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Abstract: Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel
transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the
context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid
for tumor cells in which every single component shows heterogenic effects. Whereas many studies
highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field
revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma
(PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB
signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB
signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering
the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling
pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis
and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role
of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing
rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in
(pre-)clinical evaluation.

Keywords: NF-κB; PDAC; pancreatic cancer; RelA; p65; RelB; c-Rel

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC), with a five-year survival rate around 9%, has a dismal
prognosis [1]. Current estimates postulate an about two-fold increase in pancreatic cancer incidence
by 2040 [2]. In contrast with many other solid tumors for which treatment options have shown
promising improvement, PDAC still remains recalcitrant. Due to late diagnosis, surgical resection is
an option for only about 10% of the patients with a localized tumor [1]; the remainder receive first-line
treatment with chemotherapeutic regimens including gemcitabine, nab-paclitaxel, and FOLFIRINOX,
which are selected according to the patient’s performance status [3]. Next to chemotherapeutics,
only epidermal growth factor receptor (EGFR)-directed targeted therapy has proceeded to clinical
application, but providing only a marginal benefit regarding patient survival [4].

For long years, PDAC has been thought to evolve from metaplastic to neoplastic stages by slowly
accumulating mutations. Recent advances support a novel model in which instantaneous chromothriptic
events in cells can bypass the need for this step-wise accumulation of mutations for carcinogenesis [5].
In the conventional model, PDAC forms through a sequence of driver mutations in KRAS, CDKN2A,
TP53, and SMAD4, along with a highly inflammatory tumor microenvironment [6]. This model is also
considered for genetically engineered mouse models (GEMMs), in which pancreas-specific expression
of a mutated Kras protein (mostly KrasG12D) allows the progressive formation of meta- to neoplastic
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pancreatic lesions, mirroring the histopathological properties of the human disease [7]. The tumor
microenvironment is composed of a desmoplastic stroma with an abundance of immune cells, embodying
up to more than 80% of the tumor mass [8]. Studies investigating carcinogenesis in PDAC GEMMs
revealed pro-tumorigenic inflammatory cell infiltration as early as in the pre-invasive neoplastic stage [9].

NF-κB signaling, as the matchmaker of cancer and inflammation [10], holds potential for cancer
therapeutics, allowing a targeted strategy directed simultaneously toward cancer cells and the cancer
associated inflammatory cells. The first κB DNA binding sequence motif was discovered 33 years ago
by Sen [11]. Despite the complexity and unpredictability of the outcomes of NF-κB signaling, it is well
accepted as a major signaling pathway connecting inflammation and cancer. Having initially evolved
as a stress response pathway, NF-κB is conserved among many eukaryotic species except yeasts and
Caenorhabditis elegans, which encode some proteins similar to NF-κB upstream signaling components
but not the downstream transcription factors [12,13]. Simple organisms, like sea anemones and corals,
possess transcriptionally active NF-κB transcription factors [14].

NF-κB signaling transcription factor genes are Nfkb1 (p105-p50), Nfkb2 (p100-p52), Rela (RelA,
p65), Rel (c-Rel), and Relb (RelB) [15]. In an un-induced state, RelA, c-Rel, and RelB are retained in
the cytoplasm through their interaction with Inhibitory κB (IκB) proteins [16–19]. p105 and p100
proteins can also act as IκB proteins due to their conserved C-terminal ankyrin repeats. However,
proteolytic degradation of their C termini converts them to transcription factors (p105 to p50 and
p100 to p52) [20–27]. In a simplistic overview, NF-κB signaling is divided into two, canonical and
non-canonical, signaling pathways [28].

In the canonical pathway, cytokines or viral-bacterial byproducts can induce NF-κB signaling through
their action on cytokine receptors, pattern recognition receptors (PRRs), and T-cell and B-cell receptors.
Depending on the receptor that is activated, a series of protein cascades leads to phosphorylation-mediated
activation of IκB kinase (IKK) complexes. The IKK complex is formed of three subunits: IKKα (IKK1) and
IKKβ (IKK2) are the catalytic kinases, and IKKγ (NEMO) is the regulatory subunit [29–35]. The activated
IKK complex phosphorylates downstream IκB proteins leading to their ubiquitination and proteasomal
degradation. Upon IκB degradation, released RelA:p50 (the most prominent dimer), RelA:c-Re,l or
c-Rel:p50 dimers translocate into the nucleus and drive target gene transcription. In a cell autonomous
manner, cellular stress-associated factors (e.g., reactive oxygen species (ROS), DNA damage) can also
induce the canonical NF-κB pathway in an unconventional way, starting at the intracellular level [28].
Of note, next to IκB proteins, IKKα and IKKβmay also phosphorylate RelAS536, with differential functional
outcomes on NF-κB signaling [36–41]: IKKβ-mediated phosphorylation of RelAS536 is suggested to
increase acetylation of RelAK310, associated with transactivation. Other studies in various cell systems
supported this NF-κB activating function of IKKβ mediated RelAS536 phosphorylation. In contrast,
a study with mice bearing kinase dead mutant IKKα suggested that IKKαmediated phosphorylation
of RelAS536 in macrophages increases RelA turnover, which is functionally important for resolution of
inflammatory responses [42]. In another study, phosphorylation of RelAS536 was proposed to not be
dependent on IKKα expression, as detected in a setting with IKKα knockout embryonic macrophages [43].
Still, the influence of RelAS536 phosphorylation levels on RelA turnover is further corroborated with
the help of a RelAS534A (a non-phosphorylatable mutant version of the human RelAS536 homologue in
murine) knock-in mouse model in which mice showed enhanced NF-κB activity [44].

Non-canonical NF-κB activation requires inducible proteolytic truncation of p100 protein to p52.
Whereas processing of p105 to p50 can occur in a transcription-coupled unstimulated state, p100
processing requires the upstream action of specific ligands [45,46]. These properties reflect why the
canonical pathway response is generally fast and transient, whereas the non-canonical pathway is
slow and longer lasting. Some TNFR superfamily members like BAFFR [47], CD40 [48], LTβR [49] and
RANK [50] induce signaling cascades activating NF-κB inducing kinase (NIK), which cooperates with
IKKα to induce phosphorylation-mediated C-terminal ubiquitination of p100 via βTrCP [46,51,52].
Typically, released p52:RelB dimers translocate into the nucleus and activate downstream transcriptional
targets [49,53].



Cancers 2019, 11, 937 3 of 20

In NF-κB signaling, although a variety of upstream enzymatic and scaffolding proteins connect
extracellular stimuli to intracellular responses, many of these intermediate signals meet at the level of IKK
proteins. Yet, considering the divergent NF-κB-dependent and -independent functions of IKKs, converging
on IKK by no means has a singular impact on downstream effects [28]. Therefore, an understanding of the
functions of the ultimate transcription factors RelA, c-Rel, and RelB is required. In general, NF-κB signaling
refers to the activation of canonical RelA:p50 dimers. Thus, a plethora of primary literature focused on
RelA in contrast to the other NF-κB components RelB and c-Rel. However, this evokes an unfavorable
view, underestimating the potential functional outcomes of c-Rel and RelB containing dimers and might
mislead us to consider NF-κB signaling in an overly straightforward and simplistic way.

Despite the work of almost 35 years, many questions remain to be answered about the exact
mechanisms of how NF-κB functions. The gold standard research in NF-κB signaling relies on either
nuclear localization of NF-κB transcription factors or on in vitro DNA binding activity (EMSA) and
chromatin immunoprecipitation (ChIP) to evaluate their activity status. However, nuclear localization
of NF-κB does not necessarily represent transcriptional activity; as of today, nuclear NF-κB inhibitory
mechanisms are known [54–59]. Additionally, DNA binding does not exclusively imply transcriptional
activation, since NF-κB may also inhibit transcription or regulate it by recruitment of co-modulator
proteins [60–65].

For pancreatic cancer, which is a highly inflammatory disease, NF-κB holds promise for
simultaneously targeting both cancer and cancer-associated inflammation. In both malignant and
normal cells, functional outcomes of distinct signaling branches might be the same, yet it is the
imbalance in overall NF-κB signaling that creates an advantage for tumor cells. It would be a mistake
to associate high NF-κB activation with oncogenic potential or vice versa; it is rather a matter of the
“properness” of collective signaling. Such an important and versatile signaling pathway would be
expected to accumulate mutations in cancer; however, this is only true for hematological malignancies
but not for many solid tumors, including PDAC [66]. Here instead, an inflammatory phenotype
pressures cancer cells to evolve an addiction to NF-κB signaling.

Currently, most of the reported research on the function of NF-κB in cancer relied on GEMMs with
knockout of upstream IKK complexes. These studies revealed a complex function of NF-κB signaling
in various cancer models [67–73]. A study of note reported the inability of a combined Rela, Relb, and
Rel knockout to phenocopy effects seen with Ikbkg (NEMO) knockout in a murine hepatocarcinogenesis
model, whereas the introduction of a constitutively active IKK2 is able to rescue the phenotype [74].
Considering the NF-κB-independent roles of IκBs and IKKs, a focus on the downstream NF-κB
transcription factors RelA, c-Rel, and RelB is therefore essential for a clear understanding.

2. RelA/p65 in PDAC

Whereas the necessity of NF-κB signaling during Ras-induced transformation is still controversial,
the expression of oncogenic Ras proteins is known to induce NF-κB signaling [75–78]. Constitutive
canonical NF-κB signaling defined by an increased RelA nuclear localization or DNA binding activity
is present in both cancer cell and histology specimens of human PDAC patients [69,79]. Therefore,
a functional interaction between constitutive NF-κB signaling and Kras mutation in PDAC patients is
predictable. One study suggested Interleukin-1α (IL-1α) as the missing link between Kras activity
and constitutive NF-κB signaling [69]. Accordingly, KrasG12D induces AP1 transcriptional activity
and IL-1α production, which in turn stimulates NF-κB signaling. This results in a feed forward
loop through the NF-κB-mediated production of more IL-1α and p62. p62 is known to regulate the
ubiquitination of TRAF6 and subsequent IKK phosphorylation, triggering IκB degradation [80–83].
The interaction of p62 and TRAF6 is not required for the initial NF-κB activation but for sustained
signaling. In support, PDAC patient samples revealed that IL-1α expression is positively correlated
with enhanced RelA-positive nuclear staining and poor survival [69]. An inflammatory response in
the KrasG12D mouse model generated through sustained NF-κB signaling was proposed to further
amplify the pathologic Ras activity in pancreas [84].
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Phosphoinositide 3-kinase (PI3K) signaling is an effector pathway downstream of Kras. The loss
of phosphatase and tensin homolog (PTEN), a negative regulator of PI3K activity, appears to cooperate
with Kras signaling to further augment RelA nuclear localization and κB luciferase reporter activity in
an IKK-independent manner. Whereas PI3K inhibition reduces RelA nuclear localization, PTEN knockdown
has the opposite effect. Previous reports asserted a RelA-mediated regulation of PTEN expression [85].
However, this effect is not due to the classical NF-κB function of RelA. Rather, RelA sequesters and restrains
p300-CREB-binding protein (CBP) transcriptional co-activator proteins. These results indicate a possible
positive feedback loop between PI3K and NF-κB signaling pathways. Next to PI3K downstream of Kras,
glycogen synthase kinase-3 (GSK-3) was also suggested to induce IKK dependent canonical NF-κB activity
in pancreatic cancer cells [86]. Later, further insights revealed that GSK-3α stabilizes the TAK1-TAB1
complex, which is upstream of the IKK complex [87].

Redox balance is linked to NF-κB signaling on various levels. In many cell types NF-κB signaling
can induce ROS scavengers and related enzymes (SOD1-superoxide dismutase 1, SOD2-superoxide
dismutase 2, FHC-ferritin heavy chain, thioredoxins, glutathion S-transferases, NQO1-NAD(P)H
dehydrogenase, and HO1-heme oxygenase 1) as a cellular protection mechanism; in immune cells, it is
also able to induce ROS production to support phagocytosis via a number of proteins (NOX2-NADPH
oxidase 2, XOR-xanthine oxidoreductase, iNOS-nitric oxide synthase inducible, COX2-cyclooxygenase 2,
cytochrome p450 enzymes) [88]. Liou et al. proposed that mutant Kras induces mitochondrial metabolic
stress in premalignant lesions, which in turn activates Polycystin 1 (Pkd1) and NF-κB pathways. Upon
NF-κB activation, cells upregulate components of the EGFR pathway, supporting the de-differentiation
of acinar cells [89]. Pkd1 was also stated to induce acinar cell reprogramming in a Notch-dependent
manner, implying a possible convergence with NF-κB signaling in pancreatic carcinogenesis [90].

Constitutive RelA transcription factor activity in tumors is mainly associated with an inflammatory
cytokine network inducing NF-κB signaling [69,91]. However, this induction requires an activated
IKK complex, which is not observed consistently throughout many cancer samples, implying the
presence of other downstream mechanisms to prolong RelA transcriptional activity. Phosphorylation
of Stat3 and its oncogenic activity was demonstrated to be constitutive due to both cell intrinsic and
tumor microenvironment (TME) cross talk in PDAC [92–95]. Nuclear phospho-Stat3 prolongs RelA
nuclear localization via increasing its acetylation in various cancer cell lines [96]. Mechanistically,
phospho-Stat3 recruits acetyltransferase p300 to RelA. However, deletion of Stat3 in the myeloid
compartment also reduces RelA acetylation in tumor cells, signifying the importance of the initial
cytokine network to maintain constitutive RelA activity [96]. Importantly, this connection still needs to
be proven for PDAC.

The interaction between p53 and RelA signaling is mostly related to their impacts on tumor
metabolism. Previous reports indicated a duality for the relevance of p53 status on RelA activity in different
Ras-driven lung tumorigenesis mouse models [77,78]. Studies focusing on mouse embryonic fibroblasts
(MEF) cells proposed that RelA can directly increase p53 transcription for metabolic adaptation to glucose
starvation [97]. This increase in p53 induces a reversal of the Warburg effect, with cells shifting their
metabolism from aerobic glycolysis to oxidative phosphorylation (OXPHOS) to supply their ATP demand.
These results were validated in a transplantation model with human colorectal cancer cells in which RelA
knockdown sensitized cancer cells to metformin (reduces systemic glucose availability and OXPHOS)
and induced cell death. Loss of p53 in MEF cells was asserted to activate RelA through an increase in
IKK kinase activity, resulting in a Warburg effect phenotype [98,99]. p53-RelA metabolic crosstalk is
also evident in mitochondria. In contrast to its regular function in the nucleus, RelA was claimed to
inhibit mitochondrial DNA (mtDNA) transcription in mitochondria, reducing the production of the
proteins of the respiratory chain, relevant for OXPHOS [100]. A direct response of RelA to Tumor necrosis
factor-α (TNFα) and TNF-related apoptosis inducing ligand (TRAIL) in mitochondria may accelerate the
metabolic responses to external stimuli, avoiding nucleus-to-mitochondria signaling [101,102]. Whereas
RelA does not contain a mitochondrial targeting sequence (MTS), its shuttling is facilitated by Mortalin
(mtHSP70). p53 can inhibit the RelA-Mortalin interaction [100]. Although the metabolically relevant
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interactions between p53 and NF-κB signaling are well accepted, they have not been elucidated or
confirmed in pancreatic cancer.

A dual function of RelA in PDAC carcinogenesis and persistency was revealed with the use of
a mouse model in which the nuclear localization signal (NLS) of RelA is conditionally deleted [103,104].
Unlike malignant counterparts, normal cells generally undergo senescence in response to various stress
inducers [105]. Rela knockout MEF cells are able to bypass senescence, leading to earlier immortalization
compared with Rela WT cells. Due to impaired DNA damage repair signaling, Rela knockout MEF cells
are prone to accumulating genomic rearrangements, facilitating their immortalization [106]. In support
of this, RelA truncation accelerates the carcinogenesis in KrasG12D mediated pancreatic carcinogenesis.
Oncogene-induced senescence (OIS) is an important barrier in pancreatic carcinogenesis as most of
the premalignant lesions are stuck in this stage [107,108]. Senescent cells secrete various cytokines,
chemokines, proteases, and growth factors in order to create a network with the neighboring cells,
namely senescence associated secretory phenotype (SASP) [109–111]. As observed in MEF cells, SASP
induction by RelA is also evident in pancreatic premalignant lesions [104,112]. The tumor suppressor
function of RelA was suggested to convert to an oncogenic function in mouse models with concomitant
Trp53 or Ink4a/Arf deletion, in which the senescence barrier is exceeded [113–115]. Murine Cxcl1 (and
its human functional homologue IL-8) was identified as a major SASP component, which signals
through CXCR2 in an autocrine manner to sustain the senescent phenotype in pancreatic premalignant
lesions [104,116].

In a recent study, Jin et al. uncovered the mechanism through which tumor suppressor retinoblastoma
(RB) protein in a hyperphosphorylated state may diminish RelA-induced PD-L1 production [117]. The study
has important implications for immunotherapy, as the ectopic expression of an RB phosphomimetic is able to
inhibit cancer cell PD-L1 production in various entities, including PDAC. Therapeutic exploitation of this
interaction might provide significant benefits to convert generally immunologically “cold” pancreatic
tumors to “hot” ones, making them susceptible to immunotherapy [118].

DNA damage repair proteins meet with RelA at crossroads in chemotherapy response. DNA
damage-induced Ataxia telangiectasia and Rad3-related (ATR) protein is shown to activate Checkpoint
kinase 1 (Chk1), which phosphorylates RelAT505 [119,120]. As a result, Claspin expression maintains
Chk1 activity, implicating a feed-forward loop. This mechanism indicates another suppressive function
of RelA in tumorigenesis, in which a RelA-mediated cell cycle checkpoint prevents exacerbation
of genomic instability [121,122]. In established cancer, different chemotherapeutic agents variably
affect RelA activity depending on the drug used and its mode of action [123–125]. Yet, for PDAC,
a number of NF-κB/RelA-dependent mechanisms of chemotherapy resistance have been proposed.
RelA RNA-interference (RNAi) was shown to synergize with gemcitabine in pancreatic cancer cells [126].
Anakinra (IL-1R inhibitor) also synergizes with gemcitabine in human cell orthotopic transplantation
models through a decrease in RelA activity [127]. Then, the gemcitabine transporter hCNT1 was
demonstrated to be negatively regulated by MUC4 through RelA:p50 NF-κB signaling [128]. Pancreatic
cancer stem cells, which are resistant to gemcitabine treatment, were also proposed to maintain
their stemness at least partially through NF-κB signaling [129]. Additionally, a transcriptomics
analysis performed on cisplatin-resistant human pancreatic cell lines revealed a dysregulation of NF-κB
signaling [130].

A concise schematic for the here-collated relevance of RelA signaling and its crosstalk with other
pathways is depicted in Figure 1. Manipulation of NF-κB signaling at the level of IKK complexes
inevitably alters activities of parallel pathways like Notch, Klf-related, and p62-TRAF6 [69,72,73].
Affirming this, a transcriptomics analysis comparing the Ikbkb deletion and RelA truncation murine
PDAC models revealed profound differences in the profiles of enriched pathways [104]. Considering
cumulative evidence, therapeutically targeting RelA signaling requires a renewed approach based on
a deeper understanding of its function.
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3. c-Rel in PDAC

c-Rel, considered a canonical NF-κB signaling transcription factor, was identified as a homolog of
v-Rel, an avian reticuloendotheliosis virus strain T protein [131,132]. An oncogenic transformation
assay revealed that in contrast to the other NF-κB transcription factors, only mouse and human c-Rel
had the ability to transform chicken primary spleen cells [133]. In congruence, a transgenic mouse
model with c-Rel overexpression driven by a MMTV-LTR promoter is able to form mammary tumors
with secondary driver events [134,135]. Structurally, c-Rel shows similarities with RelA and RelB having
Rel homology domain (RHD) and transactivation domain (TAD) domains, though the target DNA
binding preference can show variance [136,137]. Despite c-Rel being attributed mostly to hematological
malignancies, growing evidence suggests important functions in solid carcinomas [136,138].

Ras-mediated transformation of MEF cells requires neither RelA nor c-Rel, but both enhance it [75].
In support of this, c-Rel nuclear localization is enhanced in the aforementioned Ras transformed mouse
lung tumor model [77]. An RNAi screen identified TANK Binding Kinase 1 (TBK1) as a top candidate
synthetic lethality partner of mutant Kras in various human cancer cell lines [139]. Mutant Kras signals
through many downstream effectors, like PI3K, Raf kinases, and RalGEFs. Unlike RalB, depletion of Raf
and PI3K does not result in synthetic lethality with the Kras mutation, supporting previous reports in
which RalB-SEC5 was identified as a TBK1 activator [139,140]. The TBK1-IKKε complex is also known
to phosphorylate c-Rel, enhancing its nuclear localization in HEK 293T cells [141]. In support, a lower
analysis threshold also revealed c-Rel as a candidate synthetic lethality partner for mutant Kras, next
to TBK1. Mechanistically, the mutant Kras-RalB-TBK1 axis propagates c-Rel transcriptional activity to
induce Bcl-xL (an anti-apoptotic protein) whose overexpression rescued synthetic lethality following
suppression of TBK1 [139]. Whereas this study excluded pancreatic cancer cell lines, additional work
confirmed the importance of the same signaling axis in the erlotinib (EGFR inhibitor) resistance of
this entity [142]. Here, it was suggested that erlotinib-resistant cancer cells develop a stemness-like
phenotype through recruitment of a Kras-RalB complex by α5β3 integrin. Analogously, this axis
induces an NF-κB signaling cascade involving c-Rel activation. A proteasome inhibitor bortezomib
(FDA-U.S. Food and Drug Administration approved), which is known to inhibit IκB degradation,
diminished both intrinsic and acquired erlotinib resistance and reduced tumor stemness [142]. Yet,
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the response of pancreatic cancer cells acquiring an active Kras signature to TBK1 inhibition remains
controversial [143,144].

The aforementioned DNA damage-induced ATR-Chk1-NF-κB-Claspin signaling axis also involves
c-Rel for modulation of cell cycle arrest [122,145]. The Cancer Genome Atlas (TCGA) data revealed
a negative correlation between Clspn expression and prognosis in pancreatic cancer patients. This may
further emphasize the possible dual, converse role of both c-Rel and RelA (as mentioned above) during
carcinogenesis versus in established cancer. A low Claspin amount is beneficial for carcinogenesis
in order to create genomic instability to pass the Hayflick limit, but an excess genomic instability
may become detrimental for formed cancer cells and predispose to vulnerability toward certain
chemotherapeutics. Despite no study being published yet regarding the function of c-Rel in pancreatic
carcinogenesis, the RelA truncation mouse model strikes with more DNA damage induced γ-H2AX in
premalignant lesions, accompanied by accelerated carcinogenesis [104]. An illustrated overview of
c-Rel-dependent facets in (pancreatic) cancer is provided in Figure 2.
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Regulatory T lymphocytes (Treg) are known for their ability to limit antitumor immunity in
the tumor microenvironment, and targeting their action may enhance immunotherapy response of
tumors [118]. c-Rel is known to be an important transcription factor for the thymic development of
Treg cells [146–148], whereas RelA was proposed to be important in maintaining Treg identity [149].
Comparing the embryonic lethality of a global Rela knockout with the comparably mild phenotype
of a dysregulated humoral immune system in global Rel knockout mice, targeting c-Rel would
potentially be rather fruitful with less systemic adverse effects [150,151]. Inhibition of c-Rel with
either pentoxifylline or IT-603 enhanced growth inhibition of tumors by anti-PD-1 immunotherapy
in a melanoma transplantation mouse model [152–154]. In line with this, Treg depletion improved
antitumor CD8+ cytotoxic T cell recruitment in orthotopic PDAC transplantation models, whereas in
the endogenous genetic PDAC model, this effect was not evident [155,156]. Therefore, a combination
of Treg depletion with immune checkpoint inhibition might be of value in PDAC as well, but has not
been investigated yet. Targeting c-Rel in this manner might demonstrate an anti-tumor effect both on
the cancer cell and immune system levels to convert an immunologically “cold” tumor into a “hot”
one, thereby enhancing immunotherapy efficiency [118].
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4. RelB in PDAC

The RelB:p52 heterodimer is the general, transcriptionally active downstream component of
the non-canonical NF-κB signaling pathway. RelB can also form heterodimers with RelA and p50.
Although RelA:RelB heterodimers are known to be transcriptionally inactive, RelB:p50 is formed
in a p100 processing-dependent manner upon selective ligand activation [157–161]. The canonical
and non-canonical signaling pathway share transcriptional targets, yet nucleotide variations in
κB DNA binding sequences or distinct conformations of the dimers with recruitment of various
co-activator/repressor proteins can diversify the target preference [162].

Constitutive activation of non-canonical NF-κB, along with NIK stabilization and constitutive
p100 phosphorylation has been detected in human PDAC cell lines [163]. In human PDAC tissues,
NIK activity is correlated with TRAF2 downregulation, especially in moderately or poorly differentiated
subtypes [164]. Other than NIK stabilization, GSK-3α also regulates the nuclear p52 amount, affecting
the non-canonical signaling pathway activation in human PDAC lines [87]. In murine models, the Nfkb2
gene was identified as a proto-oncogene, along with Myc and Yap1, and its genetic amplification
appears to be sufficient to drive PDAC without the need for KrasG12D dosage gain [165].

A direct oncogenic function of RelB activity in pancreatic carcinogenesis was revealed with the help
of a Relb knockout mouse model. Loss of RelB resulted in a decreased amount of pre-neoplastic structures
and delayed carcinogenesis. Mechanistically, both in KrasG12D premalignant lesions and established
PDAC cells, nutrient deprivation activates Nuclear Protein 1 (Nupr1), inducing RelB expression,
which in turn protects from apoptosis through transcription of immediate early response 3 (Ier3).
These results enabled the hypothesis of a general oncogenic activity of RelB in both carcinogenesis
and tumor maintenance [166]. Nupr1 also negatively regulates senescence in KrasG12D-induced
pancreatic and lung carcinogenesis [167]. Although the role of RelB in this axis is being questioned,
this may imply opposite functions of RelA and RelB in pancreatic carcinogenesis through regulation of
senescence [104,167]. Next to anti-apoptotic gene induction, RelB:p52 heterodimers regulate the G1
to S cell cycle progression through the S-phase kinase associated protein 2 (Skp2) and p27Kip1 axis in
human PDAC cells [168].

Enhancer of zeste homolog 2 (EZH2) is a polycomb repressive complex 2 (PRC2) component
catalyzing the tri-methylation of H3K27 residues to repress gene transcription [169]. Although specific
evidence for PDAC is lacking, non-canonical NF-κB induces EZH2 which mediates a bypass of senescence
by repressing p53/Rb, p16Ink4a, and p14ARF [170–172]. In pancreatic cancer, EZH2 negatively regulates
p27Kip1 expression in a RelB:p52-dependent manner [173]. Other than its transcriptionally repressive role
within PRC2, EZH2 may also exert transcription-activating functions in a non-canonical fashion. In cancer
cells with mutations in the SWItch/Sucrose non-Fermentable (SWI/SNF) complex, this non-canonical
function of EZH2 is necessary, although this necessity can be bypassed by introduction of a Ras mutation
in various cancer cells [174]. This EZH2 dependency might generate a vulnerability in 30%–40% of
pancreatic cancer patients whose tumors harbor mutations in the SWI/SNF complex [175–177]. However,
treatment with an EZH2 catalytic activity inhibitor did not affect cyst development in the Arid1a knockout
(a SWI/SNF complex compound) KrasG12D pancreatic mouse model, even if reduced histone methylation
was observed [178]. This indicates the need for alternative EZH2 inhibitors blocking its non-canonical
functions. The contribution of RelB specifically with respect to the non-canonical function of EZH2 is still
unknown; however, considering the transcriptional induction of EZH2 by RelB, targeting non-canonical
NF-κB may be of therapeutic value in SWI/SNF mutant PDAC patients. A schematic presenting the role
of RelB in pancreatic cancer is provided in Figure 3.
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Cell death evoked by radiotherapy may have immunogenic effects, triggering the recruitment
and activation of anti-tumoral immune cells, including dendritic cells (DCs) and cytotoxic T cells [118].
Those activated immune cells can in turn secrete type I interferons to augment cytotoxicity and DC
antigen presentation [179,180]. Whereas the canonical NF-κB pathway drives interferon production,
the non-canonical pathway inhibits it. Thus, application of canonical NF-κB inhibitors was reported to
impede radiotherapy response, whereas non-canonical inhibitors augmented it [181]. These results
point to a complex but anticipated differential function of NF-κB downstream transcription factors in
cancer therapeutics, again signifying their differences.

5. Conclusions

A generic oncogenic impression of NF-κB signaling requires a detailed map of the spatiotemporal
mode of action for each individual component. The oncogenic or tumor suppressor functions of RelA,
c-Rel, and RelB can be highly context-specific, showing variation not only in different cell types but
also depending on the stage of malignant transformation. Despite the abundance of NF-κB inhibitors,
their efficacy in clinical use is controversial [182]. A collection of selected clinical trials targeting NF-κB
signaling or its associated pathways as mentioned in this review is listed in Table 1. Unfortunately,
no compounds haveyet been found to specifically target RelA, c-Rel, or RelB in clinical evaluation.
Besides, NF-κB signaling is complex and considered to be fundamental not only for cancer cells but also
for stromal cells. Therefore, even more specific inhibitors not targeting individual NF-κB transcription
factors as a whole but rather their distinct functions may hold promise for cancer therapeutics.
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Table 1. A selection of clinical trials for pancreatic cancer targeting NF-κB signaling or its associated
pathways are given. Abbreviations as followed; n.a.: non-applicable, HDACi: histone deacetylase
inhibitor, NK: natural killer cells, IL-1R: interleukin 1 receptor.

NCT Number Intervention Disease Phase Status Ref.

NCT01056601 Bortezomib (Proteasome/NF-κB Inhibitor) +
Panobinostat (HDACi)

Pancreatic cancer
progressive upon
gemcitabine treatment

II Terminated: Toxicity and
lack of response. [183]

NCT00416793 Bortezomib (Proteasome/NF-κB inhibitor) +
Carboplatin (chemotherapy) Metastatic pancreatic cancer II Terminated: Toxicity and

lack of response n.a.

NCT00052689 Bortezomib (Proteasome/NF-κB inhibitor) ±
Gemcitabine (chemotherapy) Stage IV pancreatic cancer II Completed: Results n.a. n.a.

NCT00622674 Bortezomib (Proteasome/NF-κB inhibitor) +
Cetuximab (EGFR inhibitor)

EGFR-expressing solid
tumors; 3/37 patients with
pancreatic tumor

I

Completed: Treatment dose
is tolerable; no response
observed in pancreatic
cancer

[184]

NCT00052689 Bortezomib (Proteasome/NF-κB inhibitor) ±
Gemcitabine (chemotherapy)

Older patients with
advanced pancreatic cancer II Completed: Results n.a. n.a.

n.a. Bortezomib (Proteasome/NF-κB inhibitor) +
Paclitaxel (chemotherapy) Advanced solid tumors I

Completed: Manageable
toxicity profile; 7/45 patients
showed disease stabilization;
3 had metastatic pancreatic
cancer

[185]

NCT03878524
Various targeted/chemotherapy drugs in
combination, among them Bortezomib
(Proteasome/NF-κB inhibitor)

Advanced cancers including
pancreatic I

Not yet recruiting. The
study aims at molecular
stratification and
combination treatment in a
personalized approach.

n.a.

NCT00720785 Autologous, ex vivo expanded NK cells ±
Bortezomib (Proteasome/NF-κB inhibitor)

Various cancers including
metastatic pancreatic
adenocarcinoma

I Recruiting n.a.

NCT00094445 Curcumin (Pleiotropic signaling
modulator/NF-κB inhibitor)

Advanced pancreatic cancer;
no concomitant
chemo/radiotherapy

II
Completed: no toxicity; 2/21
patients showed biological
activity.

[186]

NCT00192842
Curcumin (Pleiotropic signaling
modulator/NF-κB inhibitor) + Gemcitabine
(chemotherapy)

Advanced pancreatic cancer II

Completed: low compliance
for high dose oral curcumin
in combination with
gemcitabine; 1/11 with
partial response, 4/11 with
stable disease

[187]

NCT02336087
Gemcitabine + nab-Paclitaxel (Chemotherapy) +
Metformin + Dietary supplement including
curcumin

Unresectable pancreatic
cancer I Recruiting n.a.

NCT03382340 IMX-110: nanoparticle encapsulating curcumin
and low-dose doxorubicin (chemotherapy) Advanced solid tumors I/II Recruiting n.a.

NCT02671890 Gemcitabine (chemotherapy) ± Disulfiram
(Proteasome/NF-κB inhibitor)

Unresectable solid tumors or
metastatic pancreatic cancer I Recruiting n.a.

NCT02550327 Gemcitabine, Nab-Paclitaxel, Cisplatin and
Anakinra (IL-1R antagonist)

Localized pancreatic ductal
adenocarcinoma Early I

Completed: Combination is
tolerable. Further analysis
pending

[188]

NCT01632306
LY2090314 (GSK-3 inhibitor) in combination with
various chemotherapy regimens (Gemcitabine,
FOLFOX, nab-Paclitaxel)

Metastatic pancreatic cancer I/II Terminated: Lack of patient
enrollment. n.a.

NCT03678883 9-ING-41 (GSK-3β inhibitor) ± various
chemotherapy regimens

Advanced cancers including
pancreatic I/II Recruiting n.a.

NCT03454035 Palbociclib (CDK4/6 inhibitor) Ulixertinib
(ERK1/2 inhibitor)

Advanced pancreatic cancer
and other solid tumors I Recruiting n.a.

NCT02465060 Various targeted therapies including Palbociclib
(CDK4/6 inhibitor) BAY 80-6946 (PI3K inhibitor)

Multiple tumor types
including refractory
pancreatic cancer, treatment
option to be evaluated based
on genetic testing

II Recruiting n.a.

NCT03065062 Palbociclib (CDK4/6 inhibitor) Gedatolisib
(PI3K/mTOR inhibitor)

Various solid tumors
including advanced
pancreatic cancer

I Recruiting n.a.

NCT03682289 AZD6738 (ATR inhibitor) ± Olaparib (PARP
inhibitor)

Various solid tumors
including advanced
pancreatic cancer

II Recruiting n.a.
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