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Vascular alterations may lead to manifest cardiovascular disease in future life. There is a

tremendous time delay between the onset and obvious clinical appearance of vascular

alterations. Pulse wave velocity (PWV) is one subclinical parameter to detect vascular

alterations at a very early stage. Different techniques exist to measure PWV non-invasively

as a vascular parameter—all with their own technique-inherent advantages, challenges,

and pitfalls. The aim of this study was to compare two techniques to measure PWV,

to assess their agreement, and interchangeability. In 780 (♀ = 49.4%) healthy children

and adolescents (mean age: 11.61 ± 2.11 years), PWV was obtained with two different

techniques. Ultrasound-measured local PWV (PWVβ) at the carotid artery was graphically

compared by a Bland–Altman plot with aortic PWV (aPWV), measured oscillometrically

on the brachial artery. Reproducibility was assessed with the concordance correlation

coefficient by Lin (ρc). Furthermore, participants were categorized by BMI as normal

weight (N) or overweight/obese (O) to identify differences in PWVβ and aPWV caused

by an increased BMI. Mean PWVβ was lower (4.01 ± 0.44 m/s) than mean aPWV (4.67

± 0.34 m/s). The two methods differ by mean 10.66 ± 0.47 m/s (95% CI: 0.62 to

0.69 m/s; p < 0.001). Bland–Altman analysis indicated the 95% limits of agreement

(−0.26 to 1.57) without any evidence of systemic difference. Lin’s ρc represented a weak

concordance between PWVβ and aPWV (ρc = 0.122; 95% CI: 0.093–0.150). There was

no difference in PWVβ between N and O, whereas aPWV was higher in O: 4.81 ± 0.42

m/s than in N: 4.65 ± 0.32 m/s (p < 0.001). The difference, 10.16 m/s, 95% CI [−0.25;

−0.08], was significant, t(121) = −3.76, p < 0.001, with a medium-sized effect. PWVβ

(ultrasound) and aPWV (oscillometry) show a level of disagreement that includes clinically

important discrepancies. A discrimination between normal and altered vascular function

was possible with aPWV but not with PWVβ.
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INTRODUCTION

Cardiovascular disease (CVD) is the most common cause of
death in Germany and other industrialized nations (1). Among
classical risk factors like high blood pressure, smoking, physical
inactivity, and obesity (2), vascular parameters like pulse wave
velocity (PWV) become more and more important. PWV
is the speed at which the pressure wave, generated by the
pulsatile ejection of the left ventricle, is transmitted through
the arterial system (3). An increased PWV is a surrogate
marker for increased vascular stiffness, caused by atherosclerotic
changes, and degenerative vascular remodeling (4). Furthermore,
increased vascular stiffness is associated with higher systolic
blood pressure, increased cardiac afterload (5), and decreased
myocardial perfusion pressure (6), which compromises cardiac
function. Numerous studies showed that the pathogenic process
of CVD begins in early childhood and adolescence (7–9). It is
therefore important, to investigate the vascular status of children
and adolescents for early detection of vascular stiffness as an
independent cardiovascular risk factor (10).

The measurement of PWV is a simple and reproducible
method to examine vascular stiffness (11). Therefore, PWV, in
addition to intima–media thickness (IMT), is recommended by
the European Society of Hypertension/Cardiology (ESH/ESC)
to quantify vascular stiffness that caused end-organ damage in
patients with arterial hypertension (12). To measure PWV non-
invasively, different techniques exist (tonometric, oscillometric,
ultrasound-based, with MRI, or via piezo-electronic pressure
transducers), all with their own technique-inherent advantages,
challenges, and pitfalls (13). Therefore, the aim of this study
was to compare ultrasound measured local PWV (PWVβ)
at the carotid artery with aortic PWV (aPWV), measured
oscillometrically at the brachial artery. Both methods were
compared for agreement and reproducibility. The qualities of
both methods are of special interest in childhood risk screening:
both methods are non-invasive and can be performed within a
short time (10–15min). Furthermore, the oscillometric method
is not operator-dependent and as easy to perform as a regular
blood pressure measurement. The ultrasound technique can
be performed with standard ultrasound equipment plus an
additional software package. It could be easily used as a standard
procedure in pediatric centers.

PATIENTS AND METHODS

Study Population
PWV measurement was part of the research project
“Sternstunden der Gesundheit” in Berchtesgaden, Bavaria,
Germany, from October 2012 to June 2013. aPWV and PWVβ

were assessed in n = 780 (♀ = 49.4%) apparently healthy school
children, aged 8–17 years. The project took part in a school
setting. Written informed consent was obtained from children
and/or parents. Children with chronic conditions like congenital
heart defects were not involved in the study. The study protocol
was approved by the ethical board of the Technical University of
Munich (project number 5490/12). Study rationale, design, and
further hemodynamic results are published elsewhere (14).

Anthropometry and Blood Pressure
Measurement
Body weight was measured wearing light clothes, without
shoes, to the nearest 0.1 kg by trained staff (seca803, seca,
Hamburg, Germany). Body height was measured to the nearest
0.1 cm with a stadiometer (seca799; seca, Hamburg, Germany).
Standard deviation scores (SDS) for BMI were calculated and
corresponding weight categories were defined according to
German reference values (15).

BP was measured oscillometrically (Mobil-O-Graph R©; I.E.M.,
Stolberg, Germany) on the left arm, after participants rested for
10min in supine position. According to German reference values
(16), BP was categorized as normotensive (<90th percentile)
or high normotensive (90th−95th percentile). Participants with
BP above the 95th percentile were categorized as hypertensive
(systolic and diastolic BP elevated) or with isolated systolic
hypertensive values (ISH, only systolic BP elevated above the
95th percentile). As only one BP measurement was performed,
this categorization is not identical to a clinical diagnosis of
persistent hypertension.

Discrimination
The total study population was divided in subgroups according to
their weight status [z-score BMI SDS ≤1.282 indicating normal
weight or underweight (N) vs. BMI SDS >1.282 representing
overweight or obesity (O)], according to German reference
values (15). Groups were compared regarding significant group
differences in age, height, and peripheral blood pressure.

PWV MEASUREMENT

Sonographic Method—eTRACKING
With the eTRACKING system (ProSound Alpha 6 R©;
Aloka/Hitachi Medical Systems GmbH, Wiesbaden, Germany),
the movement of the arterial wall during the cardiac cycle from
diastole to systole is tracked with two digital tracking gates,
placed at the CCA near and far wall to automatically follow
wall motion and calculate diameter changes during heart cycles
(17) (Figure 1). The method allows to calculate PWVβ from
the time delay between two adjacent distension waveforms (18).
An extensive and comprehensive description of underlying
methodologies and assumptions to assess local arterial stiffness
at the carotid artery is provided by Vriz et al. (18). Children
were examined after a 15-min rest in supine position: the neck
was slightly extended and the head was turned 45◦ opposite
the site being scanned. PWVβ was measured 1 cm proximal
to the bulb with a high-frequency linear array probe (5–13
MHz). Parameters were calculated as average values of four
measurements (two measurements at each side). Interobserver
variability of measurements is 1.37% (14).

Oscillometric Method—ARCSolver
aPWV at the A. brachialis was assessed with the Mobil-O-
Graph (I.E.M, Stolberg, Germany; ARCSolver method). The
measurement is similar to an automated BP measurement.
Depending on the upper arm circumference, an appropriate BP
cuff (five different sizes) was chosen for each participant and
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FIGURE 1 | Ultrasound echo tracking (ET) PWV measurement at the common carotid artery.

attached on the left arm. The ARCSolver method consists of a
three-level algorithm. First, single pressure waves are verified for
plausibility. Second, a comparison of each single pressure wave
is performed to detect artefacts. Third, a filtered, averaged pulse
wave is derived and used to calculate the central aortic pulse wave
(19) and hemodynamic parameters like central blood pressure or
augmentation index.

Statistics
All parameters (continuous variables) are expressed as mean
± standard deviation (SD) or as frequencies and percentages
(non-continuous variables). The two methods were graphically
compared by a Bland–Altman plot (20, 21). The limits of
agreement (LoA) were defined as mean bias ± 2 SD, followed
by the concordance correlation coefficient by Lin (ρc) (22–
24) to evaluate reproducibility. Lin’s ρc measures how well
a measurement reproduces a gold standard measurement
by quantifying the agreement between these two measures.
It avoids inadequacies associated with different other tests
(paired t-test, Pearson correlation coefficient r, coefficient
of variation, interclass correlation coefficient) used in the
context of assessing concordance between two alternative
methods (25). It might also be superior to the Bland–Altman
analysis and their LoA method (26) but is less used. Lin’s
ρc ranges from 0, indicating no substantial agreement, up
to 1, representing perfect concordance between two methods.
It should be interpreted similar to Pearson’s correlation
coefficient (27).

The independent t-test was performed to identify differences
in aPWV and PWVβ by an increased BMI (>90th percentile).
Data were analyzed using IBM SPSS statistical software for
Windows, version 23 (SPSS, Inc, Chicago, IL, USA). Level of
significance was defined as p < 0.05; all tests were two-sided.

RESULTS

Anthropometry
Overall 780 children, 8–17 years, were included in the analysis
(385 girls). Mean age was 11.61 ± 2.11 years. Mean BMI was
18.6 ± 3.4; z-score of BMI was 0.04 ± 1.1, indicating a study
population with BMI values very close to the German reference
population (15); 86.8% of participants were normal weight, and
14.2% were overweight, including 5.8% obese participants.

Reproducibility
Interobserver variability for PWVβ was 1.37%, calculated by
coefficient of variation (CV). The oscillometric measurement
of aPWV, which is similar to a standard blood pressure
measurement, is an operator-independent method (19, 28, 29).
Therefore, no CV was calculated.

Blood Pressure
Mean SBP was 116.29 ± 9.71 mmHg, and mean DBP was 68.09
± 8.16 mmHg; 64.2% of all participants had normotensive or
high normotensive blood pressure values; 16.8% had a single
hypertensive blood pressure measurement, and 19% had an ISH
measurement. The descriptive data are given in Table 1.

PWV
Mean values for PWVβ (ultrasound) were lower (4.01 ± 0.44
m/s) than aPWV (oscillometric, 4.67 ± 0.34 m/s). Results of the
two methods differ by 0.66 ± 0.47 m/s (95% confidence interval
of the difference: 0.62 to 0.69 m/s), p < 0.001. A scatter plot of
PWVβ and aPWV is given in Figure 2.

The Bland–Altman analysis (Figure 3) indicates the 95% LoA
(−0.26 to 1.57). There was no evidence of systemic difference
or obvious trend for the reproducibility of measurements to
vary with their underlying mean value. The two methods
do not consistently provide similar measures with a level of
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TABLE 1 | Descriptive statistics of the study population (n = 780).

Mean ± SD Min Max

Age [years] 11.61 2.11 8.00 17.92

Height [cm] 150.15 12.98 112.50 190.00

Weight [kg] 42.88 13.25 17.10 117.40

BMI [kg/m²] 18.61 3.38 11.93 33.33

BMI SDS 0.04 1.05 −3.65 2.95

SBP [mmHg] 116.29 9.71 85.00 152.00

SBP SDS 1.05 1.10 −3.20 5.15

DBP [mmHg] 68.09 8.16 44.00 93.00

DBP SDS 0.48 1.22 −3.10 4.29

cSBP [mmHg] 101.62 9.45 75.00 139.00

cSBP SDS 0.88 1.44 −3.02 7.29

SD, standard deviation; BMI, body mass index; SDS, standard deviation score;

SBP, systolic blood pressure; DBP, diastolic blood pressure; cSBP, central systolic

blood pressure.

disagreement that includes clinically important discrepancies of
up to 0.69 m/s. Lin’s concordance correlation coefficient (ρc
= 0.122; 95% CI: 0.093–0.150) represents a slight concordance
between PWVβ and aPWV.

As obesity and overweight might influence PWV, Lin’s
concordance correlation coefficient was re-evaluated with the
subgroup of non-overweight participants (n = 677). In this
subgroup, concordance between the two measurements is even
lower (ρc= 0.100; 95% CI: 0.070–0.130).

Discrimination
There was no substantial difference between normal weight (N)
and overweight (O) participants regarding age (p = 0.781) or
peripheral blood pressure (SBP, p = 0.422/DBP, p = 0.318).
Height [(N) 149.63 ± 13.00 cm vs. (O) 153.59 ± 12.39 cm, p
= 0.004] and central systolic blood pressure [cSBP: (N) 100.95
± 8.89 mmHg vs. (O) 105.98 ± 11.64 mmHg, p < 0.001]
were higher in overweight children. SDS of peripheral blood
pressure values indicate possible influences of height or age on
this parameter.

There was no difference in PWVβ between normal weight
and overweight participants, p = 0.378. But aPWV was higher
in overweight participants [(O) 4.81 ± 0.42 m/s] compared
to normal weight participants [(N) 4.65 ± 0.32 m/s], p
< 0.001 (Figure 4). This difference, −0.16, 95% CI [−0.25;
−0.08] was significant t(121) = −3.76, p < 0.001, with a
medium-sized effect (30, 31), Cohen’s d = 0.5. For further
details, see Table 2. A discrimination between normal and
altered vascular function was possible to detect with the
oscillometric device (aPWV) but not with the ultrasound-
based PWVβ.

DISCUSSION

Vascular alterations, which may lead to manifest CVD in future
life, have a tremendous time delay between onset and obvious
clinical appearance (32). Therefore, one goal of preventive

measurements is to distinguish clearly between those persons
with elevated risk and those without.

In this study, we measured PWV non-invasively with two
alternative methods. For the first time, ultrasound-measured
PWVβ was compared with oscillometrically measured aPWV
in apparently healthy children and adolescents. The present
study shows that aPWV is significantly higher than PWVβ with
a clinically relevant level of disagreement, comparable to the
study of Vriz et al. (18). Vriz et al. demonstrated a significant
correlation of both techniques, rather than an agreement (33). In
an adult population (mean age: 51.5 ± 14.1years), they reported
a systematically higher aPWV than PWVβ (11.4 m/s) (18).
Both techniques are more and more applied to detect vascular
alterations—though results might depend on the underlying
setting (pediatric practice, pediatric cardiologist, specialized
outpatient clinic). Therefore, the question of interchangeability
of different methods comes up. A possible solution is to use
individual cutoff values for each technique (18), but the more
urgent question is whether a discrimination between normal
PWV values and an altered vascular status is feasible with
each method.

Overweight and obesity are known chronic conditions that
influence hemodynamic parameters like PWV. The impact of
obesity in adults on arterial stiffness seems to be evident: wall
stiffening is accelerated in obese persons (34, 35). In childhood,
current findings are controversial. Some studies demonstrated an
increased PWV in obese children (17, 36–39) while others did
not show any differences (34, 35) or reported a decreased PWV in
obese children (40). Differences could be explained by substantial
deviations in the studied populations (age, gender, comorbidities
such as hypertension), but could also be due to the heterogeneity
of different methods to assess vascular stiffness (36).

It does not seem to be realistic that obesity-caused vascular
stiffening does not start before adulthood. In autopsy studies,
fatty streaks and pro-atherosclerotic lesions were present in
children between 1 and 15 years (41–43). A recent meta-analysis
by Hudson et al. (44) revealed increased arterial stiffening
in obese children, especially in central arteries. The authors
emphasized a variation in arterial stiffness between different
vascular regions.

In our study a distinction between normal weight and
overweight children in terms of altered vascular function and
stiffening was possible by aPWV but failed with PWVβ. One
explanation is the different location of measurements (aPWV:
Aorta; PWVβ: A. carotis). Along the arterial tree, elastic
properties of the vessel vary within each region. Proximal arteries
are more elastic whereas stiffness increases in distal arteries.
Majesky stated that “[. . . ] different vessels, or even different
segments of the same vessel, are composed of smooth muscle cell
populations that arise from distinct sources of progenitors, each
with its own unique lineage and developmental history” (45).
This vascular smooth muscle diversity might be the key element
to different blood vessel functions and the susceptibility to risk
factors. Even though the influence of risk factors should have
comparable effects in all arterial beds, it could be demonstrated
by DeBakey and Glaeser (46) that each vascular field has its own
distinctive response to the atherogenic process. Moreover, little
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FIGURE 2 | Scatter plot of measured PWVβ and aPWV values.

FIGURE 3 | Bland–Altman plot of difference in pulse wave velocity (oscillometrically measured aPWV minus measurement by ultrasound PWVβ) against the mean of

the two measurements (in m/s). The solid line represents the mean of the two methods: 0.66. The dotted lines represent the limits of agreement [mean + 2*SD =

1.57; mean – 2*SD = (−0.26)].

is known about the impact of maturation in adolescence, as the
lineage-specific boundaries of smooth muscle cells “[. . . ] may
shift their relative positions during vascular growth and aging.”
Vascular changes resulting in higher PWV might occur later in
the carotid artery than in the Aorta. Vriz et al. (18) emphasize that
aortic stiffness and carotid stiffness do not seem to be completely

interchangeable predictors in high-risk patients, although both
stiffness parameters provide similar information on the effect of
aging on elastic arteries.

Another explanation could be that the technique to obtain
PWVβ is less sensitive for subtle changes caused by earliest
vascular alterations. The question remains, if vascular alterations
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FIGURE 4 | Scatter plot of measured aPWV (m/s) values and participants’ BMI (kg/m²).

TABLE 2 | Differences between normal weight and overweight participants.

Normal weight

≤90th percentile

(N = 677)

Overweight

>90th percentile

(N = 103)

p–value Significance

Mean ± SD Mean ± SD

Age [years] 11.62 2.11 11.55 2.13 0.781

Height [cm] 149.63 13.00 153.59 12.39 0.004 *

Weight [kg] 40.3 10.9 59.7 15.1 <0.001 *

SBP [mmHg] 116.03 9.30 118.07 11.98 0.100

SBP SDS 1.03 1.08 1.13 1.24 0.422

DBP [mmHg] 68.16 8.17 67.62 8.16 0.535

DBP SDS 0.49 1.22 0.37 1.19 0.318

cSBP[mmHg] 100.95 8.89 105.98 11.64 <0.001 *

cSBP SDS 0.77 1.36 1.61 1.77 <0.001 *

PWVβ [m/s] 4.01 0.44 4.05 0.46 0.378

aPWV [m/s] 4.65 0.32 4.81 0.42 <0.001 *

SD, standard deviation; SDS, standard deviation score; SBP, systolic blood pressure;

DBP, diastolic blood pressure; cSBP, central systolic blood pressure; PWVβ, local

pulse wave velocity, obtained by ultrasound; aPWV, pulse wave velocity of the Aorta,

obtained oscillometrically.

*indicating significant results.

are stable and predictive for future adverse cardiovascular
phenotypes, which could already be demonstrated for other
vascular parameters like flow-mediated dilatation (FMD) (47).
Therefore, long-term follow-up studies (minimal duration: 10
years) are mandatory to establish PWV in a general pediatric
setting as a useful early diagnostic tool.

In conclusion, PWVβ measured by ultrasound and aPWV
obtained oscillometrically do not provide similar information

and cannot be compared interchangeably. The level of
disagreement is not only statistically significant but also
clinically relevant: The range of PWVβ is from 2.91 to 5.92 m/s
in girls (age 8–17) and 2.25 to 5.71 m/s in boys (age 8–17), and
for aPWV, it is 3.62 to 5.45 m/s in girls (age 8–17), and 3.79
to 6.08 m/s in boys (age 8–17). The mean differences between
PWVβ and aPWV is 0.61 m/s, a difference in speed that is higher
than one SD in this population (mean PWVβ ± SD: 4.01 ± 0.44
m/s and mean aPWV: 4.67 ± 0.34 m/s). In adults, an increase in
aPWV of 1 SD is associated with a 1.35 higher risk for coronary
heart disease, 1.54 higher risk for stroke, and 1.45 higher risk for
CVD (48). Therefore, measuring PWV already in children is a
useful tool to detect vascular alterations at an early point.

In clinical routine, the sonographic PWV measurement is an
interesting alternative to other methods. In addition to IMT and
other vascular parameters, carotid PWVβ could be measured in
only one examination, with one device. However, the ultrasound
technique for PWVβ is possibly less sensitive in detecting earliest
vascular changes.
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