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Abstract
This work is focused on conventional and emerging methods and modalities of X-ray imaging,
which can be implemented at laboratory environments, describing a number of new algo-
rithms designed to improve image quality and reduce acquisition time and dose. These imag-
ing modalities include conventional computed tomography (CT), which is solely sensitive to
the attenuating properties of the sample. CT is widely used in the field of medical imaging
and non-destructive testing. One focus of this thesis lies on high-resolution CT systems,
which achieve spatial resolutions in the nanometer regime enabling three-dimensional visu-
alization of small samples. Another imaging modality explored in this work is propagation-
based phase-contrast imaging (PBI) in particular in combination with CT. PBI is sensitive
to not only absorption, but also the phase-shifting properties of the sample. Employing this
phase information yields significant advantages when imaging small or weakly attenuating
samples or ones that consist of materials that have similar attenuation properties, such as
biological structures made from soft-tissue.

First, reconstruction approaches for PBI and propagation-based phase-contrast computed
tomography (PB-CT) are investigated, which combine a model of the image formation, a
statistical description of the measurements and regularization techniques. Using a laboratory
CT system as well as synchrotron radiation, it is demonstrated how these algorithms benefit
image quality, in particular regarding artifacts arising from materials that do not fit within
the assumptions imposed by these approaches.
Second, algorithms for PBI and PB-CT are developed that further account for the reduced

spatial coherence and low flux found at laboratory sources, and the response of efficient
scintillator-based detectors. Thereby, an approximate analytical solution of the proposed al-
gorithm is derived for PBI, which generalizes the conventional single-material phase-retrieval
algorithm and its extension. For PB-CT, a simulation study and an experimental study are
conducted, which clearly show the improvements with respect to spatial resolution and the
benefits related to an accurate modeling of the noise covariance statistics.
Third, in the context of conventional CT, an optimization approach is proposed, which

enables the estimation of parameterized models of the system blur during tomographic re-
construction. This has the potential to replace laborious characterizations of all components
that add to the system blur and to account for additional contributions such as interpolation
artifacts from the projection operations. An extensive simulation study is performed and
the feasibility of this approach is demonstrated experimentally at a test-bench setup.
Furthermore, means to estimate the positions of the X-ray source, rotation axis and de-

tector in CT applications at the nanometer scale are investigated. Mechanical instabilities
and drifts of different components limit the spatial resolution at this scale. As the geome-
try is non-deterministic, established calibration procedures cannot be employed. Thus, two
optimization-based approaches are examined, which estimate the geometry parameters from
the measurements alone. The respective methods are validated in a simulation study as well
as on measured data revealing distinct improvements in resolution.
Finally, an outlook is presented, which discusses the potential of combining the different

methods investigated in this work for various imaging scenarios.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit konventionellen und neuartigen Röntgenbildge-
bungsverfahren, die im Labor realisiert werden können. Im Speziellen wird eine Reihe neuer
Algorithmen entwickelt, um die Bildqualität zu verbessern beziehungsweise die Aufnahmezeit
zu reduzieren und Dosis einzusparen. Eines dieser Verfahren ist die konventionelle Rönt-
gencomputertomographie (CT), die einzig auf die absorbierenden Eigenschaften der Probe
sensitiv ist. CT ist in der medizinischen Bildgebung sowie im Bereich der zerstörungs-
freien Materialprüfung weit verbreitet. Ein besonderes Augenmerk dieser Arbeit liegt auf
hochauflösenden CT Systemen, die räumliche Auflösungen im Nanometerbereich erreichen
und somit in der Lage sind, kleinste Proben dreidimensional darzustellen. Ein weiteres
Verfahren ist die propagationsbasierte Phasenkontrastbildgebung (PBI) und ihre Kombina-
tion mit CT. PBI ist dabei zusätzlich sensitiv auf die phasenschiebenden Eigenschaften der
Probe. Diese Phaseninformationen zu verwenden birgt erhebliche Vorteile, um kleine oder
schwach absorbierende Proben darzustellen oder Proben, die aus Materialien zusammenge-
setzt sind, die ähnlich absorbierende Eigenschaften haben, wie beispielsweise biologisches
Weichteilgewebe.

Als Erstes werden Rekonstruktionsmethoden für PBI und propagationsbasierte Phasen-
kontrastcomputertomographie (PB-CT) untersucht, welche ein Modell der Bildentstehung,
eine statistische Beschreibung der Messungen und Regularisierungstechniken kombinieren.
Anhand eines kompakten CT Systems sowie mit Synchrotronstrahlung wird gezeigt, wie diese
Algorithmen die Bildqualität verbessern, besonders bezüglich Artefakten, die von Materialien
ausgehen, welche die bei diesen Methoden gemachten Annahmen nicht erfüllen.
Als Zweites werden Algorithmen für PBI and PB-CT entwickelt, welche zusätzlich die

reduzierte partielle Kohärenz und den niedrigen Fluss von Laborquellen sowie den Einfluss
effizienter szintillationsbasierter Detektoren erfassen. Für PBI wird dabei eine genäherte ana-
lytische Lösung des entwickelten Algorithmus hergeleitet, die den konventionellen Phasen-
rekonstruktionsalgorithmus von Paganin und seine Erweiterung verallgemeinert. Zusätzlich
werden eine Simulationsstudie sowie eine experimentelle Studie durchgeführt, welche die
Verbesserungen der räumlicher Auflösung durch die vorgeschlagenen Ansätze aufzeigen sowie
die Vorteile, die sich aus der präzisen Modellierung der Rauschkovarianzstatistik ergeben,
nachweisen.
Als Drittes wird in Bezug auf die konventionelle CT ein Optimierungsansatz vorgeschla-

gen, der es ermöglicht, parameterisierte Modelle, welche die Gesamtverschmierung durch
das System beschreiben, während der tomografischen Rekonstruktion zu schätzen. Dies
hat das Potential, aufwändige Charakterisierungen aller Komponenten, die zur Systemver-
schmierung beitragen, zu ersetzen und dabei gleichzeitig zusätzliche Komponenten, wie
beispielsweise Interpolationsartefakte der Projektionsoperationen, zu erfassen. Eine um-
fangreiche Simulationsstudie wird durchgeführt und die Realisierbarkeit des Ansatzes wird
experimentell anhand eines Testaufbaus demonstriert.
Des Weiteren werden Möglichkeiten untersucht, für CT Anwendungen im Nanometer-

bereich die Positionen der Röntgenquelle, der Rotationsachse und des Detektors zu schät-
zen. Mechanische Instabilitäten und Drifts der verschiedenen Komponenten limitieren die
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räumliche Auflösung auf dieser Größenskala. Da die Geometrie nicht reproduzierbar ist,
können außerdem keine etablierten Kalibrierungsverfahren verwendet werden. Aus diesem
Grund werden zwei Optimierungsansätze untersucht, welche die Geometrie aus den Mes-
sungen selbst schätzen. Die jeweiligen Methoden werden anhand einer Simulationsstudie
sowie anhand von Messdaten validiert, welche die klaren Verbesserungen in der Auflösung
demonstrieren.
Zum Schluss dieser Arbeit wird ein Ausblick gegeben, der das Potential der Kombination

der verschiedenen Methoden, die in dieser Arbeit untersucht werden, für verschiedene Bild-
gebungsszenarien diskutiert.
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1. Introduction
X-rays are electromagnetic waves with shorter wavelengths than visible light. Typical wave-
lengths of X-rays are in the order of an ångström (1Å= 10−10 m). From a quantum mechan-
ical perspective, X-rays are quantized into photons. In the latter case, it is more natural
to refer to the (quantized) energy rather than the wavelength. Within this work, the en-
ergies of interest are in the region just below 10 keV up to over 100 keV. In this picture,
the intensity of the X-rays is simply given by the number of photons passing through a
given area per unit time, whereas in the wave picture the amplitude relates to the inten-
sity. [Als-Nielsen and McMorrow, 2011, Attwood and Sakdinawat, 2017]

1.1. X-ray radiography and computed tomography (CT)
X-rays and their ability to penetrate opaque materials were first described by Wilhelm
Conrad Röngten in 1895. As the attenuation of the X-ray intensity varies between different
materials, the interior structure of objects can be depicted. For example, the intensity of
X-rays is more strongly attenuated by bone than by soft-tissue. This resulted in the first
radiograph of a human hand in the same year, already indicating the significance of X-rays
in the field of medicine. Thereby, the hand was placed in between an X-ray source and an
X-ray detector (fluorescent screen), which is sensitive to the intensity of the X-rays behind
the object. [Röntgen, 1895, Als-Nielsen and McMorrow, 2011]
Considering radiography the first revolution in medical imaging, the second revolution

was the invention of computed tomography (CT) in the 1970’s by Godfrey Hounsfield.
The theory of CT had been independently worked out by Allan McLeod Cormack in the
previous decade. In contrast to conventional radiography, which is only sensitive to the
projected attenuation of the object along the X-ray paths, CT enables the reconstruction
of the full three-dimensional interior of the object by acquiring radiographs from various
positions all around the object. Since then, medical CT scanners have improved signifi-
cantly to allow for higher spatial resolution down to 0.5 mm, faster acquisition times and
improved image quality. The most important aspect for improving CT is to reduce radiation
dose given to the patient, which is in the range of 1 − 10 mSv depending on the scan-
ning protocol. In comparison, in radiography, the patients are exposed to approximately
0.1 mSv. [Als-Nielsen and McMorrow, 2011]
Beyond medical imaging, CT is also widely applied to many problems in materials and

biological sciences, where dose requirements are often less strict. State-of-the-art laboratory
high-resolution CT devices that utilize the same projection-based imaging principle (without
using X-ray optics) are able to resolve structures down to 100 nm. However, the resolution
is ultimately limited by the extent of the X-ray source spot, due to the high magnifications
as well as by mechanical instabilities and thermal drifts of the individual components at this
scale. Moreover, with higher resolution, the field-of-view (FOV) is also limited and acquisi-
tion times increase significantly. [Als-Nielsen and McMorrow, 2011, Müller et al., 2017]
X-ray radiography and CT are only sensitive to the attenuating properties of the ob-

ject. Thus, these techniques are not particularly well suited for visualizing weakly absorbing

1



1. Introduction

materials without additional contrast agents or objects that consist of materials with sim-
ilar attenuating properties, such as soft-tissue, most commonly encountered in biology and
medicine. [Bravin et al., 2013]

1.2. Phase-contrast imaging (PCI)

Electromagnetic waves are not only attenuated when interacting with an object, but their
phase is shifted as well. However, this shift in phase cannot be resolved directly, as only
the intensity can be measured. Early methods to indirectly visualize this phase shift include
Schlieren phase contrast and out-of-focus contrast. Most notably, in the early 1930’s Frits
Zernike developed a phase-contrast method for visible light microscopy enabling high contrast
visualization of living tissue cultures. [Zernike, 1942, Zernike, 1955].
The first X-ray phase-contrast images were acquired in 1965 by Ulrich Bonse and Michael

Hart using a crystal interferometer [Bonse and Hart, 1965, Momose, 1995]. Today, various
different phase-contrast imaging (PCI) methods have been developed that are able to uti-
lize the X-ray phase shift for imaging [Wilkins et al., 2014, Endrizzi, 2018]. These include
analyzer-based methods, which use single-crystals [Förster et al., 1980, Davis et al., 1995,
Ingal and Beliaevskaya, 1995], and propagation-based phase-contrast imaging (PBI) meth-
ods, which do not rely on any additional X-ray optics in the beam path [Snigirev et al., 1995,
Cloetens et al., 1996]. Other methods introduce different known structures into the beam
path to track the changes of the radiation field induced by the sample. Among these struc-
tures are lenslet arrays [Mayo and Sexton, 2004], two-dimensional grids [Morgan et al., 2011],
speckle patterns [Morgan et al., 2012] or coded apertures in the edge-illumination method
[Olivo et al., 2001]. In addition, grating-based phase-contrast imaging (GBI) methods are
popular, which use two gratings and employ the Talbot effect to resolve the induced phase
shifts [David et al., 2002, Momose et al., 2003, Weitkamp et al., 2005].
These methods work best at synchrotron facilities, which create highly coherent monochro-

matic X-rays with high intensity. Using synchrotron radiation, additional phase-contrast
imaging methods beyond the aforementioned projection imaging are feasible, such as holo-
graphy [Eisebitt et al., 2004], coherent diffraction imaging [Miao et al., 1999] and ptycho-
graphy [Rodenburg et al., 2007]. However, synchrotrons are large scale facilities, due to the
requirements on the size of the electron storage rings, and are expensive to build, operate and
maintain. This limits the accessibility of X-ray phase-contrast imaging methods significantly.
Some of the methods mentioned above have been successfully transferred to laboratory

environments. For instance, with the introduction of a source grating, the GBI method could
be transferred to conventional laboratory X-ray sources in radiography [Pfeiffer et al., 2006]
and CT [Pfeiffer et al., 2007]. Since then, this method has become a promising candidate for
translating phase contrast to clinical environments [Scherer et al., 2015, Koehler et al., 2015].
Also methods using coded apertures such as edge-illumination have been implemented us-
ing laboratory sources [Olivo and Speller, 2007]. However, both methods require additional
optics, which reduce the incident flux due to the source grating in the GBI method or the
sample mask in the edge-illumination method. Moreover, higher (sample) dose is required
for both techniques, due to the analyzer grating in the GBI method or the detector mask in
the edge illumination method.
Regarding phase-contrast techniques, this work focuses on the PBI method, which does

not directly suffer from flux reductions and increased dose requirements as there are no
additional apertures in the beam path. However, PBI requires X-rays which are suffi-

2



1.3. Tomographic reconstruction techniques

ciently spatially coherent, such that the phase shifts induced by the sample lead to dis-
tinct variations in the measured intensity [Wilkins et al., 1996]. These variations originate
from self-interference effects of the wave during free-space propagation between the sam-
ple and the detector. Different PBI methods exist that utilize one or more images at
different distances behind the sample or at different energies. With advances of labora-
tory X-ray sources including liquid-metal jet sources [Hemberg et al., 2003] and compact
synchrotrons [Eggl et al., 2016], the available spatial coherence is sufficient to transfer PBI
from synchrotron facilities to laboratories. Mostly due to the reduced spatial coherence of
laboratory sources [Wilkins et al., 1996, Wilkins et al., 2014], but also due to difficulties in
image alignment because of magnification effects, PBI methods at laboratory sources typi-
cally acquire images only at a single distance. This makes this method also particularly well
suited for the extension to CT referred to as propagation-based phase-contrast computed
tomography (PB-CT). [Endrizzi, 2018]
In general, it is not possible to recover the attenuating and phase-shifting properties in-

dependently by using only a single image [Endrizzi, 2018]. Thus, additional constraints
about the sample have to be imposed. One of the most prominent assumptions is the ho-
mogeneity assumption which couples the attenuating and phase-shifting properties of the
sample [Paganin et al., 2002]. Recently, it has been demonstrated that under this assump-
tion, noise levels in PBI and PB-CT can be reduced significantly compared to conventional
radiography or CT without loss of resolution [Kitchen et al., 2017, Gureyev et al., 2017].
Therefore, this method has the potential to reduce dose requirements, making it a candidate
for medical imaging in the future. Beyond the dose argument, PBI and PB-CT have become
extremely popular for various applications, due to the ease of implementation and the ben-
efits of utilizing phase contrast for visualization including high-resolution CT applications,
(dynamic) lung imaging and breast tissue imaging [Bravin et al., 2013, Endrizzi, 2018].
However, there are still several challenges regarding PBI, in particular when using labora-

tory X-ray sources. Most importantly, the image quality deteriorates when the homogeneity
assumption is violated. In addition, compared to synchrotron facilities, the reduced spa-
tial coherence of the X-rays influences the image quality. Due to the relatively low flux of
laboratory sources, high noise levels are present. Therefore, efficient detection systems are
required, which include thicker scintillators and thus result in a larger spread of the signal
reducing image quality further.

1.3. Tomographic reconstruction techniques

Ever since the invention of CT, algorithms have become a key tool for advances in X-ray
imaging. These algorithms are required to reconstruct the three-dimensional structure of
the sample from the radiographs acquired around the object. Although early CT scanners
acquired only a limited amount of data, the early reconstruction algorithms were inaccurate
as well as time-consuming due to their iterative nature and the limited performance of
computer systems. [Beckmann, 2006].
The first breakthrough was the invention of analytical reconstruction algorithms that

could directly reconstruct the three-dimensional structure of the sample from the acquired
radiographs. These algorithms are still utilized today, as they achieve good image quality,
are fast and can thus easily handle large amounts of data. [Nuyts et al., 2013]
With the increase of computational power and advances in computer architectures, more

advanced iterative CT algorithms are heavily researched. One of the main reasons is
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the growing concern about radiation dose and the success of these algorithms to reduce
dose requirements, while maintaining image quality. In addition, these algorithms are ro-
bust and more flexible to different geometries, enabling new CT designs. Furthermore,
these algorithms allow for precise models of the whole image formation process, includ-
ing photon transport and detection physics. Moreover, one can account for various effects
that deteriorate image quality, such as the finite spatial resolution, Compton scatter and
noise. [Nuyts et al., 2013]

1.4. Aim and outline

The aim of the work presented in this thesis is to investigate and advance modern recon-
struction approaches for medical CT, high-resolution CT and PB-CT at laboratory sources.
The focus lies on incorporating physical models of the image formation process to improve
image quality. This includes reconstruction approaches for PBI and PB-CT that model the
interference effects and that are capable of evaluating the validity of the underlying assump-
tions for individual data points. In addition, models for the reduced spatial coherence are
developed and recent advances in medical CT reconstruction for incorporating detector mod-
els including covariance noise statistics are transferred to high-resolution CT and PB-CT.
Moreover, general algorithmic developments are proposed to estimate system blur during
reconstruction in the context of medical CT. Finally, algorithms for estimating geometric
parameters for high-resolution CT are evaluated in the context of biological sciences.
The structure of this thesis is divided into two main parts. The first part summarizes the

theoretical background required for the understanding and the derivations of the methods
and results presented in the second part.
The theoretical background itself is divided into three chapters. In Chapter 2, starting with

the wave equation, a consistent description of X-rays is outlined using scalar wave theory.
Thereby, the underlying approximations, the interactions of the X-rays with matter, free-
space propagation and a description of coherence, relevant to the second part, are discussed.
Subsequently, Chapter 3 evolves around PBI focusing on various phase-retrieval algorithms.
In particular, the single-material phase-retrieval algorithm and its underlying assumptions
and implications are discussed in detail. In Chapter 4, tomographic reconstruction techniques
are outlined. After discussing the discretization of the data and operations, the fundamentals
of iterative reconstruction are presented in the context of maximum a posteriori (MAP)
estimation.
The second part describes the developed methods and obtained results. In Chapter 5,

a general MAP approach for PBI and PB-CT is investigated. Thereby, various special
cases are discussed, in particular, a formulation which obeys the homogeneity assumption
is addressed in greater detail. Subsequently, the proposed approach for PBI is validated
using a laboratory micro CT system and compared to the single-material phase-retrieval
algorithm. Afterwards, the benefits of the proposed approach for PB-CT are investigated
for two applications. First, various reconstruction approaches are compared by means of a
test sample, which violates the homogeneity assumption, and was measured at a laboratory
X-ray micro CT system. The second application details benefits of the proposed approach
for visualizing an animal cochlea with an implant using synchrotron radiation.
In Chapter 6, incorporating physical models of the spatial coherence of the X-ray source,

the detector response and noise correlations into a MAP reconstruction approach is analyzed
in the context of homogeneous PBI and PB-CT. An approximate analytical solution of the
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proposed algorithm is derived which further generalizes the single-material phase-retrieval
algorithm and its extensions. Furthermore, a relation between the single-material phase-
retrieval algorithm and regularization techniques is discussed. A simulation study as well
as an experimental study at a compact synchrotron are performed detailing significant ad-
vantages in terms of resolution and noise in the context of the proposed approach, which
accounts for the covariance statistics and system blur.
In order to leverage the full potential of the previous approach, exact models describing

the system blur have to be available. This usually requires the exact characterization of all
components that add to the system blur, which can be laborious. In Chapter 7, a recon-
struction approach is proposed, which jointly estimates the system blur during tomographic
reconstruction to eliminate the need for exact characterizations of the system blur. This
work is done in the context of conventional CT.
Finally, Chapter 8 is concerned with high-resolution CT applications. At this scale, phase

effects are often unavoidable, but can also be used to increase contrast. One of the most cru-
cial challenges is to properly characterize the geometry of the system, which is corrupted by
random drifts and thus can not be fully characterized beforehand. Here, two optimization-
based approaches to estimate geometry parameters are investigated. The first method uses a
metric proposed in the previous chapter and is applied to the reconstruction of a sea cucum-
ber. The second approach jointly estimates the geometry parameters during tomographic
reconstruction. This method is validated using a simulation study and an experimental test
sample.
Chapter 9 gives a general conclusion and outlook for future developments and shows

how the investigated approaches can play together for various applications, detailing their
limitations and potentials.
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2. Image formation description using scalar
wave theory

This chapter introduces the underlying formalism to describe the properties of X-ray wave-
fields. In particular, the notion of paraxial wavefields is introduced, their interaction with
matter is outlined and their evolution in free-space is discussed. The chapter concludes
with a short introduction to the concept of partial coherence. The aim of the chapter is a
self-consistent derivation of the formalism relevant for this thesis.

Various theories describing electromagnetic radiation exist, each with its own benefits and
drawbacks. For instance, in geometrical optics, X-rays are regarded as rays propagating
along straight lines in a homogeneous medium. At interfaces between two media, the re-
flecting and refracting properties can be described in terms of the refractive index of each
medium. However, effects like diffraction, interference, absorption and scattering are usu-
ally not described using geometrical optics, although there exists a geometrical theory of
diffraction, which extends geometrical optics [Keller, 1962].
To model these effects, X-rays can be regarded as electromagnetic waves. In the following,

X-rays are described as a complex scalar wavefield obeying the wave equation. The properties
of a medium is given in terms of its complex refractive index. Although more accurately, one
can characterize electromagnetic waves in terms of their coupled electric and magnetic fields
obeying the Maxwell equations, the treatment of X-rays as a scalar wavefield is sufficient to
describe diffraction, interference, absorption and scattering relevant for this thesis.
However, some important aspects, such as the noise properties inherent to measuring

certain properties of the X-ray wavefield are not described using electromagnetic waves.
This requires the notion of wave-particle dualism of quantum mechanics. These aspects will
be discussed in Section 4.3, Chapter 5 and 6.
Most of the derivations of this chapter follow [Paganin, 2006]. Many concepts can also be

found elsewhere, including [Cowley, 1995, Goodman, 2005, Als-Nielsen and McMorrow, 2011,
Peatross and Ware, 2015, Attwood and Sakdinawat, 2017].

2.1. Paraxial wavefields

In scalar wave theory, the electromagnetic disturbance is described by a single complex scalar
field Ψ(r, t) at each point in space r = (x, y, z) and time t. In free-space this field is governed
by the so-called d’Alembert equation

(
1
c2
∂2

∂t2
−∇2

)
Ψ(r, t) = 0, (2.1)

which is used as a starting point for the subsequent derivations. This equation can be derived
from the Maxwell equations in vacuum. [Paganin, 2006, p.2ff]
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2.1.1. Helmholtz equations
To obtain a time-independent wave-equation, the wavefield can be decomposed into its spec-
tral components characterized by its angular frequencies ω according to

Ψ(r, t) = 1√
2π

∫ ∞
0

ψω(r)e−iωtdω. (2.2)

It is convenient to omit the negative angular frequencies in the definition, as all information
is already encoded in the positive angular frequencies. Here ψω(r) denote the monochromatic
components of the decomposition. Substituting Eq. (2.2) into Eq. (2.1), interchanging the
order of differentiation and integration and multiplying by −

√
2π on both sides, results in∫ ∞

0

[(
∇2 + ω2

c2

)
ψω(r)

]
e−iωtdω = 0. (2.3)

Thus, the quantity in square brackets must be zero everywhere. Consequently, each mono-
chromatic component must obey (

∇2 + k2
)
ψω(r) = 0, (2.4)

where the wave number k = ω/c is introduced. This equation is called Helmholtz equation.
By solving the Helmholtz equation for each monochromatic component and using Eq. (2.2),
the time-dependency is recovered. [Paganin, 2006, p.4ff]
Within this framework, the influence of a time-independent medium on the wavefield

is described by the energy-dependent complex refractive index nω(r) of the medium. The
equivalent of the Helmholtz equation within a medium is called the inhomogeneous Helmholtz
equation. It follows by adapting the wave number k2 → k2n2

ω(r) resulting in[
∇2 + k2n2

ω(r)
]
ψω(r) = 0. (2.5)

A more rigorous derivation of this equation would start from the Maxwell equations in matter
instead. [Paganin, 2006, p.69ff]

2.1.2. Paraxial equations
It is convenient to decompose the wavefield into an unscattered plane wave propagating
without loss of generality along the optical axis z and an envelope ψ̃ω(r⊥, z) according to

ψω(r) = ψ̃ω(r⊥, z)eikz, (2.6)

with r = (r⊥, z), where r⊥ = (x, y) denotes the spatial dimensions orthogonal to the optical
axis. Inserting Eq. (2.6) into the inhomogeneous Helmholz equation given by Eq. (2.5) results
in {

2ik ∂
∂z

+∇2
⊥ + ∂2

∂z2 + k2
[
n2
ω(r⊥, z)− 1

]}
ψ̃ω(r⊥, z) = 0, (2.7)

defining ∇2 = (∇2
⊥, ∂

2/∂z2) and using

∇2ψ = ∇ · ∇ψ̃eikz = eikz∇2
⊥ψ̃ + eikz ∂

2ψ̃

∂z2 + 2ikeikz ∂ψ̃

∂z
− k2eikzψ̃, (2.8)
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where for convenience the subscript and dependencies of the wavefield are not explicitly
denoted. In free space n2

ω(r⊥, z) = 1 holds. [Paganin, 2006, p.71ff]
The paraxial approximation refers to neglecting the second derivative with respect to z in

Eq. (2.7), implying that the envelope ψ̃ω(r⊥, z) is less strongly varying in the direction of
the optical axis compared to its orthogonal components. Thus, the inhomogeneous paraxial
equation is given by {

2ik ∂
∂z

+∇2
⊥ + k2

[
n2
ω(r⊥, z)− 1

]}
ψ̃ω(r⊥, z) = 0 (2.9)

and consequently, the paraxial equation, describing the evolution of the envelope wavefield
in free space, is given by (

2ik ∂
∂z

+∇2
⊥

)
ψ̃ω(r⊥, z) = 0 (2.10)

using n2
ω(r⊥, z) = 1. [Paganin, 2006, p.69ff]

2.2. Interaction of X-rays with matter
Modeling the interactions of the X-rays with matter usually employs the projection ap-
proximation. This approximation requires that the medium is sufficiently thin or that the
scatterers within the medium scatter sufficiently weakly, such that the Laplacian in the
inhomogeneous paraxial equation given by Eq. (2.9) can be neglected. This results in{

2ik ∂
∂z

+ k2
[
n2
ω(r⊥, z)− 1

]}
ψ̃ω(r⊥, z) = 0. (2.11)

Assuming that the medium is only located between z = 0 and z = z0 along the optical axis,
Eq. (2.11) can be solved for the exit wavefield envelope ψ̃ω(r⊥, z0) at z = z0 according to

ψ̃ω(r⊥, z0) = exp
{
k

2i

∫ z0

0

[
1− n2

ω(r⊥, z)
]

dz
}
ψ̃ω(r⊥, 0), (2.12)

given the incoming wavefield envelope ψ̃(r⊥, 0) at z = 0. In the following, the plane behind
the sample, in this case at z = z0, is referred to as the object plane. For X-rays, the complex
refractive index is conventionally written as

nω(r⊥, z) = 1− δω(r⊥, z) + iβω(r⊥, z), (2.13)

where δω refers to the refractive index decrement and βω to the imaginary part. As for X-
rays, the refractive index decrement as well as the imaginary part are usually distinctively
less than unity, the expansion

1− nω(r⊥, z)2 ≈ 2 [δω(r⊥, z)− iβω(r⊥, z)] , (2.14)

where only the first order terms in δω and βω are kept, holds reasonably well. Consequently,
the wavefield in the object plane is given by

ψ̃ω(r⊥, z0) = exp
{
−ik

∫ z0

0
[δω(r⊥, z)− iβω(r⊥, z)] dz

}
ψ̃ω(r⊥, 0), (2.15)

under the assumptions outlined above. [Paganin, 2006, p.71ff]
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Figure 2.1.: Interactions of an X-ray wavefield with matter. The incoming wavefield ψω is
depicted on the left in blue. In green, the wavefield as it traverse the sample is
depicted and the outgoing wavefield is shown in orange. The attenuating and
phase-shifting properties of the sample are described by the linear attenuation
coefficient µω(r) and refractive index decrement δω(r) respectively. The envelope
wavefield behind the sample is defined by its intensity

√
Iω and phase shift φω

compared to the undisturbed wavefield illustrated by the dashed blue line.

In the following, it will be useful to decompose different parts of the envelope according
to

ψ̃ω(r⊥, z) =
√
Iω(r⊥, z) exp [iφω(r⊥, z)] , (2.16)

where the intensity Iω(r⊥, z) = |ψ̃ω(r⊥, z)|2 is the squared modulus of the wavefield and the
phase φω(r⊥, z) = arg ψ̃ω(r⊥, z) is the complex argument of the wavefield. [Paganin, 2006,
p.279]
Defining the linear attenuation coefficient as µω(r⊥, z) = 2kβω(r⊥, z), the intensity in the

object plane is obtained by squaring Eq. (2.15) resulting in

Iω(r⊥, z0) = Iω(r⊥, 0) exp
[
−
∫ z0

0
µω(r⊥, z)dz

]
. (2.17)

This equation is referred to as the Lambert-Beer law and describes how the intensity is
attenuated by the sample according to the projection of the three-dimensional distribution
of the linear attenuation coefficient along the X-ray paths. Figure 2.1 illustrates how these
quantities are related. In conventional CT, this is the property which is to be reconstructed.
In the particle picture, the attenuation in intensity in the energy range of interest is mostly
due to two processes. First of all, photoelectric absorption, where an entire X-ray photon
is absorbed by an atom. This is possible, if the binding energy of the atomic electron is
smaller than the energy of the photon. As a consequence, the electron, with which the X-ray
photon interacts, is released from the atom. Subsequent processes are X-ray fluorescence or
the Auger process. The probability of photoelectric absorption increases with the atomic
number and decreases with increasing energy. The second process is Compton scattering.
Here, the X-ray photon interacts with an electron mostly in the outer shell of the atom. After
the interaction, the energy of the X-ray photon is only reduced and the photon continues
to traverse the object. The complementary part of the energy is transferred to the electron,
which is released from the atom. The probability of Compton scattering increases with
electron density. [Buzug, 2008]

12



2.3. Free-space propagation

The other quantity that is altered is the phase. The total phase shift imposed by the
medium can be obtained by comparing Eq. (2.15) and Eq. (2.16) according to

φω(r⊥, z0) = −k
∫ z0

0
δω(r⊥, z)dz, (2.18)

which is proportional to the projection of the refractive index decrement along the X-ray
paths. The phase shift is also illustrated in Figure 2.1. The underlying processes are not
as intuitively described in the particle picture as the attenuation processes. [Paganin, 2006,
p.71ff]

2.3. Free-space propagation
In the following, the evolution of the X-ray wavefield in free space, referred to as free-space
propagation, is outlined, focusing on the limiting case of small propagation distances, relevant
for this work.

2.3.1. Fresnel propagator
Given a monochromatic paraxial wavefield as specified above, the evolution of the enve-
lope ψ̃ω in free space is governed by the paraxial equation given by Eq. (2.10). Assuming
elementary plane waves

ψ̃(PW)
ω (r⊥, z) = exp [i (k⊥ · r⊥ + kzz)] , (2.19)

the z-component of the wavevector kz can be calculated by inserting Eq. (2.19) into Eq. (2.10)
resulting in

kz = −k2
⊥

2k . (2.20)

Thus, the plane wave at any point z along the optical axis is given by

ψ̃(PW)
ω (r⊥, z) = ψ̃(PW)

ω (r⊥, 0) exp
[
− iz

2kk2
⊥

]
, (2.21)

where ψ̃(PW)
ω (r⊥, 0) is obtained from Eq. (2.19) for z = 0. Although this is only valid for

plane waves, similarly to the decomposition of spectral components given by Eq. (2.2), one
can decompose the unpropagated wavefield ψ̃ω(r⊥, 0) into a linear combination of plane
waves ψ̃ω(k⊥, 0) according to

ψ̃ω(r⊥, 0) = 1
2π

∫ ∞
−∞

∫ ∞
−∞

ψ̃ω(k⊥, 0) exp [ik⊥ · r⊥] dk⊥. (2.22)

Mathematically ψ̃ω(k⊥, 0) is the two-dimensional Fourier transform (FT) of ψ̃ω(r⊥, 0) with
respect to r⊥. Each plane wave propagates according to Eq. (2.21), thus the propagated
wavefield is given by

ψ̃ω(r⊥, z) = 1
2π

∫ ∞
−∞

∫ ∞
−∞

ψ̃ω(k⊥, 0) exp
[
− iz

2kk2
⊥

]
exp [ik⊥ · r⊥] dk⊥. (2.23)

Finally, this can be rewritten using an operator formulation according to

ψ̃ω(r⊥, z) = Dzψ̃ω(r⊥, 0), (2.24)
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where the so-called Fresnel operator

Dz = F−1
⊥ exp

[
− iz

2kk2
⊥

]
F⊥ (2.25)

is given by Eq. (2.23). In this notation, F⊥ maps the ψ̃ω(r⊥, 0) to its FT ψ̃ω(k⊥, 0) and
F−1
⊥ denotes the inverse Fourier transform (IFT) and these operators act from right to left.

Formally, these operators are defined according to

f(r⊥) = 1
2π

∫ ∞
−∞

∫ ∞
−∞

f(k⊥) exp [ik⊥ · r⊥] dk⊥, (2.26)

such that f(k⊥) ≡ F⊥[f(r⊥)] and

f(k⊥) = 1
2π

∫ ∞
−∞

∫ ∞
−∞

f(r⊥) exp [−ik⊥ · r⊥] dr⊥, (2.27)

such that f(r⊥) ≡ F−1
⊥ [f(k⊥)]. The Fresnel operator is not explicitly derived this way

in [Paganin, 2006, p.6ff], but follows analogous to the derivation of the angular spectrum
method. [Paganin, 2006, p.6ff]

2.3.2. Limit of small propagation distances
The main application of the work evolves around small propagation distances. Small in the
sense that one can make the following approximation in the exponent of the Fresnel operator

exp
[
− iz

2kk2
⊥

]
≈ 1− iz

2kk2
⊥, (2.28)

ignoring terms of the order O(z2). Substituting this in Eq. (2.23) results in

ψ̃ω(r⊥, z) ≈
1

2π

∫ ∞
−∞

∫ ∞
−∞

ψ̃ω(k⊥, 0)
[
1− izk2

⊥
2k

]
exp [ik⊥ · r⊥] dk⊥. (2.29)

Using the Fourier derivative theorem according to

∇2
⊥f(r⊥) = ∇2

⊥
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(k⊥) exp [ik⊥ · r⊥] dk⊥ (2.30)

= − 1
2π

∫ ∞
−∞

∫ ∞
−∞

k2
⊥f(k⊥) exp [ik⊥ · r⊥] dk⊥ (2.31)

or equivalently F⊥
[
∇2
⊥f(r⊥)

]
= −k2

⊥F⊥ [f(r⊥)], the propagated wavefield for small dis-
tances can then be calculated according to

ψ̃ω(r⊥, z) =
(

1 + iz
2k∇

2
⊥

)
ψ̃ω(r⊥, 0), (2.32)

where ∇2
⊥ denotes the Laplacian operator orthogonally to the optical axis. [Paganin, 2006,

p.278ff]
The intensity of the propagated wavefield can be calculated taking the squared modulus

of Eq. (2.32). Although the wavefield evolves linearly with the propagation distance, this
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does not hold for the intensity of the wavefield. The following expression of the propagated
intensity is central to this thesis and is thus derived explicitly. Starting with

Iω(r⊥, z) = |ψ̃ω(r⊥, z)|2 (2.33)

≈ |ψ̃ω(r⊥, 0)|2 + ψ̃∗ω(r⊥, 0) iz
2k∇

2
⊥ψ̃ω(r⊥, 0) (2.34)

− ψ̃ω(r⊥, 0) iz
2k∇

2
⊥ψ̃
∗
ω(r⊥, 0) (2.35)

= |ψ̃ω(r⊥, 0)|2 + 2<
[
ψ̃∗ω(r⊥, 0) iz

2k∇
2
⊥ψ̃ω(r⊥, 0)

]
(2.36)

= |ψ̃ω(r⊥, 0)|2 − z

k
=
[
ψ̃∗ω(r⊥, 0)∇2

⊥ψ̃ω(r⊥, 0)
]
, (2.37)

where terms of the order O(z2) are discarded and the identity 2< (w) = w+w∗ for w being
a complex number and w∗ being its complex conjugate is employed. Here < denotes the
real part of the complex number and = the imaginary part respectively. The relation above
states the connection between the initial wavefield and the propagated intensity. To establish
the relation between the propagated intensity and the initial intensity and phase, additional
manipulations have to be performed. The first term already corresponds to the intensity
of the initial wavefield. The decomposition of the second term requires the intermediate
computation of

ψ̃∗∇2ψ̃ =
√
Ie−iφ∇ ·

(
eiφ

2
√
I
∇I + i

√
Ieiφ∇φ

)
(2.38)

=
√
Ie−iφ

[
eiφ

2
√
I
∇2I +

(
− eiφ

4I3/2∇I + i e
iφ

2
√
I
∇φ
)
· ∇I (2.39)

+ i
√
Ieiφ∇2φ+

(
i e

iφ

2
√
I
∇I −

√
Ieiφ∇φ

)
· ∇φ

]
(2.40)

= 1
2∇

2I − 1
4I∇I · ∇I − I∇φ · ∇φ+ i

(
∇I · ∇φ+ I∇2φ

)
(2.41)

=
√
I∇2√I − I∇φ · ∇φ+ i∇ · (I∇φ) , (2.42)

where according to Eq. (2.16) the initial wavefield was decomposed into its intensity and
phase. For simplicity, the subscripts and arguments are omitted. In the end, the product
rule is applied in reverse. Keeping the imaginary part and recovering the subscript and
arguments, the propagated intensity is given in terms of the intensity and phase of the
initial wavefield according to

Iω(r⊥, z) = Iω(r⊥, 0)− z

k
∇⊥ · [Iω(r⊥, 0)∇⊥φω(r⊥, 0)] . (2.43)

This equation can be derived in different ways. The derivation extends [Paganin, 2006,
p.278ff] with the explicit computation of the stated formulas. This equation can be inter-
preted geometrically. The stronger the wavefield is curved at a given point in the sam-
ple plane, the stronger the change in intensity at that corresponding point in the detector
plane. [Paganin, 2006, p.281ff]

2.3.3. Transport-of-intensity and transport-of-phase equations
The transport-of-intensity equation (TIE) and the transport-of-phase equation (TPE) state
how the intensity and phase change along the optical axis, given the intensity and phase
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2. Image formation description using scalar wave theory

at any point along the optical axis. The TPE is also referred to as the eikonal equation.
Especially the TIE has often been used as a starting point for deriving various phase retrieval
algorithms [Gureyev and Nugent, 1996, Paganin et al., 2002].
The derivation of the TPE starts from the paraxial equation given by Eq. (2.10). First, the

complex conjugate of the wavefield is multiplied to the left of the paraxial equation resulting
in

ψ̃∗ω(r⊥, z)
(

2ik ∂
∂z

+∇2
⊥

)
ψ̃ω(r⊥, z) = 0 (2.44)

2ikψ̃∗ω(r⊥, z)
∂ψ̃ω(r⊥, z)

∂z
+ ψ̃∗ω(r⊥, z)∇2

⊥ψ̃ω(r⊥, z) = 0. (2.45)

The second term has already been evaluated in Eq. (2.42). The first term follows according
to

ψ∗
∂ψ

∂z
=
√
Ie−iφ

∂
(√

Ieiφ
)

∂z
(2.46)

=
√
Ie−iφ

(
eiφ

2
√
I

∂I

∂z
+ i
√
Ieiφ∂φ

∂z

)
(2.47)

= 1
2
∂I

∂z
+ iI ∂φ

∂z
. (2.48)

Combining Eq. (2.42) and Eq. (2.48) in the context of Eq. (2.45) and isolating the real part
results in the TPE, given by

−2kI(r⊥, z)
∂φ(r⊥, z)

∂z
+
√
I(r⊥, z)∇2

⊥

√
I(r⊥, z) (2.49)

− I(r⊥, z)∇⊥φ(r⊥, z) · ∇⊥φ(r⊥, z) = 0 (2.50)

2k∂φ(r⊥, z)
∂z

= −∇⊥φ(r⊥, z) · ∇⊥φ(r⊥, z) + 1√
I(r⊥, z)

∇2
⊥

√
I(r⊥, z). (2.51)

This equation states how the phase changes in the direction of the optical axis given the
intensity and phase at some point z along the optical axis. The final form of the equation is
for instance stated in [Gureyev and Nugent, 1996].
The more prominent equation is the TIE. It can be derived by again inserting the results

of Eq. (2.42) and Eq. (2.48) into Eq. (2.45), but solving for the imaginary part instead. This
results in

k
∂I(r⊥, z)

∂z
+∇⊥ · [I(r⊥, z)∇⊥φ(r⊥, z)] = 0 (2.52)

k
∂I(r⊥, z)

∂z
= −∇⊥ · [I(r⊥, z)∇⊥φ(r⊥, z)] . (2.53)

This equation was suggested for phase retrieval in [Teague, 1983, Gureyev and Nugent, 1996].
The TIE implies energy conservation along the optical axis. [Sziklas and Siegman, 1974,
Paganin, 2006, p.297]
Finally, using the finite difference approximation of the gradient of the intensity with the

propagation distance
∂I(r⊥, z)

∂z
≈ I(r⊥, z)− I(r⊥, 0)

z
(2.54)

one can recover Eq. (2.43), previously derived by expanding the Fresnel operator with respect
to the propagation distance. [Paganin, 2006, p.296f]
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2.3. Free-space propagation

2.3.4. Fresnel scaling theorem

The previous derivations assume that plane wave illumination, e.g. the source located at
z = −∞. While this can be a reasonable assumption if the distance between the source
and the object is large as it is usually the case for experiments conducted at synchrotron
facilities, for laboratory environments, this assumption is usually violated. Here, one has to
explicitly take into account that the X-rays originate from a point source located at some
position z = −R.

The Fresnel scaling theorem connects the intensity pattern I(R)
ω that one acquires from a

point-source illumination with a point located at z = −R and relates it to a virtual intensity
pattern I(∞)

ω that one would have acquired using plane wave illumination. It is given by

I(R)
ω (r⊥, z) = 1

M2 I
(∞)
ω

(r⊥
M
,
z

M

)
, (2.55)

where the geometric magnification

M = R+ z

R
(2.56)

is introduced. Essentially, an intensity pattern obtained by point-illumination can be thought
of as an intensity pattern obtained by plane-wave illumination with an effective propagation
distance of z/M . The preceded factor 1/M2 is due to energy conservation. In addition,
r⊥/M takes the geometric distortions of the lengths into account. [Paganin, 2006, p.397ff]

2.3.5. Towards larger propagation distances

For larger propagation distances, different expansions have been studied in literature. For
instance, instead of decomposing the wavefield into its intensity and phase according to
Eq. (2.6), one can use the following decomposition

ψ̃ω(r⊥) = exp [−B(r⊥) + iφ(r⊥)] . (2.57)

Assuming a weakly absorbing object B � 1 and only slowly varying phase, one can devise
the following linearization

ψ̃ω(r⊥) ≈ 1−B(r⊥) + iφ(r⊥), (2.58)

which is the starting point for the so-called contrast transfer function (CTF) formula-
tion [Cowley, 1995]. This has the benefit that this linear equation can be computed more
efficiently. Other methods like a TIE variant, which assumes weakly absorbing objects or
mixed approaches between the CTF and TIE regime, have been proposed. For this, the
reader is referred to [Langer et al., 2008] as a starting point. [Langer et al., 2008]
There are also various formulations beyond the Fresnel regime. In particular, the angu-

lar spectrum formulation is derived similarly to the derivation of the Fresnel operator, but
without imposing the paraxial approximation. In addition, Fraunhofer diffraction refers to
particularly large propagation distances in the so-called far-field. Here the propagated wave-
field is elegantly connected to the initial wavefield by a Fourier transform. [Paganin, 2006,
p.6ff]
However, this work is concerned with imaging regimes accessible by laboratory X-ray

sources and thus, these formulations will be discarded in the following.
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2. Image formation description using scalar wave theory

2.4. Space-frequency description of partial coherence
The mutual coherence function is a useful tool for describing partial coherence of wavefields.
It can be defined as

Γ(r1, r2, τ) = 〈Ψ(r1, t+ τ)Ψ∗(r2, t)〉, (2.59)
where τ is the time difference between the wavefield originating at r1 and the wavefield orig-
inating at r2 to a given point r. In this definition, Ψ is assumed to be an ergodic, stationary
random process. Stationarity implies that the mutual coherence function is independent of
the time t. Ergodicity on the other hand allows the time average denoted by 〈〉 to be inter-
preted as an ensemble average over all possible fields. The mutual coherence function is a
measure for the correlation between two wavefields originating at r1 and r2. The respective
interference term at r (defined by τ) is proportional to the real part of the mutual coherence
function. Consequently, if the two wavefields are uncorrelated, the real part of the mutual
coherence function is zero. Under the assumptions outlined above, the following relation

I(r) = Γ(r, r, 0) = 〈|Ψ(r, t)|2〉 (2.60)

connects the mutual coherence function to the observable intensity I at r. [Carter, 1993,
Paganin, 2006, p.40ff]
Similarly to the spectral decomposition of Ψ, it is convenient to also decompose the mutual

coherence function into its monochromatic components. Inserting Eq. (2.2) into Eq. (2.59)
yields

Γ(r1, r2, τ) = 〈Ψ(r1, t+ τ)Ψ∗(r2, t)〉 (2.61)

=
〈 1√

2π

∫ ∞
0

ψω(r1)e−iω(t+τ)dω 1√
2π

∫ ∞
0

ψ∗ω′(r2)eiω′tdω′
〉

(2.62)

=
∫ ∞

0

∫ ∞
0

〈 1
2πe

−i(ω−ω′)t
〉
〈ψω(r1)ψ∗ω′(r2)〉 e−iωτdω′dω (2.63)

=
∫ ∞

0

∫ ∞
0

δ(ω − ω′) 〈ψω(r1)ψ∗ω′(r2)〉 e−iωτdω′dω (2.64)

=
∫ ∞

0
〈ψω(r1)ψ∗ω(r2)〉 e−iωτdω (2.65)

=
∫ ∞

0
Wω(r1, r2)e−iωτdω, (2.66)

where the cross-spectral density Wω [Wolf, 1982] is introduced and defined according to

Wω(r1, r2) = 〈ψω(r1)ψ∗ω(r2)〉. (2.67)

Thus, the cross-spectral density is the FT of the mutual coherence function1 with respect to
the time difference τ . The intensity of a single monochromatic component is given by

Iω(r) = Wω(r, r) = 〈|ψω(r)|2〉 (2.68)

and the total intensity is given by

I(r) =
∫ ∞

0
Iω(r)dω (2.69)

1 In the above definition the Fourier integrals extends only over the positive frequencies similar to the spectral
decomposition in Eq. (2.2) and unlike the previously stated definition of the FT given by Eq. (2.26) and
Eq. (2.27).
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2.4. Space-frequency description of partial coherence

which follows from the fact that different monochromatic components are mutually incoher-
ent. [Carter, 1993, Paganin, 2006, Wolf, 2007]
As a special case, for strictly monochromatic wavefields, and further assuming that the

wavefield ensemble consists of only plane wavefields, the intensity at the plane z = 0 can be
written as

Iω(r⊥, 0) = 〈|ψθω(r⊥, 0)|2〉θ. (2.70)

Here, the ensemble average denoted by 〈〉θ averages over all possible fields defined by their
wavevector kθ, where θ indicates the angle of the wavevector with respect to the optical
axis. Assuming purely parallel rays, such an averaging can be expressed as a convolution
according to

Iω(r⊥, 0) =
∫ ∞
−∞

∫ ∞
−∞

wω(r′⊥)|ψω(r⊥ − r′⊥, 0)|2dr′⊥, (2.71)

where wω defines the abundance of the respective wavefields. This resembles blurring due
to the extent of the source. [Pfeiffer et al., 2005, Gureyev et al., 2009, Beltran et al., 2018]
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3. Propagation-based phase-contrast imaging
(PBI)

In the following, the underlying principles of PBI are outlined and the most commonly used
assumptions and methods to retrieve information about the phase-shifting properties of the
sample are detailed.

Figure 3.1 illustrates the image formation in PBI by showing the intensity profiles of
the X-ray wavefield, propagating from left to right, at different stages along the optical
axis. In addition, the notation used within this chapter is introduced. The intensity of
the incoming wavefield, created by an idealized X-ray source at infinity, is assumed to have
constant illumination, described by the scalar I0. It is further assumed that the wavefield
is monochromatic. To simplify notation, the subscript ω used in the previous chapter to
indicate a single spectral component is omitted in the following. The sample is defined by
the three-dimensional distribution of its linear attenuation coefficient µ(r) and refractive
index decrement δ(r). The interaction of the sample results in a lower amplitude and shifted
phase of the wavefield. Directly behind the sample in the object plane the intensity of the
wavefield I(r⊥, 0) is solely influenced by the attenuating properties of the sample, resulting in
strongest attenuation where the projection of the linear attenuation coefficient of the sample
along the propagation direction is largest. However, with increasing propagation distance,
the phase shifts induced by the sample lead to increasingly prominent self-interference effects
that manifest in the intensity profile. These effects are predominantly present at the edges
of the sample, where there is a significant change in phase between neighboring regions of
the wavefield. The intensity profile I(r⊥, z) at some distance behind the sample is then
measured using an X-ray detector.
The core idea behind PBI is to deduce information about the phase-shifting properties of

the sample from the measured interference effects. This procedure is referred to as phase
retrieval. As discussed in the introduction, in general, it is not possible to recover the at-
tenuating properties as well as the phase-shifting properties independently from a single
measurement and acquiring multiple measurements at different positions along the optical
axis or at different energies is difficult using laboratory sources. Thus, algorithms which
deduce information about the phase-shifting properties of the sample from a single measure-
ment require additional assumptions about the sample, but are also particularly suitable for
tomography. The following sections outline the two most widely used assumptions and the
various phase-retrieval algorithms that build upon these assumptions. First, the special case
of a pure phase object will be discussed and second, the homogeneity assumption and its
implications are outlined in detail. [Bremmer, 1952, Bronnikov, 1999, Paganin et al., 2002]
A large variety of phase-retrieval algorithms have been proposed, suitable for different sam-

ples and different imaging regimes. These include different Fourier methods derived from
the Fresnel diffraction integrals using various approximations, such as the Born approxima-
tion, the Rytov approximation [Burvall et al., 2011] or phase-retrieval algorithms that use
the CTF formulation [Langer et al., 2008], which will not be covered.
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3. Propagation-based phase-contrast imaging (PBI)
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Figure 3.1.: Illustration of the evolution of the wavefield intensity in PBI. The incoming
wavefield from the left is defined by its intensity I0. The cylindrical sample is
described by its linear attenuation coefficient µ(r) and refractive index decrement
δ(r). The intensity behind the sample in the object plane is denoted by I(r⊥, 0)
and in the detector plane by I(r⊥, z).

3.1. Pure phase objects
The first method derived in the context of PB-CT assumes pure phase objects. Pure phase
objects do not attenuate the intensity of the X-rays, thus requiring µ(r) = 0. Conse-
quently, the object is entirely defined by the three-dimensional distribution of the refrac-
tive index decrement δ(r). This can hold reasonably well for some biological samples or
low-density materials measured at high X-ray energies, such that almost no attenuation
contrast is present. These experiments are predominantly performed at synchrotron facili-
ties. [Bronnikov, 1999, Bronnikov, 2002]

The algorithm was derived for CT applications, combining tomography reconstruction
and phase retrieval [Bronnikov, 1999]. Here, only the part that accounts for the phase
retrieval is outlined. Although the original derivation starts from the so-called weak focusing
condition [Cowley, 1995], which is similar to the TIE [Burvall et al., 2011], one can also
employ Eq. (2.43) directly, according to

I(r⊥, z) = I(r⊥, 0)− z

k
∇⊥ · [I(r⊥, 0)∇⊥φ(r⊥, 0)] (3.1)

= I0 −
z

k

[
∇⊥I0 · ∇⊥φ(r⊥, 0) + I0∇2

⊥φ(r⊥, 0)
]

(3.2)

= I0

(
1− z

k
∇2
⊥φ(r⊥, 0)

)
, (3.3)

where I(r⊥, 0) = I0 was used, which follows from µ(r) = 0 and Eq. (2.17) assuming uniform
illumination for the incoming wavefield. As I0 is a constant scalar, it follows ∇⊥I0 = 0. This
connection between intensity and phase was already described in [Bremmer, 1952].
This equation can be solved using Fourier decomposition according to Eq. (2.26) and

Eq. (2.27) and employing the Fourier derivative theorem given by Eq. (2.31). Thereby, the
term, which includes the phase, is isolated and subsequently, the phase is decomposed into
its Fourier components F⊥[φ(r⊥, 0)] resulting in

F⊥
[
I(r⊥, z)
I0

− 1
]

= z

k
k2
⊥F⊥[φ(r⊥, 0)]. (3.4)
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3.2. Homogeneity assumption and the single-material phase-retrieval algorithm

This equation can be solved for φ(r⊥, 0) by applying the IFT using

φ(r⊥, 0) = F−1
⊥

[
F⊥ [I(r⊥, z)/I0 − 1]

z
kk2
⊥

]
(3.5)

and thus the phase shift in the object plane is recovered. [Bronnikov, 1999]
Due to the assumption of the sample being not attenuating, the applications of this algo-

rithm are very limited. In practice, residual absorption corrupts the phase signal severely.
In [Groso et al., 2006] it was shown that even if the absorption level is only 2%, the pure
phase object assumption does not hold. They proposed to add an absorption dependent
correction factor α in the denominator of the Eq. (3.5) resulting in

φ̃(r⊥, 0) = F−1
⊥

[
F⊥ [I(r⊥, z)/I0 − 1]

z
kk2
⊥ + α

]
, (3.6)

which is referred to as the modified Bronnikov algorithm (MBA). [Groso et al., 2006]
Another approach tries to remove the phase effects on the projections and then reconstructs

the linear attenuation coefficients instead. The phase effects φ̃ are estimated using the MBA
algorithm derived above and then a correction function is calculated according to

C(r⊥) = 1− γφ̃(r⊥, 0), (3.7)

where γ is a parameter to tune the strength of the correction. Finally, the intensity without
the phase effects, which can be thought of as the intensity in the object plane as illustrated
in Figure 3.1, is given by

I(r⊥, 0) = I(r⊥, z)/C(r⊥), (3.8)

which ideally should only contain information about the attenuating properties of the sam-
ple. This algorithm is referred to as Bronnikov-aided correction (BAC) and is preferably
applied in a laboratory environment using samples with prominent attenuating proper-
ties. [De Witte et al., 2009]

3.2. Homogeneity assumption and the single-material
phase-retrieval algorithm

The single-material phase-retrieval algorithm is one of the most widely used phase-retrieval
algorithms in PBI to recover phase information qualitatively as well as quantitatively. In
the following, the underlying assumptions and extensions are discussed and the benefits of
this approach with respect to noise are outlined. [Paganin et al., 2002]

3.2.1. Homogeneity assumption
The single-material phase-retrieval algorithm evolves around the so-called homogeneity as-
sumption, where it is assumed that the imaged object consists only of one material. Such
objects are sometimes also called monomorphous. Although in practice most samples consist
of multiple materials, this assumption holds reasonably well for a wide variety of applica-
tions. This can be explained to some extent by the fact that, for light atoms or high energies,
the interactions of X-rays with different materials can be accurately described in terms of
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their electron densities, as the influence of the nuclei becomes less stringent. Thus, one re-
constructs a single material of electron density. On the one hand, for most biological samples
that consist mostly of light atoms (e.g. soft-tissue), the homogeneity assumption holds well
in practice. On the other hand, for medical applications comparably high X-ray energies are
required, which are able to penetrate the sample, making the homogeneity assumption again
reasonable. [Thompson et al., 2019]
In the previous chapter, the interactions of the wavefield were described in terms of the

refractive index decrement δ(r⊥, z) and linear attenuation coefficient µ(r⊥, z). The homo-
geneity assumption now couples these two quantities to the density t(r⊥, z) according to

µ(r⊥, z) = µt(r⊥, z) and δ(r⊥, z) = δt(r⊥, z), (3.9)

where δ and µ are now constant scalar quantities, which describe the phase-shifting and
attenuating properties of the single material respectively. Thus, the number of unknowns is
reduced by a factor of two. By knowing t(r⊥, z), the above equations are sufficient to recover
both the attenuating and phase-shifting properties of the sample. [Paganin et al., 2002]
The intensity and the phase shift of the wavefield behind the sample in the object plane are

given by Eq. (2.17) and Eq. (2.18). Applying the homogeneity assumption using Eq. (3.9)
results in

I(r⊥, 0) = I0 exp
[
−µ

∫
t(r⊥, z)dz

]
= I0e

−µT (r⊥) (3.10)

φ(r⊥, 0) = −kδ
∫
t(r⊥, z)dz = −kδT (r⊥) (3.11)

assuming constant illumination of the incoming wavefield given by I0. Here z = 0 denotes
the object plane and the sample is located at z < 0. The projected thickness or trace of the
sample is defined according to

T (r⊥) =
∫
t(r⊥, z)dz (3.12)

as the projection of the density along the X-ray paths. Consequently, if one is able to
recover the projected thickness from various angles, the three-dimensional distribution can
be recovered using tomographic methods, outlined in Chapter 4. [Paganin et al., 2002]

3.2.2. Single-material phase-retrieval algorithm

Although the original derivation [Paganin et al., 2002] starts from the TIE, as given by
Eq. (2.53), one can also use Eq. (2.43) as a starting point written as

I(r⊥, z) = I(r⊥, 0)− z

k
∇⊥ · [I(r⊥, 0)∇φ(r⊥, 0)] , (3.13)

which directly relates the intensity in the detector plane to the wavefield defined by its
intensity and phase in the object plane. By enforcing the homogeneity assumption, one
can substitute Eq. (3.10) and Eq. (3.11) in Eq. (3.13), which is sometimes referred to as
the TIE-Hom in literature [Gureyev et al., 2017, Kitchen et al., 2017]. The derivation of the
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3.2. Homogeneity assumption and the single-material phase-retrieval algorithm

single-material phase-retrieval algorithm follows as

I(r⊥, z) = I0e
−µT (r⊥) + zδ∇⊥ ·

(
I0e
−µT (r⊥)∇⊥T (r⊥)

)
(3.14)

= I0e
−µT (r⊥) − z δ

µ
∇2
⊥I0e

−µT (r⊥) (3.15)

=
(

1− z δ
µ
∇2
⊥

)
I0e
−µT (r⊥), (3.16)

where in the second line the chain-rule is applied in reverse. Notably, given I(r⊥, 0) =
I0e
−µT (r⊥), the intensity evolves linearly with the intensity at z = 0 and does not directly

depend on the phase at z = 0. Due to the coupling of attenuating and phase-shifting proper-
ties, this term is already encoded in the intensity at the object plane. [Paganin et al., 2002,
Beltran et al., 2018]
Fourier decomposition remains a powerful tool and is also used to solve this equation

for the projected thickness explicitly. Therefore, the intensity at the detector plane is de-
composed into its Fourier components according to F⊥[I(r⊥, z)] using the FT defined by
Eq. (2.26). In addition, the Fourier components of the intensity in the object plane are
computed according to F⊥[I0e

−µT (r⊥)]. Finally, using the Fourier derivative theorem given
by Eq. (2.31), Eq. (3.16) can be written according to

F⊥[I(r⊥, z)] =
(

1 + z
δ

µ
k2
⊥

)
F⊥[I0e

−µT (r⊥))]. (3.17)

Using the IFT and elementary manipulation, one can solve this for the projected thickness
T (r⊥) according to

T (r⊥) = − 1
µ

log
(
F−1
⊥

{
F⊥ [I(r⊥, z)] /I0

z δµk2
⊥ + 1

})
, (3.18)

where the terms in the denominator were flipped to more closely resemble literature. Apart
from the scaling factor µ−1, the phase-retrieval algorithm is entirely defined by the factor
zδ/µ. If this factor is too large for the given material, the resulting trace will be smeared
out. By contrast, if this factor is too small, residual fringes from the interference effects
remain. [Paganin et al., 2002]
For qualitative phase retrieval, the linear attenuation coefficient can be set to µ = 1 and

the remaining parameter is defined according to ξ = zδ/µ = zδ.

3.2.3. Noise considerations
Besides the fact that this phase-retrieval algorithm is computationally very efficient and
stable with respect to noise, as it acts as a low-pass filter, the outstanding advantages of
this method are related to its noise and resolution properties, which are outlined in the
following using Figure 3.2. The top row illustrates the evolution of the intensity and signal
for X-ray radiography and the lower row illustrates the same information in the context of
PBI. The X-ray generation and the interaction of the wavefield with the sample are the same
for both methods. For simplicity, it is assumed that the generated wavefields have constant
illumination, as shown in (a) and (e) respectively. In both methods, the interactions of the
wavefields with the sample lead to an attenuation in intensity and a shift in phase. In the
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Figure 3.2.: Noise and resolution properties in PBI. On the top row, the evolution of the
X-ray intensity and the detected signal is depicted for radiography. On the
lower row, the same information for PBI is shown. In orange, the (undetected)
X-ray intensity at different stages is shown and in blue, the detected intensity in
form of the electronic signal is depicted. In radiography, the propagation part
is omitted and the processing of the detected signal is optional.

object plane, the intensity of the wavefields is solely dependent on the attenuating properties
of the sample as depicted in (b) and (f) respectively.
In conventional radiography, this intensity distribution is measured. However, in PBI

the wavefield is subsequently propagating in free-space over a certain distance resulting in
distinct variations of the wavefield’s intensity, due to self-interference effects caused by the
phase shifts induced by the sample. The resulting intensity distribution of the propagated
wavefield is shown in (g). Compared to the intensity in conventional X-ray radiography,
the high-frequency components are enhanced. Applying the single-material phase-retrieval
algorithm to this intensity would decrease the high-frequency components to recover the
traces that perfectly represent the intensity at the object plane. Consequently, the intensity
measured in conventional radiography would be recovered without any advantages.
The key advantage of PBI over conventional radiography is with respect to noise inherent

to measuring the intensity. However, the detection process and the noise properties cannot
be understood using scalar wave theory. This requires the wavefield to be described quantum
mechanically. Thereby, during the detection process (assuming an ideal detector), the quan-
tum mechanical wavefield collapses and the measured photons are distributed according to
the Poisson distribution. In essence, the number of detected photons is distributed around
the corresponding value of the intensity of the classical wavefield with a variance equal to
this intensity. The detected signals are depicted in (c) and (h) respectively. As the number
of photons is conserved during free-space propagation, the noise level can be considered very
similar. However, applying the single-material phase-retrieval algorithm for processing the
signal in (h) recovers the trace, which describes the underlying intensity profile at the object
plane. In that sense, the resolution properties of the measured signal in conventional radio-
graphy shown in (c) and the processed signal in (i) are identical. However, the noise level
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3.2. Homogeneity assumption and the single-material phase-retrieval algorithm

of (i) is highly reduced compared to (c). This reduction in noise level is dependent on the
frequency components, which are more prominently reduced for high-frequency components,
which is evident from the denominator of the single-material phase-retrieval filter shown in
Eq. (3.18). Similarly, one could apply the single-material phase-retrieval algorithm to reduce
the noise level in (c) as shown in (d). Although the noise level of each component is the
same as for (i), the resolution properties of the underlying sample are reduced. This, how-
ever, is not the case in PBI as these frequencies are enhanced due to free-space propagation
beforehand.

In summary, the fact that during free-space propagation only the high frequencies of the
underlying true signal are enhanced independently of noise and the single-material phase-
retrieval algorithm allows for reverting this processes, the noise inherent to the detection
process can be reduced without compromising the resolution of the underlying signal. This
is somewhat contradictory from a signal processing point of view, but this purely quantum
mechanical effect allows for a reduction in noise without compromising resolution.
This effect has recently been demonstrated experimentally in [Kitchen et al., 2017] and

thoroughly analyzed mathematically in [Gureyev et al., 2017], based on related work ana-
lyzing the image quality in PBI [Gureyev et al., 2014a, Nesterets and Gureyev, 2014] and in-
vestigating the trade-off between noise and spatial resolution in general linear shift-invariant
systems [Gureyev et al., 2014b].

3.2.4. Extensions of the single-material phase-retrieval algorithm

Multiple applications exist, where the single-material phase-retrieval algorithm performs
poorly because the object is not well approximated by a single material. These applications
include biological samples that consist of bone and soft-tissue, like for instance, small animals.
If one assumes the sample to consist only of soft-tissue, the bones will get smeared out as
δbone/µbone � δsoft-tissue/µsoft-tissue. Consequently, the filtering strength is too strong for
bone. On the other hand, if one assumes the sample to only consist of bone, residual edge-
enhancement will be present around soft-tissue. In the following, a few extensions to alleviate
this problem are highlighted.
The single-material phase-retrieval algorithm was extended to multi-material objects which

are embedded into another object. Considering the object is made of j materials with pro-
jected thickness Tj(r⊥) inside the material 1 with projected thickness T1(r⊥) and introducing
the total projected thickness A(r⊥) = Tj(r⊥) + T1(r⊥), the extended single-material phase-
retrieval algorithm is given by

Tj(r⊥) = − 1
µj − µ1

log

F−1
⊥

F⊥ [I(r⊥, z)] /
(
I0e
−µ1A(r⊥)

)
z
δj−δ1
µj−µ1

k2
⊥ + 1


 . (3.19)

The biggest drawback of this method is that the reconstructions obtained from reconstructing
each pair of material have to be sliced together manually. This approach has given good
results, for instance, for imaging mice lungs. [Beltran et al., 2010, Beltran et al., 2011]
Other approaches to improve image quality from multi-material objects rely on merg-

ing reconstructions obtained without phase retrieval and those with phase retrieval in or-
der to leverage the contrast added by phase retrieval and the resolution from the recon-
struction without phase retrieval, which however is not suitable for quantitative imag-
ing. [Irvine et al., 2014]
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3. Propagation-based phase-contrast imaging (PBI)

For CT applications, methods exist that first perform tomographic reconstruction and then
apply a phase-retrieval filter on the volume. The advantage of this approach is that within
the volume different materials are better separated than on the projections. As in the previ-
ous approach, multiple filters with different strengths are applied and then manually sliced
together on the volume. However, interchanging the order of phase-retrieval and tomographic
reconstruction is not valid, due to the non-linearity of the phase-retrieval step. In essence,
these methods rely on the fact that for the given scenario, the logarithm in the phase-retrieval
step can be linearized. The authors acknowledge that this is relatively crude, but have shown
that it can work well in practice. [Ullherr and Zabler, 2015, Thompson et al., 2019]
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4. Fundamentals of tomographic
reconstruction

The underlying idea of conventional X-ray CT is to reconstruct the three-dimensional dis-
tribution of the linear attenuation coefficient from a set of radiographs obtained at various
angles around the sample. However, the measured intensities are only sensitive to the pro-
jection of the linear attenuation coefficients along the X-ray paths according to Eq. (2.17).
Consequently, the fundamental problem of CT is to reconstruct the three-dimensional distri-
bution of a quantity from its projections. This mathematical problem was first described in
detail by Johann Radon in 1917 [Radon, 1917], despite earlier work dating back to Hendrik
Antoon Lorentz. [Buzug, 2008]

In the first section, the most-widely used analytical tomographic reconstruction formula
that connects the projections of a quantity to its interior distribution is derived using con-
tinuous functions. The second section describes the transition from continuous functions to
discrete quantities. Lastly, iterative reconstruction approaches are discussed, which are de-
rived from a MAP principle and have become an active field of research promising improved
image quality or lower acquisition time and dose requirements [Nuyts et al., 2013].

4.1. Analytical reconstruction
Various textbooks exist that cover analytical tomographic reconstruction techniques, such
as [Natterer, 1986, Kak and Slaney, 1988, Buzug, 2008, Fessler, 2009, Zeng, 2010]. However,
there are various conventions to define the coordinate systems and parameters. In the
following, the conventions of the open-source Reconstruction Toolkit (RTK) are adapted,
which are detailed in [Rit et al., 2014] and are based on the international standard IEC
61217 [Commission, 2008].
For simplicity, the derivation of the analytical algorithm is demonstrated for a two-

dimensional parallel-beam geometry. Thereby, the X-ray source moves in a plane on a
circular trajectory around the object in a sufficiently large distance such that the X-ray
paths are in parallel with respect to each other. This is referred to as the parallel-beam
geometry. Extensions to more realistic geometries are discussed afterwards.
To illustrate the concepts of tomographic reconstruction, the Shepp-Logan phantom is

used, which was first introduced in 1974 [Shepp and Logan, 1974a, Shepp and Logan, 1974b].
The phantom consists of 10 ellipses, specified by their size and magnitude (value) and has
been widely used for bench-marking reconstruction algorithms [Andersen and Kak, 1984,
Kak and Slaney, 1988, Katsevich, 2002]. Nowadays, this phantom is usually discouraged for
most simulation studies due to its limited complexity.

4.1.1. Forward- and backprojection
Let f(x, y) be a two-dimensional (scalar) function, which represents the quantity to be re-
constructed. The projections of this quantity p(s, θ) are the integrals along straight lines Li
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Figure 4.1.: Radon transform, sinogram representation and backprojection. In (a) the Radon
transform is illustrated. The values of the Shepp-Logan phantom are integrated
along the gray lines under a certain angle resulting in the blue projection. In (b)
the projections for all angles are depicted. This representation is referred to as
a sinogram. The backprojection is illustrated in (c). Thereby, the line-integrals
are smeared out along the gray lines under the respective angles.

under different angles around the object. As illustrated in Figure 4.1 (a), a one-dimensional
projection parameterized by s is obtained under each angle θ. Mathematically, the projec-
tions are given by

p(s, θ) =
∫
Li

f(x, y)dl (4.1)

=
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ − y sin θ − s)dxdy. (4.2)

This mapping of a function f(x, y) to its projections p(θ, s) is called (forward)projection or
Radon transform in honor of [Radon, 1917]. The angle θ is defined such that for θ = 0, the
s-coordinate of the projection coincides with the x coordinate of the sample according to
p(s, θ = 0) =

∫
f(s, y)dy. The representation of the projections according to Figure 4.1 (b)

is called sinogram. [Zeng, 2010]
The transpose operation of the Radon transform is the so-called backprojection defined by

b(x, y) =
∫ π

0
p(x cos θ − y sin θ, θ)dθ (4.3)

and illustrated in Figure 4.1 (c). Thereby, the individual projections are smeared out along
the corresponding straight lines and accumulated for each angle. The backprojection is not
the inverse of the forwardprojection and thus, the backprojection alone cannot be used to
recover f(x, y) from its projections p(s, θ). However, the backprojection plays a crucial role
for almost all reconstruction algorithms. [Zeng, 2010]
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4.1. Analytical reconstruction

4.1.2. Filtered backprojection

The Fourier slice theorem or central slice theorem is the core concept of analytical tomo-
graphic reconstruction. It states that the one-dimensional FT1 P (ν, θ) of a projection p(s, θ)
along s is equal to a one-dimensional profile through the origin of the two-dimensional
FT F (ν, θ) of f(x, y). The proof follows by Fourier transforming the projections given by
Eq. (4.2) and rearranging the order of integration according to

P (ν, θ) =
∫ ∞
−∞

p(s, θ)e−2πiνsds (4.4)

=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ − y sin θ − s)e−2πiνsdxdyds (4.5)

=
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πiν(x cos θ−y sin θ)dxdy (4.6)

= F (u, v) (4.7)
= F◦(ν, θ), (4.8)

where u = ν cos θ and v = −ν sin θ are defined as the spatial frequencies in Cartesian
coordinates corresponding to x and y. To emphasize that the two-dimensional FT is given
in polar coordinates, a corresponding subscript is added. [Fessler, 2009, Zeng, 2010].

In principle, f(x, y) can be recovered by a two-dimensional IFT of P (ν, θ) directly (with-
out the need for a backprojection). This is referred to as the direct Fourier reconstruc-
tion [Fessler, 2009]. However, prior to the two-dimensional IFT the polar representation
of F◦(ν, θ) has to be converted to a Cartesian grid to give F (u, v) as the IFT requires
the data to be lying on a regular rectangular grid. This approach was first proposed in
the context of electron microscopy [De Rosier and Klug, 1968]. This gridding (or regrid-
ding [Buzug, 2008]) step from polar to Cartesian coordinates is very delicate and has been
addressed in various papers [O’Sullivan, 1985, Schomberg and Timmer, 1995]. Most notably,
employing non-uniform fast Fourier transform (FFT)s (NUFFT) methods with good inter-
polation kernels that directly yield F (u, v) from the projections p(s, θ) has shown some
success [Fourmont, 2003]. After the gridding step a two-dimensional IFT is sufficient to
reconstruct f(x, y). In practice, these methods are not widely used, mostly because the
gridding causes interpolation artifacts [Fessler, 2009].

The de-facto standard analytical method for reconstructing tomographic data is referred
to as the FBP algorithm. The derivation evolves around the Fourier slice theorem, where the
coordinate transformation from polar to Carthesian coordinates is performed analytically.
This leads to

f(x, y) =
∫ ∞
−∞

∫ ∞
−∞

F (u, v)e2πi(ux+vy)dudv (4.9)

=
∫ π

0

∫ ∞
−∞

F◦(ν, θ)e2πiν(x cos θ−y sin θ)|ν|dνdθ (4.10)

=
∫ π

0

∫ ∞
−∞

P (ν, θ)e2πiν(x cos θ−y sin θ)|ν|dνdθ (4.11)

=
∫ π

0

∫ ∞
−∞

∫ ∞
−∞

p(s, θ)e2πiν(x cos θ−y sin θ−s)ds|ν|dνdθ, (4.12)

1 The definition of the FT differs from the FT used in the previous chapters to be consistent with literature.
Therefore, the precise form of the FT within this chapter is always explicitly denoted.
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Figure 4.2.: Illustration of the FBP. In (a) the sinogram is depicted. After filtering, the
high-frequencies of the sinogram are emphasized (red corresponds to negative
values) as shown in (b). Finally, the filtered projections are backprojected under
their respective angles as illustrated in (c) to yield the reconstructed quantity.

where the additional factor |ν| comes from the absolute value of the determinant of the Jaco-
bian of the coordinate transformation from Cartesian coordinates (u, v) to polar coordinates
(ν, θ). [Zeng, 2010]
The integration over s can be identified as a convolution with a filter h according to

q(r, θ) =
∫ ∞
−∞

p(s, θ)
[∫ ∞
−∞

e2πiν(r−s)|ν|dν
]

ds (4.13)

=
∫ ∞
−∞

p(s, θ)h (r − s) ds, (4.14)

where the convolution kernel is defined according to

h(s) =
∫ ∞
−∞

e2πiνs|ν|dν. (4.15)

This is referred to as the filtering step, within the FBP. The remaining integration over θ
then denotes the backprojection step according to

f(x, y) =
∫ π

0
q(x cos θ − y sin θ, θ)dθ, (4.16)

which coincides with Eq. (4.3). The different steps of the FBP algorithm are illustrated in
Figure 4.2. [Zeng, 2010]

4.1.3. Extensions to other geometries
In the fan-beam geometry, a point-like X-ray source moves at some finite distance around the
sample on a circular trajectory inside the plane. As a consequence, the respective X-ray paths
are not parallel with respect to each other. To obtain a reconstruction algorithm for this
geometry, one converts the fan-beam geometry into a parallel-beam geometry by accordingly
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substituting the parameterization of the projections. This results in slight modifications of
the filtering as well as the backprojection step. [Turbell, 2001, Zeng, 2010, Hehn, 2015]
In practice, one is interested in the three-dimensional distribution of the linear attenuation

coefficient. Thus, under each view, a two-dimensional projection is obtained. The extension
of the parallel-beam geometry to three dimensions is trivial as one can think of this geometry
as a stack of independent two-dimensional parallel-beam geometries. The extension of the
fan-beam geometry to three dimensions is referred to as the cone-beam geometry. As for the
fan-beam case, a point-like source moves at some finite distance around the object on a circu-
lar trajectory in a plane. In general, one cannot reconstruct the three-dimensional distribu-
tion of the linear attenuation coefficient using arbitrary geometries. However, there exists a
set of conditions, which the source trajectory has to fulfill in order to reconstruct the quantity
correctly, which is referred to as Tuy’s criterion [Tuy, 1983]. An equivalent formulation states
that every plane that intersects the object must contain a cone-beam focal point [Zeng, 2010].
For the cone-beam geometry defined above, this criterion is only fulfilled for the plane inter-
secting the object, in which the source is moving around the object in a circular trajectory.
Thus, only approximate reconstruction algorithms exist in this case. The de-facto standard
reconstruction algorithm for this geometry is the so-called Feldkamp, Davis, Kress (FDK)
algorithm [Feldkamp et al., 1984]. Thereby, the formula for the fan-beam geometry is heuris-
tically extended to three dimensions. For the central plane, the algorithm reduces to the fan-
beam algorithm. For increasing distances between the source and the sample, the algorithm
reduces to the reconstruction algorithm of the three-dimensional parallel-beam geometry.
Finally, if the object is constant along the additional dimension, the Feldkamp algorithm
obtains the correct result [Feldkamp et al., 1984]. Implementation details of the algorithm
used in this thesis can be found in [Fehringer et al., 2014, Hehn, 2015, Fehringer, 2019]. For
clinical applications spiral CT is most commonly used, for which the X-ray source moves
along a helical trajectory. If the object lies entirely inside the source trajectory, Tuy’s
criterion is fulfilled and the object can be reconstructed exactly. An exact inversion for-
mula exists [Katsevich, 2002]. This approach has also been extended to more general tra-
jectories [Pack et al., 2004, Ye and Wang, 2005]. In practice, approximate algorithms are
used, which are based on pre-processing steps such as rebinning or weighting of the projec-
tion [Schaller et al., 2000, Fuchs et al., 2000].

4.2. Discretization
For an actual X-ray experiment, the continuous function representing the projections of the
three-dimensional distribution of the linear attenuation coefficient is not accessible. The
amount of measured intensity values is restricted by the number of pixels of the X-ray
detector and the finite number of projections around the sample. In addition, numerical
methods only allow for the manipulation of a finite amount of data. Thus, the continuous
functions and variables encountered in the previous section need to be discretized in order to
be implemented numerically. This processes has to be carried out carefully as it comes with
many subtleties that are addressed in this chapter. [Gonzalez and Woods, 2001, Seibt, 2006]

4.2.1. Discretization of measurement and volume
As the intensity measurements are discrete by default, the projections of the linear attenu-
ation coefficients related to the intensities according to Eq. (2.17) are discrete as well. The
projections are represented by a vector p, merging the spatial dimensions and projections
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from different angles into a single dimension. Again, restricted to the two-dimensional CT
problem discussed in the previous section, the discretization is defined by the number of
pixels Ns with a sampling distance (pixelsize) of ∆s and the number of projections by Nθ

with an angular interval of ∆θ.
In the following, criteria about the choice of these parameters are outlined. The optimal

pixelsize ∆s depends on the spatial resolution of the system, which includes the effects of the
focal spot blur and the detection system. A practical rule-of-thumb connects the pixelsize to
the full width at half maximum (FWHM) according to ∆s = FWHM/2, which is motivated
by the Nyquist–Shannon sampling theorem [Seibt, 2006]. The number of pixels Ns is then
determined by the size of the sample to be measured. [Fessler, 2009]
A criterion for the number of projections can be derived from the Fourier slice theorem.

Given the pixelsize of ∆s for the projections p(s, θ), the highest frequency in P (ν, θ) is given
by νmax = 1/(2∆s). Accounting for negative frequencies, the Ns sampling points are thus
spaced by ∆ν = 1/(Ns∆s). Now, the angular sampling ∆θ can be chosen such that for
F◦(ν, θ) all sampling points are spaced by not more than this amount. The angular spacing
is worst for the highest frequency, where the angular spacing is given by

∆θ = ∆ν
Ns
2 ∆ν

= 2
Ns

, (4.17)

using the above assumption. Thus, the total number of angles over the interval of 180 ◦ is

Nθ = π

∆θ
= π

2Ns. (4.18)

This derivation can for instance be found in slightly different variations in the cited litera-
ture. [Kak and Slaney, 1988, Fessler, 2009]
Although f(x, y) is continuous in reality, only a discrete representation can be recon-

structed numerically. Therefore, f(x, y) is expanded in terms of some finite basis function
χi(x, y) according to

f(x, y) =
Nx×Ny∑
i=1

fiχi(x, y), (4.19)

where Nx×Ny is the total number of coefficients fi. The most common choice of χi(x, y) is
the so-called voxel basis. This basis is 1 inside the i-th voxel and 0 everywhere else. In the
two-dimensional case, the basis function can be written as

χi(x, y) = rect
(
x− xi

∆x

)
rect

(
y − yi

∆y

)
. (4.20)

Thereby, (xi, yi) is the center of the i-th voxel and ∆x and ∆y are the width and height of
the voxels respectively. [Fessler, 2000]

4.2.2. Projection operations

The two most crucial and computational most demanding operations in CT reconstruction
are the projection operations, i.e. the forwardprojection given by Eq. (4.2) and the backpro-
jection given by Eq. (4.3). To discretize the forwardprojection, the analytic representation
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Figure 4.3.: Illustration of different projector models. In (a) the working principle of a pixel-
driven projector with linear interpolation is depicted. In (b) the ray-driven
projector with linear interpolation is illustrated. In (c) and (d) the working
principle of the footprint projector is shown.

of f in terms of its finite basis function given by Eq. (4.19) is inserted into the analytical
representation of the forwardprojection given by Eq. (4.3). This results in

pi =
∫
Li

f(x, y)dl =
∫
Li

Nx×Ny∑
j=1

fjχj(x, y)dl =
Nx×Ny∑
j=1

∫
Li

fjχj(x, y)dl =
∑
j

aijfj , (4.21)

where the order of summation and integration is interchanged and

aij =
∫
Li

χj(x, y)dl (4.22)

defines the matrix elements of the projection matrix. Thus, the forwardprojection given
analytically by Eq. (4.2) can be written as a matrix-vector multiplication according to

p = Af , (4.23)

where the elements of A are defined by Eq. (4.22). [Fessler, 2009]
The discretization of the backprojection given by Eq. (4.3) follows from the fact that the

backprojection is the transpose of the forwardprojection. Thus,

g = ATp (4.24)

describes the backprojection. [Zeng, 2010]
In practice, the forwardprojection as well as the backprojection are not implemented as

a matrix-vector multiplications. If 1000 projections around the object are acquired and the
detector holds 1000 × 1000 pixels, the measurement vector p holds 10003 = 109 elements.
A natural choice for the number of voxels that represent the three-dimensional distribution
of the linear attenuation coefficient would then be 10003 = 109. Thus, the total number of
elements aij would be 1018. Assuming single-precision floating-point numbers, storing the
matrix A explicitly would consume 1018 ·4 B = 4 EB, which cannot be stored on a computer.
However, the fact that A is sparse (has many elements that are zero) makes it feasible to
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4. Fundamentals of tomographic reconstruction

calculate the matrix multiplication on the fly. This means that only those elements of aij
that are non-zero are calculated and directly summed accordingly, without storing these
entries explicitly. Consequently, only p and f have to be stored explicitly, which accounts
in the previous case for only 2 · 109 · 4 B = 8 GB. However, for each forwardprojection (or
backprojection), the matrix elements have to be recomputed. [Fehringer, 2019]
The last step is to find a way to explicitly calculate the elements aij given analytically

by Eq. (4.22). This integral is, however, impractical to compute. Several different projector
models exist, which compute these elements differently, depending on the geometry and the
requirements for accuracy and speed. [De Man and Basu, 2004, Long et al., 2010]
The projector models that are used within this thesis are illustrated in Figure 4.3 for a

two-dimensional parallel-beam geometry. Thereby, the elements of the object are referred
to as pixels and the elements of the detector as detector elements in order to be consistent
with the nomenclature in literature. [De Man and Basu, 2004, Fessler, 2009]
In (a) the working principle of a simple pixel-driven projector is shown. Thereby, one

connects a line from the source through the center of the pixel to the detector [Peters, 1981].
This method is most commonly used for implementing the backprojection. The value of the
pixel is then obtained by linear interpolation according to the position of the projected center
of the pixel on the detector. The backprojection can be implemented very efficiently as it can
be parallelized for all pixels in the object. Using the same model for the forwardprojection is
discouraged as it introduces high-frequency artifacts. In addition, the parallelization becomes
more difficult as the values of different pixels need to be accumulated to the same detector
element at the same time (output dependency). [De Man and Basu, 2004]
In (b) another projector model is illustrated, which is referred to as the ray-driven method.

Thereby, the ray from the source is connected to the center of the detector element. This pro-
jector model, usually referred to as Joseph’s method [Joseph, 1982], is suited for implement-
ing the forwardprojection. Thereby, for every row within the object (or column depending on
the projection angle) linear interpolation is performed and the values are added to the corre-
sponding detector element. This forwardprojection can also be parallelized for every detector
element and every projection angle and thus implemented very efficiently. Again, this model
is discouraged for the transpose operation (in this case the backprojection) as it introduces
Moiré patterns and suffers again from the output dependency. [De Man and Basu, 2004]
Most parts of this thesis use the extension to the cone-beam geometry of the aforemen-

tioned ray-driven projector model for forwardprojection and the above pixel-driven model
for backprojection as they are computationally most efficient. More details about the im-
plementation can be found in [Fehringer et al., 2014, Fehringer, 2019]. However, there are
two drawbacks. One is that the projector models are not very accurate leading to artifacts
for various scenarios. Secondly, as different models are used for forward and backprojection,
these two operations are not consistent. This means that the forwardprojection is no longer
the transpose of the backprojection. The implications of this mismatch are quite contro-
versial [Zeng, 2010]. However, there is a criterion that can guarantee the convergence of
iterative algorithms if the composite backprojection-projector matrix ATA does not have
negative eigenvalues [Zeng and Gullberg, 2000]. A more recent study has shown that the
reconstruction quality as well as the convergence of any iterative algorithm greatly relies on
a good matching between the forward and backprojection [Arcadu et al., 2016].
To obtain matched projectors with an accurate projector model, a so-called footprint pro-

jector has been implemented for this thesis. The working principle is illustrated in Figure 4.3
(c) and (d). Thereby, four lines from the source through the edges of the object pixel are
drawn to get the corresponding intersection points on the detector. From these points, the
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actual shape of the projected pixel (its footprint) can be calculated. The contribution of the
object pixel with each detector element is then deduced by the amount of overlap between
the pixel and the true footprint of the projected pixel. As for the above pixel-driven projec-
tor, the backprojection can be computed for all pixels of the object in parallel, which again
makes it very efficient to compute. The forwardprojection cannot be parallelized over all
pixels due to the same output dependency as before. However, it is possible to parallelize
the calculation for each projection angle, which makes this projector model sufficiently fast.
The extension to three dimensions is called the separable footprint projector model, which

is both computationally efficient and accurate [Long et al., 2010]. In this case, the foot-
prints in horizontal and vertical direction are calculated independently. Several publica-
tions have addressed efficient and highly parallelized implementations for this projector
model [Wu and Fessler, 2011, Xie et al., 2017].

4.2.3. Filtered backprojection algorithm
In order to numerically implement the FBP algorithm, the filtering step given by Eq. (4.14)
remains to be discretized. Therefore, the tomographic filter given by Eq. (4.15) is band-
limited by the Nquist frequency νmax = 1/(2∆s) discussed in Subsection 4.2.1. Consequently,
the tomographic filter is given by

hband-limited(s) =
∫ 1

2∆s

− 1
2∆s

e2πiνs|ν|dν = 1
2(∆s)2 sinc 2s

2∆s
− 1

4(∆s)2 sinc2 s

2∆s
, (4.25)

which reduces to

hi = ∆shband-limited(i∆s) =


1

4∆s
, i = 0

0, i even
− 1
i2π2∆s

, i odd
. (4.26)

Moreover, the convolution in Eq. (4.14) has to be discretized. A convolution can be expressed
as a matrix multiplication with a Toeplitz matrix, thus the filtering step can be written as

q = Hp. (4.27)

Finally, the backprojection step given by

f̂ = ATq (4.28)

enables the reconstruction of the discrete object from its discrete projections. [Turbell, 2001,
Fessler, 2009]

4.3. Statistical iterative reconstruction (SIR)
Various iterative tomographic reconstruction approaches have been developed ever since
the success of CT [Qi and Leahy, 2006, Nuyts et al., 2013]. Early iterative methods are
algebraic reconstruction techniques (ART) [Gordon et al., 1970]. Later, variations like the
simultaneous iterative reconstruction technique (SIRT) [Gilbert, 1972] or the simultaneous
ART (SART) [Andersen and Kak, 1984] were developed. These algorithms provide means to
solve Eq. (4.23) iteratively. However, these techniques only converge if the data is consistent,
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such that an exact solution exists, which is however commonly not the case due to noise (and
other inconsistencies) in the measurements [Qi and Leahy, 2006]. With the introduction
of the FBP algorithm, iterative approaches became less popular. [Feldkamp et al., 1984,
Zhang et al., 2018].
Nowadays with the increasing performance of modern computer systems, iterative re-

construction techniques are again heavily researched. While previously only the projection
operation was modeled by the matrix A and all rays were treated equally, including a sta-
tistical description of the noise and modeling additional aspects of the imaging system have
gained a lot of attention. These algorithms are referred to as statistical iterative recon-
struction (SIR) techniques. Such algorithms have shown significant advantages in terms
of lowering dose requirements and improving image quality. All major CT vendors have
implemented some kind of SIR method for image reconstruction. Various names for SIR
methods exist in literature and throughout different vendors, such as model-based iterative
reconstruction (MBIR), iterative model reconstruction (IMR), advanced modeled iterative
reconstruction (ADMIRE) or forward-projected model-based iterative reconstruction solu-
tion (FIRST). [Nuyts et al., 2013, Zhang et al., 2018]
Within this work, the proposed algorithms are referred to as SIR, if the novelty is from

the reconstruction approach, and as MBIR, if the novelty stems from the physical models
that describe the image formation process. In the following, the basic statistical description
of an X-ray experiment is outlined followed by the derivation of the different parts of the
SIR algorithm starting from the MAP principle.

4.3.1. Maximum a posteriori (MAP) estimation

One can think of a CT scan (or any X-ray imaging experiment) as a probabilistic experiment
due to the statistical nature of measuring X-rays. Thereby, the measurements (the intensities
measured at the detector) can be modeled by a random vector Y. [Fessler, 2000]
Mathematically, an estimate of the three-dimensional distribution of the linear attenuation

coefficient µ̂ can be obtained by maximizing

µ̂ = arg max
µ

f(µ|Y), (4.29)

where f(µ|Y) denotes the posterior distribution. This distribution describes the probability
of µ being the actual linear attenuation coefficients given the measurements Y. Thus, µ̂ is
called the MAP estimator. However, the actual form of the posterior distribution f(µ|Y) is
not directly accessible. Therefore, Bayes’ theorem is employed given by

f(µ|Y) = f(Y|µ)f(µ)
f(Y) . (4.30)

Here, f(Y|µ) denotes the likelihood of the measurements that describes the probability of
the measurements Y under the assumption of µ being the linear attenuation coefficients.
This likelihood can, in principle, be computed if one can model the image formation as well
as the statistical properties of the measurements given the linear attenuation coefficients.
Furthermore, f(µ) denotes the prior distribution that described how probable a certain
realization of µ independent of the measurements is. Finally, f(Y) denotes the probability
of the measurements independent of the linear attenuation coefficients. [Fessler, 2000]
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Instead of maximizing the posterior distribution, one can equivalently minimize the neg-
ative log-likelihood of the posterior distribution, resulting in

µ̂ = arg min
µ
C(µ|Y), (4.31)

where the objective function C(µ|Y) = − log f(µ|Y) is defined. Using Eq. (4.30), the explicit
form of the objective function is given by

C(µ|Y) = L(Y|µ) + βR(µ), (4.32)
where the negative log-likelihood L(Y|µ) = − log f(Y|µ), the regularization strength β and
the regularizer R are defined according to βR(µ) = − log f(µ). As f(Y) does not depend
on µ, this term is omitted from the definition of the objective function, as it does not alter
the estimate according to Eq. (4.31). [Fessler, 2000]

4.3.2. Likelihood terms
Firstly, the probability distribution f(Y|µ) is defined. As discussed in Chapter 3, X-rays
follow a Poisson distribution according to the expected intensity ȳ(µ), which is discussed in
the next subsection. The likelihood of a given measurement y, which is a realization of the
random vector Y, is given by

f(Y = y|µ) =
p∏
i=1
P(yi|ȳi(µ)) =

p∏
i=1

ȳi(µ)yi
yi!

e−ȳi(µ) = P(y|ȳ(µ)). (4.33)

Here, yi denote the individual entries of y. Following Eq. (4.31), one would compute the
negative logarithm of this probability distribution, which omits the numerically unstable
calculation of the products. [Fessler, 2000]
However, within this thesis, another probability distribution is mostly used, namely the

normal distribution. For sufficiently high counts ȳi(µ), the Poisson distribution P can be
approximated by a normal distribution N according to

lim
ȳi(µ)→∞

P(yi|ȳi(µ)) = 1√
2πȳi(µ)

exp
{
−(yi − ȳi(µ))2

2ȳi(µ)

}
= N (yi|ȳi(µ), ȳi(µ)). (4.34)

Consequently, the likelihood of Eq. (4.33) is given by

f(Y = y|µ) =
p∏
i=0
N (yi|ȳi(µ), ȳi(µ)) (4.35)

= 1√
(2π)p∏p

i=0 ȳi(µ)
exp

[
−

p∑
i=0

(yi − ȳi(µ))2

2ȳi(µ)

]
(4.36)

= 1√
(2π)p det [D(ȳ(µ))]

exp
[
−1

2(y− ȳ(µ))TD−1 [ȳ(µ)] (y− ȳ(µ))
]

(4.37)

= N (ȳ(µ)|D(ȳ(µ))), (4.38)
where D denotes a diagonal matrix with the vector in brackets on its diagonal. The negative
log-likelihood is then given by
L(y|µ) = − logN (ȳ(µ)|D(ȳ(µ))) (4.39)

= p

2 log [2π] + 1
2 log detD [ȳ(µ)] + 1

2(y− ȳ(µ))TD−1 [ȳ(µ)] (y− ȳ(µ)) (4.40)

≡ 1
2 log detD [ȳ(µ)] + 1

2(y− ȳ(µ))TD−1 [ȳ(µ)] (y− ȳ(µ)), (4.41)
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with the term independent of µ being omitted as indicated by the ≡ symbol. Finally, by
estimating the statistical weights from the measurements directly to simplify the optimization
problem according to D [ȳ(µ)] ≈ D [y], the negative log-likelihood reduces to

L(y|µ) = 1
2 log detD [y] + 1

2(y− ȳ(µ))TD−1 [y] (y− ȳ(µ)) (4.42)

≡ 1
2(y− ȳ(µ))TW(y− ȳ(µ)), (4.43)

where W = D−1 [y] is defined and again the term independent of µ is omitted. This
formulation coincides with a penalized weighted least squares approach. [Zhang et al., 2018]

4.3.3. Physical mean models
The likelihood requires the computation of the expected intensity values defined as the
expectation value of the measurements according to ȳ(µ) = E[Y]. In the particle picture
this coincides with the expected number of detected X-ray photons. In the following, ȳ(µ)
is referred to as the physical mean model, which models the image formation given the
linear attenuation coefficients. Improving the physical mean model is still an active field of
research [Nuyts et al., 2013]. Finding a suitable model strongly depends on the applications
and setups. Various different forms of the basic mean model exist in literature [Fessler, 2009,
Nuyts et al., 2013]. Here, the physical mean model matches [Gang et al., 2014] written as

ȳ(µ) = I0e
−Aµ, (4.44)

where I0 denotes the mean intensity without any sample in the beam. The exponential
function operates element-wise. Thus, it can be thought of as a discrete version of the
Lambert-Beer law given by Eq. (2.17). This model is suited for the likelihood terms in
Eq. (4.33) as well as Eq. (4.43). [Fessler, 2000, Gang et al., 2014]
However, for many applications a different mean model is used, which acts on the line-

integrals instead of the intensities [Nuyts et al., 2013]. The random vector transforms ac-
cording to

L = − log
(Y
I0

)
. (4.45)

Using first order Taylor approximation for the expectation value according to

¯̀(µ) = E[L] = E[f(Y)] ≈ f (E[Y]) = f
(
I0e
−Aµ

)
= Aµ (4.46)

defines the line-integrals as the projections of the linear attenuation coefficient. However, this
expectation value is biased due to Jensen’s inequality [Lehmann and Casella, 2006]. From
the fact that − log x is a concave function it follows

E[− logX] ≥ − log E[X], (4.47)

which systematically overestimates the line-integrals [Fessler, 2000]. This has been verified
empirically and furthermore it has been shown that this bias increases with decreasing counts
[Fessler, 2000]. On the other hand, the variance is given by

Var[L] = Var[f(Y)] ≈ 1
E[Y]2 Var[Y] = I0e

−Aµ

(I0e−Aµ)2 = 1
I0e−Aµ = D[ȳ−1] ≈ D[y−1], (4.48)
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where the division is to be understood element-wise. In the last step, the mean model
was approximated by the measurements to make the variance independent of the linear
attenuation coefficients. The likelihood is then modeled by N ( ¯̀,D[y−1]) resulting in

L(`|µ) = 1
2(`− ¯̀(µ))TD [y] (`− ¯̀(µ)), (4.49)

with ` = − log(y/I0). As the mean model as stated in Eq. (4.46) is linear, the optimiza-
tion procedure of the likelihood is simpler compared to the previous case. It also coin-
cides with a penalized weighted least squares formulation. [Fessler, 2000, Nuyts et al., 2013,
Zhang et al., 2018]

4.3.4. Prior distributions
Finally, the prior distribution f(µ) in Eq. (4.30) has to be defined. Therefore, one assumes
µ to be drawn from a distribution of the form

f(µ) ∝ e−βR(µ), (4.50)

where β denotes the so-called regularization strength, which determines how much influence
the prior information has on the posterior f(µ|Y). Usually, this parameter has to be chosen
by hand. The term R is referred to as the regularizer. A good choice of the regularizer is still
an active field of research and depends on the particular application. Early regularization
techniques assumed spatial independence among different voxels. For instance, as regularizer,
one can use the `2 norm of the image directly or devise priors that are based on the maximum
entropy criterion [Nunez and Llacer, 1990]. However, this biases the image tremendously
and alleviating this by the introduction of a mean image makes these priors not longer truly
spatially independent [Qi and Leahy, 2006]. [Zhang et al., 2018]
Most commonly used are Markov random field (MRF) priors, which assume that neigh-

boring voxels have similar values. Mathematically, this can be described by a Gibbs dis-
tribution [Geman and Geman, 1984]. The regularization techniques used within this thesis
belong to this class of priors. In particular, pair-wise Gibbs priors are a special case of Gibbs
priors which only penalize the difference in neighboring voxel values. The corresponding
regularization term can be written as

R(µ) = 1
2
∑
i

∑
n∈Ni

1
∆in

ψ

(
µi − µn

∆in

)
, (4.51)

where Ni refers to the neighboring voxels of the i-th voxel (usually 26 next neighbors in three
dimensions) and ψ is the penalty function. The additional factor ∆in denotes the Euclidean
distance between two voxels. When denoting the 3D coordinates of voxel i by (ix, iy, iz) and
the corresponding coordinates of the voxel n by (nx, ny, nz), this distance can be written as

∆in =
√

(ix − nx)2 + (iy − ny)2 + (iz − nz)2. (4.52)

In literature, the regularization term usually omits the additional weighting within the argu-
ment of the penalty function [Fessler, 2000, Zhang et al., 2018]. However, the optimal choice
of ∆in is still unclear. For instance, it was noted that the Euclidean distance is suboptimal
for producing isotropic spatial resolution [Fessler, 2003]. [Zhang et al., 2018]
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Various penalty functions exist in literature [Zhang et al., 2018]. Within this thesis, there
are three different penalty functions, which are used depending on the application. First of
all, the quadratic penalty, which uses the `2 norm, has the form

ψ(t) = t2. (4.53)

A disadvantage of this prior is that it leads to oversmoothing at boundaries between different
materials and fine structures. This has a negative effect on the resolution of the reconstructed
object. [Zhang et al., 2018]
One approach to alleviate this issue is the so-called Huber penalty [Huber, 2011] given by

ψγ(t) =
{
t2/(2γ) for t < γ

|t| − γ/2 else
. (4.54)

Thereby, the penalty coincides (up to the normalization) with the quadratic penalty given
by Eq. (4.53) if the weighted difference between neighboring voxels is smaller than γ. If
this difference exceeds γ, the penalty function corresponds to a `1 norm (up to an offset).
The reason is that one would like to mitigate the penalty for high differences in neighboring
voxel values, implying that these differences are due to an edge in the sample and not due
to noise. By contrast, small differences in neighboring voxel values are most probably due
to noise and therefore penalized quadratically. [Zhang et al., 2018]
Finally, total-variation (TV) regularization [Rudin et al., 1992] uses the `1 norm as pen-

alty. Thereby, the absolute difference of the weighted difference of neighboring voxel values
is penalized according to

ψ(t) = |t|. (4.55)

This penalty coincides (up to an offset) with the Huber penalty given by Eq. (4.54) for
weighted differences that exceed γ. This function is still convex, however not differentiable
at zero. TV regularization also plays a crucial role in the field of compressed sensing as the
penalty enforces sparsity [Sidky et al., 2006, Sidky and Pan, 2008]. In compressed sensing,
one tries to enforce sparse solutions. This can for instance be achieved by employing the `0
norm [Hu et al., 2011] or other `p norms with 0 < p < 1 (which is actually not a norm) in
the regularization term. However, the optimization problem becomes increasingly difficult
as these norms are non-convex. [Zhang et al., 2018]
Finally, one may generalize the regularizer given by Eq. (4.51) and make the weights

spatially varying. This can for instance be used to construct a regularization term that
yields uniform resolution. [Stayman and Fessler, 2000]
Various other regularization techniques exist that cannot be formulated according to

Eq. (4.51). For instance, nonlinear neighborhood filters such as the bilateral filter have
been reformulated as priors [Tomasi and Manduchi, 1998, Elad, 2002]. Patched-based regu-
larization techniques do not compare individual neighboring voxels, but patches of voxels in
order to better distinguish intensity differences originating from noise or from actual struc-
tures [Wang and Qi, 2012]. Another technique is based on dictionary learning, where the
images are sparsely represented from a linear combination of atoms. One expects that if
the atoms are chosen (or learned) accordingly, this method captures local image features
more effectively [Xu et al., 2012]. If prior images (normal dose) of the patient are available,
such images can be used as regularization as well, for instance to reduce the patient dose of
follow-up scans [Zhang et al., 2014a]. [Zhang et al., 2018]
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4.3.5. Optimization algorithms
Having defined all parts of the objective function C(µ|Y) given by Eq. (4.32), the remaining
task is to solve Eq. (4.31) by minimizing the objective function with respect to µ. To simplify
notation C(µ) ≡ C(µ|Y) is defined and thus, Eq. (4.31) can be written as

µ̂ = arg min
µ
C(µ). (4.56)

The objective function is a scalar function according to C : Rp → R. In general, p is very
large as it holds the number of unknowns (in CT p corresponds to the number of elements
for the linear attenuation coefficient). A lot of research evolved around the field of numerical
optimization, where one tries to optimize such objectives. These problems play a crucial role
in various fields in science, engineering, economics and industry. [Nocedal and Wright, 2006]

In many cases, the objective function cannot be minimized analytically. Either the re-
sulting problem would be too expensive to compute (as it would for instance require the
inversion of the projection matrix given by Eq. (4.23)), or the objective function can simply
not be inverted analytically. Thus, the objective function is minimized iteratively by defining
an initial guess µ(0) and then computing a sequence of iterates {µ(n)}Ni=0 all of which have a
lower function value than the value of the preceding iterate, denoted by C(x(n+1)) < C(x(n)),
until the number of iterations N is exceeded. [Nocedal and Wright, 2006]

Line search

One strategy to compute this sequence is referred to as line search. Thereby, in each iteration,
a search direction p is computed from the current iterate µ(n) along which a new iterate
with a lower objective function is searched according to

min
α>0
C(µ(n) + αp(n)), (4.57)

where α is referred to as the step length. Various different algorithms exist that define
the search direction as well as the procedure to find a suitable step length. The meth-
ods differ in terms of robustness (they should perform well on a variety of problems), ef-
ficiency (they should only require a small amount of computational time or storage) and
accuracy (they should identify a solution accurately). Thus, different methods are suited
for different problems. In the following, most of the algorithms used within this thesis are
outlined. [Nocedal and Wright, 2006]

Search direction

The fundamental tool for the subsequent algorithms is Taylor’s theorem. In this case the
objective C(µ(n)) at some point x(n) for any search direction p(n) and step length α can be
approximated by

C(µ(n) + p(n)) ≈ C(µ(n)) +
(
p(n)

)T
∇C|µ(n) + 1

2
(
p(n)

)T
∇2C|µ(n)p(n). (4.58)

Here, ∇C|µ(n) denotes the gradient of C with respect to µ evaluated at µ(n) and ∇2C|µ(n) is
the Hessian of C evaluated at the same point. [Nocedal and Wright, 2006]

Ignoring the second order term in Eq. (4.58), one can choose the search direction by
minimizing the objective function value according to

min
p(n)

(
p(n)

)T
∇C|µ(n) , (4.59)

43



4. Fundamentals of tomographic reconstruction

enforcing unit length according to ‖p‖ = 1. By explicitly writing the scalar product as
aT b = |a||b| cos θ, realizing that this expression is minimal for cos θ = −1, the search direction
is given by

p(n)
SD = −

∇C|µ(n)

‖∇C|µ(n)‖
. (4.60)

This is equivalent to the direction of the negative gradient normalized accordingly. By def-
inition, this is the direction along which the objective decreases most rapidly. This search
direction is therefore referred to as steepest descent direction. Most importantly, this choice
of the search direction does not require any second order information and is thus computa-
tionally very efficient.
Another choice for the search direction is referred to as the Newton direction. For this

approach, Eq. (4.58) is minimized directly by setting the gradient of the objective with
respect to the search direction to zero resulting in

p(n)
ND = −

(
∇2C|µ(n)

)−1
∇C|µ(n) . (4.61)

This method is very powerful, if the Hessian of the objective can be easily inverted and
the objective is well approximated by a quadratic function. In addition, the search direc-
tion is already properly scaled, thus the computation of the step length might be omit-
ted. [Nocedal and Wright, 2006]
The Hessian holds p×p values and consequently can be very large. This makes the explicit

inversion of such a matrix computationally very expensive. Therefore, various methods exist
that try to approximate the inverse Hessian. The corresponding search directions are referred
to as Quasi-Newton directions. In essence, one tries to approximate the Hessian by differences
of previously calculated gradients according to

∇2C|µ(n)(µ(n+1) − µ(n)) ≈ ∇C|µ(n+1) −∇C|µ(n) . (4.62)

Consequently, one tries to find an approximate Hessian matrix denoted by B which fulfills

B(n+1)s(n) = t(n) (4.63)

using s(n) = µ(n+1) − µ(n) and t(n) = ∇C|µ(n+1) − ∇C|µ(n) . Various different approxima-
tions of B(n) exist, among others the Symmetric rank-one (SR1) formula and the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) formula. In practice, these formulas do not update
B(n) directly but its inverse denoted by H(n) ≡ (B(n))−1. For the BFGS formula this update
step can be written as

H(n+1) =
(
V(n)

)T
H(n)V(n) + ρ(n)s(n)

(
s(n)

)T
(4.64)

with V(n) = I − ρ(n)s(n)(t(n))T and 1/ρ(n) = (t(n))T s(n), where I denotes the identity
matrix. As the above procedure would require to store the whole approximation of the
Hessian matrix of the size p × p, one may want to save only a few vectors of length m
that represent this matrix explicitly. These methods are referred to as limited-memory
methods. The following method is referred to as the limited-memory BFGS (L-BFGS)
method [Nocedal, 1980, Liu and Nocedal, 1989] for which only m vector pairs {s(i), t(i)} for
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i = n−m, . . . , n− 1 are stored. For completeness, this approximation is given by

H(n) =
((

V(n−1)
)T

...
(
V(n−m)

)T)
H(n)

0

(
V(n−m)...V(n−1)

)
(4.65)

+ ρ(n−m)
((

V(n−1)
)T

...
(
V(n−m+1)

)T)
s(n−m)

(
s(n−m)

)T (
V(n−m+1)...V(n−1)

)
(4.66)

+ ρ(n−m+1)
((

V(n−1)
)T

...
(
V(n−m+2)

)T)
s(n−m+1)

(
s(n−m+1)

)T (
V(n−m+2)...V(n−1)

)
(4.67)

+ ... (4.68)

+ ρ(n−1)s(n−1)
(
s(n−1)

)T
(4.69)

and for the initial approximation of the Hessian matrix, one may choose

H(n)
0 =

sTk−1yk−1

yTk−1yk−1
I, (4.70)

which has proven to be effective in practice. Within this thesis, the memory was set to
m = 6. Finally, the quasi-Newton search direction is given by

p(n)
QN = −H(n)∇C|µ(n) , (4.71)

which can be computed efficiently and implicitly includes approximate second order infor-
mation. [Nocedal and Wright, 2006]
Furthermore, there are other methods to define the search direction. Most prominent

are conjugate gradient (CG) methods, which ensure that subsequent search directions are
conjugate to each other. Although originally designed to solve linear systems, this method
has been generalized to nonlinear problems. [Hager and Zhang, 2006]

Step length

In order to minimize the objective function, the search direction p is not sufficient. The step
length α is used to decent on the objective function in search direction. The new iterate is
then given by

µ(n+1) = µ(n) + α(n)p(n). (4.72)

While computing the optimal step length, a substantial reduction in the objective value
should be achieved on the one hand (accuracy), but on the other hand, the method to
obtain this step length should be fast (efficiency). Thus, usually a less accurate minimization
of Eq. (4.57) is desirable, if it can be done computationally efficient. This is commonly
performed in two steps. First, an interval containing desirable step lengths needs to be
found. Then, by bisection or interpolation, a good step length is computed within this
interval. In the following, two conditions are introduced, which should be fulfilled in order
to accept the current step length. [Nocedal and Wright, 2006]
The first condition is the so-called Armijo condition, which requires that the chosen step

length should give a sufficient decrease in the objective value according to

C(µ(n) + αp) ≤ C(µ(n)) + c1αpT∇C|µ(n) , (4.73)
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where the scalar c1 ∈ (0, 1) has to be chosen manually. Within this thesis c1 = 10−4 is
chosen if not stated otherwise. To ensure that the algorithm makes sufficient progress, the
so-called curvature condition has to be satisfied given by

pT∇C(µ(n) + αp) ≥ c2pT∇C|µ(n) , (4.74)

with another scalar c2 ∈ (c1, 1) chosen manually. Here, this value is set according to c2 = 0.9.
These two conditions are referred to as the Wolfe conditions. A variation of this criterion is

|pT∇C(µ(n) + αp)| ≤ |c2pT∇C|µ(n) |. (4.75)

This equation and Eq. (4.73) form the strong Wolfe conditions. Various different algorithms
have been developed to compute the step length efficiently and accurately to achieve the
above conditions. Within this thesis, the algorithm of Moré and Thuente requiring the strong
Wolfe conditions is used in most cases [Moré and Thuente, 1994]. [Nocedal and Wright, 2006]
Several algorithms have been developed that are tailored to the CT reconstruction using

the mean model of Eq. (4.44) or Eq. (4.46). For the Poisson model given by Eq. (4.33), mono-
tonic algorithms have been developed based on paraboloidal surrogates of the log-likelihood
function, which can be optimized efficiently [Erdogan and Fessler, 1998]. Also accelera-
tions using the ordered subsets principle have been introduced [Erdogan and Fessler, 1999a,
Erdogan and Fessler, 1999b]. In addition, Nesterov-acceleration methods have been pro-
posed [Kim et al., 2015]. In [Tilley et al., 2018a], a combination of these methods for the
mean model similar to Eq. (4.44) and the Gaussian likelihood given by Eq. (4.43), has been
proposed, which is discussed in more detail in Chapter 6.
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5. Non-linear SIR framework for PBI and
PB-CT

In the previous chapters, PBI and CT have been treated separately. In PB-CT, one ac-
quires projection measurements like in PBI, but from various angles around the object.
This enables three-dimensional visualization of thick and complex samples like in conven-
tional CT, but additionally leveraging the phase-shifting properties of the object. Thus,
PB-CT has become a valuable tool for examining biological samples, in particular due to
its potential to increase contrast between materials with similar absorption properties, like
soft-tissue. [Mayo et al., 2003, Bravin et al., 2013, Longo et al., 2016]

To obtain three-dimensional information about the measured sample, two steps are con-
ventionally performed. First, the attenuation or phase properties are retrieved from each pro-
jection measurement separately as discussed in Chapter 3 for pure phase and monomorphous
objects. Subsequently, this information is used to obtain the corresponding three-dimensional
distributions of the recovered properties by means of tomographic reconstruction techniques
discussed in Chapter 4. Several iterative approaches that integrate phase retrieval and to-
mographic reconstruction have been proposed and successfully applied for various PB-CT
techniques. For instance, in [Ruhlandt et al., 2014], for larger propagation distances in the
Fresnel regime, it has been shown that the phase information can be retrieved using iterative
algorithms that cycle between the object and detector plane applying several constraints, sim-
ilar to phase-retrieval approaches in the Fraunhofer regime [Paganin, 2006, p.289ff]. Other
iterative approaches rely on the linearization of the image formation process, as discussed in
Subsection 2.3.5. Thereby, multiple images are acquired at each view at different distances.
Using this technique, it has been shown that one can accurately recover the phase information
from multi-material and heterogeneous objects [Langer et al., 2012, Kostenko et al., 2013,
Langer et al., 2014]. Various reasons exist why these approaches are limited to synchrotron
radiation facilities. Among others, multi-distance methods seem to be more sensitive to
noise [Arhatari et al., 2010]. In addition, the spatial coherence of laboratory sources is too
low to access wider ranges of the CTF [Wilkins et al., 2014]. Moreover, due to the cone-beam
geometry, alignment is more difficult in a laboratory setup [Weber et al., 2017].
In the following, SIR approaches are investigated for PBI and PB-CT, which use mea-

surements acquired only at a single distance making these techniques suitable for laboratory
environments. A significant amount of research evolves around SIR techniques for conven-
tional attenuation-based CT to improve image quality or to reduce acquisition time and
dose. As outlined in Section 4.3, these approaches model the attenuation in intensity, us-
ing for instance the mean model given by Eq. (4.44) or Eq. (4.46), with an appropriate
noise model and regularization. Compared to the conventional analytical reconstruction
approaches, SIR approaches have already demonstrated significant advantages for many ap-
plications [Thibault et al., 2007, Noël et al., 2013]. In this chapter, SIR concepts that have
proven successful in conventional attenuation-based CT are transferred to PB-CT. In particu-
lar, the statistical description of the measurements inherent to SIR approaches is a promising
concept for the ongoing transition of PB-CT to laboratory sources, which naturally suffers
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5. Non-linear SIR framework for PBI and PB-CT

from low flux levels.
This chapter is structured as follows. First, physical mean models for PBI and PB-

CT are proposed using the results derived in Chapter 2. Based on these physical mean
models, SIR reconstruction approaches are derived building upon Section 4.3, which include
a description of the likelihood of the measurements as well as prior knowledge in the form
of regularization techniques. In addition, concepts introduced in Chapter 3 are utilized and
their relation to the previously discussed phase-retrieval and reconstruction algorithms is
outlined. The methods are validated using experimental datasets acquired at laboratory
sources and synchrotron facilities.
Parts of the results discussed in this chapter have been published in [Hehn et al., 2018a,

Hehn et al., 2018b].

5.1. Image formation
First, the image formation in PBI suitable for a laboratory environment needs to be described
to obtain a physical mean model according to Subsection 4.3.3, which connects the measured
intensity at the detector plane to the different components of the refractive index describing
the object. The theoretical background has been outlined in Chapter 2. The notation is
adapted from Chapter 3, in particular using Figure 3.1. Parts of this section have been
published in [Hehn et al., 2018b].
The X-ray wavefield generated by the source is described as a monochromatic forward

propagating paraxial envelope ψ̃(r⊥, z) defined by Eq. (2.6). To shorten notation, the sub-
script ω to specify a certain spectral component is again omitted. The wavefield is described
in terms of its intensity and phase according to Eq. (2.16) at different stages along the optical
axis.
For simplicity, it is assumed that the incoming wavefield has constant illumination given by

I0. The sample located at z < 0 is defined by its attenuating and phase-shifting properties.
The attenuating properties are described by the three-dimensional distribution of the linear
attenuation coefficient µ(r). The phase-shifting properties are given by the corresponding
distribution of the refractive index decrement δ(r). Under the projection approximation
discussed in Section 2.2, the intensity of the wavefield behind the object ψ̃(r⊥, 0) is given by
the Lambert-Beer law according to Eq. (2.17) written as

I(r⊥, 0) = I0 exp
[
−
∫
µ(r⊥, z)dz

]
= I0e

−`(r⊥,0), (5.1)

where the line-integrals `(r⊥, 0) are defined as the projection of the linear attenuation coef-
ficient of the object along the X-ray paths. The corresponding phase shift is given according
to Eq. (2.18) by

φ(r⊥, 0) = −k
∫
δ(r⊥, 0)dz (5.2)

and is proportional to the projection of the refractive index decrement of the object along
the X-ray path1. In the context of PBI, the validity of the projection approximation has
been discussed in [Morgan et al., 2010], demonstrating that this approximation is accurate
for describing the corresponding interference effects.

1 Technically, the phase shift can also be thought of as line-integrals. However, within this work, line-
integrals refer to the projection of the linear attenuation coefficient as defined by Eq. (4.45) and phase
shift refers to the projection of the refractive index decrement.
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For laboratory environments, the limit of small propagation distances derived in Section 2.3
holds, which relates the intensity at the detector plane to the intensity and phase behind
the sample according to Eq. (2.43), which can be written as

I(r⊥, z) = I(r⊥, 0)− z

k
∇⊥ · [I(r⊥, 0)∇⊥φ(r⊥, 0)] (5.3)

= I(r⊥, 0)− z

k

{
[∇⊥I(r⊥, 0)] · ∇⊥φ(r⊥, 0) + I(r⊥, 0)∇2

⊥φ(r⊥, 0)
}
, (5.4)

where the terms are expanded explicitly. It is further assumed that at a particular position
in the wavefield, the product of the intensity gradient and the phase gradient is comparably
small, written as

[∇⊥I(r⊥, 0)] · ∇⊥φ(r⊥, 0)� I(r⊥, 0)∇2
⊥φ(r⊥, 0). (5.5)

This approximation can also be found in [Paganin, 2006, p.281]. Consequently, the intensity
at the detector plane is given by

I(r⊥, z) ≈ I(r⊥, 0)
(

1− z

k
∇2
⊥φ(r⊥, 0)

)
, (5.6)

where the attenuation is modeled by the Lambert-Beer law and the interference effects
are proportional to the Laplacian of the phase shift. This allows to interpret the inten-
sity at the detector plane as a product of the influence of the attenuation and diffraction.
In [Bremmer, 1952], thorough derivations on expressing the wave function in the detector
plane given the wave function in the object plane have been discussed, among others the
expansion in powers of the Laplacian operator.

5.2. Radiography
Having defined a physical model describing the image formation in PBI, several MAP ap-
proaches are formulated to recover information about the object. Parts of this section have
been published in [Hehn et al., 2018b].

5.2.1. Derivation of the physical mean model and likelihood
Following Section 4.2.1, the intensity at the detector plane given by Eq. (5.6) is recorded
by a detector with finite pixelsize. Thus, the measured intensity is sampled by default. To
reduce notation overhead, the measured intensity is denoted by a (one-dimensional) vector
y. The intensity behind the object is expressed in terms of the line-integrals by a vector `
according to Eq. (5.1). The discrete version of the phase shift is denoted by φ. Moreover,
the Laplacian operator can be modeled as a Toeplitz matrix L. Finally, the physical mean
model connecting the intensity at the detector plane to the line-integrals and the phase shift
is given in matrix notation by

ȳ(`,φ) = I0D
[
e−`

] (
1− z

k
Lφ
)
, (5.7)

where D denotes again the diagonal matrix with the vector in brackets on its diagonal.
Several discretizations of the Laplacian operator are possible. In practice, the five-point
stencil finite-difference method is used, which only includes the four nearest neighbors. This
provides good performance and reasonable accuracy. Another possibility would be to express
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5. Non-linear SIR framework for PBI and PB-CT

this model in terms of the intensity behind the object instead of the line-integrals. However,
the expression in terms of the line-integrals will become more intuitive when extending this
model to tomography.
Next, the negative log-likelihood term is derived. As the propagation of the X-rays does

not correlate noise, one can utilize the same formulation as for attenuation-based imaging.
Thus, the negative log-likelihood of having obtained the actual measurements y given the
line-integrals ` and the phase shift φ can be modeled by a Gaussian noise model according
to Eq. (4.43) given by

L(y|`,φ) = 1
2 (y− ȳ(`,φ))T W (y− ȳ(`,φ)) . (5.8)

In principle, one could also choose the Poisson noise model given by Eq. (4.33), but as
discussed in detail in Chapter 6, the Gaussian noise model is more suited for describing
detector systems used in PBI.
Ideally, one would estimate both the line-integrals as well as the phase shift by optimizing

the negative log-likelihood according to{
ˆ̀, φ̂

}
= arg min

`,φ
L(y|`,φ). (5.9)

For every measurement, this leaves twice as many unknowns (`,φ) as knowns (y). In this
case, there are many solutions to solve Eq. (5.9) including

` = − log
( y
I0

)
and φ = 0, (5.10)

which can be regarded as the attenuation-based solution as it ignores phase effects. However,
the above solution implies negative line-integrals where the measured intensity is higher than
I0 due to interference effects. Although not the focus of this thesis, one may impose prior
knowledge in form of (physical) constraints, such as requiring the line-integrals to be posi-
tive, to penalize non-physical solutions. This can for instance be achieved by regularization
techniques.

Although the above formulations are not used to estimate the line-integrals and phase shift
independently, they build the foundation of the subsequent algorithms. To minimize the
likelihood given by Eq. (5.8) according to Eq (5.9), gradient-based optimization algorithms
are used. These algorithms require the gradients2 of the negative log-likelihood with respect
to its arguments, which are derived in the following. First of all, deriving the negative
log-likelihood of Eq. (5.8) with respect to the physical mean model of Eq. (5.7) results in

∂L(y|`,φ)
∂ȳ(`,φ) = −1

2
(
W + WT

)
(y− ȳ(`,φ)) (5.11)

= −W (y− ȳ(`,φ)) , (5.12)

assuming that W is symmetric, which holds for diagonal matrices or covariance matrices by
definition. Next, the derivatives of the mean model with respect to the line-integrals as well
as with respect to the phase shift are calculated according to

∂ȳ(`,φ)
∂`

= −D
[
1− z

k
Lφ
]
D
[
e−`

]
I0 (5.13)

2 For computation of the gradients, the denominator-layout notation is used, which defines the gradient
of the (scalar) objective function with respect to a column vector to be a column vector as well. This
notation seems most intuitive for gradient-based approaches.
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and
∂ȳ(`,φ)
∂φ

= −z
k

LTD
[
e−`

]
I0. (5.14)

Thus, using Eq. (5.12), Eq. (5.13) and Eq. (5.14), and applying the chain rule, the derivatives
of the negative log-likelihood with respect to its arguments are given by

∂L(y|`,φ)
∂`

= ∂ȳ(`,φ)
∂`

∂L(y|`,φ)
∂ȳ(`,φ) = D

[
1− z

k
Lφ
]
D
[
e−`

]
I0W (y− ȳ(`,φ)) (5.15)

and
∂L(y|`,φ)

∂φ
= ∂ȳ(`,φ)

∂φ

∂L(y|`,φ)
∂ȳ(`,φ) = z

k
LTD

[
e−`

]
I0W (y− ȳ(`,φ)) . (5.16)

5.2.2. Homogeneity assumption
In Section 3.2, the homogeneity assumption was introduced, which couples the phase and
amplitude of the wavefield behind the sample. For monomorphous objects, this enables
the recovery of the phase shift from a single measurement, resulting in the single-material
phase-retrieval algorithm given by Eq. (3.18). Using Eq. (3.10) and Eq. (3.11) according to

`(t) = µt and φ(t) = −kδt (5.17)

with the material specific constants µ and δ and the wave number k, the line-integrals and
the phase shift are expressed in terms of the discrete representation of the trace t. Inserting
this into the physical mean model given by Eq. (5.7) results in

ȳ(t) = I0D
[
e−µt

]
(1 + zδLt), (5.18)

where the mean intensity depends now solely on the trace of the object. Thus, there are as
many unknowns (t) as knowns (y). The likelihood term of Eq. (5.8) remains unchanged and
is minimized according to

t̂ = arg min
t
L (y|`(t),φ(t)) . (5.19)

The gradients relating the line-integrals and the phase shift to the trace are constant and
given by

∂`(t)
∂t = µI and ∂φ(t)

∂t = −kδI, (5.20)

where I denotes the identity matrix. Accounting for the fact that the line-integrals and the
phase shift are now functions of the trace denoted by ` = `(t) and φ = φ(t), the gradient of
the likelihood with respect to the trace is given by the chain rule using Eq. (5.20), Eq. (5.15),
Eq. (5.16) and Eq. (5.12) according to
∂L(y|`(t),φ(t))

∂t
= ∂`(t)

∂t
∂L(y|`(t),φ(t))

∂`(t) + ∂φ(t)
∂t

∂L(y|`(t),φ(t))
∂φ(t) (5.21)

=
(
∂`(t)
∂t

∂ȳ(`(t),φ(t))
∂`(t) + ∂φ(t)

∂t
∂ȳ(`(t),φ(t))

∂φ(t)

)
∂L(y|`(t),φ(t))
∂ȳ(`(t),φ(t)) (5.22)

=
(
µD

[
1− z

k
Lφ(t)

]
− zδLT

)
D
[
e−`(t)

]
I0W (y− ȳ(`(t),φ(t))) (5.23)

=
(
µD [1 + zδLt]− zδLT

)
D
[
e−µt

]
I0W (y− ȳ(t)) , (5.24)

where the dependency of the line-integrals and the phase shift on the trace given by Eq. (5.17)
and ȳ(`(t),φ(t)) = ȳ(t) are used.
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5.2.3. Limit of pure phase objects
For the limiting case of a pure phase object (no absorption), ` = 0 holds. Thus, the mean
model of Eq. (5.7) simplifies to

ȳ(φ) = I0

(
1− z

k
Lφ
)
. (5.25)

In this case, the log-likelihood can be solved directly by solving y = ȳ(φ), resulting in

φ = F−1
[

F [y/I0 − 1]
z
kkT⊥k⊥

]
, (5.26)

where F⊥ denotes the two-dimensional discrete Fourier transform (DFT) with the spatial
frequencies k⊥, given that L approximates the continuous Laplacian such that the Fourier
derivative theorem holds. In practice, the FFT algorithm is used to evaluate the DFT
numerically. Here, the convention of the continuous FT given by Eq. (2.26) and Eq. (2.27) is
adapted for the DFT to be consistent with the analytical formulas derived in Chapter 3. The
conventional definition of the DFT can for instance be found in [Oliphant, 2006]. The above
equation coincides with the phase retrieval algorithm derived analytically in Eq. (3.5). It
also coincides with [Burvall et al., 2011] using k = 2πλ−1 and k⊥ → 2πk⊥, due to different
definitions of the DFT. [Gureyev and Nugent, 1996, Bronnikov, 1999]

5.3. Tomography
As discussed above, in general one cannot solve for the line-integrals and the phase shift
independently as this problem is ill-posed. In the following, the physical mean model and
the likelihood are extended to tomography. Ideally, due to the additional constraints imposed
by tomography, a more independent reconstruction of the complex refractive index can be
achieved. Parts of this section have been published in [Hehn et al., 2018b].

5.3.1. Extension of the physical mean model and likelihood
In tomography, the quantities of interest are not the line-integrals and the phase shift, but
the three-dimensional distribution of the linear attenuation coefficient µ, which describes the
attenuating properties of the object, and the three-dimensional distribution of the refractive
index decrement δ describing the phase-shifting properties of the sample. These quantities
relate to the line-integrals and the phase shift according to

`(µ) = Aµ and φ(δ) = −kAδ, (5.27)

as discussed in Section 2.2. The matrix A denotes the operator describing the forwardpro-
jection. The entries of this matrix in the voxel basis are given by Eq. (4.22). Now, ` and
φ hold the line-integrals and phase shift under every view. The physical mean model for
tomography is then given by inserting Eq. (5.27) into Eq. (5.7) resulting in

ȳ(µ, δ) = I0D
[
e−Aµ

]
(1 + zLAδ) . (5.28)

Again, the measurements y, which now hold the measured intensities under every view and
pixel, can again be modeled by a normal distribution according to Eq. (4.43) resulting in

L(y|µ, δ) = 1
2 (y− ȳ(µ, δ))T W (y− ȳ(µ, δ)) . (5.29)
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Here, the goal is to estimate the three-dimensional distribution of the linear attenuation
coefficient as well as the refractive index decrement according to{

µ̂, δ̂
}

= arg min
µ,δ
L(y|µ, δ). (5.30)

In this case, the number of unknowns (µ, δ) and knowns (y) depends on the number of
acquired views. However, in general an independent reconstruction of these two quantities
is not feasible.
The gradients of the line-integrals and the phase shift with respect to the linear attenuation

coefficient and the refractive index decrement are given by

∂`(µ)
∂µ

= AT and ∂φ(δ)
∂δ

= −kAT , (5.31)

where AT denotes the operator describing the backprojection. The corresponding gradients
of the likelihood using L(µ, δ) = L(`(µ),φ(δ)) are then given by

∂L(y|`(µ),φ(δ))
∂µ

= ∂`(µ)
∂µ

∂L(y|`(µ),φ(δ))
∂`(µ) (5.32)

= ATD
[
1− z

k
Lφ(δ)

]
D
[
e−`(µ)

]
I0W (y− ȳ(`(µ),φ(δ))) (5.33)

= ATD [1 + zLAδ]D
[
e−Aµ

]
I0W (y− ȳ(µ, δ)) (5.34)

and
∂L(y|`(µ),φ(δ))

∂δ
= ∂φ(δ)

∂δ

∂L(y|`(µ),φ(δ))
∂φ(δ) (5.35)

= −AT zLTD
[
e−`(µ)

]
I0W (y− ȳ(`(µ),φ(δ))) (5.36)

= −AT zLTD
[
e−Aµ

]
I0W (y− ȳ(µ, δ)) . (5.37)

5.3.2. Homogeneity assumption
As for radiography, one can impose the homogeneity assumption according to

t(x) = Ax, (5.38)

where x denotes the three-dimensional distribution of the (line) density, referred to, for
simplicity, as the three-dimensional distribution of the sample. Inserting Eq. (5.38) into
Eq. (5.18) results in the following physical mean model

ȳ(x) = I0D
[
e−µAx

]
(1 + zδLAx), (5.39)

which models the measured intensity depending only on the three-dimensional distribution
of the sample. This model is valid if the sample under consideration obeys the homogeneity
assumption. The number of unknowns (x) and the number of knowns (y) coincide with
conventional tomographic reconstruction.
The gradient of the trace with respect to the density gives

∂t(x)
∂x = AT (5.40)
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and consequently, the respective gradient of the likelihood term can be computed using
Eq. (5.40) and Eq. (5.24) and applying the chain rule resulting in

∂L(y|`(t(x)),φ(t(x)))
∂t(x) (5.41)

= ∂t(x)
∂x

∂L(y|`(t(x)),φ(t(x)))
∂t(x) (5.42)

= AT
(
µD [1 + zδLt(x)]− zδLT

)
D
[
e−µt(x)

]
I0W (y− ȳ(t(x))) (5.43)

= AT
(
µD [1 + zδLAx]− zδLT

)
D
[
e−µAx

]
I0W (y− ȳ(x)) (5.44)

and making use of Eq. (5.38) and ȳ(t(x)) = ȳ(x).

5.3.3. Limit of conventional tomography

In the limit of no phase effects such that z = 0, the physical mean model of Eq. (5.28)
reduces to

ȳ(µ) = I0e
−Aµ, (5.45)

which coincides with the physical mean model of conventional attenuation-based CT given
by Eq. (4.44), modeling solely the attenuation of intensity.

In summary, it was shown how the framework introduced above can be used for atte-
nuation-based CT as well as PB-CT employing the homogeneity assumption. In addition,
this framework has the potential to investigate means to more independently reconstruct
the attenuating and phase-shifting properties of the sample from a single distance in PB-CT
using additional constraints in the form of regularization techniques.

5.4. Validation of the homogeneous phase-retrieval algorithm at a
laboratory source

First of all, the physical mean model of Eq. (5.18) describing the interference effects under the
homogeneity assumption is validated using an X-ray micro-tomography system. In addition,
a comparison to the single-material phase-retrieval given in its analytical form by Eq. (3.18)
is performed. This comparison is crucial as the underlying physical mean model of Eq. (5.7)
describing the interference effects in terms of the line-integrals as well as the phase shift
does not coincide with the model used in the single-material phase-retrieval algorithm, due
to the approximation given by Eq. (5.5). Thereby, it was assumed that the product of the
intensity gradient and the phase gradient can be neglected. Parts of this validation have
been published in [Hehn et al., 2018b].

5.4.1. Phase retrieval algorithms

Before stating the optimization-based approach for phase retrieval building upon the results
of Section 5.2, the discrete version of the single-material phase-retrieval algorithm is outlined.
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Single-material phase-retrieval algorithm

The discretization of the single-material phase-retrieval algorithm follows analogous to the
Bronnikov algorithm as stated in Eq. (5.26). Thus, from the analytical form of Eq. (3.18),
the FT is replaced by the DFT and the continuous measurements I(r⊥, z) are represented
by the vector y, resulting in

t = − 1
µ

log
(

F−1
⊥

[
F⊥ [y] /I0

z δµkT⊥k⊥ + 1

])
, (5.46)

which again coincides with the notation found in [Burvall et al., 2011] substituting k⊥ →
2πk⊥ accordingly.

Optimization-based phase retrieval approach

The proposed phase retrieval method minimizes the negative log-likelihood of the measure-
ments with respect to the trace of the sample using the physical mean model describing the
image formation under the homogeneity assumption, which is given by Eq. (5.18). Using
L(y|t) = L(y|`(t),φ(t)), which can be derived from Eq. (5.8), the corresponding negative
log-likelihood is given by

L(y|t) = 1
2 (y− ȳ(t))T (y− ȳ(t)) , (5.47)

assuming W = I to be the identity. No statistical weighting and no additional prior knowl-
edge in the form of regularization terms is included into the phase-retrieval algorithm in
order not to bias the comparison to the single-material phase-retrieval algorithm. Formally,
the optimal trace is then given by

t̂ = arg min
t
L(t|y). (5.48)

5.4.2. Xradia 500 Versa
The X-ray microtomography system (Xradia 500 Versa) is a commercial device sold by Carl
Zeiss AG. The X-ray source is a transmission tube with a 5 µm thick tungsten target. The
tube current ranges between 30 − 160 keV with a power range of 2 − 10 W. The focal spot
size depends on the tube current but is overall stated to be less than 5 µm. The focal spot
size is connected to the spatial coherence of the X-rays and thus one of the most important
characteristics for PBI. The detector system employs indirect detection of the X-rays using
a scintillator which converts the X-rays to visible light. This light travels through lenses
for magnification or demagnification. Afterwards, the light is converted to a digital signal
inside a charged-coupled device (CCD) camera (Andor iKon-L) with 2048×2048 pixels. The
pixelsize is 13.5 µm. [Bidola, 2017]

5.4.3. Sample and experimental parameters
The data used for validation has been measured as part of a study to optimize PBI at
laboratory setups, published in [Bidola et al., 2015], where additional details can be found.

The source-to-axis distance (SAD) was set to dSAD = 10 mm and the source-to-detector
distance (SDD) was set to dSDD = 70 mm, resulting in a propagation distance of z = dSDD−
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Figure 5.1.: Validation of the proposed phase-retrieval algorithm using a Teflon plate. In
(a) the measured intensity behind the Teflon plate relative to the reference in-
tensity is depicted. In (b) the trace recovered by minimizing the likelihood
according to Eq. (5.48) is shown. A comparison to the conventional single-
material phase-retrieval algorithm is shown in (c). In the upper part, the line
profile of the middle row indicated by a blue line in (b) is shown in blue. In
orange, the same row obtained with single-material phase-retrieval algorithm
is shown, referred to as ‘Paganin’. Finally, in the lower part, the difference to
the single-material phase-retrieval algorithm is shown. This figure was adapted
from [Hehn et al., 2018b].

dSAD = 60 mm. The X-ray source was operated at 40 keV and a power of 3 W, resulting in
a spot size of around 1.8 µm. The average energy of the X-ray beam is 13 keV, as calculated
in [Bidola et al., 2015]. Lenses with four times magnification were used in the detection
system. To achieve lower exposure times, the detector pixels were binned by a factor of two.
This results in an effective pixelsize of p = 1/4 · 2 · 13.5 µm = 6.75 µm. [Bidola et al., 2015]
A head-on projection of a 250 µm thick Teflon plate was acquired, which can be seen in Fig-

ure 5.1 (a). The attenuating properties of the sample as well as edge-enhancement effects at
the interfaces from Teflon to air, where information about the phase-shifting properties of
the sample is encoded, can be seen.

5.4.4. Results and discussion

The phase-retrieval algorithms require several parameters. First of all, the material specific
scalar constants µ and δ are extracted from the xraylib library [Schoonjans et al., 2011]
according to the material, density and energy. As the physical mean model is derived for
a parallel-beam geometry, the Fresnel scaling theorem given by Eq. (2.55) is employed to
translate the parameters of the cone-beam geometry to the corresponding parallel-beam
geometry using the magnification given byM = dSDD/dSAD = 7.0. This results in an effective
propagation distance of z → z/M ≈ 8.6 mm and an effective pixelsize of p→ p/M ≈ 0.96 µm.
These parameters define the single-material phase-retrieval algorithm of Eq. (5.46) and the
physical mean model of Eq. (5.18).
The proposed approach for phase retrieval obtained by solving Eq. (5.48) is shown in

Figure 5.1 (b). The edges of the sample are sharply depicted without any overshoots, as the
interference effects are accounted for in the physical mean model. In addition, the noise level
is reduced compared to the measured intensity shown in Figure 5.1 (a). In Figure 5.1 (c) a
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comparison to the trace obtained by the single-material phase-retrieval algorithm according
to Eq. (5.46) is shown. In the upper part, the line profile of the central row of the trace as
depicted in Figure 5.1 (b) is plotted in blue. In comparison, the same profile of the trace
obtained with the single-material phase-retrieval algorithm is plotted in red. At the lower
part, the difference between both profiles is depicted. Small differences are visible at the
edges of the sample, which can be explained by neglecting the cross terms given by Eq. (5.5)
in the optimization-based approach.
In conclusion, the proposed optimization-based approach can accurately recover the trace

of the sample. The differences to the single-material phase-retrieval algorithm are small.
In Chapter 6, a physical mean model is discussed which coincides with the single-material
phase-retrieval algorithm and thus does not rely on the simplification introduced by Eq. (5.5).
Compared to the analytical single-material phase-retrieval algorithm, the above iterative
framework allows for more versatile physical mean models, which model additional effects
of the image formation process, like for instance source or detector blur. Again, extensions
of the physical mean model are discussed in Chapter 6. In addition, prior knowledge in the
form of regularization techniques are possible as well as a more accurate modeling of the
noise properties in the likelihood by including statistical weights.

5.5. PB-CT using the homogeneity assumption at a laboratory
source

After validating the physical mean model in the previous section, a reconstruction algorithm
for PB-CT is constructed, based on the results derived in Section 5.3. A comparison to two
other reconstruction approaches for PB-CT is performed, by measuring a self-built sample
at the microtomography system introduced in the previous section. Parts of the following
results have been published in [Hehn et al., 2018b].

5.5.1. Phase retrieval and reconstruction algorithms

Again, before deriving the MAP reconstruction approach for PB-CT, the conventional two-
step reconstruction approaches are introduced, which are used for comparison.

Two-step reconstruction algorithms

As already outlined in the introduction of this chapter, the conventional reconstruction ap-
proach consists of two parts. First, the traces are recovered for every measurement indepen-
dently using Paganin’s single-material phase-retrieval algorithm (PAG) given by Eq. (5.46).
Subsequently, tomographic reconstruction of the traces is applied. This is analogous to the
reconstruction of the line-integrals in attenuation-based CT. Thereby, one uses the FBP
algorithm given by Eq. (4.27) and Eq. (4.28). This approach is illustrated in Figure 5.2 by
the black arrows.
However, for tomographic reconstruction of the traces, SIR approaches can also be em-

ployed as illustrated in Figure 5.2. Thereby, one models only the projection operation in the
physical mean model given by Eq. (4.46) and the objective function is given according to
Eq. (4.49) by

C(x|t) = 1
2 (t−Ax)T W (t−Ax) + βR`1(x), (5.49)
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STIR

PAG

FBP

SIR

intensity trace density

Figure 5.2.: Overview of reconstruction algorithms for tomography. Depicted from left to
right is the measured intensity, the retrieved trace and the reconstructed density
of a homogeneous cylinder. The conventional reconstruction approach shown in
black consists of two parts. First, the trace is retrieved from the measured
intensity using the single-material phase-retrieval algorithm (PAG) given by
Eq. (5.46). Second, tomographic reconstruction is performed on the traces
for every view using the FBP given by Eq. (4.27) and Eq. (4.28). However,
tomographic reconstruction can also be performed using iterative methods by
minimizing Eq. (5.49) (SIR). Finally, modeling the interactions within the sam-
ple as well as the propagation effects, the density of the sample can directly be
reconstructed from the measured intensities by solving Eq. (5.51) (STIR). This
figure was adapted from [Hehn et al., 2018b].

where x in this case is the three-dimensional distribution of the sample. As outlined subse-
quently, TV regularization is employed. One distinct problem with this approach is that the
weights W cannot be approximated by the intensity measurements, as the previous phase
retrieval step alters the statistical properties of the measurements significantly. Most im-
portantly, the statistical weights cannot be approximated by a diagonal matrix as the phase
retrieval correlates noise significantly. Due to the non-linearity of the logarithm, the noise
properties of the traces can only be approximated, as shown for attenuation-based CT in the
appendix of [Tilley et al., 2016a]. The topic of modeling noise correlations will be further
discussed in Chapter 6.

Optimization-based reconstruction approach

In the following, a MAP approach suitable for recovering the three-dimensional distribu-
tion of the sample in PB-CT is proposed. As outlined in Section 4.3, the core idea of the
MAP approach is to maximize the posterior distribution to give the most probable sample
given the acquired measurements. Therefore, the negative log-likelihood is modeled accord-
ing to Eq. (5.29) using L(y|x) = L(y|µ(x), δ(x)) and the measurements are modeled using
the physical mean model of Eq. (5.39), which employs the homogeneity assumption. In
addition, a regularization term, given by Eq. (4.51), is required, as the tomographic recon-
struction problem is ill-posed. As the regularization term is applied on the volume, the
TV penalty given by Eq. (4.55) is well suited as it enforces sparse solutions. By employ-
ing the homogeneity assumption, the assumption of having piece-wise constant structures,
which TV regularization evolves around, seems to be particularly well suited. By contrast,
as discussed in Chapter 6, quadratic regularization might bias the interference term. The
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objective function can be written as

C(x|y) = 1
2 (y− ȳ(x))T W (y− ȳ(x)) + βR`1(x) (5.50)

and the MAP estimate of the volume is given by

x̂ = arg min
x
C(x|y). (5.51)

In contrast to the above two step approach, the statistical weights can be directly estimated
from the measured intensities according to W = D[y−1]. In the following, this approach is
referred to as statistical TIE-based iterative reconstruction (STIR) as it integrates a model
for the interference effects based on the TIE within a SIR framework for tomographic recon-
struction.
This reconstruction approach has several advantages compared to the above mentioned

two-step approaches. First, the phase retrieval of the individual views is coupled over the
volume. Second, the noise properties of the measured intensities can be modeled directly.
As noise is realized not until the actual detection processes in the detector and thus the
propagation of the X-rays does not influence the photon statistics, one does not rely on
additional approximation modeling the noise properties after phase retrieval. Consequently,
the assumption of having uncorrelated noise is a good approximation. In Chapter 6, noise
correlations in PB-CT will be addressed thoroughly. Third, compared to the PAG + FBP
approach, prior knowledge about the sample can be imposed further, such as the assumption
of piece-wise constant structures.

5.5.2. Sample and experimental parameters
For comparing the proposed STIR algorithm to the two-step approaches (PAG + FBP and
PAG + SIR), the following sample was created. A perfusion tube made of polyethylene (PE)
defines the boundaries of the sample. Within the tube, poly(methyl methacrylate) (PMMA)
spheres have been crushed with pliers to yield more complex structures. In addition, a
tungsten thread was added, which has different attenuating and phase-shifting properties
compared to PE and PMMA, and thus violates the homogeneity assumption.
The sample was measured at the Xradia 500 Versa microtomography system, detailed in

Subsection 5.4.2. The SAD was set to dSAD = 45 mm and the SDD was set to dSDD =
119 mm, resulting in a propagation distance of z = 74 mm and a magnification of M ≈ 2.64.
The detector was again used with the fourfold magnification lenses and with 2 × 2 spatial
binning of the detector pixels, resulting in the effective pixelsize of p = 6.75 µm.

The reference corrected intensity of the first view is depicted in Figure 5.3 (a). PE and
PMMA have similar attenuating and phase-shifting properties, while the tungsten thread is
highly attenuating.

5.5.3. Results and discussion
To compare the different reconstruction approaches detailed in Figure 5.2, the parameters
of the cone-beam geometry have to be transferred to the parallel-beam geometry according
to the Fresnel scaling theorem using the magnification. The effective propagation distance
is given by z → z/M ≈ 28 mm and the effective pixelsize is p → p/M ≈ 2.56 µm. The
material specific constants were chosen for PMMA, which were again extracted from the
xraylib library [Schoonjans et al., 2011].
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Figure 5.3.: Intensity and trace of the tomographic dataset for the first projection. In (a)
the measured intensity of the first projection relative to the reference inten-
sity is shown. In (b) the trace recovered by the single-material phase-retrieval
algorithm is depicted. In addition, in the upper parts, the regions, where
the statistical weights are set to zero, are shown. This figure was adapted
from [Hehn et al., 2018b].

With these parameters, the traces can be retrieved using PAG given by Eq. (5.46). The
respective trace of the first view depicted in Figure 5.3 (a) is shown in Figure 5.3 (b). The PE
and PMMA parts look sharp, however the tungsten thread in smeared out, covering features
in its vicinity, which cannot be recovered in a subsequent tomographic reconstruction. By
assuming the attenuating and phase-shifting properties of PMMA, the ratio of δ/µ in the
denominator of the phase-retrieval algorithm in Eq. (5.46) is too high for tungsten, which
results in the smearing of the thread.
In Figure 5.4, a transverse and longitudinal cut through the reconstructed volume obtained

by reconstructing the previously recovered traces using the FBP algorithm is shown. From
the tungsten thread, severe streak artifacts arise diminishing the image quality of the whole
reconstruction. In addition, due to the smearing of the tungsten thread, features in its
vicinity cannot be visualized.
Within the likelihood terms, the statistical weights have been introduced as means to ac-

count for the reliability of the acquired measurements with respect to noise arising mainly
from the photon noise. However, this is only valid if the physical mean model correctly
models the image formation. In the presented case, the physical mean model does not cor-
rectly model the measurements3 at regions where the homogeneity assumption is violated,
e.g. where the measurements are corrupted by the influence of the tungsten thread. Thus,
no statements about the likelihood of the respective measurements can be made for this case.
However, the statistical weights can also be interpreted as a measure for the reliability of the
physical mean model. Mathematically, this can be achieved by setting the weights to zero
for all measurements, which have been corrupted by the tungsten thread. As a consequence,
the resulting likelihood again correctly models the likelihood of the measurements and mea-
surements, which cannot be described by the physical mean model, are excluded from the

3 The term “measurements” refers to the measured intensities at individual pixels.
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Figure 5.4.: Conventional two-step reconstruction approach. In (a) a transverse slice of the
FBP reconstruction of the traces is shown. In (b) a corresponding longitudinal
slice is depicted. The blue squares denote the zoomed regions of Figure 5.5.
This figure was adapted from [Hehn et al., 2018b].

reconstruction.
Regions where tungsten is present can be obtained by simple thresholding. Thus, the

weights are set to zero at regions, where the reference corrected intensities have transmission
values lower than 0.5. In order to ensure that the whole tungsten thread has been selected,
the weights in the immediate neighborhood are also set to zero. In addition, to avoid effects
at the borders, the weights for the 15 outermost pixels at the detector borders are also set
to zero. The masked regions are depicted in Figure 5.3 in blue in the upper halves for both
the measured intensities as well as the recovered traces.
To avoid biasing the comparison between the PAG + SIR and STIR approach, the sta-

tistical weights outside the masked regions were set to one. The regularization strength for
both SIR and STIR was chosen such that the noise level in the reconstruction is compara-
ble. This was done empirically as the reconstructions are diminished by artifacts and thus
quantitative measures of the noise levels are corrupted. An empty volume was used as ini-
tialization of the volume as the PAG + FBP reconstruction shown in Figure 5.4 is corrupted
by artifacts. For minimizing the respective objective functions, the L-BFGS algorithm out-
lined in Subsection 4.3.5 was used. However, as an initial guess of zeros was chosen for the
volume, a comparably large amount of iterations is required, namely 100 iterations for the
SIR approach and 800 for the STIR approach.
The regions marked in Figure 5.4 by blue rectangles are shown in Figure 5.5 for the three

reconstruction approaches. The reconstructions shown in (a) and (d) were obtained by the
PAG + FBP as already depicted in Figure 5.4. In (b) and (e), the reconstructions obtained
by PAG + SIR are shown. For tomographic reconstruction, Eq. (5.49) was minimized with
the parameters specified above. Finally, the integrated STIR approach results in the recon-
structions shown in (c) and (f). The corresponding objective function is given by Eq. (5.50).
As discussed above, in the reconstruction using the FBP, the tungsten thread is smeared

out covering features in its vicinity, which cannot be depicted anymore. In addition, streak
like artifacts arise from the tungsten thread affecting the whole reconstruction. By replacing
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Figure 5.5.: Comparison of different reconstruction techniques. In (a)-(c) the transverse slice
marked in Figure 5.4 (a) is depicted for different reconstruction techniques. Like-
wise, in (d)-(f) the corresponding longitudinal slice marked in Figure 5.4 (b) is
shown. The reconstructions of the first column (a), (d) were obtained by an
FBP subsequent to single-material phase retrieval. This corresponds to the
results depicted in Figure 5.4. In the middle column (b), (e) statistical iter-
ative reconstruction was used to recover the distribution of the sample from
the traces obtained by the single-material phase-retrieval algorithm. The sta-
tistical weights as depicted in Figure 5.3 were used. Finally, in (c), (f) the
measured intensities were directly reconstructed by minimizing the objective
function given by Eq. (5.50) with the same statistical weights. This figure was
adapted from [Hehn et al., 2018b].

FBP by SIR, the weights depicted in Figure 5.3 (b) are leveraged to mask those parts, where
the tungsten is present on the measurements. However, the smearing of this thread is a
consequence of the earlier phase retrieval. Thus, information in the vicinity of the tungsten
thread is already lost and cannot be recovered in the subsequent tomographic reconstruction.
Due to TV regularization, the edges are sharper. However, the streak artifacts are more
prominent as well, due to the edge-preserving properties of the regularization. Finally,
STIR, which utilizes the same mask as shown in Figure 5.3 (a) directly on the acquired
measurements, removes the tungsten thread already in the integrated phase-retrieval step.
Thus, features in its vicinity can be recovered. As a consequence, no streak artifacts are
present. In addition, the assumption of having piece-wise constant structures can be fully
leveraged, resulting in a sharp depiction of the object.
In conclusion, benefits of the proposed STIR approach compared to two-step reconstruc-
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tion approaches have been demonstrated using a microtomography system. In particular,
the one-step approach can better account for artifacts introduced by materials, which vio-
late the homogeneity assumption. In addition, compared to the conventional PAG + FBP
approach, the image quality benefits significantly from TV regularization. Furthermore, it
could be shown that the proposed approach even works for a polychromatic source.

5.6. Application of PB-CT for imaging biological samples using
synchrotron radiation

One prominent application of PB-CT is the visualization of biological samples, as this imag-
ing technique provides high resolution and high contrast even for small samples. However, if
highly attenuating components such as implants are present in the sample, the image quality
suffers significantly, as demonstrated in the previous section.
The visualization of animal cochlear implants is one such imaging scenario, as the elec-

trode array within the implant has distinctly different attenuating and phase-shifting prop-
erties than the cochlear itself. The visualization of the exact position of the implant
within the cochlea is crucial as the insertion of the implant into the narrow turns of the
cochlea often causes subtle damage, which influences the experimental results. For instance,
the electrode of the implant penetrates the basilar membrane and disrupts the organ of
Corti, which lies on top. Or trauma caused by inserting the electrode in chronic exper-
iments triggers soft-tissue growth. Unfortunately, the regions in the vicinity of the im-
plant, where damage is most likely to occur and thus highest resolution is desired, are
most corrupted by imaging artifacts. Retracting the implant from the cochlea is likely to
cause additional damages, therefore, in-situ imaging of inserted implants is highly desir-
able. [Wanna et al., 2014, O’Connell et al., 2017, McJunkin et al., 2018]
In this section the results of this chapter are applied to the reconstruction of a guinea

pig with cochlea implant using synchrotron radiation (SR). SR employs different charac-
teristics compared to X-rays, generated at laboratory sources, which are particularly well
suited to the developed physical mean model. The following results have been published
in [Hehn et al., 2018a].

5.6.1. Large-scale synchrotron facilities

Synchrotron facilities have emerged to provide monochromatic X-rays with high flux and
spatial coherence enabling a variety of X-ray methods, which can not be implemented using
laboratory X-ray sources, including PBI using multiple distances or PBI methods utilizing
imaging regimes beyond the edge-enhancement regime.
SR is created by accelerating electrons to energies of a few GeV. The electrons are then

kept in a storage ring, which can have circumferences of several hundreds of meters, using
bending magnets with field strengths of just below one Tesla. The radiation employed for
X-ray experiments is created using so-called insertion devices, such as undulators, which
are located at straight sections between the bending magnets. These undulators consist of
alternating magnetic fields resulting in rapid oscillations of the electrons. These oscillations
cause the emission of X-rays. The magnetic fields are designed in a way that peaks with
a bandwidth of a fraction of a keV at specific energies are obtained. To further refine the
energy of the X-rays, monochromator crystals are used that reflect only the desired energy
using Bragg crystals. [Als-Nielsen and McMorrow, 2011, Schaff, 2017, Willmott, 2011]
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Figure 5.6.: Cochlea sample and virtual projections. In (a) a photograph of the guinea
pig cochlea with implant is depicted. In (b) a virtual intensity measurement is
depicted after preprocessing. In (c) the trace of the measurement in (b) recovered
with PAG is shown. This figure was adapted from [Hehn et al., 2018a].

5.6.2. Sample, experimental setup and preprocessing

For sample preparation, the cochlea was boiled out and bleached with hydrogen peroxide.
Afterwards, the implant was inserted into the cochlea. The electrodes of the implant are
made from Platinum and the wire material consists of Platinum-Iridium embedded in Silicon.
The implant was fabricated by MED-EL GmbH and is identical to cochlear implants used in
patients. A photograph of the sample with the cochlear implant can be seen in Figure 5.6 (a).
The sample was measured at the micro-tomography end-station of the imaging beamline

P05 at PETRA III at DESY (Hamburg, Germany) operated by the Helmholtz-Zentrum
Geestacht. Details about the experimental setup can be found in [Wilde et al., 2016]. The
monochromatic X-ray energy was set to 35 keV. The detection system consists of a CCD
camera with 12.0 µm. Optics with a magnification factor of 4.96 were used, resulting in
an effective pixelsize of around 2.42 µm. The propagation distance from the sample to the
detector was set to 1 m. The exposure time was set to 0.1 s. An off-axis tomography was
performed to extend the limited FOV of 7.2 mm in the horizontal direction. Therefore, the
detector was shifted such that the projected rotation-axis was located near the edge of the
detector and a full-scan was performed. Due to the parallel-beam geometry, one can obtain a
virtual half-scan with twice the FOV in horizontal direction by merging opposed projections.
In addition, to double the FOV in vertical direction, which was limited to 2 mm, two off-axis
tomographies were performed at different heights.
The intensity of the incident beam drifted over time due to drifts in the monochromator.

To correct for these fluctuations, a series of reference intensities without the sample were
acquired. For each projection, the variance of all available reference intensities was minimized
in a sample-free region to select the best reference intensity to correct for the intensity
inhomogeneities. The rotation axis was slightly rotated around the optical axis with respect
to the detector. To correct for this rotation, cross-correlations between overlapping regions
of opposing views were performed. This information was also used for creating the virtual
half-scan projection from each pair of opposed views. In addition, the projections obtained
at different heights were merged by maximizing the sum of overlapping regions. Finally, the
merged virtual half-scan projections were cropped and binned by a factor of four, resulting
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Figure 5.7.: Reconstructions of the cochlea sample. In (a) a slice of the reconstruction is
depicted for the conventional PAG + FBP reconstruction approach. In (b) the
corresponding slice reconstructed using STIR is shown. The blue rectangles
denote the zoomed regions of Figure 5.8. The results are depicted using the
same linear gray scale. This figure was adapted from [Hehn et al., 2018a].

in 1434 × 450 pixels and 1500 virtual views with a pixelsize of 9.68 µm. In Figure 5.6 (b),
an example for the virtual projection is depicted. This virtual projection consists of four
measurements, individually corrected for the incident flux, rotated, stitched, cropped and
binned.

5.6.3. Results and discussion
The qualitative parameters for the homogeneous material of the cochlea were set to µ =
1 m−1 and δ = 10−9. The choice for setting µ to unity results in no further scaling of the
recovered traces.
The traces recovered by PAG, using Eq. (5.46) with the parameters specified above are

shown in Figure 5.6 (c) for the intensity measurement depicted in Figure 5.6 (b). The traces
at the implant are slightly enlarged and have very high values. The subsequent tomographic
reconstruction of the traces is performed by FBP using Eq. (4.27) and Eq. (4.24). In Fig-
ure 5.7 (a) a reconstructed slice is depicted and the zoom indicated by the blue rectangle is
shown in Figure 5.8 (a). One finds streak artifacts arising from the implant.
For the STIR approach, the objective is similar to Eq. (5.50) used for reconstruction in

the previous section. It reads

C(x|y) = 1
2 (y− ȳ(x))T W (y− ȳ(x)) + βRγ(x), (5.52)

where the TV penalty function was replaced by the Huber penalty, defined by Eq. (4.54),
where the transition parameter γ was estimated from the background noise using the con-
ventional reconstruction approach. The strength of the regularization was set to 5 · 10−5 by
visual inspection. Again, as optimization routine the L-BFGS algorithm with 2000 iterations
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a 500 µm b 500 µm

Figure 5.8.: Zooms at regions around the implant. In (a) and (b) the corresponding regions
indicated in Figure 5.7 by the blue rectanges are depicted. In (a) the conven-
tional PAG + FBP approach was used, while in (b) STIR was employed. This
figure was adapted from [Hehn et al., 2018a].

was used to ensure sufficiently converged estimates. As the conventional reconstruction is
corrupted by streak artifacts, additional 250 iterations of the L-BFGS were performed initial-
ized with zeros and a strong regularization strength of β = 10−3 to obtain a low-frequency
representation of the sample. The weights were specified by W = D−1[y] according to
the assumption of the measured intensities being Poisson distributed. As discussed in the
previous section in detail, the negative log-likelihood term is not valid for measurements
that are not described by the established physical mean model. Thus, the likelihood term
was set to zero for measurements that are corrupted by the implant. The corresponding
measurements were selected by thresholding the direct FBP reconstruction of the measured
intensities (not shown here). The selected region was then slightly dilated and forward pro-
jected using Eq. (4.23). One could also have chosen to threshold the measured intensities
directly. However, the thresholding of the volume is less prone to noise and consistent with
every view. The respective reconstructed slice and the corresponding zoom are depicted in
Figure 5.7 (b) and Figure 5.8 (b) respectively.
Compared to the conventional reconstruction approach, the electrodes of the implant

are removed from the reconstruction and thus there are no streak artifacts present. In
addition, the noise and resolution properties of the reconstruction using the STIR algorithm
are superior, mainly due to the regularization, which suppresses noise while maintaining the
resolution at the edges, which can best be seen from Figure 5.8.
Lastly, renderings from both reconstruction approaches were created4 using Avizo Fire 9.1

(Thermo Fisher Scientific, USA). The renderings are depicted in Figure 5.9. The position
of the electrode can be segmented from the direct FBP reconstruction of the intensities
and is depicted in red. The rendering based on the reconstruction using the conventional
reconstruction approach shows streak artifacts and the position of the implant cannot be
visualized as emphasized by the zoom. By contrast, using the reconstruction from the STIR
approach yields an artifact-free rendering and the position of the implant can be accurately
depicted. Most importantly, regions around the implant are accurately visualized. Moreover,
the resolution properties are enhanced.

4 The renderings were created by Regine Gradl.
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a b

1 mm 1 mm

Figure 5.9.: Three-dimensional renderings of the cochlea sample with implant. In red, the
position of the implant segmented from a direct FBP reconstruction of the mea-
sured intensities is shown for both reconstruction approaches. In (a), the re-
construction obtained by the conventional PAG + FBP approach was used for
the rendering, while for rendering shown in (b), the iterative STIR approach
was used. The inserts zoom at regions around the implant detailing degradation
caused by the artifacts arising from the PAG step in the conventional recon-
struction approach. This figure was adapted from [Hehn et al., 2018a].

The streak artifacts are predominantly related to the violation of the homogeneity as-
sumption, as they are not present in the direct FBP reconstruction of the measured in-
tensities. However, many effects can cause similar streak artifacts. These effects include
beam hardening, photon starvation or noise from low photon counts, scattering, motion ar-
tifacts and nonlinear partial volume effects (NLPV), also known as exponential edge-gradient
effects. In literature, these effects have been studied thouroughly in particular in the con-
text of medical imaging [Boas and Fleischmann, 2011, Man et al., 1999, Rinkel et al., 2008,
Stayman et al., 2013]. Beam hardening should be negligible, due to the monochromaticity
of the source. With sufficient transmission behind the implants, the artifacts should also
not be attributed to beam starvation. However, as seen in the previous section, the pro-
posed approach can naturally account for beam starvation as well. Scatter should also be
reduced in PBI, due to the increased distance between the object and the detector. The
inanimate sample ideally should also not introduce motion artifacts. For the presented
sample, NLPV effects have an influence on the image quality. However, it was shown
in [Stayman et al., 2013] for attenuation-based imaging that MAP approaches are capable
of alleviating these effects by a finer sampling of the image volume at regions around the
implant. Although resulting in an increase of computational cost, this could be integrated
in the proposed approach. Closely related to NLPV effects are under-sampling artifacts,
if the number of views is small. In Section 4.2.1 the Nyquist condition was introduced as
a guideline for the required number of views. However, several publications have demon-
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strated that iterative reconstruction techniques, which employ regularization techniques, can
accurately reconstruct images from a limited number of views [Sidky and Pan, 2008], also
in the content of PBI [Sidky et al., 2010]. In [Vidal et al., 2005] an overview of additional
sources for artifacts in synchrotron micro-tomography, not restricted to streak artifacts, can
be found.
In summary, a guinea cochlea with implant was examined using PB-CT and SR detailing

the challenges arising from the implant, which violated the homogeneity assumption. It
was demonstrated that by integrating the phase retrieval into tomographic reconstruction
inside a MAP approach, the artifacts arising from the implant can be removed. Overall,
this approach resulted in superior image quality in terms of resolution compared to the
conventional two-step reconstruction approach. In the particular case, this might prove
beneficial to evaluate whether the insertion of the implant resulted in subtle damages of the
cochlea. This approach can be transferred to similar imaging tasks that involve biological
samples, which have additional features violating the homogeneity assumption such as metal
implants or bones. Thereby, one can leverage the high-contrast between materials with
similar attenuating properties such as soft-tissue using PB-CT without being diminished by
the presence of highly absorbing features.

5.7. Conclusion

In this chapter, various SIR algorithms have been investigated for PBI and PB-CT. There-
fore, a physical mean model was developed, consisting of a term accounting for the attenu-
ating properties of the sample and a term describing the interference effects due to the phase
shifts induced by the sample. First, a SIR framework for PBI was developed, which can po-
tentially be used to independently recover the amplitude and phase in the object plane. As
this problem, however, is ill-posed, two special cases were investigated. First, the homogene-
ity assumption was employed. The resulting algorithm is in good agreement with the results
obtained by the single-material phase-retrieval algorithm [Paganin et al., 2002] as validated
experimentally. In addition, in the limit of pure phase objects, the analytic solution of the
proposed algorithm coincides with the algorithm proposed by Bronnikov [Bronnikov, 1999].
The above approach was then extended to PB-CT, thereby incorporating phase retrieval
within tomographic reconstruction. Again, two special cases were investigated. For an in-
coherent source, the proposed physical mean model reduces to the mean model given by
Eq. (4.44). Furthermore, two applications of the proposed algorithm for tomography, which
incorporates the homogeneity assumption, were shown at a laboratory source and at a syn-
chrotron. Thereby, the versatility of the proposed SIR approach allowed to individually
exclude materials violating the homogeneity assumption from the reconstruction leading to
distinct improvements in image quality.
The proposed algorithms have various advantages compared to two step methods, which

could be investigated in more detail. For instance, the bias introduced due to Jensen’s
inequality given by Eq. (4.47) should be reduced in the proposed framework. Moreover,
two step approaches do not allow to easily use the noise properties after phase retrieval as
they are highly correlated. Means to leverage this information in a subsequent tomographic
reconstruction would be interesting. In [Tilley et al., 2016a], the influence of the logarithm
and an additional deblurring operation has been investigated for conventional CT, which
could potentially be transferred to PB-CT.
In addition, a challenging task would be to investigate means to more independently re-
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construct the linear attenuation coefficient and refractive index decrement. One approach
would be to investigate different regularization approaches to mitigate the homogeneity as-
sumption. Thereby, regularization techniques in the field of dual-energy CT are promising,
which require that the two reconstructed images have many regions, where edges are located
at the same position [Huh and Fessler, 2011]. On the other hand, regularization techniques
of multi-distance methods could be investigated further [Langer et al., 2014].
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6. Modeling the source and the detector in
homogeneous PBI and PB-CT

In the previous chapter, SIR approaches for PBI and PB-CT have been investigated. In
particular, incorporating the interference effects into a physical mean model and including
a statistical description of the measurements enabled removing materials not obeying the
homogeneity assumption from the reconstruction. The artifacts induced by such materials
hinder the effective use of PB-CT for various applications at laboratory environments as well
as synchrotron facilities.

This chapter addresses the challenges that arise when translating PBI and PB-CT to
laboratory environments. These include the reduced spatial coherence of available X-ray
sources and the reduced flux resulting in reduced spatial resolution and high noise levels.
The reduced flux makes the use of efficient detectors desirable. These detectors usually
feature thicker scintillators, which spread out the signal and further reduce spatial resolution.
The blurring of the source and the detector diminishes the interference effects crucially.
However, the interference effects hold the information about the phase-shifting properties
of the sample, which PBI and PB-CT try to leverage. Thus, methods to deconvolve the
blurring of the source and the detector are desired to enhance the quality of the interference
effects. However, deconvolution approaches struggle in particular in the presence of high
noise levels inherent to laboratory environments.
In conventional attenuation-based CT, most prior efforts to model and correct for sys-

tem blur have concentrated on preprocessing techniques, applied on the measured intensi-
ties prior to tomographic reconstruction [La Rivière et al., 2006, Riviere and Vargas, 2008,
Zhang et al., 2014b]. However, during preprocessing not all information present in the mea-
sured intensities is preserved and thus the lost information cannot be leveraged in the sub-
sequent tomographic reconstruction. In addition, the noise properties of the preprocessed
intensities are usually altered significantly. Thus, in order to include the noise properties in
the tomographic reconstruction, these properties have to be carefully propagated through
all preprocessing steps, which may require additional simplification [Tilley et al., 2016a].
MBIR methods that account for some kind of system blur by directly including a model

of the blur into the physical mean model have already been developed for single-photon
emission computed tomography (SPECT) [Yu et al., 2000, Feng et al., 2006] and recently
also for digital breast tomosynthesis [Zheng et al., 2018] as well as flat-panel cone-beam
CT [Tilley et al., 2016a, Hashemi et al., 2017, Tilley et al., 2018a]. In the following, build-
ing upon the results of the last chapter, MBIR approaches for PBI and PB-CT are de-
veloped, which account for the influence of the reduced spatial coherence, the spread of
scintillator-based detectors as well as the high noise levels. On the one hand, the developed
algorithms build upon and extend recent advances in analytical phase-retrieval approaches
for PBI, which take the effects of spatial coherence into account [Gureyev et al., 2009,
Beltran et al., 2018]. Furthermore, a connection between analytical phase retrieval and reg-
ularized image denoising algorithms is outlined [Rudin et al., 1992]. On the other hand,
recent advances in MBIR methods for conventional CT are transferred to PB-CT, which
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among others model the response of the detector and its influence on noise. For the pro-
posed algorithms, a new physical mean model is devised, which includes models of the source,
the detector and interference effects. In addition, an expression for the full noise covariance
statistics is derived and utilized in the reconstruction algorithms.
First, an analytical model of the image formation process is developed, which directly

integrates the homogeneity assumption. Next, a physical mean model as well as the full
covariance statistics are derived. Subsequently, a model-based iterative phase-retrieval al-
gorithm for PBI is devised, which analytically extends the single-material phase-retrieval
algorithm to include the effects of the source, detector and prior knowledge about the sam-
ple in the form of regularization techniques. Moreover, a connection between regularized
image denoising and phase retrieval is shown. Finally, an MBIR algorithm for PB-CT is
derived to tackle the above-mentioned challenges of translating this technique into labora-
tory environments. The algorithms are validated using a simulation study as well as an
experimental study at a compact inverse Compton source.
Parts of this chapter were submitted for publication [Hehn et al., 2019a]. Other parts are

currently being prepared for publication.

6.1. Image formation description at laboratory environments
In the following, the different steps (0)−(4) of the image formation as illustrated in Figure 6.1
are described. As in the previous chapter, the generated wavefield is initially assumed to
be a spatially coherent monochromatic forward propagating wavefield. This wavefield is
again decomposed into the envelope and the unscattered wave according to Eq. (2.6). In the
following, the intensity and phase, which define the envelope according to Eq. (2.16), are
discussed at different stages along the optical axis.
Between the source and the sample at position (0), the envelope of the generated wavefield

is defined by its intensity I0(r⊥) as well as by φ0(r⊥) = 0 as there is no phase shift compared
to the unscattered wave. The corresponding subscript indicates the position along the optical
axis as shown in Figure 6.1.
Behind the sample at (1), the intensity of the envelope is attenuated due to photoelectric

absorption and Compton scattering. Again, as discussed in Section 2.2, using the projection
approximation, the intensity behind the sample is given by the Lambert-Beer law according
to

I1(r⊥) = I0e
−`(r⊥). (6.1)

In order to align notation with reconstruction algorithms for conventional attenuation-based
CT, the influence of the sample is described in terms of the line-integrals, which relate to
the linear attenuation coefficient µ(r⊥, z) according to

`(r⊥) =
∫
µ(r⊥, z)dz. (6.2)

By employing the homogeneity assumption, discussed in Section 3.2, given by

δ(r) = δ

µ
µ(r), (6.3)

the phase shift induced by the sample can as well be directly expressed in terms of the
line-integrals according to

φ1(r⊥) = −k
∫
δ(r⊥, z)dz = −k δ

µ
`(r⊥). (6.4)
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ȳ g

K G

Ge−Aµ

D
[
Ge−Aµ

]
PGe−Aµ

[
D PGe−Aµ

]
BsPGe−Aµ

[
D BsPGe−Aµ

]
BdBsPGe−Aµ

[
BdD BsPGe−Aµ

]
BT

d

source
sample

detector

0 1 42/3

Figure 6.1.: Illustration of the image formation in PBI. From left to right, the source, sam-
ple and detector are depicted. In blue the intensity profile at different stages
is sketched. On the top of the image, the analytic expressions for the in-
tensity I(r⊥) and phase φ(r⊥) of the wavefield are given at different stages.
On the bottom, the mean vector ȳ and covariance matrix K used to describe
the random vector of the measurements are denoted at the different posi-
tions. A similar depiction of the image formation in terms of the mean vector
and covariance matrix for conventional attenuation-based CT has been given
in [Tilley et al., 2016a]. An adapted version of this figure was submitted for
publication [Hehn et al., 2019a].

Thus, similarly to conventional attenuation-based radiography, the influence of the sample on
the wavefield behind the sample is entirely defined by its line-integrals. [Paganin et al., 2002]

Next, the evolution of the intensity from the sample to the detector at (2) is described by
Eq. (2.43) according to

I2(r⊥) = I1(r⊥)− z

k
∇⊥ · (I1(r⊥)∇⊥φ1(r⊥)) . (6.5)

In Eq. (5.4), the second term was explicitly expanded to get an expression that entangles
the influence of the attenuating and phase-shifting properties of the intensity at the detector
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plane. Instead, one can directly employ Eq. (6.1) and Eq. (6.4) according to

I2(r⊥) = I0e
−`(r⊥) + z

δ

µ
∇⊥ ·

(
I0e
−`(r⊥)∇⊥`(r⊥)

)
(6.6)

= I0e
−`(r⊥) − z δ

µ
∇2
⊥I0e

−`(r⊥) (6.7)

=
(

1− z δ
µ
∇2
⊥

)
I1(r⊥). (6.8)

Due to the homogeneity assumption, the phase information of the wavefield in the sample
plane is already encoded in I1(r⊥). This formulation coincides with the model used to derive
the single-material phase-retrieval algorithm. [Paganin et al., 2002]
At position (3), the effect of the reduced spatial coherence of the source is now included. In

Section 2.4, starting from the mutual coherence function, a relation for strictly monochro-
matic wavefields assuming an ensemble of plane wavefields was derived that captures the
influence of partial coherence using the ensemble average according to

I3(r⊥) = 〈I2(r⊥)〉θ (6.9)

=
∫ ∞
−∞

∫ ∞
−∞

bs(r′⊥)I2(r⊥ − r′⊥)dr′⊥, (6.10)

which can be expressed as a convolution, where bs defines the respective abundance of the
corresponding wavefields. As discussed later, this formulation has recently been used to
analytically extend the single-material phase-retrieval algorithm to include effects of partial
coherence. [Pfeiffer et al., 2005, Gureyev et al., 2009, Beltran et al., 2018]
Finally at (4), the influence of scintillator-based detectors is included in the image for-

mation. These detectors consist of a scintillator material and a photodetector [Nikl, 2006].
Thereby, within the scinillator material, the individual X-rays are converted into visible
light. However, the visible light is emitted with a broad angular distribution. This results
in a signal spread over multiple pixels, which in return leads to additional blurring of the
system. This blurring can again be modeled by a convolution according to

I4(r⊥) =
∫ ∞
−∞

∫ ∞
−∞

bd(r′⊥)I3(r⊥ − r′⊥)dr′⊥, (6.11)

where the response of the detector is described by bd, which includes the blur and additional
gain terms. More advanced approaches have been proposed to accurately model the response
of the detector system. [Tilley et al., 2016a]

6.2. Discretization and full covariance statistics
The above analytical description of the image formation has not considered noise. In the fol-
lowing, the measurements are modeled as a random vector. At each position in the image for-
mation process, the mean as well as the covariance matrix of the random vector are derived.
This approach has been used for conventional attenuation-based CT in [Tilley et al., 2016a].
At position (0), the X-rays are assumed to be generated with a spatial distribution denoted

by a vector g. The generated X-rays are uncorrelated and follow a Poisson distribution
resulting in a diagonal covariance matrix. Thus, the mean vector and the covariance matrix
are given by

ȳ0 = g and K0 = G, (6.12)
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where G = D[g] is defined. After the interaction of the wavefield with the sample, the
intensity is attenuated and the phase is shifted according to Eq. (6.1) and Eq. (6.4). As
discussed in the previous section, it is sufficient to describe the intensity behind the sample,
as it already encodes the information about the phase-shifting properties of the sample. The
interaction with the sample does not correlate noise. Thus, the mean vector and covariance
matrix at position (1) are given by

ȳ1 = Ge−Aµ and K1 = D
[
Ge−Aµ

]
, (6.13)

where the discrete line-integrals are given by ` = Aµ, where A again models the projection
operation according to Eq. (4.22). At position (2), the free-space propagation of the wavefield
is included, which results in interference effects due to the phase-shifts induced by the sample.
According to Eq. (6.8), this can be modeled by the linear operator

P = I− z δ
µ

L, (6.14)

where I denotes the identity matrix and L again approximates the continuous Laplacian
operator. The propagation of the wavefield does also not correlate noise, thus the resulting
random vector is still Poisson distributed and its mean vector and covariance matrix are
defined according to

ȳ2 = PGe−Aµ and K2 = D
[
PGe−Aµ

]
. (6.15)

Again, at position (3), the influence of the source is included. As shown in Eq. (6.10),
the influence of the reduced spatial coherence can be described by a convolution. As the
convolution is a linear operation, a Toeplitz matrix denoted by Bs can be used to describe
this effect. Due to the fact that the source blur does not correlate noise, the respective mean
vector and covariance matrix are given by

ȳ3 = BsPGe−Aµ and K3 = D
[
BsPGe−Aµ

]
. (6.16)

Finally, the X-rays are converted to visible light in the scintillator, which results in an
additional blurring of the signal. However, as visible light photons created from a single
X-ray photon are fully correlated, the subsequent signal is not Poisson distributed anymore.
The respective mean vector and covariance matrix are consequently given by

ȳ4 = BdBsPGe−Aµ and K4 = BdD
[
BsPGe−Aµ

]
BT
d . (6.17)

Although not the focus of this work, one can include additional readout noise Kro in the
above framework as additive term to K4 [Tilley et al., 2016a]. It is further assumed that
influence of the stochastic nature of the conversion from an X-ray photon to light is negligible.
This effect has been analyzed in [Elbakri and Fessler, 2003]. Moreover, the effect of the
rectangular shape of the pixels is assumed to be small compared to the scintillator blur and
aliasing is not a dominant effect. [Tilley et al., 2016a]

6.3. Model-based iterative phase retrieval
In this section1, the framework derived in the previous section is used for phase retrieval. The
results are compared to the single-material phase-retrieval algorithm [Paganin et al., 2002]

1 Significant parts of this section have been developed together with Wolfgang Noichl.
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and its extension, which includes the effect of partial coherence [Beltran et al., 2018]. Sub-
sequently, the connection to MAP approaches in the context of regularized denoising ap-
proaches [Rudin et al., 1992] is discussed.
Here, phase retrieval refers to the process of recovering the intensity in the object plane,

denoted by z in the following, from the intensity in the detector plane, denoted by y. Know-
ing the intensity in the object plane is sufficient to recover the phase information due to the
homogeneity assumption. The physical mean model and the covariance matrix, which are
examined in the following, are given by Eq. (6.17) according to

ȳ(z) = BdBsPz and K(z) = BdD[BsPz]BT
d . (6.18)

Using this formulation, the connection between the intensity in the object plane and the
intensity in the detector plane is linear. The line-integrals and the phase shift are related
to the intensity in the object plane by ` = Aµ = − log(z/I0) and φ = kδ/µ log(z/I0)
respectively, assuming G = I0 to be a scalar to align notation with the analytical algorithms.
Finally, the objective function consisting of a log-likelihood term based on the multivariate

normal distribution N (ȳ,K) and the regularization term R is given by

C(z) = 1
2 (y− ȳ(z))T W (y− ȳ(z)) + βR(z), (6.19)

where W ≈ K−1(z) approximates the (non-diagonal) inverse covariance matrix indepen-
dently of z and β denotes the regularization strength.

6.3.1. Relation to the single-material phase-retrieval algorithm
To examine how the above framework relates to the single-material phase-retrieval algorithm,
an ideal source and detector are assumed according to Bs = Bd = I. Thus, the physical
mean model reduces to

ȳ(z) = Pz. (6.20)

In addition, no prior knowledge in the form of regularization techniques is incorporated in the
objective function. Thus, the objective function given by Eq. (6.19) reduces to the following
log-likelihood function

L(z) = 1
2 (y−Pz)T W (y−Pz) . (6.21)

This log-likelihood function coincides with a weighted least squares objective. To obtain an
estimate for the intensity in the object plane, this function is minimized. The gradient of L
with respect to z reads

∇zL = −PTW (y−Pz) . (6.22)

By setting the gradient to zero and solving for z explicitly, the estimate for the intensity in
the object plane is obtained according to

z =
(
PTWP

)−1
PTWy = P−1y. (6.23)

As the term in the parenthesis can be inverted, the solution is independent of the statistical
weights. This leads to the trivial solution of inverting the propagator to obtain the intensity
in the object plane given the intensity in the detector plane and accounting for the incident
flux accordingly.
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This inversion can be computed explicitly in Fourier space. To match the notation of the
single-material phase-retrieval algorithm, the measurements y in their continuous represen-
tation are denoted by I(r⊥, z). In addition, the intensity in the object plane denoted by
z above is given in its continuous representation by I(r⊥, 0). The propagator P is defined
by Eq. (6.14) and its continuous representation is given by Eq. (6.8), which includes the
continuous Laplacian. Thus, the Fourier derivative theorem given by Eq. (2.31) can be used
again. The propagator P in its continuous representation acting on some function f can be
expressed in Fourier space according to

F⊥
[(

1− z δ
µ
∇2
⊥

)
f(r⊥)

]
=
(

1 + z
δ

µ
k2
⊥

)
F⊥ [f(r⊥)] . (6.24)

This is valid if the operator L within the propagator P models the continuous Laplacian. If
L is implemented using the finite difference approximation, for instance using a five-point
stencil, according to

[Lx]i,j = xi+1,j + xi,j+1 − 4xi + xi−1,j + xi,j−1, (6.25)

where the different spatial dimensions are denoted explicitly by two indices, the Fourier
derivative theorem has to be modified. Denoting the two-dimensional DFT by F⊥ and x
being some vector, the analogous Fourier derivative theorem reads

F⊥ [Lx] = −κ2
⊥F⊥ [x] , (6.26)

where the analogous discrete frequencies κ2
⊥ are given by

κ2
⊥ = 4

(
sin2

(kx
2

)
+ sin2

(ky
2

))
. (6.27)

The trigonometric functions operate element-wise. By Taylor expanding sin2(x) = x2 +
O(x4), the discrete frequencies κ2

⊥ coincide with the analytic frequencies k2
⊥ according to

κ2
⊥ ≈ 4

((kx
2

)2
+
(ky

2

)2
)

= k2
x + k2

y = k2
⊥. (6.28)

This subtle difference will occur for the derivation of the generalized single-material phase-
retrieval algorithm as well as the analytic solution for the denoising algorithm, which will be
discussed in this section.
Having defined the analytic expression of the propagator P, Eq. (6.23) has the following

representation in Fourier space

F⊥ [I(r⊥, 0)] =
(

1 + z
δ

µ
k2
⊥

)−1
F⊥ [I(r⊥, z)] (6.29)

and can be solved for the intensity in the object plane according to

I(r⊥, 0) = F−1
⊥

[
F⊥ [I(r⊥, z)]

1 + z δµk2
⊥

]
. (6.30)

This result coincides with the single-material phase-retrieval algorithm as stated in Eq. (3.18)
using T (r⊥) = −1/µ log(I(r⊥, 0)/I0) to recover the traces explicitly. From Eq. (6.23) it is
obvious that the above formulation recovers the single-material phase-retrieval algorithm as
the models for the interference effects coincide, at least in its analytical representation.
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6.3.2. Generalization of the single-material phase-retrieval algorithm
By extending the physical mean model to additionally account for the spatial coherence of the
source as well as the detector response as given by Eq. (6.18) and including a regularization
term, the objective function based on Eq. (6.19) reads

C(z) = 1
2 (y−BdBsPz)T W (y−BdBsPz) + βR(z). (6.31)

First, the regularization term R is specified. One of the most successful regularization
techniques in image denoising of conventional images as well as in CT is TV regularization,
which uses the `1 norm as penalty function as defined by Eq. (4.55). TV regularization
evolves around the assumption of having piece-wise constant structures and thus favors
sparse solutions (in terms of neighboring pixel/voxel values), which, however, is not a good
assumption in the projection domain. For instance, the projection of a homogeneous cylinder
is by no means piece-wise constant. However, in the volume domain, the three-dimensional
distribution consists only of cylinder or no cylinder, which is a piece-wise constant structure.
In the projection domain, quadratic regularization can be employed instead, which uses the
`2 norm as penalty function given by Eq. (4.53). Quadratic regularization only penalizes
the magnitude without enforcing sparsity. TV regularization in the context of sparsity and
the comparison to quadratic regularization will be discussed in greater detail in Chapter 7.
The regularizer R given by Eq. (4.51) with the quadratic penalty given by Eq. (4.53) can be
written as

R(z) = 1
2
∑
i,j

∑
m,n∈Ni,j

1
∆im,jn

(
zm,n − zi,j

∆im,jn

)2

, (6.32)

where the indices explicitly refer to the different spatial components. If the neighborhood
only accounts for the next four neighbors, the additional weights ∆im,jn can be omitted as
they are identical2. Given appropriate border handling, it is furthermore sufficient to only
consider the next two neighbors due to the symmetry of the quadratic penalty. Thus, with
Ni,j = {(i+ 1, j), (i, j + 1)}, Eq. (6.32) reduces to

R(z) = 1
2
∑
i,j

(
(zi+1,j − zi,j)2 + (zi,j+1 − zi,j)2

)
. (6.33)

This equation can be reformulated as a quadratic equation using matrix-vector notation
according to

R(z) = 1
2
(
zTDT

xDxz + zTDT
y Dyz

)
(6.34)

= 1
2zT

(
DT
xDx + DT

y Dy

)
z (6.35)

= 1
2zTRz, (6.36)

defining R = DT
xDx + DT

y Dy, where Dx and Dy denote the forward differences in the two
spatial dimensions respectively. Formulating the quadratic penalty according to Eq. (6.36)
has for instance been done in [Gang et al., 2014].

2 In this case, square pixels are assumed.
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The resulting objective function is then given by

C(z) = 1
2 (y−BdBsPz)T W (y−BdBsPz) + β

2 zTRz (6.37)

and solving for z by setting the gradient to zero results in

z =
(
PTBT

s BT
dWBdBsP + βR

)−1
PTBT

s BT
dWy. (6.38)

Due to the size of the respective operators, this direct inversion cannot be computed for
realistically sized images. Nevertheless, gradient-based approaches for minimizing the above
objective function to obtain this solution would be feasible, but are not addressed here.
However, given certain approximations, this equation can be solved efficiently in Fourier

space. Therefore, the statistical weights will be omitted according to W = I. Thus,
Eq. (6.38) reduces to

z =
(
PTBT

s BT
dBdBsP + βR

)−1
PTBT

s BT
d y. (6.39)

In the following, the respective operations will be expressed analytically and their repre-
sentations in Fourier space will be discussed. Again, the intensity in the object plane and
the detector plane will be denoted by I(r⊥, 0) and I(r⊥, z) respectively. The Fourier space
representation of the propagator P has already been introduced in Eq. (6.29). For the blur
operators Bs and Bd it is assumed that they can be approximated by a Gaussian blur.
In accordance with Eq. (6.10) and Eq. (6.11), the blur operators can be expressed as a
convolution. Employing the convolution theorem, a convolution in real space can be equiva-
lently expressed as an element-wise multiplication in Fourier space. Thus, the real-space and
Fourier-space representations of these operations acting on some function f can be written
as

F⊥

∫ ∞
−∞

∫ ∞
−∞

e
−

r′⊥
2σ2
s f(r⊥ − r′⊥)dr′⊥

 = e−2σ2
sk2
⊥F⊥ [f(r⊥)] , (6.40)

F⊥

∫ ∞
−∞

∫ ∞
−∞

e
−

r′⊥
2σ2
d f(r⊥ − r′⊥)dr′⊥

 = e−2σ2
dk2
⊥F⊥ [f(r⊥)] . (6.41)

Finally, the discrete regularization term has to be converted into an analytic expression. The
explicit form of the matrix R is illustrated on a small one-dimensional problem with only
four entries and information at the borders is wrapped around. This results in

DT
xDx =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1


T 
−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

 =


2 1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 = −Lx,

(6.42)

which is the negative one-dimensional Laplacian operator. Consequently, the regularization
matrix can be written as

R = DT
xDx + DT

y Dy = −Lx − Ly = −L, (6.43)
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and is equal to the negative Laplacian operator L, which is also present in the propagator
P. The corresponding analytic Fourier space representation is then given by

F⊥
[
−∇2

⊥f(r⊥)
]

= k2
⊥F⊥ [f(r⊥)] , (6.44)

using again the Fourier derivative theorem. Here, the approximation κ2
⊥ ≈ k2

⊥ is used, which
has been discussed previously.
Having defined all operators in Fourier space, Eq. (6.39) can be expressed analytically in

Fourier space according to

F⊥ [I(r⊥, 0)] =
((

1 + z
δ

µ
k2
⊥

)
e−2σ2

sk2
⊥e−2σ2

dk2
⊥e−2σ2

dk2
⊥e−2σ2

sk2
⊥

(
1 + z

δ

µ
k2
⊥

)
+ (6.45)

+ βk2
⊥

)−1 (
1 + z

δ

µ
k2
⊥

)
e−2σ2

sk2
⊥e−2σ2

dk2
⊥F⊥ [I(r⊥, z)] . (6.46)

Rearranging the terms and solving for the intensity in the object plane results in

I(r⊥, 0) = F−1
⊥

 F⊥ [I(r⊥, z)](
1 + z δµk2

⊥

)
e−2(σ2

s+σ2
d)k2
⊥ + βk2

⊥(
1+z δ

µ
k2
⊥

)
e
−2(σ2

s+σ2
d)k2
⊥

 . (6.47)

Expressing the intensity in the object plane in terms of the trace according to I(r⊥, 0) =
I0 exp[−µT (r⊥)] and solving for the trace explicitly, reads

T (r⊥) = − 1
µ

log

F−1
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 F⊥ [I(r⊥, z)] /I0(
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)
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⊥


 . (6.48)

Similarly to the single-material phase-retrieval algorithm, the above expressions can be com-
puted efficiently and have little memory requirements. For σs = σd = 0 and β = 0, Eq. (6.48)
reduces to the single-material phase-retrieval algorithm as stated in Eq. (3.18).
In order to interpret the different components of Eq. (6.48), it is useful to expand the

denominator in terms of k2
⊥. Employing the Taylor expansion of the Gaussian blur in Fourier

space has been proposed in a similar context as discussed below in [Beltran et al., 2018]. The
Taylor expansion reads(

1 + z
δ

µ
k2
⊥

)
e−2(σ2

s+σ2
d)k2
⊥ + βk2

⊥(
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(6.49)

= 1 +
(
z
δ

µ
− 2

(
σ2
s + σ2

d

)
+ β

)
k2
⊥ +O(k4

⊥). (6.50)

Neglecting any terms O(k4
⊥) also eliminates the discrepancies between k2

⊥ and κ2
⊥. Eq. (6.48)

then becomes

T (r⊥) = − 1
µ

log

F−1
⊥

 F⊥ [I(r⊥, z)] /I0(
z δµ − 2

(
σ2
s + σ2

d

)
+ β

)
k2
⊥ + 1

 , (6.51)
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which is referred to as the generalized single-material phase-retrieval algorithm in the fol-
lowing. This filter coincides with the single-material phase-retrieval algorithm given by
Eq. (3.18) substituting

z
δ

µ
→ z

δ

µ
− 2

(
σ2
s + σ2

d

)
+ β, (6.52)

which is discussed below.
The first term zδ/µ accounts for the interference effects due to the phase-shifting and

attenuating properties of the material. In an ideal system this term is sufficient to re-
trieve the intensity in the object plane as derived in [Paganin et al., 2002]. The second term
−2
(
σ2
s + σ2

d

)
accounts for the reduced spatial coherence and blur in the detection system.

Both the effects of the source and the detector have the same influence on the phase retrieval,
although their properties with respect to noise vary, as addressed in more detail in the next
section. The negative sign indicates that the blur of the system already accounts for a certain
part of the phase retrieval. This counteracting effect has already been utilized experimen-
tally in [Gureyev et al., 2004]. However, the equivalence of phase retrieval and system blur
is only valid due to the approximations of Eq. (6.50). Recently in [Beltran et al., 2018], the
single-material phase-retrieval algorithm has been extended using the formalism of scalar
wave theory to similarly include the effect of partial coherence. Their result can be obtained
by setting σd = β = 0, although they argue that the effect of the detector blur can also be
incorporated. Finally, the third term accounts for the denoising properties due to quadratic
regularization. In contrast to the system blur, incorporating stronger regularization is equiv-
alent to stronger phase retrieval. Consequently, this results in lower noise, but also reduces
spatial resolution. In practice, the value of zδ/µ as used in the conventional single-material
algorithm is chosen by hand. Thereby, one tries to balance the suppression of the interfer-
ence effects to give best resolution as well as low noise level. As shown above, the manual
search for this factor includes various physical effects beyond the classical phase retrieval
due to the interference effects, including the effects of partial coherence and the blurring of
the detection system as well as noise suppression. Equivalently, one can also think about
these effects as a reduction of the effective propagation distance according to

z → z − 2µ
δ

(
σ2
s + σ2

d

)
+ µ

δ
β. (6.53)

The effective propagation distance has been discussed in the context of the Fresnel scaling
theorem given by Eq. (2.55) to account for cone-beam effects. In summary, the effective prop-
agation distance is reduced by the blur of the system due to the source [Beltran et al., 2018]
or the detector and increased if more noise suppression is desired.
Recently in [Paganin and Morgan, 2019], the reduction of the term zδ/µ has been analyzed

in the context of the Fokker-Planck equation. Thereby, this factor is reduced by a so-called
effective diffusion coefficient Deff(r⊥), which can account for small-angle X-ray scattering
(referred to as dark-field signal), edge-scattering signal or incoherent aberrations such as the
influence of the source or the detector.
The proposed framework using the objective function given by Eq. (6.37) allows to include

various effects that influence the phase retrieval. Among others, more complicated blur
models can be used, which do not necessarily have to be expressible as a convolution. In
addition, the statistical properties in the image formation can be utilized including noise
correlations, which will be discussed in section 6.4 in the context of PB-CT. Furthermore,
also non-quadratic regularization techniques such as TV regularization can be employed.
Finally, the effects at the borders of the image can be accounted for differently.
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6.3.3. Relation to image denoising algorithms
The generalized single-material phase-retrieval algorithm already hinted at a similarity be-
tween phase retrieval described by zδ/µ and denoising using quadratic regularization pa-
rameterized by β. The connection of these seemingly unrelated operations is outlined in
the following. Again an ideal source and detector are assumed according to σs = σd = 0.
Consequently, the analytic solution given by Eq. (6.47) of the objective function given by
Eq. (6.37) reduces to

I(r⊥, 0) = F−1
⊥

 F⊥ [I(r⊥, z)]
1 + z δµk2

⊥ + βk2
⊥(

1+z δ
µ

k2
⊥

)
 . (6.54)

Assuming no interference effects due to free-space propagation according to zδ/µ = 0, the
above equation reads

I(r⊥, 0) = F−1
⊥

[
F⊥ [I(r⊥, z)]
βk2
⊥ + 1

]
, (6.55)

which has the same form as the single-material phase-retrieval algorithm for β = zδ/µ using
T (r⊥) = −1/µ log(I(r⊥, 0)/I0). One the other hand, the corresponding objective function,
which has the above solution, is given by

C(z) = 1
2 (y− z)T (y− z) + β

2 zTRz, (6.56)

where the mean model ȳ(z) = z does not account for free-space propagation. Recovering
the regularizer R(z) = 1/2 zTRz, the objective function is given by

C(z) = 1
2 (y− z)T (y− z) + βR(z). (6.57)

This coincides with the widely used TV denoising approach if the penalty function of the
regularization term is given by the `1 norm according to Eq. (4.55). Thereby, y denotes the
acquired noisy image and z is the denoised image. [Rudin et al., 1992]

In conclusion, the single-material phase-retrieval algorithm can be thought of as a qua-
dratic denoising algorithm, which omits an explicit physical description of the interference
effects. The regularization strength is chosen by hand to give the best depiction of the image.
This is similar to most applications using the single-material phase-retrieval algorithm, where
the factor zδ/µ is commonly also chosen empirically.

6.4. Objective function for homogeneous PB-CT
After discussing how the framework derived in Section 6.2 can be utilized for phase retrieval
in PBI, this section introduces the main result of this chapter, namely a MBIR algorithm
for PB-CT suitable for laboratory sources.
The physical mean model and covariance matrix, according to Eq. (6.17), are given by

ȳ(µ) = Be−Aµ and K(µ) = BdD[BsPGe−Aµ]BT
d , (6.58)

where B = BdBsPG is defined to reduce notation overhead and to make the mean model
consistent with the mean model recently proposed for conventional attenuation-based CT
in [Tilley et al., 2018a].
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The objective function consists again of a log-likelihood term and a regularization term.
In the previous chapter, the log-likelihood terms assumed uncorrelated measurements, as
the underlying noise models were assumed to follow a Poisson distribution. Now, the mea-
surements are modeled by a multivariate normal distribution according to N (ȳ(µ),K(µ)).
Thus, with some regularization term R(µ), the objective reads

C(µ) = 1
2(y−Be−Aµ)TW(y−Be−Aµ) + βR(µ), (6.59)

where here W ≈ K−1(µ) approximates the inverse non-diagonal covariance matrix. The
gradient of the objective with respect to µ is given by

∇C = ATD
[
e−Aµ

]
BTW(y−Be−Aµ) + β∇R (6.60)

= ATD
[
e−Aµ

] (
BTWy−BTWBe−Aµ

)
+ β∇R. (6.61)

The main problem of the non-diagonal covariance matrix is that it cannot be inverted
efficiently. Thus, in the following, various approximations of W are discussed.
Using the exact inversion of the covariance matrix according to W = K−1(µ) is not

feasible. On the one hand, assuming 10003 pixels and 10003 voxels, this matrix holds 1018

elements, similarly to the projection matrix A, as discussed in Subsection 4.2.2. On the
other hand, computing the respective matrix-vector product using iterative methods would
be computationally very expensive as this has to be performed in every iteration. However,
similar nested iterations have been demonstrated in [Tilley et al., 2016a] in the context of
attenuation-based CT using a linearized mean model.
The simplest choice would be to approximate the covariance matrix by

K(µ) ≈ D [y] (6.62)

by assuming uncorrelated noise. Thus, the approximation W = D−1[y] would make the
weights independent of µ. However, in this case the noise correlations imposed by the blur
of the detection system are not accounted for.
In [Tilley et al., 2016b], a different approach has been proposed, which includes correlated

noise into the reconstruction. Thereby, the covariance matrix is approximated according to

K(µ) ≈ BdD [y] BT
d . (6.63)

The reason for this choice can be seen from the computation of the gradient given by
Eq. (6.61). The first term BTWy has to be computed only once. This can for instance
be achieved by an iterative algorithm such as the CG algorithm [Shewchuk et al., 1994].
The second term can be computed according to

BTWB = BT
(
BdD [y] BT

d

)−1
B (6.64)

= GTPTBT
s BT

d

(
B−Td D

−1 [y] B−1
d

)
BdBsPG (6.65)

= GTPTBT
s D−1 [y] BsPG, (6.66)

thereby omitting any explicit inversions of non-diagonal matrices. Thus, the gradient can
be computed efficiently in every iteration and the first term can be precomputed at the
beginning of the reconstruction.
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The proposed physical mean model has been rewritten in Eq. (6.58) such that it matches
the mean model examined in [Tilley et al., 2016b] for conventional attenuation-based CT.
For their model a separable surrogate approach to minimize the according objective func-
tion efficiently has been developed recently [Tilley et al., 2018a]. However, this requires the
matrix B to be non-negative in order to fulfill the optimal curvature conditions derived
in [Erdogan and Fessler, 1999a]. In the proposed model, the operator modeling the interfer-
ence effects does not fulfill this condition and thus, this optimization approach cannot be
leveraged.

6.5. Simulation study tailored to laboratory environments
The MBIR algorithms developed in the previous section were evaluated using a simulation
study and are compared to several analytical approaches. The parameters of the Munich
Compact Light Source (MuCLS) described below were used as reference for the simulation
study.

6.5.1. The Munich Compact Light Source (MuCLS)
The MuCLS consists of an inverse Compton source (manufactured by Lyncean Technologies
Inc., USA) and an imaging beamline with two endstations.
The X-rays are generated by inverse Compton scattering of laser light with electrons.

The generated X-rays are quasimonochromatic with a tune-able energy between 15 keV and
35 keV. The flux depending on the energy is in the order of 1010 ph/s with a divergence of
around 4 mrad. The X-ray source spot has a Gaussian profile with a standard deviation of
around 50 µm. [Achterhold et al., 2013, Eggl et al., 2016, Gradl et al., 2017]

A setup for PBI and PB-CT is located in the first endstation at approximately 4 m dis-
tance from the X-ray source spot. The low divergence of the generated X-rays leads to
a FOV of approximately 16 mm in diameter. The combination of a small source size and
large source to sample distances provides sufficient spatial coherence for these imaging tech-
niques. [Gradl et al., 2017]

6.5.2. Parameter selection and reconstruction algorithms
The parameters for the simulation study are based on the characteristics of the MuCLS.
The energy of the X-rays is set to 25 keV. The extent of the projected source is assumed
to be Gaussian with σs = 2 px and the X-ray flux is given according to I0 = 103 assuming
homogeneous illumination. The scintillator-based detector is simulated with 512× 64 pixels
and a pixelsize of p = 20 µm. For simplicity, additional gain factors are omitted such that
every incoming X-ray photon is assumed to be detected. The detector is positioned 1 m
behind the sample.
The sample used for simulation is based on the FORBILD head phantom as defined

in [FORBILD phantoms, 1999]. The voxel values of the phantom are given by water e-
quivalent density, which were used directly to obtain a phantom obeying the homogeneity
assumption. The corresponding scalar constants µ and δ of water were extracted from the
x-raylib library [Schoonjans et al., 2011]. Finally, the phantom was shrunk by a factor of
25 to fit the FOV of the detector, resulting in a diameter of around 10 mm. The volume
consists of the central 64 slices with 512 × 512 voxels each. In Figure 6.2 (a), the central
slice of the phantom is depicted.
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Figure 6.2.: Simulation study of PB-CT. In (a) the central slice of the water phantom is
depicted. The rectangular region on the left is used for the computation of
the noise level. In addition, the features mimicking the inner-ear are used to
evaluate the resolution properties of the reconstruction algorithms. The region
between the two partially visible brown circles is used later on for the validation
of the edge sharpness. In (b) the simulated measurement for the first view
is depicted. The line-integrals recovered by the single-material phase-retrieval
algorithm are shown in (c). An adapted version of this figure was submitted for
publication [Hehn et al., 2019a].

A half-scan with 512 projections equidistantly distributed between 0◦ and 180◦ was sim-
ulated in a parallel-beam geometry. The measurement was simulated using

y ∼ BdP
[
BsPI0e

−Aµ
]
, (6.67)

where P draws from a Poisson distribution. The resulting measurement for the first view
is depicted in Figure 6.2 (b). In addition to the attenuating properties, edge-enhancement
effects in particular at the transition from sample to air can be seen, which are smeared out
due to the effects of the source and detector.
In the following, five different reconstruction approaches are investigated, of which the

first three methods are analytic and the remaining methods are iterative. If included in
the reconstruction, the model for the interference effects of all reconstruction approaches
coincide based on Eq. (3.16).
The first reconstruction approach does not take the interference effects into account. Ac-

cording to Eq. (4.45), the line-integrals are given by

` = − log
( y
I0

)
, (6.68)

which are then reconstructed tomographically using the FBP technique defined by Eq. (4.27)
and Eq. (4.28). This reconstruction approach is simply referred to as the ‘FBP’ method
and coincides with the conventional reconstruction approach for attenuation-based CT. The
second reconstruction approach is the conventional reconstruction approach for PB-CT, as
outlined in Figure 5.2. Here, the line-integrals are recovered from each view individually
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6. Modeling the source and the detector in homogeneous PBI and PB-CT

using the single-material phase-retrieval algorithm as proposed by [Paganin et al., 2002].
The algorithm given by Eq. (5.46) can be expressed in terms of line-integrals according to

` = − log
(

F−1
[

F [y] /I0

z δµk2
⊥ + 1

])
, (6.69)

using ` = µt. The values for z, δ, µ as well as the frequencies k⊥ are matched with the
simulations. The line-integrals are subsequently reconstructed using the FBP algorithm.
This method is therefore referred to as the ‘Paganin + FBP’ method. The third method
uses the extension of the single-material phase-retrieval algorithm that takes the blur of
the system into account as proposed by [Beltran et al., 2018]. The algorithm to obtain the
line-integrals can be obtained by discretizing Eq. (6.51) and setting β = 0 resulting in

` = − log

F−1

 F [y] /I0(
z δµ − 2

(
σ2
s + σ2

d

))
k2
⊥ + 1

 (6.70)

using the same parameters for z, δ, µ and k⊥. In addition, the effects of the source and the
detector are accounted for by the parameters σs and σd, which are assumed to be known.
Again, FBP is used for tomographic reconstruction of the line-integrals. This method is
referred to as the ‘Beltran + FBP’ method.
The two remaining reconstruction approaches use the MBIR approaches derived in Sec-

tion 6.4. The algorithms minimize the objective function given by Eq. (6.59). The regular-
ization term given by Eq. (4.51) uses the quadratic penalty given by Eq. (4.53) according
to

R(µ) = 1
4
∑
i

∑
n∈N

1
∆ in

(
µi − µn

∆in

)2
, (6.71)

where the sum over n includes the next 26 neighboring voxels and ∆in ∈ {1, 21/2, 31/2} de-
notes the distances to the respective neighbors. The first algorithm referred to as the ‘uncor-
related MBIR’ method approximates the covariance matrix directly with the measurements
given by Eq. (6.62). The second algorithm approximates the covariance matrix according to
Eq. (6.63), which includes noise correlations and is therefore referred to as the ‘correlated
MBIR’ method. Reconstructions for both methods are performed for different values of the
regularization strength β. For the ‘uncorrelated MBIR’ method the regularization strength
is evaluated from 10−2cm2 to 102cm2 using 17 steps, which are equidistantly distributed
on a logarithmic scale. For the ‘correlated MBIR’ method, the 17 different values of the
regularization strength were logarithmically distributed between 10−1.25cm2 and 102.75cm2.
Optimization is performed using the L-BFGS algorithm and only evaluating the curvature
conditions in the line-search routine. In addition, the term BTWy was precomputed once us-
ing the CG algorithm. This term could be used independently of the regularization strength.
As convergence criterion, the gradient norm is computed according to

‖∇C(µ)‖2 < εmax (1, ‖µ‖2) (6.72)

with ε = 10−3 chosen empirically such that by visual inspection the solution does not change
noticeably anymore.
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Figure 6.3.: Comparison of the analytic reconstruction methods. The slice shown in Fig-
ure 6.2 (a) for the ground truth is depicted with the same grayscale for the
different analytic reconstruction methods. Moreover, in the lower left quarter
the linear grayscale ranges from the minimal to maximal value in this region to
better assess the quality of the sample edges. In (a) the central slice obtained
by the ‘FBP’ method is shown. In (b), the corresponding slice obtained by the
‘Paganin + FBP’ method is depicted. Finally, in (c) the result of the ‘Beltran
+ FBP’ method is shown. An adapted version of this figure was submitted for
publication [Hehn et al., 2019a].

6.5.3. Results and discussion

In Figure 6.3 the central slices obtained by the three analytical reconstruction methods are
depicted. The linear attenuation coefficients are shown with the same linear grayscale used
for the depiction of the ground truth in Figure 6.2 (a). In addition, the lower left quarter
shows the reconstructions in a different linear grayscale ranging from the minimal to the
maximal value of the attenuation coefficients in this region, to better assess the overshoots at
the transition from the sample to the background. The high-resolution features representing
the inner ear structure are magnified to evaluate visually the resolution properties of the
different methods.
The central slice obtained with the ‘FBP’ method is shown in Figure 6.3 (a). As this

method does not explicitly account for the interference effects, overshoots at the edges are
visible, which can be seen in particular in the lower left window. However, due to the
smearing of the source and the detector, partial phase retrieval is implicitly performed,
resulting in overall good contrast.
In Figure 6.3 (b) the reconstructed slice obtained by the ‘Paganin + FBP’ method is

shown. This method applies the single-material phase-retrieval algorithm for each view
independently prior to tomographic reconstruction. Due to the properties of the phase-
retrieval algorithm, excellent contrast and low noise levels are obtained. As the interference
effects are fully accounted for, no residual edge-enhancement is visible. However, the effects
of the source and the detector are not accounted for, resulting in bad resolution properties
as detailed in the magnified region.
Finally, Figure 6.3 depicts the respective slice obtained by the ‘Beltran + FBP’ method.

The blur of the source and the detector is taken into account in the phase-retrieval step.
Thereby, the strength of the phase retrieval is reduced by 2σ2 = 16p2 from zδ/µ ≈ 18.1p2
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Figure 6.4.: MBIR reconstructions with matched noise levels. In (a) the standard deviation
of the reconstructions obtained by the two MBIR methods are plotted over the
regularization parameters. In addition, the standard deviation of the results
obtained by the analytical reconstructions are included. In (b), a reconstructed
slice obtained with the ‘uncorrelated MBIR’ method is shown which closely
matches the noise level of the ‘Beltran + FBP’ method. In (c), a reconstructed
slice obtained with the ‘correlated MBIR’ method is depicted. Again, the reg-
ularization strength of this reconstruction is chosen such that the noise level
compares to the noise level of the ‘Beltran + FBP’ method. An adapted version
of this figure was submitted for publication [Hehn et al., 2019a].

resulting in only a weak phase retrieval. However, similar to the ‘FBP’ method, residual
edge-enhancement effects are visible. Thus, a reduction of the phase retrieval strength is not
able to accurately model the effects of the source and detector.
Depending on the choice of the regularization strength β, different reconstructions are

obtained for the two MBIR methods. For lower values of the regularization strength the
resolution is improved, but the noise level increases, while for higher values the noise level
is reduced, but the resolution is reduced as well. Therefore, the regularization strengths of
the MBIR methods are selected using different criteria.
The first criterion selects the regularization strength of the two MBIR methods such that

the variances of the reconstructions match the variance obtained by the ‘Beltran + FBP’
method best. The variances are calculated from the homogeneous region indicated by the left
square shown in Figure 6.2 (a). The region was chosen reasonably big, such that the noise
level of all relevant frequencies is incorporated in the evaluation of the variance. The results
of the two MBIR methods are depicted in Figure 6.4. In Figure 6.4 (a), the variances of the
two methods are plotted over the regularization strength, together with the variances of the
analytical methods depicted by the horizontal lines. As already discussed qualitatively, this
figure shows quantitatively that the ‘FBP’ method results in the highest noise level followed
by the ‘Beltran + FBP’ and ‘Paganin + FBP’ methods. In Figure 6.4 (b), the slice obtained
with the ‘uncorrelated MBIR’ method and in Figure 6.4 (c) the corresponding slice obtained
with the ‘correlated MBIR’ method are depicted. Compared to the analytic methods shown
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in Figure 6.3, the MBIR method results in a more accurate reconstruction of the phantom.
In particular, compared to the reconstruction obtained with the ‘Beltran + FBP’ method,
which has the same variance, the resolution is improved significantly as seen by the inner
ear structures. Moreover, the approximation of the inverse covariance matrix within the two
MBIR methods has a crucial impact on the reconstruction quality, which can be seen best
from the reconstruction of the inner ear structure. While the reconstruction obtained with
the ‘uncorrelated MBIR’ method has strong overshoots at the edges, the ‘correlated MBIR’
method reduces these artifacts significantly. This also results in a better overall visualization
of the small features using the ‘correlated MBIR’ method.
The second criterion evaluates the mean squared error (MSE) of the different reconstruc-

tions to the ground truth phantom over the whole volume. In Figure 6.5 (a) the MSE is
plotted over the regularization strength for the two MBIR methods. In general, if the regular-
ization strength is too low, the MSE increases due to the increased noise level. By contrast,
if the regularization strength is too high, the resolution degrades significantly, resulting again
in an increase of the MSE as the ground truth cannot be represented accurately. In addition,
the figure shows the MSE of the analytical reconstruction approaches by horizontal lines.
The ‘FBP’ method performs worst as it cannot reconstruct the phantom accurately and has
high noise levels. The ‘Paganin + FBP’ and ‘Beltran + FBP’ methods perform similarly.
While the ‘Paganin + FBP’ method results in a lower noise level, the value of the MSE is
partially compensated by the worse resolution compared to the ‘Beltran + FBP’ method.
In Figure 6.5 (b) and Figure 6.5 (c), the reconstructions of the ‘uncorrelated MBIR’ method
and the ‘correlated MBIR’ method are shown using the regularization strengths that result
in the lowest MSE. This results in a good trade-off between noise level and resolution. Com-
pared to the reconstructions at matched variance depicted in Figure 6.4, the resolution is
increased and thus the noise level is overall higher. As already seen in Figure 6.4, the recon-
struction obtained with the ‘uncorrelated MBIR’ method has overshoots at the edges which
diminish the reconstruction quality considerably. The ‘correlated MBIR’ method gives the
most accurate reconstruction of the phantom without severe overshoots at the edges of the
structures.
To better assess the resolution properties of the different reconstruction approaches, line

profiles are employed. The line profiles are obtained from the edge of the cylindrical struc-
ture located in the upper center of the phantom. This structure is partially visible in Fig-
ure 6.2 (a). To achieve subpixel resolution and a low noise level, the symmetry of the
structure is employed. Therefore, the values of all voxels are taken into account that lie
inside the two brown circles shown in Figure 6.2 (a). In Figure 6.6, the values of the re-
spective voxels are plotted over the distance from the center of the cylindrical structure.
As multiple voxel values have the same distance from the center, the corresponding mean
values and standard deviations are computed. To improve the visualization, the mean values
are interpolated using smoothed spline interpolation by utilizing the standard deviations for
appropriate weighting.
In Figure 6.6 (a) the corresponding line profiles of the three analytic reconstruction ap-

proaches as depicted in Figure 6.3 are shown together with the MBIR methods at matched
variances as depicted in Figure 6.4 and the ground truth line profile. The line profile of the
‘FBP’ results in the steepest slope at the edge, but also the highest overshoots, followed
by the ‘Beltran + FBP’ method. By contrast, the conventional ‘Paganin + FBP’ method
gives the most shallow slope, but no overshoots. The line profiles of the MBIR methods lie
between the ‘Paganin + FBP’ and the ‘Beltran + FPB’ methods, both in terms of slope
steepness as well as overshoots. The ‘uncorrelated MBIR’ method results in a steeper slope,
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Figure 6.5.: MBIR reconstructions with lowest MSE. In (a) the MSE of the reconstructions
obtained by the two MBIR methods are plotted over the regularization parame-
ters. In addition, the MSE of the results obtained by the analytical reconstruc-
tions are included. In (b) and (c), reconstructed slices of the two MBIR methods
are shown using a regularization strength resulting in the lowest MSE. In (b)
the reconstruction is obtained with the ‘uncorrelated MBIR’ method and in (c)
the reconstruction is obtained with the ‘correlated MBIR’ method. An adapted
version of this figure was submitted for publication [Hehn et al., 2019a].

but also in higher overshoots compared to the ‘correlated MBIR’ method. In general, the
steepness of the slope is not a good criterion to assess the resolution of the reconstruction as
it is biased by the overshoots. However, the MBIR methods approximate the ground truth
phantom best, as also shown by visual inspection of Figure 6.3 and Figure 6.4.
To further compare the differences between the ‘uncorrelated MBIR’ method and the

‘correlated MBIR’ method, in Figure 6.6 (b), the line profiles obtained by the two MBIR
methods with lowest MSE are shown together with the ground truth line profile. The
corresponding slices are shown in Figure 6.5. Again, the ‘correlated MBIR’ method has less
overshoots compared to the ‘uncorrelated MBIR’ method. However, the steepness of the two
line profiles is almost identical, confirming that the ‘correlated MBIR’ method recovers the
ground truth best.
In summary, the proposed MBIR approaches can improve image quality significantly com-

pared to the analytical reconstruction approaches by directly modeling the effects of the
reduced spatial coherence and detector response. In particular, accounting for noise corre-
lations reduces overshoots significantly.
For this simulation study, the improvements due to the new physical mean model were

of interest. As the phantoms are by definition piece-wise constant, using TV regularization,
which additionally favors these structures, would improve reconstruction quality further.
However, to obtain a more unbiased comparison to the analytical approaches, quadratic reg-
ularization was employed, which only penalizes the magnitude of neighboring voxel values.
As discussed in Section 6.3, given a certain choice for the neighborhood in the regularization
term, quadratic regularization in the projection domain is connected to phase retrieval. How-
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Figure 6.6.: Line profiles to evaluate edge sharpness. The line profiles are obtained around
the cylindrical structure in the upper center of the phantom. Thereby, the voxel
values are plotted over the distance from the center of the cylinder. The solid
lines are obtained with smooth spline interpolation. In (a) the line profiles ob-
tained from the three analytical approaches, the two MBIR methods at matched
standard deviation and the ground truth are shown. The respective reconstruc-
tion can be seen in Figure 6.3 and Figure 6.4. In (b) the line profiles obtained
by the two MBIR methods with lowest MSE are compared to the ground truth.
The corresponding reconstruction can be seen in Figure 6.5. An adapted version
of this figure was submitted for publication [Hehn et al., 2019a].

ever, regularization in CT is applied in the volume domain. Furthermore, this equivalence
is only valid if no statistical noise modeling is performed.

6.6. Experimental verification at the MuCLS
In this section, the five algorithms investigated in the previous section are applied to an
experimental measurement acquired at the MuCLS. Thereby, the accuracy of the physical
mean model can be validated. Moreover, the effects of not having exact representations of
the different operators (source blur, propagation effects and detector blur) can be analyzed.
The sample was extracted from the large-pore part of a kitchen sponge. It was chosen such

that it obeys the homogeneity assumption reasonably well, has relatively complex structures
of different sizes and attenuates sufficiently such that the contrast is given by a balanced
combination of its attenuating and phase-shifting properties. The transmission values behind
the thickest parts of the sample were around 50%.
The MuCLS was described in Subsection 6.5.1. The source was operated to generate

quasi-monochromatic X-rays at an energy of 25 keV. The sample was placed approximately
4 m behind the X-ray source. The distance between the sample and the detector was set
to 1 m. As detector system, a Andor Zyla sCMOS 5.5 camera (Oxford Instruments, United
Kingdom) with a fiber-optically coupled gadolinium-oxysulfid scintillator and a pixelsize of
6.5 µm was used. The scan was acquired with 800 views distributed equidistantly between
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0 ◦ and 380 ◦.
For preprocessing, the data was binned by a factor of two resulting in an effective pixelsize

of 13.0 µm. Furthermore, individual pixel responses were corrected by reference projections
without the sample in the beam. Afterwards, the incident flux was corrected by computing
the respective mean values of a sample free region (resulting formally in I0 = 1). Subse-
quently, the projections were cropped to fit the extent of the sample and the horizontal
detector offset was computed from opposing projections.
The voxelsize of 10.4 µm was given by the magnification of M = (4 m + 1 m)/4 m = 1.25.

Due to the small extent of the sample of around 5 mm and the small divergence of the X-ray
beam of 4 mrad, a parallel-beam geometry with unit pixelsize was assumed for simplicity.
This already defines the analytical ‘FBP’ method given by Eq. (6.68).
The source was assumed to be described by a symmetric two-dimensional Gaussian with

σs = 50 µm. In reality, the source was not perfectly symmetric [Eggl et al., 2016] and the size
of the source was not known precisely for this experiment. The projected size of the source
at the detector in unit pixelsize can be calculated using σs = 50 µm/4 m ·1 m/13.0 µm= 0.96.
Similarly, an exact model of the detector response was not available. As the derivation

of the ‘Beltran + FBP’ method assumes Gaussian blur, the detector response was also
approximated by a two-dimensional symmetric Gaussian. By analyzing the noise power
spectrum (NPS) of a reference corrected projection without the sample, a value of σd = 1.14
was found to be in best agreement with the NPS. However, in reality the response of this
camera is better described by a radial power-law [Cont, 2016].
Finally, a value for zδ/µ, which accounts for the attenuating and phase-shifting properties

of the sample, has to be estimated. Therefore, the ‘Beltran + FBP’ method was applied
for different values of zδ/µ− 2(σ2

s + σ2
d). By visual inspection, a value of 15.8 was found to

give the best depiction of the object. Thus, the value of zδ/µ = 20.2 by not accounting for
source and detector blur was chosen for the conventional ‘Paganin + FBP’ method. With
the values stated above, the remaining analytical algorithms ‘Paganin + FBP’ and ‘Beltran
+ FBP’ given by Eq. (6.69) and Eq. (6.70) are defined.
The two iterative algorithms ‘uncorrelated MBIR’ and ‘correlated MBIR’ are defined by

the objective given by Eq. (6.59). The weights for the uncorrelated version are given by
Eq. (6.62) and for the correlated version by Eq. (6.63). The regularization term is the same
as in the simulation study given by Eq. (6.71). The L-BFGS algorithm was again used for
optimization and only the curvature conditions were evaluated. By visual inspection, the
number of iterations was set to 200, which provided sufficiently converged estimates. For the
uncorrelated model, seven different regularization strengths were used ranging from 103 and
106 equidistantly distributed on a logarithmic scale. Similarly, for the correlated model, the
seven different regularization strengths were respectively distributed between 101 and 104.
As in the simulation study, a CG algorithm for precomputing the term BTWy was used for
the correlated version.
The results obtained by the five different reconstruction approaches are summarized in

Figure 6.7. In the top row, the analytical reconstruction approaches are shown. In the
bottom row, the standard deviations of the five reconstruction approaches computed in
a sample-free region are shown with the results obtained from the MBIR methods. The
reconstructions shown for the two MBIR methods are chosen such that they have mutually
comparable noise levels (although having different noise characteristics). Their noise level is
smaller than for the ‘FBP’ method, but higher than for the ‘Paganin + FBP’ or ‘Beltran +
FBP’ methods. The reconstruction obtained by the ‘FBP’ method gives strong overshoots
and highest noise levels. As already discussed in the simulation study, the sample is not

94



6.6. Experimental verification at the MuCLS

FBP Paganin + FBP Beltran + FBP

uncorrelated MBIR correlated MBIR

102 104

30

20

10

6

3

2st
an

d
ar

d
d
ev

ia
ti
on

1 mm 1 mm 1 mm

1 mm 1 mm
regularization strength

FBP Paganin + FBP Beltran + FBP uncor. MBIR cor. MBIR

× 10−5

a b c

fe

d

Figure 6.7.: Experimental results of the MBIR methods for PB-CT. In (a)-(c), the results
obtained by the analytical reconstruction approaches are depicted. In (d), the
standard deviations measured in a sample-free region in the background for all
different methods and regularization strengths are depicted. In (e), (f), two
MBIR reconstructions with mutually comparable noise levels are shown. The
quantitative values of the reconstructions cropped to the sample are shown us-
ing a linear grayscale ranging from their minimal value to their maximum value
in the region depicted. In addition, on the lower left quarters, identical lin-
ear grayscale windows are shown ranging from 0 (air) to a value chosen by
visual inspection. Finally, zooms are provided with a more narrow but mutu-
ally identical grayscale window to emphasize residual overshoots at the edges
of the structures. An adapted version of this figure was submitted for publica-
tion [Hehn et al., 2019a].

well represented by this method as it does not take interference effects into account. The
reconstructions obtained by the ‘Paganin + FBP’ and ‘Beltran + FBP’ look very similar
as the phase-retrieval algorithm in the ‘Beltran + FBP’ method is dominated by the factor
zδ/µ. However, as already shown in the simulation study, the resolution of the ‘Paganin +
FBP’ is worse, but also gives less overshoots at the sample edges compared to the ‘Beltran
+ FBP’ method. The MBIR methods overall give the most accurate representations of the
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sample having relatively sharp edges (compared to the ‘Paganin + FBP’ and ‘Beltran +
FBP’ methods) without the strong overshoots of the ‘FBP’ method. Again, the correlated
version exhibits less overshoots at sample edges with similar sharpness compared to the
uncorrelated version, resulting in an even more accurate representation of the sample.
In conclusion, the results of the experimental study are in excellent agreement with the re-

sults of the simulation study discussed in the previous section. Thus, it could be verified that
the physical mean model derived in this chapter accurately describes the image formation
in PB-CT using laboratory sources with reduced spatial coherence, efficient detectors and
high noise levels. The crucial point is demonstrated that exact models of all components of
the experimental setup are not required to improve image quality significantly. Finally, the
strong impact of modeling the full covariance statistics of the noise could be demonstrated.

6.7. Conclusion

In this chapter model-based iterative phase retrieval and reconstruction algorithms for PBI
and PB-CT suitable for laboratory sources were investigated. The physical mean model
was extended to include the effects of the source and the detector. The formulation for
the interference effects now coincides with the single-material phase-retrieval algorithm by
directly imposing the homogeneity assumption from the start. In addition, the covariance
description of the noise was derived and employed for the reconstruction algorithms.
This framework was used to develop an analytic phase-retrieval algorithm, which accounts

for the influence of the source, detector and prior knowledge. The single-material phase-
retrieval algorithm [Paganin et al., 2002] as well as a recent extension [Beltran et al., 2018],
which includes the effects of partial coherence, can be identified as a special case of the
derived more general algorithm. In addition, a relation between the phase-retrieval using
the homogeneity assumption and regularized image denoising techniques [Rudin et al., 1992]
was derived.
Moreover, MBIR approaches for PB-CT were proposed, which incorporate deconvolution

of the source and the detector as well as phase retrieval in tomographic reconstruction.
These approaches were validated and compared to analytical reconstruction approaches in
a simulation study showing distinct improvements in image quality, in particular regarding
residual overshoots at the interfaces between different materials. These results could further-
more be transferred to an experimental study performed at the MuCLS. Thus, the validity
of the physical mean model and the modeling of noise correlations could be demonstrated
experimentally.
Including models of the system blur in the physical mean model has been recently applied

in the context of conventional attenuation-based CT for medical image applications show-
ing distinct improvements [Tilley et al., 2018a]. However, for most medical applications the
influence of the source is typically small [Hofmann et al., 2014] and also detector systems
such as photon-counting detectors [Taguchi and Iwanczyk, 2013] exist that hardly spread
out the signal. By contrast, for micro CT applications, where a resolution in the micrometer
and sub-micrometer regime is desired, the influence of the source and the detector becomes
increasingly prominent. High resolution can be achieved by using detectors with small pix-
elsizes, which however spread out the signal more, or by using high magnifications of the
sample. However, employing higher magnification is ultimately limited by the extent of the
source.
These points are even more prominent for PBI and PB-CT, which usually require high

96



6.7. Conclusion

spatial resolution. In particular, the interference effects, which hold the information about
the phase-shifting properties of the sample, are located at the high-frequency components
of the measurements. These high-frequency components, however, are predominantly di-
minished by any blurring of the system. Consequently, recovering these high-frequency
components by accounting for the source and the detector directly benefits the quality of
the phase information. Thus, such approaches should be particularly beneficial for these
imaging techniques.
Compared to analytic reconstruction approaches, the proposed algorithms do not im-

pose restrictions on the shape of the source or the detector. In principle, the depth de-
pendency of the source could be included as well, which can prove useful for cone-beam
systems [Tilley et al., 2016c].
Although the simulation study as well as the experimental study focused on the MuCLS,

the proposed algorithms can be applied to other X-ray imaging environments with microm-
eter and sub-micrometer resolution, which are enhanced by phase effects. This includes
measurements at laboratory microtomography systems such as the Xradia 500 Versa, dis-
cussed in Subsection 5.4.2 or the NanoCT setup detailed in Subsection 8.3.1, which uses high
magnification to achieve sub-micron resolution.
Further improvements on the physical mean model could include polychromatic effects. As

indicated in Section 2.4, the total intensity is given by summing up the individual monochro-
matic intensity components according to Eq. (2.69). This could potentially be approximated
by an additional convolution. However, the effects on the monochromaticity of the source
are not very strict for PBI. In [Tilley et al., 2018b], a similar framework has been used for
dual energy applications, which could potentially be extended to PB-CT.
Finally, the above framework can be transferred to other phase-contrast imaging tech-

niques that are already applied in laboratory environments. For instance, in GBI and
grating-based phase-contrast computed tomography (GB-CT), the first derivative of the
phase-information is encoded in the measurements. A physical mean model can be found
in [Brendel et al., 2016]. In matrix-vector notation, this mean model could be adapted ac-
cording to

ȳ(µ,φ, ε) = BdBsGD
[
e−Aµ

] (
1 + VD

[
e−Aε

]
cos [Aδδ − φ]

)
(6.73)

to include the effects of the source modeled by Bs and the detector given by Bd. Here
µ, δ, ε denote the linear attenuation coefficient, refractive index decrement as well as the
linear diffusion coefficient, which is related to the so-called dark-field signal, respectively.
In addition, the reference intensity G, the visibility V as well as the reference phase φ are
required. Moreover, Aδ models a differential projection operation. The exponential and
cosine functions are to be understood element-wise. The resulting covariance matrix can be
written as

K(µ,φ, ε) = BdD
[
BsGD

[
e−Aµ

] (
1 + VD

[
e−Aε

]
D [cos [Aδδ − φ]]

)]
BT
d , (6.74)

which includes the correlating noise properties of the detector blur. This approach has the
potential to further increase spatial resolution in a laboratory environment, which is ulti-
mately limited by the blur of the source and the response of the detector [Birnbacher, 2018].
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In the previous chapter, MBIR algorithms for PBI and PB-CT have been developed, which
include models of components that add to the system blur, such as the source and the de-
tector. However, the respective components have to be characterized precisely as a slight
mismatch can significantly deteriorate image quality. An underestimation of the blur leads
to a lower resolution of the reconstructed volume and an overestimation of the blur results
in noise amplifications and overshoots at sample edges. This also holds true for previ-
ously mentioned related methods that integrate the system blur into the reconstruction in
SPECT [Yu et al., 2000, Feng et al., 2006], digital breast tomosynthesis [Zheng et al., 2018]
and flat-panel cone-beam CT [Tilley et al., 2016a, Hashemi et al., 2017, Tilley et al., 2018a].

However, characterizing all components that add to the system blur can be difficult and
time-consuming. This hold true, in particular, if the system blur changes over time as
for instance due to a change in the system geometry, tube current, or for different sam-
ples, due to the depth dependency of the blur [Riviere and Vargas, 2008, Behling, 2015,
Tilley et al., 2016c]. In addition, accurate models for the detector response are hard to obtain
without exact knowledge of all components or for high-resolution detectors, which include
additional optical elements that have to be aligned. Finally, blur, which is attributed to the
reconstruction algorithm itself, can be difficult to characterize, such as interpolation in the
projection operations or the regularization [Tward and Siewerdsen, 2008, Gang et al., 2014,
Hashemi et al., 2017]. These points can hinder an effective use of the above reconstruction
approaches.
Blind deconvolution methods, which are able to simultaneously estimate the system blur

and recover the underlying image without prior characterization of the instrumentation, are
already known from optical imaging [Chan and Wong, 1998]. These methods use regulariza-
tion techniques that are similar to those encountered in CT [Rudin et al., 1992] making them
promising candidates for the transfer to tomographic reconstruction. This chapter is con-
cerned with jointly estimating parameterized models of the system blur during tomographic
reconstruction in the context of flat-panel cone-beam CT. This would replace an accurate
characterization of every component that adds to the system blur and could potentially be
transferred to SPECT, digital breast tomosynthesis or even PB-CT.
The following chapter is structured as follows. First, the reconstruction framework, which

includes a parametric blur model, is introduced. Then, blind deconvolution algorithms for
optical imaging are investigated and based on these algorithms, a new regularization term for
CT is proposed. Afterwards, the framework for parametric deconvolution CT reconstruction
is derived and means to jointly estimate both the parameters of the blur model as well as
the reconstructed object are developed. The new regularization term is validated and an
extensive simulation study is implemented detailing the properties of the proposed approach.
Finally, the feasibility is experimentally demonstrated at a test-bench setup.
The following studies were conducted as part of a research exchange to Johns Hopkins

University, Baltimore MD, USA, at the Advanced Imaging Algorithms and Instrumentation
Laboratory (Department of Biomedical Engineering). A manuscript covering most of the
results presented in this chapter was published in [Hehn et al., 2019b].
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7.1. CT reconstruction using a parametric blur model
This section introduces the key components towards a formulation to jointly estimate the
system response during tomographic reconstruction. In the following, a parametric version
of the system blur is used. This can reduce the number of free parameters significantly.
However, one can imagine every pixel of the system response to be a free parameter, which
would be equivalent to estimating the whole system response without any prior knowledge.

7.1.1. Objective function and physical mean model
As a first step, the physical mean model given by Eq. (4.44), which models the exponen-
tial decay in intensity is extended by a parametric blur model denoted by B(σ), which is
parameterized by some blur parameters σ. The physical mean model is thus given by

ȳ(x,σ) = B(σ)I0e
−Ax. (7.1)

In contrast to the blur model examined in the MBIR approach of [Tilley et al., 2018a] or in
the previous chapter, the blur model does not have to be known exactly, but only a parametric
version of it. The actual blur parameters σ are not known a priori. To distinguish this
approach from MBIR approaches with known models of the system response, this approach
is referred to as parametric deconvolution CT reconstruction.

The likelihood term given by Eq. (4.43) is derived from a normal distribution. With the
pair-wise Gibbs prior of Eq. (4.51), the objective reads

C(x,σ) = 1
2(y− ȳ(x,σ))TW(y− ȳ(x,σ)) + βR(x), (7.2)

with β denoting the regularization strength. One could also use the Poisson likelihood
given by Eq. (4.33) instead. With the possibility of including noise correlation in the above
formulation, this likelihood can be considered more versatile [Tilley et al., 2018a].
However, estimating the blur parameters in this context imposes some challenges. First,

the regularization term is biased in terms of blur as the difference in neighboring voxel values
is penalized [Krishnan et al., 2011]. Consequently, the response of the regularizer depends
on the high-frequency components of the object. In general, if the blur parameters are
chosen such that least deblurring is performed during reconstruction, a blurred estimate
of the volume will be obtained. This also results in low noise levels, which in turn leads
to a small value of the regularization term. By contrast, if the blur parameters correctly
account for the blur of the system, the reconstructed volume has a higher resolution, but
also has higher noise levels compared to the previous case. Due to higher noise levels, the
value of the regularization term is higher as well. In summary, the regularizer would prefer
reconstructions with low resolution and low noise levels over the desired high-resolution
reconstructions with higher noise levels. In addition, the likelihood term might also be
biased in terms of blur, at least to some degree, as most of the energy is contained in the low
and mid frequencies [Krishnan et al., 2011]. Besides, the likelihood term can be thought of
as a weighted `2 norm and in general a noiseless residuum has a lower value compared to a
noisy residuum.

7.1.2. Blind deconvolution algorithms for photographs
Ideally, the regularization term should give minimal response (value) to the true sharp recon-
struction. Thus, the regularization term should be independent of noise and only evaluate
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Figure 7.1.: Comparison of the `2, `1 and `1/`2 norms. The different norms are illustrated
for a two-dimensional problem x = (x1, x2)T . The potentials are color-coded
and the contour lines are drawn in black. In (a) the `2 norm is visualized.
The potential only depends on the magnitude (distance to the origin), which
makes this norm scale-dependent. In (b) the `1 norm is depicted. Again, so-
lutions with a smaller magnitude are preferred making this norm also scale
dependent. However, at the same magnitude, sparse solutions (located at the
axis) are preferred. In (c), the `1 norm normalized by the `2 norm as proposed
in [Krishnan et al., 2011] is shown. The potential is independent of the mag-
nitude (radial contour lines) enforcing sparse solutions located at the axis. A
similar version of the figure was published in [Hehn et al., 2019b].

the properties of the underlying noise-free sample. To find means to address the potential
bias of the regularization term, regularization approaches for blind deconvolution in optical
imaging are analyzed.
For instance, TV regularization1 is also widely used in the context of digital image pro-

cessing of conventional two-dimensional images [Rudin et al., 1992], where it was originally
introduced. In particular, TV-based methods have become popular in the field of noise
removal [Rudin et al., 1992]. In addition, these methods have been extended to blind decon-
volution [Chan and Wong, 1998]. In blind deconvolution, the system blur is also unknown.
Thus, the system blur and the noise-free and undistorted image have to be estimated.
Since then, many new algorithms have adapted the work of [Chan and Wong, 1998] for

blindly estimating system blur. However, it was shown in [Levin et al., 2011] that any algo-
rithm that would actually minimize the respective objective functions would yield the no-blur
solution, which refers to the solution, where no (least) deblurring is performed. The reason is
the aforementioned bias of the response of the regularization term that favors noiseless images
with low resolution over sharp results with higher noise levels. In [Perrone and Favaro, 2014]
it was shown how subtle choices in the optimization algorithm proposed in the original work
of [Chan and Wong, 1998] eluded the no-blur solution, despite having lowest cost. Various
approaches have been proposed to yield the desired solution, without having lowest cost,
such as marginalization of the cost function, adaptive cost functions, alpha-matte extraction
or edge location [Krishnan et al., 2011].
In [Krishnan et al., 2011] a metric was proposed, which evaluates the sparsity (number of

1 There are subtle differences to the definition of the TV normalization given by Eq. (4.51) using the `1
penalty of Eq. (4.55). For instance, TV regularization in the context of [Rudin et al., 1992] is isotropic,
while here the anisotropic version is used as it is easier to optimize within this framework. However,
isotropic TV regularization has been used for CT reconstruction [Sidky et al., 2006].
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values equal to zero) and is independent of the magnitude. Figure 7.1 shows how such a
metric can be constructed for a two-dimensional problem x = (x1, x2)T . In (a) the response
of the `2 norm is depicted. Therefore, ‖x‖2 is evaluated for −1 < x1 < 1 and −1 < x2 < 1.
The response of the `2 norm is minimal for x = 0. This solution is obviously sparse. The
value of this norm increases with the magnitude (distance from the center) without any
preferences for sparse solutions (located at the axis). In comparison, the corresponding
values for the `1 norm are depicted in (b). Again, the minimum is found for x = 0. In
contrast to the `2 norm some sparsity is imposed on the other solutions. For solutions with
the same magnitude, sparse solutions are preferred, where one of the components is near the
axis. However, solutions with less magnitude are preferred in general. The metric proposed
in [Krishnan et al., 2011] scales the `1 norm by the `2 norm, which is referred to as the
normalized sparsity measure. The values for the corresponding two-dimensional problem are
depicted in (c). Here, sparse solutions near the axis are preferred. The value of this norm is
independent of the magnitude resulting in radial contour lines.
If the normalized sparsity measure is employed as penalty function in the regularization

term, x holds the difference in neighboring voxel values. In this case, sparsity implies that
many neighboring pixels have the same value. On the other hand, the magnitude refers to the
average difference in neighboring pixel values. A high noise level implies a large magnitude
and a low noise level implies a small magnitude respectively. In that sense, the normalized
sparsity measure enforces solutions that are sparse and independent of the noise level.

Employing the normalized sparsity measure has been successfully applied to blind image
deconvolution of photographs [Krishnan et al., 2011] using a two-step process. First, the
likelihood acts only on the high-frequency components (the concatenation of the forward
difference in both dimensions of the actual images) as most energy is contained in the low and
mid frequencies. Two regularization terms and therefore two parameters for the respective
regularization strengths are required. One term is the normalized sparsity measure and one
is the `1 norm of the kernel modeling the system blur. With this approach the kernel for
the system blur is obtained in a first step. As a second step, a non-blind deconvolution is
applied to recover the desired image.

7.1.3. Normalized sparsity measure for CT

Although there are substantial differences between photographs and tomographic datasets,
the concept of [Krishnan et al., 2011] is used to devise a regularizer, which is less biased in
terms of blur.
For TV regularization, Eq. (4.51) and the `1 penalty of Eq. (4.55) are used. To compensate

for the reduction in magnitude imposed by conventional TV regularization, a normalization
factor is introduced given by the square-root of the value of the quadratic regularization,
which uses the `2 penalty of Eq. (4.53). This results in

S(x) = R`1(x)√
R`22(x)

=
1
2
∑
i

∑
n∈Ni

1
∆in

∣∣∣xi−xn∆in

∣∣∣√
1
2
∑
i

∑
n∈Ni

1
∆in

(
xi−xn

∆in

)2
, (7.3)

where in the following S is referred to as the normalized sparsity measure for CT. This
measure is designed to capture the sparsity of the volume and to account to some extent for
the reduction in magnitude due to different noise levels.
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7.1. CT reconstruction using a parametric blur model

Compared to quadratic or TV regularization, the normalized sparsity measure is non-
convex. In addition, the normalized sparsity measure cannot be interpreted as a proba-
bilistic prior. The regularizer is connected to the prior distribution over Eq. (4.50), which
due to the denominator of Eq. (7.3) is not bounded. A similar argument has been given
in [Krishnan et al., 2011] for the `1/`2 norm.

7.1.4. Parametric deconvolution CT reconstruction
Substituting the normalized sparsity measure for the regularizer in the objective function
given by Eq. (7.2) results in

C(x,σ) = 1
2(y− ȳ)TW(y− ȳ) + βS(x). (7.4)

Due to the fact that the normalized sparsity measure is non-convex, optimizing the respective
objective function is challenging. However, as proposed by [Krishnan et al., 2011] for the
`1/`2 norm, one can compute the denominator of the normalized sparsity measure from the
previous iterate. Thus, the objective function in each iteration can be treated as conventional
TV regularization. Formally, one can define

Cγ(x,σ) = 1
2 (y− ȳ(x,σ))T W (y− ȳ(x,σ)) + βS(x), (7.5)

= 1
2 (y− ȳ(x,σ))T W (y− ȳ(x,σ)) + β

γ
R`1(x), (7.6)

where the subscript γ indicates that the objective also depends on a normalization factor γ
defined by

γ(x) =
√
R`22(x). (7.7)

The objective of Eq. (7.6) coincides with Eq. (7.2) with a TV regularizer up to the normal-
ization factor γ.

Algorithm 7.1 Algorithm for parametric deconvolution reconstruction. The algorithm
requires the measured intensities y, an initial guess of the volume x(0), the parameters
σ, which describe the blur model, the regularization strength β as well as the number of
iterations N . The algorithm returns the estimate of the volume x(N) after N iterations.
Require: y,x(0),σ, β,N
for n← 0 to N − 1 do
γ ←

√
R`22(x(n))

∆x← Using Lγ(x,σ) and ∇xLγ(x,σ) around x(n)

x(n+1) ← x(n) + ∆x
end for
return x(N)

Algorithm 7.1 summarizes how this objective function can be optimized for x according
to

x̂ = arg min
x
Cγ(x,σ) (7.8)

assuming that the blur parameters σ are known. The algorithm does not require any ad-
ditional information compared to the conventional approach. Thus, the projection mea-
surements y, an initial guess of the volume x(0), the blur parameters σ, the regularization

103



7. Blind deconvolution CT reconstruction

strength β as well as the number of iterations N need to be provided. However, the initial
guess of the volume must ensure γ(x(0)) 6= 0. In practice, an analytical reconstruction should
fulfill this criterion. In every iteration n ∈ {0, . . . , N − 1}, the normalization is computed
from the current estimate x(n). Afterwards, a gradient-based optimization algorithm is used
to compute the update ∆x from the objective function, which is subsequently added to ob-
tain the new estimate of the volume x(n+1). After N iterations the current estimate x(N) is
returned. However, the above algorithm still requires the exact blur parameters σ.

7.2. Blind deconvolution CT reconstruction algorithm
Blind deconvolution reconstruction refers to estimating the blur parameters σ jointly with
the volume x. Formally, this can be written as

{x̂, σ̂} = arg min
x,σ
Cγ(x,σ). (7.9)

If the volume is defined by N3 voxels and the blur matrix is parameterized byM parameters,
this problem has N3 +M dimensions. In principle, by calculating the gradients

∇xCγ(x,σ) = ∇xL(x,σ) +∇xS(x) (7.10)
∇σCγ(x,σ) = ∇σL(x,σ) +∇σS(x) (7.11)

the above objective could be optimized for the blur parameters as well as the volume using
gradient-based optimization approaches. However, the gradient of the normalized sparsity
measure with respect to the blur parameters gives

∇σS(x) = 0 (7.12)

as this measure does not directly depend on the blur parameters. The volume only indirectly
depends on the blur parameter via the objective Cγ(x,σ). Thus, the normalized sparsity
measure cannot be utilized for estimating the blur parameters.
As a first step towards optimizing the objective in blind deconvolution reconstruction the

following new objective can be defined

Cγ(σ) = min
x
Cγ(x,σ), (7.13)

which holds the values of the non-blind reconstruction problem in convergence for different
blur parameters. Thus, the dimensionality of Cγ(x,σ) is reduced from N3 +M dimensions
to M dimensions. It is reasonable to assume that for the true blur parameters this objective
is optimal, as the respective volume would be most sparse and thus the response of the
normalized sparsity measure would be minimal and the volume would be consistent with the
measurements resulting in a small response of the likelihood as well. Thereby it is assumed
that the influence of the likelihood term does not affect the optimum of the objective function.
Thus, to solve

σ̂ = arg min
σ
Cγ(σ) (7.14)

one can use an extensive search over the blur parameters to find the optimum or other direct
search algorithms such as the Nelder-Mead algorithm [Nelder and Mead, 1965].
However, to obtain Cγ(σ) at any point, a whole iterative reconstruction has to be per-

formed, which is time consuming. Moreover, the computational cost increases exponentially
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7.3. Validating of the normalized sparsity measure for CT

with the number of unknown blur parameters. Consequently, this approach is not feasible
for any realistically sized datasets.
Assuming a low-dimensional blur model defined by σ = σ, which is a scalar quantity, the

objective function given by Eq. (7.13) becomes one-dimensional. Thus, one may solve this
objective according to

σ̂ = arg min
σ
Cγ(σ). (7.15)

However, this approach is not particularly efficient, as a whole non-blind reconstruction using
Algorithm 7.1 would have to be performed to yield Cγ(σ) at any point making this approach
still unfeasible in practice.

Algorithm 7.2 Algorithm for blind deconvolution reconstruction. As in Algorithm 7.1, the
intensity measurement y, an initial guess of the volume x(0), the regularization strength β and
the number of iterations N are required. However, only an initial guess of the blur parameter
σ(0) has to be provided, a parameter ∆σ defining the accuracy of the blur parameter and
the number of global iterations M . The algorithm returns both the estimate of the volume
x(M) as well as an estimate of the blur parameter σ(M) after M iterations.
Require: y,x(0), σ(0), β,N,∆σ,M
for m← 0 to M − 1 do
forall σ̃ ∈ {σ(m) −∆σ, σ(m), σ(m) + ∆σ} do in parallel
Lσ̃,xσ̃ ← Compute minx Lγ(x, σ̃) using y,x(m), σ̃, β,N {See algorithm (7.1)}

end for
x(m+1), σ(m+1) ← Choose according to min{Lσ(m)−∆σ,Lσ(m) ,Lσ(m)+∆σ}

end for
return x(M), σ(M)

Instead, a computationally more efficient approach to solve the objective function given
by Eq. (7.13) is proposed for a one-dimensional blur parameter σ = σ. The aim is to com-
pute Eq. (7.15) only approximately and locally and update the volume and blur parameter
dynamically. The corresponding algorithm is outlined in Algorithm 7.2. Compared to Al-
gorithm 7.1 only a rough estimate of the blur parameter σ(0) is required and additionally a
parameter ∆σ defining the resolution of the blur parameters as well as the number of global
iterationsM , discussed below. In every global iteration m ∈ {0, . . . ,M −1}, three non-blind
reconstructions are performed in parallel for the current estimate of the blur parameter, a
blur parameter reduced by ∆σ and a blur parameter increased by the same amount respec-
tively. The respective non-blind reconstructions are not iterated until convergence but only
for N intermediate iterations. From these three reconstructions, new best estimates for the
volume and the blur parameter are chosen according to the lowest objective value of these
reconstructions. Consequently, in the next global iteration, three new non-blind reconstruc-
tions are performed distributed around the (new) best estimate for the blur parameters. In
addition, the new best estimate for the volume is used in the respective reconstruction as ini-
tialization. This procedure is repeated until the number of global iterations M is exceeded.
The algorithm then returns the best estimate of the blur parameter as well as the volume.

7.3. Validating of the normalized sparsity measure for CT
To validate the properties of the normalized sparsity measure and to work out the differences
to TV regularization, the following restoration problem is devised.
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7. Blind deconvolution CT reconstruction

Specifically, the physical mean model follows Eq. (7.1). Thereby, A = I is set to the
identity and B(σ) = B3d(σ) denotes a three-dimensional symmetric Gaussian blur kernel.
In this case x is the three-dimensional volume without the blur, which has to be estimated.
The measurement y, which is a three-dimensional volume which is corrupted by the Gaussian
blur and noise, is generated according to

y ∼ B3d(σtrue)N
(
I0e
−x,D

[
I0e
−x]) , (7.16)

where N denotes the multivariate normal distribution with equal mean and variance to
approximate a Poisson distribution. The true blur parameter is denoted by σtrue. In this
model, the volume x can be directly restored from the measurement according to

x = − log
(

B−1
3d (σ)y
I0

)
, (7.17)

where the inversion of the blur B−1
3d can be performed by Fourier inversion, as the blur

operator acts after the values have been drawn from the normal distribution. This results
in fully correlated noise.
For the following simulation study, the volume x was chosen according to the FORBILD

head phantom [FORBILD phantoms, 1999] with 256× 256 voxels and 32 slices at an energy
of 100 keV. To avoid partial volume effects the phantom was generated with 2048 × 2048
voxels and 256 slices and then downsampled by a factor of 8 to the aforementioned size. The
true blur parameter was chosen to be σ = 1 px. Three different measurements were simulated
with different noise levels defined by I0 ∈ {105, 106,∞} according to Eq. (7.16)2. For each
of the three measurements, restorations in the range σ ∈ [0.8 px, 1.1 px] were calculated
according to Eq. (7.17).
For all three measurements and all restored volumes, the response of the TV regulariza-

tion and the normalized sparsity measure given by Eq. (7.3) were calculated. The results
are depicted in Figure 7.2. In Figure 7.2 (a)-(c), the response of the TV regularizer is de-
picted in blue as a function of the blur parameters used for restoration. The values of the
TV regularizer are attributed to the left axis. In addition, the corresponding response of
the normalized sparsity measure is visualized in orange and attributed to the right axis.
In Figure 7.2 (a) the high noise scenario with I0 = 105 is shown, in Figure 7.2 (b) the
medium noise scenario with I0 = 106 is depicted and Figure 7.2 (c) shows the case with-
out noise for I0 = ∞. In Figure 7.2 (a), the response of both the TV regularizer and the
normalized sparsity measure increase with increasing blur parameter. There is no distinct
optimum visible at the true blur parameters. In Figure 7.2 (b), the response of the TV
regularizer still increases with increasing blur parameter without any distinct feature at the
true blur parameter. By contrast, the normalized sparsity measure has a distinct optimum
for the true blur parameter. Thus, one could recover the true blur parameter used for the
simulation by minimizing the response of the normalized sparsity measure. Finally, for the
noiseless scenario depicted in Figure 7.2 (c), the TV regularizer remains overall increasing
with increasing blur parameter. The optimum of the normalized sparsity measure becomes
very distinct. For an underestimation of the blur parameter the curvature of the response
is negative and for an overestimation the curvature is positive. A gradient-based approach
would allow to find the optimum easily. In Figure 7.2 (d), an extract of the ground truth

2 As the measurements are normalized afterwards, I0 = ∞ is implemented according to y = B3d(σtrue)I0e−x

with an abitrary value for I0.
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Figure 7.2.: Three-dimensional parametric deconvolution restoration. In (a)-(c), the re-
sponse of the conventional TV regularizer and the normalized sparsity measure
is plotted over the blur parameter used in the restoration. The response of the
conventional TV regularizer is attributed to the left axis, while the response of
the normalized sparsity measure refers to the right axis respectively. In (a), the
flux was set according to I0 = 105 and in (b) the flux was given by I0 = 106.
In (c) no noise is present. An extent of the ground truth phantom is shown in
(d). In (e)-(f) different restorations for the data generated with I0 = 106 using
different blur parameters are depicted. To emphasize the sharpness of the edges
of the respective restorations in (e)-(g), the horizontally averaged line profiles in
the regions marked by the respective rectangles are shown. A similar version of
the figure was published in [Hehn et al., 2019b].

phantom is depicted. In Figure 7.2 (e)-(f), three restorations for I0 = 106 using σ = 0.8 px,
σ = 1.0 px and σ = 1.1 px are depicted respectively. One can see that for underestimated
blur parameters the edges are blurred out, for the correct blur parameters sharp edges are re-
covered and for an overestimation high noise levels and overshoots at edges are visible. The
line profiles in Figure 7.2 (h), obtained by vertically averaging the corresponding regions
marked in Figure 7.2 (e)-(f), further illustrate the noise level and edge sharpness.

In conclusion, if the noise level is not too high, the true blur parameter can be recovered
by minimizing the response of the normalized sparsity measure. By contrast, the response
of the TV regularizer increases with increasing blur parameter as the noise increases in the
deconvolution step.
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7. Blind deconvolution CT reconstruction

7.4. Evaluation of blind deconvolution reconstruction using a
simulation study

After validating the normalized sparsity measure for three-dimensional volumes in a highly
simplified restoration problem, this section addresses the main objective of the chapter,
namely to demonstrate the feasibility of blind deconvolution reconstruction for CT applica-
tions. Therefore, three simulation studies were designed to validate if the objective with the
normalized sparsity measure given by Eq. (7.6) has an optimum at the true blur parameter
as this would imply that the volume and the blur parameters could, in principle, be esti-
mated simultaneously during reconstruction. In addition, the feasibility of Algorithm 7.2 to
blindly estimate low-dimensional blur parameters during reconstruction was examined.
As in the previous section, the FORBILD head phantom [FORBILD phantoms, 1999] with

256 × 256 voxels and 32 slices at an energy of 100 keV was used as the volume. Again, the
volume was initially oversampled by a factor of 8 to avoid partial volume effects. The number
of voxels defined the voxel size of 0.1 cm. Here, the mean model given by Eq. (7.1) was used
according to

ȳ(x, σ) = B(σ)I0e
−Ax. (7.18)

The matrix A modeled a parallel-beam geometry with 403 projections, which were equidis-
tantly distributed between 0 ◦ and 180 ◦. This is in accordance with the Nyquist criterion
given by Eq. (4.18). The flux was given by I0 = 104 and the matrix B accounted for a
two-dimensional symmetric Gaussian blur parameterized by the scalar σtrue, which models
the detector response. The measurements were generated according to

y ∼ B(σtrue)N
(
I0e
−Ax,D

[
I0e
−Ax

])
. (7.19)

Again the values were drawn from a normal distribution with equal mean and variance
defined by the expected number of photons behind the sample.

7.4.1. Comparison to conventional MBIR

The first study was concerned with the differences between CT reconstruction using TV
regularization and the normalized sparsity measure. The former uses Eq. (7.2) with R = R`1
and the mean model defined by Eq. (7.18), the latter the objective given by Eq. (7.6) with
the normalized sparsity measure and the same mean model as above.
The true blur parameter used for simulation of the measurements according to Eq. (7.19)

was set to σtrue = 1 px. For both approaches, the respective objective functions were solved
for all σ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4} px using Algorithm 7.1. In addition,
the reconstructions were performed for different regularization strengths β ∈ {0.5, 1, 2, 4}β0.
Here, β0 denotes the regularization strength for σ = σtrue that yields the same variance in a
uniform region of the sample as the analytical reconstruction. Consequently, the value of β0
for the reconstruction approach using TV regularization is smaller than the value of β0 for
the normalized sparsity regularization. For optimizing the respective objective functions, the
L-BFGS algorithm with 2000 iterations was used to ensure sufficiently converged estimates of
the volume. Instead of the L-BFGS algorithm, other algorithms to solve non-linear problems
with many unknowns could be used as well. For the approach using the normalized sparsity
measure the L-BFGS algorithm was utilized with Algorithm 7.1. In both cases, the analytical
FBP reconstruction was used as initialization.
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Figure 7.3.: Comparison of the TV regularizer with the normalized sparsity measure in CT.
In (a)-(c) the different parts of the objective with TV regularization are plot-
ted over the blur parameters for different regularization strengths. In (a) the
likelihood term is depicted, in (b) the response of the TV regularizer and in (c)
the whole objective function. The values are normalized to the respective first
data-points. In (d)-(f) the same information about the objective function using
the normalized sparsity measure is shown. In (g)-(k) extracts of reconstructed
slices are shown for different blur parameters for β = β0. The upper halves are
depicted in a more narrow window, therefore focusing on the noise properties.
The lower halves show the full range of values to examine the resolution prop-
erties at the transition from bone to air or soft-tissue. The left halves show the
reconstructed slices using the objective function with TV regularization, while
the right halves were obtained by the objective using the normalized sparsity
measure. A similar version of the figure was published in [Hehn et al., 2019b].
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In Figure 7.3 the two objective functions are compared. In Figure 7.3 (a)-(c) the different
parts of the objective function with the TV regularization are shown. The likelihood term
shown in (a) as well as the response of the TV regularizer depicted in (b) increase with
increasing blur parameter for all regularization strengths. Thus, the total objective function
is also increasing with increasing parameters for all regularization strength. Consequently,
jointly estimating the blur parameter during reconstruction would potentially recover the
no-blur solution. Thus, with this objective function a joint reconstruction is not feasible.
In Figure 7.3 (d)-(f) the corresponding information of the objective function with the

normalized sparsity is shown. In contrast to the previous case, the likelihood term of this
objective function as shown in (a) is not strictly increasing for increasing blur parameters.
Most notably, for an underestimation of the blur parameter the likelihood term remains
rather constant. Thus, the likelihood term does not have a strong influence on the total
objective function in this regime. In (b) the corresponding responses of the normalized
sparsity measure are depicted. Similar to Figure 7.2 (b)-(c), these responses have a distinct
optimum around the true blur parameter for all regularization strengths. However, the
optima of the responses of the normalized sparsity measure are slightly overestimated, which
hints towards additional blur components of the system such as interpolation blur in the
projection operations or the fact that the non-binary edges of the (ground truth) phantom
are compensated. Finally, as shown in Figure 7.3 (f), the values of the total objective
functions also have distinct optima around the true blur parameter for all regularization
strengths. As for the response of the normalized sparsity measure, the blur parameters
are slightly overestimated for the respective regularization strengths. However, this effect
is alleviated by the influence of the likelihood term, which increases for an overestimation
of the blur parameters. Furthermore, it can be observed that for decreasing regularization
strength, the overestimation of the blur parameter becomes smaller. The fact that there are
distinct optima in the total objective functions for all regularization strengths makes a joint
estimation of the blur parameter, in principle, feasible.
Extracts of reconstructed slices for both approaches and different blur parameters are

shown for β = β0 in Figure 7.3 (g)-(k). The left halves show the reconstructed slices ob-
tained by minimizing the objective with TV regularization, while the right halves were
obtained by optimizing the objective function with the normalized sparsity measure. As
the regularization strength β = β0 for σ = 1.0 is matched for both approaches, the recon-
structions of both approaches look similar. For both approaches, the noise level increases
with increasing blur parameter as seen from the upper halves with the more narrow window.
However, if the blur parameter is underestimated, the noise level of the approach using the
normalized sparsity measure is lower compared to the approach that uses TV regularization.
For an overestimation of the blur parameters, higher noise levels are present if the normal-
ized sparsity measure is used. This results from the normalization in the normalized sparsity
measure, as for increasing blur parameter, the noise level of the reconstructed volume in-
creases and thus the value for the normalization increases, which in return results in a lower
effective regularization strength. From the lower halves, which show the full range of the
linear attenuation coefficients, the resolution properties of different blur parameters can be
analyzed. As expected, with increasing underestimation of the blur parameter, the interface
between bone and air smears out as the resolution decreases. For the reconstruction with the
true blur parameter a sharp transition can be observed and with increasing overestimation,
increasing overshoots at the edges become visible.
In conclusion, this study shows that using the objective function with TV regularization

cannot be used to estimate the blur parameter. In contrast, the objective function with the
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Figure 7.4.: Validation of blind deconvolution reconstruction for different system blurs. In
(a)-(c) the different parts of the objective function using the normalized spar-
sity measure are depicted over the blur parameter for different measurements
simulated with varying blur parameters. For better visualization, the data is
normalized to the value with the smallest blur parameter for each of the seven
measurements. Data points belonging to the same measurement are depicted in
the same color. In (a) the likelihood terms are shown. In (b) the response of the
normalized sparsity measure is depicted and the total objective function is shown
in (c). A similar version of the figure was published in [Hehn et al., 2019b].

normalized sparsity measure yields a distinct optimum around the true blur parameter for
all regularization strengths and can thus be used for jointly estimating the blur parameter
during reconstruction.

7.4.2. Dependency on the blur size
To further validate the feasibility of jointly estimating the blur parameter during reconstruc-
tion using the objective function given by Eq. (7.6) with the mean model given by Eq. (7.18),
seven independent measurements were simulated. The measurements were generated ac-
cording to Eq. (7.19) with σtrue ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} px. For each of the seven
measurements, seven reconstructions were preformed with σ ∈ σtrue ± {0.0, 0.1, 0.2, 0.3} px.
To account for the fact that the noise characteristics change for the different simulated mea-
surements, the regularization strength β = β0 used for σtrue = 1.0 px was scaled with the
relative difference in variance of the other measurements to make the noise levels in the
reconstruction of different measurements comparable. The L-BFGS algorithm was used in
combination with Algorithm 7.1 with N = 1000 initialized by an FBP reconstruction.
In Figure 7.4, the different parts of the objective function are shown as a function of the

blur parameter for the seven different measurements. The likelihood terms are shown in (a).
For measurements simulated with small blur parameters the likelihood terms are increasing
monotonously with the blur parameter. However, for measurements simulated with larger
blur parameters, a distinct optimum can be observed at the true blur parameter. In (b)
the responses of the normalized sparsity measure are depicted. For all measurements, a
distinct optimum is observed around the true blur parameter. As in the previous case, the
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true blur parameter is slightly overestimated. This overestimation becomes less significant
for measurements simulated with increasing blur parameter. The total objective function is
shown in (c). For all measurements the respective true blur parameters can be recovered
as a distinct optimum can be observed. For measurements simulated with increasing blur
parameter, the optimum becomes more prominent and the overestimation of the true blur
parameter less significant.
This simulation study further shows that the true blur parameter used for simulating

the measurements can be recovered over a wide range, indicating the feasibility of jointly
estimating the parameter during reconstruction.

7.4.3. Optimization algorithm for blind deconvolution reconstruction

Finally, Algorithm 7.2 is evaluated, which omits an extensive search over the whole param-
eter space and blindly estimates the true blur parameter during reconstruction. Therefore,
measurements were simulated with σtrue = 1.0 px. Algorithm 7.2 was provided with the
simulated measurements, an initial guess for the volume obtained by an analytical FBP
reconstruction, the regularization strength β = β0, N = 100 iterations, ∆σ = 0.1 px defin-
ing the resolution of the blur parameter and M = 5, the number of global iterations. The
algorithm was executed twice, using two different values for the initial guess of the blur
parameter, namely σ(0) ∈ {0.7, 1.3}px respectively. Independently of Algorithm 7.2, the
values of the objective function were tracked over 100, 200, 300, 400, 500 and 2000 iterations
for σ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4}px for reference using Algorithm 7.1.
In Figure 7.5, the sequence of events of Algorithm 7.2 is illustrated. In (a) the initial

guess of the blur parameter was set to σ(0) = 0.7 px. Thus, in the first global iteration
m = 0, three reconstructions were performed for N = 100 iterations in parallel for σ̃ ∈
{0.6, 0.7, 0.8}px as indicated by the colored dots. The values of the objective function
for these three reconstructions coincide perfectly with the values of the objective function
obtained by the reference reconstructions shown in the background. As the value of the
objective function for σ̃ = 0.8 px is the lowest of the three reconstructions, further indicated
by a large colored dot, the respective volume and blur parameter are kept for the subsequent
global iteration. In the next global iteration m = 1, reconstructions for σ̃ ∈ {0.7, 0.8, 0.9} px
were performed using the volume kept from the previous global iteration. As a consequence
of the initialization, the values of the objective function for σ̃ ∈ {0.7, 0.9} px do not match the
values of the objective function obtained by the reference reconstructions anymore. However,
the value of the objective function for σ̃ = 0.8 px matches the value of the objective function
of the reference reconstruction rather nicely. The only difference between this reconstruction
and the reference reconstruction is that the optimization algorithm was re-initialized after
N = 100 iterations. Subsequently, the volume corresponding to σ̃ = 0.9 px is kept and a
new global iteration m = 2 is started. In this global iteration, the correct blur parameter
σ̃ = 1.0 px was already obtained and did not change in the subsequent global iterations.
In the following iterations only the estimate of the volume was improved. Similarly, as
shown in (b) for a different initialization of the blur parameter according to σ(0) = 1.3 px,
Algorithm 7.2 recovers the true blur parameter after four global iterations, as well.
Thus, Algorithm 7.2 was able to jointly estimate the blur parameter during reconstruction,

without an extensive search over the whole parameter space independently of the exact value
of the initial guess for the blur parameter.
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Figure 7.5.: Optimization algorithm for blind deconvolution reconstruction. In (a) and (b)
the values of the objective function are plotted for reference over the blur param-
eter after 100, 200, 300, 400 and 500 iterations using dashed gray lines. After 2000
iterations, ensuring sufficiently converged estimates, the values of the objective
function are plotted using a solid gray line. In (a) the steps of Algorithm 7.2 are
visualized for σ(0) = 0.7 px and in (b) the corresponding information is shown for
σ(0) = 1.3 px. Colored dots indicate which reconstructions have been explicitly
calculated in which global iteration. Large colored dots indicate the best recon-
struction in the respective global iteration. Dashed colored lines indicate which
information of the previous global iterations was used for the reconstructions in
the subsequent global iteration. A similar version of the figure was published
in [Hehn et al., 2019b].

7.5. Experimental verification at a test-bench setup

Finally, blind deconvolution reconstruction is applied to a human wrist phantom measured
at a cone-beam CT test bench. This study is designed to validate the applicability of blind
deconvolution reconstruction to real datasets.

7.5.1. Sample, test-bench setup and preprocessing

The sample used for the validation was a human wrist phantom. The test-bench setup
consists of a flat-panel detector (4030CB, Varian, Palo Alto CA, USA) with a pixelsize of
0.388 mm. The X-ray tube (Rad-94, Varian, Salt Lake City UT, USA) was operated at
100 keV with 100 mA. The exposure time was set to 6.3 ms per projection. The source-axis
distance was 595 mm and the source-detector distance was 1184 mm.
For preprocessing, the acquired measurements were gain and offset corrected and after-

wards binned by a factor of two to 340×100 pixels. In total, 360 measurements were acquired
equidistantly distributed around the sample. The dimensions of the volume were 340× 340
voxels in 120 slices. The 20 additional slices account for limited data in the cone-beam
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direction.

7.5.2. Reconstructions of the human wrist phantom
The physical model is given by Eq. (7.18), which only models a symmetric Gaussian (detec-
tor) blur using a single scalar blur parameter. Algorithm 7.1 was used for reconstruction.
Thereby, the 360 preprocessed measurements were provided as well as an FBP reconstruction
as initial guess for the volume. The regularization strength was set to β = 0.01 according
to visual inspection and the number of iterations was set to 400. To further validate the de-
pendency of the value of the different parts of the objective function on the blur parameter,
a series of reconstructions with σ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}px was performed.
The results are summarized in Figure 7.6. In (a)-(c) the values of the different parts of

the objective function are shown as a function of the blur parameter for different numbers of
iterations. In (a) the values of the likelihood term are shown, which increase with increasing
blur parameter as already shown in Figure 7.4 (a) in the simulation study for small blur
parameters. For these small blur parameters, the values after the first 100 iterations already
closely resemble the values after 400 iterations. For larger values of the blur parameter,
the values of the likelihood term still decrease with increasing number of iterations. In (b)
the responses of the normalized sparsity measure are shown. For increasing numbers of
iterations an optimum at σ = 0.8 px can be observed. As noted in Figure 7.4 (b) for the
simulation study, this value usually overestimated the true blur parameter. In (c) the total
objective function is shown. The overall trend of the values of the objective function closely
resembles the results from the simulation study shown in Figure 7.5. As in Figure 7.5, the
optimum slightly increases within the first 200 iterations, before it remains at σ = 0.6 px.
As validated on the simulation study, Algorithm 7.2 would, in principle, return this value
for the blur parameter.
Extracts of the reconstructed slice obtained with different blur parameters are depicted

in Figure 7.6 (d)-(i). From the additional zooms at the edges of the sample, the resolution
properties can be evaluated. In (d) and (e), the slices obtained with σ ∈ {0.4, 0.5}px show
increasingly blurred edges for decreasing blur parameter. This indicates too small values for
the blur parameter. The reconstruction with the lowest overall objective function value at
σ = 0.6 px is depicted in (f). A sharp transition from tissue to air is reconstructed. For
larger blur parameters, as depicted in (g)-(i), increasing overshoots at the edges are visible.

In conclusion, from visual inspection the best reconstruction is obtained for σ = 0.6 px,
as the reconstructed slices have sharp edges and no overshoots and thus the most realistic
representation of the human wrist phantom. This blur parameter coincides with the optimum
of the total objective function. Thus, it is possible to jointly estimate the blur parameter
during reconstruction using Algorithm 7.2. In addition, it could be shown that this approach
also works if the blur model is mismatched as the assumption of symmetric Gaussian blur
does not match the physical system perfectly.

7.6. Discussion and conclusion
In this chapter an objective function was derived, which enables the joint estimation of
parameters describing the system blur during tomographic reconstruction. A normalized
sparsity measure for CT was devised, which captures the prior information about the sample.
This measure favors sparse solutions and is less influenced by the noise level compared
to conventional regularization approaches. An extensive simulation study was performed
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Figure 7.6.: Blind deconvolution reconstruction at an experimental test-bench setup. In
(a)-(c), the different parts of the objective function are plotted over the blur
parameter at different iterations. In gray, the values of the different parts of
the objective function are plotted after 100, 200 and 300 iterations. The corre-
sponding values after 400 iterations are depicted in blue. In (a) the values of
the likelihood term are shown. In (b) the responses of the normalized sparsity
measure are depicted. Finally, in (c) the values of the total objective func-
tion are plotted. In (d)-(i), extracts of the reconstructed slices obtained with
different blur parameters are shown. In addition, zooms at the tissue to air in-
terfaces are provided. To better asses the resolution properties, a more narrow
window is used for these zooms. A similar version of the figure was published
in [Hehn et al., 2019b].

showing that the objective function using conventional TV regularization would estimate
the no-blur solution. By contrast, the proposed objective function has a global optimum
at the true blur parameter. This holds true independently of the regularization strength
and system blur. In addition, an optimization algorithm was proposed to jointly estimate
low-dimensional blur parameters efficiently. Finally, this approach was successfully validated
using an experimental test-bench setup.
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7. Blind deconvolution CT reconstruction

The simulation study as well as the experimental test-bench study were carried out using
a symmetric Gaussian system blur model, parameterized by a single blur parameter. To
better approximate the system blur, more comprehensive models could be beneficial. For
instance, a Lorentzian of Gaussian model could potentially better approximate detector blur,
which however would require additional blur parameters. For parametric deconvolution re-
construction, no requirements on the dimensionality of the blur model were imposed and
it is reasonable to assume that a global minimum at the desired blur parameters would be
present. However, for additional blur parameters, the computational cost of blind decon-
volution reconstruction increases significantly. For low-dimensional blur models, one could
extend Algorithm 7.2 to update the blur parameters in an alternating fashion, while still
only requiring three reconstructions in parallel.
Deconvolution algorithms are in general very sensitive to the noise level. As seen in Fig-

ure 7.2, for increasing noise levels, the performance of the normalized sparsity measure gets
worse as the sample edges become increasingly more corrupted. One could devise a regu-
larization term, which accounts differently for small differences in neighboring voxel values
in order to be more sensitive to the actual sample edges. For conventional regularization
techniques, this would relate to a Huber penalty given by Eq. (4.54) [Huber, 2011].
As seen for small blur parameters in Figure 7.4 (a) and Figure 7.6 (a), the likelihood

term is biased in terms of blur. As proposed in [Krishnan et al., 2011], where the estimation
of the blur kernel is performed only on the high frequencies of the photographs, one could
modify the likelihood term to emphasize the high-frequency components. Such a behaviour
would arise naturally from a likelihood term that includes noise covariances, as introduced
in [Tilley et al., 2016a]. Thereby, the covariance matrix acts as a high-pass filter suppressing
low and mid frequencies, where most energy is contained.
In summary, blind deconvolution has distinct benefits over conventional MBIR approaches.

Firstly, time-consuming prior characterizations of the system blur can be omitted if a pa-
rameterized blur model is available. This may prove particularly beneficial if the system
geometry or X-ray source parameters change frequently. Secondly, compared to prior char-
acterizations, the blur is directly estimated from the reconstructed volume. Thus, one can
also account for system blur due to algorithmic components, such as interpolations in the
projection operations. Thirdly, although the above examinations were applied to conven-
tional attenuation-based CT, the proposed approach is not restricted to this particular form
of the physical mean model or noise model. Thus, additional parameters of the physical
mean model that change the noise characteristics could be estimated in principle. For PB-
CT, the model for the interference effects is parameterized by a single scalar, describing
the monomorphous material. As a consequence, PB-CT would not require any prior knowl-
edge about the materials and, as outlined in the Chapter 6, estimating a single parameter
already implicitly accounts for the effects of the source, interference effects, detector and
noise suppression. In general, high-resolution applications like CT in the nanometer regime
might benefit particularly from the proposed approach, as higher resolution is fundamentally
limited by the system blur.
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8. Optimization-based geometry estimation
for CT at the nanometer scale

Precise knowledge about the geometry, which is defined by the relative position of the source,
rotation axis and detector, is crucial for image quality in CT as it defines the projection and
backprojection operations. With increasing resolution, uncertainties in the geometry have an
increasing influence on image quality and thus the geometry has to be known more accurately.
This chapter addresses means to estimate the parameters which define the geometry, focusing
on high-resolution cone-beam CT systems with sub-micron resolution.

Most geometry calibration methods require phantoms or other markers. In the following,
two different approaches belonging to this class of methods are highlighted. An overview of
the large amount of available literature is for instance presented in [Ferrucci et al., 2015].
The first approach uses a precisely defined calibration phantom enabling the estimation of

geometry parameters for every view individually [Cho et al., 2005]. This phantom consists
of 24 point markers (steel ball bearings). These markers are distributed on two parallel
planes separated by a known distance along the rotation axis. The twelve markers at the
respective planes are aligned evenly-spaced in a circle. For each view, the center of each
individual marker is determined, which is sufficient to extract the corresponding geometry
parameters. This method is highly sensitive to how accurately the calibration phantom is
fabricated. Consequently, although this method is powerful and widely used in conventional
non-microscopic systems, especially for medical imaging, for high-resolution microscopic sys-
tems accurate fabrication of such phantoms is difficult. In addition, the calibration scan has
to be performed every time the geometry changes. Moreover, it is required that the geome-
try remains constant between measurements. Due to external disturbances such as thermal
drifts, the geometry of high-resolution systems is not guaranteed to be constant over time.
Therefore, discrepancies certainly occur between the geometry parameters determined in the
phantom calibration and the geometry parameters of a subsequent sample scan.
Other approaches do not require known phantoms, but use markers with unknown posi-

tions [Gullberg et al., 1990, Noo et al., 2000, Von Smekal et al., 2004, Dittmann, 2018]. In-
stead, precise circular motion of the gantry (or rotation stage) is assumed. Thereby, one
calculates the geometry parameters of the detector as well as the positions of each marker
within the volume. Although most of the time these geometry parameters can only be com-
puted globally (the respective geometric parameters are the same for every view) and, due
to the assumption of precise circular motion, only a subset of all geometric parameters can
be estimated, these approaches provide several advantages for microscopic systems. First of
all, they do not require the fabrication of precise calibration phantoms. In addition, they
do not rely on a separate calibration scan as the markers can be placed within the sample
itself, not requiring a constant geometry between different scans. However, placing markers
within the sample may not always be desirable.
This chapter focuses on calibration procedures that do not require a dedicated phantom

or additional markers. These methods are also often referred to as on-line methods in
literature [Muders and Hesser, 2014, Ferrucci et al., 2015]. Some commonly used methods
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are mentioned below.
For instance, one can use the consistency conditions of opposing projections to determine

the axis of rotation [Patel et al., 2009]. In addition, iterative alignment procedures exist that
optimize the detector offset under every view [Mayo et al., 2007]. Here, one reconstructs the
projections with some approximate geometry and simulates the corresponding projections
afterwards. Then, the actual projections and simulated projections are registered to obtain
the mismatch of the detector offset. An optimization-based approach for geometrical cali-
bration has been proposed in [Panetta et al., 2008], where the objective function is based on
the redundancy conditions of cone-beam data.
Other algorithms use some criterion to asses the image quality of the reconstruction itself.

For instance, in [Donath et al., 2006] the center of rotation is determined using various differ-
ent metrics. In [Kyriakou et al., 2008], the entropy of the reconstructed volume is minimized
with respect to some geometry parameters using a simplex algorithm for multi-parameter
optimization. A similar approach is proposed in [Kingston et al., 2011], where the `2 norm
of the (spatial) gradient images is maximized with respect to the geometry parameters.
Little research revolves around jointly estimating the geometry parameters directly from

the objective function used for iterative tomographic reconstruction techniques. The most
likely explanation for this is that such an approach represents a heavily unconstrained op-
timization problem. This argument is also stated in [Bui et al., 2017], where deep-learning
methods and CAT models are used to estimate the geometry parameters. There are however
two conference proceedings [Rottman et al., 2015a, Rottman et al., 2015b], which describe,
how geometry parameters can be estimated from the objective function in the context of
mobile C-arms.
Within this context of geometry calibration methods, this chapter presents two on-line ap-

proaches for geometric calibration. The first approach falls into the category of optimizing
a criterion that evaluates the image quality of the reconstruction directly. For this purpose,
the normalized sparsity measure introduced in Chapter 7 is used. In theory, this metric gives
advantages over commonly used metrics (such as the `2 norm of the gradient images) as it
enforces sparsity. In contrast to most of the above-mentioned methods, here, the geometry
parameters are estimated for every view individually. The second approach tries to opti-
mize the geometry parameters jointly during tomographic reconstruction inside a statistical
iterative reconstruction framework. The key contribution is a thorough derivation of the
optimization algorithm used for jointly estimating the geometry parameters independently
of the projector model. This approach is computationally efficient and no explicit calcula-
tions of the gradients of the projection matrix with respect to the geometry parameters are
needed as in [Rottman et al., 2015a].

8.1. Projection matrices for two- and three-dimensional
geometries

The projective geometry, which defines how voxel coordinates (x, y, z) of the object are
mapped to the corresponding pixel coordinates (u, v) of the detector can be described by a
so-called projection matrix P according touwvw

w

 = P


x
y
z
1

 . (8.1)
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Consequently P is a 3×4 matrix for a three-dimensional geometry. To obtain the actual pixel
coordinates, the corresponding entries of the resulting vector have to be normalized by w−1.
Such projection matrices are for instance discussed in detail in [Hartley and Zisserman, 2003]
in the context of computer vision.
Countless different conventions to define the geometry in cone-beam CT exist. How-

ever, in [Commission, 2008] standardized conventions for circular cone-beam geometries are
defined. These conventions are for instance adopted in a popular open-source CT recon-
struction toolkit [Rit et al., 2014] and will also be used in the following. In this convention,
the optical axis is the z-axis and the tomographic axis aligns with the y-axis. There are no
particular units enforced on the distances. However, it must be ensured that the distances
are consistent (have the same units).

8.1.1. Parallel- and fan-beam geometry

For two-dimensional geometries, the y coordinate is ignored. Consequently, the projection
matrix is a 2× 3 matrix. The conventions found in [Commission, 2008, Rit et al., 2014] for
the cone-beam geometry are adapted in the following.

Parallel-beam geometry

First of all, the two-dimensional parallel-beam geometry is defined in (continuous) world
coordinates, e.g. from continuous world coordinates of the volume to continuous projected
world coordinates of the detector. Therefore, the geometry for each view is described by two
parameters: the offset of the detector dx (relative to different view) and the tomographic
angle φ. The projection matrix can then be defined as

Pworld
parallel = MR, (8.2)

with

M =
[
1 0 −dx
0 0 1

]
R =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 . (8.3)

Fan-beam geometry

For the (two-dimensional) fan-beam geometry, there are three additional parameters required
to describe the geometry under each view, namely the SAD dSAD, the SDD dSDD and the
offset of the source sx with respect to the optical axis. The corresponding projection matrix
is then given by

Pworld
fan = MdetMdstMsrcR, (8.4)

where the three new matrices are defined according to

Mdet =
[
1 sx − dx
0 1

]
Mdst =

[
−dSDD 0 0

0 1 −dSAD

]
Msrc =

1 0 −sx
0 1 0
0 0 1

 . (8.5)
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Transformation to voxel and pixel coordinates

The final projection matrices map the discrete voxel coordinates represented by (x, z, 1)T to
the (discrete) pixel coordinates represented by (uw,w)T . Therefore, two additional affine
transformations have to be defined. An affine projection Pa,2d that converts projected world
coordinates to pixel coordinates and an affine projection VT

a,2d that maps voxel coordinates
to world coordinates are defined. With Ns being the number of pixels of size ps on the
detector and Nx the number of voxels of size vx in one dimension, these matrices1 can be
defined as

Pa,2d =
[
1/ps (Ns − 1)/2

0 1

]
VT
a,2d =

vx 0 −vx(Nx − 1)/2
0 vx −vx(Nx − 1)/2
0 0 1

 . (8.6)

Consequently, the final projection matrices for the parallel-beam and the fan-beam geometry
are

Pparallel = Pa,2dPworld
parallelVT

a,2d and Pfan = Pa,2dPworld
fan VT

a,2d (8.7)
respectively.

8.1.2. Cone-beam geometry
To define the (three-dimensional) cone-beam geometry, four additional parameters compared
to the fan-beam geometry are required for each view. These include the rotation angle θ of
the object around the optical axis (z-axis) and the rotation angle ψ that defines the tip in
direction to the optical axis (around the x-axis). The last two parameters are sy, the offset
of the source in the orthogonal direction to sx and dy, the detector offset orthogonal to dx.
Following the conventions of [Commission, 2008, Rit et al., 2014], the projection matrix in
world coordinates is given by

Pworld
cone = MdetMdstMsrcRθRψRφ (8.8)

with

Mdet =

1 0 sx − dx
0 1 sy − dy
0 0 1

 , Msrc =


1 0 0 −sx
0 1 0 −sy
0 0 1 0
0 0 0 1

 , (8.9)

Mdst =

−dSDD 0 0 0
0 −dSDD 0 0
0 0 1 −dSAD

 (8.10)

and the modified rotation matrices2

Rθ =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 , Rψ =


1 0 0 0
0 cosψ sinψ 0
0 − sinψ cosψ 0
0 0 0 1

 , (8.11)

1 More general definitions which do not require squared voxels are possible.
2 For the existing conventions used in our software, the sign on the distances and angles have to be inverted.
In addition, the rotation matrices are defined differently. The above convention for the rotations is referred
to as the ZXY convention which is the natural choice for circular cone-beam geometries, where previous
work at our chair used the YZY convention suitable for Euler cradles [Als-Nielsen and McMorrow, 2011,
Schaff, 2017].
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8.2. Metric-guided geometry optimization

Rφ =


cosφ 0 − sinφ 0

0 1 0 0
sinφ 0 cosφ 0

0 0 0 1

 . (8.12)

To obtain the final projection matrix, the affine transformation matrices are extended to
three dimensions with Nt being the number of detector rows, pt the pixel height, Ny the
number of voxels parallel to the rotation axis with voxel size vy, according to

Pa =

1/ps 0 (Ns − 1)/2
0 1/pt (Nt − 1)/2
0 0 1

 VT
a =


vx 0 0 −vx(Nx − 1)/2
0 vy 0 −vy(Ny − 1)/2
0 0 vx −vx(Nx − 1)/2
0 0 0 1

 (8.13)

resulting in
Pcone = PaPworld

cone VT
a . (8.14)

8.2. Metric-guided geometry optimization
In metric-guided geometry estimation, the geometry parameters are altered and the quality
of the reconstruction is evaluated by a certain criterion. If the quality of the reconstruction
improves by a given change of geometry parameters, the old parameters are updated by the
new ones. This approach consists of two crucial components: the criterion that evaluates
the quality of the reconstruction and the procedure by which the geometry parameters are
altered.
The following algorithms only require the filtered projections ỹ, obtained by Eq. (4.27).

Given the set of geometry parameters θ that define the geometry, the analytic reconstruction
can be denoted by

x̂ = AT (θ)ỹ, (8.15)

using backprojection according to Eq. (4.28)3. Here θ =
[
θ0,θ1, . . .

]
is a matrix that holds

the geometry parameters for every view, e.g. θ = [dSAD,dSDD, . . . ] for a cone-beam geometry
and dSAD = (dSAD,0, dSAD,1, . . . )T contains the respective geometry parameter for every view.
As the criterion for the quality of the reconstruction, the normalized sparsity metric for CT
developed in Chapter 7 is used, which is given by Eq. (7.3) according to

S(x) ≡ R`1(x)√
R`22(x)

. (8.16)

In this case, a lower value of this metric corresponds to higher reconstruction quality. For-
mally, an objective function

C(θ) = S(AT (θ)ỹ) (8.17)

can be defined and optimized according to

θ̂ = arg min
θ
C(θ), (8.18)

3 This notation has subtle differences to the actual cone-beam reconstruction techniques. For instance, for
the FDK algorithm, this equation refers to the backprojection step, which is not the same as the transpose
of the projection operation as it includes additional weights.
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resulting in an estimate of geometry parameters θ̂ with the lowest value of the normalized
sparsity measure. In practice, however, solving this optimization problem directly is not
feasible. No obvious gradient information is available and manually searching this high-
dimensional objective is computationally very demanding, as nine geometry parameters (for
the cone-beam geometry) are needed for every view.
However, for estimating a single geometry parameter (for instance, the global offset of the

detector in x-direction) this approach is reduced to a one-dimensional minimization of

f(θ) = S(AT (θ̄ + θēm)ỹ). (8.19)

Here, θ̄ = (θ̄0, θ̄1, . . . ) holds the different global geometry parameters (which are the same
for every view) and ēm is a vector with zeros for all entries of θ̄ except the m-th global
geometry parameter, where it is one. A horizontal line is put over parameters to indicate
that they are the same for every view. This objective is then minimized according to

θ̂ = arg min
θ
f(θ), (8.20)

which can be solved by various line-search algorithms that do not require the first order
derivatives, such as Brent’s method [Brent, 1971].
This approach can be extended to estimate multiple global geometry parameters by ap-

plying Eq. (8.20) sequentially for different parameters as illustrated in Algorithm 8.1. The
algorithm requires the filtered projections ỹ, an initialization of the global geometry param-
eters θ̄ and a setM specifying which parameters to optimize for. The optimization approach
given by Eq. (8.20) is then solved in line 2 for each geometry parameter respectively. Finally,
the reconstruction x and the updated geometry parameters θ̄ are returned.

Algorithm 8.1 Algorithm to optimize global geometry parameters. It requires the filtered
projection measurements ỹ, an initial guess of the global geometry parameters θ̄ = (θ̄0, θ̄1, ...)
and a set M specifying which parameters to optimize for. The algorithm returns the recon-
structed volume x and the optimized global geometry parameters θ̄.
Require: ỹ, θ̄,M
1: for m ∈M do
2: θ̂ ← arg minθ S(AT (θ̄ + θēm)ỹ)
3: θ̄m ← θ̄m + θ̂
4: end for
5: x = AT (θ̄)ỹ
6: return x, θ̄

Moreover, this approach can even be extended to optimizing the geometry parameters
for every view individually, if the increase in computational time by the number of views
is acceptable. This, however, requires the metric to be sensitive enough to capture slight
changes in reconstruction quality if only a single geometry parameter of an individual view
is slightly altered. Algorithm 8.2 illustrates this approach. The algorithm again requires
the filtered projections ỹ, an initial (reasonable) guess of geometry parameters θ and the
set M specifying which parameters are to be updated. Then, for every geometry parameter
specified by M and for every of the P projection views, a one dimensional objective function
is solved in line 3. In contrast to the previous algorithm and Eq. (8.19), only one parameter
for an individual view is altered. Again, this can be solved by using a gradient-free line-
search algorithm. Afterwards, the correction of this particular geometry parameter is used
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8.3. Application of metric-guided geometry estimation at the NanoCT

to refine the geometry. After this procedure is repeated for all projection views and all
desired geometry parameters, the reconstruction x is computed and returned with the refined
geometry parameters θ.

Algorithm 8.2 Algorithm to optimize geometry parameters for every view. It requires the
filtered projection measurements ỹ, the initial guess of all geometry parameters at every view
θ = (θ0,θ1, ...) and a set M specifying which parameters to include in the optimization. As
a result, the reconstructed volume x and the optimized geometry parameters for every view
θ are returned.
Require: ỹ,θ
1: for m ∈M do
2: for p← 0..P − 1 do
3: θ̂ ← arg minθ S(AT (θ + θepm)ỹ)
4: θpm ← θpm + θ̂
5: end for
6: end for
7: x = AT (θ)ỹ
8: return x,θ

The advantages of the approaches introduced above are that they are not restricted to a
particular set of geometry parameters. In addition, one can utilize different metrics to cap-
ture different aspects of the reconstruction quality. However, these approaches (especially
for per-view optimization) are computationally very expensive and not guaranteed to con-
verge globally. In practice, there are two strategies one could apply to reduce computational
cost. Firstly, one could include only a subset of critical parameters that has the greatest
impact on image quality. Secondly, the implementation of the geometry parameters in world
coordinates allows to apply the optimization to a subsampled representation of the data.
The resulting parameters can then be used for a reconstruction of the full resolution with-
out any modifications. In addition, these methods are restricted to geometries where fast
(analytical) reconstruction algorithms are available, such as the FDK algorithm for circular
source trajectories. Furthermore, intermediate calculations within the backprojection, which
are independent of the geometry parameter that is currently optimized for, can be reused.

8.3. Application of metric-guided geometry estimation at the
NanoCT

In this section, metric-guided geometry estimation employing the normalized sparsity mea-
sure was applied at an experimental setup, which achieves submicron resolution using geo-
metric magnification. At this resolution, the geometry is prone to misalignment, for instance,
due to thermal drifts or vibrations. Since these misalignments cannot be characterized be-
forehand, on-line methods to correctly estimate the geometry are desired.
Parts of the following results are prepared for submission to an international peer-reviewed

journal [Ferstl et al., 2019].

8.3.1. The NanoCT
The proposed method was validated at the NanoCT. This experimental setup consists of a
prototype nanofocus source, a photon-counting detector and a high-precision rotary stage.
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8. Optimization-based geometry estimation for CT at the nanometer scale

The prototype source (Excillum AB, Sweden) consists of a thin tungsten transmission target
on a diamond layer with integrated water cooling enabling X-ray spot sizes down to 200 −
300 nm FWHM. The X-ray detector is a PILATUS 300K-W (DECTRIS Ltd., Switzerland)
with a 1 mm thick silicon sensor with a pixelsize of 172 µm. Due to the direct conversion of
X-ray photons, the point spread function (PSF) of the system can be neglected. In addition,
by only counting single X-ray photons above a certain energy threshold, no readout noise
is present. The sample stage is mounted as an overhead construction with an air-bearing
rotary stage for sample rotation. [Müller et al., 2017]
For the following measurement, the SAD was set to dSAD = 1.03 mm and the SDD to

600 mm. This results in a magnification of around M = 583, and thus in an effective voxel
size of vx = vy = 295 nm. The detector was shifted after every projection to better account
for gaps between different detector modules. [Ferstl et al., 2019]

8.3.2. Sample and preprocessing

The sample is a sea cucumber (Leptosynapta Minuta), which was stained with osmium
tetroxide and embedded in epoxy resin. [Ferstl et al., 2019]

Before tomographic reconstruction, a sequence of preprocessing steps was performed. First
of all, dead and corrupted detector pixels were replaced by the median of the neighboring
pixel values. Afterwards, from a series of reference projections without the sample, the inho-
mogeneous illumination as well as the individual pixel response were corrected (details can
be found in [Allner, 2019]). After correcting for the shift of the detector under each view,
the missing data from the module gaps of the detector were interpolated using neighboring
projection images. Subsequently, an intensity ramp was fitted onto the projections to allevi-
ate artifacts originating from the fact that the sample is significantly larger than the FOV.
Finally, qualitative single-material phase-retrieval is performed according to Eq. (3.18) with
ξ = 5.

8.3.3. Alignment and reconstruction

For geometry optimization, the horizontal detector offset (simply referred to as detector
offset in the following) was estimated. This parameter has a crucial impact on the image
quality of the reconstruction.
Firstly, to reduce computational cost, the projections were subsampled by a factor of

three in the angular dimension and by a factor of two in each of the spatial dimensions by
calculating the respective mean values. The number of data points was thus reduced by a
factor of twelve.
Next, the global detector offset was computed using Algorithm 8.1 with the (filtered)

downsampled projections. According to visual inspection, the initial guess of the detector
offset was set to 1 mm. The other geometry parameters were assumed to be correct. For the
optimization in line 2 of the algorithm, Brent linesearch was used with the initial bracket of
(1 mm, 1.5 mm) until the respective updates were smaller than 10−3 mm. These values were
chosen by hand. The value for the estimated global detector offset was d̄ds

x ≈ 1.19 mm. The
superscript indicates that this estimate was obtained from the downsampled projections. A
reconstructed slice using this estimated detector offset can be seen in Figure 8.1 (a).
To estimate the detector offset for each view individually, Algorithm 8.2 was used. Again,

the downsampled (filtered) projections were used. The detector offset for all projections
was initialized with the global value obtained by Algorithm 8.1 as described above. For
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a

50 µm

b

50 µm

c

50 µm

d

50 µm

Figure 8.1.: Reconstructions of a sea cucumber specimen measured at the NanoCT. An ex-
tract of the central slice of the specimen is depicted using different sampling of
the projections and different geometry parameters. In (a) and (b) the recon-
structions are depicted in the same linear gray scale using the undersampled
phase-retrieved projections. In (a) only the global horizontal detector offset
has been optimized. In (b) the horizontal detector offset has been optimized
for every view. The reconstruction using the full resolution of the projections
preprocessed with weaker phase-retrieval can be seen in (c) and (d) using the
same linear gray scale (but a different gray scale than above). In (c) the same
global detector offset is used that has been estimated for (a). By contrast, in
(d) the horizontal detector shifts for every view are linearly interpolated (and
extrapolated) from the horizontal detector shifts estimated in (b) as shown in
Figure 8.2. A manuscript is under preparation, where a similar axial slice of the
sample is presented. [Ferstl et al., 2019]
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Figure 8.2.: Estimated horizontal detector offsets. The global detector offset, which has the
same value for the subsampled as well as the original geometry, is shown by
the black horizontal line. In (dark) blue the detector offsets for every view as
estimated from the subsampled projections are shown. The respective detector
offsets used for the original geometry, which are obtained by linear interpolation
(and extrapolation) of the subsampled offsets, are depicted in a lighter color.

optimization in line 4, Brent linesearch was used again with a bracket of (−0.5 mm, 0.5 mm).
The stopping criterion is fulfilled if the updates were smaller than 10−2 mm or the number of
iterations exceeds 10 (which however was very uncommon). In Figure 8.1 (b) the resulting
reconstructed slice is depicted. Compared to the previous reconstruction obtained with the
global detector offset, the resolution is improved and features are more clearly visible. The
estimates for every view referred to as dds

x are shown in Figure 8.2 together with the global
estimate obtained before. As expected, the global detector offset is approximately the mean
of the detector offsets obtained for every view.
As all geometry parameters are given in (continuous) world units and are thus independent

of the particular pixel or voxel sizes, the values of the geometry parameters can be directly
used for the original projections with the full resolution. Thereby, only the affine matrices
that describe the conversion from voxel to world coordinates and from world coordinates to
pixel coordinates have to be updated. To further improve the resolution, a weaker single-
material phase-retrieval with ξ = 3 was applied. In Figure 8.1 (c) the reconstruction with
the global estimate of the detector offset d̄x is shown.

Finally, to transfer the estimates of the individual detector offsets dds
x to the original pro-

jections, referred to as dx, an interpolation has to be performed as three times as many
projection views are available. As the individual detector offsets vary slowly between neigh-
boring projection views, as indicated in Figure 8.2, linear interpolation can be used to esti-
mate the individual detector offsets for the original projection. In Figure 8.2 the interpolated
detector offsets and the undersampled offsets are shown. The final reconstruction is shown
in Figure 8.1 (d) improving the results of Figure 8.1 (c) further.

In conclusion, the normalized sparsity measure for CT can be used to refine the horizontal
detector offset for each view. Although a comparison with other methods is beyond the scope
of this thesis, this method seems to be be more robust than iterative alignment procedures
that correlate the measurements to virtual projections [Mayo et al., 2007], in particular,
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8.4. Joint geometry estimation and tomographic reconstruction

if the sample exceeds the FOV and features only weak contrast. Most importantly, the
proposed approach can, in principle, be used to estimate other parameters, such as the
alignment of the rotation axis or the distances between the source, axis and detector.

8.4. Joint geometry estimation and tomographic reconstruction
In joint geometry estimation and tomographic reconstruction, the geometry parameters are
not assessed according to some criterion applied to the reconstruction, but directly to the
objective function (posterior distribution) used for tomographic reconstruction. Here, the
objective function C is not only understood as function of the sample x, but also of the
geometry parameters θ, which parameterize the forward and backprojection operations.
Formally, this can be written as {

x̂, θ̂
}

= arg min
x,θ
C(x,θ). (8.21)

In the following, a strategy is derived to optimize Eq. (8.21), which is independent of the
projector model. This implies that the following approach can be used with any existing
implementation of the projection operations.

8.4.1. Objective function and derivation of the gradients
In the following, only the projection operations are modeled in the mean model according
to Eq. (4.46). Thus, the matrix A, defining the forward and backprojection operations can
be referred to as the system matrix. The quantity from which to reconstruct the volume x
are the line-integrals denoted by `. The following notation is used to explicitly differentiate
between different views and different pixels. Thereby, `pi refers to the line-integrals of the
i-th pixel and the p-th view. The entries of the system matrix are referred to as apij , where
j refers to the voxels. In addition, θ holds the geometry parameters for every view. The
entries are indexed according to θqm, where q refers to the views and m runs over different
geometry parameters. For simplicity, the likelihood is written as a least squares objective
and additional regularization terms are omitted. Thus, the objective function equals the
likelihood and can be written as

L(x,θ) = 1
2
∑
p

∑
i

`pi −∑
j

apij(θ)xj

2

, (8.22)

where the dependencies are explicitly denoted. This formulation coincides with Eq. (4.49)
omitting the statistical weights for convenience to keep the notation short. The gradient
with respect to x indexed by k is given by

∂L(x,θ)
∂xk

= −
∑
p

∑
i

apik(θ)

`pi −∑
j

apij(θ)xj

 . (8.23)

To jointly estimate x and θ the objective function also has to be derived with respect to
θ. This results in

∂L(x,θ)
∂θqm

= −
∑
p

∑
i

(∑
k

∂apik(θ)
∂θqm

xk

)`pi −∑
j

apij(θ)xj

 , (8.24)
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8. Optimization-based geometry estimation for CT at the nanometer scale

where the gradient of the system matrix A with respect to the geometry parameters θ has
to be computed. This gradient depends on the individual projector model. An explicit
derivation is not straightforward as the projector models can become complex. Therefore,
to alleviate this problem, this gradient is evaluated as a finite difference according to

∑
k

∂apik(θ)
∂θqm

xk ≈
1
ε

(∑
k

apik(θ + εeqm)xk −
∑
k

apik(θ)xk
)
, (8.25)

where emq denotes a matrix, with all entries being zero except for the element of the q-th view
of the m-th geometry parameter and ε > 0 being sufficiently small. However, the first sum
requires an individual forwardprojection for every view and geometry parameter, making
this approach unfeasible due to its computational cost.
To reduce computational cost, the argument of the system matrix needs to become inde-

pendent of the respective projection view. This can be achieved by employing the fact that
a change of the m-th geometry parameter of the q-th view only influences the q-th view.
Mathematically, this can be written as∑

k

apik(θ + εeqm)xk = δpq
∑
k

apik(θ + εēm)xk + (1− δpq)
∑
k

apik(θ)xk. (8.26)

Here ēm denotes a matrix, where all entries are 0 except for those of the m-th projection,
where the entries are one. In addition, δpq denotes the Kronecker delta which is zero ev-
erywhere except for p = q, where it is one. Inserting Eq. (8.26) into Eq. (8.25) results
in ∑

k

∂apik(θ)
∂θqm

xk ≈
δpq

ε

(∑
k

apik(θ + εēm)xk −
∑
k

apik(θ)xk
)
. (8.27)

Thereby, the number of required forwardprojections is reduced by the number of views.
Finally, the gradient given by Eq. (8.24) reduces with Eq. (8.27) to

∂L(x,θ)
∂θqm

= −1
ε

∑
i

(∑
k

aqik(θ + εēm)xk −
∑
k

aqik(θ)xk
)`qi −∑

j

aqij(θ)xj

 , (8.28)

where δpq cancels the summation over p and one can simultaneously calculate the updates
of a particular geometry parameter for all projection angles q using only one additional
forwardprojection, as the second forwardprojection is already computed in the evaluation of
the gradient with respect to the volume given by Eq. (8.23).

8.4.2. First-order optimization using ADAM
For minimizing Eq. (8.22), using the steepest descent search direction given by Eq. (4.60)
with constant step length gave poor performance. Thus, Adaptive Momentum (ADAM)
estimation was chosen, which includes adaptive step lengths (or learning rates) based on the
estimates of the first and second moments of the gradients, as defined in Algorithm 8.3. The
ADAM solver was introduced for stochastic optimization problems and is nowadays widely
used in the field of machine learning. This solver might not be particularly well suited for the
proposed problem, but it is computationally efficient, has little memory requirements and
only requires first-order derivatives [Kingma and Ba, 2014]. For instance, one could make
use of the fact that minimizing the likelihood with respect to x is a linear problem or one
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8.4. Joint geometry estimation and tomographic reconstruction

Algorithm 8.3 Algorithm for joint geometry estimation and reconstruction. The number
of iterations is given by N and the set M indicates the geometry parameters to optimize for.
The Hadamard product is denoted by �. The algorithm requires the line-integrals `, initial
guesses for x(0) and θ(0) = (θ(0)

0 ..θ
(0)
M−1) as well as the step lengths αx and α = (α0..αM−1).

The algorithm returns the reconstructed object x(N) and the optimized geometry parameters
θ(N).
Require: `,x(0),θ(0), αx,α,M,N

1: m(0)
x = v(0)

x = 0
2: for m ∈M do
3: m(0)

m = v(0)
m = 0

4: end for
5: β1 = 0.9; β2 = 0.999; ε = 10−8; ε′ = 10−10

6: for n← 0..N − 1 do
7: p = A(θ(n))x(n)

8: r← `− p
9: Dx ← −AT (θ(n))r(n)

10: m(n+1)
x ← β1m(n)

x + (1− β1)Dx

11: v(n+1)
x ← β2v(n)

x + (1− β2)Dx �Dx

12: m̂x ←m(n+1)
x /(1− βn+1

1 )
13: v̂x ← v(n+1)

x /(1− βn+1
2 )

14: for m ∈M do
15: Dm ← −1/ε′

(
A(θ(n) + ε′ēm)x(n) − p

)T
r

16: m(n+1)
m ← β1m(n)

m + (1− β1)Dm

17: v(n+1)
m ← β2v(n)

m + (1− β2)Dm �Dm

18: m̂m ←m(n+1)
m /(1− βn+1

1 )
19: v̂m ← v(n+1)

m /(1− βn+1
2 )

20: end for
21: x(n+1) ← x(n) − αxm̂x/

(√
v̂x + ε

)
22: for m ∈M do
23: θ

(n+1)
m ← θ

(n)
m − αmm̂m/

(√
v̂m + ε

)
24: end for
25: end for
26: return x(N),θ(N)
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could use ordered subset algorithms developed for transmission tomography applications as
discussed in Section 4.3.
The optimization scheme is sketched in Algorithm 8.3. The line-integrals ` as well as the

initial guesses x(0) and θ(0) are required. In addition, one has to choose the step length
manually for the update in x, referred to as αx and the step lengths α for each geometry
parameter one chooses to optimize for. Which parameters are estimated is again specified
by the set M . In addition, a termination criterion such as the number of iterations N
has to be stated. The first momentum vectors m and second momentum vectors v are all
initialized with zeros. The parameters β1, β2 and α are chosen to be the default parameters
according to [Kingma and Ba, 2014]. In addition, ε′, which is used for the finite difference
approximation is set depending on the machine precision. In every iteration indexed by
n the virtual projections p are calculated from the current estimate of the object x(n) and
geometry parameters θ(n). This variable is then stored. Subsequently, the residuum r = `−p
is calculated and also stored. Afterwards, the gradient of the objective with respect to x
is calculated by backprojecting the residuum. The first and second moments mx and vx
are then calculated. To compensate the bias from the initialization of the moments, the
moments are corrected depending on the iteration resulting in m̂x and v̂x. Afterwards, for
every geometry parameter θm, the respective gradient is calculated for all projection angles
simultaneously by computing one additional forwardprojection and using the previously
stored projections p and residuum r. Then, the respective moments mm,vm, m̂m, v̂m are
computed. Finally, the new estimates x(n+1) and θ(n+1) are calculated using the corrected
first and second raw moments. After N iterations, the estimates for x(N) and θ(N) are
returned.
In addition, one could include further improvements such as leveraging the fact that

ADAM is built upon stochastical optimization approaches. Thus, including only an (or-
dered) subset (sometimes also called minibatch) of projections in each iteration might lead
to faster convergence. However, for the update of the geometry parameters this would also
result in only an update of a subset of these parameters.

8.5. Evaluation of joint geometry estimation using a simulation
study

In the following, a simulation study is performed to evaluate the performance and limitations
of jointly estimating the geometry parameters during tomographic reconstruction using Al-
gorithm 8.3. This approach is evaluated for a two-dimensional parallel-beam geometry and a
fan-beam geometry using the Shepp-Logan phantom [Shepp and Logan, 1974b], which was
downsampled to 64×64 px to reduce partial volume effects and to reduce computational cost.
Forward and backprojection are matched using the footprint projector model, described in
Figure 4.3 (c)-(d). The simulations were performed without noise.

8.5.1. Two-dimensional parallel-beam geometry

In a two-dimensional parallel-beam arrangement the geometry of the tomographic system is
described by the offset of the detector dx orthogonal to the beam axis and the tomographic
angles φ. For the uncorrupted (reference) geometry, no detector offset dx = 0 was assumed.
The number of tomographic angles was set to 101 according to Nyquist’s criterion given
by Eq. (4.18) and distributed equidistantly between 0 ◦ and 360 ◦. The voxel as well as the
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Figure 8.3.: Geometry parameters for the parallel-beam geometry. In (a) the detector shift
is depicted for every angle. In orange the initial guess dref

x of having no detector
shift is shown. In blue the estimated detector shift d̂x is shown for every angle.
In comparison, the dashed black line shows the ground truth values dtrue

x used
for simulation, which match the estimated values extremely well. In (b) the
deviation of the projection angle from the evenly-spaced initial guess is depicted.
Again, in orange the initial guess φref

x , in blue the estimate φ̂x and in black the
ground truth φtrue

x are shown.

pixelsize were set to 1.
For the actual geometry, the detector offset of each projection was corrupted by a random

shift drawn from a normal distribution with zero-mean and standard deviation of 1. Similarly,
the tomographic angles were corrupted by random rotations drawn from a zero-mean normal
distribution with standard deviation of 1 ◦. The actual values can be read from the black
dashed lines in Figure 8.3. The line-integrals depicted in Figure 8.4 (a) were simulated by
forward projecting the phantom. In Figure 8.4 (b) the FBP reconstruction xref

fbp is visualized
assuming the uncorrupted geometry. Severe geometry artifacts arising predominantly from
the jitter of the detector are visible.
For joint reconstruction x, dx and φ were optimized for every view. Thus, in addition

to the 642 = 4096 unknown parameters of the object, 101 × 2 = 202 additional geometry
parameters were estimated. Algorithm 8.3 was initialized with the simulated projections `
depicted in Figure 8.4 (a), the FBP xref

fbp depicted in Figure 8.4 (b) blurred by a Gaussian
with a standard deviation of 1, as well as the uncorrupted geometry parameters dref

x and φeqi
x

depicted in Figure 8.3. The step lengths were manually chosen to be εx = 10−3, εdx = 10−2

and εφ = 10−3 to balance the influence of these parameters on the objective function. In
total 10000 iterations were performed.
In Figure 8.3, the estimated as well as the initial (reference) and corrupted (ground truth)

geometry parameters are plotted. In (a), the estimates of the detector offsets are shown. One
finds that the corrupted offsets used for simulation can be perfectly recovered. In addition,
as shown in (b), the deviations from the equidistantly sampled projection angles are also
recovered. However, there are still slight variations from the ground truth, especially around
a projection angle of 90 ◦. The reconstructed volume x̂ after 10000 iterations can be seen in

131



8. Optimization-based geometry estimation for CT at the nanometer scale
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Figure 8.4.: Sinogram and reconstructions for the parallel-beam geometry. In (a) the sino-
gram ` with the corrupted geometry is shown. The FBP reconstruction xref

fbp
obtained with the uncorrupted geometry parameter is shown in (b). In (c) the
estimate for the volume x̂ using joint geometry estimation and tomographic
reconstruction is shown.

Figure 8.4 (c). The geometry artifacts of the FBP reconstruction are not visible anymore,
resulting in a sharp depiction of the object. As no regularization is used, slight noise levels
are visible (overfitting).
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Figure 8.5.: Objective and deviations to ground truth for the parallel-beam geometry. In (a)
the value of the likelihood is plotted over the iterations. In (b), (c) and (d), the
differences to the ground truth of the reconstructed volume, the detector offsets
and the projection angles are depicted.

Finally, Figure 8.5 shows additional information about the optimization process. In (a)
the value of the objective function is shown as a function of the number the iterations. The
value monotonously decreases over several orders of magnitude apart from small instabilities

132



8.5. Evaluation of joint geometry estimation using a simulation study

at the end. In (b), the root MSE (RMSE) between the estimated object and the ground
truth is shown over the number of iterations. For the first 1000 iterations, a strong decrease
is visible. In (c), the RMSE of the estimated detectors offsets to the ground truth is depicted.
As the geometry and thus the objective function is very sensitive to the detector offsets, this
geometry parameter is optimized first. The detector offsets also have a strong influence on
the representation of the object and thus the difference to the ground truth of the object
decreases most significantly in the beginning. Finally, the comparison of the projection
angles to the ground truth is shown. In this case, the influence on the objective function is
less prominent than for the detector offsets. In comparison to the detectors offsets, the error
decreases more slowly.
In conclusion, jointly estimating all geometry parameters during tomographic reconstruc-

tion for this idealized setup is feasible.

8.5.2. Fan-beam geometry
The number of geometry parameters for each view increases from two parameters in the
(two-dimensional) parallel-beam geometry to five parameters in the fan-beam geometry.
In addition to the detector offset and the projection angle, the SAD and SDD as well as
the offset of the source orthogonal to the optical axis have to be accounted for. For the
uncorrupted (reference) geometry no source and detector offsets were assumed. The SAD
was set to dSAD = 60 and the SDD was set to dSDD = 100 for all views. As previously, 101
projections were acquired equidistantly distributed over 360 ◦. Again, unit voxel size was
used. To account for the magnification, the pixelsize was set to 2.
For the corrupted (true) geometry, the source offsets were drawn from a zero-mean normal

distribution with standard deviation 1, the detector offsets were drawn from a zero-mean
normal distribution of standard deviation 2 and the tomographic angles were corrupted by
adding random shifts drawn from a zero-mean normal distribution with standard deviation
of 1 ◦. Finally, the SAD and SDD were corrupted for each projection by a normal distribu-
tion with a standard deviation of 1 % of the distances of the uncorrupted geometry. The
geometry parameters are depicted in Figure 8.6 (b)-(f). The simulated sinogram is shown
in Figure 8.7 (a) and the FBP reconstruction using the uncorrupted geometry parameters is
plotted in Figure 8.7 (b). The quality of the reconstruction is significantly reduced by not
correctly accounting for the geometry.
For iterative reconstruction, the volume as well as all five geometry parameters for each

projection were estimated simultaneously. Therefore, Algorithm 8.3 was initialized with the
simulated projections ` shown in Figure 8.7 (a), the FBP xref

fbp obtained with the uncorrupted
geometry parameters depicted in Figure 8.7 (b), which was afterwards blurred with a Gaus-
sian filter with a standard deviation of 1, as well as the uncorrupted geometry parameters
as defined above and shown in Figure 8.6 (b)-(f). The step length for the volume update
was set to αx = 10−3. The step length for each geometry parameter was tuned manually to
εdSAD = 10−3, εdSDD = 10−4, εsx = 5 · 10−3, εdx = 10−2 and εφ = 2 · 10−3.

Figure 8.6 (a) shows the value of the objective function as a function of the number of
iterations. The value decreases again over several orders of magnitude, with some outliers
at the end, which are attributed to the optimization algorithm. In (b)-(f), the estimated,
true and initial geometry parameters are shown. The tomographic angle, the source offset as
well as the detector offset can be estimated very accurately. However, there are inaccuracies
for the estimation of the SAD as well as the SDD. Nevertheless, a slight change of these
values hardly influences the likelihood term and their influence on the image quality is

133



8. Optimization-based geometry estimation for CT at the nanometer scale

0 2000 4000 6000 8000 10000
iterations

100

101

102

103

104
O

b
je

ct
iv

e
L

a

0 90 180 270 360
projection angle (◦)

−2

−1

0

1

2

3

d
ev

ia
ti

on
fr

om
eq

u
id

is
ta

n
t

an
gl

es
(◦

)

b

φref − φeqi

φ̂− φeqi

φref − φeqi

0 90 180 270 360
projection angle (◦)

58

59

60

61

so
u

rc
e

to
ax

is
d

is
ta

n
ce

(1
)

c

dref
SAD

d̂SAD

dtrue
SAD

0 90 180 270 360
projection angle (◦)

98

99

100

101

102

103

so
u

rc
e

to
d

et
ec

to
r

d
is

ta
n

ce
(1

) d

dref
SDD

d̂SDD

dtrue
SDD

0 90 180 270 360
projection angle (◦)

−2

0

2

4

so
u

rc
e

off
se

t
(1

)

e

sref
x

ŝx
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Figure 8.6.: Likelihood and geometry parameters for the fan-beam geometry. In (a) the
value of the likelihood term is plotted over the iterations. In (b), the deviation
of the projection angle from the evenly-spaced initial guess φeqi is depicted. In
(c)-(f), the values of the SAD, SDD, source offset and detector offset are shown
respectively. In orange, the values of the uncorrupted geometry, in blue, the
estimated values, and in back the true values for each of the geometry parameters
are illustrated.
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fbp c x̂
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Figure 8.7.: Sinogram and reconstruction for the fan-beam geometry. In (a), the simulated
measurement generated with the unknown geometry is shown. In (b) the con-
ventional FBP reconstruction x̂ref

fbp using the uncorrupted geometry is shown. In
(c) the estimate for x̂ using the iterative reconstruction approach is depicted.

comparably small. The reconstructed volume is depicted in Figure 8.7 (c). Despite the
strong manipulations performed on the geometry, a sharp object is obtained. The resulting
reconstruction depicts slight noise levels, as no regularization was used.
In Figure 8.8, the RMSE of the volume and the geometry parameters are depicted as

a function of the number of iterations. The RMSEs are monotonically decreasing for the
volume as well as all geometry parameters. However, increasing the number of iterations
beyond 10000 has shown to result in an increase of the RMSE for the SAD and SDD, as for
certain views the estimated values diverge from the ground truth. As for the parallel-beam
case, the detector offset has the greatest influence on the likelihood and is thus optimized
first.

This study shows that, in principle, all geometry parameters can be estimated even for
a fan-beam geometry. However, the exact values of the step lengths for each geometry
parameter have to be determined manually, which can be difficult. On the one hand, it was
also observed that accurately estimating the SAD and SDD was difficult, as their impact on
the value of the likelihood is small. On the other hand, this also implies that an inaccurate
estimation of these parameters does not corrupt the reconstruction quality significantly.

8.6. Application of joint geometry estimation at the NanoCT

In this section, joint geometry optimization and tomographic reconstruction is applied to a
dataset measured at the NanoCT. The experimental setup is described in Subsection 8.3.1.
Again, the geometry estimation is restricted to refining the horizontal detector offsets, simply
referred to as detector offsets in the following. The cone-beam projector, which is elaborated
in [Fehringer et al., 2014, Fehringer, 2019], is used consisting of a pixel-driven backprojector
described in Figure 4.3 (a) and a ray-driven forward projector illustrated in Figure 4.3 (b).
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Figure 8.8.: Deviations to ground truth for the fan-beam geometry. In (a) the RMSE of the
volume to the ground truth is depicted over the number of iterations. In (b)-(f)
the corresponding information for the geometry parameters is depicted.

8.6.1. Sample, acquisition and preprocessing

The sample4 consists of sand grains attached to a PMMA rod using superglue. The SAD was
set to 3.36 mm and the SDD was set to 200 mm, resulting in a magnification of around 60.
Given the detector pixelsize of 172 µm, the effective voxel size is given as 2.9 µm. 1599 pro-
jections were acquired5 equidistantly around the sample. In addition, reference projections
without the sample were acquired. The exposure time was set to 2 s.
For preprocessing, dead and corrupted pixels were removed by replacing their value with

the median of neighboring pixel values. Using the reference projections, the inhomoge-
neous illumination and the individual pixel responses were corrected (details can be found
in [Allner, 2019]). As the detector was shifted during acquisition, the missing data from the
module gaps of the detector were interpolated from neighboring projections. Afterwards,
the detector shifts were corrected. In addition, the intensity was adjusted by an intensity
ramp and finally the projections were cropped to reduce computational time. Although
slight edge-enhancement effects are visible, no phase retrieval was performed and only the
line-integrals were computed.

4 Sample preparation was performed by Simone Ferstl and Katharina Scheidt.
5 Data acquisition was done by Katharina Scheidt.
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Figure 8.9.: Reconstructions using joint geometry estimation at the NanoCT. In (a), an
extract of the reconstructed sea sand sample using FBP is depicted with an
additional zoom to the interface between the sand, glue and air. In (b), the
corresponding information is shown for the reference reconstruction, which uses
iterative reconstruction. For the analytical reconstruction and the reference
reconstruction no additional geometry refinement was performed during recon-
struction. In (c) the horizontal detector offset was estimated during tomographic
reconstruction.

8.6.2. Reference reconstructions and joint geometry estimation

The geometry was defined according to Eq. (8.8). It was assumed that there is no rotation of
the object around the optical axis, no tip in direction of the optical axis, and the tomographic
angles are equidistantly distributed between 0 ◦ and 360 ◦. In addition, it was assumed that
there is (on average) no offset of the source and the detector. This is reasonable as the
cropping was performed such that the sample is aligned to the center.
First, an FBP was computed with the geometry defined above. A region of a reconstructed

slice can be seen in Figure 8.9 (a). From the provided zoom one can observe that the interface
between the sand and air is blurred significantly. However, the artifacts at the reconstructed
slice do not obviously hint at a wrong value for the detector offset, as other sources of system
blur could potentially explain this effect as well.
Next, an iterative reconstruction with the same geometry is performed using the objective

given by Eq. (8.22). However, the geometry parameters are fixed and thus, this objective is
only optimized with respect to the volume. Algorithm 8.3 was used with the preprocessed
projections, the FBP as initial guess and the same geometry parameters as defined above.
The step length is set to αx = 10−4 and the number of iterations to N = 250. As no geometry
parameters are updated, the other parameters are not provided. The respective extract of
the reconstruction is shown in Figure 8.9 (b). The edges are less blurred as expected from the
iterative algorithm. As the noise levels are moderate, the noise does not increase significantly
with increasing number of iterations. From this extract, double edges are visible which hint
at a wrong estimate of the detector offset.
Finally, the detector offset is estimated during tomographic reconstruction using again

Algorithm 8.3 with the same arguments as provided before. In addition, a setM = {dx} was
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Figure 8.10.: Likelihood and detector offsets at the NanoCT. In (a), the value of the likeli-
hood term of the joint reconstruction approach is depicted in blue as a function
of the number of iterations. For reference, the corresponding value of the likeli-
hood term, where no additional geometry optimization was performed, is shown
in orange. In (b), the horizontal detector offsets are plotted over the projection
angles. In black, the initial guess is shown. The detector offsets estimated after
50 iterations are shown in light blue and the estimated detector offsets after
250 iterations are depicted in (dark) blue.

provided, referring to the detector offset, and the step length was chosen according to αdx =
0.1. The corresponding extract of the reconstruction can be seen in Figure 8.9 (c). The edges
are clearly sharper and the edge-enhancement effects become visible in the reconstruction as
dark contour lines at the interfaces to air. In the provided zoom one can precisely distinguish
the additional layer of glue between the sand and the air. The noise level is comparable with
the previous iterative reconstruction.

In Figure 8.10 (a), the value of the likelihood attributed to the reference reconstruction and
the value of the joint geometry estimation and tomographic reconstruction are depicted as a
function of the number of iterations. The ADAM optimization does not guarantee that the
values decrease monotonically and small bumps can be observed, which may be resolved by
specifying a smaller step length, which however may slow down convergence. In general, the
value of the likelihood of the joint reconstruction is lower than the corresponding value of the
reference reconstruction. This suggests that the model for the joint reconstruction can better
approximate the actual measurements. In (b) the detector offset is plotted as a function of
the projection angle. The initial guess corresponds to no detector offset for all projections.
After 50 iterations a nonuniform offset can be observed, which already approximates the
estimated detector offset after 250 iterations reasonably well.

In summary, joint geometry optimization and reconstruction can, in principle, be per-
formed at the NanoCT to estimate geometry parameters. Thus, even with additional noise,
an imperfect knowledge of the remaining geometry parameters, an incomplete physical mean
model (as it does not account for the interference effects) and an unmatched projector model,
joint geometry optimization and reconstruction is feasible.

138



8.7. Discussion and conclusion

8.7. Discussion and conclusion
In this chapter, two methods for estimating geometry parameters in high-resolution CT were
investigated. In the following, the benefits and drawbacks of the respective methods and their
potential to improve image quality for reconstructions at the NanoCT are discussed. This
is particularly helpful, as the error in the geometry parameters for this application is not
predictable and conventional geometry characterization methods performed prior to data
acquisition do not suffice.
The first method used the normalized sparsity metric for CT, which was developed in

Chapter 7, to estimate geometry parameters. This method was found to be robust to noise
and compatible with region of interest (ROI) reconstructions. Most importantly, in principle,
every geometry parameter can be estimated using this method. In addition, it was shown
that the geometry parameters can be estimated for every view individually. This method was
applied to a complex tomographic dataset at the NanoCT, where the sample exceeded the
FOV significantly. Computational cost is the main disadvantage of this approach. However,
a computationally more efficient approach was introduced, which performs the estimation
of the geometry parameters on a coarser grid and uses interpolation to estimate the geom-
etry parameters for the original geometry. Assuming the increase in computational time
is acceptable, this approach holds the potential to estimate multiple parameters at once.
Furthermore, by using multiple iterations of this approach, the geometry parameters can be
further refined.
The second method jointly estimates the geometry parameters during tomographic recon-

struction. In contrast to the first method, where geometric alignment has to be performed
as a separate step prior to a MBIR, this method integrates the refinement of the geometry
parameters in MBIR. This is conceptually elegant as the geometry parameters can be inter-
preted as additional parameters of the physical mean model, similarly to the blur parameters
in blind deconvolution CT reconstruction introduced in Chapter 7. A key contribution is
the efficient evaluation of the gradient of the physical mean model with respect to the ge-
ometry parameters. It was shown in a simulation study that under ideal conditions, the
geometry parameters for two-dimensional geometries can be estimated for every view during
tomographic reconstruction. In addition, this approach was evaluated on a simple phan-
tom measurement acquired at the NanoCT. It could be demonstrated that the horizontal
detector offset can be recovered during reconstruction. However, it remains unclear if this
approach is feasible for datasets with high noise levels and ROI reconstructions. In addition,
the generalization to estimate multiple geometry parameters and to complex datasets could
not be demonstrated. Investigating the limitations of this approach would be desireable.
For applications at the NanoCT, the focus for both methods was on the horizontal detector

offset, which was shown to have a significant influence on the image quality. However,
estimating all geometry parameters at once is not feasible, due to the computational cost
of the first method or the fact that the optimization problem of the second method is
highly unconstrained. Thus, the properties of the experimental setup have to be understood
reasonably well to determine which geometry parameters are not reliable due to random shifts
and need to be estimated and which geometry parameters can be assumed to be known such
that their influence of the image quality can be neglected. In addition, it should be assessed
if it is sufficient to estimate the global geometry parameters (for instance tip and tilt of the
rotation axis), if one can parameterize the dependency of the geometry parameters with the
views, or if it is necessary to estimate the parameters for each view individually. Estimating
only global parameters reduces the complexity of the optimization problems significantly.
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8. Optimization-based geometry estimation for CT at the nanometer scale

In conclusion, for most scenarios, the first method using the normalized sparsity measure
for CT will be more suitable as it is more robust. In general, the exact implementation
of any of the described methods varies between different setups and needs to be tailored
individually to the respective uncertainties of the geometry parameters.
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This final chapter presents a short summary of the main results followed by an outlook re-
garding future developments, showing how the key algorithms designed here can be combined
and utilized for different imaging scenarios.

9.1. Summary of results
In the following sections, the main algorithmic advances to improve image quality in different
X-ray imaging modalities are summarized for each chapter.

Non-linear SIR framework for PBI and PB-CT

In Chapter 5, a versatile non-linear SIR framework was proposed for PBI and PB-CT us-
ing solely a single propagation distance. This framework directly incorporates into the
reconstruction a model for the propagation of the X-rays and a statistical description of
the measurements. For PBI, if a pure phase object is assumed, the analytical solution of
the proposed framework coincides with Bronnikov’s phase retrieval algorithm. Using the
homogeneity assumption, it was demonstrated experimentally that the results are in good
agreement with the results obtained by the single-material phase-retrieval algorithm by Pa-
ganin. For PB-CT, in the limit of an incoherent source, the proposed framework coincides
with a SIR algorithm for conventional attenuation-based CT. The main result of this chapter
is a SIR algorithm for PB-CT, which employs the homogeneity assumption. Experiments
performed with a laboratory X-ray source showed how materials that are not described by
the physical mean model can be excluded from the reconstruction. In further experiments
using synchrotron radiation, the proposed approach was able to remove artifacts arising
from a cochlear implant, artifacts that appear because the implant violates the homogeneity
assumption. This allows for better assessment of whether the insertion of the implant has
resulted in subtle damages, which would naturally be close to the implant itself, hence in
the region of the image where artifacts are otherwise found.

Modeling the source and the detector in homogeneous PBI and PB-CT

Building upon the results of Chapter 5, in Chapter 6 reconstruction algorithms for homo-
geneous PBI and PB-CT were proposed, which additionally model the effects of the spatial
coherence of the X-ray source and the response of the X-ray detector including noise cor-
relations. The model for the interference effects was extended to match the formulation of
the single-material phase-retrieval algorithm. For homogeneous PBI, an analytical solution
for a special case of the proposed algorithm could be derived, which further generalizes the
single-material phase-retrieval algorithm and its extensions. Moreover, a relation between
the single-material phase-retrieval algorithm and regularized image denoising was outlined.
For PB-CT, a simulation study as well as an experimental study at the MuCLS were per-
formed. The proposed algorithms were compared to each other and to several analytical
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reconstruction approaches. As a main result, the proposed algorithms improve image quality
significantly compared to conventional reconstruction approaches. In particular, modeling
noise correlations has a crucial impact on resolution and the suppression of overshoots at
sample edges, which are characteristic to reconstructions in PB-CT.

Joint deconvolution CT reconstruction

In the context of conventional attenuation-based CT, Chapter 7 presented an optimization
approach, which allows for joint estimation of low-dimensional parameterized models of the
system blur during tomographic reconstruction. In detail, a new regularization term was
devised based on the normalized sparsity metric, which was introduced in the context of
blind deconvolution in optical imaging. An extensive simulation study demonstrated that
the devised objective function has a global optimum for the true blur parameters and that
the proposed optimization approach is able to recover these parameters. Furthermore, this
approach was successfully verified experimentally at a CT test-bench setup. As a conse-
quence, not only laborious characterizations of all components that add to the system blur
can be omitted, but this approach has furthermore the potential to include more subtle
contributions that are difficult to characterize, such as interpolations in the projection oper-
ations.

Optimization-based geometry estimation for CT at the nanometer scale

Two optimization-based approaches were investigated in Chapter 8, which estimate the ge-
ometry of CT components directly from the measurements. The first method is based on the
metric introduced in Chapter 7 for joint deconvolution CT reconstruction. The versatility
of this approach allows, in principle, for the estimation of arbitrary geometry parameters for
every view individually. The significant improvements in image quality were demonstrated
for a complex biological sample which exceeded the FOV. Thereby, the horizontal drifts of
the respective components could be estimated for each view. Furthermore, an approach
which jointly estimates the geometry parameter during tomographic reconstruction was in-
vestigated. In detail, an optimization algorithm, which is independent of the model for the
projection operations, was introduced and analyzed using a simulation study. This approach
was also verified experimentally by estimating the horizontal detector offset for every view
individually.

9.2. Outlook
Finally, this section presents ideas to further refine and enhance the results shown in this
work. It concludes with two case studies demonstrating how the results outlined in this work
could be combined and utilized for two different experimental setups.

9.2.1. Further development
Building upon the SIR framework for PB-CT presented in Chapter 5, a challenging task
would be to examine means to more independently reconstruct the attenuation and phase-
shifting properties of the sample by including additional priors into the reconstruction frame-
work. Independently, a more detailed comparison of the proposed algorithm, which employs
the homogeneity assumption, to the conventional two-step approaches could be performed.
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On the one hand, the bias introduced due to Jensen’s inequality should be reduced and, on the
other hand, one could propagate the noise of the measurements through the phase-retrieval
step and then utilize the highly correlated noise in a subsequent tomographic reconstruction
using for instance means addressed in Chapter 6.
Concerning the results in Chapter 6, the differences between the proposed generalized

single-material phase-retrieval algorithm and the conventional single-material phase-retrieval
algorithm and its extension should be evaluated on experimental data. In PB-CT, choosing
the best propagation distance to be most sensitive to the phase information is crucial. As the
proposed algorithm can account for the source blur and the detector blur differently, it would
be worthwhile to examine how the reconstruction algorithm influences the optimal choice of
the propagation distance. This would then directly impact the choice of the experimental
parameters. Moreover, means to include polychromatic effects at least approximately by
an additional linear operator could be investigated. Moreover, the proposed concept could
be transferred to other phase-contrast techniques such as GB-CT, where higher resolution
is also limited by the finite source size and the detector. This has the potential to further
increase resolution in laboratory environments.
For blind deconvolution CT reconstruction introduced in Chapter 7, the estimation of

higher-dimensional blur parameters would be desirable, as in most cases the system blur
cannot be described accurately by a single parameter. In addition, further means to solve
the optimization problem would be of interest, as with a truly gradient-based approach
the restrictions on the dimensionality of the blur model would be reduced dramatically.
For instance, one could investigate analytical approaches to approximate the dependency of
the volume on the blur parameters. Further, the influence of the likelihood term could be
alleviated by including noise correlations in the reconstruction framework in a similar manner
to Chapter 6. Thus, the high-frequency components, which are essential when estimating
the blur, would be emphasized. Moreover, the effects of noise should be further investigated,
as the proposed approach is prone to high noise levels. For instance, using the Huber
penalty as a basis for devising an improved regularization term seems reasonable. Another
promising approach would be to use this framework to jointly estimate the material specific
constant zδ/µ, parameterizing the interference term in PB-CT within the reconstruction
approach introduced in Chapter 6. Similar to blur, a change of this value alters the response
to noise. This seems to be particularly promising for several reasons. Firstly, the high-
frequency components are automatically enhanced on the measured projections, which are
most important when estimating the blur. Secondly, the high frequencies in the volume are
reduced due to the integrated phase retrieval. Thus, the response of the regularization term
should be less corrupted by noise. Eventually, optimizing this factor would potentially also
include the effects of the source, detector, and noise as these are closely related to this factor
as outlined in Chapter 6.

Finally, the metric-guided geometry optimization algorithm investigated in Chapter 8
could be applied to additional geometry parameters to evaluate if the image quality can
be further improved. In addition, a comparison to other metrics proposed in the literature
would be of interest as well as evaluating if this method can be transferred to other setups.
Regarding the joint geometry estimation, the challenges arising when applying this approach
to more complex samples should be investigated further. Most beneficial for both methods
would be on the one hand, more precise experimental investigations to determine, which of
the respective CT components are most prone to misalignment, and on the other hand, the
development of parameterized models describing the drifts of the individual components, as
this would reduce the number of unknown parameters significantly.
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9.2.2. Application to different setups
The first setup is the NanoCT described in Subsection 8.3.1. The following text outlines how
the results presented here can be combined to improve image quality. Due to the small focal
spot and large propagation distance at this setup, interference effects are present, which
can be used to improve contrast and reduce the noise level. In addition, this setup uses
high magnifications to improve the spatial resolution. However, the resolution is ultimately
limited by the extent of the source. Thus, the algorithm for PB-CT introduced in Chapter 6
would be an ideal candidate, as it includes a model for the interference effects and can account
for the source blur. The blur and noise correlations induced by the photon-counting detector
do not necessarily have to be modeled as the influence of the detector is comparably small.
One main challenge at this setup is mechanical stability. As demonstrated in Chapter 8,
means exist to estimate additional geometry parameters during tomographic reconstruction.
However, the geometry parameters prone to drift should be identified beforehand and should
be parameterized accordingly to reduce the number of unknown parameters which need to
be jointly estimated as much as possible.
The second setup presented within the range of this work is the first experimental hutch

of the MuCLS, which was described in Subsection 6.5.1. In contrast to the NanoCT, the
geometry can be assumed to be known, thus no additional geometry parameters need to be
estimated. Due to the small divergence of the beam, efficient detectors with small pixel-
sizes are used to increase resolution, which however spread out the signal more. Imaging
techniques applied at this setup include conventional attenuation-based CT as well as PB-
CT. For conventional CT, modeling the detector response and the attenuation of the X-rays
should be sufficient in general, because by placing the detector close to the sample the in-
fluence of the source is reduced. This results in the algorithm discussed in Chapter 6 in the
limiting case of no phase effects. If the detector response is not known, the approach detailed
in Chapter 7 can be used provided the noise level is moderate. For PB-CT, the distance
between the sample and the detector is increased to be more sensitive to interference effects.
The distance is ultimately limited by the influence of the source. Thus, the propagation dis-
tance, the spatial coherence of the source and the detector response have to be incorporated
in order to be most sensitive to the phase-shifting properties of the sample. All of these
are accounted for in the algorithm introduced in Chapter 6. As discussed above, using the
framework derived in Chapter 7 seems to be a promising approach to jointly estimate the
material specific constant zδ/µ parameterizing the interference term.
Overall, including additional parameters, which have to be estimated, and more complex

models describing the image formation can improve the image quality significantly but also
make the optimization problem more difficult. Appropriate algorithms need to be tailored
to each setup individually. Thereby, the most prominent factors that diminish the image
quality have to be identified and included such that the resulting optimization problem
remains solvable.
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