ (0, 1) such that for any ε ∈ (0, ε0), and any u ∈ C∞(TU) (U ⊂ S
open and connected) satisfying the energy bound:

1

2

ˆ
U

|∇u|2 +
1

2ε2
(1− |u|2)2 vol ≤ C0|log ε| (4.65)

for some universal constant C0 = C0(S), we can find a finite family B0 of
disjoint closed balls with the following properties:

(i) r(B0) = εα.

(ii) {|1− |u|| ≥ εβ} ⊂ V0 := Uε ∩
⋃
B∈B0

B.

(iii) Setting v := u
|u| wherever this makes sense, we have for any t ∈ (0, 1−εβ):

1

2

ˆ
V0\ωt

|∇v|2 vol ≥ πDB0
(Uε)

(
log

(
εα

rUε(ωt)

)
− C

)
, (4.66)

where C = C(S) is a universal constant, Uε := {p ∈ U : dist(p, ∂U) > ε},
ωt := {|u| ≤ t}, and DB0

(Uε) is defined in (4.41).
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Proof. In the following, we will fix ε ∈ (0, ε0), where ε0 will be appropriately
defined along the way.

1. Step: We wish to apply Lemma 4.10 with M := C0|log ε| (where C0 is
the constant from (4.65)) and δ := εβ . As 2− 4β > 2− 2(1− α) = 2α > 0, it
follows that:

lim sup
ε→0

ε2M2

δ4
≤ lim sup

ε→0
C0ε

2α|log ε|2 = 0.

Hence, we can find a scalar ε0 = ε0(C0, C1, α) ∈ (0, 1), where C1 is the universal
constant from Lemma 4.10 such that for any ε < ε0 the condition Lemma 4.10 is
satisfied for δ, as defined above. Let us set α̃ := 1−2β, then α̃ > 1−2 · 1−α2 = α

and 1−α̃
2 = 1−1+2β

2 = β. Consequently, by (4.58) and the definition of the

generalized radius, we can find a finite family B̃ of disjoint closed balls covering
the set {|1− |u|| ≥ δ} and satisfying:

r̃ := r(B̃) ≤ 2C1 ·
εM

δ2
= 2C1C0ε

1−2 1−α̃
2 |log ε| = 2C1C0ε

α̃|log ε|. (4.67)

As:

lim
ε→0

C1C0ε
α̃−α|log ε| = 0,

by possibly decreasing ε0 (dependent on C0, C1, α, and β), we see that r̃ ≤ 1
6ε
α.

Using the ball growing procedure introduced in this subsection, we can assure
that r̃ = 1

6ε
α. Note that the choice of the prefactor 1

6 will be made clear at a
later point in the proof.

2. Step: Let Ṽ :=
⋃
B∈B̃B, Ṽ ′ :=

⋃
B∈B̃∩Uε B, Ṽ ′′ the union of the remain-

ing balls in B̃, and Ũε := Uε \V ′0 . By the compactness of V ′′0 and the definition
of rUε(ωt), we see that for any t ∈ (0, 1− δ):s

rUε(ωt) ≥ r(ωt ∩ Ṽ ′) = r(ωt ∩ Ũε). (4.68)

Consequently, we can cover for any given t ∈ (0, 1− δ) the set ωt ∩ Ũε with a
family B̃t of balls with a radius no greater than 2r(ωt ∩ Ũε). As r(ωt ∩ Ũε) ≤
r(ωt) ≤ r(B̃) = r̃, we can grow these balls into the family Bt with r(Bt) = 2r̃.
Employing (4.67), Proposition 4.2 with the domain Ũε, v := u

|u| (defined in

{u 6= 0}), as well as the two families B̃t and Bt, we derive by the monotonicity
of the logarithm:

1

2

ˆ
Wt\ωt

|∇v|2 vol ≥ πDBt
(Ũε)

(
log

(
2r̃

2r(ωt ∩ Ũε)

)
− C2(2r̃ − 2r(ωt ∩ Ũε))

)
≥ πDBt(Ũε)

(
log

(
r̃

rUε(ωt)

)
− 2C2r

∗)

)
(4.69)

where C2 = C2(S) is the universal constant from Proposition 4.2 and:

Wt :=
⋃

B∈Bt

B.

As DBt
(Ũε) is a natural number for any t ∈ (0, 1− δ) we can find t̄ ∈ (0, 1− δ)

such that DBt̄
(Ũε) is minimal among all t ∈ (0, 1− δ). We then define B := Bt̄.
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3. Step: Let K ⊂⊂ U such that r(K) ≤ 2r̃ and F(K) ≥ m− 1, where:

F(K) :=
1

2

ˆ
(K∩Uε)\Ṽ

|∇u|2 vol,

m := sup
{
F(K̃) : K̃ ⊂⊂ U compact, r(K̃) ≤ 2r̃

}
.

By the previous reasoning and the subadditivity of the generalized radius, we
then have:

r

(
K ∪ Ṽ ∪

⋃
B∈B

B

)
≤ r(K) + r(Ṽ ) + r(B) = 5r̃.

Consequently, we can cover K ∪ Ṽ ∪⋃B∈BB by a family B0 with r(B0) ≤ 6r̃.
By possible growing the balls in B0, we can assume – without loss of generality
– that r(B0) = εα and Item (i) of Proposition 4.3 is satisfied. Furthermore, as
the balls of B0 cover Ṽ , Item (ii) of Proposition 4.3 is also satisfied.

4.step: It remains to show (4.66). Let V0 :=
⋃
B∈B0

∩Uε, then as B0 covers
K:

1

2

ˆ
V0\ωt

|∇v|2 vol ≥ F(K) +
1

2

ˆ
Ṽ \ωt
|∇v|2 vol .

Hence, with (4.69), the definition of K, and the fact that Wt is a competitor
for the supremum m:

1

2

ˆ
V0\ωt

|∇v|2 vol ≥ F(Wt)− 1 +
1

2

ˆ
Ṽ \ωt
|∇v|2 vol

=
1

2

ˆ
Wt\ωt

|∇v|2 vol−1

≥ πDB(Ũε)

(
log

( 1
6ε
α

rUε(ωt)

)
− 2C2r

∗
)
− 1

≥ πDB(Ũε)

(
log

(
εα

rUε(ωt)

)
− log(6)− 2C2r

∗
)
− 1.

As B0 covers
⋃
B∈BB, we have by (4.47) that DB(Ũε) ≥ DB0

(Ũε). Moreover,

as B0 also covers Ṽ , any ball B ∈ B0 with B \ Ũε 6= ∅ must intersect ∂Uε,
and therefore has zero degree dB(Uε) = 0 in Ũε. Consequently, DB(Ũε) ≥
DB0(Ũε) = DB0(Uε). Note that if DB0(Ũε), the estimate in (4.66) is trivially
satisfied for C = 0. In the case DB0(Uε) > 0, and hence also DB0(Uε) ≥ 1, we
see that (4.66) holds true for C = log(6) + 2C2r

∗ + 1
π .

We are ready to proof the main result of this subsection:

Proof of Theorem 4.6. The correct values of ε0 will be fixed along the way. The
proof follows closely the one of Theorem 4.1 in [60]:

1. Step: Let B0 denote the initial family provided by Proposition 4.3, with
α and β as stated and C1 = C1(S) denoting the constant in (4.66). We let the
balls in B0 grow and merge as described in the beginning of this subsection,

resulting in {B(s)}s∈[0,T ), where T := log
(
r∗

r0

)
with r0 := r(B0). Let us now

set:

Br := B(s), s := log

(
r

r0

)



4.1. Preliminaries 141

By construction, r(B(s)) = esr(B0), and hence Br – as chosen above – satisfies
Item (i). From the definition of the growing procedure, Item (ii) of Theorem 4.6
directly follows. By Item (iii) and Item (ii) in Proposition 4.3, we also derive
Item (iii) of Theorem 4.6.

2. Step: It remains to prove the energy lower bound (4.43). First note that
as u 6= 0 in Uε \W0 with W0 :=

⋃
B∈B0

B, we can apply Proposition 4.2 in Uε
for v = u

|u| , which implies for every B ∈ Br ∩ Uε:

1

2

ˆ
B\W0

|∇v|2 vol ≥ π|dB(Uε)|
(

log

(
r

r0

)
− C2r

∗
)
, (4.70)

where r∗ is the injectivity radius, C2 = C2(S) is the constant from Proposi-
tion 4.2, and dB(Uε) is defined in (4.40). Let us assume for the moment that
ε0 is as in Proposition 4.3; then summing up (4.70) over all balls B ∈ Br ∩ Uε
and using (4.66), leads – for every t ∈ (0, 1− δ) with δ := εβ – to:

1

2

ˆ
Vt

|∇v|2 vol =
1

2

ˆ
Vt\W0

|∇v|2 vol +
1

2

ˆ
W0

|∇v|2 vol

≥ πDr

(
log

(
r

r(B0)

)
+ log

(
r(B0)

rUε(ωt)

)
− C2r

∗ − C3

)
,

= πDr

(
log

(
r

rUε(ωt)

)
− C4

)
, (4.71)

where Dr := DBr(Uε), ωt := {|u| ≤ t}, C4 = C2 + C3 with C3 = C3(S) being
the universal constant from Proposition 4.3, and

Vt := V \ ωt, V := Uε ∩
⋃
B∈B

B.

3. Step: The desired estimate will follow by integrating (4.71) over t ∈
(0, 1 − δ). In this regard, we will apply the coarea formula on Riemannian
manifolds (see also [23]). Let us first fix some notation: For any t > 0, we
define:

γt := {|u| = t} ∩ Uε, Θ(t) :=
1

2

ˆ
Vt

|∇v|2 vol .

By the Cauchy-Schwarz inequality, we have for any t > 0:

|d|u||2 +
(1− t2)2

2ε2
≥ |d|u||

√
2|1− t2|
ε

,

and hence with the coarea formula, this leads to

1

2

ˆ
U

|d|u||2 +
1

2ε2
(1− |u|2)2 vol ≥ 1

2

ˆ ∞
0

√
2|1− t2|
ε

H1(γt) dt. (4.72)

Furthermore, by Fubini’s theorem:

1

2

ˆ
U

|u|2|∇u|2 vol = −
ˆ ∞

0

t2Θ′(t) dt ≥ 2

ˆ ∞
0

tΘ(t). (4.73)

(Note that the last inequality can be strict if |u| is constant on sets of positive
area.) Let us shortly write:

I :=
1

2

ˆ
U

|∇u|2 +
1

2ε2
(1− |u|2)2 vol . (4.74)
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By the product rule, we derive in {u 6= 0} that:

∇u = ∇(|u|v) = d|u| ⊗ v + |u|∇v,

and by taking the norm on both sides:

|∇u|2 = 〈d|u| ⊗ v + |u|∇v,d|u| ⊗ v + |u|∇v〉
= |d|u||2 + |u|2|∇v|2 + 2|u|〈d|u| ⊗ v,∇v〉.

As for any section X ∈ C∞(TU), we have that 〈∇Xv, v〉 = 1
2 dX〈v, v〉 = 0, the

above equation simplifies to:

|∇u|2 = |d|u||2 + |u|2|∇v|2. (4.75)

Hence, with (4.72) and (4.73), the following estimate follows:

I
1

2

ˆ
U

|u|2|∇v|2 vol +
1

2

ˆ
U

|d|u||2 +
1

2ε2
(1− |u|2)2 vol

≥
ˆ 1−δ

0

2tΘ(t) +
1− t2√

2ε
H1(γt) dt. (4.76)

Let us take ε0 as in Proposition 4.3. In this case, we have already seen in the
proof of Proposition 4.3 that 2rUε(ωt) ≤ H1(∂ωt ∩ Uε) for any t ∈ (0, 1 − δ).
By the continuity of u and the definition of γt, we follow that ∂ωt ∩ Uε ⊂ γt,
and therefore:

2rUε(ωt) ≤ H1(γt). (4.77)

Due to (4.71) and the definition of Θ(t), it holds that:

Θ(t) ≥ πDr

(
log

(
r

rUε(ωt)

)
− C4

)
,

for each t ∈ (0, 1− δ). Consequently, with (4.77), we have that:

I ≥
ˆ 1−δ

0

2tπDr

(
log

(
r

rUε(ωt)

)
− C4

)
+

√
2(1− t2)

ε
rUε(ωt) dt.

Minimizing the above integrand with respect to the value of rUε(ωt), we see
that the global minimum is achieved for:

rUε(ωt) =
2tπDrε√
2(1− t2)

.

Hence:

I ≥
ˆ 1−δ

0

2tπDr

(
log

(
r

Drε

)
+ log

(
1− t2√

2πt

)
− C4

)
dt.

By computing the integral in the estimate above, we see that:

I ≥ πDr

(
(1− δ)2 log

(
r

Drε

)
− C5

)
,
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where:

C5 := −
ˆ 1

0

2t log

(
1− t2√

2πt

)
dt > 0.

In the case log r
Dε−C5 ≤ 0, the inequality in (4.43) is trivially satisfied with C5,

as chosen above. We can therefore reduce ourselves to the case log r
Dε ≥ C5 > 0.

Under this additional assumption, we have:

I ≥ πDr

(
log

(
r

Drε

)
− 2δ log

(
r

Dr

)
− 2δ|log ε| − C5

)
.

Without loss of generality, we can assume that Dr ≥ 1 (in the case Dr = 0,
the right-hand side of (4.43) is 0). Then, as additionally r ≤ r′ ≤ 1, the term
δ log

(
r
D

)
is nonpositive which – together with δ = εβ – leads to

I ≥ πDr

(
log

(
r

Drε

)
− 2εβ |log ε| − C5

)
.

By possibly decreasing ε0, we can assure that 2εβ0 |log ε0| ≤ 1, showing:

I ≥ πDr

(
log

(
r

Drε

)
− 1− C5

)
,

which is (4.43) for C := 1 + C5.

4. Step: It remains to check (4.44). Suppose that for a.a. t ∈ ( 1
2 ,

3
4 ), it holds

that H1 γt ≥ l for some l > 0. Then by (4.72) and (4.42), we have:

7

64
√

2
· l
ε
≤ 1

2

ˆ 3
4

1
2

√
2|1− t2|
ε

H1(γt) ≤ C0|log ε|.

For l >
√

2·64
7 C0|log ε|ε, this leads to a contradiction. Hence we can find a

regular value t∗ ∈ ( 1
2 ,

3
4 ) of |u| such that H1(γt) ≤ C6ε|log ε|, where C6 =√

2·64
7 C0. For ε0 small enough, we have that 1− δ = 1− εβ > 3

4 , and by (4.77),

we see that rUε(ωt∗) ≤ H1(γt∗) ≤ C6ε|log ε|. With (4.66), and the fact that

v := u
|u| satisfies |∇v|2 ≤ |∇u|

2

|u|2 ≤ 4|∇u|2 (see (4.75)), this leads to:

4C0|log ε| ≥ 1

2

ˆ
Vt∗

|∇v|2 vol ≥ πDr

(
log

(
r

C6ε|log ε|

)
− C

)
,

where C is the constant from (4.66). By possibly further decreasing ε0 (de-

pending on C6 and α), we can assure that C6ε|log ε| ≤ ε−
1−α

2 , and therefore:

8

(1− α)π
C0|log ε| ≥ Dr(|log ε| − log r − C) ≥ Dr(|log ε| − C), (4.78)

where we have used r ≤ r′ ≤ 1. Note that the assumption Dr >
8

(1−α)πC0

contradicts (4.78) for sufficiently small ε0, and (4.44) follows.
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4.2 Problem setup

The Γ-convergence result stated in this section can be seen as a natural gen-
eralization of Theorem 3.1 in [40] to the setting of a compact oriented two-
dimensional Riemannian manifold.

In this regard, we will investigate the following admissible spin fields:

AS(m) = AS(m)(S) := {u ∈ SBV 2(TS) : (u+)m = (u−)m H1-a.e. on Ju}.

We also consider the restriction to a general domain U ⊂ S (open, simply
connected):

AS(m)(U) := {u ∈ SBV 2(TU) : (u+)m = (u−)m H1-a.e. on Ju}.

Given ε > 0, we define the generalized Ginzburg-Landau energy functional
GGLε on the set AS(m) as follows:

GGLε(u) :=
1

2

ˆ
S

|∇u|2 +
1

2ε2
(1− |u|2)2 vol +H1(Ju).

Correspondingly, we define the localized version in a domain U as:

GGLε(u, U) :=
1

2

ˆ
U

|∇u|2 +
1

2ε2
(1− |u|2)2 vol +H1(Ju ∩ U).

We will now describe the Γ-limit: The set of limit vortex measures X(m) is
given by:

X(m) :=

sgn(χ(S))

m|χ(S)|∑
k=1

1

m
δpk : pk ∈ S, pk 6= pl for k 6= l

.
It will be useful to also have a notation for the following superset of X(m):

X̃(m) :=

{
µ =

K∑
k=1

dk
m
δpk : dk ∈ Z, pk 6= pl for k 6= l,

K∑
k=1

dk = mχ(S)

}
.

Furthermore, LS(m) will denote the set of limit spin fields u ∈ SBV (S;S1),
additionally satisfying:

(i) (u+)m = (u−)m at H1-a.e. point in Ju, where H1(Ju) <∞.

(ii) 1
π vort(u) ∈ X(m), and u ∈ SBV 2

loc(S \ spt vort(u);S1).

On LS(m), we define the (fractional) renormalized energy as:

W(m)(u) := lim
r→0

(
1

2

ˆ
Sr

|∇u|2 vol−|χ(S)|
m

π|log r|
)
, (4.79)

where Sr is defined as:

Sr := S \
m|χ(S)|⋃
k=1

Br(pk), where vort(u) = sgn(χ(S))

m|χ(S)|∑
k=1

1

m
δpk . (4.80)
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Note that in Lemma 4.17, we will prove the well-definedness of the renormalized
energy W(m) on LS(m). Given r > 0, ε > 0, and λ ∈ S1 we consider:

γ̄(m)
ε (r, λ)

:= min

{
Eε(v, B̄r(0)) : v ∈W 1,2(B̄r(0);R2), v = λ

x

|x| on ∂B̄r(0)

}
,

(4.81)

where B̄r(0) is the ball in R2 of radius r, and Eε is given by:

Eε(v, B̄r(0)) :=
1

2m2

ˆ
B̄r(0)

|∇v|2 + (m2 − 1)|∇|v||2 +
m2

2ε2
(1− |v|2)2 dx.

Note that the minimum problem above is formulated in the Euclidean setting,
so, for example, Br(0) denotes the Euclidean ball of radius r centered at 0. By
a change of coordinates, we can rewrite for v ∈W 1,2(B̄r(0);R2) with v = λ x

|x|
on ∂B̄r(0):

1

2m2

ˆ
Br(0)

|∇v|2 + (m− 1)2|∇|v||2 +
m2

2ε2
(1− |v|2)2 dx

=
1

2m2

ˆ
B̄ r
ε

(0)

|∇ṽ|2 + (m− 1)2|∇|ṽ||2 +
m2

2
(1− |ṽ|2)2 dx,

where ṽ(x) := λ−1v(εx) is admissible for the minimization problem in the
definition of γ̄m( r

ε
) := γ̄m1 ( rε , 1, 1). By symmetry, we therefore see that:

γ̄(m)
(r
ε

)
= γ̄(m)

ε (r, λ).

It was proved in [40] (see also Lemma 3.9) that there exists a scalar γm (possibly
depending on m) such that the following convergence holds true:

γm = lim
R→∞

(
γ̄(m)(R)− π

m2
log(R)

)
. (4.82)

We are well equipped to state the main result of this chapter:

Theorem 4.7
With the notation defined above the following Γ-convergence result holds true:

(i) (Compactness) Given a sequence (uε) ⊂ AS(m) bounded in L∞(TS) and
satisfying the energy bound:

GGLε(uε) ≤
|χ(S)|
m

π|log ε|+ C, (4.83)

for some constant C > 0 independent of ε, we can find a measure µ ∈ Xm

such that, up to a subsequence:

vort(uε)
[
⇀ µ flat in S. (4.84)

Furthermore, there exists u ∈ LS(m) with vort(u) = µ such that, up to
possibly taking a further subsequence:

uε ⇀ u in SBV 2
loc(T (S \ sptµ)) ∩ SBV (TS). (4.85)
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(ii) (Γ-liminf) Let (uε) ⊂ AS(m) such that uε → u ∈ L1(S), then:

lim inf
ε→0

GGLε(uε)−
|χ(S)|
m

π|log ε| ≥ W(m)(u) +H1(Ju) + m|χ(S)|γm.
(4.86)

(iii) (Γ-limsup) For any u ∈ LS(m), we can find a sequence (uε) ⊂ AS(m) such
that:

lim sup
ε→0

GGLε(uε)−
|χ(S)|
m

π|log ε| ≤ W(m)(u) +H1(Ju) + m|χ(S)|γm.
(4.87)

4.3 Proof of Gamma-convergence

4.3.1 Compactness

The following estimate will turn up to be useful:

Lemma 4.11
Given a simply connected, open subset U ⊂ S and sequences (vn), (wn) ⊂
AS(m)(U) such that:

lim
n→∞

‖vn − wn‖L2(‖∇vn‖L2 + ‖∇wn‖L2) = 0,

it holds that:

djac(vn)− djac(wn)
[
⇀ 0 flat in U. (4.88)

Proof. The proof is the same as in the flat setting. (See also Lemma 2.1 in
[8].)

On several occasions, we will employ:

Lemma 4.12
Given an open subset U ⊂ S and v ∈ W 1,1

loc (TU), the following holds true at
a.e. point in U :

∇v =

{
d|v| ⊗ v

|v| + 1
|v| jac(v)⊗ v⊥

|v| , if v 6= 0,

0 else.
(4.89)

Proof. With the product rule, we compute at a.e. point in {v 6= 0}:

∇v = ∇
(
|v| v|v|

)
= d|v| ⊗ v

|v| + |v|∇ v

|v|

= d|v| ⊗ v

|v| + |v| jac

(
v

|v|

)
⊗ v⊥

|v|

= d|v| ⊗ v

|v| +
1

|v| jac(v)⊗ v⊥

|v| .

As for almost all points in {v = 0} we have that ∇v = 0, the equality in (4.89)
remains true at a.e. point in {v = 0}.
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Given an open set U ⊂ S, we will shortly write:

AS(U) := AS(1)(U).

On AS(U) as well as on AS(m)(U), we define the classic Ginzburg-Landau
energy functional as:

GLε(u) :=
1

2

ˆ
U

|∇u|2 +
1

2ε2
(1− |u|2)2 vol .

Furthermore, for τ > 0, we define Tτ : R2 \ {0} → R2 by:

Tτ (x) := min{τ−1|x|, 1} x|x| .

Lemma 4.13
Let U ⊂ S be a simply connected open set, e ∈ C∞(Ū ;S1), and (vε) ⊂ AS(U)
be a bounded sequence in L∞(TU) satisfying the energy bound:

GLε(vε) ≤ C|log ε|

for some constant C independent of ε, then:

vort(|vε|e) [
⇀ 0 flat in U. (4.90)

Proof. By approximation and Lemma 4.11, we can assume without loss of
generality that each vε is smooth in U . Due to the energy bound and the
definition of GGLε, we can apply Theorem 4.6 for sufficiently small ε > 0 with
α = 1

2 , β = 1
5 , and r = ε

1
3 . Let Bε denote the family of balls corresponding

to the choices made above, and Vε := Uε ∩
⋃
B∈Bε

B, where Uε := {p ∈
U : dist(p, ∂U) > ε}. Furthermore, we will shortly write wε := |vε|e and

w̃ε = T1−δε wε with δε := ε
1
5 . We then derive with the boundedness of (vε) in

L∞:

‖wε − w̃ε‖L2(TU) = ‖wε − w̃ε‖L2(TVε) + ‖wε − w̃ε‖L2(T (U\Vε))
≤ (sup

ε
‖vε‖L∞(TU) + 1) vol(Vε) + vol(U \ Vε)δε

≤ Cε 1
6 + vol(U)ε

1
5 ≤ C(U)ε

1
6 .

Moreover, by the product rule:

∇wε = ∇(|vε|e) = d|vε| ⊗ e+ |vε|∇e = d|vε| ⊗ e+ |vε| jac(e)⊗ e⊥,

and therefore:
|∇wε|2 = |d|vε||2 + |vε|2|jac(e)|2. (4.91)

Due to (4.89), we also have:

|d|vε||2 = |∇vε|2 −
1

|vε|2
|jac(vε)|2 ≤ |∇vε|2.

Hence with (4.91), the energy-bound on (vε), and the boundedness of (vε) in
L∞:

‖∇wε‖L2 + ‖∇w̃ε‖L2 ≤ 3‖∇vε‖L2 + C(e) ≤ C(e)|log ε|, (4.92)
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where in the first estimate we have used the fact that |∇w̃ε| ≤ 2|∇wε| for ε

small enough. By Lemma 4.11, it is therefore sufficient to show vort(w̃ε)
[
⇀ 0

in U . For this purpose, let ϕ ∈ C0,1
0 (U) be an admissible test function with

Lipschitz constant Lϕ ≤ 1. We first split up
´
U
ϕ vort(w̃ε) as follows:

ˆ
U

ϕ vort(w̃ε) =

ˆ
Uε\Vε

ϕ vort(w̃ε) +

ˆ
Vε

ϕ vort(w̃ε)

+

ˆ
U\Uε

ϕ vort(w̃ε).

As |w̃ε| = 1 in Uε \ Vε, we have that vort(wε) = 0 in Uε \ Vε, and therefore:

ˆ
U\Vε

ϕ vort(w̃ε) = 0.

By the definition of w̃ε and the smoothness of e, it holds that deg(w̃ε, ∂B) =
deg(e, ∂B) = 0 for every B ∈ B̃ε := {B ∈ Bε : B ∩ Uε 6= ∅}, and hence with
(4.33) we can estimate:

ˆ
Vε

ϕ vort(w̃ε) =
∑

Br(p)∈B̃ε

ˆ
Br(p)∩U

(ϕ− ϕ(p)) vort(w̃ε)

≤
∑

Br(p)∈B̃ε

Lϕr

ˆ
Br(p)∩U

|vort(w̃ε)| vol

≤ C(S)ε
1
3

(
1 +

ˆ
U

|∇w̃ε|2 vol

)
≤ C(S)ε

1
3 |log ε|.

As each point p ∈ U \ Uε has distance at most ε from the boundary we derive
by using ϕ = 0, and again (4.33):

intU\Uεϕ vort(w̃ε) ≤ LϕεintU\Uε |vort(w̃ε)| vol

≤ C(S)ε

(
1 +

ˆ
U

|∇w̃ε|2 vol

)
≤ C(S)ε|log ε|.

By the arbitrariness of ϕ, we then derive for ε sufficiently small that:

‖vort(w̃ε)‖[ ≤ C(S)ε
1
3 |log ε| → 0,

which concludes the proof.

Proposition 4.4 (Initial Compactness)

Given a sequence (uε) ⊂ AS(m) bounded in L∞(TS) and satisfying the energy
bound

GLε(uε) ≤ C|log ε|

for a constant C independent of ε, there exists a measure µ ∈ X̃(m) such that,
up to a subsequence:

vort(uε)
[
⇀ µ flat in S. (4.93)
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Proof. 1. Step: We start by localizing the problem. Let U (1), . . . , U (N) be a
cover of S with coordinate neighborhoods. By possibly shrinking each U (i), we
can assume that for each i, there exists another coordinate neighborhood Ũ (i)

with U (i) ⊂⊂ Ũ (i). In the following, we will fix i and shortly write Ũ = Ũ (i), as
well as U := U (i). Furthermore, we choose an arbitrary spin field e ∈ C∞(Ũ ;S1)
and set vε := Pe(uε) in Ũ . Note first that by (4.36) we have:

ˆ
U

|∇vε|2 vol = m2

ˆ
U

|∇uε|2 vol +(1−m2)

ˆ
U

|d|uε||2 vol

+ (m− 1)2

ˆ
U

|uε|2|∇e|2 vol−2m(m− 1)

ˆ
U

〈jac(uε), jac(e)〉 vol .

With Young’s inequality and (4.89) we can estimate:

ˆ
U

〈jac(uε), jac(e)〉 vol ≤
ˆ
U

|uε||∇uε||∇e| vol ≤ 1

2

ˆ
U

|uε|2|∇uε|2 vol +
1

2

ˆ
U

|∇e|2 vol .

Consequently, by the energy bound on (uε) and the boundedness of (uε) in L∞

we follow:
ˆ
U

|∇vε|2 vol ≤ C + m2

ˆ
U

|∇uε|2 vol +

ˆ
U

|uε|2|∇uε|2 vol

≤ C(1 + |log ε|) ≤ C|log ε|

for a constant C independent of ε. Using standard approximation results in
Sobolev spaces, we can find a sequence (wε) ⊂ C∞(TŨ) such that:

lim
ε→0
‖wε − vε‖W 1,2(Ũ) = 0. (4.94)

Hence, with the previous reasoning, (wε) satisfies the logarithmic energy bound
in (4.42). Consequently, for each ε > 0 small enough, we can apply Theorem 4.6

for sufficiently small ε > 0 with α = 1
2 , β = 1

5 , and r = ε
1
3 . Let B̃ε denote the

finite family of geodesic balls provided by Theorem 4.6 and D̃rε := DB̃ε
(Ũε).

Moreover:
Bε := {B ∈ B̃ε : B ∩ U 6= ∅}, Drε := DBε(U).

We end up with a collection Bε, satisfying:

sup
ε
Drε ≤ sup

ε
D̃rε <∞, (4.95)

Vε = U ∩
⋃

B∈Bε

B ⊃ {|1− |wε|| ∩ U ≥ ε
1
5 }, (4.96)

r(Bε) ≤ r(B̃ε) = ε
1
3 . (4.97)

Note that (4.95) follows from (4.44) and the fact that U ⊂ Ũε for ε > 0 small
enough. The set relation in (4.96) can be proved using Item (iii) in Theorem 4.6,
and again the fact that U ⊂ Ũε for ε > 0 small enough. Lastly, (4.97) is implied
by Item (i) of Theorem 4.6. Let us set:

νε :=
∑

Br(p)∈Bε

deg(w̃ε, ∂Br(p))δp, where w̃ε := T
1−ε 1

5
vε.
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2. Step: We wish to derive a compactness result for (νε). Note that by the
smoothness of w̃ε, the degree deg(w̃ε, ∂B) ∈ Z for any B ∈ Bε ∩ U , hence the
measure νε has only weights in Z. Furthermore, by (4.44) and the definition of
νε:

sup
ε∈(0,ε0)

|νε|(U) = sup
ε∈(0,ε0)

D
ε

1
3
<∞.

As a consequence, we can find a point measure ν with weights in Z such that,
up to a subsequence:

νε
∗
⇀ ν weak* in U, and therefore also νε

[
⇀ ν flat in U. (4.98)

Our aim now is to estimate the flat distance between vort(vε)|U and νε. With

(4.94) and Lemma 4.11, we derive that vort(vε)|U − vort(wε)|U [
⇀ 0 flat in

U . By the definition of w̃ε, (4.96), and again Lemma 4.11, we also have that

vort(wε)|U − vort(w̃ε)|U [
⇀ 0 flat in U . It remains to estimate the flat distance

between vort(w̃ε)|U and νε. We follow the same strategy as in the proof of
Lemma 4.13: Consider an arbitrary test function ϕ ∈ C0,1

0 (U) with Lipschitz
constant Lϕ ≤ 1. As |w̃ε| = 1 in U \Vε, where Vε was defined as U ∩⋃B∈Bε

B,
we have vort(w̃ε) = 0 in U \ Vε, and therefore:ˆ

U\Vε
ϕ vort(w̃ε) = 0.

For each ball B ∈ Bε ∩ U , we have by the definition of νε:ˆ
B

vort(w̃ε) = deg(w̃ε, ∂B) = νε(B).

Consequently, we derive by (4.97) and (4.33), respectively:(ˆ
Vε

ϕ vort(w̃ε)

)
− 〈νε, ϕ〉

=
∑

Br(p)∈Bε

(ˆ
Br(p)∩U

ϕ vort(w̃ε)

)
− deg(w̃ε, ∂Br(p))ϕ(p)

=
∑

Br(p)∈Bε

ˆ
Br(p)∩U

(ϕ− ϕ(p)) vort(w̃ε)

≤
∑

Br(p)∈Bε∩u
Lϕr

ˆ
Br(p)

|vort(w̃ε)| ≤ Cε
1
3 |log ε|.

By the arbitrariness of ϕ, this then leads to:

‖vort(w̃ε)|U − νε‖[ ≤ Cε
1
3 |log ε| → 0,

showing that, up to a subsequence:

vort(vε)
[
⇀ ν in U,

and by (4.38) as well as Lemma 4.13, we then conclude for the same subsequence
as before:

vort(uε)|U =
1

m
vort(vε)|U +

m− 1

m
vort(|vε|e) [

⇀
1

m
ν flat in U.
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3. Step: The global result follows by a partition of unity argument: In
this regard, let {ρ1, . . . , ρN} denote a partition of unity subordinate to the
cover {U (i)}i. In the previous step, we have seen that we can find for each
i ∈ {1, . . . , N} a point measure µ(i) with weights in 1

mZ such that, up to taking
subsequences:

vort(uε)|U [
⇀ µ(i) flat in U (i).

Let µ denote the point measure on S such that µ = µ(i) in U (i) for every i.
Note that the measure µ is well defined as µ(i) = µ(j) in U (i) ∩U (j), which can
be seen by testing with functions compactly supported in U (i) ∩U (j). We have
found a point measure µ with weights in 1

mZ such that for any test function
ϕ ∈ C0,1(S), up to a subsequence:

ˆ
S

ϕ vort(uε) =

N∑
i=1

ˆ
U(i)

ρiϕ vort(uε)→
N∑
i=1

〈ρiϕ, µ〉 = 〈ϕ, µ〉,

and hence vort(uε)
[
⇀ µ flat in S. In order to conclude the proof, it remains

to show µ(S) = χ(S) (see also the definition of X̃(m)), which follows by (4.39)
and the flat convergence of vort(uε):

χ(S) = 〈vort(uε),1S〉 → 〈µ,1S〉 = µ(S).

Definition 4.9
Given a simply connected open subset U ⊂ S, we call a vector field e ∈
C∞(U,S1) harmonic if and only if jac(e) = d∗Φ (d∗ denotes the adjoint of the
exterior derivative), where Φ ∈ Ω2(U) is the 2-form satisfying:{

∆Φ = −κ vol in U,

Φ = 0 on ∂U,
(4.99)

∆ being the Laplace-Beltrami operator on S (in the current setting ∆ = dd∗,
see also, e.g., [42] for further clarification).

Let us show that the notion above is not vacuous:

Lemma 4.14 (Existence of harmonic frames)
On any simply connected, open subset U ⊂ S, there exists a harmonic vector
field e, as described in Definition 4.9.

Proof. In [42], it is shown that there exists a (unique) two-form Φ, solving
(4.99). Fix an arbitrary seed point p0 ∈ U and a unit vector u0 ∈ Tp0

U . We
define e at a point p ∈ U as follows: Let γ : [0, 1]→ U be a smooth curve with
γ(0) = p0 and γ(1) = p. Then by classic ODE theory there exists a unique
smooth vector-field X : [0, 1]→ TU on γ, solving{

∇γ′(s)X(s) = d∗Φ(γ′(s))X⊥(s) in (0, 1),

X(0) = u0.
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We need to check that setting u(p) := X(1) is path-independent. In this
regard, consider another curve µ : [0, 1] → U with µ(0) = p0, µ(1) = p, and
Y : [0, 1]→ TU being the solution of:{

∇µ′(s)Y (s) = d∗Φ(µ′(s))Y ⊥(s) in (0, 1),

Y (0) = u0,

We need to show that Y (1) = X(1): As U is simply connected, the curves γ
and µ enclose a (possibly disconnected) region ω. Then by Stokes’ theorem,
the difference angle δ between X(1) and Y (1) satisfies:

ˆ 1

0

d∗Φ(γ′(s)) ds−
ˆ 1

0

d∗Φ(µ(s)) ds+

ˆ
ω

κ vol

=

ˆ
ω

dd∗Φ +

ˆ
ω

κ vol =

ˆ
ω

∆Φ +

ˆ
ω

κ vol = 0 mod 2π.

This completes the proof of well-definedness. Finally, note that by construction,
the condition jac(e) = d∗Φ is automatically satisfied.

The main reason why we have investigated harmonic vector fields is that
they allow us to control a defect term appearing on the right-hand side of (4.36):

Lemma 4.15 (Convergence of the defect term)
Let U ⊂ m be a simply connected open set and (vε) ⊂ AS(U) such that:

vort(vε)
[
⇀ kδp, k ∈ Z, p ∈ U,

and let e be a harmonic vector field on U (see also Lemma 4.14). Then, as
ε→ 0, we have: ˆ

U

〈jac(vε), jac(e)〉 vol→ k · ?Φ(p)−
ˆ
U

κΦ, (4.100)

where jac(e) = d∗Φ for Φ ∈ Ω2(U) satisfying (4.99).

Proof. Employing (4.99) and integrating by parts leads together with the defi-
nition of vort(vε) to

ˆ
U

〈jac(vε), jac(e)〉 vol =

ˆ
U

〈jac(vε),d
∗Φ〉 vol

=

ˆ
U

〈djac(vε),Φ〉 vol +

ˆ
∂U

?Φ jac(vε)

=

ˆ
U

〈djac(vε),Φ〉 vol
ε→0→ k · ?Φ(p)−

ˆ
U

κΦ,

as is desired.

We continue by showing a localized 0-order Γ-liminf inequality:

Lemma 4.16 (Localized Γ-liminf inequality)

Let (uε) ⊂ AS(m)(S) be a bounded sequence in L∞(TS) such that:

vort(uε)
[
⇀ µ :=

K∑
k=1

dk
m
δpk ∈ X̃(m).
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Then there exists a constant C independent of ε such that for every k ∈
{1, . . . ,K} and r > 0 small enough, it holds that:

lim inf
ε→0

(
GLε(uε, Br(pk))− π|dk|

m2
log
(r
ε

))
≥ C. (4.101)

Proof. Without loss of generality, we can assume that sgn(χ(S)) > 0 (the other
case works in the same fashion). Let r0 > 0 be small enough such that the
balls in {Br0(pk)}k are disjoint. Furthermore, fix B0 := Br0(pk) for some k,
and let e be a harmonic vector field in B0. Setting vε := Pe(uε) in B0, we see
by Lemma 4.13 and (4.38) that for any test function ϕ ∈ C0,1

0 (B0):ˆ
B0

ϕ vort(vε) = m

ˆ
B0

ϕ vort(uε)− (m− 1)

ˆ
B0

ϕ vort(|vε|e)→ δpk .

By the arbitrariness of ϕ, we follow:

vort(vε)
[
⇀ δpk flat in B0.

Moreover, with (4.36) and the boundedness of (uε) in L∞, we derive that:

GLε(uε, B0) ≥ 1

2m2

ˆ
B0

|∇vε|2 vol +
1

4ε2

ˆ
B0

(1− |vε|2)2 vol

− (m− 1)2

2m2

ˆ
B0

|uε|2|∇e|2 vol +
m2 − 1

2m2

ˆ
B0

|d|uε||2 vol

+
2m(m− 1)

2m2

ˆ
B0

〈jac(uε), jac(e)〉 vol

≥ C +
1

m2
GLε(vε) +

1

2

m− 1

m

ˆ
B0

〈jac(uε), jac(e)〉 vol

for a constant C independent of ε. By (4.37), we have:

jac(uε) =
1

m
jac(vε) +

m− 1

m
|uε|2 jac(e),

and therefore, we can rewrite the previous estimate as follows:

GLε(uε, B0) ≥ C +
1

m2
GLε(vε) + c(m)

ˆ
B

〈jac(vε), jac(e)〉 vol,

where C is a constant independent of ε and r, and c(m) := 1
2
m−1
m2 . Consequently,

with Lemma 4.15 and the localized liminf inequality in the nonfractional setting
(see also [43]), there exists a constant C ∈ R independent of ε, r and k such
that for r small enough:

lim inf
ε→0

(
GLε(uε, B0)− π |dk|

m2
log

r

ε

)
≥ C

m2
+ c(m)

(
dk(?Φ)(pk)−

ˆ
B

κΦ

)
.

It remains to estimate the second term above, independently from r. Let G
denote the Green’s function in B, we derive for any p ∈ B

|Φ(p)| =
∣∣∣∣−ˆ

B

G(q, p)κ(q) vol(q)

∣∣∣∣ ≤ ˆ
B

G(q, p)|κ(q)| vol(q)

≤ ‖κ‖∞
ˆ
B

G(q, p) vol(q) = ‖κ‖∞,

which concludes the proof.
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We are ready to prove the first half of the compactness statement in Theo-
rem 4.7:

Theorem 4.8 (Vortex compactness)

Let (uε) ⊂ AS(m)(S) be a bounded sequence in L∞(TS) satisfying the energy
bound:

GLε(uε) ≤
|χ(S)|
m

π|log ε|+ C, (4.102)

for some constant C independent of ε. Then there exists a point measure

µ ∈ X(m) such that, up to a subsequence, vort(uε)
[
⇀ µ flat in S.

Proof. By Proposition 4.4, up to a subsequence, it holds that:

vort(uε)
[
⇀ µ =

K∑
k=1

dk
m
δpk dk ∈ Z, pk 6= pl for k 6= l.

As µ(S) = χ(S), in order to conclude, it remains to show that dk = sgn(χ(S))
for all k, which would directly lead to µ ∈ X(m). By Lemma 4.16 and (4.102)
there exists a constant C independent of ε, r, and k, such that for r and ε small
enough:

|χ(S)|
m
|log ε| ≥

K∑
k=1

GL(uε, Br(pk))

≥
K∑
k=1

|di|
m2

log
r

ε
≥ |µ|

m
|log ε| − C.

By making ε sufficiently small, the above inequality can only be true if |µ| ≤
|χ(S)|. As µ ∈ X̃(m), the reverse inequality |µ| ≥ |µ(S)| = |χ(S)| also holds
true, and therefore |µ| = |χ(S)|. This means that for all k, we have sgn(dk) =
sgn(χ(S)). It remains to show that there exists no k with |dk| ≥ 2. Fix k ∈
{1, . . . ,K}, and consider the geodesic ball B := Br(pk) for r > 0 small enough,
so that no other vortex center pl, where l 6= k is contained in B. Furthermore,
consider an arbitrary harmonic vector field e in B and set vε := Pe(uε) in B.
With (4.36) and (4.37), we then derive

GLε(vε) =
m2

2

ˆ
B

|∇uε|2 vol +
1

4ε2

ˆ
B

(1− |uε|2)2 vol +
1−m2

2

ˆ
B

|d|u||2 vol

+
(m− 1)2

2

ˆ
B

|uε|2|∇e|2 vol−m(m− 1)

ˆ
B

〈jac(uε), jac(e)〉 vol

≤ m2GLε(uε, B)− (m− 1)2

2

ˆ
B

|uε|2|∇e|2 vol

+ (m− 1)

ˆ
B

〈jac(vε), jac(e)〉 vol

≤ m2GLε(uε, B) + (m− 1)

ˆ
B

〈jac(vε), jac(e)〉 vol .

By (4.101), (4.102), |dl| = sgn(χ(S))dl for all l ∈ {1, . . . ,K}, and |µ| = |χ(S)|,
the first term in the last line above can be estimated for r > 0 small enough as
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follows:

GLε(uε, B) ≤ GLε(uε)−
∑
l 6=k

GLε(uε, Br(pl))

≤ π |χ(S)|
m
|log ε| − π sgn(χ(S))

1

m

∑
l 6=k

dl
m

log
r

ε

≤ π |χ(S)|
m
|log ε| − π sgn(χ(S))

1

m
(µ− dk

m
)|log ε|+ C(r)

≤ π |χ(S)|
m
|log ε| − π

( |µ|
m
− |di|

m2

)
|log ε|+ C(r)

= π
|di|
m2
|log ε|+ C(r)

for some constant C(r) <∞ independent of ε. By the convergence in (4.100), it
follows that supε

´
U
〈jac(vε), jac(e)〉 vol <∞. Hence, GL(vε) ≤ π|di||log ε|+ C

for some constant independent of ε, and by a corresponding result in the non-
fractional Ginzburg-Landau setting (see also [43]), we see that |dk| = 1. By the
arbitrariness of k, this concludes the proof.

Given u ∈ D(m)
g , we will shortly write:

Sr = Sr(vort(u)) := S \
m|χ(S)|⋃
k=1

Br(pk),

where {pk} is the set of vortex centers of u. Before coming to the proof of
the compactness statement of Theorem 4.7, we will need to show the well-
definedness of W(m):

Lemma 4.17 (Well-definedness of the renormalized energy)

For any u ∈ LS(m), the limit in (4.79) exists and lies in (−∞,∞]. More
precisely, for any r0 small enough such that the balls {Br0(pk)}k around the
vortex centers {pk} of u are disjoint, we have:

W(m)(u) =
1

2

ˆ
Sr0

|∇u|2 vol +

m|χ(S)|∑
k=1

1

m2
W(v(k))

− (m− 1)2

2m2

ˆ
Br0 (pk)

|∇e(k)|2 vol

+
m− 1

m

ˆ
Br0 (pk)

〈jac(v(k)), jac(e(k))〉 vol,

(4.103)

where v(k) := Pe(k)(u) in Br0(pk) for an arbitrary smooth frame e(k), and:

W(v(k)) = lim
r→0

(
1

2

ˆ
Ar,r0 (pk)

|∇v(k)|2 vol−π|log r|
)

(4.104)

is the nonfractional renormalized energy.
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Proof. Let 0 < r0 < 1 be small enough such that the balls in {Br0(pk)}k are
disjoint, and where {pk} is the set of vortex centers of u. For any 0 < r < r0,
we can split the difference appearing in (4.79) as follows:

1

2

ˆ
Sr

|∇u|2 vol−|χ(S)|
m

π|log r|

=
1

2

ˆ
Sr0

|∇u|2 vol +

m|χ(S)|∑
k=1

(
1

2

ˆ
Ar,r0 (pk)

|∇u|2 vol− π

m2
|log r|

)
.

Therefore, it is enough to show for any k ∈ {1, . . .m|χ(S)|} that:

lim
r→0

1

2

ˆ
Ar,r0 (pk)

|∇u|2 vol− π

m2
|log r| ∈ (−∞,∞].

Let us fix k ∈ {1, . . . ,m|χ(S)|}, and shortly write B := Br0(pk) as well as
Ar := Ar,r0(pk). Furthermore, let e ∈ C∞(B;S1) be a harmonic vector field
and v := Pe(u) in B, then with (4.36), we follow that:

1

2

ˆ
Ar

|∇u|2 vol− π

m2
|log r|

=
1

m2

(
1

2

ˆ
Ar

|∇v|2 vol−π|log r|
)
− (m− 1)2

2m2

ˆ
Ar

|∇e|2 vol

+
m− 1

m

ˆ
Ar

〈jac(v), jac(e)〉 vol .

In Section 6 of [24], it was shown that the limit:

W(v) := lim
r→0

(
1

2

ˆ
Ar

|∇v|2 vol−π|log r|
)

exists and is contained (−∞,∞], which – due to the previous reasoning – leads
directly to (4.103).

Lemma 4.18
Given a geodesic ball B0 := Br0(p0) ⊂ S, a sequence (vε) ⊂ C∞(TB0) with:

vort(vε)
[
⇀ ±δp0

flat in B0,

and satisfying the following energy bound:

GLε(vε) ≤ π|log ε|+ C

for a constant C independent of ε. Then, there exists r1 > 0 and ε0 > 0 such
that for any ε ∈ (0, ε0) and r ∈ [ε

1
2 , r1], Theorem 4.6 is applicable (,where

α = 1
2 and β = 1

5), with the corresponding collection of disjoint balls denoted
by Bε

r, D
ε
r := DBε

r
((B0)ε), and V εr := (B0)ε ∩

⋃
B∈Bε

r
B. Furthermore, for any

r ∈ [ε
1
3 , r1] and ε ∈ (0, ε0), it holds that:

Dε
r = 1, (4.105)

(4.106)
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and for any ε ∈ (0, ε0):
V εr1 ⊃ B r1

2
(p0) (4.107)

Finally pε → p0 as ε→ 0, where pε is the center of the unique ball in Bε
r with

nonzero degree (pε is well defined due to (4.105).

Proof. Without loss of generality, we can assume that vort(vε)
[
⇀ δp0

. (The case

vort(vε)
[
⇀ −δp0 can be proved similarly.) Let ε0 and r1 be as in the statement

of Theorem 4.6. Then employing Theorem 4.6 (with α = 1
2 and β = 1

5 ), we can

find for any r ∈ [ε
1
2 , r1] a collection Bε

r such that all the properties stated in
Theorem 4.6 hold true.

1. Step: We wish to show, by possibly decreasing ε0 and r1, that (4.105)
and (4.107) are satisfied. In this regard, let us define the point measures µε
and νε as:

µε :=
∑

Br(p)∈Bε
rε
∩(B0)ε

deg(ṽε, ∂Br(p))δp, rε := ε
1
3 ,

νε :=
∑

Br(p)∈Bε
r1
∩(B0)ε

deg(ṽε, ∂Br(p))δp,

where ṽε := T1−εβ (vε). By (4.44), we have:

sup
ε∈(0,ε0)

|µε| = sup
ε∈(0,ε0)

Dε

ε
1
3
<∞.

Hence, up to taking a subsequence, µε
∗
⇀ µ weak* in B0 for a point measure µ

in B0. In the same fashion as in the proof of Proposition 4.4, we can show that
limε→0‖vort(vε)−µε‖[ = 0, and therefore follow µε

∗
⇀ δp0

. In the same manner

as for (µε), we can prove that νε
∗
⇀ δp0

weak* in B0. Consequently, by the
lower semicontinuity of the total variation with respect to weak* convergence,
we see that lim infε→0|νε| ≥ |δp0 | = 1, and by possibly decreasing ε0, we can

assure that for all ε ∈ (0, ε0) and r ∈ [ε
1
3 , r1]:

Dε
r ≥ Dε

r1 = |νε| ≥ 1,

where we have used the monotonicity of r 7→ Dε
r . In order to prove (4.105),

it remains to show Dε
r ≤ 1. With (4.108), (4.43), (4.44), and by making sure

that r1 ≤ 7
8C1

, where C1 is the constant from (4.43), we can estimate for any

r ∈ [ε
1
3 , r1]:

π|log ε| ≥ πDε
r

(
log

(
r

Dε
rε

)
− C1

)
≥ πDε

r log
ε

1
3

ε
− 1

2
πDε

r logDε
r − C1

≥ 2

3
πDε

r |log ε| − πC2 logC2 − C1,

where C2 is the supremum in (4.44). This leads – for ε0 small enough – to a
contradiction, except that:

Dε
r ≤

3

2
< 2,
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and as Dε
r ∈ N, Dε

r ≤ 1 follows, as is desired.
2. Step: It remains to show (4.107). By (4.105), the measure µε must be

of the form µε = δpε for some pε ∈ B0. As µε
∗
⇀ δp0 , it follows that pε → p0.

Hence, for ε0 small enough, we have pε ∈ B r1
3

(p0), and by the definition of the

ball-growing procedure Br1(pε) ⊂ V εr1 . Finally, due to B r1
2

(p0) ⊂ Br1(pε), the
desired result follows.

In the following, we generalize Lemma 2.12 found in [40] to the manifold
setting.

Lemma 4.19
Let (uε) ⊂ AS(m)(S) be a bounded sequence in L∞(TS) satisfying the energy
bound

GLε(uε) ≤
|χ(S)|
m

π|log ε|+ C (4.108)

for a constant C independent of ε, and such that vort(uε)
[
⇀ µ ∈ X(m) flat in

S, then for any r > 0 small enough and q ∈ [1, 2), it holds that:

sup
ε
‖uε‖SBV 2(TSr) <∞, (4.109)

sup
ε
‖∇uε‖Lq(T∗S⊗TS) <∞, (4.110)

Proof. In parts, we follow the proof found in [40]. Let us – without loss of
generality – assume that sgn(χ(S)) > 0 (the other case works in the same way),
and let {pk} denote the set of vortex centers of u and shortly write µ := vort(u).
Furthermore, we fix r0 > 0 small enough such that the balls in {Br0(pk)}k are
disjoint. All constants we will encounter in this proof are implicitly assumed
to be independent of ε.

1. Step: We start by deriving the SBV 2-bound away from the vortices. By
the localized liminf inequality in (4.101) and the energy bound in (4.83), we
derive for any 0 < r < r0:

GGLε(uε, Sr) ≤ GGLε(uε)−
m|χ(S)|∑
k=1

GLε(uε, Br(pk))

≤ |χ(S)|
m

π|log ε| −
m|χ(S)|∑
k=1

π

m2
log
(r
ε

)
+ C

≤ π|χ(S)|
m

|log r|+ C = O(|log r|), (4.111)

where C is the constant from (4.101). By the definition of GGLε and the
boundedness of (uε) in L∞, this leads to:

sup
ε
‖uε‖SBV 2(TSr) ≤ O(|log r|),

as is desired.
2. Step: Due to (4.109), it remains to show that:

sup
ε

ˆ
Br0 (pk)

|∇uε|q vol <∞ (4.112)
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for all vortex centers pk, and where r0 is chosen sufficiently small so that all
balls in {Br0(pk)}k are disjoint. Fix k ∈ {1, . . . ,m|χ(S)|} and shortly write
B0 := Br0(pk). Furthermore, let e ∈ C∞(B0; S1) be a harmonic vector-field,

and set vε := Pe(uε) in B0. By the chain rule and the definition of AS(m)(S), we
have that vε ∈W 1,2(TB0), and instead of deriving (4.112), we can equivalently
show:

sup
ε

ˆ
B0

|∇vε|q vol <∞. (4.113)

We wish to construct an appropriate decomposition of B0. Afterwards, we will
estimate the Lq-norms of (wε) on each component separately. In this regard,
we see by (4.36), Lemma 4.15, and the boundedness of (uε) in L∞(TB0), that:

GL(vε) ≤
m2

2

ˆ
B0

|∇(uε)|2 vol +
1

4ε2

ˆ
B0

(1− |uε|2)2 + C1

≤ m2GL(uε, B0) + C1.

By the local liminf inequality in (4.101), the definition of X(m), and the energy
upper bound in (4.108), it holds that:

GL(uε, B0) ≤ GL(uε)−
∑
l 6=k

GL(uε, Br0(pl))

≤ π

m2
|log ε|+ C|log(r0)|. (4.114)

With the previous estimate, this results in:

GL(vε) ≤ π|log ε|+ C|log(r0)|.

By approximation in Sobolev spaces, we can find a sequence (wε) ∈ C∞(TB0)
such that ‖vε − wε‖W 1,2(TB0) → 0 as ε→ 0 and:

lim
ε→0

(GLε(vε)−GLε(wε)) = 0.

Therefore:
GLε(wε) ≤ π|log ε|+ C|log(r0)|. (4.115)

Also, by the flat convergence of (vort(uε)) and (4.38), (4.88) and (4.100), we
have:

vort(wε)
[
⇀ δpk flat in B0.

We are in a position to apply Lemma 4.18 for the sequence (wε) and the ball B0.

Let Bε
r, V

ε
r (for ε ∈ (0, ε0) and r ∈ [ε

1
3 , r1]), ε0 and r1 be as in the statement of

Lemma 4.18. We define J = J(ε) ∈ N as the largest natural number satisfying

2−Jr1 > ε
1
3 . As 2−Jr1 ≥ ε

1
3 , we have:

J(ε) ≤ 1

log(2)

(
1

3
|log ε| − log r1

)
= C|log ε|.

Let us decompose B0 into the following sets

B0 = V2−Jr1 ∪
J−1⋃
j=0

Aεj ∪ (B0 \ Vr1 ,ε )
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where:
Aεj := V ε2−jr1 \ V

ε
2−(j+1)r1

.

3. Step: We continue by estimating the Lq-norm of (∇wε) outside the annuli

{Aεj}J−1
j=0 . From the definition of J , we see that 2−(J+1)r1 ≤ ε

1
3 , and therefore

2−Jr1 ≤ 2ε
1
3 . This leads to:

|V ε2−Jr1 | ≤ Cr(B
ε
2−Jr1

)2 ≤ Cε 1
9 .

Consequently, with Hölder’s inequality and the energy bound (4.115):ˆ
V ε

2−Jr1

|∇wε|q vol ≤ |V ε2−Jr1 |
2

2−1

ˆ
B0

|∇wε|2 vol

≤ Cε 2
9(2−q) |log ε| = Oε→0(1).

Hence:

sup
ε

ˆ
V ε

2−Jr1

|∇wε|q vol <∞.

By (4.107), Hölder’s inequality and (4.109), we also derive:ˆ
B0\V εr1

|∇wε|q vol ≤
ˆ
B0\B r1

2
(pk)

|∇wε|q vol

≤ |B0|
2

2−q

ˆ
B0\B r1

2
(pk)

|∇wε|2 vol = Oε→0(1).

4. Step: Lastly, we consider the situation inside the annuli {Aεj}J−1
j=1 . Given

any r ∈ [ε
1
3 , r1] (with r1 as in Lemma 4.19), we have by (4.70) the following

lower bound:
GLε(wε, V

ε
r ) ≥ π log

(r
ε

)
− C.

With (4.115), this results in:

GLε(wε, B0 \ V εr ) = GLε(wε)−GLε(wε, V εr )

≤ π|log ε| − π log
(r
ε

)
+ C ≤ π|log r|+ C. (4.116)

Furthermore, setting w̃ε := wε
|wε| , we see with (4.54) for all r ∈ [ε

1
3 , r12 ] that:

1

2

ˆ
V ε2r\V εr

|∇w̃ε|2 vol ≥ 1

2

ˆ
B∗ε\V εr

|∇w̃ε|2 vol

≥ π
(

log

(
2r

r

)
− Cr

)
≥ π log(2)− Cr

where B∗ε is the unique ball in Bε
2r with dB∗ε = 1. As by the product rule

|∇wε|2 = |d|wε||2 + |wε|2|∇w̃ε|2,

and |wε| ≥ 1− εβ = 1− ε 1
4 in B0 \ V εr , this implies:

1

2

ˆ
V ε2r\V εr

|∇wε|2 vol ≥ 1

2

ˆ
V ε2r\V εr

|wε|2|∇w̃ε|2 vol

≥ (1− Cε 1
4 )(π log(2)− Cr). (4.117)
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Fix an arbitrary λ > 0 and suppose that, up to taking a subsequence, we can
find for each ε a j∗ = j∗(ε) ∈ {0, . . . , J − 1} such that:

1

2

ˆ
Aε
j∗

|∇wε|2 vol > λ.

Combining (4.116) and (4.117) then results in the following condition on λ:

(J − 1)(1− Cε 1
4 )π log(2)− C

∑
j 6=j∗

2−jr1

≤
∑
j 6=j∗

1

2

ˆ
Aεj

|∇wε|2 vol

≤ GLε(wε, B0 \ V ε2−Jr1)− 1

2

ˆ
Aε
j∗

|∇wε|2 vol

< Jπ log(2) +O(1)− λ.

Solving for λ above and using J = O(|log ε|), then leads to:

λ ≤ π log(2) + C

1 + (J − 1)ε
1
4π log(2) +

∑
j 6=j∗

2−jr1


= C

1 + ε
1
4 |log ε|+

∞∑
j=0

2−j

 = Oε→0(1),

which leads to a contradiction for λ sufficiently large. Consequently:
ˆ
Aεj

|∇wε|2 vol = Oε→0(1), (4.118)

uniformly in j. By Hölder’s inequality, and the definition of Aεj , we can therefore
derive for q ∈ [0, 2):

ˆ
V εr1
\V ε

2−Jr1

|∇wε|q vol =

J−1∑
j=0

ˆ
Aεj

|∇wε|q vol

≤
J−1∑
j=0

|Aεj |
2

2−q

ˆ
Aεj

|∇wε|2 vol

≤ C
∞∑
j=1

|V ε2−jr1 |
2

≤ C
∞∑
j=1

(2−
4

2−q )j = C
1

1− 2−
4

2−q
= Oε→0(1).

5. Step: It remains to estimate the Lq-norms of (vε). With the previous
reasoning and the fact that ‖vε − wε‖W 1,2(TB0) = 0 as ε→ 0, we derive that:

sup
ε

ˆ
B0

|∇vε|q vol <∞. (4.119)
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It remains to transfer this estimate to ∇uε which will be achieved employing
(4.36). Before coming to this, we will need to show the intermediate estimate:

sup
ε

ˆ
B0

|d|uε||2 vol <∞. (4.120)

This can be proved as follows: By the localized zero-order liminf inequality for
(vε), (4.36), (4.114), (4.100), and the boundedness of (uε) in L∞, we see that:

π|log ε| − C ≤
ˆ
B0

|∇vε|2 vol

= m2

ˆ
B0

|∇uε|2 vol +(1−m2)

ˆ
B0

|d|uε||2 vol

+ (m− 1)2

ˆ
B0

|uε|2|∇e|2 vol−2m(m− 1)

ˆ
B0

〈jac(uε), jac(e)〉 vol

≤ π|log ε|+ C̃ − (m2 − 1)

ˆ
B0

|d|uε||2 vol

which leads to (4.120). With (4.35), we can write:

|uε|−2 jac(uε)⊗ v⊥ε = ∇vε −
1

m
|u|−1 d|uε| ⊗ vε +

m− 1

m
jac(e)⊗ v⊥ε ,

hence, by the triangular inequality and (4.119) and (4.120), this shows:

‖|uε|−1 jac(uε)‖Lq(B0) ≤ ‖∇vε‖Lq(B0) +
1

m
‖duε‖Lq(B0) + C

≤ C(1 + ‖duε‖L2(B0)) = Oε→0(1),
(4.121)

where C is a constant independent of ε. Finally, with (4.121), (4.120), and

∇uε = |uε|−2〈∇uε, u⊥ε 〉 ⊗ u⊥ε + |uε|−2〈∇uε, uε〉 ⊗ uε
= |uε|−2〈∇uε, u⊥ε 〉 ⊗ u⊥ε + |uε|−1 d|uε| ⊗ uε,

we follow for any q ∈ [1, 2):

‖∇uε‖Lq(B0) ≤ ‖|uε|−1 jac(uε)‖Lq(B0) + ‖duε‖Lq(B0) = Oε→0(1),

as is desired.

We are ready to proof the compactness statement of Theorem 4.7:

Proof of the compactness statement in Theorem 4.7. Note that we have shown
(4.84) in Theorem 4.8. Let us assume that (4.84) holds true, without relabeling,
for the whole sequence (uε).

1. Step: In the first step, we wish to derive the local SBV 2-compactness of
(uε). Given r > 0 small enough, we can select by (4.109) and the compactness
theorem for SBV -sections (see also Theorem 4.5) a further subsequence, without
relabeling, such that:

uε ⇀ u(r) weakly in SBV 2(TSr).
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For r1, r2 small enough such that 0 < r1 < r2, we see by the L1-convergence of
(uε|Sr1 ) and (uε|Sr2 ) that u(r1) = u(r2) a.e. in Sr2 . Hence, u(p) := u(r)(p) for

some r > 0 such that r < dist(p, spt(µ)) is a well-defined section in SBV 2
loc(T (S\

spt(µ))) and by a standard diagonal sequence argument, (4.85) follows. Let us
assume that we have already selected a subsequence such that (4.84) and (4.85)

are satisfied. It remains to show that u ∈ LS(m)(S).
2. Step: We continue by showing the unit length of u. By the energy-bound

in (4.83) and the definition of GGLε, we derive that:
ˆ
S

(1− |uε|2)2 vol ≤ Cε2|log ε| = oε→0(1). (4.122)

For fixed r > 0 small enough, we derive by the L2 convergence of (uε|Sr ) that,
up to a subsequence, uε → u pointwise a.e. in Sr. By the boundedness of (uε)
in L∞(TS) and the dominated convergence theorem, we see that:

ˆ
Sr

(1− |u|2)2 vol = lim
ε→0

ˆ
Sr

(1− |uε|2)2 vol = 0,

and therefore |u| = 1 a.e. in Sr. By the arbitrariness of r > 0, we follow that
|u| = 1 a.e. in S.

3. Step: We wish to derive a uniform SBV -bound on (uε). By (4.110) for
q = 1, we can select a subsequence such that ∇uε ⇀ Ψ weakly in L1(T ∗S⊗TS).
Due to (4.85), we have already seen that for any r > 0 small enough ∇uε ⇀ ∇u
weakly in L2(TSr⊗TSr). Hence, (and by also using the arbitrariness of r > 0,)
we derive that ∇u = Ψ = L1(T ∗S ⊗ TS) (in particular, vort(u) is well defined
in the distributional sense). We will now show H1(Ju) < ∞. As in the proof
of Lemma 4.19, we can prove that for r > 0 small enough:

GGLε(uε, Sr) ≤ π
|χ(S)|
m
|log r|+ C

for some constant C independent of r and ε. Solving for H1(Jε), we derive:

H1(Juε ∩ Sr) ≤
|χ(S)|
m
|log r|+ C − 1

2

ˆ
Sr

|∇uε|2 vol

for the same constant C as before. By (4.85):

H1(Ju ∩ Sr) ≤ lim inf
ε→0

H1(Juε ∩ Sr)

≤ lim sup
ε→0

H1(Juε ∩ Sr)

≤ C −
(

1

2

ˆ
Sr

|∇u|2 vol−π |χ(S)|
m
|log r|

)
.

With W(m)(u) > −∞ (see Lemma 4.17), it then follows:

H1(Ju) = lim sup
r→0

H1(Ju ∩ Sr) ≤ C −W(m)(u) <∞,

as desired.
4. Step: It remains to show that vort(u) = µ, where µ is the limit from

(4.141). (Note that in the previous step we have seen that vort(u) is well
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defined in the distributional sense.) As |jac(uε)| ≤ |∇uε||uε|, we conclude from
the boundedness of (uε) in L∞(TS) and (4.110) for q = 1 that (jac(uε)) is
bounded in L1(T ∗S) and hence, up to a subsequence, weakly convergent towards
Ψ ∈ L1(T ∗S). By (4.85), we have for r > 0 small enough:

∇uε ⇀ ∇u weakly in L2(TSr ⊗ TSr), uε → u strongly in L2(TSr).

Hence by weak-strong convergence, we follow for any ϕ ∈ L∞(T ∗Sr) and
coordinate neighborhood U on S:ˆ

U∩Sr
〈ϕ,Ψ〉 vol = lim

ε→0

ˆ
U∩Sr

〈ϕ, jac(uε)〉 vol

= lim
ε→0

ˆ
U∩Sr

gijϕi〈∇∂xj uε, u
⊥
ε 〉 vol

= lim
ε→0

ˆ
U∩Sr

〈∇∂xj uε, g
ijϕiu⊥ε 〉 vol

=

ˆ
U∩Sr

〈ϕ, jac(u)〉 vol .

With a partition of unity argument and the arbitrariness of ϕ we follow that
Ψ = jac(u) a.e. in S. Furthermore, by the weak convergence of (jac(uε))
towards jac(u) in L1(T ∗S), the definition of vort, and (4.84), we see that for
any ϕ ∈ C0,1(S):

〈vort(u), ϕ〉 =

ˆ
S

dϕ ∧ jac(u)

= lim
ε→0

ˆ
S

dϕ ∧ jac(uε)

= lim
ε→0
〈vort(uε), ϕ〉 = 〈µ, ϕ〉.

The arbitrariness of ϕ concludes the proof.

4.3.2 Gamma-liminf

In this subsection, if not explicitly stated otherwise, all instances of asymptotic
notation in this chapter are meant as ε → 0. Given an open set U ⊂ S, we
define the modified Ginzburg-Landau energy GL(m) : AS(U)→ R as:

GL(m) = GL(m)
ε (v, U) :=

1

2m2

ˆ
B

|∇v|2 + (m2 − 1)|d|v||2 +
m2

2ε2
(1− |v|2)2 vol .

(4.123)
The following intuition lies behind this definition: Let U = B be a geodesic
ball on S, u ∈ AS(m)(B), e ∈ C∞(B; S1) a harmonic vector field, and set
v := Pe(u) ∈ AS(B) in B. Then, by (4.36):

GL(u) ≥ GL(m)
ε (v)− m2 − 1

m2

ˆ
B

|uε|2|∇e|2 vol

+
2m(m− 1)

m2

ˆ
B

〈jac(uε), jac(e)〉 vol,

(4.124)

where the latter two terms will turn up to be negligible for small balls. (This
will be made more precise later on.)
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Remark 4.1. Given a (possibly nonsmooth) section v of TBr(p0) (r ∈ (0, r∗)),
we implicitly assume that v̄ : Br(0)→ R2 is the coordinate representation of v
induced by centered (at p0) normal coordinates and an auxiliary frame {e, e⊥}
on TBr(p0). Objects such as gij ,

√
|g|, Γβiα, etc. will always correspond to the

above choice of coordinates.

In the following, we will study two minimum problems and their relation
to each other. The first such minimum problem is formulated in the Euclidean
setting: Given r > 0 and λ ∈ S1, we consider:

γ̄(m)
ε (r, λ)

:= min

{
Eε(v, B̄r(0)) : v ∈W 1,2(B̄r(0);R2), v = λ

x

|x| on ∂B̄r(0)

}
,

(4.125)

where B̄r(0) is the ball in R2 of radius r, and Eε is the “flat version” of GL
(m)
ε :

Eε(v,Br(0)) :=
1

2m2

ˆ
Br(0)

|∇v|2 + (m2 − 1)|∇|v||2 +
m2

2ε2
(1− |v|2)2 dx.

Note that by direct methods, we can show that the minimum in (4.125) exists.
As Eε(v,Br(0)) = Eε(ṽ, Br(0)) for ṽ(x) := λ−1v(εx), and ṽ is admissible for

the minimum problem in the definition of γ̄
(m)
1

(
r
ε , 1
)
, we see that for any r > 0,

ε > 0, and λ ∈ S1:

γ̄(m)
(r
ε

)
:= γ̄

(m)
1

(r
ε
, 1, 1

)
= γ̄(m)

ε (r, ε, λ).

The following convergence result was proved in [40]:

Lemma 4.20
There exists γm ∈ R such that:

lim
R→∞

(
γ̄(m)(R)− π

m2
|log(R)|

)
= γm. (4.126)

Consequently, for any λ ∈ S1 and sequence (rε) ⊂ R+ satisfying limε→0
rε
ε =∞,

we have that:

lim
ε→0

(
γ̄(m)
ε (rε, λ)− π

m2
log
(rε
ε

))
= γm. (4.127)

We will now introduce the second minimization problem that is, in contrast
to (4.125), defined on S. In this regard, given r ∈ (0, r∗), ε > 0, p0 ∈ S, and
λ ∈ S1, we define:

γ(m)
ε (p0, r, λ) := min

{
GL(m)

ε (v,Br(p0)) : v ∈ AS(Br(p)), v̄ = λ
x

|x| on ∂B̄r(0)

}
,

(4.128)
where v̄ is the coordinate representation of v as described in Remark 4.1, Br(p0)
denotes the geodesic ball on S centered at p0 with radius r, and B̄r(0) is the
Euclidean ball of radius r centered at the origin. Again, by direct methods, we
can show that a minimizer for the problem above exists. We are only able to
specify the convergence behavior of γε in “small” balls:
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Lemma 4.21
Let (rε) ⊂ R+ such that rε|log ε| → 0 and rε

ε → ∞, (pε) ⊂ S, as well as
(λε) ⊂ S1, then the following convergence holds true:

lim
ε→0

(
γ(m)
ε (pε, rε, λε)−

π

m2
log
(rε
ε

))
= γm (4.129)

with the same γm as in Lemma 4.20.

Proof. As rε ≤ rε|log ε| → 0, we can define centered (at pε) normal coordinates
for ε small enough. Fix for the moment ε > 0 (sufficiently small) and let
vε ∈ AS(Brε(pε)) be a minimizer for the minimum problem in the definition of

γ
(m)
ε (pε, rε, λε). By definition, its coordinate representation v̄ε is a competitor

for the minimum problem in the definition of γ̄
(m)
ε (rε, λε), thus we derive:

γ̄(m)
ε (rε, λε) ≤ Eε(v̄ε, B̄rε(0))

= Eε(v̄ε, B̄rε(0))−GL(m)
ε (v,Brε(pε)) + γε(rε, pε, λε).

(4.130)

Note that wε := min{1, 1
|vε|} vε satisfies GL

(m)
ε (wε) ≤ GL(m)

ε (vε), hence we can

assume without loss of generality that ‖vε‖L∞ ≤ 1 for all ε. Due to equivalence
of norms, this implies that supε‖v̄ε‖∞ <∞. By a further comparison argument,
we can also suppose that:

ˆ
B̄rε (0)

|∇̄v̄ε|2 dx = O(|log ε|), (4.131)

where ∇̄ stands for the Euclidean gradient. As we used centered normal coor-
dinates on Brε(pε):

gij
√
|g| = δij + O(rε) = δij + o(|log ε|−1), Γβiα = O(1).

With (4.131), the boundedness of (barvε) in L∞, Hölder’s and Young’s inequal-
ity, we then follow:

ˆ
Brε (pε)

|∇vε|2 vol

=

ˆ
B̄rε (0)

2∑
α=1

(
∂(v̄ε)

α

∂xi
+ Γαiβ(v̄ε)

β

)(
∂(v̄ε)

α

∂xj
+ Γαjγ(v̄ε)

γ

)
gij
√
|g|dx

≥
ˆ
B̄rε (0)

|∇̄v̄ε|2 −O(1)(1 + |∇̄v̄ε|) dx− o(|log ε|−1)

ˆ
B̄rε (0)

1 + |∇̄v̄ε|2 dx

≥
ˆ
B̄rε (0)

|∇̄v̄ε|2 dx−O(rε)

ˆ
B̄rε (0)

|∇̄v̄ε|2 dx− o(1)

=

ˆ
B̄rε (0)

|∇̄v̄ε|2 dx− o(1).

A similar argument for the remaining terms of GL
(m)
ε (vε, Brε(pε)) then leads

to:

GL(m)
ε (vε, Brε(pε)) ≥ Eε(v̄ε, B̄rε(0))− o(1).
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Consequently with (4.130) and (4.126), we see that:

lim inf
ε→0

(
γ(m)
ε (pε, rε, λε)−

π

m2
log
(rε
ε

))
≥ lim inf

ε→0

(
γ̄(m)
ε (rε, λε)−

π

m2
log
(rε
ε

))
= γm,

where we have used that rε
ε →∞. In a similar fashion, one can also derive:

lim sup
ε→0

(
γ(m)
ε (pε, rε, λε)−

π

m2
log
(rε
ε

))
≤ γm

and (4.129) follows.

Given r ∈ (0, r∗) and p0 ∈ S, we define the set:

H(p0, r) :=

{
v ∈ C∞(A r

2 ,r
(p0);S1) : v̄ = λ

x

|x| for some λ ∈ S1

}
,

where A r
2 ,r

(p0) denotes the annulus:

A r
2 ,r

(p0) := Br(p0) \B r
2
(p0)

and v̄ is the coordinate representation of v via centered normal coordinates at
p0. We also define for r > 0 the set H̄(r, x0) as:

H̄ :=

{
x 7→ λ

x

|x| : λ ∈ S1

}
.

In the next lemma, we show that a sequence of smooth vector fields (vε)
defined on dyadic annuli (Aε) and degree equal 1 around the larger cirlce of
Aε and with length approximately equal to 1 is either close to an element of
H(pε, rε) (,where pε is the center and rε the outer radius of Aε), or has in the
limit ε→ 0 Dirichlet energy strictly larger that π log(2). More precisely:

Lemma 4.22
Let (rε) ⊂ (0, r∗) with rε → 0, (pε) ⊂ S, and for each ε > 0 let vε ∈W 1,2(TAε),
where Aε := A rε

2 ,rε
(pε) such that supε‖vε‖L∞(Aε) <∞, |deg(vε, ∂Brε(pε))| = 1,

r−2
ε

ˆ
Aε

||vε| − 1| vol→ 0 as ε→ 0, (4.132)

and

inf
z∈H(pε,rε)

‖vε − z‖W 1,2(Aε) ≥ δ (4.133)

for some fixed δ > 0. Then, there exists ω(δ) > 0 only depending on δ such
that:

1

2

ˆ
Aε

|∇vε|2 vol ≥ π log(2) + ω(δ)− o(1). (4.134)

Proof. Suppose, by contradiction, that up to taking a subsequence:

lim sup
ε→0

1

2

ˆ
Aε

|∇vε|2 vol ≤ π log(2). (4.135)
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1. step: We consider the coordinate representation v̄ε of vε via centered
(at pε) normal coordinates, and set Āε := Ā rε

2 ,rε
(0) to be the corresponding

Euclidean annulus. By the choice above, we see:

gij
√
|g| = δij + O(rε) = δij + o(1), Γβiα = O(1).

As supε‖vε‖L∞(Aε) <∞, we also have supε‖v̄ε‖L∞(Āε) <∞, due to the equiv-
alence of norms. Similarly:

sup
ε

ˆ
Āε

|∇̄v̄ε|2 dx <∞.

Therefore:
ˆ
Aε

|∇vε|2 vol

=

ˆ
Āε

2∑
α=1

(
∂(v̄ε)

α

∂xi
+ Γαiβ(v̄ε)

β

)(
∂(v̄ε)

α

∂xj
+ Γαjγ(v̄ε)

γ

)
gij
√
|g|dx

≥
ˆ
Āε

|∇̄v̄ε|2 −O(1)(1 + |∇̄v̄ε|) dx−O(rε)

ˆ
Āε

1 + |∇̄v̄ε|2 dx

≥
ˆ
Āε

|∇̄v̄ε|2 dx− o(1).

By (4.135), this estimate implies:

lim sup
ε→0

ˆ
Āε

|∇̄v̄ε|2 dx ≤ π log(2). (4.136)

2. step: Given w̄ε(x) := v̄ε(rεx) and Ā := A 1
2 ,1

(0), we see by (4.136) that:

lim sup
ε→0

ˆ
Ā

|∇̄w̄ε|2 dx = lim sup
ε→0

ˆ
Āε

|∇̄v̄ε|2 dx ≤ π log(2).

Together with the boundedness of (wε) in L∞, this – in particular – implies
that up to a subsequence w̄ε ⇀ w̄ weakly in W 1,2(Ā;R2) with w̄ satisfying:

1

2

ˆ
Ā

|∇̄w̄|2 dx ≤ lim inf
ε→0

ˆ
Ā

|∇̄w̄ε|2 dx ≤ π log(2). (4.137)

Furthermore, by (4.132) and the definition of w̄ε, we see that:

ˆ
Ā

||w̄ε| − 1|dx = r−2
ε

ˆ
Āε

||v̄ε| − 1|dx ≤ r−2
ε (1 + o(1))

ˆ
Aε

||vε| − 1| vol→ 0,

as ε→ 0, and therefore |w̄| = 1 a.e. in Ā. Finally, by the continuity of the degree
with respect to weak convergence in W 1,2, we follow that |deg(w̄, ∂B1(0))| = 1.
It is a classic result in the Euclidean setting (see also, e.g. [8]) that this implies,
combined with (4.137):

ˆ
Ā

|∇̄w̄|2 dx = π log(2),
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and thus, w̄ = λ x
|x| for some λ ∈ S1. Furthermore, with (4.137) we also see

that:

lim
ε→0

ˆ
Ā

|∇̄w̄ε|2 dx =

ˆ
Ā

|∇̄w̄|2 dx,

and hence w̄ε → w̄ strongly in W 1,2(Ā;R2), where we have used that weak
convergence together with convergence of the norm leads to strong convergence.
By change of coordinates (x̃ = x

rε
), we have that:

ˆ
Āε

|v̄ε(x)− w̄(x)|2 dx+

ˆ
Āε

|∇̄v̄ε(x)− ∇̄w̄(x)|2 dx

= r2
ε

ˆ
Āε

|w̄ε(x̃)− w̄(x̃)|2 dx̃+

ˆ
Āε

|∇̄w̄ε(x̃)− ∇̄w̄(x̃)|2 dx̃→ 0, as ε→ 0,

and hence limε→0‖v̄ε − v̄‖W 1,2(Āε,R2) = 0. Let zε be the section on TAε, whose
coordinate representation (in centered normal coordinates at pε) is w̄. As
w̄ := λ x

|x| , we have that zε ∈ H(pε, rε). Furthermore, as we chose normal

coordinates, we derive:

‖·‖W 1,2(TAε) = ‖·‖W 1,2(Āε;R2) + o(1),

and consequently:
lim
ε→0
‖vε − zε‖W 1,2(TAε) = 0,

which is a contradiction to (4.133) for ε sufficiently small.

Late, we will need a slight improvement of Lemma 4.18:

Lemma 4.23
Given a sequence (vε) ⊂ C∞(TB0) (,where B0 = Br0(p0) is a geodesic ball)
satisfying the energy bound

GLε(vε) ≤ π|log ε|+ C0 (4.138)

for a constant C0 independent of ε, and such that:

vort(vε)
[
⇀ ±δp0

flat in B0,

then, we can find ε0 > 0 such that for all ε ∈ (0, ε0) there exists a finite family
Bε of disjoint geodesic balls with the following properties:

(i) r(Bε) = ε
1
3 .

(ii)
{
||vε| − 1| ≥ ε 1

5

}
∩ (B0)ε ⊂ Vε, where Vε :=

⋃
B∈Bε

B ∩ (B0)ε.

(iii) Dε := DBε((B0)ε) = ±1, and the center pε of the unique ball Bε ∈ Bε

with nonzero degree converges towards p0, as ε→ 0.

(iv) For any r1, r2 > 0 such that ε
1
3 ≤ r1 < r2 ≤ r0 − ε − dist(pε, p0) the

following energy lower bound holds true:

1

2

ˆ
Ar1,r2 (pε)

|∇ṽε|2 vol ≥
(

1− 2ε
1
4

)
π log

(
r2

r1 + 2ε
1
3

)
− C(r2 − r1),

(4.139)
where C = C(S) is a universal constant independent of ε.
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Proof. Let Bε := Bε
rε be the family of balls from Lemma 4.18 for rε = ε

1
3 . Then,

directly from Lemma 4.18, we see that the first three items of the statement
above are satisfied. It remains to show the energy lower bound in (4.139).

We define Iε as the set of all radii r ∈ Jε := [ε
1
3 , r − ε − dist(pε, p0)] such

that ∂Br(pε) ∩ Vε 6= ∅. As r(Bε) = ε
1
3 , we can estimate |Iε| ≤ 2ε

1
3 . Let

us now fix r ∈ Jε \ Iε, then by construction Bε ⊂ Br(pε), and therefore
|deg(ṽε, ∂Br(pε))| = 1, where ṽε := T

1−ε 1
4
vε is as in Lemma 4.18. Hence, as

was done in the proof of Proposition 4.2 (see also (4.55)) we can find a universal
constant C̃ = C̃(S) independent of r and ε such that:

1

2

ˆ
∂Br(pε)

|∇ṽε|2 ≥ π
(

1

r
− C̃

)
,

By Fubini’s theorem and the monotonicity of r 7→ 1
r , we have:

1

2

ˆ
Ar1,r2 (pε)

|∇ṽε|2 vol ≥
ˆ

[r1,r2]\Iε

1

2

(ˆ
∂Br(pε)

|∇ṽε|2
)

dr

≥ π
ˆ r2

r1+2ε
1
2

1

r
− C dr

= π

(
log

(
r2

r1 + 2ε
1
3

)
− C̃(r1 − r2)

)
.

As:
|∇vε|2 ≥ |vε|2|∇ṽε|2 ≥ (1− ε 1

4 )2|∇ṽε|2 ≥ (1− 2ε
1
4 )|∇ṽε|2 ≥,

the desired estimate follows.

We are ready to proof the Γ-liminf:

Proof of the Γ-liminf of Theorem 4.7. Let us first select a subsequence (without
relabeling) such that:

lim inf
ε→0

(
GGL(vε)− π

|χ(S)|
m
|log ε|

)
= lim
ε→0

(
GGL(vε)− π

|χ(S)|
m
|log ε|

)
.

Given any w ∈ AS(m), the truncation T1 w has lower energy:

GGL(w) ≤ GGL(v).

Consequently, by replacing the sequence (vε) with (T1 vε), we can assume,
without loss of generality, that supε‖vε‖L∞ ≤ 1 < ∞. Furthermore, it is not
restrictive to suppose that:

GGL(vε) ≤ π
|χ(S)|
m
|log ε|+ C (4.140)

for some constant C independent of ε as in the other case (4.86) trivially follows.
By the compactness statement of Theorem 4.7, we can select a subsequence,
again without relabeling, such that:

vort(vε)
[
⇀ µ = sgn(χ(S))

m|χ(S)|∑
k=1

1

m
δqk ∈ X(m) flat in S (4.141)

uε ⇀ u weakly in SBV 2
loc(T (S \ spt(µ))), (4.142)
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where u ∈ LS(m) with vort(v) = µ. Let r0 ∈ (0, 1) be small enough such that
the balls in {Br0(qk)}k are pairwise disjoint, and for r ∈ (0, r0) let:

Sr := S \
⋃
k

Br0(qk).

1. step: We first wish to derive the Γ-liminf inequality in Sr. By the weak
convergence of (uε) (see also (4.142)), standard lower semicontinuity arguments,
the definition of W(m)(u) <∞, and the fact that H1(Ju) <∞, we derive:

lim inf
ε→0

GGL(uε, Sr) ≥ lim inf
ε→0

(
1

2

ˆ
Sr

|∇uε|2 vol +H1(Juε ∩ Sr)
)

≥ 1

2

ˆ
Sr

|∇u|2 vol +H1(Ju ∩ Sr)

=W(m)(u) + π
|χ(S)|
m
|log r|+H1(Ju)− or→0(1). (4.143)

2. step: It remains to show:

lim inf
ε→0

(
GGL(uε, Br(qk))− π

m2
log( rε )

)
≥ γm − or→0(1) (4.144)

for any vortex center qk of u. In this regard, let Br0 := Br0(qk) and Br := Br(qk)
for fixed k, e ∈ C∞(Br0 ;S1) an arbitrary vector field, vε := Pe(uε) (Pe as

in (4.27)) for each ε > 0, and GL
(m)
ε be the energy functional from (4.123).

Furthermore, we take a sequence (wε) ⊂ C∞(TBr0) such that:

lim
ε→0
‖vε − wε‖W 1,2(TBr0 ) = 0. (4.145)

With the energy bound (4.140), Lemma 4.16, and (4.145) we see that:

GL(wε, Br0) ≤ π|log ε|+ C, (4.146)

for a constant C independent of ε. Using (4.110), the boundedness of (uε) in
L∞, the smoothness of e, and Hölder’s inequality, we derive that:

ˆ
Br

|uε|2|∇e|2 + |〈jac(uε), jac(e)〉| vol

≤ ‖|∇e|‖L∞(|Br|+ |Br|
1
3 ‖|∇uε|‖

L
3
2 (S)

) = or→0(1).

Hence, by (4.124) and (4.145) instead of (4.144), we can equivalently show:

lim inf
ε→0

(
GL(m)

ε (wε, Br)−
π

m2
log
(r
ε

))
≥ γm − or→0(1). (4.147)

3. step: By (4.146), we can employ Lemma 4.23. Let Bε, Vε, and pε, be

as in the statement of Lemma 4.23. We also set rε := ε
1
3 and Rε := ε

1
4 . As

pε → qk for ε → 0, we see that for any s ∈ (0, r) and ε > 0 small enough, we
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have by (4.139):

GL(m)
ε (wε, ARε,s(pε) \ Vε)

≥ 1

2m2

ˆ
ARε,s(pε)\Vε

|∇wε|2 vol

≥
(

1− 2ε
1
4

) π

m2
log

(
s

Rε + 2rε

)
− C1r

≥ π

m2

(
log

(
r

Rε

)
− log

(r
s

)
− log(1 + 2ε

1
12 )− 2ε

1
4 log

(
r∗

3ε
1
3

))
− C1r

=
π

m2
log

(
r

Rε

)
− o(1)− os→r(1)− or→0(1), (4.148)

where C1 is the constant from (4.139), and os→r(1) + or→0(1) is independent
of ε. Also by (4.139), we have for any K ∈ N and ε > 0 small enough:

GL(m)
ε (wε, Arε,2−KRε(pε) \ Vε)

≥ 1

2m2

ˆ
Arε,2−KRε (pε)\Vε

|∇wε|2 vol

≥
(

1− 2ε
1
4

) π

m2
log

(
2−KRε

3rε

)
− C1Rε

≥ π

m2

(
log

(
Rε
rε

)
−K log(2)− log(3)− 2ε

1
4 log(ε

1
12 )

)
− C1Rε

=
π

m2
log

(
Rε
rε

)
−K π

m2
log(2)− C2 − o(1) (4.149)

with C2 := π
m2 log(2). Furthermore, by (4.43) (with a slightly modified double

well potential), we have for ε > 0 small enough:

GL(m)
ε (wε, Vε) ≥

1

m2

(
1

2

ˆ
Vε

|∇wε|2 +
m2

2ε2
(1− |wε|2)2 vol

)
≥ π

m2

(
log
(rε
ε

)
− C̃3

)
=

π

m2
log
(rε
ε

)
− C3, (4.150)

where C̃3 is the universal constant from (4.139) and C3 = π
m2 C̃3. Then by

(4.148), (4.149), and (4.150), it follows that for sufficiently small ε > 0:

GL(m)
ε (wε, Br \A2−KRε,Rε(pε))

≥ π

m2
log
(r
ε

)
−K π

m2
log(2)− C4 − o(1)− os→r(1)− or→0(1), (4.151)

where C4 := C2 +C3, and the term os→r(1) + or→0(1) is independent of ε. Fix
δ > 0 and given C4 as above, let K = K(δ) ∈ N be chosen (independently of ε,
r, and s) big enough so that:

Kω(δ) ≥ C4 + γm, (4.152)

where ω(δ) > 0 is as in Lemma 4.22. We need to discern between two cases.
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4. step: In the first case we assume that, up to a subsequence:

inf
z∈H(pε,2−kRε)

‖wε − z‖W 1,2(TAε,k) ≥ δ

for all k ∈ {0, . . . ,K− 1}, where Aε,k := A2−(k+1)Rε,2−kRε(pε). By Lemma 4.22,
we therefore have for every k ∈ {0, . . . ,K − 1} and every ε > 0 small enough:ˆ

Aε,k

|∇wε|2 vol ≥ π

m2
log(2) + ω(δ)− o(1). (4.153)

Note that (4.132) is satisfied due to the following argument: As {|1− |wε|| ≥
ε

1
4 } ⊂ Vε and supε‖wε‖L∞ ≤ 1, we have for any k ∈ {0, . . . ,K − 1}:

(2−kRε)
−2

ˆ
Aε,k

|1− |wε|| vol ≤ (2−kRε)
−2
(
|Aε,k|ε

1
4 + 2|Vε|

)
≤ 2K−1ε−

1
2C5(ε

3
4 + ε

2
3 ) = o(1),

where C5 = C5(S) is a universal constant. Combining (4.153), (4.151), and
(4.152) we have for ε > 0 small enough

GL(m)
ε (wε, Br)

= GL(m)
ε (wε, Br \A2−KRε,Rε(pε)) +GL(m)

ε (wε, A2−KRε,Rε(pε))

≥ π

m2
log
(r
ε

)
+ γm − o(1)− os→r(1)− or→0(1),

where, again, os→r(1) + or→0(1) is independent of ε. Consequently, (4.147)
follows after letting ε→ 0 and s→ r (in exactly this order).

5. step: We will now deal with the second case, in which, up to taking a
subsequence, we can find k0 ∈ {0, . . . ,K − 1}, and for each ε a λε ∈ S1 such
that:

‖wε − zε‖W 1,2(TAε,k0
) < δ,

where zε is the unique element in H(2−k0Rε, pε) whose coordinate representa-
tion satisfies z̄ε = λε

x
|x| . By standard cutoff arguments, we can modify wε into

ŵε such that ŵε = wε outside Aε,k0
, wε = zε in A 3

2 ·2−(k0+1)Rε,2−k0Rε
(pε), and:

‖wε − zε‖W 1,2(TAε,k0
) < 2δ. (4.154)

Then, by (4.128) and (4.129), we derive that:

GL(m)
ε (wε, B2−k0Rε(pε)) = GL(m)

ε (ŵε, B2−k0Rε(pε)) + oδ→0

≥ γε(2−k0Rε, pε, λε) + oδ→0

= γm + o(1) + oδ→0(1), (4.155)

where the term oδ→0(1) is independent of ε. By (4.139), we have for ε > 0
small enough:

GL(m)
ε (wε, A2−k0Rε,Rε(pε)) ≥

1

2m2

ˆ
A

2−k0Rε,Rε

|∇wε|2 vol

≥ (1− 2ε
1
4 )

π

m2
log

(
Rε

2−k0Rε + 2rε

)
− C1Rε

=
π

m2
log

(
Rε

2−k0Rε

)
− o(1),
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where, again, C1 is the universal constant from (4.139). Combined with (4.148)
and (4.155), this shows (4.127), after letting ε → 0, s → r, and δ → 0 (in
exactly this order).

4.3.3 Gamma-limsup

In the following lemma, we will relate the non-fractional renormalized energy
on a surface to the Euclidean one:

Lemma 4.24
Given a geodesic ball B0 = Br0(p0) and v ∈ W 1,2

loc (B0 \ {p0}; S1) ∩W 1,1(TB0)
such that vort(v) = ±δp0

and W(v,B0) < ∞ (with W(v) as in (4.104)), we
have:

lim
k→∞

1

2

ˆ
Ak

|∇v|2 vol = π log(2), (4.156)

where Ak := A2−(k+1)r0,2−kr0(p0). Furthermore, a coordinate representation
W̄(v̄, B̄0) (B̄0 := B̄r0(0) is the Euclidean ball of radius r0 and centered at the
origin) with respect to centered normal coordinates at p0 and an arbitrary local
frame in B0 satisfies W̄(v̄, B̄0) <∞, where:

W̄(v̄, B̄0) := lim
r→0

(
1

2

ˆ
Ār

|∇̄v̄|2 dx− π|log(r)|
)
,

is the Euclidean analogue of W(v,B0) with Ār := Ār,r0(0) being the Euclidean
annulus centered at the origin with inner radius r and outer radius r0.

Proof. 1. Step: Let us first prove (4.156). We rewrite the renormalized energy
W(v,B0) as follows:

W(v,B0) =

∞∑
k=0

(
1

2

ˆ
Ak

|∇v|2 vol−π log

(
2−kr0

2−(k+1)r0

))

=

∞∑
k=0

(
1

2

ˆ
Ak

|∇v|2 vol−π log(2)

)
with Ak as before. As |v| = 1 a.e. and vort(v) = ±δp0 , we see by (4.54) that
for each k ∈ N:

1

2

ˆ
Ak

|∇v|2 vol ≥ π log

(
2−kr0

2−(k+1)r0

)
− C0(2−kr0 − 2−(k+1)r0)

= π log(2)− C0(2−kr0 − 2−(k+1)r0)

for some universal constant C0 = C0(S) independent of k and v. Consequently,
for the same constant C, we follow:

∞∑
k=0

(
1

2
|∇v|2 vol−π log(2) + C0(2−kr0 − 2−(k+1)r0)

)
≤ W(v,B0) + C0r0 <∞,

where each term in the series on the left side above is nonnegative. Consequently,
we must have:

lim
k→∞

1

2
|∇v|2 vol−π log(2) + C0(2−kr0 − 2−(k+1)r0) = 0,
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and (4.156) follows.
2. Step: We will now shot the finiteness of W̄(v̄, B̄0). By (4.156), we can

find K0 ∈ N big enough such that for any k ≥ K0;

1

2

ˆ
Ak

|∇v|2 vol ≤ 3π log(2).

Hence by our choice of coordinates we can find a universal constant C1 = C1(S)
such that:

W(v̄, B̄2−K0r0(0)) =

∞∑
k=K0

(
1

2

ˆ
Āk

|∇̄v̄|2 dx− π log(2)

)

≤
∞∑

k=K0

(
1

2
(1 + C12−kr0)

ˆ
Ak

|∇v|2 vol−π log(2)

)

=

∞∑
k=K0

(
1

2

ˆ
Ak

|∇v|2 vol−π log(2)

)
+

∞∑
k=K0

C12−(k+1)r0

ˆ
Ak

|∇v|2 vol

≤ W(v,B0) + 6C1r0π log(3) <∞.

As v ∈ W 1,2(TA2−K0r0) and therefore v̄ ∈ W 1,2(Ā2−K0r0 ;R2), this concludes
the proof.

Lemma 4.25
Given u ∈ LS(m)(S) with vort(u) = sgn(χ(S))

∑m|χ(S)|
k=1

1
mδpk and for each k let

e(k) be a harmonic vector field in a geodesic ball Br′(pk) (r′ is chosen small
enough so that {Br′(pk)}k are disjoint). Then, for any δ > 0 and r0 ∈ (0, r′),

there exists r ∈ (0, r0), (λk) ∈ S1, and w ∈ AS(m)(S r
2
;S1) such that:

(i) w = u in Sr.

(ii) For any k, the coordinate representation w̄ of w in Br′(pk), as described
in Remark 4.1 satisfies w̄m = λk

x
|x| on ∂B̄ r

2
(0).

(iii) ‖w − u‖SBV 2(T (S r
2
\Sr)) ≤ δ.

Proof. Let us fix k and shortly write e := e(k), Br′ := Br′(pk), v := Pe(u) in Br′ .
By (4.103), we see that W(v,Br′) <∞ and with Lemma 4.24, it follows that
W(v̄, B̄r′(0)) <∞, where v̄ is the coordinate representation of v, as described
in Remark 4.1. Let us also denote by ū the coordinate representation of u in
Br′ through the same coordinates as before. By the choice of coordinates and
the definition of Pe, we have that v̄ = ūm (where we identify R2 with C). It
was already shown in the Euclidean setting that for any r0 ∈ (0, r′) and δ′ > 0,
there exists r ∈ (0, r0), λ ∈ S1, and w̄ ∈ SBV 2(Ā r

2 ,r0
(0);S1) such that:

(i) (w̄+)m = (w̄−)m at H1-a.e. point on Jw̄;

(ii) w̄ = ū in Ār,r′(0);

(iii) ‖w̄ − ū‖SBV 2(Ā r
2
,r(0)) ≤ δ′;

(iv) (w̄)m = λ x
|x| on ∂B̄ r

2
(0).
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Let w be the vector field on Br′ whose coordinate representation is w̄. By the
choice of coordinates, we have that |w| = 1 a.e. and:

Pe(w
+) = (w̄+)m = (w̄−)m = Pe(w

−)

at H1-a.e. point on Jw. By the equivalence of norms and the choice of w̄, it
then follows that w ∈ AS(m)(A r

2 ,r
′(pk)), w = u in Ar,r′(pk), and:

‖w − u‖SBV 2(TA r
2
,r(pk)) ≤ Cδ′

for a universal constant C = C(S). For δ′ small enough, we therefore have:

‖w − u‖SBV 2(TA r
2
,r(pk)) <

δ

m|χ(S)| .

This concludes the proof by the arbitrariness of k.

The next lemma will construct the recovery sequence in the vicinity of the
limit vortices:

Lemma 4.26
Given a geodesic ball B := Br(p) (for some p ∈ S and r ∈ (0, r∗)), a smooth
vector field e ∈ C∞(B;S1), λ ∈ S1, and δ > 0, there exists a sequence (uε) ⊂
AS(m)(B) such that:

(i) The coordinate representation ūε (as described in Remark 4.1) satisfies
ūmε = λ x

|x| on ∂B̄r.

(ii) lim supε→0

(
GL(uε, B)− π

m2 |log ε|
)
≤ γm + δ + Or→0(1).

(iii) lim supε→0H1(Juε) = Or→0(1).

Proof. By Corollary 3.11 in [40], we can find ε0 ∈ (0, 1) small enough and
z̄ ∈ SBV 2(B̄1(0);S1) such that (z̄+)m = (z̄−)m at H1-a.e. point in Jz̄, z̄

m = λx
on ∂B̄1(0), and:

Ēε0(z̄m, B̄1(0))− π

m2
|log ε| ≤ γm + δ,

where:

Ēε0(v̄,Ω) :=
1

2m2

ˆ
Ω

|∇̄v̄|2 + (m2 − 1)|∇̄|v̄||2 +
m2

2ε2
0

(1− |v̄|2)2 dx

for any Ω ⊂ R2 open and v̄ ∈W 1,2(Ω;S1). Note that by the chain rule, we can
show:

Ēε0(z̄m, B̄1(0)) =
1

2

ˆ
B̄1(0)

|∇z|2 +
1

2ε2
0

(1− |z|2)2 dx. (4.157)

For ε ∈ (0, rε0), we will construct the coordinate representation ūε of the desired
uε by properly rescaling z̄ and filling up the remaining space with a uniform
rotation. More precisely, let:

ūε(x) :=

{
z̄( ε0ε x) if |x| ≤ ε

ε0
,

eı
1
m arg(x) if ε

ε0
< |x| ≤ r,
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where arg(x) ∈ [−π, π) is the argument of x seen as a complex number. By
changing coordinates (x̃ = ε0

ε x), we then see that:

Ēε0(ūε, B̄ ε
ε0

(0)) = Ēε0(z̄, B̄1(0)).

Let uε be the vector field on Br(p) whose coordinate representation, as described

in Remark 4.1, is ūε. By construction, uε ∈ AS(m)(Br(p)). Furthermore, by
(4.157), we can show with an argument similar to the one in the proof of
Lemma 4.21:

GL(uε, B ε
ε0

)− π

m2
|log ε0| ≤ γm + δ + oε→0(1). (4.158)

Let K be the largest natural number such that 2−Kr ≥ ε
ε0

, and define for any
k ∈ {1, . . . ,K}:

Ak :=

{
A2−(k+1)r,2−kr(p) if k < K,

A ε
ε0
,2−kr(p) if k = K,

Āk :=

{
Ā2−(k+1)r,2−kr(0) if k < K,

Ā ε
ε0
,2−kr(0) if k = K.

Using a dyadic decomposition and passing to coordinates, we have the following
estimate outside of B ε

ε0
(p):

GL(uε, A ε
ε0
,r(p)) =

K∑
k=0

1

2

ˆ
Ak

|∇uε|2 vol

≤
K∑
k=0

1

2
(1 + C2−kr)

ˆ
Āk

|∇̄ūε|2 dx

≤ π

m2
log
(rε0

ε

)
+ 2C

π

m2
log(2)r

for some universal constant C = C(S). Combined with (4.158), this shows
Item (ii) of the statement. Finally, by construction and the equivalence of
norms, we can find a universal constant C̃ = C̃(S) such that

H1(Juε ∩Br(p)) ≤ C̃
(
ε

ε0
H1(Jz) + 2πr + 2π

ε

ε0

)
,

which directly leads to Item (iii) in the statement.

Proof of the Γ-limsup of Theorem 4.7. Let us fix δ > 0 and r0 ∈ (0,min{r∗, 1})
small enough such that the balls {Br0(pk)}k are disjoint, where {pk} is the set
of vortex centers of u. Let r ∈ (0, r0), (λk) ⊂ S1, and w be as in Lemma 4.25,

and for each k, let (u
(k)
ε )ε be the sequence from Lemma 4.26 for λ = λk and

radius r
2 . For each ε > 0, we then define uε to be:

uε(p) :=

{
w(p) if p ∈ S r

2
,

u
(k)
ε (p) if p ∈ B r

2
(pk).
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By construction, (uε) ⊂ AS(m)(S) with:

GL(uε)−
π|χ(S)|

m
|log ε|

= GL(w, S r
2
)− π|χ(S)|

m
|log r|

+

m|χ(S)|∑
k=1

GL(u(k)
ε , B r

2
(pk))− π

m2
log
( r

2ε

)
≤ Wm(u) + |χ(S)|mγm +H1(Ju) + δ + or→0(1) + oε→0(1),

where the term or→0(1) is independent of ε. Consequently:

lim sup
ε→0

GL(uε)−
π|χ(S)|

m
|log ε|

≤ Wm(u) + m|χ(S)|γm +H1(Ju) + δ + or→0(1).

Finally, a standard diagonal sequence argument in which we send r → 0 and
δ → 0 (in exactly this order), concludes the proof.
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