
Fakultät für Elektrotechnik und Informationstechnik
Technische Universität München

Towards a cognitive automotive environment model: a novel
approach based on distributed representations and spiking neural

networks

Florian Mirus

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Werner Hemmert

Prüfende der Dissertation:
1. Prof. Dr. Jörg Conradt

2. Prof. Dr. Andreas Herkersdorf

Die Dissertation wurde am 01. Oktober 2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 17. November
2020 angenommen.

Abstract

The race to autonomous driving is currently one of the main forces for pushing research forward in
the automotive domain. One major reason for this development in recent years is the rapid progress
of Artificial Intelligence, especially the success of deep learning, which has shown remarkable results
in tasks essential for autonomous driving. The focus of the young and emerging research field neuro-
morphic engineering is on biologically inspired computing systems and algorithms, aiming to close the
gap in performance and efficiency between biological and artificial computing systems. Prototypes of
neuromorphic computing hardware, although not technologically mature yet, show promise to be a use-
ful, energy-efficient addition in future automotive applications. However, neuromorphic computing ap-
proaches are just beginning to draw attention in the automotive domain due to these novel spiking-neuron
architectures encapsulating a drastically different computing paradigm and therefore call for alternative
algorithmic approaches and new programming substrates.
In this thesis, we present a first step towards a cognitive environment model for automotive applications
using distributed representations and a spiking neuron substrate. We investigate the use of vector repre-
sentations, which have been previously used for problems such as cognitive modeling or natural language
processing, for knowledge representation and reasoning in automotive context. This approach to infor-
mation encoding is rather generic and can be applied to various different tasks with little modifications
to the representation itself. Furthermore, such vector-based representations offer the opportunity to be
implemented in a spiking neuron substrate, which supports efficient learning algorithms and deployment
on dedicated neuromorphic hardware. This also allows us to combine the advantages of symbolization
with the benefits of neural networks. We investigate varying instantiations of our vector-based scene
representation applied to different tasks.
In a first sample application, we introduce a model, that learns to classify the current driving context
based on a distributed representation of the current driving scene. The conceptual focus here is to cap-
ture semantics of the scene allowing conclusions about the type of environment the vehicle is currently
navigating, but also investigating how varying vector vocabularies and learning architectures influence
task performance. Another essential ingredient of an environment model especially in automotive con-
text is precise knowledge about the current state and future development of all dynamic objects in the
vehicle’s surroundings. We focus on the task of predicting the behavior, that is, future motion of those
other traffic participants around the vehicle based on a vector-based description of the current scene
using convolutive vector powers to encode spatial information. We hypothesize, that these structured
representations have the potential to capture mutual interactions between dynamically moving agents.
Prediction of other traffic participants’ behavior also offers the opportunity to explore different learning
approaches. For instance, human drivers have acquired comprehension through past experience of how
other cars will probably act, but adapt this knowledge continuously when encountering new situations.
From this inspiration, we learn a generic model of dynamic behavior through offline training and refine
this model when perceiving behavior of a particular object through a novel mixture-of-experts model
employing online learning. To complement these more high-level reasoning tasks with a perspective on
motor control, we also introduce a novel neuromorphic control architectures, that can be used to imple-
ment generic control algorithms in the language of SNNs (Spiking Neural Networks). This approach
allows to divide larger tasks in small sub-networks combining the advantages of manual programming
with neural-network-based learning. This allows a first impression of how future neural vehicle control
based on our distributed, cognitive environment model could be achieved.

Zusammenfassung

Der Wettlauf in Richtung des ersten vollkommen autonom fahrenden Automobils ist aktuell eine der
Hauptursachen für den rasanten Fortschritt der Forschung im Automobilsektor. Ein Hauptgrund für
diese Entwicklung in den vergangenen Jahren ist der Fortschritt im Bereich der künstlichen Intelligenz
und insbesondere von sogenannten tiefen neuronalen Netzen, die außergewöhnliche Erfolge in Bereichen
erzielt haben, die für das autonome Fahren von entscheidender Bedeutung sind. Der Schwerpunkt des
aktuell noch jungen, doch wachsenden Forschungsgebietes Neuromorphic Computing liegt hingegen
auf biologisch inspirierten Computersystemen und Algorithmen, die darauf abzielen das Gefälle zwi-
schen biologischen und künstlichen Systemen hinsichtlich Leistung und Effizienz zu verringern. Obwohl
neuromorphe Hardware-Prototypen technologisch noch nicht so ausgereift sind wie ihre traditionelleren
Gegenstücke, so zeigen sie doch vielversprechendes Potenzial zukünftige Fahrzeuge im Hinblick auf
Energieffizienz zu verbessern. Allerdings ziehen diese neuromorphen Ansätze nur langsam das Inter-
esse der Automobilindustrie auf sich, da diese neuartigen Computerarchitekturen auf sogenannten ge-
pulsten neuronalen Netzen (kurz SNNs vom englischen Spiking Neural Networks) basieren, welche sich
drastisch von klassischen neuronalen Netzen unterscheiden und daher neuartige Paradigmen hinsichtlich
Algorithmik und Programmierung benötigen werden.
Im Rahmen dieser Dissertation machen wir einen ersten Schritt in Richtung eines kognitiven Umge-
bungsmodells für Anwendungen im Bereich des automatisierten Fahrens unter Verwendung verteilter
Darstellungen und gepulster neuronaler Netze. Wir untersuchen den Einsatz von Vektor-Darstellungen,
die bisher vorrangig für die Modellierung kognitiver Prozesse oder in der Sprachverarbeitung verwendet
wurden, zur Wissensrepräsentation im Fahrzeugumfeld. Dieser generische Ansatz zur Informations-
darstellung erlaubt den Einsatz in verschiedenen Anwendungsbereichen ohne größere Anpassungen an
der Repräsentation selbst. Darüber hinaus eignet sich eine solche Darstellung für die Implementierung
in gepulsten neuronalen Netzen, welche neuartige, effiziente Lernverfahren sowie die Verwendung auf
dedizierter neuromorpher Hardware erlaubt. Weiterhin lassen sich dadurch die Vorteile symbolischer
Darstellungen mit den Stärken und automatisierten Lernverfahren von neuronalen Netzen kombinieren.
Wir untersuchen die Eignung unserer vektor-basierten Szenen-Repräsentation an Hand von verschiede-
nen Anwendungsbeispielen.
In einer ersten Anwendung präsentieren wir ein Modell, welches basierend auf unserer Vektor-Darstellung
der Umgebung lernt den aktuellen Fahrkontext zu klassifizieren. Der konzeptionelle Fokus liegt dabei
darauf, die semantische Bedeutung der aktuellen Fahrsituation in der Darstellung zu erfassen, aber auch
den Einfluss unterschiedlicher Faktoren wie beispielsweise des zugrundeliegenden Vektor-Vokabulars
oder des verwendeten Lernverfahrens zu untersuchen. Ein weiterer wichtiger Bestandteil eines Umge-
bunsmodells im Automobilbereich ist genaues Wissen über den aktuellen Zustand sowie die Vorhersage
aller sich bewegenden Objekte im Umfeld des Fahrzeugs. Wir untersuchen die Prädiktion dieser Objekte
auf Basis unserer verteilten Repräsentation. Diese nutzt eine neuartige Vektor-Darstellung räumlicher
Informationen unter Verwedung von Vektor-Potenzen, welche auf der zyklischen Faltung basieren. Hier
untersuchen wir die Hypothese, dass eine solche strukturierte Darstellung in der Lage ist den gegensei-
tigen Einfluss zwischen den verschiedenen, sich bewegenden Verkehrsteilnehmern zu erfassen. Weiter-
hin erlaubt dieses herausfordernde Anwendungsbeispiel die Untersuchung verschiedener Lernverfahren.
Ein erfahrener Autofahrer hat beispielsweise im Laufe der Zeit ein umfassendes Verständnis dafür ent-
wickelt, wie sich andere Verkehrsteilnehmer in bestimmten Situationen verhalten werden. Gleichzeitig
ist er aber auch in der Lage, dieses Vorwissen auf Basis der aktuellen Fahrsituation kontinuierlich anzu-
passen und sich auf das Verhalten der anderen Fahrer spontan einzustellen. Mit dieser Inspiration ent-
wickeln wir ein generisches Modell zur Vorhersage von dynamischen Objekten, welches auf Basis von

iv

vorab gesammelten Daten lernt. Dieses Modell verfeinern wir durch ein sogenanntes Abstimmen-von-
Experten-Modell (englisch mixture-of-experts model), welches in der Lage ist die Bewegungsvorhersage
zur Laufzeit auf Basis des aktuellen Fahrkontexts anzupassen. Ergänzend präsentieren wir eine neuartige
neuromorphe Steuerungsarchitektur, die die Implementierung von Steuerungsalgorithmen in gepulsten
neuronaler Netzen erlaubt. Diese ermöglicht es durch die Aufteilung des Gesamtproblems in kleinere
Teilnetze die Vorteile manueller Programmierung mit automatisierten Lernverfahren neuronaler Netze zu
kombinieren. Dadurch gewinnen wir einen ersten Eindruck, wie eine zukünftige, neuronale Fahrzeug-
steuerung auf Basis unseres kognitiven Umgebungsmodells aussehen könnte.

Acknowledgment

It is not knowledge, but the act of learning, not possession but the act of getting there, which
grants the greatest enjoyment

– Carl Friedrich Gauss

Scientific work such as the doctoral thesis at hand would not be possible without the support of several
people. I was fortunate enough to meet a number of great people during the preparation of this thesis I
would like to express my gratitude to. First and foremost, I would like to express my gratitude towards
my supervisor, Prof. Jörg Conradt, who gave me the opportunity to work on this interesting topic while
giving me the freedom to creatively explore the research area. Furthermore, he introduced me to his Neu-
roscientific System Theory Group at Technical University of Munich, where he created an atmosphere of
creativity, scientific rigor but also great camaraderie. I would also like to thank the other members of my
committee, Prof. Andreas Herkersdorf for agreeing to be the second adviser of my thesis, his valuable
feedback and constructive criticism when I presented an intermediate state of my work to him, as well
as Prof. Werner Hemmert, for acting as chairman of the committee and his excellent organization of my
(virtual) oral examination.
The team of the Neuroscientific System Theory Group was truly a great mixture of amazing people.
Randomizing the order, I would like to thank Cristian Axenie for his enthusiasm, encouragement, feed-
back on preprints and slides as well as endless nights at the robot lab, Nikolai Waniek for feedback on
ideas, preprints and slides and for discussions on scientific as well as any other topics of current inter-
est, Christoph Richter for proof-reading papers as well as his pragmatic approach to research, Lukas
Everding for his deadpan sense of humor and Emeç Erçelik for his help and support with organizing
practical lectures at the University as well as at the BMW Summer School. Prof. Conradt also intro-
duced me to the neuromorphic engineering community in general and to Dr. Terry Stewart from CNRG
(Computational Neuroscience Research Group) at University of Waterloo in particular, who also had a
great impact on my doctoral research. I would like to thank him for his continuous support across the
Atlantic Ocean and for generously sharing his wide knowledge on spiking neurons, Nengo, and machine
learning in general, but moreover for becoming a great mentor and role model for me. Furthermore, I am
also deeply grateful to Prof. Chris Eliasmith, the head of CNRG, as well as Terry and all the members
of CNRG for hosting me during a six week research visit at University of Waterloo in summer 2017.
This visit not only allowed me to push my research forward thanks to the remoteness of being an ocean
and a six hour time delay apart from the “usual business”. Furthermore, I was also fortunate to meet
lots of great people at University of Waterloo sharing their knowledge and experience, but I also had
a great time at jam sessions or simply visiting and enjoying the beauty of Canada. My research visit
also allowed me to initiate a collaboration project between ABR (Applied Brain Research Inc.), a CNRG
spin-off company, and BMW Group with some results of that project making their way into this thesis.
As part of this collaboration project, I would like to thank Terry, Peter Blouw, Daniel Rasmussen and
Eric Hunsberger on the technical side, but also Peter Suma on the administrative side for fighting with
me through the pain of paperwork to make the project actually work.
I am also deeply thankful to Dr. Hans-Jörg Vögel, my supervisor at BMW Group, for giving me the
opportunity to pursue my Ph.D. in the environment of BMW’s research department. Furthermore, he
always supported and advised me with scientific and administrative tasks, defended the idea of applying
neuromorphic computing “in a car” within the company and always had an “open door”, whenever
something unexpected occurred. I would also like to thank Martin Arend, the leader of my department
for the most time during my Ph.D. years at BMW Group for being the nicest boss a Ph.D. student could

vi

hope for and furthermore, for not only supporting my research visit to Canada, but also joining for a
couple of days and giving me the opportunity to accompany him when meeting the local start-up scene.
Another great part of pursuing my doctoral studies at BMW Group was the network of fellow Ph.D.
students within BMW’s ProMotion program. Meeting and talking to other students with similar tasks,
success stories but also problems and frustrations helped me to overcome these usual but unpleasant parts
of doctoral studies when progress stagnated. In particular, I would like to express my gratitude towards
Leopold Walkling and Julian Tatsch for sharing their knowledge, experience and data sets. Furthermore,
I would like to thank the “Improve” group (in no particular order): Franziska Hertlein, Sascha Steyer,
Nicola Hupp, Florian Roider, Jens Schulz, Marc Vogt, Daniel Knobloch, Alexander Terres, Jan Korus,
Julius Riedelbauch, Michael Ponnath, Peter Rösch, Philip Kotter and Annette Böhmer. I would also
like to thank my fellow Ph.D. students at our department LT-3 Maike Hartstern and Christoph Segler
for sharing the ups and downs of a Ph.D. student at BMW in general and at LT-3 in particular as well
as interesting scientific and daily-life discussions. Particularly, I would like to thank Christoph for our
shared efforts regarding the “management” of the dev-box as well as remembering literally every single
administrative problem one could run into at BMW and, more importantly, its solution. I would also
like to express my gratitude to a couple of “regular” BMW colleagues for giving feedback to papers,
talks or slides, helping out with administrative issues, interesting lunch-break discussions or simply
for being great colleagues. Again, randomizing the order, I would like to thank Mohsen Kaboli, Tom
Hubregtsen, Sebastian Wirkert, Fridolin Bauer, Viktor Rack and Suomy Jacob. Additionally, I would
like to thank Angelika Schäfer and Simone Barnloher as well as Susanne Schneider for their help and
patience regarding administrative tasks related to business trips at BMW or student supervision at TUM
respectively. Finally, I would like to thank all the students I had the pleasure to supervise either at BMW
or at TUM doing master or bachelor theses, project practicals, scientific seminars or simply lectures. I
hope they have learned as much from me as I learned from them.
I am also deeply thankful to my parents, Rainer and Ingrid Mirus, for being a constant source of support
and encouragement when things do not work as originally planned and for providing a basement to partly
finish writing of this thesis. Thank you for supporting my life-long journey from the first steps up until
this point and beyond. Furthermore, I would like to express my gratitude to Helga Wallitzer, my mother-
in-law, especially for her support during the first weeks after the birth of our daughter Isabella, which
allowed me to find some sleep and get at least some work done during that great yet stressful time. Last
but not least, I would like to express the most heartfelt gratitude to my lovely wife Lisa for being on my
side ever since I made the decision to move to Munich for the Ph.D., enduring my temper during the
frustrating times, supporting me selflessly in everything that I do and for making me the greatest gift in
the world: our children Isabella and Jannik. I could not have finished this thesis without you. Thank you
for everything!

Florian Mirus
Munich, December 2020

Table of Contents

Abstract i

Zusammenfassung iii

Acknowledgment v

Table of Contents vii

List of Abbreviations xi

Conventions xv

List of Figures xv

List of Tables xxi

1 Introduction 1
1.1 Preamble . 1
1.2 Outline of the thesis . 4
1.3 Contributions of and to this thesis . 6

1.3.1 List of Publications . 7

2 Research Context 9
2.1 Biologically-inspired Systems . 9

2.1.1 A brief history . 9
2.1.2 Spiking Neural Networks . 12
2.1.3 Neuromorphic Hardware . 14
2.1.4 Neuromorphic Applications . 17

2.2 Cognitive Modeling . 20
2.2.1 Symbolic approaches . 21
2.2.2 Connectionist approaches . 21
2.2.3 Vector-based approaches . 22

2.3 Automated Driving . 23
2.3.1 A brief history . 24
2.3.2 Knowledge Representation . 25
2.3.3 Driving Context Classification . 27
2.3.4 Object Detection and Classification . 28
2.3.5 Trajectory Prediction . 29
2.3.6 Online Learning . 30
2.3.7 Data sets . 31

2.4 Summary . 32

3 Theoretical background 35
3.1 Mathematical properties of Vector Symbolic Architectures 35
3.2 The Semantic Pointer Architecture . 40

viii TABLE OF CONTENTS

3.3 The Neural Engineering Framework . 43
3.3.1 Representation . 44
3.3.2 Transformation . 45
3.3.3 Dynamics . 46

3.4 Cognitive Modeling with Vector Symbolic Architectures 47
3.4.1 Vocabularies . 47
3.4.2 Encoding structure . 49
3.4.3 Implementation in Spiking Neural Networks 50

3.5 Summary . 52

4 Distributed representations of automotive scenes 53
4.1 Preprocessing stage - generating a vocabulary . 54

4.1.1 What types of data to encode? . 54
4.1.2 Random and manually engineered vocabularies 57
4.1.3 Visual vocabularies . 57
4.1.4 Semantic vocabularies . 61
4.1.5 Visual-semantic vocabularies . 65
4.1.6 Summary on vocabularies . 66

4.2 Representation generation stage . 67
4.2.1 Different vector representations for numerical values 68
4.2.2 Structured representations . 72
4.2.3 Capacity analysis - limiting factors to vector representations 73

4.3 Summary . 77

5 Instantiating a cognitive model for driving context classification 79
5.1 Data and preprocessing . 79

5.1.1 Data labeling . 80
5.2 Representation and models . 80

5.2.1 Scene representation in vectors . 81
5.2.2 Classification model . 83

5.3 Experiments . 83
5.3.1 Performance baselines . 84
5.3.2 Model training . 85
5.3.3 Evaluation of the classification performance . 86
5.3.4 The influence of varying vocabularies . 89

5.4 Summary . 91

6 Instantiating a cognitive model for predicting vehicle behavior 93
6.1 Data and preprocessing . 93

6.1.1 On-board-sensors data set . 94
6.1.2 NGSIM US-101 data set . 95
6.1.3 Preprocessing . 96
6.1.4 Data set peculiarities . 96
6.1.5 Performance baselines . 97

6.2 Representation and models . 99
6.2.1 Scene representation in vectors . 100
6.2.2 LSTM-based prediction models . 102
6.2.3 Simple feed-forward NEF-based prediction models 102
6.2.4 Excursion on unsupervised anomaly detection 103

6.3 Experiments and results . 103
6.3.1 Evaluation of the LSTM-based prediction models 105

TABLE OF CONTENTS ix

6.3.2 Evaluation of NEF-based feed-forward prediction models 115
6.3.3 Evaluation of the unsupervised anomaly detection 117

6.4 Summary . 120

7 A mixture-of-experts online learning system for adaptive behavior prediction 123
7.1 Mixture-of-experts online learning models . 124

7.1.1 A context-free mixture-of-experts online learning model 124
7.1.2 A context-sensitive mixture-of-experts online learning model 125
7.1.3 Temporal spreading of the error signal . 126

7.2 Experiments and results . 127
7.2.1 Data and preprocessing . 127
7.2.2 Comparing timing-agnostic context-free and context-sensitive mixture models . 129
7.2.3 Evaluation of the context-sensitive model variant with temporal spreading 130

7.3 Summary . 135

8 Closed-loop neuromorphic control systems 137
8.1 Sensorimotor adaptation for mobile robotic manipulation 137

8.1.1 Neuromorphic system architecture . 138
8.1.2 Neural algorithm development . 139
8.1.3 Neural task implementation . 141
8.1.4 Summary . 147

8.2 Neuromorphic reinforcement learning for vehicle trajectory control 148
8.2.1 Neuromorphic control architecture . 148
8.2.2 Reinforcement Learning . 150
8.2.3 Summary . 152

8.3 Summary . 152

9 Discussion 155
9.1 Conclusion and outlook . 157

Bibliography 161

List of Abbreviations

ABR Applied Brain Research Inc.. v, 6
ACC Adaptive Cruise Control. 24
ACT Adaptive Control of Thought. 21
ACT-R Adaptive Control of Thought-Rational. 21
ADAS Advanced Driver Assistance System. 24, 25, 27, 53
AER Address Event Representation. 15, 16
AHSRA Advanced Cruise-Assist Highway System Research Association. 24
AI Artificial Intelligence. 1, 20, 28, 32
ANC Analog Network Core. 15
ANN Artificial Neural Network. 9, 10, 12, 13, 21, 53
APS Active Pixel Sensor. 16
ART Adaptive Resonance Theory. 10

BBP Blue Brain Project. 11
BMW Bayerische Motoren Werke. 6
BrainScaleS Brain-inspired multiscale computation in neuromorphic hybrid systems. 11, 14, 19
BSC Binary Spatter Code. 22, 35, 36, 40, 50

CCD Charge Coupled Device. 15
CNN Convolutional Neural Network. xvi, xxi, 10, 19, 28, 48, 57–60, 66, 84–86, 88, 91, 92, 155
CNRG Computational Neuroscience Research Group. v, 6
CPU Central Processing Unit. 14, 138
CUAVE Clemson University Audio Visual Experiments. 19

DARPA Defense Advanced Research Projects Agency. xv, 1, 11, 16, 24, 25
DAS Dynamic Audio Sensor. 16, 18
DAVIS Dynamic and Active Pixel Vision Sensor. 16
DBN Deep Belief Network. 18, 19, 48
DDR Double Data Rate. 15
DFT Discrete Fourier Transform. 37, 41–43, 51, 70
DNN Deep Neural Network. 2, 10, 13, 19, 22, 28, 31, 53, 57
DVS Dynamic Vision Sensor. xv, 16–20, 137, 138, 143, 144

eDVS embedded Dynamic Vision Sensor. 138
EPIC Executive-Process/Interactive Control. 21
EU European Union. 11

FACETS Fast Analog Computing with Emergent Transient States. 11, 14
FCN Fully Convolutional Neural Network. xv, 28
FET Future Emerging Technologies. 11
FLOPS Floating Point Operations per Second. 15

GloVe Global Vectors. 22, 49
GOFAI Good Old-Fashioned Artificial Intelligence. 21
GPS

xii List of Abbreviations

1) General Problem Solver. 21
2) Global Positioning Systems. 24, 25, 27, 79

GPU Graphics Processing Unit. 1, 10, 14, 15, 28, 138
GTSRB German Traffic Sign Recognition Benchmark. xvi, 31, 58, 63, 90

HBP Human Brain Project. 11
HICANN High Input Count Analog Neural Network. 11, 15
HMM Hidden Markov Model. 19
HOG Histogram of Oriented Gradients. 28
HRL Hughes Research Laboratories. 11, 16
HRR Holographic Reduced Representation. 22, 35, 37, 40
HTM Hierarchical Temporal Memory. 22

IDFT Inverse Discrete Fourier Transform. 37, 41–43, 51, 70
IF Integrate-and-Fire. 15
IMU Inertial Measurement Unit. 138

LIDAR Light Detection and Ranging. 3, 25, 26, 28, 31, 79, 94
LIF Leaky-Integrate-and-Fire. xv, 12–14, 83, 85, 115
LSTM Long Short-Term Memory. viii, xv, xviii, 5, 6, 30, 93, 98–117, 120, 121, 123, 127, 129, 135, 156

MAP Multiply-Add-Permutate. 22, 35–37
MNIST Mixed National Institute of Standards and Technology. 17–19, 31
MS COCO Microsoft Common Objects in COntext. 31

NAHSC National Automated Highway System Consortium. 24
NEF Neural Engineering Framework. viii, ix, xvi, xix, 5, 13, 14, 16, 19, 22, 33, 35, 43–47, 50–53, 83,
99, 102–104, 115–117, 120, 121, 125, 150, 155
Nengo Neural Engineering Objects. xvii, xx, 13, 14, 19, 43, 45, 83, 85–89, 91, 101–103, 115, 139, 141,
145, 147, 148
NEST NEural Simulation Tool. 14
NGSIM Next Generation Simulation. viii, xvii–xix, 31, 93, 95–97, 101, 104, 108, 110, 112, 115–117,
119–121, 129, 130
NLP Natural Languange Processing. 49, 50
NPU Neuromorphic Processing Unit. 138
NST Neuroscientific System Theory Group. v

PACMAN Partitioning And Configuration MANager. 14
PES Prescribed Error Sensitivity. 150
PID Proportional-Integral-Derivative. 138
PROMETHEUS PROgraMme for a European Traffic of Highest Efficiency and Unprecedented Safety.
24
PyNCS Python Neuromorphic Cognitive Systems. 14
PyNN Python Neural Networks. 11, 13, 14, 19

RADAR Radio Detection and Ranging. 3, 25, 26, 79
RBF Radial Basis Functions Network. 10
RBM Resctricted Boltzmann Machine. 10, 13, 18, 19, 48
ReLU Rectified Linear Unit. 85, 86
RMSE Root-Mean-Square Error. xvi, xviii–xx, 70, 103, 105–116, 130–135
RNN Recurrent Neural Network. 10
ROLLS Reconfigurable On-Line Learning Spiking. 15
ROS Robot Operating System. 148, 149

List of Abbreviations xiii

RPM
1) Raven’s Progressive Matrix. 50, 51
2) Rotations per minute. 149

SAE Society of Automotive Engineers. 23
SDR Sparse Distributed Representation. 22
SDRAM synchronous dynamic random-access memory. 15
SIMD single instruction multiple data. 14
SLAM Simultaneous Localization and Mapping. 18, 26
SNN Spiking Neural Network. i, iii, vii, viii, xx, 2, 4–6, 12–15, 18, 31, 32, 35, 47, 50–53, 91, 120, 137,
147, 148, 150–152, 156–158
SOM Self-Organizing Map. 10, 48
SPA Semantic Pointer Architecture. vii, xvii–xix, 4, 22, 32, 33, 35, 40–42, 47, 50–54, 57, 63–66, 68,
72–74, 79, 97, 101, 104, 109–117, 120, 121, 127, 129, 155
Spaun Semantic Pointer Architecture Unified Network. 13, 14, 43, 48
SpiNNaker Spiking Neural Network Architecture. xv, 2, 11, 14, 15, 19, 20, 159
STDP Spike Timing Dependant Plasticity. 13, 14, 19
STM synaptic time multiplexing. 16
SVM Support Vector Machine. 10
SyNAPSE Systems of Neuromorphic Adaptive Plastic Scalable Electronics. xv, 1, 11, 16

TORCS The Open Racing Car Simulator. 137, 148, 149
TUM Technical University of Munich. 6

US Ultrasonic Sensors. 25

VLSI Very-Large-Scale Integration. 11, 15
VSA Vector Symbolic Architecture. vii, viii, 3, 4, 9, 22, 32, 35–40, 47, 49–53, 56, 57, 62, 68–70, 72, 73,
103, 155

List of Figures

1.1 Expected discrepancy between energy-efficiency requirements of future applications and
the development of computing hardware. (a) Image source: Farahini (2016), adapted
from the DARPA SyNAPSE program. (b) Image source: Marr et al. (2013). 1

1.2 Schematic visualization of the perception-action-cycle 2
1.3 Example of urban driving scene with different approaches to representation. Images 1.3a,

1.3b and 1.3c are (adapted) from the Cityscapes data set (Cordts et al., 2016). 4

2.1 A selection of historical milestones in artificial intelligence, neuromorphic engineering
and computational neuroscience. There is a significant boost of research and technolo-
gies in recent years. 10

2.2 Visualization of different aspects of neuron models. (a) depicts the structure and func-
tioning of biological neurons in a schematic visualization. Image source: Gerstner and
Kistler (2002). (b) visualizes the membrane potential’s sub-threshold behavior of a LIF
(Leaky-Integrate-and-Fire) neuron model. Image source: Masquelier et al. (2007). 12

2.3 (a) Space-time representation of the event stream generated by a rotating dot on a spin-
ning disk and a snapshot of the events (b) abstracted pixel core schematic (c) principle
operation of a single DVS (Dynamic Vision Sensor) pixel. Image source: Lichtsteiner
et al. (2008) . 17

2.4 Example of a closed-loop, neuromorphic robotic system with two event-based embedded
DVSs and a 48-node SpiNNaker (Spiking Neural Network Architecture) board. Image
source: Galluppi et al. (2014) . 20

2.5 The winning robots from the 2005 DARPA (Defense Advanced Research Projects Agency)
Grand Challenge and 2007 Urban Challenge. (a) shows Stanford’s Stanley at the 2005
DARPA Grand Challenge. Image source: Thrun et al. (2006). (b) shows Carnegie Mel-
lon’s BOSS at the 2007 DARPA Urban Challenge. Image source: Urmson et al. (2008). . 25

2.6 Occupancy-grid visualization for low-level sensor fusion. The left part depicts the prin-
ciple of occupancy-grids, whereas the right part shows a real world example. Image
source: Hohm et al. (2014) . 26

2.7 Illustration of the SegNet FCN (Fully Convolutional Neural Network) architecture for
semantic segmentation of an image visualizing the input data as well as the output of
the network with pixel-wise labels indicating class membership. Image source: Badri-
narayanan et al. (2015) . 28

2.8 Examples visualizing different modeling approaches for motion prediction in automotive
context. Image source: Lefèvre et al. (2014) . 29

2.9 Visualization of one state-of-the-art LSTM (Long Short-Term Memory)-based architec-
ture for vehicle trajectory prediction combining social pooling to account for the influ-
ence of other vehicles on the target vehicle with a maneuver-based prediction module.
Image source: Deo and Trivedi (2018a). 30

3.1 Visualization of circular convolution as compressed outer product for 3-dimensional vec-
tors. Image adapted from T. A. Plate (1994). 37

3.2 Visualization of the distribution of the cosine similarity between two randomly chosen
vectors depending on their dimension. 39

xvi LIST OF FIGURES

3.3 Visualization of the similarity φ (1,v� v̄) between the neutral element 1 and the result of
applying the pseudo-inverse to different vectors for varying vector dimensions. This plot
shows the result of 100 samples compared to the similarity threshold ε 41

3.4 The representation principle of the NEF (Neural Engineering Framework). Images adapted
from Bekolay et al. (2014). 44

3.5 The transformation principle of the NEF. Images adapted from Applied Brain Research
Inc. (2018). 45

3.6 The dynamics principle of the NEF for recurrent connections. 46
3.7 Aspects of vector vocabularies: (a) “Conceptual golf ball” depicting the idea of semantic

vectors. Image source: Eliasmith (2013). (b) Cosine similarities in a small, manually
engineered vector vocabulary of dimension 256. 47

3.8 A schematic visualization of a CNN (Convolutional Neural Network) network archi-
tecture with the second to last layer, whose activity can be considered a compressed,
lower-dimensional representation of the high-dimensional visual input, highlighted by a
red ellipsis. 48

3.9 A typical example illustrating the semantic similarity structure between vectors repre-
senting the words king, queen, man and woman learned by Word2Vec allowing algebraic
manipulation of the encoded entities. Image inspired from Mikolov et al. (2013c). 49

4.1 Visualization of the general flow of information of our proposed approach. 54
4.2 Accuracy performance of the CNN for traffic sign classification on the test part of the

GTSRB (German Traffic Sign Recognition Benchmark) data set for all traffic signs (most
left bar) and all individual traffic signs. 58

4.3 Boxplots depicting the cosine similarities between the representative (mean) vector for
each traffic sign class and all individual vector samples it has been created from. 59

4.4 Pairwise similarities between representative vectors encoding traffic signs in a visual
vector vocabulary. 60

4.5 Similarity plots for the visual vocabulary vectors representing traffic participants. (a)
Boxplots depicting the cosine similarities between the representative (mean) vector for
each traffic participant class and all individual vector samples it has been created from. (b)
Pairwise similarities between representative vectors encoding traffic participants in our
visual vector vocabulary. 61

4.6 Pairwise similarities between representative vectors encoding traffic signs in a manually
designed semantic vector vocabulary. 62

4.7 Pairwise similarities between representative vectors encoding traffic participants in a se-
mantic vector vocabulary. (a) Learned with word2vec (b) manually designed. 64

4.8 Pairwise similarities between vectors encoding traffic signs in a visual-semantic vocabulary. 66
4.9 Pairwise similarities between vocabulary vectors encoding traffic participants in a visual-

semantic vocabulary, where the semantic part is (a) learned with word2vec (b) manually
designed. 67

4.10 Properties of the simple scalar multiplication encoding of numerical values in vectors. (a)
shows the RMSE (Root-Mean-Square Error) when decoding back out an approximation
of the original numerical values from the vector representation. (b) shows the norm of
the representation vectors. 70

4.11 Visualization of the convolutive power encoding scheme for 512-dimensional represen-
tation vectors depicting the similarity between the representation vector and auxiliary
comparison vectors created from a sequence of discrete values. The left plot in both
rows shows a two-dimensional grid of the similarities, while the middle and right plot
show the individual entities respectively. The red circles in the left plot and the dashed
blue lines in the middle and right plots indicate the actual encoded values. 71

LIST OF FIGURES xvii

4.12 Visualization of the SPA (Semantic Pointer Architecture)’s superposition capacity for
vector dimensions 256, 512 and 1024. The blue boxes indicate the similarity between
the superposition vector and its summands, the orange boxes illustrate the similarity
between the superposition vector and other randomly generated vectors. The dotted lines
visualize the similarity threshold based on the vector dimensionality for reference. 73

4.13 Capacity analysis for the superposition of vectors encoding spatial positions using the
convolutive vector-power for varying vector dimensions. 75

4.14 Capacity analysis for the superposition of vectors encoding spatial positions using the
convolutive vector-power for varying vector dimensions. In contrast to Fig. 4.13, this
figure illustrates the similarity for vectors containing spatial information for several ob-
jects of the same class. 76

5.1 Two example images illustrating a change of the current driving context as indicated
by (a) a traffic sign marking the exit of city and (b) a traffic sign marking the entrance to
a highway. The traffic signs are highlighted by a red rectangle. 80

5.2 Overview of the driving context classification system. (a) shows one example scene with
objects of interest such as cars and traffic signs highlighted by colored bounding boxes.
(b) illustrates the learning system’s architecture and flow of information. 81

5.3 Classification performance of 2 human subjects on 50 examples selected randomly from
each the training and test set. 84

5.4 Visualization of the performance of our driving context classification model and the com-
parison baselines for reference. 87

5.5 Visualization of the driving context predictions made by the Nengo (Neural Engineering
Objects) model compared to the true labels. Figure (a) shows the results for the complete
test data set, while Fig. (b) shows the model’s predictions on the test subset compared to
the true labels. Figure (c) shows the model’s performance on the subset in comparison to
the complete test set. 88

5.6 Examples of similar looking images in the test set with different driving context labels. . 89
5.7 Comparison of the driving context classification model for 300-dimensional and 512-

dimensional vectors. 90
5.8 Visualization of the Nengo model’s classification performance for several structured vo-

cabularies compared to the baseline performance on randomly generated vocabularies. . 91

6.1 Data visualization of one driving situation example from the On-board data set D1. The
dots in the left plot indicate the position of the vehicles and color-code the vehicle type
(red=motorcycle, green=car, blue=truck, black=ego-vehicle), blue and orange lines show
past and future motion of the target vehicle whereas gray lines depict the other vehicles’
motion. The right figures show raw images of the ego-vehicle’s front and rear camera
with the target vehicle highlighted by a red rectangle. 94

6.2 Visualization of NGSIM (Next Generation Simulation) data set: (a) depicts the highway
segment from top view perspective indicating the camera’s position. Image source: Col-
yar and Halkias (2018). (b) visualizes the data of one particular driving situation from
the data set. 95

6.3 Data visualization of one data sample from the On-board data set D1 containing a fu-
ture lane change of the target vehicle. The dots in the left plot indicate the position
of the vehicles and color-code the vehicle type (red=motorcycle, green=car, blue=truck,
black=ego-vehicle), blue and orange lines show past and future motion of the target ve-
hicle whereas gray lines depict the other vehicles’ motion. The images in the top row
show raw images recorded using the ego-vehicle’s front and rear camera with the target
vehicle highlighted by a red bounding box. 97

xviii LIST OF FIGURES

6.4 Visualization of the composition of both data sets regarding lane changes of the target
vehicle. 98

6.5 An example scene visualizing the data of an overtaking maneuver in a highway situation
at selected time steps. 99

6.6 Visualization of the convolutive vector-power representation of one particular driving
situation over time at selected time-steps as a heat map of similarity values for 512-
dimensional vectors. The red circles indicate the measured position of the target vehicle. 100

6.7 Visualization of our LSTM-based learning architecture. Modules that change with vary-
ing encoding scheme of the input data are highlighted through dashed red borders whereas
parts that change when varying the data set are highlighted through dashed blue borders. 102

6.8 Analysis of the RMSE for different variations of numerical input to our LSTM model
trained on the On-board data set for 8 epochs. 105

6.9 Visualization of the RMSE for different parameter tests of our LSTM-model trained on
the On-board data set for 8 epochs: (a) depicts the RMSE when varying the number of
dimensions in each LSTM cell (b) visualizes the RMSE when varying the number of
layers, i.e., the number of encoder and decoder LSTM cells are used in the network. . . . 107

6.10 Analysis of the RMSE varying the number of layers and epochs of our LSTM model
trained on the On-board data set. The left column shows the RMSE of a model with only
one layer trained for 5, 20 and 50 epochs, while the right column shows the RMSE of a
model with 10 layers trained for 5, 20 and 50 epochs. 108

6.11 Development of the RMSE at every prediction time step during the training process of
the LSTM SPA 3 model for each epoch on the training (left column) and validation
part (right column) of the On-board data set. One observes comparable trends on both,
training and validation set and that the RMSE does not significantly decrease after 10
epochs. 109

6.12 Visualization of the RMSE of all LSTM models on the On-board data set: (a) shows the
complete validation set V1 ⊂ D1 (b) shows the subset of situations with at least 3 other
vehicles present and distance between the target and ego-vehicle lower than 20 m and
between target and closest other vehicle lower than 10 m. 110

6.13 Metric evaluation specifying situations where the LSTM SPA 3 model outperforms all
other approaches regarding the RMSE in y-direction on the On-board data set D1. In
the upper row (a), blue bars illustrate samples where LSTM SPA 3 performs better than
all other models while the orange bars depict samples where one of the other models
performs best. From left to right, the plots in (a) illustrate the distance between the
target vehicle and the closest other vehicle, the distance between the target and the ego-
vehicle and the number of vehicles other than the target. The lower row (b) illustrates
the difference between the blue and orange bars in the corresponding plot in (a). 111

6.14 Visualization of the RMSE of all LSTM models on the NGSIM validation set V2 ⊂ D2
using (a) vectors of dimension 512 for the SPA-based models and (b) using vectors of
dimension 1024 for the SPA-based models. 112

6.15 Visualization of the RMSE performance of our LSTM models for different data setups.
Figures (a), (c), (e) and (g) show the RMSE for models trained on the complete data
set, while Fig. (b), (d), (f), (h) show the same models evaluated on the same samples but
trained only on the samples including a target vehicle lane change. 113

6.16 Visualization of the changing RMSE performance of particular prediction models de-
pending on the data they have been trained on. The first four figures (a) - (d) illustrate
the difference between the LSTM SPA 3 models when changing their training data, while
the last four figures (e) - (h) shows the same comparison for the LSTM numerical mod-
els. 114

LIST OF FIGURES xix

6.17 Analysis of the RMSE for a varying number of neurons in the learning population of our
NEF model trained on numerical input from the On-board data set. 115

6.18 Visualization of the RMSE of all NEF-network models (a) on the On-board validation
set V1 ⊂ D1 using 512-dimensional vectors for the SPA-power vectors and (b) on the
NGSIM data set D2 using 1024-dimensional vectors for the SPA-power vectors. 116

6.19 A schematic visualization of our autoencoder neural network architecture. 117

6.20 Visualization of the results of the autoencoder neural network used for unsupervised
anomaly detection on the On-board data set. The figures show the distribution of certain
characteristic values, namely distances between the target and other vehicles (Fig. (a)
and (c)) as well as the number of other vehicles (Fig. (b) and (d)), for situations classified
as anomalies and for the complete data set. The upper row shows box plots to visual-
ize the difference between anomalies and the complete data set, whereas the lower row
shows histograms for a more in-depth visualization of the metrics’ distribution. 118

6.21 Visualization of the results of the autoencoder neural network used for unsupervised
anomaly detection on the NGSIM data set. The figures show the distribution of distances
between the target and other vehicles (Fig. (a) and (d)) as well as the number of other
vehicles (Fig. (c) and (d)), for situations classified as anomalies and for the complete data
set. The left figures (Fig. (a) and (c)) show box plots to visualize the difference between
anomalies and the complete data set, whereas the right figures (Fig. (b) and (d)) show
histograms for a more in-depth visualization of the metrics’ distribution. 119

7.1 Visualization of the network architecture of the context-free mixture-of-experts online
learning system with yellow boxes indicating the individual components of the model.
The weights of the mixture-of-experts model depend solely on the error ε between the
model’s prediction and the actual future motion of the target vehicle. 124

7.2 Visualization of the network architecture of the context-sensitive mixture-of-experts on-
line learning system. Yellow boxes indicate the individual components of the model,
while the solid red line depicts the connection to decode out the weights Wp,t for the in-
dividual expert predictors from the neural population encoding the context z as indicated
by the green circles in the context component. The dotted green arrow indicates that the
error signal is used to update the weights of this connection using delta rule learning. . . 125

7.3 One example from the On-board data set depicting a particular driving situation as well
as the predictions made by each individual offline model used as input for our mixture-
of-experts model. The upper row shows images of the ego-vehicle’s on-board cameras.
The middle row shows the trajectory data where the dots indicate the position of the vehi-
cles and color-code the vehicle type (red=motorcycle, green=car, blue=truck, black=ego-
vehicle), the solid blue and orange line show past and future motion of the target vehicle,
the other colored lines visualize the predictions of the offline models whereas gray lines
depict the other vehicles’ motion. Finally, the lower row shows the absolute error be-
tween each offline models’ prediction and the actual positions of the target vehicle. . . . 128

7.4 Visualization of the RMSE of the timing-agnostic variants of our mixture-of-experts
model, both context-free and context-sensitive, on both data sets. (a) shows the per-
formance at the start of the training process on the On-board data set. (c) shows the
performance at the start of the training process on the NGSIM data set. Similarly, (b)
shows the models’ performance on the first 70 vehicles of the on-board data set, whereas
Fig. (d) show the models’ performance on the first 92 vehicles of the NGSIM data set. . . 130

xx LIST OF FIGURES

7.5 Visualization of the mixture-of-experts model’s performance on vehicles it is presented
during the ramp up phase. The upper row in each plot shows the predictions of all input
predictors, the mixture model as well as the actual motion of the target vehicle for one
particular prediction time step. The lower row illustrates the RMSE of the models on
all prediction time steps with that step shown in the upper row highlighted by a dotted
vertical line. 131

7.6 Visualization of the RMSE performance of our context-sensitive mixture-of-experts model
using temporal spreading on 30 test vehicles after being trained on 5 vehicles for (a) dif-
ferent learning rates for all prediction horizons and (b) the result of one evaluation run
with too low of a learning rate. 132

7.7 Visualization of the RMSE performance of our context-sensitive mixture-of-experts model
using temporal spreading on 30 test vehicles after being trained on 5 vehicles for certain
hyper-parameter variations. 133

7.8 Visualization of the RMSE performance of all individual expert predictors as well as our
context-sensitive and temporal spreading mixture-of-experts model with 2000 neurons
in the context population, evaluated on 30 vehicles after the mixture model has been
trained on 5 vehicles in advance to make the weights depart reasonably from their random
initialization. 134

7.9 Visualization of the RMSE of our mixture-of-experts model on 6 different test vehicles
in comparison to the input predictors’ performance. 135

8.1 Robotic platform . 138
8.2 Generic architecture: Embedded Robotic Platform and Neurocomputing Platform 139
8.3 Schematic visualization of two neural networks computing a complex function m =

h(f (x),g(w)): (a) shows a combined network computing m = h(f (x),g(w)) while the
network in (b) computes the function directly. 140

8.4 Schematic visualization of two sub-networks of our model with sets of white circles
indicating neural populations while boxes depict sub-networks. (a) shows the Out of
Order network, which detects if one frequency does not fit the assumed order as target
and keeps this object’s information in a memory. (b) illustrates the Perform Grasping
Action network, which finds an object and grabs it. 142

8.5 Illustration of the Out of Order and Grab networks neural populations decoded output. . 144
8.6 Schematic visualization of two networks of our model with sets of white circles indicat-

ing neural populations while boxes depict sub-networks. (a) shows the HoldAndMove
network, while (b) illustrates the complete Sorting network. The boxes in the lower part
visualize the subtask-networks, which are activated by the upper network chain for ac-
tion selection incorporating the Basal Ganglia and Thalamus networks pre-implemented
in Nengo. 145

8.7 Illustration of the HoldAndMove and Sorting networks neural populations decoded output. 146
8.8 Selected stages of an example run of the Perform Sorting Task. 147
8.9 Proposed distributed neuromorphic architecture utilizing individual modules for separate

control signal calculation. 149
8.10 SNN for trajectory selection and exemplary set of trajectories 150
8.11 Visualization of the chosen training and validation tracks. 151
8.12 Results (mean reward and lap completion) for three validation runs per episode 152

List of Tables

2.1 Table depicting different levels of vehicle automation identified in SAE (2016) 23

4.1 Classification accuracy of the adapted VGG19 network for our selected 5 classes of traf-
fic participants. 61

5.1 Layer by layer architecture of our reference CNN for driving context classification. . . . 86

6.1 Table depicting different features for dynamic objects within the training data 94
6.2 Summary of the evaluated models regarding architecture, input data, encoding and training.104
6.3 Summary of the input data setups of the different models evaluated in Fig. 6.8. 106
6.4 Summary of the data samples used for the evaluations shown in individual sub-figures of

Fig. 6.15. 113

1 Introduction

1.1 Preamble

The race to autonomous driving is currently one of the main forces pushing research forward in the au-
tomotive domain. With highly automated vehicle prototypes gradually making their way to our public
roads and fully-automated driving on the horizon, it seems to be a matter of time until we see robot taxis
or cars navigating us through urban traffic or heavy stop-and-go on highways. One major reason for this
development in recent years is the rapid progress of AI (Artificial Intelligence), especially the success
of deep learning, which has shown remarkable results in tasks essential for autonomous driving such
as object detection, classification (Ciresan et al., 2012a) and control (Bojarski et al., 2016). Although
more and larger data sets (Geiger et al., 2013; Cordts et al., 2016) become available and powerful, paral-
lel computing hardware like GPUs (Graphics Processing Units) facilitates training of increasingly deep
network architectures (Simonyan and Zisserman, 2014), power consumption remains a critical issue. Es-
pecially in the automotive domain as a mobile application, energy-efficiency is of crucial importance.
Furthermore, current automated vehicle prototypes rely on a rich setup of redundant sensory systems to
perceive sufficient information about the outside world (Aeberhard et al., 2015). These sensor setups are
estimated and expected to grow even further with increasing level of automation of future vehicles. In
contrast, human drivers are capable of handling challenging driving situations under changing environ-
mental conditions by using mainly the human eyes as primary sensor input and the brain for information
processing. Furthermore, the human brain is also comparably small and efficient consuming only 20 W
of power, which is equivalent to a compact fluorescent light bulb, while comprising only 2 % of the body
weight (Eliasmith, 2013, Chap. 2.1). Therefore, the focus of the young and emerging research field neu-
romorphic engineering is on biologically inspired computing systems and algorithms, aiming to close the
gap in performance and efficiency between biological and artificial computing systems. With researchers
expecting a growing discrepancy between the energy and efficiency requirements of future applications,
e.g., see Fig. 1.1 as well as Marr et al. (2013), Farahini (2016), and Akopyan et al. (2015), the demand
for alternative approaches regarding computing hardware and algorithms is likely to increase. Although

(a) (b)

Figure 1.1: Expected discrepancy between energy-efficiency requirements of future applications
and the development of computing hardware. (a) Image source: Farahini (2016), adapted
from the DARPA SyNAPSE program. (b) Image source: Marr et al. (2013).

2 Introduction

Figure 1.2: Schematic visualization of the perception-action-cycle

the neuromorphic prototypes of computing hardware such as SpiNNaker (Furber et al., 2014) or IBM’s
TrueNorth (Akopyan et al., 2015) dedicated to processing so-called SNNs are not technologically mature
nor available as commercial products yet, they show promise to be a useful addition in future automotive
applications. Since these novel spiking-neuron architectures encapsulate a drastically different comput-
ing paradigm compared to the conventional von-Neumann architecture (Neumann, 1993), they also call
for alternative algorithmic approaches and new programming substrates (Amir et al., 2013).
In this thesis, we investigate potential applications of neuromorphic approaches in automotive context.
Given the complexity of driving a car autonomously in all possible real-world situations, tackling the
complete set of all necessary tasks is out of scope of a single thesis. Therefore, we need to focus on certain
sub-tasks. Regarding this selection process, we contemplate two concepts. We categorize tasks necessary
for highly automated driving using the perception-action-cycle and rate their level of complexity using
Moravec’s paradox (Moravec, 1988). Moracev’s paradox postulates the observation, that tasks or skills
that seem effortless to humans are harder to reverse-engineer than tasks we experience or expect to be
difficult. Moracev argues, that we learned those seemingly effortless skills over billions of years of
evolution through experience about the nature of the world such that they became unconscious to us.
A good example of this paradox is the fact that artificial systems are already able to defeat the world’s
best human players in games like Chess (Hsu, 2002) or Go (Silver et al., 2016), which are considered
particularly difficult by humans. On the other hand, we are still struggling to create robots that solve
seemingly effortless sensorimotor tasks like climbing stairs or opening doors (Guizzo and Ackerman,
2015; Norton et al., 2017).
The perception-action-cycle (Fuster, 2004) is the concept of a circular flow of information between an
organism or agent (living or artificial) when interacting with its environment through goal-directed be-
havior (Fig. 1.2). Instead of considering the directional aspects of the cycle in the opposite categories of
perception and action, it is also common to separate tasks in terms of hierarchy (Loeb and Fishel, 2014).
Interaction with the physical world through sensing and manipulation is considered on a lower hierar-
chical level within the perception-action-cycle while formation of mental representations and reasoning
about them reside on a higher level. We refer to those different hierarchical levels as physical and mental
or lower and upper interchangeably.
Considering the physical/lower level of the perception-action-cycle, DNNs (Deep Neural Networks) have
recently shown significant progress and success at perception tasks like object detection and classifica-
tion. Therefore, we believe a lot more research is necessary until neuromorphic approaches using SNNs
are sufficiently mature to compete with those traditional approaches, although current work in this direc-
tions shows promising results (Hunsberger and Eliasmith, 2015). Similar arguments hold true for auto-
mated learning approaches regarding vehicle control. Although sophisticated learning techniques show
promise to improve motor control, to date most controllers for automated vehicles or robots in general

1.1 Preamble 3

are “designed and tuned by human engineers” (Deisenroth et al., 2013). One of the main reasons is the
fact that control of an automated vehicle is an extremely safety-critical domain, while at the same time
machine learning approaches in general pose additional challenges regarding safety validation (Koop-
man and Wagner, 2016). Furthermore, those tasks on the physical level of the perception-action-cycle
are solved effortlessly by humans and therefore, according to Moravec’s paradox, we should expect them
to be hard to master for artificial learning systems. Therefore, we decided to focus on the mental/upper
part of the perception-action-cycle in this thesis. On the one hand, we believe that tasks in this part of the
cycle show promise to benefit most from neuromorphic approaches. On the other hand, “mental” tasks
do not necessarily need to be performed and evaluated in closed-loop systems, which make them less
problematic regarding safety issues, and therefore ideal candidates for further investigations. It should
be clear however, that “perception/action and higher level cognition are not two independent parts of one
systems, but rather two integrated aspects of cognitive beings such as as ourselves” (Eliasmith, 2013).
Current artificial systems are still far away from integrating both aspects effectively and more research
will be necessary to close this gap.

Returning to the application domain of automated driving, precise knowledge about the current state of
the environment is essential for autonomous agents and biological organisms alike to plan a secure path
for navigation and to safely interact with the world. In case of highly automated vehicles, perception of
the outside world usually happens through a variety of different sensor systems such as cameras, RADAR
and LIDAR sensors (Aeberhard et al., 2015). This observed information needs to be collected and com-
bined into a central environment model, which is the (mental) basis for further reasoning and decision
making. One essential ingredient for such a model of the environment, or mental tasks in general, is
knowledge or information representation. It is an open research question to date, how the human brain
represents knowledge and what underlying neural or computational substrate it uses to encode informa-
tion (Wang and D. Liu, 2003; Samsonovich, 2012; Handjaras et al., 2016). Most modern approaches to
reasoning or cognitive tasks in context of robotics or automated driving are built upon Bayesian proba-
bility theory and use “computer-scientific” approaches to knowledge representation. This could be lists
of objects (cf. Fig. 1.3d) with a numerical encoding of properties when working on a higher level of ab-
straction. On a lower level, another common approach especially in context of neural-network learning
is to label raw sensory data, for example individual pixels of images (cf. Fig. 1.3b). However, when we
as humans observe a particular scene (e.g., while driving), our mental representation will probably be
very different from those aforementioned approaches. A human observer’s representation/description of
Fig. 1.3a would probably be in a semantic/linguistic form, for instance a blue car turning left, a white
car turning right, three pedestrians waiting on the left side of the road, green traffic lights, a yield way
sign. One common approach to encode such conceptual, semantic information or, more generally, natural
language in computer-readable fashion is by using vector representations. VSAs (Vector Symbolic Ar-
chitectures) is a term coined by Gayler (2003) to cover this family of modeling approaches that represent
symbols or structures by mapping them to (high-dimensional) vectors.

In this thesis, we present a first step towards a cognitive environment model for automotive applications
using distributed representations. We investigate the use of these vector representations for knowledge
representation and reasoning in automotive context. This approach to information encoding is rather
generic and can be applied to various different tasks with little modifications to the representation it-
self. Furthermore, VSAs (Vector Symbolic Architectures) offer the opportunity to be implemented in a
spiking neuron substrate (Eliasmith, 2013), which support efficient learning algorithms and deployment
on dedicated neuromorphic hardware. This allows us to combine the advantages of symbolization with
the benefits of neural networks. We investigate varying instantiations of our representation applied to
different tasks. In a first sample application, we introduce a model learning to classify the current driving
context based on a distributed representation of the current driving scene. The conceptual focus here
is to capture semantics of the scene allowing conclusions about the type of environment the vehicle is
currently navigating. Another essential ingredient of an environment model especially in automotive
context is precise knowledge about the current state and future development of all dynamic objects in the

4 Introduction

(a) Urban traffic scenario (b) Pixel-wise labels

(c) Bounding boxes indicating objects of
interest

(d) Exemplary representation using lists
of objects

Figure 1.3: Example of urban driving scene with different approaches to representation. Images
1.3a, 1.3b and 1.3c are (adapted) from the Cityscapes data set (Cordts et al., 2016).

ego-vehicle’s surroundings. We focus on the task of predicting the behavior of those other traffic partic-
ipants around the ego-vehicle based on a vector description of the current scene. We hypothesize, that
these structured representation have the potential to capture mutual interactions between dynamically
moving agents. Prediction of other traffic participants behavior also offers the opportunity to explore
different learning approaches. Human drivers have acquired comprehension through past experience of
how other cars will probably act, but adapt this knowledge continuously when encountering new situa-
tions. From this inspiration, we learn a generic model of dynamic behavior through offline (i.e., batch)
training and refine this model when perceiving behavior of a particular object through online learning. To
complement the more high-level reasoning tasks with a perspective on motor control, we also introduce
a novel neuromorphic control architecture, that can be used to implement generic control algorithms in
the language of SNNs. This approach allows to divide larger tasks in small sub-networks combining the
advantages of manual programming with neural network learning.

1.2 Outline of the thesis

This section provides a brief overview of the thesis structure as well as a short summary for each chapter.
Chapter 2 summarizes the state-of-the-art in several areas related to the core of the thesis at hand span-
ning from biologically inspired hardware and software over cognitive modeling techniques to automated
driving research. We give an overview over all of these sub-topics providing a detailed description where
necessary while putting these details in context of a bigger picture.
Chapter 3 introduces the key ingredients for the models developed in later chapters, distributed repre-
sentations and SNNs, and establishes the mathematical apparatus and the essential theoretical properties
of these ingredients. After proposing a more rigorous mathematical formalism to describe the general
theory of VSAs, we proceed to the SPA as a special case of VSAs with additional features and theory
to be presented. Furthermore, we give an introduction to the general ideas for cognitive modeling based
on VSAs like vocabularies and structured representation generation. Furthermore, we present a brief

1.2 Outline of the thesis 5

description of the NEF and how it can be used to implement cognitive architectures based on vector
representations in a spiking neuron substrate.
In chapter 4, we proceed to present the general approach to encode automotive scenes in semantic vectors
as representational substrate. We show different approaches to generate vector vocabularies, which are
the basic ingredients to built more complex, structured representations from. We demonstrate successful
embedding of several similarity structures into vector vocabularies designed for automotive applications.
Additionally, we present several approaches to representing numerical values in our vector substrate in-
troducing a novel approach based on a convolutive power, generalizing exponentiation to circular convo-
lution. We conclude the chapter with a thorough analysis regarding the systematic limitations regarding
the vectors’ capacity, i.e., amount of information such vector representations can effectively store.
Chapter 5 introduces the first sample instantiation of our vector representation applied to the task of
driving context classification based on a scene vector encapsulating the current driving situation. We
establish the vector-based scene representation for the context classification task and use it as input data
to a learning model implemented in a spiking neuron substrate. To evaluate the model’s performance, we
present several reference learning systems using either the vector representation or visual information as
input and compare them to human level performance. Finally, we analyze the influence of the underlying
vocabularies encoding different similarity structures on the learning model’s classification performance.
All evaluations are conducted using real-world driving data.
In chapter 6, we introduce a second instantiation of our scene representation to predict the behavior of
other objects in the vehicle’s surroundings. In the context of vehicle trajectory prediction, we employ
our novel approach to encode spatial information in distributed representations to encode the positions of
several vehicles in vectors of fixed length. We employ neural networks built from LSTM units as well as
simpler single-layer SNNs to predict vehicle trajectories based on past motion. We analyze the influence
of hyperparameters, information provided to the models as well as the composition of the training data
on the models’ prediction accuracy. Furthermore, we compare the models with respect to situations in
which one particular model outperforms the others. Finally, we show that it is generally possible to
detect abnormal samples indicating potentially dangerous situation based solely on the distributed vector
representation and unsupervised learning. The evaluation conducted in the chapter uses data from two
different data sets containing real-world driving data.
Chapter 7 introduces an extension of the proposed trajectory prediction models for online adaptation
through incremental learning. Building on the findings in chapter 6, we present a novel mixture-of-
experts model implemented in a spiking neuron substrate meant to be trained at run time to improve
the prediction performance over several individual predictors. One of the strengths of this model is
that, instead of having to start from a completely blank state, it relies on several expert models, which
have been previously trained and validated offline. This model, like all models making predictions
about the future, faces the issue that the actual motion of the predicted vehicle needed to compare the
model’s anticipated values to is future data and thus not available at the time the model actually makes its
predictions. To avoid potentially long delays in the online learning process, we propose a novel approach
to spread the error signal of earlier predictions over later predictions. Revisiting the data sets used in
chapter 6, we evaluate two different variants of the mixture models adapting their weights either solely
based on the prediction error or the current context of the scene. We show, that our online learning model
is able to improve over the individual predictors already after being exposed to a small set of example
vehicles.
Chapter 8 presents a first step towards a neuromorphic control architecture by developing two sample
instantiations of neurally-inspired control algorithms. We establish neuromorphic control architectures,
that can be used to implement generic control algorithms in the language of SNNs with the advantage,
that the overall task can be divided into several sub-networks. This approach allows us to combine
manual programming with the advantages of neural network learning. Manually programmed sub-tasks
can either complement learning networks within the system or serve as an initial approximation of the
desired function, which allows more directed learning to improve task performance avoiding the need to

6 Introduction

start learning from a completely blank state. As mentioned earlier, control of an automated vehicle is
an extremely safety-critical application. Hence, we present two sample applications in simplified setups:
one on mobile robot manipulation demonstrating initial manual programming of a non-trivial robotic
task in a spiking neuron substrate and one on vehicle trajectory control demonstrating how manually
programmed modules can be complemented by learning networks.
Chapter 9 summarizes the work and interprets the results achieved in this thesis. We discuss the main
advantages of the representations and models proposed in this work while also addressing limitations
indicated by either systematic or experimental analysis. We conclude the thesis by proposing a series of
extensions and improvements, which potentially contribute to adopting the principles investigated in this
thesis on a wider scale to obtain a more mature representation framework for automotive applications.

1.3 Contributions of and to this thesis

This thesis presents a first step towards a cognitive environment model for automated vehicles and
thereby provides a novel perspective to knowledge representation in automotive context. The two key
ingredients for our approach are distributed representations and SNNs, which in combination offer a
promising modeling substrate for cognitive tasks as shown in Eliasmith (2013) and Eliasmith et al.
(2012). The possibility to implement distributed representations in a spiking neuron substrate offers the
potential to combine symbol-like processing with the strengths of neural network learning. Additionally,
SNNs are one option to tackle increasing energy-efficiency requirements in future automated vehicles
equipped with a plethora of sensors and computing systems. This thesis presents a strict mathematical
formalism regarding the theory of distributed representations, summarizing their key features in a generic
framework. Thereby, we lay the foundation for our novel approach to build structured representations of
automotive scenes. We demonstrate the general feasibility of our approach in two sample instantiations.
For all the models and representation approaches investigated in this thesis, we present a thorough and
detailed analysis regarding parameters and accuracy including a comparison to several baseline models.
While the models employing our structured representations achieve promising results in terms of accu-
racy without clearly outperforming more traditional approaches, we expect the critical benefits of our
approach to be revealed when being actually deployed on specialized computing hardware. As shown
by Hunsberger and Eliasmith (2016), implementing learning models in SNNs is often a trade-off be-
tween energy-efficiency and accuracy. Finally, we establish neuromorphic control architectures, that can
be used to implement generic control algorithms in the language of SNNs. This approach can benefit
from splitting larger tasks in small sub-networks, that can be manually programmed to complement or
bootstrap learning networks.
This dissertation was supported by the BMW (Bayerische Motoren Werke) AG, where I was employed
as doctoral candidate and later in a permanent position during the preparation of this thesis. Therefore,
parts of the literature review and text that presents the research context in chapter 2, especially the
section on neuromorphic computing hardware, was conducted in collaboration with BMW colleagues.
The research on the mobile manipulation task was conducted during a collaboration project between
TUM (Technical University of Munich) and University of Waterloo while the work on vehicle trajectory
control was supported by Benjamin Zorn during his internship at BMW. The approaches, principles
and models presented in the sections on structured vocabularies in chapters 4 and 5 were developed
in collaboration with Robert Darius during the preparation of his Master’s thesis (Darius, 2018) under
my supervision at BMW Group. Many of the novel approaches presented in this thesis arose from
discussions with researchers from the CNRG at University of Waterloo, where I spent a six week research
visit in summer 2017. This research visit spawned a follow-up collaboration project between BMW
and ABR (Applied Brain Research Inc.), during which parts of chapters 6 and 7 were developed in
collaboration. This collaboration covered mainly the implementation of the LSTM model based on
numerical input in chapter 6 as well as discussions about the online learning approach presented in
chapter 7. Researchers involved in this collaboration co-authored some of the publications listed in 1.3.1.

1.3 Contributions of and to this thesis 7

Finally, figures displayed in this thesis, which have been reprinted or adapted from others or quotations
are clearly marked as such. Anything not indicated as quotation or external source is the author’s original
work.

1.3.1 List of Publications

The following list gives an overview of the publications written and submitted during the preparation and
work on this thesis.

Published peer-reviewed journal papers

1. F. Mirus, P. Blouw, T. C. Stewart, and J. Conradt (2019a-10). “An Investigation of Vehicle Be-
havior Prediction Using a Vector Power Representation to Encode Spatial Positions of Multiple
Objects and Neural Networks”. In: Frontiers in Neurorobotics 13, p. 84. ISSN: 1662-5218. DOI:
10.3389/fnbot.2019.00084. URL: https://www.frontiersin.org/article
/10.3389/fnbot.2019.00084

2. F. Mirus, C. Axenie, T. C. Stewart, and J. Conradt (2018a). “Neuromorphic sensorimotor adapta-
tion for robotic mobile manipulation: From sensing to behaviour”. In: Cognitive Systems Research
50, pp. 52–66. ISSN: 1389-0417. DOI: 10.1016/j.cogsys.2018.03.006. URL: http:
//www.sciencedirect.com/science/article/pii/S1389041717300955

Published peer-reviewed conference papers

1. F. Mirus, T. C. Stewart, and J. Conradt (2020b-10-02). “Detection of abnormal driving situations
using distributed representations and unsupervised learning”. In: 28th European Symposium on
Artificial Neural Networks, ESANN 2020, Bruges, Belgium

2. F. Mirus, T. C. Stewart, and J. Conradt (2020c-07-19). “The Importance of Balanced Data Sets:
Analyzing a Vehicle Trajectory Prediction Model based on Neural Networks and Distributed Rep-
resentations”. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–
8. DOI: 10.1109/IJCNN48605.2020.9206627

3. F. Mirus, T. C. Stewart, and J. Conradt (2020a-07-19). “Analyzing the Capacity of Distributed
Vector Representations to Encode Spatial Information”. In: 2020 International Joint Conference
on Neural Networks (IJCNN). IEEE, pp. 1–7. DOI: 10.1109/IJCNN48605.2020.9207137

4. F. Mirus, T. C. Stewart, C. Eliasmith, and J. Conradt (2019c). “A Mixture-of-Experts Model
for Vehicle Prediction Using an Online Learning Approach”. In: Artificial Neural Networks and
Machine Learning – ICANN 2019: Image Processing. Ed. by I. V. Tetko, V. Kůrková, P. Karpov,
and F. Theis. Vol. 11729. Lecture Notes in Computer Science. Springer International Publishing,
pp. 456–471. ISBN: 978-3-030-30508-6. DOI: 10.1007/978-3-030-30508-6_37

5. F. Mirus, P. Blouw, T. C. Stewart, and J. Conradt (2019b). “Predicting vehicle behaviour using
LSTMs and a vector power representation for spatial positions”. In: 27th European Symposium on
Artificial Neural Networks, ESANN 2019, Bruges, Belgium, pp. 113–118

6. F. Mirus, B. Zorn, and J. Conradt (2019d). “Short-term trajectory planning using reinforcement
learning within a neuromorphic control architecture”. In: 27th European Symposium on Artificial
Neural Networks, ESANN 2019, Bruges, Belgium, pp. 649–654

7. F. Mirus, T. C. Stewart, and J. Conradt (2018b). “Towards cognitive automotive environment
modelling: reasoning based on vector representations”. In: 26th European Symposium on Artificial
Neural Networks, ESANN 2018, Bruges, Belgium, pp. 55–60

https://doi.org/10.3389/fnbot.2019.00084
https://www.frontiersin.org/article/10.3389/fnbot.2019.00084
https://www.frontiersin.org/article/10.3389/fnbot.2019.00084
https://doi.org/10.1016/j.cogsys.2018.03.006
http://www.sciencedirect.com/science/article/pii/S1389041717300955
http://www.sciencedirect.com/science/article/pii/S1389041717300955
https://doi.org/10.1109/IJCNN48605.2020.9206627
https://doi.org/10.1109/IJCNN48605.2020.9207137
https://doi.org/10.1007/978-3-030-30508-6_37

2 Research Context

Highly automated driving is currently an immensely attractive field for both academic and industrial re-
search groups. A fully autonomous vehicle, which is able to tackle challenging driving situations without
external input comparable to a human driver’s performance, is yet to be build. In this thesis, we propose
a novel approach to knowledge and information representation for automotive environment models using
cognitive modeling techniques. More precisely, we adopt VSAs (Vector Symbolic Architectures), which
are commonly used in tasks like cognitive modeling and natural language processing, for the specific
application of automotive environment modeling. To our knowledge, VSAs have not been applied in this
particular context. In order to put our work in context of the current research landscape and to circum-
scribe this thesis, we need to review related work from several areas like automated driving and mobile
robotics, computational neuroscience, artificial intelligence and neuromorphic engineering. A compre-
hensive overview for all of these research areas is out of scope of a single thesis. However, we aim to
cover the most significant results from all areas at least briefly, whereas we present an in-depth review of
relevant work related to the thesis at hand, where necessary.

2.1 Biologically-inspired Systems

To fully understand biological systems like the brain, which evolved over millions of years, is an ongoing
yet unsolved challenge in biology and neuroscience. Even small animals like insects or rodents show
remarkable behavioral flexibility and the ability to constantly adapt to a rapidly changing and noisy
world, which is unmatched by modern computing machines. Mammals and primates are able to perform
more sophisticated behaviors culminating in complex cognitive computations humans are capable of
doing: thinking, problem solving, memory, reasoning, decision-making, strategic planning, knowledge
representation, learning etc. The “biological computer” enabling these behaviors and cognitive abilities
is the brain consisting of large networks of neural cells (or neurons), which communicate by sending and
receiving electric signals via synapses. At the same time, brains are comparably small and efficient: the
human brain for example consumes only 20 W of power (equivalent to a compact fluorescent light bulb)
and comprises 2 % of the body weight (Eliasmith, 2013, Chap. 2.1).
Several research fields like computational neuroscience, neuromorphic engineering and neurorobotics try
to reverse engineer biological systems to achieve similar performance and computational power. During
the last decades, researchers and engineers strived to close the gap in performance and efficiency between
biological and artificial computing systems by mimicking neuro-biological architectures in hardware and
implementing models of neural systems in software. This biologically inspired, neuromorphic approach
promises not only to perform computations in a more efficient way, but also to tackle problems unsolvable
with current computing machines.

2.1.1 A brief history

The research field of ANNs (Artificial Neural Networks) goes back to the 1940s when McCulloch and
Pitts (1943) introduced artificial neurons as computational units, which embody a simplified model of
biological neurons. These first simple networks were able to calculate compositions of basic logic func-
tions (McCulloch and Pitts, 1943; Rojas, 1996). Rosenblatt (1958) proposed the first neural network,
which was capable of learning, by adding numerical weights to the connections of the network with
threshold functions as activation functions: the perceptron. Minsky and Papert (1969) showed that

10 Research Context

Figure 2.1: A selection of historical milestones in artificial intelligence, neuromorphic engineering
and computational neuroscience. There is a significant boost of research and technolo-
gies in recent years.

single-layer perceptrons are not able to calculate the XOR-function or, more generally, are only capable
of learning linearly separable patterns. This caused a decreased interest in neural network research until
the rediscovery of the backpropagation algorithm (Werbos, 1974) in the 1980s, when Rumelhart et al.
(1986) introduced a practically feasible method to optimize the network weights using gradient descent,
which led to a resurgence of neural network research. Since then, various different network architectures
such as feed-forward, CNNs, RNNs (Recurrent Neural Networks), RBFs (Radial Basis Functions Net-
works), RBMs (Resctricted Boltzmann Machines), SOMs (Self-Organizing Maps) and ART (Adaptive
Resonance Theory) just to name a few (Schmidhuber, 2015) have been proposed for different learning
paradigms. Although several simpler methods such as Boosting (Freund and Schapire, 1997) or SVMs
(Support Vector Machines) (Vapnik, 1995) have been developed and achieved noteworthy results, the
availability of powerful, parallel computing hardware like GPUs as well as the advent and success of
deep learning (partly achieving better-than-human accuracy) made ANNs (Artificial Neural Networks)
(Rojas, 1996) and especially DNNs (LeCun et al., 2015) the state-of-the-art for several machine learning
tasks like visual digit (Ciresan et al., 2012b) and traffic sign (Ciresan et al., 2012a) recognition in recent
years. Another great achievement in the field of deep learning was the victory of AlphaGo (Silver et al.,
2016) over the world’s best Go player Lee Sedol in March 2016, which was considered to be at least a
decade away due to the complexity of Go. Compared to Deep Blue, the system that beat former chess
world champion Garri Kasparov in 1997 (Hsu, 2002) with sheer computational power by brute forcing
through a large number of possible moves in advance to find the best one, this strategy is not feasible for
Go due to its higher complexity (larger board, more options to consider per move). In contrast, modern
DNNs trained by a combination of supervised learning from human expert games and reinforcement
learning from self-play have been used for the evaluation of board positions and selection of moves to
avoid expensive look-ahead search (Silver et al., 2016). A comprehensive and historical overview of rel-
evant literature concerning ANNs and especially DNNs can be found in Schmidhuber (2015) and LeCun
et al. (2015).

2.1 Biologically-inspired Systems 11

Neuromorphic systems

The term neuromorphic itself was first introduced by Mead (1990), when describing one of the first
silicon retinas. He called artificial systems that share organization principles with biological nervous
systems neuromorphic. An interesting prototype of a silicon retina, which is now considered a milestone,
was implemented by Misha Mahowald, a PhD student of Carver Mead. Her thesis received Caltech’s
Milton and Francis Clauser Doctoral Prize for its originality and potential for opening up new avenues
of human thought and endeavor.
Since these early days of neuromorphic engineering, the term has widely been used to describe VLSI
(Very-Large-Scale Integration) systems (Mead, 1989), novel computing devices (Schemmel et al., 2010),
sensory systems (Lichtsteiner et al., 2008; S.-C. Liu and Delbruck, 2010), software (Davison et al., 2008;
Bekolay et al., 2014) and algorithms (Reverter Valeiras et al., 2016). Considering the number of scien-
tists, neuromorphic engineering is still a comparably young field of research but received an increased
interest during the last decade from both academic and industrial research groups caused by the fund-
ing of large, ambitious projects. Although there have been several achievements in the field during the
1990s (Mead, 1989; Mahowald, 1992; Indiveri, 1997; Cauwenberghs, 1998) and early 2000s (S.-C. Liu
et al., 2002), the FACETS (Fast Analog Computing with Emergent Transient States) project1 and the
BBP (Blue Brain Project)2, both starting in 2005 and mainly funded by the EU (European Union) under
the FP6-FET (Future Emerging Technologies) program, were among the first big-budget neuromorphic
projects. The follow-up project BrainScaleS (Brain-inspired multiscale computation in neuromorphic
hybrid systems)3 (Schemmel et al., 2010), which was conducted from 2011 until 2015 built on and ex-
tended the research conducted during the FACETS project. The main developments of the FACETS
and BrainScaleS projects are the HICANN (High Input Count Analog Neural Network) chip (Schemmel
et al., 2010) and the Python-based simulator-independent language PyNN (Python Neural Networks)
(Davison et al., 2008) for building neural network models. Building on the Blue Brain Project, the
BrainScaleS hardware development is currently continued in the neuromorphic computing platform of
the HBP (Human Brain Project)4, a large ten-year research project, which was selected as one of the
two EU-FET flagships in 2013 and is granted around one billion euros funding (Calimera et al., 2013).
Another project starting in 2005, initially funded by the UK government until 2014 and now also part
of the neuromorphic computing platform of HBP, is the SpiNNaker project (Furber et al., 2014) during
which the neuromorphic computing hardware of the same name was developed. The HBP is organized
in thirteen platforms in total, which focus on different research fields related to the brain like for exam-
ple theoretical neuroscience, neurorobotics, cognitive architectures, high performance computing, brain
simulation and the aforementioned neuromorphic computing platform.
Beside these research activities in Europe, the DARPA funded another big-budget neuromorphic project:
the SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) program5 (Srinivasa
and Cruz-Albrecht, 2012), which started in 2008 and ran until 2016, has received 102.6 million US
dollars in funding as of January 2013. The program aims to build an electronic microprocessor system
that matches a mammalian brain in function, size, and power consumption. Achievements during the
SyNAPSE program, which is primarily contracted to IBM Research and HRL, so far are include brain
simulations, design of brain-inspired neuromorphic architectures (Nere et al., 2012) and the development
of a digital neuro-synaptic core (Merolla et al., 2011), which is a building block of IBM’s recently pub-

1Kirchhoff-Institute for Physics, Heidelberg University (2018b). FACETS-project. URL: https://facets.kip.uni-h
eidelberg.de (visited on 2018-04-05).

2École Polytechnique Fédérale de Lausanne‘ (2017). Blue Brain project webpage. URL: http://bluebrain.epfl.ch
(visited on 2017-12-20).

3Kirchhoff-Institute for Physics, Heidelberg University (2018a). BrainScaleS-project. URL: https://brainscales.ki
p.uni-heidelberg.de (visited on 2018-04-05).

4Human Brain Project (2018). Human Brain Project webpage. URL: https://www.humanbrainproject.eu (visited
on 2018-04-05).

5DARPA (2017). DARPA SYNAPSE webpage. URL: https://www.darpa.mil/program/systems-of-neurom
orphic-adaptive-plastic-scalable-electronics (visited on 2017-12-20).

https://facets.kip.uni-heidelberg.de
https://facets.kip.uni-heidelberg.de
http://bluebrain.epfl.ch
https://brainscales.kip.uni-heidelberg.de
https://brainscales.kip.uni-heidelberg.de
https://www.humanbrainproject.eu
https://www.darpa.mil/program/systems-of-neuromorphic-adaptive-plastic-scalable-electronics
https://www.darpa.mil/program/systems-of-neuromorphic-adaptive-plastic-scalable-electronics

12 Research Context

(a) (b)

Figure 2.2: Visualization of different aspects of neuron models. (a) depicts the structure and func-
tioning of biological neurons in a schematic visualization. Image source: Gerstner and
Kistler (2002). (b) visualizes the membrane potential’s sub-threshold behavior of a LIF
neuron model. Image source: Masquelier et al. (2007).

lished TrueNorth chip (Akopyan et al., 2015). Further project results are the Corelet language (Amir et
al., 2013) and the simulator Compass (Preissl et al., 2012), which enable dedicated software development
as well as simulation and testing of TrueNorth algorithms on standard hardware respectively.
Beside these projects, the neuromorphic community is coming together at two annual workshops in
Telluride and CapoCaccia, which have been established in 1994 and 2007 respectively, to discuss the
current state of research in lectures and interactive talk sessions, to forge new ideas and to work on
hands-on projects in small work groups.

2.1.2 Spiking Neural Networks

Figure 2.2a depicts the structure and functioning principles of biological neurons. They exchange infor-
mation by sending short and sudden pulses, so-called action potentials or spikes, via synaptic connec-
tions. Whenever the membrane potential of a neuron, which can be increased or decreased by incoming
spikes depending on the synaptic weight, reaches a certain threshold, the neuron produces a spike itself
and resets its membrane potential afterwards (Gerstner and Kistler, 2002; Paugam-Moisy and S. Bohte,
2009). Recent neuroscientific research suggests that the exact timing of those spikes encodes informa-
tion rather than just average firing rates (S. M. Bohte, 2004). While traditional ANNs used in machine
learning neglect these biological details, SNNs embody these spike times and are therefore often referred
to as the third generation of neural networks (Maass, 1997; Paugam-Moisy and S. Bohte, 2009). Maass
(1997) showed, that SNNs have at least the same computational power as threshold and sigmoidal neural
networks of similar size.
The simplest spiking neuron model is the LIF (Leaky-Integrate-and-Fire) model with

∂V
∂ t

(t) =− 1
τm

(V (t)−R · I (t)) (2.1)

describing the sub-threshold behavior of the neuron, where V is the voltage across the membrane, I(t) is
the input current, R is the passive membrane resistance and τm is the membrane time constant. In other
words, equation (2.1) states as follows: the membrane voltage increases in the presence of input current
I(t) depending on the membrane resistance R while at the same time, especially in the absence of input
current (I(t) = 0), the voltage decreases or “leaks out” depending on the membrane time constant τm.
When the voltage V (t) passes a certain threshold ϑ , the neuron produces a spike and the voltage is reset
to a resting state c for a certain refractory time interval τre f during which incoming spikes have no im-
pact on the membrane potential. Figure 2.2b visualizes the spiking behavior of the LIF model. It shows
an example curve of the membrane potential of one LIF neuron based on six incoming spikes whereas

2.1 Biologically-inspired Systems 13

only the third, fourth and fifth incoming spike are appearing closely enough for the membrane potential
to surpass its threshold and, therefore, cause the neuron to emit a spike itself. The LIF model, despite
its biological simplifications, is maybe the most widely used neuron model for simulations due to its
simplicity and comparably low computational complexity (Izhikevich, 2004), which allows simulations
of large networks of neurons in reasonable time. In contrast, the famous Hodgkin and Huxley (1952)
model with its four differential equations and dozens of (biologically meaningful) parameters is a model
of high biological plausibility but also computationally challenging regarding large simulations (Izhike-
vich, 2004). Izhikevich (2003) proposed a neuron model as compromise between biological plausibility
and computational feasibility. In Izhikevich (2004), he showed that his simple model, described by two
differential equations with four parameters, is able to produce all known spiking behaviors observed in
cortical neurons.
One major hindrance for the widespread adoption of SNNs has been the problem, that standard learning
algorithms for traditional ANNs like backpropagation (Werbos, 1974) can not be directly applied to
SNNs. Although an analogon, the so-called SpikeProp algorithm (S. M. Bohte et al., 2002) for SNNs
has been developed, the more natural approach is to transfer and mimic biologically inspired learning
approaches like Hebbian learning (Hebb, 1949) or STDP (Spike Timing Dependant Plasticity) (Bi and
Poo, 2001). An overview of several learning approaches for SNNs possibly applied with neuromorphic
hardware can be found in Walter et al. (2015). Another possibility is to train a traditional ANN and
convert the resulting network into a SNN as demonstrated in Diehl et al. (2015) and Hunsberger and
Eliasmith (2015). An example for this approach is the network performing the visual digit recognition
task as part of the larger Spaun (Semantic Pointer Architecture Unified Network) model (Eliasmith et al.,
2012), which was derived by training a DNN consisting of four RBM layers and converting this network
using the principles of the NEF (Eliasmith and C. H. Anderson, 2003). Although theoretically superior
(Maass, 1997), SNNs have not yet outperformed state-of-the-art DNNs in terms of accuracy in practical
machine learning applications (Schmidhuber, 2015).
Beside the aforementioned procedures to solve traditional machine learning tasks with SNNs and thereby
encode artificial functions in spiking neurons, a different approach is to try to understand how complex
cognitive behaviors and the underlying neural functions are performed in the brain. Therefore, the ques-
tion how the brain encodes complex information and behavior in trains of spikes and also how to decode
these spike trains to reconstruct the encoded information needs to be answered. Although modern re-
search has shed some light on this question regarding the neural code, it is still mainly unanswered since
we do not fully understand the anatomical and neurophysiological processes within the brain (Stanley,
2013). Currently, there exist several approaches to code information as spike trains, which can be sum-
marized by the categories rate coding, temporal coding (Gerstner et al., 2014, Chap. 7.6), population
coding (Gerstner and Kistler, 2002, Chap. 1; Ponulak and Kasinski, 2011; Boerlin and Denève, 2011) or
sparse coding (Olshausen and Field, 1996). Except for the biologically unrealistic rate coding approach,
there are cues for all of these coding schemes and even combinations (Gupta and Stopfer, 2014) of them
to appear in biological systems.

Software tools

There exist several different programming languages, simulators and software libraries specifically de-
signed for modeling SNNs varying from tools like Corelet (Amir et al., 2013) and Compass (Preissl et al.,
2012) working with one specific hardware component (see also Sec. 2.1.3), in this case IBM’s TrueNorth
chip (Akopyan et al., 2015), to libraries like PyNN (Davison et al., 2008), which aim for universality to
work with different simulators and hardware components as back-end.
The simulation tool offering maybe the highest level of abstraction is Nengo (T. C. Stewart et al., 2009;
Bekolay et al., 2014), which implements the principles of the NEF (Eliasmith and C. H. Anderson,
2003) and was used to build the Spaun model presented in Eliasmith et al. (2012). Originally written
in Java, Nengo was re-implemented in Python (Bekolay et al., 2014) and improved by incorporating the
lessons learned from the creation of Spaun. Nengo allows the user to describe a model on a high level of

14 Research Context

abstraction by defining groups of neurons to simulate different functional blocks while Nengo takes care
of neural properties and synaptic weights using the NEF (see Sec. 3.3 for further details). Nengo models
can be run using the internal simulation back-end, but also simulation on some neuromorphic hardware
components such as Neurogrid (Dethier et al., 2011; Choudhary et al., 2012), Braindrop (Neckar et al.,
2019) or SpiNNaker (Mundy et al., 2015), which are currently used in developments aiming to run the
Spaun model in real-time, is supported.
Another Python-based tool is PyNN (S. Davies et al., 2010), which was developed during the FACETS6

and BrainScaleS7 projects and aims for building SNN models independent of actual simulation tools.
The level of abstraction is lower than Nengo, but therefore it allows the creation of arbitrary neuron
populations and connections, while the properties and synaptic weights need to be specified by the user
or acquired using a learning algorithm. PyNN implements a number of standard neuron models like LIF
or Izhikevich, connection algorithms like one-to-one, all-to-all or connection matrices, static and plas-
tic synapse types as well as several STDP rules supported by the simulation and hardware back-ends.
Furthermore, PyNN enables the user to implement custom models, connections and learning rules for
advanced simulations and thereby extend the neural modeling toolkit. PyNN currently supports several
different simulators such as NEST (NEural Simulation Tool) (Gewaltig and Diesmann, 2007), Brian
(Goodman and Brette, 2009) and NEURON (Carnevale and Hines, 2009) as well as neuromorphic hard-
ware as back-ends. PyNN is currently the preferred development environment for the creation of SNN
models to run on the SpiNNaker system (Furber et al., 2014). The mapping of the network structure, neu-
rons and synapses to actual cores on the chip is done with a separate software package called PACMAN
(Partitioning And Configuration MANager) (Galluppi et al., 2012).
Another Python-based software package which, in contrast to PyNN and Nengo, mainly aims at modu-
larity and flexibility in terms of supporting as many different neuromorphic hardware systems as possible
as a front-end is PyNCS (Python Neuromorphic Cognitive Systems) (Stefanini et al., 2014).
A comprehensive overview of several other simulation tools for neural modeling can be found in Brette
et al. (2007).

2.1.3 Neuromorphic Hardware

In this section, we give a brief overview of recent neuromorphic prototypes and hardware developments.
Although we do not integrate the models and approaches developed in this thesis with this kind of dedi-
cated hardware platforms, deployment on specialized hardware components is an interesting future pos-
sibility promising increased energy-efficiency and scalability. The neuromorphic prototypes described
here are still comparatively young and not technologically mature yet, especially compared to traditional
computing systems. Therefore, most of the hardware and sensors described are mainly developed and
used in academic research and are not standardized, commercial products yet. However, this technol-
ogy is gradually becoming available to a broader community and draws increased attention in industrial
research groups.

Digital Neurochips

GPUs provide a SIMD (single instruction multiple data) architecture, which processes data in parallel at
the cost of increased power consumption (Krichmar et al., 2011; Carlson et al., 2014) compared to CPUs
(Central Processing Units). Allowing fast matrix and vector multiplication, GPUs provide an appealing
platform for training and executing deep learning techniques (Schmidhuber, 2015). For specific applica-
tions, which take several months of training on a traditional CPUs, GPU-based systems can significantly
accelerate processing by several orders of magnitude to decrease the computation time to a number of

6Kirchhoff-Institute for Physics, Heidelberg University (2018b). FACETS-project. URL: https://facets.kip.uni-h
eidelberg.de (visited on 2018-04-05).

7Kirchhoff-Institute for Physics, Heidelberg University (2018a). BrainScaleS-project. URL: https://brainscales.ki
p.uni-heidelberg.de (visited on 2018-04-05).

https://facets.kip.uni-heidelberg.de
https://facets.kip.uni-heidelberg.de
https://brainscales.kip.uni-heidelberg.de
https://brainscales.kip.uni-heidelberg.de

2.1 Biologically-inspired Systems 15

days (Edwards, 2015). A collaboration between NVIDIA and Stanford researchers demonstrated a clus-
ter of GPU servers, which was able to train a network with billion parameters (scalable to 11 billion
using 16 machines) on just three computers in two days. Each machine contained 4 NVIDIA GTX680
GPUs with 4 GB at 1 TFLOPS (Floating Point Operations per Second) each.
One of the recent developments in digital neurochips is IBM’s TrueNorth (Akopyan et al., 2015). It con-
tains a network of 4096 cores with 256 digital neurons each following a digital, re-configurable spiking
neuron model (Cassidy et al., 2013) yielding the capability to implement over one million neurons and
256 million synapses in total while consuming only 65 mW of power. The cores are connected internally
by a two-dimensional grid. The intersections of this grid contain routers, which control the signal trans-
mission within the network of cores inside a chip. For programming this novel hardware implementation,
a specialized programming language named Corelet was developed (Amir et al., 2013).
Another example of a digital neuromorphic hardware implementation is University of Manchester’s
SpiNNaker system (Furber et al., 2014). It contains 18 synchronously connected ARM968 microproces-
sors and 128 MB DDR (Double Data Rate) SDRAM (synchronous dynamic random-access memory).
Communication is carried out by a packet-switched on-chip network with all chips having their own
router. This architecture scales well to larger application by allowing to place more chips on a board
(Painkras et al., 2013; Navaridas et al., 2009). A SpiNNaker system forms a toroidal mesh, which, de-
spite having fixed connections, allows the simulation of neural networks of arbitrary connectivity due to
the protocol implemented by the routers on the individual chips.
Another recent digital neuromorphic hardware platform is Intel’s Loihi chip (M. Davies et al., 2018).
This chip consists of a fully asynchronous many-core mesh of 128 neuromorphic cores, each containing
1024 primitive units implementing spiking neuron behavior in a tree-like structure. In total, it contains
130000 artificial spiking neurons and 130 million synapses. One of Loihi’s key features is the ability
of on-chip learning, which is realized through a learning engine integrated in each core that enables the
implementation of learning rules to adapt parameters of the core’s SNN.

Analog Neurochips

Most analog chips prohibit on-chip training due to limited adaptability of implementation techniques
like capacitors (Schwartz, 1990), floating gate transistors (Holler et al., 1989) or CCDs (Charge Coupled
Devices) (Agranat et al., 1990). On the other hand, analog techniques use less components and offer
high-speed operation. To exploit the benefits of analog semiconductor technologies and neural adaptivity,
the learning algorithms have to be implemented on-chip. However, on-chip-implementation limits the
platform’s re-configurability and complicates the implementation of most learning rules directly into
analog VLSI at the same time. These limitations restrict the flexibility of analog designs compared to
their digital counterparts.
The HICANN chip (Schemmel et al., 2008) has the capability to simulate 131072 synapses and 512
neurons residing inside an ANC (Analog Network Core). To simulate large networks, a wafer-scale
integration method was used, which allows 384 HICANN chips to be interconnected on a wafer of 20 cm
diameter (Schemmel et al., 2010). The spikes between various ANCs on a single wafer and between
several interconnected wafers are carried out by a network of horizontal and vertical grid-like structures.
The horizontal pathway consists of 64 bus lines which carry spikes from 64 neurons. The 256 vertical
lines collect spikes for all connected ANCs. The spikes are represented as data packets of 6 bit for groups
of 64 neurons and transmitted using AER (Address Event Representation).
The ROLLS (Reconfigurable On-Line Learning Spiking) neuromorphic processor consists of 256 neu-
rons and 128000 synapses. It consumes only 4 mW of power and uses exponential IF (Integrate-and-Fire)
modeling (Qiao et al., 2015). The latest processor contains different configuration options. Each neu-
ral circuit is connected to three different types of synaptic circuits: the first is an array of 256× 256
synapses, which can be excitatory or inhibitory. The synapses in the second 256×256 array offers only
excitatory mode. In the third array, there are 256×2 virtual synapses with weights being configurable as
both, excitatory as well as inhibitory. The virtual synapses operate in shared mode and occupy less space

16 Research Context

compared to individual circuits. The neural spikes are generated and transmitted using an AER protocol
with 8 bit neuron addresses (Qiao et al., 2015).
Another example of analog neural hardware is a chip (Srinivasa and Cruz-Albrecht, 2012) developed un-
der DARPA-funded HRL (Hughes Research Laboratories) SyNAPSE project, which uses STM (synaptic
time multiplexing) for computation and memristors for synaptic weights storage. It contains a total of
576 neurons and 73728 synapses, arranged in an array of 24× 24 neurons each with 128 synapses and
consumes 130 mW. In STM methodology, a single synaptic circuit on the chip calculates multiple logi-
cal synapses of the simulated neural network since the electrical circuitry can function at higher speeds
than biological neurons. Hence, a single synaptic circuit allows emulating multiple logical synapses
by switching between the corresponding parameter sets. There is a point-to-point routing mechanism
avoiding the necessity of the AER protocol (Walter et al., 2015).
The Brain in Silicon group at Stanford University developed the custom board Neurogrid, which contains
16 Neurocores (Benjamin et al., 2014; Choudhary et al., 2012). The neuron circuits are arranged in a
256× 256 grid with every neuron having separate circuits for its soma and dendrite and combining
analog computations with digital communication. The system is capable of simulating a million neurons
and eight billion synapses in real-time while consuming 3.1 W of power. Neurogrid employs the AER
protocol to transmit spikes. It additionally implements a deadlock-free wormhole routing protocol to
ensure free transmission of packets. Finally, Neurogrid allows to explore different cortical areas of
the brain by programming each of the Neurocores with a different model (Merolla et al., 2014). Its
successor BrainDrop (Neckar et al., 2019) is inspired by NeuroGrid’s architecture and emerged from
continued development on that architecture. It is designed as one of the first neuromorphic systems to be
programmed at a high level of abstraction using the NEF (Eliasmith and C. H. Anderson, 2003).

Neuromorphic Sensors

To integrate neuromorphic hardware in real-world applications such as neurorobotics, it needs to be able
to process sensors signals. The neurally inspired, non von-Neumannian architecture requires either a
new generation of sensors such as the DVS (Lichtsteiner et al., 2008), DAVIS (Dynamic and Active Pixel
Vision Sensor) (Brandli et al., 2014) or DAS (Dynamic Audio Sensor) (S.-C. Liu et al., 2014), which
already embody the spiking neuron signal processing, or a way of translating traditional sensor signals to
sequences of spikes. Several approaches to encode signals and stimuli with trains of spikes, e.g., by rate
coding, temporal coding (Gerstner et al., 2014, Chap. 7.6) or population coding (Gerstner and Kistler,
2002, Chap. 1; Ponulak and Kasinski, 2011) have been investigated. Neuromorphic sensors on the
other hand directly emit a sequence of events without the need of such a translation process. The DVS
for example, unlike traditional frame-based cameras, generates spike events (Lichtsteiner et al., 2008)
asynchronously for individual pixels when perceiving relative illumination changes (see Fig. 2.3), which
are key features of biological vision. This event-based approach offers several advantages compared to
conventional frame-based cameras like the ability to perceive very fast movements (sub-millisecond time
precision) without the need to wait for the next frame and the time to process it. Furthermore, the rate of
the output data depends on the dynamic content of the scene (Fig. 2.3a) and thus reduces the output of
redundant information at a fixed frame-rate.
The DVS-pixels were designed to cover wide dynamic range and to offer low latency and mismatch.
This is achieved by a fast photoreceptor circuit with logarithmic response whose output is fed into a
high precision difference amplifier circuit followed by a two-transistor comparator circuit (see Fig. 2.3b
and 2.3c). The comparator circuit produces ON and OFF signals for each pixel, which are passed to the
AER interface for transmission (Lichtsteiner et al., 2008). On the other hand, the DAVIS employs an APS
(Active Pixel Sensor) circuit to output synchronous global shutter frames, which helps in persevering
absolute intensity information needed for classification and object recognition tasks while asynchronous
DVS events are beneficial for the tracking of fast moving objects (Brandli et al., 2014).

2.1 Biologically-inspired Systems 17

(a)

(b) (c)

Figure 2.3: (a) Space-time representation of the event stream generated by a rotating dot on a spin-
ning disk and a snapshot of the events (b) abstracted pixel core schematic (c) principle
operation of a single DVS pixel. Image source: Lichtsteiner et al. (2008)

2.1.4 Neuromorphic Applications

In this section we present some examples of applications of neuromorphic hardware and sensors de-
scribed in Sec. 2.1.3, software, algorithms and neural modeling depicted in Sec. 2.1.2 as well as combi-
nations of both. First, we describe applications using either neuromorphic sensors or hardware in combi-
nation with traditional computing hardware. Then, we focus on purely neuromorphic systems, where the
spiking signals of neuromorphic sensors, mainly the DVS, is processed by neuromorphic hardware. Al-
though there are currently - to the knowledge of the author - no neuromorphic actuators working directly
on the basis of spikes, we refer to the robotic systems described here as purely neuromorphic.

Mixed systems

Neuromorphic vision (Tan et al., 2015; Gallego et al., 2019) is an emerging field of research, which aims
to transfer approaches from traditional computer vision and also establish new methods incorporating
the characteristics of the DVS. To perform pattern recognition tasks with neuromorphic cameras and
at the same time use traditional methods as a benchmark, existing image data bases like the MNIST
(Mixed National Institute of Standards and Technology) data set (LeCun et al., 1998) are translated
to neuromorphic data sets by presenting the images on a computer screen to a DVS sensor moving
minimally back and forth (Orchard et al., 2015) (mimicking saccade movements of the human eye),
which gives better results than moving the images themselves on the screen (Serrano-Gotarredona and
Linares-Barranco, 2013).
As the DVS naturally captures moving objects when held statically and cues of the ego-motion when
moving, tracking of these movements are suitable applications making use of the sensor’s characteris-
tics. These characteristics along with the DVS’s advantages compared to traditional frame-based cam-

18 Research Context

eras, which have been described in Sec. 2.1.3, have been demonstrated in applications such as pencil
balancing (Conradt et al., 2009) and a robotic goalie (Delbruck and Lang, 2013) interfacing the DVS
with traditional computing hardware and actuators. Keeping track of (geometric) features (Lagorce et
al., 2015) and contours (Barranco et al., 2014) observed by the DVS lays the foundation for more so-
phisticated algorithms. Researchers recently proposed several approaches for tracking people (Schraml
et al., 2010; Piatkowska et al., 2012) and other geometric objects (Reverter Valeiras et al., 2016) using
stationary sensors. Especially tracking at high velocities (Saner et al., 2014) benefits largely from the
sub-millisecond time precision of the DVS even enabling tracking of particles in fluid flows (Drazen
et al., 2011), which would require a high-speed PC, lots of disk space and high-intensity laser strobe
lighting to illuminate the fluid in a conventional setting.
A traditional application of computer vision in robotics is the estimation of the ego-motion or odometry
based on optical flow. An event-based approach to optical flow can be found in Benosman et al. (2014),
which can also be obtained by combining traditional cameras with the DVS on a small wheeled robot
(Censi and Scaramuzza, 2014). Another suitable application for the DVS is the estimation and tracking
of the whole six degree-of-freedom pose of a flying robot, especially when performing high-speed ma-
neuvers, where traditional cameras suffer from motion blur (Mueggler et al., 2014). Another problem in
robotics closely related to tracking is self-localization of the robot using a given map of the environment
or building a map online and localizing within this map at the same time, which is known as the SLAM
(Simultaneous Localization and Mapping) problem (Thrun et al., 2005). Localization performed within
a given map using the DVS on ground vehicles and by tracking markers from a flying robot is presented
in Gallego et al. (2015) and Censi et al. (2013) respectively. There are also several papers such as Weik-
ersdorfer and Conradt (2012) and Weikersdorfer et al. (2014) treating the SLAM problem or the related
problem of tracking the camera pose and simultaneously reconstructing the observed scene by mosaicing
(Kim et al., 2014) with neuromorphic vision sensors.
Most of the tracking algorithms mentioned here use variations of traditional Bayesian filters like (ex-
tended) Kalman- or particle-filters (Thrun et al., 2005) for consecutive estimation of the quantity of
interest. However, due to the asynchronous information processing of the DVS or neuromorphic systems
in general, these filters need some modifications to work with this event-based approach (Weikersdorfer
et al., 2013) like taking several past measurements into account (in contrast to the traditional Markov
assumption) or updating only after a certain number of events have occurred to avoid computational
overhead.
Axenie and Conradt (2015) describe a biologically inspired system for sensor-fusion of several traditional
sensors like wheel encoders, magnetometer and gyroscope for ego-motion estimation demonstrated in
ground and flying robots. Another example for sensor fusion is presented in O’Connor et al. (2013),
where the biologically inspired sensors DVS and DAS are used to recognize hand-written digits from
the MNIST data set (LeCun et al., 1998). To incorporate the neuromorphic audio sensor, each digit is
assigned one tone frequency in the A harmonic minor scale, while the actual fusion is performed by a
DBN (Deep Belief Network) consisting of several, pre-trained (unsupervised) RBM layers, which was
traditionally trained and afterwards transferred to an event-based network. Although the authors state that
the actual implementation in O’Connor et al. (2013) is just a proof-of-concept in software, their approach
shows promise to translate fully trained DBNs to SNNs, deploy them on efficient neuromorphic chips
and thereby making this technology available for mobile and/or real-time applications.
To demonstrate the functionality and applicability of their neuromorphic chip TrueNorth, IBM imple-
mented several proof-of-concept applications ranging from virtual robots, game simulations (Arthur et
al., 2012), digit recognition (Arthur et al., 2012; Esser et al., 2013) to classical machine learning tasks like
object detection (Akopyan et al., 2015). Arthur et al. (2012) present four example applications of neural
algorithms implemented on TrueNorth using the Corelet language: a virtual robot driver aiming to keep
the simulated robot on a virtual road based on visual cues, a neural algorithm controlling an autonomous
player performing the classical video game Pong, a neural implementation recognizing hand-written dig-
its of the MNIST data-base using RBMs as well as a Hopfield network, which performs auto-association.

2.1 Biologically-inspired Systems 19

Seven example algorithms and applications for TrueNorth are presented in Esser et al. (2013): speaker
recognition using CNNs on the CUAVE (Clemson University Audio Visual Experiments) data set (Patter-
son et al., 2002), composer recognition distinguishing between classical composers Bach and Beethoven
using liquid state machines, recognition of hand-written digits of the MNIST data set using population
coding and RBMs, a neural implementation of a HMM (Hidden Markov Model), collision avoidance
using motion extraction and looming detection, optical flow based on CNNs and eye detection using
the DVS. Most of these algorithms are simplified proof-of-concept implementations showing the general
applicability of TrueNorth but are not competitive with traditional machine learning algorithms yet, that
is, achieving only 92.34 % in Esser et al. (2013) compared to 99.77 % in Ciresan et al. (2012b) correct
classifications on MNIST. Schmitt et al. (2017) demonstrate training and deployment of DNNs on the
MNIST-data set using the BrainScaleS hardware. A more sophisticated application is the multi object
detection and classification task described in Akopyan et al. (2015), which detects moving and stationary
people, bicyclists, cars, buses and trucks from a HD video stream in real-time recorded by a stationary
camera using Haar-like features, saccades, K-means- and Grid-classifiers.
The use of the neuromorphic hardware Neurogrid (Benjamin et al., 2014) as computational back-end
for Nengo and proof-of-concept solution for medical motor-prostheses, which shall be connected to
biological neurons and thereby be controlled by the patient’s brain, is described in Choudhary et al.
(2012) and Dethier et al. (2011) respectively. The SpiNNaker system (Furber et al., 2014) also supports
the simulation of neural models created using PyNN or Nengo (Mundy et al., 2015). Furthermore,
several neural network architectures like CNNs (Serrano-Gotarredona et al., 2015) and pre-trained DBNs
(Stromatias et al., 2015a; Stromatias et al., 2015b) have also been implemented on the SpiNNaker system.
To enable biologically inspired learning like STDP (Bi and Poo, 2001), according rules adapting the
synaptic weights depending on the timing of the spikes have efficiently been implemented on SpiNNaker
in Diehl and Cook (2014) as well.

Purely neuromorphic systems

Some examples of closed-loop systems deployed in small robots are presented in S. Davies et al. (2010),
Denk et al. (2013), and Galluppi et al. (2014). S. Davies et al. (2010) and Denk et al. (2013) interface two
embedded DVS cameras directly with a SpiNNaker platform mounted on a small robot (see Fig. 2.4).
The implemented neural networks enable simple autonomous behaviors like following a line (S. Davies
et al., 2010) or approaching a light stimulus (Denk et al., 2013). In Galluppi et al. (2014), a small robot
with a similar setup is able to perform trajectory stabilization using optical flow from the DVS cameras
as input. Another simple task described in Galluppi et al. (2014) is the recognition and tracking of a light
stimulus and keeping the robot at a certain distance and angular orientation with regard to this stimulus.
The whole processing chain from visual perception over internal processing to motor control in these
robot experiments are realized using spiking neuron models. The neural implementation of the latter two
applications are done in PyNN and Nengo respectively.
While the aforementioned sensorimotor behaviors are manually engineered, Conradt et al. (2015) and
T. C. Stewart et al. (2016) present attempts to learn more sophisticated, complex behaviors from simpler
basic movements. These basic maneuvers are still manually engineered relating sensor cues to simple
movements like driving forward with no obstacle in the sensors field of view, turning with an obstacle in
front of the robot or driving backwards when being close to an obstacle. Conradt et al. (2015) describe a
method on learning more sophisticated behaviors from recorded sensorimotor data obtained from driving
the robot by remote control as training examples, which can be considered as a supervised learning
approach. In T. C. Stewart et al. (2016), the training examples are taken from recording data of the
robot driving around without human interference and just labeling those situations as positive examples
when the robot performed the desired action by accident, which is considered as reinforcement learning.
Both approaches are implemented on a small robot with the DVS as sensory input using Nengo and the
NEF as well as its interface (Mundy et al., 2015) for running neural networks models on the SpiNNaker
hardware (Furber et al., 2014).

20 Research Context

Figure 2.4: Example of a closed-loop, neuromorphic robotic system with two event-based embed-
ded DVSs and a 48-node SpiNNaker board. Image source: Galluppi et al. (2014)

2.2 Cognitive Modeling

Understanding and building cognitive systems has seen extensive research over the last decades leading to
the development of several cognitive architectures. A cognitive architecture is a “general proposal about
the representation and processes that produce intelligent thought” (Thagard, 2012). On the one hand,
these architectures are used to explain and better understand important aspects of human behavior and
intelligence. On the other hand, they are also used to design computers and robots mimicking certain
cognitive abilities of humans. In this respect, cognitive architectures are typically clustered in three
main categories, namely symbolism, connectionism and dynamicism (Eliasmith, 2013). We will give a
brief overview over symbolic and connectionist approaches in subsequent sections, whereas dynamicism
(Schöner, 2008) is of lower relevance to the work at hand.
One important aspect of cognitive modeling and, more generally, AI, is knowledge representation. Any
intelligent agent, artificial or biological, that wants to perform reasoning about the world it encounters,
needs to be able to build an internal representation of its perceived information. This aspect is quite
important for subsequent chapters, while a formal definition of what knowledge representation actually
is appears to be difficult and thus is often avoided in the literature (Davis et al., 1993). Davis et al. (1993)
describe five defining roles that such a representation can play. A representation is a surrogate, i.e., an
internal substitute for a real-world entity and as such an imperfect approximation. Therefore, the choice
for each representation implies a set of ontological commitments, which effect the focus of attention
of the representation. When the focus of such a representation is to enable some kind of reasoning in
intelligent machines or robotic systems, these systems need to be able to manipulate the representation
and perform computations with it. Finally, as long as the machine needs to interact or communicate with
humans in the sense that humans inform the machine about the world by, e.g., creating a representation,
this representation itself also plays the role of a medium of human expression. Therefore, we put empha-

2.2 Cognitive Modeling 21

sis on the different aspects of knowledge representation in the different cognitive modeling architectures
presented in this section.

2.2.1 Symbolic approaches

Symbolic approaches are often referred to as the classical approach to cognitive modeling or GOFAI
(Good Old-Fashioned Artificial Intelligence). Most of the approaches rely on the metaphor of the mind
as computer, supposing that cognitive systems have a symbolic “language of thought” (Fodor, 1975),
that expresses the rationale and rules the systems follow. The corresponding analogue for computers are
programming languages. The dominant paradigm of such approaches is “the manipulation of discrete
atomic symbols by explicit rules” (S. D. Levy and Gayler, 2008). The most prominent approaches in
this category are production systems, which typically rely on if-then-rules (or productions) and a control
structure. One of the first and most influential achievements in this field is a program called the GPS
(General Problem Solver), which was able to solve elementary problems in symbolic logic on its own.
The steps GPS performed to solve a given problem often matched the steps reported by people solving
the same problem. This success enabled the development of several other cognitive architectures such
as Soar (Laird et al., 1987), EPIC (Executive-Process/Interactive Control) (Kieras and Meyer, 1997) and
ACT (Adaptive Control of Thought) (J. R. Anderson, 1983) and its successor ACT-R (Adaptive Control
of Thought-Rational) (J. R. Anderson, 1996), which all employed production systems at their core but
adding their own extensions. ACT-R is the most modern of these architectures and arguably the most
successful and thus it is the most widely used cognitive architecture. Although ACT-R incorporates some
connectionist-like mechanism in its memory system, it is widely considered a symbolic architecture as
it relies on symbolic representations and a production system as central procedural core. In general,
symbolic approaches to cognitive modeling had the most success when addressing higher-level cognitive
tasks, with a rigid set of rules and potential for pre-specified solutions. However, these approaches are
rarely used when it comes to real-time critic systems such as robots or if the system needs to generalize
beyond pre-specified situations.

2.2.2 Connectionist approaches

One of the first theories challenging the paradigm of GOFAI (Good Old-Fashioned Artificial Intelli-
gence) was the “Society of Mind” view of specialized individual agents cooperating to accomplish a
certain goal proposed by Minsky (1986). The strongest challenge however, was the emergence of con-
nectionism (Rumelhart and McClelland, 1986), popularly referred to as neural networks, which offered
novel learning algorithms such as backpropagation (Rumelhart et al., 1986) to solve a wide variety of
problems. Connectionism explains cognitive phenomena by constructing models consisting of large net-
works of interconnected nodes performing rather simple input/output mappings. If these nodes, however,
are connected to sufficiently large networks, the nodes’ activity is able to implement cognitive behav-
ior such as rules or analyzing patterns. We already gave a brief historical overview over the research
conducted related to ANNs in section 2.1.1. The metaphor behind connectionist approaches to cognitive
modeling is that of the mind as brain, as the processing employed in connectionism is often referred to as
brain-like or brain-inspired. Connectionism has shown remarkable results in diverse applications such
as computer vision, pattern recognition, sequential data analysis and language processing just to name a
few. However, the most serious criticism of connectionist approaches are that they could not exploit sys-
tematic, compositional representations or logical reasoning of the form used in GOFAI. Furthermore, the
nodes in connectionist networks typically simplify the computational and representational properties of
biological neurons, which, in addition to the biological implausibility of the backpropagation algorithm,
concerns cognitive modelers interested in biological realism. Finally, the ability to learn and derive inter-
nal representations of features from data, despite being one of the greatest strengths of neural networks
approaches, is sometimes criticized for lack of comprehensibility.

22 Research Context

2.2.3 Vector-based approaches

To address some of the concerns regarding both, symbolic and connectionist approaches to cognitive
modeling, researchers developed a hybrid approach often referred to as VSA (Vector Symbolic Architec-
ture), a class of connectionist distributed representations. In chapter 3, we give an in-depth introduction
to the theory and mathematical properties of VSAs, which will be important ingredients for the remain-
der of this thesis. Here, we give a brief overview of the different variants of such architectures, their
similarities and differences, related work and some applications. All of the modeling approaches pre-
sented in this section employ (high-dimensional) vectors as representational substrate. Similar to the
representations derived from connectionist approaches, these are distributed representations, which of-
fer nice properties such as robustness to noise and the support of distance metrics. Additionally, all of
the approaches allow to treat such vectors as symbol-like entities, which can be manipulated through
the architecture’s algebraic operations (see chapter 3 for details). The first attempt on structured vec-
tor representations proposed by Smolensky (1990) used the tensor product as multiplication operation
to bind two different vectors together. The tensor product approach already allows for a sufficiently
complex embedded structure to do linguistic processing. However, scaling becomes a problematic issue
as each uncompressed tensor product operation of two high-dimensional vectors increases the result’s
dimension, which quickly becomes impracticable. Hence, there are several architectures such as MAP
(Multiply-Add-Permutate) (Gayler, 1998; Gayler, 2003), BSCs (Binary Spatter Codes) (Kanerva, 1988)
and HRRs (Holographic Reduced Representations) (T. Plate, 1991; T. Plate, 1994), which propose dif-
ferent compressed multiplication operations replacing the tensor product and resulting in vectors with
the same dimension as the input vectors. Furthermore, these different VSA variants differ in the choice
of the numerical space to pick the vectors’ elements from, that is, using binary, real- or complex-valued
vectors. The SPA (Eliasmith, 2013) is built upon HRRs and extends these architectures, by proposing an
efficient mechanism of implementing structured vector representations in populations of spiking neurons
using the principles of the NEF (Eliasmith and C. H. Anderson, 2003) (again, we refer to chapter 3 and
especially sections 3.3 and 3.4.3 for further details). This architecture has been used in Eliasmith et al.
(2012) to built the currently largest functional model of a brain using a combination of structured vector
representations for symbol-like processing and a spiking neuron substrate.
The most prominent application of vector representations despite cognitive modeling (Blouw et al., 2016;
Crawford et al., 2016; Eliasmith et al., 2012) is language processing (Gayler, 2003). In this context, word
embedding refers to the problem of finding (or automatically learning) desirably meaningful representa-
tions for words. Modern word embedding algorithms such as word2vec (Mikolov et al., 2013b; Mikolov
et al., 2013c) or GloVe (Global Vectors) (Pennington et al., 2014) employ high-dimensional vectors as
representational structure to encode words and language by learning in unsupervised fashion from large
corpora of text. There are also attempts of using such representations in other domains to, e.g., better
explain and quantify how DNNs learn and derive concepts (Fong and Vedaldi, 2018) or for embedding
low-level vehicle sensor data in an abstract representation (Hallac et al., 2018).
Another approach employing vector representations is the work of companies such as Numenta (2019)
and Cortical.io (2019). They employ binary vector representations similar to BSCs, which Ahmad and
Hawkins (2015) refer to as SDRs (Sparse Distributed Representations), as the basis and main represen-
tation for their downstream cortical models such as HTM (Hierarchical Temporal Memory) proposed in
Cui et al. (2017). To create high-dimensional vectors representing words or phrases, a method called
semantic folding is applied (Webber, 2016). Similar to classical word embedding algorithms, the word
vectors are created from large corpora of text. After laying out a two-dimensional semantic map of avail-
able contexts, the context of each particular word is marked as active (resulting in a 1 bit in the map) and
a sparse, high-dimensional binary vector is created from the map through serialization. Despite language
processing, such representations in cooperation with HTM models have shown to be useful for appli-
cations such as anomaly detection (Ahmad et al., 2017) or classification with noisy data (Ahmad and
Scheinkman, 2019). One key difference to other cognitive architectures like the SPA is that the entries
of the SDR vectors are directly interpreted as neural activity whereas the SPA distinguishes between

2.3 Automated Driving 23

representational and neuronal space.

2.3 Automated Driving

“Robotics is the science of building computer-controlled mechanical devices, which are able to perceive
and manipulate the physical world” (Thrun et al., 2005). Automated driving in automotive context is a
special case of robotics, since an autonomous vehicle can be considered a wheeled mobile robot, which is
able to fulfill the transportation capabilities of a traditional car without human input. In order to navigate
safely to a desired goal, a mobile robot needs to solve several problems like localization (“where am
I?”), path planning (“how do I get from A to B?”), environment perception (“where is everyone else?”),
knowledge representation and reasoning (“which decisions to infer from available information?”) as
well as motion control (“how to move my actuators?”). In automotive context, an automated vehicle
furthermore needs to detect the current state of the driver (“what is the driver up to?”) to ensure that
he can take over control in safety-critical situations or in case of malfunctions. The human driver as
a fallback option in such situations is of crucial importance, since the level of driving automation is
likely to gradually increase instead of a hard transition from manual driving to fully automated driving
systems. In their J3016 standard8, the SAE (Society of Automotive Engineers) delivers a classification
system identifying six different levels of driving automation from “no automation” to “full automation”.
Table 2.1 gives an overview of the particular automation levels according to the SAE (2016) in more
detail.

Level Name Narrative Definition
0 No Automation the full-time performance by the human driver of all aspects of

the dynamic driving task, even when enhanced by warning or in-
tervention systems

1 Driver Assistance the driving mode-specific execution by a driver assistance system
of either steering or acceleration/deceleration using information
about the driving environment and with the expectation that the
human driver perform all remaining aspects of the dynamic driv-
ing task

2 Partial Automation the driving mode-specific execution by one or more driver assis-
tance systems of both steering and acceleration/deceleration us-
ing information about the driving environment and with the ex-
pectation that the human driver perform all remaining aspects of
the dynamic driving task

3 Conditional Automation the driving mode-specific performance by an automated driving
system of all aspects of the dynamic driving task with the expecta-
tion that the human driver will respond appropriately to a request
to intervene

4 High Automation the driving mode-specific performance by an automated driving
system of all aspects of the dynamic driving task, even if a human
driver does not respond appropriately to a request to intervene

5 Full Automation the full-time performance by an automated driving system of all
aspects of the dynamic driving task under all roadway and envi-
ronmental conditions that can be managed by a human driver

Table 2.1: Table depicting different levels of vehicle automation identified in SAE (2016)

8SAE (2016). J3016, Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehi-
cles. Tech. rep. SAE International. DOI: 10.4271/J3016_201609. URL: https://www.sae.org/standards
/content/j3016_201609/.

https://doi.org/10.4271/J3016_201609
https://www.sae.org/standards/content/j3016_201609/
https://www.sae.org/standards/content/j3016_201609/

24 Research Context

In this section, we will briefly present the historical developments in automated driving research and
present the current state-of-the-art for some selected tasks in its sub-domains. After reviewing different
aspects of knowledge representation with particular focus on automated driving (more general aspects
have been discussed in section 2.2), we present related work in the fields of driving context classification
(section 2.3.3), object detection and classification (section 2.3.4) and trajectory prediction (section 2.3.5).
These tasks are selected based on the applications investigated in subsequent chapters in the remainder
of this thesis.

2.3.1 A brief history

On the road to fully automated driving, several ADAS (Advanced Driver Assistance Systems) have been
developed during the last decades and thus made a huge jump by incrementally increasing complexity
and therefore the level of autonomy. The history of automated driving research goes back to the 1980’s,
when governmental institutions funded several explorative projects all over the world to research func-
tionalities such as automatic vehicle driving and intelligent route planning resulting in early prototypes.
In 1986, several European research groups and vehicle manufacturers started the PROMETHEUS (PRO-
graMme for a European Traffic of Highest Efficiency and Unprecedented Safety) project (Dickmanns
et al., 1990) and demonstrated a variety of different approaches to automated driving. Another research
initiative established during that period is Carnegie Mellon University’s Navlab (Thorpe et al., 1988),
which achieved the first completely autonomous drive from Pittsburgh to San Diego. After that first
explorative phase, the US government established the NAHSC (National Automated Highway System
Consortium) in 1995 and shortly followed by the foundation of the AHSRA (Advanced Cruise-Assist
Highway System Research Association) in Japan in 1996. The main contribution of this first phase was
the identification and deep analysis of problems, that would need to be tackled by researchers, to un-
derstand requirements and possible effects of future automated vehicles. Bertozzi et al. (2000) give an
overview of the achievements and perspectives obtained in the projects during that period.
A major milestone in the research field of automated driving was the first DARPA Grand Challenge in
2004, where unmanned vehicles had to complete a 240 km, unrehearsed off-road course autonomously
through the Mojave Desert in Nevada to win the price money of $1 million. Although no participating
vehicle successfully finished the race (Bacha et al., 2004) in the first challenge, valuable insights have
been gained. Using those insights to make significant progress, five teams (out of 23) were able to suc-
cessfully complete the second DARPA Grand Challenge in 2005 with Stanford’s Stanley robot winning
first place (Thrun et al., 2006). After the success of the second Grand Challenge, the DARPA organized
the Urban Challenge in 2007, switching the focus to automated driving in urban environments (Buehler
et al., 2009). In this competition, vehicles had to complete a 97 km urban area course autonomously in
less than 6 h, while obeying California state driving laws and avoiding other participating vehicles as
well as other objects using only on-board sensors and GPS (Global Positioning Systems). Six vehicles
out of the 11 final participants successfully finished the competition, with Carnegie Mellon’s Boss robot
(Urmson et al., 2008) being named the winner finishing the course in little over 4 h with an average speed
of approximately 22.5 km/h.
The technology developed for the DARPA challenges formed the basis for commercial ADAS, which
have seen rapid progress since then and gradually made their way into series-production vehicles. There
exists a large variety of commercial systems such as ACC (Adaptive Cruise Control) or intelligent park-
ing assistance systems modern vehicles are already equipped with. These systems have the potential to
increase comfort and safety in road traffic and, in the long run, enable fully autonomous driving (cf. Level
5 in Table 2.1). On the other hand, many research teams and initiatives were spawned or inspired from
these competitions and continued their research work after the DARPA Challenges. Many researchers
involved in the winning teams continued their research within Google’s self-driving car project, which
started in 2009 and evolved into the Spin-Off company Waymo9 in 2016. Another research team contin-

9Waymo LLC (2018). Waymo webpage. URL: https://waymo.com/ (visited on 2018-02-08).

https://waymo.com/

2.3 Automated Driving 25

(a) (b)

Figure 2.5: The winning robots from the 2005 DARPA Grand Challenge and 2007 Urban Chal-
lenge. (a) shows Stanford’s Stanley at the 2005 DARPA Grand Challenge. Image source:
Thrun et al. (2006). (b) shows Carnegie Mellon’s BOSS at the 2007 DARPA Urban
Challenge. Image source: Urmson et al. (2008).

uing their efforts after the DARPA challenges is the Annieway team10. One of their major contributions
is the release and maintenance of the KITTI vision benchmark suite (Geiger et al., 2013), a publicly
available data set containing data from various test drives in the city of Karlsruhe, rural areas as well as
highways focusing on providing real world data for vision tasks like stereo, optical flow and 3D object
detection and tracking.
The main research goal after the DARPA Challenges was to develop automated driving with off-the-shelf
sensors. Furgale et al. (2013) present a valet-parking approach for electrified vehicles using close-to-
market sensors only. Lundgren et al. (2014) show an approach to vehicle self-localization using off-
the-shelf sensors in combination with a detailed map. In Aeberhard et al. (2015), results from extensive
testing of automated vehicles using mainly off-the-shelf sensors in highway scenarios are presented.
The sensors used are RADAR (Radio Detection and Ranging) sensors for long-range detection, US
(Ultrasonic Sensors) sensors for redundant, close-range detection, a GPS for vehicle-self localization as
well as a front-facing mono camera, which are all available and integrated in series-production vehicles.
The only exception are 2D LIDAR (Light Detection and Ranging) sensors, which are needed for high-
resolution surround view.

2.3.2 Knowledge Representation

As a consequence of increasing complexity of ADAS applications, the number of sensors mounted in
modern vehicles has grown in recent years and is likely to grow even further in the near future to cover
the vehicle’s surrounding as completely as possible. Another factor that leads to an increasing num-
ber of sensors in automotive context are safety considerations, which demand for redundancy in the
overall setup to ensure functionality even in case of failure of one sensor. Therefore, automated ve-
hicles need to have a way to combine information from multiple sensor sources. In the literature, the
distinction between different approaches is typically made based on the level at which sensory data is
combined (Elfring et al., 2016). The two main classes of approaches are mostly referred to as low-level
and high-level sensor fusion. By low-level sensor fusion, we mean that raw, previously unprocessed sen-
sor measurements are combined in a coherent representation fur further processing. In contrast, the goal
of high-level sensor fusion is to combine preprocessed tracks or features, that have been extracted from
raw sensor measurements by each individual (smart) sensor unit.

10Karlsruhe Institute of Technology (2018). Annieway Project. URL: http://www.mrt.kit.edu/annieway/ (visited
on 2018-02-22).

http://www.mrt.kit.edu/annieway/

26 Research Context

Figure 2.6: Occupancy-grid visualization for low-level sensor fusion. The left part depicts the prin-
ciple of occupancy-grids, whereas the right part shows a real world example. Image
source: Hohm et al. (2014)

Representations for low-level sensor fusion

One of the most widely used representations to combine low-level sensory data in robotics is an occupancy-
grid map. This representation is widely used for mobile robot localization (Thrun et al., 2005), but there
is also a substantial amount of research regarding occupancy-grids regarding automotive environment
modeling (Tanzmeister et al., 2014; Steyer et al., 2018). The left part of Fig. 2.6 visualizes the principles
of occupancy-grids, whereas the right part shows a real world example from automotive context. An
occupancy-grid divides the represented space in discrete cells, which can take on different occupancy
values (e.g., free, occupied or unknown). The basic assumptions for this representation are that the world
is static at each time step and that each cell can have exactly one occupancy value, i.e., one cell is for
example completely occupied or completely free. Therefore, an occupancy-grid is a well-suited repre-
sentation for range sensors such as RADAR or LIDAR sensors. While static occupancy-grid maps are
mainly used for localization and SLAM applications, there are also approaches to estimate dynamic pa-
rameters such as orientation and velocity within the grid to model dynamic environments (Tanzmeister
et al., 2014). The incoming raw sensory data is typically combined through some sort of probabilistic
(Bayesian) filter algorithm such as Kalman (1960) or particle-filters (Gordon et al., 1993). One of the
main advantages of such a representation is that it is able to incorporate raw, unprocessed sensory data
and that the discretization steps as well as the size of the cells can be chosen as fine-grained as the appli-
cation demands. Furthermore, it is a natural and precise way to model and represent the free, traversable
space around the robot. On the other hand, occupancy-grids have rather high requirements regarding
memory and computational resources. Additionally, the representation contains no information about
type or properties of the obstacles that lead to cells being occupied. Finally, in contrast to higher-level,
more abstract representations, it can be more complex to incorporate sensor modalities other than range
finders such as vision sensors.

Representations for high-level sensor fusion

In contrast to the low-level sensor fusion representation approaches described previously, high-level sen-
sor fusion typically refers to sensory data being fused, that has already been preprocessed though some
sort of temporal filtering. This usually happens at tracked objects level, i.e., object lists provided by indi-

2.3 Automated Driving 27

vidual sensor units each applying their own temporal filtering or tracking based on the data they receive.
To actually combine this sort of information, Bayesian filter approaches similar to the ones mentioned
previously could be applied. However, such filters assume uncorrelated data and thus may deliver over-
confident or diverging estimates since objects provided by different filters coming from several sensor
sources are in fact correlated due to phenomena such as shared modeling assumptions, common noise
acting on the objects being tracked or measurements arriving out of sequence. Therefore, more advanced
track-to-track fusion algorithms need to be used for high-level sensor fusion (Tian and Bar-Shalom, 2010;
Aeberhard et al., 2012). These methods typically differ regarding the amount of knowledge they assume
to be known about the correlations between the tracks.
The main advantages of high-level sensor fusion are that the amount of transferred data is lower com-
pared to low-level fusion due to the hierarchical structure of the estimation framework. Furthermore, as
many sensors already employ on-board processing and provide data only at tracked object level, imple-
mentation of high-level fusion often does not require in-depth knowledge of the sensor characteristics.
This allows a more abstract interface between sensors and fusion system and therefore easier replace-
ment of individual sensor units in case the overall setup changes. On the other hand, high-level fusion
ignores potentially useful information, as it might be discarded at sensor level before the fusion is per-
formed. In summary, high-level sensor fusion is arguably the most popular and frequently used approach
for combining information from different sensor sources in automated driving. The objects are typically
represented as point objects using a unique identifier and a state vector for dynamic information such
as position, velocity and acceleration. For certain application types, additional information such as the
objects’ size, shape and type need to be known (e.g., pedestrians have different dimensions and mo-
tion characteristics compared to trucks or vehicles). For other objects of interest (e.g., traffic signs or
traffic lights), color and shape information might be important. While this type of representation is com-
pact and abstract enough and thus well-suited for high-level fusion, the content and thus the represented
values might vary depending on the sensor providing the information. Therefore, achieving a unified
representation across different sensor modalities can become a challenging problem.

Other representations

Representation approaches other than the aforementioned ones are rather rarely used in an automotive
context. Although semantic and structured information will grow more important with the advent of
numerous and increasingly complex machine learning driven assistant systems, representations that are
able to capture and manipulate such information are still hardly used in vehicle context. One example of
an abstract vector representation in an automotive context called Drive2Vec is presented in Hallac et al.
(2018): an unsupervised embedding of low-level sensory data into a vector, which is subsequently used
to make predictions about the vehicle’s state. Similar to word embedding approaches, Drive2Vec learns
an embedding from a high-dimensional vector space (i.e., language or in this case several sensor streams)
to a vector representation of comparably low dimension (representational space). Another example of an
alternative knowledge representation approach is the work presented in Yamazaki et al. (2016), where
the authors use symbolization, a language modeling technique, to obtain semantic descriptions of driving
scenes.

2.3.3 Driving Context Classification

Classification of the current driving context, i.e., if the vehicle is currently driving on a highway or in
an urban area, has been investigated mainly in the earlier days of ADAS research before digital maps
were available at a large scale, which could be used in combination with the vehicle’s current position
measured using GPS to detect the driving context. However, inferring contextual information from on-
board sensory data is appealing as either a fallback option in situations when GPS is not available or if
keeping an updated map with driving context information is not feasible. Another simple approach is to
classify the current driving context based on a set of conditional, logical rules using if-else statements

28 Research Context

Figure 2.7: Illustration of the SegNet FCN (Fully Convolutional Neural Network) architecture for
semantic segmentation of an image visualizing the input data as well as the output of
the network with pixel-wise labels indicating class membership. Image source: Badri-
narayanan et al. (2015)

such as “if the current velocity is greater than 100 km/h, then the current driving context is highway”.
However, this simple approach suffers from poor scaling and the difficulty to formulate exact definitions
of all possible target categories in advance. Improving on a logical rule set, the approach proposed
in Hauptmann et al. (1996) employs a combination of a fuzzy-logic system based on the ego-vehicle’s
dynamics such as velocity, active gear and acceleration and a data-driven feed-forward neural network,
which additionally uses a front-facing camera. Engstrom and Victor (2001) apply statistical pattern
recognition and a simple feed-forward neural network using solely the ego-vehicle’s dynamics to classify
four different driving context categories. Modern approaches tend to focus more on the classification and
analysis of particular traffic situations as in Hermann and Desel (2008) or driving events as in D’Agostino
et al. (2013), which can then be put in relation to the driver’s behavior.

2.3.4 Object Detection and Classification

Detecting objects in the vehicle’s surroundings and classifying their type is a central research problem
in automated driving and more generally, in AI. Knowledge about type, position and behavior of other
traffic participants as well as road lane topology is a crucial component for safe automated driving. The
algorithmic choice for detecting dynamic objects depends heavily on the sensor modality used. If LIDAR
sensors are used, typically model-based approaches involving the object’s geometry and dynamics are
employed (Petrovskaya and Thrun, 2009b; Petrovskaya and Thrun, 2009a; Darms et al., 2008). Classic
computer vision approaches employ probabilistic methods combined with information about context,
scale or shapes detected using engineered features such as part-based models or HOG (Histogram of
Oriented Gradients) features to identify cars (Held et al., 2012), traffic signs (H. Li et al., 2015) or
the road topology (Alvarez and Lopez, 2011; Beyeler et al., 2014). Such methods however have been
drastically outperformed in recent years through sophisticated DNN architectures such as CNNs with
remarkable results on tasks like traffic sign detection (Ciresan et al., 2012a; Sermanet and LeCun, 2011)
achieving partly super-human performance (Stallkamp et al., 2012). Subsequently, DNNs have been used
to segment the road, or more generally, the traversable space (Mohan, 2014; Bittel et al., 2015) or for
semantic segmentation of the complete image, i.e., labeling each pixel in the image with the object class
it belongs to (cf. Fig. 2.7), using FCNs (Fully Convolutional Neural Networks) (Badrinarayanan et al.,
2015; Long et al., 2015; G. Chen et al., 2018). The approach proposed in X. Li et al. (2017) deals with the
special case of detecting vulnerable road users, i.e., pedestrians and bicyclists, by incorporating a CNN
variant for classification and localization. Huval et al. (2015) evaluate general applicability and usability
of CNNs for lane and vehicle detection when deployed on a real-time critic system concluding that
powerful GPUs enable real-time capabilities of such approaches. An overview over recent approaches
to tackle object detection and semantic segmentation using DNNs in an automotive context can be found
in Feng et al. (2019), while Janai et al. (2017) give a more general overview of computer vision for

2.3 Automated Driving 29

Figure 2.8: Examples visualizing different modeling approaches for motion prediction in automo-
tive context. Image source: Lefèvre et al. (2014)

automated vehicles.

2.3.5 Trajectory Prediction

Predicting future behavior and positions of other traffic participants from observations is essential for
collision avoidance and thus safe motion planning, and needs to be solved by human drivers and auto-
mated vehicles alike to reach their desired goal. However, future positions of vehicles not only depend
on each vehicle’s own past positions and dynamics like velocity and acceleration, but also on the be-
havior of the other traffic participants in the vehicle’s surroundings. Motion prediction for intelligent
vehicles in general has seen extensive research in recent years, as it is a cornerstone for collision-free au-
tomated driving. Lefèvre et al. (2014) classify such prediction approaches into three categories, namely
physics-based, maneuver-based and interaction-aware, depending on their level of abstraction. Fig-
ure 2.8 illustrates the differences between the three families of approaches: the physics-based approach
assumes a constant velocity of both vehicles, whereas the maneuver-based approach assumes that the
blue car turns left while the black car goes straight. Finally the interaction-aware approach assumes
similar motions as the maneuver-based approach whereas the motion of each vehicle is constrained by
the traffic rules as well as the relative behavior of the other car.
Physics-based approaches represent vehicles as dynamic entities, which obey the laws of physics. To
predict future motion, such approaches employ dynamic and kinematic models linking control inputs,
car properties and external conditions to the evolution of the state of the vehicle. Hence, such approaches
are well-suited for short term trajectory prediction but suffer from instabilities when predicting longer
time-windows into the future and are unable to account for any change in vehicle motion caused by a
particular maneuver (e.g., slowing down or performing a turn). Maneuver-based approaches are more
advanced assuming the vehicle motion is a series of maneuvers, which are performed independently from
the other traffic participants. Such approaches rely on early detection of the maneuver the driver intends
to perform, which is then assumed to match the future behavior of the vehicle. If the identification of
the maneuver was correct, these approaches allow for more accurate long term predictions compared to
purely physics-based approaches. However, they ignore potential interconnections in the motion between

30 Research Context

Figure 2.9: Visualization of one state-of-the-art LSTM-based architecture for vehicle trajectory pre-
diction combining social pooling to account for the influence of other vehicles on the
target vehicle with a maneuver-based prediction module. Image source: Deo and Trivedi
(2018a).

several traffic participants, which, in practice, share the road and the motion of one vehicle will influence
the motion of other vehicle in its surroundings.
There exist a growing number of different interaction-aware approaches to account for those dependen-
cies and mutual influences between traffic participants or, more generally, agents in the scene. Probabilis-
tic models like cost maps (Bahram et al., 2016) account for physical constraints on the movements of the
other vehicles. Classification approaches categorize and represent scenes in a hierarchy (Bonnin et al.,
2012) based on the most generic ones to predict behavior for a variety of different situations. Data-driven
approaches to behavior prediction mainly rely on LSTM neural network architectures (Hochreiter and
Schmidhuber, 1997), which have proven to be a powerful tool for sequential data analysis. Alahi et al.
(2016) model interactions in the learning network architecture by introducing so-called social-pooling
layers to connect several LSTMs each predicting one agent at a time. Altche and La Fortelle (2017)
use a LSTM network and account for interactions by including distances between the target vehicle and
other agents directly in the training data. A similar approach is proposed in Deo and Trivedi (2018b),
but the authors combine LSTM networks with an additional maneuver classification network to predict
future vehicle motion. Deo and Trivedi (2018a) adapted the combination of several LSTM networks to
encode vehicle trajectories, (convolutional) social-pooling layers to account for interactions between the
vehicles, and a maneuver-based LSTM decoder to predict vehicle trajectories in highway situations (see
Fig. 2.9). LSTM-models are currently considered the most successful approaches and therefore the state-
of-the-art regarding trajectory prediction. One issue with data-driven approaches to behavior prediction
accounting for relations between agents is that the number of other vehicles is variable. If information
about vehicles other than the target are encapsulated in the input of the neural network, typically a spe-
cific number of other vehicles of interest are manually chosen a priori to avoid this issue (Altche and
La Fortelle, 2017; Deo and Trivedi, 2018b). If the information about other vehicles is encapsulated in
the network architecture, it might be necessary to train several networks depending on the situation at
hand.

2.3.6 Online Learning

Common to all approaches mentioned in section 2.3.5 is the fact, that the models are trained offline
on batched data and remain unchanged during deployment. In contrast, incremental or online learning
approaches, which attempt to tackle learning tasks by processing sequential data one at a time, gained
growing interest as an attractive alternative to update learning models during deployment. This approach
is particularly interesting in the context of big data and in situations, where the system needs to learn
from continuously incoming data streams and a complete data set during offline training is not available.

2.3 Automated Driving 31

There exists an increasing number of online learning approaches in several problem domains (see Losing
et al. (2018), Gomes et al. (2017), and Hoi et al. (2018) for a comprehensive overview of the field).
However, such models adapting their (neural) weights at run time through online learning are rather
rarely investigated in automotive context due to safety considerations, issues with convergences time
as well as the lack of proofs/guarantees that the models converge at all. The model presented in Maye
et al. (2011) uses self-supervised online learning to recognize, classify and add new maneuvers of the
ego-vehicle at run time. The approach employed in Graf et al. (2014) uses case-based reasoning to learn
to predict driving behavior for specific driving situations, namely intersection scenarios. Losing et al.
(2017) employ incremental learning to personalize maneuver prediction at intersections. An alternative
approach to combining several weak learning models such as stumps or smoothing splines through an
averaging scheme is boosting (Taieb and Hyndman, 2014), which offers superior performance over the
individual learners. An online learning approach based on SNNs has been shown in DeWolf et al. (2016)
to be successful in similar domains such as adaptive robot arm control, but has not been applied yet in an
automotive application such as trajectory prediction.

2.3.7 Data sets

With the advent and success of sophisticated DNN architectures and their success in several domains
related to automated driving such as object detection (see section 2.3.4) and behavior prediction (see
section 2.3.5), the demand for large-scale data sets for training such networks grew significantly in recent
years. Furthermore, there is an interest in publicly available data sets, which not only enable competition
between researchers but also allow for transparent benchmarking of approaches against each other. Data
sets for image classification such as the MNIST data set for hand-written digits (LeCun et al., 1998),
the GTSRB for traffic sign recognition (Stallkamp et al., 2012) and the ImageNet data set (Deng et al.,
2009) provided researchers with large amounts of labeled image data facilitating significant progress in
this research field.
One of the first data sets being made publicly available on a larger scale for research in an automotive
context and encouraging competition is the KITTI vision benchmark suite (Geiger et al., 2013), which
was recorded using the Annieway vehicle prototype11 in urban environments in the region of the German
city Karlsruhe. The KITTI data set offers raw sensory data for different sensor modalities such as LIDAR
and vision alongside ground truth labels and benchmarks for several tasks such as road detection, object
detection, optical flow and tracking. Another large-scale data set targeted at computer vision in an
automotive context is the Cityscapes data set (Cordts et al., 2016). It provides high-definition images
recorded from a driving vehicle with accurate pixel-wise labels for semantic segmentation. Furthermore,
the Cityscapes data set also contains labels for depth information obtained from stereo vision, which for
instance allows to train neural networks to provide depth information based only on monocular input.
A comparable data set for semantic image segmentation in a broader context (i.e., not restricted to an
automotive context) is the MS COCO (Microsoft Common Objects in COntext) data set (Lin et al., 2014).
Furthermore, the MS COCO data set also provides ground truth captions for each images allowing to
train neural networks translating visual input to language. Another more recent data set similar to the
KITTI data set is the Apollo Scape data set (Huang et al., 2018), which is provided by the Chinese
company Baidu and contains data and ground truth labels for several automotive applications such as
scene parsing, lane segmentation, localization, tracking and trajectory prediction. The NGSIM US-101
data set (Colyar and Halkias, 2018) is a publicly available data set originally intended for driver behavior
and traffic flow models (He, 2017), that has been used to train trajectory predictions models in Altche and
La Fortelle (2017) and Deo and Trivedi (2018b) as well. It was recorded on a segment of approximately
640 m length with 6 lanes on the US-101 freeway in Los Angeles, California using cameras observing
freeway traffic from rooftops with trajectory-data being extracted later from the obtained video footage.

11Karlsruhe Institute of Technology (2018). Annieway Project. URL: http://www.mrt.kit.edu/annieway/ (visited
on 2018-02-22).

http://www.mrt.kit.edu/annieway/

32 Research Context

2.4 Summary

In this chapter, we have taken a round trip through several research areas related to the thesis at hand.
We visited the historical and current developments in the field of AI, machine learning and neuromor-
phic engineering. Especially the young and emerging research field of neuromorphic engineering shows
promise to be an energy-efficient possibility for future applications with tight restrictions regarding their
energy-budget and computational resources. As a mobile application with a growing number of sensors
and increasingly complex modules (often employing modern machine learning techniques) involved not
only in autonomous navigation but also for interacting with the passengers inside and other traffic par-
ticipants outside the car, intelligent vehicles in general offer promising application possibilities for the
technology developed in this research area. However, the computing hardware prototypes (Furber et al.,
2014; Akopyan et al., 2015; M. Davies et al., 2018) as well as the novel senor technologies (Licht-
steiner et al., 2008) are not mature enough yet to either become commercial products or to be deployed
in series-production vehicles. Additionally, the principles of SNNs in combination with dedicated com-
puting hardware show promise to be an energy-efficient algorithmic substrate to be applied in future
automotive applications. However, this algorithmic approach has only been investigated in rather simple
robotic applications (Conradt et al., 2015; T. C. Stewart et al., 2016; Galluppi et al., 2014) and, similar
to the neuromorphic hardware, is not mature enough yet, especially for such safety-critical applications
like automated driving.
Furthermore, we presented an overview of different architectures for cognitive modeling putting empha-
sis on vector-based representations such as the SPA or, more generally, VSAs. After showing alternative
approaches such as symbolic and connectionist cognitive architectures, we also reviewed the most promi-
nent applications of such architectures and the representations they employ. We have seen, that there is a
gap between architectures that are well-suited for modeling higher-level cognitive tasks and lower-level
tasks closer to the dynamics of perception and action. While the former is most successfully tackled with
symbolic modeling architectures, the latter often demands for precise mathematical modeling for dealing
with the complexity and dynamics of real-world physics. Therefore, little attempts have been made to
use cognitive modeling in real robotic systems and if, the investigated tasks are often simplified (Neubert
et al., 2016) and still far away from the demands imposed by complex systems like automated vehicles.
Although we do not attempt to close this gap in our proposed work, we show that structured vector
representations are an interesting option to encode automotive scenes in an abstract, unified and sensor
independent substrate. Today’s sensing and processing hardware is currently not intended to support
such a representation. However, the full strength of this approach can only unfold once it is possible to
employ cognitive modeling and spiking neuron principles in the complete chain from sensing to behavior
with dedicated hardware support.
Finally, we summarized the current state-of-the-art in several sub-domains of automated driving related
to our work. After a brief historical overview, we focused on reviewing approaches currently used for
representing knowledge in an automotive context. As stated earlier, the techniques employed here use
mainly Bayesian statistics and mathematical modeling to deal with the complexity of the real world.
Subsequently, we reviewed the state-of-the-art in several selected tasks from sub-domains related to au-
tomated driving. These tasks mirror the application examples we have chosen as use-cases to investigate
our approaches and will be revisited in subsequent chapters (see chapters 5, 6 and 7).
Admittedly, our work touches and incorporates prior work from very different research fields by devel-
oping an approach for representing automotive scenes in an abstract vector representation inspired by
modern cognitive modeling approaches. To the best of our knowledge, our work is the first to employ
such a unified vector representation in an automotive context. The only other work encapsulating vehicle
data in a compact vector representation is presented in Hallac et al. (2018), whose approach uses sensory
data at a far lower level (i.e., closer to the actual sensor data) than we do and targets different application
scenarios.
In the next chapter, we give a detailed introduction to the mathematical theory behind VSAs in general

2.4 Summary 33

and more specifically to the SPA as well as to the principles of the NEF. Together with the review
presented here, this will form the theoretical basis for the remainder of the thesis.

3 Theoretical background

In this chapter, we present the theoretical background and mathematical formalism needed as basis for
later chapters. We introduce VSAs (Vector Symbolic Architectures), describe their most important prop-
erties and present proofs where relevant for this thesis. We proceed with one particular instantiation
of VSA, the SPA (Semantic Pointer Architecture), and present more specific properties, which do not
necessary hold for all VSAs. Additionally, we give a brief introduction to the theory of the NEF (Neural
Engineering Framework), a set of mathematical tools enabling the implementation of the SPA in SNNs.
Then, we shift our focus to cognitive modeling based on such vector representations keeping it as generic
as possible without particular attention on the SPA. We show several approaches to generate vector vo-
cabularies, which form the basis of more complex structured representations built from them using the
VSA’s algebraic operations. Bringing all of the presented tools together, we show how the NEF can be
used to implement vector representations, which have been generated using the SPA, in a spiking neuron
substrate.

3.1 Mathematical properties of Vector Symbolic Architectures

The term VSAs - first coined by Gayler (2003) - refers to a class of similar approaches for cognitive
modeling making use of distributed representations. The basic idea behind all of those approaches is
to represent structure, i.e., cognitive concepts, symbols or language, in a high-dimensional vector space
by mapping each entity to be represented to a (possibly random) vector. One of the most important
properties of high-dimensional vector spaces enabling this kind of representation is the fact that two
high-dimensional random vectors are likely to be dissimilar. In the following, we will show what we
mean by fuzzy terms like dissimilar or likely and provide more precise statements.
One main requirement in the context of cognitive modeling is the ability of the modeling framework
to address the binding problem (Treisman, 1999). Jackendoff (2002) phrases this as the problem of
“combining independent bits into a single coherent percept”. One strength of VSAs is that they offer
the possibility to manipulate their entities (i.e., vectors) through algebraic operations, usually at least
one addition-like and multiplication-like operation each. Typically, the multiplication operation is used
for binding different representations into a new vector. This operation, depending on the vector repre-
sentation, is constructed with some desirable properties in mind (see Definition 3.10). A first attempt
on using a multiplication operation for binding vectors was done by Smolensky (1990) using the tensor
product. The major drawback of this approach is exploding dimensionality of the tensor product. For fi-
nite dimensional vector spaces V and W of dimensions n and m, the tensor space V ⊗W is a vector space
of dimension n ·m. As a consequence, each binding operation v⊗w for vectors v ∈ V,w ∈W would
increase the dimension of the representational space, which is computationally unfeasible and leads to
poor scaling. This lead researchers to define several slightly different multiplication or binding opera-
tions, depending on the underlying numerical structure. The most prominent examples are element-wise
multiplication in the MAP-architecture proposed by Gayler (1998), the XOR-operation in BSCs pro-
posed in Kanerva (2000) and Kanerva (2009) as well as circular convolution HRRs proposed in T. Plate
(1991) and T. Plate (1994).

Definition 3.1. Let N ⊆K be a subset of some number field K (i.e., a set of numbers) and D∈N a natural
number. Furthermore, let

VD(N) = {x = (x0, · · · ,xD−1) |xi ∈ N} ⊆ KD

36 Theoretical background

be the set of all D-tuples with entries in N. Let

⊕ : VD(N)×VD(N)−→ KD,(v,w) 7−→ ⊕(v,w) =: v⊕w,

� : VD(N)×VD(N)−→ KD,(v,w) 7−→�(v,w) =: v�w

be functions with ⊕ following the rules of ordinary addition - namely commutativity, associativity, exis-
tence of a neutral element and existence of inverse elements - and for any elements u,v,w ∈VD(N)

u� (v⊕w) = u�v⊕u�w.

If there is furthermore a distinct element 111 ∈VD(N) with

v�111 = 111�v = v

for any v ∈VD(N) and a function φ : VD(N)×VD(N)−→ [−1,1], we call (VD(N),�,⊕,φ) a VSA (Vector
Symbolic Architecture) of dimension D. The function φ is called a measure of similarity. If N is a subset
of the real or complex numbers, i.e., N ⊂ R or N ⊆ C, we call any VSA (VD(N),�,⊕,φ) continuous.

Although the set VD(N) might not be a vector space in the strict mathematical sense (in most cases it is at
least a subset of a vector space), we will refer to its elements as vectors. Before we proceed in deriving
some important properties of VSAs, we present some of the most prominent examples.

Example 3.2. Vector Symbolic Architectures

1. The first example of a VSA is Binary Spatter Codes (BSCs). Kanerva (2009) restricts the elements
of his vectors to binary values, i.e., N = {0,1} = F2. The operations � and ⊕ in this case are
the XOR-function and a thresholded sum respectively. With vi = (vi0, · · · ,viD−1) ∈ VD(N) and
i ∈ {1, · · · ,n}, the operation ⊕ is usually defined in the following way

v1⊕·· ·⊕vn =:x = (x0, · · · ,xD−1) with

x j :=

1

n
∑

i=1
vi j ≥ n

2

0
n
∑

i=1
vi j <

n
2

.

This definition ensures, that the results of the addition operation ⊕ remain binary. Usually, a
normalized Hamming distance

φ(v,w) := 1− 2
D
|{vi 6= wi|i ∈ {0, · · · ,D−1}}|

is used as a measure of similarity in this architecture. BSCs have some interesting properties
compared to other VSAs: The neutral element for both operations � and ⊕ is the vector 000 :=
(0, · · · ,0), while all vectors are self-inverse regarding the multiplication operation �, i.e., v�v=000
for any v ∈VD(N).

2. The first example of a VSA in continuous space is the MAP (Multiply-Add-Permutate) architecture
proposed by Gayler (1998) with N ⊆ R and the cosine similarity as measure of similarity

φ(v,w) =
v ·w
‖v‖‖w‖

= cos(θ),

with θ being the angle between the vectors v,w ∈ VD(N). The operations � and ⊕ are simply
element-wise multiplication and addition with neutral elements 111 = (1, · · · ,1) and 000 := (0, · · · ,0)
respectively.

3.1 Mathematical properties of Vector Symbolic Architectures 37

x0

y0

z0

y1

z1

y2

z2

x1

x2

z = x�y
z0 = x0y0 + x2y1 + x1y2

z1 = x1y0 + x0y1 + x2y2

z2 = x2y0 + x1y1 + x0y2

Figure 3.1: Visualization of circular convolution as compressed outer product for 3-dimensional
vectors. Image adapted from T. A. Plate (1994).

3. Another example of a VSA in continuous space is Holographic Reduced Representations (HRRs)
proposed by T. Plate (1991). The main difference compared to the MAP architecture is, that T.
Plate (1994) in general allows complex vector values, i.e., N ⊆ C and uses a different multiplica-
tion operation �: circular convolution. For any two vectors x,y ∈VD(N), circular convolution �
is defined as

z = x�y with z j :=
D−1

∑
k=0

xky(j−k) mod D.

The neutral element regarding circular convolution is 111 = (1,0, · · · ,0). One important property
of this operation is the fact that circular convolution can efficiently be computed using the DFT
(Discrete Fourier Transform). The DFT is defined as the function

DFT : CD −→ CD,x 7−→

(
D−1

∑
j=0

x jζ
− jk
D

)D−1

k=0

with ζD = exp
(

i2π

D

)
. (3.3)

Similarly, the IDFT (Inverse Discrete Fourier Transform) is defined as the function

IDFT : CD −→ CD,x 7−→

(
1
D

D−1

∑
j=0

x jζ
jk

D

)D−1

k=0

. (3.4)

From the convolution theorem (see Bracewell, 2000, Chap. 6) we know, that we can calculate the
circular convolution of any two vectors v,w ∈VD(N) by

v�w = IDFT (DFT (v)�DFT (w)) , (3.5)

with � denoting element-wise multiplication in this case. This induces that circular convolution
obeys the same rules (commutativity and associativity) as element-wise multiplication, as both
operations are the same except for a change of basis.

38 Theoretical background

As mentioned earlier, one of the most important features of (high-dimensional) VSAs is the fact that two
random vectors are likely to be dissimilar. We will derive this result in the following Theorem.

Theorem 3.6. Let (VD(N),�,⊕,φ) a Vector Symbolic Architecture. For two randomly chosen vectors
v,w ∈ VD(N), the distribution of the similarity φ (v,w) is a version of the beta-distribution BD−1

2 ,D−1
2

scaled and shifted to the interval [−1,1] with mean µ = 0 and variance σ2 = c2

D up to a constant c. The
standardized distribution trends towards a normal distribution with growing D.

Proof. We will only give the proof of this Theorem for real valued VSAs, i.e., N ⊆R and φ as the cosine
similarity. Without loss of generality, we assume the vectors v,w picked randomly from the unit sphere
SD−1 = {v ∈ RD|‖v‖ = 1}, as we can simply normalize the vectors by v

‖v‖ . Since binary VSAs can be
associated with a euclidean sphere as well, the same result can be proven for those architectures with
similar arguments (see Kanerva, 1988, for details). Due to symmetry of the unit sphere SD−1, we can
furthermore - again without loss of generality - choose one vector as a unit vector, i.e., w = (1,0, · · · ,0).
Thereby, the cosine similarity for v = (v0, · · · ,vD−1) is given by φ (v,w) = v0 By fixing one coordinate,
we get the constraint ∑

D−1
i=1 v2

i = 1− v2
0, which is equivalent to a lower dimensional sphere SD−2 with

radius
√

1− v2
0. Hence, the cosine similarity φ (v,w) =: x is proportional to the surface of a conical

frustum constructed from SD−2 with radius
√

1− x2, slope 1√
1−x2 and some height h, i.e., the density

function is proportional to

fφ(v,w)(x) ∝

√
1− x2(D−2)

√
1− x2

h ∝
(
1− x2)D−3

2 .

Substituting x = 2u−1, we get(
1− (2u−1)2

)D−3
2

∝
(
u−u2)D−3

2 = (u(1−u))
D−3

2 = u(
D−1

2 −1) (1−u)(
D−1

2 −1) ,

which is the density function of the beta distribution BD−1
2 ,D−1

2
. Thus, the cosine similarity is also beta

distributed, but scaled and shifted to the interval [−1,1] by x = 2u−1.
For α = β = D−1

2 , the mean of the beta distribution is µ̃ = 1
2 . Applying the substitution, we get the mean

of the shifted distribution µ = 2µ̃−1 = 0.
Making use of the simplification that the distribution of similarity is the same as the distribution in the
first coordinate, the variance is given by the expected value of the square value of the first coordinate,
i.e., E(v2

0). Since all coordinates are identically distributed, we get

E(v0) =
1
D

D−1

∑
i=0

E(v2
i) =

1
D
E

(
D−1

∑
i=0

v2
i

)
︸ ︷︷ ︸

=:c2

=
c2

D
.

Hence, the variance of the distribution of the cosine similarity is σ2 = c2

D . In the particular case of the
unit sphere SD−1, we get c2 = 1 and a variance of σ2 = 1

D .
To see the convergence behavior of the standardized distribution, we look at the logarithm of its density
function

log
(

fφ(v,w)

(
x√
D

))
=

D−3
2

log
(

1− x2

D

)
+C. (3.7)

Using the Taylor series approximation of the logarithm, equation (3.7) transforms to

log
(

fφ(v,w)

(
x√
D

))
=

D−3
2

(
−x2

D
+

x4

4D
± . . .

)
+C =−1

2
x2 +

3
2D

x2 +O

(
x4

D

)
+C

−→−1
2

x2 +C = log(fN (x)) for D−→ ∞.

3.1 Mathematical properties of Vector Symbolic Architectures 39

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Cosine similarity

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ob

ab
ilit

y
Dimensions

2
4
8
16
32
64
128
256
512
1024
2048
10000

Figure 3.2: Visualization of the distribution of the cosine similarity between two randomly chosen
vectors depending on their dimension.

Hence, with growing D the standardized distribution of the cosine similarity trends to a normal distribu-
tion.

Theorem 3.6 states that the probability of finding two random, non-orthogonal vectors in a VSA de-
creases with growing vector dimension. Figure 3.2, which shows the probability distributions of cosine
similarity for different vector dimensions, illustrates this result. Furthermore, Theorem 3.6 allows us to
give a more formal definition of the term dissimilar.

Definition 3.8. Let (VD(N),�,⊕,φ) be a VSA (Vector Symbolic Architecture) of dimension D and c∈N
a constant. We call any two vectors v,w ∈ vd(n) dissimilar, if

|φ(v,w)| ≤ ε, with ε := c√
D
. (3.9)

Analogously, we call any two vectors v,w ∈VD(N) similar, if |φ(v,w)|> ε . Similar vectors are denoted
by v≈ w.

Definition 3.8 can also be stated as follows: we consider any two vectors similar, if their similarity
is higher than what we would expect from two randomly chosen vectors. Therefore, we make use of
the fact that for growing dimension D the cosine similarity follows approximately a normal distribu-
tion Nµ,σ , with µ = 0 and σ = 1√

D
and the so-called three-sigma-rule. This rule, which follows from

Chebyshev’s inequality, states that the probability P(µ−3σ ≤ X ≤ µ +3σ) ≥ 0.95 for any unimodal
distributed random variable X . For normally distributed X , we even have

P(µ−2σ ≤ X ≤ µ +2σ)≈ 0.954

P(µ−3σ ≤ X ≤ µ +3σ)≈ 0.997.

Given Definition 3.8, the probability of two randomly chosen vectors being similar is below 5 % for
c = 2 and even below 0.3 % for c = 3, while the actual numerical interval [−cσ ,cσ] only depends on
the vector dimension D. Hence, we denote the weaker version of Definition 3.8 by εweak =

2√
D

as weak

similarity threshold and the stronger version by εstrong =
3√
D

as strong similarity threshold. For lower
VSA dimensions such as D≤ 50, it can be beneficial to work with the weak similarity threshold, whereas
for higher dimensions the stronger version can be used.
Based on the definition of similarity, we derive criteria for “good” multiplication functions in VSAs.

40 Theoretical background

Definition 3.10. Let (VD(N),�,⊕,φ) be a VSA (Vector Symbolic Architecture) of dimension D. We
call its multiplication function

� : VD(N)×VD(N)−→ KD,(v,w) 7−→�(v,w) =: v�w

a binding function if

1. for any two vectors v,w ∈VD(N), the vector v�w is dissimilar to both v and w, i.e.,

|φ(v,v�w)| ≤ ε and |φ(w,v�w)| ≤ ε.

2. for any vector v∈VD(N), there exists a vector v̄∈VD(N) with v� v̄≈ 1. We call v̄ a pseudo-inverse
element. If furthermore v� v̄ = 1, we call the vector v̄ exact inverse.

It is worth noting, that all multiplication operations mentioned in Example 3.2 fulfill the criteria for bind-
ing functions as stated in Definition 3.10. The first criteria is intended to allow structured representations
in VSAs. Representations built solely upon an addition function lack a mechanism to impose structure,
as the sum of vectors is similar to all summands. For continuous VSAs, this result is straightforward due
to the linearity of the dot product, but it holds true for BSCs as well. Therefore, summing vectors only
allows to encode unordered sets of entities. The property of binding functions to map two vectors to a
vector dissimilar to both inputs enables structured representations.
The second criteria of Definition 3.10 for binding functions is the basis to decode or recover the individual
vector ingredients from structured representations. The existence of a (pseudo-) inverse element allows
the retrieval of v,w ∈VD(N) from v�w by

v̄� (v�w) = v̄�v︸︷︷︸
≈1

�w = w̃≈ w. (3.11)

In case of exact inverse elements, the right hand side of equation (3.11) becomes an exact equality w̃=w.
In most cases, however, the result w̃ is not exactly equal to w, but similar. It is this inherent inexactness
of most VSAs that makes them suitable candidates for cognitive modeling (Eliasmith, 2013). On the
other hand, it imposes a functional demand for a clean-up memory. A clean-up memory is a mechanism,
which maps noisy versions of vectors like w̃ to their exact counterparts, here w. Therefore, we need to
have a set of vectors, which represent established concepts or symbols the system has knowledge of.

Definition 3.12. Let (VD(N),�,⊕,φ) be a VSA (Vector Symbolic Architecture) of dimension D with
binding function �. We call a finite subset ϑ (VD(N) a vocabulary. A function γ : KD −→ ϑ is called
a clean-up memory, if

1. for any vector v ∈ KD we have

φ (v,γ(v))> φ (v,w) , for any vector w ∈ ϑ ,γ(v) 6= w.

2. for any two similar vectors v 6= ṽ ∈ KD,v ∈ ϑ , i.e., ṽ≈ v, we have γ(ṽ) = v.

Definition 3.12 states, that the cleaned-up version of a vector is more similar to the original (noisy)
version than any other vector in the vocabulary.

3.2 The Semantic Pointer Architecture

In this section, we focus on one particular VSA, namely the SPA, as we will be using it throughout this
work. The SPA is an adoption of Plate’s previously mentioned HRRs (cf. Example 3.2). Revisiting Def-
inition 3.1, the underlying number field of the SPA is the field of real numbers, i.e., N ⊆ R, the addition
⊕ and multiplication � operations are element-wise addition and circular convolution respectively, and
the cosine similarity serves as measure of similarity φ . We will use S (D) as a short notation for the D-
dimensional SPA (VD(R),�,⊕,φ). Eliasmith (2013) gives an in-depth description of the SPA. However,
we recapitulate some important properties, which will be used later in this work.

3.2 The Semantic Pointer Architecture 41

Figure 3.3: Visualization of the similarity φ (1,v� v̄) between the neutral element 1 and the result
of applying the pseudo-inverse to different vectors for varying vector dimensions. This
plot shows the result of 100 samples compared to the similarity threshold ε .

Lemma 3.13. Let v= (v0, . . . ,vD−1) be an element of a D-dimensional SPA S (D), i.e., v0, . . . ,vD−1 ∈R.
The vector v̄ = (v0,vD−1, . . . ,v1) is a pseudo-inverse element of v with respect to circular convolution,
i.e., v� v̄≈ 1.

Here, we skip an explicit proof for this lemma but rather point to T. Plate (1994, Section 3.1.2 and 3.1.3)
for a in-depth derivation. However, we visualize the similarity φ (1,v� v̄) between the neutral element
1 and the result of applying the pseudo-inverse v � v̄ compared to the similarity threshold ε (weak and
strong version) in Fig. 3.3. Therefore, we randomly chose 100 sample vectors for various dimensions,
convolved them with their pseudo-inverse and compared the result to the neutral element 1. We observe,
that this similarity remains almost constant slightly above 0.7 and already for low vector dimensions
(D > 20) way above the strong similarity threshold of ε = 3√

D
.

Lemma 3.13 states that we can find a pseudo-inverse element v̄ for any vector v in a D-dimensional SPA
(given the dimension D is sufficiently large). Although we can also find an exact inverse element v−1

for most vectors v, it is often more useful to work with pseudo-inverses instead of exact inverse ele-
ments. We have already seen, that we can use the DFT (Discrete Fourier Transform) and IDFT (Inverse
Discrete Fourier Transform) to calculate circular convolution efficiently by element-wise multiplication
(this follows from the convolution theorem, see Bracewell, 2000, Chap. 6) in the frequency domain, i.e.,

v�w = IDFT (DFT (v)�DFT (w)) . (3.5 revisited)

Furthermore, the DFT of the convolutive neutral element 1 = (1,0, . . . ,0) is

DFT (1) = (exp(i0) , . . . ,exp(i0)) = (1,1, . . . ,1) . (3.14)

This gives us a way of finding an exact inverse element v−1 by

DFT (1) = DFT (v)�DFT (v−1). (3.15)

By denoting the j-th element of the Fourier Vector DFT (v) with DFTj(v), we get

DFTj(v)�DFTj(v−1) = 1 for j ∈ {0, . . . ,D−1} . (3.16)

42 Theoretical background

If we express DFTj(v) ∈C in polar coordinates, i.e., DFTj(v) = r j exp(iϕ j), we directly get from equa-
tion (3.16) that DFTj(v−1) = 1

r j
exp(−iϕ j). By using the symmetry property of the real-valued DFT, we

can see that the transform DFTj(v̄) of the pseudo-inverse element v̄ from Lemma 3.13 is the complex
conjugate of DFTj(v), i.e., we can write DFTj(v̄) = r j exp(−iϕ) in polar coordinates. From those equa-
tions, we can see that the pseudo-inverse v̄ has the same norm as the original vector v, i.e., ‖v‖ = ‖v̄‖,
whereas the norm of the exact inverse v−1 can become significantly larger than the norm of v in some
cases. This is due to the fact that elements of the transform of the pseudo-inverse have the same lengths
r j as the original vector, whereas the transformed elements of the exact inverse have lengths 1

r j
, which

can become significantly large when r j is close to 0. The relation between the vector norm and the mag-
nitudes in the frequency domain is given by Parseval’s theorem (also known as Rayleigh’s theorem, see
Bracewell, 2000, Chap. 6), which states

‖v‖2 =
D−1

∑
k=0
|vk|2 =

1
D

D−1

∑
k=0
|DFTk (v)|2 =

D−1

∑
k=0

r2
k . (3.17)

This can lead to additional noise when retrieving vectors from structured representations (cf. equa-
tion (3.11)). However, there is a certain class of vectors, for which the pseudo- and exact inverse element
coincide.

Definition 3.18. Let v be a vector in a D-dimensional SPA S (D) with exact and pseudo-inverse elements
v−1 and v̄ respectively. We call v a unitary vector, if and only if v−1 = v̄. We denote the set of unitary
vectors by U ⊂S (D).

Definition 3.19. Let v be a vector in a D-dimensional SPA S (D). We define the convolutive power by
an exponent p ∈ R by

vp := ℜ

(
IDFT

(
(DFTj (v)p)

D−1
j=0

))
,

where ℜ denotes the real part a of a complex number a+ ib ∈ C.

Unitary vectors take a special role in the SPA as they have some interesting and useful properties.

Lemma 3.20. Let U be the set of unitary vectors in the D-dimensional SPA S (D). The following
statements hold

i All elements of U have unit length, i.e., we have ‖u‖= 1 for any vector u ∈U .

ii U is closed under convolutive exponentiation, i.e., up ∈U for any u ∈U and p ∈ R.

iii The product under circular convolution of two unitary vectors is unitary, i.e. u1 � u2 ∈ U for
u1,u2 ∈U .

iv Convolution with unitary vectors preserves the norm, i.e., ‖v‖= ‖v�u‖ for any v∈S (D),u∈U .

Proof. To show that unitary vectors have unit length, we directly calculate the first component of convo-
lution z := u� ū between a unitary vector u and its pseudo-inverse ū:

z0 =
D−1

∑
k=0

ukū−k mod D =
D−1

∑
k=0

u2
k = ‖u‖

2 .

Since u is a unitary vector, we have u−1 = ū and therefore u � ū = 1. Thus, for the first component of
z := u� ū, we have

1 = z0 = ‖u‖2 ,

which gives the first result of the lemma.

3.3 The Neural Engineering Framework 43

To show that the set of unitary vectors U is closed under convolutive exponentiation, we write each
component of DFT (u) for u ∈ U in polar coordinates, i.e., DFTj(u) = r j exp(ϕ j). From previous
considerations, we know that DFTj(u−1)= 1

r j
exp(−ϕ j) and DFTj(ū)= r j exp(−ϕ j), which gives r j = 1

for j = 0, . . . ,D−1 because u is a unitary vector. Thus, for any p ∈ R, we have

DFTj (up) = DFTj (u)p = rp
j exp(ipϕ) = 1p · exp(ipϕ) ,

which makes up itself a unitary vector, as all magnitudes are 1.
Similarly, we proof that the convolution of two unitary vectors is again unitary. Let u1,u2 ∈U be unitary
vectors, then we have

DFT (u1 �u2) = DFT (IDFT (DFT (u1)�DFT (u2))) = DFT (u1)�DFT (u2) .

Writing both DFTj(u1) = r1 j exp(ϕ1 j) and DFTj(u2) = r2 j exp(ϕ2 j) in polar coordinates, we get

DFTj (u1 �u2) = r1 j · r2 j · exp(ϕ1 j +ϕ2 j) = 1 · exp(ϕ1 j +ϕ2 j) ,

as we have r1 j = 1 and r2 j = 1 for all magnitudes since both u1 and u2 are unitary vectors. This in turn
makes their product under convolution unitary as well.
To proof that convolution with unitary vectors preserves the norm, we use Parseval’s theorem (cf. equa-
tion (3.17)) again. For any vector v ∈ S (d) and a unitary vector u ∈ U , we denote z := v � u and
get

‖v�u‖2 =
D−1

∑
k=0
|zk|2 =

1
D

D−1

∑
k=0
|DFTk(z)|2 =

1
D

D−1

∑
k=0
|DFTk(v) ·DFTk(u)|2 . (3.21)

Writing DFTk(v) = rvk exp(iϕvk) and DFTk(u) = ruk exp(iϕuk) in polar coordinates, with ruk = 1 for
k = 0, . . . ,D−1 as u is unitary, equation (3.21) transforms to

‖v�u‖2 =
1
D

D−1

∑
k=0
|rvk exp(i(ϕvk +ϕuk))|2 =

1
D

D−1

∑
k=0
|rvk|2 =

1
D

D−1

∑
k=0
|DFTk (v)|2 = ‖v‖2 .

3.3 The Neural Engineering Framework

In this section, we make a short excursion and give a brief overview of the NEF (Neural Engineering
Framework), as we will be making use of it in forthcoming chapters. The NEF (Eliasmith and C. H.
Anderson, 2003) is a mathematical theory, which provides a set of methods to construct biologically
plausible, large-scale neural models. These methods can be divided into the three main principles of
the NEF: representation, transformation and dynamics. The Nengo1 software suite is a python library,
which implements the NEF’s principles (Bekolay et al., 2014). Nengo has been used to build a variety
of neural models, e.g., models of the Basal Ganglia system (T. C. Stewart et al., 2010; T. Stewart et al.,
2012) and Spaun (Semantic Pointer Architecture Unified Network), a large-scale, functional model of
the brain, which is able to perform eight cognitive tasks (Eliasmith et al., 2012). Furthermore, Nengo has
been used to interface neural models with physical, neuromorphic hardware systems and robots (Conradt
et al., 2015; T. C. Stewart et al., 2016). Here, we give a brief introduction to the NEF’s principles and
refer to Eliasmith and C. H. Anderson (2003), Eliasmith (2013), and Bekolay et al. (2014) for more
details.

1Applied Brain Research Inc. (2018). The Nengo neural simulator. URL: https://www.nengo.ai/ (visited on
2018-04-05).

https://www.nengo.ai/

44 Theoretical background

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Input signal

0

20

40

60

80

100
Fi
rin

g
ra
te
 (H

z)

(a) Tuning curves

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

1

2

3

4

5

6

7

8

Ne
ur
on

(b) Spike times

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0
Input signal
Decoded estimate

(c) Decoded output

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

Ne
ur
on

(d) Filtered neural activity

Figure 3.4: The representation principle of the NEF. Images adapted from Bekolay et al. (2014).

3.3.1 Representation

The first principle of the NEF, representation, provides mathematical tools to encode information, namely
time-varying real-valued vectors, in the activity of neural populations. It is based on the assumption, that
neurons have a “preferred direction vector” in the represented space, each neuron responds most strongly
to. This assumption is grounded by the findings of Georgopoulos et al. (1989) that each neuron in motor
cortex of rhesus monkeys has a different preferred arm direction. The NEF expands this idea to neural
representations in general. Let A be a population of N ∈ N neurons encoding a subset V of a real-valued
vector space, i.e., V ⊆ Rn. Given a function x : R −→ V , we can write the activity ai of the i-th neuron
in a neural population encoding a time-varying vector x(t) as a spike train, i.e., a sum of delta functions

ai (x(t)) =
mi

∑
j=1

δ (t− t j) = Gi(αi〈ei,x(t)〉+ Ji︸ ︷︷ ︸
=:c

) for 1≤ i≤ N, (3.22)

where Gi is the spiking neural non-linearity, αi is the gain of the neuron, ei is the neuron’s preferred
direction or encoding vector and Ji is a bias current to account for neural background activity and t j are
the mi spike-times of the i-th neuron. Notably, the current flowing into the cell is completely determined
by c, whereas the spiking behavior of the neuron model is represented by the non-linear function Gi. The
input current c and therefore the NEF’s encoding process is independent of particular spiking neuron
models.
To decode the input values x(t) back out of the neural population A, the spike train is convolved with
an exponentially decaying filter h : R−→ R to simulate the process of neurons generating post-synaptic
current after spiking (cf. Fig. 3.4d) resulting in

ãi (x(t)) =
mi

∑
j=1

h(t)∗δ (t− t j) =
mi

∑
j=1

h(t− t j). (3.23)

3.3 The Neural Engineering Framework 45

−1.0

−0.5

0.0

0.5

1.0

A

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

0.0

0.5

1.0

B

10

20

30

Ne
ur
on

A

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

10

20

30

Ne
ur
on

B

Figure 3.5: The transformation principle of the NEF. Images adapted from Applied Brain Research
Inc. (2018).

A simple model of an exponential decaying filter is the function h :R−→R, t 7−→ e− t/τp , where τP denotes
the post-synaptic time constant. We obtain an estimation x̂(t) of the original input x(t) as a weighted
sum with some decoder values di

x̂(t) =
N

∑
i=1

ãi (x(t))di. (3.24)

To calculate the optimal decoders di, we need to minimize the error between input x(t) and decoded
output x̂(t)

E =
∫ (

x(t)−
N

∑
i=1

ãi (x(t))di

)2

dx(t). (3.25)

Nengo solves for the decoders di by default using least squares optimization (Eliasmith, 2013)[Appendix
B1]. Figure 3.4 visualizes this encoding process for V = [−1,1] ⊂ R and a population of 8 neurons.
Figure 3.4a shows the tuning curves of individual neurons, which define how these neurons respond to
specific input values. Equation (3.22) is depicted in Fig. 3.4b, which shows a raster plot of the neurons’
spike times based on the input signal shown in Fig. 3.4c. Figure 3.4d, which shows the filtered neural
activity for each neuron, visualizes Equation (3.23). Finally, Fig. 3.4c depicts the original input value as
well as the estimated output of the neural populations’ activity (cf. Equation (3.24)). Note, that the neural
population’s decoded output is only a noisy approximation of the original input value, whose accuracy
can be improved by increasing the number of neurons in the population.

3.3.2 Transformation

The second main principle of the NEF, transformation, provides the mathematical tools to compute func-
tions across connections between populations of neurons. Let A resp. B be populations of N resp. M
neurons encoding a time-varying vector x(t) ∈ V ⊂ Rn resp. y(t) ∈W ⊂ Rm according to the repre-
sentation principle and a function f : V −→W ⊂ Rm. In order to approximate the function f across a
connection from population A to population B, we use the tools of the representation principle, but we
calculate a different set of decoder values d f

i for population A by minimizing the error

E =
∫ (

f (x(t))−
N

∑
i=1

ãi (x(t))d f
i

)2

dx(t). (3.26)

46 Theoretical background

x A
∗h(t)

y
f (x(t))

g(y(t))

Figure 3.6: The dynamics principle of the NEF for recurrent connections.

Given encoders eB
j and gain αB

j for 1 ≤ j ≤ M of population B, we can derive a weight matrix for the
connection from A to B approximating the function f by

wi j = α
B
j d f

i LeB
j for 1≤ i≤ N and 1≤ j ≤M, (3.27)

where L is a M×N linear operator. Here, the NEF makes the assumption, that connection weights can be
factored into encoders, decoders and a linear transform. Figure 3.5 visualizes the NEF’s transformation
principle for V = W = [−1,1] ⊂ R, two neural populations A, B containing 30 neurons each. The left
panel of plots shows the populations’ decoded outputs whereas the right panel depicts the neurons’ spike
times. Population A uses the representation principle to encode a sine function, whereas the transforma-
tion principle was used to calculate the function f : V −→W,x 7−→ f (x) = x2 across the connection from
A to B.

3.3.3 Dynamics

The third main principle of the NEF, dynamics, provides a set of mathematical tools to implement dy-
namical systems in neural populations through recurrent connections. Let A be a population of neurons
with an incoming connection approximating the function f : V −→W ⊂ Rm and a recurrent connec-
tion approximating the function g : W −→W (cf. Fig. 3.6). Thus, the overall function the population is
approximating is

y(t) = h(t)∗ (f (x(t))+g(y(t))) (3.28)

with exponential decaying filter function h : R −→ R, t 7−→ e− t/τ . By applying the Laplace transform to
Equation (3.28), we get

Y(s) =
1

1+ sτ
(F(X(s))+G(Y(s))) . (3.29)

We can rearrange Equation (3.29) to

sY(s) =
G(Y(s))−Y(s)

τ
+

F(X(s))
τ

. (3.30)

Transforming back leads to the differential equation

∂y(t)
∂ t

=
g(y(t)− y)

τ
+

f (x(t))
τ

. (3.31)

Thus, to construct a neural model approximating a differential equation of the form

∂y(t)
∂ t

= a(y(t))+b(x(t)) (3.32)

with functions a : W −→W and b : V −→W , the first two principles of the NEF can be used to create a
neural population of the form as shown in Fig. 3.6. By setting the functions g(y(t)) = τa(y(t))+y(t) and
f (x(t)) = τb(x(t)), we obtain a neural model approximating the desired dynamical system described by
the differential Equation (3.32).

3.4 Cognitive Modeling with Vector Symbolic Architectures 47

(a)
PEDESTRIAN BICYCLE MOTORCYCLE CAR

PE
DE

ST
RI
AN

BI
CY

CL
E

M
OT

OR
CY

CL
E

CA
R

1

0.54 1

0.14 0.53 1

0.083 0.049 0.51 1

0.2

0.4

0.6

0.8

1.0

Si
m
ila
rit
y

(b)

Figure 3.7: Aspects of vector vocabularies: (a) “Conceptual golf ball” depicting the idea of semantic
vectors. Image source: Eliasmith (2013). (b) Cosine similarities in a small, manually
engineered vector vocabulary of dimension 256.

3.4 Cognitive Modeling with Vector Symbolic Architectures

In this section, we give a brief introduction of how we can use the theory shown in sections 3.1 and 3.2 to
represent (structured) information using VSAs. We give a general overview of different ways to establish
vocabularies containing atomic vectors and how we can build more complex representations from those
elementary ingredients. Gallant and Okaywe (2013) refer to these two steps as the first two of three stages
for generating structured vector representations: the pre-processing stage (generating a vocabulary; see
also section 4.1) and the representation generation stage (building structured representations from the
vocabulary; see also 4.2). Furthermore, we will see how these representations can be implemented in
SNNs using the principles of the NEF described in section 3.3.

3.4.1 Vocabularies

Let ϑ ⊂S (D) be a vocabulary in the D-dimensional SPA, where each vector v ∈ ϑ represents one item,
i.e., a symbol, word or concept, in the representational space. The content and size, i.e., the items of
interest to be represented in such a vocabulary and their number as well as the way the representing
vectors are established is highly task-dependent. In its simplest form, all vectors in the vocabulary are
chosen at random. This approach is feasible due to the properties of high-dimensional vector spaces
(cf. Theorem 3.6 in section 3.1) that the probability of randomly chosen vectors being dissimilar grows
with vector dimension. Therefore, we have low probability of unintentionally confusing two different
concept vectors. However, this approach does not capture any similarities between items being repre-
sented. Ideally, the goal is that the similarity between vectors in the vocabulary ϑ somewhat reflects the
similarity between represented items. Figure 3.7a depicts this idea: one subset of the space is assigned
to vectors representing letters whereas another subset contains vectors representing special characters.
For a small number of items, the simplest way to create a vocabulary respecting some kind of similarity
is to manually engineer the desired properties from randomly chosen vectors. Let us assume we want to
derive representative vectors for four different classes of traffic participants, namely pedestrian, bicycle,
motorcycle, and car. A simple structured vocabulary could be constructed in the following way

48 Theoretical background

0
1

8
9

Figure 3.8: A schematic visualization of a CNN network architecture with the second to last layer,
whose activity can be considered a compressed, lower-dimensional representation of the
high-dimensional visual input, highlighted by a red ellipsis.

PEDESTRIAN := DRIVE�MUSCLE+ACTUATOR�LEG�TWO
BICYCLE := DRIVE�MUSCLE+ACTUATOR�WHEEL�TWO

MOTORCYCLE := DRIVE�MOTOR+ACTUATOR�WHEEL�TWO
CAR := DRIVE�MOTOR+ACTUATOR�WHEEL�FOUR,

with DRIVE, MUSCLE, MOTOR, ACTUATOR, LEG, WHEEL, TWO and FOUR ∈ S (D) all
being atomic vectors chosen at random. Figure 3.7b shows the similarities in an example vocabulary
in S (256) constructed in the aforementioned way. This vocabulary is designed to map simple motion
properties into a vector representation. Thus, this manually engineered vocabulary yields the desired
property that vulnerable road users (in this case pedestrians and bicyclists) are more similar to each other
than motor vehicles, whereas there is also similarity between different types of cyclists. This approach
allows the engineer to encapsulate almost any desired kind of similarity without losing transparency
during the encoding process, meaning that the reason for certain similarity artifacts is traceable. However,
not only does this approach become impracticable with increasing number of items in the vocabulary, it
is also prone to biases imposed by the preferences of the human engineer.
A more sophisticated way to create a vector vocabulary is to learn it automatically from data. In contrast
to purely random vocabularies, the idea here is that the learning system is able to capture the intrinsic sim-
ilarity between objects in the vector representation. Again, the choice of learning paradigm (supervised
vs. unsupervised) and architecture, e.g., CNNs or SOMs, depends not only on the given task, but also on
the kind of similarity the vectors should encapsulate. This can be visual similarity (e.g., items or objects
that “look” similar), auditory similarity (e.g., objects producing similar sound), semantic similarity (e.g.,
words with similar meaning) or similarity in characteristics (e.g., similar motion characteristics).
A similar approach to derive vectors representing digits from 0 to 9 was used in Eliasmith et al. (2012)
for the network performing the visual digit recognition task as part of the larger Spaun model, which
was derived by training a DBN consisting of four Resctricted Boltzmann Machine layers. This approach
of using the activity of the second to last layer to generate atomic representational vectors can be gen-
eralized to any neural network for classification with dense layers at the end. A typical way of learning
a vocabulary whose vectors conserve visual similarity in supervised fashion are CNNs. These network
architectures are inspired by the human visual cortex and compress high-dimensional visual input to
lower dimensional representations. They usually consist of a series of convolutional and pooling layers
followed by one or more fully connected layers, where the last layer provides the classification result (cf.

3.4 Cognitive Modeling with Vector Symbolic Architectures 49

KING

MAN

QUEEN

WOMAN
KING−MAN

Figure 3.9: A typical example illustrating the semantic similarity structure between vectors repre-
senting the words king, queen, man and woman learned by Word2Vec allowing algebraic
manipulation of the encoded entities. Image inspired from Mikolov et al. (2013c).

Fig. 3.8). The activity of the second to last layer (the last fully-connected one before the actual classifica-
tion) for each known class in the data set can be considered a representational vector for the current visual
input. A simple way of getting a representative vector for each class is simply calculating the element-
wise, normalized mean over all examples in the test set. We employ this approach in section 4.1.3 to
generate vocabularies encapsulating the visual similarity of traffic signs and traffic participants.
The aforementioned approach to create vector vocabularies encapsulating similarity by using neural net-
works, which are trained in supervised fashion, is suitable for capturing visual or auditory similarity
structure in a vectors. The generation of representational vectors for related or similar words or, more
generally, semantic similarity in language is a problem often referred to as word embedding, which
is a research question related to computational NLP (Natural Languange Processing). The most suc-
cessful approaches such as word2vec (Mikolov et al., 2013a; Mikolov et al., 2013b) or GloVe (Pen-
nington et al., 2014) typically use large corpora of text as input data and are trained in unsupervised
fashion based on co-occurrence statistics of words. The objective of those procedures aims at maxi-
mizing the dot product of word vectors that appear often in similar contexts while minimizing it for
negative samples, which do not occur in the training data and thus are sampled at random. For a given
sentence S = {w1, . . . ,wn}, a context C(w) of a word w = wi of size k is a dynamic window of the
form C(w) = {wi−k, . . . ,wi−1,wi+1, . . . ,wi+k}. The underlying assumption is that words sharing many
contexts are similar to each other such that automated training with the aforementioned objective will
produce a good word embedding. Surprisingly, these learning procedures lead to linguistic regularities
and algebraic relations between word vectors (Mikolov et al., 2013c). A common example is visual-
ized in Fig. 3.9: subtracting the vector representing MAN from the one representing KING and adding
the vector representing WOMAN results in a vector most similar to the one representing QUEEN, i.e.,
KING−MAN+WOMAN ≈ QUEEN. However, Goldberg and O. Levy (2014) and O. Levy et al.
(2015) point out that the formal reasons for successful learning of word embeddings of those approaches
are not well understood.

3.4.2 Encoding structure

In section 3.4.1, we have already seen that there are many ways to create vector vocabularies, that encode
different types of similarity. However, the strength of VSAs lies in the possibility to build structured
representations from atomic vectors. Unordered sets can be represented by simply adding up atomic
vectors. Through the properties of the similarity measure, the sum is similar to each vector contained in
the sum. The most common approach to incorporate structure is to use so-called role-filler pairs (Gayler,

50 Theoretical background

2003). Such a pair is combined via the VSA’s binding operation, where one vector of the pair takes
the role of a variable while the other one can be considered the value of the variable. We have already
seen a simple example of this approach in section 3.4.1, where a small vocabulary representing four
different classes of traffic participants was manually created. In NLP (Natural Languange Processing)
applications, this approach is useful when building up vectors representing phrases from a word vector
vocabulary. The phrase The dog chases the boy could be encoded in a vector as

agent�dog+verb� chase+ theme�boy,

assuming we already have a vocabulary containing atomic vectors representing those items. Another
typical example of this approach is the encoding of relations between items, such as “A is the mother of
B”. This relation could be represented in vectors through

m(A,B) = motherof+mother�A+ child�B.

The strength of VSAs is that the vectors representing such relations can subsequently be manipulated
and combined using the VSA’s algebraic operations. Kanerva (2000) shows that this approach can be
used to create a system, that is able to infer one relation, which is induced by another relation, through
learning from example. Their example features the aforementioned mother of relation, which induces
the parent of relation

p(A,B) = parentof+parent�A+offspring�B,

i.e., we have m(A,B) =⇒ p(A,B). Combining several examples

M =
n

∑
i=0

m(Ai,Bi)� p(Ai,Bi)

yields a transition vector, which gives M �m(X,Y)≈ p(X,Y) for unseen examples X and Y. However,
this approach is based on the self-cancellation property (i.e., X � X = 111) in certain VSAs (in particu-
lar BSCs), as it leads to M containing the vector motherof � parentof+mother � parent+ child �
offspring (see Kanerva, 2000, for details). A similar approach was used in Kleyko et al. (2015) for a
prototype of concept learning. Rasmussen and Eliasmith (2011) employ a similar approach to encode
a rule for inductive learning in a transition vector using the VSA’s algebraic operations to solve RPMs
(Raven’s Progressive Matrices). The authors represent consecutive cells in an RPM and encode the tran-
sition from one cell to another in a particular transition vector and, from a sequence of those, create a
general transition vector encapsulating the general rule for going to the next cell in the matrix. They
implement these vectors as well as their inductive learning system in a SNN model, a process we will
also briefly discuss in the next section,

3.4.3 Implementation in Spiking Neural Networks

In this section, we show how VSAs and in particular the SPA can be implemented in SNNs. In sec-
tion 3.3.1, we have already discussed the representation principle of the NEF, that allows to encode
time-varying vectors in the activity of populations of spiking neurons using Equation (3.22). Given that
all representations of entities in the SPA are vectors, we can directly apply Equation (3.22) to encode any
vector representation generated using the principles and algebraic operations of the SPA. Similarly, we
can employ Equation (3.24) to decode back out the original vector from the neurons’ activities. However,
to manipulate the encoded vectors into structured representations using the SPA’s algebraic operations,
we also need to be able to implement these operations in networks of spiking neurons. Again, the tools of
the NEF allow this implementation. The implementation of element-wise addition of vectors is straight-
forward: assuming we have created populations A and B encoding the vectors v and w respectively using

3.4 Cognitive Modeling with Vector Symbolic Architectures 51

Equation (3.22), we can now use the transformation principle and Equation (3.26) to connect both pop-
ulations A and B to a third population C with both connections approximating the identity function. The
population C receiving input from both populations A and B will end up representing an approximation
of the sum v+w.
Similarly, we can use the NEF’s principles to implement the SPA’s binding operation, circular convolu-
tion, in a network of spiking neurons. Revisiting Equation (3.5), we can write the circular convolution
z = v�w of two vectors v,w as

z = v�w = IDFT (DFT (v)�DFT (w)) . (3.5 revisited)

We can consider the DFT and IDFT as linear functions given by the matrices

W =
1√

D−1

(
ζ

i· j
D

)D−1

i, j=0
, W−1 =

1√
D−1

(
ζ
−i· j
D

)D−1

i, j=0
(3.33)

and thus write circular convolution as matrix multiplication

z = v�w =W−1 ((Wv) · (Ww)) . (3.34)

Applying the NEF’s transformation principle, we can implement circular convolution in a spiking neu-
ron substrate. To finally be able to unbind vectors, i.e., calculate v = z � w̄ using the pseudo-inverse
element w̄ = (w0,wD−1,wD−2, . . . ,w1) (cf. Lemma 3.13), we can adapt Equation (3.34). The function
transforming a vector into its pseudo-inverse element is a simple permutation of elements given by the
matrix

Cpinv =

1 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...
0 1 0 · · · 0

 , (3.35)

which allows us to transform Equation (3.34) into

v≈ z� w̄ =W−1 ((Wz) · (W ·Cpinvw)) . (3.36)

The implementation of a SNN performing a biologically plausible version of a cleanup memory em-
ploying the NEF is shown in T. C. Stewart et al. (2011). Thus, applying the principles of the NEF, we
can represent the representational vectors of the SPA in the activity of populations of spiking neurons
and implement its algebraic operations in networks of spiking neuron populations. A subtle detail worth
noting with regard to implementing VSAs in SNNs is that the vectors used for representing concepts or
entities of interest are not vectors of neural activity. That is, there are two distinct representational vector
spaces: the space of neural activities (i.e., measurable properties like spike patterns) and the vector space
used to generate the vocabulary and structured representations vectors, which in turn are represented by
the activities of populations in the neural space (see Eliasmith, 2013, for further details).
There are several reasons for implementing cognitive architectures like the SPA in a spiking neuron sub-
strate. Regarding the application of vector-based representations in cognitive modeling, it makes sense
to consider an implementation in neural activity, since the biological systems able to perform cognitive
tasks are also systems of neural networks. Hence, when generating models of some cognitive function or
behavior such as the model for inductive rule generation applied to RPMs in Rasmussen and Eliasmith
(2011), implementation in a spiking neuron substrate allows to compare the model’s neural activity with
neural activity measured in the brain of human subjects performing a similar task. Such a comparison
enables more detailed model analysis and improvements by allowing researchers to draw inspirations
from actual biological systems. Considering applications of the SPA in domains such as automated
driving as proposed in later chapters 5, 6 and 7, the possibility of implementation in a spiking neuron

52 Theoretical background

substrate is particularly interesting in terms of energy-efficiency. As discussed in section 2.1.3, there
exists a growing number of neuromorphic hardware devices dedicated to efficiently processing networks
of spiking neurons. Such dedicated computing hardware allows to run SNNs more efficiently than tra-
ditional computing hardware, which often requires several orders of magnitude less energy (Hunsberger
and Eliasmith, 2016). This is particularly interesting in mobile applications such as robotic systems or,
more particularly, automated driving, which poses increasingly strong restrictions on the energy-budget
of individual components due to growing setups of both, on-board sensors and computing hardware.
Since these novel computing devices are not yet available as commercial products but rather prototypes
developed in academic research, the deployment of the models developed in this thesis on neuromorphic
computing hardware integrated into a vehicle’s architecture is unfortunately out of scope of this thesis.

3.5 Summary

In this chapter, we have introduced the theoretical background and mathematical properties of Vector
Symbolic Architectures, which is the basis for subsequent chapters. Furthermore, we established a for-
mal, mathematical notion for VSAs in general (section 3.1), which, to the best or our knowledge, is not
available in the literature except for treatments of particular instantiations of VSAs such as in T. Plate
(1994), Gayler (1998), and Kanerva (2009). Then, we shifted our focus to one particular VSA, the SPA,
presenting its most important aspects and properties with respect to subsequent chapters of this thesis.
Furthermore, we gave a brief description of the Neural Engineering Framework, which is typically used
to implement large-scale neural models of spiking neurons such as the one presented in Eliasmith et al.
(2012). Finally, we have introduced the basic principles of cognitive modeling using VSAs in general and
the SPA in particular. We showed several general approaches to generate vocabularies of atomic vectors,
which form the basis of more complex structured representations, which are built from the vocabulary
using the VSA’s algebraic operations. Finally, we connected the mathematical description and theory of
both, the VSAs and the NEF by depicting how the NEF can be used to implement the SPA in a spiking
neuron substrate, which offers interesting possibilities regarding energy-efficiency in mobile applications
such as automated driving. We will use the theory and findings shown here in subsequent chapters to de-
rive vector-based representations of automotive data measured and collected in actual driving situations
to tackle tasks like classifying the current driving context or prediction the future development of the
scene based on past observations.

4 Distributed representations of automotive
scenes

In chapter 2 and especially in section 2.3.2, we have seen that, already today, there is a plethora of ADAS
(Advanced Driver Assistance Systems) in intelligent vehicles. In future vehicles, the number of modules
tackling different sub-tasks necessary to enable (semi-) autonomous driving and to interact with humans
inside and outside the car will increase even more. Given the complexity of the physical world and the
recent success of DNNs in diverse applications, a substantial amount of such modules could be data-
driven with increasingly large neural networks under the surface. In a worst case scenario, each of these
systems will encapsulate its own representation of knowledge about the data it processes in complete
separation from other, potentially related, systems. Typically, the representations used rely completely on
numerical values and lack possibilities to be enriched or combined with symbol-like representations. On
the other hand, increasingly deep neural network architectures are not only hungry for data to generalize
sufficiently beyond the examples they have been trained on, but also tend to require a substantial amount
of computational resources. Although this aspect is more severe for the training process, it becomes
more important for mobile applications such as automated vehicles during the deployment phase.
In this thesis, we propose a novel representation for automotive scenes based on modern cognitive mod-
eling techniques, namely the SPA. The SPA is one particular example from a family of cognitive architec-
tures commonly referred to as VSAs (see section 2.2.3 and chapter 3 for further details). One of the key
components of these cognitive architectures is to use high-dimensional vectors for representation. This
representational approach offers several desirable features. High-dimensional vectors are one variant of
distributed representations in the sense that information is captured over all dimensions of the vector
instead of one single number. This aspect makes distributed representations more robust to noise in the
sense that a few noisy entries influence the overall information carried by the vector less compared to low-
dimensional representations. Furthermore, vector representations allow to encode both, symbol-like and
numerical structures in a similar and unified way. Additionally, the algebraic operations enable manip-
ulation and combination of represented entities into structured representations. One potential advantage
of this approach is that the number of dimensions remains fixed independent of the number of entities
combined through the architecture’s algebraic operations. Finally, vectors are a suitable representational
substrate to be used in combination with neural networks. On the one hand, vectors are a natural input
to classic ANNs, but they also offer the possibility to be efficiently implemented in SNNs using the prin-
ciples of the NEF (see Eliasmith, 2013, but also section 3.4.3). Given a widespread implementation of
the representations proposed here in combination with SNNs as algorithmic substrate within intelligent
vehicles, the latter offers the potential to deploy such neural representations on dedicated neuromorphic
hardware (cf. section 2.1.3). Although neuromorphic computing hardware as well as the corresponding
neural algorithms are mainly used in academic research and often lack the technical maturity required by
industrial applications, they show promise to be an energy-efficient option for future automated vehicles
once reaching the required level of maturity.
In this chapter, we introduce our proposed approach to encapsulate high-level information about auto-
motive scenes in high-dimensional, semantic vectors using the SPA as representational substrate. For
this encoding phase, we follow the first two stages, namely preprocessing and representation generation,
of the three-stages process established in Gallant and Okaywe (2013). The third and final stage, out-
put computation, will be the subject of subsequent chapters, where we investigate concrete applications
and use cases. The preprocessing stage is the step of creating a suitable vector vocabulary, whereas the
representation generation stage is the process of building up structured representations from the atomic

54 Distributed representations of automotive scenes

Figure 4.1: Visualization of the general flow of information of our proposed approach.

vectors within the vocabulary. Furthermore, we analyze how different types of data could be encoded
in such a representation, we show possible variations of how to encapsulate data in vectors and how
they influence the final representation. We also investigate potential limitations imposed by such repre-
sentations to provide insights into how many concepts can be efficiently encoded in our representations
without loss of information.

4.1 Preprocessing stage - generating a vocabulary

Figure 4.1 visualizes the general flow of information of our proposed system. To represent high-level
information about a scene in an abstract vector representation, we work with already processed data,
which comes either from individual sensors performing their own low-level processing, or from a higher-
level, central module already fusing information from several sensors. We simply refer to this step as
environment perception in Fig. 4.1, whereas its output is referred to as preprocessed data. This data is
typically available as lists of objects present in the current scene and is translated into a semantic vector
representation by first assigning atomic vectors to entities of interest and then building up more complex,
structured representations by using the SPA’s algebraic operations. In this section, we will investigate
the first step of assigning atomic vectors to entities of interest, i.e., creating a suitable vector vocabulary.
We have already seen in section 3.4.1 that such vocabularies can be created in several different ways,
which we will here investigate with the specific focus of encoding automotive scenes.

4.1.1 What types of data to encode?

The data to be encoded in a semantic vector substrate depends not only on the information available from
the current sensor-setup, but also on the task at hand. For instance, if we want to classify the current
driving context (like in chapter 5), the relevant information might be different to the task of predicting
a vehicle’s trajectory (like in chapter 6). Here, we give an overview of what information in general is
available in an intelligent vehicle and how to encode it in a semantic vector substrate. We distinguish
between symbol-like information such as the type of a dynamic object or numerical information such as
the current acceleration of the ego-vehicle. In this section, we focus mainly on the symbol-like infor-
mation, which is suitable to be represented using a single atomic vector or an algebraic combination of
several atomic vectors. In section 4.2.1, we will focus on numerical information and different options of

4.1 Preprocessing stage - generating a vocabulary 55

encoding them in vectors. Here, we will closely follow the structure of section 3.4 and present different
possibilities to generate a vocabulary of atomic vectors to built structured representations upon.
If the vectors in the vocabulary are not chosen at random, the general goal when creating the vocabulary
is to generate atomic vectors that carry inherent structure or meaning. This meaning is typically reflected
by similar concepts being mapped to similar vectors. However, there are several possible notions of
similarity that can be encoded in the vocabulary, which we will specify in this section.

Visual similarity

A first simple and comprehensible notion of similarity is visual similarity between two entities: “do they
look similar”. Encoding this notion in vectors, we would expect the vector representations to encapsulate
this type of similarity within the relation between the vectors, meaning that vectors representing visually
similar entities will have large cosine similarity. In conjunction with other information, this type of
similarity could be useful to detect a wrong classification, in case it has high similarity to another one
that makes more sense in the situation or context at hand. An example would be the German traffic signs
indicating a speed limit of 30 km/h and 80 km/h, which are both circular with a red frame and a similar
looking black number on white background in the middle. However, encountering a speed limit sign of
30 km/h in an urban situation is more plausible than a sign indicating a speed limit of 80 km/h.

Similarity of motion

Another notion of similarity, that is a candidate to be encoded in a vector vocabulary, is the similarity of
motion properties. For instance, bicycles and motorcycles have more similar motion properties (dynam-
ics of vehicles with two wheels) than for example a pedestrian and a truck. Apart from motion properties
such as dynamics of the movement, the number of wheels or the mean expected velocity, the direction of
movement of traffic participants can be also a notion of similarity to be encoded in the vocabulary. For
instance, traffic participants such as bicycles or cars moving towards us might be encoded more similarly
to each other than to parked cars or those moving away. Furthermore, some entities are more likely
to change their motion or direction: while traffic lights frequently alternate and parked cars might start
moving, trees, buildings and traffic signs are expected to remain static. The notion of similarity of motion
can be useful in various ways. In a first step, knowing the motion of other traffic participants could help
in classifying the situation: on a multi-lane highway we would expect cars around us to move in the same
direction, whereas in an urban driving situation, the motion of other traffic participants is more diverse.
Additionally, this notion of similarity could potentially help in focusing the system’s attention or, more
precisely, use computing power more efficiently on entities that are more relevant to decision making.
For example, a change of the “motion status” (e.g., when a bus stops) might need particular attention.

Semantic similarity

While visual similarity already captures a significant part of perceivable information about entities in
automotive context, there is further information, that could be encoded in the vector vocabulary and
that is different, or maybe even contrary to visual similarity. Considering automotive situations, we as
humans do not only assess them based on visual appearance but also by incorporating underlying and,
most likely, previously acquired knowledge about the objects in the scene. This underlying information
can be considered the semantic aspect. Revisiting the aforementioned example, the speed limit sign for
30 km/h is visually more similar to 80 km/h than to 20 km/h. However, in the context (or semantics) of
an automotive situation such as driving in an urban environment, speed limit signs for 20 and 30 km/h
should be contextually or semantically more similar to each other than signs for 30 and 80 km/h, since
they are more likely to appear in similar contexts and both describe the traffic rule restricting driving to
slow velocities.

56 Distributed representations of automotive scenes

Semantic similarity is not quite as intuitive as visual similarity. In general, we want to encode objects
and concepts sharing similarity in meaning in vectors with a high cosine similarity. However, it is not
intuitively clear what similar meaning actually refers to and how to properly define semantic similarity
in an automotive context. In the field of generating word embeddings for natural language processing,
the typical assumption is that words sharing similarity in meaning appear in close proximity with high
probability within text corpora. This assumption could be transferred to automotive context as well, for
instance, thinking of traffic signs indicating speed limits appearing in similar contexts or driving situ-
ations. For example, traffic signs indicating moderate speed limits are more likely to appear in urban
driving situations compared to higher speed limit signs being less likely to appear in such a context.
However, on the one hand, it is not clear how to transfer this approach to other object classes such as
traffic participants, whose appearance probability is less context dependent than for traffic signs. On the
other hand, the process of automatically training a system to learn this form of embedding is not clear
as it would probably demand for another learning model to extract contextual information from the rich
features of driving contexts. Therefore, we will now focus on the potential meaning of objects appear-
ing in an automotive environment and how their semantic meaning could be embedded into a vector
representation while leaving aside intangible concepts representing vehicle dynamics such as velocity or
acceleration.

Traffic signs Any traffic sign carries an explicit meaning defined in traffic law and anyone with a
driver’s license should know its meaning and be able to immediately explain it. The meaning of a traffic
sign is an instruction for the driver’s behavior to, for instance, not surpass a certain velocity or to give
way to other traffic participants. There are sub-groups of signs with similar meanings such as signs
indicating speed limits, prescribed direction or warnings for potentially dangerous road conditions or to
pay increased attention. Encoding the semantic structure of traffic signs in a vector vocabulary, we expect
not only all traffic signs will be similar but also that all signs within a certain sub-group end up being
more similar to one another compared to signs from other subgroups. For instance, signs indicating speed
limits should be similar to one another, ideally with signs indicating lower velocities such as 20 km/h
and 30 km/h should be more similar than 30 km/h and 130 km/h. Beside their explicit meaning, the
number of traffic signs is finite and limited to a small number compared to the number of words in a
typical human-level language vocabulary. Therefore, it is possible to manually engineer their semantic
similarity, which makes it easier to impose our human understanding onto the structure, although the
resulting vocabulary will most likely differ from the structure an unsupervised learning model would
pick up from the data.

Traffic participants While the meaning of traffic signs is clear and explicit, it is far more difficult to
derive a meaning of a traffic participant such as a car or a pedestrian or a measure of similarity between
them. It is unclear if a truck is semantically more similar to a motorcycle or to a car without consider-
ing any contextual information while ignoring similarity of motion properties, which have already been
discussed in section 4.1.1. However, if we do consider contextual information, we as humans decide in-
tuitively if a truck and a motorcycle are more similar when compared to a pedestrian by, e.g., considering
their velocity of motion or their vulnerability. We also know from experience that the meaning of a car
approaching from the right potentially means that it has the right of way when we encounter a situation
at a crossroads without traffic signs indicating other right of way rules. Hence, the situational context has
a significant impact on comprehending the meaning of traffic participants, which in most cases directly
results in appropriate driving actions to take such as decelerating or changing the lane. However, such a
situational understanding is impossible to derive without additional information such as position, veloc-
ity or direction of each traffic participant. Consequently, it is impossible to encapsulate such semantic
or contextual similarity in a vector vocabulary directly but rather encode another notion of similarity for
atomic vectors of traffic participants and built situational similarity through structured representations
using the VSA’s algebraic operations.

4.1 Preprocessing stage - generating a vocabulary 57

Summary on similarity

All of the aforementioned notions cover a certain aspect of similarity. Ideally, it is desirable for a vector
vocabulary to encapsulate more than one notion of similarity comparable to a human understanding all
these different aspects of similarity. However, it is not clear if it is helpful or even possible, to encapsulate
several notions of similarity into one coherent vector vocabulary or if it is more suitable to have separate
vocabularies for each similarity of interest and combine them in structured representations using the
VSA’s algebraic operations as mentioned, e.g., in Crawford et al. (2016). For the remainder of this
section, we give an overview over different options of how to generate vector vocabularies encoding
their own notion of similarity.

4.1.2 Random and manually engineered vocabularies

The simplest possible option to generate a vocabulary of atomic vectors is to sample them randomly, in
case of continuous VSAs such as the SPA, from the D-dimensional unit sphere (Voelker et al., 2017).
Naturally, randomly chosen atomic vectors do not carry semantic meaning or any intended notion of
similarity. However, given a sufficiently large dimension D of the chosen VSA and its theoretical prop-
erties (see chapter 3), we can assume that randomly chosen vectors will be dissimilar enough to avoid
accidentally mistaking them for one another. Another advantage of this simple approach is that it is
comparatively easy to create a vocabulary avoiding any complex learning system to embed the concepts
of interest in semantic vectors. On the other hand, if specific applications demand for the vectors to
actually carry semantic information meaning that similar concepts need to be mapped to similar vectors
for the application to succeed, this simple approach can be extended by manually engineering a vocabu-
lary reflecting the desired similarity structure. This is typically achieved by randomly choosing a set of
auxiliary vectors and building atomic vectors with the desired similarity from them through the VSA’s
algebraic operations (cf. section 3.4.1). However, this approach is only feasible and appropriate for
rather small sized vocabularies since manually designing semantic vectors with certain similarity prop-
erties becomes intractable quickly with an increasing number of concepts to be embedded. Furthermore,
manually designing vocabularies involves design choices by human engineers, which is sensitive to po-
tentially undesired biases in the similarity structure of the vectors. For instance, the example vocabulary
created in section 3.4.1 solely focused on the motion characteristics and typical actuators of different traf-
fic participants. However as mentioned before, there are many other possible similarity structures such
as visual (or auditory), motion or semantic similarity, to be considered when designing the vocabulary.

4.1.3 Visual vocabularies

The next step to generate vocabularies with an inherent similarity structure is to encapsulate visual sim-
ilarity in a vector embedding. Visual similarity is an intuitive concept and we can make an educated
guess that this notion of similarity could be beneficial for several tasks when encoded directly in the
vector vocabulary. However, it is preferable to automatically learn to embed visual similarity in vectors
instead of manually engineering the similarity between entities as this approach does not scale well for
an increasing number of items to be encoded. One option for such an automated learning system to
generate a structured vocabulary encoding visual similarity is to adapt a DNN (Deep Neural Network)
for image classification. Such a neural network can be thought of as an efficient image compression
machine. While earlier and intermediate layers learn sensibility to visual features such as edges and
shapes, the information in the image is compressed into a single dimension, namely the label, at the final
classification layer. Considering the special case of a CNN (Convolutional Neural Network), one option
would be to simply use the output of one of the later fully-connected layers and regard it as a vector since
we expect the vectors of visually similar images to be similar regarding their cosine similarity. Here,
we focus our efforts of generating a visual vector vocabulary on items of interest to automated driving,
namely the aforementioned categories of traffic signs and traffic participants.

58 Distributed representations of automotive scenes

all all all all all
Class

0.0

20.0

40.0

60.0

80.0

100.0

Ac
cu

ra
cy

 (%
)

98
.0
%

10
0.
0%

99
.3
%

99
.6
%

98
.0
%

98
.2
%

98
.9
%

90
.7
% 99

.1
%

96
.7
%

99
.8
%

99
.5
%

99
.8
%

98
.3
%

99
.9
%

10
0.
0%

10
0.
0%

99
.3
%

99
.7
%

98
.7
%

10
0.
0%

10
0.
0%

66
.7
%

95
.8
%

10
0.
0%

94
.4
%

91
.9
%

86
.7
%
96

.7
%

10
0.
0%

10
0.
0%

85
.3
%

96
.3
%

10
0.
0%

99
.5
%

99
.2
%

10
0.
0%

99
.2
%

10
0.
0%

99
.7
%

10
0.
0%

96
.7
%

93
.3
%

86
.7
%

Figure 4.2: Accuracy performance of the CNN for traffic sign classification on the test part of the
GTSRB data set for all traffic signs (most left bar) and all individual traffic signs.

Traffic signs

To achieve the task of encoding traffic signs encountered by an automated vehicle, we employ a variant of
the state-of-the-art CNN for traffic sign classification proposed by Ciresan et al. (2012a). We train a sim-
plified version of this network on the GTSRB (German Traffic Sign Recognition Benchmark) (Stallkamp
et al., 2012), which is a data set including a total of 51840 images of 43 different classes of traffic signs.
Although the GTSRB data set does not contain all possible traffic signs, it is a suitable and sufficiently
large data set for our purposes of learning a visual vector vocabulary. The original multi-column network
proposed by Ciresan et al. (2012a) combines several variants of the same network architecture trained on
the original input images as well as four different, high-contrast normalized versions of the input images
by averaging the predictions of all individual networks. For simplicity, we only use a single-column ver-
sion of this network to generate a visual vector vocabulary. Figure 4.2 shows the classification accuracy
of our network on the test part of the GTSRB data set for all traffic signs (most left bar) and all individual
signs. The network achieves competitive results with 98 % classification accuracy on all traffic signs
while detecting all but four traffic signs with accuracy values way above 90 %, which is sufficient for our
purposes.
To generate our vocabulary vectors, we cut off the classification layer with softmax activation and use
the previous 300-dimensional, fully connected layer as output. With this simple adaptation, the CNN
produces a 300-dimensional vector as output for each image fed into the network. To generate a repre-
sentative vector for each class of traffic signs, several approaches are conceivable, including (weighted)
mean and median by dimension or regarding whole vectors. In this work, we choose the simple mean to
create this representative from several examples. To select the example vectors to calculate the represen-
tative mean vector from, we select only instances for which the network produces correct classification
predictions alongside high confidence values from the test subset of the GTSRB data set. The great ma-
jority of examples even satisfies the restriction of 100 % confidence, hence we use that strict confidence
value to avoid including examples the network is doubtful about, which might deteriorate the properties
of the representative vector. This procedure leads to a representative vector that “points” to the center
of mass of all (high confidence) vectors of each class of traffic signs. However, we still need to confirm
that these representative vectors fulfill the properties they have been constructed for, namely sharing a
high cosine similarity with all individual samples from the respective traffic sign class. Figure 4.3 shows

4.1 Preprocessing stage - generating a vocabulary 59

sign

0.20

0.40

0.60

0.80

1.00

Si
m
ila

rit
y

weak similarity threshold
strong similarity threshold

Figure 4.3: Boxplots depicting the cosine similarities between the representative (mean) vector for
each traffic sign class and all individual vector samples it has been created from.

the cosine similarity between each vocabulary vector encoding one traffic sign class with all individual
vector samples it has been created from. As expected, we observe high similarity values close to the
maximum value of 1 and way above both, weak and strong, similarity thresholds for 300-dimensional
vectors.
Furthermore, we expect these representative vectors, which are now our vocabulary vectors encoding
the respective traffic signs, to resemble the visual similarity structure of the image classes. To confirm
this inherent similarity structure, we calculate pairwise similarities between all vectors in the vocabulary,
which are visualized in Fig. 4.4. We observe similarities in groups of signs indicated by green areas
in the heat map visualization. Most prominent are the high similarities in three groups of traffic signs
forming green triangles in the heat map. These groups are round signs with red borders (top left corner),
triangular warning signs with red borders (middle right) and blue signs indicating driving directions
(close to bottom right). Furthermore, several signs stand out particularly: The traffic sign indicating
“Priority ahead”, which is a red triangle just like any warning signs, indeed shows high similarity to all
warning signs. Similarly, the traffic sign indicating no entry for trucks, a red circle with a black truck
inside, looks a lot like speed limit signs and indeed shows a high similarity to all speed limit signs.
Consequently, we conclude that it is possible to encode visual similarity with an automatic learning
approach using CNNs to encapsulate the visual features of a given data set into a vocabulary of semantic
vectors.

Traffic participants

To encode the object categories for traffic participants Bicycle, Car, Motorcycle, Pedestrian, Truck nec-
essary to properly represent dynamic automotive scenes in visual vectors, we employ an approach similar
to the one used for traffic signs. We adopt a general purpose image data set, the Imagenet data set (Deng
et al., 2009), which includes suitable categories for all of these classes. As an additional advantage, Im-
agenet is a widely used data set, so there already exists a number of successful classification networks,
which can be adapted for our purposes. Concretely, we employ the following categories as they appear

60 Distributed representations of automotive scenes

1

0.81 1

0.610.71 1

0.640.620.73 1

0.860.770.550.47 1

0.710.740.770.810.67 1

0.630.670.590.670.560.73 1

0.670.690.630.560.710.780.62 1

0.830.640.640.570.750.680.550.82 1

0.5 0.410.460.590.420.470.440.420.53 1

0.470.380.460.570.420.590.550.550.560.76 1

0.480.530.470.520.390.460.580.520.470.49 0.5 1

0.270.360.310.310.270.310.520.420.340.470.610.52 1

0.39 0.4 0.440.410.410.370.390.370.410.510.480.330.48 1

0.6 0.640.540.520.570.530.550.530.540.430.420.46 0.4 0.57 1

0.520.54 0.5 0.440.570.49 0.4 0.510.550.620.520.35 0.5 0.680.54 1

0.66 0.6 0.520.67 0.6 0.660.690.690.670.770.680.610.470.380.510.54 1

0.540.590.440.340.510.390.420.43 0.5 0.390.370.360.450.440.770.470.39 1

0.520.570.340.350.580.370.460.460.470.410.37 0.7 0.440.430.530.540.520.47 1

0.480.370.46 0.5 0.440.460.430.380.480.580.540.65 0.4 0.350.350.410.550.36 0.5 1

0.530.430.410.470.440.460.590.450.520.590.560.690.450.350.41 0.4 0.66 0.4 0.610.63 1

0.580.630.620.570.570.630.540.620.590.460.520.760.430.380.520.440.570.490.64 0.8 0.61 1

0.520.440.370.370.460.39 0.4 0.360.450.410.420.410.410.450.460.540.390.52 0.6 0.540.640.59 1

0.5 0.410.490.590.370.540.550.480.510.660.63 0.7 0.450.320.410.420.640.380.490.810.790.750.61 1

0.540.550.430.410.610.510.540.510.470.420.440.670.470.430.490.520.540.460.750.730.720.790.660.71 1

0.460.440.450.470.460.460.530.450.440.460.480.68 0.5 0.5 0.510.410.480.440.650.580.730.65 0.7 0.63 0.7 1

0.420.420.280.250.470.310.390.390.430.390.390.640.540.430.430.540.420.420.830.560.610.590.65 0.5 0.740.63 1

0.490.490.42 0.4 0.530.410.480.450.450.450.380.830.420.310.42 0.4 0.550.350.820.650.710.740.520.650.780.690.72 1

0.580.54 0.5 0.560.440.510.59 0.5 0.56 0.5 0.470.740.460.430.480.45 0.6 0.450.650.660.820.660.630.730.760.690.58 0.7 1

0.570.53 0.5 0.590.450.580.490.480.520.47 0.5 0.57 0.4 0.430.510.520.52 0.5 0.570.710.670.760.79 0.8 0.750.670.560.570.79 1

0.480.490.530.560.370.540.570.580.55 0.5 0.540.810.460.350.440.450.590.420.560.720.770.790.630.840.73 0.7 0.620.650.790.79 1

0.6 0.570.580.650.450.640.580.530.580.460.560.640.310.280.450.340.540.430.530.660.660.830.640.790.610.640.43 0.6 0.650.780.77 1

0.470.550.370.410.430.360.76 0.4 0.4 0.430.37 0.6 0.61 0.5 0.5 0.540.570.440.580.36 0.6 0.420.420.440.520.530.530.560.59 0.4 0.510.37 1

0.5 0.450.460.440.510.470.510.510.510.550.560.590.540.510.460.520.580.420.520.520.570.570.480.51 0.6 0.580.550.530.520.490.590.450.52 1

0.5 0.5 0.440.510.430.450.58 0.4 0.46 0.5 0.480.560.540.510.430.460.570.390.48 0.5 0.540.490.430.510.520.510.520.470.530.470.550.420.560.67 1

0.5 0.450.470.530.480.490.580.430.470.550.550.520.580.540.44 0.5 0.590.38 0.5 0.580.560.550.490.540.620.570.520.490.580.550.530.440.530.810.81 1

0.5 0.480.440.460.480.420.580.390.470.560.480.480.540.560.480.530.540.450.59 0.5 0.610.490.540.480.570.620.560.510.570.490.470.450.620.62 0.7 0.71 1

0.550.520.550.440.540.510.550.490.530.520.540.540.580.530.520.560.570.450.560.520.54 0.6 0.560.550.630.540.580.520.530.550.55 0.5 0.52 0.8 0.710.810.59 1

0.490.450.450.460.420.440.550.380.48 0.5 0.470.37 0.5 0.570.460.530.520.410.460.370.560.390.520.460.450.51 0.5 0.360.450.470.460.440.540.560.790.650.790.65 1

0.520.480.540.440.530.48 0.5 0.490.550.550.560.440.530.590.480.570.560.460.47 0.5 0.520.580.560.490.550.52 0.5 0.430.480.530.520.510.480.860.640.760.640.870.68 1

0.630.63 0.6 0.5 0.630.590.630.690.690.560.580.590.620.520.540.61 0.7 0.48 0.6 0.5 0.590.630.520.560.640.550.570.560.570.550.610.530.570.77 0.7 0.710.670.820.71 0.8 1

0.480.430.430.540.370.45 0.7 0.460.480.790.610.590.590.460.410.440.78 0.4 0.420.510.680.460.380.650.460.490.390.490.570.440.550.470.720.56 0.6 0.6 0.610.550.550.540.64 1

0.49 0.5 0.420.540.45 0.6 0.840.610.470.590.680.610.62 0.4 0.450.420.710.340.450.440.620.510.370.620.530.510.410.470.530.430.550.510.690.550.550.580.570.550.520.490.660.83 1

0.30

0.45

0.60

0.75

0.90

Si
m
ila

rit
y

Figure 4.4: Pairwise similarities between representative vectors encoding traffic signs in a visual
vector vocabulary.

visually most suitable for the objects categories we want to encode: We use the original labels ’SAFETY
BICYCLE’ to learn visual vectors for Bicycle, ’USED CAR’ for Car (other car categories include am-
bulances and many sports / racing cars), ’MOTORCYCLE’, ’PERSON’ for Pedestrian (since there is no
special category for people in the vicinity of roads) and ’TRUCK’. For each category, there are at least
1200 images available in the data set.
While there is a number of state-of-the-art classification networks available achieving good results on
the Imagenet data set, we are looking for a network with only moderately complex structure for the
sake of implementation simplicity and ease of adaptation, while performance is of secondary priority.
VGG19 is a deep CNN (Convolutional Neural Network) proposed by Simonyan and Zisserman (2014)
with a decent performance on the Imagenet data set (top 1 performance 73 % and top 5 performance
91 %) and a comparatively simple layer by layer architecture that allows easy extraction of results from
intermediate layers. Our goal is to train a variant of the VGG19 network on these 5 classes and extract
feature vectors of an intermediate layer to use them as vocabulary vectors. Therefore, we adapt the
original network architecture in the following way: We cut off the last two fully connected layers as
well as the classification layer and replace them with a fully connected, 300-dimensional layer and a 5
dimensional classification layer. We train the modified network using the categorical cross entropy loss
and “standard” stochastic gradient descent optimization.
Table 4.1 depicts the classification performance of our adapted VGG19 network for the 5 selected traffic

4.1 Preprocessing stage - generating a vocabulary 61

BICYCLE CAR MOTORCYCLE PERSON TRUCK
Label

0.20

0.40

0.60

0.80

1.00

Si
m

ila
rit

y

weak similarity threshold
strong similarity threshold

(a)
BICYCLE CAR MOTORCYCLE PERSON TRUCK

BI
CY

CL
E

CA
R

M
OT

OR
CY

CL
E

PE
RS

ON
TR

UC
K

1

0.11 1

0.68 0.42 1

0.41 0.15 0.27 1

0.072 0.59 0.41 0.18 1

0.2

0.4

0.6

0.8

1.0

Si
m
ila
rit
y

(b)

Figure 4.5: Similarity plots for the visual vocabulary vectors representing traffic participants. (a)
Boxplots depicting the cosine similarities between the representative (mean) vector
for each traffic participant class and all individual vector samples it has been created
from. (b) Pairwise similarities between representative vectors encoding traffic partici-
pants in our visual vector vocabulary.

participant categories. Except for the “MOTORCYCLE” class, the network achieves decent classification
results above 75 %, which is sufficient for our purposes. Similar to the creation of the visual vocabulary
for traffic signs, we calculate the mean of vectors produced by the second to last of the network’s layers
when making correct predictions with 100 % confidence. Even for the “MOTORCYCLE” class, there
are at least 139 of such vectors available, whereas for all other classes, we have at least 200 of such
vectors. To confirm that the vocabulary vectors created in this fashion are visually representative enough
for each class, we calculate the cosine similarity between the vocabulary vectors and all vector samples
they have been created from. Figure 4.5a visualizes these similarities as box plots. Similar to the traffic
sign vocabulary, we observe high similarity values close to the maximum value of 1 and way above
both, weak and strong, similarity thresholds for 300-dimensional vectors. We also calculated pairwise
similarities between all vocabulary vectors encoding traffic participants, which are visualized in Fig. 4.5b.
As expected, visually similar classes such as “BICYCLE” and “MOTORCYCLE” as well as “CAR” and
“TRUCK” share relatively high cosine similarities. Less similar, but still significantly higher than the
similarity thresholds, are traffic participants sharing the visual features of persons such as “PERSON”
and “BICYCLE”, “PERSON” and “MOTORCYCLE” as well as “BICYCLE” and “MOTORCYCLE”.
All other pairs have similarity values in the order of magnitude or below the similarity thresholds and
are therefore considered dissimilar while we do not attach the greatest importance to the actual (low)
numbers. Consequently, we can conclude, that we are able to encode visual similarity of traffic signs as
well as traffic participants in a visual vector vocabulary.

BICYCLE CAR MOTORCYCLE PERSON TRUCK
Classification accuracy 94.3 % 76 % 55 % 82.6 % 99 %

Table 4.1: Classification accuracy of the adapted VGG19 network for our selected 5 classes of traffic
participants.

4.1.4 Semantic vocabularies

In this section, we go one step further and try to encapsulate semantic similarity structures within a vector
vocabulary. As discussed in section 4.1.1, semantic similarity as a concept is comparatively intuitive
for traffic signs and less obvious for other objects, such as traffic participants. Furthermore, we also
highlighted in that section that semantic similarity in other domains such as language modeling typically

62 Distributed representations of automotive scenes

1

1 1

0.97 0.99 1

0.95 0.97 1 1

0.93 0.95 0.99 1 1

0.9 0.93 0.97 0.99 1 1

0.2 0.27 0.41 0.48 0.55 0.61 1

0.82 0.86 0.93 0.95 0.97 0.99 0.72 1

0.72 0.77 0.86 0.89 0.93 0.95 0.82 0.99 1

0.0410.0290.0041-0.0083-0.021-0.033-0.14-0.057-0.078 1

-0.043-0.049-0.061-0.066-0.071-0.076-0.092-0.084-0.09 0.8 1

0.047 0.05 0.0550.0570.058 0.06 0.0520.0610.062 0.18 0.12 1

0.0480.0520.0590.0620.0650.0680.0740.0720.075 0.16 0.12 0.95 1

0.0240.0290.0390.0440.0490.0530.0750.0610.0680.017-0.0450.49 0.52 1

0.0770.0750.0680.0640.0590.055-0.0170.0440.0330.089-0.029 0.4 0.42 0.83 1

-0.065-0.072-0.086-0.092-0.098 -0.1 -0.11 -0.11 -0.120.0690.027-0.016-0.020.033-0.0022 1

-0.13 -0.13 -0.14 -0.14 -0.14 -0.13-0.068-0.13 -0.120.017 0.35-0.038-0.032-0.033-0.11 0.79 1

-0.065-0.072-0.086-0.092-0.098 -0.1 -0.11 -0.11 -0.120.0690.027-0.016-0.020.033-0.0022 1 0.79 1

0.0280.029 0.03 0.03 0.03 0.0310.022 0.03 0.03 0.0310.027-0.018-0.0620.0230.022-0.05 -0.04 -0.05 1

0.0350.0340.0330.0320.031 0.03 0.0140.0280.0250.0270.032-0.0029-0.0340.0220.042-0.044-0.027-0.0440.63 1

-0.049-0.052-0.057-0.059-0.059-0.06-0.019-0.058-0.0550.0240.073-0.031-0.053-0.041-0.0077-0.12-0.048-0.12 0.65 0.66 1

0.0560.0550.052 0.05 0.0470.045 0.01 0.04 0.0340.0270.037-0.0027-0.0360.0140.035-0.037-0.015-0.0370.62 0.99 0.65 1

0.02 0.0210.0230.0240.0260.0270.046 0.03 0.0330.0380.047-0.022-0.055-0.0150.024-0.074-0.046-0.0740.78 0.8 0.8 0.79 1

0.0290.0330.0390.0430.0460.0490.0710.055 0.06 0.0430.055-0.055-0.085-0.05-0.0064-0.086-0.051-0.0860.78 0.79 0.79 0.78 0.95 1

0.0280.0410.0650.0770.089 0.1 0.19 0.12 0.14 0.0580.0660.024-0.00160.0630.045-0.068-0.038-0.0680.42 0.35 0.39 0.34 0.44 0.46 1

0.0370.048 0.07 0.0810.091 0.1 0.17 0.12 0.14 0.046 0.05 0.026-0.0150.0460.045-0.063-0.041-0.0630.42 0.34 0.38 0.34 0.43 0.46 0.95 1

-0.0073-0.00350.00430.00820.0120.0160.0490.023 0.03 -0.04-0.0270.029-0.0120.11 0.076-0.059-0.042-0.059 0.8 0.32 0.36 0.31 0.41 0.43 0.51 0.51 1

0.04 0.0420.0460.048 0.05 0.0520.0630.0550.0580.0560.059-0.033-0.066-0.0290.0057-0.092-0.064-0.092 0.8 0.81 0.81 0.79 0.98 0.98 0.46 0.46 0.42 1

0.0260.0260.0260.0260.0250.0250.0150.0240.0230.0380.038-0.035-0.0730.0140.013-0.048-0.034-0.0480.99 0.63 0.64 0.61 0.78 0.78 0.42 0.42 0.79 0.79 1

0.0390.0410.0440.0450.0470.0480.056 0.05 0.0520.0760.075-0.028-0.063-0.0330.0093-0.088-0.062-0.088 0.8 0.8 0.8 0.79 0.97 0.97 0.45 0.45 0.43 0.99 0.8 1

-0.035-0.037-0.04-0.041-0.041-0.041-0.0031-0.039-0.0350.0048-0.0013-0.076-0.095-0.05 -0.04-0.042-0.04-0.0420.69 0.68 0.69 0.67 0.8 0.78 0.38 0.37 0.4 0.81 0.69 0.8 1

-0.015-0.011-0.00210.00220.00650.011 0.05 0.0190.027-0.036-0.0170.021-0.0190.11 0.08-0.048-0.026-0.0480.79 0.31 0.34 0.3 0.4 0.41 0.5 0.49 0.99 0.41 0.78 0.42 0.39 1

0.2 0.25 0.35 0.39 0.44 0.48 0.71 0.55 0.62 0.0720.0610.0620.0780.0660.013-0.01-0.0075-0.010.0620.072-0.0330.0770.085 0.11 0.1 0.120.00580.0980.062 0.1-0.00370.0071 1

-0.11 -0.12 -0.14 -0.14 -0.15 -0.15 -0.13 -0.16 -0.16-0.0150.0720.00780.0290.0091-0.0260.44 0.45 0.44-0.0310.005 0.390.0079-0.011-0.023-0.018-0.017-0.038-0.015-0.026-0.0190.042-0.04 -0.15 1

-0.0075-0.013-0.024-0.03-0.036-0.041-0.085-0.052-0.061-0.0110.02 0.0410.0520.0850.034 0.53 0.46 0.53-0.0640.39-0.0410.39-0.023-0.036-0.075-0.077-0.089-0.043-0.062-0.0360.013-0.083-0.018 0.5 1

0.0150.0077-0.0067-0.014-0.02-0.027-0.065-0.038-0.0480.0730.093-0.019-0.00330.03 -0.05 0.48 0.43 0.48 -0.01-0.00850.0093-0.00290.0470.0280.0510.037-0.0690.038-0.0140.04 0.036-0.063-0.0320.47 0.43 1

-0.066-0.077-0.098-0.11 -0.11 -0.12 -0.12 -0.13 -0.140.039 0.1-0.00990.00980.015-0.0510.35 0.36 0.35-0.027-0.0130.34-0.00880.024-0.00190.0380.032-0.0550.015-0.0270.00720.051-0.055-0.14 0.8 0.35 0.8 1

0.0180.0096-0.0078-0.016-0.025-0.033-0.094-0.048-0.0620.0430.0590.019 0.03 0.08-0.00160.44 0.39 0.44-0.0560.31-0.0120.31 0.015-0.013-0.0097-0.018 -0.1 -0.008-0.059-0.00760.029-0.094-0.0390.42 0.79 0.8 0.66 1

-0.09-0.099-0.11 -0.12 -0.13 -0.13 -0.11 -0.14 -0.14-0.0130.0780.0390.0440.0044-0.021 0.4 0.42 0.4 0.00690.038 0.4 0.0420.0130.00150.00330.0082-0.00340.0140.0130.0150.065-0.0054-0.14 0.94 0.48 0.42 0.74 0.38 1

-0.032-0.038-0.049-0.054-0.059-0.064 -0.1 -0.074-0.082-0.0270.00510.0240.032 0.08 0.028 0.47 0.42 0.47-0.0830.35 -0.06 0.35-0.056-0.064-0.072-0.072-0.096-0.068-0.08-0.066-0.017-0.091-0.0510.46 0.95 0.39 0.32 0.75 0.43 1

-0.078-0.087 -0.1 -0.11 -0.12 -0.12 -0.13 -0.13 -0.14-0.0260.0530.017 0.030.0033-0.021 0.4 0.41 0.4 -0.03-0.00130.37 0.013-0.019-0.033-0.036-0.027-0.028-0.019-0.032-0.0130.041-0.031-0.15 0.93 0.46 0.45 0.76 0.4 0.9 0.43 1

0.063 0.06 0.0520.0480.0430.038-0.0370.0260.014 0.53 0.43 0.13 0.1 0.0330.0640.0680.0360.0680.0550.072-0.0160.0790.0680.073-0.0320.0034-0.0460.0740.0620.099-0.029-0.041 0.6 -0.0860.0220.0073-0.0730.015-0.075-0.0041-0.079 1

-0.028-0.026-0.023-0.022-0.02-0.019-0.0057-0.016-0.0130.39 0.68 0.0770.069-0.034-0.0550.023 0.38 0.0230.0460.0680.0410.079 0.07 0.079-0.0080.014-0.0310.0720.0560.091-0.029-0.02 0.49 0.0180.0480.0380.00960.036 0.03 0.0250.013 0.79 1

0.0

0.2

0.4

0.6

0.8

1.0

Si
m
ila

rit
y

Figure 4.6: Pairwise similarities between representative vectors encoding traffic signs in a manually
designed semantic vector vocabulary.

unfolds through proximity, i.e., that similar words appear in similar contexts or proximity within the text.
While this could give a hint towards what kind of learning procedure could be used to automatically
generate a semantic vocabulary in automotive context, availability of suitable data sets is rather limited.
Analogously to the visual vocabulary, we consider the encoding of traffic signs and traffic participants
separately in this section as well.

Traffic signs

Our goal is to encode the meaning of traffic signs, i.e., the driving instruction or traffic rule they indicate
to the driver in a semantic vector vocabulary. As with visual similarity, this goal could be achieved
by either manually engineering the similarity structure through the VSA’s algebraic operations from
randomly chosen atomic vectors or through some automated learning approach. If we were to learn
this similarity structure automatically, there are two possible approaches. Similar to word embedding
algorithms for language, we could either learn the meaning of traffic signs explicitly from a large corpus
of text that describes traffic signs and their meanings in context. Alternatively, we could try to learn the
semantic meaning of traffic signs implicitly from many dynamic driving situations. Unfortunately, there
are no suitable data sets available for either of the aforementioned learning approaches. Additionally,

4.1 Preprocessing stage - generating a vocabulary 63

an implementation of the latter, implicit learning approach would be quite complex, as it would require
additional steps to extract structural understanding from the driving scene, which would be necessary for
the vocabulary generation system to create suitable vectors. To our knowledge, such a system does not
exist. Consequently, the only remaining option is to manually design the desired similarity structure as
described in section 4.1.2.
To encode the semantic meaning of traffic signs, we choose atomic vectors for the basic building blocks
of the representation at random and create semantic structure by employing the algebraic operations
of the SPA. We apply the role-filler pair approach described in section 3.4.2. We randomly choose
vectors for the roles TYPE and MEANING encoding the type and the meaning of a particular traffic
sign. For some traffic signs, we need an additional role REASON giving further information to the
vocabulary vector in order to distinguish similar traffic signs from one another. As potential filler vectors
for the TYPE role, we choose random vectors representing the following traffic sign classes included in
the GTSRB: LIMIT, PASSING, PRIORITY, DIRECTION and ATTENTION. Similarly, we create
filler vectors for the MEANING role like RIGHTOFWAY, GIVEWAY, SLOW, PREPARETOSTOP,
CONCENTRATE, LEFT, RIGHT, STRAIGHT, OVERTAKING. Finally, we create filler vectors
for the REASON role indicating the reason for increased attention or other additional information such
as PEDESTRIANS, CHILDREN or SLIPPERYROAD, ROADWORKS. Given these role and filler
vectors, we generate semantic vocabulary vectors encoding the meaning of traffic signs in the following
way

SIGN = TYPE�FT+MEANING�

(
n

∑
i=0

βi ·FMi

)
+ γ ·REASON�FR, (4.1)

where FT, FMi for i = 0, . . . ,n and FR are placeholders for the filler vectors and βi ∈ R for i = 0, . . . ,n
and γ ∈ R are weighting factors. In case, the additional REASON role is not needed for a particular
traffic sign, the corresponding weight factor γ is set to 0. For instance, the vocabulary vector encoding
the traffic sign indicating danger is calculated as

DANGER = TYPE�ATTENTION+MEANING� (SLOW+PREPARETOSTOP) . (4.2)

Traffic signs indicating speed limits form somewhat of a special case, as we want to encode them in such
a way, that signs indicating lower speed limits are more similar to one another than to signs indicating
higher speed limits. To achieve that, we need to encode numerical values that are closer to one another
more similarly than numerical values with larger intervals. Here, we employ a very simple encoding
scheme using the function

ϕ : R−→ RD,x 7−→ (sin(x),cos(x),0, . . . ,0) . (4.3)

In other words, we create a vector representing the numerical value of the speed limit by setting the first
two dimensions to sin(x) and cos(x) for the encoded numerical value x ∈ [0, π

2] and all other entries to
0 (note that we will discuss other, more complex approaches to encode numerical values in vectors in
section 4.2.1). We use 200 km/h as general speed limit, i.e., we map all speed limit values between 0
and 200 to the interval

[
0, π

2

]
with 200 km/h ≡ π

2 .
Figure 4.6 shows the pairwise similarities between the manually designed semantic vectors encoding
traffic signs in the GTSRB created in the aforementioned fashion. As expected, we see a highly structured
area in the top left corner, the speed limit signs. The other groups of signs (overtaking, priority, warning
and direction) are also visible as triangles on the right hand side. All non-related entities have low
similarities of less than 0.1. Brighter spots in the large dark area to the left represent similarities across
sign groups, especially, for signs related to trucks and curves or bends. Consequently, we were successful
in manually designing a vocabulary encapsulating semantic similarity of traffic signs as an alternative to
the visual vocabulary created in section 4.1.3.

64 Distributed representations of automotive scenes

BICYCLE CAR MOTORCYCLE PERSON TRUCK

BI
CY

CL
E

CA
R

M
OT

OR
CY

CL
E

PE
RS

ON
TR

UC
K

1

0.32 1

0.66 0.43 1

0.47 0.27 0.52 1

0.51 0.39 0.61 0.52 1

(a)
BICYCLE CAR MOTORCYCLE PERSON TRUCK

BI
CY

CL
E

CA
R

M
OT

OR
CY

CL
E

PE
RS

ON
TR

UC
K

1

0.59 1

0.63 0.86 1

0.99 0.5 0.54 1

0.56 0.98 0.73 0.48 1

0.5

0.6

0.7

0.8

0.9

1.0

Si
m
ila
rit
y

(b)
Figure 4.7: Pairwise similarities between representative vectors encoding traffic participants in a

semantic vector vocabulary. (a) Learned with word2vec (b) manually designed.

Traffic participants

As discussed in section 4.1.1, semantic similarity for traffic participants is hard to capture intuitively. We
concluded that the general meaning of traffic participants is highly context-dependent, which in turn can
only be learned from dynamic driving data or from a text corpus describing traffic situations. However,
such data sets are either not available or do not even exist. Hence, as a first step towards the goal
of encoding semantic similarity, we will therefore encapsulate the similarity between the five classes
of traffic participants already discussed in section 4.1.3, namely Bicycle, Car, Motorcycle, Pedestrian,
Truck. Here, we employ two different approaches: an automated learning approach making use of the
well-established word embedding of the word2vec algorithm (Mikolov et al., 2013b) trained on the
Google News data set and, similar to the semantic vocabulary of traffic signs, manual design, which is
only possible due to the small size of our vocabulary. Word2vec is an unsupervised learning approach
generating a word embedding, i.e., vectors representing every word encountered in the training text,
where words that appear in similar context, i.e., close proximity within the text, are mapped to similar
vectors. For our purposes, we simply extract the (300-dimensional) vectors representing the objects of
interest (traffic participants) from the learned vocabulary. The manually designed semantic vocabulary is
generated similarly to the aforementioned vocabulary of traffic signs using the SPA’s algebraic operation
and the role-filler-pairs approach based on two key properties, which give good yet simple descriptions
of the traffic participant’s semantic properties: speed and vulnerability represented by randomly chosen
atomic vectors SPEED and VULNERABILITY. Hence, we encode the five classes of traffic participants
through

PARTICIPANT = SPEED�ϕ(s)+VULNERABILITY�ϕ(v), (4.4)

using the encoding function ϕ from Equation (4.3).
Figure 4.7 depicts the pairwise similarities of both, the semantic vocabulary using word2vec vectors
(Fig. 4.7a) and the manually designed vocabulary vectors (Fig. 4.7b). We observe that the pre-trained
word vectors from word2vec are not entirely successful to capture the kind of semantic similarity we
are interested in. While vectors are similar to each other, the individual similarities do not always match
our human understanding, especially when considering an automotive context. For instance, the vector

4.1 Preprocessing stage - generating a vocabulary 65

encoding person is significantly more similar to the one representing truck than to the one representing
car Furthermore, car is the traffic participant least similar to truck.
For the manually designed vocabulary (Fig. 4.7b), results are more convincing. We are able to achieve
a higher similarity between vectors encoding car and truck as well as bicycle and person with lower
similarities between person and truck as well as bicycle and truck. This vocabulary is also not an ideal
representation but gets much closer to the desired semantic structure between these entities in an auto-
motive context.

4.1.5 Visual-semantic vocabularies

After having created vector vocabularies encoding visual (section 4.1.3) and semantic similarity (sec-
tion 4.1.4) structures, we aim to generate a vector vocabulary, which combines both aforementioned
similarities in one comprehensive vocabulary. The idea is that for high or low similarity in both, visual
and semantic domain we want the resulting vectors to preserve or even increase that similarity structure.
For a diverging similarity in the two domains, the fusion process should somewhat dilute the two ex-
tremes resulting in vectors with medium similarity. Contrary to other visual-semantic fusion methods,
these properties can be achieved employing again the algebraic operations of the SPA and the role-filler-
pair approach. Therefore, we randomly choose two additional role vectors, VISUAL and SEMANTIC
and construct the visual-semantic vocabulary vectors as

VISUALSEMANTIC = VISUAL�V+SEMANTIC�S, (4.5)

where V and S are placeholders for the visual and semantic vocabulary vectors to be fused. Given the
mathematical properties of the SPA’s algebraic operations (cf. chapter 3), this fusion procedure guaran-
tees that for two similar vectors in either of the input domains, the resulting visual-semantic vectors will
preserve that similarity.

Traffic signs

Figure 4.8 shows the pairwise similarities of the visual-semantic vocabulary vectors representing traf-
fic signs. We observe that opposite similarities from the input domains are smoothed out through the
convolution-based fusion process. For instance, the strong visual similarity between the traffic sign indi-
cating “Priority ahead” and all attention signs (triangular shape, red border, black symbol in the middle),
which has been clearly visible in Fig. 4.4, does not correspond to a large semantic similarity and was
canceled during the fusion procedure. The same holds true for the clearing signs as well as for the simi-
larities between signs indicating “No entry trucks” and “roundabout” and the speed limits. On the other
hand, for those traffic signs with high semantic similarity such as between signs indicating overtaking
rules for trucks and the sign indicating no entry for trucks, this similarity is preserved in the joint visual-
semantic vocabulary. Particularly for the speed limits, we observe that a high similarity in both domains
translates into a high joint similarity, whereas in other cases, the manually designed semantic similarity
is partly “overwritten” with the visual information. In general, many signs from different groups with
very low semantic similarity (the dark blue block in the bottom left of Fig. 4.8) are increased by the
visual part.

Traffic participants

In section 4.1.4, we created two semantic vocabularies, which have been learned with word2vec and
manually designed. Figure 4.9 depicts the pairwise similarities of two visual-semantic vocabularies,
where the two different vocabularies from section 4.1.4 are used for the semantic part. We observe
fusion results similar to those for the visual-semantic traffic sign vocabulary, where opposite similarities
from the input domains are smoothed out through the convolution-based fusion process while differences
in semantic structure between the two methods remain visible in the complete vocabulary. Consequently,

66 Distributed representations of automotive scenes

1

0.9 1

0.790.84 1

0.8 0.790.83 1

0.9 0.850.760.72 1

0.810.830.86 0.9 0.84 1

0.390.440.450.550.540.65 1

0.750.760.740.730.860.870.66 1

0.770.680.720.690.85 0.8 0.660.91 1

0.310.280.370.370.250.330.230.28 0.3 1

0.250.240.330.340.220.350.310.310.290.82 1

0.270.310.330.310.250.350.360.370.320.380.42 1

0.110.18 0.2 0.180.130.230.340.280.220.340.450.75 1

0.190.220.270.210.220.270.310.260.28 0.3 0.310.460.46 1

0.280.330.280.290.250.320.32 0.3 0.25 0.3 0.320.540.450.68 1

0.220.210.190.13 0.2 0.160.130.160.210.350.270.220.210.350.26 1

0.290.24 0.2 0.3 0.250.290.380.290.310.420.510.370.290.240.290.68 1

0.220.260.190.140.180.130.190.140.170.290.220.210.220.240.380.720.59 1

0.310.340.240.220.350.250.310.270.270.320.260.290.140.290.350.310.280.33 1

0.3 0.250.350.310.310.320.250.250.31 0.4 0.330.320.190.240.230.230.270.230.59 1

0.260.210.21 0.2 0.250.230.370.240.290.360.350.340.220.270.320.170.32 0.2 0.7 0.7 1

0.350.370.410.340.370.390.310.370.350.370.360.380.210.240.330.24 0.3 0.3 0.640.910.67 1

0.310.290.290.230.320.280.260.230.290.280.240.150.120.280.270.250.150.270.730.740.750.72 1

0.3 0.270.330.330.280.350.35 0.3 0.320.46 0.4 0.340.220.230.280.21 0.3 0.240.680.830.810.780.82 1

0.370.360.320.280.430.380.430.390.380.340.350.380.24 0.3 0.340.190.240.210.630.570.610.610.630.66 1

0.350.350.360.330.38 0.4 0.440.380.370.37 0.4 0.370.250.320.370.0960.2 0.220.550.480.590.540.61 0.6 0.84 1

0.290.290.210.170.330.230.290.27 0.3 0.280.270.310.220.350.340.270.220.250.820.470.560.48 0.6 0.520.650.58 1

0.310.320.310.240.360.290.340.310.320.380.290.370.160.210.270.240.280.270.820.77 0.8 0.790.790.840.710.630.62 1

0.330.340.290.320.290.290.350.27 0.3 0.320.270.320.160.310.320.260.31 0.3 0.850.670.770.660.740.77 0.6 0.550.710.77 1

0.340.330.340.360.310.370.310.290.320.370.330.280.170.290.340.250.250.280.74 0.8 0.760.79 0.9 0.910.67 0.6 0.560.810.81 1

0.290.29 0.3 0.280.26 0.3 0.330.320.320.360.330.410.22 0.3 0.350.280.320.260.710.720.780.730.730.810.640.58 0.6 0.78 0.8 0.79 1

0.360.340.340.390.290.360.37 0.3 0.340.340.380.360.18 0.3 0.420.170.330.280.710.540.57 0.6 0.590.660.590.590.730.580.740.670.65 1

0.320.390.340.380.440.420.750.470.490.280.280.330.380.340.240.290.36 0.3 0.360.250.360.29 0.3 0.280.380.380.320.360.380.27 0.3 0.26 1

0.230.190.180.16 0.2 0.150.24 0.2 0.250.320.340.35 0.3 0.310.31 0.5 0.530.410.320.330.550.340.27 0.3 0.340.330.310.350.310.28 0.4 0.210.32 1

0.280.260.220.290.220.230.240.180.220.290.250.320.260.250.260.490.520.470.220.480.290.48 0.2 0.270.23 0.2 0.230.260.280.260.320.230.280.62 1

0.280.270.26 0.3 0.230.270.260.18 0.2 0.350.320.240.260.280.210.490.480.470.320.380.360.360.330.380.360.320.240.350.34 0.4 0.340.220.330.670.66 1

0.2 0.220.190.190.160.160.28 0.1 0.130.350.320.260.270.290.330.420.440.440.380.340.540.330.330.350.320.340.280.360.360.360.350.260.360.720.540.78 1

0.310.290.310.260.270.280.230.220.250.360.34 0.3 0.260.280.25 0.5 0.460.430.310.540.390.560.380.390.370.310.270.38 0.3 0.390.380.250.310.660.760.810.64 1

0.170.160.150.140.120.120.27 0.1 0.160.270.320.250.270.280.340.430.470.420.310.280.530.290.28 0.3 0.260.28 0.3 0.27 0.3 0.3 0.340.270.270.750.620.570.780.54 1

0.340.290.320.26 0.3 0.270.210.250.310.360.330.290.260.320.240.53 0.5 0.450.280.510.340.560.32 0.3 0.310.290.270.310.270.320.350.27 0.3 0.690.770.590.490.830.54 1

0.230.210.230.15 0.2 0.180.290.250.280.320.35 0.4 0.380.33 0.4 0.510.560.440.350.340.550.390.260.350.320.290.310.370.340.320.430.290.310.860.590.580.720.620.810.63 1

0.310.310.350.360.280.330.420.330.330.650.540.370.410.320.26 0.3 0.430.360.35 0.4 0.410.390.320.440.330.370.290.380.410.360.360.37 0.7 0.320.330.370.390.380.290.370.36 1

0.27 0.3 0.3 0.330.270.350.510.350.290.520.670.440.470.320.310.260.560.290.340.340.41 0.4 0.280.410.38 0.4 0.3 0.350.370.330.340.390.670.340.310.34 0.4 0.360.340.350.410.85 1

0.2

0.4

0.6

0.8

1.0

Si
m
ila

rit
y

Figure 4.8: Pairwise similarities between vectors encoding traffic signs in a visual-semantic vocab-
ulary.

the visual-semantic encoding based on manually designed semantics appear to be a convincing vector
representation for the similarity structure expected for traffic participants in an automotive context.

4.1.6 Summary on vocabularies

In this section, we investigated several options of generating a suitable vector vocabulary for entities of
interest in an automotive context. We have shown a way of learning a visual structure for two classes of
categories appearing in an automotive context, namely traffic signs and traffic participants using CNNs.
Furthermore, we were able to create a learned semantic vocabulary for traffic participants, but not traffic
signs due to lack of suitable training data sets. Hence, we designed the semantic vocabulary for traf-
fic signs manually using the mathematical properties and algebraic operations of the SPA. Furthermore,
we also generate an alternative semantic vocabulary for traffic participants as a baseline to compare
the learned semantic structure, which has not been adapted to the automotive context, to. Finally, we
successfully generated a visual-semantic vocabulary encapsulating both, visual and semantic similarity
by using the SPA’s algebraic operations and the role-filler-pair approach. This visual-semantic vocabu-
lary appears to represent the expected similarity structure between the entities of interest in automotive
context.

4.2 Representation generation stage 67

BICYCLE CAR MOTORCYCLE PERSON TRUCK

BI
CY

CL
E

CA
R

M
OT

OR
CY

CL
E

PE
RS

ON
TR

UC
K

1

0.14 1

0.7 0.42 1

0.47 0.15 0.33 1

0.16 0.62 0.49 0.17 1

(a)
BICYCLE CAR MOTORCYCLE PERSON TRUCK

BI
CY

CL
E

CA
R

M
OT

OR
CY

CL
E

PE
RS

ON
TR

UC
K

1

0.18 1

0.64 0.49 1

0.35 0.13 0.15 1

0.059 0.57 0.44 0.19 1

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

(b)
Figure 4.9: Pairwise similarities between vocabulary vectors encoding traffic participants in a

visual-semantic vocabulary, where the semantic part is (a) learned with word2vec (b)
manually designed.

It is worth noting however that the manual generation process of the semantic vocabularies, as mentioned
in 4.1.2, imposes a significant amount of design choices biased by the human engineer. However, the
choice of generating some of the semantic vectors in this context manually is due to the fact that on
the one hand, the vocabulary is comparatively small while on the other hand, there are no suitable data
sets available to learn the desired semantic structure from. Furthermore, the described procedure to fuse
visual and semantic similarities into one coherent vocabulary is only one of several available options.
It would have also been possible to try to automatically learn such a fusion process by projecting the
visual vocabulary to the semantic one by combining visual properties and language descriptions like
for instance in Karpathy and Fei-Fei (2017). However, such a learning approach again would require a
suitable, sufficiently large data set, which in turn is not available for the entities investigated here.
Finally, the process of generating structured representations from an available vocabulary created with
any of the techniques described in this section is independent from the particular vocabulary at hand.
Hence, although it seems intuitive and useful to encode similarities of potential interest to the task to
be solved using the vector representation, it remains to be seen, if using a vocabulary encapsulating
any form of similarity actually improves task performance. Furthermore, the choice which similarity
structure to use naturally appears to be heavily task-dependent. Thus, we will investigate the influence
of the vocabulary structure on the task performance for the selected task of driving context classification
in chapter 5 by simply evaluating the same models with changing underlying vocabularies.

4.2 Representation generation stage

After having created a vector vocabulary suitable for a specific application of interest as shown in sec-
tion 4.1, we focus our attention in this section to the second stage of the encoding process proposed
by Gallant and Okaywe (2013), the representation generation stage. This second step is the process of
actually generating structured vector representations from a given vocabulary of atomic vectors. As men-
tioned by Gallant and Okaywe (2013): “Although the preprocessing and output computation stage can
involve significant machine learning, there are reasons for the representation generation stage to avoid

68 Distributed representations of automotive scenes

machine learning”. Using machine learning in the stage of representation generation means to adjust the
representation to the specific set of applications, which restricts them to be used for different, but related
sets of problems. Furthermore, involving learning in the representation generation might slow down the
whole system prohibiting practical usage of the representation in application scenarios. However, in cer-
tain situations it could make sense to involve a learning step at the representation generation stage, for
example if the system should detect novelties and assign them to new vectors or representations and/or
needs to memorize them.
In this work however, we will focus our efforts mainly on representations which are manually designed
without involving machine learning models. Thereby, we aim to generate representations that are general
enough to be applied to a variety of different problems with only moderate modifications necessary when
being applied to one particular task. One crucial aspect in the field of automotive scene representation
is encoding dynamic data such as positions or velocities, which constitutes a significant part of the situ-
ational context. This context is essential for the representation to capture the semantics of the scene and
gather a comprehensive understanding of the situation at hand. Depending on the application, different
requirements on such a representation might be necessary. For instance, for some applications it might
be necessary that the encoded numerical values need to be decoded back out exactly from the repre-
senting vector while for others an approximate recovery might be sufficient. Other tasks might demand
for the representational vectors to have unit length independent from the encoded value. We therefore
investigate several possible options of how to encode numerical values in semantic vectors focusing on
different aspects of possible requirements.
Encoding numerical values, although an important one, is only one aspect of representing automotive
scenes in high-dimensional vectors. The second crucial aspect of the representation generation stage is
that of how to build up vectors representing structured information and complex interrelations encoun-
tered in automotive scenes. We need to combine several pieces of information into one or a set of scene
vectors of fixed length representing the semantics of the situation. We will investigate how the SPA’s al-
gebraic operations can be used to combine numerical and symbol-like information to build such complex
representations.
However, given the mathematical properties of VSAs in general and the SPA in particular, there are
natural limitations to the amount of information that can be encoded in such a vector representation.
Every algebraic operation, addition and circular convolution, will introduce a certain amount of noise
into the representation, which imposes the functional demand for a clean-up memory (cf. chapter 3) for
some applications. These limitations are actually not a flaw of such architectures, but rather a feature
for being able to model limitations of cognitive functions of living beings, who are also not able to store
unlimited amounts of information. The limitations of the modeling architecture are strongly connected
to the chosen dimension of the underlying vector space. Therefore, we will finally analyze what kind
of limitations these architectures impose on us and how much information can effectively be encoded in
such a vector representation before noise reaches a critical level.

4.2.1 Different vector representations for numerical values

In this section, we investigate different approaches to map numerical information to semantic vectors. We
have already seen one simple option for such an encoding in section 4.1.4, where we used the function
ϕ from Equation (4.3). Here, we will show a more complex adoption of this encoding again making use
of the sine and cosine functions alongside two more possibilities of how to represent numerical values.

Sine-Cosine-based representations

The idea behind using the sine and cosine functions to encode numerical values in high-dimensional
vectors is their property of adding up to 1 when being squared, the Pythagorean identity

sin2(x)+ cos2(x) = 1. (4.6)

4.2 Representation generation stage 69

For the simple encoding given in Equation (4.3)

ϕ : R−→ RD,x 7−→ (sin(x),cos(x),0, . . . ,0) , ((4.3) revisited)

Equation (4.6) leads to the resulting vector ϕ(x) having unit length, which is a desirable feature for many
representations.
Since most of the dynamic data to be encoded in automotive context such as positions and velocities is
two-dimensional, we also show a more complex adaptation of this simple trigonometrical encoding for
two numerical values using different spatial frequencies and offsets. Therefore, we define the following
auxiliary functions

f(m,i) : R2 −→ R4,(x,y) 7−→
(

cos
m ·π + x

i+1
,sin

m ·π + x
i+1

,cos
m ·π + y

i+1
,sin

m ·π + y
i+1

)
, (4.7)

ψi : R2 −→ R4,(x,y) 7−→
(

f(0,i) (x,y) , f(1
2 ,i)

(x,y) , f(1,i) (x,y) , f(3
2 ,i)

(x,y)
)

(4.8)

and obtain the final vector representation of two-dimensional values via the function

λ : R2 −→ RD,(x,y) 7−→ 1√
D
2

(
ψ0 (x,y) , · · · ,ψ D

16−1 (x,y)
)
. (4.9)

The encoding λ (x,y) leads to non-zero vectors having unit length with information distributed over all
elements (in contrast to a simple encoding like (x,y,0 . . . ,0)). Although for both trigonometrical en-
coding schemes shown here there is a way of decoding back out the input values exactly from resulting
vector by using either the inverse trigonometrical functions or the atan2 function, both approaches have
certain drawbacks. For instance, the simple encoding (cf. Equation (4.3)) uses only two of a typically
large number of dimensions and thus somewhat neglects the architectural strength of VSAs being dis-
tributed representations. On the other hand, the encoding of two-dimensional values based on different
spatial frequencies and offsets of the trigonometrical functions uses all of the available dimensions, but is
constructed for vector space dimensions being a multiple of 16. Although this is true for all sufficiently
large powers of 2 such as 512 = 29,1024 = 210, . . . it still imposes significant restrictions on the potential
dimensions of the vector spaces to be used.

Scalar multiplication encoding

Apart from encoding numerical values in vectors as the only non-zero elements within a vector contain-
ing only zero elements elsewhere, possibly the simplest encoding is to (for instance, randomly) choose
vectors representing the desired entity/unit to be encoded and simply multiply all elements of that vector
with the number the vector should represent. Hence, to encode a sequence a1, . . . ,an of numerical values
in vectors, we create a vocabulary of vectors V = {X1, . . . ,Xn} representing the corresponding units and
multiply them by the scalar values with the vectors representing the units ai ·Xi. Finally, summing up all
of these vectors generates one single vector encoding all of the numerical values a1, . . . ,an

V =
n

∑
i=1

ai ·Xi. (4.10)

For Xi = (xi0, . . . ,xiD−1)
ᵀ, this encoding is equivalent to the linear map given by the matrix M consisting

of the elements of the vectors Xi column-wise concatenated

V =

 x10 . . . xn0
...

. . .
...

x1D−1 . . . xnD−1

︸ ︷︷ ︸

=:M

·

a1
...

an

 (4.11)

70 Distributed representations of automotive scenes

10 20 50 100 200 300 400 500 1000
items

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RM
SE

Dimension
64
256
512
1024

(a)

10 20 50 100 200 300 400 500 1000
items

2.5

5.0

7.5

10.0

12.5

15.0

17.5

no
rm

Dimension
64
256
512
1024

(b)

Figure 4.10: Properties of the simple scalar multiplication encoding of numerical values in vec-
tors. (a) shows the RMSE when decoding back out an approximation of the original
numerical values from the vector representation. (b) shows the norm of the representa-
tion vectors.

Hence, we can use the inverse matrix M−1 to decode back out an approximation â1, . . . , ân of the original
numerical values a1, . . . ,an from the vector V by V ·M−1.
The error of that approximation depends on the dimension D of the underlying vector space and the num-
ber of numerical values encoded in the representation. To analyze this error, we randomly choose numer-
ical values a1, . . . ,an uniformly from the interval [0,1) for n = 10,20,50,100,200,300,400,500,1000 to
be encoded as well as random, unit-length vectors X1, . . . ,Xn representing the numerical units, decode
back out the approximations â1, . . . , ân of the original values and calculate the RMSE between the actual
values and their decoded approximations. Figure 4.10a visualizes the results of this analysis for four dif-
ferent random trials for each vector dimension D = 64,256,512,1024. We observe that we can reliable
decode back out up to 50,200,500 and 1000 numerical values from the scalar multiplication encoding
for vectors of dimension 64,256,512 and 1024 respectively with an error in the order of magnitude of
10−14, which is more than enough for our purposes. However, Fig. 4.10b shows one of the drawbacks of
the scalar multiplication encoding scheme. Although we choose the numerical values to be encoded to
be lower than 1, the norm of the resulting vectors becomes comparatively large for increasing vector di-
mension and number of numerical values encoded. This makes sense, as we sum up an increasingly large
number of vectors having the numerical values as their length. This behavior will be reinforced if we use
larger numerical values to be encoded. Another potential drawback is that we need to calculate an entire
inverse matrix to decode back out the original information from the vector representation, whereas one
of the key strengths of VSAs is that of decoding back out information using the VSA’ binding operation
and (pseudo-) inverse vectors (see Equation (3.11)).

Convolutive power encoding

In this section, we present the final and, for this work most important, encoding scheme for numerical
values, which we call the convolutive power encoding. The basic idea is to encode a numerical value
p∈R as the power of a vocabulary vector X representing the corresponding unit, i.e., Xp. While defining
the power of a vector Xn is straightforward for an integer exponent n ∈ N,

Xn := X�X� . . .�X︸ ︷︷ ︸
n times

, (4.12)

it is not as intuitive for real-valued exponents a ∈ R. Therefore, we revisit the convolutive vector power
given in definition 3.19

vp := ℜ

(
IDFT

(
(DFTj (v)

p)
D−1
j=0

))
, (4.13)

4.2 Representation generation stage 71

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x-coordinates

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

y-
co
or
di
na

te
s

0.000
0.037
0.074
0.111
0.147
0.184
0.221
0.258
0.295
0.332
0.368
0.405
0.442
0.479
0.516
0.553
0.589
0.626
0.663
0.700

Si
m
ila
rit
y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x-coordinates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Si
m
ila
rit
y

weak similarit threshold
strong similarit threshold
actual x

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
 -coordinates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Si
m
ila
rit
y

weak similarity threshold
strong similarity threshold
actual y

(a) Convolutive power encoding for one two-dimensional numerical entity

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x-coordinates

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

y-
co
or
di
na

te
s

0.000
0.037
0.074
0.111
0.147
0.184
0.221
0.258
0.295
0.332
0.368
0.405
0.442
0.479
0.516
0.553
0.589
0.626
0.663
0.700

Si
m
ila
rit
y

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x-coordinates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Si
m
ila
rit
y

weak similarit threshold
strong similarit threshold
actual x

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
 -coordinates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Si
m
ila
rit
y

weak similarity threshold
strong similarity threshold
actual y

(b) Convolutive power encoding for two two-dimensional numerical entities

Figure 4.11: Visualization of the convolutive power encoding scheme for 512-dimensional represen-
tation vectors depicting the similarity between the representation vector and auxiliary
comparison vectors created from a sequence of discrete values. The left plot in both
rows shows a two-dimensional grid of the similarities, while the middle and right plot
show the individual entities respectively. The red circles in the left plot and the dashed
blue lines in the middle and right plots indicate the actual encoded values.

where ℜ denotes the real part a of a complex number a+ ib ∈ C. Equation (4.13) enables us to en-
code numerical, real-numbered values p ∈ R as convolutive power Xp and multiple numerical values
p1, . . . , pn as

V = Xp1
1 �Xp2

2 � . . .�Xpn
n . (4.14)

However, as we aim to avoid the issue of growing vector lengths when encoding a increasing number of
numerical values mentioned for the scalar multiplication encoding, we restrict the vectors representing
the units of the numerical values to be unitary vectors. Revisiting definition 3.18 and lemma 3.20, a
vector U whose inverse element U−1 is equal to its pseudo-inverse element Ū is called unitary. Regarding
the encoding of numerical values through their power, unitary vectors have some desirable properties (cf.
lemma 3.20):

• unitary vector have unit length, i.e., ‖U‖= 1,

• the power of a unitary vector is again unitary, i.e., the set of unitary vectors U is closed under
convolutive exponentiation,

• the product of two unitary vectors is again unitary,

• convolution with unitary vectors preserves the norm of the vector they are convolved with.

Given these properties, any vector created using Equation (4.14) representing numerical values is a uni-
tary vector with all its desirable properties. Hence, we indeed avoid the problem of growing vector norm
posed by the scalar multiplication encoding.
As mentioned previously, we are primarily interested in a way of encoding two-dimensional values in
vectors, which is why we focus our analysis of the convolutive power encoding scheme on this case.

72 Distributed representations of automotive scenes

Hence, we encode two numerical values x,y, i.e., a two-dimensional entity, by generating two random,
unitary vectors X,Y representing the corresponding units and applying Equation (4.14)

V = Xx �Yy. (4.15)

To encode a sequence (xi,yi) for i = 1, . . . ,n of two-dimensional numerical values all sharing the same
units, we simply sum up a their individual encoding vectors generated via Equation (4.15), which leads
to

V =
n

∑
i=1

Xxi �Yyi (4.16)

Figure 4.11 visualizes vectors encoding one (cf. Fig. 4.11a and Equation (4.15)) and two numerical
entities (cf. Fig. 4.11b and Equation (4.16)) given by two units within one vector. To generate the
similarities shown in Fig. 4.11, we calculate the dot product between the vectors actually representing the
encoded values and vectors Ṽi = Xx̃i �Yỹi encoding a sequence of discrete sample values (x̃i, ỹi) for i =
1, . . . ,m. The left plot in each row of Fig. 4.11 depicts the similarities as heat map over a two-dimensional
grid. The middle and right plots in Fig. 4.11 visualize the similarities of each unit, which is similar to
plotting the heat map in three dimensions as ridges and slicing them through one of the ground axes. In
both rows, we observe high similarity peaks way above both similarity thresholds at the actual encoded
values and significantly lower similarity values everywhere else. However, we already encounter one of
the problems of this encoding scheme. Comparing the similarities at the positions of the encoded values,
we observe a drop of similarity values from roughly 0.7 to 0.5 when encoding two two-dimensional
numerical values instead of only one. Thus, there is a limit of how many values can effectively be
encoded in such a representation before noise becomes predominant and the encoded values can not be
properly recovered anymore. Such limitations regarding the number of concepts that can be represented
in one vector depending on its dimension are a recurrent theme in the field of VSAs. Furthermore, we
picked a 20× 20 grid to encode numerical values using the convolutive power, which shows promising
representational features here. Although we are dealing with real-world sensor measurements in our
applications, which are naturally limited by the sensors’ range or other physical constraints and/or can
be re-scaled to a suitable numerical range, we still need to analyze further, if and why the chosen size
of the grid is reasonable. We will further investigate these limiting factors of our representation in
section 4.2.3.

4.2.2 Structured representations

Assuming we have generated a suitable vocabulary of atomic vectors encoding the entities and concepts
of interest in an automotive context (cf. section 4.1) as well as several options of how to encode numerical
values in vectors, we are now in the position to encapsulate the content and context of driving situations
in semantic vectors. In general, we employ the SPA’s algebraic operations to bind connected items and
concepts together through circular convolution and to sum up independent concepts appearing alongside
one another. More particularly, we combine all principles for structured representations presented so far
in this thesis: simple superposition to generate unordered sets of items by summing the representational
vectors, encoding of bound concepts through role-value pairs as shown in section 3.4.2 and the several
approaches to encode numerical values in structured vector representations as shown in section 4.2.1.
However, the setup of such a vector representation is highly dependent on the actual task to be solved
as well as the data available to be encoded. Thus, we will present and investigate our structured repre-
sentations in detail for two particular tasks in automotive context, namely driving context classification
and vehicle trajectory prediction, in separate chapters 5 and 6. However, before we proceed to applying
our vector representations to specific automotive tasks, we need to analyze their systematical limitations
regarding the amount of information that can effectively be encoded in semantic vectors.

4.2 Representation generation stage 73

20 40 60 80 100 120 140 160 180 200
Superpositions

0.1

0.2

0.3

0.4

0.5

Si
m
ila
rit
y

Dimension = 256

20 40 60 80 100 120 140 160 180 200
Superpositions

Dimension = 512

20 40 60 80 100 120 140 160 180 200
Superpositions

Dimension = 1024
weak similarity threshold
strong similarity threshold
member
no member

Figure 4.12: Visualization of the SPA’s superposition capacity for vector dimensions 256, 512 and
1024. The blue boxes indicate the similarity between the superposition vector and its
summands, the orange boxes illustrate the similarity between the superposition vector
and other randomly generated vectors. The dotted lines visualize the similarity thresh-
old based on the vector dimensionality for reference.

4.2.3 Capacity analysis - limiting factors to vector representations

In section 4.2.1 and on several other occasions, we have already seen that there are general and system-
atical limits for the amount of information that can be encoded in and effectively decoded from vector
representations in VSAs. Such limits are a reoccurring theme and an essential feature of such architec-
tures as they allow for the modeling of realistic cognitive phenomena. Considering human subjects for
instance, the capacity to process and store information or concepts in short-term memory as well as other
cognitive tasks is subject to numerical restrictions (Miller, 1956). Hence, numerical limitations of cogni-
tive architectures like the SPA or VSAs in general are one way of modeling the numerical restrictions to
cognition observed in human subjects. In the context of automated driving however, we need to analyze
these restrictions imposed by the cognitive architecture applied to provide upper borders regarding the
amount of information that can be stored in our vector representation. In this section, we analyze these
limits with the goal of finding bounds for, e.g., the number of concepts that can effectively be stored in
a single vector before the accumulation of noise makes it impossible to retrieve the original individual
vectors.

Superposition capacity

First, we evaluate the capacity of superposition, i.e., the addition operation of the SPA. Superposition is
used to store and combine several concept vectors vi for i = 0, . . . ,n in an unordered set

s =
n

∑
i=0

vi. (4.17)

Given the properties of the SPA, we can determine if a vector of interest w belongs to that ordered
set by calculating the similarity φ (s,w) between the superposition vector and the vector of interest.
For sufficiently high-dimensional vectors, the similarity φ (s,w) will be close to 0 in case the vector w
is not part of the sum. However, the more vectors we add to the superposition vector s, the more noise
accumulates in the representation and thus decreases the similarity between the superposition vector s and

74 Distributed representations of automotive scenes

its individual ingredients vi. In order to analyze how many vectors can be added together by superposition
before individual vectors become irretrievable, we conducted the following experiment: assuming we
want to add n vectors vi for i = 1, . . . ,n into a superposition vector s as in Equation (4.17), we randomly
generate a vocabulary of 2n vectors vi for i = 1, . . . ,2n and sum up the first n members to create our
superposition vector s. Then we calculate the cosine similarity φ (s,vi) between the superposition vector
s and every vector vi for i = 1, . . . ,2n in the vocabulary. A similar but slightly different experiment
has been conducted by Wahle et al. (2012): the atomic vocabulary vectors, referred to as elemental
vectors in Wahle et al. (2012), are sparse in the sense, that they mostly contain 0 elements, and the
superposed vectors are normalized after adding them. Furthermore, Wahle et al. (2012) only compare
the similarity φ (s,v1) between the superposition and the original vector with the similarity φ (v1,vn)
between the original vector v1 and the most recently added random vector vn as baseline for the expected
similarity between randomly chosen vectors. In contrast, although we have already analytically derived
a threshold ε = c√

D
for the expected similarity of randomly chosen vectors in definition 3.8, we calculate

the similarity between the superposition vector and n other random vectors for reference.
Figure 4.12 shows the result of our experiment for 3 random vocabularies per superposition length con-
taining vectors of dimension 256, 512 and 1024. The blue boxes in each figure illustrate the similarity
between the superposition vector s and each of the individual vectors vi for i = 1, . . . ,n it contains, i.e.,
the members of the unordered superposition set. The orange boxes depict the similarity between s and
the other vocabulary vectors vi for i = n+1, . . . ,2n it does not contain, i.e., the non-members. The dotted
red and green lines indicate the SPA’s weak and strong similarity threshold depending on the dimension
of the vector space. Considering the weak similarity threshold εweak =

2√
D

, we observe that for a vector
dimension of 256 the SPA allows roughly 50 items to be stored in a superposition vector. For higher
vector dimensions 512 and 1024, the number of items that can be superposed increases to roughly 100
and 200 respectively. Considering the strong similarity threshold εstrong =

3√
D

, the upper borders for the
number of items being stored in a superposition vector are slightly more conservative with 25, 50 and
100 for vector space dimensions of 256, 512 and 1024 respectively. We also observe in our experiments
that the similarity between the superposition vector and non-member random vectors is consistently be-
low the weak similarity threshold εweak for the majority of the samples. However, once the similarity
between the superposition vector and its members drops below either of the similarity thresholds for the
majority of the samples, we can not distinguish between members and non-members with a sufficiently
high probability. For 256 dimensional vectors for instance, we even observe that the members and non-
members become nearly indistinguishably when adding more than 80 vectors. Thus, we have to choose
rather conservative bounds for the number of items to be encoded in a superposition vector.

Capacity of structured representations involving convolutive powers

In the previous section, we have analyzed the SPA’s capacity regarding the number of items that can
be stored in an unordered set using superposition. For encoding driving situations in a semantic vector
substrate, we will most likely employ more complex representation than superposition of single items
alone. In this section, we thus analyze the SPA’s capacity regarding the structured representations in-
volving the convolutive vector-power representation presented in section 4.2.1. Figure 4.11 has already
shown, that unbinding positions back out by querying the representation vector with sample vectors en-
coding discrete position examples yields high similarities for samples in the region of the encoded values
and low similarities elsewhere. These low similarities for the particular examples shown in Fig. 4.11a
and 4.11b are below or at most in the order of magnitude of the SPA’s similarity thresholds. However,
we also observe, that encoding several entities of the same type in one position vector as in Fig. 4.11b,
the similarities of the true positive positions decrease compared to the encoding of only one item as in
Fig. 4.11a. Hence, our capacity analysis not only has to cover the amount of objects encoded in one
vector, but also the number of items per object class.
Therefore, we conduct the following experiment: assuming we want to encode n spatial entities, i.e.,

4.2 Representation generation stage 75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Superpositions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Si
m

ila
rit

y
Dimension = 256

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Superpositions

Dimension = 512

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Superpositions

Dimension = 1024
weak similarity threshold
strong similarity threshold
member
no_member

Figure 4.13: Capacity analysis for the superposition of vectors encoding spatial positions using the
convolutive vector-power for varying vector dimensions.

objects oi with two-dimensional location information (xi,yi) for i = 1, . . . ,n as shown in Fig. 4.11 for
n = 1 (Fig. 4.11a) and n = 2 (Fig. 4.11b), into a single representation vector s, we generate a vocabulary
of random vectors vi for i = 1, . . . ,n encoding object class labels and random unitary vectors X,Y to
encode the units of the spatial information. In contrast to the previous experiment, where we simply
summed up a certain number of random vectors, we are interested in a more specific analysis, since there
are several possibilities to distribute the positional values (xi,yi) over the available object class vectors vi.
For instance, for a total number of two superpositions, i.e., n = 2, there are two possibilities to generate
our representation vector, namely

s1 = v1 �Xx1 �Yy1 +v1 �Xx2 �Yy2 , (4.18)

s2 = v1 �Xx1 �Yy1 +v2 �Xx2 �Yy2 . (4.19)

The vector s1 in Equation (4.18) encodes two objects of the same type, while the vector s2 encodes
occurrences of two different object types at the given locations. As we are working with random vectors
in this experiment, we can, without loss of generality, skip the vector encoding two objects of type
represented by the vector v2, which would yield a result equivalent to Equation (4.18). More generally,
we are interested in all sets

Cm, j =

{
0 < k1, . . . ,km ≤ n | m≤ n and

m

∑
i=1

ki = n

}
(4.20)

of natural numbers ki summing up to n ignoring permutations of the ki. We index the sets with j, since
there potentially exist several possibilities to decompose n into sums of m natural numbers.
In our experiments, for each number n of total objects to be encoded in the vector representation, we
calculate all possible sets Cm, j (ignoring permutations) and generate random position values (xi,yi) for
i = 1, . . . ,n and a random vocabulary as described above. For each set Cm, j, we generate a representation
vector

sm, j =
m

∑
i=1

ki

∑
l=1

vi �Xxi �Yyi (4.21)

as well as query vectors Pi = Xx̃i � Yỹi encoding a sequence of discrete sample values (x̃i, ỹi) for i =
1, . . . ,M evenly distributed over the length of the positional encoding grid. In other words, Equa-
tion (4.21) states, that each class label vi appears ki times yielding a sum of n objects. We query the

76 Distributed representations of automotive scenes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Superpositions per class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Si
m
ila

rit
y

Dimension = 256

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Superpositions per class

Dimension = 512

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Superpositions per class

Dimension = 1024
weak similarity threshold
strong similarity threshold
member
no_member

Figure 4.14: Capacity analysis for the superposition of vectors encoding spatial positions using the
convolutive vector-power for varying vector dimensions. In contrast to Fig. 4.13, this
figure illustrates the similarity for vectors containing spatial information for several
objects of the same class.

representation vector for the position of each class by binding it to the pseudo-inverse element v̄i for
each class label vector, i.e.,

sm, j � v̄i ≈
ki

∑
l=1

Xxi �Yyi , (4.22)

and calculate the similarity with the discretized position vectors Pk to get

si,k =
∣∣φ (sm, j � v̄i,Pk)

∣∣ . (4.23)

For samples close to the originally encoded positions, i.e., |xi− x̃i| < ε and |yi− ỹi| < ε for a certain
threshold ε , we label si,k as positive similarity denoting a member of the representation vector. Otherwise,
we consider the similarity si,k at position (x̃i, ỹi) not a member of the representation vector sm, j.
Figure 4.13 shows the results of this capacity analysis regarding the total number of superposed objects
within the representation vector for varying vector dimensions. The blue boxes in each column illustrate
the positive similarity values, i.e., for positions considered members of the representation vector, whereas
the orange boxes indicate the negative similarity values of the non-member positions. The dotted red and
green lines visualize the weak and strong similarity threshold for each dimension respectively. Similar to
Fig. 4.11, we observe that the similarity of the non-members is in the order of magnitude of the similarity
thresholds while the similarity for the member position decreases with a growing number of spatial items
encoded in the vector.
Figure 4.14 shows a different evaluation of the same data showing the number of addition operations
per class on the x-axis. In contrast to Fig. 4.13, Fig. 4.14 illustrates the similarity for vectors containing
spatial information for several objects of the same class. That is, Fig. 4.14 illustrates the similarity
of vectors containing a specific number n of superpositions per class on its x-axis independent of the
total number of superpositions. We observe, that not only the similarity of the members decreases with
growing number of superpositions per class, but the similarity of the non-member increases beyond the
weak similarity threshold. Similar to the simple superposition capacity analysis, we consider the point
in the plots where the member similarities fall below the strong similarity threshold the upper border
for the maximal number of spatial objects per class to be encoded in this representational substrate. For

4.3 Summary 77

instance, this upper bound for 256 dimensional vectors is 10 superpositions per class, which is roughly
half of the upper bound for the number of simple superpositions.

4.3 Summary

In this chapter, we presented the general approach of creating structured vector representations to encode
automotive scenes. After showing the theoretical tool set in chapter 3 independent of particular appli-
cations, we focused our attention to scene representation in automotive context. The chapter’s structure
followed the process established by Gallant and Okaywe (2013) and is split into two main subsections
focusing on the creation of vocabularies of atomic vectors (section 4.1) and generating structured, more
complex representations from the atomic vectors in the vocabulary (section 4.2). We showed several
approaches to generate vector vocabularies of entities encountered in automotive scenes such as traffic
participants and traffic signs based on either manual design or automated learning. Thereby, we were
able to encapsulate different similarity structures such as visual similarity, semantic similarity and a fu-
sion of both. We were able to demonstrate, that we can successfully encapsulate the desired similarity
structure within our vocabulary of atomic vectors. Finally, we pointed out advantages and problems for
both approaches to generate these structured vocabularies with the bias imposed by human engineers and
limits regarding sufficiently large and available data sets being the main issues for manual and learned
vocabularies respectively. Since we consider the choice of a suitable vocabulary to be highly dependent
on the particular task to be solved, we analyze the influence of varying the underlying vocabulary for
the specific task of classifying the current driving context based on a vector representation of the current
scene in section 5.3.4.
In section 4.2, we proceeded to investigate the creation of more complex, structured representations
from atomic vocabulary vectors. One of the most important aspects was the representation of numerical
values in high-dimensional vectors, where we presented three different approaches and showed their
individual strengths and limitations. Particularly, we presented a novel approach to encode numerical
values based the convolutive power of vectors. The biggest advantage of this representation of numerical
values is that it can be bound further to other vectors as well as be used to query representation vectors
about location information using pseudo-inverse elements. This approach is the main building block of
the scene representation used as input to the learning models for vehicle trajectory prediction proposed
in chapter 6. Finally, we analyzed the capacity of structured vector representations based on simple
superposition and superposition combined with the convolutive power encoding of spatial information.
Thereby, we found upper bounds for the amount of information that can effectively be encoded in such
representations. These bounds have to considered in subsequent chapters to evaluate if the amount of
information to be encoded in the vector representation is compliant with the bounds. This will allow
a conclusive assessment of the limits of structured vector representations in automotive context. In the
next chapter, we now turn our focus towards a concrete application scenario, namely the classification of
the current driving context based on a structured vector representation of the current scene.

5 Instantiating a cognitive model for driving
context classification

In this chapter, we describe the first application task of our driving scene representation based on se-
mantic vectors: the classification of the current driving context. We use the tools of the SPA and the
representation approaches shown in section 4.2.2 to generate semantic vectors describing the current
scene. Given this representation of the driving situation, we aim to classify the current driving context,
i.e., if we are currently driving on a highway, in a city or on an interurban road. We have already dis-
cussed in section 2.3.3, that high-accuracy digital maps could be used in combination with the vehicle’s
current position measured using GPS to detect the driving context, which is probably the most accurate
approach to driving context classification. However, inferring contextual information from on-board sen-
sory data is appealing as either a fallback option in situations when GPS is not available or if keeping
an updated map with driving context information is not feasible. Furthermore, it is an interesting option
and a good candidate to firstly investigate our vector representation for automotive scenes, as it seems to
be a moderately complex task in the context of automated driving, yet still challenging enough, since we
need to combine symbol-like processing with numerical data.
Fig. 5.2b shows a schematic overview of our approach to driving context classification and the general
flow of information within the system. Environment perception happens through the ego-vehicle’s on-
board sensors such as cameras, RADAR and LIDAR sensors providing data either in the form of either
already preprocessed object-lists or unprocessed raw sensory data. From this data, we generate our vector
representation encapsulating the structure and semantics of the current scene, which will be used as input
for the classification system. In the subsequent sections, we will describe the data sets used for driving
context classification alongside the preprocessing steps performed to prepare the data for the task at hand,
our vector representation for the current driving scene and the models used for classifying the current
driving context. Finally, we will evaluate the systems performance and compare it to two performance
baselines. In the evaluation stage, we will also investigate the influence of variations in the vocabulary
of atomic vectors on the performance of the classification system.

5.1 Data and preprocessing

The input data used for training and evaluating the driving context classification models is real-world
data gathered during test drives in the region of Munich, Germany. Depending on the test vehicle’s
sensor setup (Aeberhard et al., 2015), a subset of the following extrospective sensor systems is available:
cameras, RADAR and LIDAR sensors. Furthermore, the dynamics of the ego-vehicle such as velocity,
acceleration or the steering angle are measured using introspective sensors. While all extrospective
sensors provide preprocessed lists of dynamic objects such as cars or pedestrians, the camera system
additionally detects static objects such as traffic signs. Furthermore, the raw images of both, the front
and rear camera are also available.
In this chapter, we focus on the ego-vehicle’s dynamics and the information provided by the camera-
system as the only extrospective sensor, since there are no object-lists with information fused from sev-
eral sensor sources available. Furthermore, the camera-system is present in all available test traces and
its data is most informative regarding categories of dynamic objects while being the only system that
provides information about traffic signs. The camera provides class labels for each object such as car or
pedestrian for dynamic objects as well as the type of each detected traffic sign. Apart from these object

80 Instantiating a cognitive model for driving context classification

(a) (b)

Figure 5.1: Two example images illustrating a change of the current driving context as indicated
by (a) a traffic sign marking the exit of city and (b) a traffic sign marking the entrance
to a highway. The traffic signs are highlighted by a red rectangle.

classification labels, the camera sensor provides estimations for other object features such as position and
orientation relative to the ego-vehicle and furthermore dynamic information such as velocity or acceler-
ation for moving objects only. We divide the available data into a training and a test set, which contain
roughly 27 min and 18 min of driving data respectively.

5.1.1 Data labeling

To enable automated training of any supervised learning system, the training data needs to be labeled.
Since there is no labeled data set publicly available neither was the driving data labeled regarding the
current driving context, we had to label our own data set. In this chapter, we focus on three driving
context labels only, namely city, interurban and highway. Hence, the goal is to assign one of these
labels to all data points in our driving data set. We achieved this goal by manually labeling the driving
context by inspecting the images provided by the ego-vehicle’s on-board camera systems. To avoid
including human bias into the labeling regarding what sorts of situations belong to each of the labels, we
restricted the labeling process to finding traffic signs indicating a change of driving context and assign
the respective labels to all data points between these context switches. Figure 5.1 shows two example
situations where the ego-vehicle transitions from one driving context to another, namely from city driving
to interurban driving as indicated by the city exit traffic sign in Fig. 5.1a and from interurban context to
highway driving as indicated by the highway entrance traffic sign in Fig. 5.1b. This manual labeling
process yields 53.6 %, 18.9 % and 27.5 % of the samples in the training set belonging to city, interurban
and highway driving respectively while 23.3 %, 5 % and 25.9 % of the samples in the test set belong to
the same driving context labels.

5.2 Representation and models

In this section, we describe our approach to encode driving situations in semantic vectors and to clas-
sify the current driving context from these vectors. We present the different types of information we
encode in the vector representation using several underlying vocabularies to evaluate their impact on the
model classification performance. Finally, we describe the models trained to produce the actual context
classification.

5.2 Representation and models 81

(a) (b)

Figure 5.2: Overview of the driving context classification system. (a) shows one example scene
with objects of interest such as cars and traffic signs highlighted by colored bounding
boxes. (b) illustrates the learning system’s architecture and flow of information.

5.2.1 Scene representation in vectors

For the task of classifying the current driving context from measurements provided by the ego-vehicle’s
on-board sensors, we encapsulate three types of information in our vector-based scene representation,
namely certain dynamics of the ego-vehicle, dynamic objects and traffic signs. Information on all of these
entities is provided as preprocessed object-lists as described in section 5.1. In subsequent sections, we
describe the process of converting the input data into a vector representation for each of these categories
of information.

Ego-vehicle dynamics

Regarding the dynamics of the ego-vehicle, we encapsulate the current velocity ν , acceleration (ax,ay)
split in lateral and longitudinal direction with respect to the ego-vehicle’s coordinate system as well as
the angle αsteering of the steering wheel, and the steering angle αaxle of the front axle. Since all of these
units are intangible concepts, we encode them by assigning a random vocabulary vector to each of them.
To represent the numerical value corresponding to each unit, we employ the simple scalar multiplication
encoding introduced in section 4.2.1. We illustrate this procedure for the current velocity of the ego-
vehicle: let VELOCITY = (v0, . . . ,vD−1) with vi ∈ R for all i = 0, . . . ,D− 1 be the randomly chosen,
normalized vocabulary vector representing the unit velocity, we encode the value ν of the ego-vehicle’s
velocity as ν ·VELOCITY. Furthermore, we normalize all scalar values to the range [−2,2] to keep the
length of our vectors limited. For vectorization of the two-dimensional acceleration values in longitudinal
(x) and lateral (y) direction, we use the encoding based on sine and cosine functions with different spatial
frequencies and offsets employing the function λ introduced in Equation (4.9) in section 4.2.1. Hence, to
obtain a vector representation of acceleration in longitudinal (x) and lateral (y) direction (ax,ay), we use
the encoding λ (ax,ay), which leads to normalized, nonzero, similar vectors with information distributed
over all elements. To achieve the encoding of all dynamics of the ego-vehicle, we sum up the vectors
representing the individual values, i.e.,

EGOt = ν ·VELOCITY+αsteering ·STEERING
+αaxle ·AXLE+λ (ax,ay)�ACCELERATION (5.1)

Traffic participants

The camera-based classification system is able to distinguish five different traffic participant categories,
namely bicycle, car, motorcycle, pedestrian and truck. Furthermore, there are additional categories sta-
tionary for stationary objects and unknown for objects, where none of the aforementioned labels can
be assigned to. We generate vocabulary vectors for each traffic participant class. In the simplest form

82 Instantiating a cognitive model for driving context classification

of a vector representation, we could simply add the vocabulary vector once for each appearance of the
corresponding object in the scene to the current representation vector. However, this representation just
encodes that there are certain objects present somewhere in the current scene without any additional in-
formation. To encode a more detailed representation of the current scene with additional information on
each traffic participants position, we use the function λ from Equation (4.9) again to map each dynamic
object’s position (px, py) in longitudinal (x) and lateral (y) direction relative to the ego-vehicle’s coordi-
nate system to vector form λ (px, py). Subsequently, we bind the resulting vector encoding the object’s
position to the vector representing the object’s category. However, positional information for each traffic
participant might not be informative enough regarding the task of distinguishing between several driving
contexts. One quite unique feature of, for instance, highway driving is the fact that almost all other traf-
fic participants drive in similar direction as the ego-vehicle. Therefore, we create additional vocabulary
vectors encoding the orientation of dynamic objects relative to the ego-vehicle for three discretized cate-
gories, namely SAME, OPPOSITE and OTHER, and bind this orientation information to each dynamic
object as we did for position information. If we want to jointly attach those two pieces of information to
one object, we need to generate two additional vocabulary vectors POSITION and ORIENTATION to
impose structure. For instance, a car detected at position (px, py) with approximately the same orientation
as the ego-vehicle would lead to the following vector representation

CAR+CAR�POSITION�λ (px, py)+CAR�ORIENTATION�SAME. (5.2)

Let all traffic participants in the current scene be given as ob ji for i = 0, . . . ,n, we get the vector encoding
traffic participants as

OBJt =
n

∑
i=0

TYPEob ji +TYPEob ji �POSITIONλ (px,i, py,i)

+TYPEob ji �ORIENTATION�ORIENTob ji , (5.3)

with TYPEob ji denoting the vector representing the object’s category and ORIENTob ji denoting the
vector representing the object’s orientation.

Traffic signs

The ego-vehicle’s camera-system is able to recognize a significant amount and variety of traffic signs. We
assign a vocabulary vector to each possible traffic sign label representing the corresponding traffic sign.
However, to generate a vector representation of all traffic signs relevant for the current driving context, it
is not sufficient to simply add each currently visible sign to the current scene representation. In contrast
to traffic participants, there are many traffic signs, which are not only valid while being visible but stay
relevant for the current driving context until withdrawn or overwritten by another sign. For instance, if
we observe a traffic sign indicating a speed limit of 30 km/h, that speed limit is valid and relevant until
we encounter another traffic sign indicating a different speed limit. Therefore, we implemented a simple
form of memory for a certain subset of traffic signs relevant to the task of driving context classification
even after disappearing from the field of view such as traffic signs indicating speed limits or traffic signs
indicating the entrance or exit of a city or highway. Due to the fact that the camera system is not immune
to false detections, we implemented a decaying memory, to avoid relying too much on false detections
and to allow the system to consider other cues as well. We realized this decay by the function

σ(t, t̃) = γ
(t̃−t), (5.4)

with a scaling factor γ < 1 and t̃ > t. Furthermore, we include a simple logic to replace traffic signs in the
representation if they are overwritten by more recently perceived ones. For instance, recently observed
traffic signs indicating a new speed limit overwrite previously seen speed limits and a sign indicating a

5.3 Experiments 83

city entrance withdraws a memorized highway sign. Assuming we have encountered a particular sign Si

at time ti, we achieve the vector encoding the traffic signs at time t through

SIGNSt =
n

∑
i=0

σ(t, ti) ·Si +
m

∑
j=0

S̃ j, (5.5)

for traffic signs Si, which need to be memorized and traffic signs S̃i, which are only valid while they are
visible.

Putting it all together

In the previous sections, we have presented the encoding process at time t to generate vectors representing
the dynamics of the ego-vehicle in EGOt , the traffic participants or dynamic objects in the scene in
OBJt as well as the traffic signs either currently visible or memorized ones from previous observations in
SIGNSt . To finally generate the vector representing the current scene, we simply sum up these individual
pieces of information to

SCENEt = EGOt +OBJt +SIGNSt . (5.6)

We us these scene vectors as input for our classification model to classify the current driving context
based on the current representation of the driving scene.

5.2.2 Classification model

In this section, we describe the model we use for classifying the driving context based on the vector rep-
resentation of the current scene. Our main model is a simple single-layer neural network implemented
using the Nengo (Bekolay et al., 2014) software suite, which is typically used to create large-scale neural
models (Eliasmith, 2013), but also allows the implementation of traditional feed-forward neural net-
works. For the task of driving context classification, we use the LIF neuron model and N neurons in the
hidden layer. We employ supervised learning, i.e., we present the model with the vector representation as
input and our manually generated driving context labels as output. That is, we input the vectors encoding
the current driving scene v = (v0, . . . ,vD−1) into N neurons (encoding), and the output of the network
(decoding) will be the classification c of the current driving context. To encode the current scene vector
in the activity ai of the N neurons, we employ the principles of the NEF:

ai = G

(
∑

j
ei, jv j +βi

)
, (5.7)

where G is the non-linearity of the neuron model and ei, j and βi are randomly generated to produce a
uniformly distributed range of maximum firing rates and intercepts. To decode the classification of the
current driving context from the neurons’ activity ai, we employ

c =
N

∑
i=1

diai (5.8)

We leave ei, j and βi at their randomly initialized values and use Nengo’s default least-squares optimiza-
tion to calculate the optimal decoder values di.

5.3 Experiments

In this section, we describe the experimental setup, models and metrics to analyze and evaluate our
driving context classification model. We present several reference models and human performance on
the task of driving context classification in order to compare our model to. Furthermore, we analyze the
influence of variations in the underlying vector vocabularies on the classification accuracy.

84 Instantiating a cognitive model for driving context classification

total highway interurban city
Driving context label

0

20

40

60

80

100

Cl
as
sif

ica
tio

n
ac

cu
ra
cy
 (%

)

Data set
train
test

Figure 5.3: Classification performance of 2 human subjects on 50 examples selected randomly from
each the training and test set.

5.3.1 Performance baselines

To get a better understanding of the quality the driving context classification model achieves based on
our vector representation, we compare it to several other performance baselines. In this section, we
describe these reference models and the kind of data they use in comparison to the information encoded
within our vector representation of the driving scene. We use three baselines to compare our models’
performance to: human performance, a multi-layer neural network implemented using the Keras library
(Chollet, 2015) using our vector representation as input data and a CNN using raw images to classify the
current driving context.

Human performance

One of the best and most competitive baselines for any learning model is the performance of humans
in the task given to the learning system. Hence, we also aim to compare our classification models’
performance to that of human subjects on the same task. However, we need to make sure that the data
provided to the human subjects is as similar as possible to the information exposed to the learning system
to make the results as comparable as possible. The most intuitive way for human subjects to perceive
and hence classify the current driving context would be through visual information, i.e., raw camera
images. However, the vector representation of the driving scene abstracts away most of the unnecessary
visual features provided by the camera images and thus is very different information. On the other hand,
the raw numerical values of the vector representation are hard, if not impossible, to comprehend for
human subjects. Another intuitive way for humans to perceive information is language. Therefore, we
created human-readable versions of our input vectors in the form of written text by storing the label of
the vocabulary vector followed by the encoded numerical value. We presented a subset of 50 random
samples for each data set to two human subjects asking for their classification guess. To make this
process as similar to the automated learning process pursued by the neural network, the human subjects
had to classify samples from the training data set first. After every sample, the subject was informed
if the provided classification was correct or, in case of wrong classifications, which label would have
been the correct answer. In this way, we aim to provoke a steep learning curve for the human subjects

5.3 Experiments 85

before switching to the test set and replicate the learning process of the neural models as closely as
possible. Figure 5.3 shows the performance for the two human subjects on both the training and test sets
on the individual labels and their overall performance. These results indicate that an overall classification
performance of roughly 92 % and at least 80 % for the individual driving context labels are a reasonable
baseline for the neural models to be compared to.

Multi-layer neural network

The first reference model to compare our spiking neuron based driving context classification model
to is a more traditional feed-forward, multi-layer neural networks of rate neurons. This model also
uses our vector representation of the current driving scene as input and is trained in supervised fashion
to classify the current driving context. Here, we use a network consisting of several fully-connected
hidden layers followed by a classification layer producing the model’s predictions. This model is quite
similar to our classification network with the most significant differences being the neuron models, i.e.,
ReLU (Rectified Linear Unit) in contrast to the spiking LIF neuron model in the Nengo network version
and the training procedure. Both models employ supervised learning techniques and while the Nengo
model employs simple least squares optimization, the multi-layer Keras-model employs the classical
backpropagation algorithm using gradient descent.

Visual driving context classification using a CNN

As mentioned earlier, a very intuitive way for us as human to classify the current driving context is by
using visual information, i.e., raw images of the ego-vehicle’s camera systems. Many deep learning
models, especially CNNs, are inspired by the structure of the human visual cortex and have achieved
remarkable results on visual classification tasks. Hence, we use a CNN using the raw camera images as
input data as our third and final reference model to compare our context classification network to. We
use a network architecture similar to the one employed in section 4.1.3 to classify traffic signs based on
visual input since this network architecture has been used successfully for classification tasks based on
visual input. The model is a multi-layer neural network with three convolutional layers each followed by
a pooling layer with one additional fully connected layer and the final classification layer. The network
is trained using backpropagation and the classical gradient descent.

5.3.2 Model training

In this section, we describe the process of training our context classification model as well as the afore-
mentioned reference models.

Nengo model training

As mentioned in section 5.2.2, we use Nengo’s default least squares optimization to solve for the decoders
di in Equation (5.8). However, in order to generate the optimal decoders for the complete training set, we
need to solve Equation (5.8) for all samples, i.e., each pair of scene vectors and true context labels (v j,c j)
for j = 0, . . . ,M in the training data set. By default, this results in a matrix A = (ai, j) for i = 0, . . . ,N and
j = 0, . . . ,M, with N being the number of neurons in the population encoding the current scene vector
and M being the number of samples in the training set, which in our case is roughly 350000 samples.
Hence, in order to solve for the optimal decoders, Nengo needs to generate a giant matrix A of neural
activities and store it in the system’s memory in addition to the high-dimensional vectors in the training
set. That results in high memory requirements for the training process, which imposes restrictions on the
computational hardware and could thus be prohibitive. Therefore, we also implemented a variant of the
training process, that calculates the matrix A in blocks for subsets of the training samples of size b < M
and thus solves for the decoders di for i = 0, . . . ,b−1 and then for the next block i = b, . . . ,2b−1 until
we have calculated all decoders. That slight adjustment is mathematically equivalent to the default least

86 Instantiating a cognitive model for driving context classification

squares optimization process to solve for the decoders, but only consumes memory resources in the order
of O (N ·b) instead of O (N ·M). The only other difference is that we use regularization in the default
least squares optimization method. This is typically used to impose a certain amount of noise to make
the learning population generalize better. In our case however, we found that dropping this regularization
leads to improved classification results (see section 5.3.3)

Multi-layer neural network training

We implemented the multi-layer, feed-forward neural network as a reference model to compare our
Nengo classification model to using the Keras library (Chollet, 2015). We chose a simple feed-forward
network architecture with two fully connected hidden layers consisting of 1500 and 500 ReLU neurons
respectively each followed by a dropout layer and a final classification layer. In contrast to the Nengo
model, we use backpropagation and stochastic gradient descent to adjust the networks neural weights.

CNN training

The CNN for image-based context classification is implemented using the Tensorflow library (Abadi
et al., 2016). We use a similar architecture as the one used for traffic sign classification in section 4.1.3
with 9 layers.

Layer Type # maps and neurons kernel
0 input 3 maps of 256×144 neurons
1 convolutional 100 maps of 250×138 neurons 7×7
2 pooling 100 maps of 125×69 neurons 2×2
3 convolutional 150 maps of 123×67 neurons 3×3
4 pooling 150 maps of 61×33 neurons 2×2
5 convolutional 250 maps of 59×31 neurons 3×3
6 pooling 250 maps of 29×15 neurons 2×2
7 fully connected 300 neurons 1×1
8 fully connected 3 neurons 1×1

Table 5.1: Layer by layer architecture of our reference CNN for driving context classification.

This architecture is shown in table 5.1 consisting of three consecutive convolutional layers each followed
by a max-pooling layer and two fully-connected layers for the final classification. The network has two
additional dropout layers, one after the convolutional layer part of the network dropping 25 % of the
neurons activity and one before the final classification layer dropping 50 % activity. The model is trained
using backpropagation and the classical gradient descent algorithm. We also employed early stopping
since the model’s validation loss did not significantly decrease after roughly 3500 epochs and the model’s
performance did not improve for longer training phases.

5.3.3 Evaluation of the classification performance

In this section, we analyze and evaluate the performance of our context classification model and compare
it to the several baselines established in section 5.3.1. Figure 5.4 shows the classification performance
for the Nengo model, the multi-layer neural network implemented in Keras, the CNN network based on
raw camera images as well as the performance of our human subjects for reference. In this section, we
use random vocabularies of dimension 512 as basis for all the context classification models using our
vector representation as input data. The two variants of the Nengo model referred to as nengo and nengo
improved in Fig. 5.4 differ in calculating the decoders on the complete set of training samples (nengo)
and on blocks of sample subsets (nengo improved). Furthermore, the nengo variant uses regularization
in the least squares optimization, namely 10 % of the neurons activity, instead of no regularization in the

5.3 Experiments 87

total city interurban highway
Driving context label

0

20

40

60

80

100

Cl
as
sif
ica

tio
n
ac
cu
ra
cy
 (%

)

Approach
keras
nengo
nengo improved
CNN
human

Figure 5.4: Visualization of the performance of our driving context classification model and the
comparison baselines for reference.

nengo improved model. We observe that all automated learning models perform overall worse than the
human performance baseline with the Nengo model with improved and memory-efficient decoder calcu-
lation performs best with roughly 62.6 % classification accuracy overall. The second best classification
performance achieves the Keras multi-layer neural neural network trained also on our vector represen-
tation performing just slightly worse than the best Nengo model with a total classification accuracy of
56.4 %.

However, analyzing these results in more detail, we observe that the decreased overall classification
performance for both, the Nengo and Keras models is due to their poor classification performance on
the interurban context category achieving only 27 % and 18.6 % in comparison to the 87 % classification
accuracy achieved on average by the human subjects. For the other context categories, city and highway,
both models achieve competitive results comparable to the human classification performance baseline.
In order to further analyze this performance issue, we have a look at the composition of our data set. The
most critical problem is that our data is limited. There are only 18 min of test data available, which are
recorded from just two test drives. The first are 4 min are continuous, mostly in the city environment,
with 30 s of interurban, that are perfectly recognized. The second part of the test set, again a continuous
drive, contains, after starting in the city, a long stretch of about 8 min interurban with heavy stop-and-go
traffic at low speed. The training set, however, does not contain data samples with driving situations
comparable to that interurban part in the test set. Furthermore, the interurban category is probably the
most difficult to predict since there are interurban samples that could be mistaken with either of the other
two context classes depending on the situation. Figure 5.5a visualizes the amount of predictions of the
Nengo network for all the context classes compared to the true label of the data sample and supports these
observations. Although the majority of false classifications of the interurban category is misclassified as
city, there is also a significant amount of samples mistaken for highway. On the other hand, interurban
is the category with the least amount of samples in the training data set as only 18.9 % of the training
samples belong to the interurban class. Thus, we assume that a more balanced and/or larger data set
could be essential to tackle this issue.

Hence, we evaluated our classification model on a subset of the test set simply removing that interur-
ban part both model variants struggle to predict. Figure 5.5c shows the results of the original Nengo

88 Instantiating a cognitive model for driving context classification

city interurban highway
True driving context label

0

20

40

60

80

100

Pr
ed

ict
io
ns

 (%
)

Predicted label
city
interurban
highway

(a) Complete test data set

city interurban highway
True driving context label

0

20

40

60

80

100

Pr
ed

ict
io
ns

 (%
)

Predicted label
city
interurban
highway

(b) Subset of the test data set

total city interurban highway
Driving context label

0

20

40

60

80

100

Cl
as
sif
ica

tio
n
ac
cu
ra
cy
 (%

)

Test set
complete
subset

(c) Complete vs. test subset

Figure 5.5: Visualization of the driving context predictions made by the Nengo model compared to
the true labels. Figure (a) shows the results for the complete test data set, while Fig. (b)
shows the model’s predictions on the test subset compared to the true labels. Figure (c)
shows the model’s performance on the subset in comparison to the complete test set.

classification network (i.e., trained without the memory-efficiency and regularization improvements) on
the complete test set as well as on the subset, while Fig. 5.5b shows a similar evaluation for the subset
of the training set as Fig. 5.5a for the complete test set. We observe that, even for this non-optimized
model variant, the classification accuracy of the interurban category significantly increases from 8.1 %
to 79.5 % when switching from the complete test set to the smaller subset. Thus, we consider this a
strong hint that a more balanced and larger training data set will be able to improve the poor classifi-
cation performance on the interurban driving context category and therefore the overall accuracy of the
model.
Revisiting Fig. 5.4, the CNN classification model based on the raw camera images performing poorly
in comparison to the other models achieving only 35.7 % overall classification accuracy is sort of an
exception. While the model achieves 90.7 % classification accuracy on the city context label, its perfor-
mance deteriorates down to 19.2 % and 10.5 % for the interurban and highway labels respectively. This
is even the best classification performance we were able to achieve with this model: when training the
network for a larger amount of epochs, which, in theory, should improve the model’s performance, its

5.3 Experiments 89

(a) Interurban (b) City

Figure 5.6: Examples of similar looking images in the test set with different driving context labels.

performance deteriorates even further. Instead of generalizing better, the model tends to overfit and just
learns to simply assign the same context label to all samples. We assume, that there are too few and too
similar images in the training data set for the model to sufficiently generalize beyond these samples. For
instance, Fig. 5.6 shows two raw images from the training data set with rather similar visual features
but with different labels. Figure 5.6a shows a training sample of the interurban category while Fig. 5.6b
shows a city sample. Hence, we conclude that for the particular task of driving context classification
performed on a rather small data set, it is beneficial to omit unnecessary visual features and complexity
and instead use our abstract vector representation of the scene as input for an automated learning system.

5.3.4 The influence of varying vocabularies

In section 4.1, we have already seen several ways to generate a vocabulary of atomic vectors for scene
representation in automotive context. For the evaluation in section 5.3.3, we focused solely on randomly
generated vector vocabularies for the sake of simplicity. Here, we are interested how varying vector
vocabularies encapsulating a similarity structure of the encoded entities influence the performance on
the task of driving context classification.

Random vocabulary baseline

The evaluation in section 5.3.3 was conducted on randomly generated vocabularies containing 512 di-
mensional vectors. However, the structured vocabularies generated in section 4.1 consist of 300 di-
mensional vectors. Therefore, we first analyze how the reduced dimensionality of the underlying vector
vocabulary influences the classification performance of our model. Figure 5.7 illustrates the performance
of our Nengo driving context classification model for 10 different randomly chosen vocabularies contain-
ing 300-dimensional and 512-dimensional atomic vectors. Although we observe a slight deterioration of
the classification accuracy when reducing the dimension of the vocabulary vectors, the difference is not
statistically significant. Hence, we use the classification performance on the 300-dimensional random
vector vocabularies as baseline for comparison for models built upon structured vocabularies encoding
different types of similarity.

Structured vocabularies

In this section, we analyze the impact of encapsulating a similarity structure within the vocabulary of
atomic vectors used to generate the scene representation vectors. We hypothesize, that encapsulating
a similarity structure within the vocabulary of atomic vectors is beneficial in terms of performance for
our driving context classification model based on the scene representation built upon these vocabular-
ies. We use the different vocabularies presented in section 4.1 to impose different similarity structures,

90 Instantiating a cognitive model for driving context classification

total city interurban highway
Driving context label

0

20

40

60

80

100
Cl
as
sif
ica

tio
n
ac
cu
ra
cy
 (%

)

Vocabulary
random_300
random_512

Figure 5.7: Comparison of the driving context classification model for 300-dimensional and 512-
dimensional vectors.

namely a manually generated semantic vocabulary (see section 4.1.4), a learned visual vocabulary (see
section 4.1.3) as well as a fused visual-semantic vocabulary combining the visual and semantic similarity
structures in one vocabulary (see section 4.1.5). However, the aforementioned structured vocabularies do
not contain all entities encoded in the random vocabularies. For instance, the GTSRB data set, which was
used to generate the visual vocabulary for traffic signs, contains only 42 traffic sign classes, which covers
only 1

6 of the traffic signs the ego-vehicle’s camera system is able to detect. This allows us to encode the
structure of, for example, speed limit signs as well as priority signs, which occur in both, our structured
vocabulary and the driving data. On the other hand, we do not encode the traffic sign indicating a speed
limit of 130 km/h (as it is not contained in the GTSRB data set), nor the signs indicating a highway en-
trance, which occur in the driving data and have a significant impact on the driving context classification.
Hence, we adapt the baseline random vocabularies by replacing the vectors with their counterpart within
the structured vocabulary if such a vector exists and otherwise leave it unchanged. Thus, we are only
able to encode the desired structure for the subset of entities encoded in the vocabularies.

Figure 5.8 illustrates the classification performance of our driving context classification model for the
three different approaches to generate structured vocabularies as well as the random vocabularies as
baseline. It shows the performance over 10 randomly generated vocabularies used as baseline as well
as the starting point for structured vocabularies. We observe the general trend that both, the manually
generated semantic vocabulary as well as the vocabulary encapsulating visual similarity deteriorate the
model’s classification accuracy. While the semantic similarity is able to slightly improve the classifica-
tion accuracy at least for the highway category, the classification performance for the model using the
visual vocabulary decreases significantly for all context categories. On the other hand, the vectors com-
bining visual and semantic similarity in one vocabulary are able to slightly improve the model’s accuracy
over the random vocabularies. Although the model’s performance based on this visual-semantic vocab-
ulary decreases slightly for the city category, its performance on the highway class is comparable and,
on average, slightly improved for the interurban context category. For some individual vocabularies, the
additional structure significantly improves results. In the most extreme case, we observe an unchanged
96 % prediction accuracy of city, while interurban increases from 23 % to 30 % and highway from 95 %
to 99 %. On the other hand, there are also vocabularies without substantial changes and, in some cases,

5.4 Summary 91

total city interurban highway
Driving context label

0

20

40

60

80

100

Cl
as
sif
ica

tio
n
ac
cu
ra
cy
 (%

)

Vocabulary
random
semantic manual
visual
visual semantic

Figure 5.8: Visualization of the Nengo model’s classification performance for several structured vo-
cabularies compared to the baseline performance on randomly generated vocabularies.

even decreased classification performance. For the most pronounced example, accuracy decreases in all
three classes with a deterioration of 1 and 2 percentage points for city and highway respectively and even
5 percentage points for the interurban category.
In conclusion, encapsulating visual-semantic structure produces a measurable effect on the model’s clas-
sification performance for several vocabularies and improves average results compared to the vocabular-
ies encoding individual parts of the structure (i.e., only visual or semantic). We observe a difference in
classification accuracy of up to 7 %. However, the impact varies depending on the underlying original
vocabulary: for some vocabularies, accuracy decreases over all classes, in others it increases. On the
other hand, since this average is only based on 10 vocabularies (due to computational limitations), this
visual-semantic structure does not perform significantly better than the baseline vocabulary. Further-
more, there is no clear pattern observable such as an increase in accuracy especially for vocabularies that
underperformed without additional structure, or a decrease for vocabularies that performed well using
the original randomly generated vectors.

5.4 Summary

In this chapter, we have presented a novel approach to a data-driven driving context classification model
based on our vector representation of driving scenes. We proposed a vector representation of the current
driving situation encapsulating a mixture of symbol-like information such as traffic signs or the type of
traffic participants as well as numerical information such as position or velocity of dynamic objects. We
showed that our learning model using SNNs in the Nengo framework outperformed the feed-forward
reference neural network implemented in Keras as well as a CNN based on raw camera images. We
assume that we successfully abstracted away unnecessary and too complex visual features from the rep-
resentation for being able to learn driving context classification from a rather small vocabulary. The
CNN would most likely require a much larger training data set containing a great variety of different ex-
amples of driving context examples under several conditions (e.g., daylight and night, heavy or flowing
traffic etc.). All data-driven models presented here performed worse than the baseline of human level
performance, but mainly because of the interurban category. For this category, the test data set contains

92 Instantiating a cognitive model for driving context classification

a significant amount of samples, which are unlike any samples present in the training data such that all
models, unlike our human subjects, are unable to make sense out of them. Therefore, we evaluated the
models’ performance on a subset of the test set removing this chunk of data boosting the classification
accuracy of our model. Thus, we conclude that on the one hand, our data set is too small and too limited
for our model to generalize sufficiently from it. On the other hand, we assume that a larger and more bal-
anced data set will improve the performance of all models (including the CNN). However, there are also
general issues regarding the process of encoding the current driving scene into a vector representation.
For instance, while we encode many traffic signs (243 of the total 258 atomic entities), the great majority
of them is not that useful for driving context classification, as they occur rather rarely. Although our
implementation of a traffic sign memory partially absorbs this effect, there is still a significant amount
of traffic signs, which are not memorized and furthermore are not that informative regarding the current
driving context. Considering this fact, we are left with a very small vocabulary since only 5 classes of
traffic participants are encoded. Therefore, we might want to include more categories such as the num-
ber of lanes or road markings. Another method could be to try to encode at a higher level directly, for
instance, entities with motion properties such as a vector for a pedestrian that will cross the road or for a
fast car driving towards us.
Regarding the impact of structured vocabularies on the model’s classification accuracy, we achieved a
partial success. We showed that a visual-semantic structure can be successfully encoded and, in princi-
ple, be learned given suitable data. We were able to show that different vocabularies have a measurable
effect on the resulting classification accuracy. However, we could not find a guiding principle to gen-
erally improve results such as using visual-semantic vocabularies improves classification accuracy over
all random vocabularies by a certain margin. The reasons for these results are manifold: While we do
argue that knowledge about visual similarity might improve scene classification, this kind of informa-
tion alone is rather limited especially with the current implementation. That is especially true for traffic
participants, since encoding their visual similarity simply does not add beneficial information to better
distinguish between driving contexts. Trying to expand with semantic content, we are relatively success-
ful with traffic signs, as their meaning is clear, explicit and unchanging. However, semantics of traffic
participants, even if we succeed in encoding a structure, are again not that helpful regarding the task of
driving context classification as performed here. Although the combined visual-semantic vocabulary is
successful in encapsulating the underlying information, this information is too little to improve perfor-
mance significantly with the given tasks. However, other types of semantic information can be conceived
but would require a more complex algorithm as well as a large data set to be learned automatically.
Furthermore, we only encode structure for a part of the original vocabularies and leave vectors rep-
resenting entities, for which we have no suitable structured data available, unchanged at their random
initialization. The measured impact on classification performance might be larger if all entities were part
of the structured representation. On the other hand, there is no data set available to learn a semantic
embedding of traffic signs. Therefore, the semantics had to be manually designed. Due to these data lim-
itations, we do not succeed in establishing a comprehensive learning algorithm. Learning would make
the approach more independent from human design choices and biases, which would not only enable
generalization, but also allow the algorithm to learn the kind of structure it “needs” rather than us as
humans imposing our understanding on it.

6 Instantiating a cognitive model for
predicting vehicle behavior

Predicting future behavior and positions of other traffic participants from observations is a key problem,
that needs to be solved by human drivers and automated vehicles alike to safely navigate their envi-
ronment and to reach their desired goal. Therefore, we picked behavior prediction as another task for
investigating the potential of vector representations in automotive context. In contrast to the task of
classifying the current driving context presented in chapter 5, predicting future positions of vehicles is a
regression problem, i.e., we are predicting continuous values such as spatial positions instead of discrete
class labels. However, future positions of vehicles not only depend on each vehicle’s own past positions
and dynamic data such as velocity and acceleration but also on the behavior of the other traffic partici-
pants in the vehicle’s surroundings. For instance, in a situation as shown in Fig. 6.1, the behavior of the
target vehicle, as depicted by a solid blue and dotted orange line for past and future positions respec-
tively, is influenced by the surrounding vehicles, as illustrated by solid and dotted gray lines for past and
future positions respectively. The target vehicle is approached from behind by a faster vehicle causing
it to eventually change its lane to the right, which, for now, is still occupied by the ego-vehicle and an-
other vehicle. All of these external influences have an impact on the target vehicle’s motion (and vice
versa). We hypothesize that structured vector representations will be able to capture these relations and
mutual influence between traffic participants, which is necessary for reliable predictions. As we aim for
a model-free data representation, we avoid introducing any physical constraints or restrictions regarding
our data-representation or the predicting models. Although this allows for physically unrealistic or even
impossible trajectory predictions, we want our neural network models to figure out the best predictions
on their own without biasing them in any direction. In this section, we present a representation of spatial
information for multiple objects in semantic vectors of fixed length using the convolutive power intro-
duced in Definition 3.19. In contrast to other representations of spatial data, the dimensionality of our
vectors is independent of the number of encoded entities. We use this representation as input for simple
feed-forward neural networks and more sophisticated LSTM-based models and compare them against
each other and a linear prediction model as the simplest baseline. We conduct a thorough and detailed
analysis and evaluate our models on two different data sets, namely one proprietary data set recorded
with an automated vehicle prototype and one publicly available trajectory data set.
We analyze our models with respect to the context, i.e., which model performs best depending on the
current driving situation. Furthermore, we investigate the influence of the composition of the training
data on the models’ performance. Additionally, we show that by using our vector representation with a
simple network architecture we can achieve results comparable to more complex models.

6.1 Data and preprocessing

In this chapter, we use two different data sets for training and evaluation of our behavior prediction
models, which we describe in more detail in subsequent sections. We refer to those data sets as On-
board or D1 (see section 6.1.1), which is our main data set, and NGSIM or D2 (see section 6.1.2), which
is a publicly available data set used for reference and comparability. In this section, we describe both
data sets regarding available features, available sources of information as well as their key differences
and the preprocessing procedure.

94 Instantiating a cognitive model for predicting vehicle behavior

Figure 6.1: Data visualization of one driving situation example from the On-board data set D1.
The dots in the left plot indicate the position of the vehicles and color-code the vehicle
type (red=motorcycle, green=car, blue=truck, black=ego-vehicle), blue and orange lines
show past and future motion of the target vehicle whereas gray lines depict the other
vehicles’ motion. The right figures show raw images of the ego-vehicle’s front and rear
camera with the target vehicle highlighted by a red rectangle.

6.1.1 On-board-sensors data set

This is our main data set used in this chapter. It contains real-world data gathered using the on-board
sensors of an automated vehicle prototype, which we refer to as the ego-vehicle, during test drives mainly
on highways in the area of Munich, Germany. Therefore, we refer to this data set as the On-board data set.
The data set contains object-lists with a variety of features obtained by fusing different sensor sources.
Apart from features about motion and behavior of the dynamic objects in the scene such as position,
velocity and acceleration, which are estimated from LIDAR sensors, there is also visual information
like object type probabilities or lane information, which is acquired from additional camera sensors (see
Aeberhard et al., 2015, for further information on the sensor setup). Table 6.1 gives an overview and
detailed description of the data features available in this data set, which are relevant for our models.

Data label Description
Position Lateral/Longitudinal position absolute/relative to the ego-vehicle’s position es-

timated from range sensor readings
Velocity Lateral/Longitudinal velocity absolute/relative to the ego-vehicle’s velocity es-

timated from range sensor readings
Acceleration Lateral/Lateral acceleration absolute/relative to the ego-vehicle’s velocity esti-

mated from range sensor readings
Lane Information about the lane relative to the ego-vehicle estimated from fused

sensor reading (camera and range sensors)
LaneBorderDistance Distance to left/right border of the current lane estimated from fused sensor

reading (camera and range sensors)
LaneCurvature Information about the lane curvature estimated from fused sensor reading

(camera and range sensors)
TypeProbability Probability for the object being a of certain type (e.g., car or truck) estimated

from camera sensors

Table 6.1: Table depicting different features for dynamic objects within the training data

6.1 Data and preprocessing 95

(a) (b)

Figure 6.2: Visualization of NGSIM data set: (a) depicts the highway segment from top view per-
spective indicating the camera’s position. Image source: Colyar and Halkias (2018). (b)
visualizes the data of one particular driving situation from the data set.

In contrast to the data set used in chapter 5, the object-lists of the data set used here contain already
preprocessed information as a fusion from the different available sensor sources. This fused information
about objects is available at a frequency of roughly 5 Hz. The main feature of this data set is that all
information (position, velocity, etc.) about vehicles other than the ego-vehicle is measured with respect
to that ego-vehicle and its coordinate system. Figure 6.1 shows one example situation from this data
set: the left plot depicts the already preprocessed) positional information of all vehicles detected by the
ego-vehicle’s on-board sensors. The dots indicate the current position of the vehicles and color-code
the vehicle type (red=motorcycle, green=car, blue=truck, black=ego-vehicle). The blue and orange lines
illustrate 5 s of past and future motion of the target vehicle respectively. Solid and dashed gray lines
depict the other vehicles’ past and future motion respectively. On the right-hand side, the raw images
from the front and rear camera give an impression of the driving situation at hand with the target vehicle
highlighted by a red box. In total, the On-board data set contains 3891 vehicles, which yield a total
length of roughly 28.3 h when adding up the time each individual vehicle is visible.

6.1.2 NGSIM US-101 data set

The NGSIM US-101 data set (Colyar and Halkias, 2018) is a publicly available data set recorded on a
segment of approximately 640 m length with 6 lanes on the US-101 freeway in Los Angeles, California.
Although the data set was originally intended for driver behavior analysis and traffic flow models (He,
2017), it has also been used to train trajectory prediction models, for instance proposed by Altche and
La Fortelle (2017) and Deo and Trivedi (2018b). The data set was recorded using cameras observing
freeway traffic from rooftops with trajectory-data being extracted later from the obtained video footage.
Figure 6.2 shows the recorded highway segment from top view perspective indicating the camera’s po-
sition (Fig. 6.2a) as well as the visualization of one example driving situation (Fig. 6.2b). The data set
contains a total of 45 min of driving data split into three 15 min segments of mild, moderate and con-
gesting traffic conditions. Apart from positional information in lateral and longitudinal direction (in a
global and local coordinate system), additional features such as instantaneous velocity, acceleration, ve-
hicle size as well as the current lane are available for each vehicle. The trajectory data is sampled with a
frequency of 10 Hz. The main difference to the On-board data set is the fact that the NGSIM data set is
recorded with external stationary cameras instead of a driving vehicle’s on-board sensors. Thus, there is
no ego-vehicle present in the data and all information is available in absolute coordinates instead of being

96 Instantiating a cognitive model for predicting vehicle behavior

measured relative to one particular ego-vehicle. In total, the NGSIM data set contains 5930 vehicles and
therefore a total time of roughly 91.3 h when adding up the time each individual vehicle is visible.

6.1.3 Preprocessing

In this section, we describe the preprocessing steps performed before training our models to prepare the
trajectory information contained in our two data sets as input for neural networks. Although we aim
to keep these preprocessing steps as consistent as possible across both data sets, there are some mild
differences, which we will point out here. We aim to anticipate positions of dynamic objects 5 s into
the future based on past positions 5 s prior to their current location for one object at a time. As the two
data sets are sampled at different frequencies, we interpolate the available data over 20 equidistant steps
to achieve intervals of 0.25 s to improve consistency and comparability. Furthermore, we translate the
current position of the target vehicle, i.e., the vehicle to be predicted, to be the origin of the reference
coordinate system. That is, the current position of the target vehicle will be at position (0,0) for all data
samples consistently across both data sets (see Fig. 6.1 and 6.2b). The reason for this design choice
is two-fold: on the one hand, we make samples from both data sets, which originally have different
coordinate frames (global vs. ego-vehicle) as reference, more comparable and consistent. On the other
hand, by moving the current position of the target vehicle to the origin of the reference coordinate system
of the sample, we prevent our models from treating similar trajectories differently due to positional
variations. Finally, to improve suitability of the data as input for neural networks, we divide all x-
positions by a factor of 10 such that x-/y-values are scaled to a similar order of magnitude. Since the
NGSIM data set D2 is sampled at a high frequency of 10 Hz and contains more data than the On-board
data set, we use only every 10th data point. Thereby, we avoid the creation of too many overlapping, and
therefore too similar, data samples for the NGSIM data set. Furthermore, we swapped the dimensions
of the positions in the NGSIM data set such that for both data sets x- and y-direction correspond to
longitudinal and lateral positions respectively. For training and evaluating our models, we split both data
sets into two distincts subset containing training Ti ⊂ Di and validation data Vi ⊂ Di. Those training and
validation subsets contain 90 % and 10 % of the objects within the data sets respectively with Ti∩Vi =∅
to avoid testing our models on vehicles they have been trained with.

6.1.4 Data set peculiarities

In this section, we analyze the composition of our data sets regarding the amount of “interesting” behav-
ior of the target vehicle. Both, the On-board and NGSIM data set consist of mainly highway driving,
where we would expect mainly straight driving with the most interesting situations being the target vehi-
cle, i.e., the vehicle whose motion we aim to predict, performing a lane change. Hence, we are interested
in the amount of situations where the target vehicle actually performs a lane change and how much more
prominent normal straight driving is in both our data sets. For the On-board data set, we have information
about the current lane as well as the distance to the lane borders estimated from the ego-vehicle’s cam-
eras available for all vehicles. The NGSIM data set contains information about the current lane for each
vehicle extracted from the external camera’s video footage. Thus, the selection process for the examples
containing a lane change is straightforward for both data sets. Figure 6.3 shows one data sample from
the On-board data set containing a lane change performed by the target vehicle in its future motion to be
predicted. Comparing this example to the one shown in Fig. 6.1, which shows mainly straight driving for
all vehicles present in the scene, we observe that a lane change mainly influences the vehicle’s motion in
lateral (y) direction.
Figure 6.4 shows the amount of situations where the target vehicle performs a lane change in comparison
to the amount of situations where no such behavior occurs for both, the On-board and NGSIM data
set. For the On-board data set, in 86.1 % of all data samples the target vehicle does not perform a lane
change, i.e., only 13.8 % of all data samples contain a lane change performed by the target vehicle. We
further distinguish between lane changes performed during the trajectory history, i.e., the past 5 s before

6.1 Data and preprocessing 97

Figure 6.3: Data visualization of one data sample from the On-board data set D1 containing a fu-
ture lane change of the target vehicle. The dots in the left plot indicate the position of
the vehicles and color-code the vehicle type (red=motorcycle, green=car, blue=truck,
black=ego-vehicle), blue and orange lines show past and future motion of the target ve-
hicle whereas gray lines depict the other vehicles’ motion. The images in the top row
show raw images recorded using the ego-vehicle’s front and rear camera with the target
vehicle highlighted by a red bounding box.

the current time step (labeled as past in Fig. 6.4) and lane changes that are performed in the future, i.e.,
during the future 5 s from the current time step (labeled as future in Fig. 6.4). We consider the lane
changes in the future part of data samples to be the most interesting and challenging ones, since any
model making predictions about the future trajectory needs to be able to anticipate these lane changes.
For the On-board data set, 7 % of all data samples contain a lane change in the trajectory history, while
8.2 % of the samples contain a future lane change performed by the target vehicle. In comparison to the
86.1 % of data samples not containing a lane change, the amount of samples with interesting behavior
other than straight driving within the data set is significantly less present. For the NGSIM data set, the
discrepancy between the amount of samples without the target vehicle performing a lane change and
the number of samples containing a lane change is even more significant. The percentage of samples
without a target vehicle lane change is 95.1 % while only 4.9 % of the samples contain a lane change
performed by the target vehicle at all. The amount of samples containing a future lane change performed
by the target vehicle is only 2.6 % of all samples in the NGSIM data set. Hence, there is a significant
imbalance in both data sets between examples containing mainly straight driving by the target vehicle,
namely 86.1 % and 95.1 % of all samples in the On-board and NGSIM data set respectively, where most
likely already simple prediction approaches are able to achieve reasonable results.

6.1.5 Performance baselines

In this section, we present and discuss the models we aim to use as performance baselines for our SPA-
based trajectory prediction approaches. Therefore, we begin with an example: Figure 6.5 shows an
overtaking maneuver in a highway situation from the On-board data set at four different selected time

98 Instantiating a cognitive model for predicting vehicle behavior

On-board NGSIM
Data set

0

20

40

60

80

100

Pe
rc
en

ta
ge

 (%
)

no lane change
anywhere
past
future

Figure 6.4: Visualization of the composition of both data sets regarding lane changes of the target
vehicle.

steps. The ego-vehicle is overtaken by another car, the target vehicle to be predicted, approaching from
behind. During that overtaking maneuver, the ego-vehicle itself performs a lane change from the middle
to the most right of the three lanes. Figures 6.5a– 6.5d show different times of the situation. Solid lines
indicate previous positions whereas dashed lines indicate future positions or predictions. The solid blue
line depicts the past motion of the target vehicle overtaking the ego-vehicle, while solid gray lines visu-
alize the past positions of other vehicles in the scene. The dashed green line illustrates predictions from a
simple linear model based on a constant velocity assumption. This example illustrates the general trend
we observe for both data sets used in this chapter that already simple linear prediction models achieve
solid prediction accuracy, especially in x-direction. This makes sense as both data sets almost exclusively
contain highway driving situations, which in turn consists of significantly more straight driving and rather
rare lane-change maneuvers as analyzed in section 6.1.4. For straight driving, linear prediction based on
a constant velocity assumption is already a solid prediction approach, especially if all dynamic informa-
tion (position, velocity etc.) is given relative to an already moving ego-vehicle like with the On-board
data set D1. Hence, we use these linear prediction models based on a constant velocity assumption as
the simplest baseline models to compare our neural models using our distributed vector representations
as input to.

The analysis of related research on trajectory prediction in automotive context given in section 2.3.5
suggests, that the most successful current state-of-the-art approaches rely mainly on LSTM-based neural
network architectures. They are typically combined with other neural networks such as convolutional
layers or classification networks (Deo and Trivedi, 2018a) to improve model performance. In this chapter,
we use LSTM-based models as well as simpler feed-forward neural networks to predict trajectories based
on our semantic vector representation of the current driving situation. Hence, we use the same models just
employing a different encoding (see section 6.2.1 for further details on the reference encoding schemes)
of the input data avoiding further complexity of additional networks or layers to make the models as
comparable as possible.

6.2 Representation and models 99

(a) Overtaking maneuvre at t = 90s

(b) Overtaking maneuvre at t = 94s

(c) Overtaking maneuvre at t = 98s

(d) Overtaking maneuvre at t = 100s

Figure 6.5: An example scene visualizing the data of an overtaking maneuver in a highway situation
at selected time steps.

6.2 Representation and models

In this section, we describe the models we use for the behavior prediction task. The input data for our
models are sequences of positional data either as raw numerical values or in the form of semantic vectors
as described in section 6.2.1. LSTM-based neural network architectures have proven to be powerful
tools for sequential data analysis and are widely used for behavior, or more generally, motion prediction.
We also investigate much simpler feed-forward neural networks constructed using the principles of the
NEF (Neural Engineering Framework) (c.f. section 3.3) to evaluate the performance gains achieved by

100 Instantiating a cognitive model for predicting vehicle behavior

Y
−10.0

−7.5
−5.0

−2.5
0.0

2.5
5.0

7.5
10.0

X

−10.0

−7.5

−5.0
−2.5

0.0
2.5

5.0
7.5

10.0

Ti
m

e
(s

)

−5

−4

−3

−2

−1

0

Targe objec

Y
−10.0

−7.5
−5.0

−2.5
0.0

2.5
5.0

7.5
10.0

X

−10.0

−7.5

−5.0
−2.5

0.0
2.5

5.0
7.5

10.0

Ti
m

e
(s

)

−5

−4

−3

−2

−1

0

O her objec s

0.000

0.055

0.110

0.165

0.220

0.275

0.330

0.385

0.440

0.495

Si
m

ila
ri

y

Figure 6.6: Visualization of the convolutive vector-power representation of one particular driving
situation over time at selected time-steps as a heat map of similarity values for 512-
dimensional vectors. The red circles indicate the measured position of the target vehicle.

the more complex LSTM models. To encode spatial information of driving situations in sequences of
semantic vectors of fixed length, we employ the convolutive vector power introduced in Definition 3.19
and analyzed in sections 4.2.1 and 4.2.3. For reference, we also describe a simpler vector representation
employing the scalar multiplication encoding of numerical values also shown in section 4.2.1 as well as a
raw numerical representation encoding only the positional information of the target vehicle. Furthermore,
we describe the architecture of the learning models used for behavior prediction from that input data.
Importantly, here we use our models to predict one particular target vehicle at a time instead of trying to
jointly predict the progress of the entire scene. To achieve a forecast of the development of all vehicles
in the scene, we would deploy several instantiations of the same network. Using this approach, we only
have to train one model while we can use each detected vehicle as training example, which significantly
increases the amount of training data.

6.2.1 Scene representation in vectors

We use three different encoding schemes of the positional input data in this chapter. Our main encoding
scheme is the semantic vector representation as depicted in the following section making use of the
convolutive vector power to encode numerical values (see also section 4.2.1). We also apply two other
encoding schemes using the scalar multiplication encoding of numerical values in vectors (see also 4.2.1
as well as simply using the raw numerical values of the input data.

Convolutive power representation

In this section, we investigate the expressive power of encoding the spatial positions of multiple vehi-
cles using the convolutive vector-power introduced in Definition 3.19. Given the results of section 5.3.4
that the impact of similarity structures in rather small vocabularies is neglectable, we create a random
vocabulary V of atomic vectors here. We assign a random real-valued vector from the unit sphere to
each category of dynamic objects (e.g., car, motorcycle, truck) as well as random unitary vectors (c.f.
Definition 3.18) X and Y to encode the units of spatial positions in vectors. We use unitary vectors X and
Y since they have unit length and are closed under convolutive exponentiation as shown in Lemma 3.20.
Therefore, by encoding spatial positions with powers of unitary vectors, we avoid exploding lengths of

6.2 Representation and models 101

our final scene vectors, which would lead to additional noise and unwanted behavior when using them as
input for neural networks. Furthermore, we use additional random ID-vectors TARGET and EGO rep-
resenting the target object to be predicted and, if applicable, the ego-vehicle. Given a situation as shown
in Fig. 6.1 with a sequence of prior positions (xt ,yt) for the target vehicle at time step t ∈ {t0, . . . , tN}
and equivalent sequences (xob j,t ,yob j,t) for other traffic participants, we encapsulate this information in a
scene vector

St = TARGET�TYPEtarget �Xxt �Yyt︸ ︷︷ ︸
target-vehicle

⊕∑
ob j

TYPEob j �Xxob j,t �Yyob j,t

︸ ︷︷ ︸
other objects

, (6.1)

This yields a sequence of semantic scene vectors St for t ∈ {t0, . . . , tN} encoding the past spatial devel-
opment of objects in the current driving situation. An alternative option could be to simply sum up the
vectors at each past time step to encode the complete motion history within a single vector. However,
given the results regarding the capacity of the convolutive power encoding shown in section 4.2.3, we de-
cided for a sequence of individual vectors instead, which is also a more suitable input to neural networks
employing LSTM units. Figure 6.6 depicts the aforementioned scene vector representation: the left plots
show similarities (depicted as heat map) between the vector St encoding the scene from Fig. 6.1 and
the vectors vi = TARGET � TYPEtarget � Xx̄i � Yȳi for a sequence of discrete position samples x̄i, ȳi.
Similarly, the right plots show similarities between St and CAR�Xx̄i �Yȳi visualizing all other objects
in the scene of type car. Importantly, each vector in the sequence St , i.e., each plane in the sequence
of heat maps shown in Fig. 6.6 is a spatial encoding vector of the type depicted Fig. 4.11 Hence, we
can encode spatial information of several different objects in a sequence of semantic vectors and reliably
decode it back out. This allows us to encode automotive scenes with varying number of dynamic objects
in a vector representation of fixed dimension. Note that by using this vector representation as input data
for a neural network (or any other predictor), we predict the future position of one other traffic partici-
pant at a time. The indication vector TARGET bound to the target vehicle, i.e., the object we want the
model to predict, indicates the network the current focus. To predict all objects present in a scene during
deployment, multiple instantiations of the same network can be used. Thereby, the amount of training
data generated per file increases with the number of objects while we only need to train one network.
To avoid accumulation of noise in the vectors (cf. section 4.2.3) while focusing on the vehicles most
relevant for prediction, we only use objects closer than 40 m to the target vehicle in the On-board data
set. For the NGSIM data set D2, we additionally include only objects on the same lane as the target
vehicle and on adjacent lanes. Thereby, we aim for consistency across both data sets and we keep the
input data as comparable as possible to what a driving vehicle could be able to detect using its on-board
sensors.
For the On-board data set D1, we use two different variants of this representation, which differ in that
the ego-vehicle’s position is used or excluded in the other objects part of Equation (6.1), yielding two
sequences (Sego

t)tN
t0 and (St)

tN
t0 . We used Nengo’s SPA package for implementation and therefore refer to

these two encoding schemes (St)
tN
t0 and (Sego

t)tN
t0 as SPA-power and SPA-power-with-ego respectively. As

the NGSIM data set D2 does not contain an ego-vehicle, we only investigate the SPA-power encoding
scheme there.

Reference encoding schemes

For a simple reference vector-representation, we employ the scalar multiplication encoding for numerical
values shown in section 4.2.1. Therefore, we add the positional vectors X and Y scaled with the target
vehicle’s prior positions (xt ,yt) at each time step t, yielding the sequence S̃t = xt ·X+ yt ·Y. We refer
to this simpler encoding scheme based on the scalar multiplication encoding as SPA-simple. Finally,
we also use plain numerical position values pt = (xt ,yt) as another reference encoding scheme of the
input data to our learning models, which we refer to as numerical. Importantly, only the SPA-power

102 Instantiating a cognitive model for predicting vehicle behavior

Figure 6.7: Visualization of our LSTM-based learning architecture. Modules that change with
varying encoding scheme of the input data are highlighted through dashed red borders
whereas parts that change when varying the data set are highlighted through dashed blue
borders.

representation variants (St)
tN
t0 and (Sego

t)tN
t0 contain positional information about vehicles other than the

target.

6.2.2 LSTM-based prediction models

In this section, we use a LSTM (Long Short-Term Memory) (Hochreiter and Schmidhuber, 1997) network-
architecture for the prediction of vehicle positions. Our network consists of one LSTM encoder and
decoder cell for sequence to sequence prediction, which means that the input and the final result of our
model is sequential data. The encoder LSTM takes positional data for 20 past, equidistant time frames
as input. That is, the input data is a sequence of 20 items of either positions of the target vehicle or
a sequence of high-dimensional vectors encoding this positional data. The resulting embedding vector
encodes the history of the input data over those time frames. This embedding vector is concatenated with
additional auxiliary information to aid the model when predicting the future trajectory of the target vehi-
cle. This auxiliary data is information, that is available to the system when the prediction is to happen,
i.e., sensory data available at prediction time or future data about the ego-vehicle such as its own planned
trajectory (see section 6.3.1 for further details on this auxiliary data). Finally, the embedding vector is
used as input for the decoder LSTM to predict future vehicle positions. The output of each model is a
sequence of 20 positions of the target vehicle predicted over a certain temporal horizon into the future.
We use the same network architecture for all encoding schemes of the input data and for both data sets.
However, the dimensionality of the input and the information used as auxiliary information to enrich the
embedding vector vary over different encoding schemes and data sets respectively. Figure 6.7 visualizes
the architecture of our LSTM models indicating modules that change when varying the encoding scheme
by a dashed red border whereas parts that change with the data set are highlighted through a dashed blue
border.

6.2.3 Simple feed-forward NEF-based prediction models

As an alternative to the LSTM-models, we also considered a much simpler single-hidden-layer network
defined using the NEF (Neural Engineering Framework) (Eliasmith and C. H. Anderson, 2003). While
this is usually used for constructing large-scale biologically realistic neuron models (Eliasmith et al.,
2012), the NEF software toolkit Nengo (Bekolay et al., 2014) also allows for traditional feed-forward
artificial neural networks using either spiking or non-spiking neurons. For these NEF networks, we
use a single hidden layer, with randomly generated (and fixed) input weights, and use least-squares
optimization to compute the output weights. We employ the principles of the NEF as shown in section 3.3
to instantiate and train these models. As with any traditional network, we can have any number of input,
output, and hidden neurons, all following this same process. The goal here is to provide a simple baseline

6.3 Experiments and results 103

for comparison to the LSTM networks, to see what (if any) performance gain is produced by the more
complex network approach. However, these simpler networks are unable to process sequential data in
the same way as the LSTM models. Therefore, we will have to slightly adapt our data, especially the
semantic vector sequences, to make it suitable as input for the feed-forward networks.

6.2.4 Excursion on unsupervised anomaly detection

In this section, we take a brief detour on anomaly detection. We are further interested in the information
encapsulated within our semantic vector representation and if it can be used to detect potentially dan-
gerous driving situations from just the vector representation. VSAs in general already have an intrinsic
mechanism of comparing vectors with one another through the measure of similarity φ . However, it is
not clear if simply comparing vectors in terms of similarity to, for instance, the mean pairwise-similarity
of all known vectors, or a subset of vectors considered “normal”, will differentiate outliers from the “nor-
mal data”. A-priori, it might not even be clear what vectors belong to the baseline set of normal data or
how to define vectors to be considered as inliers. One option could be to manually define metrics such as
the number of vehicles in the scene or a threshold for the distance between the vehicles to detect crowded
and potentially dangerous situations. However, such an approach suffers from the typical issues of man-
ual engineering such as biases introduced by the human designer as well as poor scaling. Therefore,
we employ an unsupervised learning approach based on fully-connected autoencoder neural networks
similar to the one proposed in J. Chen et al. (2017). We train an autoencoder neural network on the latest
vector in the sequence (St)

tN
t0 of our scene vectors based on the convolutive vector-power representation in

unsupervised fashion. Thereby, the network is trained to reconstruct, i.e., generate replicates of, the data
it is given. Once the network is trained on a sufficiently large data set, we can calculate the element-wise
error between the original vector v = (v0, . . . ,vD−1) and the replicate vector ṽ = (ṽ0, . . . , ṽD−1) generated
by the neural network autoencoder, i.e.,

εv =

√
1
D

D−1

∑
i=0

(vi− ṽi)
2. (6.2)

Vectors exceeding a certain threshold c for this reconstruction error, i.e., εv > c will be considered as
outliers or anomalies. The threshold c is generated from the percentage of examples we expect to be
anomalies within the data set, which is typically chosen in the range of 5 % to 15 %.

6.3 Experiments and results

In this section, we describe the training process and parameters of all our models and give a detailed
analysis and evaluation of the results achieved. The LSTM models are implemented in Tensorflow (Abadi
et al., 2016) whereas the NEF models are implemented using the Nengo software suite (Bekolay et al.,
2014). We use the RMSE as our main metric for evaluation purposes. In contrast to earlier work, we
inspect the RMSE for lateral and longitudinal directions separately to give more detailed insights into
the models’ behavior. Calculating the RMSE of the Euclidean distance would absorb the influence of the
lateral RMSE since it is an order of magnitude smaller than the longitudinal RMSE, while we consider
both directions to be at least equally important. The lateral RMSE is even more informative regarding
the models’ performance on, for instance, lane change maneuvers. For all evaluations in this section,
we refer to the longitudinal and lateral direction as x- and y-direction respectively. Furthermore, we
investigate where the models show their best performance looking for correlations between prediction
accuracy and specific driving situations.
For both model types, we follow the same order of analyzing steps: firstly, we perform an investigation
of the model’s hyperparameters to find the best possible configuration for each model. Secondly, we
describe the process of training each model with all peculiarities corresponding to the data used or the
training process itself. Finally, we evaluate the trained models and compare their performance. For the

104 Instantiating a cognitive model for predicting vehicle behavior

hyperparameter analysis, we conduct a thorough investigation on both our network architectures using
only numerical input data for simplicity and to keep the time needed for training limited. Systematically,
we only analyze one parameter at a time and fix the best value for that parameter for the subsequent anal-
ysis of other parameters. However, we also inspect certain parameter pairs jointly if there are correlations
or mutual influences between the parameters to be expected. All hyperparameter analyses in this section
on both model types are performed on the On-board data set D1. If not declared otherwise, all figures
show the performance of the investigated models on the validation part V1 ⊂ D1 of the On-board data
set. The training process however is intended to be kept as coherent as possible between the data sets and
differences having an impact on the training process will be highlighted where necessary. Finally, we
evaluate both model types’ performance on both available data sets and, especially for the LSTM-based
models, we give a thorough analysis on which model performs best depending on the current driving
context. Thereby, we will identify strengths and weaknesses of each particular model.

Short name Input
Position
encoding

Network
architecture Training

Number of
Units/Neurons Data set

linear
current position

and velocity
- Linear regression - - both

LSTM numerical sequence of positions -
LSTM with one

encoder/decoder cell each
Offline,

backpropagation
150 units
per cell

both

LSTM SPA 1 semantic vector sequence convolutive power
LSTM with one

encoder/decoder cell each
Offline,

backpropagation
150 units
per cell

both

LSTM SPA 2 semantic vector sequence scalar multiplication
LSTM with one

encoder/decoder cell each
Offline,

backpropagation
150 units
per cell

both

LSTM SPA 3 semantic vector sequence
convolutive power
incl. ego-vehicle

LSTM with one
encoder/decoder cell each

Offline,
backpropagation

150 units
per cell

On-board

NEF numerical sequence of positions - NEF Single-layer
Offline,

least-squares
3000 neurons both

NEF SPA 1 semantic vector sum
convolutive power
incl. ego-vehicle

NEF Single-layer
Offline,

least-squares
3000 neurons On-board

NEF SPA 2 semantic vector sum convolutive power NEF Single-layer
Offline,

least-squares
3000 neurons NGSIM

Table 6.2: Summary of the evaluated models regarding architecture, input data, encoding and train-
ing.

Table 6.2 summarizes the models evaluated in this section. The models LSTM SPA 1 - 3 as well as
LSTM numerical employ the same network architecture as described in section 6.2.2 with sequential
information as input data (using the different encoding schemes presented in section 6.2.1) and are an-
alyzed in section 6.3.1. The models NEF SPA 1 and 2 employ the simpler, single-layer, feed-forward
architecture as described in section 6.2.3 with a vector obtained as partial sum of vectors from the whole
sequence used as input for the LSTM models (see section 6.3.2 for further details). The models will be
denoted in legends of the figures in this chapter by their short name given in table 6.2.
In section 6.2.1, we have described the different encoding schemes we will use to evaluate our models.
We mentioned that the models employing the convolutive power to encode the input data (i.e., LSTM SPA
1, 3 and NEF SPA 1 and 2) are the only ones having access to information about objects other than the
target vehicle. Although these models therefore have access to more data than the other reference models
such as LSTM numerical, we are interested in evaluating the benefits of encoding the interconnections
between vehicles implicitly in the input data using our semantic vector encoding instead of introducing
a more complex network architecture. Therefore, we focus on the same network architecture for all
encoding schemes in this chapter and leave a comparison with more sophisticated network architectures,

6.3 Experiments and results 105

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Input data setup #

0.5

1.0

1.5

2.0

2.5

3.0

3.5
RM

SE
 X
 (m

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Input data setup #

0.1

0.2

0.3

0.4

0.5

0.6

RM
SE
 Y
 (m

)

pred time (s)
5.0
4.75
4.5
4.25
4.0
3.75
3.5
3.25
3.0
2.75
2.5
2.25
2.0
1.75
1.5
1.25
1.0
0.75
0.5
0.25

Figure 6.8: Analysis of the RMSE for different variations of numerical input to our LSTM model
trained on the On-board data set for 8 epochs.

for instance, ones combining LSTMs with social pooling layers as in Deo and Trivedi (2018a) or Alahi
et al. (2016) for future work.

6.3.1 Evaluation of the LSTM-based prediction models

In this section, we will investigate the LSTM-based prediction models.

Hyperparameter analysis

For the LSTM-models, we firstly investigated the composition of the input data to the model to get an
idea, what kind of information is useful for the task of motion prediction. Therefore, we trained several
instantiations of our LSTM-network architecture on the On-board data set D1 for different variations of
the input data, for 8 epochs each. Table 6.3 summarizes the different setups and shows what kind of data
is included in each setup shown in Fig. 6.8. The simplest setting (setup 1) is using only the positional
information of the target vehicle as input and its instantaneous velocity as additional information in the
embedding without including any information about the ego-vehicle. We refer to this setting as the
default setting in this section. In addition, we also analyze settings, where additional information like
velocity (setups 6-15) and acceleration (setups 11-15) of the target vehicle are available to the system.
Furthermore, if all dynamic information is available relative to the ego-vehicle, there are other features
that could be useful for motion prediction such as the current curvature of the road or the current velocity
or steering values of the ego-vehicle itself. For instance, if the ego-vehicle performs a lane change or the
road bends, this will influence the relative motion of all other vehicles while this information most likely
will not be available from just the positions of the target vehicle. On the other hand, if such information is
available to the system, it would improve the model’s capability of abstracting and inferring correlations
between the available information in such situations. In this evaluation, we include the history of the ego-
vehicle’s information to the input data and future values to the embedding, whereas we include additional
information about the target vehicle to the input data only.
Figure 6.8 depicts the RMSE (y-axis) for each input data setup given in table 6.3 on the x-axis at each
prediction time step. Each tick on the x-axis corresponds to one input setup, whereas each group of 5
ticks from left to right corresponds to one fixed setup for the target vehicle. The left group contains only
the default data about the target vehicle (setups 1-5 in table 6.3), the middle group contains the history
of the target vehicle’s velocity (setups 6-10 in table 6.3) and the right group contains additionally the
history of the target vehicle’s acceleration (setups 11-15 in table 6.3).

106 Instantiating a cognitive model for predicting vehicle behavior

Setup # Included target vehicle data Included ego-vehicle data

Position Velocity Acceleration Acceleration Lane Border Lane Curvature Steering

1 X

2 X X

3 X X X

4 X X X X

5 X X X X X

6 X X

7 X X X

8 X X X X

9 X X X X X

10 X X X X X X

11 X X X

12 X X X X

13 X X X X X

14 X X X X X X

15 X X X X X X X

Table 6.3: Summary of the input data setups of the different models evaluated in Fig. 6.8.

Each tick within one group corresponds to one setting for the ego-vehicle, whereas again from left to
right the amount of available information increases. Therefore, the rightmost tick contains information
about the ego-vehicle’s acceleration, distance to the lane border as well as the curvature of the current
lane and its current steering values (setup 15 in table 6.3). We observe that adding more information
about both, the ego- and target vehicle, indeed improves prediction accuracy significantly: the difference
between the best and worst setting is more than 1 m in x-direction and more than 0.1 m in y-direction.
For both dimensions, setup 15 using all available information outperforms the simpler setups. However,
there are some interesting peculiarities visible in this analysis that are worth noting. For instance, the
input information improving performance in x-direction the most appears to be the target vehicle’s ve-
locity (setups 1-5 vs. setups 6-10). Furthermore, the target vehicle’s acceleration does not yield further
significant improvements given its velocity is available. Interestingly, setup 6 using only the target ve-
hicle’s velocity as additional information is closely behind the best setting in x-direction. Furthermore,
the performance boost of the setting using all available information (setup 15 or the rightmost tick) over
the prior setting comes from the ego-vehicle’s steering, which only appears when its acceleration in-
formation is also available. For the y-direction, we observe similar trends in that the target vehicle’s
acceleration does not yield significant improvements if its velocity is already given. Here however, the
information about the ego-vehicle’s distance to the lane borders appears to be the input that gives the
most significant improvements in y-direction (setup 2 vs. 3, setup 7 vs. 8 and setup 12 vs. 13). That
makes sense, since these inputs encode information about the ego-vehicle’s motion in y-direction when,
for instance, performing lane changes. As setup 15 using all available information (the rightmost tick in
Fig. 6.8) is by far outperforming all other settings in x-direction and is on par with the best in y-direction,
we use this data setup for further analyzing the hyperparameters of the LSTM-model.
We continue our hyperparameter analysis by inspecting the number of dimensions within the LSTM cells.
In our initial experiment, we used 80 dimensions in each of the LSTM encoder and decoder cell. Here,
we investigate if adding more dimensions improves the models’ prediction performance. Again, we train
the model for 8 epochs. Figure 6.9a depicts the RMSE for models with 80, 150, 200 and 500 dimensions

6.3 Experiments and results 107

80 150 200 500
Number of dimensions

0.5

1.0

1.5

2.0

2.5

RM
SE

 X
 (m

)

80 150 200 500
Number of dimensions

0.1

0.2

0.3

0.4

0.5

RM
SE

 Y
 (m

)

pred time (s)
5.0
4.75
4.5
4.25
4.0
3.75
3.5
3.25
3.0
2.75
2.5
2.25
2.0
1.75
1.5
1.25
1.0
0.75
0.5
0.25

(a)

1 2 3 4 5 6 7 8 9
Number of layers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 X
 (m

)

1 2 3 4 5 6 7 8 9
Number of layers

0.1

0.2

0.3

0.4

0.5

RM
SE

 Y
 (m

)

pred time (s)
5.0
4.75
4.5
4.25
4.0
3.75
3.5
3.25
3.0
2.75
2.5
2.25
2.0
1.75
1.5
1.25
1.0
0.75
0.5
0.25

(b)

Figure 6.9: Visualization of the RMSE for different parameter tests of our LSTM-model trained on
the On-board data set for 8 epochs: (a) depicts the RMSE when varying the number of
dimensions in each LSTM cell (b) visualizes the RMSE when varying the number of
layers, i.e., the number of encoder and decoder LSTM cells are used in the network.

in the LSTM cells. We observe that the model with 150 dimensions performs best in x-direction whereas
all models show comparable performance in y-direction. However, increasing the number of dimensions
beyond 150 per LSTM does not improve the models’ accuracy but rather deteriorates the performance.
Therefore, we fix the number of dimensions within the LSTM cells to 150 for further investigation.
In the next step, we inspect how the number of layers in our network architecture influences the model’s
performance. Here, one layer is a pair of one LSTM encoder and decoder cell each. Thus, a model
with 2 layers consists of a sequence of 2 LSTM encoder cells followed by a sequence of again 2 LSTM
decoder cells. Figure 6.9b visualizes the RMSE of models with 1 up to 9 layers trained for 8 epochs.
This analysis shows that the model using only one layer performs best and that increasing the number of
layers and thus using a deeper network architecture does not improve the model’s performance. On the
contrary, more layers lead to worse accuracy in both dimensions. However, we trained all models for a
fixed number of 8 epochs whereas deeper network architectures might demand a longer training process.

108 Instantiating a cognitive model for predicting vehicle behavior

5 20 50
Number of epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
RM

SE
 X

 (m
)

5 20 50
Number of epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

RM
SE

 X
 (m

) pred time (s)
5.0
4.75
4.5
4.25
4.0
3.75
3.5
3.25
3.0
2.75
2.5
2.25
2.0
1.75
1.5
1.25
1.0
0.75
0.5
0.25

5 20 50
Number of epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RM
SE

 Y
 (m

)

5 20 50
Number of epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RM
SE

 Y
 (m

)

Figure 6.10: Analysis of the RMSE varying the number of layers and epochs of our LSTM model
trained on the On-board data set. The left column shows the RMSE of a model with
only one layer trained for 5, 20 and 50 epochs, while the right column shows the RMSE
of a model with 10 layers trained for 5, 20 and 50 epochs.

In the next step, we therefore analyze the number of layers and number of epochs jointly to investigate
if larger network architectures trained for more epochs improve prediction performance. Figure 6.10
visualizes the results of this experiment: the left column depicts the RMSE of a model with only one
layer trained for 5, 20 and 50 epochs, whereas the right column shows the RMSE of a model with 10
layers trained for 5, 20 and 50 epochs. We observe that training a deeper model for more epochs does
improve its accuracy. However, if we compare the left and right plots in Fig. 6.10, we also find that by
training a model with 10 layers for 50 epochs we only achieve the accuracy of the simpler single-layer
LSTM model trained for 5 epochs. We conclude, that using more layers even with a longer training
process (i.e., increased number of epochs) does not lead to improved prediction results. Thus, a LSTM
model with one encoder and decoder cell each is not only the simplest network architecture but also the
best in terms of accuracy and time needed for training.
We briefly summarize the findings of this section and fix the following set of parameters for subsequent
sections: we use a LSTM model with one encoder and one decoder cell with 150 hidden dimensions
each.

Model training

Using the aforementioned network architecture and hyperparameter set, we train one model instantiation
for each encoding scheme mentioned in section 6.2.1, whereas only the input dimensionality of the en-
coder cell changes when varying the representation of the input data. Importantly, we focus on positional
information as the only input for our LSTM models in this work for reasons of consistency to make all
models as comparable as possible. Hence, we neglect for example the history of the target (or ego-)
vehicle’s velocity or acceleration as input here. Between the two data sets, the only difference between
models is the auxiliary data, that is used as additional input to the LSTM decoder cell at each time step.
For both data sets, we use the instantaneous velocity of the target vehicle to aid the model predicting the
future trajectory at every time step. As there is no ego-vehicle present in the NGSIM data set D2, we use

6.3 Experiments and results 109

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0

1

2

3

4

5
RM

SE
 X
 (m

)
Training data

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0

1

2

3

4

5

RM
SE

 X
 (m

)

Validation data

pred time (s)
5.0
4.75
4.5
4.25
4.0
3.75
3.5
3.25
3.0
2.75
2.5
2.25
2.0
1.75
1.5
1.25
1.0
0.75
0.5
0.25

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

 Y
 (m

)

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

 Y
 (m

)

Figure 6.11: Development of the RMSE at every prediction time step during the training process of
the LSTM SPA 3 model for each epoch on the training (left column) and validation
part (right column) of the On-board data set. One observes comparable trends on both,
training and validation set and that the RMSE does not significantly decrease after 10
epochs.

no further auxiliary data. For the On-board data set D1, we use the ego-vehicle’s predicted acceleration
and the estimated curvature of the ego-vehicle’s current lane. Although this is future information, we
argue that it is solely about the ego-vehicle, which we expect to be available at the time the prediction is
to happen. We assume, that an automated vehicle, in order to safely navigate, will have an estimation of
the future lane curvature as well as the acceleration values of its own planned trajectory. Furthermore,
we employed early stopping, that is, we trained our models for 10 epochs as we found that the models’
performance stagnate on both, training and validation data sets, when training for up until a total 20
epochs. Figure 6.11 visualizes this result by showing the development of the RMSE of the LSTM SPA
3 model using the SPA-power-with-ego vector representation (Sego

t)tN
t0 as input for the training (Fig. 6.11

left column) and validation part (Fig. 6.11 right column) of the On-board data set D1. On the y-axis
of each sub-figure, we have the RMSE while the x-axis from left to right depicts the result after each
epoch during the training process. Each colored line illustrates the RMSE of the model for one particular
prediction time step while all points with the same value on the x-axis depict the model’s performance
after the respective epoch during the training process.

Evaluation

Figure 6.12 visualizes the RMSE of all LSTM-based models on the validation-set V1 ⊂ D1 of the On-
board data set using 512-dimensional vectors. Figure 6.12a shows the performance on the complete
validation-set, whereas Fig. 6.12b depicts only situations with at least 3 other vehicles present, the dis-
tance between the target and the ego-vehicle being lower than 20 m and the distance between the target
and the closest other vehicle being less than 10 m. We observe that all approaches yield comparable
results with notable differences in certain situations. Although the models employing the SPA-power en-
coding schemes tend to perform worst in x-direction, we observe that they perform better in y-direction

110 Instantiating a cognitive model for predicting vehicle behavior

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE

 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(a)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE

 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(b)

Figure 6.12: Visualization of the RMSE of all LSTM models on the On-board data set: (a) shows
the complete validation set V1 ⊂ D1 (b) shows the subset of situations with at least 3
other vehicles present and distance between the target and ego-vehicle lower than 20 m
and between target and closest other vehicle lower than 10 m.

in crowded situations with closely driving vehicles with the LSTM SPA 3 model ranking best along the
LSTM numerical model.
To further investigate this result, we evaluated certain metrics, chosen to characterize crowded and poten-
tially dangerous situations, for items in the validation set, where the LSTM SPA 3 model outperforms all
other approaches with respect to the RMSE in y-direction (see Fig. 6.13). We observe that the number of
samples, where the distance between the target and the ego-vehicle and/or the closest other object being
small is significantly higher when the LSTM SPA 3 model outperforms all other approaches. For sam-
ples where the LSTM SPA 3 model performs best, the number of samples with a distance less than 20 m
between the target and ego-vehicle is 50.5 % higher compared to samples where one of the other models
performs best. For distances less than 20 m between the target vehicle and the closest other vehicle, the
number of samples is still 11.4 % higher when the LSTM SPA 3 model performs best. Finally, the num-
ber of situations with at least 3 other vehicles present is also 7.8 % higher compared to samples where
one of the other models performs best. However, we aim to investigate more sophisticated options such
as clustering methods in future work to uncover other, potentially more meaningful features compared to
the ones shown here, distinguishing between situations where LSTM SPA 3 performs best compared to
another model showing the best performance.
Figure 6.14 visualizes the RMSE of all LSTM-based models on the validation-set V2 ⊂D2 of the NGSIM
data set for 512-dimensional vectors (Fig. 6.14a) and for 1024-dimensional vectors (Fig. 6.14b). We
observe, that all LSTM models achieve a very similar performance (almost identical in y-direction) with

6.3 Experiments and results 111

(a)

0 20 40 60 80 100
distance between target and

 closest other vehicle

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

no
rm

al
ize

d
 n
 m

be
r o

f s
am

pl
es

0 20 40 60 80 100
distance between target

 and ego vehicle

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0 2 4 6 8 10 12
n mber of vehicles
 other than target

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

difference between where
 LSTM SPA 3 and any other
 model performs best

(b)

Figure 6.13: Metric evaluation specifying situations where the LSTM SPA 3 model outperforms all
other approaches regarding the RMSE in y-direction on the On-board data set D1. In
the upper row (a), blue bars illustrate samples where LSTM SPA 3 performs better than
all other models while the orange bars depict samples where one of the other models
performs best. From left to right, the plots in (a) illustrate the distance between the
target vehicle and the closest other vehicle, the distance between the target and the ego-
vehicle and the number of vehicles other than the target. The lower row (b) illustrates
the difference between the blue and orange bars in the corresponding plot in (a).

LSTM SPA 1 achieving the best performance in x-direction being on par with the numerical encoding
for 512-dimensional vectors. For 1024-dimensional vectors, LSTM SPA 1 even slightly outperforms all
other approaches in x-direction, whereas we do not observe significant improvements in y-direction.

Evaluation of models trained on data set variations In section 6.1.4, we have already seen
that our prediction models using neural networks have to deal with imbalanced data sets containing
significantly more straight driving than lane changes performed by the target vehicle. Hence, training any
learning system on all the samples of both our data sets will expose the system to a significantly higher
amount of data, in which most likely already a simple linear prediction model performs reasonably well.
In this section, we therefore analyze the influence of the training data set on our LSTM models and if
there are significant differences in the performance of models trained on the complete data sets and on
subsets consisting only of such samples that contain a lane change of the target vehicle. We conduct this
analysis on the On-board data set only. Figure 6.12 showed the performance of our LSTM-based models
trained on the complete data set. Here, we train models with the exact same neural network architectures
and encoding schemes of the input just on different data sets, namely the subset of samples containing
a lane change performed by the target vehicle. We consider both types of target vehicle lane changes,
namely those performed during the trajectory history as well as lane changes performed in the future
trajectory to be predicted, as input for the models. Figure 6.15 shows a comparison of different setups
regarding training and evaluation data for our LSTM-based trajectory prediction models. We also keep
the simple linear prediction model based on a constant velocity assumption for reference in the figures,
since it is not a data-driven learning model and is therefore invariant under the changes of the training

112 Instantiating a cognitive model for predicting vehicle behavior

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE

 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2

(a)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE

 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2

(b)

Figure 6.14: Visualization of the RMSE of all LSTM models on the NGSIM validation set V2 ⊂ D2
using (a) vectors of dimension 512 for the SPA-based models and (b) using vectors of
dimension 1024 for the SPA-based models.

data. Figures 6.15a, 6.15c, 6.15e and 6.15g show the RMSE for models trained on the complete data
set while Fig. 6.15b, 6.15d, 6.15f and 6.15h show the same models evaluated on the same samples but
trained only on data samples including a target vehicle lane change. On the other hand, the upper row
of Fig. 6.15, i.e., Fig. 6.15a - 6.15d, illustrates the performance of the models evaluated on either the
complete data set or only on the lane changes in all data samples, while the lower row of Fig. 6.15,
i.e., Fig. 6.15e - 6.15h, shows the performance of the models evaluated on samples containing crowded
driving situations or crowded situations containing even a target vehicle lane change.

We observe that the models that have been trained only on samples containing a lane change performed
by the target vehicle tend to achieve worse results than the models trained on the complete data set,
when being evaluated on the entirety of all data samples (Fig. 6.15a,, 6.15c, 6.15e and 6.15g). In-
terestingly, the performance of the models based on the convolutive power encoding scheme (LSTM
SPA 1 and 3) deteriorates more significantly compared to the other data-driven models, especially
in lateral (y) direction. However, if we evaluate the same models only on the samples containing a
target vehicle lane change, their performance changes significantly (Fig. 6.15b, 6.15d, 6.15f, 6.15h).
We recapitulate the findings of section 6.1.4 that lane changes influence the lateral (y) position val-
ues more severely than the longitudinal (x) position compared to straight driving samples. There-
fore, the performance difference between the models trained on lane changes only and models trained
on the complete data set, as we would expect, is also not that significant in longitudinal direction.

6.3 Experiments and results 113

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(a)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(b)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(c)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(d)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(e)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(f)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(g)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
LSTM SPA 2
LSTM SPA 3

(h)

Figure 6.15: Visualization of the RMSE performance of our LSTM models for different data setups.
Figures (a), (c), (e) and (g) show the RMSE for models trained on the complete data
set, while Fig. (b), (d), (f), (h) show the same models evaluated on the same samples
but trained only on the samples including a target vehicle lane change.

Setup ID Training set Evaluation set

(a) all samples all samples

(b) lane change samples all samples

(c) all samples lane change samples

(d) lane change samples lane change samples

(e) all samples crowded samples

(f) lane change samples crowded samples

(g) all samples crowded lane change samples

(h) lane change samples crowded lane change samples

Table 6.4: Summary of the data samples used for the
evaluations shown in individual sub-figures of
Fig. 6.15.

Considering the lateral (y) direction however,
we observe a significant change between both
model and evaluation variants. If the models are
trained only on lane change samples, the LSTM
SPA 1 and 3 models outperform all other mod-
els in lateral direction when evaluated only on
the data samples containing a lane change while
their performance in longitudinal direction does
not change significantly compared to the models
trained on the complete data set.
So far, we have only compared either all mod-
els trained on the complete data set or all models
trained only on the lane change samples. How-
ever, we are also interested in how the perfor-
mance for particular models changes when mod-
ifying the training data set. Figure 6.16 shows a
direct comparison of the LSTM SPA 3 model (Fig. 6.16a - 6.16d) as well as the LSTM numerical model

114 Instantiating a cognitive model for predicting vehicle behavior

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM SPA 3 trained on all samples
LSTM SPA 3 trained on lane changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 Y
 (m

)

linear
LSTM SPA 3 trained on all samples
LSTM SPA 3 trained on lane changes

(a) All samples

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM SPA 3 trained on all samples
LSTM SPA 3 trained on lane changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 Y
 (m

)

linear
LSTM SPA 3 trained on all samples
LSTM SPA 3 trained on lane changes

(b) Lane
changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM SPA 3 trained on all samples
LSTM SPA 3 trained on lane changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 Y
 (m

)

linear
LSTM SPA 3 trained on all samples
LSTM SPA 3 trained on lane changes

(c) Crowded

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM SPA 3 trained on all samples
LSTM SPA 3 trained on lane changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 Y
 (m

)

linear
LSTM SPA 3 trained on all samples
LSTM SPA 3 trained on lane changes

(d) Crowded
lane changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM numerical trained on all samples
LSTM numerical trained on lane changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 Y
 (m

)

linear
LSTM numerical trained on all samples
LSTM numerical trained on lane changes

(e) All samples

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM numerical trained on all samples
LSTM numerical trained on lane changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 Y
 (m

)

linear
LSTM numerical trained on all samples
LSTM numerical trained on lane changes

(f) Lane
changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM numerical trained on all samples
LSTM numerical trained on lane changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 Y
 (m

)

linear
LSTM numerical trained on all samples
LSTM numerical trained on lane changes

(g) Crowded

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE

 X
 (m

)

linear
LSTM numerical trained on all samples
LSTM numerical trained on lane changes

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RM
SE

 Y
 (m

)
linear
LSTM numerical trained on all samples
LSTM numerical trained on lane changes

(h) Crowded
lane changes

Figure 6.16: Visualization of the changing RMSE performance of particular prediction models de-
pending on the data they have been trained on. The first four figures (a) - (d) illustrate
the difference between the LSTM SPA 3 models when changing their training data,
while the last four figures (e) - (h) shows the same comparison for the LSTM numeri-
cal models.

(Fig. 6.16e - 6.16h) with different training data sets. In this direct comparison, we observe that there is
no significant difference in the performance of the numerical LSTM models trained on different samples
for both evaluation sets containing either the complete data set or only the target vehicle lane changes.
For the LSTM SPA 3 model however, we observe significant improvements for the model trained on
the lane change samples when evaluated on the lane changes performed by the target vehicle compared
to the model trained on all data samples. This result indicates that either the numerical model trained
on all samples generalizes sufficiently well to all possible situations compared to the convolutive power
based model. However, we have already seen, that both trajectory data sets show a significant imbalance
towards straight driving compared to lane change maneuvers (cf. section 6.1.4), which is the same for
all models. On the other hand, the results shown here could also hint, that the convolutive power model
encapsulating the prior motion not only of the target vehicle but also other vehicles in its surroundings
is better suited to predict lane change maneuvers given a more balanced data set. These results suggest,
that there is not only room for improvement for the models investigated here, but also other data-driven
models used for trajectory prediction in the literature, by researching and evaluating the influence of the

6.3 Experiments and results 115

1000.0 3000.0 5000.0 8000.0
number of neurons

0

1

2

3

4

5

6

RM
SE

 X
 (m

)

1000.0 3000.0 5000.0 8000.0
number of neurons

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE

 Y
 (m

)

pred time (s)
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
2.25
2.5
2.75
3.0
3.25
3.5
3.75
4.0
4.25
4.5
4.75
5.0

Figure 6.17: Analysis of the RMSE for a varying number of neurons in the learning population of
our NEF model trained on numerical input from the On-board data set.

distribution of driving situations within the training data.

6.3.2 Evaluation of NEF-based feed-forward prediction models

In this section, we evaluate the simpler, feed-forward neural networks for trajectory prediction to compare
our LSTM-based models to.

Hyperparameter analysis

For our NEF networks, the main parameter influencing the models’ performance is the number of neurons
in the learning population, i.e., the hidden layer in terms of traditional neural networks, as well as the
neuron model. For simplicity, we use Nengo’s rate-variant of the LIF neuron model. Here, we inspect the
number of neurons in the learning population in more detail. From the NEF-theory (Eliasmith and C. H.
Anderson, 2003) we know that increasing the number of neurons in a population yields a more accurate
representation of the data encoded in the population’s activity. Thus, we expect more accurate predictions
when increasing the number of neurons. Figure 6.17 shows the RMSE of different model instantiations
with varying number of neurons, namely 1000, 3000, 5000 and 8000 neurons. We observe that a number
of 3000 spiking neurons is sufficient and further increasing the number of neurons does not improve the
model’s prediction accuracy. Note that the order of magnitude of the RMSE in Fig. 6.17 is significantly
higher than for the figures visualizing the LSTM models RMSE inspected in the previous section. This
is due to the fact that the NEF models investigated here receive less amount of information, namely only
position data and instantaneous velocity of the target vehicle, compared to the LSTM models. Here, we
are only interested to find the best possible parameter setup, whereas we will evaluate both models with
comparable setups in later sections.

Model training

We train two different variants of our simpler NEF-models using numerical input (NEF numerical) as
well as the SPA-power-with-ego (NEF SPA 1) and SPA-power encoding (NEF SPA 2) for the On-board
and the NGSIM data set respectively. The neural weights are calculated using Nengo’s default least-
squares-optimization method with the exception, that we calculate the weights over smaller subsets of

116 Instantiating a cognitive model for predicting vehicle behavior

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m
)

linear
LSTM numerical
LSTM SPA 3
NEF numerical
NEF SPA 1

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE
 Y
 (m
)

linear
LSTM numerical
LSTM SPA 3
NEF numerical
NEF SPA 1

(a)

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
00

1

2

3

4

5

6

7

RM
SE
 X
 (m
)

linear
LSTM numerical
LSTM SPA 1
NEF numerical
NEF SPA 2

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

2.
75 3.
0

3.
25 3.
5

3.
75 4.
0

4.
25 4.
5

4.
75 5.
0

time ahead to predict (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE
 Y
 (m
)

linear
LSTM numerical
LSTM SPA 1
NEF numerical
NEF SPA 2

(b)

Figure 6.18: Visualization of the RMSE of all NEF-network models (a) on the On-board validation
set V1 ⊂ D1 using 512-dimensional vectors for the SPA-power vectors and (b) on the
NGSIM data set D2 using 1024-dimensional vectors for the SPA-power vectors.

the input data for computational reasons. Here, we adapt the input data such that for the numerical NEF-
model, we use the vector (xt0 , . . . ,xtN ,yt0 , . . . ,ytN ,v) as input with v denoting the instantaneous velocity
of the target vehicle. For the SPA-power encoding schemes, instead of flattening the whole sequence of
vectors into one giant single vector, we created a single semantic vector by summing the first, middle
and last element of the original vector sequences

Ŝ = St0⊕StN/2
⊕StN = (ŝ0, . . . , ŝD−1). (6.3)

We only sum up these vectors instead of the whole sequence (St)
tN
t0 to avoid the accumulation of noise in

the vector representation. Note that thereby the NEF model using the SPA-power representation does not
use the full trajectory history but only selected time steps, namely those visualized in Fig. 6.6. We also
include the instantaneous velocity v of the target vehicle as an additional vector element, which yields
(ŝ0, . . . , ŝD−1,v) as input of our model. To make these simpler models as comparable as possible to the
LSTM models in terms of information available to the network, we add the instantaneously velocity of
the target vehicle as an additional element to the input, since there is no intermediate embedding vector
here where it could be included.

Evaluation

Figure 6.18 visualizes the RMSE of our NEF-network models on both data sets. The NEF-network using
the SPA-power encoding schemes processes 512-dimensional for the On-board (NEF SPA 1) and 1024-

6.3 Experiments and results 117

input
layer

enc layer 1
64 neurons

enc layer 2
32 neurons

dec layer 1
32 neurons

dec layer 2
64 neurons

reconstruct
layer

input
layer

Figure 6.19: A schematic visualization of our autoencoder neural network architecture.

dimensional vectors for the NGSIM data set (NEF SPA 2). For reference, we included the performance
of the most relevant LSTM models, namely LSTM SPA 1 and 3 for the NGSIM and On-board data set
respectively as well as LSTM numerical, in Fig. 6.18 as well. We observe that, despite a simpler network
architecture and learning algorithm, the NEF-networks achieve a performance comparable to the more
sophisticated LSTM models on both data sets. For the NGSIM data set, the NEF SPA 1 model performs
on par with its LSTM model counterpart LSTM SPA 3. In this case, the NEF-model is not only simpler,
but also has access to less information as its input data is a sum of a subset of the input sequence used
for the corresponding LSTM-model.

6.3.3 Evaluation of the unsupervised anomaly detection

In this section, we analyze and evaluate the results of the performance of the anomaly detection network
introduced in section 6.2.4. We train a fully-connected autoencoder neural network with 4 hidden layers
consisting of 64, 32, 32 and 64 neurons in unsupervised fashion to generate replicates of the original
vectors used as input to the network. Figure 6.19 shows a schematic visualization of the network’s
architecture. We use the reconstruction error between the original vectors and the replicates generated
by the neural network as anomaly score and calculate a threshold for the error to detect outliers based on
the percentage of anomalies we expect in the data set. For this evaluation, we use 10 % for the amount
of expected outliers within the data set and trained the network for 100 epochs on the vectors encoding
the current scene using the convolutive power representation as described in section 6.2.1.
Since the data we are using to train the network is unlabeled, i.e., we do not have any information
available which vectors belong to unusual or atypical situations, we have no way of comparing the results
produced by the neural network with actual ground truth data. Hence, our only option is to analyze the
anomalies detected by our neural network with respect to certain characteristic values describing the
driving situation and compare them to the values of the complete data set. If this comparison uncovers
significant differences between the anomalies detected by the neural network and the entirety of all data
samples, we can at least conclude that the anomalies are reasonably different from the rest of the data set
and furthermore, that there is sufficient information encoded in our vector representation to unravel them.
For this analysis, we use the same metrics already analyzed in section 6.3.2 to characterize crowded and
potentially dangerous driving situations, namely the distance between the target and the ego-vehicle, the
distance between the target and the closest other vehicle and the number of other vehicles present in the
scene. Figure 6.20 visualizes the distribution of these metrics on the set of anomalies produced by the

118 Instantiating a cognitive model for predicting vehicle behavior

anomalies all
samples

0

20

40

60

80

100

di
st
an

ce
 (m

)

value = target to closest vehicle

anomalies all
samples

value = target to ego-vehicle

(a)

anomalies all
samples

0

2

4

6

8

10

12

14

nu
m
be

r o
f o

th
er
 v
eh

icl
es

relevancy = within threshold

anomalies all
samples

relevancy = total

(b)

(c) (d)

Figure 6.20: Visualization of the results of the autoencoder neural network used for unsupervised
anomaly detection on the On-board data set. The figures show the distribution of
certain characteristic values, namely distances between the target and other vehicles
(Fig. (a) and (c)) as well as the number of other vehicles (Fig. (b) and (d)), for situa-
tions classified as anomalies and for the complete data set. The upper row shows box
plots to visualize the difference between anomalies and the complete data set, whereas
the lower row shows histograms for a more in-depth visualization of the metrics’ dis-
tribution.

neural network and on all data samples in the On-board data set. Figure 6.20a shows box plots of the
distances between the target and the closest other vehicle (left plot in Fig. 6.20a) as well the target and
the closest other vehicle (right plot in Fig. 6.20a) while Fig. 6.20c shows the same data, but illustrated
as histograms. Figure 6.20b and 6.20d visualize a similar evaluation for the number of other vehicles
within a certain distance (left plots), namely 40 m, and all other vehicles in the scene (right plots).
We observe a clear difference for both, the evaluation of the distances and the number of other vehicles,
between the anomalies detected by our neural network and the complete set of data samples. Focusing
on the distance information, the number of instances with smaller distances between the ego-vehicle or
the closest other vehicle and the target is significantly higher for the anomalies than for the complete data
set. While the mean distance between the target and closest other vehicle is slightly below 20 m for the
complete data set, the mean distance for the anomalies is 10 m (cf. Fig. 6.20a) with clear concentration
between 0 m to 15 m (cf. Fig. 6.20c). We observe a similar distribution for the distance between the target
and the ego-vehicle, where the distances are more or less equally distributed around the mean of 40 m
for the complete data set. For the anomalies, we observe a concentration of the distances between the
target and the ego-vehicle below 40 m around the mean of 25 m. Regarding the number of other vehicles,
the difference between the complete data set and the anomalies detected by our neural network is even
clearer. For the complete data set, the mean number of other vehicles within 40 m to the target vehicle
is 2, while the total mean number of other vehicles is around 4. Both numbers are significantly higher
for the anomalies with a mean number of 5 other vehicles within 40 m and a mean of 7 other vehicles
in total (cf. Fig. 6.20b). Looking at the distribution shown in the histograms in Fig. 6.20d, the picture
becomes even clearer. There are no situations with less then 3 other vehicles within 40 m to the target

6.3 Experiments and results 119

anomalies all
samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

di
st
an

ce
 (m

)
value = target to closest vehicle

(a) (b)

anomalies all
samples

0

5

10

15

20

25

nu
m
be

r o
f o

th
er
 v
eh

icl
es

relevancy = within threshold

(c) (d)

Figure 6.21: Visualization of the results of the autoencoder neural network used for unsupervised
anomaly detection on the NGSIM data set. The figures show the distribution of dis-
tances between the target and other vehicles (Fig. (a) and (d)) as well as the number
of other vehicles (Fig. (c) and (d)), for situations classified as anomalies and for the
complete data set. The left figures (Fig. (a) and (c)) show box plots to visualize the dif-
ference between anomalies and the complete data set, whereas the right figures (Fig. (b)
and (d)) show histograms for a more in-depth visualization of the metrics’ distribution.

vehicle in the set of anomalies, whereas in this same range fall the majority of samples of the complete
data set. We observe a similar distribution for the total number of other vehicles in the scene with the
anomaly samples having at least 3 and the majority of examples having at least 4 other vehicles present
in the scene. In contrast, the great majority of samples from the complete data set has at most 7 other
vehicles present and the overall distribution is somewhat inverse to that of the anomalies.
Figure 6.21 shows a similar analysis for the NGSIM data set with a few systematic differences. Since the
NGSIM data set is recorded with external cameras observing highway traffic, there is no ego-vehicle to
evaluate regarding the distance to the target vehicle. Hence, we only analyze the distance between the
target vehicle and the closest other vehicle (see Fig. 6.21a and 6.21b). Furthermore, since the external
cameras record highway traffic on 6 lanes on a segment of 640 m length for the NGSIM data set, we
needed to reduce the number of vehicles to be included in our vector representation to the ones most
relevant for the prediction task. Therefore, we focus on vehicles within a distance of 40 m on lanes
adjacent to the target vehicle’s lane for the analysis of our anomaly detection network here as well (see
Fig. 6.21c and 6.21d). While the differences between anomalies and the complete data set regarding the
distance between the target and the closest other vehicle is not as significant for the NGSIM data set in
comparison to the On-board data set, we still observe a similar tendency for the anomalies to capture

120 Instantiating a cognitive model for predicting vehicle behavior

situations with smaller distances between the target and the closest other vehicle. For the number of other
vehicles however, we also observe that the samples detected as anomalies by our autoencoder network
tend to have more vehicles in the target vehicle’s surroundings present than all the samples within the
NGSIM data set.
In conclusion, our autoencoder neural network is able to detect a subset of anomalies consistently for
both, the On-board and NGSIM data set, which show sufficiently significant differences to the complete
data set regarding certain metrics. The results indicate, that the anomalies detected by the network have
a tendency towards crowded situations with rather small distances between the target vehicle and the
other vehicles in its surroundings. Since these are the kind of situations, where our prediction models
based on the SPA-based convolutive power encoding tend to perform better than the other reference
models, these results offer interesting directions for future research. For instance, we could combine
the anomaly detection network based on our vector representation presented in this section with the
behavior prediction networks to decide whether the current driving situation is potentially hazardous
and needs more accurate predictions than less crowded or dangerous situations. We have already seen
in section 6.3.1, that the LSTM models employing the convolutive power representation (LSTM SPA
1 and 3) outperform the other models in such situations particularly in lateral direction. Furthermore,
one could also imagine to let the outlier detection network guide the training process of the behavior
prediction networks. That is, we could train prediction models particularly on lane changes, the outliers
and a similar amount of “normal” samples to create a more balanced training data set. We have already
seen that the networks using semantic vectors benefit from a more focused and specific training data
set, since the models trained particularly on lane changes improved especially in lane change situations
compared to network variants trained on all samples. Finally, we could also investigate other anomaly
detection algorithms in addition to the autoencoder models shown here to get a better idea what sort of
data samples are actually outliers by evaluating how different models classify anomalies differently.

6.4 Summary

In this chapter, we showed a novel approach to encapsulate spatial information of multiple objects in a
sequence of semantic pointers of fixed vector length. We used a LSTM sequence to sequence model as
well as a simple feed-forward Spiking Neural Network to predict future vehicle positions from this repre-
sentation. For each of those models, we implemented at least one reference model using other encoding
schemes to compare their performance to. Furthermore, we compared all our models to a simple linear
predictor based on a constant velocity assumption. We evaluated our models on two different data sets,
one recorded with on-board sensors from a driving vehicle and one publicly available trajectory data set
recorded with an external camera observing a highway segment and conducted a thorough analysis.
For the trained neural networks, simple feed-forward NEF models and more sophisticated LSTM models
alike, we observe that most improvements over the linear model are achieved in y-direction. That makes
sense as linear prediction is unable to account for lane-changes or driving curves, which are mainly char-
acterized by non-linear changes in y-direction. We found that the LSTM models based on our SPA-power
representation achieve promising results on both data sets. However, for the On-board data set, this en-
coding scheme achieves its best result in crowded and potentially dangerous driving situations, without
clearly outperforming the other approaches on the whole data set (see section 6.3.1 and Fig. 6.12). Given
these finding, we investigated situations, where the SPA-power representation does outperform all other
approaches in y-direction and thereby came up with metrics characterizing such crowded situations (see
Fig. 6.13). This result did not hold that clearly on the NGSIM data set D2, since the LSTM models
achieve an almost identical performance in y-direction on this data set. On the other hand, employing
an unsupervised learning method for anomaly detection yielded a significantly higher amount of such
crowded situations within the samples classified as anomalies compared to the normal samples. Addi-
tionally, we found that when training the LSTM models only on data samples containing a lane change
performed by the target vehicle, that the model employing the SPA-power representation clearly outper-

6.4 Summary 121

forms all other approaches in y-direction when evaluated on the samples containing a lane change. These
results suggest that training the whole system on a more balanced data set containing equally many lane
change and straight driving samples could improve overall model performance.
Another interesting result of our experiments is the fact that the simple, feed-forward NEF networks show
results comparable to the more sophisticated LSTM models. For those simple models, the SPA-power
representation shows promising results comparable to the NEF model using numerical input on the On-
board data set and clearly outperforming it on the NGSIM data set (Fig. 6.18). Although the NEF models
do not clearly outperform the LSTM models (which would be surprising), it is quite remarkable that
they achieve results comparable to the more sophisticated models with a simpler network architecture,
training procedure and, partly, less information. These results make those simple models using our
proposed vector-representation as well as a numerical encoding scheme (possibly in combination with
an online learning system like the one proposed in chapter 7) potential candidates to be deployed on
dedicated neuromorphic hardware in mobile applications, as they can be efficiently implemented in a
spiking neuron substrate. This could be an interesting, power-efficient approach in future automated
vehicles.
Finally, given the results that there is not one model clearly outperforming all the others in all evaluated
situations, we aim to implement an online model meant to be trained at run time to weight the predictions
of several models, which have been trained offline, to improve over the individual predictors. We will
introduce and evaluate such a model in the next chapter.

7 A mixture-of-experts online learning system
for adaptive behavior prediction

In this chapter, we continue our work on behavior prediction from chapter 6. Although the various models
developed there show already promising results, our analysis has shown that each of the developed
models has its own strengths and weaknesses in particular driving situations or even perform differently
regarding the direction of motion (lateral or longitudinal) of the target vehicle. Furthermore, they are
intended to be trained offline and remain unchanged during deployment without any adaptation at run
time. Hence, relying on just one specific predictor would lead to sub-optimal performance in situations
where one of the other models is superior.
Therefore, we investigate a mixture-of-experts online learning model to select between several models,
which have been previously trained offline, to achieve the best possible forecast. Importantly, this model
is intended to be trained online, i.e., continuously updating its weights based on the data received at run
time. This is one option to tackle the aforementioned issues with only one prediction model that has been
trained offline before deployment. By training a model at run time, we expect improved performance
of the mixture model over the individual input predictors. We aim to implement the online learning
model to be independent of the type and number of prediction models used as input. This enables the
mixture model to either use several similar prediction models only differing in the encoding of the input
data such as the LSTM-based models in chapter 6 or completely different models types such as one
simple linear predictor and one simple single-layer neural network. One of the advantages of such an
approach is that instead of starting the model from a completely blank state, the individual predictors
used as inputs for the mixture model already learned a consistent prior during their offline training.
Furthermore, the possibility of the offline models being validated in advance and serving as a fallback
option in case the online model fails during deployment, is an additional advantage in a safety-critical
domain such as automated driving. Finally, the implementation of our approach employing the classic
delta rule as well as the possibility to use spiking neuron models allows future deployment on dedicated
neuromorphic hardware, which offers interesting possibilities regarding energy efficiency, especially in
mobile applications and automotive context. We investigate two variants of our online learning system
differing in the information the model uses to optimize its weights. In its simplest form, such a model
adjusts its weights only based on the prediction error, i.e., the difference between its own prediction and
the actual motion of the target vehicle. However, we have seen in section 6.3.1 that the performance
of the individual models heavily depend on the current driving situation. Therefore, we also investigate
online learning models, that adjust their predictions based on some sort of contextual information. We
use the findings from section 6.3.1 as a first hint regarding potential context information.
However, any online learning system making predictions about the future poses additional challenges.
For instance, the actual motion of the target vehicle and thus the error signal to update the neural weights
is unknown at prediction time, but rather becomes available while the agent continues driving. The
temporally delayed error signal potentially introduces long lags between the prediction and the update of
the corresponding weights. Therefore, we need to find a mechanism to propagate the error between the
actual future motion of the target vehicle and the model’s prediction back in time to update the weights
correctly. In this chapter, we address this issue through a temporal spreading of the error signal, i.e.,
we use the error of earlier prediction steps to update the weights of predictions further into the future.
Furthermore, we need to deal with the problem of over-fitting meaning that the model could just learn
to predict the current vehicle particularly well but when switching to another vehicle with a potentially
very different situational context and/or dynamics, the model’s performance could deteriorate due to

124 A mixture-of-experts online learning system for adaptive behavior prediction

Figure 7.1: Visualization of the network architecture of the context-free mixture-of-experts online
learning system with yellow boxes indicating the individual components of the model.
The weights of the mixture-of-experts model depend solely on the error ε between the
model’s prediction and the actual future motion of the target vehicle.

over-fitting the previous vehicle. We evaluate our online learning model on real-world driving data and
show, that the model is able to improve over the individual offline models already after being trained
with just a few vehicles. Finally, while the type of online learning approach presented here has been
shown to be successful in adaptive robot arm control (DeWolf et al., 2016), to the best of our knowledge,
our approach is the first trajectory prediction model to be trained during deployment for choosing from
several pre-trained prediction models to achieve the best possible forecast.

7.1 Mixture-of-experts online learning models

In this section, we describe the architecture and learning rules of our proposed mixture-of-experts online
learning models. Importantly, all of the mixture-of-experts models shown in this chapter are meant to be
trained online. That is, we do not pre-train them on a large corpus of data and then fix the final weights.
Instead, we run the neural network training while the system is running. We start with two variants of
the model: one adapting its weights based solely on the prediction error and a more sophisticated model,
which uses additional contextual information to adapt its neural weights.

7.1.1 A context-free mixture-of-experts online learning model

Given that we have multiple models pi for i = 1, . . . ,n predicting vehicle positions, we define the set of
prediction models as

P = {pi | i = 1, . . . ,n}. (7.1)

We construct our mixture-of-experts model in the following way: We combine the predictions of the
offline models using a simple weighted sum and we use online training to learn these weights. This core
weighting algorithm is given by

vmix,t = ∑
p∈P

Wp,tvp,t , (7.2)

where vp,t is the predicted value for time t into the future from offline model p, and Wp,t is the weight for
expert p for a prediction time of t. Note that this means that the weighting between the expert predictions
may be different depending on how far into the future we are predicting. That is, in some conditions one
expert should be weighted more highly than in other conditions, and we want to adapt this weighting
based on experience. Figure 7.1 depicts the architecture of the context-free mixture-of-experts model
variant with yellow boxes indicating the individual components of the model.

7.1 Mixture-of-experts online learning models 125

Figure 7.2: Visualization of the network architecture of the context-sensitive mixture-of-experts on-
line learning system. Yellow boxes indicate the individual components of the model,
while the solid red line depicts the connection to decode out the weights Wp,t for the in-
dividual expert predictors from the neural population encoding the context z as indicated
by the green circles in the context component. The dotted green arrow indicates that the
error signal is used to update the weights of this connection using delta rule learning.

The weights Wp,t are initialized equally over all predictors p, i.e., Wp,t = 1/Np, where Np is the number
of prediction models being combined, and then updated using online learning. While any neural network
learning algorithm could be used to do this, we adapt the classic delta learning rule, which is the basis of
all gradient-descent learning algorithms, for the sake of simplicity and ease of implementation:

∆Wp,t = κνtvp,t (vobserved,t −vmix,t)︸ ︷︷ ︸
=εt

= κνtvp,tεt , (7.3)

where κ is the learning rate and νt is a factor to scale the learning rate κ differently for each prediction
time step.

7.1.2 A context-sensitive mixture-of-experts online learning model

The above model attempts to find the best weighting of the individual prediction models based solely
on the prediction error of the mixture-of-experts model. However, we believe that the ideal weights will
crucially depend on some aspects of the current situation (i.e., the current context). That is, instead of
learning W, we can learn the function fW(z) = W, where z is some currently available sensor informa-
tion. Indeed, the context-free version shown in section 7.1.1 is equivalent to the context-sensitive models
shown here if the context is kept constant.
Now our goal is to use this context information z to generate W. While any neural network learning
algorithm could be used here, for simplicity we use a simple single hidden-layer neural network and
adapt its weights by applying the delta rule again. That is, we input the context values z into N neu-
rons (encoding), and the output of the network (decoding) will be the W values for the current context.
For this encoding and decoding, we use the principles of the NEF (Neural Engineering Framework) as
described in section 3.3. The encoding process (the input weights for the neural network) is shown in
Equation (7.4), converting z into the activity ai of the i-th neuron:

ai = G

(
∑

j
ei, jz j +βi

)
(7.4)

G is the neuron non-linearity (here we use the rate-approximation of the Leaky Integrate and Fire neuron,
although any other neuron model is likely to have similar behavior). ei, j and βi are randomly generated
to produce a uniformly distributed range of maximum firing rates and intercepts (the z value at which the
neuron starts firing), as per Eliasmith (2013). This has been shown to be a good distribution of values

126 A mixture-of-experts online learning system for adaptive behavior prediction

for a wide variety of situations, and is consistent with what is observed in mammalian brains (Eliasmith,
2013). Unlike most neural network models, since these input weights are a reasonable distribution, we
do not change ei, j and βi at any time, leaving them at their initial randomly generated values. In other
words, we only adjust the weights between the hidden layer and the output layer, and leave the other
set of weights at their initial randomly generated values. This greatly reduces the computation cost of
performing the online learning.
Given the neural activity ai generated in Equation (7.4), we now use

Wp,t = ∑
i

dp,t,iai (7.5)

to decode the W values for the current context z. As with the context-free version of the model, we
initialize the weights, i.e., here the d values such that there is an equal weighting across all the expert
predictions, i.e., Wp,t = 1/Np, where Np is the number of prediction models being combined, for all
context z. The d values achieving this equal weighting are found using least-squares minimization.
Now that we have this system for generating context-dependent weights, we can use online learning to
adjust d to change the weights W based on the accuracy of the predictions. As with the context-free
model variant, we use the delta learning rule given in Equation (7.3)

∆Wp,t = κνtvp,t (vobserved,t −vmix,t)︸ ︷︷ ︸
=εt

= κνtvp,tεt . ((7.3) revisited)

that would determine how much to adjust W given the current error between the mixture-of-experts
prediction and the observed actual position of the vehicle (i.e., the error in v). κ is the learning rate and
νt is a factor to scale the learning rate κ differently for each prediction time step. However, rather than
applying that change to W directly, we instead use that as the error signal for the delta rule applied to the
decoding network, turning an adjustment to W into an adjustment to d:

∆dp,t,i = κaiνtvp,tεt = ai∆Wp,t (7.6)

Figure 7.2 shows a schematic visualization of our model’s architecture. Yellow boxes indicate the indi-
vidual components of the model, while the solid red line depicts the connection to decode out the weights
Wp,t for the individual expert predictors from the neural population encoding the context z as indicated
by the green circles in the context component. Finally, the dotted green arrow indicates that the error
signal is used to update the weights of this connection using delta rule learning.

7.1.3 Temporal spreading of the error signal

One extremely important consideration for any predictive model updating its weights through online
learning (i.e., one where it is generating anticipated future observations) is that the error signal is only
available in the future. That is, we can only apply Equation (7.6) after the amount of time t has occurred.
This introduces a long lag into the learning process. We illustrate this issue using an example situation
showing the predictions of the individual offline models depicted in Fig. 7.3. In this example, all individ-
ual models predict the target vehicle’s motion in y-direction almost perfectly until a prediction horizon of
roughly 2.5 s when the predictions start to deviate from the actual motion. Assuming a similar situation
for a model employing an online learning approach, the weights for the current prediction 2.5 s into the
future can only be updated after 2.5 s have passed. For all prediction time-steps further into the future,
we have to wait even longer while the error between the prediction and the actual motion potentially
increases even more. In the meantime, the model is doomed to make predictions for these future time-
steps based on sub-optimal weights based on past learning updates. However, the example depicted in
Fig. 7.3 also hints, that the error at 2.5 s could already be used to update weights further into the future
as, although the error increases, the general direction of the deviation between predictions and actual
motion remains the same. In other words, we assume that if our system is currently predicting too large

7.2 Experiments and results 127

a value at time t, then it is likely also to be predicting too large a value at time t̃ > t. That is, whenever
we have an observation at time t that we compare with the prediction made t time steps ago, we can also
apply Equation (7.6) for all the larger values as well, i.e., we apply Equation (7.6) for all t̃ with t̃ > t once
the amount of time t has passed. Since this is just an estimation, we want the predictions for time steps t̃
further into the future than t be less influenced by the error at t. Hence, we exponentially scale down the
amount of adjustment of d by the difference in time t̃− t, leading to our final learning rule:

∆dp,t̃,i = κaiνtvp,t(vobserved,t −vmix,t)e−(t̃−t)/τ for all t̃ ≥ t. (7.7)

7.2 Experiments and results

In this chapter, we use the output of three different prediction models as input for our mixture-of-experts
online learning model. We use some of the models we developed and already evaluated in chapter 6 as
input to the mixture-of-experts model. These individual predictors are a simple linear prediction model
based on a constant velocity assumption and two LSTM-based neural networks, namely LSTM SPA 1 or
3 (depending on the data set) and LSTM numerical. Those are the models presented in section 6.2.2 and
evaluated in section 6.3.1. The architecture of the LSTM models, which was already depicted in Fig. 6.7,
consist of one encoder and one decoder cell each for sequence to sequence prediction. The LSTM SPA
1 and 3 models used as input to the mixture-of-experts online learning model employ the convolutive
power encoding of the input data as shown in Equation (6.1), while the LSTM numerical model simply
uses raw numerical values as input data (see also section 6.2.2).
For training the model, we simulate online deployment by presenting the LSTM models’ predictions
on the validation subsets to the system. Thereby, the individual experts perform their prediction on
previously unseen data samples. We conduct individual simulation runs for each of both data sets.
We present results from two variants of our mixture-of-experts model. Firstly, we evaluate a simplified
version, which applies Equation (7.6) directly at prediction time assuming that the error signal, which is
future data, is actually available already at prediction time. The benefit of this prior evaluation is two-
fold: on the one hand, we get an impression what benefits can be expected from using context information
over the context-free variant before employing the more sophisticated, timing-sensitive model. On the
other hand, a model having immediate access to the future error signal serves as an upper bound for the
performance to be expected from models that have to deal with temporally delayed error signals. We
present the results of this prior evaluation in section 7.2.2, whereas the evaluation of the model tackling
temporally delayed error signals is shown in section 7.2.3.
All model variants in this chapter are implemented using the neural simulator Nengo (Bekolay et al.,
2014), which is typically used for constructing large-scale biologically realistic neural models (Elia-
smith, 2013), but also allows for traditional feed-forward artificial neural networks using either spiking
or non-spiking neurons. Here, we use the rate-approximation of the Leaky Integrate and Fire neuron, al-
though we expect any other neuron model to have similar behavior. Spiking neurons are of considerable
interest for automotive applications due to the potential for reduced power consumption when deployed
on dedicated neuromorphic hardware.

7.2.1 Data and preprocessing

In this section, we describe the data we use to train and evaluate our mixture-of-experts models. We
use the same data sets already used in chapter 6 and detailed in section 6.1. Figure 7.3 depicts one
particular data sample from the On-board data set showing a lane change maneuver of the target vehicle.
The upper row shows the raw images from the ego-vehicle’s front and rear camera to get an idea of
the driving situation with the target vehicle highlighted by a red box. The middle row of plots shows the
corresponding trajectory data for that particular driving situation, i.e., the positions of the vehicles during
the past 5 s, the actual future motion of the vehicles as well as the offline model’s predictions of the target

128 A mixture-of-experts online learning system for adaptive behavior prediction

Figure 7.3: One example from the On-board data set depicting a particular driving situation as well
as the predictions made by each individual offline model used as input for our mixture-
of-experts model. The upper row shows images of the ego-vehicle’s on-board cam-
eras. The middle row shows the trajectory data where the dots indicate the position of
the vehicles and color-code the vehicle type (red=motorcycle, green=car, blue=truck,
black=ego-vehicle), the solid blue and orange line show past and future motion of the
target vehicle, the other colored lines visualize the predictions of the offline models
whereas gray lines depict the other vehicles’ motion. Finally, the lower row shows the
absolute error between each offline models’ prediction and the actual positions of the
target vehicle.

vehicle’s future motion. The lower row finally shows the error between each model’s prediction and the
target vehicle’s actual future motion for longitudinal (x) and lateral (y) direction separately.

Input to the mixture model

Independent of what type of prediction model shown in chapter 6 we use as input for the online learning
system, the output of each individual predictor is anticipated positions in x- and y-direction at 20 equidis-
tant time steps ti for i = 1, . . . ,20 for 5 s into the future, i.e. t1 = 0.25, t2 = 0.5, . . . , t20 = 5.0. Figure 7.3
shows one data sample from the On-board data set depicting the input data to the offline models (pre-
vious motion) as well as each model’s individual predictions, which are the input to the mixture model.

7.2 Experiments and results 129

In other words, the colored lines in Fig. 7.3 depicting the predictions of the linear, LSTM SPA 3 and
LSTM numerical models form the input of the mixture-of-experts online learning model. Note that these
anticipated positions are each individual model’s guesses about the actual position values used as ground
truth in chapter 6. We use these prediction values unaltered and without further preprocessing as input
for our mixture models. Furthermore, we only present vehicles from the test sets V1 and V2 to our mixture
models to avoid presenting vehicles to the system the individual predictors have already been trained on.

Contextual information used in the mixture model

In contrast to the anticipated positions predicted by each offline model we use as input to our mixture-of-
experts model as described in the previous section, here we present the information used to describe the
current driving situation, i.e., the contextual information encoded in the context population of our model.
While the context information used for the context-sensitive model variants could be described in many
different ways, we use the following three pieces of information:

• z1: the current distance from the target to the ego-vehicle if available (note that there is no ego-
vehicle the NGSIM data set. See section 6.1.2)

• z2: the current distance from the target to the nearest other car (including the ego-vehicle if avail-
able)

• z3: the number of cars currently visible within a certain distance to the target vehicle

We use the results from chapter 6 as hint, since these pieces of information showed significant alterations
depending on which prediction model performs best on the corresponding samples. To translate these
context values to a common order of magnitude, we use the training data to normalize these values and
use their z-scores.

7.2.2 Comparing timing-agnostic context-free and context-sensitive mixture
models

In this section, we evaluate a simplified version of our mixture-of-experts online learning model, which
ignores the fact that the actual vehicle motion and thus the error signal for the weight updates is not
available at prediction time. Instead, we assume that Equation (7.6) can be applied directly at prediction
time to update the weights without having to wait for the actual data to become available. Thereby, we
get an impression of the benefits that can be expected, if any, from using context information over the
context-free variant before employing the more sophisticated, timing-sensitive model. Furthermore, a
model having immediate access to the future error signal serves as an upper bound for the performance
to be expected from models that have to deal with temporally delayed error signals (see Section 7.2.3).

Experimental setup

Working with prerecorded data allows us to easily evaluate this simplified model before switching to
the more complex version employing temporal spreading of the error signal (cf. 7.1.3). The context-free
version updates its weights solely based on the prediction error, i.e., the error between the anticipation
values predicted by the model and the actual motion of the target vehicle. This context-free approach
is equivalent to the context-sensitive model if its context is kept constant. The context-sensitive model
variant as described in section 7.1.1, which we investigate here, contains 3000 neurons in the population
encoding the driving context. To limit the simulation time, we exposed only a subset of 70 vehicles from
the On-board test set V1 and 92 vehicles from NGSIM the test set V2 to the models.

130 A mixture-of-experts online learning system for adaptive behavior prediction

1.0 2.0 3.0 4.0 5.00

2

4

6

8

10

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 3
context-free mix
mix with context

1.0 2.0 3.0 4.0 5.0
time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 3
context-free mix
mix with context

(a)

1.0 2.0 3.0 4.0 5.00

2

4

6

8

10

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 3
context-free mix
mix with context

1.0 2.0 3.0 4.0 5.0
time ahead to predict (s)

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 3
context-free mix
mix with context

(b)

1.0 2.0 3.0 4.0 5.00

2

4

6

8

10

12

14

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
context-free mix
mix with context

1.0 2.0 3.0 4.0 5.0
time ahead to predict (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
context-free mix
mix with context

(c)

1.0 2.0 3.0 4.0 5.00

2

4

6

8

10

12

14

RM
SE
 X
 (m

)

linear
LSTM numerical
LSTM SPA 1
context-free mix
mix with context

1.0 2.0 3.0 4.0 5.0
time ahead to predict (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RM
SE
 Y
 (m

)

linear
LSTM numerical
LSTM SPA 1
context-free mix
mix with context

(d)

Figure 7.4: Visualization of the RMSE of the timing-agnostic variants of our mixture-of-experts
model, both context-free and context-sensitive, on both data sets. (a) shows the per-
formance at the start of the training process on the On-board data set. (c) shows the
performance at the start of the training process on the NGSIM data set. Similarly, (b)
shows the models’ performance on the first 70 vehicles of the on-board data set, whereas
Fig. (d) show the models’ performance on the first 92 vehicles of the NGSIM data set.

Results

Figure 7.4 shows the results of the simplified, timing-agnostic variants of the context-free and context-
sensitive mixture-of-experts online learning models on both data sets. Figure 7.4a and 7.4b show the
models’ performance on the On-board data set at the start of training (Fig. 7.4a) and for the complete
set of 70 evaluation vehicles from V1 (Fig. 7.4b), whereas Fig. 7.4c and Fig. 7.4d similarly depict the
models’ performance on the NGSIM data set at the start of training and for all 92 evaluation vehicles
respectively. We observe in Fig. 7.4a and Fig. 7.4c that both, the context-free and context-sensitive
mixture models perform poorly at the start of training (which makes sense due to the randomly initialized
weights), but improve significantly and consistently on both data sets (Fig. 7.4b and Fig. 7.4d) the more
data they receive. The context-free version yields mild improvements over all individual predictors in x-
direction without improving over the best individual model in y-direction. The context-sensitive variant
outperforms all other models (including the context-free version) in x-direction while being on par with
the best individual predictors in y-direction.

7.2.3 Evaluation of the context-sensitive model variant with temporal spreading

Having seen that the simplified mixture model using contextual information clearly outperformed the
context-free version, we now proceed to the evaluation of the context-sensitive mixture-of-experts model
variant having to deal with temporally delayed error signals employing our temporal spreading approach.
We describe the experimental setup, analyze several adjustable parameters of the model and finally eval-
uate the performance of the model given the chosen parameter setup.

Experimental setup

To evaluate feasibility and performance of our mixture-of-experts model having to deal with temporally
delayed error signals, we conducted our experiments for both, the parameter analysis as well as the ac-
tual performance evaluation, in the following way: after randomly initializing the weights of the mixture
model, we present the data of 5 randomly chosen vehicles to the model to make sure the weights depart
reasonably from their initial values. After this ramp-up phase, during which we conduct no evaluation,

7.2 Experiments and results 131

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

−8

−7

−6

−5

−4

−3

−2

−1

Lo
ng
itu

di
na
l
os
iti
on
 (m

)

linear rmse=0.346
s a rmse=0.600
numerical rmse=0.388
mixture rmse=0.470
actual

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

−0.2

0.0

0.2

0.4

0.6

La
te
ra
l
os
iti
on
 (m

)

linear rmse=0.095
s a rmse=0.212
numerical rmse=0.087
mixture rmse=0.090
actual

1 2 3 4 5
Prediction time (s)

0

1

2

3

4

5

6

7

8

Lo
ng
itu

di
na
l R

M
SE
 (m

)

linear
s a
numerical
mix

1 2 3 4 5
Prediction time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
te
ra
l R

M
SE
 (m

)

linear
s a
numerical
mix

(a) Predictions for the first training vehicle 0.75 s into the future

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

−50

−40

−30

−20

−10

0

Lo
ng
itu

di
na
l
os
iti
on
 (m

)

linear rmse=7.013
s a rmse=5.730
numerical rmse=6.135
mixture rmse=6.486
actual

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

−1

0

1

2

3

4

La
te
ra
l
os
iti
on
 (m

)

linear rmse=1.583
s a rmse=1.907
numerical rmse=1.219
mixture rmse=1.242
actual

1 2 3 4 5
Prediction time (s)

0

1

2

3

4

5

6

7

8

Lo
ng
itu

di
na
l R

M
SE
 (m

)

linear
s a
numerical
mix

1 2 3 4 5
Prediction time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
te
ra
l R

M
SE
 (m

)

linear
s a
numerical
mix

(b) Predictions for the first training vehicle 4.75 s into the future

0 5 10 15 20 25
Time (s)

−34

−32

−30

−28

−26

−24

−22

Lo
ng
itu

di
na
l
os
iti
on
 (m

)

linear rmse=2.535
s a rmse=2.435
numerical rmse=2.413
mixture rmse=2.063
actual

0 5 10 15 20 25
Time (s)

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

La
te
ra
l
os
iti
on
 (m

)

linear rmse=0.449
s a rmse=0.525
numerical rmse=0.264
mixture rmse=0.266
actual

1 2 3 4 5
Prediction time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ng
itu

di
na
l R

M
SE
 (m

)

linear
s a
numerical
mix

1 2 3 4 5
Prediction time (s)

0.0

0.1

0.2

0.3

0.4

0.5

La
te
ra
l R

M
SE
 (m

)

linear
s a
numerical
mix

(c) Predictions for the fifth training vehicle 4.75 s into the future

Figure 7.5: Visualization of the mixture-of-experts model’s performance on vehicles it is presented
during the ramp up phase. The upper row in each plot shows the predictions of all input
predictors, the mixture model as well as the actual motion of the target vehicle for one
particular prediction time step. The lower row illustrates the RMSE of the models on
all prediction time steps with that step shown in the upper row highlighted by a dotted
vertical line.

the model is presented with 30 more randomly chosen vehicles to be evaluated on. During the presenta-
tion of these 30 test vehicles, the mixture model continues to adapt its weights depending on the current

132 A mixture-of-experts online learning system for adaptive behavior prediction

(a) RMSE performance for varying learning rates for a fixed number of 50 neurons in the context popula-
tion

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

1

2

3

4

5

RM
SE

 X
 (m

)

approach
linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RM
SE

 Y
 (m

)

approach
linear
numerical
spa
mix_context

(b) Results of an experiment with too low of a learning rate for the mixture models resulting in high errors

Figure 7.6: Visualization of the RMSE performance of our context-sensitive mixture-of-experts
model using temporal spreading on 30 test vehicles after being trained on 5 vehicles
for (a) different learning rates for all prediction horizons and (b) the result of one evalu-
ation run with too low of a learning rate.

error and context.
Figure 7.5 shows the performance of the mixture model with 50 neurons in the context population for
selected vehicles during the 5-vehicle ramp up phase. The upper row in each plot shows the predictions of
all input predictors, the mixture model as well as the actual motion of the target vehicle for one particular
prediction time step. For instance, the upper row in Fig. 7.5a illustrates the predictions of all models for
0.75 s into the future over the complete time the target vehicle is visible. The lower row in each plot
illustrates the RMSE of the models for all prediction time steps with the particular time step shown in
the upper row highlighted by a dotted vertical line. Figures 7.5a and 7.5b show the prediction time steps
0.75 s and 4.75 s into the future respectively of the first vehicle during the ramp-up phase while Fig. 7.5c
shows the prediction time step 4.75 s into the future for the last vehicle of the ramp-up phase. We observe
that the evenly distributed weights are a reasonable initialization for further adaptation by our model,
since already for the first vehicle presented to the model achieves a decent prediction accuracy. Reaching
the fifth training vehicle, the mixture model already achieves improvements for prediction time-steps
further into the future in x-direction and equal to the best performing input predictor in y-direction.

7.2 Experiments and results 133

(a) RMSE performance for varying learning rates for a fixed number of 100 neurons in
the context population

50 100 500 1000 2000
number of neurons

0

1

2

3

4

5

RM
SE

 X
 (m

)

50 100 500 1000 2000
number of neurons

0.2

0.4

0.6

0.8

1.0

RM
SE

 Y
 (m

)

pred time (s)
5.0
4.75
4.5
4.25
4.0
3.75
3.5
3.25
3.0
2.75
2.5
2.25
2.0
1.75
1.5
1.25
1.0
0.75
0.5
0.25

(b) RMSE performance for varying number of neurons in the context population for a
fixed learning rate of κ = 10−15

Figure 7.7: Visualization of the RMSE performance of our context-sensitive mixture-of-experts
model using temporal spreading on 30 test vehicles after being trained on 5 vehicles
for certain hyper-parameter variations.

Parameter analysis

To find the best possible variant of our mixture-of-experts model, we first analyzed the adjustable param-
eters of the model. Figure 7.6 shows a visualization of the RMSE performance of our context-sensitive
mixture-of-experts model using temporal spreading on 30 test vehicles after being trained on 5 vehicles.
Figure 7.6a visualizes the RMSE performance of our mixture-model with 50 neurons in the context pop-
ulation for different values of the learning rate κ with scaling factors νt = 1 for all prediction time steps t.
In this evaluation, a learning rate of 10−14 in x-direction and 10−12 show the best performance. However,
Fig. 7.6b shows the results of a model variant with 2000 neurons in the context population employing
these learning rates for a different set of vehicles. We observe that the model performs well for earlier
prediction horizons but fails to make accurate predictions further into the future with large errors and
even complete failure due to overfitting.
Therefore, we focus on scaling factors νt decreasing linearly from 1 to 0.001 over the 20 prediction
times with 1 corresponding to the earliest prediction step to ensure low enough learning rates prediction
time steps further into the future. Figure 7.7 shows a visualization of the RMSE performance of our

134 A mixture-of-experts online learning system for adaptive behavior prediction

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

1

2

3

4

5

6

7

RM
SE

 X
 (m

)
approach

linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

RM
SE

 Y
 (m

)

approach
linear
numerical
spa
mix_context

Figure 7.8: Visualization of the RMSE performance of all individual expert predictors as well as
our context-sensitive and temporal spreading mixture-of-experts model with 2000 neu-
rons in the context population, evaluated on 30 vehicles after the mixture model has
been trained on 5 vehicles in advance to make the weights depart reasonably from their
random initialization.

mixture-model with 100 neurons in the context population with for different values of the learning rate
κ . Figure 7.7a shows an analysis similar to Fig. 7.6a but using the linearly decreasing scaling factors. We
observe that the scaling the learning rates down stabilizes the model compared to the even scaling factors.
As already shown in Fig. 7.6b, we found that a rather low learning rate κ is necessary as higher learning
rates tend to let the model overfit the current vehicle, which leads to large errors and even complete
failure when switching from one vehicle to the next. We observe that issue in particular in x-direction
when already a learning rate of κ = 10−13 leads to large errors and even failure. Given the results shown
in Fig. 7.6b, we use a learning rate of κ = 10−15. As the evaluation shown in Fig. 7.7 included only
30 test vehicles, we chose this rather conservative learning rate to make sure our model does not overfit
when using a different set of vehicles.
Furthermore, we investigated the influence of the number of neurons in the context ensemble on the
model’s performance employing the aforementioned values for the learning rate κ and scaling factors νt .
Figure 7.7b shows the RMSE of the model for varying numbers of neurons in the context population. In
y-direction, the influence of the number of neurons is nearly invisible, whereas in x-direction increasing
the number of neurons results in lower RMSE values. Thus, we focus our further investigations on
models with 2000 neurons in the context population.

Results of the mixture-model using temporal spreading

Figure 7.8 shows the RMSE performance of our context-sensitive mixture-of-experts model employing
temporal spreading with 2000 neurons on the 30 test vehicles in comparison to the individual input pre-
dictors after the ramp-up phase of 5 vehicles. We observe that our mixture-of-experts model improves
over the individual models on average over all 30 test vehicles in both directions without clearly outper-
forming them.
To further investigate these results, we evaluate the model’s performance on individual vehicles. Fig-
ure 7.9 shows the RMSE performance of our mixture-of-experts model in comparison to the individual
input predictors on a selection of 8 individual test vehicles. For most of the examples, we observe re-
sults similar to the overall, mean performance shown in Fig. 7.8 with the mixture model improving over
all individual predictors in x-direction and being at least comparable to the best individual predictor in
y-direction (cf. Fig. 7.9a, 7.9c, 7.9d, 7.9e). However, there are also vehicles such as the one shown in
Fig. 7.9b, where we observe improvements of the mixture model over the individual predictors in y-
direction with no improvements shown in x-direction. For the vehicle shown in Fig. 7.9f, the mixture

7.3 Summary 135

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

2

4

6

8

10

RM
SE

 X
 (m

)

approach
linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

 Y
 (m

)

approach
linear
numerical
spa
mix_context

(a)

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

2

4

6

8

10

RM
SE

 X
 (m

)

approach
linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

 Y
 (m

)

approach
linear
numerical
spa
mix_context

(b)

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

2

4

6

8

10

RM
SE

 X
 (m

)

approach
linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

 Y
 (m

)

approach
linear
numerical
spa
mix_context

(c)

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

2

4

6

8

10

RM
SE

 X
 (m

)

approach
linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

 Y
 (m

)

approach
linear
numerical
spa
mix_context

(d)

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

2

4

6

8

10

RM
SE

 X
 (m

)

approach
linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

 Y
 (m

)

approach
linear
numerical
spa
mix_context

(e)

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

2

4

6

8

10
RM

SE
 X

 (m
)

approach
linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

 Y
 (m

)

approach
linear
numerical
spa
mix_context

(f)

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

2

4

6

8

10

RM
SE

 X
 (m

)

approach
linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

 Y
 (m

)

approach
linear
numerical
spa
mix_context

(g)

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0

2

4

6

8

10

RM
SE

 X
 (m

)

approach
linear
numerical
spa
mix_context

1.0 2.0 3.0 4.0 5.0
prediction time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

RM
SE

 Y
 (m

)
approach

linear
numerical
spa
mix_context

(h)

Figure 7.9: Visualization of the RMSE of our mixture-of-experts model on 6 different test vehicles
in comparison to the input predictors’ performance.

model does not yield any improvements over the input models in either direction. For that particular vehi-
cle however, we also observe for both directions that one of the offline models achieves a remarkably low
RMSE performance, namely the linear predictor in x-direction and the LSTM models in y-direction, leav-
ing little room for improvement. However, it would be desirable that our online learning model detects
such situations and at least learns to approximate the best available individual offline model. Figure 7.8
shows the RMSE performance of our context-sensitive and temporal spreading mixture-of-experts model
with 2000 neurons on the 30 test vehicles in comparison to the individual input predictors.

7.3 Summary

In this chapter, we have extended our work on vehicle trajectory prediction presented in chapter 6. We
have introduced a novel mixture-of-experts online learning model implemented in a spiking neuron sub-
strate employing a simple delta learning rule to learn to weight different predictors, which have been
previously trained offline, at run time. We presented two variants of this model: one adapting its neural
weights simply based on the error between the model’s predictions and the target vehicle’s actual motion

136 A mixture-of-experts online learning system for adaptive behavior prediction

and a more advanced version anticipating future motion using contextual information in addition to the
error signal. An evaluation of a simplified model variant having access to the error signal, which in a
realistic scenario lies in the future, at prediction time showed that the model using contextual informa-
tion clearly outperforms the context-free version. Additionally, this simplified model served as an upper
bound for the improvement that can be expected from the model having to deal with temporally delayed
error signals. To tackle this issue of delayed error signals, we proposed an approach to spread the error
signal of earlier prediction times to later time steps. Our evaluation of this advanced model on real world
driving data showed that our approach is able to achieve improvements over the individual offline models
already after being presented with only a few example vehicles. However, the performance gain is not
as significant as expected from the experiments with the simplified model variant. Therefore, there is
room for improvement for future work by, for instance, evaluating how much the model at hand can be
further improved by increasing the number of neurons in the context population. Furthermore, we only
investigated one option of contextual information to be used for the mixture model to make predictions,
which is in line with the findings of chapter 6. However, other information such as the vector represen-
tation of the driving scene itself or another more detailed description could be used as context for the
mixture model. Additionally, we only trained our mixture model on one vehicle at a time. To allow ac-
tual deployment in a driving vehicle, we aim to investigate an advanced version of our approach, which
spawns multiple model instantiations to be trained on several vehicles in parallel using shared weights.
Finally, we have not investigated what efficiency benefits could be achieved by deploying our model on
specialized neuromorphic hardware.

8 Closed-loop neuromorphic control systems

In this chapter, we present a first step towards a neuromorphic control architecture, that can be used to
implement generic control algorithms in the language of SNNs (Spiking Neural Networks). This offers
the advantage that the overall task can be divided into several sub-networks. We develop two sample
instantiations of neurally-inspired control algorithms, namely for mobile robot manipulation and vehicle
trajectory control based on reinforcement learning. Here, we partly depart from the application of auto-
mated driving using real-world data, which is an intentional choice. As mentioned earlier, control of an
automated vehicle is an extremely safety-critical task. Furthermore, current vehicle hardware architec-
tures are designed neither to include neuromorphic hardware nor to efficiently process SNNs. Therefore,
we demonstrate the general feasibility of this neuromorphic control architecture on the task of bringing
order in a sequence of unordered visual stimuli detected using a neuromorphic vision sensor, the DVS
(section 8.1). The second demonstration scenario is closer to automotive context, presenting a system
employing reinforcement learning for short-term vehicle trajectory planning evaluated in the simulated
environment of TORCS (The Open Racing Car Simulator) (Wymann et al., 2014). Both applications
demonstrate certain aspects of the control architecture: the mobile manipulation tasks shows how the
principles of neural engineering can be used to manually program non-trivial tasks in a spiking neural
substrate. This can be useful, to either bootstrap learning to improve task performance without having
to start the process from an initial blank state or to complement learning networks with manually de-
signed networks involving human expert knowledge. The second task presents such a combination in
an instantiation of the neuromorphic control architecture, with a trajectory selection module employing
reinforcement learning while all other modules are manually designed for simplicity. This also allows to
train and validate learning systems solving certain sub-tasks decoupled from the rest of the system.

8.1 Sensorimotor adaptation for mobile robotic manipulation

In this section, we propose a novel neural controller for a mobile manipulator platform that can adapt its
control policy for grasping different objects within a visual scene. Although the structure of the task is
invariant, the scene changes. Our algorithm is not dedicated to solving a single scene, rather is able to
robustly accommodate changes in it without any prior knowledge about the changes. Such behavior is a
fundamental aspect in sensorimotor control. We propose a system which uses a spiking neural substrate
for representation and computation, that allows the system to approximate sensorimotor correlations
for both basic and complex motion and grasping scenarios. Constructing such a system entirely with
simulated neurons gives us two unique advantages. First, the resulting system can be run on energy-
efficient neuromorphic hardware. Second, we can use the network that we design here as the starting
point for learning from experience (as opposed to traditional neural network solutions, which learn from
a blank state). Such a processing substrate supports learning and allows the system to adapt during
operation to unforeseen changes in the task. However, in order to generate an initial functioning neural
network model that could be used to bootstrap learning, we need a way to program such a network using
something similar to traditional engineering programming methods. The proposed system describes a
unified design approach that links low-level sensorimotor data representation with high-level reasoning
using a generic computational substrate.

138 Closed-loop neuromorphic control systems

Figure 8.1: Robotic platform

8.1.1 Neuromorphic system architecture

Hardware setup

The mobile manipulator used in this project is comprised of a custom developed omni-directional mo-
bile platform, depicted in Figure 8.1, with embedded low-level motor control and elementary sensory
acquisition. The on-board ARM7 micro-controller receives desired motion commands and continuously
adapts three PID (Proportional-Integral-Derivative) motor control signals to achieve desired velocities.
The robot’s integrated sensors include wheel encoders for estimating odometry, a 9 degrees of freedom
IMU (Inertial Measurement Unit), a bump-sensor ring, which triggers binary contact switches upon con-
tact with objects in the environment, and three silicon retinas providing visual sensor input. Two of
these cameras are fixed on the mobile base, while one retina is attached to the end-effector to monitor
the workspace of the robotic arm. The silicon retinas are eDVSs (embedded Dynamic Vision Sensors)
and provide discrete events as response to temporal contrast. All 128× 128 pixels of the DVS oper-
ate asynchronously and illumination changes are signaled within a few microseconds after occurrence
(without having to wait for a frame to send information). Such information is communicated through
spikes, representing a quantized change of log intensity at a particular location. The mobile platform is
equipped with a 6-axis robotic arm with a working space between 10 cm and 41 cm. The robotic arm
is composed of a set of links connected together by revolute joints and has a lifting weight force up to
800 g. The mobile platform contains an on-board battery of 12 V @ 30 Ah; thereby providing a total of
360 W, which allows autonomous operation for well above 5 h.

Software setup

The overall software architecture is based on a modular design allowing the extension of the current
sensorimotor capabilities of the robotic platform by adding more sensors and actuators. The software
architecture is comprised of an embedded sensorimotor platform running on-board the robot and a neu-
rocomputing platform suitable to run on various computing backends like CPU, GPU and NPU (Neuro-

8.1 Sensorimotor adaptation for mobile robotic manipulation 139

Figure 8.2: Generic architecture: Embedded Robotic Platform and Neurocomputing Platform

morphic Processing Unit), as shown in Figure 8.2. The embedded platform is responsible for the low-
level sensory perception, low-level motor control, and the bi-directional communication (i.e., outgoing
data streaming and incoming commands) with the neurocomputing platform. Decoupling low-level sen-
sorimotor control from the high level behavior, the neurocomputing platform offers a generic interface to
implement neurocontrol algorithms. This is achieved by separating the representation of the sensorimo-
tor streams, the transformation to be applied on these streams and the actual dynamics of the algorithm.
Using such a decoupling and a high-level description of the task, the neurocomputing platform acts as
a neural compiler. Such a neural compiler is able to encode real-world sensorimotor streams in spiking
activity over populations of neurons. This representation is highly informative and can support efficient
computation and learning needed in closed-loop robotic applications, where data uncertainty, noise and
unstructured environments yield adaptive behavior. Supporting intrinsically parallelizable processing
mechanisms (i.e., neural networks) the neurocomputing platform can accelerate computation by natively
mapping the neural controller on parallel computing hardware.

Interface infrastructure

The interface between the embedded platform and the neurocomputing platform is designed to abstract
the elementary data acquisition and control. It encapsulates it in spiking neural activity of neural popula-
tions that represent sensory data or generate motor commands as provided by Nengo. Such an interface
allows the neurocomputing platform to natively operate on either real-valued encodings of the sensory
data and motor commands or their spike based representations.

8.1.2 Neural algorithm development

Our overall goal is to develop robotic control systems that are programmable and, at the same time,
implemented as neural networks. We want them to be programmable so that we can leverage expert

140 Closed-loop neuromorphic control systems

y

y = f (x)

x

w

z = g(w)

z

m

m = h(y,z)

m = h(f (x),g(w))

(a) Combined network.

x

w

m

m = h(f (x),g(w))

(b) Direct network.

Figure 8.3: Schematic visualization of two neural networks computing a complex function m =
h(f (x),g(w)): (a) shows a combined network computing m = h(f (x),g(w)) while the
network in (b) computes the function directly.

knowledge about the steps required to perform a task. We want them to be implemented as neural
networks partly so that we can make use of energy-efficient neuromorphic hardware, but mostly because
neural networks allow for gradual improvement of task performance via learning. However, neural
networks on their own generally start with zero knowledge (random connection weights) and can often
take a long time to learn, or completely fail to learn complex tasks. What we thus need is a method for
taking a complex algorithm (i.e., the program we want to implement) and breaking it down into smaller
components. Each of those components can then be implemented in a neural network. These individual
neural networks can then be combined into one large neural network that can perform the entire task.
This final network can then be implemented in neuromorphic hardware, and it could also be used as the
starting point for further learning. Crucially, it should be noted that we are not trying to implement a
perfect version of a task. Rather, we want to program a somewhat competent, initial version of a task
that could then be further refined using a variety of neural network learning algorithms. In particular,
Duan et al. (2016) provide a comprehensive survey of Deep Reinforcement Learning algorithms that are
suitable for robotic control learning. Most of these algorithms are based around adjusting the connection
weights of a neural network in order to improve performance on a task, based on occasional “positive”
and “negative” reward values. Our long-term research goal is to apply these learning systems to the
programmed neural networks that we describe in this section.

Network composition In order to build larger systems with complex algorithms, we can combine
multiple neural networks together. For example, Figure 8.3a shows a system where we not only have
y = f (x), but we also have z = g(w), and our final output is a function of the outputs of both of the
other two networks, m = h(y,z). By creating networks to compute these intermediate functions and then
combining them together, we can implement complex computations. One crucial question, however, is
what advantage do we get by breaking this complex function down into smaller, simpler functions. After
all, it would have been possible to just make one single network that directly approximates the desired
function. The primary reason not to combine functions together is that of scaling. As algorithms become
more complex, it becomes harder and harder for neural networks to approximate them. The traditional
solutions are to either increase the number of neurons in the middle layer, or to add more layers. Both

8.1 Sensorimotor adaptation for mobile robotic manipulation 141

of these approaches make it harder for the learning algorithms to find the connection weights that best
approximate the function, and make the network require more neurons, and thus more computational
resources are needed. Importantly, one can think of Figure 8.3a as the result of starting with Figure 8.3b,
adding in more hidden layers, and adjusting the connectivity. In other words, by building a complex net-
work out of smaller networks, we are imposing structure on the network. We are specifically indicating
that y and z are useful intermediate results that the network should find as an intermediate step before
computing m. If we, as programmers, are correct in our decisions about this intermediate structure, then
we can greatly simplify the process of creating these networks.
Given these tools, we can use Nengo to automatically construct large neural networks for us. In order to
do this, we have to take our desired algorithm and break it into small parts, each of which is a function
computed on an input vector or a differential equation.

8.1.3 Neural task implementation

Even the simplest behaviors are exploiting relations (i.e., functions) between sensory streams and motor
commands. In order to design a neural controller able to adaptively switch control policies, it is natu-
ral to extract such functions in a reliable way, given the variability and uncertainty in the sensorimotor
streams. The relatively complex and nonlinear interactions among the sensors on the robot and its ac-
tuators, makes the derivation of analytical forms of such functions hard. Alleviating the need for such
precise and task-dependent modeling, neural networks are able to approximate such functions just from
observations of the available sensorimotor streams. Moreover, using learning mechanisms, such systems
can ultimately autonomously extract such functions from the data. In general, adaptive behavior is re-
garded as autonomous when the actions performed by the agent result from the interaction between its
internal dynamics and the environment. Following such a perspective, our system is able to incrementally
build up complex behaviors by superimposing more simple, basic behaviors.
In the current instantiation of our framework, we want to solve a non-trivial mobile manipulation task.
Using our mobile platform, the task is to manipulate objects with LED stimuli blinking at different
frequencies to bring them in order. More precisely, the task can be seen as a grasp and sort task, in which
the robot will select a certain control policy depending on the current sensory streams (mainly visual
input) to find the misplaced stimulus and place it in the correct location. Action selection is performed
using a model of a biologically plausible neural circuit, namely the Basal Ganglia. The Basal Ganglia,
according to T. C. Stewart et al. (2010), is an action selector that chooses whatever action has the best
“salience” or “goodness”. Selection is done on the basis of a context dependent utility signal for each
possible action. Actions that are inappropriate for the current context may have low utility, and the task
of the Basal Ganglia is to select the action that currently has the highest utility value. The Basal Ganglia
will choose between the four possible behavior stacks: Grab, Hold And Move Side, Put Down or Finish.
We design our control network by defining a set of intermediate-level networks, namely Grab, Hold And
Move Side, Put Down and Finish that are composed of various different low-level behaviors, and then we
create a high-level network whose outputs activate and deactivate the low-level networks. To accomplish
this, each of the low-level networks will have an input a which indicates its level of activation. If a is 0
then the output from that network should be 0, and if a is 1 then it should perform its basic activity. It
should be noted that this sort of control system design is strongly reminiscent of the classic subsumption
architecture (Brooks, 1986). For each of these behaviors, we used Nengo to take the functions provided,
generate input and output training data, use that data to generate individual neural networks.

Perception and motor-control: low-level reflex behaviors

Orient Left/Right using all cameras This behavior uses the x-position location of the target in all
three camera views to control the rotation of the robot. If the object is on the left, it turns left, and if it
is on the right, it turns right. This should cause the robot to turn to face the object. If it can not see the
object, it does nothing. If the object can not be seen by a particular camera, it does not contribute.

142 Closed-loop neuromorphic control systems

(a) (b)
Figure 8.4: Schematic visualization of two sub-networks of our model with sets of white circles

indicating neural populations while boxes depict sub-networks. (a) shows the Out of
Order network, which detects if one frequency does not fit the assumed order as target
and keeps this object’s information in a memory. (b) illustrates the Perform Grasping
Action network, which finds an object and grabs it.

Orient Left/Right Using Arm Camera Only This behavior is similar to the previous one, but only
uses the arm camera. This is meant to be used when the arm camera has a good view of the target,
allowing for a more fine-grained close-up control.

Move Forward/Backward to Grasping Distance Here, we use the binocular disparity to the
object to control whether we should move forward or backward. This behavior will output 0 if the
object is not mostly in front of the robot (as computed by averaging the x positions in the left and right
camera). If it is in front of the robot, then we move forward or backward to achieve the desired disparity
(hard-coded to be 0.8).

Move arm to grasping position This behavior simply moves the arm from its resting position to a
position suitable for grasping.

Move Backwards This simply moves the robot base backwards.

Close grip This simply closes the gripper.

Move sideways This behavior moves the robot base sideways towards a goal position and rotates the
base to keep the goal position in the middle of the field of view of the robot. We make use of the target
positions of the neighboring objects (cf. Out of Order Network), where the middle between them is the
goal position of this behavior.

Move arm to put-down position This behavior simply moves the arm from its holding position to
a position suitable for putting down the object again.

Reasoning: higher-level, cognitive behaviors

Out of Order Network This network computes the object to manipulate and serves as basis for all
following behaviors built on top of it. Assuming the objects’ blinking frequencies are given in descending

8.1 Sensorimotor adaptation for mobile robotic manipulation 143

order, this network detects if one frequency does not fit the assumed order, indicates the corresponding
object as target and keeps this object’s information in a memory. Furthermore, the network detects those
frequencies, which should be the neighbors of our detected target if in correct order and keeps their
information in a memory as well. Figure 8.4a gives a schematic visualization of the network and its
individual components. The x-values ensemble encodes x-positions of stimuli in DVS-image, the diff
ensemble encodes pairwise differences between x-positions, the negative-min ensemble indicates if the
minimal difference is negative, odd encodes the frequency, which is out of order (inhibited by negative
min when all differences are positive), the evidence networks integrate evidence for the target object and
the neighbor frequencies if in correct order. Figure 8.5a shows an example of actual DVS input data
from the embedded tracking algorithm as well as the decoded output of the network’s sub-components
activity: during the first 5 s the stimuli are in correct descending order from left to right in the DVS-image
(first plot in the left column of Fig. 8.5a), so the minimum pairwise difference is non-negative (second
and third plots in the left column of Fig. 8.5a). In the interval 5 s to 15 s, the 250 Hz stimulus is put
between the 150 Hz and 200 Hz stimuli, so now the sequence is out of order and the 250 Hz frequency
is detected by the odd ensemble (last row in the left column of Fig. 8.5a) while the evidence networks
integrate accordingly (second to last row in the right column of Fig. 8.5a). Starting from around 15 s the
250 Hz and 350 Hz stimuli are interchanged and the network’s outputs change accordingly (left column
of Fig. 8.5a). However, the evidence networks - as desired - still keep the information about the old target
until a forget mechanism (first row of the right column in Fig. 8.5a) is triggered in the interval 20 s to
25 s allowing the evidence networks to recover for new input (right column of Fig. 8.5a).

Perform Grasping Action This is a high-level behavior that uses the low-level behaviors. The idea
here is to find the object. If the robot is unable to see it in both cameras, then it backs up until it can
and moves forward and backward until the robot is at the right distance. If the robot can see the object
with the arm camera, then it uses the arm camera for orientation, otherwise it uses all three cameras.
Also, if the robot is unable to detect the object with the arm camera, then it backs up. Note that the
MoveBack behavior and the Orientation behaviors both move the robot forward and backward, so when
they are both active the robot will end up achieving a position farther away from the object than when
just Orientation behavior is active (the motor commands are summed). This positions the robot such
that it can move forward and grab the object. Finally, if the robot is at the correct distance from the
object (as measured by binocular disparity), and it is right in front of it, then it closes the gripper. This
combination of actions serves to successfully grab the object. Figure 8.4b gives a schematic visualization
of this network. The TargetInfo ensemble encodes sensory information (x- and y-position in the image,
as well as radius and track-certainty for each DVS) of the target object (coming from the evidence sub-
network in the out of order network), which serves as input for the low-level behaviors. The has-grabbed
ensemble keeps the information once the object was grabbed in memory to indicate this task finished
successfully. Figure 8.5b shows the activation levels of the high- and low-level behaviors (first two rows
of Fig. 8.5b) as well as the sensory information the behaviors make use of, namely tracking certainty and
disparity and x-position of the target object in the arm retina (last two rows in Fig. 8.5b).

Hold Object and Move To Goal Position This behavior combines holding an object by keeping
the gripper closed while moving to the goal position at the same time. Here, we make use of the stored
information about the target object‘s neighbors to calculate the goal position. Therefore, we use the
mean value of the lateral positions of the left neighbor in the left base camera and the right neighbor
in the right base camera as an estimation of the middle between the neighbor objects, which is where
we want to place our target object. This value is used to control sideways and rotation motion of the
base to navigate the robot to the correct position for putting down the target object (see Fig. 8.7a in the
interval from 28 s to 37 s). Figure 8.6a gives a schematic visualization of this network. The Left/Right
TargetInfo ensembles encode sensory information (x- and y-position in the image, as well as radius and
track-certainty for each DVS) of the neighbor objects (coming from the left/right evidence networks in

144 Closed-loop neuromorphic control systems

−1.0

−0.5

0.0

0.5

1.0
no

rm
al
ize

d
po

sit
io
n

a) x-positions of stimuli in DVS image

400 Hz
350 Hz
250 Hz
200 Hz
150 Hz 0.00

0.25

0.50

0.75

1.00

ac
tiv

at
io
n
le
ve
l

e) forget-node for evidence networks

−0.2

0.0

0.2

0.4

0.6

po
sit
io
n
di
ffe

re
nc
e

b) pairwise difference of x-positions
diff(350Hz ,400 Hz)
diff(250Hz ,350 Hz)
diff(200Hz ,250 Hz)
diff(150Hz ,200 Hz)

0.00

0.25

0.50

0.75

1.00

ac
tiv

at
io
n
le
ve
l

f) evidence for target object
400 Hz
350 Hz
250 Hz
200 Hz
150 Hz

0.00

0.25

0.50

0.75

1.00

ac
tiv

at
io
n
le
ve
l

c) negative minimum ensemble

0.00

0.25

0.50

0.75

1.00

ac
tiv

at
io
n
le
ve
l

g) evidence for left neighbour object
400 Hz
350 Hz
250 Hz
200 Hz
150 Hz

0 5 10 15 20 25 30
time (s)

0.0

0.2

0.4

0.6

ac
tiv

at
io
n
le
ve
l

d) most odd object based on pairwise difference
400 Hz
350 Hz
250 Hz
200 Hz
150 Hz

0 5 10 15 20 25 30
time (s)

0.00

0.25

0.50

0.75

1.00

1.25
ac
tiv

at
io
n
le
ve
l

h) evidence for right neighbour object
400 Hz
350 Hz
250 Hz
200 Hz
150 Hz

(a) Decoded output of the Out of Order network’s neural components based on DVS input data
from embedded tracking

−1.0

10.5

0.0

0.5

1.0

ac
tiv

at
io

n
le

ve
l

Activation levels of high-level behaviours and gripper-state

grab
hold_and_side
put_down
finish
has_grabbed

0.00

0.25

0.50

0.75

1.00

ac
tiv

at
io

n
le

ve
l

Activation levels of low-level behaviours
orientLR
orientFB
arm_orientLR

move_back
grip
move_side

0.0

0.2

0.4

0.6

0.8

1.0

ce
rta

in
ty

 le
ve

l

Certainties of target object
left DVS
right DVS
arm DVS

0 5 10 15 20 25 30 35
time (s)

−0.50

−0.25

0.00

0.25

0.50

no
rm

al
i0e

d
po

sit
io

n

x-positions of target object

left DVS
right DVS
arm DVS

(b) Decoded output of the Grab network’s neural components

Figure 8.5: Illustration of the Out of Order and Grab networks neural populations decoded output.

the out of order network), which serves as input for the low-level behaviors. The MoveSideways behavior
uses the mean value of the lateral positions of the left and right neighbor in the left and right base camera

8.1 Sensorimotor adaptation for mobile robotic manipulation 145

(a) (b)

Figure 8.6: Schematic visualization of two networks of our model with sets of white circles indicat-
ing neural populations while boxes depict sub-networks. (a) shows the HoldAndMove
network, while (b) illustrates the complete Sorting network. The boxes in the lower part
visualize the subtask-networks, which are activated by the upper network chain for ac-
tion selection incorporating the Basal Ganglia and Thalamus networks pre-implemented
in Nengo.

respectively as an estimation of the middle between the neighbor objects and moves the base to this
position, while the Grip behavior keeps the gripper closed. The Reached position ensemble serves as
a memory integrating evidence once the goal position is reached to indicate that this sub-tasks finished
successfully. Figure 8.7b shows the activation levels of the high- and low-level behaviors.

Put Object Down This behavior simply moves the arm from its gripping position to a position suit-
able for releasing an object, while opening the gripper and moving the base slightly backwards at the
same time to ensure smooth and safe placement of the target object.

Finish Task This behavior simply makes the robot base back off from the manipulated objects. After
stopping the base - implicitly by deactivating all other behaviors - the arm moves to back resting position
automatically, which indicates that the whole sequence of tasks is completed.

Perform Sorting Task This is a high-level behavior combining all the other behaviors described
so far to complete the whole task of moving the target object to its correct position in the sequence
of frequencies. To choose the appropriate action to take, we used models of the Basal Ganglia and
Thalamus proposed by T. C. Stewart et al. (2010), which are available as pre-implemented networks in
Nengo. Corresponding to each of the high-level behaviors, we created input values for the Basal Ganglia
network to choose from. Initially, Perform Grasping Action is enabled. Once the robot picked up the
target object and built up sufficient evidence, the Basal Ganglia network activates the behavior to hold the
(target) object and navigate the robot to the goal position. As soon as the robot reached its goal position
between the neighbor objects and the according network built sufficient evidence, the PutDown behavior
to put down the target object is activated. As soon as this behavior is completed, the whole sequence is
wrapped up by activating the Finish behavior. Figure 8.6b gives a schematic visualization of the network.
Figure 8.8 illustrates the most important stages of one example run while Figure 8.7b gives a visualization
of the decoded output of the network’s components: once the Out of Order network detected the target
object (roughly the first 5 s), the Grab behavior is activated to find and grasp the target object (Fig. 8.8
a-c, Fig. 8.7b, t =8 s to 26 s). The different low-level behaviors for orientation and navigation are enabled
based on the certainty and disparity of the tracked stimuli. Once the robot grabbed the target object, the
Basal Ganglia activates the HoldAndMoveSide behavior (Fig. 8.8d-e, Fig. 8.7b, t =26 s to 39 s).

146 Closed-loop neuromorphic control systems

−1.0

−0.5

0.0

0.5

1.0
ac

tiv
at
io
n
le
ve

l
Activation levels of high-level behaviours and goal-position state

grab
hold_and_side
put_down
finish
reached_pos

0.0

0.2

0.4

0.6

0.8

ce
rta
in
ty
 le
ve
l

Certainties of target object
left DVS
right DVS
arm DVS

−0.25
0.00
0.25
0.50
0.75
1.00

no
rm
al
ize
d
po
sit
io
n

x-positions of left/right neighbour objects in resp. cameras
left neighbor in left DVS
right neighbor in right DVS

24 26 28 30 32 34 36 38 40 42
time (s)

0.0

0.2

0.4

0.6

0.8

ce
rta
in
ty
 le
ve
l

Certainties of left/right neighbour objects in resp. cameras

left neighbor in left DVS
right neighbor in right DVS

(a) Decoded output of the HoldAndMove network’s neural components

0.0

0.5

1.0

ac
tiv

at
io
n
le
ve

l

Activation levels of high-level behaviours

grab
hold_and_side
put_down
finish

0.0

0.5

1.0

ac
tiv

at
io
n
le
ve

l

Activation levels of low-level behaviours

orientLR
orientFB
arm_orientLR
move_back

grip
move_side
put_down
finish

−1

0

1

ac
tiv

at
io
n
le
ve

l

Choice ensemble (state-variables for action-selection)

task_activation
has_grabbed
reached_goal
finished

0.0

0.5

ce
rta

in
ty

 le
ve

l

Certainty values of target object

left DVS
right DVS
arm DVS

0 10 20 30 40 50 60
time (s)

0.0

0.5

1.0

no
rm

al
ize

d
po

sit
io
n x-positions of left/right neighbour objects in resp. cameras

left neighbor in left DVS
right neighbor in right DVS

(b) Decoded output of the Sorting network’s neural components

Figure 8.7: Illustration of the HoldAndMove and Sorting networks neural populations decoded out-
put.

The main sensory input in this phase is the x-position of the neighbor objects (last row in Fig. 8.7b).
A clear indicator for successful pick-up is the decrease of certainty in the base-retinas (forth row in

8.1 Sensorimotor adaptation for mobile robotic manipulation 147

Figure 8.8: Selected stages of an example run of the Perform Sorting Task.

Fig. 8.7b). Once the robot reached its goal position between the neighboring objects, the PutDown
behavior is activated (Fig. 8.8 f-g). Finally the whole task is wrapped up by the Finish behavior and all
other behaviors are deactivated (Fig. 8.8 h) to put the robot back into resting position.

8.1.4 Summary

In this section, we have shown a mobile robotic manipulator capable of solving a pick-and-place task,
with algorithmic components completely implemented in the framework of Spiking Neural Networks.
This makes our approach not only suitable to expand its functionality with supervised and unsuper-
vised learning methods but also highly scalable. The underlying Nengo-based neural compiler sup-
ports the use of dedicated neuromorphic hardware systems, which allows to run even large-scale neu-
ral networks in real-time. The possibility to introduce learning will eventually enable such systems to
adapt their control policies and decision making to unpredictable changes in the environment. Fur-
thermore, the neural implementation is beneficial in terms of allowing to combine networks “hand-
programmed” by experts/engineers with learning networks that improve themselves over time with in-
creasing data/experience. Here, our ultimate goal is to design systems that are capable of adapting to

148 Closed-loop neuromorphic control systems

new task during operation time while at the same time using experience from previous tasks and expert
knowledge.

Limitations

The current algorithmic implementation has some inherent limitations. For now, the network is only
able to detect one object not fitting in the sequence of frequencies. To overcome this limitation, the Out
of Order network could be enhanced to solve the sorting-problem in a neural fashion. An intermediate
workaround could be to repeat the current simple task and thereby solve the sorting problem incremen-
tally. Another obvious limitation of the current implementation is the need for neighbor objects to find
the goal position for put-down. This makes it impossible to solve the task for those objects blinking
at a maximum or a minimum frequency. As for the first limitation, the Out of Order network needs to
become more sophisticated to detect the goal position in these edge-cases when a border-object needs to
be manipulated. One possibility could be detect one neighbor and to use the maximum of the pairwise
differences as distance estimation for the offset.

Outlook

A long-term goal is to use the current implementation as a starting point for self-improving learning
systems. As the current implementation is built in the framework of SNNs (Spiking Neural Networks),
it naturally supports learning. One direction for future research could be to use the current low-level
behaviors for initialization and to let the system learn and improve them incrementally by experience.
For instance, one problem in learning robotic systems such as policy search for motor control (Levine et
al., 2016), is the acquisition of sufficiently large training data sets. Recording large amounts of training
data by repeating one specific task with real robotic systems is time-consuming and often infeasible,
while training-data from simulation is usually not realistic enough to capture the complexity of noisy
real-world data. In these cases, a system which is able to use expert-knowledge for certain (sub-) tasks as
a starting point could significantly speed-up the learning process. We believe that our current approach
is a promising first step for further research in this direction.

8.2 Neuromorphic reinforcement learning for vehicle trajectory
control

In this section, we propose a neuromorphic system for vehicle control. Our system is implemented
entirely in a spiking neuron substrate using the Nengo simulator (Bekolay et al., 2014) and is designed
to be both distributed and hierarchical. In a sample instantiation, we train a trajectory selection module
using reinforcement learning to investigate the feasibility of a learnable, neuromorphic control system
in an automotive context. This approach has been selected in order to be decoupled from the quality
of training data in this first investigation. We evaluate our approach in TORCS (The Open Racing Car
Simulator), which allows us to generate training data in a safe and controlled simulation environment.
Furthermore, TORCS offers an advanced vehicle physics simulation as well as a variety of sensors and
actors for interaction (Wymann et al., 2014).

8.2.1 Neuromorphic control architecture

The architecture of our proposed system is visualized in Fig. 8.9. Interactions with the TORCS environ-
ment (see Loiacono et al., 2010, for detailed information on the sensor and actuator setup) are channeled
over several ROS (Robot Operating System) nodes used for the gateway communication. For evaluation
and training purposes, a controller using the global position and orientation of the vehicle is imple-

8.2 Neuromorphic reinforcement learning for vehicle trajectory control 149

Figure 8.9: Proposed distributed neuromorphic architecture utilizing individual modules for sepa-
rate control signal calculation.

mented in ROS to determine control signals to follow a given trajectory or the roadways centerline at a
fixed speed1.
The proposed architecture for a learnable and energy-efficient vehicle control system is a holistic neuro-
morphic approach for determining steering, gas and brake pedal as well as gear signals. It is a distributed
system in the sense that these signals are calculated separately in different modules. In addition, it is
a hierarchical system as several intermediate values have to be calculated and different modules and
subsystems are dependent upon each other. The modules’ vertical alignments within Fig. 8.9 indicate
the distinction of three core subsystems, each responsible for one of the control signals (gear selection,
breaking/acceleration and steering). We envision each of these sub-modules to be learnable either by
supervised or reinforcement learning. Some of the depicted modules are heavily dependent on each other
and will have to be trained in parallel rather than independently.
Here, we focus on the trajectory selection module to be the only learning module for simplicity. There-
fore, gear selection and acceleration are determined from the engine’s RPM (Rotations per minute) and
a desired velocity set to a fixed value for now. The trajectory following module determines the control
values for steering from the chosen trajectory. We envision the time horizon module to estimate the time
window for the next trajectory to be followed. Assuming a perfect control algorithm and the desired
speed to be the actual speed, this equates to determining the trajectory’s end point’s longitudinal posi-
tion. Accordingly, the trajectory selection module is an action selection module for the agent to choose
a trajectory type as well as the lateral component of the trajectory’s end point from a set of predefined
options.

Trajectory selection module

We focus on the trajectory selection module isolated from the other modules. Therefore, we use a
classical controller to steer the vehicle along the chosen trajectories at a fixed velocity of 34 km/h with
the trajectories’ end points’ longitudinal component set to 20 m, which emulates a simplified version of
trajectory following.
We implemented a set of 15 trajectories to describe varying degrees of different behaviors (see Fig. 8.10b).
We use straight lines to emulate lane following, cubic splines (with their derivative set to 0 at the extrem-

1The TORCS-to-ROS interface can be found at https://github.com/fmirus/torcs ros. The Nengo and ROS
implementation of the trajectory selection module and the framework that is built upon it can be found at https://
github.com/fmirus/torcs neural trajectory ctrl

https://github.com/fmirus/torcs_ros
https://github.com/fmirus/torcs_neural_trajectory_ctrl
https://github.com/fmirus/torcs_neural_trajectory_ctrl

150 Closed-loop neuromorphic control systems

(a) Simplified visualization of the SNN for trajectory selection. The
yellow (A) resp. cyan networks (B) implement action selection
resp. weight optimization for three exemplary trajectory choices

−5 0 5
[m]

0

5

10

15

20

[m
]

Cubic spline
Quadratic interpolation

Straight

(b) Visualization of a
set of exemplary
trajectories.

Figure 8.10: SNN for trajectory selection and exemplary set of trajectories

ities) to model lane change maneuvers and quadratic interpolations between a start and end point to
perform a change in orientation. The latter trajectories are intended for driving curves or to correct slight
misalignments between the vehicle and the road.

8.2.2 Reinforcement Learning

The core of this section is the learning Spiking Neural Network for trajectory selection, which is visu-
alized in Fig. 8.10a and consists of two sub-networks. It was built using the Nengo neural simulator
(Bekolay et al., 2013), which implements the principles of the NEF (Eliasmith and C. H. Anderson,
2003). The first sub-network A (yellow components in Fig. 8.10a) encodes the current state in a neural
population. This population feeds its output to an array of downstream populations, each representing
the utility value Q associated to one of the possible actions. Unless an exploration step is enforced,
the highest filtered utility value determines the next action to be performed. As we want to adapt the
mapping between input (state) and utility values by learning the respective connection weights, their
decoders are initialized to a fixed value. The second sub-network B (cyan components in Fig. 8.10a)
encodes the reward received from the environment (cf. Equation (8.1)). From this reward, the offset to
the current utility values is calculated, which in turn is used to adapt the weights of sub-network A’s
learning connection.

Learning rule

The associative learning process is implemented using the PES (Prescribed Error Sensitivity) (Bekolay et
al., 2013) learning rule, which modifies connection weights based on a (multi-dimensional) error signal
e. We calculate the error from the reward function

r(t) = |p(t)| β1 · |θ(t)| β2 + |p(t)− p(t−1)| β3 + |θ(t)−θ(t−1)| β4, (8.1)

where p describes the vehicle’s lateral position along the road at successive time steps t and t−1 (a value
of 1 being centered and 0 being at the track boundary), θ describes the vehicle’s orientation with respect
to the road’s centerline (values of 1 resp. 0 indicate parallel resp. perpendicular alignment) and βk being
scalar weights. Thus, the reward function is designed to blend the two objectives of driving aligned with
and centered on the road.
With each ensemble representing a utility value Q(s,a j) of the state s when taking action a j, we define
the error for dimension j as

8.2 Neuromorphic reinforcement learning for vehicle trajectory control 151

0 200 400 600 800 1000 1200
[m]

0

200

400

600

800
[m

]

(a) Training

0 200 400 600
[m]

0

200

400

600

800

[m
]

(b) Validation

Figure 8.11: Visualization of the chosen training and validation tracks.

e j =

{
r(t)−Q(s(t),a j) if a j is selected
0 else.

(8.2)

Here, we have chosen to limit the agent’s knowledge to immediate rewards. Therefore, we neglect the
correlation between the trajectory selection and time horizon modules, as it will introduce a temporal
component to the discretization. Hence, the training procedure needs to be adjusted once both modules
are trained jointly. Naturally, such a limited approach will impair the quality of our results. Our goal,
however, is to show general feasibility of our approach which is why we postpone the coupling with
other distributed modules to future work.

Training procedure

In order to evaluate the derived policy’s performance, we chose one training and one validation track
(Fig. 8.11) that show similar characteristics in road width and occurring curvatures. Therefore, they
show comparable features while being distinct enough to identify if a straight mapping to the training
track were to happen. Whenever the vehicle leaves the track during training, the simulation is reset and a
reward of 0 is awarded as the track sensors become unreliable in such a scenario. After every five training
runs, three runs until the vehicle goes off-track are driven on the validation course without updating any
weights. This process constitutes one training/validation episode.
We use the percentage of completion on the validation track multiplied by the collected average reward in
that validation episode as a measure of reliability performance. This measure is additionally normalized
by the maximally achievable reward for the utilized parameter set. As the reset leads to a large bias in the
experience of states close to the starting line during training, several cyclic points of interests have been
defined up-front as substitute starting points before which a non-neuromorphic controller handles the
vehicle. This procedure ensures a large exploration of different possible states and accelerates learning.
During training, a linearly decaying epsilon exploration is utilized.

Results

Figure 8.12 visualizes the performance of the derived control policy on the validation track after each
episode. The average performance tends to increase, indicating an overall improvement of the policy
given the state values approximated by the SNN. The neuromorphic controller is able to reliably complete
the validation lap after roughly 35 episodes without having performed any training on it. This indicates
that the SNN is able to learn a meaningful policy and to generalize beyond the training track given the
sensors’ uncertainties.

152 Closed-loop neuromorphic control systems

Figure 8.12: Results (mean reward and lap completion) for three validation runs per episode

8.2.3 Summary

Our investigation in this section shows promise to be a first step in the direction of a neuromorphic vehicle
control. Although we chose a very limited approach in associative reinforcement learning, our system
is able to fulfill the initial requirement to complete laps on the unknown validation track. However,
tests on other validation tracks revealed issues with this approach. Successive curves are a problematic
situation as the vehicle manages to pass the first curve but oftentimes maneuvers itself into a position
where it is impossible to complete the second curve with the available trajectories. This problem can not
be identified timely, and therefore solved with the current approach, as there is no temporal component
in associative reinforcement learning.

Outlook

We envision to tackle the temporal issue using Q-learning with dual learning. Another direction for
future work is to couple the trajectory selection with the time horizon module to enable planning over
time while remaining within a discretized domain and delaying the continuous control to the trajectory
following module. These modules could be trained separately or jointly to evaluate applicability of this
more sophisticated approach.

8.3 Summary

In this chapter, we have presented a first step towards a neuromorphic control architecture. Due to the
absence of a suitable vehicle demonstrator, lacking integration of neuromorphic prototypes into current
vehicle hardware architectures and finally due to safety considerations, we have demonstrated the general
feasibility of such a neuromorphic control architecture in two sample instantiation. First, we presented
a proof-of-concept implementation of a non-trivial mobile robot manipulation tasks in the substrate of
SNNs. We showed that our architecture can be used to induce human expert knowledge into neural task
implementations. Such manually designed networks can either be used to complement other, decoupled
learning networks or serve as a basis to bootstrap learning to avoid starting the training procedure from
a completely blank state. The second proof-of-concept implementation combines manually designed
and automatically learned networks in the context of short-term vehicle trajectory planning. We use re-
inforcement learning in SNNs to select trajectories for a classical controller, which is decoupled from
the learning network. Thereby, we demonstrate that neuromorphic principles can be used in the context
of vehicle control. However, today’s vehicle architectures are not designed yet to integrate neuromor-
phic hardware, which on the other hand have not reached the technical and commercial maturity to be
integrated in such architectures. This lack of integration prohibits the adoption of any algorithm imple-
mented in a spiking neuron substrate into vehicle applications, since the advantages of this algorithmic
substrate are closely coupled to energy-efficient deployment on dedicated hardware. That is, one of the
unique strengths of SNNs in contrast to more traditional learning approaches is their ability to be effi-

8.3 Summary 153

ciently processed on neuromorphic hardware mostly leading to a trade-off between efficiency and higher
accuracy delivered by traditional approaches.

9 Discussion

This thesis presented a novel perspective on several automotive tasks with regard to cognitive modeling
and/or neuromorphic principles, particularly representation of the environment around the vehicle. After
giving an overview of recent research in the field of neuromorphic engineering regarding both hardware
and software, cognitive modeling as well as automated driving in chapter 2, we proceeded to the the-
oretical background in chapter 3, the backbone of this thesis. We established a coherent mathematical
formalism to describe the theory and properties behind VSAs, a family of modeling techniques deploying
representations based on high-dimensional vectors. In this coherence, such a description is not available
in the literature except for treatments of particular instantiations of VSAs such as in T. Plate (1994),
Gayler (1998), and Kanerva (2009). We proceeded to describe the theory of the SPA, a special case of
the general construct of VSAs. We presented essential features like circular convolution, unitary vectors
and convolutive powers, which form the basis of structured representations used in later chapters. Fol-
lowing Eliasmith and C. H. Anderson (2003), we presented a brief introduction to the NEF and showed
how its principles can be applied to implement the SPA in a spiking neuron substrate. Finally, we intro-
duced established approaches to generate structured representations to build cognitive models from to be
used in later chapters.
In chapter 4, we established our general approach to represent automotive scenes in the representational
substrate of the SPA. Following the workflow of Gallant and Okaywe (2013), we first presented different
options to generate vocabularies of atomic vectors and secondly, how to generate structured represen-
tations from them. We proposed several approaches to encapsulate different structures such as visual
similarity, semantic similarity and a combination of both in vector vocabularies. We focused on encod-
ing entities typically occurring in automotive context, namely traffic signs and traffic participants. While
manual vocabulary design is feasible and demonstrated in this context of such rather small vocabularies,
we also successfully demonstrated approaches to automatically learn such vocabularies based on CNN
learning systems for visual similarity and unsupervised word embedding algorithms like word2vec for
semantic similarity. Proceeding to structured representations based on atomic vocabularies, we presented
several approaches to encapsulate numerical or, more particularly, spatial information in a vector sub-
strate. The main contribution was the introduction of a representation for spatial information using the
convolutive power established in chapter 3. We concluded the chapter with an experimental analysis of
the amount of information, that can effectively be stored in structured vector representations. We ana-
lyzed the capacity of such representations for simple superposition of concepts as well as superpositions
of vectors encapsulating spatial information using the convolutive power yielding upper bounds for the
total number of concepts or objects being encoded.
Starting with chapter 5, we proceeded to the third stage as proposed in Gallant and Okaywe (2013),
which was omitted in chapter 4: the output computation stage or, in other words, applying our vector
representations to particular tasks. We presented a spiking neuron model learning to classify the current
driving context based on a vector representation of the current scene from real-world driving data. This
model made use of one of the key strengths of vector representations, namely being able to combine
symbol-like manipulation with neural network learning. We demonstrated that our model is able to
capture the semantics of the scene to successfully classify the current driving context. Comparing the
model’s performance with a traditional deep network trained on the same input data, a CNN trained
on raw visual input as well as human level-performance, we demonstrated that the representation was
successful in abstracting away visual features irrelevant for the task at hand. However, the data set used in
this chapter has clear limitations in terms of size and diversity with human bias being imposed through the
manual labeling process. We concluded the chapter by analyzing the influence of structured vocabularies

156 Discussion

created in chapter 4 on the model’s performance. Although imposing more structure into the vector
representation led to measurable differences in the models’ classification accuracy, most of the structured
vocabularies only deteriorated performance with only the visual-semantic vocabulary achieving subtle
improvements. We assume that the limited amount of data as well as the rather small vocabulary, with
not even all vectors absorbing the similarity structure, are the main reasons for these results.

Proceeding to another essential task in automotive context in chapter 6, we encapsulated spatial positions
of several objects into one coherent vector representation of fixed length using the convolutive power. We
trained several learning models to predict the future trajectory of one target vehicle based on that vector
representation. On the one hand, we employed traditional deep learning models based on LSTM cells
to predict the future trajectory based on a sequence of semantic vectors. We compared these models to
similar networks making predictions based on other, reference encoding schemes of the input data and a
simple linear predictor. Evaluating these systems on two real-world driving data sets, we observed subtle
performance nuances without one model clearly outperforming the others while simple linear prediction
already offered solid prediction accuracy especially for short term horizons. The main reason for this
result is the composition of both data sets with straight driving constituting the majority of the samples
compared to more challenging maneuvers such as lane changes. However, we were able to demonstrate
that the models using the convolutive power representation tended to perform better in situations where
the target vehicle drives closely to other vehicles in crowded situations. Furthermore, this model was also
able to predict lane change situations better than all other models when trained on a subset of the training
data consisting of these particular situations, whereas the other models did not show a similar adaptation
behavior. Hence, we expect the models to improve with a more balanced data set since the data sets
used in this work show a strong imbalance towards straight driving compared to lane change maneuvers.
Finally, we observed when training an unsupervised learning algorithm for detecting anomalies on the
convolutive vector representation, that it tended to label crowded situations with a higher number of
vehicles driving closely to the target as outliers. Therefore, we conclude, that the encoding of the scene
in semantic vectors is able to capture the essential semantics of the spatial information of the driving
scene. Additionally, we compared the LSTM models to simpler single-layer SNNs, which achieved
results slightly worse, but comparable to the more complex networks.

In chapter 7, we extended our work on vehicle trajectory prediction by developing a novel, mixture-
of-experts online learning model trained at run time to refine the anticipations of several individual
prediction models using delta rule learning and spiking neurons. We tackled the issue of delayed error
signals introducing potentially long lags into the learning process through a temporal spreading of the
error signal. That is, the model delays the error signal of earlier prediction steps to later prediction steps
assuming that the general direction of the error is the same for earlier and further prediction horizons.
We presented a context-free model variant updating its weights simply based on the prediction error as
well as a model incorporating the current driving context. We used the indicators for crowded situations
identified in chapter 6 as description for this context. We conducted a thorough analysis and showed, that
this context-sensitive model performs significantly better than the context-free version. Furthermore, we
showed that the model employing temporal spreading is successful in learning to predict trajectories
already after being presented with a small number of vehicles.

Finally in chapter 8, we introduced a neuromorphic control architecture to provide a first step towards
linking the higher-level tasks of earlier chapters, which are more focused on knowledge representation,
to actual control. We showed, that implementing control algorithms in this spiking neuron substrate has
two key advantages: it allows to manually program certain networks inducing human expert knowledge
while employing automated learning in other, decoupled models, which can be validated separately. Fur-
thermore, the manually implemented networks could function as initialization of the learning networks to
refine task performance by bootstrapping the learning process instead of starting from a completely blank
state. We demonstrated these principles on two proof-of-concepts implementations: a non-trivial mobile
robot manipulation task as well as a simple reinforcement learning model short-term vehicle trajectory
control in a simulated environment.

9.1 Conclusion and outlook 157

9.1 Conclusion and outlook

The results achieved in this thesis allow a novel perspective on knowledge representation, modeling and
computation in automotive context through distributed representations and SNNs. We introduced a novel
kind of representational substrate to encapsulate automotive scenes in high-dimensional vectors that ad-
ditionally can be implemented in the language of SNNs. After evaluating the properties and limitations
of this representation approach, we applied it to two automotive tasks, namely driving context classifica-
tion and vehicle trajectory prediction. One key feature of vector representations is their distributed nature
as well as their ability to encapsulate symbol-like concepts as well as numerical information. However,
we learned that there are certain limitations depending on the dimension of the representational vector
space to the amount of information the vectors are able to capture. We presented upper bounds for simple
superposition representations as well as more complex encodings of spatial structures employing con-
volutive powers. However, these bound impose specific limitations on the representations themselves:
when encapsulating increasingly complex structures through the architecture’s algebraic operations, the
limits enforce a certain focus on the most relevant features to encode.

Additionally, our analysis in chapter 5 showed, that encoding certain similarity structures within the un-
derlying vector vocabularies themselves does not necessarily improve the performance of downstream
learning models employing such representations. Hence, good care has to be taken when deciding for
similarities to be encoded in the vector vocabulary since random vocabularies, although not following
an inherent structure, already have some desirable properties. Furthermore, it might be beneficial to
generate several vocabularies to encode different similarities to encapsulate several aspects of the same
concepts. For instance, we as humans have a very wide understanding of perceived entities for example
visual appearance, sound, smell, taste or their linguistic meaning: the word apple can stand for a fruit
with a certain look, taste and smell, while it also could be referring to several electrical devices. This
approach of generating different vocabularies for aspects of objects has not been investigated in this the-
sis. Another idea regarding vocabularies could be to learn the embedding based on the performance of a
learning model on the task to be solved. That is, starting out with a randomly chosen vocabulary used by a
model solving the desired task and then, based on this model’s task performance, employ randomization,
unsupervised learning or evolutionary algorithms to adapt the underlying vocabulary to let it converge
to one best suitable for solving the particular task at hand. This also circumvents the human bias often
explicitly imposed on the structure encoded in such vocabularies through either manually engineering
the desired similarity structure or deciding for one to be automatically learned. On the other hand, the
evaluation of the driving context classification model showed that vector representations of driving sit-
uations are able to capture the relevant semantics of the scene abstracting away potentially unnecessary
features. However, current sensor systems do not natively produce such vector representations as output,
which could be an alternative as a low-dimensional semantic compression of high-dimensional raw sen-
sory values. Once perception of the outside world would be available directly in such a vector substrate,
we could avoid the intermediate step of vectorization by engineering the structured representations of the
scene.

We proceeded to investigate models for vehicle trajectory prediction models based on our vector repre-
sentation encoding spatial information through the convolutive vector power in chapter 6. There were
three key findings to point out: first, there is not one model or representational substrate of the input
data that outperforms all other models in all driving situations. In contrast, each model and representa-
tion showed particular strengths and weaknesses, which we are able to draw a connection to the current
driving context. For instance, the models using the convolutive power representation of the current
scene tended to perform better in crowded and potentially dangerous situations with multiple vehicles
driving close to one another. These findings were further investigated in chapter 7 introducing a novel
online learning model employing a mixture-of-experts approach to weight several prediction models
based either solely on their prediction error or by incorporating contextual information. This weighting
is intended to be learned while the model is running for being able to adapt to unexpected behavior of

158 Discussion

particular vehicles and adjust the model accordingly, which is not possible for models trained and vali-
dated offline. We demonstrated that it is possible to improve over the individual offline models through
this online learning approach, applying temporal spreading of the error signal from earlier to later pre-
diction horizons to avoid lags in the learning process. However, the advanced model having to deal
with temporally delayed error signals was not able to achieve results comparable to a simplified model
variant, which was virtually given access to the future error at prediction time. This simplified model
was investigated to decide between the context-free and context-sensitive version while also serving as
an upper bound for the more complex model having to deal with delayed error signals. Thus, there is
still room for improvement for this online learning system in terms of parameter tuning. Furthermore,
it could be investigated how varying contextual information influence the model’s performance. For in-
stance, we could simply use the vector representing the current scene as context information or include
other descriptive values into the context. Additionally, other online learning approaches, which are more
advanced than the simple delta rule learning rule employed in this thesis, could be investigated.

The second key finding regarding trajectory prediction is that the data set used for training has a sig-
nificant impact on the learning capabilities of the models. This is not a new finding: deep learning
approaches mainly rely on vast amounts of data to adjust their multitude of parameters. However, the
issue of composition of data sets is rather rarely investigated. We found for the particular task of vehicle
trajectory prediction, that both our data sets consist predominantly of straight driving with rather rarely
occurring samples containing a lane change of the target vehicle. We demonstrated significant changes
in the models’ performance when trained solely on the samples containing a lane change of the target ve-
hicle. This supports the hypothesis that a more balanced data set would most likely improve the learning
models’ performance on critical data samples that can not be predicted using simple linear regression.
However, we expect that the prediction of lane change maneuvers could even be further improved when
incorporating additional information such as lane information (Which lane are the vehicles driving? How
large is the distance to the lane border?) or dynamical information such as velocity or acceleration. The
imbalanced composition of the data, however, was somewhat expected, since both data sets mainly con-
sist of highway driving, which reveals a second issue: although our models learned to reasonably predict
vehicle behavior based on the presented training data, the same models would most likely show weaker
performance when presented with data consisting of interurban or inner-city driving. Hence, we would
either have to train on even larger data sets containing a well-balanced mix of city, interurban and high-
way driving with all of these sub-categories being more balanced as the current data sets or we could
also train separate models for each driving context category and select at run time the best suitable model
variant. The latter approach would offer the interesting possibility to combine all models presented in
this thesis: a driving context classification model predicting the current context, which in turn could be
used as contextual information for an online learning model, that decides for the most suitable prediction
model in the current situation.

An additional evaluation of unsupervised anomaly detection supports the third key finding that there
is sufficient information encoded in our vector representation to at least classify driving situations as
outliers and thus potentially dangerous, since there are more objects present and closer to the target and
ego-vehicle than in the “normal” samples. However, the outliers do not contain proportionally more lane
change samples than the complete data set. Additionally, the anomaly detection system was trained with
an unsupervised learning approach on an unlabeled data set. Hence, it was impossible to qualitatively
evaluate the model’s performance against known ground truth data.

Finally, in chapter 8, we introduced a novel neuromorphic control architecture to demonstrate at least
general feasibility and usability of neuromorphic control principles employing spiking neurons as algo-
rithmic substrate. We presented two proof-of-concept implementations for mobile robot manipulation on
a real robotic system and a simplified vehicle trajectory planning system using reinforcement learning in
an open source race car simulator. We demonstrated that our neuromorphic control architecture employ-
ing SNNs allows to decouple manually designed networks from learning networks, or even combine the
two by using a manual implementation as starting point to bootstrap the neural network’s learning phase.

9.1 Conclusion and outlook 159

However, we did not actually explore this possibility of extending an existing manual task implemen-
tation in spiking neurons to further improve task performance through learning. Furthermore, although
both proof-of-concept implementations translated sensory stimuli to complex control behaviors, they are
not fully coupled or integrated into neuromorphic computing hardware.
In conclusion, higher level cognition and lower level perception/action are not two separate aspects of the
same system, but tightly coupled and integrated in biological organisms. While artificial systems already
show advanced capabilities regarding perception and action, the principles and functions in humans are
less well understood. The first coherent integration of both aspects into a large-scale cognitive model
making sense out of complex sensor stream into active motion was presented in Eliasmith et al. (2012).
However, the overall question of how biological organism effectively integrate and combine low-level
behaviors and higher-level cognitive functions is still an unsolved scientific problem. Furthermore, a
complete integration of such a brain model in an actual body of hardware is yet to be developed. The
goal of this thesis was to propose a first step into the direction of cognitive automated vehicles. However,
it was originally intended to complement the thesis at hand with another, more hardware oriented thesis,
which was unfortunately not completed. Revisiting the original motivation introduced in chapter 1, we
achieved promising results regarding neuromorphic principles in an automotive context on both “ends”
of the perception-action-cycle. However, a coupled integration into one coherent system as well as
the integration into neuromorphic hardware to demonstrate benefits regarding energy-efficiency of our
proposed approaches is still missing and an interesting task for future work. There are several promising
neuromorphic hardware prototypes such as SpiNNaker, IBM’s TrueNorth and Intel’s Loihi chip each
offering a unique perspective on spike-based computation, which could be evaluated with the models
proposed in this work and possible extensions.

Bibliography

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng (2016). “TensorFlow: A System for Large-scale Ma-
chine Learning”. In: Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation. OSDI’16. Savannah, GA, USA: USENIX Association, pp. 265–283. ISBN:
978-1-931971-33-1. URL: http://dl.acm.org/citation.cfm?id=3026877.302689
9.

Aeberhard, M., S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas, Y. Pilat, F. Homm, W. Huber, and
N. Kaempchen (2015). “Experience, Results and Lessons Learned from Automated Driving on Ger-
many’s Highways”. In: IEEE Intelligent Transportation Systems Magazine 7.1, pp. 42–57. ISSN:
1939-1390. DOI: 10.1109/MITS.2014.2360306.

Aeberhard, M., S. Schlichtharle, N. Kaempchen, and T. Bertram (2012). “Track-to-Track Fusion With
Asynchronous Sensors Using Information Matrix Fusion for Surround Environment Perception”. In:
IEEE Transactions on Intelligent Transportation Systems 13.4, pp. 1717–1726. ISSN: 1524-9050.
DOI: 10.1109/TITS.2012.2202229.

Agranat, A., C. Neugebauer, and A. Yariv (1990). “A CCD based neural network integrated circuit with
64K analog programmable synapses”. In: 1990 IJCNN International Joint Conference on Neural
Networks. IEEE. IEEE, pp. 551–555. DOI: 10.1109/ijcnn.1990.137623.

Ahmad, S. and J. Hawkins (2015-03-25). “Properties of Sparse Distributed Representations and
their Application to Hierarchical Temporal Memory”. In: arXiv e-prints, arXiv:1503.07469,
arXiv:1503.07469. arXiv: http://arxiv.org/abs/1503.07469v1 [q-bio.NC].

Ahmad, S., A. Lavin, S. Purdy, and Z. Agha (2017). “Unsupervised real-time anomaly detection for
streaming data”. In: Neurocomputing 262. Online Real-Time Learning Strategies for Data Streams,
pp. 134–147. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2017.04.070. URL: http://w
ww.sciencedirect.com/science/article/pii/S0925231217309864.

Ahmad, S. and L. Scheinkman (2019-03-27). “How Can We Be So Dense? The Benefits of Using Highly
Sparse Representations”. In: arXiv e-prints, arXiv:1903.11257, arXiv:1903.11257. arXiv: http:
//arxiv.org/abs/1903.11257v2 [cs.LG].

Akopyan, F., J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P.
Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson,
and D. S. Modha (2015). “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Pro-
grammable Neurosynaptic Chip”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 34.10, pp. 1537–1557. ISSN: 0278-0070. DOI: 10.1109/TCAD.2015.247
4396.

Alahi, A., K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese (2016). “Social LSTM:
Human Trajectory Prediction in Crowded Spaces”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 961–971. DOI: 10.1109/CVPR.2016.110.

Altche, F. and A. de La Fortelle (2017). “An LSTM network for highway trajectory prediction”. In: 2017
IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, pp. 353–
359. DOI: 10.1109/itsc.2017.8317913.

Alvarez, J. M. Á. and A. M. Lopez (2011). “Road Detection Based on Illuminant Invariance”. In: IEEE
Transactions on Intelligent Transportation Systems 12.1, pp. 184–193. ISSN: 1524-9050. DOI: 10
.1109/TITS.2010.2076349.

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1109/MITS.2014.2360306
https://doi.org/10.1109/TITS.2012.2202229
https://doi.org/10.1109/ijcnn.1990.137623
https://arxiv.org/abs/http://arxiv.org/abs/1503.07469v1
https://doi.org/10.1016/j.neucom.2017.04.070
http://www.sciencedirect.com/science/article/pii/S0925231217309864
http://www.sciencedirect.com/science/article/pii/S0925231217309864
https://arxiv.org/abs/http://arxiv.org/abs/1903.11257v2
https://arxiv.org/abs/http://arxiv.org/abs/1903.11257v2
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/CVPR.2016.110
https://doi.org/10.1109/itsc.2017.8317913
https://doi.org/10.1109/TITS.2010.2076349
https://doi.org/10.1109/TITS.2010.2076349

162 Bibliography

Amir, A., P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser, A. Andreopoulos, T. M. Wong,
M. Flickner, R. Alvarez-Icaza, E. McQuinn, B. Shaw, N. Pass, and D. S. Modha (2013). “Cognitive
computing programming paradigm: A Corelet Language for composing networks of neurosynaptic
cores”. In: The 2013 International Joint Conference on Neural Networks, IJCNN 2013, Dallas, TX,
USA, August 4-9, 2013, pp. 1–10. DOI: 10.1109/IJCNN.2013.6707078.

Anderson, J. R. (1983). “A spreading activation theory of memory”. In: Journal of Verbal Learning and
Verbal Behavior 22.3, pp. 261–295. ISSN: 0022-5371. DOI: 10.1016/s0022-5371(83)9020
1-3.

— (1996). “ACT: A simple theory of complex cognition”. In: American Psychologist 51.4, pp. 355–
365. DOI: 10.1037/0003-066x.51.4.355.

Applied Brain Research Inc. (2018). The Nengo neural simulator. URL: https://www.nengo.ai/
(visited on 2018-04-05).

Arthur, J. V., P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S. Chandra, S. K. Esser, N. Imam, W.
Risk, D. B. D. Rubin, R. Manohar, and D. S. Modha (2012). “Building block of a programmable
neuromorphic substrate: A digital neurosynaptic core”. In: The 2012 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8. DOI: 10.1109/IJCNN.2012.6252637.

Axenie, C. and J. Conradt (2015). “Cortically Inspired Sensor Fusion Network for Mobile Robot Ego-
motion Estimation”. In: Robotics and Autonomous Systems 71.C, pp. 69–82. ISSN: 0921-8890.

Bacha, A., C. Reinholtz, A. Wicks, M. Fleming, A. Naik, M. Avitabile, and N. Elder (2004). “The
DARPA Grand Challenge: overview of the Virginia Tech vehicle and experience”. In: Proceed-
ings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat.
No.04TH8749), pp. 481–486. DOI: 10.1109/ITSC.2004.1398947.

Badrinarayanan, V., A. Kendall, and R. Cipolla (2015). “SegNet: A Deep Convolutional Encoder-
Decoder Architecture for Image Segmentation”. In: Computing Research Repository (CoRR)
abs/1511.00561. URL: http://arxiv.org/abs/1511.00561.

Bahram, M., C. Hubmann, A. Lawitzky, M. Aeberhard, and D. Wollherr (2016). “A Combined Model-
and Learning-Based Framework for Interaction-Aware Maneuver Prediction”. In: IEEE Transac-
tions on Intelligent Transportation Systems 17.6, pp. 1538–1550. ISSN: 1524-9050. DOI: 10.1109
/TITS.2015.2506642.

Barranco, F., C. Fermuller, and Y. Aloimonos (2014). “Contour Motion Estimation for Asynchronous
Event-Driven Cameras”. In: Proceedings of the IEEE 102.10, pp. 1537–1556. ISSN: 0018-9219.
DOI: 10.1109/JPROC.2014.2347207.

Bekolay, T., J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen, X. Choo, A. R. Voelker,
and C. Eliasmith (2014). “Nengo: A Python tool for building large-scale functional brain models”.
In: Frontiers in Neuroinformatics 7.48. ISSN: 1662-5196. DOI: 10.3389/fninf.2013.00048.

Bekolay, T., C. Kolbeck, and C. Eliasmith (2013). “Simultaneous unsupervised and supervised learning
of cognitive functions in biologically plausible spiking neural networks”. In: 35th Annual Confer-
ence of the Cognitive Science Society. Cognitive Science Society, pp. 169–174.

Benjamin, B. V., P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M. Bussat, R. Alvarez-
Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen (2014). “Neurogrid: A Mixed-Analog-Digital
Multichip System for Large-Scale Neural Simulations”. In: Proceedings of the IEEE 102.5, pp. 699–
716. ISSN: 0018-9219. DOI: 10.1109/jproc.2014.2313565.

Benosman, R., C. Clercq, X. Lagorce, S. H. Ieng, and C. Bartolozzi (2014). “Event-Based Visual Flow”.
In: IEEE Transactions on Neural Networks and Learning Systems 25.2, pp. 407–417. ISSN: 2162-
237X. DOI: 10.1109/TNNLS.2013.2273537.

Bertozzi, M., A. Broggi, and A. Fascioli (2000). “Vision-based intelligent vehicles: State of the art and
perspectives”. In: Robotics and Autonomous Systems 32.1, pp. 1–16. ISSN: 0921-8890. DOI: 10.1
016/S0921-8890(99)00125-6. URL: http://www.sciencedirect.com/science
/article/pii/S0921889099001256.

https://doi.org/10.1109/IJCNN.2013.6707078
https://doi.org/10.1016/s0022-5371(83)90201-3
https://doi.org/10.1016/s0022-5371(83)90201-3
https://doi.org/10.1037/0003-066x.51.4.355
https://www.nengo.ai/
https://doi.org/10.1109/IJCNN.2012.6252637
https://doi.org/10.1109/ITSC.2004.1398947
http://arxiv.org/abs/1511.00561
https://doi.org/10.1109/TITS.2015.2506642
https://doi.org/10.1109/TITS.2015.2506642
https://doi.org/10.1109/JPROC.2014.2347207
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/jproc.2014.2313565
https://doi.org/10.1109/TNNLS.2013.2273537
https://doi.org/10.1016/S0921-8890(99)00125-6
https://doi.org/10.1016/S0921-8890(99)00125-6
http://www.sciencedirect.com/science/article/pii/S0921889099001256
http://www.sciencedirect.com/science/article/pii/S0921889099001256

Bibliography 163

Beyeler, M., F. Mirus, and A. Verl (2014). “Vision-based robust road lane detection in urban environ-
ments”. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4920–
4925. DOI: 10.1109/ICRA.2014.6907580.

Bi, G.-Q. and M.-M. Poo (2001). “Synaptic Modification by Correlated Activity: Hebb’s Postulate Re-
visited”. In: Annual Review of Neuroscience 24.1, pp. 139–166. DOI: 10.1146/annurev.neur
o.24.1.139.

Bittel, S., V. Kaiser, M. Teichmann, and M. Thoma (2015). “Pixel-wise Segmentation of Street with
Neural Networks”. In: Computing Research Repository (CoRR) abs/1511.00513. URL: http://a
rxiv.org/abs/1511.00513.

Blouw, P., E. Solodkin, P. Thagard, and C. Eliasmith (2016). “Concepts as Semantic Pointers: A Frame-
work and Computational Model”. In: Cognitive Science 40.5, pp. 1128–1162. ISSN: 1551-6709.
DOI: 10.1111/cogs.12265.

Boerlin, M. and S. Denève (2011). “Spike-Based Population Coding and Working Memory”. In: PLoS
computational biology 7.2. Ed. by K. J. Friston, pp. 1–18. DOI: 10.1371/journal.pcbi.100
1080.

Bohte, S. M., J. N. Kok, and H. LaPoutre (2002). “Error-backpropagation in temporally encoded net-
works of spiking neurons”. In: Neurocomputing 48, pp. 17–37.

Bohte, S. M. (2004). “The evidence for neural information processing with precise spike-times: A sur-
vey”. In: Natural Computing 3.2, pp. 195–206. ISSN: 1572-9796. DOI: 10.1023/B:NACO.0000
027755.02868.60.

Bojarski, M., D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U.
Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba (2016). “End to End Learning for Self-Driving
Cars”. In: Computing Research Repository (CoRR) abs/1604.07316. URL: http://arxiv.org
/abs/1604.07316.

Bonnin, S., F. Kummert, and J. Schmüdderich (2012). “A Generic Concept of a System for Predicting
Driving Behaviors”. In: 2012 15th International IEEE Conference on Intelligent Transportation
Systems, pp. 1803–1808. DOI: 10.1109/ITSC.2012.6338695.

Bracewell, R. (2000). The Fourier Transform and Its Applications. Electrical engineering series. McGraw
Hill. ISBN: 9780073039381. URL: https://books.google.de/books?id=ZNQQAQAAIA
AJ.

Brandli, C., R. Berner, M. Yang, S.-C. Liu, and T. Delbruck (2014). “A 240×180 130 dB 3 µs La-
tency Global Shutter Spatiotemporal Vision Sensor”. In: IEEE Journal of Solid-State Circuits 49.10,
pp. 2333–2341. ISSN: 0018-9200. DOI: 10.1109/JSSC.2014.2342715.

Brette, R., M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. Bower, M. Diesmann, A. Morrison, P.
Goodman, F. Harris, M. Zirpe, T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner,
O. Rochel, T. Vieville, E. Muller, A. Davison, S. El Boustani, and A. Destexhe (2007). “Simulation
of networks of spiking neurons: A review of tools and strategies”. In: Journal of Computational
Neuroscience 23.3, pp. 349–398.

Brooks, R. (1986). “A robust layered control system for a mobile robot”. In: IEEE Journal on Robotics
and Automation 2.1, pp. 14–23. ISSN: 0882-4967. DOI: 10.1109/JRA.1986.1087032.

Buehler, M., K. Iagnemma, and S. Singh (2009). The DARPA Urban Challenge: Autonomous Vehicles in
City Traffic. 1st ed. Springer Publishing Company, Incorporated.

Calimera, A., E. Macii, and M. Poncino (2013). “The Human Brain Project and neuromorphic comput-
ing”. In: Functional Neurology 28.3, pp. 191–196.

Carlson, K. D., M. Beyeler, N. Dutt, and J. L. Krichmar (2014). “GPGPU accelerated simulation and
parameter tuning for neuromorphic applications”. In: 2014 19th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC). IEEE, pp. 570–577. DOI: 10.1109/aspdac.2014.674295
2.

Carnevale, N. T. and M. L. Hines (2009). The NEURON Book. 1st ed. New York, NY, USA: Cambridge
University Press. ISBN: 9780521115636.

https://doi.org/10.1109/ICRA.2014.6907580
https://doi.org/10.1146/annurev.neuro.24.1.139
https://doi.org/10.1146/annurev.neuro.24.1.139
http://arxiv.org/abs/1511.00513
http://arxiv.org/abs/1511.00513
https://doi.org/10.1111/cogs.12265
https://doi.org/10.1371/journal.pcbi.1001080
https://doi.org/10.1371/journal.pcbi.1001080
https://doi.org/10.1023/B:NACO.0000027755.02868.60
https://doi.org/10.1023/B:NACO.0000027755.02868.60
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1109/ITSC.2012.6338695
https://books.google.de/books?id=ZNQQAQAAIAAJ
https://books.google.de/books?id=ZNQQAQAAIAAJ
https://doi.org/10.1109/JSSC.2014.2342715
https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1109/aspdac.2014.6742952
https://doi.org/10.1109/aspdac.2014.6742952

164 Bibliography

Cassidy, A. S., P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson, R. Alvarez-Icaza, P. Datta, J. Sawada,
T. M. Wong, V. Feldman, A. Amir, D. B. D. Rubin, F. Akopyan, E. McQuinn, W. P. Risk, and D. S.
Modha (2013). “Cognitive computing building block: A versatile and efficient digital neuron model
for neurosynaptic cores”. In: The 2013 International Joint Conference on Neural Networks (IJCNN),
pp. 1–10.

Cauwenberghs, G. (1998). “Neuromorphic Learning VLSI Systems: A Survey”. In: The Springer Inter-
national Series in Engineering and Computer Science. Ed. by T. S. Lande. Boston, MA: Springer
US, pp. 381–408. ISBN: 978-0-585-28001-1. DOI: 10.1007/978-0-585-28001-1_17.

Censi, A. and D. Scaramuzza (2014). “Low-latency event-based visual odometry”. In: 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE. DOI: 10.1109/icra.2014.6
906931. URL: http://purl.org/censi/2013/dvsd.

Censi, A., J. Strubel, C. Brandli, T. Delbrück, and D. Scaramuzza (2013). “Low-latency localization by
Active LED Markers tracking using a Dynamic Vision Sensor”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). Tokyo,Japan, pp. 891–898. DOI: 10.1109/IROS
.2013.6696456.

Chen, G., H. Cao, M. Aafaque, J. Chen, C. Ye, F. Röhrbein, J. Conradt, K. Chen, Z. Bing, X. Liu,
G. Hinz, W. Stechele, and A. Knoll (2018). “Neuromorphic Vision Based Multivehicle Detection
and Tracking for Intelligent Transportation System”. In: Journal of Advanced Transportation 2018,
p. 13. DOI: 10.1155/2018/4815383.

Chen, J., S. Sathe, C. Aggarwal, and D. Turaga (2017). “Outlier Detection with Autoencoder Ensembles”.
In: Proceedings of the 2017 SIAM International Conference on Data Mining. Society for Industrial
and Applied Mathematics, pp. 90–98. DOI: 10.1137/1.9781611974973.11. eprint: https
://epubs.siam.org/doi/pdf/10.1137/1.9781611974973.11.

Chollet, F. (2015). Keras. URL: https://github.com/keras-team/keras (visited on 2018-
04-11).

Choudhary, S., S. Sloan, S. Fok, A. Neckar, E. Trautmann, P. Gao, T. Stewart, C. Eliasmith, and K. Boa-
hen (2012). “Silicon Neurons That Compute”. In: Artificial Neural Networks and Machine Learning
– ICANN 2012. Ed. by A. E. P. Villa, W. Duch, P. Érdi, F. Masulli, and G. Palm. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 121–128. ISBN: 978-3-642-33269-2. DOI: 10.1007/978-3-64
2-33269-2_16.

Ciresan, D. C., U. Meier, J. Masci, and J. Schmidhuber (2012a). “Multi-column deep neural network for
traffic sign classification”. In: Neural Networks 32, pp. 333–338. DOI: 10.1016/j.neunet.20
12.02.023.

Ciresan, D. C., U. Meier, and J. Schmidhuber (2012b). “Multi-column deep neural networks for image
classification”. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence,
RI, USA, June 16-21, 2012, pp. 3642–3649. DOI: 10.1109/CVPR.2012.6248110.

Colyar, J. and J. Halkias (2018-12-10). US Highway 101 Dataset. URL: https://www.fhwa.d
ot.gov/publications/research/operations/07030/index.cfm (visited on
2018-04-03).

Conradt, J., M. Cook, R. Berner, P. Lichtsteiner, R. J. Douglas, and T. Delbrück (2009). “A Pencil
Balancing Robot using a Pair of AER Dynamic Vision Sensors.” In: ISCAS. IEEE, pp. 781–784.
DOI: 10.1109/ISCAS.2009.5117867.

Conradt, J., F. Galluppi, and T. C. Stewart (2015). “Trainable sensorimotor mapping in a neuromorphic
robot”. In: Robotics and Autonomous Systems 71. Emerging Spatial Competences: From Machine
Perception to Sensorimotor Intelligence, pp. 60–68. ISSN: 0921-8890. DOI: 10.1016/j.robot
.2014.11.004. URL: http://www.sciencedirect.com/science/article/pii
/S0921889014002462.

Cordts, M., M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B.
Schiele (2016). “The Cityscapes Dataset for Semantic Urban Scene Understanding”. In: Computing
Research Repository (CoRR) abs/1604.01685. URL: http://arxiv.org/abs/1604.01685.

https://doi.org/10.1007/978-0-585-28001-1_17
https://doi.org/10.1109/icra.2014.6906931
https://doi.org/10.1109/icra.2014.6906931
http://purl.org/censi/2013/dvsd
https://doi.org/10.1109/IROS.2013.6696456
https://doi.org/10.1109/IROS.2013.6696456
https://doi.org/10.1155/2018/4815383
https://doi.org/10.1137/1.9781611974973.11
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974973.11
https://epubs.siam.org/doi/pdf/10.1137/1.9781611974973.11
https://github.com/keras-team/keras
https://doi.org/10.1007/978-3-642-33269-2_16
https://doi.org/10.1007/978-3-642-33269-2_16
https://doi.org/10.1016/j.neunet.2012.02.023
https://doi.org/10.1016/j.neunet.2012.02.023
https://doi.org/10.1109/CVPR.2012.6248110
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
https://doi.org/10.1109/ISCAS.2009.5117867
https://doi.org/10.1016/j.robot.2014.11.004
https://doi.org/10.1016/j.robot.2014.11.004
http://www.sciencedirect.com/science/article/pii/S0921889014002462
http://www.sciencedirect.com/science/article/pii/S0921889014002462
http://arxiv.org/abs/1604.01685

Bibliography 165

Cortical.io (2019). Cortical.io webpage. URL: https://www.cortical.io/ (visited on 2019-04-
03).

Crawford, E., M. Gingerich, and C. Eliasmith (2016). “Biologically Plausible, Human-Scale Knowledge
Representation”. In: Cognitive Science 40.4, pp. 782–821. ISSN: 1551-6709. DOI: 10.1111/cog
s.12261.

Cui, Y., S. Ahmad, and J. Hawkins (2017). “The HTM Spatial Pooler - A Neocortical Algorithm for
Online Sparse Distributed Coding”. In: Frontiers in Computational Neuroscience 11, p. 111. ISSN:
1662-5188. DOI: 10.3389/fncom.2017.00111.

D’Agostino, C., A. Saidi, G. Scouarnec, and L. Chen (2013). “Learning-based driving events classifica-
tion”. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).
IEEE, pp. 1778–1783. DOI: 10.1109/ITSC.2013.6728486.

Darius, R. (2018). “Learning a visual-semantic vector vocabulary for automotive environment mod-
elling”. MA thesis. Technical University of Munich.

Darms, M., P. Rybski, and C. Urmson (2008). “Classification and tracking of dynamic objects with
multiple sensors for autonomous driving in urban environments”. In: Intelligent Vehicles Symposium,
2008 IEEE, pp. 1197–1202. DOI: 10.1109/IVS.2008.4621259.

DARPA (2017). DARPA SYNAPSE webpage. URL: https://www.darpa.mil/program/syst
ems-of-neuromorphic-adaptive-plastic-scalable-electronics (visited on
2017-12-20).

Davies, M., N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S.
Jain, Y. Liao, C. K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkatara-
manan, Y. H. Weng, A. Wild, Y. Yang, and H. Wang (2018). “Loihi: A Neuromorphic Manycore
Processor with On-Chip Learning”. In: IEEE Micro 38.1, pp. 82–99. ISSN: 0272-1732.

Davies, S., C. Patterson, F. Galluppi, A. D. Rast, D. R. Lester, and S. Furber (2010). “Interfacing Real-
Time Spiking I/O with the SpiNNaker Neuromimetic Architecture”. In: Australien Journal of Intel-
ligent Information Processing Systems 11.1.

Davis, R., R. Davis, and P. Szolovits (1993-03-15). “What is Knowledge Representation?” In: AI Maga-
zine 14.1, pp. 17–33. DOI: 10.1609/aimag.v14i1.1029. URL: https://www.aaai.or
g/ojs/index.php/aimagazine/article/view/1029.

Davison, A. P., D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, and P. Yger
(2008). “PyNN: A Common Interface for Neuronal Network Simulators”. In: Frontiers in neuroin-
formatics 2, p. 11. ISSN: 1662-5196. DOI: 10.3389/neuro.11.011.2008.

Deisenroth, M. P., G. Neumann, and J. Peters (2013). “A Survey on Policy Search for Real-Time
Robotics”. In: Foundations and Trends R© in Robotics 2.1-2, pp. 1–142. ISSN: 1935-8253. DOI:
10.1561/2300000021.

Delbruck, T. and M. Lang (2013). “Robotic Goalie with 3ms Reaction Time at 4% CPU Load Using
Event-Based Dynamic Vision Sensor”. In: Frontiers in Neuroscience 7.223. ISSN: 1662-453X. DOI:
10.3389/fnins.2013.00223.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). “ImageNet: A Large-Scale Hierar-
chical Image Database”. In: CVPR09.

Denk, C., F. Llobet-Blandino, F. Galluppi, L. A. Plana, S. Furber, and J. Conradt (2013). “Real-Time
Interface Board for Closed-Loop Robotic Tasks on the SpiNNaker Neural Computing System”. In:
Artificial Neural Networks and Machine Learning - ICANN 2013 - 23rd International Conference
on Artificial Neural Networks, Sofia, Bulgaria, September 10-13, 2013. Proceedings, pp. 467–474.
DOI: 10.1007/978-3-642-40728-4_59.

Deo, N. and M. M. Trivedi (2018a-05-15). “Convolutional Social Pooling for Vehicle Trajectory Predic-
tion”. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
2018, pp. 1468-1476 abs/1805.06771. arXiv: http://arxiv.org/abs/1805.06771v1
[cs.CV]. URL: http://arxiv.org/abs/1805.06771.

https://www.cortical.io/
https://doi.org/10.1111/cogs.12261
https://doi.org/10.1111/cogs.12261
https://doi.org/10.3389/fncom.2017.00111
https://doi.org/10.1109/ITSC.2013.6728486
https://doi.org/10.1109/IVS.2008.4621259
https://www.darpa.mil/program/systems-of-neuromorphic-adaptive-plastic-scalable-electronics
https://www.darpa.mil/program/systems-of-neuromorphic-adaptive-plastic-scalable-electronics
https://doi.org/10.1609/aimag.v14i1.1029
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1029
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1029
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1561/2300000021
https://doi.org/10.3389/fnins.2013.00223
https://doi.org/10.1007/978-3-642-40728-4_59
https://arxiv.org/abs/http://arxiv.org/abs/1805.06771v1
https://arxiv.org/abs/http://arxiv.org/abs/1805.06771v1
http://arxiv.org/abs/1805.06771

166 Bibliography

Deo, N. and M. M. Trivedi (2018b). “Multi-Modal Trajectory Prediction of Surrounding Vehicles with
Maneuver based LSTMs”. In: 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 1179–
1184. DOI: 10.1109/ivs.2018.8500493.

Dethier, J., P. Nuyujukian, C. Eliasmith, T. C. Stewart, S. A. Elasaad, K. V. Shenoy, and K. A. Boahen
(2011). “A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control
Algorithm”. In: Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger. Curran Associates, Inc., pp. 2213–2221. URL:
http://papers.nips.cc/paper/4276-a-brain-machine-interface-operat
ing-with-a-real-time-spiking-neural-network-control-algorithm.pdf.

DeWolf, T., T. C. Stewart, J.-J. Slotine, and C. Eliasmith (2016). “A spiking neural model of adaptive
arm control”. In: Proceedings of the Royal Society of London B: Biological Sciences 283.1843. ISSN:
0962-8452. DOI: 10.1098/rspb.2016.2134. eprint: http://rspb.royalsocietypub
lishing.org/content/283/1843/20162134.full.pdf. URL: http://rspb.roy
alsocietypublishing.org/content/283/1843/20162134.

Dickmanns, E. D., B. Mysliwetz, and T. Christians (1990). “An integrated spatio-temporal approach to
automatic visual guidance of autonomous vehicles”. In: IEEE Transactions on Systems, Man, and
Cybernetics 20.6, pp. 1273–1284. ISSN: 0018-9472. DOI: 10.1109/21.61200.

Diehl, P. U. and M. Cook (2014). “Efficient implementation of STDP rules on SpiNNaker neuromorphic
hardware”. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 4288–4295.
DOI: 10.1109/IJCNN.2014.6889876.

Diehl, P. U., D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer (2015). “Fast-classifying, high-
accuracy spiking deep networks through weight and threshold balancing”. In: 2015 International
Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8. DOI: 10.1109/ijcnn.2015.7
280696.

Drazen, D., P. Lichtsteiner, P. Hafliger, T. Delbruck, and A. Jensen (2011). “Toward real-time particle
tracking using an event-based dynamic vision sensor”. In: Experiments in Fluids 51.5, pp. 1465–
1469.

Duan, Y., X. Chen, R. Houthooft, J. Schulman, and P. Abbeel (2016). “Benchmarking Deep Reinforce-
ment Learning for Continuous Control”. In: Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pp. 1329–1338. URL:
http://jmlr.org/proceedings/papers/v48/duan16.html.

École Polytechnique Fédérale de Lausanne‘ (2017). Blue Brain project webpage. URL: http://blue
brain.epfl.ch (visited on 2017-12-20).

Edwards, C. (2015). “Growing Pains for Deep Learning”. In: Communications of the ACM 58.7, pp. 14–
16. ISSN: 0001-0782. DOI: 10.1145/2771283.

Elfring, J., R. Appeldoorn, S. van den Dries, and M. Kwakkernaat (2016). “Effective World Modeling:
Multisensor Data Fusion Methodology for Automated Driving”. In: Sensors 16.10, p. 1668. ISSN:
1424-8220. DOI: 10.3390/s16101668. URL: http://www.mdpi.com/1424-8220/16
/10/1668.

Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. New York,
NY: Oxford University Press.

Eliasmith, C. and C. H. Anderson (2003). Neural Engineering : Computation, Representation, and Dy-
namics in Neurobiological Systems. Computational neuroscience. Cambridge, Mass. MIT Press.
ISBN: 0-262-05071-4.

Eliasmith, C., T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and D. Rasmussen (2012). “A
Large-Scale Model of the Functioning Brain”. In: Science 338.6111, pp. 1202–1205. ISSN: 0036-
8075. DOI: 10.1126/science.1225266. eprint: http://science.sciencemag.org
/content/338/6111/1202.full.pdf. URL: http://science.sciencemag.org
/content/338/6111/1202.

https://doi.org/10.1109/ivs.2018.8500493
http://papers.nips.cc/paper/4276-a-brain-machine-interface-operating-with-a-real-time-spiking-neural-network-control-algorithm.pdf
http://papers.nips.cc/paper/4276-a-brain-machine-interface-operating-with-a-real-time-spiking-neural-network-control-algorithm.pdf
https://doi.org/10.1098/rspb.2016.2134
http://rspb.royalsocietypublishing.org/content/283/1843/20162134.full.pdf
http://rspb.royalsocietypublishing.org/content/283/1843/20162134.full.pdf
http://rspb.royalsocietypublishing.org/content/283/1843/20162134
http://rspb.royalsocietypublishing.org/content/283/1843/20162134
https://doi.org/10.1109/21.61200
https://doi.org/10.1109/IJCNN.2014.6889876
https://doi.org/10.1109/ijcnn.2015.7280696
https://doi.org/10.1109/ijcnn.2015.7280696
http://jmlr.org/proceedings/papers/v48/duan16.html
http://bluebrain.epfl.ch
http://bluebrain.epfl.ch
https://doi.org/10.1145/2771283
https://doi.org/10.3390/s16101668
http://www.mdpi.com/1424-8220/16/10/1668
http://www.mdpi.com/1424-8220/16/10/1668
https://doi.org/10.1126/science.1225266
http://science.sciencemag.org/content/338/6111/1202.full.pdf
http://science.sciencemag.org/content/338/6111/1202.full.pdf
http://science.sciencemag.org/content/338/6111/1202
http://science.sciencemag.org/content/338/6111/1202

Bibliography 167

Engstrom, J. and T. Victor (2001). “Real-time recognition of large-scale driving patterns”. In: ITSC 2001.
2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585), pp. 1018–1023.
DOI: 10.1109/ITSC.2001.948801.

Esser, S. K., A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch, A. Amir, J. V. Arthur, A. Cassidy, M.
Flickner, P. Merolla, S. Chandra, N. Basilico, S. Carpin, T. Zimmerman, F. Zee, R. Alvarez-Icaza,
J. A. Kusnitz, T. M. Wong, W. P. Risk, E. McQuinn, T. K. Nayak, R. Singh, and D. S. Modha (2013).
“Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores”.
In: The 2013 International Joint Conference on Neural Networks, IJCNN 2013, Dallas, TX, USA,
August 4-9, 2013, pp. 1–10. DOI: 10.1109/IJCNN.2013.6706746.

Farahini, N. (2016). “SiLago: Enabling System Level Automation Methodology to Design Custom High-
Performance Computing Platforms : Toward Next Generation Hardware Synthesis Methodologies”.
PhD thesis. Stockholm: Royal Institute of Technology (KTH), School of Information and Commu-
nication Technology.

Feng, D., C. Haase-Schütz, H. Hertlein, F. Duffhauß, C. Gläser, and W. Wiesbeck (2019). “Deep Multi-
modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods,
and Challenges”. en. In: DOI: 10.13140/RG.2.2.10246.01606.

Fodor, J. A. (1975). The Language of Thought. Language and thought series. Harvard University Press.
ISBN: 9780674510302.

Fong, R. and A. Vedaldi (2018). “Net2Vec: Quantifying and Explaining how Concepts are Encoded by
Filters in Deep Neural Networks”. In: ArXiv e-prints. arXiv: 1801.03454.

Freund, Y. and R. E. Schapire (1997). “A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting”. In: Journal of Computer and System Sciences 55.1, pp. 119–139. ISSN:
0022-0000. DOI: 10.1006/jcss.1997.1504.

Furber, S. B., F. Galluppi, S. Temple, and L. A. Plana (2014). “The SpiNNaker Project”. In: Proceedings
of the IEEE 102.5, pp. 652–665. ISSN: 0018-9219. DOI: 10.1109/jproc.2014.2304638.

Furgale, P., et al., U. Schwesinger, M. Rufli, C. Pradalier, R. Siegwart, K. Köser, C. Häne, L. Heng, G. H.
Lee, F. Fraundorfer, and M. Pollefeys (2013). “Toward automated driving in cities using close-to-
market sensors: An overview of the V-Charge Project”. In: Proceedings of 2013 IEEE Intelligent
Vehicles Symposium (IV). Piscataway, NJ: IEEE, pp. 809–816.

Fuster, J. M. (2004). “Upper processing stages of the perception-action cycle”. In: Trends in Cognitive
Sciences 8.4, pp. 143–145. ISSN: 1364-6613. DOI: 10.1016/j.tics.2004.02.004. URL: h
ttp://www.sciencedirect.com/science/article/pii/S1364661304000476.

Gallant, S. I. and T. W. Okaywe (2013). “Representing Objects, Relations, and Sequences”. In: Neural
Computation 25.8, pp. 2038–2078. ISSN: 0899-7667. DOI: 10.1162/NECO_a_00467.

Gallego, G., T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger, A. J. Davison,
J. Conradt, K. Daniilidis, and D. Scaramuzza (2019-04-17). “Event-based Vision: A Survey”. In:
CoRR abs/1904.08405. arXiv: http://arxiv.org/abs/1904.08405v1 [cs.CV]. URL:
http://arxiv.org/abs/1904.08405.

Gallego, G., C. Forster, E. Mueggler, and D. Scaramuzza (2015). “Event-based Camera Pose Tracking
using a Generative Event Model”. In: Computing Research Repository (CoRR). URL: http://ar
xiv.org/abs/1510.01972.

Galluppi, F., S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber (2012). “A Hierachical Con-
figuration System for a Massively Parallel Neural Hardware Platform”. In: Proceedings of the 9th
Conference on Computing Frontiers. CF ’12. Cagliari, Italy: ACM, pp. 183–192. ISBN: 978-1-4503-
1215-8. DOI: 10.1145/2212908.2212934.

Galluppi, F., C. Denk, M. C. Meiner, T. C. Stewart, L. A. Plana, C. Eliasmith, S. B. Furber, and J.
Conradt (2014). “Event-based neural computing on an autonomous mobile platform”. In: 2014 IEEE
International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 -
June 7, 2014, pp. 2862–2867. DOI: 10.1109/ICRA.2014.6907270.

https://doi.org/10.1109/ITSC.2001.948801
https://doi.org/10.1109/IJCNN.2013.6706746
https://doi.org/10.13140/RG.2.2.10246.01606
https://arxiv.org/abs/1801.03454
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1109/jproc.2014.2304638
https://doi.org/10.1016/j.tics.2004.02.004
http://www.sciencedirect.com/science/article/pii/S1364661304000476
http://www.sciencedirect.com/science/article/pii/S1364661304000476
https://doi.org/10.1162/NECO_a_00467
https://arxiv.org/abs/http://arxiv.org/abs/1904.08405v1
http://arxiv.org/abs/1904.08405
http://arxiv.org/abs/1510.01972
http://arxiv.org/abs/1510.01972
https://doi.org/10.1145/2212908.2212934
https://doi.org/10.1109/ICRA.2014.6907270

168 Bibliography

Gayler, R. (1998). “Multiplicative Binding, Representation Operators and Analogy”. In: Advances in
analogy research: Integration of theory and data from the cognitive, computational, and neural
sciences. Ed. by
bibinitperiod B. N. K. D. Gentner K. J. Holyoak. Sofia, Bulgaria: New Bulgarian University., pp. 1–
4. URL: http://cogprints.org/502.

— (2003). “Vector Symbolic Architectures answer Jackendoff’s challenges for cognitive neuro-
science”. In: ICCS/ASCS International Conference on Cognitive Science. Ed. by P. Slezak.
University of New South Wales. CogPrints, pp. 133–138.

Geiger, A., P. Lenz, C. Stiller, and R. Urtasun (2013). “Vision meets robotics: The KITTI dataset”. In:
The International Journal of Robotics Research 32.11, pp. 1231–1237. DOI: 10.1177/0278364
913491297. eprint: https://doi.org/10.1177/0278364913491297.

Georgopoulos, A., J. Lurito, M. Petrides, A. Schwartz, and J. Massey (1989). “Mental rotation of the
neuronal population vector”. In: Science 243.4888, pp. 234–236. ISSN: 0036-8075. DOI: 10.1126
/science.2911737. eprint: http://science.sciencemag.org/content/243/48
88/234.full.pdf. URL: http://science.sciencemag.org/content/243/4888
/234.

Gerstner, W. and W. Kistler (2002). Spiking Neuron Models: An Introduction. New York, NY, USA:
Cambridge University Press. ISBN: 0521890799.

Gerstner, W., W. Kistler, R. Naud, and L. Paninski (2014). Neuronal Dynamics - From single neurons to
networks and models of cognition. Cambridge University Press. URL: http://neuronaldyna
mics.epfl.ch/online/index.html.

Gewaltig, M.-O. and M. Diesmann (2007). “NEST (NEural Simulation Tool)”. In: Scholarpedia 2.4,
p. 1430. DOI: 10.4249/scholarpedia.1430. URL: http://www.scholarpedia.org
/article/NEST_(NEural_Simulation_Tool).

Goldberg, Y. and O. Levy (2014). “word2vec Explained: deriving Mikolov et al.’s negative-sampling
word-embedding method”. In: Computing Research Repository (CoRR). URL: http://arxiv.o
rg/abs/1402.3722.

Gomes, H. M., J. P. Barddal, F. Enembreck, and A. Bifet (2017). “A Survey on Ensemble Learning for
Data Stream Classification”. In: ACM Computing Surveys 50.2, pp. 1–36. DOI: 10.1145/30549
25.

Goodman, D. F. M. and R. Brette (2009). “The Brian simulator”. In: Frontiers in Neuroscience 3.26,
pp. 192–197. ISSN: 1662-453X. DOI: 10.3389/neuro.01.026.2009.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith (1993). “Novel approach to nonlinear/non-Gaussian
Bayesian state estimation”. In: IEE Proceedings F Radar and Signal Processing 140.2, pp. 107–113.
ISSN: 0956-375X. DOI: 10.1049/ip-f-2.1993.0015.

Graf, R., H. Deusch, F. Seeliger, M. Fritzsche, and K. Dietmayer (2014). “A Learning Concept for
Behavior Prediction at Intersections”. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings,
pp. 939–945. DOI: 10.1109/IVS.2014.6856415.

Guizzo, E. and E. Ackerman (2015). “The hard lessons of DARPA’s robotics challenge [News]”. In:
IEEE Spectrum 52.8, pp. 11–13. ISSN: 0018-9235. DOI: 10.1109/MSPEC.2015.7164385.

Gupta, N. and M. Stopfer (2014). “A temporal channel for information in sparse sensory coding”. In:
Current biology 24.19, pp. 2247–2256. ISSN: 1879-0445. URL: http://www.ncbi.nlm.nih
.gov/pmc/articles/PMC4189991/.

Hallac, D., S. Bhooshan, M. Chen, K. Abida, R. Sosic, and J. Leskovec (2018). “Drive2Vec: Multiscale
State-Space Embedding of Vehicular Sensor Data”. In: 21st International Conference on Intelligent
Transportation Systems (ITSC). IEEE, pp. 3233–3238. DOI: 10.1109/ITSC.2018.8569550.

Handjaras, G., E. Ricciardi, A. Leo, A. Lenci, L. Cecchetti, M. Cosottini, G. Marotta, and P. Pietrini
(2016). “How concepts are encoded in the human brain: A modality independent, category-based
cortical organization of semantic knowledge”. In: NeuroImage 135, pp. 232–242. ISSN: 1053-8119.

http://cogprints.org/502
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1126/science.2911737
https://doi.org/10.1126/science.2911737
http://science.sciencemag.org/content/243/4888/234.full.pdf
http://science.sciencemag.org/content/243/4888/234.full.pdf
http://science.sciencemag.org/content/243/4888/234
http://science.sciencemag.org/content/243/4888/234
http://neuronaldynamics.epfl.ch/online/index.html
http://neuronaldynamics.epfl.ch/online/index.html
https://doi.org/10.4249/scholarpedia.1430
http://www.scholarpedia.org/article/NEST_(NEural_Simulation_Tool)
http://www.scholarpedia.org/article/NEST_(NEural_Simulation_Tool)
http://arxiv.org/abs/1402.3722
http://arxiv.org/abs/1402.3722
https://doi.org/10.1145/3054925
https://doi.org/10.1145/3054925
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1109/IVS.2014.6856415
https://doi.org/10.1109/MSPEC.2015.7164385
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189991/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189991/
https://doi.org/10.1109/ITSC.2018.8569550

Bibliography 169

DOI: 10.1016/j.neuroimage.2016.04.063. URL: http://www.sciencedirect.c
om/science/article/pii/S1053811916301021.

Hauptmann, W., F. Graf, and K. Heesche (1996). “Driving environment recognition for adaptive automo-
tive systems”. In: Proceedings of IEEE 5th International Fuzzy Systems. Vol. 1, pp. 387–393. DOI:
10.1109/FUZZY.1996.551772.

He, Z. (2017). Research based on high-fidelity NGSIM vehicle trajectory datasets: A review. Tech. rep.
DOI: 10.13140/RG.2.2.11429.60643.

Hebb, D. O. (1949). The Organization of Behavior. John Wiley.
Held, D., J. Levinson, and S. Thrun (2012). “A probabilistic framework for car detection in images using

context and scale”. In: IEEE International Conference on Robotics and Automation, ICRA 2012,
14-18 May, 2012, St. Paul, Minnesota, USA, pp. 1628–1634. DOI: 10.1109/ICRA.2012.6224
722.

Hermann, A. and J. Desel (2008). “Driving situation analysis in automotive environment”. In: IEEE
International Conference on Vehicular Electronics and Safety (ICVES), pp. 216–221. DOI: 10.11
09/ICVES.2008.4640860.

Hochreiter, S. and J. Schmidhuber (1997). “Long Short-Term Memory”. In: Neural Computation 9.8,
pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735. eprint: https://doi.org/10.1
162/neco.1997.9.8.1735.

Hodgkin, A. and A. Huxley (1952). “A quantitative description of membrane current and its application
to conduction and excitation in nerve”. In: Journal of Physiology 117, pp. 500–544.

Hohm, A., F. Lotz, O. Fochler, S. Lüke, and H. Winner (2014). “Automated Driving in Real Traffic:
from Current Technical Approaches towards Architectural Perspectives”. In: SAE Technical Papers
1. DOI: 10.4271/2014-01-0159.

Hoi, S. C. H., D. Sahoo, J. Lu, and P. Zhao (2018-02-08). “Online Learning: A Comprehensive Survey”.
In: CoRR abs/1802.02871. arXiv: 1802.02871 [cs.LG]. URL: http://arxiv.org/abs
/1802.02871.

Holler, Tam, Castro, and Benson (1989). “An Electrically Trainable Artificial Neural Network (ETANN)
with 10240 ”Floating Gate” Synapses”. In: International Joint Conference on Neural Networks. Ed.
by N. Morgan. Piscataway, NJ, USA: IEEE, pp. 50–55. ISBN: 0-8186-2029-3. DOI: 10.1109/ij
cnn.1989.118698. URL: https://ieeexplore.ieee.org/document/118698/.

Hsu, F.-H. (2002). Behind Deep Blue: Building the Computer That Defeated the World Chess Champion.
Princeton, NJ, USA: Princeton University Press. ISBN: 0691090653.

Huang, X., X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang (2018). “The ApolloScape
Dataset for Autonomous Driving”. In: The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops, pp. 954–960.

Human Brain Project (2018). Human Brain Project webpage. URL: https://www.humanbrainpr
oject.eu (visited on 2018-04-05).

Hunsberger, E. and C. Eliasmith (2015). “Spiking Deep Networks with LIF Neurons”. In: Computing
Research Repository (CoRR) abs/1510.08829. URL: http://arxiv.org/abs/1510.08829.

— (2016). “Training Spiking Deep Networks for Neuromorphic Hardware”. In: Computing Research
Repository (CoRR) abs/1611.05141. arXiv: 1611.05141. URL: http://arxiv.org/abs/1
611.05141.

Huval, B., T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka, P. Rajpurkar, T.
Migimatsu, R. Cheng-Yue, F. Mujica, A. Coates, and A. Y. Ng (2015). “An Empirical Evaluation of
Deep Learning on Highway Driving”. In: Computing Research Repository (CoRR) abs/1504.01716.
URL: http://arxiv.org/abs/1504.01716.

Indiveri, G. (1997). “Neuromorphic Systems For Industrial Applications”. In: Proc.International Body
Engineering Conference & Exposition. Stuttgart, Germany. URL: http://ncs.ethz.ch/pub
s/pdf/Indiveri97.pdf.

https://doi.org/10.1016/j.neuroimage.2016.04.063
http://www.sciencedirect.com/science/article/pii/S1053811916301021
http://www.sciencedirect.com/science/article/pii/S1053811916301021
https://doi.org/10.1109/FUZZY.1996.551772
https://doi.org/10.13140/RG.2.2.11429.60643
https://doi.org/10.1109/ICRA.2012.6224722
https://doi.org/10.1109/ICRA.2012.6224722
https://doi.org/10.1109/ICVES.2008.4640860
https://doi.org/10.1109/ICVES.2008.4640860
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.4271/2014-01-0159
https://arxiv.org/abs/1802.02871
http://arxiv.org/abs/1802.02871
http://arxiv.org/abs/1802.02871
https://doi.org/10.1109/ijcnn.1989.118698
https://doi.org/10.1109/ijcnn.1989.118698
https://ieeexplore.ieee.org/document/118698/
https://www.humanbrainproject.eu
https://www.humanbrainproject.eu
http://arxiv.org/abs/1510.08829
https://arxiv.org/abs/1611.05141
http://arxiv.org/abs/1611.05141
http://arxiv.org/abs/1611.05141
http://arxiv.org/abs/1504.01716
http://ncs.ethz.ch/pubs/pdf/Indiveri97.pdf
http://ncs.ethz.ch/pubs/pdf/Indiveri97.pdf

170 Bibliography

Izhikevich, E. M. (2003). “Simple model of spiking neurons”. In: IEEE Transactions on Neural Networks
14.6, pp. 1569–1572. ISSN: 1045-9227. DOI: 10.1109/TNN.2003.820440. URL: http://w
ww.izhikevich.org/publications/spikes.pdf.

— (2004). “Which Model to Use for Cortical Spiking Neurons?” In: IEEE Transactions on Neural
Networks 15.5, pp. 1063–1070. ISSN: 1045-9227. DOI: 10.1109/TNN.2004.832719. URL:
http://www.izhikevich.org/publications/whichmod.pdf.

Jackendoff, R. (2002). Foundations of Language: Brain, Meaning, Grammar, Evolution. Oxford schol-
arship online. Oxford University Press. ISBN: 9780198270126. URL: https://books.google
.de/books?id=gtGliq-q2aMC.

Janai, J., F. Güney, A. Behl, and A. Geiger (2017). “Computer Vision for Autonomous Vehicles: Prob-
lems, Datasets and State-of-the-Art”. In: ArXiv e-prints. arXiv: 1704.05519 [cs.CV].

Kalman, R. E. (1960). “A New Approach to Linear Filtering and Prediction Problems”. In: Journal of
Basic Engineering 82.1, pp. 35–45. ISSN: 0098-2202. DOI: 10.1115/1.3662552.

Kanerva, P. (1988). Sparse Distributed Memory. Cambridge, MA, USA: MIT Press. ISBN: 0262111322.
— (2000). “Large Patterns Make Great Symbols: An Example of Learning from Example”. In: Hybrid

Neural Systems. Ed. by S. Wermter and R. Sun. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 194–203. ISBN: 978-3-540-46417-4. DOI: 10.1007/10719871_13.

— (2009). “Hyperdimensional Computing: An Introduction to Computing in Distributed Representa-
tion with High-Dimensional Random Vectors”. In: Cognitive Computation 1.2, pp. 139–159. DOI:
10.1007/s12559-009-9009-8.

Karlsruhe Institute of Technology (2018). Annieway Project. URL: http://www.mrt.kit.edu/a
nnieway/ (visited on 2018-02-22).

Karpathy, A. and L. Fei-Fei (2017). “Deep Visual-Semantic Alignments for Generating Image Descrip-
tions”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 39.4, pp. 664–676.
ISSN: 0162-8828. DOI: 10.1109/TPAMI.2016.2598339.

Kieras, D. E. and D. E. Meyer (1997). “An Overview of the EPIC Architecture for Cognition and Perfor-
mance With Application to Human-Computer Interaction”. In: Human-Computer Interaction 12.4,
pp. 391–438. ISSN: 0737-0024. DOI: 10.1207/s15327051hci1204_4.

Kim, H., A. Handa, R. Benosman, S.-H. Ieng, and A. J. Davison (2014). “Simultaneous Mosaicing and
Tracking with an Event Camera”. In: British Machine Vision Conference, BMVC 2014, Nottingham,
UK, September 1-5, 2014.

Kirchhoff-Institute for Physics, Heidelberg University (2018a). BrainScaleS-project. URL: https://b
rainscales.kip.uni-heidelberg.de (visited on 2018-04-05).

— (2018b). FACETS-project. URL: https://facets.kip.uni-heidelberg.de (visited on
2018-04-05).

Kleyko, D., E. Osipov, R. W. Gayler, A. I. Khan, and A. G. Dyer (2015). “Imitation of honey bees’ con-
cept learning processes using Vector Symbolic Architectures”. In: Biologically Inspired Cognitive
Architectures 14, pp. 57–72. ISSN: 2212-683X. DOI: 10.1016/j.bica.2015.09.002. URL:
http://www.sciencedirect.com/science/article/pii/S2212683X15000456
.

Koopman, P. and M. Wagner (2016). “Challenges in Autonomous Vehicle Testing and Validation”. In:
SAE International Journal of Transportation Safety 4, pp. 15–24. DOI: 10.4271/2016-01-01
28.

Krichmar, J. L., N. Dutt, J. M. Nageswaran, and M. Richert (2011). “Neuromorphic Modeling Abstrac-
tions and Simulation of Large-scale Cortical Networks”. In: Proceedings of the International Con-
ference on Computer-Aided Design. ICCAD ’11. San Jose, California: IEEE Press, pp. 334–338.
ISBN: 978-1-4577-1398-9. URL: http://dl.acm.org/citation.cfm?id=2132325.21
32411.

Lagorce, X., C. Meyer, S. H. Ieng, D. Filliat, and R. Benosman (2015). “Asynchronous Event-Based
Multikernel Algorithm for High-Speed Visual Features Tracking”. In: IEEE Transactions on Neural

https://doi.org/10.1109/TNN.2003.820440
http://www.izhikevich.org/publications/spikes.pdf
http://www.izhikevich.org/publications/spikes.pdf
https://doi.org/10.1109/TNN.2004.832719
http://www.izhikevich.org/publications/whichmod.pdf
https://books.google.de/books?id=gtGliq-q2aMC
https://books.google.de/books?id=gtGliq-q2aMC
https://arxiv.org/abs/1704.05519
https://doi.org/10.1115/1.3662552
https://doi.org/10.1007/10719871_13
https://doi.org/10.1007/s12559-009-9009-8
http://www.mrt.kit.edu/annieway/
http://www.mrt.kit.edu/annieway/
https://doi.org/10.1109/TPAMI.2016.2598339
https://doi.org/10.1207/s15327051hci1204_4
https://brainscales.kip.uni-heidelberg.de
https://brainscales.kip.uni-heidelberg.de
https://facets.kip.uni-heidelberg.de
https://doi.org/10.1016/j.bica.2015.09.002
http://www.sciencedirect.com/science/article/pii/S2212683X15000456
http://www.sciencedirect.com/science/article/pii/S2212683X15000456
https://doi.org/10.4271/2016-01-0128
https://doi.org/10.4271/2016-01-0128
http://dl.acm.org/citation.cfm?id=2132325.2132411
http://dl.acm.org/citation.cfm?id=2132325.2132411

Bibliography 171

Networks and Learning Systems 26.8, pp. 1710–1720. ISSN: 2162-237X. DOI: 10.1109/TNNLS
.2014.2352401.

Laird, J. E., A. Newell, and P. S. Rosenbloom (1987). “SOAR: An architecture for general intelligence”.
In: Artificial Intelligence 33.1, pp. 1–64. ISSN: 0004-3702. DOI: 10.1016/0004-3702(87)90
050-6. URL: http://www.sciencedirect.com/science/article/pii/0004370
287900506.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-Based Learning Applied to Document
Recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.

LeCun, Y., Y. Bengio, and G. Hinton (2015). “Deep learning”. In: Nature 521.7553, pp. 436–444. ISSN:
0028-0836.

Lefèvre, S., D. Vasquez, and C. Laugier (2014-07-23). “A survey on motion prediction and risk assess-
ment for intelligent vehicles”. In: ROBOMECH Journal 1.1, p. 1. ISSN: 2197-4225. DOI: 10.1186
/s40648-014-0001-z.

Levine, S., C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-End Training of Deep Visuomotor Poli-
cies”. In: Journal of Machine Learning Research 17.1, pp. 1334–1373. ISSN: 1532-4435. URL: htt
p://dl.acm.org/citation.cfm?id=2946645.2946684.

Levy, O., Y. Goldberg, and I. Dagan (2015). “Improving Distributional Similarity with Lessons Learned
from Word Embeddings”. In: Transactions of the Association for Computational Linguistics 3,
pp. 211–225. ISSN: 2307-387X. URL: https://transacl.org/ojs/index.php/tac
l/article/view/570.

Levy, S. D. and R. Gayler (2008). “Vector Symbolic Architectures: A New Building Material for Artifi-
cial General Intelligence”. In: Proceedings of the 2008 Conference on Artificial General Intelligence
2008: Proceedings of the First AGI Conference. Amsterdam, The Netherlands, The Netherlands: IOS
Press, pp. 414–418. ISBN: 978-1-58603-833-5. URL: http://dl.acm.org/citation.cfm
?id=1566174.1566215.

Li, H., F. Sun, L. Liu, and L. Wang (2015). “A novel traffic sign detection method via color segmen-
tation and robust shape matching”. In: Neurocomputing 169. Learning for Visual Semantic Under-
standing in Big DataESANN 2014Industrial Data Processing and AnalysisSelected papers from the
22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN 2014)Selected papers from the 11th World Congress on Intelligent Control and
Automation (WCICA2014), pp. 77–88. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2014.12
.111. URL: http://www.sciencedirect.com/science/article/pii/S0925231
215006712.

Li, X., L. Li, F. Flohr, J. Wang, H. Xiong, M. Bernhard, S. Pan, D. M. Gavrila, and K. Li (2017). “A
Unified Framework for Concurrent Pedestrian and Cyclist Detection”. In: IEEE Transactions on
Intelligent Transportation Systems 18.2, pp. 269–281. ISSN: 1524-9050. DOI: 10.1109/TITS.2
016.2567418.

Lichtsteiner, P., C. Posch, and T. Delbruck (2008). “A 128x128 120 dB 15 µs Latency Asynchronous
Temporal Contrast Vision Sensor”. In: IEEE Journal of Solid-State Circuits 43.2, pp. 566–576.
ISSN: 0018-9200. DOI: 10.1109/JSSC.2007.914337.

Lin, T.-Y., M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L.
Zitnick, and P. Dollár (2014-05-01). “Microsoft COCO: Common Objects in Context”. In: arXiv e-
prints, arXiv:1405.0312, arXiv:1405.0312. arXiv: http://arxiv.org/abs/1405.0312v3
[cs.CV].

Liu, S.-C., J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas (2002). Analog VLSI:Circuits and Prin-
ciples. MIT Press.

Liu, S.-C. and T. Delbruck (2010). “Neuromorphic sensory systems”. In: Current Opinion in Neurobiol-
ogy 20.3, pp. 288–295. ISSN: 0959-4388. DOI: 10.1016/j.conb.2010.03.007.

https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1109/TNNLS.2014.2352401
https://doi.org/10.1016/0004-3702(87)90050-6
https://doi.org/10.1016/0004-3702(87)90050-6
http://www.sciencedirect.com/science/article/pii/0004370287900506
http://www.sciencedirect.com/science/article/pii/0004370287900506
https://doi.org/10.1186/s40648-014-0001-z
https://doi.org/10.1186/s40648-014-0001-z
http://dl.acm.org/citation.cfm?id=2946645.2946684
http://dl.acm.org/citation.cfm?id=2946645.2946684
https://transacl.org/ojs/index.php/tacl/article/view/570
https://transacl.org/ojs/index.php/tacl/article/view/570
http://dl.acm.org/citation.cfm?id=1566174.1566215
http://dl.acm.org/citation.cfm?id=1566174.1566215
https://doi.org/10.1016/j.neucom.2014.12.111
https://doi.org/10.1016/j.neucom.2014.12.111
http://www.sciencedirect.com/science/article/pii/S0925231215006712
http://www.sciencedirect.com/science/article/pii/S0925231215006712
https://doi.org/10.1109/TITS.2016.2567418
https://doi.org/10.1109/TITS.2016.2567418
https://doi.org/10.1109/JSSC.2007.914337
https://arxiv.org/abs/http://arxiv.org/abs/1405.0312v3
https://arxiv.org/abs/http://arxiv.org/abs/1405.0312v3
https://doi.org/10.1016/j.conb.2010.03.007

172 Bibliography

Liu, S.-C., A. van Schaik, B. A. Minch, and T. Delbruck (2014). “Asynchronous Binaural Spatial Au-
dition Sensor With 2 x 64 x 4 Channel Output”. In: IEEE Transactions on Biomedical Circuits and
Systems 8.4, pp. 453–464. ISSN: 1932-4545. DOI: 10.1109/tbcas.2013.2281834.

Loeb, G. E. and J. A. Fishel (2014). “Bayesian Action&Perception: Representing the World in the Brain”.
In: Frontiers in Neuroscience 8, p. 341. ISSN: 1662-453X. DOI: 10.3389/fnins.2014.00341.

Loiacono, D., P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta, M. V. Butz, T. D. Lonneker, L. Cardamone,
D. Perez, Y. Saez, M. Preuss, and J. Quadflieg (2010). “The 2009 Simulated Car Racing Champi-
onship”. In: IEEE Transactions on Computational Intelligence and AI in Games 2.2, pp. 131–147.
ISSN: 1943-068X. DOI: 10.1109/TCIAIG.2010.2050590.

Long, J., E. Shelhamer, and T. Darrell (2015). “Fully convolutional networks for semantic segmentation”.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 3431–
3440. DOI: 10.1109/CVPR.2015.7298965.

Losing, V., B. Hammer, and H. Wersing (2017). “Personalized maneuver prediction at intersections”.
In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE,
pp. 1–6. DOI: 10.1109/ITSC.2017.8317760.

— (2018). “Incremental on-line learning: A review and comparison of state of the art algorithms”. In:
Neurocomputing 275, pp. 1261–1274. DOI: 10.1016/j.neucom.2017.06.084.

Lundgren, M., E. Stenborg, L. Svensson, and L. Hammarstrand (2014). “Vehicle self-localization using
off-the-shelf sensors and a detailed map”. In: 2014 IEEE Intelligent Vehicles Symposium Proceed-
ings. IEEE, pp. 522–528. DOI: 10.1109/IVS.2014.6856524.

Maass, W. (1997). “Networks of Spiking Neurons: The Third Generation of Neural Network Models”.
In: Neural Networks 14.4, pp. 1659–1671. ISSN: 0893-6080. DOI: 10.1016/S0893-6080(97
)00011-7. URL: http://www.sciencedirect.com/science/article/pii/S089
3608097000117.

Mahowald, M. (1992). “VLSI analogs of neuronal visual processing: a synthesis of form and function”.
PhD thesis. California Institute of Technology.

Marr, B., B. Degnan, P. Hasler, and D. Anderson (2013). “Scaling Energy Per Operation via an Asyn-
chronous Pipeline”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 21.1,
pp. 147–151. ISSN: 1063-8210. DOI: 10.1109/TVLSI.2011.2178126.

Masquelier, T., R. Guyonneau, and S. J. Thorpe (2007). “Spike Timing Dependent Plasticity Finds the
Start of Repeating Patterns in Continuous Spike Trains”. In: PLoS ONE 3.1. Ed. by O. Sporns,
e1377. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0001377. URL: http://www.nc
bi.nlm.nih.gov/pmc/articles/PMC2147052/.

Maye, J., R. Triebel, L. Spinello, and R. Siegwart (2011). “Bayesian On-line Learning of Driving Be-
haviors”. In: Proc. of The International Conference in Robotics and Automation (ICRA).

McCulloch, W. S. and W. Pitts (1943). “A logical calculus of the ideas immanent in nervous activity”.
In: The Bulletin of Mathematical Biophysics 5.4, pp. 115–133. DOI: 10.1007/bf02478259.

Mead, C. (1989). Analog VLSI and Neural Systems. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc. ISBN: 0-201-05992-4.

— (1990). “Neuromorphic electronic systems”. In: Proceedings of the IEEE. Vol. 78. 10, pp. 1629–
1636.

Merolla, P., J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha (2011). “A digital neurosy-
naptic core using embedded crossbar memory with 45pJ per spike in 45nm”. In: 2011 IEEE Custom
Integrated Circuits Conference (CICC), pp. 1–4. DOI: 10.1109/CICC.2011.6055294.

Merolla, P., J. Arthur, R. Alvarez, J. M. Bussat, and K. Boahen (2014). “A Multicast Tree Router for Mul-
tichip Neuromorphic Systems”. In: IEEE Transactions on Circuits and Systems I: Regular Papers
61.3, pp. 820–833. ISSN: 1549-8328. DOI: 10.1109/TCSI.2013.2284184.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013a). “Efficient Estimation of Word Representations
in Vector Space”. In: Computing Research Repository (CoRR) abs/1301.3781. URL: http://arx
iv.org/abs/1301.3781.

https://doi.org/10.1109/tbcas.2013.2281834
https://doi.org/10.3389/fnins.2014.00341
https://doi.org/10.1109/TCIAIG.2010.2050590
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/ITSC.2017.8317760
https://doi.org/10.1016/j.neucom.2017.06.084
https://doi.org/10.1109/IVS.2014.6856524
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
http://www.sciencedirect.com/science/article/pii/S0893608097000117
http://www.sciencedirect.com/science/article/pii/S0893608097000117
https://doi.org/10.1109/TVLSI.2011.2178126
https://doi.org/10.1371/journal.pone.0001377
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147052/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147052/
https://doi.org/10.1007/bf02478259
https://doi.org/10.1109/CICC.2011.6055294
https://doi.org/10.1109/TCSI.2013.2284184
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Bibliography 173

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013b). “Distributed Representations
of Words and Phrases and their Compositionality”. In: Advances in Neural Information Processing
Systems 26. Ed. by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger.
Curran Associates, Inc., pp. 3111–3119. URL: http://papers.nips.cc/paper/5021-di
stributed-representations-of-words-and-phrases-and-their-composit
ionality.pdf.

Mikolov, T., S. W.-t. Yih, and G. Zweig (2013c). “Linguistic Regularities in Continuous Space Word
Representations”. In: Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT-2013).
Association for Computational Linguistics. URL: https://www.microsoft.com/en-us/r
esearch/publication/linguistic-regularities-in-continuous-space-w
ord-representations.

Miller, G. A. (1956). “The magical number seven, plus or minus two: some limits on our capacity for
processing information”. In: Psychological Review 63.2, pp. 81–97. DOI: 10.1037/h0043158.

Minsky, M. and S. Papert (1969). Perceptrons. Cambridge, MA: MIT Press.
Minsky, M. (1986). The Society of Mind. New York, NY, USA: Simon and Schuster, Inc. ISBN: 0-671-

60740-5.
Mirus, F., C. Axenie, T. C. Stewart, and J. Conradt (2018a). “Neuromorphic sensorimotor adaptation

for robotic mobile manipulation: From sensing to behaviour”. In: Cognitive Systems Research 50,
pp. 52–66. ISSN: 1389-0417. DOI: 10.1016/j.cogsys.2018.03.006. URL: http://www
.sciencedirect.com/science/article/pii/S1389041717300955.

Mirus, F., P. Blouw, T. C. Stewart, and J. Conradt (2019a-10). “An Investigation of Vehicle Behavior
Prediction Using a Vector Power Representation to Encode Spatial Positions of Multiple Objects
and Neural Networks”. In: Frontiers in Neurorobotics 13, p. 84. ISSN: 1662-5218. DOI: 10.3389
/fnbot.2019.00084. URL: https://www.frontiersin.org/article/10.3389
/fnbot.2019.00084.

— (2019b). “Predicting vehicle behaviour using LSTMs and a vector power representation for spatial
positions”. In: 27th European Symposium on Artificial Neural Networks, ESANN 2019, Bruges,
Belgium, pp. 113–118.

Mirus, F., T. C. Stewart, and J. Conradt (2018b). “Towards cognitive automotive environment modelling:
reasoning based on vector representations”. In: 26th European Symposium on Artificial Neural Net-
works, ESANN 2018, Bruges, Belgium, pp. 55–60.

— (2020a-07-19). “Analyzing the Capacity of Distributed Vector Representations to Encode Spatial
Information”. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–7.
DOI: 10.1109/IJCNN48605.2020.9207137.

— (2020b-10-02). “Detection of abnormal driving situations using distributed representations and un-
supervised learning”. In: 28th European Symposium on Artificial Neural Networks, ESANN 2020,
Bruges, Belgium.

— (2020c-07-19). “The Importance of Balanced Data Sets: Analyzing a Vehicle Trajectory Prediction
Model based on Neural Networks and Distributed Representations”. In: 2020 International Joint
Conference on Neural Networks (IJCNN). IEEE, pp. 1–8. DOI: 10.1109/IJCNN48605.2020
.9206627.

Mirus, F., T. C. Stewart, C. Eliasmith, and J. Conradt (2019c). “A Mixture-of-Experts Model for Vehi-
cle Prediction Using an Online Learning Approach”. In: Artificial Neural Networks and Machine
Learning – ICANN 2019: Image Processing. Ed. by I. V. Tetko, V. Kůrková, P. Karpov, and F. Theis.
Vol. 11729. Lecture Notes in Computer Science. Springer International Publishing, pp. 456–471.
ISBN: 978-3-030-30508-6. DOI: 10.1007/978-3-030-30508-6_37.

Mirus, F., B. Zorn, and J. Conradt (2019d). “Short-term trajectory planning using reinforcement learning
within a neuromorphic control architecture”. In: 27th European Symposium on Artificial Neural
Networks, ESANN 2019, Bruges, Belgium, pp. 649–654.

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations
https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations
https://www.microsoft.com/en-us/research/publication/linguistic-regularities-in-continuous-space-word-representations
https://doi.org/10.1037/h0043158
https://doi.org/10.1016/j.cogsys.2018.03.006
http://www.sciencedirect.com/science/article/pii/S1389041717300955
http://www.sciencedirect.com/science/article/pii/S1389041717300955
https://doi.org/10.3389/fnbot.2019.00084
https://doi.org/10.3389/fnbot.2019.00084
https://www.frontiersin.org/article/10.3389/fnbot.2019.00084
https://www.frontiersin.org/article/10.3389/fnbot.2019.00084
https://doi.org/10.1109/IJCNN48605.2020.9207137
https://doi.org/10.1109/IJCNN48605.2020.9206627
https://doi.org/10.1109/IJCNN48605.2020.9206627
https://doi.org/10.1007/978-3-030-30508-6_37

174 Bibliography

Mohan, R. (2014). “Deep Deconvolutional Networks for Scene Parsing”. In: ArXiv e-prints. arXiv: 141
1.4101 [stat.ML].

Moravec, H. (1988). Mind Children: The Future of Robot and Human Intelligence. Cambridge, MA,
USA: Harvard University Press. ISBN: 0-674-57616-0.

Mueggler, E., B. Huber, and D. Scaramuzza (2014). “Event-based, 6-DOF pose tracking for high-speed
maneuvers”. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, September 14-18, 2014, pp. 2761–2768. DOI: 10.1109/IROS.2014.69429
40.

Mundy, A., J. Knight, T. C. Stewart, and S. Furber (2015). “An efficient SpiNNaker implementation of
the Neural Engineering Framework”. In: 2015 International Joint Conference on Neural Networks
(IJCNN). IEEE, pp. 1–8. DOI: 10.1109/ijcnn.2015.7280390.

Navaridas, J., M. Luján, J. Miguel-Alonso, L. A. Plana, and S. Furber (2009). “Understanding the In-
terconnection Network of SpiNNaker”. In: Proceedings of the 23rd International Conference on
Supercomputing. ICS ’09. Yorktown Heights, NY, USA: ACM, pp. 286–295. ISBN: 978-1-60558-
498-0. DOI: 10.1145/1542275.1542317.

Neckar, A., S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker, C. Eliasmith, R. Manohar,
and K. Boahen (2019). “Braindrop: A Mixed-Signal Neuromorphic Architecture With a Dynamical
Systems-Based Programming Model”. In: Proceedings of the IEEE 107.1 (1), pp. 144–164. DOI:
10.1109/jproc.2018.2881432. URL: https://ieeexplore.ieee.org/documen
t/8591981.

Nere, A., U. Olcese, D. Balduzzi, and G. Tononi (2012). “A Neuromorphic Architecture for Object
Recognition and Motion Anticipation Using Burst-STDP”. In: PLoS ONE 7.5. Ed. by T. Wennekers,
pp. 1–17. DOI: 10.1371/journal.pone.0036958.

Neubert, P., S. Schubert, and P. Protzel (2016). “Learning Vector Symbolic Architectures for Reactive
Robot Behaviours”. In: Proc. of International Conference on Intelligent Robots and Systems (IROS),
Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics.

Neumann, J. von (1993). “First draft of a report on the EDVAC”. In: IEEE Annals of the History of
Computing 15.4, pp. 27–75. ISSN: 1058-6180. DOI: 10.1109/85.238389.

Norton, A., W. Ober, L. Baraniecki, E. McCann, J. Scholtz, D. Shane, A. Skinner, R. Watson, and H.
Yanco (2017). “Analysis of human-robot interaction at the DARPA Robotics Challenge Finals”. In:
The International Journal of Robotics Research 36.5-7, pp. 483–513. DOI: 10.1177/02783649
16688254. eprint: https://doi.org/10.1177/0278364916688254.

Numenta (2019). Numenta webpage. URL: https://numenta.com/ (visited on 2019-04-03).
O’Connor, P., D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer (2013). “Real-Time Classification and

Sensor Fusion with a Spiking Deep Belief Network”. In: Frontiers in Neuroscience 7.178. ISSN:
1662-453X. DOI: 10.3389/fnins.2013.00178.

Olshausen, B. A. and D. J. Field (1996). “Emergence of Simple-Cell Receptive Field Properties by
Learning a Sparse Code for Natural Images”. In: Nature 381, pp. 607–609.

Orchard, G., A. Jayawant, G. Cohen, and N. V. Thakor (2015). “Converting Static Image Datasets to
Spiking Neuromorphic Datasets Using Saccades”. In: Frontiers in Neuroscience 9.00437. DOI: 10
.3389/fnins.2015.00437. URL: http://www.frontiersin.org/Journal/Abst
ract.aspx?s=755&name=neuromorphic_engineering&ART_DOI=10.3389/fnin
s.2015.00437.

Painkras, E., L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester, A. D. Brown, and
S. B. Furber (2013). “SpiNNaker: A 1-W 18-Core System-on-Chip for Massively-Parallel Neural
Network Simulation”. In: IEEE Journal of Solid-State Circuits 48.8, pp. 1943–1953. ISSN: 0018-
9200.

Patterson, E. K., S. Gurbuz, Z. Tufekci, and J. N. Gowdy (2002). “CUAVE: A new audio-visual database
for multimodal human-computer interface research”. In: IEEE International Conference on Acous-

https://arxiv.org/abs/1411.4101
https://arxiv.org/abs/1411.4101
https://doi.org/10.1109/IROS.2014.6942940
https://doi.org/10.1109/IROS.2014.6942940
https://doi.org/10.1109/ijcnn.2015.7280390
https://doi.org/10.1145/1542275.1542317
https://doi.org/10.1109/jproc.2018.2881432
https://ieeexplore.ieee.org/document/8591981
https://ieeexplore.ieee.org/document/8591981
https://doi.org/10.1371/journal.pone.0036958
https://doi.org/10.1109/85.238389
https://doi.org/10.1177/0278364916688254
https://doi.org/10.1177/0278364916688254
https://doi.org/10.1177/0278364916688254
https://numenta.com/
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2015.00437
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic_engineering&ART_DOI=10.3389/fnins.2015.00437
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic_engineering&ART_DOI=10.3389/fnins.2015.00437
http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic_engineering&ART_DOI=10.3389/fnins.2015.00437

Bibliography 175

tics Speech and Signal Processing. Vol. 2. IEEE, pp. II-2017-II–2020. DOI: 10.1109/icassp.2
002.5745028.

Paugam-Moisy, H. and S. Bohte (2009). “Computing with Spiking Neuron Networks”. en. In: Handbook
of Natural Computing. Ed. by J. K. G. Rozenberg T. Back. Springer Berlin Heidelberg, pp. 335–376.
DOI: 10.1007/978-3-540-92910-9_10. URL: http://liris.cnrs.fr/publis
/?id=4305.

Pennington, J., R. Socher, and C. D. Manning (2014). “GloVe: Global Vectors for Word Representation”.
In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543. URL: http:
//www.aclweb.org/anthology/D14-1162.

Petrovskaya, A. and S. Thrun (2009a). “Efficient Techniques for Dynamic Vehicle Detection”. In: Ex-
perimental Robotics. Ed. by O. Khatib, V. Kumar, and G. J. Pappas. Vol. 54. Berlin, Heidelberg:
Springer Berlin Heidelberg. Chap. 10, pp. 79–91. DOI: 10.1007/978-3-642-00196-3_10.
URL: http://dx.doi.org/10.1007/978-3-642-00196-3%5C_10.

— (2009b). “Model based vehicle detection and tracking for autonomous urban driving”. In: Au-
tonomous Robots 26.2, pp. 123–139. ISSN: 1573-7527. DOI: 10.1007/s10514-009-9115-1.

Piatkowska, E., A. N. Belbachir, S. Schraml, and M. Gelautz (2012). “Spatiotemporal multiple persons
tracking using Dynamic Vision Sensor”. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 35–40. DOI: 10.1109/CVPRW.2012.6238
892.

Plate, T. (1991). “Holographic Reduced Representations: Convolution Algebra for Compositional
Distributed Representations”. In: International Joint Conference on Artificial Intelligence. Morgan
Kaufmann, pp. 30–35.

— (1994). “Distributed Representations and Nested Compositional Structure”. PhD thesis. University
of Toronto.

Plate, T. A. (1994). “Estimating analogical similarity by dot-products of Holographic Reduced Represen-
tations”. In: Advances in Neural Information Processing Systems 6. Ed. by J. D. Cowan, G. Tesauro,
and J. Alspector. Morgan-Kaufmann, pp. 1109–1116. URL: http://papers.nips.cc/pape
r/740-estimating-analogical-similarity-by-dot-products-of-hologra
phic-reduced-representations.pdf.

Ponulak, F. and A. Kasinski (2011). “Introduction to spiking neural networks: Information processing,
learning and applications.” In: Acta neurobiologiae experimentalis 71.4, pp. 409–433. ISSN: 1689-
0035. URL: http://view.ncbi.nlm.nih.gov/pubmed/22237491.

Preissl, R., T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser, W. P. Risk, H. D. Simon, and D. S.
Modha (2012). “Compass: A Scalable Simulator for an Architecture for Cognitive Computing”. In:
Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis. SC ’12. Salt Lake City, Utah: IEEE Computer Society Press, 54:1–54:11. ISBN: 978-
1-4673-0804-5.

Qiao, N., H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. Indiveri (2015). “A
Re-configurable On-line Learning Spiking Neuromorphic Processor comprising 256 neurons and
128K synapses”. In: Frontiers in Neuroscience 9.141. ISSN: 1662-453X. DOI: 10.3389/fnins
.2015.00141.

Rasmussen, D. and C. Eliasmith (2011). “A Neural Model of Rule Generation in Inductive Reasoning”.
In: Topics in Cognitive Science 3.1, pp. 140–153. DOI: 10.1111/j.1756-8765.2010.0112
7.x.

Reverter Valeiras, D., G. Orchard, S. H. Ieng, and R. B. Benosman (2016). “Neuromorphic Event-Based
3D Pose Estimation”. In: Frontiers in Neuroscience 9.522. ISSN: 1662-453X. DOI: 10.3389/fni
ns.2015.00522.

Rojas, R. (1996). Neural Networks: A Systematic Introduction. New York, NY, USA: Springer-Verlag
New York, Inc. ISBN: 3-540-60505-3.

https://doi.org/10.1109/icassp.2002.5745028
https://doi.org/10.1109/icassp.2002.5745028
https://doi.org/10.1007/978-3-540-92910-9_10
http://liris.cnrs.fr/publis/?id=4305
http://liris.cnrs.fr/publis/?id=4305
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1007/978-3-642-00196-3_10
http://dx.doi.org/10.1007/978-3-642-00196-3%5C_10
https://doi.org/10.1007/s10514-009-9115-1
https://doi.org/10.1109/CVPRW.2012.6238892
https://doi.org/10.1109/CVPRW.2012.6238892
http://papers.nips.cc/paper/740-estimating-analogical-similarity-by-dot-products-of-holographic-reduced-representations.pdf
http://papers.nips.cc/paper/740-estimating-analogical-similarity-by-dot-products-of-holographic-reduced-representations.pdf
http://papers.nips.cc/paper/740-estimating-analogical-similarity-by-dot-products-of-holographic-reduced-representations.pdf
http://view.ncbi.nlm.nih.gov/pubmed/22237491
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1111/j.1756-8765.2010.01127.x
https://doi.org/10.1111/j.1756-8765.2010.01127.x
https://doi.org/10.3389/fnins.2015.00522
https://doi.org/10.3389/fnins.2015.00522

176 Bibliography

Rosenblatt, F. (1958). “The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain”. In: Psychological Review 65.6, pp. 386–408.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning representations by back-
propagating errors”. In: Nature 323.6088, pp. 533–536. DOI: 10 . 1038 / 323533a0. URL:
https://www.nature.com/articles/323533a0.

Rumelhart, D. E. and J. L. McClelland, eds. (1986). Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. 1: Foundations. Cambridge, MA, USA: MIT Press. ISBN: 0-262-
68053-X.

SAE (2016). J3016, Taxonomy and Definitions for Terms Related to Driving Automation Systems for
On-Road Motor Vehicles. Tech. rep. SAE International. DOI: 10.4271/J3016_201609. URL:
https://www.sae.org/standards/content/j3016_201609/.

Samsonovich, A. V. (2012). “On a roadmap for the BICA Challenge”. In: Biologically Inspired Cognitive
Architectures 1, pp. 100–107. ISSN: 2212-683X. DOI: 10.1016/j.bica.2012.05.002. URL:
http://www.sciencedirect.com/science/article/pii/S2212683X12000126
.

Saner, D., O. Wang, S. Heinzle, Y. Pritch, A. Smolic, A. Sorkine-Hornung, and M. Gross (2014). “High-
Speed Object Tracking Using an Asynchronous Temporal Contrast Sensor”. In: VMV 2014: Vi-
sion, Modeling & Visualization, Darmstadt, Germany, 2014. Proceedings. European Association
for Computer Graphics.

Schemmel, J., D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner (2010). “A wafer-scale neu-
romorphic hardware system for large-scale neural modeling”. In: Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on, pp. 1947–1950. DOI: 10.1109/ISCAS
.2010.5536970.

Schemmel, J., J. Fieres, and K. Meier (2008). “Wafer-scale integration of analog neural networks”. In:
2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Compu-
tational Intelligence), pp. 431–438.

Schmidhuber, J. (2015). “Deep Learning in Neural Networks: An Overview”. In: Neural Networks 61.
Published online 2014; based on TR arXiv:1404.7828 [cs.NE], pp. 85–117. DOI: 10.1016/j.ne
unet.2014.09.003.

Schmitt, S., J. Klaehn, G. Bellec, A. Grübl, M. Guettler, A. Hartel, S. Hartmann, D. H. de Oliveira, K.
Husmann, V. Karasenko, M. Kleider, C. Koke, C. Mauch, E. Müller, P. Müller, J. Partzsch, M. A.
Petrovici, S. Schiefer, S. Scholze, B. Vogginger, R. A. Legenstein, W. Maass, C. Mayr, J. Schemmel,
and K. Meier (2017). “Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on
the BrainScaleS Wafer-Scale System”. In: Computing Research Repository (CoRR) abs/1703.01909.
URL: http://arxiv.org/abs/1703.01909.

Schöner, G. (2008). “Dynamical Systems Approaches to Cognition”. In: The Cambridge Handbook of
Computational Psychology. Ed. by R. Sun. Cambridge Handbooks in Psychology. Cambridge Uni-
versity Press, pp. 101–126. DOI: 10.1017/CBO9780511816772.007.

Schraml, S., A. N. Belbachir, N. Milosevic, and P. Schon (2010). “Dynamic stereo vision system for real-
time tracking”. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems.
IEEE, pp. 1409–1412. DOI: 10.1109/ISCAS.2010.5537289.

Schwartz, T. J. (1990). “A Neural Chips Survey”. In: AI Expert 5.12, pp. 34–38. ISSN: 0888-3785. URL:
http://dl.acm.org/citation.cfm?id=95986.95993.

Sermanet, P. and Y. LeCun (2011). “Traffic sign recognition with multi-scale Convolutional Networks”.
In: The 2011 International Joint Conference on Neural Networks. IEEE, pp. 2809–2813. DOI: 10
.1109/IJCNN.2011.6033589.

Serrano-Gotarredona, T. and B. Linares-Barranco (2013). “A 128x128 1.5% Contrast Sensitivity 0.9%
FPN 3 µs Latency 4 mW Asynchronous Frame-Free Dynamic Vision Sensor Using Transimpedance
Preamplifiers”. In: IEEE Journal of Solid-State Circuits 48.3, pp. 827–838. ISSN: 0018-9200. DOI:
10.1109/JSSC.2012.2230553.

https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://doi.org/10.4271/J3016_201609
https://www.sae.org/standards/content/j3016_201609/
https://doi.org/10.1016/j.bica.2012.05.002
http://www.sciencedirect.com/science/article/pii/S2212683X12000126
http://www.sciencedirect.com/science/article/pii/S2212683X12000126
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1703.01909
https://doi.org/10.1017/CBO9780511816772.007
https://doi.org/10.1109/ISCAS.2010.5537289
http://dl.acm.org/citation.cfm?id=95986.95993
https://doi.org/10.1109/IJCNN.2011.6033589
https://doi.org/10.1109/IJCNN.2011.6033589
https://doi.org/10.1109/JSSC.2012.2230553

Bibliography 177

Serrano-Gotarredona, T., B. Linares-Barranco, F. Galluppi, L. Plana, and S. Furber (2015). “ConvNets
experiments on SpiNNaker”. In: Circuits and Systems (ISCAS), 2015 IEEE International Symposium
on, pp. 2405–2408. DOI: 10.1109/ISCAS.2015.7169169.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I.
Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis (2016). “Master-
ing the game of Go with deep neural networks and tree search”. In: Nature 529.7587, pp. 484–489.
ISSN: 0028-0836. DOI: 10.1038/nature16961.

Simonyan, K. and A. Zisserman (2014). “Very Deep Convolutional Networks for Large-Scale Image
Recognition”. In: Computing Research Repository (CoRR) abs/1409.1556. arXiv: 1409.1556.
URL: http://arxiv.org/abs/1409.1556.

Smolensky, P. (1990). “Tensor Product Variable Binding and the Representation of Symbolic Structures
in Connectionist Systems”. In: Artificial Intelligence 46.1-2, pp. 159–216. ISSN: 0004-3702. DOI:
10.1016/0004-3702(90)90007-m.

Srinivasa, N. and J. M. Cruz-Albrecht (2012). “Neuromorphic Adaptive Plastic Scalable Electronics:
Analog Learning Systems”. In: IEEE Pulse 3.1, pp. 51–56. ISSN: 2154-2287. DOI: 10.1109/MPU
L.2011.2175639.

Stallkamp, J., M. Schlipsing, J. Salmen, and C. Igel (2012). “Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition”. In: Neural Networks 32.0, pp. 323–332. ISSN: 0893-
6080. DOI: 10.1016/j.neunet.2012.02.016. URL: http://www.sciencedirect.c
om/science/article/pii/S0893608012000457.

Stanley, G. B. (2013). “Reading and writing the neural code”. In: Nature Neuroscience 16.3, pp. 259–
263. ISSN: 1097-6256. DOI: 10.1038/nn.3330.

Stefanini, F., S. Sheik, E. Neftci, and G. Indiveri (2014). “PyNCS: a microkernel for high-level definition
and configuration of neuromorphic electronic systems”. In: Frontiers in Neuroinformatics 8.73. DOI:
10.3389/fninf.2014.00073. URL: http://ncs.ethz.ch/pubs/pdf/Stefanini
_etal14.pdf.

Stewart, T., T. Bekolay, and C. Eliasmith (2012). “Learning to Select Actions with Spiking Neurons in
the Basal Ganglia”. In: Frontiers in Neuroscience 6, p. 2. ISSN: 1662-453X. DOI: 10.3389/fnin
s.2012.00002.

Stewart, T. C., X. Choo, and C. Eliasmith (2010). “Dynamic Behaviour of a Spiking Model of Action
Selection in the Basal Ganglia”. In: 10th International Conference on Cognitive Modeling.

Stewart, T. C., A. Kleinhans, A. Mundy, and J. Conradt (2016). “Serendipitous Offline Learning in a
Neuromorphic Robot”. In: Frontiers in Neurorobotics 10.1. ISSN: 1662-5218. DOI: 10.3389/fn
bot.2016.00001.

Stewart, T. C., Y. Tang, and C. Eliasmith (2011). “A Biologically Realistic Cleanup Memory: Autoasso-
ciation in Spiking Neurons”. In: Cognitive Systems Research 12, pp. 84–92. DOI: 10.1016/j.co
gsys.2010.06.006.

Stewart, T. C., B. Tripp, and C. Eliasmith (2009). “Python scripting in the nengo simulator”. In: Frontiers
in neuroinformatics 3, p. 7. ISSN: 1662-5196. DOI: 10.3389/neuro.11.007.2009.

Steyer, S., G. Tanzmeister, and D. Wollherr (2018). “Grid-Based Environment Estimation Using Eviden-
tial Mapping and Particle Tracking”. In: IEEE Transactions on Intelligent Vehicles 3.3, pp. 384–396.
ISSN: 2379-8904. DOI: 10.1109/TIV.2018.2843130.

Stromatias, E., D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and S. Furber (2015a). “Scalable energy-
efficient, low-latency implementations of trained spiking Deep Belief Networks on SpiNNaker”. In:
2015 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8. DOI: 10.1109
/ijcnn.2015.7280625.

Stromatias, E., D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and S.-C. Liu (2015b). “Robustness of spik-
ing Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms”.
In: Frontiers in Neuroscience 9.222. ISSN: 1662-453X. DOI: 10.3389/fnins.2015.00222.

https://doi.org/10.1109/ISCAS.2015.7169169
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1016/0004-3702(90)90007-m
https://doi.org/10.1109/MPUL.2011.2175639
https://doi.org/10.1109/MPUL.2011.2175639
https://doi.org/10.1016/j.neunet.2012.02.016
http://www.sciencedirect.com/science/article/pii/S0893608012000457
http://www.sciencedirect.com/science/article/pii/S0893608012000457
https://doi.org/10.1038/nn.3330
https://doi.org/10.3389/fninf.2014.00073
http://ncs.ethz.ch/pubs/pdf/Stefanini_etal14.pdf
http://ncs.ethz.ch/pubs/pdf/Stefanini_etal14.pdf
https://doi.org/10.3389/fnins.2012.00002
https://doi.org/10.3389/fnins.2012.00002
https://doi.org/10.3389/fnbot.2016.00001
https://doi.org/10.3389/fnbot.2016.00001
https://doi.org/10.1016/j.cogsys.2010.06.006
https://doi.org/10.1016/j.cogsys.2010.06.006
https://doi.org/10.3389/neuro.11.007.2009
https://doi.org/10.1109/TIV.2018.2843130
https://doi.org/10.1109/ijcnn.2015.7280625
https://doi.org/10.1109/ijcnn.2015.7280625
https://doi.org/10.3389/fnins.2015.00222

178 Bibliography

Taieb, S. B. and R. Hyndman (2014). “Boosting multi-step autoregressive forecasts”. In: Proceedings of
the 31st International Conference on Machine Learning. Ed. by E. P. Xing and T. Jebara. Vol. 32.
Proceedings of Machine Learning Research 1. Bejing, China: PMLR, pp. 109–117. URL: http:
//proceedings.mlr.press/v32/taieb14.html.

Tan, C., S. Lallee, and G. Orchard (2015). “Benchmarking Neuromorphic Vision: Lessons Learnt from
Computer Vision”. In: Frontiers in Neuroscience 9.374. ISSN: 1662-453X. DOI: 10.3389/fnin
s.2015.00374.

Tanzmeister, G., J. Thomas, D. Wollherr, and M. Buss (2014). “Grid-based mapping and tracking in
dynamic environments using a uniform evidential environment representation”. In: 2014 IEEE In-
ternational Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 - June
7, 2014, pp. 6090–6095. DOI: 10.1109/ICRA.2014.6907756.

Thagard, P. (2012). “Cognitive Architectures”. In: The Cambridge Handbook of Cognitive Science. Ed.
by K. Frankish and W. Ramsey. Cambridge University Press, pp. 50–70.

Thorpe, C., M. H. Hebert, T. Kanade, and S. A. Shafer (1988). “Vision and navigation for the Carnegie-
Mellon Navlab”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 10.3, pp. 362–
373. ISSN: 0162-8828. DOI: 10.1109/34.3900.

Thrun, S., W. Burgard, and D. Fox (2005). Probabilistic Robotics (Intelligent Robotics and Autonomous
Agents series). Intelligent robotics and autonomous agents. The MIT Press. ISBN: 0262201623.

Thrun, S., M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny,
G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski,
B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney (2006). Stanley: The Robot That Won
the DARPA Grand Challenge: Research Articles. Ed. by K. Iagnemma and M. Buehler. Chichester,
UK. DOI: 10.1002/rob.v23:9.

Tian, X. and Y. Bar-Shalom (2010). “On algorithms for asynchronous Track-to-Track Fusion”. In: 2010
13th International Conference on Information Fusion. IEEE, pp. 1–8. DOI: 10.1109/ICIF.201
0.5711956.

Treisman, A. (1999). “Solutions to the Binding Problem”. In: Neuron 24.1, pp. 105–125. ISSN: 0896-
6273. DOI: 10.1016/s0896-6273(00)80826-0.

Urmson, C., J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, D. Duggins, T. Galatali,
C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev,
M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y.-W.
Seo, S. Singh, J. Snider, A. Stentz, W. “ Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D.
Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, and D.
Ferguson (2008). “Autonomous driving in urban environments: Boss and the Urban Challenge”. In:
Journal of Field Robotics Special Issue on the 2007 DARPA Urban Challenge, Part I 25.8. Ed. by
S. S. Martin Buehler Karl Lagnemma, pp. 425–466. DOI: 10.1002/rob.20255.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York, NY, USA: Springer-Verlag
New York, Inc. ISBN: 0-387-94559-8.

Voelker, A. R., J. Gosmann, and T. C. Stewart (2017). Efficiently sampling vectors and coordinates from
the n-sphere and n-ball. en. Tech. rep. Waterloo, ON: Centre for Theoretical Neuroscience. DOI:
10.13140/rg.2.2.15829.01767/1. URL: https://www.researchgate.net/pub
lication/312056739_Efficiently_sampling_vectors_and_coordinates_fr
om_the_n-sphere_and_n-ball.

Wahle, M., D. Widdows, J. R. Herskovic, E. V. Bernstam, and T. Cohen (2012). “Deterministic Binary
Vectors for Efficient Automated Indexing of MEDLINE/PubMed Abstracts”. In: AMIA Annual Sym-
posium Proceedings 2012.PMC3540485, pp. 940–949. ISSN: 1942-597X. URL: http://www.nc
bi.nlm.nih.gov/pmc/articles/PMC3540485/.

Walter, F., F. Röhrbein, and A. Knoll (2015). “Neuromorphic implementations of neurobiological learn-
ing algorithms for spiking neural networks”. In: Neural Networks 72. Neurobiologically Inspired

http://proceedings.mlr.press/v32/taieb14.html
http://proceedings.mlr.press/v32/taieb14.html
https://doi.org/10.3389/fnins.2015.00374
https://doi.org/10.3389/fnins.2015.00374
https://doi.org/10.1109/ICRA.2014.6907756
https://doi.org/10.1109/34.3900
https://doi.org/10.1002/rob.v23:9
https://doi.org/10.1109/ICIF.2010.5711956
https://doi.org/10.1109/ICIF.2010.5711956
https://doi.org/10.1016/s0896-6273(00)80826-0
https://doi.org/10.1002/rob.20255
https://doi.org/10.13140/rg.2.2.15829.01767/1
https://www.researchgate.net/publication/312056739_Efficiently_sampling_vectors_and_coordinates_from_the_n-sphere_and_n-ball
https://www.researchgate.net/publication/312056739_Efficiently_sampling_vectors_and_coordinates_from_the_n-sphere_and_n-ball
https://www.researchgate.net/publication/312056739_Efficiently_sampling_vectors_and_coordinates_from_the_n-sphere_and_n-ball
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540485/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540485/

Bibliography 179

Robotics: Enhanced Autonomy through Neuromorphic Cognition, pp. 152–167. ISSN: 0893-6080.
DOI: 10.1016/j.neunet.2015.07.004.

Wang, Y. and D. Liu (2003). “On information and knowledge representation in the brain”. In: The Second
IEEE International Conference on Cognitive Informatics, 2003. Proceedings. IEEE Comput. Soc,
pp. 26–31. DOI: 10.1109/coginf.2003.1225947.

Waymo LLC (2018). Waymo webpage. URL: https://waymo.com/ (visited on 2018-02-08).
Webber, F. E. D. S. (2016). Semantic Folding. URL: http://www.cortical.io/static/down

loads/semantic-folding-theory-white-paper.pdf (visited on 2019-04-03).
Weikersdorfer, D., D. B. Adrian, D. Cremers, and J. Conradt (2014). “Event-based 3D SLAM with a

depth-augmented Dynamic Vision Sensor”. In: 2014 IEEE International Conference on Robotics
and Automation, ICRA 2014, Hong Kong, China, May 31 - June 7, 2014, pp. 359–364. DOI: 10.1
109/ICRA.2014.6906882.

Weikersdorfer, D. and J. Conradt (2012). “Event-based particle filtering for robot self-localization”. In:
2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp. 866–870.
DOI: 10.1109/robio.2012.6491077.

Weikersdorfer, D., R. Hoffmann, and J. Conradt (2013). “Simultaneous Localization and Mapping for
Event-Based Vision Systems”. In: Computer Vision Systems - 9th International Conference, ICVS
2013, St. Petersburg, Russia, July 16-18, 2013. Proceedings, pp. 133–142. DOI: 10.1007/978-3
-642-39402-7_14.

Werbos, P. J. (1974). “Beyond regression: new tools for prediction and analysis in the behavioral sci-
ences”. PhD thesis. Harvard University.

Wymann, B., E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and A. Sumner (2014). TORCS, The
Open Racing Car Simulator. URL: http://www.torcs.org.

Yamazaki, S., C. Miyajima, E. Yurtsever, K. Takeda, M. Mori, K. Hitomi, and M. Egawa (2016). “Inte-
grating driving behavior and traffic context through signal symbolization”. In: 2016 IEEE Intelligent
Vehicles Symposium (IV), pp. 642–647. DOI: 10.1109/IVS.2016.7535455.

https://doi.org/10.1016/j.neunet.2015.07.004
https://doi.org/10.1109/coginf.2003.1225947
https://waymo.com/
http://www.cortical.io/static/downloads/semantic-folding-theory-white-paper.pdf
http://www.cortical.io/static/downloads/semantic-folding-theory-white-paper.pdf
https://doi.org/10.1109/ICRA.2014.6906882
https://doi.org/10.1109/ICRA.2014.6906882
https://doi.org/10.1109/robio.2012.6491077
https://doi.org/10.1007/978-3-642-39402-7_14
https://doi.org/10.1007/978-3-642-39402-7_14
http://www.torcs.org
https://doi.org/10.1109/IVS.2016.7535455

	Abstract
	Zusammenfassung
	Acknowledgment
	Table of Contents
	List of Abbreviations
	Conventions
	List of Figures
	List of Tables
	Introduction
	Preamble
	Outline of the thesis
	Contributions of and to this thesis
	List of Publications

	Research Context
	Biologically-inspired Systems
	A brief history
	SNN
	Neuromorphic Hardware
	Neuromorphic Applications

	Cognitive Modeling
	Symbolic approaches
	Connectionist approaches
	Vector-based approaches

	Automated Driving
	A brief history
	Knowledge Representation
	Driving Context Classification
	Object Detection and Classification
	Trajectory Prediction
	Online Learning
	Data sets

	Summary

	Theoretical background
	Mathematical properties of VSA
	The SPA
	The NEF
	Representation
	Transformation
	Dynamics

	Cognitive Modeling with VSA
	Vocabularies
	Encoding structure
	Implementation in SNN

	Summary

	Distributed representations of automotive scenes
	Preprocessing stage - generating a vocabulary
	What types of data to encode?
	Random and manually engineered vocabularies
	Visual vocabularies
	Semantic vocabularies
	Visual-semantic vocabularies
	Summary on vocabularies

	Representation generation stage
	Different vector representations for numerical values
	Structured representations
	Capacity analysis - limiting factors to vector representations

	Summary

	Instantiating a cognitive model for driving context classification
	Data and preprocessing
	Data labeling

	Representation and models
	Scene representation in vectors
	Classification model

	Experiments
	Performance baselines
	Model training
	Evaluation of the classification performance
	The influence of varying vocabularies

	Summary

	Instantiating a cognitive model for predicting vehicle behavior
	Data and preprocessing
	On-board-sensors data set
	NGSIM US-101 data set
	Preprocessing
	Data set peculiarities
	Performance baselines

	Representation and models
	Scene representation in vectors
	LSTM-based prediction models
	Simple feed-forward NEF-based prediction models
	Excursion on unsupervised anomaly detection

	Experiments and results
	Evaluation of the LSTM-based prediction models
	Evaluation of NEF-based feed-forward prediction models
	Evaluation of the unsupervised anomaly detection

	Summary

	A mixture-of-experts online learning system for adaptive behavior prediction
	Mixture-of-experts online learning models
	A context-free mixture-of-experts online learning model
	A context-sensitive mixture-of-experts online learning model
	Temporal spreading of the error signal

	Experiments and results
	Data and preprocessing
	Comparing timing-agnostic context-free and context-sensitive mixture models
	Evaluation of the context-sensitive model variant with temporal spreading

	Summary

	Closed-loop neuromorphic control systems
	Sensorimotor adaptation for mobile robotic manipulation
	Neuromorphic system architecture
	Neural algorithm development
	Neural task implementation
	Summary

	Neuromorphic reinforcement learning for vehicle trajectory control
	Neuromorphic control architecture
	Reinforcement Learning
	Summary

	Summary

	Discussion
	Conclusion and outlook

	Bibliography

